Skip to content

Commit 71367c9

Browse files
authored
Update Readme.md
1 parent 7507ebd commit 71367c9

File tree

1 file changed

+13
-18
lines changed

1 file changed

+13
-18
lines changed

Ch8/README.md

+13-18
Original file line numberDiff line numberDiff line change
@@ -1,30 +1,25 @@
11

2-
Chapter 8
2+
# Social Media
33

4-
Social Media
4+
Set of notebooks associated with Chapter 8 of the book
55

6-
1. Create wordcloud: How to create a wordcloud to get a quick sense of given text corpus.
6+
1. **[Create a wordcloud](https://github.com/practical-nlp/practical-nlp/blob/master/Ch8/WordCloud.ipynb)**: How to create a wordcloud. This is often used to get a quick sense of given text corpus at hand.
77

8-
2. Effect of tokenizer On Social Media Text Data : Here we show how different tokenizer perform for given text data. We will with 5 different tokenizers.
8+
2. **[Effect of different tokenizers on Social Media Text Data](https://github.com/practical-nlp/practical-nlp/blob/master/Ch8/DifferentTokenizers.ipynb)** : Here we show how different tokenizers can give different output for the same input text. When dealing to text data from social platforms this can have huge bearing on the performance of the task. Here, we will be working with 5 different tokenizers, namely:
99

10-
word_tokenize from NLTK
10+
- [word_tokenize from NLTK](https://www.nltk.org/api/nltk.tokenize.html)
11+
- [TweetTokenizer from NLTK](https://www.nltk.org/api/nltk.tokenize.html)
12+
- [Twikenizer](https://pypi.org/project/twikenizer/)
13+
- [Twokenizer by ARK@CMU](http://www.cs.cmu.edu/~ark/TweetNLP/)
14+
- [twokenize](https://github.com/leondz/twokenize)
1115

12-
TweetTokenizer from NLTK [64]
13-
14-
Twikenizer [65]
15-
16-
Twokenizer by ARK@CMU [62]
17-
18-
twokenize [61]
1916

20-
3. Trending topics: Show trending topics on Twitter using tweepy
17+
3. [Trending topics](https://github.com/practical-nlp/practical-nlp/blob/master/Ch8/TrendingTopics.ipynb): Find trending topics on Twitter using tweepy
2118

22-
4. Sentiment Analysis: Basic sentiment analysis using TextBlob
19+
4. [Sentiment Analysis](https://github.com/practical-nlp/practical-nlp/blob/master/Ch8/Textblob.ipynb): Basic sentiment analysis using TextBlob
2320

24-
5. Preprocessing Social Media Text Data: Common steps involved in pre-processing pipeline for Social Media Text Data
21+
5. [Preprocessing Social Media Text Data](https://github.com/practical-nlp/practical-nlp/blob/master/Ch8/smtd_preprocessing.py): Common steps involved in pre-processing pipeline for Social Media Text Data
2522

2623
6. Text representation of Social Media Text Data: How to use embeddings to represent Social Media Text Data
2724

28-
7.
29-
30-
25+
8. Sentiment Analysis:

0 commit comments

Comments
 (0)