-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathmab.py
392 lines (307 loc) · 9.75 KB
/
mab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"""
Multi-Armed Bandit (MAB) is a problem in reinforcement learning where an agent must
learn to choose the best action from a set of actions to maximize its reward.
learn more here: https://en.wikipedia.org/wiki/Multi-armed_bandit
The MAB problem can be described as follows:
- There are N arms, each with a different probability of giving a reward.
- The agent must learn to choose the best arm to pull in order to maximize its reward.
Here there are 3 optimising strategies have been implemented:
- Epsilon-Greedy
- Upper Confidence Bound (UCB)
- Thompson Sampling
There are two other strategies implemented to show the performance of
the optimising strategies:
- Random strategy (full exploration)
- Greedy strategy (full exploitation)
The performance of the strategies is evaluated by the cumulative reward
over a number of rounds.
"""
import matplotlib.pyplot as plt
import numpy as np
class Bandit:
"""
A class to represent a multi-armed bandit.
"""
def __init__(self, probabilities: list[float]):
"""
Initialize the bandit with a list of probabilities for each arm.
Args:
probabilities: List of probabilities for each arm.
"""
self.probabilities = probabilities
self.k = len(probabilities)
def pull(self, arm_index: int) -> int:
"""
Pull an arm of the bandit.
Args:
arm_index: The arm to pull.
Returns:
The reward for the arm.
Example:
>>> bandit = Bandit([0.1, 0.5, 0.9])
>>> isinstance(bandit.pull(0), int)
True
"""
rng = np.random.default_rng()
return 1 if rng.random() < self.probabilities[arm_index] else 0
# Epsilon-Greedy strategy
class EpsilonGreedy:
"""
A class for a simple implementation of the Epsilon-Greedy strategy.
Follow this link to learn more:
https://medium.com/analytics-vidhya/the-epsilon-greedy-algorithm-for-reinforcement-learning-5fe6f96dc870
"""
def __init__(self, epsilon: float, k: int):
"""
Initialize the Epsilon-Greedy strategy.
Args:
epsilon: The probability of exploring new arms.
k: The number of arms.
"""
self.epsilon = epsilon
self.k = k
self.counts = np.zeros(k)
self.values = np.zeros(k)
def select_arm(self):
"""
Select an arm to pull.
Returns:
The index of the arm to pull.
Example:
>>> strategy = EpsilonGreedy(epsilon=0.1, k=3)
>>> 0 <= strategy.select_arm() < 3
True
"""
rng = np.random.default_rng()
if rng.random() < self.epsilon:
return rng.integers(self.k)
else:
return np.argmax(self.values)
def update(self, arm_index: int, reward: int):
"""
Update the strategy.
Args:
arm_index: The index of the arm to pull.
reward: The reward for the arm.
Example:
>>> strategy = EpsilonGreedy(epsilon=0.1, k=3)
>>> strategy.update(0, 1)
>>> strategy.counts[0] == 1
True
"""
self.counts[arm_index] += 1
n = self.counts[arm_index]
self.values[arm_index] += (reward - self.values[arm_index]) / n
# Upper Confidence Bound (UCB)
class UCB:
"""
A class for the Upper Confidence Bound (UCB) strategy.
Follow this link to learn more:
https://people.maths.bris.ac.uk/~maajg/teaching/stochopt/ucb.pdf
"""
def __init__(self, k: int):
"""
Initialize the UCB strategy.
Args:
k: The number of arms.
"""
self.k = k
self.counts = np.zeros(k)
self.values = np.zeros(k)
self.total_counts = 0
def select_arm(self):
"""
Select an arm to pull.
Returns:
The index of the arm to pull.
Example:
>>> strategy = UCB(k=3)
>>> 0 <= strategy.select_arm() < 3
True
"""
if self.total_counts < self.k:
return self.total_counts
ucb_values = self.values + \
np.sqrt(2 * np.log(self.total_counts) / self.counts)
return np.argmax(ucb_values)
def update(self, arm_index: int, reward: int):
"""
Update the strategy.
Args:
arm_index: The index of the arm to pull.
reward: The reward for the arm.
Example:
>>> strategy = UCB(k=3)
>>> strategy.update(0, 1)
>>> strategy.counts[0] == 1
True
"""
self.counts[arm_index] += 1
self.total_counts += 1
n = self.counts[arm_index]
self.values[arm_index] += (reward - self.values[arm_index]) / n
# Thompson Sampling
class ThompsonSampling:
"""
A class for the Thompson Sampling strategy.
