Skip to content

Latest commit

 

History

History
187 lines (152 loc) · 4.8 KB

File metadata and controls

187 lines (152 loc) · 4.8 KB

System Architecture

🚧 Documentation In Progress

This documentation is being actively developed. More details will be added soon.

Overview

This document provides a comprehensive overview of the MCP Codebase Insight system architecture. For detailed workflow information, please see the Workflows Documentation.

Architecture Components

Core Systems

  • Vector Store System
  • Knowledge Base
  • Task Management
  • Health Monitoring
  • Error Handling
  • Metrics Collection
  • Cache Management

Documentation

  • ADR Management
  • Documentation Tools
  • API Documentation

Testing

  • Test Framework
  • SSE Testing
  • Integration Testing

Detailed Documentation

System Overview

This document provides a comprehensive overview of the MCP Codebase Insight system architecture, focusing on system interactions, dependencies, and design considerations.

Core Systems

1. Vector Store System (src/mcp_codebase_insight/core/vector_store.py)

  • Purpose: Manages code embeddings and semantic search capabilities
  • Key Components:
    • Qdrant integration for vector storage
    • Embedding generation and management
    • Search optimization and caching
  • Integration Points:
    • Knowledge Base for semantic understanding
    • Cache Management for performance optimization
    • Health Monitoring for system status

2. Knowledge Base (src/mcp_codebase_insight/core/knowledge.py)

  • Purpose: Central repository for code insights and relationships
  • Key Components:
    • Pattern detection and storage
    • Relationship mapping
    • Semantic analysis
  • Feedback Loops:
    • Updates vector store with new patterns
    • Receives feedback from code analysis
    • Improves pattern detection over time

3. Task Management (src/mcp_codebase_insight/core/tasks.py)

  • Purpose: Handles async operations and job scheduling
  • Key Components:
    • Task scheduling and prioritization
    • Progress tracking
    • Resource management
  • Bottleneck Mitigation:
    • Task queuing strategies
    • Resource allocation
    • Error recovery

4. Health Monitoring (src/mcp_codebase_insight/core/health.py)

  • Purpose: System health and performance monitoring
  • Key Components:
    • Component status tracking
    • Performance metrics
    • Alert system
  • Feedback Mechanisms:
    • Real-time status updates
    • Performance optimization triggers
    • System recovery procedures

5. Error Handling (src/mcp_codebase_insight/core/errors.py)

  • Purpose: Centralized error management
  • Key Components:
    • Error classification
    • Recovery strategies
    • Logging and reporting
  • Resilience Features:
    • Graceful degradation
    • Circuit breakers
    • Error propagation control

System Interactions

Critical Paths

  1. Code Analysis Flow:

    sequenceDiagram
        participant CA as Code Analysis
        participant KB as Knowledge Base
        participant VS as Vector Store
        participant CM as Cache
        
        CA->>VS: Request embeddings
        VS->>CM: Check cache
        CM-->>VS: Return cached/null
        VS->>KB: Get patterns
        KB-->>VS: Return patterns
        VS-->>CA: Return analysis
    
    Loading
  2. Health Monitoring Flow:

    sequenceDiagram
        participant HM as Health Monitor
        participant CS as Component State
        participant TM as Task Manager
        participant EH as Error Handler
        
        HM->>CS: Check states
        CS->>TM: Verify tasks
        TM-->>CS: Task status
        CS-->>HM: System status
        HM->>EH: Report issues
    
    Loading

Performance Considerations

Caching Strategy

  • Multi-level caching (memory and disk)
  • Cache invalidation triggers
  • Cache size management

Scalability Points

  1. Vector Store:

    • Horizontal scaling capabilities
    • Batch processing optimization
    • Search performance tuning
  2. Task Management:

    • Worker pool management
    • Task prioritization
    • Resource allocation

Error Recovery

Failure Scenarios

  1. Vector Store Unavailable:

    • Fallback to cached results
    • Graceful degradation of search
    • Automatic reconnection
  2. Task Overload:

    • Dynamic task throttling
    • Priority-based scheduling
    • Resource reallocation

System Evolution

Extension Points

  1. Knowledge Base:

    • Plugin system for new patterns
    • Custom analyzers
    • External integrations
  2. Monitoring:

    • Custom metrics
    • Alert integrations
    • Performance profiling

Next Steps

  1. Documentation Needs:

    • Detailed component interaction guides
    • Performance tuning documentation
    • Deployment architecture guides
  2. System Improvements:

    • Enhanced caching strategies
    • More robust error recovery
    • Better performance monitoring