From 98db791d372f6ceab301ff029d3dd82924dcda71 Mon Sep 17 00:00:00 2001 From: A Safari Date: Wed, 28 Nov 2018 15:54:19 -0500 Subject: [PATCH 001/594] Create Non-crossing-lines-to-connect-points-in-a-circle --- .../Non-crossing-lines-to-connect-points-in-a-circle | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle diff --git a/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle b/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle new file mode 100644 index 000000000000..a2eec04547eb --- /dev/null +++ b/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle @@ -0,0 +1,10 @@ +def count(n): + if (n & 1): + return 0 + val = n // 2 + dy_lst = [1 for i in range(val + 1)] + for i in range(2, val + 1): + dy_lst[i] = 0 + for j in range(i): + dy_lst[i] += (dy_lst[j] * dy_lst[i - j - 1]) + return dy_lst[val] From 1c29a455b855232f7309380b0ad822fb351f1076 Mon Sep 17 00:00:00 2001 From: A Safari Date: Wed, 28 Nov 2018 15:56:10 -0500 Subject: [PATCH 002/594] Delete Non-crossing-lines-to-connect-points-in-a-circle --- .../Non-crossing-lines-to-connect-points-in-a-circle | 10 ---------- 1 file changed, 10 deletions(-) delete mode 100644 dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle diff --git a/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle b/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle deleted file mode 100644 index a2eec04547eb..000000000000 --- a/dynamic_programming/Non-crossing-lines-to-connect-points-in-a-circle +++ /dev/null @@ -1,10 +0,0 @@ -def count(n): - if (n & 1): - return 0 - val = n // 2 - dy_lst = [1 for i in range(val + 1)] - for i in range(2, val + 1): - dy_lst[i] = 0 - for j in range(i): - dy_lst[i] += (dy_lst[j] * dy_lst[i - j - 1]) - return dy_lst[val] From d75bec8a786a3fa695d1adc5151bedc3276fdffa Mon Sep 17 00:00:00 2001 From: ahviplc!~LC Date: Wed, 5 Dec 2018 01:18:32 +0800 Subject: [PATCH 003/594] absMax.py and absMin.py bugs fixed. (#624) --- Maths/abs.py | 4 ++-- Maths/absMax.py | 19 ++++++++++++------- Maths/absMin.py | 14 +++++++------- 3 files changed, 21 insertions(+), 16 deletions(-) diff --git a/Maths/abs.py b/Maths/abs.py index 5b758f8389b4..6d0596478d5f 100644 --- a/Maths/abs.py +++ b/Maths/abs.py @@ -1,9 +1,9 @@ def absVal(num): """ Function to fins absolute value of numbers. - >>>absVal(-5) + >>absVal(-5) 5 - >>>absVal(0) + >>absVal(0) 0 """ if num < 0: diff --git a/Maths/absMax.py b/Maths/absMax.py index 432734ec02c0..a7bb2882dcd8 100644 --- a/Maths/absMax.py +++ b/Maths/absMax.py @@ -1,22 +1,27 @@ -from abs import absVal +from Maths.abs import absVal + def absMax(x): """ - >>>absMax([0,5,1,11]) + #>>>absMax([0,5,1,11]) 11 >>absMax([3,-10,-2]) -10 """ - j = x[0] + j =x[0] for i in x: - if absVal(i) < j: + if absVal(i) > absVal(j): j = i return j #BUG: i is apparently a list, TypeError: '<' not supported between instances of 'list' and 'int' in absVal - + #BUG fix def main(): - a = [1,2,-11] - print(absVal(a)) # = -11 + a = [-13, 2, -11, -12] + print(absMax(a)) # = -13 if __name__ == '__main__': main() + +""" +print abs Max +""" \ No newline at end of file diff --git a/Maths/absMin.py b/Maths/absMin.py index a353be4ceb8f..7eaecc060222 100644 --- a/Maths/absMin.py +++ b/Maths/absMin.py @@ -1,20 +1,20 @@ -from abs import absVal +from Maths.abs import absVal def absMin(x): """ - >>>absMin([0,5,1,11]) + # >>>absMin([0,5,1,11]) 0 - >>absMin([3,-10,-2]) + # >>absMin([3,-10,-2]) -2 """ - j = absVal(x[0]) + j = x[0] for i in x: - if absVal(i) < j: + if absVal(i) < absVal(j): j = i return j def main(): - a = [1,2,-11] - print(absMin(a)) # = 1 + a = [-3,-1,2,-11] + print(absMin(a)) # = -1 if __name__ == '__main__': main() From dab312e0e7b65d7ed64f110c8ccc55bc78174a8e Mon Sep 17 00:00:00 2001 From: wanderer <19929284+AlpineBlack@users.noreply.github.com> Date: Wed, 5 Dec 2018 01:32:53 +0800 Subject: [PATCH 004/594] bugs fixed (#623) * bugs fixed * bugs fixed * bugs fixed --- Maths/absMax.py | 2 +- Maths/absMin.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Maths/absMax.py b/Maths/absMax.py index a7bb2882dcd8..2f719e32e645 100644 --- a/Maths/absMax.py +++ b/Maths/absMax.py @@ -24,4 +24,4 @@ def main(): """ print abs Max -""" \ No newline at end of file +""" diff --git a/Maths/absMin.py b/Maths/absMin.py index 7eaecc060222..67d510551907 100644 --- a/Maths/absMin.py +++ b/Maths/absMin.py @@ -17,4 +17,4 @@ def main(): print(absMin(a)) # = -1 if __name__ == '__main__': - main() + main() \ No newline at end of file From 362270c19f5448cdd44a8d1b453f1f4c2b84a66f Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Wed, 5 Dec 2018 21:25:01 +0800 Subject: [PATCH 005/594] Project Euler problem 2 pyhtonic solution (#629) * Project Euler problem 2 pyhtonic solution * Project Euler problem 2 made small changes --- project_euler/problem_02/sol1.py | 6 ++---- project_euler/problem_02/sol3.py | 6 ++---- 2 files changed, 4 insertions(+), 8 deletions(-) diff --git a/project_euler/problem_02/sol1.py b/project_euler/problem_02/sol1.py index f8257fb615fb..44ea980f2df0 100644 --- a/project_euler/problem_02/sol1.py +++ b/project_euler/problem_02/sol1.py @@ -18,9 +18,7 @@ j=2 sum=0 while(j<=n): - if((j&1)==0): #can also use (j%2==0) + if j%2 == 0: sum+=j - temp=i - i=j - j=temp+i + i , j = j, i+j print(sum) diff --git a/project_euler/problem_02/sol3.py b/project_euler/problem_02/sol3.py index d36b741bb4f9..0eb46d879704 100644 --- a/project_euler/problem_02/sol3.py +++ b/project_euler/problem_02/sol3.py @@ -12,9 +12,7 @@ b=2 count=0 while 4*b+a Date: Wed, 5 Dec 2018 21:25:46 +0800 Subject: [PATCH 006/594] Project Euler problem 1 pyhtonic solution (#628) --- project_euler/problem_01/sol5.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) create mode 100644 project_euler/problem_01/sol5.py diff --git a/project_euler/problem_01/sol5.py b/project_euler/problem_01/sol5.py new file mode 100644 index 000000000000..e261cc8fc729 --- /dev/null +++ b/project_euler/problem_01/sol5.py @@ -0,0 +1,16 @@ +''' +Problem Statement: +If we list all the natural numbers below 10 that are multiples of 3 or 5, +we get 3,5,6 and 9. The sum of these multiples is 23. +Find the sum of all the multiples of 3 or 5 below N. +''' +from __future__ import print_function +try: + input = raw_input #python3 +except NameError: + pass #python 2 + +"""A straightforward pythonic solution using list comprehension""" +n = int(input().strip()) +print(sum([i for i in range(n) if i%3==0 or i%5==0])) + From 77f72fbe1f8d2f12c4d6c6a91b1a8afefa5bed7a Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 6 Dec 2018 23:19:28 +0800 Subject: [PATCH 007/594] Create sol2.py --- project_euler/problem_10/sol2.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100644 project_euler/problem_10/sol2.py diff --git a/project_euler/problem_10/sol2.py b/project_euler/problem_10/sol2.py new file mode 100644 index 000000000000..22df95c063e2 --- /dev/null +++ b/project_euler/problem_10/sol2.py @@ -0,0 +1,22 @@ +#from Python.Math import prime_generator +import math +from itertools import takewhile + +def primeCheck(number): + if number % 2 == 0 and number > 2: + return False + return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) + +def prime_generator(): + num = 2 + while True: + if primeCheck(num): + yield num + num+=1 + +def main(): + n = int(input('Enter The upper limit of prime numbers: ')) + print(sum(takewhile(lambda x: x < n,prime_generator()))) + +if __name__ == '__main__': + main() From 60ec25ef7a1f0294c066eaba568011752727f7c7 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Fri, 7 Dec 2018 02:29:04 +0800 Subject: [PATCH 008/594] Update sol1.py --- project_euler/problem_12/sol1.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/project_euler/problem_12/sol1.py b/project_euler/problem_12/sol1.py index 9c4483fd62e5..73d48a2ec897 100644 --- a/project_euler/problem_12/sol1.py +++ b/project_euler/problem_12/sol1.py @@ -30,7 +30,9 @@ def count_divisors(n): for i in xrange(1, int(sqrt(n))+1): if n%i == 0: nDivisors += 2 - + #check if n is perfect square + if n**0.5 == int(n**0.5): + nDivisors -= 1 return nDivisors tNum = 1 @@ -43,4 +45,4 @@ def count_divisors(n): if count_divisors(tNum) > 500: break -print(tNum) \ No newline at end of file +print(tNum) From e5f130c1f006d2b96ca81be5a9f66c15b97b8793 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Fri, 7 Dec 2018 03:28:33 +0800 Subject: [PATCH 009/594] Create sol2.py --- project_euler/problem_12/sol2.py | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 project_euler/problem_12/sol2.py diff --git a/project_euler/problem_12/sol2.py b/project_euler/problem_12/sol2.py new file mode 100644 index 000000000000..479ab2b900cb --- /dev/null +++ b/project_euler/problem_12/sol2.py @@ -0,0 +1,8 @@ +def triangle_number_generator(): + for n in range(1,1000000): + yield n*(n+1)//2 + +def count_divisors(n): + return sum([2 for i in range(1,int(n**0.5)+1) if n%i==0 and i*i != n]) + +print(next(i for i in triangle_number_generator() if count_divisors(i) > 500)) From fa2eecdc30d766197dad634a9f87bd4b7fad58ef Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 10:22:18 +0330 Subject: [PATCH 010/594] Directed graph with optional weight assignment . Containing graph auto-fill, dfs and bfs. --- graphs/Directed (Weighted) Graph | 95 ++++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 graphs/Directed (Weighted) Graph diff --git a/graphs/Directed (Weighted) Graph b/graphs/Directed (Weighted) Graph new file mode 100644 index 000000000000..03ae572e8009 --- /dev/null +++ b/graphs/Directed (Weighted) Graph @@ -0,0 +1,95 @@ +from collections import deque +import random as rand +import math as math + +# the dfault weight is 1 if not assigend but all the implementation is weighted + +class DirectedGraph: + # enter True or False for this constructor + def __init__(self): + self.graph = {} + + # adding vertices and edges + # note that self loops are not supported in undirected simpl graphs but it is in multigraphs + def add_pair(self, u, v, w = 1): + if self.graph.get(u): + if self.graph[u].count([w,v]) == 0: + self.graph[u].append([w, v]) + else: + self.graph[u] = [[w, v]] + if not self.graph.get(v): + self.graph[v] = [] + def remove_pair(self, u, v): + if self.graph.get(u): + for _ in self.graph[u]: + if _[1] == v: + self.graph[u].remove(_) + + # if no destination is meant the defaut value is -1 + def dfs(self, s = -2, d = -1): + if s == d: + return [] + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + if __[1] == d: + visited.append(d) + return visited + else: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return visited + + # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # will be random from 10 to 10000 + def fill_graph_randomly(self, c = -1): + if c == -1: + c = (math.floor(rand.random() * 10000)) + 10 + for _ in range(c): + # every vertex has max 100 edges + e = math.floor(rand.random() * 102) + 1 + for __ in range(e): + n = math.floor(rand.random() * (c)) + 1 + if n == _: + continue + self.add_pair(_, n, 1) + + def bfs(self, s = -2): + d = deque() + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + d.append(s) + visited.append(s) + while d: + s = d.popleft() + if len(self.graph[s]) != 0: + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + d.append(__[1]) + visited.append(__[1]) + return visited From 687af17d470e1b8b4d6e2a96afa6f512f9bcd519 Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 10:31:45 +0330 Subject: [PATCH 011/594] Added some examples. Added examples and comments for more readable code. --- graphs/Directed (Weighted) Graph | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/graphs/Directed (Weighted) Graph b/graphs/Directed (Weighted) Graph index 03ae572e8009..d3bafd103ebc 100644 --- a/graphs/Directed (Weighted) Graph +++ b/graphs/Directed (Weighted) Graph @@ -5,12 +5,12 @@ import math as math # the dfault weight is 1 if not assigend but all the implementation is weighted class DirectedGraph: - # enter True or False for this constructor def __init__(self): self.graph = {} # adding vertices and edges - # note that self loops are not supported in undirected simpl graphs but it is in multigraphs + # adding the weight is optional + # handels repetition def add_pair(self, u, v, w = 1): if self.graph.get(u): if self.graph[u].count([w,v]) == 0: @@ -19,6 +19,8 @@ class DirectedGraph: self.graph[u] = [[w, v]] if not self.graph.get(v): self.graph[v] = [] + + # handels if the input does not exist def remove_pair(self, u, v): if self.graph.get(u): for _ in self.graph[u]: @@ -93,3 +95,13 @@ class DirectedGraph: d.append(__[1]) visited.append(__[1]) return visited + +if __name__ == "__main__": + g = DirectedGraph() + # add 50 random nodes to the graph + g.fill_graph_randomly(50) + # you can add or remove any edge and vertex + g.add_pair(3, 5) + g.remove_pair(3,5) + g.dfs() + g.bgs() From 691f4c0a25e26acc259e4f9e589cd09ed9d70b18 Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 10:33:01 +0330 Subject: [PATCH 012/594] Python version 3 From e97565d21f1a6ec7d88ce9665817b9dd3d2978d4 Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 15:08:37 +0330 Subject: [PATCH 013/594] Added (Weighted) Undirected graph Python version 3 --- graphs/Directed (Weighted) Graph | 115 ++++++++++++++++++++++++++++--- 1 file changed, 106 insertions(+), 9 deletions(-) diff --git a/graphs/Directed (Weighted) Graph b/graphs/Directed (Weighted) Graph index d3bafd103ebc..0b3b3a2cb463 100644 --- a/graphs/Directed (Weighted) Graph +++ b/graphs/Directed (Weighted) Graph @@ -96,12 +96,109 @@ class DirectedGraph: visited.append(__[1]) return visited -if __name__ == "__main__": - g = DirectedGraph() - # add 50 random nodes to the graph - g.fill_graph_randomly(50) - # you can add or remove any edge and vertex - g.add_pair(3, 5) - g.remove_pair(3,5) - g.dfs() - g.bgs() + +class Graph: + def __init__(self): + self.graph = {} + + # adding vertices and edges + # adding the weight is optional + # handels repetition + def add_pair(self, u, v, w = 1): + # check if the u exists + if self.graph.get(u): + # if there already is a edge + if self.graph[u].count([w,v]) == 0: + self.graph[u].append([w, v]) + else: + # if u does not exist + self.graph[u] = [[w, v]] + # add the other way + if self.graph.get(v): + # if there already is a edge + if self.graph[v].count([w,u]) == 0: + self.graph[v].append([w, u]) + else: + # if u does not exist + self.graph[v] = [[w, u]] + + # handels if the input does not exist + def remove_pair(self, u, v): + if self.graph.get(u): + for _ in self.graph[u]: + if _[1] == v: + self.graph[u].remove(_) + # the other way round + if self.graph.get(v): + for _ in self.graph[v]: + if _[1] == u: + self.graph[v].remove(_) + + # if no destination is meant the defaut value is -1 + def dfs(self, s = -2, d = -1): + if s == d: + return [] + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + if __[1] == d: + visited.append(d) + return visited + else: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return visited + + # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # will be random from 10 to 10000 + def fill_graph_randomly(self, c = -1): + if c == -1: + c = (math.floor(rand.random() * 10000)) + 10 + for _ in range(c): + # every vertex has max 100 edges + e = math.floor(rand.random() * 102) + 1 + for __ in range(e): + n = math.floor(rand.random() * (c)) + 1 + if n == _: + continue + self.add_pair(_, n, 1) + + def bfs(self, s = -2): + d = deque() + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + d.append(s) + visited.append(s) + while d: + s = d.popleft() + if len(self.graph[s]) != 0: + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + d.append(__[1]) + visited.append(__[1]) + return visited From 889f8fba3d10a91803b76a49421cf103bfe479e6 Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 15:28:45 +0330 Subject: [PATCH 014/594] Added getting node degree functionality to both directed and undirected graph Easy to use directed and undirected graph in python 3 --- ...raph => Directed and Undirected (Weighted) Graph} | 12 ++++++++++++ 1 file changed, 12 insertions(+) rename graphs/{Directed (Weighted) Graph => Directed and Undirected (Weighted) Graph} (95%) diff --git a/graphs/Directed (Weighted) Graph b/graphs/Directed and Undirected (Weighted) Graph similarity index 95% rename from graphs/Directed (Weighted) Graph rename to graphs/Directed and Undirected (Weighted) Graph index 0b3b3a2cb463..74d741f5e3f4 100644 --- a/graphs/Directed (Weighted) Graph +++ b/graphs/Directed and Undirected (Weighted) Graph @@ -95,6 +95,16 @@ class DirectedGraph: d.append(__[1]) visited.append(__[1]) return visited + def in_degree(self, u): + count = 0 + for _ in self.graph: + for __ in self.graph[_]: + if __[1] == u: + count += 1 + return count + + def out_degree(self, u): + return len(self.graph[u]) class Graph: @@ -202,3 +212,5 @@ class Graph: d.append(__[1]) visited.append(__[1]) return visited + def degree(self, u): + return len(self.graph[u]) From b3a15175bddb4d63551830b80b3840264ad99c4b Mon Sep 17 00:00:00 2001 From: A Safari Date: Fri, 14 Dec 2018 23:14:35 +0330 Subject: [PATCH 015/594] Added more functionality Added topological sort, cycle detection and a function to report the nodes participating in cycles in graph(for a use case I myself needed ). --- .../Directed and Undirected (Weighted) Graph | 222 ++++++++++++++++++ 1 file changed, 222 insertions(+) diff --git a/graphs/Directed and Undirected (Weighted) Graph b/graphs/Directed and Undirected (Weighted) Graph index 74d741f5e3f4..7e7063823447 100644 --- a/graphs/Directed and Undirected (Weighted) Graph +++ b/graphs/Directed and Undirected (Weighted) Graph @@ -106,6 +106,133 @@ class DirectedGraph: def out_degree(self, u): return len(self.graph[u]) + def topological_sort(self, s = -2): + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + sorted_nodes = [] + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + sorted_nodes.append(stack.pop()) + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return sorted_nodes + + def cycle_nodes(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return list(anticipating_nodes) + + def has_cycle(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + return True + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return False class Graph: def __init__(self): @@ -214,3 +341,98 @@ class Graph: return visited def degree(self, u): return len(self.graph[u]) + + def cycle_nodes(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return list(anticipating_nodes) + + def has_cycle(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + return True + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss =__[1] + break + + # check if all the children are visited + if s == ss : + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return False From 069d2b9cb6907014898c2ced90cfe9e735d2dd94 Mon Sep 17 00:00:00 2001 From: Safari Date: Sun, 16 Dec 2018 22:19:40 +0330 Subject: [PATCH 016/594] All Python Version 3 Added functions to get all nodes for some algorithms and time calculation for dfs and bfs. --- .../Directed and Undirected (Weighted) Graph | 32 ++++++++++++++++++- 1 file changed, 31 insertions(+), 1 deletion(-) diff --git a/graphs/Directed and Undirected (Weighted) Graph b/graphs/Directed and Undirected (Weighted) Graph index 7e7063823447..68977de8d311 100644 --- a/graphs/Directed and Undirected (Weighted) Graph +++ b/graphs/Directed and Undirected (Weighted) Graph @@ -1,6 +1,7 @@ from collections import deque import random as rand import math as math +import time # the dfault weight is 1 if not assigend but all the implementation is weighted @@ -19,7 +20,10 @@ class DirectedGraph: self.graph[u] = [[w, v]] if not self.graph.get(v): self.graph[v] = [] - + + def all_nodes(self): + return list(self.graph) + # handels if the input does not exist def remove_pair(self, u, v): if self.graph.get(u): @@ -234,6 +238,18 @@ class DirectedGraph: if len(stack) == 0: return False + def dfs_time(self, s = -2, e = -1): + begin = time.time() + self.dfs(s,e) + end = time.time() + return end - begin + + def bfs_time(self, s = -2): + begin = time.time() + self.bfs(s) + end = time.time() + return end - begin + class Graph: def __init__(self): self.graph = {} @@ -436,3 +452,17 @@ class Graph: # check if se have reached the starting point if len(stack) == 0: return False + def all_nodes(self): + return list(self.graph) + + def dfs_time(self, s = -2, e = -1): + begin = time.time() + self.dfs(s,e) + end = time.time() + return end - begin + + def bfs_time(self, s = -2): + begin = time.time() + self.bfs(s) + end = time.time() + return end - begin From 2d082cf19c91b40a0808af0acdc0970f93f536b9 Mon Sep 17 00:00:00 2001 From: Mikael Souza Date: Mon, 17 Dec 2018 10:44:38 -0400 Subject: [PATCH 017/594] Changed import from .Stack to stack --- data_structures/stacks/balanced_parentheses.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index 02efa8980291..ef470781de6a 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -1,6 +1,6 @@ from __future__ import print_function from __future__ import absolute_import -from .Stack import Stack +from stack import Stack __author__ = 'Omkar Pathak' From a8cfc14737bab805a7102accf24afafe565ef3f9 Mon Sep 17 00:00:00 2001 From: Mikael Souza Date: Mon, 17 Dec 2018 10:45:16 -0400 Subject: [PATCH 018/594] Added more parentheses examples --- data_structures/stacks/balanced_parentheses.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index ef470781de6a..96a4a04325fa 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -17,7 +17,7 @@ def balanced_parentheses(parentheses): if __name__ == '__main__': - examples = ['((()))', '((())'] + examples = ['((()))', '((())', '(()))'] print('Balanced parentheses demonstration:\n') for example in examples: print(example + ': ' + str(balanced_parentheses(example))) From 2e2fadf4db224e53874b01fde0cf79e15eabc3b4 Mon Sep 17 00:00:00 2001 From: Mikael Souza Date: Mon, 17 Dec 2018 10:45:54 -0400 Subject: [PATCH 019/594] Fixed bug where an empty stack would cause error --- data_structures/stacks/balanced_parentheses.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index 96a4a04325fa..3229d19c8621 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -12,8 +12,10 @@ def balanced_parentheses(parentheses): if parenthesis == '(': stack.push(parenthesis) elif parenthesis == ')': + if stack.is_empty(): + return False stack.pop() - return not stack.is_empty() + return stack.is_empty() if __name__ == '__main__': From d26311424d2d996a66c56fcb52d97faa14fc2dff Mon Sep 17 00:00:00 2001 From: Jithendra Yenugula Date: Tue, 25 Dec 2018 18:39:36 +0530 Subject: [PATCH 020/594] Adding a program for swap nodes in linkedlist (#667) * Adding a program for swap nodes in linkedlist * Updating swapNodes --- data_structures/linked_list/swapNodes.py | 75 ++++++++++++++++++++++++ 1 file changed, 75 insertions(+) create mode 100644 data_structures/linked_list/swapNodes.py diff --git a/data_structures/linked_list/swapNodes.py b/data_structures/linked_list/swapNodes.py new file mode 100644 index 000000000000..ce2543bc46d8 --- /dev/null +++ b/data_structures/linked_list/swapNodes.py @@ -0,0 +1,75 @@ +class Node: + def __init__(self, data): + self.data = data; + self.next = None + + +class Linkedlist: + def __init__(self): + self.head = None + + def print_list(self): + temp = self.head + while temp is not None: + print(temp.data) + temp = temp.next + +# adding nodes + def push(self, new_data): + new_node = Node(new_data) + new_node.next = self.head + self.head = new_node + +# swapping nodes + def swapNodes(self, d1, d2): + prevD1 = None + prevD2 = None + if d1 == d2: + return + else: + # find d1 + D1 = self.head + while D1 is not None and D1.data != d1: + prevD1 = D1 + D1 = D1.next + # find d2 + D2 = self.head + while D2 is not None and D2.data != d2: + prevD2 = D2 + D2 = D2.next + if D1 is None and D2 is None: + return + # if D1 is head + if prevD1 is not None: + prevD1.next = D2 + else: + self.head = D2 + # if D2 is head + if prevD2 is not None: + prevD2.next = D1 + else: + self.head = D1 + temp = D1.next + D1.next = D2.next + D2.next = temp + +# swapping code ends here + + + +if __name__ == '__main__': + list = Linkedlist() + list.push(5) + list.push(4) + list.push(3) + list.push(2) + list.push(1) + + list.print_list() + + list.swapNodes(1, 4) + print("After swapping") + list.print_list() + + + From f6d241e52d87bf4b020609bd8831922297b5b655 Mon Sep 17 00:00:00 2001 From: Robert Bergers Date: Tue, 25 Dec 2018 15:50:49 -0500 Subject: [PATCH 021/594] Clean up (#488) * Cleaning up the README Spell-check, citing sources, standardizing the format * Cited missing source * cleaning up the readme * Update README.md * Update README.md * standardized spacing * README is all neat and tidy --- README.md | 144 +++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 98 insertions(+), 46 deletions(-) diff --git a/README.md b/README.md index b172fd04eaf4..f6b5a17bba84 100644 --- a/README.md +++ b/README.md @@ -10,89 +10,97 @@ These implementations are for demonstration purposes. They are less efficient th ### Bubble Sort ![alt text][bubble-image] -From [Wikipedia][bubble-wiki]: **Bubble sort**, sometimes referred to as *sinking sort*, is a simple sorting algorithm that repeatedly steps through the list, compares adjacent pairs and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted. +**Bubble sort**, sometimes referred to as *sinking sort*, is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted. __Properties__ * Worst case performance O(n2) * Best case performance O(n) * Average case performance O(n2) +###### Source: [Wikipedia][bubble-wiki] ###### View the algorithm in [action][bubble-toptal] -### Bucket Sort +### Bucket ![alt text][bucket-image-1] ![alt text][bucket-image-2] -From [Wikipedia][bucket-wiki]: Bucket sort, or bin sort, is a sorting algorithm that distributes elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. +**Bucket sort**, or _bin sort_, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. __Properties__ * Worst case performance O(n2) * Best case performance O(n+k) * Average case performance O(n+k) +###### Source: [Wikipedia][bucket-wiki] + + ### Cocktail shaker ![alt text][cocktail-shaker-image] -From [Wikipedia][cocktail-shaker-wiki]: Cocktail shaker sort, also known as bidirectional bubble sort, cocktail sort, shaker sort (which can also refer to a variant of selection sort), ripple sort, shuffle sort, or shuttle sort, is a variation of bubble sort that is both a stable sorting algorithm and a comparison sort. The algorithm differs from a bubble sort in that it sorts in both directions on each pass through the list. +**Cocktail shaker sort**, also known as _bidirectional bubble sort_, _cocktail sort_, _shaker sort_ (which can also refer to a variant of _selection sort_), _ripple sort_, _shuffle sort_, or _shuttle sort_, is a variation of bubble sort that is both a stable sorting algorithm and a comparison sort. The algorithm differs from a bubble sort in that it sorts in both directions on each pass through the list. __Properties__ * Worst case performance O(n2) * Best case performance O(n) * Average case performance O(n2) +###### Source: [Wikipedia][cocktail-shaker-wiki] + ### Insertion Sort ![alt text][insertion-image] -From [Wikipedia][insertion-wiki]: **Insertion sort** is a simple sorting algorithm that builds the final sorted array (or list) one item at a time. It is much less efficient on *large* lists than more advanced algorithms such as quicksort, heapsort, or merge sort. +**Insertion sort** is a simple sorting algorithm that builds the final sorted array (or list) one item at a time. It is much less efficient on *large* lists than more advanced algorithms such as quicksort, heapsort, or merge sort. __Properties__ * Worst case performance O(n2) * Best case performance O(n) * Average case performance O(n2) +###### Source: [Wikipedia][insertion-wiki] ###### View the algorithm in [action][insertion-toptal] ### Merge Sort ![alt text][merge-image] -From [Wikipedia][merge-wiki]: **Merge sort** (also commonly spelled *mergesort*) is an efficient, general-purpose, comparison-based sorting algorithm. Most implementations produce a stable sort, which means the order of equal items is the same in the input and output. Mergesort is a divide and conquer algorithm that was invented by John von Neumann in 1945. +**Merge sort** (also commonly spelled *mergesort*) is an efficient, general-purpose, comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the implementation preserves the input order of equal elements in the sorted output. Mergesort is a divide and conquer algorithm that was invented by John von Neumann in 1945. __Properties__ * Worst case performance O(n log n) * Best case performance O(n log n) * Average case performance O(n log n) - +###### Source: [Wikipedia][merge-wiki] ###### View the algorithm in [action][merge-toptal] -### Quick Sort +### Quick ![alt text][quick-image] -From [Wikipedia][quick-wiki]: **Quicksort** (sometimes called *partition-exchange sort*) is an efficient sorting algorithm, serving as a systematic method for placing the elements of an array in order. +**Quicksort** (sometimes called *partition-exchange sort*) is an efficient sorting algorithm, serving as a systematic method for placing the elements of an array in order. __Properties__ * Worst case performance O(n2) * Best case performance O(*n* log *n*) or O(n) with three-way partition * Average case performance O(*n* log *n*) +###### Source: [Wikipedia][quick-wiki] ###### View the algorithm in [action][quick-toptal] ### Heap -From [Wikipedia](https://en.wikipedia.org/wiki/Heapsort): Heapsort is a comparison-based sorting algorithm. It can be thought of as an improved selection sort. It divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region +**Heapsort** is a _comparison-based_ sorting algorithm. It can be thought of as an improved selection sort. It divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. __Properties__ * Worst case performance O(*n* log *n*) * Best case performance O(*n* log *n*) * Average case performance O(*n* log *n*) - - +###### Source: [Wikipedia][heap-wiki] ###### View the algorithm in [action](https://www.toptal.com/developers/sorting-algorithms/heap-sort) + ### Radix From [Wikipedia][radix-wiki]: Radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which share the same significant position and value. @@ -102,33 +110,40 @@ __Properties__ * Best case performance O(wn) * Average case performance O(wn) +###### Source: [Wikipedia][radix-wiki] + + ### Selection ![alt text][selection-image] -From [Wikipedia][selection-wiki]: **Selection sort** is an algorithm that divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right. +**Selection sort** is an algorithm that divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right. __Properties__ * Worst case performance O(n2) * Best case performance O(n2) * Average case performance O(n2) +###### Source: [Wikipedia][selection-wiki] ###### View the algorithm in [action][selection-toptal] + ### Shell ![alt text][shell-image] -From [Wikipedia][shell-wiki]: **Shellsort** is a generalization of *insertion sort* that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted. +**Shellsort** is a generalization of *insertion sort* that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted. __Properties__ * Worst case performance O(*n*log2*n*) * Best case performance O(*n* log *n*) * Average case performance depends on gap sequence +###### Source: [Wikipedia][shell-wiki] ###### View the algorithm in [action][shell-toptal] + ### Topological -From [Wikipedia][topological-wiki]: A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. +From [Wikipedia][topological-wiki]: **Topological sort**, or _topological ordering of a directed graph_ is a linear ordering of its vertices such that for every directed edge _uv_ from vertex _u_ to vertex _v_, _u_ comes before _v_ in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a _directed acyclic graph_ (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. ### Time-Complexity Graphs @@ -136,9 +151,9 @@ Comparing the complexity of sorting algorithms (*Bubble Sort*, *Insertion Sort*, ![Complexity Graphs](https://github.com/prateekiiest/Python/blob/master/sorts/sortinggraphs.png) -Selecting a sort technique: Quicksort is a very fast algorithm but can be pretty tricky to implement while bubble sort is a slow algorithm which is very easy to implement. For a small datasets bubble sort may be a better option since it can be implemented quickly, but for larger datasets, the speedup from quicksort might be worth the trouble implementing the algorithm. - - +Comparing the sorting algorithms: +
-Quicksort is a very fast algorithm but can be pretty tricky to implement +
-Bubble sort is a slow algorithm but is very easy to implement. To sort small sets of data, bubble sort may be a better option since it can be implemented quickly, but for larger datasets, the speedup from quicksort might be worth the trouble implementing the algorithm. ---------------------------------------------------------------------------------- @@ -147,7 +162,7 @@ Selecting a sort technique: Quicksort is a very fast algorithm but can be pretty ### Linear ![alt text][linear-image] -From [Wikipedia][linear-wiki]: **Linear search** or *sequential search* is a method for finding an element in a list. It sequentially checks each element of the list until a match is found or all the elements have been searched. +**Linear search** or *sequential search* is a method for finding a target value within a list. It sequentially checks each element of the list for the target value until a match is found or until all the elements have been searched. Linear search runs in at worst linear time and makes at most n comparisons, where n is the length of the list. __Properties__ * Worst case performance O(n) @@ -155,10 +170,13 @@ __Properties__ * Average case performance O(n) * Worst case space complexity O(1) iterative +###### Source: [Wikipedia][linear-wiki] + + ### Binary ![alt text][binary-image] -From [Wikipedia][binary-wiki]: **Binary search**, also known as *half-interval search* or *logarithmic search*, is a search algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is successful. +**Binary search**, also known as *half-interval search* or *logarithmic search*, is a search algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is successful. __Properties__ * Worst case performance O(log n) @@ -166,88 +184,114 @@ __Properties__ * Average case performance O(log n) * Worst case space complexity O(1) +###### Source: [Wikipedia][binary-wiki] + + ## Interpolation -Interpolation search is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values). It was first described by W. W. Peterson in 1957. Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. +**Interpolation search** is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values). It was first described by W. W. Peterson in 1957.[1] Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. By comparison, binary search always chooses the middle of the remaining search space, discarding one half or the other, depending on the comparison between the key found at the estimated position and the key sought — it does not require numerical values for the keys, just a total order on them. The remaining search space is reduced to the part before or after the estimated position. The linear search uses equality only as it compares elements one-by-one from the start, ignoring any sorting. On average the interpolation search makes about log(log(n)) comparisons (if the elements are uniformly distributed), where n is the number of elements to be searched. In the worst case (for instance where the numerical values of the keys increase exponentially) it can make up to O(n) comparisons. In interpolation-sequential search, interpolation is used to find an item near the one being searched for, then linear search is used to find the exact item. -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Interpolation_search) + +###### Source: [Wikipedia][interpolation-wiki] + ## Jump Search -![alt text][JumpSearch-image] -In computer science, a jump search or block search refers to a search algorithm for ordered lists. It works by first checking all items Lkm, where ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a5bc4b7383031ba693b7433198ead7170954c1d) and *m* is the block size, until an item is found that is larger than the search key. To find the exact position of the search key in the list a linear search is performed on the sublist L[(k-1)m, km]. +**Jump search** or _block search_ refers to a search algorithm for ordered lists. It works by first checking all items Lkm, where {\displaystyle k\in \mathbb {N} } k\in \mathbb {N} and m is the block size, until an item is found that is larger than the search key. To find the exact position of the search key in the list a linear search is performed on the sublist L[(k-1)m, km]. The optimal value of m is √n, where n is the length of the list L. Because both steps of the algorithm look at, at most, √n items the algorithm runs in O(√n) time. This is better than a linear search, but worse than a binary search. The advantage over the latter is that a jump search only needs to jump backwards once, while a binary can jump backwards up to log n times. This can be important if a jumping backwards takes significantly more time than jumping forward. -The algorithm can be modified by performing multiple levels of jump search on the sublists, before finally performing the linear search. For an k-level jump search the optimum block size ml for the lth level (counting from 1) is n(k-l)/k. The modified algorithm will perform *k* backward jumps and runs in O(kn1/(k+1)) time. -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Jump_search) +The algorithm can be modified by performing multiple levels of jump search on the sublists, before finally performing the linear search. For an k-level jump search the optimum block size ml for the lth level (counting from 1) is n(k-l)/k. The modified algorithm will perform k backward jumps and runs in O(kn1/(k+1)) time. + +###### Source: [Wikipedia][jump-wiki] + ## Quick Select ![alt text][QuickSelect-image] -In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list. It is related to the quicksort sorting algorithm. Like quicksort, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. Like quicksort, it is efficient in practice and has good average-case performance, but has poor worst-case performance. Quickselect and its variants are the selection algorithms most often used in efficient real-world implementations. + +**Quick Select** is a selection algorithm to find the kth smallest element in an unordered list. It is related to the quicksort sorting algorithm. Like quicksort, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm.[1] Like quicksort, it is efficient in practice and has good average-case performance, but has poor worst-case performance. Quickselect and its variants are the selection algorithms most often used in efficient real-world implementations. Quickselect uses the same overall approach as quicksort, choosing one element as a pivot and partitioning the data in two based on the pivot, accordingly as less than or greater than the pivot. However, instead of recursing into both sides, as in quicksort, quickselect only recurses into one side – the side with the element it is searching for. This reduces the average complexity from O(n log n) to O(n), with a worst case of O(n2). As with quicksort, quickselect is generally implemented as an in-place algorithm, and beyond selecting the k'th element, it also partially sorts the data. See selection algorithm for further discussion of the connection with sorting. -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Quickselect) + +###### Source: [Wikipedia][quick-wiki] + ## Tabu -Tabu search uses a local or neighborhood search procedure to iteratively move from one potential solution ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4) to an improved solution ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2) in the neighborhood of ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4), until some stopping criterion has been satisfied (generally, an attempt limit or a score threshold). Local search procedures often become stuck in poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and explore regions of the search space that would be left unexplored by other local search procedures, tabu search carefully explores the neighborhood of each solution as the search progresses. The solutions admitted to the new neighborhood, ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/4db1b4a2cfa6f356afe0738e999f0af2bed27f45), are determined through the use of memory structures. Using these memory structures, the search progresses by iteratively moving from the current solution ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4) to an improved solution ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2) in ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/4db1b4a2cfa6f356afe0738e999f0af2bed27f45). +**Tabu search** uses a local or neighborhood search procedure to iteratively move from one potential solution {\displaystyle x} x to an improved solution {\displaystyle x'} x' in the neighborhood of {\displaystyle x} x, until some stopping criterion has been satisfied (generally, an attempt limit or a score threshold). Local search procedures often become stuck in poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and explore regions of the search space that would be left unexplored by other local search procedures, tabu search carefully explores the neighborhood of each solution as the search progresses. The solutions admitted to the new neighborhood, {\displaystyle N^{*}(x)} N^*(x), are determined through the use of memory structures. Using these memory structures, the search progresses by iteratively moving from the current solution {\displaystyle x} x to an improved solution {\displaystyle x'} x' in {\displaystyle N^{*}(x)} N^*(x). + +These memory structures form what is known as the tabu list, a set of rules and banned solutions used to filter which solutions will be admitted to the neighborhood {\displaystyle N^{*}(x)} N^*(x) to be explored by the search. In its simplest form, a tabu list is a short-term set of the solutions that have been visited in the recent past (less than {\displaystyle n} n iterations ago, where {\displaystyle n} n is the number of previous solutions to be stored — is also called the tabu tenure). More commonly, a tabu list consists of solutions that have changed by the process of moving from one solution to another. It is convenient, for ease of description, to understand a “solution” to be coded and represented by such attributes. + +###### Source: [Wikipedia][tabu-wiki] -These memory structures form what is known as the tabu list, a set of rules and banned solutions used to filter which solutions will be admitted to the neighborhood ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/4db1b4a2cfa6f356afe0738e999f0af2bed27f45) to be explored by the search. In its simplest form, a tabu list is a short-term set of the solutions that have been visited in the recent past (less than ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b) iterations ago, where ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b) is the number of previous solutions to be stored — is also called the tabu tenure). More commonly, a tabu list consists of solutions that have changed by the process of moving from one solution to another. It is convenient, for ease of description, to understand a “solution” to be coded and represented by such attributes. -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Tabu_search) ---------------------------------------------------------------------------------------------------------------------- ## Ciphers ### Caesar -![alt text][caesar]
-**Caesar cipher**, also known as Caesar's cipher, the shift cipher, Caesar's code or Caesar shift, is one of the simplest and most widely known encryption techniques.
+![alt text][caesar] + +**Caesar cipher**, also known as _Caesar's cipher_, the _shift cipher_, _Caesar's code_ or _Caesar shift_, is one of the simplest and most widely known encryption techniques.
It is **a type of substitution cipher** in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so on.
The method is named after **Julius Caesar**, who used it in his private correspondence.
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security. + ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher) + ### Vigenère -The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.
+ +**Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.
The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".
Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher'). Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863. + ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher) + ### Transposition -In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).
+**Transposition cipher** is a method of encryption by which the positions held by units of *plaintext* (which are commonly characters or groups of characters) are shifted according to a regular system, so that the *ciphertext* constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt. + ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Transposition_cipher) + ### RSA (Rivest–Shamir–Adleman) -RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and it is different from the decryption key which is kept secret (private). In RSA, this asymmetry is based on the practical difficulty of the factorization of the product of two large prime numbers, the "factoring problem". The acronym RSA is made of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the algorithm in 1978. Clifford Cocks, an English mathematician working for the British intelligence agency Government Communications Headquarters (GCHQ), had developed an equivalent system in 1973, but this was not declassified until 1997. +**RSA** _(Rivest–Shamir–Adleman)_ is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and it is different from the decryption key which is kept secret (private). In RSA, this asymmetry is based on the practical difficulty of the factorization of the product of two large prime numbers, the "factoring problem". The acronym RSA is made of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the algorithm in 1978. Clifford Cocks, an English mathematician working for the British intelligence agency Government Communications Headquarters (GCHQ), had developed an equivalent system in 1973, but this was not declassified until 1997.[1] + +A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, and if the public key is large enough, only someone with knowledge of the prime numbers can decode the message feasibly.[2] Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem remains an open question. -A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, and if the public key is large enough, only someone with knowledge of the prime numbers can decode the message feasibly. Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem remains an open question. ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/RSA_(cryptosystem)) + ## ROT13 ![alt text][ROT13-image] -ROT13 ("rotate by 13 places", sometimes hyphenated ROT-13) is a simple letter substitution cipher that replaces a letter with the 13th letter after it, in the alphabet. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome. -Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is, to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding. The algorithm provides virtually no cryptographic security, and is often cited as a canonical example of weak encryption. +**ROT13** ("rotate by 13 places", sometimes hyphenated _ROT-13_) is a simple letter substitution cipher that replaces a letter with the 13th letter after it, in the alphabet. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome. + +Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is, to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding. The algorithm provides virtually no cryptographic security, and is often cited as a canonical example of weak encryption.[1] + ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/ROT13) + ## XOR -In cryptography, the simple XOR cipher is a type of additive cipher, an encryption algorithm that operates according to the principles: +**XOR cipher** is a simple type of additive cipher,[1] an encryption algorithm that operates according to the principles: + +A {\displaystyle \oplus } \oplus 0 = A, +A {\displaystyle \oplus } \oplus A = 0, +(A {\displaystyle \oplus } \oplus B) {\displaystyle \oplus } \oplus C = A {\displaystyle \oplus } \oplus (B {\displaystyle \oplus } \oplus C), +(B {\displaystyle \oplus } \oplus A) {\displaystyle \oplus } \oplus A = B {\displaystyle \oplus } \oplus 0 = B, +where {\displaystyle \oplus } \oplus denotes the exclusive disjunction (XOR) operation. This operation is sometimes called modulus 2 addition (or subtraction, which is identical).[2] With this logic, a string of text can be encrypted by applying the bitwise XOR operator to every character using a given key. To decrypt the output, merely reapplying the XOR function with the key will remove the cipher. -A ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) 0 = A, -A ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) A = 0, -(A ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) B) ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) C = A ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) (B ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) C), -(B ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) A) ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) A = B ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) 0 = B, -where ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60) denotes the exclusive disjunction (XOR) operation. This operation is sometimes called modulus 2 addition (or subtraction, which is identical). With this logic, a string of text can be encrypted by applying the bitwise XOR operator to every character using a given key. To decrypt the output, merely reapplying the XOR function with the key will remove the cipher. ###### Source: [Wikipedia](https://en.wikipedia.org/wiki/XOR_cipher) + [bubble-toptal]: https://www.toptal.com/developers/sorting-algorithms/bubble-sort [bubble-wiki]: https://en.wikipedia.org/wiki/Bubble_sort [bubble-image]: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Bubblesort-edited-color.svg/220px-Bubblesort-edited-color.svg.png "Bubble Sort" @@ -267,6 +311,8 @@ where ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9 [quick-wiki]: https://en.wikipedia.org/wiki/Quicksort [quick-image]: https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif "Quick Sort" +[heap-wiki]: https://en.wikipedia.org/wiki/Heapsort + [radix-wiki]: https://en.wikipedia.org/wiki/Radix_sort [merge-toptal]: https://www.toptal.com/developers/sorting-algorithms/merge-sort @@ -290,7 +336,13 @@ where ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9 [binary-image]: https://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_search_into_array.png "Binary Search" -[caesar]: https://upload.wikimedia.org/wikipedia/commons/4/4a/Caesar_cipher_left_shift_of_3.svg "Caesar" +[interpolation-wiki]: https://en.wikipedia.org/wiki/Interpolation_search + +[jump-wiki]: https://en.wikipedia.org/wiki/Jump_search + +[quick-wiki]: https://en.wikipedia.org/wiki/Quickselect + +[tabu-wiki]: https://en.wikipedia.org/wiki/Tabu_search [ROT13-image]: https://upload.wikimedia.org/wikipedia/commons/3/33/ROT13_table_with_example.svg "ROT13" From ad0bc2bb8b0a6f4d947998b1c428c336fa1b8a30 Mon Sep 17 00:00:00 2001 From: raksa Date: Wed, 26 Dec 2018 20:06:34 +0700 Subject: [PATCH 022/594] make images' path specific (#671) fixed wrong image's path while debuggin in VSCode --- analysis/compression_analysis/psnr.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/analysis/compression_analysis/psnr.py b/analysis/compression_analysis/psnr.py index abc98fbfeb2e..0f21aac07d34 100644 --- a/analysis/compression_analysis/psnr.py +++ b/analysis/compression_analysis/psnr.py @@ -4,6 +4,7 @@ """ import math +import os import cv2 import numpy as np @@ -18,18 +19,18 @@ def psnr(original, contrast): def main(): - + dir_path = os.path.dirname(os.path.realpath(__file__)) # Loading images (original image and compressed image) - original = cv2.imread('original_image.png') - contrast = cv2.imread('compressed_image.png', 1) + original = cv2.imread(os.path.join(dir_path, 'original_image.png')) + contrast = cv2.imread(os.path.join(dir_path, 'compressed_image.png'), 1) - original2 = cv2.imread('PSNR-example-base.png') - contrast2 = cv2.imread('PSNR-example-comp-10.jpg', 1) + original2 = cv2.imread(os.path.join(dir_path, 'PSNR-example-base.png')) + contrast2 = cv2.imread(os.path.join(dir_path, 'PSNR-example-comp-10.jpg'), 1) # Value expected: 29.73dB print("-- First Test --") print(f"PSNR value is {psnr(original, contrast)} dB") - + # # Value expected: 31.53dB (Wikipedia Example) print("\n-- Second Test --") print(f"PSNR value is {psnr(original2, contrast2)} dB") From f4806eb48cabe811ebc48117f787b55829108739 Mon Sep 17 00:00:00 2001 From: Jitendra_Sharma Date: Wed, 2 Jan 2019 16:47:56 +0530 Subject: [PATCH 023/594] manacher's algorithm to find palindromic string (#676) manacher's algorithm to find palindromic string in linear time complexity --- strings/manacher.py | 52 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) create mode 100644 strings/manacher.py diff --git a/strings/manacher.py b/strings/manacher.py new file mode 100644 index 000000000000..9a44b19ba77a --- /dev/null +++ b/strings/manacher.py @@ -0,0 +1,52 @@ +# calculate palindromic length from center with incresmenting difference +def palindromic_length( center, diff, string): + if center-diff == -1 or center+diff == len(string) or string[center-diff] != string[center+diff] : + return 0 + return 1 + palindromic_length(center, diff+1, string) + +def palindromic_string( input_string ): + """ + Manacher’s algorithm which finds Longest Palindromic Substring in linear time. + + 1. first this conver input_string("xyx") into new_string("x|y|x") where odd positions are actual input + characters. + 2. for each character in new_string it find corresponding length and store, + a. max_length + b. max_length's center + 3. return output_string from center - max_length to center + max_length and remove all "|" + """ + max_length = 0 + + # if input_string is "aba" than new_input_string become "a|b|a" + new_input_string = "" + output_string = "" + + # append each character + "|" in new_string for range(0, length-1) + for i in input_string[:len(input_string)-1] : + new_input_string += i + "|" + #append last character + new_input_string += input_string[-1] + + + # for each character in new_string find corresponding palindromic string + for i in range(len(new_input_string)) : + + # get palindromic length from ith position + length = palindromic_length(i, 1, new_input_string) + + # update max_length and start position + if max_length < length : + max_length = length + start = i + + #create that string + for i in new_input_string[start-max_length:start+max_length+1] : + if i != "|": + output_string += i + + return output_string + + +if __name__ == '__main__': + n = input() + print(palindromic_string(n)) From 61285333192d6ac38b0caf97d00b77bf9b635a69 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Micka=C3=ABl=20Schoentgen?= Date: Sun, 6 Jan 2019 02:12:17 +0100 Subject: [PATCH 024/594] Fix use of deprecated assertEquals() in tests (#680) --- searches/test_tabu_search.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/searches/test_tabu_search.py b/searches/test_tabu_search.py index 95d2fea407ce..e6f73e6a9002 100644 --- a/searches/test_tabu_search.py +++ b/searches/test_tabu_search.py @@ -26,21 +26,21 @@ class TestClass(unittest.TestCase): def test_generate_neighbours(self): neighbours = generate_neighbours(TEST_FILE) - self.assertEquals(NEIGHBOURS_DICT, neighbours) + self.assertEqual(NEIGHBOURS_DICT, neighbours) def test_generate_first_solutions(self): first_solution, distance = generate_first_solution(TEST_FILE, NEIGHBOURS_DICT) - self.assertEquals(FIRST_SOLUTION, first_solution) - self.assertEquals(DISTANCE, distance) + self.assertEqual(FIRST_SOLUTION, first_solution) + self.assertEqual(DISTANCE, distance) def test_find_neighbours(self): neighbour_of_solutions = find_neighborhood(FIRST_SOLUTION, NEIGHBOURS_DICT) - self.assertEquals(NEIGHBOURHOOD_OF_SOLUTIONS, neighbour_of_solutions) + self.assertEqual(NEIGHBOURHOOD_OF_SOLUTIONS, neighbour_of_solutions) def test_tabu_search(self): best_sol, best_cost = tabu_search(FIRST_SOLUTION, DISTANCE, NEIGHBOURS_DICT, 4, 3) - self.assertEquals(['a', 'd', 'b', 'e', 'c', 'a'], best_sol) - self.assertEquals(87, best_cost) + self.assertEqual(['a', 'd', 'b', 'e', 'c', 'a'], best_sol) + self.assertEqual(87, best_cost) From 3dc50529ca1192c59050e63ef3b432630d993a65 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Micka=C3=ABl=20Schoentgen?= Date: Tue, 8 Jan 2019 09:58:47 +0100 Subject: [PATCH 025/594] Fix DeprecationWarning: invalid escape sequence (#679) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Mickaël Schoentgen --- ciphers/affine_cipher.py | 2 +- ciphers/rsa_cipher.py | 2 +- data_structures/binary tree/AVLtree.py | 4 ++-- data_structures/binary tree/binary_search_tree.py | 4 ++-- 4 files changed, 6 insertions(+), 6 deletions(-) diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py index 4fbe87d42e61..af5f4e0ff4c6 100644 --- a/ciphers/affine_cipher.py +++ b/ciphers/affine_cipher.py @@ -1,7 +1,7 @@ from __future__ import print_function import sys, random, cryptomath_module as cryptoMath -SYMBOLS = """ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" +SYMBOLS = r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" def main(): message = input('Enter message: ') diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index 94f69ddc2533..3f8fb96e1ef4 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -6,7 +6,7 @@ def main(): filename = 'encrypted_file.txt' - response = input('Encrypte\Decrypt [e\d]: ') + response = input(r'Encrypte\Decrypt [e\d]: ') if response.lower().startswith('e'): mode = 'encrypt' diff --git a/data_structures/binary tree/AVLtree.py b/data_structures/binary tree/AVLtree.py index cb27004b6ac3..ff44963d1690 100644 --- a/data_structures/binary tree/AVLtree.py +++ b/data_structures/binary tree/AVLtree.py @@ -65,7 +65,7 @@ def my_max(a,b): def leftrotation(node): - ''' + r''' A B / \ / \ B C Bl A @@ -101,7 +101,7 @@ def rightrotation(node): return ret def rlrotation(node): - ''' + r''' A A Br / \ / \ / \ B C RR Br C LR B A diff --git a/data_structures/binary tree/binary_search_tree.py b/data_structures/binary tree/binary_search_tree.py index b4021e4f861f..cef5b55f245d 100644 --- a/data_structures/binary tree/binary_search_tree.py +++ b/data_structures/binary tree/binary_search_tree.py @@ -195,7 +195,7 @@ def InPreOrder(curr_node): return nodeList def testBinarySearchTree(): - ''' + r''' Example 8 / \ @@ -206,7 +206,7 @@ def testBinarySearchTree(): 4 7 13 ''' - ''' + r''' Example After Deletion 7 / \ From 2d70e9f7475d1a23b89fd1bd7b0af01f3173b0b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Micka=C3=ABl=20Schoentgen?