Skip to content

fuzzy operations added #1310

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 18, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions fuzzy_logic/fuzzy_operations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
"""README, Author - Jigyasa Gandhi(mailto:jigsgandhi97@gmail.com)
Requirements:
- scikit-fuzzy
- numpy
- matplotlib
Python:
- 3.5
"""
# Create universe of discourse in python using linspace ()
import numpy as np
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)

# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
import skfuzzy as fuzz
abc1=[0,25,50]
abc2=[25,50,75]
young = fuzz.membership.trimf(X,abc1)
middle_aged = fuzz.membership.trimf(X,abc2)

# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
#1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
#2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
#3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
#4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
#5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young*middle_aged)
#6. Algebraic Product = (µA(x) * µB(x))
alg_product = young*middle_aged
#7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young+middle_aged)[1]
#8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young-middle_aged)[1]

#max-min composition
#max-product composition


# Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt

plt.figure()

plt.subplot(4,3,1)
plt.plot(X,young)
plt.title("Young")
plt.grid(True)

plt.subplot(4,3,2)
plt.plot(X,middle_aged)
plt.title("Middle aged")
plt.grid(True)

plt.subplot(4,3,3)
plt.plot(X,union)
plt.title("union")
plt.grid(True)

plt.subplot(4,3,4)
plt.plot(X,intersection)
plt.title("intersection")
plt.grid(True)

plt.subplot(4,3,5)
plt.plot(X,complement_a)
plt.title("complement_a")
plt.grid(True)

plt.subplot(4,3,6)
plt.plot(X,difference)
plt.title("difference a/b")
plt.grid(True)

plt.subplot(4,3,7)
plt.plot(X,alg_sum)
plt.title("alg_sum")
plt.grid(True)

plt.subplot(4,3,8)
plt.plot(X,alg_product)
plt.title("alg_product")
plt.grid(True)

plt.subplot(4,3,9)
plt.plot(X,bdd_sum)
plt.title("bdd_sum")
plt.grid(True)

plt.subplot(4,3,10)
plt.plot(X,bdd_difference)
plt.title("bdd_difference")
plt.grid(True)

plt.subplots_adjust(hspace = 0.5)
plt.show()
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ pandas
pillow
pytest
requests
scikit-fuzzy
sklearn
sympy
tensorflow