|
| 1 | +package com.fishercoder.solutions; |
| 2 | + |
| 3 | +import java.util.HashSet; |
| 4 | +import java.util.Set; |
| 5 | + |
| 6 | +/** |
| 7 | + * 840. Magic Squares In Grid |
| 8 | + * |
| 9 | + * A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, |
| 10 | + * column, and both diagonals all have the same sum. |
| 11 | + * |
| 12 | + * Given an grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous). |
| 13 | + * |
| 14 | + * Example 1: |
| 15 | + * |
| 16 | + * Input: [[4,3,8,4], |
| 17 | + * [9,5,1,9], |
| 18 | + * [2,7,6,2]] |
| 19 | + * |
| 20 | + * Output: 1 |
| 21 | + * |
| 22 | + * Explanation: |
| 23 | + * The following subgrid is a 3 x 3 magic square: |
| 24 | + * 438 |
| 25 | + * 951 |
| 26 | + * 276 |
| 27 | + * |
| 28 | + * while this one is not: |
| 29 | + * 384 |
| 30 | + * 519 |
| 31 | + * 762 |
| 32 | + * |
| 33 | + * In total, there is only one magic square inside the given grid. |
| 34 | + * Note: |
| 35 | + * |
| 36 | + * 1 <= grid.length <= 10 |
| 37 | + * 1 <= grid[0].length <= 10 |
| 38 | + * 0 <= grid[i][j] <= 15 |
| 39 | + */ |
| 40 | +public class _840 { |
| 41 | + public static class Solution1 { |
| 42 | + public int numMagicSquaresInside(int[][] grid) { |
| 43 | + int m = grid.length; |
| 44 | + int n = grid[0].length; |
| 45 | + int count = 0; |
| 46 | + for (int i = 0; i < m - 2; i++) { |
| 47 | + for (int j = 0; j < n - 2; j++) { |
| 48 | + Set<Integer> set = new HashSet<>(); |
| 49 | + int sum = grid[i][j] + grid[i][j + 1] + grid[i][j + 2]; |
| 50 | + if (sum == grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2] |
| 51 | + && sum == grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2] |
| 52 | + |
| 53 | + && sum == grid[i][j] + grid[i + 1][j] + grid[i + 2][j] |
| 54 | + && sum == grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1] |
| 55 | + && sum == grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2] |
| 56 | + |
| 57 | + && sum == grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2] |
| 58 | + && sum == grid[i][j + 2] + grid[i + 1][j + 1] + grid[i + 2][j] |
| 59 | + |
| 60 | + && set.add(grid[i][j]) && isLegit(grid[i][j]) |
| 61 | + && set.add(grid[i][j + 1]) && isLegit(grid[i][j + 1]) |
| 62 | + && set.add(grid[i][j + 2]) && isLegit(grid[i][j + 2]) |
| 63 | + && set.add(grid[i + 1][j]) && isLegit(grid[i + 1][j]) |
| 64 | + && set.add(grid[i + 1][j + 1]) && isLegit(grid[i + 1][j + 1]) |
| 65 | + && set.add(grid[i + 1][j + 2]) && isLegit(grid[i + 1][j + 2]) |
| 66 | + && set.add(grid[i + 2][j]) && isLegit(grid[i + 2][j]) |
| 67 | + && set.add(grid[i + 2][j + 1]) && isLegit(grid[i + 2][j + 1]) |
| 68 | + && set.add(grid[i + 2][j + 2]) && isLegit(grid[i + 2][j + 2]) |
| 69 | + ) { |
| 70 | + count++; |
| 71 | + } |
| 72 | + } |
| 73 | + } |
| 74 | + return count; |
| 75 | + } |
| 76 | + |
| 77 | + private boolean isLegit(int num) { |
| 78 | + return num <= 9 && num >= 1; |
| 79 | + } |
| 80 | + } |
| 81 | +} |
0 commit comments