= Date: Tue, 8 Jan 2019 09:59:23 +0100 Subject: [PATCH 026/594] Fix ResourceWarning: unclosed file (#681) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Mickaël Schoentgen --- ciphers/rsa_cipher.py | 14 ++-- ...ansposition_cipher_encrypt_decrypt_file.py | 11 +-- file_transfer_protocol/ftp_client_server.py | 13 ++- file_transfer_protocol/ftp_send_receive.py | 8 +- hashes/sha1.py | 3 +- other/anagrams.py | 3 +- other/detecting_english_programmatically.py | 7 +- searches/tabu_search.py | 34 ++++---- sorts/external-sort.py | 38 +++++---- strings/min_cost_string_conversion.py | 79 +++++++++---------- 10 files changed, 102 insertions(+), 108 deletions(-) diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index 3f8fb96e1ef4..d81f1ffc1a1e 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -80,9 +80,8 @@ def decryptMessage(encryptedBlocks, messageLength, key, blockSize=DEFAULT_BLOCK_ def readKeyFile(keyFilename): - fo = open(keyFilename) - content = fo.read() - fo.close() + with open(keyFilename) as fo: + content = fo.read() keySize, n, EorD = content.split(',') return (int(keySize), int(n), int(EorD)) @@ -98,16 +97,15 @@ def encryptAndWriteToFile(messageFilename, keyFilename, message, blockSize=DEFAU encryptedBlocks[i] = str(encryptedBlocks[i]) encryptedContent = ','.join(encryptedBlocks) encryptedContent = '%s_%s_%s' % (len(message), blockSize, encryptedContent) - fo = open(messageFilename, 'w') - fo.write(encryptedContent) - fo.close() + with open(messageFilename, 'w') as fo: + fo.write(encryptedContent) return encryptedContent def readFromFileAndDecrypt(messageFilename, keyFilename): keySize, n, d = readKeyFile(keyFilename) - fo = open(messageFilename) - content = fo.read() + with open(messageFilename) as fo: + content = fo.read() messageLength, blockSize, encryptedMessage = content.split('_') messageLength = int(messageLength) blockSize = int(blockSize) diff --git a/ciphers/transposition_cipher_encrypt_decrypt_file.py b/ciphers/transposition_cipher_encrypt_decrypt_file.py index 57620d83948c..a186cf81cde7 100644 --- a/ciphers/transposition_cipher_encrypt_decrypt_file.py +++ b/ciphers/transposition_cipher_encrypt_decrypt_file.py @@ -19,15 +19,16 @@ def main(): startTime = time.time() if mode.lower().startswith('e'): - content = open(inputFile).read() + with open(inputFile) as f: + content = f.read() translated = transCipher.encryptMessage(key, content) elif mode.lower().startswith('d'): - content = open(outputFile).read() + with open(outputFile) as f: + content = f.read() translated =transCipher .decryptMessage(key, content) - outputObj = open(outputFile, 'w') - outputObj.write(translated) - outputObj.close() + with open(outputFile, 'w') as outputObj: + outputObj.write(translated) totalTime = round(time.time() - startTime, 2) print(('Done (', totalTime, 'seconds )')) diff --git a/file_transfer_protocol/ftp_client_server.py b/file_transfer_protocol/ftp_client_server.py index f73f858431f3..414c336dee9f 100644 --- a/file_transfer_protocol/ftp_client_server.py +++ b/file_transfer_protocol/ftp_client_server.py @@ -17,13 +17,12 @@ print('Server received', repr(data)) filename = 'mytext.txt' - f = open(filename, 'rb') - in_data = f.read(1024) - while (in_data): - conn.send(in_data) - print('Sent ', repr(in_data)) - in_data = f.read(1024) - f.close() + with open(filename, 'rb') as f: + in_data = f.read(1024) + while in_data: + conn.send(in_data) + print('Sent ', repr(in_data)) + in_data = f.read(1024) print('Done sending') conn.send('Thank you for connecting') diff --git a/file_transfer_protocol/ftp_send_receive.py b/file_transfer_protocol/ftp_send_receive.py index d4919158a02e..6050c83f2253 100644 --- a/file_transfer_protocol/ftp_send_receive.py +++ b/file_transfer_protocol/ftp_send_receive.py @@ -20,10 +20,9 @@ def ReceiveFile(): FileName = 'example.txt' """ Enter the location of the file """ - LocalFile = open(FileName, 'wb') - ftp.retrbinary('RETR ' + FileName, LocalFile.write, 1024) + with open(FileName, 'wb') as LocalFile: + ftp.retrbinary('RETR ' + FileName, LocalFile.write, 1024) ftp.quit() - LocalFile.close() """ The file which will be sent via the FTP server @@ -32,5 +31,6 @@ def ReceiveFile(): def SendFile(): FileName = 'example.txt' """ Enter the name of the file """ - ftp.storbinary('STOR ' + FileName, open(FileName, 'rb')) + with open(FileName, 'rb') as LocalFile: + ftp.storbinary('STOR ' + FileName, LocalFile) ftp.quit() diff --git a/hashes/sha1.py b/hashes/sha1.py index e34f87a76386..4c78ad3a89e5 100644 --- a/hashes/sha1.py +++ b/hashes/sha1.py @@ -137,7 +137,8 @@ def main(): input_string = args.input_string #In any case hash input should be a bytestring if args.input_file: - hash_input = open(args.input_file, 'rb').read() + with open(args.input_file, 'rb') as f: + hash_input = f.read() else: hash_input = bytes(input_string, 'utf-8') print(SHA1Hash(hash_input).final_hash()) diff --git a/other/anagrams.py b/other/anagrams.py index 44cd96b75f62..29b34fbdc5d3 100644 --- a/other/anagrams.py +++ b/other/anagrams.py @@ -4,7 +4,8 @@ start_time = time.time() print('creating word list...') path = os.path.split(os.path.realpath(__file__)) -word_list = sorted(list(set([word.strip().lower() for word in open(path[0] + '/words')]))) +with open(path[0] + '/words') as f: + word_list = sorted(list(set([word.strip().lower() for word in f]))) def signature(word): return ''.join(sorted(word)) diff --git a/other/detecting_english_programmatically.py b/other/detecting_english_programmatically.py index 305174e31cf7..005fd3c10ca3 100644 --- a/other/detecting_english_programmatically.py +++ b/other/detecting_english_programmatically.py @@ -5,11 +5,10 @@ def loadDictionary(): path = os.path.split(os.path.realpath(__file__)) - dictionaryFile = open(path[0] + '/Dictionary.txt') englishWords = {} - for word in dictionaryFile.read().split('\n'): - englishWords[word] = None - dictionaryFile.close() + with open(path[0] + '/Dictionary.txt') as dictionaryFile: + for word in dictionaryFile.read().split('\n'): + englishWords[word] = None return englishWords ENGLISH_WORDS = loadDictionary() diff --git a/searches/tabu_search.py b/searches/tabu_search.py index 74c23f8b8cf1..e21ddd53cc78 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -45,24 +45,23 @@ def generate_neighbours(path): the node 'c' with distance 18, the node 'd' with distance 22 and the node 'e' with distance 26. """ - f = open(path, "r") dict_of_neighbours = {} - for line in f: - if line.split()[0] not in dict_of_neighbours: - _list = list() - _list.append([line.split()[1], line.split()[2]]) - dict_of_neighbours[line.split()[0]] = _list - else: - dict_of_neighbours[line.split()[0]].append([line.split()[1], line.split()[2]]) - if line.split()[1] not in dict_of_neighbours: - _list = list() - _list.append([line.split()[0], line.split()[2]]) - dict_of_neighbours[line.split()[1]] = _list - else: - dict_of_neighbours[line.split()[1]].append([line.split()[0], line.split()[2]]) - f.close() + with open(path) as f: + for line in f: + if line.split()[0] not in dict_of_neighbours: + _list = list() + _list.append([line.split()[1], line.split()[2]]) + dict_of_neighbours[line.split()[0]] = _list + else: + dict_of_neighbours[line.split()[0]].append([line.split()[1], line.split()[2]]) + if line.split()[1] not in dict_of_neighbours: + _list = list() + _list.append([line.split()[0], line.split()[2]]) + dict_of_neighbours[line.split()[1]] = _list + else: + dict_of_neighbours[line.split()[1]].append([line.split()[0], line.split()[2]]) return dict_of_neighbours @@ -84,8 +83,8 @@ def generate_first_solution(path, dict_of_neighbours): """ - f = open(path, "r") - start_node = f.read(1) + with open(path) as f: + start_node = f.read(1) end_node = start_node first_solution = [] @@ -93,7 +92,6 @@ def generate_first_solution(path, dict_of_neighbours): visiting = start_node distance_of_first_solution = 0 - f.close() while visiting not in first_solution: minim = 10000 for k in dict_of_neighbours[visiting]: diff --git a/sorts/external-sort.py b/sorts/external-sort.py index dece32d48da0..1638e9efafee 100644 --- a/sorts/external-sort.py +++ b/sorts/external-sort.py @@ -15,31 +15,29 @@ def __init__(self, filename): def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) - file = open(filename, 'w') - file.write(data) - file.close() + with open(filename, 'w') as file: + file.write(data) self.block_filenames.append(filename) def get_block_filenames(self): return self.block_filenames def split(self, block_size, sort_key=None): - file = open(self.filename, 'r') i = 0 + with open(self.filename) as file: + while True: + lines = file.readlines(block_size) - while True: - lines = file.readlines(block_size) + if lines == []: + break - if lines == []: - break + if sort_key is None: + lines.sort() + else: + lines.sort(key=sort_key) - if sort_key is None: - lines.sort() - else: - lines.sort(key=sort_key) - - self.write_block(''.join(lines), i) - i += 1 + self.write_block(''.join(lines), i) + i += 1 def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) @@ -74,6 +72,7 @@ def refresh(self): if self.buffers[i] == '': self.empty.add(i) + self.files[i].close() if len(self.empty) == self.num_buffers: return False @@ -92,12 +91,11 @@ def __init__(self, merge_strategy): self.merge_strategy = merge_strategy def merge(self, filenames, outfilename, buffer_size): - outfile = open(outfilename, 'w', buffer_size) buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) - - while buffers.refresh(): - min_index = self.merge_strategy.select(buffers.get_dict()) - outfile.write(buffers.unshift(min_index)) + with open(outfilename, 'w', buffer_size) as outfile: + while buffers.refresh(): + min_index = self.merge_strategy.select(buffers.get_dict()) + outfile.write(buffers.unshift(min_index)) def get_file_handles(self, filenames, buffer_size): files = {} diff --git a/strings/min_cost_string_conversion.py b/strings/min_cost_string_conversion.py index c233af1c81b7..de7f9f727283 100644 --- a/strings/min_cost_string_conversion.py +++ b/strings/min_cost_string_conversion.py @@ -73,50 +73,49 @@ def assemble_transformation(ops, i, j): m = len(operations) n = len(operations[0]) sequence = assemble_transformation(operations, m-1, n-1) - - file = open('min_cost.txt', 'w') string = list('Python') i = 0 cost = 0 - for op in sequence: - print(''.join(string)) - - if op[0] == 'C': - file.write('%-16s' % 'Copy %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost -= 1 - elif op[0] == 'R': - string[i] = op[2] - - file.write('%-16s' % ('Replace %c' % op[1] + ' with ' + str(op[2]))) - file.write('\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 1 - elif op[0] == 'D': - string.pop(i) - - file.write('%-16s' % 'Delete %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 2 - else: - string.insert(i, op[1]) + + with open('min_cost.txt', 'w') as file: + for op in sequence: + print(''.join(string)) + + if op[0] == 'C': + file.write('%-16s' % 'Copy %c' % op[1]) + file.write('\t\t\t' + ''.join(string)) + file.write('\r\n') + + cost -= 1 + elif op[0] == 'R': + string[i] = op[2] + + file.write('%-16s' % ('Replace %c' % op[1] + ' with ' + str(op[2]))) + file.write('\t\t' + ''.join(string)) + file.write('\r\n') + + cost += 1 + elif op[0] == 'D': + string.pop(i) + + file.write('%-16s' % 'Delete %c' % op[1]) + file.write('\t\t\t' + ''.join(string)) + file.write('\r\n') + + cost += 2 + else: + string.insert(i, op[1]) - file.write('%-16s' % 'Insert %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 2 + file.write('%-16s' % 'Insert %c' % op[1]) + file.write('\t\t\t' + ''.join(string)) + file.write('\r\n') + + cost += 2 - i += 1 + i += 1 - print(''.join(string)) - print('Cost: ', cost) - - file.write('\r\nMinimum cost: ' + str(cost)) - file.close() + print(''.join(string)) + print('Cost: ', cost) + + file.write('\r\nMinimum cost: ' + str(cost)) From ac281250605169a737bc9d4bddd057548ea0c45c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Matheus=20Guimar=C3=A3es?= Date: Sat, 19 Jan 2019 00:50:59 -0300 Subject: [PATCH 027/594] Add median filter algorithm (#675) --- digital_image_processing/__init__.py | 0 digital_image_processing/filters/__init__.py | 0 .../filters/median_filter.py | 42 +++++++++++++++++++ 3 files changed, 42 insertions(+) create mode 100644 digital_image_processing/__init__.py create mode 100644 digital_image_processing/filters/__init__.py create mode 100644 digital_image_processing/filters/median_filter.py diff --git a/digital_image_processing/__init__.py b/digital_image_processing/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/digital_image_processing/filters/__init__.py b/digital_image_processing/filters/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/digital_image_processing/filters/median_filter.py b/digital_image_processing/filters/median_filter.py new file mode 100644 index 000000000000..eea4295632a1 --- /dev/null +++ b/digital_image_processing/filters/median_filter.py @@ -0,0 +1,42 @@ +""" +Implementation of median filter algorithm +""" + +from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey +from numpy import zeros_like, ravel, sort, multiply, divide, int8 + + +def median_filter(gray_img, mask=3): + """ + :param gray_img: gray image + :param mask: mask size + :return: image with median filter + """ + # set image borders + bd = int(mask / 2) + # copy image size + median_img = zeros_like(gray) + for i in range(bd, gray_img.shape[0] - bd): + for j in range(bd, gray_img.shape[1] - bd): + # get mask according with mask + kernel = ravel(gray_img[i - bd:i + bd + 1, j - bd:j + bd + 1]) + # calculate mask median + median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)] + median_img[i, j] = median + return median_img + + +if __name__ == '__main__': + # read original image + img = imread('lena.jpg') + # turn image in gray scale value + gray = cvtColor(img, COLOR_BGR2GRAY) + + # get values with two different mask size + median3x3 = median_filter(gray, 3) + median5x5 = median_filter(gray, 5) + + # show result images + imshow('median filter with 3x3 mask', median3x3) + imshow('median filter with 5x5 mask', median5x5) + waitKey(0) From c92b02cfa35b1e4cf76daf913d71b27394790ff8 Mon Sep 17 00:00:00 2001 From: Michael Fried Date: Sat, 19 Jan 2019 22:49:06 +0200 Subject: [PATCH 028/594] Editing base64, Adding average file, Editing find_lcm (#673) * avrage.py calculate and print the avrage of number list. * Update base64_cipher.py encoding and decoding base64 without any module. * Update and rename avrage.py to average.py * update find_lcm algorithm I made find_lcm more efficient form O(num1*num2) to O(min{num1,num2}). --- Maths/average.py | 14 +++++++++ Maths/find_lcm.py | 7 +++-- ciphers/base64_cipher.py | 65 ++++++++++++++++++++++++++++++++++++---- 3 files changed, 77 insertions(+), 9 deletions(-) create mode 100644 Maths/average.py diff --git a/Maths/average.py b/Maths/average.py new file mode 100644 index 000000000000..dc70836b5e83 --- /dev/null +++ b/Maths/average.py @@ -0,0 +1,14 @@ +def average(nums): + sum = 0 + n = 0 + for x in nums: + sum += x + n += 1 + avg = sum / n + print(avg) + +def main(): + average([2, 4, 6, 8, 20, 50, 70]) + +if __name__ == '__main__': + main() diff --git a/Maths/find_lcm.py b/Maths/find_lcm.py index 58beb3e37649..126242699ab7 100644 --- a/Maths/find_lcm.py +++ b/Maths/find_lcm.py @@ -1,10 +1,11 @@ def find_lcm(num_1, num_2): max = num_1 if num_1 > num_2 else num_2 + lcm = max while (True): - if ((max % num_1 == 0) and (max % num_2 == 0)): + if ((lcm % num_1 == 0) and (lcm % num_2 == 0)): break - max += 1 - return max + lcm += max + return lcm def main(): diff --git a/ciphers/base64_cipher.py b/ciphers/base64_cipher.py index 975f24d6bb5d..fa3451c0cbae 100644 --- a/ciphers/base64_cipher.py +++ b/ciphers/base64_cipher.py @@ -1,11 +1,64 @@ -import base64 +def encodeBase64(text): + base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" + + r = "" #the result + c = 3 - len(text) % 3 #the length of padding + p = "=" * c #the padding + s = text + "\0" * c #the text to encode + + i = 0 + while i < len(s): + if i > 0 and ((i / 3 * 4) % 76) == 0: + r = r + "\r\n" + + n = (ord(s[i]) << 16) + (ord(s[i+1]) << 8 ) + ord(s[i+2]) + + n1 = (n >> 18) & 63 + n2 = (n >> 12) & 63 + n3 = (n >> 6) & 63 + n4 = n & 63 + + r += base64chars[n1] + base64chars[n2] + base64chars[n3] + base64chars[n4] + i += 3 + + return r[0: len(r)-len(p)] + p + +def decodeBase64(text): + base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" + s = "" + + for i in text: + if i in base64chars: + s += i + c = "" + else: + if i == '=': + c += '=' + + p = "" + if c == "=": + p = 'A' + else: + if c == "==": + p = "AA" + + r = "" + s = s + p + + i = 0 + while i < len(s): + n = (base64chars.index(s[i]) << 18) + (base64chars.index(s[i+1]) << 12) + (base64chars.index(s[i+2]) << 6) +base64chars.index(s[i+3]) + + r += chr((n >> 16) & 255) + chr((n >> 8) & 255) + chr(n & 255) + + i += 4 + + return r[0: len(r) - len(p)] def main(): - inp = input('->') - encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) - b64encoded = base64.b64encode(encoded) #b64encoded the encoded string - print(b64encoded) - print(base64.b64decode(b64encoded).decode('utf-8'))#decoded it + print(encodeBase64("WELCOME to base64 encoding")) + print(decodeBase64(encodeBase64("WELCOME to base64 encoding"))) + if __name__ == '__main__': main() From c6be53e1c43f870f5364eef1499ee1b411c966fb Mon Sep 17 00:00:00 2001 From: Rizwan Hasan Date: Sat, 26 Jan 2019 19:09:18 +0600 Subject: [PATCH 029/594] Rename Directed and Undirected (Weighted) Graph to Directed and Undirected (Weighted) Graph.py (#686) --- ...eighted) Graph => Directed and Undirected (Weighted) Graph.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename graphs/{Directed and Undirected (Weighted) Graph => Directed and Undirected (Weighted) Graph.py} (100%) diff --git a/graphs/Directed and Undirected (Weighted) Graph b/graphs/Directed and Undirected (Weighted) Graph.py similarity index 100% rename from graphs/Directed and Undirected (Weighted) Graph rename to graphs/Directed and Undirected (Weighted) Graph.py From faf16d7ced7f563bb0c92265bef27b6664156fb5 Mon Sep 17 00:00:00 2001 From: Gini5 Date: Sat, 9 Feb 2019 09:54:07 +0800 Subject: [PATCH 030/594] Add iteration version (#322) --- traversals/binary_tree_traversals.py | 58 +++++++++++++++++++++++++++- 1 file changed, 56 insertions(+), 2 deletions(-) diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index cbcaf08b7b03..9afe0cac44c2 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -46,7 +46,6 @@ def build_tree(): node_found.right = right_node q.put(right_node) - def pre_order(node): if not isinstance(node, TreeNode) or not node: return @@ -54,7 +53,6 @@ def pre_order(node): pre_order(node.left) pre_order(node.right) - def in_order(node): if not isinstance(node, TreeNode) or not node: return @@ -84,6 +82,50 @@ def level_order(node): if node_dequeued.right: q.put(node_dequeued.right) +#iteration version +def pre_order_iter(node): + if not isinstance(node, TreeNode) or not node: + return + stack = [] + n = node + while n or stack: + while n: #start from root node, find its left child + print(n.data, end=" ") + stack.append(n) + n = n.left + #end of while means current node doesn't have left child + n = stack.pop() + #start to traverse its right child + n = n.right + +def in_order_iter(node): + if not isinstance(node, TreeNode) or not node: + return + stack = [] + n = node + while n or stack: + while n: + stack.append(n) + n = n.left + n = stack.pop() + print(n.data, end=" ") + n = n.right + +def post_order_iter(node): + if not isinstance(node, TreeNode) or not node: + return + stack1, stack2 = [], [] + n = node + stack1.append(n) + while stack1: #to find the reversed order of post order, store it in stack2 + n = stack1.pop() + if n.left: + stack1.append(n.left) + if n.right: + stack1.append(n.right) + stack2.append(n) + while stack2: #pop up from stack2 will be the post order + print(stack2.pop().data, end=" ") if __name__ == '__main__': print("\n********* Binary Tree Traversals ************\n") @@ -104,3 +146,15 @@ def level_order(node): print("\n********* Level Order Traversal ************") level_order(node) print("\n******************************************\n") + + print("\n********* Pre Order Traversal - Iteration Version ************") + pre_order_iter(node) + print("\n******************************************\n") + + print("\n********* In Order Traversal - Iteration Version ************") + in_order_iter(node) + print("\n******************************************\n") + + print("\n********* Post Order Traversal - Iteration Version ************") + post_order_iter(node) + print("\n******************************************\n") \ No newline at end of file From 17a6d1c1a7835cc3bf6adec7482d96a7ba391e9a Mon Sep 17 00:00:00 2001 From: Inno Fang Date: Sat, 9 Feb 2019 10:14:23 +0800 Subject: [PATCH 031/594] Fix sorts/radix_sort (#338) --- sorts/radix_sort.py | 42 ++++++++++++++++++++---------------------- 1 file changed, 20 insertions(+), 22 deletions(-) diff --git a/sorts/radix_sort.py b/sorts/radix_sort.py index b0b4b41ab24f..e4cee61f35e3 100644 --- a/sorts/radix_sort.py +++ b/sorts/radix_sort.py @@ -1,28 +1,26 @@ def radixsort(lst): - RADIX = 10 - maxLength = False - tmp , placement = -1, 1 + RADIX = 10 + placement = 1 - while not maxLength: - maxLength = True - # declare and initialize buckets - buckets = [list() for _ in range( RADIX )] + # get the maximum number + max_digit = max(lst) - # split lst between lists - for i in lst: - tmp = int((i / placement) % RADIX) - buckets[tmp].append(i) + while placement < max_digit: + # declare and initialize buckets + buckets = [list() for _ in range( RADIX )] - if maxLength and tmp > 0: - maxLength = False + # split lst between lists + for i in lst: + tmp = int((i / placement) % RADIX) + buckets[tmp].append(i) - # empty lists into lst array - a = 0 - for b in range( RADIX ): - buck = buckets[b] - for i in buck: - lst[a] = i - a += 1 + # empty lists into lst array + a = 0 + for b in range( RADIX ): + buck = buckets[b] + for i in buck: + lst[a] = i + a += 1 - # move to next - placement *= RADIX + # move to next + placement *= RADIX From dc302be505e2ddc3333066dcc50c161981d66cdf Mon Sep 17 00:00:00 2001 From: Anthony Marakis Date: Sat, 9 Feb 2019 02:57:23 +0000 Subject: [PATCH 032/594] Create rod_cutting.py (#373) --- dynamic_programming/rod_cutting.py | 58 ++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) create mode 100644 dynamic_programming/rod_cutting.py diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py new file mode 100644 index 000000000000..34350cb8202b --- /dev/null +++ b/dynamic_programming/rod_cutting.py @@ -0,0 +1,58 @@ +### PROBLEM ### +""" +We are given a rod of length n and we are given the array of prices, also of +length n. This array contains the price for selling a rod at a certain length. +For example, prices[5] shows the price we can sell a rod of length 5. +Generalising, prices[x] shows the price a rod of length x can be sold. +We are tasked to find the optimal solution to sell the given rod. +""" + +### SOLUTION ### +""" +Profit(n) = max(1 m): + m = yesCut[i] + + solutions[n] = m + return m + + + +### EXAMPLE ### +length = 5 +#The first price, 0, is for when we have no rod. +prices = [0, 1, 3, 7, 9, 11, 13, 17, 21, 21, 30] +solutions = [-1 for x in range(length+1)] + +print(CutRod(length)) From 4c14ad9dd65c5b68cae259c50543578492317c0f Mon Sep 17 00:00:00 2001 From: Anand Gaurav <32712456+anand31@users.noreply.github.com> Date: Sat, 9 Feb 2019 09:30:10 +0530 Subject: [PATCH 033/594] minor update hacktoberfest (#466) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index f6b5a17bba84..7cf1f4f64ffd 100644 --- a/README.md +++ b/README.md @@ -188,7 +188,7 @@ __Properties__ ## Interpolation -**Interpolation search** is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values). It was first described by W. W. Peterson in 1957.[1] Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. +**Interpolation search** is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values). It was first described by W. W. Peterson in 1957. Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. By comparison, binary search always chooses the middle of the remaining search space, discarding one half or the other, depending on the comparison between the key found at the estimated position and the key sought — it does not require numerical values for the keys, just a total order on them. The remaining search space is reduced to the part before or after the estimated position. The linear search uses equality only as it compares elements one-by-one from the start, ignoring any sorting. From 8d4d95099f6715b42361dcb2f4913018aa830ad2 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sun, 10 Feb 2019 00:35:52 +0800 Subject: [PATCH 034/594] Project Euler problem 3 small fix (#631) --- project_euler/problem_03/sol2.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/project_euler/problem_03/sol2.py b/project_euler/problem_03/sol2.py index cbef08e26126..44f9c63dfb6a 100644 --- a/project_euler/problem_03/sol2.py +++ b/project_euler/problem_03/sol2.py @@ -11,7 +11,7 @@ while(i*i<=n): while(n%i==0): prime=i - n/=i + n//=i i+=1 if(n>1): prime=n From 16e95a3de5f81bbc0ce9d8a96f42e1a67aa7187c Mon Sep 17 00:00:00 2001 From: Ethan Vieira Date: Sat, 9 Feb 2019 10:59:43 -0600 Subject: [PATCH 035/594] p2 sol2 fixed (#669) --- project_euler/problem_02/sol2.py | 19 +++++++++++-------- .../{Problem 31 => problem_31}/sol1.py | 0 2 files changed, 11 insertions(+), 8 deletions(-) rename project_euler/{Problem 31 => problem_31}/sol1.py (100%) diff --git a/project_euler/problem_02/sol2.py b/project_euler/problem_02/sol2.py index aa8dc7f76f3b..a2772697bb79 100644 --- a/project_euler/problem_02/sol2.py +++ b/project_euler/problem_02/sol2.py @@ -1,12 +1,15 @@ def fib(n): - a, b, s = 0, 1, 0 + """ + Returns a list of all the even terms in the Fibonacci sequence that are less than n. + """ + ls = [] + a, b = 0, 1 while b < n: - if b % 2 == 0 and b < n: s += b + if b % 2 == 0: + ls.append(b) a, b = b, a+b - ls.append(s) + return ls -T = int(input().strip()) -ls = [] -for _ in range(T): - fib(int(input().strip())) -print(ls, sep = '\n') +if __name__ == '__main__': + n = int(input("Enter max number: ").strip()) + print(sum(fib(n))) diff --git a/project_euler/Problem 31/sol1.py b/project_euler/problem_31/sol1.py similarity index 100% rename from project_euler/Problem 31/sol1.py rename to project_euler/problem_31/sol1.py From d689b4b083d98a8e3471ecb4067ad6502b2599a5 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sun, 10 Feb 2019 01:49:57 +0800 Subject: [PATCH 036/594] Project Euler problem 7 solution 3 (#642) --- project_euler/problem_07/sol3.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 project_euler/problem_07/sol3.py diff --git a/project_euler/problem_07/sol3.py b/project_euler/problem_07/sol3.py new file mode 100644 index 000000000000..0001e4318cc9 --- /dev/null +++ b/project_euler/problem_07/sol3.py @@ -0,0 +1,28 @@ +''' +By listing the first six prime numbers: +2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. +What is the Nth prime number? +''' +from __future__ import print_function +# from Python.Math import PrimeCheck +import math +import itertools +def primeCheck(number): + if number % 2 == 0 and number > 2: + return False + return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) + +def prime_generator(): + num = 2 + while True: + if primeCheck(num): + yield num + num+=1 + +def main(): + n = int(input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted + print(next(itertools.islice(prime_generator(),n-1,n))) + + +if __name__ == '__main__': + main() \ No newline at end of file From dbe3f062ad66e1d8d05a3e7cb21a4a1b8165b181 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sun, 10 Feb 2019 02:00:05 +0800 Subject: [PATCH 037/594] Project Euler Problem 14 Solution 2 (#651) --- project_euler/problem_14/sol2.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) create mode 100644 project_euler/problem_14/sol2.py diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py new file mode 100644 index 000000000000..b9de42be1108 --- /dev/null +++ b/project_euler/problem_14/sol2.py @@ -0,0 +1,16 @@ +def collatz_sequence(n): + """Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows: + if the previous term is even, the next term is one half the previous term. + If the previous term is odd, the next term is 3 times the previous term plus 1. + The conjecture states the sequence will always reach 1 regaardess of starting n.""" + sequence = [n] + while n != 1: + if n % 2 == 0:# even + n //= 2 + else: + n = 3*n +1 + sequence.append(n) + return sequence + +answer = max([(len(collatz_sequence(i)), i) for i in range(1,1000000)]) +print("Longest Collatz sequence under one million is %d with length %d" % (answer[1],answer[0])) \ No newline at end of file From 42d42c3136e7f3592380bfe7b4c4d99f053fdc29 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Mon, 11 Feb 2019 10:42:43 +0800 Subject: [PATCH 038/594] Project Euler problem 4 sol 2 small fix (#632) --- project_euler/problem_04/sol2.py | 20 +++++++++----------- 1 file changed, 9 insertions(+), 11 deletions(-) diff --git a/project_euler/problem_04/sol2.py b/project_euler/problem_04/sol2.py index 68284ed3435c..70810c38986f 100644 --- a/project_euler/problem_04/sol2.py +++ b/project_euler/problem_04/sol2.py @@ -4,16 +4,14 @@ Find the largest palindrome made from the product of two 3-digit numbers which is less than N. ''' from __future__ import print_function -arr = [] -for i in range(999,100,-1): - for j in range(999,100,-1): +n = int(input().strip()) +answer = 0 +for i in range(999,99,-1): #3 digit nimbers range from 999 down to 100 + for j in range(999,99,-1): t = str(i*j) - if t == t[::-1]: - arr.append(i*j) -arr.sort() + if t == t[::-1] and i*j < n: + answer = max(answer,i*j) +print(answer) +exit(0) + -n=int(input()) -for i in arr[::-1]: - if(i Date: Mon, 11 Feb 2019 09:52:14 +0000 Subject: [PATCH 039/594] Added BFS and DFS (graph algorithms) (#408) * feat: Add Breadth First Search (graph algorithm) * feat: Add Depth First Search (graph algorithm) --- Graphs/BFS.py | 39 +++++++++++++++++++++++++++++++++++++++ Graphs/DFS.py | 36 ++++++++++++++++++++++++++++++++++++ 2 files changed, 75 insertions(+) create mode 100644 Graphs/BFS.py create mode 100644 Graphs/DFS.py diff --git a/Graphs/BFS.py b/Graphs/BFS.py new file mode 100644 index 000000000000..bf9b572cec50 --- /dev/null +++ b/Graphs/BFS.py @@ -0,0 +1,39 @@ +"""pseudo-code""" + +""" +BFS(graph G, start vertex s): +// all nodes initially unexplored +mark s as explored +let Q = queue data structure, initialized with s +while Q is non-empty: + remove the first node of Q, call it v + for each edge(v, w): // for w in graph[v] + if w unexplored: + mark w as explored + add w to Q (at the end) + +""" + +import collections + + +def bfs(graph, start): + explored, queue = set(), [start] # collections.deque([start]) + explored.add(start) + while queue: + v = queue.pop(0) # queue.popleft() + for w in graph[v]: + if w not in explored: + explored.add(w) + queue.append(w) + return explored + + +G = {'A': ['B', 'C'], + 'B': ['A', 'D', 'E'], + 'C': ['A', 'F'], + 'D': ['B'], + 'E': ['B', 'F'], + 'F': ['C', 'E']} + +print(bfs(G, 'A')) diff --git a/Graphs/DFS.py b/Graphs/DFS.py new file mode 100644 index 000000000000..d3c34fabb7b3 --- /dev/null +++ b/Graphs/DFS.py @@ -0,0 +1,36 @@ +"""pseudo-code""" + +""" +DFS(graph G, start vertex s): +// all nodes initially unexplored +mark s as explored +for every edge (s, v): + if v unexplored: + DFS(G, v) +""" + + +def dfs(graph, start): + """The DFS function simply calls itself recursively for every unvisited child of its argument. We can emulate that + behaviour precisely using a stack of iterators. Instead of recursively calling with a node, we'll push an iterator + to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop + it off the stack.""" + explored, stack = set(), [start] + explored.add(start) + while stack: + v = stack.pop() # the only difference from BFS is to pop last element here instead of first one + for w in graph[v]: + if w not in explored: + explored.add(w) + stack.append(w) + return explored + + +G = {'A': ['B', 'C'], + 'B': ['A', 'D', 'E'], + 'C': ['A', 'F'], + 'D': ['B'], + 'E': ['B', 'F'], + 'F': ['C', 'E']} + +print(dfs(G, 'A')) From a0d5c9aaf0f573ff11beacb6a30a91f90312dd08 Mon Sep 17 00:00:00 2001 From: Aruj Sharma Date: Mon, 11 Feb 2019 15:23:49 +0530 Subject: [PATCH 040/594] Create BitonicSort.py (#386) --- sorts/BitonicSort.py | 56 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 sorts/BitonicSort.py diff --git a/sorts/BitonicSort.py b/sorts/BitonicSort.py new file mode 100644 index 000000000000..bae95b4346f6 --- /dev/null +++ b/sorts/BitonicSort.py @@ -0,0 +1,56 @@ +# Python program for Bitonic Sort. Note that this program +# works only when size of input is a power of 2. + +# The parameter dir indicates the sorting direction, ASCENDING +# or DESCENDING; if (a[i] > a[j]) agrees with the direction, +# then a[i] and a[j] are interchanged.*/ +def compAndSwap(a, i, j, dire): + if (dire == 1 and a[i] > a[j]) or (dire == 0 and a[i] < a[j]): + a[i], a[j] = a[j], a[i] + + # It recursively sorts a bitonic sequence in ascending order, + + +# if dir = 1, and in descending order otherwise (means dir=0). +# The sequence to be sorted starts at index position low, +# the parameter cnt is the number of elements to be sorted. +def bitonicMerge(a, low, cnt, dire): + if cnt > 1: + k = int(cnt / 2) + for i in range(low, low + k): + compAndSwap(a, i, i + k, dire) + bitonicMerge(a, low, k, dire) + bitonicMerge(a, low + k, k, dire) + + # This funcion first produces a bitonic sequence by recursively + + +# sorting its two halves in opposite sorting orders, and then +# calls bitonicMerge to make them in the same order +def bitonicSort(a, low, cnt, dire): + if cnt > 1: + k = int(cnt / 2) + bitonicSort(a, low, k, 1) + bitonicSort(a, low + k, k, 0) + bitonicMerge(a, low, cnt, dire) + + # Caller of bitonicSort for sorting the entire array of length N + + +# in ASCENDING order +def sort(a, N, up): + bitonicSort(a, 0, N, up) + + +# Driver code to test above +a = [] + +n = int(input()) +for i in range(n): + a.append(int(input())) +up = 1 + +sort(a, n, up) +print("\n\nSorted array is") +for i in range(n): + print("%d" % a[i]) From 02f850965d4f36c58b5cb52fc8aba41454cd2f12 Mon Sep 17 00:00:00 2001 From: P-Shreyas-Shetty Date: Mon, 11 Feb 2019 21:45:49 +0530 Subject: [PATCH 041/594] Implementation of Newton-Raphson method (#650) Implemented Newton-Raphson method using pure python. Third party library is used only for visualizing error variation with each iteration. --- maths/newton_raphson.py | 50 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 maths/newton_raphson.py diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py new file mode 100644 index 000000000000..c08bcedc9a4d --- /dev/null +++ b/maths/newton_raphson.py @@ -0,0 +1,50 @@ +''' + Author: P Shreyas Shetty + Implementation of Newton-Raphson method for solving equations of kind + f(x) = 0. It is an iterative method where solution is found by the expression + x[n+1] = x[n] + f(x[n])/f'(x[n]) + If no solution exists, then either the solution will not be found when iteration + limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception + is raised. If iteration limit is reached, try increasing maxiter. + ''' + +import math as m + +def calc_derivative(f, a, h=0.001): + ''' + Calculates derivative at point a for function f using finite difference + method + ''' + return (f(a+h)-f(a-h))/(2*h) + +def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False): + + a = x0 #set the initial guess + steps = [a] + error = abs(f(a)) + f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x) + for _ in range(maxiter): + if f1(a) == 0: + raise ValueError("No converging solution found") + a = a - f(a)/f1(a) #Calculate the next estimate + if logsteps: + steps.append(a) + error = abs(f(a)) + if error < maxerror: + break + else: + raise ValueError("Itheration limit reached, no converging solution found") + if logsteps: + #If logstep is true, then log intermediate steps + return a, error, steps + return a, error + +if __name__ == '__main__': + import matplotlib.pyplot as plt + f = lambda x:m.tanh(x)**2-m.exp(3*x) + solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True) + plt.plot([abs(f(x)) for x in steps]) + plt.xlabel("step") + plt.ylabel("error") + plt.show() + print("solution = {%f}, error = {%f}" % (solution, error)) \ No newline at end of file From 02155def00f7bcc16e4c6df6b7891a90696e44fe Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Wed, 13 Feb 2019 00:40:05 +0800 Subject: [PATCH 042/594] Create project Euler problem 9 sol3.py (#645) --- project_euler/problem_09/sol3.py | 6 ++++++ 1 file changed, 6 insertions(+) create mode 100644 project_euler/problem_09/sol3.py diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py new file mode 100644 index 000000000000..5ebf38e76e1a --- /dev/null +++ b/project_euler/problem_09/sol3.py @@ -0,0 +1,6 @@ +def main(): + print([a*b*c for a in range(1,999) for b in range(a,999) for c in range(b,999) + if (a*a+b*b==c*c) and (a+b+c==1000 ) ][0]) + +if __name__ == '__main__': + main() From 60418a6fd7a2f35aef237279bc721e6470af936f Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Wed, 13 Feb 2019 14:55:48 +0800 Subject: [PATCH 043/594] Create project Euler problem 8 sol2.py (#644) intuitive solution using functional programming --- project_euler/problem_08/sol2.py | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 project_euler/problem_08/sol2.py diff --git a/project_euler/problem_08/sol2.py b/project_euler/problem_08/sol2.py new file mode 100644 index 000000000000..ae03f3ad0aa6 --- /dev/null +++ b/project_euler/problem_08/sol2.py @@ -0,0 +1,8 @@ +from functools import reduce + +def main(): + number=input().strip() + print(max([reduce(lambda x,y: int(x)*int(y),number[i:i+13]) for i in range(len(number)-12)])) + +if __name__ == '__main__': + main() From 9417091dabf9d8e9ebec078942a2fbba0966e42f Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Wed, 13 Feb 2019 18:02:32 +0800 Subject: [PATCH 044/594] Update sol1.py (#643) small off by one error. Boundary condition: if len(number) =13 , we would need to check exactly 1 combination, namely number itself. However for i in range(len(number)-13): will iterate 0 times. --- project_euler/problem_08/sol1.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/project_euler/problem_08/sol1.py b/project_euler/problem_08/sol1.py index fb5ed25bfe93..817fd3f87507 100644 --- a/project_euler/problem_08/sol1.py +++ b/project_euler/problem_08/sol1.py @@ -2,7 +2,7 @@ def main(): LargestProduct = -sys.maxsize-1 number=input().strip() - for i in range(len(number)-13): + for i in range(len(number)-12): product=1 for j in range(13): product *= int(number[i+j]) From 3c8036432c7d50c892d6463c8ba8470aa5222e4e Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 14 Feb 2019 12:08:21 +0800 Subject: [PATCH 045/594] Project Euler problem 6 solution 3 (#640) --- project_euler/problem_06/sol3.py | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 project_euler/problem_06/sol3.py diff --git a/project_euler/problem_06/sol3.py b/project_euler/problem_06/sol3.py new file mode 100644 index 000000000000..b2d9f444d9a9 --- /dev/null +++ b/project_euler/problem_06/sol3.py @@ -0,0 +1,20 @@ +''' +Problem: +The sum of the squares of the first ten natural numbers is, + 1^2 + 2^2 + ... + 10^2 = 385 +The square of the sum of the first ten natural numbers is, + (1 + 2 + ... + 10)^2 = 552 = 3025 +Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. +Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. +''' +from __future__ import print_function +import math +def problem6(number=100): + sum_of_squares = sum([i*i for i in range(1,number+1)]) + square_of_sum = int(math.pow(sum(range(1,number+1)),2)) + return square_of_sum - sum_of_squares +def main(): + print(problem6()) + +if __name__ == '__main__': + main() \ No newline at end of file From 301493094ef1638fae09c24a2fc4880812839e87 Mon Sep 17 00:00:00 2001 From: gpapadok <38889721+gpapadok@users.noreply.github.com> Date: Fri, 15 Feb 2019 18:01:10 +0200 Subject: [PATCH 046/594] Update absMax.py (#602) * Update absMax.py Fixed two bugs * changed to abs instead of absVal --- Maths/absMax.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/Maths/absMax.py b/Maths/absMax.py index 2f719e32e645..7ff9e4d3ca09 100644 --- a/Maths/absMax.py +++ b/Maths/absMax.py @@ -1,5 +1,3 @@ -from Maths.abs import absVal - def absMax(x): """ #>>>absMax([0,5,1,11]) @@ -9,15 +7,15 @@ def absMax(x): """ j =x[0] for i in x: - if absVal(i) > absVal(j): + if abs(i) > abs(j): j = i return j - #BUG: i is apparently a list, TypeError: '<' not supported between instances of 'list' and 'int' in absVal - #BUG fix + def main(): - a = [-13, 2, -11, -12] - print(absMax(a)) # = -13 + a = [1,2,-11] + print(absMax(a)) # = -11 + if __name__ == '__main__': main() From 6f283336ae249b07f22b9e3c13af420177a98d18 Mon Sep 17 00:00:00 2001 From: Vivek Date: Sat, 16 Feb 2019 21:46:43 +0530 Subject: [PATCH 047/594] Adding function for actual level order traversal (#699) --- traversals/binary_tree_traversals.py | 48 ++++++++++++++++++++++------ 1 file changed, 39 insertions(+), 9 deletions(-) diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 9afe0cac44c2..393664579146 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -2,10 +2,11 @@ This is pure python implementation of tree traversal algorithms """ from __future__ import print_function + import queue try: - raw_input # Python 2 + raw_input # Python 2 except NameError: raw_input = input # Python 3 @@ -22,7 +23,7 @@ def build_tree(): print("Enter the value of the root node: ", end="") check = raw_input().strip().lower() if check == 'n': - return None + return None data = int(check) q = queue.Queue() tree_node = TreeNode(data) @@ -46,6 +47,7 @@ def build_tree(): node_found.right = right_node q.put(right_node) + def pre_order(node): if not isinstance(node, TreeNode) or not node: return @@ -53,6 +55,7 @@ def pre_order(node): pre_order(node.left) pre_order(node.right) + def in_order(node): if not isinstance(node, TreeNode) or not node: return @@ -82,22 +85,43 @@ def level_order(node): if node_dequeued.right: q.put(node_dequeued.right) -#iteration version + +def level_order_actual(node): + if not isinstance(node, TreeNode) or not node: + return + q = queue.Queue() + q.put(node) + while not q.empty(): + list = [] + while not q.empty(): + node_dequeued = q.get() + print(node_dequeued.data, end=" ") + if node_dequeued.left: + list.append(node_dequeued.left) + if node_dequeued.right: + list.append(node_dequeued.right) + print() + for node in list: + q.put(node) + + +# iteration version def pre_order_iter(node): if not isinstance(node, TreeNode) or not node: return stack = [] n = node while n or stack: - while n: #start from root node, find its left child + while n: # start from root node, find its left child print(n.data, end=" ") stack.append(n) n = n.left - #end of while means current node doesn't have left child + # end of while means current node doesn't have left child n = stack.pop() - #start to traverse its right child + # start to traverse its right child n = n.right + def in_order_iter(node): if not isinstance(node, TreeNode) or not node: return @@ -111,22 +135,24 @@ def in_order_iter(node): print(n.data, end=" ") n = n.right + def post_order_iter(node): if not isinstance(node, TreeNode) or not node: return stack1, stack2 = [], [] n = node stack1.append(n) - while stack1: #to find the reversed order of post order, store it in stack2 + while stack1: # to find the reversed order of post order, store it in stack2 n = stack1.pop() if n.left: stack1.append(n.left) if n.right: stack1.append(n.right) stack2.append(n) - while stack2: #pop up from stack2 will be the post order + while stack2: # pop up from stack2 will be the post order print(stack2.pop().data, end=" ") + if __name__ == '__main__': print("\n********* Binary Tree Traversals ************\n") @@ -147,6 +173,10 @@ def post_order_iter(node): level_order(node) print("\n******************************************\n") + print("\n********* Actual Level Order Traversal ************") + level_order_actual(node) + print("\n******************************************\n") + print("\n********* Pre Order Traversal - Iteration Version ************") pre_order_iter(node) print("\n******************************************\n") @@ -157,4 +187,4 @@ def post_order_iter(node): print("\n********* Post Order Traversal - Iteration Version ************") post_order_iter(node) - print("\n******************************************\n") \ No newline at end of file + print("\n******************************************\n") From af08a67b20886ebd90de29c3efc4ccb11b667a4a Mon Sep 17 00:00:00 2001 From: Reshad Hasan Date: Mon, 18 Feb 2019 21:35:46 +0600 Subject: [PATCH 048/594] added the dijkstra algorithm (#704) --- graphs/dijkstra.py | 47 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) create mode 100644 graphs/dijkstra.py diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py new file mode 100644 index 000000000000..6b08b28fcfd3 --- /dev/null +++ b/graphs/dijkstra.py @@ -0,0 +1,47 @@ +"""pseudo-code""" + +""" +DIJKSTRA(graph G, start vertex s,destination vertex d): +// all nodes initially unexplored +let H = min heap data structure, initialized with 0 and s [here 0 indicates the distance from start vertex] +while H is non-empty: + remove the first node and cost of H, call it U and cost + if U is not explored + mark U as explored + if U is d: + return cost // total cost from start to destination vertex + for each edge(U, V): c=cost of edge(u,V) // for V in graph[U] + if V unexplored: + next=cost+c + add next,V to H (at the end) +""" +import heapq + + +def dijkstra(graph, start, end): + heap = [(0, start)] # cost from start node,end node + visited = [] + while heap: + (cost, u) = heapq.heappop(heap) + if u in visited: + continue + visited.append(u) + if u == end: + return cost + for v, c in G[u]: + if v in visited: + continue + next = cost + c + heapq.heappush(heap, (next, v)) + return (-1, -1) + + +G = {'A': [['B', 2], ['C', 5]], + 'B': [['A', 2], ['D', 3], ['E', 1]], + 'C': [['A', 5], ['F', 3]], + 'D': [['B', 3]], + 'E': [['B', 1], ['F', 3]], + 'F': [['C', 3], ['E', 3]]} + +shortDistance = dijkstra(G, 'E', 'C') +print(shortDistance) From ad68eed73e2cf39ee347e36a4e0fdf54310bd79a Mon Sep 17 00:00:00 2001 From: Abhi Kampurath <35632653+abhikmp@users.noreply.github.com> Date: Tue, 19 Feb 2019 20:56:09 +0530 Subject: [PATCH 049/594] Update caesar_cipher.py (#702) --- ciphers/caesar_cipher.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 8012042fc6c4..39c069c95a7c 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -42,16 +42,16 @@ def main(): print("4.Quit") choice = input("What would you like to do?: ") if choice not in ['1', '2', '3', '4']: - print ("Invalid choice") + print ("Invalid choice, please enter a valid choice") elif choice == '1': - strng = input("Please enter the string to be ecrypted: ") + strng = input("Please enter the string to be encrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1, 95): print (encrypt(strng.lower(), key)) elif choice == '2': strng = input("Please enter the string to be decrypted: ") key = int(input("Please enter off-set between 1-94: ")) - if key > 0 and key <= 94: + if key in range(1,95): print(decrypt(strng, key)) elif choice == '3': strng = input("Please enter the string to be decrypted: ") From 98a149e41eca20f4ee3a2c031ee04987f64e34eb Mon Sep 17 00:00:00 2001 From: pradyotd Date: Wed, 20 Feb 2019 11:54:26 -0500 Subject: [PATCH 050/594] Update coin_change.py (#706) Cleanup PEP-8 , additional comments , using coin_val, instead of range and index. --- dynamic_programming/coin_change.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/dynamic_programming/coin_change.py b/dynamic_programming/coin_change.py index 0116df0c024e..74d86661f52d 100644 --- a/dynamic_programming/coin_change.py +++ b/dynamic_programming/coin_change.py @@ -6,21 +6,26 @@ https://www.hackerrank.com/challenges/coin-change/problem """ from __future__ import print_function + + def dp_count(S, m, n): + + # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) - # Base case (If given value is 0) + # There is exactly 1 way to get to zero(You pick no coins). table[0] = 1 # Pick all coins one by one and update table[] values # after the index greater than or equal to the value of the # picked coin - for i in range(0, m): - for j in range(S[i], n + 1): - table[j] += table[j - S[i]] + for coin_val in S: + for j in range(coin_val, n + 1): + table[j] += table[j - coin_val] return table[n] + if __name__ == '__main__': print(dp_count([1, 2, 3], 3, 4)) # answer 4 print(dp_count([2, 5, 3, 6], 4, 10)) # answer 5 From 74e94ab5e2846c32f6a0d1a9a00529c21e84a35a Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 21 Feb 2019 00:57:48 +0800 Subject: [PATCH 051/594] Create project Euler problem 25 sol2.py (#658) --- project_euler/problem_25/sol2.py | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 project_euler/problem_25/sol2.py diff --git a/project_euler/problem_25/sol2.py b/project_euler/problem_25/sol2.py new file mode 100644 index 000000000000..35147a9bfb14 --- /dev/null +++ b/project_euler/problem_25/sol2.py @@ -0,0 +1,10 @@ +def fibonacci_genrator(): + a, b = 0,1 + while True: + a,b = b,a+b + yield b +answer = 1 +gen = fibonacci_genrator() +while len(str(next(gen))) < 1000: + answer += 1 +assert answer+1 == 4782 From 2b27086c0068e7a8548236a408070683ed10ba1c Mon Sep 17 00:00:00 2001 From: Sravan Kumar Vinakota <35956127+JekyllAndHyde8999@users.noreply.github.com> Date: Thu, 21 Feb 2019 21:49:28 +0530 Subject: [PATCH 052/594] Added hill_cipher.py (#696) A python class that implements the Hill cipher algorithm. --- ciphers/hill_cipher.py | 167 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 167 insertions(+) create mode 100644 ciphers/hill_cipher.py diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py new file mode 100644 index 000000000000..89b88beed17e --- /dev/null +++ b/ciphers/hill_cipher.py @@ -0,0 +1,167 @@ +""" + +Hill Cipher: +The below defined class 'HillCipher' implements the Hill Cipher algorithm. +The Hill Cipher is an algorithm that implements modern linear algebra techniques +In this algortihm, you have an encryption key matrix. This is what will be used +in encoding and decoding your text. + +Algortihm: +Let the order of the encryption key be N (as it is a square matrix). +Your text is divided into batches of length N and converted to numerical vectors +by a simple mapping starting with A=0 and so on. + +The key is then mulitplied with the newly created batch vector to obtain the +encoded vector. After each multiplication modular 36 calculations are performed +on the vectors so as to bring the numbers between 0 and 36 and then mapped with +their corresponding alphanumerics. + +While decrypting, the decrypting key is found which is the inverse of the +encrypting key modular 36. The same process is repeated for decrypting to get +the original message back. + +Constraints: +The determinant of the encryption key matrix must be relatively prime w.r.t 36. + +Note: +The algorithm implemented in this code considers only alphanumerics in the text. +If the length of the text to be encrypted is not a multiple of the +break key(the length of one batch of letters),the last character of the text +is added to the text until the length of the text reaches a multiple of +the break_key. So the text after decrypting might be a little different than +the original text. + +References: +https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf +https://www.youtube.com/watch?v=kfmNeskzs2o +https://www.youtube.com/watch?v=4RhLNDqcjpA + +""" + +import numpy + + +def gcd(a, b): + if a == 0: + return b + return gcd(b%a, a) + + +class HillCipher: + key_string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" + # This cipher takes alphanumerics into account + # i.e. a total of 36 characters + + replaceLetters = lambda self, letter: self.key_string.index(letter) + replaceNumbers = lambda self, num: self.key_string[round(num)] + + # take x and return x % len(key_string) + modulus = numpy.vectorize(lambda x: x % 36) + + toInt = numpy.vectorize(lambda x: round(x)) + + def __init__(self, encrypt_key): + """ + encrypt_key is an NxN numpy matrix + """ + self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key + self.checkDeterminant() # validate the determinant of the encryption key + self.decrypt_key = None + self.break_key = encrypt_key.shape[0] + + def checkDeterminant(self): + det = round(numpy.linalg.det(self.encrypt_key)) + + if det < 0: + det = det % len(self.key_string) + + req_l = len(self.key_string) + if gcd(det, len(self.key_string)) != 1: + raise ValueError("discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format(req_l, det, req_l)) + + def processText(self, text): + text = list(text.upper()) + text = [char for char in text if char in self.key_string] + + last = text[-1] + while len(text) % self.break_key != 0: + text.append(last) + + return ''.join(text) + + def encrypt(self, text): + text = self.processText(text.upper()) + encrypted = '' + + for i in range(0, len(text) - self.break_key + 1, self.break_key): + batch = text[i:i+self.break_key] + batch_vec = list(map(self.replaceLetters, batch)) + batch_vec = numpy.matrix([batch_vec]).T + batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[0] + encrypted_batch = ''.join(list(map(self.replaceNumbers, batch_encrypted))) + encrypted += encrypted_batch + + return encrypted + + def makeDecryptKey(self): + det = round(numpy.linalg.det(self.encrypt_key)) + + if det < 0: + det = det % len(self.key_string) + det_inv = None + for i in range(len(self.key_string)): + if (det * i) % len(self.key_string) == 1: + det_inv = i + break + + inv_key = det_inv * numpy.linalg.det(self.encrypt_key) *\ + numpy.linalg.inv(self.encrypt_key) + + return self.toInt(self.modulus(inv_key)) + + def decrypt(self, text): + self.decrypt_key = self.makeDecryptKey() + text = self.processText(text.upper()) + decrypted = '' + + for i in range(0, len(text) - self.break_key + 1, self.break_key): + batch = text[i:i+self.break_key] + batch_vec = list(map(self.replaceLetters, batch)) + batch_vec = numpy.matrix([batch_vec]).T + batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[0] + decrypted_batch = ''.join(list(map(self.replaceNumbers, batch_decrypted))) + decrypted += decrypted_batch + + return decrypted + + +def main(): + N = int(input("Enter the order of the encryption key: ")) + hill_matrix = [] + + print("Enter each row of the encryption key with space separated integers") + for i in range(N): + row = list(map(int, input().split())) + hill_matrix.append(row) + + hc = HillCipher(numpy.matrix(hill_matrix)) + + print("Would you like to encrypt or decrypt some text? (1 or 2)") + option = input(""" +1. Encrypt +2. Decrypt +""" + ) + + if option == '1': + text_e = input("What text would you like to encrypt?: ") + print("Your encrypted text is:") + print(hc.encrypt(text_e)) + elif option == '2': + text_d = input("What text would you like to decrypt?: ") + print("Your decrypted text is:") + print(hc.decrypt(text_d)) + + +if __name__ == "__main__": + main() From e6e5f4b301a82dfbb8245add087789019c516c9c Mon Sep 17 00:00:00 2001 From: Reshad Hasan Date: Sat, 23 Feb 2019 20:18:21 +0600 Subject: [PATCH 053/594] Added naive string search algorithm (#715) --- strings/naiveStringSearch.py | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 strings/naiveStringSearch.py diff --git a/strings/naiveStringSearch.py b/strings/naiveStringSearch.py new file mode 100644 index 000000000000..04c0d8157b24 --- /dev/null +++ b/strings/naiveStringSearch.py @@ -0,0 +1,29 @@ +""" +this algorithm tries to find the pattern from every position of +the mainString if pattern is found from position i it add it to +the answer and does the same for position i+1 + +Complexity : O(n*m) + n=length of main string + m=length of pattern string +""" +def naivePatternSearch(mainString,pattern): + patLen=len(pattern) + strLen=len(mainString) + position=[] + for i in range(strLen-patLen+1): + match_found=True + for j in range(patLen): + if mainString[i+j]!=pattern[j]: + match_found=False + break + if match_found: + position.append(i) + return position + +mainString="ABAAABCDBBABCDDEBCABC" +pattern="ABC" +position=naivePatternSearch(mainString,pattern) +print("Pattern found in position ") +for x in position: + print(x) \ No newline at end of file From 9a44eb44798900e5d9b8a307a78ab8057f9e3b92 Mon Sep 17 00:00:00 2001 From: Reshad Hasan Date: Mon, 25 Feb 2019 15:35:24 +0600 Subject: [PATCH 054/594] Organize graph algorithms (#719) * organized graph algorithms * all graph algorithms in Graphs/ folder * all graph algorithms are in one folder * Rename number theory/factorial_python.py to maths/factorial_python.py --- {graphs => Graphs}/Directed and Undirected (Weighted) Graph.py | 0 {graphs => Graphs}/a_star.py | 0 {graphs => Graphs}/articulation_points.py | 0 {graphs => Graphs}/basic_graphs.py | 0 {data_structures/graph => Graphs}/bellman_ford.py | 0 {data_structures/graph => Graphs}/breadth_first_search.py | 0 {graphs => Graphs}/check_bipartite_graph_bfs.py | 0 {data_structures/graph => Graphs}/depth_first_search.py | 0 {graphs => Graphs}/dijkstra.py | 0 data_structures/graph/dijkstra.py => Graphs/dijkstra_2.py | 0 {data_structures/graph => Graphs}/dijkstra_algorithm.py | 0 {data_structures/graph => Graphs}/even_tree.py | 0 {graphs => Graphs}/finding_bridges.py | 0 {data_structures/graph => Graphs}/floyd_warshall.py | 0 {data_structures/graph => Graphs}/graph.py | 0 {data_structures/graph => Graphs}/graph_list.py | 0 {data_structures/graph => Graphs}/graph_matrix.py | 0 {graphs => Graphs}/kahns_algorithm_long.py | 0 {graphs => Graphs}/kahns_algorithm_topo.py | 0 {graphs => Graphs}/minimum_spanning_tree_kruskal.py | 0 {graphs => Graphs}/minimum_spanning_tree_prims.py | 0 {graphs => Graphs}/multi_hueristic_astar.py | 0 {graphs => Graphs}/scc_kosaraju.py | 0 {graphs => Graphs}/tarjans_scc.py | 0 factorial_python.py => maths/factorial_python.py | 0 25 files changed, 0 insertions(+), 0 deletions(-) rename {graphs => Graphs}/Directed and Undirected (Weighted) Graph.py (100%) rename {graphs => Graphs}/a_star.py (100%) rename {graphs => Graphs}/articulation_points.py (100%) rename {graphs => Graphs}/basic_graphs.py (100%) rename {data_structures/graph => Graphs}/bellman_ford.py (100%) rename {data_structures/graph => Graphs}/breadth_first_search.py (100%) rename {graphs => Graphs}/check_bipartite_graph_bfs.py (100%) rename {data_structures/graph => Graphs}/depth_first_search.py (100%) rename {graphs => Graphs}/dijkstra.py (100%) rename data_structures/graph/dijkstra.py => Graphs/dijkstra_2.py (100%) rename {data_structures/graph => Graphs}/dijkstra_algorithm.py (100%) rename {data_structures/graph => Graphs}/even_tree.py (100%) rename {graphs => Graphs}/finding_bridges.py (100%) rename {data_structures/graph => Graphs}/floyd_warshall.py (100%) rename {data_structures/graph => Graphs}/graph.py (100%) rename {data_structures/graph => Graphs}/graph_list.py (100%) rename {data_structures/graph => Graphs}/graph_matrix.py (100%) rename {graphs => Graphs}/kahns_algorithm_long.py (100%) rename {graphs => Graphs}/kahns_algorithm_topo.py (100%) rename {graphs => Graphs}/minimum_spanning_tree_kruskal.py (100%) rename {graphs => Graphs}/minimum_spanning_tree_prims.py (100%) rename {graphs => Graphs}/multi_hueristic_astar.py (100%) rename {graphs => Graphs}/scc_kosaraju.py (100%) rename {graphs => Graphs}/tarjans_scc.py (100%) rename factorial_python.py => maths/factorial_python.py (100%) diff --git a/graphs/Directed and Undirected (Weighted) Graph.py b/Graphs/Directed and Undirected (Weighted) Graph.py similarity index 100% rename from graphs/Directed and Undirected (Weighted) Graph.py rename to Graphs/Directed and Undirected (Weighted) Graph.py diff --git a/graphs/a_star.py b/Graphs/a_star.py similarity index 100% rename from graphs/a_star.py rename to Graphs/a_star.py diff --git a/graphs/articulation_points.py b/Graphs/articulation_points.py similarity index 100% rename from graphs/articulation_points.py rename to Graphs/articulation_points.py diff --git a/graphs/basic_graphs.py b/Graphs/basic_graphs.py similarity index 100% rename from graphs/basic_graphs.py rename to Graphs/basic_graphs.py diff --git a/data_structures/graph/bellman_ford.py b/Graphs/bellman_ford.py similarity index 100% rename from data_structures/graph/bellman_ford.py rename to Graphs/bellman_ford.py diff --git a/data_structures/graph/breadth_first_search.py b/Graphs/breadth_first_search.py similarity index 100% rename from data_structures/graph/breadth_first_search.py rename to Graphs/breadth_first_search.py diff --git a/graphs/check_bipartite_graph_bfs.py b/Graphs/check_bipartite_graph_bfs.py similarity index 100% rename from graphs/check_bipartite_graph_bfs.py rename to Graphs/check_bipartite_graph_bfs.py diff --git a/data_structures/graph/depth_first_search.py b/Graphs/depth_first_search.py similarity index 100% rename from data_structures/graph/depth_first_search.py rename to Graphs/depth_first_search.py diff --git a/graphs/dijkstra.py b/Graphs/dijkstra.py similarity index 100% rename from graphs/dijkstra.py rename to Graphs/dijkstra.py diff --git a/data_structures/graph/dijkstra.py b/Graphs/dijkstra_2.py similarity index 100% rename from data_structures/graph/dijkstra.py rename to Graphs/dijkstra_2.py diff --git a/data_structures/graph/dijkstra_algorithm.py b/Graphs/dijkstra_algorithm.py similarity index 100% rename from data_structures/graph/dijkstra_algorithm.py rename to Graphs/dijkstra_algorithm.py diff --git a/data_structures/graph/even_tree.py b/Graphs/even_tree.py similarity index 100% rename from data_structures/graph/even_tree.py rename to Graphs/even_tree.py diff --git a/graphs/finding_bridges.py b/Graphs/finding_bridges.py similarity index 100% rename from graphs/finding_bridges.py rename to Graphs/finding_bridges.py diff --git a/data_structures/graph/floyd_warshall.py b/Graphs/floyd_warshall.py similarity index 100% rename from data_structures/graph/floyd_warshall.py rename to Graphs/floyd_warshall.py diff --git a/data_structures/graph/graph.py b/Graphs/graph.py similarity index 100% rename from data_structures/graph/graph.py rename to Graphs/graph.py diff --git a/data_structures/graph/graph_list.py b/Graphs/graph_list.py similarity index 100% rename from data_structures/graph/graph_list.py rename to Graphs/graph_list.py diff --git a/data_structures/graph/graph_matrix.py b/Graphs/graph_matrix.py similarity index 100% rename from data_structures/graph/graph_matrix.py rename to Graphs/graph_matrix.py diff --git a/graphs/kahns_algorithm_long.py b/Graphs/kahns_algorithm_long.py similarity index 100% rename from graphs/kahns_algorithm_long.py rename to Graphs/kahns_algorithm_long.py diff --git a/graphs/kahns_algorithm_topo.py b/Graphs/kahns_algorithm_topo.py similarity index 100% rename from graphs/kahns_algorithm_topo.py rename to Graphs/kahns_algorithm_topo.py diff --git a/graphs/minimum_spanning_tree_kruskal.py b/Graphs/minimum_spanning_tree_kruskal.py similarity index 100% rename from graphs/minimum_spanning_tree_kruskal.py rename to Graphs/minimum_spanning_tree_kruskal.py diff --git a/graphs/minimum_spanning_tree_prims.py b/Graphs/minimum_spanning_tree_prims.py similarity index 100% rename from graphs/minimum_spanning_tree_prims.py rename to Graphs/minimum_spanning_tree_prims.py diff --git a/graphs/multi_hueristic_astar.py b/Graphs/multi_hueristic_astar.py similarity index 100% rename from graphs/multi_hueristic_astar.py rename to Graphs/multi_hueristic_astar.py diff --git a/graphs/scc_kosaraju.py b/Graphs/scc_kosaraju.py similarity index 100% rename from graphs/scc_kosaraju.py rename to Graphs/scc_kosaraju.py diff --git a/graphs/tarjans_scc.py b/Graphs/tarjans_scc.py similarity index 100% rename from graphs/tarjans_scc.py rename to Graphs/tarjans_scc.py diff --git a/factorial_python.py b/maths/factorial_python.py similarity index 100% rename from factorial_python.py rename to maths/factorial_python.py From 2bbf8cd10935c620400ba213bba4b92c8b2cb5c0 Mon Sep 17 00:00:00 2001 From: "S. Sharma" <36388139+s1l3ntcat@users.noreply.github.com> Date: Wed, 27 Feb 2019 08:28:59 -0600 Subject: [PATCH 055/594] Added extended euclidean algorithm (#720) * Added extended euclidean algorithm * Fixed extended euclidean algorithm --- Maths/extended_euclidean_algorithm.py | 51 +++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 Maths/extended_euclidean_algorithm.py diff --git a/Maths/extended_euclidean_algorithm.py b/Maths/extended_euclidean_algorithm.py new file mode 100644 index 000000000000..f5a3cc88e474 --- /dev/null +++ b/Maths/extended_euclidean_algorithm.py @@ -0,0 +1,51 @@ +# @Author: S. Sharma +# @Date: 2019-02-25T12:08:53-06:00 +# @Email: silentcat@protonmail.com +# @Last modified by: silentcat +# @Last modified time: 2019-02-26T07:07:38-06:00 + +import sys + +# Finds 2 numbers a and b such that it satisfies +# the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) +def extended_euclidean_algorithm(m, n): + a = 0; aprime = 1; b = 1; bprime = 0 + q = 0; r = 0 + if m > n: + c = m; d = n + else: + c = n; d = m + + while True: + q = int(c / d) + r = c % d + if r == 0: + break + c = d + d = r + + t = aprime + aprime = a + a = t - q*a + + t = bprime + bprime = b + b = t - q*b + + pair = None + if m > n: + pair = (a,b) + else: + pair = (b,a) + return pair + +def main(): + if len(sys.argv) < 3: + print('2 integer arguments required') + exit(1) + m = int(sys.argv[1]) + n = int(sys.argv[2]) + print(extended_euclidean_algorithm(m, n)) + +if __name__ == '__main__': + main() From dd9f0b3f2e859d24a2dd442fe2bd45fd08a9ac86 Mon Sep 17 00:00:00 2001 From: overclockedllama Date: Wed, 27 Feb 2019 15:33:29 +0100 Subject: [PATCH 056/594] fix comma spelling from coma to comma (#722) --- searches/linear_search.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/searches/linear_search.py b/searches/linear_search.py index 50c6eaad5e9b..058322f21d09 100644 --- a/searches/linear_search.py +++ b/searches/linear_search.py @@ -43,7 +43,7 @@ def linear_search(sequence, target): if __name__ == '__main__': - user_input = raw_input('Enter numbers separated by coma:\n').strip() + user_input = raw_input('Enter numbers separated by comma:\n').strip() sequence = [int(item) for item in user_input.split(',')] target_input = raw_input('Enter a single number to be found in the list:\n') From e6eb6dbb82623c8377230419a8633c3b2a0b3b63 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 28 Feb 2019 01:49:13 +0800 Subject: [PATCH 057/594] Delete Maths/find_hcf.py (#636) --- Maths/find_hcf.py | 22 ---------------------- 1 file changed, 22 deletions(-) delete mode 100644 Maths/find_hcf.py diff --git a/Maths/find_hcf.py b/Maths/find_hcf.py deleted file mode 100644 index e4315d8d37a7..000000000000 --- a/Maths/find_hcf.py +++ /dev/null @@ -1,22 +0,0 @@ -# Program to find the HCF of two Numbers -def find_hcf(num_1, num_2): - if num_1 == 0: - return num_2 - if num_2 == 0: - return num_1 - # Base Case - if num_1 == num_2: - return num_1 - if num_1 > num_2: - return find_hcf(num_1 - num_2, num_2) - return find_hcf(num_1, num_2 - num_1) - - -def main(): - num_1 = 24 - num_2 = 34 - print('HCF of %s and %s is %s:' % (num_1, num_2, find_hcf(num_1, num_2))) - - -if __name__ == '__main__': - main() From 88b6caa30aeb2d0e780039c13703af56c8ffdaa7 Mon Sep 17 00:00:00 2001 From: Ashwek Swamy <39827514+ashwek@users.noreply.github.com> Date: Fri, 1 Mar 2019 22:23:29 +0530 Subject: [PATCH 058/594] fixed balanced_parentheses, Added infix-prefix & postfix evaluation (#621) * Create infix_to_prefix_conversion.py * Create postfix_evaluation.py * Update balanced_parentheses.py --- .../stacks/infix_to_prefix_conversion.py | 61 +++++++++++++++++++ data_structures/stacks/postfix_evaluation.py | 50 +++++++++++++++ 2 files changed, 111 insertions(+) create mode 100644 data_structures/stacks/infix_to_prefix_conversion.py create mode 100644 data_structures/stacks/postfix_evaluation.py diff --git a/data_structures/stacks/infix_to_prefix_conversion.py b/data_structures/stacks/infix_to_prefix_conversion.py new file mode 100644 index 000000000000..da5fc261fb9f --- /dev/null +++ b/data_structures/stacks/infix_to_prefix_conversion.py @@ -0,0 +1,61 @@ +""" +Output: + +Enter an Infix Equation = a + b ^c + Symbol | Stack | Postfix +---------------------------- + c | | c + ^ | ^ | c + b | ^ | cb + + | + | cb^ + a | + | cb^a + | | cb^a+ + + a+b^c (Infix) -> +a^bc (Prefix) +""" + +def infix_2_postfix(Infix): + Stack = [] + Postfix = [] + priority = {'^':3, '*':2, '/':2, '%':2, '+':1, '-':1} # Priority of each operator + print_width = len(Infix) if(len(Infix)>7) else 7 + + # Print table header for output + print('Symbol'.center(8), 'Stack'.center(print_width), 'Postfix'.center(print_width), sep = " | ") + print('-'*(print_width*3+7)) + + for x in Infix: + if(x.isalpha() or x.isdigit()): Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix + elif(x == '('): Stack.append(x) # if x is "(" push to Stack + elif(x == ')'): # if x is ")" pop stack until "(" is encountered + while(Stack[-1] != '('): + Postfix.append( Stack.pop() ) #Pop stack & add the content to Postfix + Stack.pop() + else: + if(len(Stack)==0): Stack.append(x) #If stack is empty, push x to stack + else: + while( len(Stack) > 0 and priority[x] <= priority[Stack[-1]]): # while priority of x is not greater than priority of element in the stack + Postfix.append( Stack.pop() ) # pop stack & add to Postfix + Stack.append(x) # push x to stack + + print(x.