Skip to content

Added first solution to problem 135 #4035

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 19, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
61 changes: 61 additions & 0 deletions project_euler/problem_135/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
"""
Project Euler Problem 135: https://projecteuler.net/problem=135

Given the positive integers, x, y, and z,
are consecutive terms of an arithmetic progression,
the least value of the positive integer, n,
for which the equation,
x2 − y2 − z2 = n, has exactly two solutions is n = 27:

342 − 272 − 202 = 122 − 92 − 62 = 27

It turns out that n = 1155 is the least value
which has exactly ten solutions.

How many values of n less than one million
have exactly ten distinct solutions?


Taking x,y,z of the form a+d,a,a-d respectively,
the given equation reduces to a*(4d-a)=n.
Calculating no of solutions for every n till 1 million by fixing a
,and n must be multiple of a.
Total no of steps=n*(1/1+1/2+1/3+1/4..+1/n)
,so roughly O(nlogn) time complexity.

"""


def solution(limit: int = 1000000) -> int:
"""
returns the values of n less than or equal to the limit
have exactly ten distinct solutions.
>>> solution(100)
0
>>> solution(10000)
45
>>> solution(50050)
292
"""
limit = limit + 1
frequency = [0] * limit
for first_term in range(1, limit):
for n in range(first_term, limit, first_term):
common_difference = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a

count = sum(1 for x in frequency[1:limit] if x == 10)

return count


if __name__ == "__main__":
print(f"{solution() = }")