|
| 1 | + |
| 2 | +/** |
| 3 | +
|
| 4 | +Problem : LightOJ 1018 |
| 5 | +
|
| 6 | +**/ |
| 7 | + |
| 8 | +/**Which of the favors of your Lord will you deny ?**/ |
| 9 | + |
| 10 | +#include<bits/stdc++.h> |
| 11 | +using namespace std; |
| 12 | + |
| 13 | +#define LL long long |
| 14 | +#define PII pair<int,int> |
| 15 | +#define PLL pair<LL,LL> |
| 16 | +#define MP make_pair |
| 17 | +#define F first |
| 18 | +#define S second |
| 19 | +#define INF INT_MAX |
| 20 | + |
| 21 | +#define ALL(x) (x).begin(), (x).end() |
| 22 | +#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl |
| 23 | + |
| 24 | +#include <ext/pb_ds/assoc_container.hpp> |
| 25 | +#include <ext/pb_ds/tree_policy.hpp> |
| 26 | +using namespace __gnu_pbds; |
| 27 | + |
| 28 | +template<class TIn> |
| 29 | +using indexed_set = tree< |
| 30 | + TIn, null_type, less<TIn>, |
| 31 | + rb_tree_tag, tree_order_statistics_node_update>; |
| 32 | + |
| 33 | +/* |
| 34 | +PBDS |
| 35 | +------------------------------------------------- |
| 36 | +1) insert(value) |
| 37 | +2) erase(value) |
| 38 | +3) order_of_key(value) // 0 based indexing |
| 39 | +4) *find_by_order(position) // 0 based indexing |
| 40 | +
|
| 41 | +*/ |
| 42 | + |
| 43 | +inline void optimizeIO() |
| 44 | +{ |
| 45 | + ios_base::sync_with_stdio(false); |
| 46 | + cin.tie(NULL); |
| 47 | +} |
| 48 | + |
| 49 | +const int nmax = 2e5+7; |
| 50 | +const LL LINF = 1e17; |
| 51 | + |
| 52 | +string to_str(LL x) |
| 53 | +{ |
| 54 | + stringstream ss; |
| 55 | + ss<<x; |
| 56 | + return ss.str(); |
| 57 | +} |
| 58 | + |
| 59 | +//bool cmp(const PII &A,const PII &B) |
| 60 | +//{ |
| 61 | +// |
| 62 | +//} |
| 63 | + |
| 64 | + |
| 65 | +int n; |
| 66 | +int X[16]; |
| 67 | +int Y[16]; |
| 68 | +int col[16][16]; |
| 69 | +int dp[1<<16]; |
| 70 | + |
| 71 | +bool collinear(int i, int j, int k) { |
| 72 | + return ((X[i] - X[j]) * (Y[k] - Y[j]) - (Y[i] - Y[j]) * (X[k] - X[j])) == 0; |
| 73 | +} |
| 74 | + |
| 75 | +void precalc() |
| 76 | +{ |
| 77 | + memset(col,0,sizeof col); |
| 78 | + |
| 79 | + for(int i=0;i<n;i++) |
| 80 | + for(int j=0;j<n;j++) |
| 81 | + for(int k=0;k<n;k++) |
| 82 | + if(i!=j && collinear(i,j,k)) |
| 83 | + col[i][j] |= (1<<k); /** Number of 1's in col[i][j] = How many Points are collinear with ith and jth point **/ |
| 84 | + |
| 85 | +} |
| 86 | + |
| 87 | +int solve(int mask) |
| 88 | +{ |
| 89 | + if(mask==((1<<n)-1)) return 0; |
| 90 | + |
| 91 | + if (__builtin_popcount(mask) == (n - 1)) /** n-1 other points are already collinear with this one **/ |
| 92 | + return 1; |
| 93 | + |
| 94 | + int &ret = dp[mask]; |
| 95 | + |
| 96 | + if(ret!=-1) return ret; |
| 97 | + |
| 98 | + int i; |
| 99 | + for(i=0;mask&(1<<i);i++); /** Go to the lsb which is not collinear **/ |
| 100 | + /**Suppose you have satisfied bitmask M of the points. Let the lowest index dust point which hasn't been cleaned yet be x. Note that you are going to have to clean x eventually. Therefore you lose nothing by assuming you definitely clean x now. Then at each state you narrow down to N edges because you have one point which must be on the line **/ |
| 101 | + |
| 102 | + ret = INT_MAX; |
| 103 | + for(int j=0;j<n;j++) |
| 104 | + if(i!=j && !(mask&(1<<j))) |
| 105 | + ret = min(ret,1 + solve(mask|col[i][j])); |
| 106 | + |
| 107 | + return ret; |
| 108 | +} |
| 109 | + |
| 110 | +int main() |
| 111 | +{ |
| 112 | + //freopen("out.txt","w",stdout); |
| 113 | + |
| 114 | + optimizeIO(); |
| 115 | + |
| 116 | + int tc; |
| 117 | + cin>>tc; |
| 118 | + |
| 119 | + for(int qq=1; qq<=tc; qq++) |
| 120 | + { |
| 121 | + cin>>n; |
| 122 | + |
| 123 | + for(int i=0;i<n;i++) |
| 124 | + cin>>X[i]>>Y[i]; |
| 125 | + |
| 126 | + precalc(); |
| 127 | + memset(dp,-1,sizeof dp); |
| 128 | + int ans = solve(0); |
| 129 | + |
| 130 | + cout<<"Case "<<qq<<": "<<ans<<endl; |
| 131 | + } |
| 132 | + |
| 133 | + return 0; |
| 134 | +} |
| 135 | + |
| 136 | + |
0 commit comments