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format + + while(len(Stack) > 0): # while stack is not empty + Postfix.append( Stack.pop() ) # pop stack & add to Postfix + print(' '.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format + + return "".join(Postfix) # return Postfix as str + +def infix_2_prefix(Infix): + Infix = list(Infix[::-1]) # reverse the infix equation + + for i in range(len(Infix)): + if(Infix[i] == '('): Infix[i] = ')' # change "(" to ")" + elif(Infix[i] == ')'): Infix[i] = '(' # change ")" to "(" + + return (infix_2_postfix("".join(Infix)))[::-1] # call infix_2_postfix on Infix, return reverse of Postfix + +if __name__ == "__main__": + Infix = input("\nEnter an Infix Equation = ") #Input an Infix equation + Infix = "".join(Infix.split()) #Remove spaces from the input + print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)") diff --git a/data_structures/stacks/postfix_evaluation.py b/data_structures/stacks/postfix_evaluation.py new file mode 100644 index 000000000000..1786e71dd383 --- /dev/null +++ b/data_structures/stacks/postfix_evaluation.py @@ -0,0 +1,50 @@ +""" +Output: + +Enter a Postfix Equation (space separated) = 5 6 9 * + + Symbol | Action | Stack +----------------------------------- + 5 | push(5) | 5 + 6 | push(6) | 5,6 + 9 | push(9) | 5,6,9 + | pop(9) | 5,6 + | pop(6) | 5 + * | push(6*9) | 5,54 + | pop(54) | 5 + | pop(5) | + + | push(5+54) | 59 + + Result = 59 +""" + +import operator as op + +def Solve(Postfix): + Stack = [] + Div = lambda x, y: int(x/y) # integer division operation + Opr = {'^':op.pow, '*':op.mul, '/':Div, '+':op.add, '-':op.sub} # operators & their respective operation + + # print table header + print('Symbol'.center(8), 'Action'.center(12), 'Stack', sep = " | ") + print('-'*(30+len(Postfix))) + + for x in Postfix: + if( x.isdigit() ): # if x in digit + Stack.append(x) # append x to stack + print(x.rjust(8), ('push('+x+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + else: + B = Stack.pop() # pop stack + print("".rjust(8), ('pop('+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + + A = Stack.pop() # pop stack + print("".rjust(8), ('pop('+A+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + + Stack.append( str(Opr[x](int(A), int(B))) ) # evaluate the 2 values poped from stack & push result to stack + print(x.rjust(8), ('push('+A+x+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + + return int(Stack[0]) + + +if __name__ == "__main__": + Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(' ') + print("\n\tResult = ", Solve(Postfix)) From 6f6510623c7250ebea78afbd3d6eab1bfe467ada Mon Sep 17 00:00:00 2001 From: Akash Ali <45498607+AkashAli506@users.noreply.github.com> Date: Mon, 4 Mar 2019 00:49:36 -0800 Subject: [PATCH 059/594] Update heap.py (#726) Added comments for the better understanding of heap. --- data_structures/heap/heap.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py index 8187af101308..39778f725c3a 100644 --- a/data_structures/heap/heap.py +++ b/data_structures/heap/heap.py @@ -7,8 +7,9 @@ except NameError: raw_input = input # Python 3 +#This heap class start from here. class Heap: - def __init__(self): + def __init__(self): #Default constructor of heap class. self.h = [] self.currsize = 0 @@ -37,13 +38,13 @@ def maxHeapify(self,node): self.h[m] = temp self.maxHeapify(m) - def buildHeap(self,a): + def buildHeap(self,a): #This function is used to build the heap from the data container 'a'. self.currsize = len(a) self.h = list(a) for i in range(self.currsize//2,-1,-1): self.maxHeapify(i) - def getMax(self): + def getMax(self): #This function is used to get maximum value from the heap. if self.currsize >= 1: me = self.h[0] temp = self.h[0] @@ -54,7 +55,7 @@ def getMax(self): return me return None - def heapSort(self): + def heapSort(self): #This function is used to sort the heap. size = self.currsize while self.currsize-1 >= 0: temp = self.h[0] @@ -64,7 +65,7 @@ def heapSort(self): self.maxHeapify(0) self.currsize = size - def insert(self,data): + def insert(self,data): #This function is used to insert data in the heap. self.h.append(data) curr = self.currsize self.currsize+=1 @@ -74,7 +75,7 @@ def insert(self,data): self.h[curr] = temp curr = curr/2 - def display(self): + def display(self): #This function is used to print the heap. print(self.h) def main(): From 2c67f6161ca4385d9728951f71c4d11fda2ef7df Mon Sep 17 00:00:00 2001 From: Akash Ali <45498607+AkashAli506@users.noreply.github.com> Date: Thu, 7 Mar 2019 20:53:29 +0500 Subject: [PATCH 060/594] Update basic_binary_tree.py (#725) I have added the comments for better understanding. --- binary_tree/basic_binary_tree.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/binary_tree/basic_binary_tree.py b/binary_tree/basic_binary_tree.py index 6cdeb1a6938c..5738e4ee114f 100644 --- a/binary_tree/basic_binary_tree.py +++ b/binary_tree/basic_binary_tree.py @@ -1,11 +1,11 @@ -class Node: +class Node: # This is the Class Node with constructor that contains data variable to type data and left,right pointers. def __init__(self, data): self.data = data self.left = None self.right = None -def depth_of_tree(tree): +def depth_of_tree(tree): #This is the recursive function to find the depth of binary tree. if tree is None: return 0 else: @@ -17,7 +17,7 @@ def depth_of_tree(tree): return 1 + depth_r_tree -def is_full_binary_tree(tree): +def is_full_binary_tree(tree): # This functions returns that is it full binary tree or not? if tree is None: return True if (tree.left is None) and (tree.right is None): @@ -28,7 +28,7 @@ def is_full_binary_tree(tree): return False -def main(): +def main(): # Main func for testing. tree = Node(1) tree.left = Node(2) tree.right = Node(3) From 8e67ac3b7672c1aa05c59bef29ad1b2c5520e07d Mon Sep 17 00:00:00 2001 From: Maxim Semenyuk <33791308+semenuk@users.noreply.github.com> Date: Sun, 10 Mar 2019 07:10:29 +0500 Subject: [PATCH 061/594] Fix '__bool__' method (#735) The method returns the truth when the stack is empty --- data_structures/stacks/stack.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/data_structures/stacks/stack.py b/data_structures/stacks/stack.py index 66af8c025d8c..7f979d927d08 100644 --- a/data_structures/stacks/stack.py +++ b/data_structures/stacks/stack.py @@ -17,7 +17,7 @@ def __init__(self, limit=10): self.limit = limit def __bool__(self): - return not bool(self.stack) + return bool(self.stack) def __str__(self): return str(self.stack) From 96c36f828689ab1c610311c7f191f4289fd7ff6c Mon Sep 17 00:00:00 2001 From: Ishani Date: Sun, 17 Mar 2019 23:42:22 +0530 Subject: [PATCH 062/594] added wiggle_sort.py (#734) * Wiggle_sort * Rename Wiggle_Sort to wiggle_sort.py --- sorts/wiggle_sort.py | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) create mode 100644 sorts/wiggle_sort.py diff --git a/sorts/wiggle_sort.py b/sorts/wiggle_sort.py new file mode 100644 index 000000000000..cc83487bdeb1 --- /dev/null +++ b/sorts/wiggle_sort.py @@ -0,0 +1,21 @@ +""" +Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3].... +For example: +if input numbers = [3, 5, 2, 1, 6, 4] +one possible Wiggle Sorted answer is [3, 5, 1, 6, 2, 4]. +""" +def wiggle_sort(nums): + for i in range(len(nums)): + if (i % 2 == 1) == (nums[i-1] > nums[i]): + nums[i-1], nums[i] = nums[i], nums[i-1] + + +print("Enter the array elements:\n") +array=list(map(int,input().split())) +print("The unsorted array is:\n") +print(array) +wiggle_sort(array) +print("Array after Wiggle sort:\n") +print(array) + + From d27968b78d721193f3dd7e11c8d7c50b3160167c Mon Sep 17 00:00:00 2001 From: Ishani Date: Wed, 20 Mar 2019 21:29:35 +0530 Subject: [PATCH 063/594] Create Searching in sorted matrix (#738) * Create Searching in sorted matrix * Rename Searching in sorted matrix to searching_in_sorted_matrix.py --- matrix/searching_in_sorted_matrix.py | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 matrix/searching_in_sorted_matrix.py diff --git a/matrix/searching_in_sorted_matrix.py b/matrix/searching_in_sorted_matrix.py new file mode 100644 index 000000000000..54913b350803 --- /dev/null +++ b/matrix/searching_in_sorted_matrix.py @@ -0,0 +1,27 @@ +def search_in_a_sorted_matrix(mat, m, n, key): + i, j = m - 1, 0 + while i >= 0 and j < n: + if key == mat[i][j]: + print('Key %s found at row- %s column- %s' % (key, i + 1, j + 1)) + return + if key < mat[i][j]: + i -= 1 + else: + j += 1 + print('Key %s not found' % (key)) + + +def main(): + mat = [ + [2, 5, 7], + [4, 8, 13], + [9, 11, 15], + [12, 17, 20] + ] + x = int(input("Enter the element to be searched:")) + print(mat) + search_in_a_sorted_matrix(mat, len(mat), len(mat[0]), x) + + +if __name__ == '__main__': + main() From 8b8a6d881cbda0e6d64aacf5284fbccf27772eec Mon Sep 17 00:00:00 2001 From: louisparis <48298425+louisparis@users.noreply.github.com> Date: Wed, 27 Mar 2019 19:46:46 +0200 Subject: [PATCH 064/594] reduce indentation (#741) --- file_transfer_protocol/ftp_send_receive.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/file_transfer_protocol/ftp_send_receive.py b/file_transfer_protocol/ftp_send_receive.py index 6050c83f2253..6a9819ef3f21 100644 --- a/file_transfer_protocol/ftp_send_receive.py +++ b/file_transfer_protocol/ftp_send_receive.py @@ -1,11 +1,11 @@ """ - File transfer protocol used to send and receive files using FTP server. - Use credentials to provide access to the FTP client +File transfer protocol used to send and receive files using FTP server. +Use credentials to provide access to the FTP client - Note: Do not use root username & password for security reasons - Create a seperate user and provide access to a home directory of the user - Use login id and password of the user created - cwd here stands for current working directory +Note: Do not use root username & password for security reasons +Create a seperate user and provide access to a home directory of the user +Use login id and password of the user created +cwd here stands for current working directory """ from ftplib import FTP @@ -14,8 +14,8 @@ ftp.cwd('/Enter the directory here/') """ - The file which will be received via the FTP server - Enter the location of the file where the file is received +The file which will be received via the FTP server +Enter the location of the file where the file is received """ def ReceiveFile(): @@ -25,8 +25,8 @@ def ReceiveFile(): ftp.quit() """ - The file which will be sent via the FTP server - The file send will be send to the current working directory +The file which will be sent via the FTP server +The file send will be send to the current working directory """ def SendFile(): From 441b82a95f38827cee550215f7cf6018d0258c57 Mon Sep 17 00:00:00 2001 From: RayCurse <38709018+RayCurse@users.noreply.github.com> Date: Wed, 27 Mar 2019 13:50:43 -0400 Subject: [PATCH 065/594] More matrix algorithms (#745) * added matrix minor * added matrix determinant * added inverse,scalar multiply, identity, transpose --- matrix/matrix_multiplication_addition.py | 41 +++++++++++++++++++++++- 1 file changed, 40 insertions(+), 1 deletion(-) diff --git a/matrix/matrix_multiplication_addition.py b/matrix/matrix_multiplication_addition.py index c387c43d4a85..dd50db729e43 100644 --- a/matrix/matrix_multiplication_addition.py +++ b/matrix/matrix_multiplication_addition.py @@ -10,6 +10,8 @@ def add(matrix_a, matrix_b): matrix_c.append(list_1) return matrix_c +def scalarMultiply(matrix , n): + return [[x * n for x in row] for row in matrix] def multiply(matrix_a, matrix_b): matrix_c = [] @@ -24,13 +26,50 @@ def multiply(matrix_a, matrix_b): matrix_c.append(list_1) return matrix_c +def identity(n): + return [[int(row == column) for column in range(n)] for row in range(n)] + +def transpose(matrix): + return map(list , zip(*matrix)) + +def minor(matrix, row, column): + minor = matrix[:row] + matrix[row + 1:] + minor = [row[:column] + row[column + 1:] for row in minor] + return minor + +def determinant(matrix): + if len(matrix) == 1: return matrix[0][0] + + res = 0 + for x in range(len(matrix)): + res += matrix[0][x] * determinant(minor(matrix , 0 , x)) * (-1) ** x + return res + +def inverse(matrix): + det = determinant(matrix) + if det == 0: return None + + matrixMinor = [[] for _ in range(len(matrix))] + for i in range(len(matrix)): + for j in range(len(matrix)): + matrixMinor[i].append(determinant(minor(matrix , i , j))) + + cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrixMinor[row])] for row in range(len(matrix))] + adjugate = transpose(cofactors) + return scalarMultiply(adjugate , 1/det) def main(): matrix_a = [[12, 10], [3, 9]] matrix_b = [[3, 4], [7, 4]] + matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] + matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] + print(add(matrix_a, matrix_b)) print(multiply(matrix_a, matrix_b)) - + print(identity(5)) + print(minor(matrix_c , 1 , 2)) + print(determinant(matrix_b)) + print(inverse(matrix_d)) if __name__ == '__main__': main() From bb29dc55faf5b98b1e9f0b1f11a9dd15525386a3 Mon Sep 17 00:00:00 2001 From: Aditya Haridas Menon Date: Wed, 27 Mar 2019 23:29:31 +0530 Subject: [PATCH 066/594] Bitmasking and DP added (#705) --- dynamic_programming/bitmask.py | 90 ++++++++++++++++++++++++++++++++++ 1 file changed, 90 insertions(+) create mode 100644 dynamic_programming/bitmask.py diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py new file mode 100644 index 000000000000..213b22fe9051 --- /dev/null +++ b/dynamic_programming/bitmask.py @@ -0,0 +1,90 @@ +""" + +This is a python implementation for questions involving task assignments between people. +Here Bitmasking and DP are used for solving this. + +Question :- +We have N tasks and M people. Each person in M can do only certain of these tasks. Also a person can do only one task and a task is performed only by one person. +Find the total no of ways in which the tasks can be distributed. + + +""" +from __future__ import print_function +from collections import defaultdict + + +class AssignmentUsingBitmask: + def __init__(self,task_performed,total): + + self.total_tasks = total #total no of tasks (N) + + # DP table will have a dimension of (2^M)*N + # initially all values are set to -1 + self.dp = [[-1 for i in range(total+1)] for j in range(2**len(task_performed))] + + self.task = defaultdict(list) #stores the list of persons for each task + + #finalmask is used to check if all persons are included by setting all bits to 1 + self.finalmask = (1< self.total_tasks: + return 0 + + #if case already considered + if self.dp[mask][taskno]!=-1: + return self.dp[mask][taskno] + + # Number of ways when we dont this task in the arrangement + total_ways_util = self.CountWaysUtil(mask,taskno+1) + + # now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks. + if taskno in self.task: + for p in self.task[taskno]: + + # if p is already given a task + if mask & (1< Date: Wed, 3 Apr 2019 21:27:36 +0200 Subject: [PATCH 067/594] Added Trafid Cipher (#746) --- ciphers/trafid_cipher.py | 86 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 86 insertions(+) create mode 100644 ciphers/trafid_cipher.py diff --git a/ciphers/trafid_cipher.py b/ciphers/trafid_cipher.py new file mode 100644 index 000000000000..0453272f26a0 --- /dev/null +++ b/ciphers/trafid_cipher.py @@ -0,0 +1,86 @@ +#https://en.wikipedia.org/wiki/Trifid_cipher + +def __encryptPart(messagePart, character2Number): + one, two, three = "", "", "" + tmp = [] + + for character in messagePart: + tmp.append(character2Number[character]) + + for each in tmp: + one += each[0] + two += each[1] + three += each[2] + + return one+two+three + +def __decryptPart(messagePart, character2Number): + tmp, thisPart = "", "" + result = [] + + for character in messagePart: + thisPart += character2Number[character] + + for digit in thisPart: + tmp += digit + if len(tmp) == len(messagePart): + result.append(tmp) + tmp = "" + + return result[0], result[1], result[2] + +def __prepare(message, alphabet): + #Validate message and alphabet, set to upper and remove spaces + alphabet = alphabet.replace(" ", "").upper() + message = message.replace(" ", "").upper() + + #Check length and characters + if len(alphabet) != 27: + raise KeyError("Length of alphabet has to be 27.") + for each in message: + if each not in alphabet: + raise ValueError("Each message character has to be included in alphabet!") + + #Generate dictionares + numbers = ("111","112","113","121","122","123","131","132","133","211","212","213","221","222","223","231","232","233","311","312","313","321","322","323","331","332","333") + character2Number = {} + number2Character = {} + for letter, number in zip(alphabet, numbers): + character2Number[letter] = number + number2Character[number] = letter + + return message, alphabet, character2Number, number2Character + +def encryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): + message, alphabet, character2Number, number2Character = __prepare(message, alphabet) + encrypted, encrypted_numeric = "", "" + + for i in range(0, len(message)+1, period): + encrypted_numeric += __encryptPart(message[i:i+period], character2Number) + + for i in range(0, len(encrypted_numeric), 3): + encrypted += number2Character[encrypted_numeric[i:i+3]] + + return encrypted + +def decryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): + message, alphabet, character2Number, number2Character = __prepare(message, alphabet) + decrypted_numeric = [] + decrypted = "" + + for i in range(0, len(message)+1, period): + a,b,c = __decryptPart(message[i:i+period], character2Number) + + for j in range(0, len(a)): + decrypted_numeric.append(a[j]+b[j]+c[j]) + + for each in decrypted_numeric: + decrypted += number2Character[each] + + return decrypted + +if __name__ == '__main__': + msg = "DEFEND THE EAST WALL OF THE CASTLE." + encrypted = encryptMessage(msg,"EPSDUCVWYM.ZLKXNBTFGORIJHAQ") + decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") + print ("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted)) \ No newline at end of file From 15bc87fb416908230315a5f18adc94f950080c13 Mon Sep 17 00:00:00 2001 From: Ishani Date: Thu, 4 Apr 2019 16:40:11 +0530 Subject: [PATCH 068/594] Create is_Palindrome (#740) --- data_structures/linked_list/is_Palindrome | 77 +++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 data_structures/linked_list/is_Palindrome diff --git a/data_structures/linked_list/is_Palindrome b/data_structures/linked_list/is_Palindrome new file mode 100644 index 000000000000..acc87c1c272b --- /dev/null +++ b/data_structures/linked_list/is_Palindrome @@ -0,0 +1,77 @@ +def is_palindrome(head): + if not head: + return True + # split the list to two parts + fast, slow = head.next, head + while fast and fast.next: + fast = fast.next.next + slow = slow.next + second = slow.next + slow.next = None # Don't forget here! But forget still works! + # reverse the second part + node = None + while second: + nxt = second.next + second.next = node + node = second + second = nxt + # compare two parts + # second part has the same or one less node + while node: + if node.val != head.val: + return False + node = node.next + head = head.next + return True + + +def is_palindrome_stack(head): + if not head or not head.next: + return True + + # 1. Get the midpoint (slow) + slow = fast = cur = head + while fast and fast.next: + fast, slow = fast.next.next, slow.next + + # 2. Push the second half into the stack + stack = [slow.val] + while slow.next: + slow = slow.next + stack.append(slow.val) + + # 3. Comparison + while stack: + if stack.pop() != cur.val: + return False + cur = cur.next + + return True + + +def is_palindrome_dict(head): + if not head or not head.next: + return True + d = {} + pos = 0 + while head: + if head.val in d.keys(): + d[head.val].append(pos) + else: + d[head.val] = [pos] + head = head.next + pos += 1 + checksum = pos - 1 + middle = 0 + for v in d.values(): + if len(v) % 2 != 0: + middle += 1 + else: + step = 0 + for i in range(0, len(v)): + if v[i] + v[len(v) - 1 - step] != checksum: + return False + step += 1 + if middle > 1: + return False + return True From 56de3df784a8ff2bca54946b9218ca039776a2d7 Mon Sep 17 00:00:00 2001 From: Ahish Date: Sun, 7 Apr 2019 21:23:50 +0530 Subject: [PATCH 069/594] Update basic_binary_tree.py (#748) --- binary_tree/basic_binary_tree.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/binary_tree/basic_binary_tree.py b/binary_tree/basic_binary_tree.py index 5738e4ee114f..7c6240fb4dd4 100644 --- a/binary_tree/basic_binary_tree.py +++ b/binary_tree/basic_binary_tree.py @@ -4,6 +4,20 @@ def __init__(self, data): self.left = None self.right = None +def display(tree): #In Order traversal of the tree + + if tree is None: + return + + if tree.left is not None: + display(tree.left) + + print(tree.data) + + if tree.right is not None: + display(tree.right) + + return def depth_of_tree(tree): #This is the recursive function to find the depth of binary tree. if tree is None: @@ -41,6 +55,8 @@ def main(): # Main func for testing. print(is_full_binary_tree(tree)) print(depth_of_tree(tree)) + print("Tree is: ") + display(tree) if __name__ == '__main__': From 137871bfef005f8c53d9c2f20cc8ba7b5d944eeb Mon Sep 17 00:00:00 2001 From: rohan11074 <34051577+rohan11074@users.noreply.github.com> Date: Sun, 7 Apr 2019 21:25:32 +0530 Subject: [PATCH 070/594] feature to add input (#749) --- .../linked_list/singly_linked_list.py | 20 +++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 0b9e44768e15..5ae97523b9a1 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -70,16 +70,20 @@ def reverse(self): def main(): A = Linked_List() - print("Inserting 10 at Head") - A.insert_head(10) - print("Inserting 0 at Head") - A.insert_head(0) + print("Inserting 1st at Head") + a1=input() + A.insert_head(a1) + print("Inserting 2nd at Head") + a2=input() + A.insert_head(a2) print("\nPrint List : ") A.printList() - print("\nInserting 100 at Tail") - A.insert_tail(100) - print("Inserting 1000 at Tail") - A.insert_tail(1000) + print("\nInserting 1st at Tail") + a3=input() + A.insert_tail(a3) + print("Inserting 2nd at Tail") + a4=input() + A.insert_tail(a4) print("\nPrint List : ") A.printList() print("\nDelete Head") From 52d2fbf3cfd646b2dafd5a451c8863887a261e85 Mon Sep 17 00:00:00 2001 From: Reshad Hasan Date: Wed, 10 Apr 2019 21:59:49 +0600 Subject: [PATCH 071/594] Add lowest common ancestor to data structures (#732) * add longest common ancestor in data structures * add lowest common ancestor to data structures --- data_structures/LCA.py | 91 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 91 insertions(+) create mode 100644 data_structures/LCA.py diff --git a/data_structures/LCA.py b/data_structures/LCA.py new file mode 100644 index 000000000000..9c9d8ca629c7 --- /dev/null +++ b/data_structures/LCA.py @@ -0,0 +1,91 @@ +import queue + + +def swap(a, b): + a ^= b + b ^= a + a ^= b + return a, b + + +# creating sparse table which saves each nodes 2^ith parent +def creatSparse(max_node, parent): + j = 1 + while (1 << j) < max_node: + for i in range(1, max_node + 1): + parent[j][i] = parent[j - 1][parent[j - 1][i]] + j += 1 + return parent + + +# returns lca of node u,v +def LCA(u, v, level, parent): + # u must be deeper in the tree than v + if level[u] < level[v]: + u, v = swap(u, v) + # making depth of u same as depth of v + for i in range(18, -1, -1): + if level[u] - (1 << i) >= level[v]: + u = parent[i][u] + # at the same depth if u==v that mean lca is found + if u == v: + return u + # moving both nodes upwards till lca in found + for i in range(18, -1, -1): + if parent[i][u] != 0 and parent[i][u] != parent[i][v]: + u, v = parent[i][u], parent[i][v] + # returning longest common ancestor of u,v + return parent[0][u] + + +# runs a breadth first search from root node of the tree +# sets every nodes direct parent +# parent of root node is set to 0 +# calculates depth of each node from root node +def bfs(level, parent, max_node, graph, root=1): + level[root] = 0 + q = queue.Queue(maxsize=max_node) + q.put(root) + while q.qsize() != 0: + u = q.get() + for v in graph[u]: + if level[v] == -1: + level[v] = level[u] + 1 + q.put(v) + parent[0][v] = u + return level, parent + + +def main(): + max_node = 13 + # initializing with 0 + parent = [[0 for _ in range(max_node + 10)] for _ in range(20)] + # initializing with -1 which means every node is unvisited + level = [-1 for _ in range(max_node + 10)] + graph = { + 1: [2, 3, 4], + 2: [5], + 3: [6, 7], + 4: [8], + 5: [9, 10], + 6: [11], + 7: [], + 8: [12, 13], + 9: [], + 10: [], + 11: [], + 12: [], + 13: [] + } + level, parent = bfs(level, parent, max_node, graph, 1) + parent = creatSparse(max_node, parent) + print("LCA of node 1 and 3 is: ", LCA(1, 3, level, parent)) + print("LCA of node 5 and 6 is: ", LCA(5, 6, level, parent)) + print("LCA of node 7 and 11 is: ", LCA(7, 11, level, parent)) + print("LCA of node 6 and 7 is: ", LCA(6, 7, level, parent)) + print("LCA of node 4 and 12 is: ", LCA(4, 12, level, parent)) + print("LCA of node 8 and 8 is: ", LCA(8, 8, level, parent)) + + +if __name__ == "__main__": + main() From b2f1d9c337a104f1f2f52d87f03f53c5431313f2 Mon Sep 17 00:00:00 2001 From: WILFRIED NJANGUI Date: Sun, 14 Apr 2019 13:58:16 +0200 Subject: [PATCH 072/594] implementation of tower_of_hanoi algorithm (#756) --- maths/Hanoi.py | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100644 maths/Hanoi.py diff --git a/maths/Hanoi.py b/maths/Hanoi.py new file mode 100644 index 000000000000..dd04d0fa58d8 --- /dev/null +++ b/maths/Hanoi.py @@ -0,0 +1,24 @@ +# @author willx75 +# Tower of Hanoi recursion game algorithm is a game, it consists of three rods and a number of disks of different sizes, which can slide onto any rod + +import logging + +log = logging.getLogger() +logging.basicConfig(level=logging.DEBUG) + + +def Tower_Of_Hanoi(n, source, dest, by, mouvement): + if n == 0: + return n + elif n == 1: + mouvement += 1 + # no print statement (you could make it an optional flag for printing logs) + logging.debug('Move the plate from', source, 'to', dest) + return mouvement + else: + + mouvement = mouvement + Tower_Of_Hanoi(n-1, source, by, dest, 0) + logging.debug('Move the plate from', source, 'to', dest) + + mouvement = mouvement + 1 + Tower_Of_Hanoi(n-1, by, dest, source, 0) + return mouvement From a170997eafc15733baa70a858600a47c34daacf2 Mon Sep 17 00:00:00 2001 From: jfeng43 Date: Fri, 19 Apr 2019 11:31:06 -0400 Subject: [PATCH 073/594] Add animation for heap sort --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 7cf1f4f64ffd..faebd313507a 100644 --- a/README.md +++ b/README.md @@ -89,6 +89,7 @@ __Properties__ ### Heap +![alt text][heapsort-image] **Heapsort** is a _comparison-based_ sorting algorithm. It can be thought of as an improved selection sort. It divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. @@ -311,6 +312,7 @@ where {\displaystyle \oplus } \oplus denotes the exclusive disjunction (XOR) op [quick-wiki]: https://en.wikipedia.org/wiki/Quicksort [quick-image]: https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif "Quick Sort" +[heapsort-image]: https://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif "Heap Sort" [heap-wiki]: https://en.wikipedia.org/wiki/Heapsort [radix-wiki]: https://en.wikipedia.org/wiki/Radix_sort From a91f0e7ca07fbd176af6eb4f89d0d592a6fff620 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sat, 20 Apr 2019 00:00:40 +0800 Subject: [PATCH 074/594] Updated Euler problem 21 sol1.py --- project_euler/problem_21/sol1.py | 16 ++-------------- 1 file changed, 2 insertions(+), 14 deletions(-) diff --git a/project_euler/problem_21/sol1.py b/project_euler/problem_21/sol1.py index 6d137a7d4332..da29a5c7b631 100644 --- a/project_euler/problem_21/sol1.py +++ b/project_euler/problem_21/sol1.py @@ -24,19 +24,7 @@ def sum_of_divisors(n): total += i + n//i elif i == sqrt(n): total += i - return total-n -sums = [] -total = 0 - -for i in xrange(1, 10000): - n = sum_of_divisors(i) - - if n < len(sums): - if sums[n-1] == i: - total += n + i - - sums.append(n) - -print(total) \ No newline at end of file +total = [i for i in range(1,10000) if sum_of_divisors(sum_of_divisors(i)) == i and sum_of_divisors(i) != i] +print(sum(total)) From 48bba495ae1007c9e21a0c11d5b95585825f9a9e Mon Sep 17 00:00:00 2001 From: John Law Date: Sat, 20 Apr 2019 15:13:02 +0800 Subject: [PATCH 075/594] Rename is_Palindrome to is_Palindrome.py (#752) --- data_structures/linked_list/{is_Palindrome => is_Palindrome.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename data_structures/linked_list/{is_Palindrome => is_Palindrome.py} (100%) diff --git a/data_structures/linked_list/is_Palindrome b/data_structures/linked_list/is_Palindrome.py similarity index 100% rename from data_structures/linked_list/is_Palindrome rename to data_structures/linked_list/is_Palindrome.py From df04d9454332dc0ea916a6dbe6da2b71d7ae9782 Mon Sep 17 00:00:00 2001 From: Vysor Date: Tue, 23 Apr 2019 00:53:56 +1000 Subject: [PATCH 076/594] Some directories had a capital in their name [fixed]. Added a recursive factorial algorithm. (#763) * Renaming directories * Adding a recursive factorial algorithm --- {Graphs => graphs}/BFS.py | 0 {Graphs => graphs}/DFS.py | 0 .../Directed and Undirected (Weighted) Graph.py | 0 {Graphs => graphs}/a_star.py | 0 {Graphs => graphs}/articulation_points.py | 0 {Graphs => graphs}/basic_graphs.py | 0 {Graphs => graphs}/bellman_ford.py | 0 {Graphs => graphs}/breadth_first_search.py | 0 {Graphs => graphs}/check_bipartite_graph_bfs.py | 0 {Graphs => graphs}/depth_first_search.py | 0 {Graphs => graphs}/dijkstra.py | 0 {Graphs => graphs}/dijkstra_2.py | 0 {Graphs => graphs}/dijkstra_algorithm.py | 0 {Graphs => graphs}/even_tree.py | 0 {Graphs => graphs}/finding_bridges.py | 0 {Graphs => graphs}/floyd_warshall.py | 0 {Graphs => graphs}/graph.py | 0 {Graphs => graphs}/graph_list.py | 0 {Graphs => graphs}/graph_matrix.py | 0 {Graphs => graphs}/kahns_algorithm_long.py | 0 {Graphs => graphs}/kahns_algorithm_topo.py | 0 {Graphs => graphs}/minimum_spanning_tree_kruskal.py | 0 {Graphs => graphs}/minimum_spanning_tree_prims.py | 0 {Graphs => graphs}/multi_hueristic_astar.py | 0 {Graphs => graphs}/scc_kosaraju.py | 0 {Graphs => graphs}/tarjans_scc.py | 0 {Maths => maths}/3n+1.py | 0 {Maths => maths}/FindMax.py | 0 {Maths => maths}/FindMin.py | 0 {Maths => maths}/abs.py | 0 {Maths => maths}/absMax.py | 0 {Maths => maths}/absMin.py | 0 {Maths => maths}/average.py | 0 {Maths => maths}/extended_euclidean_algorithm.py | 0 maths/factorial_recursive.py | 13 +++++++++++++ {Maths => maths}/find_lcm.py | 0 36 files changed, 13 insertions(+) rename {Graphs => graphs}/BFS.py (100%) rename {Graphs => graphs}/DFS.py (100%) rename {Graphs => graphs}/Directed and Undirected (Weighted) Graph.py (100%) rename {Graphs => graphs}/a_star.py (100%) rename {Graphs => graphs}/articulation_points.py (100%) rename {Graphs => graphs}/basic_graphs.py (100%) rename {Graphs => graphs}/bellman_ford.py (100%) rename {Graphs => graphs}/breadth_first_search.py (100%) rename {Graphs => graphs}/check_bipartite_graph_bfs.py (100%) rename {Graphs => graphs}/depth_first_search.py (100%) rename {Graphs => graphs}/dijkstra.py (100%) rename {Graphs => graphs}/dijkstra_2.py (100%) rename {Graphs => graphs}/dijkstra_algorithm.py (100%) rename {Graphs => graphs}/even_tree.py (100%) rename {Graphs => graphs}/finding_bridges.py (100%) rename {Graphs => graphs}/floyd_warshall.py (100%) rename {Graphs => graphs}/graph.py (100%) rename {Graphs => graphs}/graph_list.py (100%) rename {Graphs => graphs}/graph_matrix.py (100%) rename {Graphs => graphs}/kahns_algorithm_long.py (100%) rename {Graphs => graphs}/kahns_algorithm_topo.py (100%) rename {Graphs => graphs}/minimum_spanning_tree_kruskal.py (100%) rename {Graphs => graphs}/minimum_spanning_tree_prims.py (100%) rename {Graphs => graphs}/multi_hueristic_astar.py (100%) rename {Graphs => graphs}/scc_kosaraju.py (100%) rename {Graphs => graphs}/tarjans_scc.py (100%) rename {Maths => maths}/3n+1.py (100%) rename {Maths => maths}/FindMax.py (100%) rename {Maths => maths}/FindMin.py (100%) rename {Maths => maths}/abs.py (100%) rename {Maths => maths}/absMax.py (100%) rename {Maths => maths}/absMin.py (100%) rename {Maths => maths}/average.py (100%) rename {Maths => maths}/extended_euclidean_algorithm.py (100%) create mode 100644 maths/factorial_recursive.py rename {Maths => maths}/find_lcm.py (100%) diff --git a/Graphs/BFS.py b/graphs/BFS.py similarity index 100% rename from Graphs/BFS.py rename to graphs/BFS.py diff --git a/Graphs/DFS.py b/graphs/DFS.py similarity index 100% rename from Graphs/DFS.py rename to graphs/DFS.py diff --git a/Graphs/Directed and Undirected (Weighted) Graph.py b/graphs/Directed and Undirected (Weighted) Graph.py similarity index 100% rename from Graphs/Directed and Undirected (Weighted) Graph.py rename to graphs/Directed and Undirected (Weighted) Graph.py diff --git a/Graphs/a_star.py b/graphs/a_star.py similarity index 100% rename from Graphs/a_star.py rename to graphs/a_star.py diff --git a/Graphs/articulation_points.py b/graphs/articulation_points.py similarity index 100% rename from Graphs/articulation_points.py rename to graphs/articulation_points.py diff --git a/Graphs/basic_graphs.py b/graphs/basic_graphs.py similarity index 100% rename from Graphs/basic_graphs.py rename to graphs/basic_graphs.py diff --git a/Graphs/bellman_ford.py b/graphs/bellman_ford.py similarity index 100% rename from Graphs/bellman_ford.py rename to graphs/bellman_ford.py diff --git a/Graphs/breadth_first_search.py b/graphs/breadth_first_search.py similarity index 100% rename from Graphs/breadth_first_search.py rename to graphs/breadth_first_search.py diff --git a/Graphs/check_bipartite_graph_bfs.py b/graphs/check_bipartite_graph_bfs.py similarity index 100% rename from Graphs/check_bipartite_graph_bfs.py rename to graphs/check_bipartite_graph_bfs.py diff --git a/Graphs/depth_first_search.py b/graphs/depth_first_search.py similarity index 100% rename from Graphs/depth_first_search.py rename to graphs/depth_first_search.py diff --git a/Graphs/dijkstra.py b/graphs/dijkstra.py similarity index 100% rename from Graphs/dijkstra.py rename to graphs/dijkstra.py diff --git a/Graphs/dijkstra_2.py b/graphs/dijkstra_2.py similarity index 100% rename from Graphs/dijkstra_2.py rename to graphs/dijkstra_2.py diff --git a/Graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py similarity index 100% rename from Graphs/dijkstra_algorithm.py rename to graphs/dijkstra_algorithm.py diff --git a/Graphs/even_tree.py b/graphs/even_tree.py similarity index 100% rename from Graphs/even_tree.py rename to graphs/even_tree.py diff --git a/Graphs/finding_bridges.py b/graphs/finding_bridges.py similarity index 100% rename from Graphs/finding_bridges.py rename to graphs/finding_bridges.py diff --git a/Graphs/floyd_warshall.py b/graphs/floyd_warshall.py similarity index 100% rename from Graphs/floyd_warshall.py rename to graphs/floyd_warshall.py diff --git a/Graphs/graph.py b/graphs/graph.py similarity index 100% rename from Graphs/graph.py rename to graphs/graph.py diff --git a/Graphs/graph_list.py b/graphs/graph_list.py similarity index 100% rename from Graphs/graph_list.py rename to graphs/graph_list.py diff --git a/Graphs/graph_matrix.py b/graphs/graph_matrix.py similarity index 100% rename from Graphs/graph_matrix.py rename to graphs/graph_matrix.py diff --git a/Graphs/kahns_algorithm_long.py b/graphs/kahns_algorithm_long.py similarity index 100% rename from Graphs/kahns_algorithm_long.py rename to graphs/kahns_algorithm_long.py diff --git a/Graphs/kahns_algorithm_topo.py b/graphs/kahns_algorithm_topo.py similarity index 100% rename from Graphs/kahns_algorithm_topo.py rename to graphs/kahns_algorithm_topo.py diff --git a/Graphs/minimum_spanning_tree_kruskal.py b/graphs/minimum_spanning_tree_kruskal.py similarity index 100% rename from Graphs/minimum_spanning_tree_kruskal.py rename to graphs/minimum_spanning_tree_kruskal.py diff --git a/Graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py similarity index 100% rename from Graphs/minimum_spanning_tree_prims.py rename to graphs/minimum_spanning_tree_prims.py diff --git a/Graphs/multi_hueristic_astar.py b/graphs/multi_hueristic_astar.py similarity index 100% rename from Graphs/multi_hueristic_astar.py rename to graphs/multi_hueristic_astar.py diff --git a/Graphs/scc_kosaraju.py b/graphs/scc_kosaraju.py similarity index 100% rename from Graphs/scc_kosaraju.py rename to graphs/scc_kosaraju.py diff --git a/Graphs/tarjans_scc.py b/graphs/tarjans_scc.py similarity index 100% rename from Graphs/tarjans_scc.py rename to graphs/tarjans_scc.py diff --git a/Maths/3n+1.py b/maths/3n+1.py similarity index 100% rename from Maths/3n+1.py rename to maths/3n+1.py diff --git a/Maths/FindMax.py b/maths/FindMax.py similarity index 100% rename from Maths/FindMax.py rename to maths/FindMax.py diff --git a/Maths/FindMin.py b/maths/FindMin.py similarity index 100% rename from Maths/FindMin.py rename to maths/FindMin.py diff --git a/Maths/abs.py b/maths/abs.py similarity index 100% rename from Maths/abs.py rename to maths/abs.py diff --git a/Maths/absMax.py b/maths/absMax.py similarity index 100% rename from Maths/absMax.py rename to maths/absMax.py diff --git a/Maths/absMin.py b/maths/absMin.py similarity index 100% rename from Maths/absMin.py rename to maths/absMin.py diff --git a/Maths/average.py b/maths/average.py similarity index 100% rename from Maths/average.py rename to maths/average.py diff --git a/Maths/extended_euclidean_algorithm.py b/maths/extended_euclidean_algorithm.py similarity index 100% rename from Maths/extended_euclidean_algorithm.py rename to maths/extended_euclidean_algorithm.py diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py new file mode 100644 index 000000000000..41391a2718f6 --- /dev/null +++ b/maths/factorial_recursive.py @@ -0,0 +1,13 @@ +def fact(n): + """ + Return 1, if n is 1 or below, + otherwise, return n * fact(n-1). + """ + return 1 if n <= 1 else n * fact(n-1) + +""" +Shown factorial for i, +where i ranges from 1 to 20. +""" +for i in range(1,21): + print(i, ": ", fact(i), sep='') diff --git a/Maths/find_lcm.py b/maths/find_lcm.py similarity index 100% rename from Maths/find_lcm.py rename to maths/find_lcm.py From 2fc2ae3f32fad16226c88358cb7c9e4e5c790a8f Mon Sep 17 00:00:00 2001 From: Viraat Das Date: Thu, 25 Apr 2019 07:48:14 -0400 Subject: [PATCH 077/594] Created a generalized algo to edmonds karp (#724) Edmonds Karp algorithm is traditionally with only one source and one sink. What do you do if you have multiple sources and sinks? This algorithm is a generalized algorithm that regardless of however many sinks and sources you have, will allow you to use this algorithm. It does this by using the traditional algorithm but adding an artificial source and sink that allows with "infinite" weight. --- Graphs/edmonds_karp_Multiple_SourceAndSink.py | 182 ++++++++++++++++++ 1 file changed, 182 insertions(+) create mode 100644 Graphs/edmonds_karp_Multiple_SourceAndSink.py diff --git a/Graphs/edmonds_karp_Multiple_SourceAndSink.py b/Graphs/edmonds_karp_Multiple_SourceAndSink.py new file mode 100644 index 000000000000..d231ac2c4cc3 --- /dev/null +++ b/Graphs/edmonds_karp_Multiple_SourceAndSink.py @@ -0,0 +1,182 @@ +class FlowNetwork: + def __init__(self, graph, sources, sinks): + self.sourceIndex = None + self.sinkIndex = None + self.graph = graph + + self._normalizeGraph(sources, sinks) + self.verticesCount = len(graph) + self.maximumFlowAlgorithm = None + + # make only one source and one sink + def _normalizeGraph(self, sources, sinks): + if sources is int: + sources = [sources] + if sinks is int: + sinks = [sinks] + + if len(sources) == 0 or len(sinks) == 0: + return + + self.sourceIndex = sources[0] + self.sinkIndex = sinks[0] + + # make fake vertex if there are more + # than one source or sink + if len(sources) > 1 or len(sinks) > 1: + maxInputFlow = 0 + for i in sources: + maxInputFlow += sum(self.graph[i]) + + + size = len(self.graph) + 1 + for room in self.graph: + room.insert(0, 0) + self.graph.insert(0, [0] * size) + for i in sources: + self.graph[0][i + 1] = maxInputFlow + self.sourceIndex = 0 + + size = len(self.graph) + 1 + for room in self.graph: + room.append(0) + self.graph.append([0] * size) + for i in sinks: + self.graph[i + 1][size - 1] = maxInputFlow + self.sinkIndex = size - 1 + + + def findMaximumFlow(self): + if self.maximumFlowAlgorithm is None: + raise Exception("You need to set maximum flow algorithm before.") + if self.sourceIndex is None or self.sinkIndex is None: + return 0 + + self.maximumFlowAlgorithm.execute() + return self.maximumFlowAlgorithm.getMaximumFlow() + + def setMaximumFlowAlgorithm(self, Algorithm): + self.maximumFlowAlgorithm = Algorithm(self) + + +class FlowNetworkAlgorithmExecutor(object): + def __init__(self, flowNetwork): + self.flowNetwork = flowNetwork + self.verticesCount = flowNetwork.verticesCount + self.sourceIndex = flowNetwork.sourceIndex + self.sinkIndex = flowNetwork.sinkIndex + # it's just a reference, so you shouldn't change + # it in your algorithms, use deep copy before doing that + self.graph = flowNetwork.graph + self.executed = False + + def execute(self): + if not self.executed: + self._algorithm() + self.executed = True + + # You should override it + def _algorithm(self): + pass + + + +class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor): + def __init__(self, flowNetwork): + super(MaximumFlowAlgorithmExecutor, self).__init__(flowNetwork) + # use this to save your result + self.maximumFlow = -1 + + def getMaximumFlow(self): + if not self.executed: + raise Exception("You should execute algorithm before using its result!") + + return self.maximumFlow + +class PushRelabelExecutor(MaximumFlowAlgorithmExecutor): + def __init__(self, flowNetwork): + super(PushRelabelExecutor, self).__init__(flowNetwork) + + self.preflow = [[0] * self.verticesCount for i in range(self.verticesCount)] + + self.heights = [0] * self.verticesCount + self.excesses = [0] * self.verticesCount + + def _algorithm(self): + self.heights[self.sourceIndex] = self.verticesCount + + # push some substance to graph + for nextVertexIndex, bandwidth in enumerate(self.graph[self.sourceIndex]): + self.preflow[self.sourceIndex][nextVertexIndex] += bandwidth + self.preflow[nextVertexIndex][self.sourceIndex] -= bandwidth + self.excesses[nextVertexIndex] += bandwidth + + # Relabel-to-front selection rule + verticesList = [i for i in range(self.verticesCount) + if i != self.sourceIndex and i != self.sinkIndex] + + # move through list + i = 0 + while i < len(verticesList): + vertexIndex = verticesList[i] + previousHeight = self.heights[vertexIndex] + self.processVertex(vertexIndex) + if self.heights[vertexIndex] > previousHeight: + # if it was relabeled, swap elements + # and start from 0 index + verticesList.insert(0, verticesList.pop(i)) + i = 0 + else: + i += 1 + + self.maximumFlow = sum(self.preflow[self.sourceIndex]) + + def processVertex(self, vertexIndex): + while self.excesses[vertexIndex] > 0: + for neighbourIndex in range(self.verticesCount): + # if it's neighbour and current vertex is higher + if self.graph[vertexIndex][neighbourIndex] - self.preflow[vertexIndex][neighbourIndex] > 0\ + and self.heights[vertexIndex] > self.heights[neighbourIndex]: + self.push(vertexIndex, neighbourIndex) + + self.relabel(vertexIndex) + + def push(self, fromIndex, toIndex): + preflowDelta = min(self.excesses[fromIndex], + self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex]) + self.preflow[fromIndex][toIndex] += preflowDelta + self.preflow[toIndex][fromIndex] -= preflowDelta + self.excesses[fromIndex] -= preflowDelta + self.excesses[toIndex] += preflowDelta + + def relabel(self, vertexIndex): + minHeight = None + for toIndex in range(self.verticesCount): + if self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex] > 0: + if minHeight is None or self.heights[toIndex] < minHeight: + minHeight = self.heights[toIndex] + + if minHeight is not None: + self.heights[vertexIndex] = minHeight + 1 + +if __name__ == '__main__': + entrances = [0] + exits = [3] + # graph = [ + # [0, 0, 4, 6, 0, 0], + # [0, 0, 5, 2, 0, 0], + # [0, 0, 0, 0, 4, 4], + # [0, 0, 0, 0, 6, 6], + # [0, 0, 0, 0, 0, 0], + # [0, 0, 0, 0, 0, 0], + # ] + graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] + + # prepare our network + flowNetwork = FlowNetwork(graph, entrances, exits) + # set algorithm + flowNetwork.setMaximumFlowAlgorithm(PushRelabelExecutor) + # and calculate + maximumFlow = flowNetwork.findMaximumFlow() + + print("maximum flow is {}".format(maximumFlow)) From 48553da785f9233311ae59dd6eb93f79cf675965 Mon Sep 17 00:00:00 2001 From: sakuralethe Date: Fri, 26 Apr 2019 17:43:51 +0800 Subject: [PATCH 078/594] variable in function should be lowercase (#768) --- sorts/quick_sort.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index 136cbc021669..e01d319a4b29 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -12,7 +12,7 @@ from __future__ import print_function -def quick_sort(ARRAY): +def quick_sort(collection): """Pure implementation of quick sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous @@ -29,14 +29,14 @@ def quick_sort(ARRAY): >>> quick_sort([-2, -5, -45]) [-45, -5, -2] """ - ARRAY_LENGTH = len(ARRAY) - if( ARRAY_LENGTH <= 1): - return ARRAY + length = len(collection) + if length <= 1: + return collection else: - PIVOT = ARRAY[0] - GREATER = [ element for element in ARRAY[1:] if element > PIVOT ] - LESSER = [ element for element in ARRAY[1:] if element <= PIVOT ] - return quick_sort(LESSER) + [PIVOT] + quick_sort(GREATER) + pivot = collection[0] + greater = [element for element in collection[1:] if element > pivot] + lesser = [element for element in collection[1:] if element <= pivot] + return quick_sort(lesser) + [pivot] + quick_sort(greater) if __name__ == '__main__': From 06dbef04a0700095b156c26b113bf08466a46c90 Mon Sep 17 00:00:00 2001 From: Gattlin Walker Date: Tue, 30 Apr 2019 08:16:42 -0500 Subject: [PATCH 079/594] Adding quick sort where random pivot point is chosen (#774) --- sorts/random_pivot_quick_sort.py | 33 ++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100644 sorts/random_pivot_quick_sort.py diff --git a/sorts/random_pivot_quick_sort.py b/sorts/random_pivot_quick_sort.py new file mode 100644 index 000000000000..fc8f90486ee6 --- /dev/null +++ b/sorts/random_pivot_quick_sort.py @@ -0,0 +1,33 @@ +""" +Picks the random index as the pivot +""" +import random + +def partition(A, left_index, right_index): + pivot = A[left_index] + i = left_index + 1 + for j in range(left_index + 1, right_index): + if A[j] < pivot: + A[j], A[i] = A[i], A[j] + i += 1 + A[left_index], A[i - 1] = A[i - 1], A[left_index] + return i - 1 + +def quick_sort_random(A, left, right): + if left < right: + pivot = random.randint(left, right - 1) + A[pivot], A[left] = A[left], A[pivot] #switches the pivot with the left most bound + pivot_index = partition(A, left, right) + quick_sort_random(A, left, pivot_index) #recursive quicksort to the left of the pivot point + quick_sort_random(A, pivot_index + 1, right) #recursive quicksort to the right of the pivot point + +def main(): + user_input = input('Enter numbers separated by a comma:\n').strip() + arr = [int(item) for item in user_input.split(',')] + + quick_sort_random(arr, 0, len(arr)) + + print(arr) + +if __name__ == "__main__": + main() \ No newline at end of file From 7b89d03dd7d80087fa95bcf7a1983fe3d8b424ca Mon Sep 17 00:00:00 2001 From: yolstatrisch Date: Thu, 2 May 2019 00:44:21 +0800 Subject: [PATCH 080/594] Added an O(1) solution to problem 002 (#776) * Added an O(1) solution to problem 002 * Removed comments from sol3.py that were accidentally added to sol4.py --- project_euler/problem_02/sol4.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) create mode 100644 project_euler/problem_02/sol4.py diff --git a/project_euler/problem_02/sol4.py b/project_euler/problem_02/sol4.py new file mode 100644 index 000000000000..64bae65f49b4 --- /dev/null +++ b/project_euler/problem_02/sol4.py @@ -0,0 +1,13 @@ +import math +from decimal import * + +getcontext().prec = 100 +phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2) + +n = Decimal(int(input()) - 1) + +index = (math.floor(math.log(n * (phi + 2), phi) - 1) // 3) * 3 + 2 +num = round(phi ** Decimal(index + 1)) / (phi + 2) +sum = num // 2 + +print(int(sum)) From c5c3a74f8fbeed522288a63099a2121f9fe6bddb Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 4 May 2019 15:43:37 +0530 Subject: [PATCH 081/594] Update README.md --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index faebd313507a..1e43deb6bdef 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,6 @@ # The Algorithms - Python +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=JP3BLXA6KMDGW) + ### All algorithms implemented in Python (for education) From e22ea7e380d75012990c8bb1648081b229cdd6fa Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 4 May 2019 21:53:06 +0530 Subject: [PATCH 082/594] Update Directed and Undirected (Weighted) Graph.py --- graphs/Directed and Undirected (Weighted) Graph.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/graphs/Directed and Undirected (Weighted) Graph.py b/graphs/Directed and Undirected (Weighted) Graph.py index 68977de8d311..a31a4a96d6d0 100644 --- a/graphs/Directed and Undirected (Weighted) Graph.py +++ b/graphs/Directed and Undirected (Weighted) Graph.py @@ -152,6 +152,7 @@ def cycle_nodes(self): parent = -2 indirect_parents = [] ss = s + on_the_way_back = False anticipating_nodes = set() while True: @@ -199,6 +200,7 @@ def has_cycle(self): parent = -2 indirect_parents = [] ss = s + on_the_way_back = False anticipating_nodes = set() while True: @@ -367,6 +369,7 @@ def cycle_nodes(self): parent = -2 indirect_parents = [] ss = s + on_the_way_back = False anticipating_nodes = set() while True: @@ -414,6 +417,7 @@ def has_cycle(self): parent = -2 indirect_parents = [] ss = s + on_the_way_back = False anticipating_nodes = set() while True: From 7677c370115faa49759b72f5d7c9debfe1081e35 Mon Sep 17 00:00:00 2001 From: weixuanhu <44716380+weixuanhu@users.noreply.github.com> Date: Mon, 6 May 2019 17:54:31 +0800 Subject: [PATCH 083/594] update 'sorted' to 'ascending sorted' in comments (#789) To avoid confusion all 'sorted' to 'ascending sorted' in comments --- searches/binary_search.py | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/searches/binary_search.py b/searches/binary_search.py index 7df45883c09a..1d5da96586cd 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -21,10 +21,10 @@ def binary_search(sorted_collection, item): """Pure implementation of binary search algorithm in Python - Be careful collection must be sorted, otherwise result will be + Be careful collection must be ascending sorted, otherwise result will be unpredictable - :param sorted_collection: some sorted collection with comparable items + :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found @@ -60,10 +60,10 @@ def binary_search(sorted_collection, item): def binary_search_std_lib(sorted_collection, item): """Pure implementation of binary search algorithm in Python using stdlib - Be careful collection must be sorted, otherwise result will be + Be careful collection must be ascending sorted, otherwise result will be unpredictable - :param sorted_collection: some sorted collection with comparable items + :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found @@ -89,11 +89,11 @@ def binary_search_by_recursion(sorted_collection, item, left, right): """Pure implementation of binary search algorithm in Python by recursion - Be careful collection must be sorted, otherwise result will be + Be careful collection must be ascending sorted, otherwise result will be unpredictable First recursion should be started with left=0 and right=(len(sorted_collection)-1) - :param sorted_collection: some sorted collection with comparable items + :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found @@ -123,11 +123,11 @@ def binary_search_by_recursion(sorted_collection, item, left, right): return binary_search_by_recursion(sorted_collection, item, midpoint+1, right) def __assert_sorted(collection): - """Check if collection is sorted, if not - raises :py:class:`ValueError` + """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` :param collection: collection - :return: True if collection is sorted - :raise: :py:class:`ValueError` if collection is not sorted + :return: True if collection is ascending sorted + :raise: :py:class:`ValueError` if collection is not ascending sorted Examples: >>> __assert_sorted([0, 1, 2, 4]) @@ -136,10 +136,10 @@ def __assert_sorted(collection): >>> __assert_sorted([10, -1, 5]) Traceback (most recent call last): ... - ValueError: Collection must be sorted + ValueError: Collection must be ascending sorted """ if collection != sorted(collection): - raise ValueError('Collection must be sorted') + raise ValueError('Collection must be ascending sorted') return True @@ -150,7 +150,7 @@ def __assert_sorted(collection): try: __assert_sorted(collection) except ValueError: - sys.exit('Sequence must be sorted to apply binary search') + sys.exit('Sequence must be ascending sorted to apply binary search') target_input = raw_input('Enter a single number to be found in the list:\n') target = int(target_input) From 30a358298385e0e29b70a841d0b4019dc235f3a3 Mon Sep 17 00:00:00 2001 From: Lorenz Nickel Date: Wed, 8 May 2019 21:48:30 +0200 Subject: [PATCH 084/594] fix: replaced outdated url (#791) http://www.lpb-riannetrujillo.com/blog/python-fractal/ moved to http://www.riannetrujillo.com/blog/python-fractal/ --- other/sierpinski_triangle.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/other/sierpinski_triangle.py b/other/sierpinski_triangle.py index 6a06058fe03e..329a8ce5c43f 100644 --- a/other/sierpinski_triangle.py +++ b/other/sierpinski_triangle.py @@ -21,7 +21,7 @@ Usage: - $python sierpinski_triangle.py -Credits: This code was written by editing the code from http://www.lpb-riannetrujillo.com/blog/python-fractal/ +Credits: This code was written by editing the code from http://www.riannetrujillo.com/blog/python-fractal/ ''' import turtle @@ -64,4 +64,4 @@ def triangle(points,depth): depth-1) -triangle(points,int(sys.argv[1])) \ No newline at end of file +triangle(points,int(sys.argv[1])) From 56513cb21f759ac26b31ac1edcb45d886a97f715 Mon Sep 17 00:00:00 2001 From: Junth Basnet <25685098+Junth19@users.noreply.github.com> Date: Fri, 10 May 2019 16:48:05 +0545 Subject: [PATCH 085/594] add-binary-exponentiation (#790) --- maths/BinaryExponentiation.py | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 maths/BinaryExponentiation.py diff --git a/maths/BinaryExponentiation.py b/maths/BinaryExponentiation.py new file mode 100644 index 000000000000..2411cd58a76b --- /dev/null +++ b/maths/BinaryExponentiation.py @@ -0,0 +1,25 @@ +#Author : Junth Basnet +#Time Complexity : O(logn) + +def binary_exponentiation(a, n): + + if (n == 0): + return 1 + + elif (n % 2 == 1): + return binary_exponentiation(a, n - 1) * a + + else: + b = binary_exponentiation(a, n / 2) + return b * b + + +try: + base = int(input('Enter Base : ')) + power = int(input("Enter Power : ")) +except ValueError: + print ("Invalid literal for integer") + +result = binary_exponentiation(base, power) +print("{}^({}) : {}".format(base, power, result)) + From 36828b106f7905ecc0c0776e40c99929728a91a9 Mon Sep 17 00:00:00 2001 From: Julien Castiaux Date: Sat, 11 May 2019 13:20:25 +0200 Subject: [PATCH 086/594] [FIX] maths/PrimeCheck (#796) Current implementation is buggy and hard to read. * Negative values were raising a TypeError due to `math.sqrt` * 1 was considered prime, it is not. * 2 was considered not prime, it is. The implementation has been corrected to fix the bugs and to enhance readability. A docstring has been added with the definition of a prime number. A complete test suite has been written, it tests the 10 first primes, a negative value, 0, 1 and some not prime numbers. closes #795 --- maths/PrimeCheck.py | 55 +++++++++++++++++++++++++++++++++++++++------ 1 file changed, 48 insertions(+), 7 deletions(-) diff --git a/maths/PrimeCheck.py b/maths/PrimeCheck.py index e0c51d77a038..8c5c181689dd 100644 --- a/maths/PrimeCheck.py +++ b/maths/PrimeCheck.py @@ -1,13 +1,54 @@ import math +import unittest + + def primeCheck(number): - if number % 2 == 0 and number > 2: + """ + A number is prime if it has exactly two dividers: 1 and itself. + """ + if number < 2: + # Negatives, 0 and 1 are not primes return False - return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) + if number < 4: + # 2 and 3 are primes + return True + if number % 2 == 0: + # Even values are not primes + return False + + # Except 2, all primes are odd. If any odd value divide + # the number, then that number is not prime. + odd_numbers = range(3, int(math.sqrt(number)) + 1, 2) + return not any(number % i == 0 for i in odd_numbers) + + +class Test(unittest.TestCase): + def test_primes(self): + self.assertTrue(primeCheck(2)) + self.assertTrue(primeCheck(3)) + self.assertTrue(primeCheck(5)) + self.assertTrue(primeCheck(7)) + self.assertTrue(primeCheck(11)) + self.assertTrue(primeCheck(13)) + self.assertTrue(primeCheck(17)) + self.assertTrue(primeCheck(19)) + self.assertTrue(primeCheck(23)) + self.assertTrue(primeCheck(29)) + + def test_not_primes(self): + self.assertFalse(primeCheck(-19), + "Negative numbers are not prime.") + self.assertFalse(primeCheck(0), + "Zero doesn't have any divider, primes must have two") + self.assertFalse(primeCheck(1), + "One just have 1 divider, primes must have two.") + self.assertFalse(primeCheck(2 * 2)) + self.assertFalse(primeCheck(2 * 3)) + self.assertFalse(primeCheck(3 * 3)) + self.assertFalse(primeCheck(3 * 5)) + self.assertFalse(primeCheck(3 * 5 * 7)) -def main(): - print(primeCheck(37)) - print(primeCheck(100)) - print(primeCheck(77)) if __name__ == '__main__': - main() + unittest.main() + From d8badcc6d5568e3ed8b060305f6d02e74019f1a4 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sun, 12 May 2019 09:10:56 +0530 Subject: [PATCH 087/594] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 1e43deb6bdef..9b61f1b63287 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ # The Algorithms - Python -[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=JP3BLXA6KMDGW) +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100) ### All algorithms implemented in Python (for education) From 3f7bec6c00c089490c8b5d38686373ca6e1ea97b Mon Sep 17 00:00:00 2001 From: Bhushan Borole <37565807+bhushan-borole@users.noreply.github.com> Date: Sun, 12 May 2019 17:16:47 +0530 Subject: [PATCH 088/594] Added page-rank algorithm implementation (#780) * Added page-rank algorithm implementation * changed init variables --- Graphs/pagerank.py | 72 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 Graphs/pagerank.py diff --git a/Graphs/pagerank.py b/Graphs/pagerank.py new file mode 100644 index 000000000000..59f15a99e6b2 --- /dev/null +++ b/Graphs/pagerank.py @@ -0,0 +1,72 @@ +''' +Author: https://github.com/bhushan-borole +''' +''' +The input graph for the algorithm is: + + A B C +A 0 1 1 +B 0 0 1 +C 1 0 0 + +''' + +graph = [[0, 1, 1], + [0, 0, 1], + [1, 0, 0]] + + +class Node: + def __init__(self, name): + self.name = name + self.inbound = [] + self.outbound = [] + + def add_inbound(self, node): + self.inbound.append(node) + + def add_outbound(self, node): + self.outbound.append(node) + + def __repr__(self): + return 'Node {}: Inbound: {} ; Outbound: {}'.format(self.name, + self.inbound, + self.outbound) + + +def page_rank(nodes, limit=3, d=0.85): + ranks = {} + for node in nodes: + ranks[node.name] = 1 + + outbounds = {} + for node in nodes: + outbounds[node.name] = len(node.outbound) + + for i in range(limit): + print("======= Iteration {} =======".format(i+1)) + for j, node in enumerate(nodes): + ranks[node.name] = (1 - d) + d * sum([ ranks[ib]/outbounds[ib] for ib in node.inbound ]) + print(ranks) + + +def main(): + names = list(input('Enter Names of the Nodes: ').split()) + + nodes = [Node(name) for name in names] + + for ri, row in enumerate(graph): + for ci, col in enumerate(row): + if col == 1: + nodes[ci].add_inbound(names[ri]) + nodes[ri].add_outbound(names[ci]) + + print("======= Nodes =======") + for node in nodes: + print(node) + + page_rank(nodes) + + +if __name__ == '__main__': + main() \ No newline at end of file From 70bb6b2f18bec6cadca052d96e526d014d18ff32 Mon Sep 17 00:00:00 2001 From: Ravi Patel Date: Mon, 13 May 2019 01:15:27 -0400 Subject: [PATCH 089/594] Added Huffman Coding Algorithm (#798) --- compression/huffman.py | 87 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 87 insertions(+) create mode 100644 compression/huffman.py diff --git a/compression/huffman.py b/compression/huffman.py new file mode 100644 index 000000000000..b6238b66e9fd --- /dev/null +++ b/compression/huffman.py @@ -0,0 +1,87 @@ +import sys + +class Letter: + def __init__(self, letter, freq): + self.letter = letter + self.freq = freq + self.bitstring = "" + + def __repr__(self): + return f'{self.letter}:{self.freq}' + + +class TreeNode: + def __init__(self, freq, left, right): + self.freq = freq + self.left = left + self.right = right + + +def parse_file(file_path): + """ + Read the file and build a dict of all letters and their + frequences, then convert the dict into a list of Letters. + """ + chars = {} + with open(file_path) as f: + while True: + c = f.read(1) + if not c: + break + chars[c] = chars[c] + 1 if c in chars.keys() else 1 + letters = [] + for char, freq in chars.items(): + letter = Letter(char, freq) + letters.append(letter) + letters.sort(key=lambda l: l.freq) + return letters + +def build_tree(letters): + """ + Run through the list of Letters and build the min heap + for the Huffman Tree. + """ + while len(letters) > 1: + left = letters.pop(0) + right = letters.pop(0) + total_freq = left.freq + right.freq + node = TreeNode(total_freq, left, right) + letters.append(node) + letters.sort(key=lambda l: l.freq) + return letters[0] + +def traverse_tree(root, bitstring): + """ + Recursively traverse the Huffman Tree to set each + Letter's bitstring, and return the list of Letters + """ + if type(root) is Letter: + root.bitstring = bitstring + return [root] + letters = [] + letters += traverse_tree(root.left, bitstring + "0") + letters += traverse_tree(root.right, bitstring + "1") + return letters + +def huffman(file_path): + """ + Parse the file, build the tree, then run through the file + again, using the list of Letters to find and print out the + bitstring for each letter. + """ + letters_list = parse_file(file_path) + root = build_tree(letters_list) + letters = traverse_tree(root, "") + print(f'Huffman Coding of {file_path}: ') + with open(file_path) as f: + while True: + c = f.read(1) + if not c: + break + le = list(filter(lambda l: l.letter == c, letters))[0] + print(le.bitstring, end=" ") + print() + +if __name__ == "__main__": + # pass the file path to the huffman function + huffman(sys.argv[1]) From 3c40fda6a3ed8f59f1afc11b653be505557a41ef Mon Sep 17 00:00:00 2001 From: "Tommy.Liu" <447569003@qq.com> Date: Tue, 14 May 2019 18:17:25 +0800 Subject: [PATCH 090/594] More elegant coding for merge_sort_fastest (#804) * More elegant coding for merge_sort_fastest * More elegant coding for merge_sort --- sorts/merge_sort.py | 46 +++++++++++--------------------- sorts/merge_sort_fastest.py | 53 ++++++++++++++++++++++++++++--------- 2 files changed, 55 insertions(+), 44 deletions(-) diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index ca4d319fa7f1..4a6201a40cb4 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -29,36 +29,20 @@ def merge_sort(collection): >>> merge_sort([-2, -5, -45]) [-45, -5, -2] """ - length = len(collection) - if length > 1: - midpoint = length // 2 - left_half = merge_sort(collection[:midpoint]) - right_half = merge_sort(collection[midpoint:]) - i = 0 - j = 0 - k = 0 - left_length = len(left_half) - right_length = len(right_half) - while i < left_length and j < right_length: - if left_half[i] < right_half[j]: - collection[k] = left_half[i] - i += 1 - else: - collection[k] = right_half[j] - j += 1 - k += 1 - - while i < left_length: - collection[k] = left_half[i] - i += 1 - k += 1 - - while j < right_length: - collection[k] = right_half[j] - j += 1 - k += 1 - - return collection + def merge(left, right): + '''merge left and right + :param left: left collection + :param right: right collection + :return: merge result + ''' + result = [] + while left and right: + result.append(left.pop(0) if left[0] <= right[0] else right.pop(0)) + return result + left + right + if len(collection) <= 1: + return collection + mid = len(collection) // 2 + return merge(merge_sort(collection[:mid]), merge_sort(collection[mid:])) if __name__ == '__main__': @@ -69,4 +53,4 @@ def merge_sort(collection): user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] - print(merge_sort(unsorted)) + print(*merge_sort(unsorted), sep=',') diff --git a/sorts/merge_sort_fastest.py b/sorts/merge_sort_fastest.py index 9fc9275aacba..86cb8ae1a699 100644 --- a/sorts/merge_sort_fastest.py +++ b/sorts/merge_sort_fastest.py @@ -1,19 +1,46 @@ ''' -Python implementation of merge sort algorithm. +Python implementation of the fastest merge sort algorithm. Takes an average of 0.6 microseconds to sort a list of length 1000 items. Best Case Scenario : O(n) Worst Case Scenario : O(n) ''' -def merge_sort(LIST): - start = [] - end = [] - while len(LIST) > 1: - a = min(LIST) - b = max(LIST) - start.append(a) - end.append(b) - LIST.remove(a) - LIST.remove(b) - if LIST: start.append(LIST[0]) +from __future__ import print_function + + +def merge_sort(collection): + """Pure implementation of the fastest merge sort algorithm in Python + + :param collection: some mutable ordered collection with heterogeneous + comparable items inside + :return: a collection ordered by ascending + + Examples: + >>> merge_sort([0, 5, 3, 2, 2]) + [0, 2, 2, 3, 5] + + >>> merge_sort([]) + [] + + >>> merge_sort([-2, -5, -45]) + [-45, -5, -2] + """ + start, end = [], [] + while len(collection) > 1: + min_one, max_one = min(collection), max(collection) + start.append(min_one) + end.append(max_one) + collection.remove(min_one) + collection.remove(max_one) end.reverse() - return (start + end) + return start + collection + end + + +if __name__ == '__main__': + try: + raw_input # Python 2 + except NameError: + raw_input = input # Python 3 + + user_input = raw_input('Enter numbers separated by a comma:\n').strip() + unsorted = [int(item) for item in user_input.split(',')] + print(*merge_sort(unsorted), sep=',') From c4d16820bc062ebb1f311e74885e7ca0e2fa5973 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Tue, 14 May 2019 21:45:53 +0430 Subject: [PATCH 091/594] Fix typo (#806) --- strings/manacher.