Skip to content

QuineMcCluskey #264

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 12, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 116 additions & 0 deletions boolean_algebra/Quine_McCluskey/QuineMcCluskey.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
def compare_string(string1, string2):
l1 = list(string1); l2 = list(string2)
count = 0
for i in range(len(l1)):
if l1[i] != l2[i]:
count += 1
l1[i] = '_'
if count > 1:
return -1
else:
return("".join(l1))

def check(binary):
pi = []
while 1:
check1 = ['$']*len(binary)
temp = []
for i in range(len(binary)):
for j in range(i+1, len(binary)):
k=compare_string(binary[i], binary[j])
if k != -1:
check1[i] = '*'
check1[j] = '*'
temp.append(k)
for i in range(len(binary)):
if check1[i] == '$':
pi.append(binary[i])
if len(temp) == 0:
return pi
binary = list(set(temp))

def decimal_to_binary(no_of_variable, minterms):
temp = []
s = ''
for m in minterms:
for i in range(no_of_variable):
s = str(m%2) + s
m //= 2
temp.append(s)
s = ''
return temp

def is_for_table(string1, string2, count):
l1 = list(string1);l2=list(string2)
count_n = 0
for i in range(len(l1)):
if l1[i] != l2[i]:
count_n += 1
if count_n == count:
return True
else:
return False

def selection(chart, prime_implicants):
temp = []
select = [0]*len(chart)
for i in range(len(chart[0])):
count = 0
rem = -1
for j in range(len(chart)):
if chart[j][i] == 1:
count += 1
rem = j
if count == 1:
select[rem] = 1
for i in range(len(select)):
if select[i] == 1:
for j in range(len(chart[0])):
if chart[i][j] == 1:
for k in range(len(chart)):
chart[k][j] = 0
temp.append(prime_implicants[i])
while 1:
max_n = 0; rem = -1; count_n = 0
for i in range(len(chart)):
count_n = chart[i].count(1)
if count_n > max_n:
max_n = count_n
rem = i

if max_n == 0:
return temp

temp.append(prime_implicants[rem])

for i in range(len(chart[0])):
if chart[rem][i] == 1:
for j in range(len(chart)):
chart[j][i] = 0

def prime_implicant_chart(prime_implicants, binary):
chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))]
for i in range(len(prime_implicants)):
count = prime_implicants[i].count('_')
for j in range(len(binary)):
if(is_for_table(prime_implicants[i], binary[j], count)):
chart[i][j] = 1

return chart

def main():
no_of_variable = int(input("Enter the no. of variables\n"))
minterms = [int(x) for x in input("Enter the decimal representation of Minterms 'Spaces Seprated'\n").split()]
binary = decimal_to_binary(no_of_variable, minterms)

prime_implicants = check(binary)
print("Prime Implicants are:")
print(prime_implicants)
chart = prime_implicant_chart(prime_implicants, binary)

essential_prime_implicants = selection(chart,prime_implicants)
print("Essential Prime Implicants are:")
print(essential_prime_implicants)

if __name__ == '__main__':
main()