{ "cells": [ { "cell_type": "markdown", "id": "5c27dfd1-4fe0-4a97-92e6-ddf78889aa93", "metadata": { "nteract": { "transient": { "deleting": false } } }, "source": [ "### Install the latest .whl package\n", "\n", "Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version." ] }, { "cell_type": "code", "execution_count": null, "id": "d5cae9db-cef9-48a8-a351-9c5fcc99645c", "metadata": { "jupyter": { "outputs_hidden": true, "source_hidden": false }, "nteract": { "transient": { "deleting": false } } }, "outputs": [], "source": [ "%pip install semantic-link-labs" ] }, { "cell_type": "markdown", "id": "b195eae8", "metadata": {}, "source": [ "### Import the library and necessary packages" ] }, { "cell_type": "code", "execution_count": null, "id": "1344e286", "metadata": {}, "outputs": [], "source": [ "import sempy_labs as labs\n", "\n", "lakehouse_name = ''\n", "lakehouse_workspace_name = ''\n", "warehouse_name = ''\n", "warehouse_workspace_name = ''" ] }, { "cell_type": "markdown", "id": "55e5ca67", "metadata": {}, "source": [ "### Run a SQL query (or queries) against a Fabric warehouse" ] }, { "cell_type": "code", "execution_count": null, "id": "a9f984e9", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n", " df = sql.query(\"SELECT * FROM Product\")\n", " display(df)" ] }, { "cell_type": "code", "execution_count": null, "id": "865ac4a1", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n", " dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n", "\n", "for df in dfs:\n", " display(df)" ] }, { "cell_type": "markdown", "id": "bca53cd8", "metadata": {}, "source": [ "#### See the tables in a warehouse" ] }, { "cell_type": "code", "execution_count": null, "id": "9af2cce7", "metadata": {}, "outputs": [], "source": [ "labs.get_warehouse_tables(warehouse=warehouse_name, workspace=warehouse_workspace_name)" ] }, { "cell_type": "markdown", "id": "765f99ae", "metadata": {}, "source": [ "#### See the columns in each table in a warehouse" ] }, { "cell_type": "code", "execution_count": null, "id": "1fabe168", "metadata": {}, "outputs": [], "source": [ "labs.get_warehouse_columns(warehouse=warehouse_name, workspace=warehouse_workspace_name)" ] }, { "cell_type": "markdown", "id": "634700c3", "metadata": {}, "source": [ "### Run a T-SQL query (or queries) against a Fabric warehouse" ] }, { "cell_type": "code", "execution_count": null, "id": "5dbf34f3", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n", " sql.query(\"CREATE SCHEMA [Business]\")" ] }, { "cell_type": "code", "execution_count": null, "id": "ec8ddb81", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n", " sql.query([\"CREATE SCHEMA [Business]\", \"CREATE SCHEMA [Marketing]\"])" ] }, { "cell_type": "markdown", "id": "d5b090da", "metadata": {}, "source": [ "### Run a SQL query (or queries) against a Fabric lakehouse" ] }, { "cell_type": "code", "execution_count": null, "id": "4dca7f4a", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n", " df = sql.query(\"SELECT * FROM Product\")\n", " display(df)" ] }, { "cell_type": "code", "execution_count": null, "id": "b9606ae8", "metadata": {}, "outputs": [], "source": [ "with labs.ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n", " dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n", "\n", "for df in dfs:\n", " display(df)" ] } ], "metadata": { "kernel_info": { "name": "synapse_pyspark" }, "kernelspec": { "display_name": "Synapse PySpark", "language": "Python", "name": "synapse_pyspark" }, "language_info": { "name": "python" }, "microsoft": { "language": "python" }, "nteract": { "version": "nteract-front-end@1.0.0" }, "spark_compute": { "compute_id": "/trident/default" }, "synapse_widget": { "state": {}, "version": "0.1" }, "widgets": {} }, "nbformat": 4, "nbformat_minor": 5 }