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/strings/manacher.py b/strings/manacher.py index 9a44b19ba77a..e73e173b43e0 100644 --- a/strings/manacher.py +++ b/strings/manacher.py @@ -1,4 +1,4 @@ -# calculate palindromic length from center with incresmenting difference +# calculate palindromic length from center with incrementing difference def palindromic_length( center, diff, string): if center-diff == -1 or center+diff == len(string) or string[center-diff] != string[center+diff] : return 0 From 76061ab2cc7f4e07fa7b2c952ca715cc6d09d7c2 Mon Sep 17 00:00:00 2001 From: Reshad Hasan Date: Thu, 16 May 2019 17:20:27 +0600 Subject: [PATCH 092/594] added eulerian path and circuit finding algorithm (#787) --- ...n path and circuit for undirected graph.py | 93 +++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 Graphs/Eulerian path and circuit for undirected graph.py diff --git a/Graphs/Eulerian path and circuit for undirected graph.py b/Graphs/Eulerian path and circuit for undirected graph.py new file mode 100644 index 000000000000..c6c6a1a25f03 --- /dev/null +++ b/Graphs/Eulerian path and circuit for undirected graph.py @@ -0,0 +1,93 @@ +# Eulerian Path is a path in graph that visits every edge exactly once. +# Eulerian Circuit is an Eulerian Path which starts and ends on the same +# vertex. +# time complexity is O(V+E) +# space complexity is O(VE) + + +# using dfs for finding eulerian path traversal +def dfs(u, graph, visited_edge, path=[]): + path = path + [u] + for v in graph[u]: + if visited_edge[u][v] == False: + visited_edge[u][v], visited_edge[v][u] = True, True + path = dfs(v, graph, visited_edge, path) + return path + + +# for checking in graph has euler path or circuit +def check_circuit_or_path(graph, max_node): + odd_degree_nodes = 0 + odd_node = -1 + for i in range(max_node): + if i not in graph.keys(): + continue + if len(graph[i]) % 2 == 1: + odd_degree_nodes += 1 + odd_node = i + if odd_degree_nodes == 0: + return 1, odd_node + if odd_degree_nodes == 2: + return 2, odd_node + return 3, odd_node + + +def check_euler(graph, max_node): + visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] + check, odd_node = check_circuit_or_path(graph, max_node) + if check == 3: + print("graph is not Eulerian") + print("no path") + return + start_node = 1 + if check == 2: + start_node = odd_node + print("graph has a Euler path") + if check == 1: + print("graph has a Euler cycle") + path = dfs(start_node, graph, visited_edge) + print(path) + + +def main(): + G1 = { + 1: [2, 3, 4], + 2: [1, 3], + 3: [1, 2], + 4: [1, 5], + 5: [4] + } + G2 = { + 1: [2, 3, 4, 5], + 2: [1, 3], + 3: [1, 2], + 4: [1, 5], + 5: [1, 4] + } + G3 = { + 1: [2, 3, 4], + 2: [1, 3, 4], + 3: [1, 2], + 4: [1, 2, 5], + 5: [4] + } + G4 = { + 1: [2, 3], + 2: [1, 3], + 3: [1, 2], + } + G5 = { + 1: [], + 2: [] + # all degree is zero + } + max_node = 10 + check_euler(G1, max_node) + check_euler(G2, max_node) + check_euler(G3, max_node) + check_euler(G4, max_node) + check_euler(G5, max_node) + + +if __name__ == "__main__": + main() From c47c1ab03ce80963d5dcd2136d03555f3b283055 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?N=C3=ADkolas=20Vargas?= Date: Thu, 16 May 2019 08:20:42 -0300 Subject: [PATCH 093/594] enhancement (#803) --- compression/huffman.py | 17 ++++++----------- 1 file changed, 6 insertions(+), 11 deletions(-) diff --git a/compression/huffman.py b/compression/huffman.py index b6238b66e9fd..7417551ba209 100644 --- a/compression/huffman.py +++ b/compression/huffman.py @@ -18,7 +18,7 @@ def __init__(self, freq, left, right): def parse_file(file_path): - """ + """ Read the file and build a dict of all letters and their frequences, then convert the dict into a list of Letters. """ @@ -29,15 +29,10 @@ def parse_file(file_path): if not c: break chars[c] = chars[c] + 1 if c in chars.keys() else 1 - letters = [] - for char, freq in chars.items(): - letter = Letter(char, freq) - letters.append(letter) - letters.sort(key=lambda l: l.freq) - return letters + return sorted([Letter(c, f) for c, f in chars.items()], key=lambda l: l.freq) def build_tree(letters): - """ + """ Run through the list of Letters and build the min heap for the Huffman Tree. """ @@ -51,7 +46,7 @@ def build_tree(letters): return letters[0] def traverse_tree(root, bitstring): - """ + """ Recursively traverse the Huffman Tree to set each Letter's bitstring, and return the list of Letters """ @@ -64,9 +59,9 @@ def traverse_tree(root, bitstring): return letters def huffman(file_path): - """ + """ Parse the file, build the tree, then run through the file - again, using the list of Letters to find and print out the + again, using the list of Letters to find and print out the bitstring for each letter. """ letters_list = parse_file(file_path) From 13c0c166d8f80398de39ab41632fd54be86ae2cc Mon Sep 17 00:00:00 2001 From: ImNandha <49323522+ImNandha@users.noreply.github.com> Date: Thu, 16 May 2019 16:53:23 +0530 Subject: [PATCH 094/594] Update graph.py (#809) --- graphs/graph.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/graphs/graph.py b/graphs/graph.py index 9bd61559dcbf..0c981c39d320 100644 --- a/graphs/graph.py +++ b/graphs/graph.py @@ -4,7 +4,7 @@ from __future__ import print_function # Author: OMKAR PATHAK -# We can use Python's dictionary for constructing the graph +# We can use Python's dictionary for constructing the graph. class AdjacencyList(object): def __init__(self): From a65efd42c4683b628338b84c822d22eab199c058 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Thu, 16 May 2019 15:54:56 +0430 Subject: [PATCH 095/594] Implement check_bipartite_graph using DFS. (#808) --- graphs/check_bipartite_graph_dfs.py | 33 +++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100644 graphs/check_bipartite_graph_dfs.py diff --git a/graphs/check_bipartite_graph_dfs.py b/graphs/check_bipartite_graph_dfs.py new file mode 100644 index 000000000000..eeb3a84b7a15 --- /dev/null +++ b/graphs/check_bipartite_graph_dfs.py @@ -0,0 +1,33 @@ +# Check whether Graph is Bipartite or Not using DFS + +# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, +# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex +# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, +# or u belongs to V and v to U. We can also say that there is no edge that connects +# vertices of same set. +def check_bipartite_dfs(l): + visited = [False] * len(l) + color = [-1] * len(l) + + def dfs(v, c): + visited[v] = True + color[v] = c + for u in l[v]: + if not visited[u]: + dfs(u, 1 - c) + + for i in range(len(l)): + if not visited[i]: + dfs(i, 0) + + for i in range(len(l)): + for j in l[i]: + if color[i] == color[j]: + return False + + return True + + +# Adjacency list of graph +l = {0:[1,3], 1:[0,2], 2:[1,3], 3:[0,2], 4: []} +print(check_bipartite_dfs(l)) From 5b86928c4b6ab23cbff51ddf9023ac230d4dff26 Mon Sep 17 00:00:00 2001 From: cclauss Date: Thu, 16 May 2019 13:26:46 +0200 Subject: [PATCH 096/594] Use ==/!= to compare str, bytes, and int literals (#767) * Travis CI: Add more flake8 tests * Use ==/!= to compare str, bytes, and int literals ./project_euler/problem_17/sol1.py:25:7: F632 use ==/!= to compare str, bytes, and int literals if i%100 is not 0: ^ * Use ==/!= to compare str, bytes, and int literals * Update sol1.py --- .travis.yml | 2 +- project_euler/problem_17/sol1.py | 4 ++-- project_euler/problem_19/sol1.py | 8 ++++---- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/.travis.yml b/.travis.yml index 5fba6987bb66..2440899e4f25 100644 --- a/.travis.yml +++ b/.travis.yml @@ -16,7 +16,7 @@ install: - pip install flake8 # pytest # add another testing frameworks later before_script: # stop the build if there are Python syntax errors or undefined names - - flake8 . --count --select=E901,E999,F821,F822,F823 --show-source --statistics + - flake8 . --count --select=E9,F63,F72,F82 --show-source --statistics # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics script: diff --git a/project_euler/problem_17/sol1.py b/project_euler/problem_17/sol1.py index 9de5d80b9b29..8dd6f1af2093 100644 --- a/project_euler/problem_17/sol1.py +++ b/project_euler/problem_17/sol1.py @@ -22,7 +22,7 @@ if i >= 100: count += ones_counts[i/100] + 7 #add number of letters for "n hundred" - if i%100 is not 0: + if i%100 != 0: count += 3 #add number of letters for "and" if number is not multiple of 100 if 0 < i%100 < 20: @@ -32,4 +32,4 @@ else: count += ones_counts[i/1000] + 8 -print(count) \ No newline at end of file +print(count) diff --git a/project_euler/problem_19/sol1.py b/project_euler/problem_19/sol1.py index 94cf117026a4..13e520ca76e4 100644 --- a/project_euler/problem_19/sol1.py +++ b/project_euler/problem_19/sol1.py @@ -30,10 +30,10 @@ day += 7 if (year%4 == 0 and not year%100 == 0) or (year%400 == 0): - if day > days_per_month[month-1] and month is not 2: + if day > days_per_month[month-1] and month != 2: month += 1 day = day-days_per_month[month-2] - elif day > 29 and month is 2: + elif day > 29 and month == 2: month += 1 day = day-29 else: @@ -45,7 +45,7 @@ year += 1 month = 1 - if year < 2001 and day is 1: + if year < 2001 and day == 1: sundays += 1 -print(sundays) \ No newline at end of file +print(sundays) From f3608acfd5c3c66531942434769c8260c983e877 Mon Sep 17 00:00:00 2001 From: Sarvesh Dubey <38752758+dubesar@users.noreply.github.com> Date: Fri, 17 May 2019 08:42:06 +0530 Subject: [PATCH 097/594] Created shortest path using bfs (#794) * Created shortest path using bfs --- graphs/bfs-shortestpath.py | 43 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 graphs/bfs-shortestpath.py diff --git a/graphs/bfs-shortestpath.py b/graphs/bfs-shortestpath.py new file mode 100644 index 000000000000..5853351a53a3 --- /dev/null +++ b/graphs/bfs-shortestpath.py @@ -0,0 +1,43 @@ +graph = {'A': ['B', 'C', 'E'], + 'B': ['A','D', 'E'], + 'C': ['A', 'F', 'G'], + 'D': ['B'], + 'E': ['A', 'B','D'], + 'F': ['C'], + 'G': ['C']} + +def bfs_shortest_path(graph, start, goal): + # keep track of explored nodes + explored = [] + # keep track of all the paths to be checked + queue = [[start]] + + # return path if start is goal + if start == goal: + return "That was easy! Start = goal" + + # keeps looping until all possible paths have been checked + while queue: + # pop the first path from the queue + path = queue.pop(0) + # get the last node from the path + node = path[-1] + if node not in explored: + neighbours = graph[node] + # go through all neighbour nodes, construct a new path and + # push it into the queue + for neighbour in neighbours: + new_path = list(path) + new_path.append(neighbour) + queue.append(new_path) + # return path if neighbour is goal + if neighbour == goal: + return new_path + + # mark node as explored + explored.append(node) + + # in case there's no path between the 2 nodes + return "So sorry, but a connecting path doesn't exist :(" + +bfs_shortest_path(graph, 'G', 'D') # returns ['G', 'C', 'A', 'B', 'D'] From b6c3fa8992e1f3430e623b6c4b1268c89e26f71f Mon Sep 17 00:00:00 2001 From: weixuanhu <44716380+weixuanhu@users.noreply.github.com> Date: Sat, 18 May 2019 10:59:12 +0800 Subject: [PATCH 098/594] Interpolation search - fix endless loop bug, divide 0 bug and update description (#793) * fix endless loop bug, divide 0 bug and update description fix an endless bug, for example, if collection = [10,30,40,45,50,66,77,93], item = 67. fix divide 0 bug, when right=left it is not OK to point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) update 'sorted' to 'ascending sorted' in description to avoid confusion * delete swap files * delete 'address' and add input validation --- searches/interpolation_search.py | 80 +++++++++++++++++------ searches/quick_select.py | 11 +++- searches/test_interpolation_search.py | 93 +++++++++++++++++++++++++++ 3 files changed, 160 insertions(+), 24 deletions(-) create mode 100644 searches/test_interpolation_search.py diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index db9893bdb5d4..329596d340a5 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -11,9 +11,9 @@ def interpolation_search(sorted_collection, item): """Pure implementation of interpolation search algorithm in Python - Be careful collection must be sorted, otherwise result will be + Be careful collection must be ascending sorted, otherwise result will be unpredictable - :param sorted_collection: some sorted collection with comparable items + :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found """ @@ -21,6 +21,13 @@ def interpolation_search(sorted_collection, item): right = len(sorted_collection) - 1 while left <= right: + #avoid devided by 0 during interpolation + if sorted_collection[left]==sorted_collection[right]: + if sorted_collection[left]==item: + return left + else: + return None + point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) #out of range check @@ -31,66 +38,97 @@ def interpolation_search(sorted_collection, item): if current_item == item: return point else: - if item < current_item: - right = point - 1 - else: - left = point + 1 + if pointright: + left = right + right = point + else: + if item < current_item: + right = point - 1 + else: + left = point + 1 return None - def interpolation_search_by_recursion(sorted_collection, item, left, right): """Pure implementation of interpolation search algorithm in Python by recursion - Be careful collection must be sorted, otherwise result will be + Be careful collection must be ascending sorted, otherwise result will be unpredictable First recursion should be started with left=0 and right=(len(sorted_collection)-1) - :param sorted_collection: some sorted collection with comparable items + :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found """ - point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) + #avoid devided by 0 during interpolation + if sorted_collection[left]==sorted_collection[right]: + if sorted_collection[left]==item: + return left + else: + return None + + point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) + #out of range check if point<0 or point>=len(sorted_collection): return None if sorted_collection[point] == item: return point - elif sorted_collection[point] > item: - return interpolation_search_by_recursion(sorted_collection, item, left, point-1) + elif pointright: + return interpolation_search_by_recursion(sorted_collection, item, right, left) else: - return interpolation_search_by_recursion(sorted_collection, item, point+1, right) + if sorted_collection[point] > item: + return interpolation_search_by_recursion(sorted_collection, item, left, point-1) + else: + return interpolation_search_by_recursion(sorted_collection, item, point+1, right) def __assert_sorted(collection): - """Check if collection is sorted, if not - raises :py:class:`ValueError` + """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` :param collection: collection - :return: True if collection is sorted - :raise: :py:class:`ValueError` if collection is not sorted + :return: True if collection is ascending sorted + :raise: :py:class:`ValueError` if collection is not ascending sorted Examples: >>> __assert_sorted([0, 1, 2, 4]) True >>> __assert_sorted([10, -1, 5]) Traceback (most recent call last): ... - ValueError: Collection must be sorted + ValueError: Collection must be ascending sorted """ if collection != sorted(collection): - raise ValueError('Collection must be sorted') + raise ValueError('Collection must be ascending sorted') return True if __name__ == '__main__': import sys - - user_input = raw_input('Enter numbers separated by comma:\n').strip() + + """ + user_input = raw_input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) except ValueError: - sys.exit('Sequence must be sorted to apply interpolation search') + sys.exit('Sequence must be ascending sorted to apply interpolation search') target_input = raw_input('Enter a single number to be found in the list:\n') target = int(target_input) + """ + + debug = 0 + if debug == 1: + collection = [10,30,40,45,50,66,77,93] + try: + __assert_sorted(collection) + except ValueError: + sys.exit('Sequence must be ascending sorted to apply interpolation search') + target = 67 + result = interpolation_search(collection, target) if result is not None: print('{} found at positions: {}'.format(target, result)) diff --git a/searches/quick_select.py b/searches/quick_select.py index 1596cf040e0c..76d09cb97f97 100644 --- a/searches/quick_select.py +++ b/searches/quick_select.py @@ -14,9 +14,9 @@ def _partition(data, pivot): """ less, equal, greater = [], [], [] for element in data: - if element.address < pivot.address: + if element < pivot: less.append(element) - elif element.address > pivot.address: + elif element > pivot: greater.append(element) else: equal.append(element) @@ -24,6 +24,11 @@ def _partition(data, pivot): def quickSelect(list, k): #k = len(list) // 2 when trying to find the median (index that value would be when list is sorted) + + #invalid input + if k>=len(list) or k<0: + return None + smaller = [] larger = [] pivot = random.randint(0, len(list) - 1) @@ -41,4 +46,4 @@ def quickSelect(list, k): return quickSelect(smaller, k) #must be in larger else: - return quickSelect(larger, k - (m + count)) + return quickSelect(larger, k - (m + count)) \ No newline at end of file diff --git a/searches/test_interpolation_search.py b/searches/test_interpolation_search.py new file mode 100644 index 000000000000..60bb3af22e0f --- /dev/null +++ b/searches/test_interpolation_search.py @@ -0,0 +1,93 @@ +import unittest +from interpolation_search import interpolation_search, interpolation_search_by_recursion + +class Test_interpolation_search(unittest.TestCase): + def setUp(self): + # un-sorted case + self.collection1 = [5,3,4,6,7] + self.item1 = 4 + # sorted case, result exists + self.collection2 = [10,30,40,45,50,66,77,93] + self.item2 = 66 + # sorted case, result doesn't exist + self.collection3 = [10,30,40,45,50,66,77,93] + self.item3 = 67 + # equal elements case, result exists + self.collection4 = [10,10,10,10,10] + self.item4 = 10 + # equal elements case, result doesn't exist + self.collection5 = [10,10,10,10,10] + self.item5 = 3 + # 1 element case, result exists + self.collection6 = [10] + self.item6 = 10 + # 1 element case, result doesn't exists + self.collection7 = [10] + self.item7 = 1 + + def tearDown(self): + pass + + def test_interpolation_search(self): + self.assertEqual(interpolation_search(self.collection1, self.item1), None) + + self.assertEqual(interpolation_search(self.collection2, self.item2), self.collection2.index(self.item2)) + + self.assertEqual(interpolation_search(self.collection3, self.item3), None) + + self.assertEqual(interpolation_search(self.collection4, self.item4), self.collection4.index(self.item4)) + + self.assertEqual(interpolation_search(self.collection5, self.item5), None) + + self.assertEqual(interpolation_search(self.collection6, self.item6), self.collection6.index(self.item6)) + + self.assertEqual(interpolation_search(self.collection7, self.item7), None) + + + +class Test_interpolation_search_by_recursion(unittest.TestCase): + def setUp(self): + # un-sorted case + self.collection1 = [5,3,4,6,7] + self.item1 = 4 + # sorted case, result exists + self.collection2 = [10,30,40,45,50,66,77,93] + self.item2 = 66 + # sorted case, result doesn't exist + self.collection3 = [10,30,40,45,50,66,77,93] + self.item3 = 67 + # equal elements case, result exists + self.collection4 = [10,10,10,10,10] + self.item4 = 10 + # equal elements case, result doesn't exist + self.collection5 = [10,10,10,10,10] + self.item5 = 3 + # 1 element case, result exists + self.collection6 = [10] + self.item6 = 10 + # 1 element case, result doesn't exists + self.collection7 = [10] + self.item7 = 1 + + def tearDown(self): + pass + + def test_interpolation_search_by_recursion(self): + self.assertEqual(interpolation_search_by_recursion(self.collection1, self.item1, 0, len(self.collection1)-1), None) + + self.assertEqual(interpolation_search_by_recursion(self.collection2, self.item2, 0, len(self.collection2)-1), self.collection2.index(self.item2)) + + self.assertEqual(interpolation_search_by_recursion(self.collection3, self.item3, 0, len(self.collection3)-1), None) + + self.assertEqual(interpolation_search_by_recursion(self.collection4, self.item4, 0, len(self.collection4)-1), self.collection4.index(self.item4)) + + self.assertEqual(interpolation_search_by_recursion(self.collection5, self.item5, 0, len(self.collection5)-1), None) + + self.assertEqual(interpolation_search_by_recursion(self.collection6, self.item6, 0, len(self.collection6)-1), self.collection6.index(self.item6)) + + self.assertEqual(interpolation_search_by_recursion(self.collection7, self.item7, 0, len(self.collection7)-1), None) + + + +if __name__ == '__main__': + unittest.main() From f5abc04176b9635da963ca701f643acde5da24dc Mon Sep 17 00:00:00 2001 From: Andy Lau Date: Sun, 19 May 2019 17:00:54 +0800 Subject: [PATCH 099/594] Update bucket_sort.py (#821) * Some simplification --- sorts/bucket_sort.py | 64 +++++++++++++++++++------------------------- 1 file changed, 27 insertions(+), 37 deletions(-) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index bd4281e463eb..5c17703c26f0 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -13,45 +13,35 @@ # Time Complexity of Solution: # Best Case O(n); Average Case O(n); Worst Case O(n) -from __future__ import print_function -from insertion_sort import insertion_sort -import math - -DEFAULT_BUCKET_SIZE = 5 - -def bucketSort(myList, bucketSize=DEFAULT_BUCKET_SIZE): - if(len(myList) == 0): - print('You don\'t have any elements in array!') - - minValue = myList[0] - maxValue = myList[0] - - # For finding minimum and maximum values - for i in range(0, len(myList)): - if myList[i] < minValue: - minValue = myList[i] - elif myList[i] > maxValue: - maxValue = myList[i] - - # Initialize buckets - bucketCount = math.floor((maxValue - minValue) / bucketSize) + 1 - buckets = [] - for i in range(0, bucketCount): +DEFAULT_BUCKET_SIZE=5 +def bucket_sort(my_list,bucket_size=DEFAULT_BUCKET_SIZE): + if(my_list==0): + print("you don't have any elements in array!") + + + min_value=min(my_list) + max_value=max(my_list) + + bucket_count=(max_value-min_value)//bucket_size+1 + buckets=[] + for i in range(bucket_count): buckets.append([]) + for i in range(len(my_list)): + buckets[(my_list[i]-min_value)//bucket_size].append(my_list[i]) + + + sorted_array=[] + for i in range(len(buckets)): + buckets[i].sort() + for j in range(len(buckets[i])): + sorted_array.append(buckets[i][j]) + return sorted_array - # For putting values in buckets - for i in range(0, len(myList)): - buckets[math.floor((myList[i] - minValue) / bucketSize)].append(myList[i]) - # Sort buckets and place back into input array - sortedArray = [] - for i in range(0, len(buckets)): - insertion_sort(buckets[i]) - for j in range(0, len(buckets[i])): - sortedArray.append(buckets[i][j]) - return sortedArray -if __name__ == '__main__': - sortedArray = bucketSort([12, 23, 4, 5, 3, 2, 12, 81, 56, 95]) - print(sortedArray) +#test +#besd on python 3.7.3 +user_input =input('Enter numbers separated by a comma:').strip() +unsorted =[int(item) for item in user_input.split(',')] +print(bucket_sort(unsorted)) From 316d5ffa374a35cb1a0237a7da1e12309da7aece Mon Sep 17 00:00:00 2001 From: DaveAxiom Date: Sun, 19 May 2019 16:36:46 -0400 Subject: [PATCH 100/594] Add NQueens backtracking search implementation (#504) --- other/nqueens.py | 77 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 other/nqueens.py diff --git a/other/nqueens.py b/other/nqueens.py new file mode 100644 index 000000000000..1b1c75878ae6 --- /dev/null +++ b/other/nqueens.py @@ -0,0 +1,77 @@ +#! /usr/bin/python3 +import sys + +def nqueens(board_width): + board = [0] + current_row = 0 + while True: + conflict = False + + for review_index in range(0, current_row): + left = board[review_index] - (current_row - review_index) + right = board[review_index] + (current_row - review_index); + if (board[current_row] == board[review_index] or (left >= 0 and left == board[current_row]) or (right < board_width and right == board[current_row])): + conflict = True; + break + + if (current_row == 0 and conflict == False): + board.append(0) + current_row = 1 + continue + + if (conflict == True): + board[current_row] += 1 + + if (current_row == 0 and board[current_row] == board_width): + print("No solution exists for specificed board size.") + return None + + while True: + if (board[current_row] == board_width): + board[current_row] = 0 + if (current_row == 0): + print("No solution exists for specificed board size.") + return None + + board.pop() + current_row -= 1 + board[current_row] += 1 + + if board[current_row] != board_width: + break + else: + current_row += 1 + if (current_row == board_width): + break + + board.append(0) + return board + +def print_board(board): + if (board == None): + return + + board_width = len(board) + for row in range(board_width): + line_print = [] + for column in range(board_width): + if column == board[row]: + line_print.append("Q") + else: + line_print.append(".") + print(line_print) + + +if __name__ == '__main__': + default_width = 8 + for arg in sys.argv: + if (arg.isdecimal() and int(arg) > 3): + default_width = int(arg) + break + + if (default_width == 8): + print("Running algorithm with board size of 8. Specify an alternative Chess board size for N-Queens as a command line argument.") + + board = nqueens(default_width) + print(board) + print_board(board) \ No newline at end of file From c1130490d7534412bea66cb3864e2bb7f7e13dd7 Mon Sep 17 00:00:00 2001 From: Adam <34916469+coderpower0@users.noreply.github.com> Date: Mon, 20 May 2019 21:22:20 +0800 Subject: [PATCH 101/594] fix spelling on line 44 of bucket sort (#824) * change besd to best --- sorts/bucket_sort.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index 5c17703c26f0..aba0124ad909 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -41,7 +41,7 @@ def bucket_sort(my_list,bucket_size=DEFAULT_BUCKET_SIZE): #test -#besd on python 3.7.3 +#best on python 3.7.3 user_input =input('Enter numbers separated by a comma:').strip() unsorted =[int(item) for item in user_input.split(',')] print(bucket_sort(unsorted)) From b5667e5ee98f9f68c8f40dd9691bb9006a5ac832 Mon Sep 17 00:00:00 2001 From: Anirudh Ajith Date: Tue, 21 May 2019 11:36:05 +0530 Subject: [PATCH 102/594] Removed the (incorrectly named) redundant file graph_list.py and renamed graph.py to graph_list.py (#820) --- graphs/graph.py | 44 -------------------------- graphs/graph_list.py | 73 ++++++++++++++++++++++++++------------------ 2 files changed, 43 insertions(+), 74 deletions(-) delete mode 100644 graphs/graph.py diff --git a/graphs/graph.py b/graphs/graph.py deleted file mode 100644 index 0c981c39d320..000000000000 --- a/graphs/graph.py +++ /dev/null @@ -1,44 +0,0 @@ -#!/usr/bin/python -# encoding=utf8 - -from __future__ import print_function -# Author: OMKAR PATHAK - -# We can use Python's dictionary for constructing the graph. - -class AdjacencyList(object): - def __init__(self): - self.List = {} - - def addEdge(self, fromVertex, toVertex): - # check if vertex is already present - if fromVertex in self.List.keys(): - self.List[fromVertex].append(toVertex) - else: - self.List[fromVertex] = [toVertex] - - def printList(self): - for i in self.List: - print((i,'->',' -> '.join([str(j) for j in self.List[i]]))) - -if __name__ == '__main__': - al = AdjacencyList() - al.addEdge(0, 1) - al.addEdge(0, 4) - al.addEdge(4, 1) - al.addEdge(4, 3) - al.addEdge(1, 0) - al.addEdge(1, 4) - al.addEdge(1, 3) - al.addEdge(1, 2) - al.addEdge(2, 3) - al.addEdge(3, 4) - - al.printList() - - # OUTPUT: - # 0 -> 1 -> 4 - # 1 -> 0 -> 4 -> 3 -> 2 - # 2 -> 3 - # 3 -> 4 - # 4 -> 1 -> 3 diff --git a/graphs/graph_list.py b/graphs/graph_list.py index d67bc96c4a81..0c981c39d320 100644 --- a/graphs/graph_list.py +++ b/graphs/graph_list.py @@ -1,31 +1,44 @@ -from __future__ import print_function - - -class Graph: - def __init__(self, vertex): - self.vertex = vertex - self.graph = [[0] for i in range(vertex)] - - def add_edge(self, u, v): - self.graph[u - 1].append(v - 1) - - def show(self): - for i in range(self.vertex): - print('%d: '% (i + 1), end=' ') - for j in self.graph[i]: - print('%d-> '% (j + 1), end=' ') - print(' ') - - - -g = Graph(100) - -g.add_edge(1,3) -g.add_edge(2,3) -g.add_edge(3,4) -g.add_edge(3,5) -g.add_edge(4,5) - - -g.show() +#!/usr/bin/python +# encoding=utf8 +from __future__ import print_function +# Author: OMKAR PATHAK + +# We can use Python's dictionary for constructing the graph. + +class AdjacencyList(object): + def __init__(self): + self.List = {} + + def addEdge(self, fromVertex, toVertex): + # check if vertex is already present + if fromVertex in self.List.keys(): + self.List[fromVertex].append(toVertex) + else: + self.List[fromVertex] = [toVertex] + + def printList(self): + for i in self.List: + print((i,'->',' -> '.join([str(j) for j in self.List[i]]))) + +if __name__ == '__main__': + al = AdjacencyList() + al.addEdge(0, 1) + al.addEdge(0, 4) + al.addEdge(4, 1) + al.addEdge(4, 3) + al.addEdge(1, 0) + al.addEdge(1, 4) + al.addEdge(1, 3) + al.addEdge(1, 2) + al.addEdge(2, 3) + al.addEdge(3, 4) + + al.printList() + + # OUTPUT: + # 0 -> 1 -> 4 + # 1 -> 0 -> 4 -> 3 -> 2 + # 2 -> 3 + # 3 -> 4 + # 4 -> 1 -> 3 From 023f5e092d38f7e220ae68a23f7183eeb8fd9e04 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?N=C3=ADkolas=20Vargas?= Date: Wed, 22 May 2019 09:09:36 -0300 Subject: [PATCH 103/594] fix empty list validation and code data structures (#826) * fix empty list validation and code data structures * Update bucket_sort.py https://github.com/TheAlgorithms/Python/pull/826#pullrequestreview-240357549 --- sorts/bucket_sort.py | 38 +++++++++++++------------------------- 1 file changed, 13 insertions(+), 25 deletions(-) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index aba0124ad909..cca913328e40 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -14,34 +14,22 @@ # Best Case O(n); Average Case O(n); Worst Case O(n) DEFAULT_BUCKET_SIZE=5 -def bucket_sort(my_list,bucket_size=DEFAULT_BUCKET_SIZE): - if(my_list==0): - print("you don't have any elements in array!") +def bucket_sort(my_list, bucket_size=DEFAULT_BUCKET_SIZE): + if len(my_list) == 0: + raise Exception("Please add some elements in the array.") - min_value=min(my_list) - max_value=max(my_list) + min_value, max_value = (min(my_list), max(my_list)) + bucket_count = ((max_value - min_value) // bucket_size + 1) + buckets = [[] for _ in range(int(bucket_count))] - bucket_count=(max_value-min_value)//bucket_size+1 - buckets=[] - for i in range(bucket_count): - buckets.append([]) for i in range(len(my_list)): - buckets[(my_list[i]-min_value)//bucket_size].append(my_list[i]) + buckets[int((my_list[i] - min_value) // bucket_size)].append(my_list[i]) + return sorted([buckets[i][j] for i in range(len(buckets)) + for j in range(len(buckets[i]))]) - sorted_array=[] - for i in range(len(buckets)): - buckets[i].sort() - for j in range(len(buckets[i])): - sorted_array.append(buckets[i][j]) - return sorted_array - - - - -#test -#best on python 3.7.3 -user_input =input('Enter numbers separated by a comma:').strip() -unsorted =[int(item) for item in user_input.split(',')] -print(bucket_sort(unsorted)) +if __name__ == "__main__": + user_input = input('Enter numbers separated by a comma:').strip() + unsorted = [float(n) for n in user_input.split(',') if len(user_input) > 0] + print(bucket_sort(unsorted)) From a0ab3ce098c95c7edf3f32fedc9d3930d2d641e8 Mon Sep 17 00:00:00 2001 From: BruceLee569 <49506152+BruceLee569@users.noreply.github.com> Date: Fri, 24 May 2019 23:54:03 +0800 Subject: [PATCH 104/594] Update quick_sort.py (#830) Modify the list comprehensions to reduce the number of judgments, the speed has increased by more than 50%. --- sorts/quick_sort.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index e01d319a4b29..223c26fde1fe 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -34,8 +34,16 @@ def quick_sort(collection): return collection else: pivot = collection[0] - greater = [element for element in collection[1:] if element > pivot] - lesser = [element for element in collection[1:] if element <= pivot] + # Modify the list comprehensions to reduce the number of judgments, the speed has increased by more than 50%. + greater = [] + lesser = [] + for element in collection[1:]: + if element > pivot: + greater.append(element) + else: + lesser.append(element) + # greater = [element for element in collection[1:] if element > pivot] + # lesser = [element for element in collection[1:] if element <= pivot] return quick_sort(lesser) + [pivot] + quick_sort(greater) From 9f982a83c8a1f9f5b06a8720eaf78d60485a18fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jos=C3=A9=20Henrique=20Ivanchechen?= Date: Fri, 24 May 2019 14:16:39 -0300 Subject: [PATCH 105/594] add pigeon hole sort (#833) --- sorts/pigeon_sort.py | 50 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 sorts/pigeon_sort.py diff --git a/sorts/pigeon_sort.py b/sorts/pigeon_sort.py new file mode 100644 index 000000000000..65eb8896ea9c --- /dev/null +++ b/sorts/pigeon_sort.py @@ -0,0 +1,50 @@ +''' + This is an implementation of Pigeon Hole Sort. +''' + +from __future__ import print_function + +def pigeon_sort(array): + # Manually finds the minimum and maximum of the array. + min = array[0] + max = array[0] + + for i in range(len(array)): + if(array[i] < min): min = array[i] + elif(array[i] > max): max = array[i] + + # Compute the variables + holes_range = max-min + 1 + holes = [0 for _ in range(holes_range)] + holes_repeat = [0 for _ in range(holes_range)] + + # Make the sorting. + for i in range(len(array)): + index = array[i] - min + if(holes[index] != array[i]): + holes[index] = array[i] + holes_repeat[index] += 1 + else: holes_repeat[index] += 1 + + # Makes the array back by replacing the numbers. + index = 0 + for i in range(holes_range): + while(holes_repeat[i] > 0): + array[index] = holes[i] + index += 1 + holes_repeat[i] -= 1 + + # Returns the sorted array. + return array + +if __name__ == '__main__': + try: + raw_input # Python2 + except NameError: + raw_input = input # Python 3 + + user_input = raw_input('Enter numbers separated by comma:\n') + unsorted = [int(x) for x in user_input.split(',')] + sorted = pigeon_sort(unsorted) + + print(sorted) From 02c0daf9e5c7dc44205b9270507348109888877a Mon Sep 17 00:00:00 2001 From: Mehdi ALAOUI Date: Sat, 25 May 2019 15:41:24 +0200 Subject: [PATCH 106/594] Adding unit tests for sorting functions, and improving readability on some sorting algorithms (#784) * Adding variable to fade out ambiguity * More readability on merge sorting algorithm * Updating merge_sort_fastest description and explaining why * Adding tests file with imports * Standardazing filenames and function names * Adding test cases and test functions * Adding test loop * Putting 'user oriented code' inside main condition for having valid imports * Fixing condition * Updating tests: adding cases and todo list * Refactoring first euler problem's first solution --- project_euler/problem_01/sol1.py | 6 +-- sorts/{bogosort.py => bogo_sort.py} | 16 +++--- sorts/bucket_sort.py | 2 +- sorts/{cyclesort.py => cycle_sort.py} | 16 +++--- sorts/insertion_sort.py | 10 ++-- sorts/merge_sort.py | 2 +- sorts/merge_sort_fastest.py | 2 +- sorts/pancake_sort.py | 5 +- sorts/radix_sort.py | 2 +- sorts/tests.py | 74 +++++++++++++++++++++++++++ sorts/{timsort.py => tim_sort.py} | 4 +- sorts/topological_sort.py | 6 +-- sorts/tree_sort.py | 5 +- sorts/wiggle_sort.py | 18 +++---- 14 files changed, 120 insertions(+), 48 deletions(-) rename sorts/{bogosort.py => bogo_sort.py} (81%) rename sorts/{cyclesort.py => cycle_sort.py} (83%) create mode 100644 sorts/tests.py rename sorts/{timsort.py => tim_sort.py} (97%) diff --git a/project_euler/problem_01/sol1.py b/project_euler/problem_01/sol1.py index 27031c3cfa9a..c9a8c0f1ebeb 100644 --- a/project_euler/problem_01/sol1.py +++ b/project_euler/problem_01/sol1.py @@ -10,8 +10,4 @@ except NameError: raw_input = input # Python 3 n = int(raw_input().strip()) -sum=0 -for a in range(3,n): - if(a%3==0 or a%5==0): - sum+=a -print(sum) +print(sum([e for e in range(3, n) if e % 3 == 0 or e % 5 == 0])) diff --git a/sorts/bogosort.py b/sorts/bogo_sort.py similarity index 81% rename from sorts/bogosort.py rename to sorts/bogo_sort.py index 33eac66bf21c..056e8e68a92e 100644 --- a/sorts/bogosort.py +++ b/sorts/bogo_sort.py @@ -1,28 +1,28 @@ """ This is a pure python implementation of the bogosort algorithm For doctests run following command: -python -m doctest -v bogosort.py +python -m doctest -v bogo_sort.py or -python3 -m doctest -v bogosort.py +python3 -m doctest -v bogo_sort.py For manual testing run: -python bogosort.py +python bogo_sort.py """ from __future__ import print_function import random -def bogosort(collection): +def bogo_sort(collection): """Pure implementation of the bogosort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: - >>> bogosort([0, 5, 3, 2, 2]) + >>> bogo_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] - >>> bogosort([]) + >>> bogo_sort([]) [] - >>> bogosort([-2, -5, -45]) + >>> bogo_sort([-2, -5, -45]) [-45, -5, -2] """ @@ -46,4 +46,4 @@ def isSorted(collection): user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] - print(bogosort(unsorted)) + print(bogo_sort(unsorted)) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index cca913328e40..c4d61874fc47 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -32,4 +32,4 @@ def bucket_sort(my_list, bucket_size=DEFAULT_BUCKET_SIZE): if __name__ == "__main__": user_input = input('Enter numbers separated by a comma:').strip() unsorted = [float(n) for n in user_input.split(',') if len(user_input) > 0] - print(bucket_sort(unsorted)) + print(bucket_sort(unsorted)) \ No newline at end of file diff --git a/sorts/cyclesort.py b/sorts/cycle_sort.py similarity index 83% rename from sorts/cyclesort.py rename to sorts/cycle_sort.py index ee19a1ade360..492022164427 100644 --- a/sorts/cyclesort.py +++ b/sorts/cycle_sort.py @@ -50,11 +50,11 @@ def cycle_sort(array): except NameError: raw_input = input # Python 3 -user_input = raw_input('Enter numbers separated by a comma:\n') -unsorted = [int(item) for item in user_input.split(',')] -n = len(unsorted) -cycle_sort(unsorted) - -print("After sort : ") -for i in range(0, n): - print(unsorted[i], end=' ') + user_input = raw_input('Enter numbers separated by a comma:\n') + unsorted = [int(item) for item in user_input.split(',')] + n = len(unsorted) + cycle_sort(unsorted) + + print("After sort : ") + for i in range(0, n): + print(unsorted[i], end=' ') diff --git a/sorts/insertion_sort.py b/sorts/insertion_sort.py index 59917ac059a7..e088705947d4 100644 --- a/sorts/insertion_sort.py +++ b/sorts/insertion_sort.py @@ -29,10 +29,12 @@ def insertion_sort(collection): >>> insertion_sort([-2, -5, -45]) [-45, -5, -2] """ - for index in range(1, len(collection)): - while index > 0 and collection[index - 1] > collection[index]: - collection[index], collection[index - 1] = collection[index - 1], collection[index] - index -= 1 + + for loop_index in range(1, len(collection)): + insertion_index = loop_index + while insertion_index > 0 and collection[insertion_index - 1] > collection[insertion_index]: + collection[insertion_index], collection[insertion_index - 1] = collection[insertion_index - 1], collection[insertion_index] + insertion_index -= 1 return collection diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index 4a6201a40cb4..ecbad7075119 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -53,4 +53,4 @@ def merge(left, right): user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] - print(*merge_sort(unsorted), sep=',') + print(*merge_sort(unsorted), sep=',') \ No newline at end of file diff --git a/sorts/merge_sort_fastest.py b/sorts/merge_sort_fastest.py index 86cb8ae1a699..bd356c935ca0 100644 --- a/sorts/merge_sort_fastest.py +++ b/sorts/merge_sort_fastest.py @@ -2,7 +2,7 @@ Python implementation of the fastest merge sort algorithm. Takes an average of 0.6 microseconds to sort a list of length 1000 items. Best Case Scenario : O(n) -Worst Case Scenario : O(n) +Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n) ''' from __future__ import print_function diff --git a/sorts/pancake_sort.py b/sorts/pancake_sort.py index 26fd40b7f67c..478a9a967d27 100644 --- a/sorts/pancake_sort.py +++ b/sorts/pancake_sort.py @@ -1,7 +1,7 @@ # Pancake sort algorithm # Only can reverse array from 0 to i -def pancakesort(arr): +def pancake_sort(arr): cur = len(arr) while cur > 1: # Find the maximum number in arr @@ -13,4 +13,5 @@ def pancakesort(arr): cur -= 1 return arr -print(pancakesort([0,10,15,3,2,9,14,13])) +if __name__ == '__main__': + print(pancake_sort([0,10,15,3,2,9,14,13])) diff --git a/sorts/radix_sort.py b/sorts/radix_sort.py index e4cee61f35e3..8dfc66b17b23 100644 --- a/sorts/radix_sort.py +++ b/sorts/radix_sort.py @@ -1,4 +1,4 @@ -def radixsort(lst): +def radix_sort(lst): RADIX = 10 placement = 1 diff --git a/sorts/tests.py b/sorts/tests.py new file mode 100644 index 000000000000..225763625f51 --- /dev/null +++ b/sorts/tests.py @@ -0,0 +1,74 @@ +from bogo_sort import bogo_sort +from bubble_sort import bubble_sort +from bucket_sort import bucket_sort +from cocktail_shaker_sort import cocktail_shaker_sort +from comb_sort import comb_sort +from counting_sort import counting_sort +from cycle_sort import cycle_sort +from gnome_sort import gnome_sort +from heap_sort import heap_sort +from insertion_sort import insertion_sort +from merge_sort_fastest import merge_sort as merge_sort_fastest +from merge_sort import merge_sort +from pancake_sort import pancake_sort +from quick_sort_3_partition import quick_sort_3partition +from quick_sort import quick_sort +from radix_sort import radix_sort +from random_pivot_quick_sort import quick_sort_random +from selection_sort import selection_sort +from shell_sort import shell_sort +from tim_sort import tim_sort +from topological_sort import topological_sort +from tree_sort import tree_sort +from wiggle_sort import wiggle_sort + + +TEST_CASES = [ + {'input': [8, 7, 6, 5, 4, 3, -2, -5], 'expected': [-5, -2, 3, 4, 5, 6, 7, 8]}, + {'input': [-5, -2, 3, 4, 5, 6, 7, 8], 'expected': [-5, -2, 3, 4, 5, 6, 7, 8]}, + {'input': [5, 6, 1, 4, 0, 1, -2, -5, 3, 7], 'expected': [-5, -2, 0, 1, 1, 3, 4, 5, 6, 7]}, + {'input': [2, -2], 'expected': [-2, 2]}, + {'input': [1], 'expected': [1]}, + {'input': [], 'expected': []}, +] + +''' + TODO: + - Fix some broken tests in particular cases (as [] for example), + - Unify the input format: should always be function(input_collection) (no additional args) + - Unify the output format: should always be a collection instead of updating input elements + and returning None + - Rewrite some algorithms in function format (in case there is no function definition) +''' + +TEST_FUNCTIONS = [ + bogo_sort, + bubble_sort, + bucket_sort, + cocktail_shaker_sort, + comb_sort, + counting_sort, + cycle_sort, + gnome_sort, + heap_sort, + insertion_sort, + merge_sort_fastest, + merge_sort, + pancake_sort, + quick_sort_3partition, + quick_sort, + radix_sort, + quick_sort_random, + selection_sort, + shell_sort, + tim_sort, + topological_sort, + tree_sort, + wiggle_sort, +] + + +for function in TEST_FUNCTIONS: + for case in TEST_CASES: + result = function(case['input']) + assert result == case['expected'], 'Executed function: {}, {} != {}'.format(function.__name__, result, case['expected']) diff --git a/sorts/timsort.py b/sorts/tim_sort.py similarity index 97% rename from sorts/timsort.py rename to sorts/tim_sort.py index 80c5cd1e8d3f..b4032b91aec1 100644 --- a/sorts/timsort.py +++ b/sorts/tim_sort.py @@ -41,7 +41,7 @@ def merge(left, right): return [right[0]] + merge(left, right[1:]) -def timsort(lst): +def tim_sort(lst): runs, sorted_runs = [], [] length = len(lst) new_run = [lst[0]] @@ -75,7 +75,7 @@ def timsort(lst): def main(): lst = [5,9,10,3,-4,5,178,92,46,-18,0,7] - sorted_lst = timsort(lst) + sorted_lst = tim_sort(lst) print(sorted_lst) if __name__ == '__main__': diff --git a/sorts/topological_sort.py b/sorts/topological_sort.py index 52dc34f4f733..db4dd250a119 100644 --- a/sorts/topological_sort.py +++ b/sorts/topological_sort.py @@ -28,6 +28,6 @@ def topological_sort(start, visited, sort): # return sort return sort - -sort = topological_sort('a', [], []) -print(sort) +if __name__ == '__main__': + sort = topological_sort('a', [], []) + print(sort) diff --git a/sorts/tree_sort.py b/sorts/tree_sort.py index f8ecf84c6ff8..d06b0de28e56 100644 --- a/sorts/tree_sort.py +++ b/sorts/tree_sort.py @@ -30,7 +30,7 @@ def inorder(root, res): res.append(root.val) inorder(root.right,res) -def treesort(arr): +def tree_sort(arr): # Build BST if len(arr) == 0: return arr @@ -42,4 +42,5 @@ def treesort(arr): inorder(root,res) return res -print(treesort([10,1,3,2,9,14,13])) \ No newline at end of file +if __name__ == '__main__': + print(tree_sort([10,1,3,2,9,14,13])) diff --git a/sorts/wiggle_sort.py b/sorts/wiggle_sort.py index cc83487bdeb1..0d4f20e3f96b 100644 --- a/sorts/wiggle_sort.py +++ b/sorts/wiggle_sort.py @@ -9,13 +9,11 @@ def wiggle_sort(nums): if (i % 2 == 1) == (nums[i-1] > nums[i]): nums[i-1], nums[i] = nums[i], nums[i-1] - -print("Enter the array elements:\n") -array=list(map(int,input().split())) -print("The unsorted array is:\n") -print(array) -wiggle_sort(array) -print("Array after Wiggle sort:\n") -print(array) - - +if __name__ == '__main__': + print("Enter the array elements:\n") + array=list(map(int,input().split())) + print("The unsorted array is:\n") + print(array) + wiggle_sort(array) + print("Array after Wiggle sort:\n") + print(array) From 94380a17a806e28fc73695d84581d638eabd286a Mon Sep 17 00:00:00 2001 From: Artyom Belousov Date: Sun, 26 May 2019 01:20:37 +0300 Subject: [PATCH 107/594] Added treap (#797) * Added treap * Added comments to treap --- data_structures/binary tree/treap.py | 129 +++++++++++++++++++++++++++ 1 file changed, 129 insertions(+) create mode 100644 data_structures/binary tree/treap.py diff --git a/data_structures/binary tree/treap.py b/data_structures/binary tree/treap.py new file mode 100644 index 000000000000..0399ff67030a --- /dev/null +++ b/data_structures/binary tree/treap.py @@ -0,0 +1,129 @@ +from random import random +from typing import Tuple + + +class Node: + """ + Treap's node + Treap is a binary tree by key and heap by priority + """ + def __init__(self, key: int): + self.key = key + self.prior = random() + self.l = None + self.r = None + + +def split(root: Node, key: int) -> Tuple[Node, Node]: + """ + We split current tree into 2 trees with key: + + Left tree contains all keys less than split key. + Right tree contains all keys greater or equal, than split key + """ + if root is None: # None tree is split into 2 Nones + return (None, None) + if root.key >= key: + """ + Right tree's root will be current node. + Now we split(with the same key) current node's left son + Left tree: left part of that split + Right tree's left son: right part of that split + """ + l, root.l = split(root.l, key) + return (l, root) + else: + """ + Just symmetric to previous case + """ + root.r, r = split(root.r, key) + return (root, r) + + +def merge(left: Node, right: Node) -> Node: + """ + We merge 2 trees into one. + Note: all left tree's keys must be less than all right tree's + """ + if (not left) or (not right): + """ + If one node is None, return the other + """ + return left or right + if left.key > right.key: + """ + Left will be root because it has more priority + Now we need to merge left's right son and right tree + """ + left.r = merge(left.r, right) + return left + else: + """ + Symmetric as well + """ + right.l = merge(left, right.l) + return right + + +def insert(root: Node, key: int) -> Node: + """ + Insert element + + Split current tree with a key into l, r, + Insert new node into the middle + Merge l, node, r into root + """ + node = Node(key) + l, r = split(root, key) + root = merge(l, node) + root = merge(root, r) + return root + + +def erase(root: Node, key: int) -> Node: + """ + Erase element + + Split all nodes with keys less into l, + Split all nodes with keys greater into r. + Merge l, r + """ + l, r = split(root, key) + _, r = split(r, key + 1) + return merge(l, r) + + +def node_print(root: Node): + """ + Just recursive print of a tree + """ + if not root: + return + node_print(root.l) + print(root.key, end=" ") + node_print(root.r) + + +def interactTreap(): + """ + Commands: + + key to add key into treap + - key to erase all nodes with key + + After each command, program prints treap + """ + root = None + while True: + cmd = input().split() + cmd[1] = int(cmd[1]) + if cmd[0] == "+": + root = insert(root, cmd[1]) + elif cmd[0] == "-": + root = erase(root, cmd[1]) + else: + print("Unknown command") + node_print(root) + + +if __name__ == "__main__": + interactTreap() From 23938708ac53f6544f013a6dbb292beb35e14177 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sun, 26 May 2019 17:11:41 +0530 Subject: [PATCH 108/594] Update README.md --- README.md | 354 ++---------------------------------------------------- 1 file changed, 9 insertions(+), 345 deletions(-) diff --git a/README.md b/README.md index 9b61f1b63287..8172df62309f 100644 --- a/README.md +++ b/README.md @@ -4,352 +4,16 @@ ### All algorithms implemented in Python (for education) -These implementations are for demonstration purposes. They are less efficient than the implementations in the Python standard library. +These implementations are for learning purposes. They may be efficient than the implementations in the Python standard library. -## Sorting Algorithms +## Contribution Guidelines +* File name should be in camel case. +* Write proper documentation of the code. +* Avoid input methods as far as possible. Assign values to the variables statically. This will make the code easy to understand and algorithm can be traced easily. +* Add a corresponding explaination to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). +* Avoid importing external libraries for basic algorithms. -### Bubble Sort -![alt text][bubble-image] +## Community Channel -**Bubble sort**, sometimes referred to as *sinking sort*, is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(n) -* Average case performance O(n2) - -###### Source: [Wikipedia][bubble-wiki] -###### View the algorithm in [action][bubble-toptal] - -### Bucket -![alt text][bucket-image-1] -![alt text][bucket-image-2] - -**Bucket sort**, or _bin sort_, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(n+k) -* Average case performance O(n+k) - -###### Source: [Wikipedia][bucket-wiki] - - -### Cocktail shaker -![alt text][cocktail-shaker-image] - -**Cocktail shaker sort**, also known as _bidirectional bubble sort_, _cocktail sort_, _shaker sort_ (which can also refer to a variant of _selection sort_), _ripple sort_, _shuffle sort_, or _shuttle sort_, is a variation of bubble sort that is both a stable sorting algorithm and a comparison sort. The algorithm differs from a bubble sort in that it sorts in both directions on each pass through the list. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(n) -* Average case performance O(n2) - -###### Source: [Wikipedia][cocktail-shaker-wiki] - - -### Insertion Sort -![alt text][insertion-image] - -**Insertion sort** is a simple sorting algorithm that builds the final sorted array (or list) one item at a time. It is much less efficient on *large* lists than more advanced algorithms such as quicksort, heapsort, or merge sort. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(n) -* Average case performance O(n2) - -###### Source: [Wikipedia][insertion-wiki] -###### View the algorithm in [action][insertion-toptal] - - -### Merge Sort -![alt text][merge-image] - -**Merge sort** (also commonly spelled *mergesort*) is an efficient, general-purpose, comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the implementation preserves the input order of equal elements in the sorted output. Mergesort is a divide and conquer algorithm that was invented by John von Neumann in 1945. - -__Properties__ -* Worst case performance O(n log n) -* Best case performance O(n log n) -* Average case performance O(n log n) - -###### Source: [Wikipedia][merge-wiki] -###### View the algorithm in [action][merge-toptal] - -### Quick -![alt text][quick-image] - -**Quicksort** (sometimes called *partition-exchange sort*) is an efficient sorting algorithm, serving as a systematic method for placing the elements of an array in order. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(*n* log *n*) or O(n) with three-way partition -* Average case performance O(*n* log *n*) - -###### Source: [Wikipedia][quick-wiki] -###### View the algorithm in [action][quick-toptal] - - -### Heap -![alt text][heapsort-image] - -**Heapsort** is a _comparison-based_ sorting algorithm. It can be thought of as an improved selection sort. It divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. - -__Properties__ -* Worst case performance O(*n* log *n*) -* Best case performance O(*n* log *n*) -* Average case performance O(*n* log *n*) - -###### Source: [Wikipedia][heap-wiki] -###### View the algorithm in [action](https://www.toptal.com/developers/sorting-algorithms/heap-sort) - - -### Radix - -From [Wikipedia][radix-wiki]: Radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which share the same significant position and value. - -__Properties__ -* Worst case performance O(wn) -* Best case performance O(wn) -* Average case performance O(wn) - -###### Source: [Wikipedia][radix-wiki] - - -### Selection -![alt text][selection-image] - -**Selection sort** is an algorithm that divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right. - -__Properties__ -* Worst case performance O(n2) -* Best case performance O(n2) -* Average case performance O(n2) - -###### Source: [Wikipedia][selection-wiki] -###### View the algorithm in [action][selection-toptal] - - -### Shell -![alt text][shell-image] - -**Shellsort** is a generalization of *insertion sort* that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted. - -__Properties__ -* Worst case performance O(*n*log2*n*) -* Best case performance O(*n* log *n*) -* Average case performance depends on gap sequence - -###### Source: [Wikipedia][shell-wiki] -###### View the algorithm in [action][shell-toptal] - - -### Topological - -From [Wikipedia][topological-wiki]: **Topological sort**, or _topological ordering of a directed graph_ is a linear ordering of its vertices such that for every directed edge _uv_ from vertex _u_ to vertex _v_, _u_ comes before _v_ in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a _directed acyclic graph_ (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. - -### Time-Complexity Graphs - -Comparing the complexity of sorting algorithms (*Bubble Sort*, *Insertion Sort*, *Selection Sort*) - -![Complexity Graphs](https://github.com/prateekiiest/Python/blob/master/sorts/sortinggraphs.png) - -Comparing the sorting algorithms: -
-Quicksort is a very fast algorithm but can be pretty tricky to implement -
-Bubble sort is a slow algorithm but is very easy to implement. To sort small sets of data, bubble sort may be a better option since it can be implemented quickly, but for larger datasets, the speedup from quicksort might be worth the trouble implementing the algorithm. - ----------------------------------------------------------------------------------- - -## Search Algorithms - -### Linear -![alt text][linear-image] - -**Linear search** or *sequential search* is a method for finding a target value within a list. It sequentially checks each element of the list for the target value until a match is found or until all the elements have been searched. Linear search runs in at worst linear time and makes at most n comparisons, where n is the length of the list. - -__Properties__ -* Worst case performance O(n) -* Best case performance O(1) -* Average case performance O(n) -* Worst case space complexity O(1) iterative - -###### Source: [Wikipedia][linear-wiki] - - -### Binary -![alt text][binary-image] - -**Binary search**, also known as *half-interval search* or *logarithmic search*, is a search algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is successful. - -__Properties__ -* Worst case performance O(log n) -* Best case performance O(1) -* Average case performance O(log n) -* Worst case space complexity O(1) - -###### Source: [Wikipedia][binary-wiki] - - -## Interpolation -**Interpolation search** is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values). It was first described by W. W. Peterson in 1957. Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. - -By comparison, binary search always chooses the middle of the remaining search space, discarding one half or the other, depending on the comparison between the key found at the estimated position and the key sought — it does not require numerical values for the keys, just a total order on them. The remaining search space is reduced to the part before or after the estimated position. The linear search uses equality only as it compares elements one-by-one from the start, ignoring any sorting. - -On average the interpolation search makes about log(log(n)) comparisons (if the elements are uniformly distributed), where n is the number of elements to be searched. In the worst case (for instance where the numerical values of the keys increase exponentially) it can make up to O(n) comparisons. - -In interpolation-sequential search, interpolation is used to find an item near the one being searched for, then linear search is used to find the exact item. - -###### Source: [Wikipedia][interpolation-wiki] - - -## Jump Search -**Jump search** or _block search_ refers to a search algorithm for ordered lists. It works by first checking all items Lkm, where {\displaystyle k\in \mathbb {N} } k\in \mathbb {N} and m is the block size, until an item is found that is larger than the search key. To find the exact position of the search key in the list a linear search is performed on the sublist L[(k-1)m, km]. - -The optimal value of m is √n, where n is the length of the list L. Because both steps of the algorithm look at, at most, √n items the algorithm runs in O(√n) time. This is better than a linear search, but worse than a binary search. The advantage over the latter is that a jump search only needs to jump backwards once, while a binary can jump backwards up to log n times. This can be important if a jumping backwards takes significantly more time than jumping forward. - -The algorithm can be modified by performing multiple levels of jump search on the sublists, before finally performing the linear search. For an k-level jump search the optimum block size ml for the lth level (counting from 1) is n(k-l)/k. The modified algorithm will perform k backward jumps and runs in O(kn1/(k+1)) time. - -###### Source: [Wikipedia][jump-wiki] - - -## Quick Select -![alt text][QuickSelect-image] - -**Quick Select** is a selection algorithm to find the kth smallest element in an unordered list. It is related to the quicksort sorting algorithm. Like quicksort, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm.[1] Like quicksort, it is efficient in practice and has good average-case performance, but has poor worst-case performance. Quickselect and its variants are the selection algorithms most often used in efficient real-world implementations. - -Quickselect uses the same overall approach as quicksort, choosing one element as a pivot and partitioning the data in two based on the pivot, accordingly as less than or greater than the pivot. However, instead of recursing into both sides, as in quicksort, quickselect only recurses into one side – the side with the element it is searching for. This reduces the average complexity from O(n log n) to O(n), with a worst case of O(n2). - -As with quicksort, quickselect is generally implemented as an in-place algorithm, and beyond selecting the k'th element, it also partially sorts the data. See selection algorithm for further discussion of the connection with sorting. - -###### Source: [Wikipedia][quick-wiki] - - -## Tabu -**Tabu search** uses a local or neighborhood search procedure to iteratively move from one potential solution {\displaystyle x} x to an improved solution {\displaystyle x'} x' in the neighborhood of {\displaystyle x} x, until some stopping criterion has been satisfied (generally, an attempt limit or a score threshold). Local search procedures often become stuck in poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and explore regions of the search space that would be left unexplored by other local search procedures, tabu search carefully explores the neighborhood of each solution as the search progresses. The solutions admitted to the new neighborhood, {\displaystyle N^{*}(x)} N^*(x), are determined through the use of memory structures. Using these memory structures, the search progresses by iteratively moving from the current solution {\displaystyle x} x to an improved solution {\displaystyle x'} x' in {\displaystyle N^{*}(x)} N^*(x). - -These memory structures form what is known as the tabu list, a set of rules and banned solutions used to filter which solutions will be admitted to the neighborhood {\displaystyle N^{*}(x)} N^*(x) to be explored by the search. In its simplest form, a tabu list is a short-term set of the solutions that have been visited in the recent past (less than {\displaystyle n} n iterations ago, where {\displaystyle n} n is the number of previous solutions to be stored — is also called the tabu tenure). More commonly, a tabu list consists of solutions that have changed by the process of moving from one solution to another. It is convenient, for ease of description, to understand a “solution” to be coded and represented by such attributes. - -###### Source: [Wikipedia][tabu-wiki] - ----------------------------------------------------------------------------------------------------------------------- - -## Ciphers - -### Caesar -![alt text][caesar] - -**Caesar cipher**, also known as _Caesar's cipher_, the _shift cipher_, _Caesar's code_ or _Caesar shift_, is one of the simplest and most widely known encryption techniques.
