A one-stop hub, like a sample library.
This repository is organized by topic to help reduce the time spent searching for and reviewing sample code. It offers a curated collection of minimal implementations and sample code from various sources.
Important
🔹For more details and the latest code updates, please refer to the original link provided in the README.app.md
file within each directory.
🔹Disclaimer: Some examples are created for OpenAI-based APIs.
💡How to switch between OpenAI and Azure OpenAI endpoints with Python
- Programming Languages
- Python:🐍
- Jupyter Notebook:📔
- JavaScript/TypeScript:🟦
- Extra:🔴
- Status & Action
- Created:✨ (A unique example found only in this repository)
- Modified:🎡 (An example that has been modified from a referenced source)
- Copied:🧲 (When created or modified emojis are not following)
- See the details at the URL:🔗
- Microsoft libraries or products:🪟
⭐ If you find this repository useful, please consider giving it a star!
- a2a_semantic_kernel🐍✨🔗🪟: Agent2Agent (A2A) Protocol Implementation with Semantic Kernel
- a2a_server_client🐍: Agent2Agent (A2A) Protocol - official implementation of Server/Client
- agent_multi-agent_pattern📔🪟: Agent multi-agent pattern
- agent_planning_pattern📔🪟: Agent planning pattern
- agent_react_pattern📔: Agent react pattern
- agent_reflection_pattern📔: Agent reflection pattern with LangGraph
- agent_reflection_pattern📔: Agent reflection pattern
- agent_tool_use_pattern📔🪟: Agent tool use pattern
- arxiv_agent🐍✨🎡: ArXiv agent
- chess_agent🐍: Chess agent
- multi_agentic_system_simulator🐍✨🔗: A Multi-Agentic System Simulator. Visualize Agent interactions.
- role_playing📔: Role-playing
- web_scrap_agent🐍✨🎡: Web scraping agent
- x-ref: 📁industry
- azure_ai_foundry_sft_finetuning📔🪟: Supervised Fine-tuning
- azure_ai_foundry_workshop📔🪟: Azure AI Foundry Workshop
- azure_ai_search📔🪟: Chunking, Document Processing, Evaluation
- azure_bot📔🪟: Bot Service API
- azure_cosmos_db📔🪟: Cosmos DB as a Vector Database
- azure_cosmos_db_enn🐍✨🪟: Cosmos DB Exact Nearest Neighbor (ENN) Vector Search for Precise Retrieval
- azure_devops_(project_status_report)🐍✨🪟: Azure DevOps – Project Status Report
- azure_document_intelligence🐍🪟: Azure Document Intelligence
- azure_evaluation_sdk🐍🪟: Azure Evaluation SDK
- azure_machine_learning📔🪟: Azure Machine Learning
- azure_postgres_db📔🪟: pgvector for Vector Database
- azure_sql_db📔🪟: Azure SQL as a Vector Database
- copilot_studio🔗🪟: A low-code platform for bots and agents (formerly Power Virtual Agents)
- m365_agents_sdk🟦🪟: Rebranding of Azure Bot Framework
- sentinel_openai🔗🪟: Sentinel – Security Information and Event Management (SIEM)
- sharepoint_azure_function📔🪟: SharePoint Integration with Azure Functions
- teams_ai_sdk🔗🪟: Teams AI SDK
- anthropic: Anthropic Cookbook
- gemini: Gemini API Cookbook
- openai: OpenAI Cookbook
- azure_oai_usage_stats_(power_bi)🔴🪟: Azure OpenAI usage stats using Power BI
- azure_ocr_scan_doc_to_table🐍✨🪟: Azure Document Intelligence – Extract tables from document images and convert them to Excel
- chain-of-thought🐍🔴: Chain-of-thought reasoning prompt
- fabric_cosmosdb_chat_analytics📔🔴✨(visual)🪟: Fabric: Data processing, ingestion, transformation, and reporting on a single platform
- firecrawl_(crawling)🐍: Firecrawl – Web crawling and scraping
- ms_graph_api📔🪟: Microsoft Graph API
