Skip to content

Commit 7be1c58

Browse files
committed
Updates math/probability.md
Auto commit by GitBook Editor
1 parent 4d1a8db commit 7be1c58

File tree

1 file changed

+5
-1
lines changed

1 file changed

+5
-1
lines changed

math/probability.md

+5-1
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@ $$f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \cdot \exp \le
170170

171171
定义:$$D(X)=E\left[(X-E(X))^{2}\right]=E\left(X^{2}\right)-E^{2}(X)$$
172172

173-
性质 $$D(C)=0, D(a X \pm b)=a^{2} D(X), \quad D(X \pm Y)=D(X)+D(Y) \pm 2Cov(X, Y)$$
173+
性质 $$D(C)=0, D(a X \pm b)=a^{2} D(X), \quad D(X \pm Y)=D(X)+D(Y) \pm 2Cov(X, Y)$$ $$D(X)<E(X-C)^{2}, C \neq E(X)$$ $$D(X)=0 \Leftrightarrow P\{X=C\}=1$$
174174

175175
当X, Y相互独立时 $$D(X \pm Y)=D(X)+D(Y)$$
176176

@@ -180,6 +180,10 @@ $$f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \cdot \exp \le
180180

181181
相关系数 $$\rho_{x \gamma}=\frac{Cov(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}$$ 当X,Y相互独立时 $$\rho_{X Y}=0$$ X,Y不相关
182182

183+
k阶原点矩$$E(X^k)$$
184+
185+
k阶中心距$$E\left\{[X-E(X)]^{k}\right\}$$
186+
183187
协方差和相关系数的性质 $$cov(X, X)=D(X), \quad Cov(X, Y)=Cov(Y, X)$$
184188

185189
$$cov\left(X_{1}+X_{2}, Y\right)=Cov\left(X_{1}, Y\right)+Cov\left(X_{2}, Y\right), \quad Cov(a X+c, b Y+\alpha)=a b Cov(X, Y)$$

0 commit comments

Comments
 (0)