-
-
Notifications
You must be signed in to change notification settings - Fork 46.8k
ADD the algorithms of image augmentation #5792
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
18 commits
Select commit
Hold shift + click to select a range
f2594af
ADD the algorithms of image augmentation
vnk8071 39e4b97
ADD the algorithms of image augmentation
vnk8071 cb0eef0
ADD the algorithms of image augmentation
vnk8071 cb509aa
ADD the algorithms of image augmentation
vnk8071 b89a6a5
ADD the algorithms of image augmentation
vnk8071 a659ade
ADD the algorithms of image augmentation
vnk8071 c978ce1
UPDATE format code
vnk8071 338b595
UPDATE format and recode structure
vnk8071 9258911
UPDATE format import library
vnk8071 4d0a5a1
UPDATE code structure
vnk8071 6d85e8e
Fix all checks have failded
vnk8071 f6136b2
FIX variable format
vnk8071 0aac089
FIX variable format
vnk8071 4b4f0ea
FIX variable format
vnk8071 535fe45
FIX code structure
vnk8071 7b9aace
FIX code structure
vnk8071 686d073
FIX code structure
vnk8071 e1a4376
FIX code structure
vnk8071 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import glob | ||
import os | ||
import random | ||
from string import ascii_lowercase, digits | ||
|
||
import cv2 | ||
|
||
""" | ||
Flip image and bounding box for computer vision task | ||
https://paperswithcode.com/method/randomhorizontalflip | ||
""" | ||
|
||
# Params | ||
LABEL_DIR = "" | ||
IMAGE_DIR = "" | ||
OUTPUT_DIR = "" | ||
FLIP_TYPE = 1 # (0 is vertical, 1 is horizontal) | ||
|
||
|
||
def main() -> None: | ||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
Get images list and annotations list from input dir. | ||
Update new images and annotations. | ||
Save images and annotations in output dir. | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
img_paths, annos = get_dataset(LABEL_DIR, IMAGE_DIR) | ||
print("Processing...") | ||
new_images, new_annos, paths = update_image_and_anno(img_paths, annos, FLIP_TYPE) | ||
|
||
for index, image in enumerate(new_images): | ||
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad' | ||
letter_code = random_chars(32) | ||
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0] | ||
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" | ||
cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85]) | ||
print(f"Success {index+1}/{len(new_images)} with {file_name}") | ||
annos_list = [] | ||
for anno in new_annos[index]: | ||
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" | ||
annos_list.append(obj) | ||
with open(f"/{file_root}.txt", "w") as outfile: | ||
outfile.write("\n".join(line for line in annos_list)) | ||
|
||
|
||
def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]: | ||
""" | ||
- label_dir <type: str>: Path to label include annotation of images | ||
- img_dir <type: str>: Path to folder contain images | ||
Return <type: list>: List of images path and labels | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
vnk8071 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
img_paths = [] | ||
labels = [] | ||
for label_file in glob.glob(os.path.join(label_dir, "*.txt")): | ||
label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0] | ||
with open(label_file) as in_file: | ||
obj_lists = in_file.readlines() | ||
img_path = os.path.join(img_dir, f"{label_name}.jpg") | ||
|
||
boxes = [] | ||
for obj_list in obj_lists: | ||
obj = obj_list.rstrip("\n").split(" ") | ||
boxes.append( | ||
[ | ||
int(obj[0]), | ||
float(obj[1]), | ||
float(obj[2]), | ||
float(obj[3]), | ||
float(obj[4]), | ||
] | ||
) | ||
if not boxes: | ||
continue | ||
img_paths.append(img_path) | ||
labels.append(boxes) | ||
return img_paths, labels | ||
|
||
|
||
def update_image_and_anno( | ||
img_list: list, anno_list: list, flip_type: int = 1 | ||
) -> tuple[list, list, list]: | ||
""" | ||
- img_list <type: list>: list of all images | ||
- anno_list <type: list>: list of all annotations of specific image | ||
- flip_type <type: int>: 0 is vertical, 1 is horizontal | ||
Return: | ||
- new_imgs_list <type: narray>: image after resize | ||
- new_annos_lists <type: list>: list of new annotation after scale | ||
