Skip to content

added rsa_factorization.py #1556

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 9, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions ciphers/rsa_factorization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
"""
An RSA prime factor algorithm.

The program can efficiently factor RSA prime number given the private key d and
public key e.
Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
large number can take minutes to factor, therefore are not included in doctest.
"""
import math
import random
from typing import List


def rsafactor(d: int, e: int, N: int) -> List[int]:
"""
This function returns the factors of N, where p*q=N
Return: [p, q]

We call N the RSA modulus, e the encryption exponent, and d the decryption exponent.
The pair (N, e) is the public key. As its name suggests, it is public and is used to
encrypt messages.
The pair (N, d) is the secret key or private key and is known only to the recipient
of encrypted messages.

>>> rsafactor(3, 16971, 25777)
[149, 173]
>>> rsafactor(7331, 11, 27233)
[113, 241]
>>> rsafactor(4021, 13, 17711)
[89, 199]
"""
k = d * e - 1
p = 0
q = 0
while p == 0:
g = random.randint(2, N - 1)
t = k
if t % 2 == 0:
t = t // 2
x = (g ** t) % N
y = math.gcd(x - 1, N)
if x > 1 and y > 1:
p = y
q = N // y
return sorted([p, q])


if __name__ == "__main__":
import doctest

doctest.testmod()