Skip to content

Remove code with side effects from main #1577

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 17, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
182 changes: 91 additions & 91 deletions fuzzy_logic/fuzzy_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,97 +6,97 @@
Python:
- 3.5
"""
# Create universe of discourse in python using linspace ()
import numpy as np

X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)

# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
import skfuzzy as fuzz

abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)

# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]

# max-min composition
# max-product composition


# Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt

plt.figure()

plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)

plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)

plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)

plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)

plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)

plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)

plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)

plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)

plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)

plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)

plt.subplots_adjust(hspace=0.5)
plt.show()

if __name__ == "__main__":
# Create universe of discourse in python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)

# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)

# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]

# max-min composition
# max-product composition

# Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt

plt.figure()

plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)

plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)

plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)

plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)

plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)

plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)

plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)

plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)

plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)

plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)

plt.subplots_adjust(hspace=0.5)
plt.show()
9 changes: 5 additions & 4 deletions machine_learning/polymonial_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,9 @@ def viz_polymonial():
return


viz_polymonial()
if __name__ == "__main__":
viz_polymonial()

# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
Loading