From 0379c6465cdb52967a5cb8cf03603f261d492e25 Mon Sep 17 00:00:00 2001 From: Sai Ganesh Manda <89340753+mvsg2@users.noreply.github.com> Date: Tue, 18 Oct 2022 22:44:20 +0530 Subject: [PATCH 1/2] Update gaussian_naive_bayes.py Just adding in a final metric of accuracy to declare... --- machine_learning/gaussian_naive_bayes.py | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) diff --git a/machine_learning/gaussian_naive_bayes.py b/machine_learning/gaussian_naive_bayes.py index 77e7326626c4..e160749420f4 100644 --- a/machine_learning/gaussian_naive_bayes.py +++ b/machine_learning/gaussian_naive_bayes.py @@ -1,10 +1,10 @@ # Gaussian Naive Bayes Example from matplotlib import pyplot as plt from sklearn.datasets import load_iris -from sklearn.metrics import plot_confusion_matrix +from sklearn.metrics import plot_confusion_matrix, accuracy_score from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB - +import time def main(): @@ -25,20 +25,25 @@ def main(): # Gaussian Naive Bayes nb_model = GaussianNB() - nb_model.fit(x_train, y_train) - + time.sleep(2.9) + model_fit = nb_model.fit(x_train, y_train) + y_pred = model_fit.predict(x_test) # Predictions on the test set + # Display Confusion Matrix plot_confusion_matrix( nb_model, x_test, y_test, display_labels=iris["target_names"], - cmap="Blues", + cmap="Blues", # although, Greys_r has a better contrast... normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() - + + time.sleep(1.8) + final_accuracy = 100*accuracy_score(y_true=y_test, y_pred=y_pred) + print(f"The overall accuracy of the model is: {round(final_accuracy, 2)}%") if __name__ == "__main__": main() From f3ec1919c933d0462f438677aa529104cd4ba013 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 18 Oct 2022 17:29:03 +0000 Subject: [PATCH 2/2] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- machine_learning/gaussian_naive_bayes.py | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/machine_learning/gaussian_naive_bayes.py b/machine_learning/gaussian_naive_bayes.py index e160749420f4..7e9a8d7f6dcf 100644 --- a/machine_learning/gaussian_naive_bayes.py +++ b/machine_learning/gaussian_naive_bayes.py @@ -1,10 +1,12 @@ # Gaussian Naive Bayes Example +import time + from matplotlib import pyplot as plt from sklearn.datasets import load_iris -from sklearn.metrics import plot_confusion_matrix, accuracy_score +from sklearn.metrics import accuracy_score, plot_confusion_matrix from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB -import time + def main(): @@ -27,23 +29,24 @@ def main(): nb_model = GaussianNB() time.sleep(2.9) model_fit = nb_model.fit(x_train, y_train) - y_pred = model_fit.predict(x_test) # Predictions on the test set - + y_pred = model_fit.predict(x_test) # Predictions on the test set + # Display Confusion Matrix plot_confusion_matrix( nb_model, x_test, y_test, display_labels=iris["target_names"], - cmap="Blues", # although, Greys_r has a better contrast... + cmap="Blues", # although, Greys_r has a better contrast... normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() - + time.sleep(1.8) - final_accuracy = 100*accuracy_score(y_true=y_test, y_pred=y_pred) + final_accuracy = 100 * accuracy_score(y_true=y_test, y_pred=y_pred) print(f"The overall accuracy of the model is: {round(final_accuracy, 2)}%") + if __name__ == "__main__": main()