-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtransforms.hpp
executable file
·212 lines (177 loc) · 8.59 KB
/
transforms.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#ifndef TRANSFORMS_HPP
#define TRANSFORMS_HPP
#include <vector>
#include <utility>
#include <memory>
// For External Library
#include <torch/torch.h>
#include <opencv2/opencv.hpp>
#define CV_MAT false
#define TORCH_TENSOR true
// -----------------------
// namespace{transforms}
// -----------------------
namespace transforms{
// --------------------------------------------
// namespace{transforms} -> class{ComposeImpl}
// --------------------------------------------
#define transforms_Compose std::shared_ptr<transforms::ComposeImpl>
class ComposeImpl{
public:
ComposeImpl(){}
virtual bool type() = 0;
virtual void forward(cv::Mat &data_in, cv::Mat &data_out){}
virtual void forward(cv::Mat &data_in, torch::Tensor &data_out){}
virtual void forward(torch::Tensor &data_in, cv::Mat &data_out){}
virtual void forward(torch::Tensor &data_in, torch::Tensor &data_out){}
virtual void forward(cv::Mat &data_in1, std::tuple<torch::Tensor, torch::Tensor> &data_in2, cv::Mat &data_out1, std::tuple<torch::Tensor, torch::Tensor> &data_out2){}
virtual ~ComposeImpl(){}
};
// Function Prototype
torch::Tensor apply(std::vector<transforms_Compose> &transform, cv::Mat &data_in);
torch::Tensor applyT(std::vector<transforms_Compose> &transform, torch::Tensor &data_in);
template <typename T_in, typename T_out> void forward(std::vector<transforms_Compose> &transform_, T_in &data_in, T_out &data_out, const int count);
/*******************************************************************************/
/* Data 1d */
/*******************************************************************************/
// -----------------------------------------------------------
// namespace{transforms} -> class{Normalize1dImpl}(ComposeImpl)
// -----------------------------------------------------------
#define transforms_Normalize1d std::make_shared<transforms::Normalize1dImpl>
class Normalize1dImpl : public ComposeImpl{
private:
torch::Tensor mean, std;
public:
Normalize1dImpl(){}
Normalize1dImpl(const float mean_, const float std_);
Normalize1dImpl(const float mean_, const std::vector<float> std_);
Normalize1dImpl(const std::vector<float> mean_, const float std_);
Normalize1dImpl(const std::vector<float> mean_, const std::vector<float> std_);
bool type() override{return TORCH_TENSOR;}
void forward(torch::Tensor &data_in, torch::Tensor &data_out) override;
};
/*******************************************************************************/
/* Data 2d */
/*******************************************************************************/
// -----------------------------------------------------------
// namespace{transforms} -> class{GrayscaleImpl}(ComposeImpl)
// -----------------------------------------------------------
#define transforms_Grayscale std::make_shared<transforms::GrayscaleImpl>
class GrayscaleImpl : public ComposeImpl{
private:
int channels;
public:
GrayscaleImpl(){}
GrayscaleImpl(const int channels_=1);
bool type() override{return CV_MAT;}
void forward(cv::Mat &data_in, cv::Mat &data_out) override;
};
// --------------------------------------------------------
// namespace{transforms} -> class{ResizeImpl}(ComposeImpl)
// --------------------------------------------------------
#define transforms_Resize std::make_shared<transforms::ResizeImpl>
class ResizeImpl : public ComposeImpl{
private:
cv::Size size;
int interpolation;
public:
ResizeImpl(){}
ResizeImpl(const cv::Size size_, const int interpolation_=cv::INTER_LINEAR);
bool type() override{return CV_MAT;}
void forward(cv::Mat &data_in, cv::Mat &data_out) override;
};
// --------------------------------------------------------------
// namespace{transforms} -> class{ConvertIndexImpl}(ComposeImpl)
// --------------------------------------------------------------
