Skip to content

Commit 430ebdc

Browse files
authored
fix: update solutions to lc problem: No.53 (#3740)
close #3734
1 parent 5d79d9f commit 430ebdc

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

solution/0000-0099/0053.Maximum Subarray/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -67,23 +67,23 @@ tags:
6767

6868
### 方法一:动态规划
6969

70-
我们定义 $f[i]$ 表示以元素 $nums[i]$ 为结尾的连续子数组的最大和,初始时 $f[0] = nums[0]$,那么最终我们要求的答案即为 $\max_{0 \leq i < n} f[i]$。
70+
我们定义 $f[i]$ 表示以元素 $\textit{nums}[i]$ 为结尾的连续子数组的最大和,初始时 $f[0] = \textit{nums}[0]$,那么最终我们要求的答案即为 $\max_{0 \leq i < n} f[i]$。
7171

7272
考虑 $f[i]$,其中 $i \geq 1$,它的状态转移方程为:
7373

7474
$$
75-
f[i] = \max \{ f[i - 1] + nums[i], nums[i] \}
75+
f[i] = \max(f[i - 1] + \textit{nums}[i], \textit{nums}[i])
7676
$$
7777

7878
也即:
7979

8080
$$
81-
f[i] = \max \{ f[i - 1], 0 \} + nums[i]
81+
f[i] = \max(f[i - 1], 0) + \textit{nums}[i]
8282
$$
8383

8484
由于 $f[i]$ 只与 $f[i - 1]$ 有关系,因此我们可以只用一个变量 $f$ 来维护对于当前 $f[i]$ 的值是多少,然后进行状态转移即可。答案为 $\max_{0 \leq i < n} f$。
8585

86-
时间复杂度 $O(n)$,其中 $n$ 为数组 $nums$ 的长度。我们只需要遍历一遍数组即可求得答案。空间复杂度 $O(1)$,我们只需要常数空间存放若干变量
86+
时间复杂度 $O(n)$,其中 $n$ 为数组 $\textit{nums}$ 的长度。空间复杂度 $O(1)$。
8787

8888
<!-- tabs:start -->
8989

solution/0000-0099/0053.Maximum Subarray/README_EN.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -64,23 +64,23 @@ tags:
6464

6565
### Solution 1: Dynamic Programming
6666

67-
We define $f[i]$ to represent the maximum sum of the continuous subarray ending with the element $nums[i]$. Initially, $f[0] = nums[0]$. The final answer we are looking for is $\max_{0 \leq i < n} f[i]$.
67+
We define $f[i]$ to represent the maximum sum of a contiguous subarray ending at element $\textit{nums}[i]$. Initially, $f[0] = \textit{nums}[0]$. The final answer we seek is $\max_{0 \leq i < n} f[i]$.
6868

69-
Consider $f[i]$, where $i \geq 1$, its state transition equation is:
69+
Consider $f[i]$ for $i \geq 1$. Its state transition equation is:
7070

7171
$$
72-
f[i] = \max \{ f[i - 1] + nums[i], nums[i] \}
72+
f[i] = \max(f[i - 1] + \textit{nums}[i], \textit{nums}[i])
7373
$$
7474

75-
Which is also:
75+
That is:
7676

7777
$$
78-
f[i] = \max \{ f[i - 1], 0 \} + nums[i]
78+
f[i] = \max(f[i - 1], 0) + \textit{nums}[i]
7979
$$
8080

81-
Since $f[i]$ is only related to $f[i - 1]$, we can use a single variable $f$ to maintain the current value of $f[i]$, and then perform state transition. The answer is $\max_{0 \leq i < n} f$.
81+
Since $f[i]$ is only related to $f[i - 1]$, we can use a single variable $f$ to maintain the current value of $f[i]$ and perform the state transition. The answer is $\max_{0 \leq i < n} f$.
8282

83-
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. We only need to traverse the array once to get the answer. The space complexity is $O(1)$, we only need constant space to store several variables.
83+
The time complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. The space complexity is $O(1)$.
8484

8585
<!-- tabs:start -->
8686

0 commit comments

Comments
 (0)