- path_list <type: list>: list the name of image file | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
new_annos_lists = [] | ||
path_list = [] | ||
new_imgs_list = [] | ||
for idx in range(len(img_list)): | ||
new_annos = [] | ||
path = img_list[idx] | ||
path_list.append(path) | ||
img_annos = anno_list[idx] | ||
img = cv2.imread(path) | ||
if flip_type == 1: | ||
new_img = cv2.flip(img, flip_type) | ||
for bbox in img_annos: | ||
x_center_new = 1 - bbox[1] | ||
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]]) | ||
elif flip_type == 0: | ||
new_img = cv2.flip(img, flip_type) | ||
for bbox in img_annos: | ||
y_center_new = 1 - bbox[2] | ||
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]]) | ||
new_annos_lists.append(new_annos) | ||
new_imgs_list.append(new_img) | ||
return new_imgs_list, new_annos_lists, path_list | ||
|
||
|
||
def random_chars(number_char: int = 32) -> str: | ||
""" | ||
Automatic generate random 32 characters. | ||
Get random string code: '7b7ad245cdff75241935e4dd860f3bad' | ||
>>> len(random_chars(32)) | ||
32 | ||
""" | ||
assert number_char > 1, "The number of character should greater than 1" | ||
letter_code = ascii_lowercase + digits | ||
return "".join(random.choice(letter_code) for _ in range(number_char)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() | ||
print("DONE ✅") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
"""Source: https://github.com/jason9075/opencv-mosaic-data-aug""" | ||
|
||
import glob | ||
import os | ||
import random | ||
from string import ascii_lowercase, digits | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
# Parrameters | ||
OUTPUT_SIZE = (720, 1280) # Height, Width | ||
SCALE_RANGE = (0.4, 0.6) # if height or width lower than this scale, drop it. | ||
FILTER_TINY_SCALE = 1 / 100 | ||
LABEL_DIR = "" | ||
IMG_DIR = "" | ||
OUTPUT_DIR = "" | ||
NUMBER_IMAGES = 250 | ||
|
||
|
||
def main() -> None: | ||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
Get images list and annotations list from input dir. | ||
Update new images and annotations. | ||
Save images and annotations in output dir. | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
img_paths, annos = get_dataset(LABEL_DIR, IMG_DIR) | ||
for index in range(NUMBER_IMAGES): | ||
idxs = random.sample(range(len(annos)), 4) | ||
new_image, new_annos, path = update_image_and_anno( | ||
img_paths, | ||
annos, | ||
idxs, | ||
OUTPUT_SIZE, | ||
SCALE_RANGE, | ||
filter_scale=FILTER_TINY_SCALE, | ||
) | ||
|
||
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad' | ||
letter_code = random_chars(32) | ||
file_name = path.split(os.sep)[-1].rsplit(".", 1)[0] | ||
file_root = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" | ||
cv2.imwrite(f"{file_root}.jpg", new_image, [cv2.IMWRITE_JPEG_QUALITY, 85]) | ||
print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}") | ||
annos_list = [] | ||
for anno in new_annos: | ||
width = anno[3] - anno[1] | ||
height = anno[4] - anno[2] | ||
x_center = anno[1] + width / 2 | ||
y_center = anno[2] + height / 2 | ||
obj = f"{anno[0]} {x_center} {y_center} {width} {height}" | ||
annos_list.append(obj) | ||
with open(f"{file_root}.txt", "w") as outfile: | ||
outfile.write("\n".join(line for line in annos_list)) | ||
|
||
|
||
def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]: | ||
""" | ||
- label_dir <type: str>: Path to label include annotation of images | ||
- img_dir <type: str>: Path to folder contain images | ||
Return <type: list>: List of images path and labels | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
img_paths = [] | ||
labels = [] | ||
for label_file in glob.glob(os.path.join(label_dir, "*.txt")): | ||
label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0] | ||
with open(label_file) as in_file: | ||
obj_lists = in_file.readlines() | ||
img_path = os.path.join(img_dir, f"{label_name}.jpg") | ||
|
||
boxes = [] | ||
for obj_list in obj_lists: | ||
obj = obj_list.rstrip("\n").split(" ") | ||
xmin = float(obj[1]) - float(obj[3]) / 2 | ||
ymin = float(obj[2]) - float(obj[4]) / 2 | ||
xmax = float(obj[1]) + float(obj[3]) / 2 | ||
ymax = float(obj[2]) + float(obj[4]) / 2 | ||
|
||
