Skip to content

Divide and conquer Algorithms Issue#817 #938

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 2, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions divide_and_conquer/max_sub_array_sum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
"""
Given a array of length n, max_sub_array_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method.

Time complexity : O(n log n)

Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70)

"""


def max_sum_from_start(array):
""" This function finds the maximum contiguous sum of array from 0 index

Parameters :
array (list[int]) : given array

Returns :
max_sum (int) : maximum contiguous sum of array from 0 index

"""
array_sum = 0
max_sum = float("-inf")
for num in array:
array_sum += num
if array_sum > max_sum:
max_sum = array_sum
return max_sum


def max_cross_array_sum(array, left, mid, right):
""" This function finds the maximum contiguous sum of left and right arrays

Parameters :
array, left, mid, right (list[int], int, int, int)

Returns :
(int) : maximum of sum of contiguous sum of left and right arrays

"""

max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1])
max_sum_of_right = max_sum_from_start(array[mid+1: right+1])
return max_sum_of_left + max_sum_of_right


def max_sub_array_sum(array, left, right):
""" This function finds the maximum of sum of contiguous sub-array using divide and conquer method

Parameters :
array, left, right (list[int], int, int) : given array, current left index and current right index

Returns :
int : maximum of sum of contiguous sub-array

"""

# base case: array has only one element
if left == right:
return array[right]

# Recursion
mid = (left + right) // 2
left_half_sum = max_sub_array_sum(array, left, mid)
right_half_sum = max_sub_array_sum(array, mid + 1, right)
cross_sum = max_cross_array_sum(array, left, mid, right)
return max(left_half_sum, right_half_sum, cross_sum)


array = [-2, -5, 6, -2, -3, 1, 5, -6]
array_length = len(array)
print("Maximum sum of contiguous subarray:", max_sub_array_sum(array, 0, array_length - 1))