Follow this link to learn more:
https://en.wikipedia.org/wiki/Thompson_sampling
"""
def __init__(self, k: int):
"""
Initialize the Thompson Sampling strategy.
Args:
k: The number of arms.
"""
self.k = k
self.successes = np.zeros(k)
self.failures = np.zeros(k)
def select_arm(self):
"""
Select an arm to pull.
Returns:
The index of the arm to pull based on the Thompson Sampling strategy
which relies on the Beta distribution.
Example:
>>> strategy = ThompsonSampling(k=3)
>>> 0 <= strategy.select_arm() < 3
True
"""
rng = np.random.default_rng()
samples = [
rng.beta(self.successes[i] + 1, self.failures[i] + 1) for i in range(self.k)
]
return np.argmax(samples)
def update(self, arm_index: int, reward: int):
"""
Update the strategy.
Args:
arm_index: The index of the arm to pull.
reward: The reward for the arm.
Example:
>>> strategy = ThompsonSampling(k=3)
>>> strategy.update(0, 1)
>>> strategy.successes[0] == 1
True
"""
if reward == 1:
self.successes[arm_index] += 1
else:
self.failures[arm_index] += 1
# Random strategy (full exploration)
class RandomStrategy:
"""
A class for choosing totally random at each round to give
a better comparison with the other optimised strategies.
"""
def __init__(self, k: int):
"""
Initialize the Random strategy.
Args:
k: The number of arms.
"""
self.k = k
def select_arm(self):
"""
Select an arm to pull.
Returns:
The index of the arm to pull.
Example:
>>> strategy = RandomStrategy(k=3)
>>> 0 <= strategy.select_arm() < 3
True
"""
rng = np.random.default_rng()
return rng.integers(self.k)
def update(self, arm_index: int, reward: int):
"""
Update the strategy.
Args:
arm_index: The index of the arm to pull.
reward: The reward for the arm.
Example:
>>> strategy = RandomStrategy(k=3)
>>> strategy.update(0, 1)
"""
# Greedy strategy (full exploitation)
class GreedyStrategy:
"""
A class for the Greedy strategy to show how full exploitation can be
detrimental to the performance of the strategy.
"""
def __init__(self, k: int):
"""
Initialize the Greedy strategy.
Args:
k: The number of arms.
"""
self.k = k
self.counts = np.zeros(k)
self.values = np.zeros(k)
def select_arm(self):
"""
Select an arm to pull.
Returns:
The index of the arm to pull.
Example:
>>> strategy = GreedyStrategy(k=3)
>>> 0 <= strategy.select_arm() < 3
True
"""
return np.argmax(self.values)
def update(self, arm_index: int, reward: int):
"""
Update the strategy.
Args:
arm_index: The index of the arm to pull.
reward: The reward for the arm.
Example:
>>> strategy = GreedyStrategy(k=3)
>>> strategy.update(0, 1)
>>> strategy.counts[0] == 1
True
"""
self.counts[arm_index] += 1
n = self.counts[arm_index]
self.values[arm_index] += (reward - self.values[arm_index]) / n
def test_mab_strategies():
"""
Test the MAB strategies.
"""
# Simulation
k = 4
arms_probabilities = [0.1, 0.3, 0.5, 0.8] # True probabilities
bandit = Bandit(arms_probabilities)
strategies = {
"Epsilon-Greedy": EpsilonGreedy(epsilon=0.1, k=k),
"UCB": UCB(k=k),
"Thompson Sampling": ThompsonSampling(k=k),
"Full Exploration(Random)": RandomStrategy(k=k),
"Full Exploitation(Greedy)": GreedyStrategy(k=k),
}
num_rounds = 1000
results = {}
for name, strategy in strategies.items():
rewards = []
total_reward = 0
for _ in range(num_rounds):
arm = strategy.select_arm()
current_reward = bandit.pull(arm)
strategy.update(arm, current_reward)
total_reward += current_reward
rewards.append(total_reward)
results[name] = rewards
# Plotting results
plt.figure(figsize=(12, 6))
for name, rewards in results.items():
plt.plot(rewards, label=name)
plt.title("Cumulative Reward of Multi-Armed Bandit Strategies")
plt.xlabel("Round")
plt.ylabel("Cumulative Reward")
plt.legend()
plt.grid()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
test_mab_strategies()