-It is **a type of substitution cipher** in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so on.
-The method is named after **Julius Caesar**, who used it in his private correspondence.
-The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security. - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher) - - -### Vigenère - -**Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.
-The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".
-Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher'). -Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863. - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher) - - -### Transposition - -**Transposition cipher** is a method of encryption by which the positions held by units of *plaintext* (which are commonly characters or groups of characters) are shifted according to a regular system, so that the *ciphertext* constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).
- -Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt. - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Transposition_cipher) - - -### RSA (Rivest–Shamir–Adleman) -**RSA** _(Rivest–Shamir–Adleman)_ is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and it is different from the decryption key which is kept secret (private). In RSA, this asymmetry is based on the practical difficulty of the factorization of the product of two large prime numbers, the "factoring problem". The acronym RSA is made of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the algorithm in 1978. Clifford Cocks, an English mathematician working for the British intelligence agency Government Communications Headquarters (GCHQ), had developed an equivalent system in 1973, but this was not declassified until 1997.[1] - -A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, and if the public key is large enough, only someone with knowledge of the prime numbers can decode the message feasibly.[2] Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem remains an open question. - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/RSA_(cryptosystem)) - - -## ROT13 -![alt text][ROT13-image] - -**ROT13** ("rotate by 13 places", sometimes hyphenated _ROT-13_) is a simple letter substitution cipher that replaces a letter with the 13th letter after it, in the alphabet. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome. - -Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is, to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding. The algorithm provides virtually no cryptographic security, and is often cited as a canonical example of weak encryption.[1] - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/ROT13) - - -## XOR -**XOR cipher** is a simple type of additive cipher,[1] an encryption algorithm that operates according to the principles: - -A {\displaystyle \oplus } \oplus 0 = A, -A {\displaystyle \oplus } \oplus A = 0, -(A {\displaystyle \oplus } \oplus B) {\displaystyle \oplus } \oplus C = A {\displaystyle \oplus } \oplus (B {\displaystyle \oplus } \oplus C), -(B {\displaystyle \oplus } \oplus A) {\displaystyle \oplus } \oplus A = B {\displaystyle \oplus } \oplus 0 = B, -where {\displaystyle \oplus } \oplus denotes the exclusive disjunction (XOR) operation. This operation is sometimes called modulus 2 addition (or subtraction, which is identical).[2] With this logic, a string of text can be encrypted by applying the bitwise XOR operator to every character using a given key. To decrypt the output, merely reapplying the XOR function with the key will remove the cipher. - -###### Source: [Wikipedia](https://en.wikipedia.org/wiki/XOR_cipher) - - -[bubble-toptal]: https://www.toptal.com/developers/sorting-algorithms/bubble-sort -[bubble-wiki]: https://en.wikipedia.org/wiki/Bubble_sort -[bubble-image]: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Bubblesort-edited-color.svg/220px-Bubblesort-edited-color.svg.png "Bubble Sort" - -[bucket-wiki]: https://en.wikipedia.org/wiki/Bucket_sort -[bucket-image-1]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Bucket_sort_1.svg/311px-Bucket_sort_1.svg.png "Bucket Sort" -[bucket-image-2]: https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Bucket_sort_2.svg/311px-Bucket_sort_2.svg.png "Bucket Sort" - -[cocktail-shaker-wiki]: https://en.wikipedia.org/wiki/Cocktail_shaker_sort -[cocktail-shaker-image]: https://upload.wikimedia.org/wikipedia/commons/e/ef/Sorting_shaker_sort_anim.gif "Cocktail Shaker Sort" - -[insertion-toptal]: https://www.toptal.com/developers/sorting-algorithms/insertion-sort -[insertion-wiki]: https://en.wikipedia.org/wiki/Insertion_sort -[insertion-image]: https://upload.wikimedia.org/wikipedia/commons/7/7e/Insertionsort-edited.png "Insertion Sort" - -[quick-toptal]: https://www.toptal.com/developers/sorting-algorithms/quick-sort -[quick-wiki]: https://en.wikipedia.org/wiki/Quicksort -[quick-image]: https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif "Quick Sort" - -[heapsort-image]: https://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif "Heap Sort" -[heap-wiki]: https://en.wikipedia.org/wiki/Heapsort - -[radix-wiki]: https://en.wikipedia.org/wiki/Radix_sort - -[merge-toptal]: https://www.toptal.com/developers/sorting-algorithms/merge-sort -[merge-wiki]: https://en.wikipedia.org/wiki/Merge_sort -[merge-image]: https://upload.wikimedia.org/wikipedia/commons/c/cc/Merge-sort-example-300px.gif "Merge Sort" - -[selection-toptal]: https://www.toptal.com/developers/sorting-algorithms/selection-sort -[selection-wiki]: https://en.wikipedia.org/wiki/Selection_sort -[selection-image]: https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Selection_sort_animation.gif/250px-Selection_sort_animation.gif "Selection Sort Sort" - -[shell-toptal]: https://www.toptal.com/developers/sorting-algorithms/shell-sort -[shell-wiki]: https://en.wikipedia.org/wiki/Shellsort -[shell-image]: https://upload.wikimedia.org/wikipedia/commons/d/d8/Sorting_shellsort_anim.gif "Shell Sort" - -[topological-wiki]: https://en.wikipedia.org/wiki/Topological_sorting - -[linear-wiki]: https://en.wikipedia.org/wiki/Linear_search -[linear-image]: http://www.tutorialspoint.com/data_structures_algorithms/images/linear_search.gif "Linear Search" - -[binary-wiki]: https://en.wikipedia.org/wiki/Binary_search_algorithm -[binary-image]: https://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_search_into_array.png "Binary Search" - - -[interpolation-wiki]: https://en.wikipedia.org/wiki/Interpolation_search - -[jump-wiki]: https://en.wikipedia.org/wiki/Jump_search - -[quick-wiki]: https://en.wikipedia.org/wiki/Quickselect - -[tabu-wiki]: https://en.wikipedia.org/wiki/Tabu_search - -[ROT13-image]: https://upload.wikimedia.org/wikipedia/commons/3/33/ROT13_table_with_example.svg "ROT13" - -[JumpSearch-image]: https://i1.wp.com/theoryofprogramming.com/wp-content/uploads/2016/11/jump-search-1.jpg "Jump Search" - -[QuickSelect-image]: https://upload.wikimedia.org/wikipedia/commons/0/04/Selecting_quickselect_frames.gif "Quick Select" +https://gitter.im/TheAlgorithms From 3033c1e06ec477dd62a84470926492e28fadecf5 Mon Sep 17 00:00:00 2001 From: Ayman Mohamed Ali Date: Sun, 26 May 2019 15:46:45 +0300 Subject: [PATCH 109/594] Implement check_bipartite_graph using DFS. (#836) From 71be23999c44c5c41d48ee2b64bc155ec2c4da18 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sun, 26 May 2019 21:56:10 +0530 Subject: [PATCH 110/594] refactor --- License | 2 +- README.md | 3 ++- data_structures/binary tree/{AVLtree.py => AVL_tree.py} | 0 data_structures/queue/{deqeue.py => double_ended_queue.py} | 0 .../{FractionalKnapsack.py => Fractional_Knapsack.py} | 0 dynamic_programming/{fastfibonacci.py => fast_fibonacci.py} | 0 ...d) Graph.py => Directed_and_Undirected_(Weighted)_Graph.py} | 0 .../Eulerian_path_and_circuit_for_undirected_graph.py | 0 graphs/{bfs-shortestpath.py => bfs_shortest_path.py} | 0 .../edmonds_karp_multiple_source_and_sink.py | 0 Graphs/pagerank.py => graphs/page_rank.py | 0 maths/{BinaryExponentiation.py => Binary_Exponentiation.py} | 0 maths/{FindMax.py => Find_Max.py} | 0 maths/{FindMin.py => Find_Min.py} | 0 maths/{PrimeCheck.py => Prime_Check.py} | 0 maths/{absMax.py => abs_Max.py} | 0 maths/{absMin.py => abs_Min.py} | 0 other/{findingPrimes.py => finding_Primes.py} | 0 sorts/{BitonicSort.py => Bitonic_Sort.py} | 0 sorts/{external-sort.py => external_sort.py} | 0 strings/{naiveStringSearch.py => naive_String_Search.py} | 0 21 files changed, 3 insertions(+), 2 deletions(-) rename data_structures/binary tree/{AVLtree.py => AVL_tree.py} (100%) rename data_structures/queue/{deqeue.py => double_ended_queue.py} (100%) rename dynamic_programming/{FractionalKnapsack.py => Fractional_Knapsack.py} (100%) rename dynamic_programming/{fastfibonacci.py => fast_fibonacci.py} (100%) rename graphs/{Directed and Undirected (Weighted) Graph.py => Directed_and_Undirected_(Weighted)_Graph.py} (100%) rename Graphs/Eulerian path and circuit for undirected graph.py => graphs/Eulerian_path_and_circuit_for_undirected_graph.py (100%) rename graphs/{bfs-shortestpath.py => bfs_shortest_path.py} (100%) rename Graphs/edmonds_karp_Multiple_SourceAndSink.py => graphs/edmonds_karp_multiple_source_and_sink.py (100%) rename Graphs/pagerank.py => graphs/page_rank.py (100%) rename maths/{BinaryExponentiation.py => Binary_Exponentiation.py} (100%) rename maths/{FindMax.py => Find_Max.py} (100%) rename maths/{FindMin.py => Find_Min.py} (100%) rename maths/{PrimeCheck.py => Prime_Check.py} (100%) rename maths/{absMax.py => abs_Max.py} (100%) rename maths/{absMin.py => abs_Min.py} (100%) rename other/{findingPrimes.py => finding_Primes.py} (100%) rename sorts/{BitonicSort.py => Bitonic_Sort.py} (100%) rename sorts/{external-sort.py => external_sort.py} (100%) rename strings/{naiveStringSearch.py => naive_String_Search.py} (100%) diff --git a/License b/License index c84ae570c084..a20869d96300 100644 --- a/License +++ b/License @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2016 The Algorithms +Copyright (c) 2019 The Algorithms Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/README.md b/README.md index 8172df62309f..f8faf38736b6 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,6 @@ # The Algorithms - Python -[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100) +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   +[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms) ### All algorithms implemented in Python (for education) diff --git a/data_structures/binary tree/AVLtree.py b/data_structures/binary tree/AVL_tree.py similarity index 100% rename from data_structures/binary tree/AVLtree.py rename to data_structures/binary tree/AVL_tree.py diff --git a/data_structures/queue/deqeue.py b/data_structures/queue/double_ended_queue.py similarity index 100% rename from data_structures/queue/deqeue.py rename to data_structures/queue/double_ended_queue.py diff --git a/dynamic_programming/FractionalKnapsack.py b/dynamic_programming/Fractional_Knapsack.py similarity index 100% rename from dynamic_programming/FractionalKnapsack.py rename to dynamic_programming/Fractional_Knapsack.py diff --git a/dynamic_programming/fastfibonacci.py b/dynamic_programming/fast_fibonacci.py similarity index 100% rename from dynamic_programming/fastfibonacci.py rename to dynamic_programming/fast_fibonacci.py diff --git a/graphs/Directed and Undirected (Weighted) Graph.py b/graphs/Directed_and_Undirected_(Weighted)_Graph.py similarity index 100% rename from graphs/Directed and Undirected (Weighted) Graph.py rename to graphs/Directed_and_Undirected_(Weighted)_Graph.py diff --git a/Graphs/Eulerian path and circuit for undirected graph.py b/graphs/Eulerian_path_and_circuit_for_undirected_graph.py similarity index 100% rename from Graphs/Eulerian path and circuit for undirected graph.py rename to graphs/Eulerian_path_and_circuit_for_undirected_graph.py diff --git a/graphs/bfs-shortestpath.py b/graphs/bfs_shortest_path.py similarity index 100% rename from graphs/bfs-shortestpath.py rename to graphs/bfs_shortest_path.py diff --git a/Graphs/edmonds_karp_Multiple_SourceAndSink.py b/graphs/edmonds_karp_multiple_source_and_sink.py similarity index 100% rename from Graphs/edmonds_karp_Multiple_SourceAndSink.py rename to graphs/edmonds_karp_multiple_source_and_sink.py diff --git a/Graphs/pagerank.py b/graphs/page_rank.py similarity index 100% rename from Graphs/pagerank.py rename to graphs/page_rank.py diff --git a/maths/BinaryExponentiation.py b/maths/Binary_Exponentiation.py similarity index 100% rename from maths/BinaryExponentiation.py rename to maths/Binary_Exponentiation.py diff --git a/maths/FindMax.py b/maths/Find_Max.py similarity index 100% rename from maths/FindMax.py rename to maths/Find_Max.py diff --git a/maths/FindMin.py b/maths/Find_Min.py similarity index 100% rename from maths/FindMin.py rename to maths/Find_Min.py diff --git a/maths/PrimeCheck.py b/maths/Prime_Check.py similarity index 100% rename from maths/PrimeCheck.py rename to maths/Prime_Check.py diff --git a/maths/absMax.py b/maths/abs_Max.py similarity index 100% rename from maths/absMax.py rename to maths/abs_Max.py diff --git a/maths/absMin.py b/maths/abs_Min.py similarity index 100% rename from maths/absMin.py rename to maths/abs_Min.py diff --git a/other/findingPrimes.py b/other/finding_Primes.py similarity index 100% rename from other/findingPrimes.py rename to other/finding_Primes.py diff --git a/sorts/BitonicSort.py b/sorts/Bitonic_Sort.py similarity index 100% rename from sorts/BitonicSort.py rename to sorts/Bitonic_Sort.py diff --git a/sorts/external-sort.py b/sorts/external_sort.py similarity index 100% rename from sorts/external-sort.py rename to sorts/external_sort.py diff --git a/strings/naiveStringSearch.py b/strings/naive_String_Search.py similarity index 100% rename from strings/naiveStringSearch.py rename to strings/naive_String_Search.py From 974088d872df4cc697c5c816fa961fc75ace857b Mon Sep 17 00:00:00 2001 From: CHIANGTUNGHUA Date: Mon, 27 May 2019 00:33:53 +0800 Subject: [PATCH 111/594] Update .gitignore (#841) --- .gitignore | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index 5f9132236c26..0c3f33058614 100644 --- a/.gitignore +++ b/.gitignore @@ -89,4 +89,5 @@ ENV/ # Rope project settings .ropeproject .idea -.DS_Store \ No newline at end of file +.DS_Store +.try \ No newline at end of file From 7f4f565e6291e876f45bb100843fdd021177fbb0 Mon Sep 17 00:00:00 2001 From: Ambuj81 Date: Sun, 26 May 2019 22:07:40 +0530 Subject: [PATCH 112/594] subset_generation (#326) * subset_generation generate all possible subset of size n of a given array of size r * Rename subset_generation to subset_generation.py * Update subset_generation.py I made all changes I could . What I mean is I removed all the empty space ....... There some comment extra if you feel removing those comments please do so yourself pls provide spacing as it should be * Create morse_Code_implementation.py * Any more changes pls let me know --- ciphers/morse_Code_implementation.py | 82 ++++++++++++++++++++++++ dynamic_programming/subset_generation.py | 39 +++++++++++ 2 files changed, 121 insertions(+) create mode 100644 ciphers/morse_Code_implementation.py create mode 100644 dynamic_programming/subset_generation.py diff --git a/ciphers/morse_Code_implementation.py b/ciphers/morse_Code_implementation.py new file mode 100644 index 000000000000..7b2d0a94b24b --- /dev/null +++ b/ciphers/morse_Code_implementation.py @@ -0,0 +1,82 @@ +# Python program to implement Morse Code Translator + + +# Dictionary representing the morse code chart +MORSE_CODE_DICT = { 'A':'.-', 'B':'-...', + 'C':'-.-.', 'D':'-..', 'E':'.', + 'F':'..-.', 'G':'--.', 'H':'....', + 'I':'..', 'J':'.---', 'K':'-.-', + 'L':'.-..', 'M':'--', 'N':'-.', + 'O':'---', 'P':'.--.', 'Q':'--.-', + 'R':'.-.', 'S':'...', 'T':'-', + 'U':'..-', 'V':'...-', 'W':'.--', + 'X':'-..-', 'Y':'-.--', 'Z':'--..', + '1':'.----', '2':'..---', '3':'...--', + '4':'....-', '5':'.....', '6':'-....', + '7':'--...', '8':'---..', '9':'----.', + '0':'-----', ', ':'--..--', '.':'.-.-.-', + '?':'..--..', '/':'-..-.', '-':'-....-', + '(':'-.--.', ')':'-.--.-'} + + +def encrypt(message): + cipher = '' + for letter in message: + if letter != ' ': + + + cipher += MORSE_CODE_DICT[letter] + ' ' + else: + + cipher += ' ' + + return cipher + + +def decrypt(message): + + message += ' ' + + decipher = '' + citext = '' + for letter in message: + + if (letter != ' '): + + + i = 0 + + + citext += letter + + else: + + i += 1 + + + if i == 2 : + + + decipher += ' ' + else: + + + decipher += list(MORSE_CODE_DICT.keys())[list(MORSE_CODE_DICT + .values()).index(citext)] + citext = '' + + return decipher + + +def main(): + message = "Morse code here" + result = encrypt(message.upper()) + print (result) + + message = result + result = decrypt(message) + print (result) + + +if __name__ == '__main__': + main() diff --git a/dynamic_programming/subset_generation.py b/dynamic_programming/subset_generation.py new file mode 100644 index 000000000000..4b7a2bf87fd5 --- /dev/null +++ b/dynamic_programming/subset_generation.py @@ -0,0 +1,39 @@ +# python program to print all subset combination of n element in given set of r element . +#arr[] ---> Input Array +#data[] ---> Temporary array to store current combination +# start & end ---> Staring and Ending indexes in arr[] +# index ---> Current index in data[] +#r ---> Size of a combination to be printed +def combinationUtil(arr,n,r,index,data,i): +#Current combination is ready to be printed, +# print it + if(index == r): + for j in range(r): + print(data[j],end =" ") + print(" ") + return +# When no more elements are there to put in data[] + if(i >= n): + return +#current is included, put next at next +# location + data[index] = arr[i] + combinationUtil(arr,n,r,index+1,data,i+1) + # current is excluded, replace it with + # next (Note that i+1 is passed, but + # index is not changed) + combinationUtil(arr,n,r,index,data,i+1) + # The main function that prints all combinations + #of size r in arr[] of size n. This function + #mainly uses combinationUtil() +def printcombination(arr,n,r): +# A temporary array to store all combination +# one by one + data = [0]*r +#Print all combination using temprary +#array 'data[]' + combinationUtil(arr,n,r,0,data,0) +# Driver function to check for above function +arr = [10,20,30,40,50] +printcombination(arr,len(arr),3) +#This code is contributed by Ambuj sahu From 5be32f4022135a10585cf094b6fb8118dd87a2f6 Mon Sep 17 00:00:00 2001 From: Shubhayu Das <43082352+sateslayer@users.noreply.github.com> Date: Sun, 26 May 2019 22:10:04 +0530 Subject: [PATCH 113/594] Add files via upload (#396) --- ciphers/Atbash.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) create mode 100644 ciphers/Atbash.py diff --git a/ciphers/Atbash.py b/ciphers/Atbash.py new file mode 100644 index 000000000000..67bd69425fdd --- /dev/null +++ b/ciphers/Atbash.py @@ -0,0 +1,14 @@ +def Atbash(): + inp=raw_input("Enter the sentence to be encrypted ") + output="" + for i in inp: + extract=ord(i) + if extract>=65 and extract<=90: + output+=(unichr(155-extract)) + elif extract>=97 and extract<=122: + output+=(unichr(219-extract)) + else: + output+=i + print output + +Atbash() ; \ No newline at end of file From 89f15bef0a32e8e2c1c26f773daebfbe4dd3564f Mon Sep 17 00:00:00 2001 From: Bruno Santos <7022432+dunderbruno@users.noreply.github.com> Date: Sun, 26 May 2019 13:41:46 -0300 Subject: [PATCH 114/594] Create prim.py (#397) --- Graphs/prim.py | 82 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 82 insertions(+) create mode 100644 Graphs/prim.py diff --git a/Graphs/prim.py b/Graphs/prim.py new file mode 100644 index 000000000000..c9f91d4b0700 --- /dev/null +++ b/Graphs/prim.py @@ -0,0 +1,82 @@ +""" +Prim's Algorithm. + +Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm + +Create a list to store x the vertices. +G = [vertex(n) for n in range(x)] + +For each vertex in G, add the neighbors: +G[x].addNeighbor(G[y]) +G[y].addNeighbor(G[x]) + +For each vertex in G, add the edges: +G[x].addEdge(G[y], w) +G[y].addEdge(G[x], w) + +To solve run: +MST = prim(G, G[0]) +""" + +import math + + +class vertex(): + """Class Vertex.""" + + def __init__(self, id): + """ + Arguments: + id - input an id to identify the vertex + + Attributes: + neighbors - a list of the vertices it is linked to + edges - a dict to store the edges's weight + """ + self.id = str(id) + self.key = None + self.pi = None + self.neighbors = [] + self.edges = {} # [vertex:distance] + + def __lt__(self, other): + """Comparison rule to < operator.""" + return (self.key < other.key) + + def __repr__(self): + """Return the vertex id.""" + return self.id + + def addNeighbor(self, vertex): + """Add a pointer to a vertex at neighbor's list.""" + self.neighbors.append(vertex) + + def addEdge(self, vertex, weight): + """Destination vertex and weight.""" + self.edges[vertex.id] = weight + + +def prim(graph, root): + """ + Prim's Algorithm. + + Return a list with the edges of a Minimum Spanning Tree + + prim(graph, graph[0]) + """ + A = [] + for u in graph: + u.key = math.inf + u.pi = None + root.key = 0 + Q = graph[:] + while Q: + u = min(Q) + Q.remove(u) + for v in u.neighbors: + if (v in Q) and (u.edges[v.id] < v.key): + v.pi = u + v.key = u.edges[v.id] + for i in range(1, len(graph)): + A.append([graph[i].id, graph[i].pi.id]) + return(A) From 559951c181d880140a7a11d57b6c54d50018d8aa Mon Sep 17 00:00:00 2001 From: victoni <32034171+victoni@users.noreply.github.com> Date: Sun, 26 May 2019 18:42:55 +0200 Subject: [PATCH 115/594] Lucas series added (#399) --- Maths/lucasSeries.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) create mode 100644 Maths/lucasSeries.py diff --git a/Maths/lucasSeries.py b/Maths/lucasSeries.py new file mode 100644 index 000000000000..91ea1ba72a56 --- /dev/null +++ b/Maths/lucasSeries.py @@ -0,0 +1,13 @@ +# Lucas Sequence Using Recursion + +def recur_luc(n): + if n == 1: + return n + if n == 0: + return 2 + return (recur_luc(n-1) + recur_luc(n-2)) + +limit = int(input("How many terms to include in Lucas series:")) +print("Lucas series:") +for i in range(limit): + print(recur_luc(i)) From cb4be75941af8058c2efa132151cd64bf73f3101 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sun, 26 May 2019 22:21:22 +0530 Subject: [PATCH 116/594] Rename nqueens.py to n_queens.py --- other/{nqueens.py => n_queens.py} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename other/{nqueens.py => n_queens.py} (98%) diff --git a/other/nqueens.py b/other/n_queens.py similarity index 98% rename from other/nqueens.py rename to other/n_queens.py index 1b1c75878ae6..0e80a0cff5e9 100644 --- a/other/nqueens.py +++ b/other/n_queens.py @@ -74,4 +74,4 @@ def print_board(board): board = nqueens(default_width) print(board) - print_board(board) \ No newline at end of file + print_board(board) From f56dd7f8e3a35354f8bee34a43175139908cbe4b Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sun, 26 May 2019 22:59:07 +0530 Subject: [PATCH 117/594] Update Atbash.py --- ciphers/Atbash.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ciphers/Atbash.py b/ciphers/Atbash.py index 67bd69425fdd..4920e3049756 100644 --- a/ciphers/Atbash.py +++ b/ciphers/Atbash.py @@ -9,6 +9,6 @@ def Atbash(): output+=(unichr(219-extract)) else: output+=i - print output + print (output) -Atbash() ; \ No newline at end of file +Atbash() ; From dd62f1b8023817ae5637812b3fa9acd815e4ef38 Mon Sep 17 00:00:00 2001 From: alpylmz <41516584+alpylmz@users.noreply.github.com> Date: Sun, 26 May 2019 21:04:49 +0300 Subject: [PATCH 118/594] Create sol5.py (#425) added a solve for the problem --- Project Euler/Problem 01/sol5.py | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 Project Euler/Problem 01/sol5.py diff --git a/Project Euler/Problem 01/sol5.py b/Project Euler/Problem 01/sol5.py new file mode 100644 index 000000000000..2cb67d2524e2 --- /dev/null +++ b/Project Euler/Problem 01/sol5.py @@ -0,0 +1,8 @@ +a=3 +result=0 +while a=<1000: + if(a%3==0 and a%5==0): + result+=a + elif(a%15==0): + result-=a +print(result) From fc95e7a91a4407ea5a293dbe80dc7a76d4af0976 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Tue, 28 May 2019 17:21:48 +0430 Subject: [PATCH 119/594] Fermat's little theorem (#847) * Fix typo * Add fermat's little theorem * Update fermat_little_theorem.py * Fix comments * Add Wikipedia reference --- maths/fermat_little_theorem.py | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) create mode 100644 maths/fermat_little_theorem.py diff --git a/maths/fermat_little_theorem.py b/maths/fermat_little_theorem.py new file mode 100644 index 000000000000..93af98684894 --- /dev/null +++ b/maths/fermat_little_theorem.py @@ -0,0 +1,30 @@ +# Python program to show the usage of Fermat's little theorem in a division +# According to Fermat's little theorem, (a / b) mod p always equals a * (b ^ (p - 2)) mod p +# Here we assume that p is a prime number, b divides a, and p doesn't divide b +# Wikipedia reference: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem + + +def binary_exponentiation(a, n, mod): + + if (n == 0): + return 1 + + elif (n % 2 == 1): + return (binary_exponentiation(a, n - 1, mod) * a) % mod + + else: + b = binary_exponentiation(a, n / 2, mod) + return (b * b) % mod + + +# a prime number +p = 701 + +a = 1000000000 +b = 10 + +# using binary exponentiation function, O(log(p)): +print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) + +# using Python operators: +print((a / b) % p == (a * b ** (p - 2)) % p) From 9037abae110408e8c7cf45f613d84059be07993c Mon Sep 17 00:00:00 2001 From: cedricfarinazzo Date: Thu, 30 May 2019 02:47:00 +0200 Subject: [PATCH 120/594] Fix spelling in neural_network/convolution_neural_network.py (#849) * Fix spelling in neural_network/convolution_neural_network.py * fix import Signed-off-by: cedric.farinazzo --- neural_network/convolution_neural_network.py | 67 ++++++++++---------- 1 file changed, 33 insertions(+), 34 deletions(-) diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index 0dca2bc485d1..0e72f0c0dca2 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -14,15 +14,16 @@ Github: 245885195@qq.com Date: 2017.9.20 - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - ''' +''' from __future__ import print_function +import pickle import numpy as np import matplotlib.pyplot as plt class CNN(): - def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2): + def __init__(self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2): ''' :param conv1_get: [a,c,d],size, number, step of convolution kernel :param size_p1: pooling size @@ -48,32 +49,30 @@ def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0. self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1 - def save_model(self,save_path): + def save_model(self, save_path): #save model dict with pickle - import pickle model_dic = {'num_bp1':self.num_bp1, - 'num_bp2':self.num_bp2, - 'num_bp3':self.num_bp3, - 'conv1':self.conv1, - 'step_conv1':self.step_conv1, - 'size_pooling1':self.size_pooling1, - 'rate_weight':self.rate_weight, - 'rate_thre':self.rate_thre, - 'w_conv1':self.w_conv1, - 'wkj':self.wkj, - 'vji':self.vji, - 'thre_conv1':self.thre_conv1, - 'thre_bp2':self.thre_bp2, - 'thre_bp3':self.thre_bp3} + 'num_bp2':self.num_bp2, + 'num_bp3':self.num_bp3, + 'conv1':self.conv1, + 'step_conv1':self.step_conv1, + 'size_pooling1':self.size_pooling1, + 'rate_weight':self.rate_weight, + 'rate_thre':self.rate_thre, + 'w_conv1':self.w_conv1, + 'wkj':self.wkj, + 'vji':self.vji, + 'thre_conv1':self.thre_conv1, + 'thre_bp2':self.thre_bp2, + 'thre_bp3':self.thre_bp3} with open(save_path, 'wb') as f: pickle.dump(model_dic, f) print('Model saved: %s'% save_path) @classmethod - def ReadModel(cls,model_path): + def ReadModel(cls, model_path): #read saved model - import pickle with open(model_path, 'rb') as f: model_dic = pickle.load(f) @@ -97,13 +96,13 @@ def ReadModel(cls,model_path): return conv_ins - def sig(self,x): + def sig(self, x): return 1 / (1 + np.exp(-1*x)) - def do_round(self,x): + def do_round(self, x): return round(x, 3) - def convolute(self,data,convs,w_convs,thre_convs,conv_step): + def convolute(self, data, convs, w_convs, thre_convs, conv_step): #convolution process size_conv = convs[0] num_conv =convs[1] @@ -132,7 +131,7 @@ def convolute(self,data,convs,w_convs,thre_convs,conv_step): focus_list = np.asarray(focus1_list) return focus_list,data_featuremap - def pooling(self,featuremaps,size_pooling,type='average_pool'): + def pooling(self, featuremaps, size_pooling, type='average_pool'): #pooling process size_map = len(featuremaps[0]) size_pooled = int(size_map/size_pooling) @@ -153,7 +152,7 @@ def pooling(self,featuremaps,size_pooling,type='average_pool'): featuremap_pooled.append(map_pooled) return featuremap_pooled - def _expand(self,datas): + def _expand(self, datas): #expanding three dimension data to one dimension list data_expanded = [] for i in range(len(datas)): @@ -164,14 +163,14 @@ def _expand(self,datas): data_expanded = np.asarray(data_expanded) return data_expanded - def _expand_mat(self,data_mat): + def _expand_mat(self, data_mat): #expanding matrix to one dimension list data_mat = np.asarray(data_mat) shapes = np.shape(data_mat) data_expanded = data_mat.reshape(1,shapes[0]*shapes[1]) return data_expanded - def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling): + def _calculate_gradient_from_pool(self, out_map, pd_pool,num_map, size_map, size_pooling): ''' calcluate the gradient from the data slice of pool layer pd_pool: list of matrix @@ -190,7 +189,7 @@ def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_poo pd_all.append(pd_conv2) return pd_all - def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool): + def train(self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, draw_e = bool): #model traning print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ',np.shape(datas_train))) @@ -206,7 +205,7 @@ def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_ data_train = np.asmatrix(datas_train[p]) data_teach = np.asarray(datas_teach[p]) data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1, - self.thre_conv1,conv_step=self.step_conv1) + self.thre_conv1,conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1,self.size_pooling1) shape_featuremap1 = np.shape(data_conved1) ''' @@ -231,7 +230,7 @@ def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_ pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1) pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist() pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0], - shape_featuremap1[1],self.size_pooling1) + shape_featuremap1[1],self.size_pooling1) #weight and threshold learning process--------- #convolution layer for k_conv in range(self.conv1[1]): @@ -268,7 +267,7 @@ def draw_error(): draw_error() return mse - def predict(self,datas_test): + def predict(self, datas_test): #model predict produce_out = [] print('-------------------Start Testing-------------------------') @@ -276,7 +275,7 @@ def predict(self,datas_test): for p in range(len(datas_test)): data_test = np.asmatrix(datas_test[p]) data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, - self.thre_conv1, conv_step=self.step_conv1) + self.thre_conv1, conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) data_bp_input = self._expand(data_pooled1) @@ -289,11 +288,11 @@ def predict(self,datas_test): res = [list(map(self.do_round,each)) for each in produce_out] return np.asarray(res) - def convolution(self,data): + def convolution(self, data): #return the data of image after convoluting process so we can check it out data_test = np.asmatrix(data) data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, - self.thre_conv1, conv_step=self.step_conv1) + self.thre_conv1, conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) return data_conved1,data_pooled1 @@ -303,4 +302,4 @@ def convolution(self,data): pass ''' I will put the example on other file - ''' \ No newline at end of file +''' From aeab9f10685c93e043ad143bd583bc11e7bd8744 Mon Sep 17 00:00:00 2001 From: Sven Efftinge Date: Fri, 31 May 2019 10:02:56 +0200 Subject: [PATCH 121/594] Added gitpod info (#848) --- README.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index f8faf38736b6..f84dcaf90cff 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ # The Algorithms - Python -[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms) @@ -7,6 +7,10 @@ These implementations are for learning purposes. They may be efficient than the implementations in the Python standard library. +Run, edit and contribute using Gitpod.io a free online dev environment. + +[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) + ## Contribution Guidelines * File name should be in camel case. From 4d9a1611bda8124bf4ea21699c12c81c9fcdd1b4 Mon Sep 17 00:00:00 2001 From: Dave Kerr Date: Fri, 31 May 2019 04:03:55 -0400 Subject: [PATCH 122/594] implementations may be *less* efficient than python standard libs (#854) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index f84dcaf90cff..e2412d9b57dd 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ ### All algorithms implemented in Python (for education) -These implementations are for learning purposes. They may be efficient than the implementations in the Python standard library. +These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. Run, edit and contribute using Gitpod.io a free online dev environment. From f386fce820fb60abfe1b18c141dfd8ce268c5f4f Mon Sep 17 00:00:00 2001 From: luanjerry <50862638+luanjerry@users.noreply.github.com> Date: Fri, 31 May 2019 16:05:24 +0800 Subject: [PATCH 123/594] Update queue_on_list.py (#851) * Fixed error in queue_on_list.py --- data_structures/queue/queue_on_list.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/data_structures/queue/queue_on_list.py b/data_structures/queue/queue_on_list.py index c8d0b41de5d5..2ec9bac8398a 100644 --- a/data_structures/queue/queue_on_list.py +++ b/data_structures/queue/queue_on_list.py @@ -24,8 +24,9 @@ def put(self, item): def get(self): self.length = self.length - 1 dequeued = self.entries[self.front] - self.front-=1 - self.entries = self.entries[self.front:] + #self.front-=1 + #self.entries = self.entries[self.front:] + self.entries = self.entries[1:] return dequeued """Rotates the queue {@code rotation} times From c2552cdfcdc787b73bd07ee2fe5145c73827e8a3 Mon Sep 17 00:00:00 2001 From: John Law Date: Sun, 2 Jun 2019 12:14:18 +0800 Subject: [PATCH 124/594] Create CONTRIBUTING.md (#864) * Create CONTRIBUTING.md * Create a tailor-made contribution guide Closes #802 * Update README.md * Rename License to LICENSE.md --- CONTRIBUTING.md | 124 ++++++++++++++++++++++++++++++++++++++++++ License => LICENSE.md | 0 README.md | 15 ++--- 3 files changed, 128 insertions(+), 11 deletions(-) create mode 100644 CONTRIBUTING.md rename License => LICENSE.md (100%) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 000000000000..9b2ac0025dca --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,124 @@ +# Contributing guidelines + +## Before contributing + +Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before sending your pull requests, make sure that you **read the whole guidelines**. If you have any doubt on the contributing guide, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms). + +## Contributing + +### Contributor + +We are very happy that you consider implementing algorithms and data structure for others! This repository is referenced and used by learners from all over the globe. Being one of our contributors, you agree and confirm that: + +- your did your work - no plagiarism allowed + - Any plagiarized work will not be merged. +- your work will be distributed under [MIT License](License) once your pull request is merged +- you submitted work fulfils or mostly fulfils our styles and standards + +**New implementation** is welcome! For example, new solutions for a problem, different representations for a graph data structure or algorithm designs with different complexity. + +**Improving comments** and **writing proper tests** are also highly welcome. + +### Contribution + +We appreciate any contribution, from fixing a grammar mistake in a comment to implementing complex algorithms. Please read this section if you are contributing your work. + +#### Coding Style + +We want your work to be readable by others; therefore, we encourage you to note the following: + +- Please write in Python 3.x. + +- If you know [PEP 8](https://www.python.org/dev/peps/pep-0008/) already, you will have no problem in coding style, though we do not follow it strictly. Read the remaining section and have fun coding! + +- Always use 4 spaces to indent. + +- Original code submission requires comments to describe your work. + +- More on comments and docstrings: + + The following are considered to be bad and may be requested to be improved: + + ```python + x = x + 2 # increased by 2 + ``` + + This is too trivial. Comments are expected to be explanatory. For comments, you can write them above, on or below a line of code, as long as you are consistent within the same piece of code. + + *Sometimes, docstrings are avoided.* This will happen if you are using some editors and not careful with indentation: + + ```python + """ + This function sums a and b + """ + def sum(a, b): + return a + b + ``` + + However, if you insist to use docstrings, we encourage you to put docstrings inside functions. Also, please pay attention to indentation to docstrings. The following is acceptable in this case: + + ```python + def sumab(a, b): + """ + This function sums two integers a and b + Return: a + b + """ + return a + b + ``` + +- `lambda`, `map`, `filter`, `reduce` and complicated list comprehension are welcome and acceptable to demonstrate the power of Python, as long as they are simple enough to read. + + - This is arguable: **write comments** and assign appropriate variable names, so that the code is easy to read! + +- Write tests to illustrate your work. + + The following "testing" approaches are not encouraged: + + ```python + input('Enter your input:') + # Or even worse... + input = eval(raw_input("Enter your input: ")) + ``` + + Please write down your test case, like the following: + + ```python + def sumab(a, b): + return a + b + # Write tests this way: + print(sumab(1,2)) # 1+2 = 3 + print(sumab(6,4)) # 6+4 = 10 + # Or this way: + print("1 + 2 = ", sumab(1,2)) # 1+2 = 3 + print("6 + 4 = ", sumab(6,4)) # 6+4 = 10 + ``` + +- Avoid importing external libraries for basic algorithms. Use those libraries for complicated algorithms. + +#### Other Standard While Submitting Your Work + +- File extension for code should be `.py`. + +- Please file your work to let others use it in the future. Here are the examples that are acceptable: + + - Camel cases + - `-` Hyphenated names + - `_` Underscore-separated names + + If possible, follow the standard *within* the folder you are submitting to. + +- If you have modified/added code work, make sure the code compiles before submitting. + +- If you have modified/added documentation work, make sure your language is concise and contains no grammar mistake. + +- Add a corresponding explanation to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). + +- Most importantly, + + - **be consistent with this guidelines while submitting.** + - **join** [Gitter](https://gitter.im/TheAlgorithms) **now!** + - Happy coding! + + + +Writer [@poyea](https://github.com/poyea), Jun 2019. diff --git a/License b/LICENSE.md similarity index 100% rename from License rename to LICENSE.md diff --git a/README.md b/README.md index e2412d9b57dd..527b80269fdc 100644 --- a/README.md +++ b/README.md @@ -1,24 +1,17 @@ # The Algorithms - Python [![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   -[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms) - +[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms)   +[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) ### All algorithms implemented in Python (for education) These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. -Run, edit and contribute using Gitpod.io a free online dev environment. - -[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) ## Contribution Guidelines -* File name should be in camel case. -* Write proper documentation of the code. -* Avoid input methods as far as possible. Assign values to the variables statically. This will make the code easy to understand and algorithm can be traced easily. -* Add a corresponding explaination to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). -* Avoid importing external libraries for basic algorithms. +Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. ## Community Channel -https://gitter.im/TheAlgorithms +We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. From f9b8dbf9db6c5b6cdd4ec9b5e35fbc1d9939a45e Mon Sep 17 00:00:00 2001 From: Guo Date: Tue, 4 Jun 2019 16:34:28 +0800 Subject: [PATCH 125/594] Correct the wrong iterative DFS implementation (#867) * Update DFS.py * Update DFS.py --- graphs/DFS.py | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/graphs/DFS.py b/graphs/DFS.py index d3c34fabb7b3..c9843ca25382 100644 --- a/graphs/DFS.py +++ b/graphs/DFS.py @@ -18,10 +18,15 @@ def dfs(graph, start): explored, stack = set(), [start] explored.add(start) while stack: - v = stack.pop() # the only difference from BFS is to pop last element here instead of first one + v = stack.pop() # one difference from BFS is to pop last element here instead of first one + + if v in explored: + continue + + explored.add(v) + for w in graph[v]: if w not in explored: - explored.add(w) stack.append(w) return explored From 0f229e0870050478a6b3fa1ecf60d73b694b98da Mon Sep 17 00:00:00 2001 From: cclauss Date: Wed, 5 Jun 2019 03:09:04 +0200 Subject: [PATCH 126/594] Atbash.py: Both raw_input() and unichr() were removed in Python 3 (#855) * Atbash.py: Both raw_input() and unichr() were removed in Python 3 @sateslayer and @AnupKumarPanwar your reviews please. * Remove any leading / trailing whitespace from user input --- ciphers/Atbash.py | 25 ++++++++++++++++--------- 1 file changed, 16 insertions(+), 9 deletions(-) diff --git a/ciphers/Atbash.py b/ciphers/Atbash.py index 4920e3049756..162614c727ee 100644 --- a/ciphers/Atbash.py +++ b/ciphers/Atbash.py @@ -1,14 +1,21 @@ +try: # Python 2 + raw_input + unichr +except NameError: # Python 3 + raw_input = input + unichr = chr + + def Atbash(): - inp=raw_input("Enter the sentence to be encrypted ") output="" - for i in inp: - extract=ord(i) - if extract>=65 and extract<=90: - output+=(unichr(155-extract)) - elif extract>=97 and extract<=122: - output+=(unichr(219-extract)) + for i in raw_input("Enter the sentence to be encrypted ").strip(): + extract = ord(i) + if 65 <= extract <= 90: + output += unichr(155-extract) + elif 97 <= extract <= 122: + output += unichr(219-extract) else: output+=i - print (output) + print(output) -Atbash() ; +Atbash() From ebe227c38646fc6720124eae5aedc68b61a4b664 Mon Sep 17 00:00:00 2001 From: Daniel Xu Date: Tue, 4 Jun 2019 21:37:05 -0400 Subject: [PATCH 127/594] Removed Graphs and move prim.py to graphs (#872) * Move prim.py from Graphs to graphs * Removed prim.py from Graphs * Update prim.py --- {Graphs => graphs}/prim.py | 3 --- 1 file changed, 3 deletions(-) rename {Graphs => graphs}/prim.py (99%) diff --git a/Graphs/prim.py b/graphs/prim.py similarity index 99% rename from Graphs/prim.py rename to graphs/prim.py index c9f91d4b0700..f7e08278966d 100644 --- a/Graphs/prim.py +++ b/graphs/prim.py @@ -28,7 +28,6 @@ def __init__(self, id): """ Arguments: id - input an id to identify the vertex - Attributes: neighbors - a list of the vertices it is linked to edges - a dict to store the edges's weight @@ -59,9 +58,7 @@ def addEdge(self, vertex, weight): def prim(graph, root): """ Prim's Algorithm. - Return a list with the edges of a Minimum Spanning Tree - prim(graph, graph[0]) """ A = [] From 6e894ba3e8bab4e9e0515b91e685904ec828cf43 Mon Sep 17 00:00:00 2001 From: CharlesRitter Date: Fri, 7 Jun 2019 11:38:43 -0400 Subject: [PATCH 128/594] Odd-Even Transposition Sort (#769) * -Added a single-threaded implementation of odd-even transposition sort. This is a modified bubble sort meant to work with multiple processors. Since this is running on a single thread, it has the same running time as bubble sort. * -Added a parallel implementation of Odd-Even Transposition sort This implementation uses multiprocessing to perform the swaps at each step of the algorithm simultaneously. --- sorts/Odd-Even_transposition_parallel.py | 127 ++++++++++++++++++ .../Odd-Even_transposition_single-threaded.py | 32 +++++ 2 files changed, 159 insertions(+) create mode 100644 sorts/Odd-Even_transposition_parallel.py create mode 100644 sorts/Odd-Even_transposition_single-threaded.py diff --git a/sorts/Odd-Even_transposition_parallel.py b/sorts/Odd-Even_transposition_parallel.py new file mode 100644 index 000000000000..d7f983fc0469 --- /dev/null +++ b/sorts/Odd-Even_transposition_parallel.py @@ -0,0 +1,127 @@ +""" +This is an implementation of odd-even transposition sort. + +It works by performing a series of parallel swaps between odd and even pairs of +variables in the list. + +This implementation represents each variable in the list with a process and +each process communicates with its neighboring processes in the list to perform +comparisons. +They are synchronized with locks and message passing but other forms of +synchronization could be used. +""" +from multiprocessing import Process, Pipe, Lock + +#lock used to ensure that two processes do not access a pipe at the same time +processLock = Lock() + +""" +The function run by the processes that sorts the list + +position = the position in the list the prcoess represents, used to know which + neighbor we pass our value to +value = the initial value at list[position] +LSend, RSend = the pipes we use to send to our left and right neighbors +LRcv, RRcv = the pipes we use to receive from our left and right neighbors +resultPipe = the pipe used to send results back to main +""" +def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): + global processLock + + #we perform n swaps since after n swaps we know we are sorted + #we *could* stop early if we are sorted already, but it takes as long to + #find out we are sorted as it does to sort the list with this algorithm + for i in range(0, 10): + + if( (i + position) % 2 == 0 and RSend != None): + #send your value to your right neighbor + processLock.acquire() + RSend[1].send(value) + processLock.release() + + #receive your right neighbor's value + processLock.acquire() + temp = RRcv[0].recv() + processLock.release() + + #take the lower value since you are on the left + value = min(value, temp) + elif( (i + position) % 2 != 0 and LSend != None): + #send your value to your left neighbor + processLock.acquire() + LSend[1].send(value) + processLock.release() + + #receive your left neighbor's value + processLock.acquire() + temp = LRcv[0].recv() + processLock.release() + + #take the higher value since you are on the right + value = max(value, temp) + #after all swaps are performed, send the values back to main + resultPipe[1].send(value) + +""" +the function which creates the processes that perform the parallel swaps + +arr = the list to be sorted +""" +def OddEvenTransposition(arr): + + processArray = [] + tempRrcv = None + tempLrcv = None + + resultPipe = [] + + #initialize the list of pipes where the values will be retrieved + for a in arr: + resultPipe.append(Pipe()) + + #creates the processes + #the first and last process only have one neighbor so they are made outside + #of the loop + tempRs = Pipe() + tempRr = Pipe() + processArray.append(Process(target = oeProcess, args = (0, arr[0], None, tempRs, None, tempRr, resultPipe[0]))) + tempLr = tempRs + tempLs = tempRr + + for i in range(1, len(arr) - 1): + tempRs = Pipe() + tempRr = Pipe() + processArray.append(Process(target = oeProcess, args = (i, arr[i], tempLs, tempRs, tempLr, tempRr, resultPipe[i]))) + tempLr = tempRs + tempLs = tempRr + + processArray.append(Process(target = oeProcess, args = (len(arr) - 1, arr[len(arr) - 1], tempLs, None, tempLr, None, resultPipe[len(arr) - 1]))) + + #start the processes + for p in processArray: + p.start() + + #wait for the processes to end and write their values to the list + for p in range(0, len(resultPipe)): + arr[p] = resultPipe[p][0].recv() + processArray[p].join() + + return(arr) + + +#creates a reverse sorted list and sorts it +def main(): + arr = [] + + for i in range(10, 0, -1): + arr.append(i) + print("Initial List") + print(*arr) + + list = OddEvenTransposition(arr) + + print("Sorted List\n") + print(*arr) + +if __name__ == "__main__": + main() diff --git a/sorts/Odd-Even_transposition_single-threaded.py b/sorts/Odd-Even_transposition_single-threaded.py new file mode 100644 index 000000000000..ec5f3cf14e55 --- /dev/null +++ b/sorts/Odd-Even_transposition_single-threaded.py @@ -0,0 +1,32 @@ +""" +This is a non-parallelized implementation of odd-even transpostiion sort. + +Normally the swaps in each set happen simultaneously, without that the algorithm +is no better than bubble sort. +""" + +def OddEvenTransposition(arr): + for i in range(0, len(arr)): + for i in range(i % 2, len(arr) - 1, 2): + if arr[i + 1] < arr[i]: + arr[i], arr[i + 1] = arr[i + 1], arr[i] + print(*arr) + + return arr + +#creates a list and sorts it +def main(): + list = [] + + for i in range(10, 0, -1): + list.append(i) + print("Initial List") + print(*list) + + list = OddEvenTransposition(list) + + print("Sorted List\n") + print(*list) + +if __name__ == "__main__": + main() From 9b945cb2b4ad77418e6576b7960fda8228214de9 Mon Sep 17 00:00:00 2001 From: StephenGemin <45926479+StephenGemin@users.noreply.github.com> Date: Sat, 8 Jun 2019 08:25:34 -0400 Subject: [PATCH 129/594] Iterative fibonacci with unittests from slash (#882) * iterative and formula fibonacci methods Added two ways to calculate the fibonacci sequence: (1) iterative (2) formula. I've also added a timer decorator so someone can see the difference in computation time between these two methods. Added two unittests using the slash framework. * Update test_fibonacci.py * remove inline comments per Contributing Guidelines * Update sol5.py * Create placeholder.py * Update and rename maths/test_fibonacci.py to maths/tests/test_fibonacci.py * Delete placeholder.py * Create __init__.py * Update test_fibonacci.py * Rename Maths/lucasSeries.py to maths/lucasSeries.py * Update and rename Project Euler/Problem 01/sol5.py to project_euler/problem_01/sol6.py --- Project Euler/Problem 01/sol5.py | 8 --- maths/fibonacci.py | 120 +++++++++++++++++++++++++++++++ {Maths => maths}/lucasSeries.py | 0 maths/tests/__init__.py | 1 + maths/tests/test_fibonacci.py | 34 +++++++++ project_euler/problem_01/sol6.py | 9 +++ 6 files changed, 164 insertions(+), 8 deletions(-) delete mode 100644 Project Euler/Problem 01/sol5.py create mode 100644 maths/fibonacci.py rename {Maths => maths}/lucasSeries.py (100%) create mode 100644 maths/tests/__init__.py create mode 100644 maths/tests/test_fibonacci.py create mode 100644 project_euler/problem_01/sol6.py diff --git a/Project Euler/Problem 01/sol5.py b/Project Euler/Problem 01/sol5.py deleted file mode 100644 index 2cb67d2524e2..000000000000 --- a/Project Euler/Problem 01/sol5.py +++ /dev/null @@ -1,8 +0,0 @@ -a=3 -result=0 -while a=<1000: - if(a%3==0 and a%5==0): - result+=a - elif(a%15==0): - result-=a -print(result) diff --git a/maths/fibonacci.py b/maths/fibonacci.py new file mode 100644 index 000000000000..0a0611f21379 --- /dev/null +++ b/maths/fibonacci.py @@ -0,0 +1,120 @@ +# fibonacci.py +""" +1. Calculates the iterative fibonacci sequence + +2. Calculates the fibonacci sequence with a formula + an = [ Phin - (phi)n ]/Sqrt[5] + reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts. +""" +import math +import functools +import time +from decimal import getcontext, Decimal + +getcontext().prec = 100 + + +def timer_decorator(func): + @functools.wraps(func) + def timer_wrapper(*args, **kwargs): + start = time.time() + func(*args, **kwargs) + end = time.time() + if int(end - start) > 0: + print(f'Run time for {func.