- presidio_(redaction)📔🪟: Presidio – Data redaction and anonymization
- prompt_buddy_(power_app)🔴🪟: Prompt sharing application built on Power App
- prompt_leaked🔴: Prompt leakage detection and analysis
- sammo_(prompt_opt)📔🪟: A Structure-Aware Approach to Efficient Compile-Time Prompt Optimization
- semantic_chunking_(rag)📔: Semantic chunking for Retrieval-Augmented Generation (RAG)
- code_editor_(vscode)🐍✨🔗🪟: Visual Studio Code extension development
- diagram_to_infra_template_(bicep)🐍✨🪟: Bicep – Infrastructure as Code (IaC) language
- e2e_testing_agent📔🪟: End-to-end testing with Playwright automation framework
- git_repo_with_chat🐍✨: Chat with Github repository
- gui_automation🔗🪟: Omni Parser – Screen parsing tool / Windows Agent Arena (WAA)
- llm_router🐍✨🎡: LLM request routing and orchestration
- mcp_(model_context_protocol)🐍✨🔗: Model Context Protocol
- mcp_(sse)🐍✨🔗: Remote MCP (Model Context Protocol) calls
- mcp_to_openai_func_call🐍✨: MCP Tool Spec to OpenAI Function Call Converter
- memory_for_llm🐍🔗: Memory management techniques for LLMs – K-LaMP🪟
- memory_graphiti🐍✨: Graph and neo4j based Memory
- mini-copilot🐍✨🔗: DSL approach to calling the M365 API
- mixture_of_agents🐍✨🎡: Multi-agent system for collecting responses from multiple LLMs
- open_telemetry🐍✨: OpenTelemetry – Tracing LLM requests and logging
- evaluation_llm_as_judge📔: Using LLMs for automated evaluation and scoring
- guardrails📔: Guardrails for AI safety and compliance
- pyrit_(safety_eval)📔🪟: Python Risk Identification Tool
- agno_(framework)🐍: Agno – A simple, intuitive agent framework
- autogen_(framework)🐍🪟: AutoGen – A Framework for LLM Agent
- crewai_(framework)🐍: CrewAI – Agent collaboration framework
- dspy_(framework)🐍📔: DSPy – Declarative Language Model Calls into Self-Improving Pipelines
- guidance_(framework)📔🪟: Guidance – Prompt programming framework
- haystack_(framework)🐍📔: Haystack – NLP framework for RAG and search
- langchain_(framework)📔: LangChain – Framework for LLM applications
- llamaindex_(framework)📔: LlamaIndex – Data framework for LLM retrieval/agent
- magentic-one_(agent)🐍🪟: Magentic-One – Multi-agent system for solving open-ended web and file-based tasks
- mem0_(framework)🐍📔: Mem0 – LLM Memory
- omniparser_(gui)📔🪟: OmniParser – GUI automation and parsing tool
- prompt_flow_(framework)📔🪟: Prompt Flow – LLM Workflow
- prompty_(framework)🔗🔴🪟: Prompty – Prompt management
- pydantic_ai_(framework)🐍: Pydantic AI – Pydantic agent framework
- semantic_kernel_(framework)🐍🪟: Semantic Kernel – Microsoft LLM orchestration framework
- smolagent_(framework)🐍: SmolAgent – Hugging Face Lightweight AI agent framework
- tiny_troupe_(framework)📔🪟: Tiny Troupe – Multi agent persona simulation
- x-ref: 📁microsoft-frameworks-and-libraries:
- auto_insurance_claims📔: Automation for auto insurance claims processing
- career_assistant_agent📔: Career guidance and job recommendation agent
- contract_review📔: Legal contract analysis and review
- customer_support_agent📔: Customer support automation
- damage_insurance_claims📔: Automated claims processing for damage insurance
- invoice_sku_product_catalog_matching📔: Invoice and SKU reconciliation for accounting
- invoice_payments📔: Automation for invoice payments
- invoice_standardization📔: Standardizing invoice units for consistency
- music_compositor_agent📔: Music composition assistant
