Skip to content

Created geodesy section with one algorithm #1757

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Feb 16, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions geodesy/haversine_distance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
from math import asin, atan, cos, radians, sin, sqrt, tan


def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""
Calculate great circle distance between two points in a sphere,
given longitudes and latitudes https://en.wikipedia.org/wiki/Haversine_formula

We know that the globe is "sort of" spherical, so a path between two points
isn't exactly a straight line. We need to account for the Earth's curvature
when calculating distance from point A to B. This effect is negligible for
small distances but adds up as distance increases. The Haversine method treats
the earth as a sphere which allows us to "project" the two points A and B
onto the surface of that sphere and approximate the spherical distance between
them. Since the Earth is not a perfect sphere, other methods which model the
Earth's ellipsoidal nature are more accurate but a quick and modifiable
computation like Haversine can be handy for shorter range distances.

Args:
lat1, lon1: latitude and longitude of coordinate 1
lat2, lon2: latitude and longitude of coordinate 2
Returns:
geographical distance between two points in metres
>>> from collections import namedtuple
>>> point_2d = namedtuple("point_2d", "lat lon")
>>> SAN_FRANCISCO = point_2d(37.774856, -122.424227)
>>> YOSEMITE = point_2d(37.864742, -119.537521)
>>> f"{haversine_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters"
'254,352 meters'
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
AXIS_A = 6378137.0
AXIS_B = 6356752.314245
RADIUS = 6378137
# Equation parameters
# Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation
flattening = (AXIS_A - AXIS_B) / AXIS_A
phi_1 = atan((1 - flattening) * tan(radians(lat1)))
phi_2 = atan((1 - flattening) * tan(radians(lat2)))
lambda_1 = radians(lon1)
lambda_2 = radians(lon2)
# Equation
sin_sq_phi = sin((phi_2 - phi_1) / 2)
sin_sq_lambda = sin((lambda_2 - lambda_1) / 2)
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
h_value = sqrt(sin_sq_phi + (cos(phi_1) * cos(phi_2) * sin_sq_lambda))
return 2 * RADIUS * asin(h_value)


if __name__ == "__main__":
import doctest

doctest.testmod()