Skip to content

Project Euler 68 Solution #5552

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
May 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -786,6 +786,8 @@
* Problem 067
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py)
* [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol2.py)
* Problem 068
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_068/sol1.py)
* Problem 069
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py)
* Problem 070
Expand Down
Empty file.
133 changes: 133 additions & 0 deletions project_euler/problem_068/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
"""
Project Euler Problem 68: https://projecteuler.net/problem=68

Magic 5-gon ring

Problem Statement:
Consider the following "magic" 3-gon ring,
filled with the numbers 1 to 6, and each line adding to nine.

4
\
3
/ \
1 - 2 - 6
/
5

Working clockwise, and starting from the group of three
with the numerically lowest external node (4,3,2 in this example),
each solution can be described uniquely.
For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.

It is possible to complete the ring with four different totals: 9, 10, 11, and 12.
There are eight solutions in total.
Total Solution Set
9 4,2,3; 5,3,1; 6,1,2
9 4,3,2; 6,2,1; 5,1,3
10 2,3,5; 4,5,1; 6,1,3
10 2,5,3; 6,3,1; 4,1,5
11 1,4,6; 3,6,2; 5,2,4
11 1,6,4; 5,4,2; 3,2,6
12 1,5,6; 2,6,4; 3,4,5
12 1,6,5; 3,5,4; 2,4,6

By concatenating each group it is possible to form 9-digit strings;
the maximum string for a 3-gon ring is 432621513.

Using the numbers 1 to 10, and depending on arrangements,
it is possible to form 16- and 17-digit strings.
What is the maximum 16-digit string for a "magic" 5-gon ring?
"""

from itertools import permutations


def solution(gon_side: int = 5) -> int:
"""
Find the maximum number for a "magic" gon_side-gon ring

The gon_side parameter should be in the range [3, 5],
other side numbers aren't tested

>>> solution(3)
432621513
>>> solution(4)
426561813732
>>> solution()
6531031914842725
>>> solution(6)
Traceback (most recent call last):
ValueError: gon_side must be in the range [3, 5]
"""
if gon_side < 3 or gon_side > 5:
raise ValueError("gon_side must be in the range [3, 5]")

# Since it's 16, we know 10 is on the outer ring
# Put the big numbers at the end so that they are never the first number
small_numbers = list(range(gon_side + 1, 0, -1))
big_numbers = list(range(gon_side + 2, gon_side * 2 + 1))

for perm in permutations(small_numbers + big_numbers):
numbers = generate_gon_ring(gon_side, list(perm))
if is_magic_gon(numbers):
return int("".join(str(n) for n in numbers))

raise ValueError(f"Magic {gon_side}-gon ring is impossible")


def generate_gon_ring(gon_side: int, perm: list[int]) -> list[int]:
"""
Generate a gon_side-gon ring from a permutation state
The permutation state is the ring, but every duplicate is removed

>>> generate_gon_ring(3, [4, 2, 3, 5, 1, 6])
[4, 2, 3, 5, 3, 1, 6, 1, 2]
>>> generate_gon_ring(5, [6, 5, 4, 3, 2, 1, 7, 8, 9, 10])
[6, 5, 4, 3, 4, 2, 1, 2, 7, 8, 7, 9, 10, 9, 5]
"""
result = [0] * (gon_side * 3)
result[0:3] = perm[0:3]
perm.append(perm[1])

magic_number = 1 if gon_side < 5 else 2

for i in range(1, len(perm) // 3 + magic_number):
result[3 * i] = perm[2 * i + 1]
result[3 * i + 1] = result[3 * i - 1]
result[3 * i + 2] = perm[2 * i + 2]

return result


def is_magic_gon(numbers: list[int]) -> bool:
"""
Check if the solution set is a magic n-gon ring
Check that the first number is the smallest number on the outer ring
Take a list, and check if the sum of each 3 numbers chunk is equal to the same total

>>> is_magic_gon([4, 2, 3, 5, 3, 1, 6, 1, 2])
True
>>> is_magic_gon([4, 3, 2, 6, 2, 1, 5, 1, 3])
True
>>> is_magic_gon([2, 3, 5, 4, 5, 1, 6, 1, 3])
True
>>> is_magic_gon([1, 2, 3, 4, 5, 6, 7, 8, 9])
False
>>> is_magic_gon([1])
Traceback (most recent call last):
ValueError: a gon ring should have a length that is a multiple of 3
"""
if len(numbers) % 3 != 0:
raise ValueError("a gon ring should have a length that is a multiple of 3")

if min(numbers[::3]) != numbers[0]:
return False

total = sum(numbers[:3])

return all(sum(numbers[i : i + 3]) == total for i in range(3, len(numbers), 3))


if __name__ == "__main__":
print(solution())