- news_summarization_agent📔: Automated summarization of news articles
- nyc_taxi_pickup_(ui)🐍: NYC taxi pickup analysis and UI visualization
- patient_case_summary📔: Summaries for patient medical cases
- project_management📔: a tools for project tracking and task management
- stock_analysis🐍✨🔗: AutoGen demo for analyzing stock investments
- travel_planning_agent📔: Travel itinerary planner
- youtube_summarize🐍✨: Summarizing YouTube videos using AI
- finetuning_grpo📔: Group Relative Policy Optimization (GRPO) for LLM fine-tuning
- knowledge_distillation📔: Compressing LLM knowledge into smaller models
- llama_finetuning_with_lora📔: LoRA – Low-Rank Adaptation of Large Language Models
- nanoGPT🐍: Lightweight GPT implementation
- nanoMoE🐍: Lightweight Mixture of Experts (MoE) implementation
- azure_prompt_flow🔗🪟: Azure AI Foundry - Prompt flow: E2E development tools for creating LLM flows and evaluation
- mlflow📔: OSS platform managing ML workflows
- image_gen📔: Image creation
- image_gen_dalle📔: Image creation with segmentaion
- openai-agents-sdk-voice-pipeline📔✨: OpenAI Agents SDK for voice processing
- openai-chat-vision📔: Multimodal chat with vision capabilities
- phi-series-cookbook_(slm)🔗🪟: Phi series models cookbook (small language models)
- video_understanding📔: Video content analysis and understanding
- vision_rag📔: Combining visual data with retrieval-augmented generation (RAG)
- visualize_embedding📔: Tools for embedding visualization and analysis
- voice_audio🟦: RTClient sample for using the Realtime API in voice applications
- multilingual_translation_(co-op-translator)🐍🪟: a library for multilingual translation
- search_the_internet_and_summarize📔: Internet search and summarization
- sentiment_analysis_for_customer_feedback📔: Sentiment analysis for customer feedback
- translate_manga_into_english🐍✨: Manga translation into English
- txt2sql🐍: Converting natural language queries into SQL
- adaptive-rag📔: Adaptive retrieval-augmented generation (RAG)
- agentic_rag📔: Agent-based RAG system
- contextual_retrieval_(rag)📔: Context-aware retrieval for RAG
- corrective_rag📔: Improving retrieval results with corrective techniques
- fusion_retrieval_reranking_(rag)📔: Fusion-based retrieval and reranking for RAG
- graphrag📔🪟: Graph-based retrieval-augmented generation
- hyde_(rag)📔: Hypothetical Document Embeddings for better retrieval
- query_rewriting_(rag)📔: Enhancing RAG by rewriting queries for better retrieval
- raptor_(rag)📔: Recursive Abstractive Processing for Tree-Organized Retrieval
- self_rag📔: Self-improving retrieval-augmented generation
- analysis_of_twitter_the-algorithm_source_code📔: Analyzing Twitter’s open-source ranking algorithm
- deep_research_langchain🐍📔: AI-driven deep research and analysis tools using LangChain
- deep_research_smolagents🐍📔: AI-driven deep research and analysis tools using smolagents
- openai_code_interpreter🐍📔: OpenAI’s code interpreter for data analysis
- r&d-agent🐍🪟: Research and development AI agent
You can use the git_cmp.py
script (and related files) to compare your local project directories with their corresponding remote GitHub repositories.
-
Index all projects and their GitHub URLs:
python git_cmp.py --index --root <root_dir> --csv git_cmp_index.csv
This creates a CSV file listing all projects and their remote URLs.