#define transforms_ConvertIndex std::make_shared<transforms::ConvertIndexImpl>
class ConvertIndexImpl : public ComposeImpl{
private:
int before, after;
public:
ConvertIndexImpl(){}
ConvertIndexImpl(const int before_, const int after_);
bool type() override{return CV_MAT;}
void forward(cv::Mat &data_in, cv::Mat &data_out) override;
};
// -----------------------------------------------------------
// namespace{transforms} -> class{ToTensorImpl}(ComposeImpl)
// -----------------------------------------------------------
#define transforms_ToTensor std::make_shared<transforms::ToTensorImpl>
class ToTensorImpl : public ComposeImpl{
public:
ToTensorImpl(){}
bool type() override{return TORCH_TENSOR;}
void forward(cv::Mat &data_in, torch::Tensor &data_out) override;
};
// ---------------------------------------------------------------
// namespace{transforms} -> class{ToTensorLabelImpl}(ComposeImpl)
// ---------------------------------------------------------------
#define transforms_ToTensorLabel std::make_shared<transforms::ToTensorLabelImpl>
class ToTensorLabelImpl : public ComposeImpl{
public:
ToTensorLabelImpl(){}
bool type() override{return TORCH_TENSOR;}
void forward(cv::Mat &data_in, torch::Tensor &data_out) override;
};
// -------------------------------------------------------------
// namespace{transforms} -> class{AddRVINoiseImpl}(ComposeImpl)
// -------------------------------------------------------------
#define transforms_AddRVINoise std::make_shared<transforms::AddRVINoiseImpl>
class AddRVINoiseImpl : public ComposeImpl{
private:
float occur_prob;
std::pair<float, float> range;
public:
AddRVINoiseImpl(){}
AddRVINoiseImpl(const float occur_prob_=0.01, const std::pair<float, float> range_={0.0, 1.0});
bool type() override{return TORCH_TENSOR;}
void forward(torch::Tensor &data_in, torch::Tensor &data_out) override;
};
// ------------------------------------------------------------
// namespace{transforms} -> class{AddSPNoiseImpl}(ComposeImpl)
// ------------------------------------------------------------
#define transforms_AddSPNoise std::make_shared<transforms::AddSPNoiseImpl>
class AddSPNoiseImpl : public ComposeImpl{
private:
float occur_prob;
float salt_rate;
std::pair<float, float> range;
public:
AddSPNoiseImpl(){}
AddSPNoiseImpl(const float occur_prob_=0.01, const float salt_rate_=0.5, const std::pair<float, float> range_={0.0, 1.0});
bool type() override{return TORCH_TENSOR;}
void forward(torch::Tensor &data_in, torch::Tensor &data_out) override;
};
// ---------------------------------------------------------------
// namespace{transforms} -> class{AddGaussNoiseImpl}(ComposeImpl)
// ---------------------------------------------------------------
#define transforms_AddGaussNoise std::make_shared<transforms::AddGaussNoiseImpl>
class AddGaussNoiseImpl : public ComposeImpl{
private:
float occur_prob;
float mean, std;
std::pair<float, float> range;
public:
AddGaussNoiseImpl(){}
AddGaussNoiseImpl(const float occur_prob_=1.0, const float mean_=0.0, const float std_=0.01, const std::pair<float, float> range_={0.0, 1.0});
bool type() override{return TORCH_TENSOR;}
void forward(torch::Tensor &data_in, torch::Tensor &data_out) override;
};
// -----------------------------------------------------------
// namespace{transforms} -> class{NormalizeImpl}(ComposeImpl)
// -----------------------------------------------------------
#define transforms_Normalize std::make_shared<transforms::NormalizeImpl>
class NormalizeImpl : public ComposeImpl{
private:
torch::Tensor mean, std;
public:
NormalizeImpl(){}
NormalizeImpl(const float mean_, const float std_);
NormalizeImpl(const float mean_, const std::vector<float> std_);
NormalizeImpl(const std::vector<float> mean_, const float std_);
NormalizeImpl(const std::vector<float> mean_, const std::vector<float> std_);
bool type() override{return TORCH_TENSOR;}
void forward(torch::Tensor &data_in, torch::Tensor &data_out) override;
};
}
#endif