__name__}: {(end - start):0.2f}s') + else: + print(f'Run time for {func.__name__}: {(end - start)*1000:0.2f}ms') + return func(*args, **kwargs) + return timer_wrapper + + +# define Python user-defined exceptions +class Error(Exception): + """Base class for other exceptions""" + + +class ValueTooLargeError(Error): + """Raised when the input value is too large""" + + +class ValueTooSmallError(Error): + """Raised when the input value is not greater than one""" + + +class ValueLessThanZero(Error): + """Raised when the input value is less than zero""" + + +def _check_number_input(n, min_thresh, max_thresh=None): + """ + :param n: single integer + :type n: int + :param min_thresh: min threshold, single integer + :type min_thresh: int + :param max_thresh: max threshold, single integer + :type max_thresh: int + :return: boolean + """ + try: + if n >= min_thresh and max_thresh is None: + return True + elif min_thresh <= n <= max_thresh: + return True + elif n < 0: + raise ValueLessThanZero + elif n < min_thresh: + raise ValueTooSmallError + elif n > max_thresh: + raise ValueTooLargeError + except ValueLessThanZero: + print("Incorrect Input: number must not be less than 0") + except ValueTooSmallError: + print(f'Incorrect Input: input number must be > {min_thresh} for the recursive calculation') + except ValueTooLargeError: + print(f'Incorrect Input: input number must be < {max_thresh} for the recursive calculation') + return False + + +@timer_decorator +def fib_iterative(n): + """ + :param n: calculate Fibonacci to the nth integer + :type n:int + :return: Fibonacci sequence as a list + """ + n = int(n) + if _check_number_input(n, 2): + seq_out = [0, 1] + a, b = 0, 1 + for _ in range(n-len(seq_out)): + a, b = b, a+b + seq_out.append(b) + return seq_out + + +@timer_decorator +def fib_formula(n): + """ + :param n: calculate Fibonacci to the nth integer + :type n:int + :return: Fibonacci sequence as a list + """ + seq_out = [0, 1] + n = int(n) + if _check_number_input(n, 2, 1000000): + sqrt = Decimal(math.sqrt(5)) + phi_1 = Decimal(1 + sqrt) / Decimal(2) + phi_2 = Decimal(1 - sqrt) / Decimal(2) + for i in range(2, n): + temp_out = ((phi_1**Decimal(i)) - (phi_2**Decimal(i))) * (Decimal(sqrt) ** Decimal(-1)) + seq_out.append(int(temp_out)) + return seq_out + + +if __name__ == '__main__': + num = 20 + # print(f'{fib_recursive(num)}\n') + # print(f'{fib_iterative(num)}\n') + # print(f'{fib_formula(num)}\n') + fib_iterative(num) + fib_formula(num) diff --git a/Maths/lucasSeries.py b/maths/lucasSeries.py similarity index 100% rename from Maths/lucasSeries.py rename to maths/lucasSeries.py diff --git a/maths/tests/__init__.py b/maths/tests/__init__.py new file mode 100644 index 000000000000..2c4a6048556c --- /dev/null +++ b/maths/tests/__init__.py @@ -0,0 +1 @@ +from .. import fibonacci diff --git a/maths/tests/test_fibonacci.py b/maths/tests/test_fibonacci.py new file mode 100644 index 000000000000..7d36c755e346 --- /dev/null +++ b/maths/tests/test_fibonacci.py @@ -0,0 +1,34 @@ +""" +To run with slash: +1. run pip install slash (may need to install C++ builds from Visual Studio website) +2. In the command prompt navigate to your project folder +3. then type--> slash run -vv -k tags:fibonacci .. + -vv indicates the level of verbosity (how much stuff you want the test to spit out after running) + -k is a way to select the tests you want to run. This becomes much more important in large scale projects. +""" + +import slash +from .. import fibonacci + +default_fib = [0, 1, 1, 2, 3, 5, 8] + + +@slash.tag('fibonacci') +@slash.parametrize(('n', 'seq'), [(2, [0, 1]), (3, [0, 1, 1]), (9, [0, 1, 1, 2, 3, 5, 8, 13, 21])]) +def test_different_sequence_lengths(n, seq): + """Test output of varying fibonacci sequence lengths""" + iterative = fibonacci.fib_iterative(n) + formula = fibonacci.fib_formula(n) + assert iterative == seq + assert formula == seq + + +@slash.tag('fibonacci') +@slash.parametrize('n', [7.3, 7.8, 7.0]) +def test_float_input_iterative(n): + """Test when user enters a float value""" + iterative = fibonacci.fib_iterative(n) + formula = fibonacci.fib_formula(n) + assert iterative == default_fib + assert formula == default_fib + diff --git a/project_euler/problem_01/sol6.py b/project_euler/problem_01/sol6.py new file mode 100644 index 000000000000..54c3073f3897 --- /dev/null +++ b/project_euler/problem_01/sol6.py @@ -0,0 +1,9 @@ +a = 3 +result = 0 +while a < 1000: + if(a % 3 == 0 or a % 5 == 0): + result += a + elif(a % 15 == 0): + result -= a + a += 1 +print(result) From 066f37402d87e31b35a7d9439b394445a1404461 Mon Sep 17 00:00:00 2001 From: guij15 <43374716+guij15@users.noreply.github.com> Date: Mon, 10 Jun 2019 14:46:36 +0800 Subject: [PATCH 130/594] Update newton_raphson.py (#891) --- maths/newton_raphson.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py index c08bcedc9a4d..cc6c92734fd4 100644 --- a/maths/newton_raphson.py +++ b/maths/newton_raphson.py @@ -33,7 +33,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=Fal if error < maxerror: break else: - raise ValueError("Itheration limit reached, no converging solution found") + raise ValueError("Iteration limit reached, no converging solution found") if logsteps: #If logstep is true, then log intermediate steps return a, error, steps @@ -47,4 +47,4 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=Fal plt.xlabel("step") plt.ylabel("error") plt.show() - print("solution = {%f}, error = {%f}" % (solution, error)) \ No newline at end of file + print("solution = {%f}, error = {%f}" % (solution, error)) From 05e5172093dbd0633ce83044603073dd2be675c4 Mon Sep 17 00:00:00 2001 From: Hector S Date: Tue, 11 Jun 2019 07:24:53 -0400 Subject: [PATCH 131/594] .vs/ directory, matrix_multiplication_addition file and binary tree directory (#894) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py --- .vs/Python/v15/.suo | Bin 16896 -> 0 bytes .vs/slnx.sqlite | Bin 176128 -> 0 bytes .../{binary tree => binary_tree}/AVL_tree.py | 0 .../binary_search_tree.py | 0 .../fenwick_tree.py | 0 .../lazy_segment_tree.py | 0 .../segment_tree.py | 0 .../{binary tree => binary_tree}/treap.py | 0 ...ication_addition.py => matrix_operation.py} | 15 ++++++++------- 9 files changed, 8 insertions(+), 7 deletions(-) delete mode 100644 .vs/Python/v15/.suo delete mode 100644 .vs/slnx.sqlite rename data_structures/{binary tree => binary_tree}/AVL_tree.py (100%) rename data_structures/{binary tree => binary_tree}/binary_search_tree.py (100%) rename data_structures/{binary tree => binary_tree}/fenwick_tree.py (100%) rename data_structures/{binary tree => binary_tree}/lazy_segment_tree.py (100%) rename data_structures/{binary tree => binary_tree}/segment_tree.py (100%) rename data_structures/{binary tree => binary_tree}/treap.py (100%) rename matrix/{matrix_multiplication_addition.py => matrix_operation.py} (80%) diff --git a/.vs/Python/v15/.suo b/.vs/Python/v15/.suo deleted file mode 100644 index 0e3f4807567d1e684e2302bf9cfb6cc11e1c136d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16896 zcmeHOTaz0{74A)NAU8-zFeW5q6AYN_ZFJj_9NT0xy6x(I-AirZ(vC*bNLr0NGrD?R z#Vb`j@dHxf1)izmA^##2#RJ6?yz&EhBj!6JjXk@TwAx)6<3wlc%=C2k^yxl*`t;Xx zw158M&42vvkMI1GouWJJMfT;xm)T3U{3TnOy}{U)*70ON-OwTV-=z z|L2xJ@Adx;42;xCId+g)gKR@H*I-%Z9!8s;0NMS zS)CmL?P$2qihH19limgXA>21XNGQvyCI&N@WFjMd zSZ(5!@E2hpvcp;BJ5iVX8&MiPAPqDiJqL*jP+$sulF+9j(3s5DSpX?QgHb%4M#pa8 zFS2{`nX}4Yr@CMw!kvUNHDJFYdJ#eo8hF;xiy<=p*5C*}Oj1%1y{8+(oj9 z%tp_+tf2h2qdFp_(G2LU0Le1zPLwph(Tm_;TB}xT0mwXr-YcfAHMV2wT7ngj4$h|K z3*c|ERhl!R)AIe$x{N;5VFxNSLOP$;j~mcG`AqV4v+AGr)Et=Tw0yD$2|Z{*u42yl zH0k6k&wu_Q+qdjL02#E>jv$l9x?_&HgxoGHP{r7lsXgIF=MTaPvyT5Qs!K`(O_QI8 zbXpnK`WwD+^142fPveRM%X z`#Y`wIL3Pfsq`Jjz7{8W0n7dfqs=Ox&I^UwEw61 zCnPZZ5+lG9wy-{E_aje4xpsp6Ezx=+%sK1$$@WPHMD~%zvD#@Drd?mdzMnE}v1zV@ z5ORv9mpnNW7qNfBOSE2z?D*p(?y$VxIMgwGm#!aOK>zd}eTyN=VT^=$XvE~}N%OQ5 z(7Ger>;PeNj1a?kg8U`=)?@ng3)uhoR?nA9^KQ}k-keWuOE%r-)8hGBxs3dhTrRd7 z#$Ds6<@9cDt{bv$=(1rb&B{qbpU@?;W3uOGMe~qt?S=L+Tqe)n&eKjWT~hm&A8eQ? zZ+QCCkZzk^VR!;z>^7o75bpGA20tddz_+blf=0eJWzX1Bb1}mX5 z0Vx`f02Y}K*O2)qqV@yqvL$Htq}@F^|C=G-n%nJht@$`XSabS9f;-?0dU$S=&Jnct zEV0j)0yjDQ-51U?|EKlY&@ZP?*W|7~fbA?<_NsjHJoGp4|KG{iPnh;EY)j)JQ+e6< zKYxiE5!?;Oow`_M>%+vcQt&4;T`n4~r~)XF%~yl@3Q~T06w;!wNB6RK!&jw*u$#zc zxGh1`-O^^7GBV9{-htX;uh#8&_tJUF+?ImXeW@!50X>dKJ|IY?&b=_b5RtR_jK2`5 zrdow~ujoi*LMdK8+>d1&m14t4w6X=UpUvcZF)krg-J$JPWT(}W_JzDZm+t%D%TV7dl^L1BY5a6n5&F4-g<&xLy zac$Jy{J<%R!Cc*$5Gr-=Q96*0SF52~)Uy#k^mT%&u@%tTYETcUo#3F***{DbcVamy z?Q8eMRw34MH&*K0N+X!^dp5dTsUtp95UDKQI^y!VQnZzcD%_4Dru(jL-tdORPM0ra z6TQPsu@!cA)Ihf_g)9BquE-w_B3`$gG8~bL z%WZe4Z3v~6oHv>c?j7+RKD^ECHDh9-M|Zgub=A z=faR;e69yYcARq3Ro#i?_Z_~TdU= zOL2F0rEY1^kmOWl5EI(_DJ2{3dN+OBl@+DyhG~bpx;I}A z#hTr$lxX^^rM*IINAEkfx>3(=+!KxzyS{dti^*9rUMlSiE@xxF4{FJDFE07}QAakF zcO^G6wPsOqmg}{|z`Nmz@qDhI-rj&^Zt}52*_D=e$WVn~Bb2LW+vy`wr0vd5*Vqy; zSksm@K$?z?1UZMm0EzkF4m#rvzxFiPT?mzdKf2~wvkp|!!t?M;1mP0GL{02lEg+X$ zNKcxt@x?BJzP}Jsahi9Fmztv?C*uJgFw*dzX;DOcURQs@@NKqMW z)aB;wLo04#-RZNOmA3AS_>cXB_0>wxA^u}x8u|uFn!)W%a-qhJQLQ<|f0oE0EaE>y zyF63*sPHu6Kje^SoqzHxRzFXF|9l?fKlJT+5&xNe{>^WNi};VZ1m+R{p>H^(&RN&r zS26x`p5H$$;y;V{kM-Si5&v1le@sVwiOUdq4X>AI=EARDM!qfn!@D@oBK|X)g+=^_ zqQZ;#j}@C*#DD07_hkHU5&thj!Q|8MKN6Et#UBxRDhPpi=`jo?O!^VqV&$d-^`+=fSq!vE7MRl{I-;q(to%-Fo ze#EKpyRwiXH%b)TW3Rl*cE1=#&G2*~x{hC-ocs?Koh{>k8R!=$4n*nbI*q6szk0?| n#LN7G?qAnF`Ru*VfBm;o>X&aE?EHIm+E~YxE$090J^%j&IlbD5 diff --git a/.vs/slnx.sqlite b/.vs/slnx.sqlite deleted file mode 100644 index 2fe4a449f121e419a91e4b74caa326bd9c11d003..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 176128 zcmeFa33yY-)jxc%q!2hQb5FH{Z ze|WmxT)5f853h;DLh8Prq5eQT+NOphu}CTskNN4xSnu*kRP6})J905OTD#j@Hnf*^ zbhWi_Dc$z1^4M;dOH0>wjpp87I(u7Yq1!8m3vA}XR;Xla?n-tk{c7&2+5b(|MpAxb zg^+D~Y3tg~PHbn_+SZny_R15-S}F?wx3Q{hXj#_To}=A%c{a+V zbaYflXgkPuL;H&M?$UML9cx;;x0bGM-&)$Tal_hIFVM5_|)Q~jf>p3P#- z95C6@IdVu3oNQjuq|xPVuRMOEM25{t+sUxWPL=&#&Kx$`(NMZJY_g;DivKN!4eP>O zb^dQrkqkBX&KjZ(QhlQ|#m-PzjWMmR8t^Sg^M;`TnCi6YMk_)aVjCj;YBHtt4{R?* z72nXY2Bt%pbWr!IEat*_mHYuK(LJqL%+HU32GEL0tXnsBb*$f*espL&=|pMe(qdS% z;31(Qw8B~QMLKqqnn=RH8Z~(z;LYa3%1ZwDMMMj=%xLzR-z=FLm>H?lKP^JvMc+a1 zwB)osBhzWkznx9BleBkGLzRraw6RALU0#xMT0ztnb$YvpRrYnN%D3R5iEmpFlbt%7djVq5IGLfn6 zbXmvf^+>0Z zOsx$h)x;hZp5Y_22V1tl;$nHr#?B3;!NCMkyOcK7u(@aX+V1v_65Kz)6) z#|vLPflvcs5Bcf>jcR>e(Bp0L`RdhRv!^lO4N)c~Sf^l~z|_#}Q^JiNZ$N3PZES4z zG}Sag63j{Q)i!4`)i%^LHim+=x}1EWhCmimV{L;s;LRv59Li>b3j0D(?ns@mj+r^t zscNvMu@Vu6Tk5a36 zJ#`_FOCYS&hU!C}hCoAYjStf|g&I8ds<+0|+|XR>@hbJfW)MJgNNw;m`V^(c=WX%? zngRhPf+n?=)hXBm}H`O;nPR$_ursigkudyKjwQQ`bt*P}iHGz;o z{GMjTSHrqRQR*=##n;e`oe}gjDQc)T)Zp{f)`GC>z0g4c#ix4e!``N5ug|O2L4BJ7 zbehRj>TAQbYHe*pBlJd7*cbHG)z^7K_05o81*Sk)ZT5s4 zn`@f9^`T&>PW3d`G}JXUfQUnl-g+o5+yFWG>O4@Ly0F?Au-Zc;p0RH&{ND$xLPu5YTV^C%6$8c##W8>$a9dYfxQHNd3S zc$Vxp-Yp8|33)cI* zwKWQ~PK74Y(Gr9X%otL^#@gmaB7!CbYVQj+!jJ;d)CSZr)GgE;2se2`b-{YI5!wU; zf#uX3gg(v4Ddem5)*=9)TaC{!G^AOzYI zXjY(4n;M%HCD`b#g$zO=sFD%@IjT^ddM`kMn))UW44`mBLk&zP4PIbURi#b^VUE-( z07E9TPT?So1FsK62!+%K>Vq)#)His%jSZpNKrq}GZuEN8nwmgkEy^jKlP>_hn30oO z)1(IL>tN~$G{NAkuWN#F1MLVYzWSh7ZB!MIvD(<&P+wmIGlW`O15BWPzD7{r=EnL^ zLv4MHQVYGUhCuJ3o%-Uu&6*alnNC$fRTN}WK+g5yCe`B$g3<&-p>S;=R0lI@z@vtJ z&1wJ!Zy@Z$xj+RKgE<5SLQPF=O-<0JG&Xv|wRNFDLjVR~2(*N1K~s%Z9GiW^O(C_> z3)4sd#0rD67Sz{U2V$$Og;^4mAEpCOxVa%1Z1R%nkZFNWfp%udDcl@x2!{hO&}v{j zLvdjb%>7VYMxDYi{u*HLk4QYw++3HD(?p|*o986Y95}?pUvFCDgRzvi!eHV&b*%|i zNvWZ=iH!px{NVM@^VZL+t?@ROdYk6gH_orGpU9iIiozcFZKGdd$DiKny6OhI^D$0v zp1?UjbN<@-L+1(3OGX}d`A>NXN1hf&f(Yz1}$HmZ4JN9${UM# zW`tmpA*soEBj^03^AYEb&OiP4wJM)eUIKXuv2}UwbAO9Kb2pTACNDV56Bzkdf6$xCp{`%E$x?fNbOREWU&0g za*HKy>9kZ^#+$!3ziocne5d(x^8s_zywSYWTyB=ccf^Oq%fN zE$k7t2+hJ|(^sZvOt+a%HT9c1O*N)T#y=aMG5)}KfpO5-X{<3?3~v}7GTdl5Ujdt#nA_<^fkY8XpSz_bQ2GpAwDgIg0j)Tsd+?0+2~C7|}=ii=MuG)lZiYRS zK@CMx{!j#7A%wS7^f?p{id-e+5R6A+{$QUH>&=LsmJ+!th*koDgt{j}UY6A-pOO^0 z84&OHAdq8KZJfrsBa}{^WoX^A9BA@Sb=-=(IW$QcAeIwT!2F-nV! zsryp;1fE?Y*8vG4v2bLcKNa^6#8Kq?{K0r^4}I5B&pvCX$SnZ&fD%QChx`NNy{SGm zsV4P&QzD~UvO;S~MW4tmf;`~WqCwRUA{=P>V?O_NV&Pcw!{hb2#ntJ|)@bCvRr?_eN5ES%MhJY#UYg5q5o1#fQ;x zM#QB0kx3stZ7UsTy$NNY&kuK}BqIADzEx|^)Gah~8qfM59b34WYBPz|CoA1F#`Ka- zTC|Z)FX|pO=1(P5)Q)uI%nht>BRh8`QwhbdM0?{2kO7XRG}n|K+6^JbrH`B0&2mr& zKyu+oBAJ4h<&;DaTc6Hh)_OKt!0;^e4SdtqQ7Hw~XtW;&He54 zH)vUVmT6L)(M6RasvJ24)yT~>Z4J#Ntj6|6U<%33WM(IAQXmpj5||CPW)#8OGZk(&TfIOC`gmnmuiODGDbYH=zaV2@i`s_ykMC zla|uiM@b}$ON$FCYEsEnpQ;*>YljX9 zBnIJKTNv~~(1o#>C(WbU7EqFEbAw)bCDpVXjA^XT(X2_Hk)(CC`lOTQj>LEy^)V$? zG*d80kHm7R==3?XPj(Mte1Fg%j1DG2F(4DOrs)-xRGu+)Zwj9C_zXw_?N?KMah%{p zjj?1lEsZgbW|&?_7+AOL?kyr{Is47{V>f?*b=_4T!$q_kmCVh|( zBx9)2#ahiOX3!?A>*?zDsQciiim2+r3V6IV)jJ1z(~L8x)9EvV5xb;%AU48PRz|fH zRJa%B*{DC#ui(m5$1tqbV3ox4r1U@ z3KMM_E|>xnEyD3cDh(D*h8Y4uI_U(X5qO|!8BLr769h(*XOEgrR9FaV%1I(z3)Qx! zy}Cc7)v0JA%?(zT6BS%=C}q1JgwZ8pS&{71-c7q`r$?#912mWd<;^OL=Zn?94H3F z!-ETAaH*jNV97Bs1cM-^F->ry2qm#I5>#VJmB6r#8V|Q>O@_4i3}fPe9LL)!N}gcp zdd#$moDX>MaR85PcyNT(1g;KY!w`>Z1(jK0AVEQ4*u8-gf(U3uK#Er$sfsu1)MkcNxRG*uuT2O)uqQBi2A z%0ybOLRMlbu5C3X)L148R6(+Fmr3Lbpvu*I(uGYn!UG)|T8;V|NmdW_QyD<*3k_7A zs-wNBetpCw9#tIDz3!RgHr4pC z>3!$PX17Chl-N3*N#mK)vzAur0qGj4(Q=e?oA|YDo^-DL6Z;F!R`CP5O?=Hc+w{D2 zwD^#CgAfopj4AmSQe4_DbvTQqnG)}G%TLG;S`L|iE}msyZ`>hnHT}?ZNZc=18Sik4 zjz1XNm3JS*HHTwwg2aI`6IT5a+e-Hv-5*V|{>&E|V7f3i)n z-|M*4@GqN@|H}H2uZKL4Vw)Q@~;_c`Fk8k8y_FyAD9&wRFHg~?>R#=Om{SZf^3@;T&r2*zme8l501I6TScNj|yN+1b$%Hh}Bw66;8CAeFy#>p6qpKq}l ziwt$KDldMyxzyNdfPoN-_v6zQHst<<+KaOwOmN8X{Tap%LpNb4T}~KEyGIxz14FR@ zcheMOlVP2<1nYr)FDzk`)xqQ*?#3dc&(ISO;wb8(6N$eiMB{FlX9jS znhVRnesuY*j0qM%wEXKP8ygJCAdFR{H z>=h`HXuKB|Y0!U}!oD0E!Y0AYn9DG)U9c>GIg2bKaFfqnI>}gPfQcuBPY8JGCt+qJ z5tkr4tO6p~joJo<`<~rcY#@g&nD}DUiD)E%pD(f)3k=Cbkh>7|CjAWIEMGVh~POW z?f$`ND&p@OR1;JdaFC_o!h$=9eGYSJq<^rV9OK}#g0uqW>PSE7*|W=yYsTQ&m4H>2 zg8LBetf|HYhFwY@R42WEg%g~CI7XhCD>51<=LFmtg+{Ld53aE2Kq38J_t z?i1_|0}(jcf$f0mCr=rFAWUj@8a9}YPWtr0vQ8!A5zlW(3r|5Mz{J79C^=YzGbLD) zk@P2Hr-oAlu)U0hKtX~kXb|Rc5^4uV&=mp1!@WKvyAv@+6Bw-&8@?xCKlLm7aO>hH zyD-e@cpR|wqyZ29U_$}BX`0mmqJkg<93>fvhUXa-P+S@lfen@lGY|*|H%06Y9RJ$c zF;MMTB^GjAxp6K3&HTW2Y?*OInhO?J{h+V99D!s1Oye3pL-j#nP#<6w5KrLR1DK9+ z8fWmkMow9eo@8v`ah2PP4|vi|R3b-BHa77&4`z?V!|zdtu|wmG<-GoUbswIFXCJ!m zMKJrIb&ng&>oN~l2Mdf7}D^=S9t z=!3)^*h?9QhucwnBPW2l4h#>+L?bNFwcAifG7kn1LmiV5met3@dJ zTnRt{7UC@WjfYeVQ0BP~rsiXXGY+GCs9M?qR5Nx-)}d1q&PO>8ni{dCqYsxFaG+%$ zDAnWaFxDYb9ac8i!BH({m3{u>Ej70D-*iA!gFS@j4CGK~9_E4H^anxJ8Vfo6@o3-3 zfzMn_kbTHgg)+!-urmkSHP&HHCFYcUfHNC&%5i8@fs)TUsF{UBT7NiGj@rr&WM*Q~ z8D}fHLzo#jj4~oo1bC`49eZu`VM|$wv6a^jO>!Ktl;WJD#itKdN=VP;I7peMkHAH# z!VXW0an#}llpdH&#Rjock|G>_e0KG)LTOyV7}|^D6m}X@Pu- z*<(9sJI)rdZ8a50$I5%8U)!6UXGn^z(N<#kz41@ZW5qW6dk)@aa_%%FrFQdqQk_(2 zx!nAsbG_)XzAKsR&)IKrHj5Lb$3&xZs__-!Bg-Fz=S?ZoR>Kx~r{zt{la@Q3<1D9H zRHsQkTwZVfquCk2qE*eo3~Jnm?-&M@EY@EL9vKayvO&pYNC z{$V&>JY*H*mmE{&BJp-v7Ki0~*2P^l-c-S7Zf#xMm4zk`KWcO9;;tw*`S>xmw=VATB2xpz(o?>S4X%s3jO3WH z&W8t^i@S7+sgBRJ$#rp;kR;jLTo?Dfai(I!$VT@v^SJ9q9xQx#;D zx%IVk=a4=bYx8U84wjobpvZ6B{@S^-D@<#~;u_fi+qtu*nHKP4ZGr9FnK`4`CfLrM zG1=thb8Lg{-04JfzG)+D=T0L6$l40qxl@VE@lcd(hV9%bL}_wwhwa?SL;-Sah;7_S zM4xhPiEZ48Bu*2fehVmbCy;*3-WJQ;@l#DrAXEi^g3sC*%iIB~yg9bUGB@lsDX8|} zc5^Iq$5oit^68Cl?(H<_zkKWr(~1$koEv0$|18jjf4fDNk8zo10NcnWSw4CSjK`eY zWcjEf5Jm2dvV3HrX&yg%t1J(>P33^=t(Epogn44rc3Iv_;Oq^vyk|U&qpU5nJU9V{ zQTC=;PLamww#}=O1u#$P*8d>ARf)+kdF0wUui9;gaSrPaYF#vto!iPdX@AZQ^vamS zRLrNh&@1~%R+`mNbS4bnf3uBVxvLmPB`iX7TL|sUuFZRn_RCqD=@orMoY~vy z6}?WF+(tIkE5h0NE>~$Qb8V`Zhe%w`ZT0dXX|iU~6UfeYyFx0Iy}90gL^flapJ-sN z4R+fO(w`Yy?6&PhxFb90T$}8+!%4ysCQyX7ZA7y&H`;B75zV68>hxB-bt_3uQO(+B z3+Zu!L2j*^a}R*lO=JM*x7@88sT6ZrN4b)K+E^Bnx%?Zq>6QhgZ*pzaE%Qm` zGq&m$A5lzgvu+*Er^5pD8#nKk8q$ZjTctJ~^GHtkUB7|1RHxaf{e~y~omy?oCCRe4@s=tg zn;aW?^BmIFv9|JJCCM*)GcV32`Q_Noixs4AvNrVMEHY*2xAbB;(RR(sVkW6Z#?D>0 ztuLNIhGs@IiiVg=OeeiNdTU=?R%UAD)0_7koBQHYGQ*A9-WQk99?r4BFP@eWrQhNU z#ZFThr{Cn;OhsIJmoJ+N;R{+oOmUkk;G^E|VY1y+43M_bcbG~z-A(Y6Lw5|L}$Puh^Z?&HE4gb#Hi?^Y=xf%|)mI4a0Y1{eHqtoSyb zH!_mpOYlbL;hghu=Tpw}zFPzH+<6J)C6JduUIKXuU0#oa9KtZGdYW^BonA@ebbpvHe%}C+v6IueP6UKiVF#Z?d=A zYv5i$+4fi4?`Y$S z%dGRPQ>~Kx7x^9e1-LWt`|^eI3G!}vhrC*Dmdju%&<7kUzy)GzifWce6#sN^YP}md7F8K zxz1c-wu*m+n+2a2?-y?n&l8UocZr+C7ICgvC>n%63a<+f3%3au3nvJ1;V_|Hs1b?; z(e$b5*QUqe-hs2O^-vz|THxau36eKm@cf@Y9uwdl+v1A)uLoAMd)zJq(xr5Kv^`A0GIpdl)YI zA)vs(4=?q&hvAMN0-6~3!K-cVVYuFhfJO$sereRH z!*Bx+0sq0k*JeiD!*Kl$0l#A4E64rWJq%av5b*B|e0gw_dl+ukA>fw`eE!E__b}Y0 zL%_c=@adbDxQF4=90LB8flqFF-8~HVK=xRZwUAt z1F!zuI`=T#dPBfx8F<-OkGY58#v1}Y!@$V3ce{t-rW*o2&A{-ppSp+PrW*o2#lWD& z?H+~;ZV31U19#j#>>h?|Z3y@{1AA_oZ3y@n1J?-w_b}XLL%>HF*!lOX+{18p z4FMl!;Hopfa1X=HH3a-Q1KXZ2bPvPDH3WQ!fh|uw>>h@DYY6x=1}@$Y;~lQ4A>e}y zTo}L9Jq#Dq5byy8&imjB_b^;VL%^RfY~_*D4~?qRrPhJg1l@UhR%aSy}& zG6cMvfe-efOj$Qf$NIg!yE(eWZ+LsZ@Q0V*bfp4;oirvn;CZP zl~20&GVJ>dyV@wZ_b}{whF$T@>Fz;>UCXdT|Lk_B7~EjD2N-qXg7eK^BT zVpw}*gL@mpPGnf?Wxejh70?B2q#0}QKOxWc`eVZ#ioYCX%n ziDAbvY}TuyYoo~V@Hje_L1n9!xHeE|KZA;oILp;Tp<@_Sc+N$xZVDaEAffTUTtR2 z*L<-HmWK$17?eEyeitkb5ehOWWc`^7mWBug7}Wj8pSoaSh|m!XS~+#I3zmflDGX}e zd6Ekjg$VgIsQfKgJ%x5KXvrDJxnMzvT!%Ag!OK5#!Ez9xZ47F<;6)cK1`#@pK^3no za=}s%p{)#>(LdV-3qgdoFsQWQ78fi75!%e4sjoief<+)gn;10l*SlP>1Vm^fgIrhC zxnKc^&;|xshtG1s@(-aN3U&S0S?gS|_(Q0hLBIRN>w={pLhBjy%X4BbSok5djzKSO zyvqg4K7`gX=*c~^U9jjwsEa}OUV4}dmV5}UVbC>mf8&A$A3~iBy8M>;$8K}q?aE?DXzw1h!hUcTQ23q6FEGHA0#HIpZ@IEbdA(CjPDb;05eAs>ULmj_+2v_q(wLF4uu z=YoYDLQM>^edu?=vJRmJ2JzE>^xjnq zT(F!&$jhL2R-EC2#T-I440>(ZLKiIM5SquJmu@`51q(TZsu}dcLyaz2#v$Zk(DV1a z?t(=eLUS4P?8PU$UV5bWfZwSq1&<{?y z$puR{gen+x+YMK^VBv<)EC$_l-E$Y*QT;nBPWXQCa|2_`ZYKUMm-15&3;P3yROAQ>{{Qni){r{o! z9p{_Q*PJgppLRY9_x;`LywiEB^9JWt&P$w!oM$^vbsi6=1ACpjox7Z>)9>8s>~XGf zwm4Tf8=MQA^PH8=8O~y7q0{BGIt9nS9A7##!vkjxW#E5cg2U;M z97g*;>|emS!~6E%+TXChWPjTJi2VWkJ@(t}H`=eVf6soN{S5nw;GtlzeE`lQ0`_h8 z4fZwm<@P1^X1muu$3DY8)jq-Qu$%3i?MvIAZ6Coo#hbQQY|q*rwLM_F+jgt%I@@Ko zL$)*F)Z!T1psnAg+P2#^+Sb_GZHsITHjk~`R&1MKv)csg*VZrKEaP44o7PvX&sra~ zJ^*(M+-kkfdYSc*^-SxD)?=)L)_$vM-3})lYpm_oMb-wZ$69VJwob6x;r4*9?ze=_=YB(|k9&*IX6{Wwo48*S+Q|Ki&<5_8gw}I!5L(B*PNg4Vr)WO|NsGYluP%C#Qp)&VF zLM84FLM_}62sLxJ6Do4I5h`%E5^CaZA=Jp-OsIkTKA}8!6QLY;BU0{P+zo{Ole?bK zues|8{Rej~pmAit_zi^im`UQ6xp)Yfn68aK%3861= z-y`&S?qWip<1QlfS?)qYpW!Yb^l9!8p-*w=6Z!;q9-)tO=MwrDcMhSCat8^0m^+)$ zpL1ss`Ve;}p+Do!AoM}*bV48CP9yXu+^K}#&z(Z(ecZ`}-pidt=#RM*3H=dw0-^VC z#}j%tcYx5lxM4!?0A-4<>a`QeyzQ31{ z>-P|H?I0mnrUL=uaC?SV-5pw=cLe7g2a&8|X z=kyYCFignVDj{cu2stxI$Qc1bPFDyy?Fd3n^%HW+4nj`ePRL1z6LR78;1R@7)F<2xT^)jol7z7TY_O^F^0X1FbprmP+fpw zXg-EPABKTu43B8SP-(=_-+}!7^|5(0QK2qK$*T_cj`}ZXH{X1Ujl04FQ%U6~sEQc(8mIdJT?+x>%@XP$+@T>e3 z@lWE<#Y199Tp&&tz7U=eZWk^PBEmw!YWmRhgy|;JX{PPq*{z5Z{Q8=CLy?ZMS=Uj z!Ba_JDhDLBaOX?)yC9v{n=4&Z4QC}o1X3N8X77Yl<>fS$z8L*y;5=2D6#>o};P(mZ z#bPlV-ACXXmdg5oucQR{pvw{}yL>ABL2B7774-tkWbikIED>FYM)+(U?BDIVcCLcCNE-tBT>%XbPIH6<k~DEMFie<0yRa)BQt^L_ z**tp_;F>nVg^R?w7G7ei|12%xE*EES)NyKVxR6u-88}Z6t2O|q*7sUI^yb&hZ_<*T zVpWfhS<8wtXMU5GtQU*Bfw>4Ao1r{eUW`afn#AJux@eY~5oyUZv1A=Yk13=j6U5TB zz)(^`g|uaDcPnvUmj1A$z&x)DI6NL&0dgA@-14uk0k0b1$te4~w75*DS_28PWWm^3 z#o0G$@f4w|Q^(9I&Z0BFNs9}F!qvd6DSf{ZiQ#`~u}LUgl`CSAAXIhevd=6%^P9AA znozY;$DCPu<~M1fODJ5CtH^~Wp<+2iXaf)=ME#AdR)_STr3Ed*ymnyx)`DH&5vtmB z^~5MPZf{8+53$Tvrg9V~c zu@oY-cK0j0R7kxX#!6EES(-mhC|?4MWR3@oW^Uz>S@%(zFAIf>a}_jS5Ed+g2%nEl zKHzC_c_QAACAGvtZFD%}y>g>b$+t`JEri5PO*AnR1f<&xK8Vx}am*zrDEST($`|PB zjU})K>OM-oZlP*Euzf4__pK7Dd^+aLe#!hM`C0^TGceDaN9zvSv;lm(Vk?(L!9{Fx z6d?KP1#eSk63U8+Ffk;_1SH>Vp|BB>jOt*YStxAC718VvO6nm(n`A<)-Wrvf4MJTV zFpyP)uE#r-M6bFIeWGd|KY~b2O+s-kB+@3nNRn_eA~h8W(M;5g zNcCoEN+m>3o=m6nwZ!is4eLd7#cYWCw*$1UN+_=YMoqL@TeAje-87+c7O;)9Inoba zEBC0~@i??u_eH9MiMt$FN9k0ZBvj3W2u;Z7p=M1y)Il5(tC`=VT2UB31DFd6K>sC} zID#SgC)Emt({ttRohg);L4?)}-Ie;fkCJzSP+SUZT7P5-+-nnxOLWm$0{0q(!fClm zuc;P_i*@O;vaNx1Q*))8XA}yHaz#`_#FShS9*CHnD`KuusF(y1T8HbOKKjp6RjW`{ z2#i`Uu)5}cVpr7)RTFj0Odz?R*j3YovI)Sftz^lw1oSAG{vcIN63WK|i`Gq0GhkQ; z*C*qArhSyEK!pl`ZIlXCi9(?}SHv7u@VOvDo9gNHt#}zG0=GY*LbQO$&AY5ID6AfKEW`2|A2$fdg)dpx6@yXdu zU2o*0bS6Q9bX0Ev;!+3EFQ+o{-#C^&UfMc|DVEVZjSRa z=TDt4$-gocn(DwVUywIQ*Gp3^#b8B$y!cD;5^(|aTd&vg7lx>!2S^0DQ2mcL7#jvv|FQm^zA%Ma}i@dNQD;d0Z1 zrn8K<89z48FmzZp$sLkQ_}sV@?nhWIy6gkSSLOTUE6s13hlDo_bDejA)x-p+&2byp zGh7PR4Ey2jh)Q@1V!rKrwgH<2Z#uka|BG$N0G1@;8s|;U(+oXUw{)ldBjHi`WH}e7Sa3zbECP;ezffx+w1ZI<9e_cc+vcl zIVL=3m?~GvQ_NqO&v7W}VpE^6PDltX=Bv#G!u^(owi(t7;GGDU`F`_e zbBpy9?CA6#x;G09MxvpW;6jJ{+-WRBuVeTn5+33{!|!A(+u8>_+@Fyh_ty05r|6eX zJ4xU^kw70vHh;ooc&|2b`=)Xqj{`Z9VacC33&c)u3NtXY7LK5BJNAro4fb zOE-mkeayq?q#e|vM;`u zdkOiJP{^->b3X3Hj8rek#zMmi^rp-`pHA>xMuKNE5{7D=}E52S{;J2PtYLlhG1PT*?d)X@4t6-LS($k4{FN#}lm zX(2NrFyh*j^auHR8y4EOyr)|Ya<^iA;WKq=s&&%MC>WA}YQXn13cqPY6gOh>Wsv*^ zeIH++mHfJl$OvoKew>uy#FaFL;4Z zZAhppcVR|#E*L49IQC>^oIg^=c_U?pmvQz;u4n0Ler86hGceV1HMTbr z+(l}3I!+(x;BXl@{7ww@klUU~%xTyc9kF!@buD_R)m>n4jwqtwA5F>6IGtT9=rQ;6ENV8R6;VqhYH)Dxx zkLbsU3+e0U@?mWV@9f>-D9s!wRJjqt~Lc zWuG{A=}KeU&^5Z!7}SZ?$J64~+J{x6({+qaw^CzYfz3v(BHp86W4b(7W!gt)+BQ1V zR`lscmVVkP>oTpF7A!`8V7k<4oB`#=)C5eWQ0x+ob1}MJ%YDwd2tB$nab})vF2vk) z=amaa*LVKt`ufm29<)94ys?>~nJ0)%TKyWe4-MF%+G$`tjw-D=Bj~yD3Wx6Vr>Z(+tC77mTDAvHK z+J_?T!xZhqXz`Lpf+*Mrr;SoZ&4+y83+)c%qEUHfm~4S<*J&)OfiKV-ijZXvkc zev|zg`(^eE?dRA}hqnNZwGY{o_I`V>U4i!iHrm(PJ78zN$le5R0#w<{?Irff_5!;- z>s^3XZO_}DusvkE&vqwRIb3JE+;$;&Jv`NRz;=`^1@8ld;Vy$Mw)M7EwpQChcq5?N zR$(i(O}4phR+|al3HXckPu35tZ^O?2W$QEWR=`iKKeGP7dXx2P>m}Cn;k|&9tjAjS zS$A7^!YRk$@Mb`lb%k}Q)n~1>R#|7ly8#oePOHVr%YT{zI2UrDZD9gmUOaooHQgQq+L=7-WAvcH!G}^ zTBP~lyK$~mE=`jPrE!uZ8NhPmbITts?^%9hdEN4&2uv}@m*mADr zbjt~rV=Q|taj@=CEQeWoES;8i%VM~Vp~g~anQkevjJMd~OyghXznMQZ|Cjk4^RLaX zn4g2wpr4uVHUALqX}H#WnfU_q+2&Ks!{#H+NpsY!ns>m-#X56`d6{{Ex!&wC&w?8q zCYfDk*=!X5A$}o#EWR)PR(wNzNqky-1Wugp5pNf76t5C57S9n+6^F$kaW|YBDdJXf zz1RWwJorSfSSgl?lSP*(iM;To@Tu^j@V4-V@S^af@Q`q?aEEY{a24DDagK1RFf0rS zyTJ}c5w;5Jg$|)b@CjZxUn&zO3obztc+;0~H^hggx8a=YMbnd}hfMdv3E54itKcl= z9Mh?$VbhRlw<%&$Oj}Ls;ns*2lh5QeRhr67lT9v@Wa5oq8b39DXnfoFhVez?lg5XP z_Zsgo-ekNAha~(FTegdMViU<-#1orHpu{E;D6xqIN^By55}Qb%#3m9bv55pqY$AaY zn@H{uPi!KA5}Qb%#3m9bv55pqY$AaYn@FIqD51ykyBGyaN#1ZQ50;X=VLuO+lDy#< zz8A^SJXlI10ZU2Va1;-glDy$a9xNq!!w?Ual1RW(5(!vJA^}TDBw#7Y8}{*FDTxFu zC6R!oByZTugQX-Au$1Htdw8&vL;{wQNH$Tjk&+Ea2KgQ&DZU#?f?rR`I!e}3(nZM{ zN;;A3=2ug)ijodWR#LKplI4`NBN^b^C~2i+86_>0ETv=#k~qJZl0}p(q+|gl^O3}O zA0^F5`uQeG8YyX@q@I#GN@^+bQc^?7JW8sOM0pRAUHn{1swkO*WG7#Vq>rCXNd+ad zC@H68CM7c{nNCR=l3u=)k`hX$QBq9FR7#2{nL^2ABq~3Nl0r%*QZj*(@st!$;zknU zU6hQY#7T*R5<4X}N?>({31mtnN-UI^DG`wbd4UoWB}PgNl<<^rgmC|&QSu@sFHrJ4k}ceGlsrqxGn71yWHa{^B~McF1SO9n*~C3Y z$)iX%a*t5*Fp>@2&nbC`lAlrXASFMg4LdpG<+(*g1l>C^IA5n4-C3jPD7bSO6 z@2jzN^V55p1XmP>nXX8l4~is2FW_^YD%s` zvX;A&k}D{=oRZ5Zxs;MiDES^G7gKT(B^M&;;x3@%5GChRavmk;QgRL@2Prul$r|n~ zO3tL@3`$N%(#f4h$*Gi_LdnULoJ7fql$=1x@su2(WSElU&?36?SQ73h;V~pUnuJG@ z@JJF4k#HXg_mXfA2?t4-B4Lt*2@>wcuw{URaT3Nz*iXVJ33rijCkZ1Y>?2_>3Bx2* zNf;twkc0seDkMCDgnkn4AmMfr9!|n-Bs`3STS>Tugqty3LhS#S5c~fn#QuK?vHxE} z?EjY#`~M}x{(lLv|6fe({}&Vc|HZ`qe=)KDU$hEyTS)Bx7ZUsbg~a}U0kQvIKW`~L=F|KC9D{~L(?e*>}quP65Z^>eVSdSd@yN9_OW zi2Z*ZvH!0l_W!lS{=aqxa(apVzn9qmdrJvI?EhFaUqS5uXA%4VS;YPyEChfDPXK0+ zSliJBMXYJ>+ECiH7XEMS?3`Q5@&gO=JrOXH()KF`tl)1^r;J|7s1t}NqxIQ^L;JI#|L*#%0|V;qr5oC}&>kyoUEA4-&FfkV4NQx5 z1HMg}+FshVsinJhWlQ($+J=To(#2yWXpO^bHv7IyiVZ^p>WFTk_Sogh;pujB;bsp% z42Gm3bzjd=e;^)h!5(bd+zrF7f3$^(W1QL<6o z+e>F}%Pe$z<#2(`T-XYgY|UNCE(J`Pa#qd$Z>lzu@*69JY}>OsqVmLXR&yb||9xr? znIy8Co&DXGIXz@Y>*j{+D7{91iz$H(RBfQ^Q~!_52vj&(ip%DwESYJO$nwEx6m0F` z9rbWT4du!p_b6En{jXDDZ4zWHZVAGB3CTzx5`}qmY_=@zO3$`Ag_Auy{Lf4no$;W8 z!>v2MckFs=Os(+FP=9PRACBfS*<9EI17$54D5Uc6x+GYiwklwu=g)3UM<|=cnmJ&y zqjTht9yr;&V~FbbjS?9)Cv6{jw(9Dbor|0~Y_g+u!zMdQulV0$*l15uk_~y-kA5Kk zzfqBl=h%0C#Qm?0=B%eg))3nOMx*coQ2)U8QhY{l=vV^}GWH~?vX~3!Rq_X{MEA4` zV}5=NG=NG~V%@s2t7HAfb{K=?(V_9A6Qz|)i($(Mct~gnt#HH?lKP}=v)H^LXZO_PbS_8{~Z=OxHlhiKc8}I$*^2L{Z+!T1dd`kB=j^_0E`1K^p3G*#2Y#;S>s(l?k{2to6M%eSMIh)` z1lcU4&U8hP9VN1wGmXoR)}{Q;HLg5<$V8^Llgme@Hr-5;U6zokSlQ7!)yj_g4^=GJ zgZAI))>vII^4P>}2zvr|B(bL3OP6)%wkRyFQ%R=Q2H+jgJt{oIM`jOAx7*s6w`}a( zPzrCO;p;U1ls46{%$Kk2ZtqypMK(h)`p2r5ZV#j1_GC+NjEB>IxDkQD6gQd+y+!F;a8_k3^8S@-)O$H*0HFuhDYT(gIHKq#cw65mfQ_%9=J$Ah1d7+?aa)t z#tcQvikuyT@jVw(Rt~S^&4qB2#(`dvC#wJ>hKxM6X|)^K(K6(JPc`A?n?caEk;zWm zF+p$SfBzqKwvh+&639y+FM+%S@)F2PATNQu1o9HdOCT?Syae(R_`gm9xc?W08#w1q z$D`I?Nqv_4;7k55FM+%S@)F2P;Qtf}oHWj5p5XCVPT#yIqV7ej0JN4NKf*=SWcGJ< z0==oDeRFAcT&a?@%bPnktORqP){Wgg9h=%m^R)CZ^D8to>H+hn)(xfEKMZt)N?UqL zmnlhR@kM_T>00%Ms%vLbb0sMHKR%$`EeM25MA3f@|D(d zqss8TO9hC*C{?SL5RvcbY3S?b%x|z@peXCP_BWY>-vbqwv*NyOW zbajDw+bS?<8zl+kT;2orXCvIum>j*dNM9fP#Yhu79{-}4;i_@w!mXA3FkE&9wpJqz$9o%dm|u|J)-$;Z zGJj*rj2tVA^zTlY?D+H32%?F2``m5hXX?rm2At$)^izwne(}WGj-T z)`_Y9!=IBza!*%zbc*F3J;YPy&L)g$|m}9W%A5It%mfW!}Q{97X#?t{gcc0mvj6 zjOZgv_KKVbBjFvN+zfjtgBpsY{F)CjeGbKgB3B7H1mobf3!Hn#dR2Y&w3NtIL9`MG zB-A|-^0KTxeo9j0WFUD5V;D78;s!#?dan}A3J@w$kjnCdVEUybMs6b z5V<1cNkp(#9a_#);-gAksm0BVQMo5m;N01t98hB5Com3|N%TVwX|BS4kt>Fr;hjp- zA?b*TQCcK=9MmW9>=L;SNDzsIBm2+|=|CJsz7L!V61Th1L_Pbgog%jY*aHgl4LCsF zo9a`OYEsWPB{HfdE3}qW^oiUe$OB$28dUut!hxhZ7>a`*AX?`%V@WUVw31TF(ZB*Sy*!4vfA4bO+ z^NfW|`sis}={O@!{QUh2X#75iZ`GPJbqmd$#!_5#p&7c{L*KzTr=)8#Z7q#YQipf`6nMOY_+^?DXLM1eh$=^d z3(PT?rmdlwgsE@3QJKu_q)h@xOW>xCwPqC8l+~kjQ_`w2d6meOf!d8sdg-Ww4v_))O8Ud!iuqG(2f3oqd!-065)c;hkf2^Pvx!HPQiWKyHO3VP)pvz;?)sW6C>yEsg1 zeg6J;~V#|gW0P^7r1GTYhb{qD>uyrx(jLg;YJ)B3Q?$h3{q-|W{d;H zfOvRtK@2W6)IdV<4-CN|h-pj{;G(!9Xkljrye%hH4Ib}+Cl92>XV{21#@i`Mo?z*E z%mmlzKH$a20X(*qSQ4(5!_^^d7~)Ya$1*DnBq)gb^p1cCXhlHh(=0NwSj5l}yva`& zm{3wbcq~r0saT?N3ZV@dbo*d1H3-_J=y%d#xnvMkF@?iC|<<6gkn1{Rf-C0h-xl?eX3m+pGjpe$ zHfK(->+L#ww5{QuwR>>0+Hvt0;&;c-jvpPL9Q!!-NbHBPzSxnm*|8zfccPC)Z;YNC zJt8_i8j3s{xi)fQUDBm_RAwBN24NvY1t5A8&A8be z+>l^8J(SUDkQIWb#txD^wzIVf!?xSmZHLHmM#B4yVCiXPp@v1W=qD$a;B=nawrY@mBDm$W1WyX_TGnFg&f zms(9^0j7O&Ul+&@cx0?68q&iXp9aaX2zWceBJ^OsVhL_X<(pbDW(95Kp_ZgUbW{L! zIV2A7uBR4Lk_N5e!Rm>{^72higUncse4Zf1bL%0m;uhWQWhhI7)Sxeh-HQkxE7kHaH8)>;*=j<4Xx+VwlN?C&`Y0w|5`_;Fxjc)61 zZgm{8p@GcHF*yy2q<@{4xH&)rJ9YLlj7ft^A?`ob2m*pOr``@BgrgoEEGsfS4VvXp zV09;ZF{Dxuu_P0FQs_B!pRA57+{;y!1_84WM8H5D=wa5RLBuTUhbgP=G}OZ$kp?|O z6QwKJ-3V^ETYNYVT%HCAL!!QQ^|&&Aas7Vuzi73GQJDq_LsO}(b0>&@j7Z-Q@bJc@ z1r-B4XQR!JRh|YJL+{%SG8B8HAX{lc^2!;V2025k4K}?dqE0|@rm!pfkjm2_Zm1Yg zqpdU;C8O*WQ=A5+Q-jx(EwF+;h|NeA=#o$AH+Zpc6`w2jk}XQzE)02 z9}-||f#WVQAdPl*!$B79>YhO4YvKO?|AqU-X)umN!gw5|x7-${!8Q^-l4_|ZdL$+% zK|va51K)5Ej+%>Qxb{(%>PfSKE8rdRh}Ly~%E8Cxm*ep2QViQIpbOBuSqmsclje z5jQIKCvbzU?KGl2{3&U0m^7mE!)w*D)#syQZ}=rEhIN-i6uyhz2K za)L8xeKZ{A1PybDPdd9vXrpEre!R0k?9QXA9&?=28zeT|NfHw=vT{0~l;Gdf4q@?+ z;;+UZk3Sf{Eq+b>!gyc&n0O+-HaUOOaO5Y;2^!!qF4k;@~eMvjSWk1URij0}!2*atik z{-5yW;Y|3*@Urj(+;y*o-VQwqD}i%E$A(%$YeKU_r6HZa%OBxC=U4L6`A*zMKZ}?1 zSn#vpUxIgm!#^$96+8-70~292@Ne89|A2jieXiY$d*TnVXWGN^L0-_6&}2Oxhq%RCYHv>#?pHitk8 z@s{zh@gw6zVMkDCF#T`(v-+>~TlCBIll2|?GQC>Yv=_8Hwac|{XuAV9g+hV!D02~R z=5=&Tq-7yd73M>#zKv$+2yH`&S&OTe`)|VRcSYtT+>e^eC$KBZ&4sw0d7!0{om*zk z1w20^&VF8Lt^(8*P7JVIvU94;wF6-(izGX{)SQ{c^9?0-N`YCOg}Gu7cE?zAg-8YK zPjeCU4TiB#`(CQ88)41{QW8G>6C_SekYNP62t77jTQtn9Qh_4zpr~1bL}#mF-xgih zZ{c8lPPsxYo4Z`FOvo%^nviu4DKIB7Emy)hxWt^UY57F*RiYc@WcIBuEM05X;~s2x z?fEZO6?Sr!xgPI1U=Et?CyhZ@dU*MlkQ2pV7=V>z-y3X>K?zxl0KQ!GoJ;R{8s1{9 z+G$}vR+C*W2FrnHL|Xm}*u%rk*^J)SUoJc-VwN(^l?KOSW{Iv#W|3Vy(wvVDB+YiJ zr6-9cUNL|v)z%Kj5Y+Ojf}LTsyQ5d=tGYo%fFb}jkJ^-KYed`C74mrTqJj2#c2-_6 zeI}F_W#1ZyDWiSm5`BW`U>_Q?4`!E%*|Mv*opx7Ov0ki=FEDE~Emy-cPSixCc6GWt zwvwqz^hnNxS;90&t{)TcqHtnhbBrT~VwQ^x4iaj)bjKjGOxJgUTq0E{ zdqsZ zI|RypVW1@lpaS+_DV9+!zvbGoVkD5|g>Vn{J>1}RycvkknV6#Hg6(KIWC7a^NOxew1Qn>W6kTBEcSitTVn`0h2nVnf` z&ShGD-A`nkxmwe|O8m=yIs~H`MJV=o`@|5*wHR4D$Sg;BjUA4pZWz0(5IeKh&scA7 zu{j-ef}J3wm8zyGESd*PG>8%E+a`H~V_t>1MAM`)GoRvfl<0JckyUq=i@N)aeGYYA z(hIV?iL^~S8%gC{!0sCfazPtV#XnuNrJr5l9?_OODzT6lQ~9mL8i!%W*K$mwwmTW} znjUQtYp`l?v{@{JO|6ctW%quX=mqTFiRM;KZ%Xz+=}F{55)zSCEFX|xVJfy`HbdTw zD^Wy)?}_7cX;~Y&W~TyqEtfWlPU|PsWS0&zYnYa!?&D%EH|}q2OM0Jhu2^gH+C@wg zWjA*ALS8~lgj{Op2ny)HY9@B4Q*J&5b(s(3Q*e)TYS`J{kbT{3@lkT@LVLvy(g@Sa zp8D1{%-4FTp|W{qi4pHGaOl$#ZK~LxrG9gaxlGd!$eFS;oW|#h2-pQ;xb?I8s1={R zp_fEZ*=o#mQyXCRnN6KB8n4$5Xhbr#3?u_k@|&S;jA6^trQ(kLN_^`aC9ORKl#$-h zxwF&zZqvn_^I20=ilOCF_s$M11>=j?h#v64(3Qp7xC*llB|98JR!t_h<7r|5|5mK1 zc`*e1H)7T}aL00Mu~@fq&FMBc-RIY8v6~7(Qs}vo0(QEXHDtiySldhyABy5W8=J`< znqyfr$%{MoG!vbkAHZC8R|HhL=Gv9j3DR@`u>(6*6r8m+J6J48d35E0s9DA|sUf$- zcSDTU1!oiawP;B{!=4&3#qFQLqK|V8sC%4Do>+yQCO(d0 zM}1^{ZptC4+?17_xhX4Jb5oWlb5oWka#Q$fF|?&>kzF4&hcXRT0_Grd3<6o(03&9W zBSBgO=rI$909iYLQ2aJ_v)0ApKZHKNGhQE`6CWFo#y*X`9eW~nN9=pC(_=lc9kGS6 zF|kPWAJNyNPegwW4gY1)Got%&3Sdigadc{QWHb`_XXLHO(~)~4w?w`lIXiNEWLMg@TAK+K;_*n3c;P-=P1@{EEgY%yi91%3^SMA5`-`YR1&#^o0 zBkVbLg>41i2s|CQKX7Z{M}dn1-wf=5y}@CDIWu+gSXs76p={M^q>W%tltxI32&(p{2MY^HAqdlSBr`=2| zHe+Jl7UBVKxmhjfI+8LH_lE5)y8<2}2q;|e;UTXQRIK0ra!~|it4s{Dmf}_uObm17mYGiep z>=LKGBtHbx(yKCQQ=H<7xbqB&@!Dc-vRHs~q~Pp)LDY&usQd&`8ARq3Ym;1jfAJH= z-s>8hm5LoF|DlKuvAVj}#VZ95BO<8F%Jz^sRMSb%%DyAy95i%N!$nmnNEC`-c(B-Y z>>RGG9BPiy^^|J}gA&*WT6x?o6=^dl{xtiij8CWdGweUU_|xoj8K-THy`z=-;%{k1 zzW6Iz%ol%23;E)I(rjP+1udif2@u1#Xr(U`{IAqDtz$|wNbwK``Sof{5`GA7k^h9;fuec4fn<0){1@cx3ofE z{7tRE7k@(==8OMD8|sU{t_|_UU(*Kr;;(9heDObPabNruE$WNEtc88?mo)B+zo-R$ z@jqz+U;G8l^u?dobYJ{AjrrowvM+q`XV|}d@u%58eDSB)-$$Brb$uW^7j}&^)i5*q zpPFeBL{zTn75g6{kvp(~`TQYf71Mn7pe2If8_-UR{Zdd$11N>r?}gj}29s^d7O_GQ z0#c{PE)-;nr-~`jrU}Uj^f;LL$u>F*Lqa)4h*TpMwN$c=ST0pkwA@)UoKqL7sTjLe zP)NDwG1d$E%qcmUDi)HAy!Jfo2TrHvC+JBpg0Jt$e%0L zLeC6;PK|k}rvF#gLhNeMah}?=M62~D6tchh69%!11Zm}EDVl8Vz}p<7F4$O-p*;yO zyIUKavj?y!Z`|$e|=$AN2)u-Hc=Kp6J@cJV znpI}b*7X6*Oxd-9;mC7pX{LC&&uVfQySsnlVD^2X#mjHr#2yjT99AHW5NT!Cm^vYI z@0vPoS^`%7Ft#8C!aG`tpoPVWi2_lvJO@=OL>8Gl5(F4P^oKX_$uV^FhCvgcYO?Mi65&(= ztN&|4pIehcAJ~71JQBGpa$V%R7T0!%jL=JZuYRa`Qt0q#Jeo8Y#xKyH=5I!hHLJ~n zNYePgd^3Kk@q@qudq`kHED$T#e-;=PSrgFXDdQ~uXmAP6=NIxj`PF<@@VNMnz<(lB zbjHt*{x$js>%I7rz+3tcLQ4bB7<1#}&BwHNjB2AqdxRe!_>KNr;2Ps8tHD}j{6@Ro zdd}zxJ;^)ykzhm1^nV&Z<72rN9};>nba(JV>jC?>)=vXxn+?&8<~rl3z&7(1^TNQ1 z;l-hvaHYwuA6RGD+w5!Y^X*l^s^H6^OTu3U>%(sbhgc_v9|`pZZx0oRZ;noe{X$>( z$k>tL6N2@6VQjN;r+r=MQv00P3ez;Mws(Zb(ID zC$OKzjS5AV#cuK9&bPUFtg-s5G*9fO)VsMFV0KxtF+HDRk$soYb5#`VQj^;6iRiVd zQKQULjcO74R5=>PKhg`D`|AnWgY<%2Yd&^?bv(0rXso%K_>09z^@-@UnNFH2px0*5 zmr^9>+H^wlYqquVBaHd_02*wqiYnxe1dk=r#!;35wDat&d_Y$>&%RY;)XG7wSlh8P zD~x3a)MKzSh8Z=vvT}C1n2%EA%T6mb=IZ&y*z8o%=lw0_*f&dznR-5jF8fCCW@d7u z$hAZ%F=h{7G7&al#NeEti_>84r`6XM(qf>h>$L?#j4IuyqSoe9XXolBwRx0PRds1| z#VEH+FG0Zr=*qAA7Aac#sj-$@WtKL4g zz?jlshrNH0QR!3o?i*%I>ZixuONqG((LFm6#;XgT_T9;&(`{7+FF%=K zkY7`?E2jpnLF$x#22nKf^V=4&??sLBtP-|4r@W-7cpiI9mZoo-SH0Xw1Ku?>X~-$B zKKL}_f<~nU%P|9E-_AiwV8`WxPpdFi9N2E^MC!f+Tc{i{*r-xa@ZEOM81ZYrx6>FA za@DLekZqLFNpsoB!y`tSXKu1J@6bJrhOVmbKUDNnKCSu|YPOC?|G+3n>v-P}|XWANC1M(YSW=$*E*)&5WmTFkZPND5oLL9S7b_cyK z`(YG&No|n;ih7ca2?g~;%8;uIu8Hnpqw+|aCLsL~;=70_bcbz! z8(wV#k)HS<16#CeVlw2I@r|P?t(p^5#^$i?uCQn?k#ijEJ_-$}(4!go7LCxm|C zmwzMWYEMFp$VFM{DPpJjk~qnAg|i$51V zDY`4VIl9W2rk`McJ37mLKUy9&Bkx6?3GTD|U}gVd;N`$$fx81Y1+EC36F4c*8At@y z2NngU1j++(>r3lH>t*XP>u&2NSlpjuon&=d32VKz$eLo6Tk*(!k?Ub8kcqTL5|Kk9 zlk}bT^YPmw1@S=<&3+*Ka`+DL+55v=!qektg)75_7Smn~y%%~Jrv-j)$3s`ZKf%6G zQ}F2c9(|?u`_NX%D|QAKhn9uL1Sf?!f8YEB+WcG0Ghx-g)m&(f0jd3O<5lA+;|}9S z_!#)MajJ2w(QX`VEH^5Ru>OVqk^V>he*HH626!Ae-+a#eAx;D|nTNo$V4?A$@u0EU zD2Bhmi_N?BSK>$U*ZA}NQT|(gEx$~kp^xCF>6Z2$KbAMd*TrYr8~Acw5FEw>@iD>w z1V6G54!#=vL-01c+@2Y{Cf@>%v6=VZ0haqbTQu=2p6*ARMp18qX|=?n2t~ACudPiX zrb3u3s#oV^JJivnn$;@R z$XGQpMvaVCBNb|76tSp^a$74`p(E8unHm}4Mo6Kp!FfftO2eu3e(|DKq9PQlS&LLi zp&BVrBg53lP&G0{jSN;JgVadejfncjR7g~fgjKYV3gK!bsG`{_B%nep6=JFoLxt!n zL{lM5fv_(X2>Zf~2!n(FsA&II(f;K|gq^}a)jXf8c|KF~{6mfW-8V(p-$=@n)wHlr z)%eWm>=R#n8v9s{&zQqL^2MjJzpC-+v)G4feA-<0fiFIXz3+?9WbgUnGuXSn_%!y8 zFJ8;u_Qj{Nx72v;T=u3fKAXMai_c@{C}I(yX@pT_>|i`TMOeDSI5 zWi>u^E_=xrpTl1C#b>iW`Qo$K3%>YF_Pj4XgFWYqPiN2i;?vkOzIZKrn&Meq344m- ziURsc;!SdGsn`=CqsTG0VvkdX>=|(O2eFjqp8IBx5&xWDtOO)VfUGdwawC3kk zday@mN$xM-XTPJpz^820mQs>WGpa47B%j`e-5sMepGkqXLhKX$?X}o#v|i_!La_fK zVeUW{4eXax;r`xc*sb(hA%>RvC-w{Kqx^^2*w2ZR9+*GNx`sQ55VLk`SiQSrMun1c z2vJ(D)mj&Ej}%@-I0`j8)ksqGzqU$SNbGgK40!(nBHi*Bo*hGCT+i(65@%0UPf@e; zsj8BwCPpByF<1u?sg5bwN}>j(Ay|9R7)oYf>^sB`JM=j9@BmgY*N7M7Gl6L$8Oi}I zUFK7#`{{hK#yaQB*@Z;V<`|2t7gZI^x#h@|lD{lvyPJ z4keAwpG&Wi<{)#bjYIz{V-R+=e^2I^~qcO&+ zuQJ%Uj;5C1%p&Xdhh5db1Zjlf*=qcdqwOmYpSBjKAM`9M~^*=*4zAA z>}yF1)L(@?v;RW+eQK%0tWusloHy|Rz{9?fa$hhbW9Dw_$ zub<~gZexRvcJ8yc8H(`JZo)jmDv6I8Qp3tiAv~aai=Yx zXzY*+$AG2pT%4FA-p*FY4FkDPjUJ_8C(VbdV}l_?I-M8?Mv+w?FM_fJpt$L zKMp(%4+1yD&yDxQ505X1!wxp~7W@PLH1_S-zSt45gJWZ3!RUL@Kj0RDi=)R!kB%;j z)94BEhD%o%)y&j;D1TYqd>_0lJY^`%;tgrB^B~U z76K1UD&#L&2s|&Tkk_*i_*_yUuVo={wxmK{%|hT@Nrn753xOLY7a}_Ll`I7AlGHpN zq&NfrNaP?edwxHg2_BKuOfP34@Pnkj=%p+KK9AHq3WVJ8DqZ@b%u|v+((xxJWjRyl zD8A;7$bo(BFE8sa?`w~E&OJZ>l}Eg8ENPyfz0&k5+T{oEG&nlF()Fs<-!985qAI<@ zafddL6`zM$o?h;34Y?M53dS-ABiFjm!zfEHb@nO0rJo0%kzNvDTe1E8cgOMN+^bG6 z4zRlHu9ffPv&5}R*EtP#cQ`+;+PlNk2Rp<|y>jAL7BeEfD32>v&r@@8`XGl&@r(#P z(ErjI^#2P!pNleZ!=^5Df0C^z%E0lOx|}Hxcw1BRypYWU4{K^31p=>XYM$q_dEiY= z&7(lzKuyi_Ts9A!rm1h7Yn9Z}_gNXM$orUc4AYxxrAbUNCI3B1#_V^)B$wum&VFQJ?Kv>@eQh}~ z)r;)z9GL1wc2^EeZC`5+Eb9%nB;Aq&Q`@)G55ozPY#W+$VCt@)%z>%>(v$;J+t-)_ zQ`^^&15>|keGW`*`_VZtwe5)mK;J2fprsuY2I@9{9Qk{y*t~@tF;dI%hyj{SlJ&8If7dGk zwkb}+Wa}z2kU5I$zWS-4z5F9G5INE$3mK>SEby8)Hl9_ok;M2=Ka78SBX4?HphDI@9ha%_z~gsB+_ z7s;>xfOYo{^vk{-n}NttTuG4Ecez9xk%8!uYL-2+qtg#@r&UD@QC=#crj!Ee}xR- zlGur{)v?jhFQfNHuaBM|-5p&SEscBt+x;6N7etPY)WfrXbtDviH+*mS`tXI}mhk%U z*wBCA)$e~om%yX{j?mPQ!QbEy@vC?rU&kl$VZna|9}Hd?YzfYX|NiIf%j`aQ@0)H9 z$7zD!1}+RV1?C4vTYs}2#HoRcpx<9$h0V9k2hHouGt47liytulWZY|9ZJcZ*jd`$d z|F`~{e!I}?*TW9KNY}Jia7*C#wSC$;t(d(st1ZN|>C?5Kro*pnXD>Mzg+Umc7bkF2 zX-iL@Bwok9&1dXJzS`P+`P!1rIoT)$xz6R|cOh3LlmPTL^)+f3n5Xk`t-u_Ed!H3d zD#k^0OHA{M7T}ea15YDQM(!z2FTm@z^3t6^DZzcygyIe);rE-@&F1CJ0G5?GKzUwO zK6%}AJ}e1@p+mXIU3b_T`d@38HYsJ|P#WAvIlsKFn%6V}SY7Rud9af{IhCZ#ll(DW zH{L337_g*DUQrLAY~8_7*1_FK@1?=W_AAHfsK=}rM2kfLp1%XlPflyxVbkgDLH!Ts@ zmwSOlL+vT+fH7&3QvqSk3y=HBwYZZJHyP)~`9T#{&01v0=?fR#t+*TG2MxDs)+oqs z#a*yJ#t#~56|Dxc9Q5t=tsV5o4>GNyL-GL@T2{>}rFj3_{V~2^q*b$0LH57hAL9!K zTSY7Ky>fwRRV@cVPC)dKV`sWLxnB+Q`E}NmWkCF|J9hpgt7fTEKY#W8F+P8sRkK7v z_E+B@cv2olU6vkKCB*Y)KO_)gwHRuit2#c?;FeySXBoDAluyz=R?T79CIb5 zhWWgaR^=ifiZvc1+P#~Nkd+{x7qW^D%J-sqmNkDN0CVTMiw|5}FYoSbr#IDgG%a}UL9Nn5e9SDMIP`>z@dfaX! z&N|2spH1PjXIo{{kV!6ltto-&KKSfXtFjhgIf?`uv$nMjw}C4`K09EQP6e8z0x(Ok z1vtNa=4PvOiULHv0d#)(%mr4>WB}!NlvQ-@;_%1#%qpvT5|HHtf-yDi{)yI(uHGJB zgwKpwWfOra+tt|83*Q*s?t{-Xt+E;g>`rU7P)|?4CeWX=A4rtjnx3=RF?LEm&ot$`x=(a3ynpE}tpD^v326gw69 zM&!#k#juJ>^8qFUFgzb%5&$Ln022+Xsu%$I!PVVI4fC2MR!tEQMq&5*tU-h^m9lR;jCAv6?d z{f1CYz$zM&4=^EV%^eJYT5eKVm$69HuLdet2Brtxtu!3ESz6H-mofd0OgllbLdj6w(W3W zo>YRo%CrUt{KbxoT2&U3yw1eMe3<{j?XK!Ff{!z-!KOcNWtmlBAW42J&z*!9;FTZ` zb)fVcJ7b4gMVbPj(>C!@9;c;Oz^iJsap<6=V z#@YPCLQ_If{t17E-@z~EyK#?SInKgA7rZ%mQLrbtE;u<@X#WcmfS=hH*vHvN+H>ua zz&`?y1b!SiBhY{w`$hzG`0M|@^>gbCcn(-=)mWDKn)!3{9CNR^*_>h;u zwi+{W*zI%uCH+_WrQ(LZxj2pgfOeL)OIxW;M)L;vHz`d_TuqJhN2Q66lN`uO_^R1b4{3xK*kReT)5OWm zoas~tUPf??io9;%f^*kDd%iTjy@=0G6R#&}#RP5~#-%x~Y(w6qo*9IYru9qU+hb@jae@Ojczc+SP80iAQQ_>-ONH!(TAK}Rx9y@dv3;^fQ!Sl)>5p%t z7ZArMUr^uFlt|+8RQcrFLclm6)3+_ai_^sQ6%{#ESb;OGE#haJi5C;Q*YCxLM^G&B zbpyWma1IP&<|Kyv$nwb#xA0=(;QGJ#aMP|x6AvfnF_!C&o;7e7<^}lHVZ1C&?3~=I z(dK1N)9JytMo|Ic;0CO~)({_`Cbq4r%4vCB)2@2l^xn9i-sFpH<#u(N7&*CoE~opz zw$^vUqj+1JFTxLtTNP>I<$RT2Dl1O`ewYCqV&5c==gP_p@Ix!Cf;4e$g2W+izd42f z{Lo?6=rl2CA}=IpG!*Do?iMe=x3F{g#5A#HVsDU0@}j_$!1Q83KLedb44dpM=`Tw@ z`IdG*CQY1L1uh^b*@Gy;ar;8=7a_i7C(0p4O_n1EqI~i#hXaE+Hi;p}gM9KW8!;}3 zE$crnwrsGg(!_Sjy@7}mTuPfvV1ZG?e9H=~Ld1D_Lw9d|R|CCzR&1I0 z&$rCuC28WQetdlIwldx@>#w*jrA<2CXY!q$|?@2&aq6GPtYF?Tq zhDmOgJ_+QO(I|zuCRqw8T1b-J+Pq&0@+}1z^Ta&KG2fb6*51{#-+k~cw89dfG;rre zG3JR?l4E{DcPma|_Uzx-o9rd_D;wDow#(DRF3G}{y57~~lWzvKoF<-0RtI&Z;q5;7 z<_JbPu}yN6i`h#UUVv{ltkN`bOR{5@F5kQ<+35W8O=Iz~h(VGc3+edJH?Zl2u#0d^7&@ zjZ`&ag=DAXRBaG{#Dz^?aDNQ^&QJ` z_l*+d8|eEGS9E~yv%#>+)5H?ViqO1YTHk{m%6anjv-qSmaYd3qz)5C!$ia2kz1=Br zfH_gVej+9su}N~G2?X)O*H`l?Y2uWm9IUqsKA@n4kcH*O`T8}Eqr3^fK8z1TjFjvTIacJ8uMhCCY2u*9 zjB&P=&CcBrTX5U45?pU$dJ*p=3z8iwpM2daRFD`ZSwW?v*3Cw~$lMlNcnK zQ)%|PA%GE&Bwzivb$d>l7#u-DVs9k>5{m`< zwORODApCr3d=0zL8k;6INK9U2UDdInJGq{&SkH!lcBeHmO{|ev1Avwwo-BcX;sJzP z`GhpFM}nT9D#%-~#kU+3x+?`RQPKC1Z28|k4zIgCF@L50SIs02M{jeGt$IdNqt`;v8qEfeT%Gb z{}g09n-5PD!zDgADwCugOZ)(MI=(nDUGj_LZEN9PL;UhJCjiQFp!NF*TECC4>E>l8 z0Vvm5BvW^|55DGTUV5UEw+VM#^g!50zkJOKUV4H8^zFuLYIyna01i0L){N(qj|0M_ zNzMe%9Xq-4HRJ4xV}UQ1SttP^(txti3-C2#c*TAN1+8#UyZ~P_ikI(Gs)fwro609& zQ^w2pDhS9b5ag4u8P3c0073Q`a;||w(0%YVMZBz60V5xQ-3MPYjF zimfi$EuYXOU(H8$C?x>085@}U0Q_=3ydCg7gS3ua%!U46vlx8;UmHI;zCAuF_V3t} zu?u6V*xFcG^tI?M(Q{$_r?EwCvtJ5T`q|BKdr)-~3d)-l#>2t(dAZ!^DR9*?vAbIfAn3*!yr z5#z_kxyBA-iox{{^+)yV_4D-o`r-O4J*NFtds_RIcAmBt4f}8YEz1zIv}B1x|I-2q zk#=iOVs9(%6L0O;qy{`1Zu!J-WDP_pV>y{Q)Zkd4_l=xpqPND3)6JLhNY^^(SoRC5T7-B9)E^mQq$ID5yBZsNNlCm}SQaS} z-Vw5!6Tqd(q01$|CjmTa7C zwtVvT8eWtkPD|$PN+x&HA8#MW3o^u8<#cv?IdTwB<>io_-Cn}WGQ>;C^)zRfZ!bh` zR0b-Mpj&l`3~-*jeJC)9fs*x=A3;8Odz=?%h=r0=e)eOuTXuPdI47A|e1ml>mdPh? zGps2Y;+`ZmoqL~sZk+EPZjH$hUzPpB$wq9N9gRsWm2QadjsZ*MuF$*%03y zvSw$9yONSRPf`eW8=GHCGL=l_OXItOn3}|O$u9Rka7!&O$q>^esmJE-&W;}O!&@d` z+7ja>r>$co*T9`%jxxkdvxfjg;z#3c1^;7%Q5Q{|H61e8ynEI?z3 zOY$0%Z12Rp7r#6iMWu;3l9dJ%jsH9eab|{Cq5&(FwE5@^F-B6Nx<=eKKoY%dC>cQY zh(8**7#$TLE=iCgSOjTZroSYA@h z2$bb8OwMNPZeUb^668&Vz$1=HzS9L#-IO420)dwy_GrLKCW$hu-pBHv{6A|=Qh*PyP%?+o~g#zXK5VtC{$ zs0jLNTw#}Gh^3LA(k<70@WzAjsfnwR@SIQGxDaDsvFUSfLPaECv>FJQB+(fneDXZv;V;Cbnnb z4kK*_F**mDdyOF|6^PZ5Yo9lR8a6h= z94Jf^>m$b~RYz1hWRFP`$0I92;^+j{fc9iI#E%|kRi=sWk&{IzmK`)D$d9%m1#CM| zMG_W-6uW^Tnc|Joiy=9V1xueBPZ&_-?Lr1g9^_Nnene9n{x#@-8UWWJ)q&;f_)_@=W zhyY)ZZUn~s`3~jmX-Kz%9ivq$*+h%#0Le#K5D_;ZyZrFZEE1P*D?z?v39m@k15b|9 z?j$Kq@jbl&-?4ztP9F`N|Mi#LF&UkaK+Xep#*PWljvS@bwV}6dH~35JtvyPR?-TwjFmDB&UPQ}&|vGK+r@e=+`W{8#ZC z6%y4N~3;iwhR_Gbr2ym;O)Q>kZq3c864V?+wgB_4VEDOyIO$v<-6^4TR zpZs0^5`UcE3x9?`;Ft2Vbk6tjF5b+y<5a>yd@?WQM(~5+lfip}x5Gl=+TaziQs~n+ z1sj7agVTeRMj|*Y7_$FqtTPUR=fl_S=Zxp=hwas0+& z$U2U)Hd}S@XjpBPS%WQRzHdHnJ^-7CE6uabKG;1pn}?dq%xUImv%s`)pTQ@_JH~Cs zHTqtCx4vCpp-<9>>$di(PErqYWl8>X6A8#rF`~p7mSmHDuW=2t!T68^V!7NJrF6#) z;kDBV31RIFLmymJ2-$;COrAj-VdK&ZjfDqutbkHRk*}aZ^ja*7F!^zBnKn4NyTq{G z&;}(mgnvD-pF^nuHF+c5jZB-GVX4LGfA_^c_Ql>OFT;&($@-4oF8ysENH{VV?ixj_ z_1DPDXQS$%kp$M5?E0%zUmryOGr9joa~qtzuQ+)dcN0;VfLvwkI{*^?kw_U%3uD^10 ziR>rbC?FlW+5^UD@2W>K&~H?jXvH#jJQve#ltLJKgoDAnG<&=@(e zcETr$d$k zghwgiGV%_qD(KlAPJ774b}IGNQdq(XD;`pSXn&;(c!2LWj*E%Q^`Pv){1WyC+BITW zIw`Q@+f$#?FC`!0Vx;0)@jb0@1e?-taYio$mU4yH!!#NiJ8^Ht!_@7{O__Sa8Q2|r z$eJjrZ*>NCM+&MJ1b}rsN10JB~QF^O=y8+ zw7ZimXrXY|b%_ag#~nS|lm6(v^c5&$)}SvUnvV&GWrLQ6lzunO0@y#%rSxL!1_hy8 zG+>vkTc>ZJ58#>-Pb3%0f}%Ujwd7w+?z%+^%qmj_qSwd{b8#zPiM1!G^@)z5G>0H$ z@00IfktHf#+)@us%@Q)|6D{~-zQo^=H+2}*;K&xF!(H{Q-FsVMuL07&NBfeRyd>G$ zwyL8kxlh|AzLF{|)aK9~sh<2W(XzjboJZqJI24oiIZbB36K$QTl)hGU5Mme{O|5vR zzLc7v&Hqni*L^xrDC!8%tz5#i$My*oSfd#H1K zS@qx0hla_4evk|-pg;pwuTx~;I2XjOq3SBie|8lOYmZn}L~dVENnjkNA3EWhmAiSBX&u8siWFVG`96({$VnU>rh<(c6zhO)3mEy!>U-N`;4~O1GMu&Dnj;P z+R;jcJ)}miS0g{70fIaUhzzjEuc84)QL?IIkNaYe`eJucPXkjcq$c4$VoWrBxEsbE zppTT{`hB}F?=wn0!1{pQR+=-pVw8?@~-Cg{6Ba7*_w>f5O&+ys3a)i;3?6rJ7L-)XSq zW5(D!147;$5F$v0yrn%uSH~r?6JAc_1Vp^;i7rUb^&O&)*xefv3GF#G@}L_bO}qAl z8o5V})T$A2L6R%CcWy9pBkVL92#9pH?MW`(plzk0n4@WD-xM8)!Jib%bV57KDI4zL zQH5vJ$V1{&CU*5=9HAjFXVfnj-zQfS&%QzK(EDrBSsx8INr~$FK)S}fSiKLn(HC3k zi(%PUN{Op6?IT}I40ibj?KeKyt-jd#zF502mhi=n@Wl@G#n$>_2m504eX%LN*l1sD zxGz@Viw*U~xG!e=Vx}5n|MJED>WjVSi}}cF_PP)DoG=9q=L0{}nU+flN z>^fiU2foXOs3zqGfzXiFeS}>z#+jWKd#9`eNIN ztnwefZY1JXJsF)KGU8xy8Hw{oeRIeW1@bvKLa6y=d{vCQF^n`vy=-$w6p&LV2hb|7C70QHKagJd{XhLX|esE~0 zzCL8}&-q*YnLs)J4gab3CI3FG9M0e;@^0R&NBE(9DWA?q^C9{~y%=^6ZyDDIp9$U{ z{GZ^DgO>%*3?2u+2it>dg9k&VFg92mjM|^sf3}~pAGGhVZ?vy8Ok;>~seQ41w*3uz zzxH=~H_kpRxju#5Oer-c||V9+|PZM`@^BW}Dk3TQ{)-QH!0d*@o=^#Ud(#t_;T9pRHP zn5bqa40>E}yGE#gn*IgtC1B~g9EMoj)J9RrjrD&Mb(Hl>q5n%(#=Y>QL7e8)Kchjp z%=J$p*yz6z@g-`FQ>vJI9Zfh~tBbqX=-ldB^0?8hi#46F$bGRcZc-DcaD}d3e~<3y zAgFkYVC_2U+fmG$^g2S^j1yAivOpJ$S!;@34e7|AXp;hykN`*#V(5RQ)<6T{3N`d6 zs5N9&kpR=Pv!$W4yQLE(;bTPg$fJaKZ8ummd3Zzry;G?UD3tL6Hy>Kdl2U@9y%@EBhxc>7O*We^Mb`3gwpNKRb-;<-NDK ztn_ADZCqs0--i;H<|b@Z!V{EmIWfz?0kb@X=sRK3p?%v6vJ7!%BDGzNlcv_5rQooL zg4edtatiXbjaaTUeV?Z8`n?Wer(<<2)0?_LjP-&C-AvHz!4vjJx(&uXAEWx_Xrs$} z{OP2$*iG+l>cp3%brWJE?Q&6kC+N}MjwT(Kc0=NkRmW-KYD70d6Bi)55%!tL=o*}} zUsFt)owJ{U^f{TdMx*IwG75~80f=v$lu{WOE(0YpFjNMH$be20y}drE4<&9-Ii6;V z(d=ByzPYzSYppUi>T5cw8RXljE#WK)qo{fq^G<9e(Y^Ux9~p&2dDDps?Re2sUnQxU zrd>@nBXQJKG9XA!N4zgIrCN{*r3B5OE4L8B^jLyAclUykXsvHs0eJ&vQfIfmmzE*= zQ23V9r)jsysL(pGkEkGmvR`_kOT5r|)L8^QS_W_>Rf*o#m`XHtX)RQ}w#Ih-$6|`s z_h7dMnM-F<^q&#s+(xInG0DLvHuYj5`YDZFalN;eq2AlwnX2!u-_@%Ls%3Wv4r_p| z)SBrXyW1hVOz9@QWB1O(^fRbZbfSzsFOrh`waaLXV_=bbOTR&l2gu5}w4Q8ka#v#y*0JIsYyRo>;o$F=aDLAcQccCe!fEKgFu zlZGIYT>Bbr0<9m2d*@3936BJ4O<3TT=fr0EV#PFWfhk#g{a8_!a=g-_p_^~<)bA73 z5Gof^F|#kSaUsn7w*WJUlb7(}OAG+9ww6P7Kb7Qa35b=QQS^C;ORTKM@*!qM#Gu0!8>2e$< z!qh#52Aw#+q8;T0*<;z@@3O&PWrNpdgICj7*x8BG5A}^L`e{U^VB_D4HERQ=D|T`H zViLL{&F@EI4mA|1WDCwtp*iD5x`-X1F!jz}8cGxa8PeGfiQ@9ygkqOm5v@usPWJ4D za|QidG{cZjq&gEUrHd6oChBL>N1>RQoShxonMBc3f-oc7?^cP7b55eq1qj3~EbWDx zblef?q}T6be^bIIyS=bRcx75bd!U|j%UgrBuGej%W9Lkp0}4mu@aCS>Fd~5vU)7Ur zuj>&a%OC$2w_ILfv7YEgz1MB2yFfTEYjfMSR7$GPa=(G!565ir?Og91+D#-y z#EXTAEk<}kidR$G7m}W9?8IV=*S78fRt*7?SC zr`--YhQ=?-iB}PkBeOZ$uF0av#wPtb88}@ACX#3mo*Kr`Tv)y>)zaJC+?Le4X`l)_ zKCLPnET?U<8RzL%%MGEC8i=)TZ+$nU$%@c%8BM0;7|qL}9EO+>BGZK;Nj<2^?xzn9 z)6)G-36vlXZ)){4c_~dhiI$OObXTGa#8y)OKDCU9*Q^%`al5uif<&)|riL5QdgxOM zO4pI4YNylq5DBmi5%Ma*R%qS6^u}&Tu1Qy=3B{De*T;)m;oaI2r&grWqQye{mGh$J zp8ak$uO>Dd@;qq08XH?d=1Z4dh890yL zr5v4MXNnwRO~T02f9{W-8!!fI&9$L`5!ajbdCp^&WyG~+E`9^z*Q8RF(~;~}`p&K# zl34wuc7>86coXdo>g?pcdU$6@>g(yfpujqW){fmP3hadpbxpEkXHScEKTViqFZ{o3 zXld2Q&_M8A@S=Cp90D%w)ihCYBVuFA=ElzMq`pTX+FjOQ4cY%Uu{T-#)_6<2ICgLB zs@Tam^S?MYF8W6Fk?4=1y-!4EM~C8$zCT88i(C}xi5!6&`pUy!h93{#jC22u;rZc` z(A%Nkg?<=1IaD38`Rn{={A9k2PY8Yz{8jL~!S3Mt;Dq2{`(vE-|F!)?`*geA-e}LX zhX(!@xIgfdz=?rmU`D{Op0}>IGS)V0s%4vRz~28Xa~I?blg$EH``-g=|4w7MQD&I> zb2#OH9&YiQqz}_Rho%27wbQgCafe@(W}+ea{|)aW+g~z0g@Zu&(Stfk{BU-`Mr%|b znf#JL3ITD=Fw8)jd*l-+IHS-<_P%7;MJQdpZEf@i&}6H)Pa5<(AlG1>T`OQji z746YA_o~o(uz&U4&b6UVnB%U{-&-^L$PAcHROy5Zr8%0@-VR~HPQf$vPoaF@N1u_A zuZoDho@5R0Bb#CQQH7>K`~bKQ<&ep+EJx+t)G$!jp}o?InA!{a8~*_~#2VK} zX2fJjM1U+kRjUMnxEzRNPuw4IS{4yqd+uUuP9K>SlQ|KUi0|7^_nI#aSr?#|WOgjS z3U)mF2Viz!R3BLz%a7gD30Vvd0Ldp%W&|eok;$Wjub&kWpbjNeM`sCC3|K$p5%gZW)MvxduG`r*P6gJ zIPk|fJCn*Gvu0Ti)WP`A*%?ukL)Oe*IX-Q_Q0sfTf1n4g(mt|r7Q+~8lVH}x4`-)q z0js=ES~%0n<;s`b2Qb*DR!JY(IE%Ft7+v@h^hdB~tda~_I7=8&U-UvvOScMrfT+Z#1)3*UY_R10<`~38U z)`$$*D9dT;Xylz=&Q7aDJ~C9!&37ut;RCWzCTmF=Chpg%+u#K_J5{$vWu&1pA#F}} zGzn3w`{eAK71p>6St`qMxd~@)K$jAh5(Hv_H8Mj+%VaW5Wznbw_v1b|JH@nSWXNJ! zY%wkZbiMl$9^oklx-W&ZzG7q}6Xt%|Nbf4>STCEGf@~Zgfoz)PNAPUBS!S#?Cqt&p za#hD%?C4qF1&7=;gJ1%MR9nJhAjmZr4s3WGOh zL;R$ORhl8gXlVlP$nTtAeqz*`lp!l#j+2FtuthwJYb>w zI7aLaU`StC%OzXq1@^&lRAxI+XgX5iWc5LReD5&y_coE)?E#q?P=}A?d!txw4+jqI z0F+xy8u7#TRO4{bRwch@DB%V8p5Zt&bQo~tw@+jZC6plFQ-r1-3cLZEx@Q<4m)Qc0 z%1X!9eVL-)P{VtoI5xCdDN1TKv3{#1MN4U}MUO>MJfgiJkugx5S zGFPu2uuRd1j+riW;9=&S%vaety0PpeK24J2ZZutO8AP*N|d&2S^m=0cZt2fHdG0NCHl_ci5w#&%QlyOkjrfrS-6NmQ`;Z1pfaW^C9y_ zc>3FJ&Nn_at~0tIzW+?WLqA?$tru%AXg|=tp>5HksCb@#vrZxUl$`$4o(c(6qO&=X zI;NKlPKDK1o+QpLpJgpQh3M3}IwxayFO=9~?6Tvn8K)3+D+!jawoaJpss^|HQ;;oX%{zstT=EM_ z-Qdz`{+xLek-5Q|dI}N2k}knfPqJZ2DZq)!kX7d)U<3LwwL~5Y)nvvvBU0fJ`MQ zllTW&rZZceUw{WeXhpn3e;WMKJ=VxRm0N(}BAJD_56&)a;=}uhTadB~oMHi$PCo#a z^BH|APe5u}cfo*tEZK?nPeC?N)_uei(Dp9cCOSHPq)fwi7{C`{ zmxk3h8WL zE2e-N=ImnaD66)QSQfFTLTr>fvvcE=XCs7B#LNgG2=agjA?tAWK^S$sypLF!EQXk^ zIP*sqr-U&b7{t(IF~p=uICFzA;O(W4*cq|x;w_F@fb&c6VZ5}D*cd4=+uPdI(;|Kd z8s}sBh=ma!1-ZR`^a6xs^C^AAzlf1YSpJEf6Gaa8CF)K5Ot#)MHL30NAdHWAMIZ4s z;!BI(an{}J`g<{Z8>$lGUFfO+66ZPJ#`#4N&*B3T`{MtA&g^hLpcAIoJq)=YF*0KN zK~Xe4ohf=TWP4Nkh>?-a%bAKfQ7Y|5tFn(68OF)y;7bQX;M2zEX?l^Bt1r{)X>b~1$J#9Rmr+PHIvTsII__z-eNToXjv%Yh(8 ze9%@(^`#O-ZI0l@eanC-_jAt~4!d|OX8KZq|?NM;J*^(?83dgs&64OkPLv9m(45dYK1KgFx4=-FlCSJTL4TkW`GGv zrK>y7hEU)-KE7|hDA3ttUB#KuHmhNvE(Pj51r-iO;P*^mrqnP{7oxZ40#yzS+_(WJ z8av$w5N2Yk%>ja>-h5t)*o9O0gudATOO=h!^xYRhS(Bl{oCV~8KhT9^F_dQt6o0qL zE@KytvP=4A07Fg$>U#R)?Az?y&>l_)OwxnxO*7k*;s?;}*66-z0LszlSr&Q$AZja&mPiVKdTR-?K8gPYD9C1Z|iIMA-(&Y2nTcXRo{fkW4VDO#6;i%i{lv|1JJu z{O$N_@B{En{PFnj;`hOp|F-zg;y;OB6TdS4-S~y^bK;FmYeOUYdIrc*Asn}z%`M)Q2XY7}; zn`76b;?}`su|=`DvFWi%v8q@Fdd!#v%h#Vf-7&!z!3Km3WMkYt9BBLTDks*u@{P*yO;kUwnhR=dO;=I9q;k&}W4F42&BwQ8#Zur~bv%=pDpA_B~J|?^iwi8E$ z4~75472$)!bHmfZHQ}-0vT$KI9u7j1^3TvGq4z?63B3dl2Y(1X6#6YZEdD(7lhBVs zSKw^Id7(2xeWBw+y`hfK&d|}JZJ|w})sVU@49&v53*$o-q2ZySp$N_^e8K<0|H|Ly zuksi8ll)PBKfjy*55JlJm|x8=!|8>y`Khqi*pCwoyLl5ok{^bf8dmZ;J`X1uCh|%? zk{9tooZ~dZzk;6z-w(bKd^z}R@bTco@RjhZ;4gwV2CoTzKX^&-e4KAMC3r$`Pp}iG z9O`k-VRLXza9Qx6;OyYkV0CbGuoONNqQQXuB~CqjWWQs-X8#FiAAWB?0K1Ue>|5;X z?H|~e+ZWmA*r(ZP`&jsgY_pU0QShy>!CqxAhKGe2_9S>&D7TB@X(5Eu5dVe^$p?Wq z1Fr<03p^3{UEtopoq<~eHwCT@Tp73|a9-f_KpN*-jtR5|>I2(wwq;eIE-*Jx8>kLc z1WE#f13aKvpIaYUZ(D!1p0gge955EkpkV|c|Hd?FT zonfw33;zriRtY>ba7!~kH$TD+m47y$GarZ4>Nl`lxf!=rUTI!p{-5@~J4}jVeYdN7 zdS-fNXNGBVj!Tl9(@I>B9ClF*ur9E`$_Cg#Qq<9%HG-mI1k({c9t8}5D54lpj<90F zbi`v81A5d0DvI9stNLnYHt795&;8>*_de=UZ}r<>=j!VEYU+Dyo#zTq%(K$7)RXVY z^_=OM?iueH=^5uKtVdK{0iezv}|zOX*D-mzY_{%Jh}J%@+U<8>EzZ26!M zf%els8TT>1$oK-|UdHDcpJRNM@fpTF64#5T8J}X@&G;naF2*MqA7|Xj_!