-
Compare local and remote repositories:
python git_cmp.py --compare --root <root_dir> --csv git_cmp_index.csv --report git_cmp_report.txt --update_csv git_cmp_needs_update.csv
This generates a report and a CSV of projects needing updates. It also copies changed files into
.cache/
for review. -
Update local files from cache (optional, use with care):
python git_cmp.py --manipulate --root <root_dir> --update_csv git_cmp_needs_update.csv
This copies files from
.cache/
back into your project directories, optionally deleting files if flagged.
--delay_sec <seconds>
: Add a delay between GitHub API calls to avoid rate limits.--index
: Index projects and write a CSV.--compare
: Compare projects and write a report.--manipulate
: Update local files from the cache based on the update CSV.
python git_cmp.py --index --root . --csv git_cmp_index.csv
python git_cmp.py --compare --root . --csv git_cmp_index.csv --report git_cmp_report.txt --update_csv git_cmp_needs_update.csv
python git_cmp.py --manipulate --root . --update_csv git_cmp_needs_update.csv
Note:
- Create
.env
file. Set theGITHUB_TOKEN
.e.g.,GITHUB_TOKEN=<your_key>
- Review
.cache/
and the generated report before running--manipulate
.- See comments and docstrings in
git_cmp.py
for more details.
- OpenAI Cookbook
- LangChain Cookbook
- LlamaCloud Demo
- Chainlit Cookbook
- Microsoft AI Agents for Beginners
- GenAI Agents by NirDiamant
- RAG Techniques by NirDiamant
- Gemini API Cookbook
- Anthropic Cookbook
- Awesome LLM Apps
- AI Engineering Hub
- Semantic Kernel (Feb 2023): An open-source SDK for integrating AI services like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages such as C# and Python. It's an LLM orchestrator, similar to LangChain. / git
- Azure ML Prompt Flow (Jun 2023): A visual designer for prompt crafting using Jinja as a prompt template language. / ref / git
- SAMMO (Apr 2024): A general-purpose framework for prompt optimization. / ref
- guidance (Nov 2022): A domain-specific language (DSL) for controlling large language models, focusing on model interaction and implementing the "Chain of Thought" technique.
- Autogen (Mar 2023): A customizable and conversable agent framework. / ref / Autogen Studio (June 2024)
- UFO (Mar 2024): A UI-focused agent for Windows OS interaction.
- Prompty (Apr 2024): A template language for integrating prompts with LLMs and frameworks, enhancing prompt management and evaluation.
- OmniParser (Sep 2024): A simple screen parsing tool towards pure vision based GUI agent.
- TinyTroupe: LLM-powered multiagent persona simulation for imagination enhancement and business insights. [Mar 2024]
- RD-Agent: open source R&D automation tool ref [Apr 2024]
- Magentic-One: Built on AutoGen. A Generalist Multi-Agent System for Solving Complex Tasks [Nov 2024]
- PyRIT (Dec 2023): Python Risk Identification Tool for generative AI, focusing on LLM robustness against issues like hallucination, bias, and harassment.
- Presidio: Presidio (Origin from Latin praesidium ‘protection, garrison’). Context aware, pluggable and customizable data protection and de-identification SDK for text and images. [Oct 2019]
- Microsoft Fabric: Fabric integrates technologies like Azure Data Factory, Azure Synapse Analytics, and Power BI into a single unified product [May 2023]
- To convert a Jupyter notebook (.ipynb) into a runnable Python scrip
pip install nbformat nbconvert
import nbformat
from nbconvert import PythonExporter
# Load the notebook
notebook_filename = 'your_notebook.ipynb'
with open(notebook_filename, 'r', encoding='utf-8') as notebook_file:
notebook_content = nbformat.read(notebook_file, as_version=4)
# Convert the notebook to a Python script
python_exporter = PythonExporter()
python_code, _ = python_exporter.from_notebook_node(notebook_content)
# Save the converted Python code to a .py file
python_filename = notebook_filename.replace('.ipynb', '.py')
with open(python_filename, 'w', encoding='utf-8') as python_file:
python_file.write(python_code)
print(f"Notebook converted to Python script: {python_filename}")
ⓒ https://github.com/kimtth
all rights reserved.