Skip to content

Solution to Problem 12 #281

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 30, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions Project Euler/Problem 12/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from __future__ import print_function
from math import sqrt
'''
Highly divisible triangular numbers
Problem 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?
'''
try:
xrange #Python 2
except NameError:
xrange = range #Python 3

def count_divisors(n):
nDivisors = 0
for i in xrange(1, int(sqrt(n))+1):
if n%i == 0:
nDivisors += 2

return nDivisors

tNum = 1
i = 1

while True:
i += 1
tNum += i

if count_divisors(tNum) > 500:
break

print(tNum)