#33#_bYs z5Zf3ZWqgG3VaA6Tw=!;F+|2l(#OuWajQ?P~pYiV!uM_t%-pja2;yQ5;si_0WlB`O)?60Z~$jF(EhLR`WaW4xI0BE}0DS2JF~cs}DQiIgywL=j^lV}Znr#bU7F5XA>+JXDK+7V40Yu z;0y()E10Puo1k1|5tNA;1SMj+f@un-Dwv{RvVutjOT|P56BLYBaGHW~3dSnPBv>NG zC>X6^l!B28Mkp9gP%KVWkfC6hf}sj9bWxZ^Vz7ci1chRtf&mKpE5MLETGv-W9|gS? z^it4MK@Wlg(Vbwi=%(Nl1zicw6I}=viOvc-Dd?ymT|oy0?G?0B(3W7KXrrLDf>sJz zDrljgxq@a2niAxRCJGuWXr!Q_f(8oeD{u+si>QKn3L*-^3PK9f6a*DuL?~_NDDW%r zDew}^6Se}60!x9ZKqxRI7{4p{O~FY8zbg1e!3l!7#?K0VQt+dK;|h)`_^*N=6nwAX zI|cty@GZf)#y1L%666?PEBK0Fj`5{}FBBXhILG*0!Dk9SRq%;|j|t8;K2q?Zf)5n@ zTfzGZ4l8(1!M_x|tKc04Zxftlyrtkx1&0*8q2P6bGmY02ysF?81qTUc880iSQgA@Q zeu6WMmlXU{!9E2q5}alNIf;CcnuDOjiA zS_Rh-Og7dkSfk)-1y>PFGOko`g@Vf!T&AE>L0mzFf=d-#q9CT=V%rj8(nT`8P^PP8 zdVx&Om+2~*u9WEtnJ$;J5NI$EZqWIB@4 zAtPiuT&AZ|Iygh7!(=*CrbA>pSf+zyI#8wA=1+?IY9Pl=kl>)1ETz zA=B6G^AAk+4g_HHNBwlZxa)7F&sY9-T_l=f^v zX^-ZVc5g;$x2BY0GDu1r%e0Y98_KkSOzTtH)s<;fruAeRk!e__A(^I8+9gP7=YUKR zjexwL(oQ}~J9=emQ;Hb^DYYo=V0tX!bO?m=#N}3o0k3-|e(TQ+XN3F1<4zB^gufjM z+wiuJg^t44J`7F2s?grhZur@oL!01buMe$(kG(on4i7soG#mc);6#rOGj*e zLwMFU;`5KC9ZmZbe)XZWs<(;)54|a{5wjJn3B&`d;XxM$ z@&dC1GXs;M8JH3157of*K+8bGKnULRN#~ez)cMpo>>Pscyw}<7YxJ8Bq@zPJgF6yylipLnq|enDOu!eCAL6hy92ARsOyH-SC(<`#1SF z`q%r{_~Y=G%l(D^JpXL}Oy~k+`ZN6f{oVcP{+9lR@Re=fN#8NwQQxP&!|;@=e0zPn zecLg2!Y261>wRmW60q7=j(CbZ=mgC4P4;C%E1*AoCN!=_jdQDds})NdP80tN`=Sl zqxPpzD?9{+fxY%_d%L~a-ehmI*JHFs++J;$+l5ezm~GF*9F3WF2Gk3?+v(6RY-oot zW8+EBF{l`R>N)H=q+aFb=3OQI&2-Xs;s@%Zfm=>+1g}nwANc|thlw>Dz^%)JZrW!)0%8$ zS{ad_BL9gTiF^=wJMv0oUt~{YXXGKwZEb@F~mGZJ_zu?j6X1bFA@H^#9`)1#$P24HGh#f#5}?H zGviN;KQbO?{PW`sF~4KG|1f^b_zmMx#;+N_V*HZv3&taipEG{O_$lKj5(k?fOB`f= z#Q34af#wGi2blks*x!6#Vn6e+#J=WxjQ^6@(|nil9mcmA-(q}IVh{5W;~R{xGrlIV zoB1l^D~tyjUuLY5c#3&IVpnrN<4Y2|n6mFgbT(z*iRfg?z7wGAI|0hR6VcI>eJ4QK zcLJ1sCqUVEBGS!0a(^96*>@t^n7ie2Yx7Bot;}5#TbfTWJ}$9^xl>|uQ}(rpCgx*u zxv{xJVk2`q<2H$|`KZK*`G~}@`LM*0`H;k*xs`E?M8CONqR)I#qSt&tqGigy6JeRE z@8maA^_~1`s=kvGrs_L6ZmPbMzu}tITzb*D_wixR!AZ zu%Csn5EJE<~N-$|9J`cA4$)pt^5s=kvdQ}vxxnHS6b z9xzqk$pKUKog6S%Gk<}^{pR_Mt0cZ;u4G)nxLo2sa~WefV;N(q#23vHi7%K-CGIts zFcwRE&MaaqWGrA@Eb&?MJjQ&9&zOrC7fRe?E?~@)__USI*nzP`yS5_g+9jB^-g zGoHhEHse{0XEM%WJcIFc#+i)Sj9H8`7^gE%llY`Lm2nE=WX4I16B#Ekj%PfLaUA1V z#!SXBjH4MxF^*&$A#s;EobgnNPna2u!z4a#4rLs|IGAye#GU3q#sQ4|8T(0m%?ZLM^AyIe5+63ZFm{&sklBf`BcpomTTS)cx0>p? zZ#C6(-)gGozSV3a?YEe%8Cyx*Y_?=_!HxgjK?M3DvmM!m+=S2?-{>i{Ex(2#J7y!Fdk+6n(-^fFB!jJJi_=n z<7bSYGJeANG2=&!A2NQx_;1Gd84okQC-G+SFUEHn-(h^4@h!$T84oeO!T37kYmBcl zzQTBr@nyy;#siG|8DC=jC*wZG7a3n*+{^ep<8zG9GCsq&N8(?$?F1D*4YLdjD@w$Y1AN?p)+7 zgKs(CTirx0+fJ^d`)+&a{4qpZ1mYp{E0WbG-;Y z(0?#AD;GwiT($?Zv_wuxS{MtS`t)F)a`UUEHA4&7$H}+41hrB0!F9!Dq zp9u^I?g-wA-_F+sFA<-K6XH8FJ@Ba6!i<{Uz&B>8*~dKFoNkUZk3l=&C381^XWi#S zown9a>jCR_>uT#FtI*rt+Y}K9-+CN)y8G?NF!$ii`1N;{eV%=mJ<%R!_plq_x884{ zOz@uPHP1fJQ}AOS^!yDz>~c>5#!h@0IfVHWo`!DV<-w&+ugKQGN@y2kdd`e&j9dke z^IY%sk?E1q!M>3`-lLJW!C=J2j0)d-2Vr!?yS|6QuY_L+?+QPJQ4#BX&3*O4S3nVQ zDdtv~W{rSC;5oi)!=t=+hX+{W(Kpi|*d*)?4EU;xDyQj1Z;wZ%`gUWt3mPiE&T(-Pxx5~#p7G~7o> zp^ZfBnz@HGJRl>5Y1BxwzzmbR2TeOC`jHyQ5{&y_4(*a0mQjJ=&jqA#k=TKlZ+>Uk zrCP9Tg3gT7nUOjJE$D_)6K#Ob^q1!a>0F$bIZN)AVk4wt_7r*aTA>oAWn~$j>gQ}p z>1!InC63YA%iPn6+|ooYs&mHA`V=P8J;Gpra|5j_&4Ym8ZPvSnw`{q#g$yL`({xDQ zQ%maR7a^{`JIU~X!5zY&Tv7(%5$mJ?GuI5s3sghd%{eIxLW&{6mM5+gr^sgot!}B9 zjj0qxUthZ6E6p!V9KAy#*E*4FnaDMl_lxAilrB^LDkXV+skf(*FzQ4CKx$ZI4hA05 zbnv8GeGzHTFpWuQB_~CznNxa?CSL0EjD9>B=vZLT@B$)ln6w#4{~5+wgu0^F}X%`n}nU1Rimch}lC7dqF;C8bCk_ zo@|*c>$FBlH8~VDnpL)l?tJ0g`DSB!R7yEwN^y}=nJP64%hUHS|Jp+cJ|ufWWvQ!dSgbP*KSu{?v0QPj7$*)*|*)bgXZ*1R#nou9}p zN#usouJF#3mr$r^u?c;shJw_!&PbSSrZQSmSPCT`scDF8p4rg%3#zDu%~OfolZo8U zL~chS_b@5(P#_TMCldB7$-~q_nA{q*q~AxcTWtvxaVLr8(>8Sno|#^C->XMsnZl>9 zWGRW0(S9dFs0=anrJboT*AG7Bu>!HkTEji2j`fvpTF(&I|tF?L&^LVkPEJC?+ zp^3RTw`7Tx(B70~iOS&rE$Pl8Qlb2lczm&#ZWBk$Yq1V-8C4M^_d(NsPzg2DsA?%F z&YeF7@lzP^p(&Q1 zc3BF!8M#Bn`RKmVWELx=iHC~CQknxuuFmP3XdqZa8;vHRNeoL(*b;{;fbgEO%$XzLg zhs`hP)kQ5*Qy}<_#9>|~*|Jj7C@q4LD!=_oV#7Q@XD=@_OWqK3KkXf%Q;^OlCE0rt zizKCB-cIkk`hHGbkkHa=OJ^-d6N`uFs8ojuH<9zw4M@&~XM97)l*{}jUP+&dDS6Nc zDw>hIWDz9gg4FCQl8m2j65g+}{2Zm{B<`Yf0+U|`g|bppP9#B7nr0U-hy33S^iiZm z6spDMdRehS3KhDjnV2Vo=1(C#wH|asl^T$^p6)dA^24{4SIjFfGl$cOVg-U!rG&Jx zjffOE1(7EYCe_k&`k4JvmU^3mXwD+zrkcbx>g~uanYT!+q&?|ydoh)6 zN2;JQrbub82^u{wr$tc)Vkhl}^Bq(2t>_jer%w1N1zqYhH;P<-z3yy`nJ{_QVu`#)ow6DI@E}W+G-JRck~!-Mo@K z)}CFYHs`VS0#j?@^3j;#@A1%P)?m3j78hD+nW zyi^M3t1-+X(c74byG!_{@8j9_^tU8{JK2UZtD3K zqpC0UoQ)CG5$iOoljS!*G@mtZGYib2reAz4c8J@=CC~!wfeT9hpXvzfe7_2c7S_!z7L#zWm zvZiL@&oN$r;7|oc4%dz_+8eaHR#2d@j-;t309kFpG4^_J78Dq)&mtk@oX9xFbDa?H zPl3S6cz>$UlP&w2Eq!d#2J!wB2CT!JaQT@^by5nz)>y;_QQSQW{ndA`dK;tq63o4J zhYAYt)v-=$S|xG_gYH4ezYsH-VZwz(21bsJ(sy_AiPAdy=NL~wPC_*xlU zWKt-nnko*>z?7_G>=p>Vs-PfS9Y@IB77Sz&andU&##YBSCZ+k4IkFR><`ooNtAk77 zCBO-#1Z(l7oLE5tw&TXBD9JyaLFrFd(%!Z>ohm2`kvLwCkWDaJ1 zamtCXTO3vwGmS85>NKpNsN4GWRdE|VWeWa`-Hm;%D=6Gn7aLZ+WpIoqjjeY33JS87 zZxV{2)Hb0Wy+nqr?snQ%P`ItUYgAAX21!O5$!3Gotbzh;b%dXMVPt}}tDII96jiI= zXz2%+tYm;e8MdY%TD`TLN>3(OS%@1?QMCGXCkI!~s+P#Wh@LD3(&{IxZ;wWp%y$}B zP$;bqET`%B=%4ZAxxQW%6ho^kZ(zmMKTAo=60J33Z>PzPtDep(_14<(r{!7r>%YDot<%H3Z6|p^3D!8GKI_j z`H^?F!jUOvw#JeB@R6ZnyEAMzt4IxWAn~y)oc+^C5;1sOTWs(FVC#OhLK4Rj%?y7f6r-FVV`sWyr;BZ~^ z8oWTsH4g`H=R0GSzVlj!Qln!$O!u!-om)SYX7{P+h*eroqt=ukwFt*}$iYod$42_5 zC;LW|IhfI5JJfmDts`;L?XgOqGy?pkGPy>_*g6<5T05BN7Y%i6vMZz70*uqq5N!)% zUGLTG`lz{#P3qg7E81WaU46;&qJG3s)2479rgR~#VOslPZ;7B9X@ym~8o@M|c%&+I zj4f2|TGqMc<|wvoQDe*86|`mU3dh(?TQ;wA%Ll`D^NMDAOB53|wWdlP<3SX^rdX?s zANsuU=NJ!A>1v|)SgmwDfK3{wY=WM8{5i%wqwrQX!V3LX${uc+U}YbiVMDz?lu7FI zrhiz~2|H|%xQP@R=?u%BMCi0k&;{?@0s(x}52cs79E$_@0DeqQ57}hHWxu+!^(Ct_Z;@ zSz4q}l>EJoTdy+j7`IQwcQGx+G_{*FH4oEtl<^=;bs3k6TzbC1Y6~!KjWQm9u`c8M zElbScTyq(lG{;?auu1KLyYU?8y!o+8%Q4mYgF~Gpq~|hi(*K`r95E2@zcw;9(jLlx zuZDMoFM{viKJ*Pn{682vA2IU|V&b>L<1b9hN*kQk5Yg?AVeI{MM65>x-vt= zP=N9Ctpb+x_V321_-W25jt8;g+YlGNz&{cr+HKz_zWs>vUguka(dvCLI{gi3|6S#s zgP80z`#XCNeEo|NVcp2{tLGqoU%wLL!UtKuSlg^it<%gO;OpN4Uq91qAr3Co#ND1)lNZK?%Z;oge@iO!16)6Pn=q>x{j4K zbL#AGwFqpr(mpj#4O$Z4BrhN_pGft&;r@We4#wI8;?&mF?Ye|za{jnFC~Vl;9u}tt zuol>>yGOci))A+K?2d72BI~wZN~d*7))8Hs+8yH5RMuY+NcFMAZ88TlpWQW1jb{Ch zRO=V7w%~{^^>J`&JnMs}OoW$`bwp>&?h&UZwC;w0@KGtMFPe0Zrt_<@=!i}u>=|)t zS(98SJrDHi=9NI>T&d~RF+uhJ)&M*0Vh@T_+gnR?)wNAs95zkE1yJkze|iBOSKDLa z)CM0pQe6N#1MwRTm)L4^0siqCM|7NJ4~bI?UDq4cjd}9!I!SCi49}91pQ2v{0{`pNJ^~Qf+HF^IB{|l5+|-F&RL){Frqz@qoDVQcPu%3UbO{BxE{M( zoE!(;Jt*gGOk7FzB}YVB;OQk?iE4!a6B@+HlhF61#sqye79A04gVQ9RLZ2qzHQA0V zt+wEZU_HA{oV*O(5TQ~<<0mx21U>;(WN+f5!y&zAgxPeVAK%hjeH4R-f~jsPOrA$7_X1T zVQOZ*N3L1Mx|FEhX4nTf|KEOQu0ELN%Ft}$~ZfUgz7swu9Eg07+6Ow=5HA&Z zAo``!zb0#RjDs%jEO{dO&eAIR`*R`#Bg{V$C$B{BM|LAG#E>-VP6j&0%ctNZ$v@F2 ziL02L56yc@vAQ#=74lK!?M6dUzYA67c)NX^Toic%v_@BSiHu`ZnFHmPrSc8Q$kf!Rpql%!aT8mVR6i?#CM$+el7DGfhl zA*J=-*aPD>*2|_c)|X-i4vbhxoo})Zinct2Ej=k)Vx$&cnQB|sLD81G?EY~JTgq-H z95bc+fyYqRW@x*s@tHEQo&HSeyE{eB#adcp5nC)lJua|;uE%B1T4o6Y3?{(9NHIXc zQC}trFzAXtqKjal{TCjdnHt+l(etnZhPqDCJq{XS5_B>vmcwN9X!UEyq(7di_)k_rio`dhVj1?M zo8)!Q;#Vh$Uz>a5;g(}#{cur$X!<{zk!7WvOQsfqjhajUf3AP45&0(aUgV#c1@Lc( zl3pD-FLFj?Or&?DRV0Xb=ugA1g`W;T2(`Y-aB28l=mZRbCSL>03-C?oUl@D7J#=^I zn$QKI{Lty>E9iyT{{ZF-{3PvFjN*SF?Pf&zmq0Ub5_%3grqxd~5YPW^@WtS^;9bGB zm^WY%BKJoHdj?wsoxt(H$I!aljsAq20u_O!fjQ8$8-!?l*ZJM~+Ia`sb&ooCI9EB# zoq15H8|rj&>id89f8~D*BMP=+uEERvrT!fML@3U+_eXrc_&)c&?t2=#ayR)d^%Y~b zfpNaRP>&0Ge?(-$LGLc_ectO4t+3d8I&|T>c^i98#Jaz2KWA@&`dfuvjIsZjn2)fz z?S;nMd!83Pk05USa!;ve4wT&bd0Kk{hSRMdJVXtUeUm`{BKSu$#ToryRjim z)@L%ZeU%#<%%sa?cttNaHi*e6lWALqxUqpu)?+fz@=`Z8fXN7x{v!k2SbrwNO!^{) zZmb`ZAtuGWAp0^IROF1GpSa46^0$E7n`7MADNI^Se*Smi#=0_TGWltI zi5u&}q+s&n&DXiH&P*Ciez@vQH`Ym!#_vr2J9@Dj>&WD9Odft^q#H|T@+6aQ?;GsK zIxzVwlW%n>aAWP6{DsLw7k}@@+A(>8$=AzIcVlgt{F%vvI~TaIHcbA+bD%Pk-BuwPNx(llwOAcVjJ?JZ8yKH{ zlMAZ8b7Kvde2K|tIJCjc@LTw|M+{WbYP0ihy!Q`V%KIu8^Uc}rZ z%srkj+zXj|n7PN=k9Jox_YiYCPQBc{fVr*AZL7$1&u4B6bN{&d4R;lDo0wlZ!mN9oHbL-3o zZYguOGgmR@Jhz0ojm)k5Y=^s)xed$}{q$dV33InGm(wWV7BhD%bJNFO=N2({3v)w` zUF8-scQbQ6R=n#LFn6PR;ip?`_qvOjTd(Y<{gV5hdmeK)F!y!O=iPkfu4nFp{=d76 zn7fX-x4bRfh0LvEuBz{NcL8(PGPm#kuiQN5u3>IV?}$5}xwXt~nEAFlkGVC>-F(Vt z?p)@sX72hg_PDvsUB%qBCkMIbGIu3&R}UZK<}h~!bC;bx*`34O<;=}J|A;%AxyzWF z(r=b~4s(^vW#(tQXEPUPZuG{5?pe%LFqbiCjC&??mohi_v~S#5%w57So zEo18afzzWC6;;mEEA{I~Cn&0nsj6_V=y*kyFtsn^tmtWqDrIW#s0*Xx6t$G8Cs$=e z$0}+GQ=7}DM>7>w%+x(y=0wLRs)(t(4laz2R#YKV8_qcq9i^xOrfzuux9CVkEoSQ4 z?_Y|JP}F%$UFm--I$TkUn5rE8UG!8%#}qi7J4)j3QJef_a0nuA20&D6jfUyY(MNYq(O zbvl$0MN^QdGnr~%*g1-ZAW^fJYSaJ0D4KypoxxO#H(!dP5lGbOOf`CMaTHBJqGmD` zy`ygw4M3u@nF_|%M$!BuDoasQzFa#kipC#NGno45KfR-9`Vlpqsdv{EMbYphY8q3o z&fFG7vyZ5$O#O3N=O`L|L``Ap@eOB1(c~j)GE;x+_U|Yfd_+xR>h=e(h@!bi)JUev zjZ33w>=8AQsnWo2Q8e|48qU6 zMZ=D$flQ@+krPF;j;Q`jiFW^vqESawKSfRc;cw%j4HVUvsc!~98%2YTtoktZ*fjons9`dnO3i#sE4*1F}zvxtNYRK|JQli8_@iJF0vIW|CdEdq3b^} zG7w7sk?=2wPJbP~{{!Kh!k0py|LpKMDDt-s2cg0LF`@!?h3*So2MxeQp{&rUhzw|e zNd7OO^tT6o|BY#}w1TuV(ndkguSuE}{3iHL@OeZE+=`I{OM+(y#|C@D=l5a!z~R8Y zz@vfN16Ksf0y&8P?;mIr2s+1|51j+fW6s^s*;@gBe~L5M>EJ~CC!nVHihoz+EC0Rz zb%-KZ=$`@Ayw3jmzTbRb_}+lO{|{*6UF=)zJKZt*ZSQm5EzpFo@D_W| zg3etpZ*#8~V-DW4U$h^An%(7gsXYh!?)~i6b^w}nA9(hAb|Bv1YQ*=?g)-eBPy4_8 zfAmvu`TEQM$A^GAZj9g5>ow#5TmRpUv2!E%JDC0VqIqtNy&J(_!t4#d*lvv78^Pbg z>{}k#=f>E-5&SjGUfb}b8)FAY@b@tL@{JF>G4^l-fBv##S@18}#Ss(Kjm|!Q#{@UV zK8_gAl7&|+HKk3=y zzCYx~*xP|Pi|mrg9=ou;8)J6|N-c^U{_E>*ESC?&U-9grS4G_zJ3NBFL%8>{doSH^x4X;IDah;}2H3F?MKJ%T^;+5R=?WMaQZ@P|IzdNbn2*zpnksn7bo!Pjn#Js;6q-KDHwCe3zZ?D`09 z0c4%nhF&80KC-)%KloWc6{4dB-j5{tlb`kD*o|%s{*NU2qo4Jk)@|GvJRnK(H$Lm5 zN6Xw8d>~2kS3Ya+l^JdfUXUdDJD;^@4IVN4AW8CS_(hUz$K>@do#w{IGTD~N>+Z(83ExOswqbH@VQV)A??{rZ znY^lMsvCoUB*|7xUOw+pHwF($k}a8x2XAv@BbjW$`DXmpcdl-T@v|x+ zGydv3=Ns}8-;n=@`_4<-o_8U>n{d9U5-@i275&wBPIu!WbvLH})puSp{ja|Bl4;a; z9z*Y<{9ZOxg(Iuc(JL_jpRwHcz7hF8@(KC?4n&@bY>PY)xgARB7e>l3$KTXQCg%3* z9qAMaV@AId7z^+(f6MTz{(j-7Fe2c_@Kxc9!;8Y%;j!VN;f~?@p%a)bV1H<5Xp8?9 zj0(6ubOmPND-X>Hjl;NrcA@&1XYXxj2i%`_YucrV3b@$+x3ooRjiEJT;n?tSQW^}$bc-U^$!ZP4}_gx zeDC|d#vFGaVSc-3F+$)Ts12-fE_Cw!ouJD<9jg32(R0wm3HgU(w7_@%5B~=N1Am$P zbqD^s1ApCtzwW?aci{ioJ3!h@B;iB?VOBF*D#MagO{-7RS7pVBe1iHLh51W1OwwFs z(3M2=l$9pMsgN^&B)Yt)bP)#SoBtvCAQ=#19;pX0q~#^~7+pS>W-vBClY7O$*_@Qv zIrCi-A(Uc#sS$GJkPdyPoi$FaNyM;KkBcic-)?DT)G$d#zL{^4-V(`WjV?gom-!~0 zQ0k$je%BwX{gHOltf@0b=Py~5S2C3@OwMaB4v``h%P{RBdRZDrr$={HYUqhNqHKu_VRdn(*i!d&HEJDb|Bsvgmii^Y)+EfjlH*X>< z8D$_9;-qk>T%^DP^9~Y;N{xFk?^aJeUp{p)Ts?I)0N%Ww4k3rbo9B@7DI#o_LBch+ zKni_b*1+m6DCo8n(K&gOAy%2YFmFm-WTq@9uta#SSx+4T0qzh$vD&LcV9Ashg#AHT z_Xqi4ikD;;k18%JD=rlBhNP6gER-{GIh8mf#cH|F;w3pGlO}GWyO%w7;$*11m5web zhdO47SV$K@k3M+^Gs%t$8uYUCgzMrdUHV4JNVzO%an4&LulGuAo|95SKGEhmH6Pcf zZLLgI66Hh6S)O0EC`T3yO3U*~#cA!W@wF`S5q5#Xqix2^E2CGWw0y4kC~*p@;+090 zvJ&xrLNc>-X?bo*UaIz{EE;lO`K$88zdKkH)#0@uTOH>(p`$gmE~6T!IWch#2=@^m zx3Y$-jY#Jsb+4s#;IVD2(KT1={YisyiEGfxB02N(O6MVRN1P;4VOcpS>8eQ>;as*z ze2}=bdBsasiq8`}m{(k=WCgX<=hvj@CU=lnB@QP}2&3B}jXApJMqeeKat#Ai8U~WZorf zg4~kxa*M~ovGNoWqFw;W=viNDX^G*li5Df1T`l#EW})TI#i90$t}w@ z?yRX@uYVE5j4RO)&4@YoYr?m%wvxhdKP7NV^_7{A1Hv z20y{r{d>_Yz74*Gi2Apn@we4`v3H(#l(&=pU;ADAF=*{Cx3i(L@ADkMoav`|+IbAj__o7Z zXBAoFtXAev<{|SD^Cq0=U;q7oa|fDKQs}6T;-MFW{z*B!CY7mzGxQeIKPiXTrZQD< zMz$_$%Hg%CqyW)Bj@W@5Ui(T44EQj~p^{=l z+qP99`AZV|(a9XlM%isDDLPc27=&)6$h1b746)l)Qf#OWbA%*`vPooM)CY&7m{5H< zDNB|^E&F5+W({ySiV)R@(-BJ=VG?#)S5l;C%a$r~iCRVED`*tcLcaEu6do#%g&^RP zg!XkZ=ZLBHsg)EdszokHgQ0M4K^{&D4K~P*sgKeh(2khW&mK`pv7;Fo>JHMEyc~_} z#P;M*Ae8TqcCQ`HGaOzL1atW0R*;La>AT!KHWz-_M{gsMC)dOorci-~RRR+SWlszdqmi?|#} zaKuE2npIL5s*Y04FCt9~m11?!X;VqDsDJ!qCwiU6l@y4orR7MioBoN39$&9Y3OCjA zGbwFw=>yhWcEp6B-K3J@P4%mqlusEy5tl*%rutIYcVuwH_-=NyN{S}c(nC_HTP9f9 z+U{0KVWc{^kgu~C`uBL@7w*VtX+6j&jkWG(BC__?auEw z^D*6lMwpC-NnwhK{%C51Ne0fg04AwtTPj^3IrD~chK3CDwTLfK8wypD!f~!+N+^c`*EwVwZ+uHyM~pCu*uCOs!9>6NvUeq=Tear0BYJjq2F1_B zCi;O$lN#N|LIEXthF;Deg<}?Tawl7lRd|O#A6rD z@J^nNUFdf*8yz&VdpVI2J)8P^#Am`r%Qw^z8mqDBh#pyXzj!t_&{_xRKCUr?NNon2 p4Z&tvDVtGOyR5Mjl3%qMY}OLRY6dpb#R~drtPqyW!K|_UzW}A;oi+df diff --git a/data_structures/binary tree/AVL_tree.py b/data_structures/binary_tree/AVL_tree.py similarity index 100% rename from data_structures/binary tree/AVL_tree.py rename to data_structures/binary_tree/AVL_tree.py diff --git a/data_structures/binary tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py similarity index 100% rename from data_structures/binary tree/binary_search_tree.py rename to data_structures/binary_tree/binary_search_tree.py diff --git a/data_structures/binary tree/fenwick_tree.py b/data_structures/binary_tree/fenwick_tree.py similarity index 100% rename from data_structures/binary tree/fenwick_tree.py rename to data_structures/binary_tree/fenwick_tree.py diff --git a/data_structures/binary tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py similarity index 100% rename from data_structures/binary tree/lazy_segment_tree.py rename to data_structures/binary_tree/lazy_segment_tree.py diff --git a/data_structures/binary tree/segment_tree.py b/data_structures/binary_tree/segment_tree.py similarity index 100% rename from data_structures/binary tree/segment_tree.py rename to data_structures/binary_tree/segment_tree.py diff --git a/data_structures/binary tree/treap.py b/data_structures/binary_tree/treap.py similarity index 100% rename from data_structures/binary tree/treap.py rename to data_structures/binary_tree/treap.py diff --git a/matrix/matrix_multiplication_addition.py b/matrix/matrix_operation.py similarity index 80% rename from matrix/matrix_multiplication_addition.py rename to matrix/matrix_operation.py index dd50db729e43..dd7c01582681 100644 --- a/matrix/matrix_multiplication_addition.py +++ b/matrix/matrix_operation.py @@ -1,3 +1,5 @@ +from __future__ import print_function + def add(matrix_a, matrix_b): rows = len(matrix_a) columns = len(matrix_a[0]) @@ -63,13 +65,12 @@ def main(): matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] - - print(add(matrix_a, matrix_b)) - print(multiply(matrix_a, matrix_b)) - print(identity(5)) - print(minor(matrix_c , 1 , 2)) - print(determinant(matrix_b)) - print(inverse(matrix_d)) + print('Add Operation, %s + %s = %s \n' %(matrix_a, matrix_b, (add(matrix_a, matrix_b)))) + print('Multiply Operation, %s * %s = %s \n' %(matrix_a, matrix_b, multiply(matrix_a, matrix_b))) + print('Identity: %s \n' %identity(5)) + print('Minor of %s = %s \n' %(matrix_c, minor(matrix_c , 1 , 2))) + print('Determinant of %s = %s \n' %(matrix_b, determinant(matrix_b))) + print('Inverse of %s = %s\n'%(matrix_d, inverse(matrix_d))) if __name__ == '__main__': main() From af1925bcd9926c36a418acb5f5269455cc6c6f34 Mon Sep 17 00:00:00 2001 From: StephenGemin <45926479+StephenGemin@users.noreply.github.com> Date: Wed, 12 Jun 2019 10:54:30 -0400 Subject: [PATCH 132/594] Remove empty folder in analysis/compression_analysis (#897) * Add compression_analysis removing analysis/compression_analysis to just compression_analysis * Delete PSNR-example-base.png * Delete PSNR-example-comp-10.jpg * Delete compressed_image.png * Delete example_image.jpg * Delete example_wikipedia_image.jpg * Delete original_image.png * Delete psnr.py --- .../PSNR-example-base.png | Bin .../PSNR-example-comp-10.jpg | Bin .../compressed_image.png | Bin .../example_image.jpg | Bin .../example_wikipedia_image.jpg | Bin .../original_image.png | Bin .../psnr.py | 0 7 files changed, 0 insertions(+), 0 deletions(-) rename {analysis/compression_analysis => compression_analysis}/PSNR-example-base.png (100%) rename {analysis/compression_analysis => compression_analysis}/PSNR-example-comp-10.jpg (100%) rename {analysis/compression_analysis => compression_analysis}/compressed_image.png (100%) rename {analysis/compression_analysis => compression_analysis}/example_image.jpg (100%) rename {analysis/compression_analysis => compression_analysis}/example_wikipedia_image.jpg (100%) rename {analysis/compression_analysis => compression_analysis}/original_image.png (100%) rename {analysis/compression_analysis => compression_analysis}/psnr.py (100%) diff --git a/analysis/compression_analysis/PSNR-example-base.png b/compression_analysis/PSNR-example-base.png similarity index 100% rename from analysis/compression_analysis/PSNR-example-base.png rename to compression_analysis/PSNR-example-base.png diff --git a/analysis/compression_analysis/PSNR-example-comp-10.jpg b/compression_analysis/PSNR-example-comp-10.jpg similarity index 100% rename from analysis/compression_analysis/PSNR-example-comp-10.jpg rename to compression_analysis/PSNR-example-comp-10.jpg diff --git a/analysis/compression_analysis/compressed_image.png b/compression_analysis/compressed_image.png similarity index 100% rename from analysis/compression_analysis/compressed_image.png rename to compression_analysis/compressed_image.png diff --git a/analysis/compression_analysis/example_image.jpg b/compression_analysis/example_image.jpg similarity index 100% rename from analysis/compression_analysis/example_image.jpg rename to compression_analysis/example_image.jpg diff --git a/analysis/compression_analysis/example_wikipedia_image.jpg b/compression_analysis/example_wikipedia_image.jpg similarity index 100% rename from analysis/compression_analysis/example_wikipedia_image.jpg rename to compression_analysis/example_wikipedia_image.jpg diff --git a/analysis/compression_analysis/original_image.png b/compression_analysis/original_image.png similarity index 100% rename from analysis/compression_analysis/original_image.png rename to compression_analysis/original_image.png diff --git a/analysis/compression_analysis/psnr.py b/compression_analysis/psnr.py similarity index 100% rename from analysis/compression_analysis/psnr.py rename to compression_analysis/psnr.py From 1b3affc2eddc8288f8bb4a73167d99b3eb2c4fc8 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Sun, 16 Jun 2019 01:07:23 +0430 Subject: [PATCH 133/594] fix typo (#902) --- machine_learning/linear_regression.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py index 8c23f1f77908..03f16629e451 100644 --- a/machine_learning/linear_regression.py +++ b/machine_learning/linear_regression.py @@ -1,6 +1,6 @@ """ Linear regression is the most basic type of regression commonly used for -predictive analysis. The idea is preety simple, we have a dataset and we have +predictive analysis. The idea is pretty simple, we have a dataset and we have a feature's associated with it. The Features should be choose very cautiously as they determine, how much our model will be able to make future predictions. We try to set these Feature weights, over many iterations, so that they best From 6e2fb22f5e9a821f226d87298b08d8da4b3b3efd Mon Sep 17 00:00:00 2001 From: archithadge <45902236+archithadge@users.noreply.github.com> Date: Sun, 16 Jun 2019 18:49:20 +0530 Subject: [PATCH 134/594] Problem 234 project Euler (#883) * Problem 234 project Euler * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update project_euler/problem_234 Co-Authored-By: Emmanuel Arias * Update and rename problem_234 to problem_234.py * Made suggested changes else was not required temp declared afterwards suggested changes are correct.Thank u! * Rename project_euler/problem_234.py to project_euler/problem_234/sol1.py --- project_euler/problem_234/sol1.py | 32 +++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100644 project_euler/problem_234/sol1.py diff --git a/project_euler/problem_234/sol1.py b/project_euler/problem_234/sol1.py new file mode 100644 index 000000000000..c7a6bd97d66b --- /dev/null +++ b/project_euler/problem_234/sol1.py @@ -0,0 +1,32 @@ +# https://projecteuler.net/problem=234 +def fib(a, b, n): + + if n==1: + return a + elif n==2: + return b + elif n==3: + return str(a)+str(b) + + temp = 0 + for x in range(2,n): + c=str(a) + str(b) + temp = b + b = c + a = temp + return c + + +q=int(input()) +for x in range(q): + l=[i for i in input().split()] + c1=0 + c2=1 + while(1): + + if len(fib(l[0],l[1],c2)) Date: Mon, 17 Jun 2019 03:13:36 -0700 Subject: [PATCH 135/594] Corrected wrong DFS implementation (#903) --- graphs/DFS.py | 1 - 1 file changed, 1 deletion(-) diff --git a/graphs/DFS.py b/graphs/DFS.py index c9843ca25382..68bf60e3c298 100644 --- a/graphs/DFS.py +++ b/graphs/DFS.py @@ -16,7 +16,6 @@ def dfs(graph, start): to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop it off the stack.""" explored, stack = set(), [start] - explored.add(start) while stack: v = stack.pop() # one difference from BFS is to pop last element here instead of first one From ef147484ab456b6c55128d809bee05c1bf4638cf Mon Sep 17 00:00:00 2001 From: Daniel Xu Date: Mon, 17 Jun 2019 06:17:53 -0400 Subject: [PATCH 136/594] Added script for automatically generating DIRECTORY.md (#889) * Added script for automatically generating DIRECTORY.md * Sort and list files by alphabetical order * Rename script.py to ~script.py --- DIRECTORY.md | 374 +++++++++++++++++++++++++++++++++++++++++++++++++++ ~script.py | 70 ++++++++++ 2 files changed, 444 insertions(+) create mode 100644 DIRECTORY.md create mode 100644 ~script.py diff --git a/DIRECTORY.md b/DIRECTORY.md new file mode 100644 index 000000000000..ad25772b56b6 --- /dev/null +++ b/DIRECTORY.md @@ -0,0 +1,374 @@ +## Analysis + * Compression Analysis + * [psnr](https://github.com/TheAlgorithms/Python/blob/master/analysis/compression_analysis/psnr.py) +## Arithmetic Analysis + * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) + * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) + * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) + * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) + * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) +## Binary Tree + * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/binary_tree/basic_binary_tree.py) +## Boolean Algebra + * [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) +## Ciphers + * [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) + * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/Atbash.py) + * [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) + * [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) + * [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) + * [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) + * [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) + * [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) + * [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) + * [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) + * [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) + * [morse Code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_Code_implementation.py) + * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) + * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) + * [prehistoric men](https://github.com/TheAlgorithms/Python/blob/master/ciphers/prehistoric_men.txt) + * [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) + * [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) + * [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) + * [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) + * [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) + * [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) + * [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) + * [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) + * [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) + * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) +## Compression + * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) +## Data Structures + * [arrays](https://github.com/TheAlgorithms/Python/blob/master/data_structures/arrays.py) + * [avl](https://github.com/TheAlgorithms/Python/blob/master/data_structures/avl.py) + * [LCA](https://github.com/TheAlgorithms/Python/blob/master/data_structures/LCA.py) + * Binary Tree + * [AVL tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/AVL_tree.py) + * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/binary_search_tree.py) + * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/fenwick_tree.py) + * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/lazy_segment_tree.py) + * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/segment_tree.py) + * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/treap.py) + * Hashing + * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) + * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) + * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) + * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) + * Number Theory + * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) + * Heap + * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) + * Linked List + * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + * [is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_Palindrome.py) + * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + * [swapNodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swapNodes.py) + * Queue + * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) + * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) + * [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) + * Stacks + * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) + * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) + * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) + * [next](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next.py) + * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) + * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) + * Trie + * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + * Union Find + * [tests union find](https://github.com/TheAlgorithms/Python/blob/master/data_structures/union_find/tests_union_find.py) + * [union find](https://github.com/TheAlgorithms/Python/blob/master/data_structures/union_find/union_find.py) +## Digital Image Processing + * Filters + * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) +## Dynamic Programming + * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) + * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) + * [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) + * [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) + * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) + * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) + * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) + * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/Fractional_Knapsack.py) + * [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) + * [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) + * [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) + * [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) + * [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) + * [longest increasing subsequence O(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_O(nlogn).py) + * [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) + * [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) + * [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) + * [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) + * [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) + * [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) +## File Transfer Protocol + * [ftp client server](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_client_server.py) + * [ftp send receive](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_send_receive.py) +## Graphs + * [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) + * [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) + * [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) + * [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) + * [BFS](https://github.com/TheAlgorithms/Python/blob/master/graphs/BFS.py) + * [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) + * [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) + * [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) + * [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) + * [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) + * [DFS](https://github.com/TheAlgorithms/Python/blob/master/graphs/DFS.py) + * [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) + * [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) + * [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) + * [Directed and Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/Directed_and_Undirected_(Weighted)_Graph.py) + * [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) + * [Eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/Eulerian_path_and_circuit_for_undirected_graph.py) + * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) + * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) + * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/floyd_warshall.py) + * [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) + * [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) + * [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) + * [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) + * [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) + * [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) + * [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) + * [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) + * [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) + * [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) + * [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) +## Hashes + * [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) + * [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) + * [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) +## Linear Algebra Python + * Src + * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/lib.py) + * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/tests.py) +## Machine Learning + * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) + * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) + * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) + * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) + * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) + * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py) + * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) + * Random Forest Classification + * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Classification/random_forest_classification.py) + * [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Classification/Social_Network_Ads.csv) + * Random Forest Regression + * [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Regression/Position_Salaries.csv) + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Regression/random_forest_regression.py) +## Maths + * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) + * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) + * [abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_Max.py) + * [abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_Min.py) + * [average](https://github.com/TheAlgorithms/Python/blob/master/maths/average.py) + * [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) + * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/Binary_Exponentiation.py) + * [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) + * [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) + * [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) + * [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) + * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) + * [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) + * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) + * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/Find_Max.py) + * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/Find_Min.py) + * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) + * [Hanoi](https://github.com/TheAlgorithms/Python/blob/master/maths/Hanoi.py) + * [lucasSeries](https://github.com/TheAlgorithms/Python/blob/master/maths/lucasSeries.py) + * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/Prime_Check.py) + * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) + * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) + * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) + * [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) + * Tests + * [test fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/tests/test_fibonacci.py) +## Matrix + * [matrix multiplication addition](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_multiplication_addition.py) + * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) +## Networking Flow + * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) + * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) +## Neural Network + * [bpnn](https://github.com/TheAlgorithms/Python/blob/master/neural_network/bpnn.py) + * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) +## Other + * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) + * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) + * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) + * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) + * [dictionary](https://github.com/TheAlgorithms/Python/blob/master/other/dictionary.txt) + * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) + * [finding Primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_Primes.py) + * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) + * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) + * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) + * [n queens](https://github.com/TheAlgorithms/Python/blob/master/other/n_queens.py) + * [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) + * [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) + * [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) + * [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) + * [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) + * [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) + * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) + * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + * [words](https://github.com/TheAlgorithms/Python/blob/master/other/words) + * Game Of Life + * [game o life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life/game_o_life.py) + * [sample](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life/sample.gif) +## Project Euler + * Problem 01 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) + * [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) + * [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) + * Problem 02 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) + * Problem 03 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) + * Problem 04 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) + * Problem 05 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) + * Problem 06 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) + * Problem 07 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) + * Problem 08 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) + * Problem 09 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) + * Problem 10 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) + * Problem 11 + * [grid](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/grid.txt) + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) + * Problem 12 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) + * Problem 13 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) + * Problem 14 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) + * Problem 15 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) + * Problem 16 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + * Problem 17 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) + * Problem 19 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) + * Problem 20 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) + * Problem 21 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) + * Problem 22 + * [p022 names](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/p022_names.txt) + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) + * Problem 24 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) + * Problem 25 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) + * Problem 28 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) + * Problem 29 + * [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) + * Problem 31 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) + * Problem 36 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) + * Problem 40 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) + * Problem 48 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) + * Problem 52 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) + * Problem 53 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) + * Problem 76 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) +## Searches + * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) + * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) + * [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) + * [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) + * [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) + * [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) + * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) + * [tabu test data](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_test_data.txt) + * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + * [test interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/test_interpolation_search.py) + * [test tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/test_tabu_search.py) +## Simple Client + * [client](https://github.com/TheAlgorithms/Python/blob/master/simple_client/client.py) + * [server](https://github.com/TheAlgorithms/Python/blob/master/simple_client/server.py) +## Sorts + * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/Bitonic_Sort.py) + * [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) + * [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) + * [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) + * [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) + * [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) + * [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) + * [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) + * [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) + * [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) + * [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) + * [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) + * [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) + * [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) + * [Odd-Even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/Odd-Even_transposition_parallel.py) + * [Odd-Even transposition single-threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/Odd-Even_transposition_single-threaded.py) + * [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) + * [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) + * [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) + * [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) + * [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) + * [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) + * [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) + * [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) + * [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) + * [tests](https://github.com/TheAlgorithms/Python/blob/master/sorts/tests.py) + * [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) + * [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) + * [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) + * [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) +## Strings + * [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) + * [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) + * [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) + * [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) + * [naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_String_Search.py) + * [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) +## Traversals + * [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) diff --git a/~script.py b/~script.py new file mode 100644 index 000000000000..4a2c61c83563 --- /dev/null +++ b/~script.py @@ -0,0 +1,70 @@ +""" +This is a simple script that will scan through the current directory +and generate the corresponding DIRECTORY.md file, can also specify +files or folders to be ignored. +""" +import os + + +# Target URL (master) +URL = "https://github.com/TheAlgorithms/Python/blob/master/" + + +def tree(d, ignores, ignores_ext): + return _markdown(d, ignores, ignores_ext, 0) + + +def _markdown(parent, ignores, ignores_ext, depth): + out = "" + dirs, files = [], [] + for i in os.listdir(parent): + full = os.path.join(parent, i) + name, ext = os.path.splitext(i) + if i in ignores or ext in ignores_ext: + continue + if os.path.isfile(full): + # generate list + pre = parent.replace("./", "").replace(" ", "%20") + # replace all spaces to safe URL + child = i.replace(" ", "%20") + files.append((pre, child, name)) + else: + dirs.append(i) + # Sort files + files.sort(key=lambda e: e[2].lower()) + for f in files: + pre, child, name = f + out += " " * depth + "* [" + name.replace("_", " ") + "](" + URL + pre + "/" + child + ")\n" + # Sort directories + dirs.sort() + for i in dirs: + full = os.path.join(parent, i) + i = i.replace("_", " ").title() + if depth == 0: + out += "## " + i + "\n" + else: + out += " " * depth + "* " + i + "\n" + out += _markdown(full, ignores, ignores_ext, depth+1) + return out + + +# Specific files or folders with the given names will be ignored +ignores = [".vs", + ".gitignore", + ".git", + "script.py", + "__init__.py", +] +# Files with given entensions will be ignored +ignores_ext = [ + ".md", + ".ipynb", + ".png", + ".jpg", + ".yml" +] + + +if __name__ == "__main__": + with open("DIRECTORY.md", "w+") as f: + f.write(tree(".", ignores, ignores_ext)) From b8937364dc18a8ba59ef5a3cdbc0ffc85b604c86 Mon Sep 17 00:00:00 2001 From: Hector S Date: Tue, 18 Jun 2019 06:27:08 -0400 Subject: [PATCH 137/594] Fixed typo and capitalized some words (#900) File looks more elegant now ;-) --- CONTRIBUTING.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 9b2ac0025dca..19b928c187f9 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -10,10 +10,10 @@ Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Befo We are very happy that you consider implementing algorithms and data structure for others! This repository is referenced and used by learners from all over the globe. Being one of our contributors, you agree and confirm that: -- your did your work - no plagiarism allowed +- You did your work - no plagiarism allowed - Any plagiarized work will not be merged. -- your work will be distributed under [MIT License](License) once your pull request is merged -- you submitted work fulfils or mostly fulfils our styles and standards +- Your work will be distributed under [MIT License](License) once your pull request is merged +- You submitted work fulfils or mostly fulfils our styles and standards **New implementation** is welcome! For example, new solutions for a problem, different representations for a graph data structure or algorithm designs with different complexity. @@ -115,8 +115,8 @@ We want your work to be readable by others; therefore, we encourage you to note - Most importantly, - - **be consistent with this guidelines while submitting.** - - **join** [Gitter](https://gitter.im/TheAlgorithms) **now!** + - **Be consistent with this guidelines while submitting.** + - **Join** [Gitter](https://gitter.im/TheAlgorithms) **now!** - Happy coding! From a99acae32da09285b1a87c9e3dc9bf956c9077f6 Mon Sep 17 00:00:00 2001 From: StephenGemin <45926479+StephenGemin@users.noreply.github.com> Date: Tue, 18 Jun 2019 06:28:01 -0400 Subject: [PATCH 138/594] Add docstring and comments per Issue #727 (#895) I've added comments to make understanding this method a little easier for those that are not familiar. This should close out #727 . Other changes: 1. added if __name__ == '__main__' rather than the "# MAIN" comment 2. put in return for distances and vertices. Previously everything was just printed out, but someone may find it useful to have the algorithm return something. 3. Other PEP8 changes 4. Added example input and expected output as a check to make sure any future changes will give the same output. --- graphs/floyd_warshall.py | 102 ++++++++++++++++++++++++++++++--------- 1 file changed, 78 insertions(+), 24 deletions(-) diff --git a/graphs/floyd_warshall.py b/graphs/floyd_warshall.py index fae8b19b351a..a1d12aac02b4 100644 --- a/graphs/floyd_warshall.py +++ b/graphs/floyd_warshall.py @@ -1,9 +1,16 @@ +# floyd_warshall.py +""" + The problem is to find the shortest distance between all pairs of vertices in a weighted directed graph that can + have negative edge weights. +""" + from __future__ import print_function -def printDist(dist, V): + +def _print_dist(dist, v): print("\nThe shortest path matrix using Floyd Warshall algorithm\n") - for i in range(V): - for j in range(V): + for i in range(v): + for j in range(v): if dist[i][j] != float('inf') : print(int(dist[i][j]),end = "\t") else: @@ -12,37 +19,84 @@ def printDist(dist, V): -def FloydWarshall(graph, V): - dist=[[float('inf') for i in range(V)] for j in range(V)] +def floyd_warshall(graph, v): + """ + :param graph: 2D array calculated from weight[edge[i, j]] + :type graph: List[List[float]] + :param v: number of vertices + :type v: int + :return: shortest distance between all vertex pairs + distance[u][v] will contain the shortest distance from vertex u to v. + + 1. For all edges from v to n, distance[i][j] = weight(edge(i, j)). + 3. The algorithm then performs distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j]) for each + possible pair i, j of vertices. + 4. The above is repeated for each vertex k in the graph. + 5. Whenever distance[i][j] is given a new minimum value, next vertex[i][j] is updated to the next vertex[i][k]. + """ + + dist=[[float('inf') for _ in range(v)] for _ in range(v)] - for i in range(V): - for j in range(V): + for i in range(v): + for j in range(v): dist[i][j] = graph[i][j] - for k in range(V): - for i in range(V): - for j in range(V): + # check vertex k against all other vertices (i, j) + for k in range(v): + # looping through rows of graph array + for i in range(v): + # looping through columns of graph array + for j in range(v): if dist[i][k]!=float('inf') and dist[k][j]!=float('inf') and dist[i][k]+dist[k][j] < dist[i][j]: dist[i][j] = dist[i][k] + dist[k][j] - printDist(dist, V) + _print_dist(dist, v) + return dist, v -#MAIN -V = int(input("Enter number of vertices: ")) -E = int(input("Enter number of edges: ")) +if __name__== '__main__': + v = int(input("Enter number of vertices: ")) + e = int(input("Enter number of edges: ")) + + graph = [[float('inf') for i in range(v)] for j in range(v)] + + for i in range(v): + graph[i][i] = 0.0 + + # src and dst are indices that must be within the array size graph[e][v] + # failure to follow this will result in an error + for i in range(e): + print("\nEdge ",i+1) + src = int(input("Enter source:")) + dst = int(input("Enter destination:")) + weight = float(input("Enter weight:")) + graph[src][dst] = weight + + floyd_warshall(graph, v) + + + # Example Input + # Enter number of vertices: 3 + # Enter number of edges: 2 -graph = [[float('inf') for i in range(V)] for j in range(V)] + # # generated graph from vertex and edge inputs + # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] + # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] -for i in range(V): - graph[i][i] = 0.0 + # specify source, destination and weight for edge #1 + # Edge 1 + # Enter source:1 + # Enter destination:2 + # Enter weight:2 -for i in range(E): - print("\nEdge ",i+1) - src = int(input("Enter source:")) - dst = int(input("Enter destination:")) - weight = float(input("Enter weight:")) - graph[src][dst] = weight + # specify source, destination and weight for edge #2 + # Edge 2 + # Enter source:2 + # Enter destination:1 + # Enter weight:1 -FloydWarshall(graph, V) + # # Expected Output from the vertice, edge and src, dst, weight inputs!! + # 0 INF INF + # INF 0 2 + # INF 1 0 From 12a16d63b7bdc1da0e0b215dfd5d8b938234f4ed Mon Sep 17 00:00:00 2001 From: Adeoti Ayodeji <33290249+Lord-sarcastic@users.noreply.github.com> Date: Sat, 22 Jun 2019 05:42:28 +0100 Subject: [PATCH 139/594] Update average.py (#908) Reduced lines of code and extra processing on the line: n += 1 --- maths/average.