Skip to content

Augment binary search algorithms #1719

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 163 additions & 1 deletion searches/binary_search.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
This is pure python implementation of binary search algorithm
This is pure python implementation of binary search algorithms
For doctests run following command:
python -m doctest -v binary_search.py
Expand All @@ -12,6 +12,168 @@
import bisect


def bisect_left(sorted_collection, item, lo=0, hi=None):
"""
Locates the first element in a sorted array that is larger or equal to a given value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are < item and all values in sorted_collection[i:hi] are >= item.
Examples:
>>> bisect_left([0, 5, 7, 10, 15], 0)
0
>>> bisect_left([0, 5, 7, 10, 15], 6)
2
>>> bisect_left([0, 5, 7, 10, 15], 20)
5
>>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_left([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi is None:
hi = len(sorted_collection)

while lo < hi:
mid = (lo + hi) // 2
if sorted_collection[mid] < item:
lo = mid + 1
else:
hi = mid

return lo


def bisect_right(sorted_collection, item, lo=0, hi=None):
"""
Locates the first element in a sorted array that is larger than a given value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are <= item and all values in sorted_collection[i:hi] are > item.
Examples:
>>> bisect_right([0, 5, 7, 10, 15], 0)
1
>>> bisect_right([0, 5, 7, 10, 15], 15)
5
>>> bisect_right([0, 5, 7, 10, 15], 6)
2
>>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_right([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi is None:
hi = len(sorted_collection)

while lo < hi:
mid = (lo + hi) // 2
if sorted_collection[mid] <= item:
lo = mid + 1
else:
hi = mid

return lo


def insort_left(sorted_collection, item, lo=0, hi=None):
"""
Inserts a given value into a sorted array before other values with the same value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_left(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
True
>>> item is sorted_collection[2]
False
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)


def insort_right(sorted_collection, item, lo=0, hi=None):
"""
Inserts a given value into a sorted array after other values with the same value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_right(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
False
>>> item is sorted_collection[2]
True
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)


def binary_search(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python
Expand Down