boxes.append([int(obj[0]), xmin, ymin, xmax, ymax]) | ||
if not boxes: | ||
continue | ||
img_paths.append(img_path) | ||
labels.append(boxes) | ||
return img_paths, labels | ||
|
||
|
||
def update_image_and_anno( | ||
all_img_list: list, | ||
all_annos: list, | ||
idxs: list[int], | ||
output_size: tuple[int, int], | ||
scale_range: tuple[float, float], | ||
filter_scale: float = 0.0, | ||
) -> tuple[list, list, str]: | ||
""" | ||
- all_img_list <type: list>: list of all images | ||
- all_annos <type: list>: list of all annotations of specific image | ||
- idxs <type: list>: index of image in list | ||
- output_size <type: tuple>: size of output image (Height, Width) | ||
- scale_range <type: tuple>: range of scale image | ||
- filter_scale <type: float>: the condition of downscale image and bounding box | ||
Return: | ||
- output_img <type: narray>: image after resize | ||
- new_anno <type: list>: list of new annotation after scale | ||
- path[0] <type: string>: get the name of image file | ||
>>> pass # A doctest is not possible for this function. | ||
""" | ||
output_img = np.zeros([output_size[0], output_size[1], 3], dtype=np.uint8) | ||
scale_x = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) | ||
scale_y = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) | ||
divid_point_x = int(scale_x * output_size[1]) | ||
divid_point_y = int(scale_y * output_size[0]) | ||
|
||
new_anno = [] | ||
path_list = [] | ||
for i, index in enumerate(idxs): | ||
path = all_img_list[index] | ||
path_list.append(path) | ||
img_annos = all_annos[index] | ||
img = cv2.imread(path) | ||
if i == 0: # top-left | ||
img = cv2.resize(img, (divid_point_x, divid_point_y)) | ||
output_img[:divid_point_y, :divid_point_x, :] = img | ||
for bbox in img_annos: | ||
xmin = bbox[1] * scale_x | ||
ymin = bbox[2] * scale_y | ||
xmax = bbox[3] * scale_x | ||
ymax = bbox[4] * scale_y | ||
new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) | ||
elif i == 1: # top-right | ||
img = cv2.resize(img, (output_size[1] - divid_point_x, divid_point_y)) | ||
output_img[:divid_point_y, divid_point_x : output_size[1], :] = img | ||
for bbox in img_annos: | ||
xmin = scale_x + bbox[1] * (1 - scale_x) | ||
ymin = bbox[2] * scale_y | ||
xmax = scale_x + bbox[3] * (1 - scale_x) | ||
ymax = bbox[4] * scale_y | ||
new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) | ||
elif i == 2: # bottom-left | ||
img = cv2.resize(img, (divid_point_x, output_size[0] - divid_point_y)) | ||
output_img[divid_point_y : output_size[0], :divid_point_x, :] = img | ||
for bbox in img_annos: | ||
xmin = bbox[1] * scale_x | ||
ymin = scale_y + bbox[2] * (1 - scale_y) | ||
xmax = bbox[3] * scale_x | ||
ymax = scale_y + bbox[4] * (1 - scale_y) | ||
new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) | ||
else: # bottom-right | ||
img = cv2.resize( | ||
img, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) | ||
) | ||
output_img[ | ||
divid_point_y : output_size[0], divid_point_x : output_size[1], : | ||
] = img | ||
for bbox in img_annos: | ||
xmin = scale_x + bbox[1] * (1 - scale_x) | ||
ymin = scale_y + bbox[2] * (1 - scale_y) | ||
xmax = scale_x + bbox[3] * (1 - scale_x) | ||
ymax = scale_y + bbox[4] * (1 - scale_y) | ||
new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) | ||
|
||
# Remove bounding box small than scale of filter | ||
if 0 < filter_scale: | ||
new_anno = [ | ||
anno | ||
for anno in new_anno | ||
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) | ||
] | ||
|
||
return output_img, new_anno, path_list[0] | ||
|
||
|
||
def random_chars(number_char: int) -> str: | ||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
Automatic generate random 32 characters. | ||
Get random string code: '7b7ad245cdff75241935e4dd860f3bad' | ||
>>> len(random_chars(32)) | ||
32 | ||
""" | ||
assert number_char > 1, "The number of character should greater than 1" | ||
letter_code = ascii_lowercase + digits | ||
return "".join(random.choice(letter_code) for _ in range(number_char)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() | ||
print("DONE ✅") |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.