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/maths/average.py b/maths/average.py index dc70836b5e83..d15601dd64ca 100644 --- a/maths/average.py +++ b/maths/average.py @@ -1,11 +1,10 @@ def average(nums): sum = 0 - n = 0 for x in nums: sum += x - n += 1 - avg = sum / n + avg = sum / len(nums) print(avg) + return avg def main(): average([2, 4, 6, 8, 20, 50, 70]) From a212efee5b44312c8b4b626ae412bacc5f4117fd Mon Sep 17 00:00:00 2001 From: zachzhu2016 <48337051+zachzhu2016@users.noreply.github.com> Date: Sun, 23 Jun 2019 08:32:12 -0700 Subject: [PATCH 140/594] Corrected wrong Dijkstra priority queue implementation (#909) * Corrected wrong DFS implementation * changed list into hash set for dijkstra priority queue implementation. --- graphs/dijkstra.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py index 6b08b28fcfd3..4b6bc347b061 100644 --- a/graphs/dijkstra.py +++ b/graphs/dijkstra.py @@ -20,12 +20,12 @@ def dijkstra(graph, start, end): heap = [(0, start)] # cost from start node,end node - visited = [] + visited = set() while heap: (cost, u) = heapq.heappop(heap) if u in visited: continue - visited.append(u) + visited.add(u) if u == end: return cost for v, c in G[u]: From b7cff04574f5288c0483040c11be3bcc2b396a32 Mon Sep 17 00:00:00 2001 From: wuminbin Date: Mon, 24 Jun 2019 18:11:07 +0800 Subject: [PATCH 141/594] better implementation for midpoint (#914) --- arithmetic_analysis/bisection.py | 4 ++-- searches/binary_search.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/arithmetic_analysis/bisection.py b/arithmetic_analysis/bisection.py index c81fa84f81e1..8bf3f09782a3 100644 --- a/arithmetic_analysis/bisection.py +++ b/arithmetic_analysis/bisection.py @@ -14,7 +14,7 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us print("couldn't find root in [a,b]") return else: - mid = (start + end) / 2 + mid = start + (end - start) / 2.0 while abs(start - mid) > 10**-7: # until we achieve precise equals to 10^-7 if function(mid) == 0: return mid @@ -22,7 +22,7 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us end = mid else: start = mid - mid = (start + end) / 2 + mid = start + (end - start) / 2.0 return mid diff --git a/searches/binary_search.py b/searches/binary_search.py index 1d5da96586cd..e658dac2a3ef 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -45,7 +45,7 @@ def binary_search(sorted_collection, item): right = len(sorted_collection) - 1 while left <= right: - midpoint = (left + right) // 2 + midpoint = left + (right - left) // 2 current_item = sorted_collection[midpoint] if current_item == item: return midpoint From be4150c720187391488786053ac7a13eeb965446 Mon Sep 17 00:00:00 2001 From: brajesh-rit Date: Wed, 26 Jun 2019 10:57:08 -0500 Subject: [PATCH 142/594] Create spiralPrint.py (#844) * Create spiralPrint.py * Update spiralPrint.py --- matrix/spiralPrint.py | 66 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 matrix/spiralPrint.py diff --git a/matrix/spiralPrint.py b/matrix/spiralPrint.py new file mode 100644 index 000000000000..447881e508e7 --- /dev/null +++ b/matrix/spiralPrint.py @@ -0,0 +1,66 @@ +""" +This program print the matix in spiral form. +This problem has been solved through recursive way. + + Matrix must satisfy below conditions + i) matrix should be only one or two dimensional + ii)column of all the row should be equal +""" +def checkMatrix(a): + # must be + if type(a) == list and len(a) > 0: + if type(a[0]) == list: + prevLen = 0 + for i in a: + if prevLen == 0: + prevLen = len(i) + result = True + elif prevLen == len(i): + result = True + else: + result = False + else: + result = True + else: + result = False + return result + + +def spiralPrint(a): + + if checkMatrix(a) and len(a) > 0: + + matRow = len(a) + if type(a[0]) == list: + matCol = len(a[0]) + else: + for dat in a: + print(dat), + return + + # horizotal printing increasing + for i in range(0, matCol): + print(a[0][i]), + # vertical printing down + for i in range(1, matRow): + print(a[i][matCol - 1]), + # horizotal printing decreasing + if matRow > 1: + for i in range(matCol - 2, -1, -1): + print(a[matRow - 1][i]), + # vertical printing up + for i in range(matRow - 2, 0, -1): + print(a[i][0]), + remainMat = [row[1:matCol - 1] for row in a[1:matRow - 1]] + if len(remainMat) > 0: + spiralPrint(remainMat) + else: + return + else: + print("Not a valid matrix") + return + + +# driver code +a = [[1 , 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]] +spiralPrint(a) From 34889fc6d8d3ac1cf5af11039cc1ec40185f778e Mon Sep 17 00:00:00 2001 From: BruceLee569 <49506152+BruceLee569@users.noreply.github.com> Date: Fri, 28 Jun 2019 23:55:31 +0800 Subject: [PATCH 143/594] Update quick_sort.py (#928) Use the last element as the first pivot, for it's easy to pop, this saves one element space. Iterating with the original list saves half the space, instead of generate a new shallow copy list by slice method. --- sorts/quick_sort.py | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index 223c26fde1fe..7e8c868ebb06 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -33,17 +33,16 @@ def quick_sort(collection): if length <= 1: return collection else: - pivot = collection[0] - # Modify the list comprehensions to reduce the number of judgments, the speed has increased by more than 50%. - greater = [] - lesser = [] - for element in collection[1:]: + # Use the last element as the first pivot + pivot = collection.pop() + # Put elements greater than pivot in greater list + # Put elements lesser than pivot in lesser list + greater, lesser = [], [] + for element in collection: if element > pivot: greater.append(element) else: lesser.append(element) - # greater = [element for element in collection[1:] if element > pivot] - # lesser = [element for element in collection[1:] if element <= pivot] return quick_sort(lesser) + [pivot] + quick_sort(greater) From 2333f933236fbd57f9ed8644b0f8f7a19d10a2e7 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Sun, 30 Jun 2019 00:41:26 -0400 Subject: [PATCH 144/594] Change Declaration of Var 'j' to None (#921) Since `j` is redefined before it is used, it makes more sense to declare it with the value `None` instead of `1`. This fixes a [warning from lgtm](https://lgtm.com/projects/g/TheAlgorithms/Python/snapshot/66c4afbd0f28f9989f35ddbeb5c9263390c5d192/files/other/primelib.py?sort=name&dir=ASC&mode=heatmap) --- other/primelib.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/other/primelib.py b/other/primelib.py index 19572f8611cb..c371bc1b9861 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -283,7 +283,7 @@ def goldbach(number): # run variable for while-loops. i = 0 - j = 1 + j = None # exit variable. for break up the loops loop = True From bd4017928ed3054016ea21b8464f36db5fa007dc Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Mon, 1 Jul 2019 04:10:18 -0400 Subject: [PATCH 145/594] Added Whitespace and Docstring (#924) * Added Whitespace and Docstring I modified the file to make Pylint happier and make the code more readable. * Beautified Code and Added Docstring I modified the file to make Pylint happier and make the code more readable. * Added DOCSTRINGS, Wikipedia link, and whitespace I added DOCSTRINGS and whitespace to make the code more readable and understandable. * Improved Formatting * Wrapped comments * Fixed spelling error for `movement` variable * Added DOCSTRINGs * Improved Formatting * Corrected whitespace to improve readability. * Added docstrings. * Made comments fit inside an 80 column layout. --- arithmetic_analysis/lu_decomposition.py | 48 +++++++++++++------------ arithmetic_analysis/newton_method.py | 29 +++++++++------ maths/Hanoi.py | 21 ++++++----- maths/abs.py | 11 ++++-- maths/average.py | 13 +++++-- maths/find_lcm.py | 7 ++++ sorts/bucket_sort.py | 31 ++++++++++------ sorts/gnome_sort.py | 20 ++++++----- sorts/tests.py | 8 +++-- sorts/topological_sort.py | 3 ++ sorts/tree_sort.py | 33 ++++++++++------- sorts/wiggle_sort.py | 17 ++++++--- 12 files changed, 154 insertions(+), 87 deletions(-) diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py index f291d2dfe003..19e259afb826 100644 --- a/arithmetic_analysis/lu_decomposition.py +++ b/arithmetic_analysis/lu_decomposition.py @@ -1,32 +1,36 @@ +"""Lower-Upper (LU) Decomposition.""" + # lower–upper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition import numpy -def LUDecompose (table): + +def LUDecompose(table): # Table that contains our data # Table has to be a square array so we need to check first - rows,columns=numpy.shape(table) - L=numpy.zeros((rows,columns)) - U=numpy.zeros((rows,columns)) - if rows!=columns: + rows, columns = numpy.shape(table) + L = numpy.zeros((rows, columns)) + U = numpy.zeros((rows, columns)) + if rows != columns: return [] - for i in range (columns): - for j in range(i-1): - sum=0 - for k in range (j-1): - sum+=L[i][k]*U[k][j] - L[i][j]=(table[i][j]-sum)/U[j][j] - L[i][i]=1 - for j in range(i-1,columns): - sum1=0 - for k in range(i-1): - sum1+=L[i][k]*U[k][j] - U[i][j]=table[i][j]-sum1 - return L,U + for i in range(columns): + for j in range(i - 1): + sum = 0 + for k in range(j - 1): + sum += L[i][k] * U[k][j] + L[i][j] = (table[i][j] - sum) / U[j][j] + L[i][i] = 1 + for j in range(i - 1, columns): + sum1 = 0 + for k in range(i - 1): + sum1 += L[i][k] * U[k][j] + U[i][j] = table[i][j] - sum1 + return L, U + if __name__ == "__main__": - matrix =numpy.array([[2,-2,1], - [0,1,2], - [5,3,1]]) - L,U = LUDecompose(matrix) + matrix = numpy.array([[2, -2, 1], + [0, 1, 2], + [5, 3, 1]]) + L, U = LUDecompose(matrix) print(L) print(U) diff --git a/arithmetic_analysis/newton_method.py b/arithmetic_analysis/newton_method.py index 2ed29502522e..cf5649ee3f3b 100644 --- a/arithmetic_analysis/newton_method.py +++ b/arithmetic_analysis/newton_method.py @@ -1,18 +1,25 @@ +"""Newton's Method.""" + # Newton's Method - https://en.wikipedia.org/wiki/Newton%27s_method -def newton(function,function1,startingInt): #function is the f(x) and function1 is the f'(x) - x_n=startingInt - while True: - x_n1=x_n-function(x_n)/function1(x_n) - if abs(x_n-x_n1) < 10**-5: - return x_n1 - x_n=x_n1 - + +# function is the f(x) and function1 is the f'(x) +def newton(function, function1, startingInt): + x_n = startingInt + while True: + x_n1 = x_n - function(x_n) / function1(x_n) + if abs(x_n - x_n1) < 10**-5: + return x_n1 + x_n = x_n1 + + def f(x): - return (x**3) - (2 * x) -5 + return (x**3) - (2 * x) - 5 + def f1(x): - return 3 * (x**2) -2 + return 3 * (x**2) - 2 + if __name__ == "__main__": - print(newton(f,f1,3)) + print(newton(f, f1, 3)) diff --git a/maths/Hanoi.py b/maths/Hanoi.py index dd04d0fa58d8..c7b435a8fe3e 100644 --- a/maths/Hanoi.py +++ b/maths/Hanoi.py @@ -1,5 +1,8 @@ +"""Tower of Hanoi.""" + # @author willx75 -# Tower of Hanoi recursion game algorithm is a game, it consists of three rods and a number of disks of different sizes, which can slide onto any rod +# Tower of Hanoi recursion game algorithm is a game, it consists of three rods +# and a number of disks of different sizes, which can slide onto any rod import logging @@ -7,18 +10,20 @@ logging.basicConfig(level=logging.DEBUG) -def Tower_Of_Hanoi(n, source, dest, by, mouvement): +def Tower_Of_Hanoi(n, source, dest, by, movement): + """Tower of Hanoi - Move plates to different rods.""" if n == 0: return n elif n == 1: - mouvement += 1 - # no print statement (you could make it an optional flag for printing logs) + movement += 1 + # no print statement + # (you could make it an optional flag for printing logs) logging.debug('Move the plate from', source, 'to', dest) - return mouvement + return movement else: - mouvement = mouvement + Tower_Of_Hanoi(n-1, source, by, dest, 0) + movement = movement + Tower_Of_Hanoi(n - 1, source, by, dest, 0) logging.debug('Move the plate from', source, 'to', dest) - mouvement = mouvement + 1 + Tower_Of_Hanoi(n-1, by, dest, source, 0) - return mouvement + movement = movement + 1 + Tower_Of_Hanoi(n - 1, by, dest, source, 0) + return movement diff --git a/maths/abs.py b/maths/abs.py index 6d0596478d5f..624823fc183e 100644 --- a/maths/abs.py +++ b/maths/abs.py @@ -1,6 +1,10 @@ +"""Absolute Value.""" + + def absVal(num): """ - Function to fins absolute value of numbers. + Find the absolute value of a number. + >>absVal(-5) 5 >>absVal(0) @@ -11,8 +15,11 @@ def absVal(num): else: return num + def main(): - print(absVal(-34)) # = 34 + """Print absolute value of -34.""" + print(absVal(-34)) # = 34 + if __name__ == '__main__': main() diff --git a/maths/average.py b/maths/average.py index d15601dd64ca..78387111022d 100644 --- a/maths/average.py +++ b/maths/average.py @@ -1,13 +1,20 @@ +"""Find mean of a list of numbers.""" + + def average(nums): + """Find mean of a list of numbers.""" sum = 0 for x in nums: - sum += x + sum += x avg = sum / len(nums) print(avg) return avg + def main(): - average([2, 4, 6, 8, 20, 50, 70]) + """Call average module to find mean of a specific list of numbers.""" + average([2, 4, 6, 8, 20, 50, 70]) + if __name__ == '__main__': - main() + main() diff --git a/maths/find_lcm.py b/maths/find_lcm.py index 126242699ab7..779cb128898e 100644 --- a/maths/find_lcm.py +++ b/maths/find_lcm.py @@ -1,4 +1,10 @@ +"""Find Least Common Multiple.""" + +# https://en.wikipedia.org/wiki/Least_common_multiple + + def find_lcm(num_1, num_2): + """Find the LCM of two numbers.""" max = num_1 if num_1 > num_2 else num_2 lcm = max while (True): @@ -9,6 +15,7 @@ def find_lcm(num_1, num_2): def main(): + """Use test numbers to run the find_lcm algorithm.""" num_1 = 12 num_2 = 76 print(find_lcm(num_1, num_2)) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index c4d61874fc47..5c4a71513ed3 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -1,19 +1,26 @@ #!/usr/bin/env python + +"""Illustrate how to implement bucket sort algorithm.""" + # Author: OMKAR PATHAK # This program will illustrate how to implement bucket sort algorithm -# Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the -# elements of an array into a number of buckets. Each bucket is then sorted individually, either using -# a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a -# distribution sort, and is a cousin of radix sort in the most to least significant digit flavour. -# Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons -# and therefore can also be considered a comparison sort algorithm. The computational complexity estimates -# involve the number of buckets. +# Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works +# by distributing the elements of an array into a number of buckets. +# Each bucket is then sorted individually, either using a different sorting +# algorithm, or by recursively applying the bucket sorting algorithm. It is a +# distribution sort, and is a cousin of radix sort in the most to least +# significant digit flavour. +# Bucket sort is a generalization of pigeonhole sort. Bucket sort can be +# implemented with comparisons and therefore can also be considered a +# comparison sort algorithm. The computational complexity estimates involve the +# number of buckets. # Time Complexity of Solution: # Best Case O(n); Average Case O(n); Worst Case O(n) -DEFAULT_BUCKET_SIZE=5 +DEFAULT_BUCKET_SIZE = 5 + def bucket_sort(my_list, bucket_size=DEFAULT_BUCKET_SIZE): if len(my_list) == 0: @@ -24,12 +31,14 @@ def bucket_sort(my_list, bucket_size=DEFAULT_BUCKET_SIZE): buckets = [[] for _ in range(int(bucket_count))] for i in range(len(my_list)): - buckets[int((my_list[i] - min_value) // bucket_size)].append(my_list[i]) + buckets[int((my_list[i] - min_value) // bucket_size) + ].append(my_list[i]) return sorted([buckets[i][j] for i in range(len(buckets)) - for j in range(len(buckets[i]))]) + for j in range(len(buckets[i]))]) + if __name__ == "__main__": user_input = input('Enter numbers separated by a comma:').strip() unsorted = [float(n) for n in user_input.split(',') if len(user_input) > 0] - print(bucket_sort(unsorted)) \ No newline at end of file + print(bucket_sort(unsorted)) diff --git a/sorts/gnome_sort.py b/sorts/gnome_sort.py index 2927b097f11d..075749e37663 100644 --- a/sorts/gnome_sort.py +++ b/sorts/gnome_sort.py @@ -1,29 +1,31 @@ +"""Gnome Sort Algorithm.""" + from __future__ import print_function + def gnome_sort(unsorted): - """ - Pure implementation of the gnome sort algorithm in Python. - """ + """Pure implementation of the gnome sort algorithm in Python.""" if len(unsorted) <= 1: return unsorted - + i = 1 - + while i < len(unsorted): - if unsorted[i-1] <= unsorted[i]: + if unsorted[i - 1] <= unsorted[i]: i += 1 else: - unsorted[i-1], unsorted[i] = unsorted[i], unsorted[i-1] + unsorted[i - 1], unsorted[i] = unsorted[i], unsorted[i - 1] i -= 1 if (i == 0): i = 1 - + + if __name__ == '__main__': try: raw_input # Python 2 except NameError: raw_input = input # Python 3 - + user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] gnome_sort(unsorted) diff --git a/sorts/tests.py b/sorts/tests.py index 225763625f51..ec8c8361912f 100644 --- a/sorts/tests.py +++ b/sorts/tests.py @@ -1,3 +1,5 @@ +"""Test Sort Algorithms for Errors.""" + from bogo_sort import bogo_sort from bubble_sort import bubble_sort from bucket_sort import bucket_sort @@ -36,8 +38,8 @@ TODO: - Fix some broken tests in particular cases (as [] for example), - Unify the input format: should always be function(input_collection) (no additional args) - - Unify the output format: should always be a collection instead of updating input elements - and returning None + - Unify the output format: should always be a collection instead of + updating input elements and returning None - Rewrite some algorithms in function format (in case there is no function definition) ''' @@ -71,4 +73,4 @@ for function in TEST_FUNCTIONS: for case in TEST_CASES: result = function(case['input']) - assert result == case['expected'], 'Executed function: {}, {} != {}'.format(function.__name__, result, case['expected']) + assert result == case['expected'], 'Executed function: {}, {} != {}'.format(function.__name__, result, case['expected']) diff --git a/sorts/topological_sort.py b/sorts/topological_sort.py index db4dd250a119..400cfb4ca270 100644 --- a/sorts/topological_sort.py +++ b/sorts/topological_sort.py @@ -1,3 +1,5 @@ +"""Topological Sort.""" + from __future__ import print_function # a # / \ @@ -28,6 +30,7 @@ def topological_sort(start, visited, sort): # return sort return sort + if __name__ == '__main__': sort = topological_sort('a', [], []) print(sort) diff --git a/sorts/tree_sort.py b/sorts/tree_sort.py index d06b0de28e56..baa4fc1acc20 100644 --- a/sorts/tree_sort.py +++ b/sorts/tree_sort.py @@ -1,14 +1,18 @@ -# Tree_sort algorithm -# Build a BST and in order traverse. +""" +Tree_sort algorithm. + +Build a BST and in order traverse. +""" + class node(): # BST data structure def __init__(self, val): self.val = val - self.left = None - self.right = None - - def insert(self,val): + self.left = None + self.right = None + + def insert(self, val): if self.val: if val < self.val: if self.left is None: @@ -23,24 +27,27 @@ def insert(self,val): else: self.val = val + def inorder(root, res): - # Recursive travesal + # Recursive travesal if root: - inorder(root.left,res) + inorder(root.left, res) res.append(root.val) - inorder(root.right,res) + inorder(root.right, res) + def tree_sort(arr): # Build BST if len(arr) == 0: return arr root = node(arr[0]) - for i in range(1,len(arr)): + for i in range(1, len(arr)): root.insert(arr[i]) - # Traverse BST in order. + # Traverse BST in order. res = [] - inorder(root,res) + inorder(root, res) return res + if __name__ == '__main__': - print(tree_sort([10,1,3,2,9,14,13])) + print(tree_sort([10, 1, 3, 2, 9, 14, 13])) diff --git a/sorts/wiggle_sort.py b/sorts/wiggle_sort.py index 0d4f20e3f96b..606feb4d3dd1 100644 --- a/sorts/wiggle_sort.py +++ b/sorts/wiggle_sort.py @@ -1,17 +1,24 @@ """ -Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3].... +Wiggle Sort. + +Given an unsorted array nums, reorder it such +that nums[0] < nums[1] > nums[2] < nums[3].... For example: -if input numbers = [3, 5, 2, 1, 6, 4] +if input numbers = [3, 5, 2, 1, 6, 4] one possible Wiggle Sorted answer is [3, 5, 1, 6, 2, 4]. """ + + def wiggle_sort(nums): + """Perform Wiggle Sort.""" for i in range(len(nums)): - if (i % 2 == 1) == (nums[i-1] > nums[i]): - nums[i-1], nums[i] = nums[i], nums[i-1] + if (i % 2 == 1) == (nums[i - 1] > nums[i]): + nums[i - 1], nums[i] = nums[i], nums[i - 1] + if __name__ == '__main__': print("Enter the array elements:\n") - array=list(map(int,input().split())) + array = list(map(int, input().split())) print("The unsorted array is:\n") print(array) wiggle_sort(array) From a2236cfb97ce96b13c03be9761a3d053997aace9 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Tue, 2 Jul 2019 00:05:43 -0400 Subject: [PATCH 146/594] Improve Formatting and Code Quality (#934) * Improved Formatting of basic_maths.py - Added docstrings. - Improved whitespace formatting. - Renamed functions to match snake_case. * Improved Formatting of factorial_python.py - Added docstrings. - Improved whitespace formatting. - Renamed constants to match UPPER_CASE. * Improved Formatting of factorial_recursive.py - Improved whitespace formatting to meet PyLint standards. * Improved Code to Conform to PyLint - Renamed `max` to `max_num` to avoid redefining built-in 'max' [pylint] - Removed unnecessary parens after 'while' keyword [pylint] * Improved Formatting of factorial_recursive.py - Added docstrings. - Improved whitespace formatting. --- maths/basic_maths.py | 66 +++++++++++++++++++++--------------- maths/factorial_python.py | 22 ++++++------ maths/factorial_recursive.py | 17 +++++----- maths/find_lcm.py | 8 ++--- sorts/pancake_sort.py | 15 ++++---- 5 files changed, 71 insertions(+), 57 deletions(-) diff --git a/maths/basic_maths.py b/maths/basic_maths.py index 6e8c919a001d..cd7bac0113b8 100644 --- a/maths/basic_maths.py +++ b/maths/basic_maths.py @@ -1,74 +1,84 @@ +"""Implementation of Basic Math in Python.""" import math -def primeFactors(n): + +def prime_factors(n): + """Find Prime Factors.""" pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) - - for i in range(3, int(math.sqrt(n))+1, 2): + + for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) - + if n > 2: pf.append(n) - + return pf -def numberOfDivisors(n): + +def number_of_divisors(n): + """Calculate Number of Divisors of an Integer.""" div = 1 - + temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) - div = div * (temp) - - for i in range(3, int(math.sqrt(n))+1, 2): + div = div * (temp) + + for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) div = div * (temp) - + return div -def sumOfDivisors(n): + +def sum_of_divisors(n): + """Calculate Sum of Divisors.""" s = 1 - + temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: - s *= (2**temp - 1) / (2 - 1) - - for i in range(3, int(math.sqrt(n))+1, 2): + s *= (2**temp - 1) / (2 - 1) + + for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) if temp > 1: s *= (i**temp - 1) / (i - 1) - + return s -def eulerPhi(n): - l = primeFactors(n) + +def euler_phi(n): + """Calculte Euler's Phi Function.""" + l = prime_factors(n) l = set(l) s = n for x in l: - s *= (x - 1)/x - return s + s *= (x - 1) / x + return s + def main(): - print(primeFactors(100)) - print(numberOfDivisors(100)) - print(sumOfDivisors(100)) - print(eulerPhi(100)) - + """Print the Results of Basic Math Operations.""" + print(prime_factors(100)) + print(number_of_divisors(100)) + print(sum_of_divisors(100)) + print(euler_phi(100)) + + if __name__ == '__main__': main() - - \ No newline at end of file diff --git a/maths/factorial_python.py b/maths/factorial_python.py index 376983e08dab..6c1349fd5f4c 100644 --- a/maths/factorial_python.py +++ b/maths/factorial_python.py @@ -1,19 +1,19 @@ -# Python program to find the factorial of a number provided by the user. +"""Python program to find the factorial of a number provided by the user.""" # change the value for a different result -num = 10 +NUM = 10 # uncomment to take input from the user -#num = int(input("Enter a number: ")) +# num = int(input("Enter a number: ")) -factorial = 1 +FACTORIAL = 1 # check if the number is negative, positive or zero -if num < 0: - print("Sorry, factorial does not exist for negative numbers") -elif num == 0: - print("The factorial of 0 is 1") +if NUM < 0: + print("Sorry, factorial does not exist for negative numbers") +elif NUM == 0: + print("The factorial of 0 is 1") else: - for i in range(1,num + 1): - factorial = factorial*i - print("The factorial of",num,"is",factorial) + for i in range(1, NUM + 1): + FACTORIAL = FACTORIAL * i + print("The factorial of", NUM, "is", FACTORIAL) diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py index 41391a2718f6..06173dcbcd7d 100644 --- a/maths/factorial_recursive.py +++ b/maths/factorial_recursive.py @@ -1,13 +1,14 @@ def fact(n): - """ - Return 1, if n is 1 or below, - otherwise, return n * fact(n-1). - """ - return 1 if n <= 1 else n * fact(n-1) + """ + Return 1, if n is 1 or below, + otherwise, return n * fact(n-1). + """ + return 1 if n <= 1 else n * fact(n - 1) + """ -Shown factorial for i, +Show factorial for i, where i ranges from 1 to 20. """ -for i in range(1,21): - print(i, ": ", fact(i), sep='') +for i in range(1, 21): + print(i, ": ", fact(i), sep='') diff --git a/maths/find_lcm.py b/maths/find_lcm.py index 779cb128898e..9062d462b8b3 100644 --- a/maths/find_lcm.py +++ b/maths/find_lcm.py @@ -5,12 +5,12 @@ def find_lcm(num_1, num_2): """Find the LCM of two numbers.""" - max = num_1 if num_1 > num_2 else num_2 - lcm = max - while (True): + max_num = num_1 if num_1 > num_2 else num_2 + lcm = max_num + while True: if ((lcm % num_1 == 0) and (lcm % num_2 == 0)): break - lcm += max + lcm += max_num return lcm diff --git a/sorts/pancake_sort.py b/sorts/pancake_sort.py index 478a9a967d27..3b48bc6e46d9 100644 --- a/sorts/pancake_sort.py +++ b/sorts/pancake_sort.py @@ -1,17 +1,20 @@ -# Pancake sort algorithm +"""Pancake Sort Algorithm.""" # Only can reverse array from 0 to i + def pancake_sort(arr): + """Sort Array with Pancake Sort.""" cur = len(arr) while cur > 1: # Find the maximum number in arr mi = arr.index(max(arr[0:cur])) - # Reverse from 0 to mi - arr = arr[mi::-1] + arr[mi+1:len(arr)] - # Reverse whole list - arr = arr[cur-1::-1] + arr[cur:len(arr)] + # Reverse from 0 to mi + arr = arr[mi::-1] + arr[mi + 1:len(arr)] + # Reverse whole list + arr = arr[cur - 1::-1] + arr[cur:len(arr)] cur -= 1 return arr + if __name__ == '__main__': - print(pancake_sort([0,10,15,3,2,9,14,13])) + print(pancake_sort([0, 10, 15, 3, 2, 9, 14, 13])) From 27a8184ccf871a3afa22839761bf507306c52d58 Mon Sep 17 00:00:00 2001 From: Dharni0607 <30770547+Dharni0607@users.noreply.github.com> Date: Tue, 2 Jul 2019 17:49:31 +0530 Subject: [PATCH 147/594] add ons in string directory - Bayer_Moore_Search (#933) --- strings/Boyer_Moore_Search.py | 88 +++++++++++++++++++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 strings/Boyer_Moore_Search.py diff --git a/strings/Boyer_Moore_Search.py b/strings/Boyer_Moore_Search.py new file mode 100644 index 000000000000..781ff0ca6106 --- /dev/null +++ b/strings/Boyer_Moore_Search.py @@ -0,0 +1,88 @@ +""" +The algorithm finds the pattern in given text using following rule. + +The bad-character rule considers the mismatched character in Text. +The next occurrence of that character to the left in Pattern is found, + +If the mismatched character occurs to the left in Pattern, +a shift is proposed that aligns text block and pattern. + +If the mismatched character does not occur to the left in Pattern, +a shift is proposed that moves the entirety of Pattern past +the point of mismatch in the text. + +If there no mismatch then the pattern matches with text block. + +Time Complexity : O(n/m) + n=length of main string + m=length of pattern string +""" + + +class BoyerMooreSearch: + + + def __init__(self, text, pattern): + self.text, self.pattern = text, pattern + self.textLen, self.patLen = len(text), len(pattern) + + + def match_in_pattern(self, char): + """ finds the index of char in pattern in reverse order + + Paremeters : + char (chr): character to be searched + + Returns : + i (int): index of char from last in pattern + -1 (int): if char is not found in pattern + """ + + for i in range(self.patLen-1, -1, -1): + if char == self.pattern[i]: + return i + return -1 + + + def mismatch_in_text(self, currentPos): + """ finds the index of mis-matched character in text when compared with pattern from last + + Paremeters : + currentPos (int): current index position of text + + Returns : + i (int): index of mismatched char from last in text + -1 (int): if there is no mis-match between pattern and text block + """ + + for i in range(self.patLen-1, -1, -1): + if self.pattern[i] != self.text[currentPos + i]: + return currentPos + i + return -1 + + + def bad_character_heuristic(self): + # searches pattern in text and returns index positions + positions = [] + for i in range(self.textLen - self.patLen + 1): + mismatch_index = self.mismatch_in_text(i) + if mismatch_index == -1: + positions.append(i) + else: + match_index = self.match_in_pattern(self.text[mismatch_index]) + i = mismatch_index - match_index #shifting index + return positions + + +text = "ABAABA" +pattern = "AB" +bms = BoyerMooreSearch(text, pattern) +positions = bms.bad_character_heuristic() + +if len(positions) == 0: + print("No match found") +else: + print("Pattern found in following positions: ") + print(positions) + + From 0f56ab5c3cfe50505d12e48493b0f043d1a6fc7a Mon Sep 17 00:00:00 2001 From: Dharni0607 <30770547+Dharni0607@users.noreply.github.com> Date: Tue, 2 Jul 2019 17:50:25 +0530 Subject: [PATCH 148/594] Divide and conquer Algorithms Issue#817 (#938) * add ons in string directory - Bayer_Moore_Search * created divide_and_conquer folder and added max_sub_array_sum.py under it (issue #817) --- divide_and_conquer/max_sub_array_sum.py | 72 +++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 divide_and_conquer/max_sub_array_sum.py diff --git a/divide_and_conquer/max_sub_array_sum.py b/divide_and_conquer/max_sub_array_sum.py new file mode 100644 index 000000000000..531a45abca6f --- /dev/null +++ b/divide_and_conquer/max_sub_array_sum.py @@ -0,0 +1,72 @@ +""" +Given a array of length n, max_sub_array_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. + +Time complexity : O(n log n) + +Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) + +""" + + +def max_sum_from_start(array): + """ This function finds the maximum contiguous sum of array from 0 index + + Parameters : + array (list[int]) : given array + + Returns : + max_sum (int) : maximum contiguous sum of array from 0 index + + """ + array_sum = 0 + max_sum = float("-inf") + for num in array: + array_sum += num + if array_sum > max_sum: + max_sum = array_sum + return max_sum + + +def max_cross_array_sum(array, left, mid, right): + """ This function finds the maximum contiguous sum of left and right arrays + + Parameters : + array, left, mid, right (list[int], int, int, int) + + Returns : + (int) : maximum of sum of contiguous sum of left and right arrays + + """ + + max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) + max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) + return max_sum_of_left + max_sum_of_right + + +def max_sub_array_sum(array, left, right): + """ This function finds the maximum of sum of contiguous sub-array using divide and conquer method + + Parameters : + array, left, right (list[int], int, int) : given array, current left index and current right index + + Returns : + int : maximum of sum of contiguous sub-array + + """ + + # base case: array has only one element + if left == right: + return array[right] + + # Recursion + mid = (left + right) // 2 + left_half_sum = max_sub_array_sum(array, left, mid) + right_half_sum = max_sub_array_sum(array, mid + 1, right) + cross_sum = max_cross_array_sum(array, left, mid, right) + return max(left_half_sum, right_half_sum, cross_sum) + + +array = [-2, -5, 6, -2, -3, 1, 5, -6] +array_length = len(array) +print("Maximum sum of contiguous subarray:", max_sub_array_sum(array, 0, array_length - 1)) + From 65a12fa317935e04ed0e747db234fe4601e96084 Mon Sep 17 00:00:00 2001 From: Jigyasa G <33327397+jpg-130@users.noreply.github.com> Date: Tue, 2 Jul 2019 20:53:35 +0530 Subject: [PATCH 149/594] Adding sum of subsets (#929) --- dynamic_programming/sum_of_subset.py | 34 ++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 dynamic_programming/sum_of_subset.py diff --git a/dynamic_programming/sum_of_subset.py b/dynamic_programming/sum_of_subset.py new file mode 100644 index 000000000000..f6509a259c5d --- /dev/null +++ b/dynamic_programming/sum_of_subset.py @@ -0,0 +1,34 @@ +def isSumSubset(arr, arrLen, requiredSum): + + # a subset value says 1 if that subset sum can be formed else 0 + #initially no subsets can be formed hence False/0 + subset = ([[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)]) + + #for each arr value, a sum of zero(0) can be formed by not taking any element hence True/1 + for i in range(arrLen + 1): + subset[i][0] = True + + #sum is not zero and set is empty then false + for i in range(1, requiredSum + 1): + subset[0][i] = False + + for i in range(1, arrLen + 1): + for j in range(1, requiredSum + 1): + if arr[i-1]>j: + subset[i][j] = subset[i-1][j] + if arr[i-1]<=j: + subset[i][j] = (subset[i-1][j] or subset[i-1][j-arr[i-1]]) + + #uncomment to print the subset + # for i in range(arrLen+1): + # print(subset[i]) + + return subset[arrLen][requiredSum] + +arr = [2, 4, 6, 8] +requiredSum = 5 +arrLen = len(arr) +if isSumSubset(arr, arrLen, requiredSum): + print("Found a subset with required sum") +else: + print("No subset with required sum") \ No newline at end of file From 4fb4cb4fd1023e742ba7c06bce70e042294cd157 Mon Sep 17 00:00:00 2001 From: cclauss Date: Wed, 3 Jul 2019 09:21:03 +0200 Subject: [PATCH 150/594] Travis CI: Simplify the testing (#887) * Travis CI: Simplify the testing * flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics * python: 3.7 * dist: xenial for python: 3.7 * Delete .lgtm.yml These changes were created to get around the fact that Travis CI was not enabled on this repo. Now that Travis is enabled, we can remove these modifications. The problems are that: 1. [LGTM does not want us running flake8 on their infrstructure](https://discuss.lgtm.com/t/can-i-get-lgtm-to-run-flake8-tests/1445/6) and 2. when we do, it [does not work as expected](https://discuss.lgtm.com/t/tests-are-not-automatically-run-when-lgtm-yml-is-modified/1446/4). --- .lgtm.yml | 12 ------------ .travis.yml | 29 ++++------------------------- 2 files changed, 4 insertions(+), 37 deletions(-) delete mode 100644 .lgtm.yml diff --git a/.lgtm.yml b/.lgtm.yml deleted file mode 100644 index ec550ab72705..000000000000 --- a/.lgtm.yml +++ /dev/null @@ -1,12 +0,0 @@ -extraction: - python: - python_setup: - version: 3 - after_prepare: - - python3 -m pip install --upgrade --user flake8 - before_index: - - python3 -m flake8 --version # flake8 3.6.0 on CPython 3.6.5 on Linux - # stop the build if there are Python syntax errors or undefined names - - python3 -m flake8 . --count --select=E901,E999,F821,F822,F823 --show-source --statistics - # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - - python3 -m flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics diff --git a/.travis.yml b/.travis.yml index 2440899e4f25..8676e5127334 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,26 +1,5 @@ language: python -cache: pip -python: - - 2.7 - - 3.6 - #- nightly - #- pypy - #- pypy3 -matrix: - allow_failures: - - python: nightly - - python: pypy - - python: pypy3 -install: - #- pip install -r requirements.txt - - pip install flake8 # pytest # add another testing frameworks later -before_script: - # stop the build if there are Python syntax errors or undefined names - - flake8 . --count --select=E9,F63,F72,F82 --show-source --statistics - # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics -script: - - true # pytest --capture=sys # add other tests here -notifications: - on_success: change - on_failure: change # `always` will be the setting once code changes slow down +dist: xenial # required for Python >= 3.7 +python: 3.7 +install: pip install flake8 +script: flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics From 03f994077557e67493f41ba4c3f7aca08da000d4 Mon Sep 17 00:00:00 2001 From: Ashok Bakthavathsalam Date: Wed, 3 Jul 2019 21:01:10 +0530 Subject: [PATCH 151/594] Refactored to one pop() (#917) --- sorts/merge_sort.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index ecbad7075119..714861e72642 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -37,7 +37,7 @@ def merge(left, right): ''' result = [] while left and right: - result.append(left.pop(0) if left[0] <= right[0] else right.pop(0)) + result.append((left if left[0] <= right[0] else right).pop(0)) return result + left + right if len(collection) <= 1: return collection @@ -53,4 +53,4 @@ def merge(left, right): user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] - print(*merge_sort(unsorted), sep=',') \ No newline at end of file + print(*merge_sort(unsorted), sep=',') From 035457f569dc79e8b7b6d3a493895c67182d3539 Mon Sep 17 00:00:00 2001 From: Dharni0607 <30770547+Dharni0607@users.noreply.github.com> Date: Thu, 4 Jul 2019 13:19:14 +0530 Subject: [PATCH 152/594] closest pair of points algo (#943) * created divide_and_conquer folder and added max_sub_array_sum.py under it (issue #817) * additional file in divide_and_conqure (closest pair of points) --- divide_and_conquer/closest_pair_of_points.py | 113 +++++++++++++++++++ divide_and_conquer/max_subarray_sum.py | 75 ++++++++++++ 2 files changed, 188 insertions(+) create mode 100644 divide_and_conquer/closest_pair_of_points.py create mode 100644 divide_and_conquer/max_subarray_sum.py diff --git a/divide_and_conquer/closest_pair_of_points.py b/divide_and_conquer/closest_pair_of_points.py new file mode 100644 index 000000000000..cc5be428db79 --- /dev/null +++ b/divide_and_conquer/closest_pair_of_points.py @@ -0,0 +1,113 @@ +""" +The algorithm finds distance btw closest pair of points in the given n points. +Approach used -> Divide and conquer +The points are sorted based on Xco-ords +& by applying divide and conquer approach, +minimum distance is obtained recursively. + +>> closest points lie on different sides of partition +This case handled by forming a strip of points +whose Xco-ords distance is less than closest_pair_dis +from mid-point's Xco-ords. +Closest pair distance is found in the strip of points. (closest_in_strip) + +min(closest_pair_dis, closest_in_strip) would be the final answer. + +Time complexity: O(n * (logn)^2) +""" + + +import math + + +def euclidean_distance_sqr(point1, point2): + return pow(point1[0] - point2[0], 2) + pow(point1[1] - point2[1], 2) + + +def column_based_sort(array, column = 0): + return sorted(array, key = lambda x: x[column]) + + +def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): + """ brute force approach to find distance between closest pair points + + Parameters : + points, points_count, min_dis (list(tuple(int, int)), int, int) + + Returns : + min_dis (float): distance between closest pair of points + + """ + + for i in range(points_counts - 1): + for j in range(i+1, points_counts): + current_dis = euclidean_distance_sqr(points[i], points[j]) + if current_dis < min_dis: + min_dis = current_dis + return min_dis + + +def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): + """ closest pair of points in strip + + Parameters : + points, points_count, min_dis (list(tuple(int, int)), int, int) + + Returns : + min_dis (float): distance btw closest pair of points in the strip (< min_dis) + + """ + + for i in range(min(6, points_counts - 1), points_counts): + for j in range(max(0, i-6), i): + current_dis = euclidean_distance_sqr(points[i], points[j]) + if current_dis < min_dis: + min_dis = current_dis + return min_dis + + +def closest_pair_of_points_sqr(points, points_counts): + """ divide and conquer approach + + Parameters : + points, points_count (list(tuple(int, int)), int) + + Returns : + (float): distance btw closest pair of points + + """ + + # base case + if points_counts <= 3: + return dis_between_closest_pair(points, points_counts) + + # recursion + mid = points_counts//2 + closest_in_left = closest_pair_of_points(points[:mid], mid) + closest_in_right = closest_pair_of_points(points[mid:], points_counts - mid) + closest_pair_dis = min(closest_in_left, closest_in_right) + + """ cross_strip contains the points, whose Xcoords are at a + distance(< closest_pair_dis) from mid's Xcoord + """ + + cross_strip = [] + for point in points: + if abs(point[0] - points[mid][0]) < closest_pair_dis: + cross_strip.append(point) + + cross_strip = column_based_sort(cross_strip, 1) + closest_in_strip = dis_between_closest_in_strip(cross_strip, + len(cross_strip), closest_pair_dis) + return min(closest_pair_dis, closest_in_strip) + + +def closest_pair_of_points(points, points_counts): + return math.sqrt(closest_pair_of_points_sqr(points, points_counts)) + + +points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (0, 2), (5, 6), (1, 2)] +points = column_based_sort(points) +print("Distance:", closest_pair_of_points(points, len(points))) + + diff --git a/divide_and_conquer/max_subarray_sum.py b/divide_and_conquer/max_subarray_sum.py new file mode 100644 index 000000000000..0428f4e13768 --- /dev/null +++ b/divide_and_conquer/max_subarray_sum.py @@ -0,0 +1,75 @@ +""" +Given a array of length n, max_subarray_sum() finds +the maximum of sum of contiguous sub-array using divide and conquer method. + +Time complexity : O(n log n) + +Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION +(section : 4, sub-section : 4.1, page : 70) + +""" + + +def max_sum_from_start(array): + """ This function finds the maximum contiguous sum of array from 0 index + + Parameters : + array (list[int]) : given array + + Returns : + max_sum (int) : maximum contiguous sum of array from 0 index + + """ + array_sum = 0 + max_sum = float("-inf") + for num in array: + array_sum += num + if array_sum > max_sum: + max_sum = array_sum + return max_sum + + +def max_cross_array_sum(array, left, mid, right): + """ This function finds the maximum contiguous sum of left and right arrays + + Parameters : + array, left, mid, right (list[int], int, int, int) + + Returns : + (int) : maximum of sum of contiguous sum of left and right arrays + + """ + + max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) + max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) + return max_sum_of_left + max_sum_of_right + + +def max_subarray_sum(array, left, right): + """ Maximum contiguous sub-array sum, using divide and conquer method + + Parameters : + array, left, right (list[int], int, int) : + given array, current left index and current right index + + Returns : + int : maximum of sum of contiguous sub-array + + """ + + # base case: array has only one element + if left == right: + return array[right] + + # Recursion + mid = (left + right) // 2 + left_half_sum = max_subarray_sum(array, left, mid) + right_half_sum = max_subarray_sum(array, mid + 1, right) + cross_sum = max_cross_array_sum(array, left, mid, right) + return max(left_half_sum, right_half_sum, cross_sum) + + +array = [-2, -5, 6, -2, -3, 1, 5, -6] +array_length = len(array) +print("Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1)) + From 05fc7f8a33df7d08dba1f162d7618f4e353b534f Mon Sep 17 00:00:00 2001 From: Hector S Date: Thu, 4 Jul 2019 11:18:57 -0400 Subject: [PATCH 153/594] Added '~script.py' to ignore files and updated DIRECTORY.md (#926) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py * Added '~script.py' to ignore files and updated DIRECTORY.md --- DIRECTORY.md | 22 ++++++++++++---------- ~script.py | 2 +- 2 files changed, 13 insertions(+), 11 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index ad25772b56b6..befd634c1eb0 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,6 +1,3 @@ -## Analysis - * Compression Analysis - * [psnr](https://github.com/TheAlgorithms/Python/blob/master/analysis/compression_analysis/psnr.py) ## Arithmetic Analysis * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) @@ -39,17 +36,19 @@ * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) +## Compression Analysis + * [psnr](https://github.com/TheAlgorithms/Python/blob/master/compression_analysis/psnr.py) ## Data Structures * [arrays](https://github.com/TheAlgorithms/Python/blob/master/data_structures/arrays.py) * [avl](https://github.com/TheAlgorithms/Python/blob/master/data_structures/avl.py) * [LCA](https://github.com/TheAlgorithms/Python/blob/master/data_structures/LCA.py) * Binary Tree - * [AVL tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/AVL_tree.py) - * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/binary_search_tree.py) - * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/fenwick_tree.py) - * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/lazy_segment_tree.py) - * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/segment_tree.py) - * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary%20tree/treap.py) + * [AVL tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/AVL_tree.py) + * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) + * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) + * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * Hashing * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) @@ -192,8 +191,9 @@ * Tests * [test fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/tests/test_fibonacci.py) ## Matrix - * [matrix multiplication addition](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_multiplication_addition.py) + * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) + * [spiralPrint](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiralPrint.py) ## Networking Flow * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) @@ -294,6 +294,8 @@ * [p022 names](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/p022_names.txt) * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) + * Problem 234 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 24 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) * Problem 25 diff --git a/~script.py b/~script.py index 4a2c61c83563..c44f3436fcec 100644 --- a/~script.py +++ b/~script.py @@ -52,7 +52,7 @@ def _markdown(parent, ignores, ignores_ext, depth): ignores = [".vs", ".gitignore", ".git", - "script.py", + "~script.py", "__init__.py", ] # Files with given entensions will be ignored From 408c5deb3adb0f128f51d3d72e7664f5b864e9b7 Mon Sep 17 00:00:00 2001 From: Shoujue Xu Date: Fri, 5 Jul 2019 16:20:11 +0800 Subject: [PATCH 154/594] add gaussian filter algorithm and lena.jpg (#955) --- .../filters/gaussian_filter.py | 53 ++++++++++++++++++ .../filters/median_filter.py | 2 +- digital_image_processing/image_data/lena.jpg | Bin 0 -> 104428 bytes 3 files changed, 54 insertions(+), 1 deletion(-) create mode 100644 digital_image_processing/filters/gaussian_filter.py create mode 100644 digital_image_processing/image_data/lena.jpg diff --git a/digital_image_processing/filters/gaussian_filter.py b/digital_image_processing/filters/gaussian_filter.py new file mode 100644 index 000000000000..ff85ce047220 --- /dev/null +++ b/digital_image_processing/filters/gaussian_filter.py @@ -0,0 +1,53 @@ +""" +Implementation of gaussian filter algorithm +""" +from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey +from numpy import pi, mgrid, exp, square, zeros, ravel, dot, uint8 + + +def gen_gaussian_kernel(k_size, sigma): + center = k_size // 2 + x, y = mgrid[0-center:k_size-center, 0-center:k_size-center] + g = 1/(2*pi*sigma) * exp(-(square(x) + square(y))/(2*square(sigma))) + return g + + +def gaussian_filter(image, k_size, sigma): + height, width = image.shape[0], image.shape[1] + # dst image height and width + dst_height = height-k_size+1 + dst_width = width-k_size+1 + + # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows + image_array = zeros((dst_height*dst_width, k_size*k_size)) + row = 0 + for i in range(0, dst_height): + for j in range(0, dst_width): + window = ravel(image[i:i + k_size, j:j + k_size]) + image_array[row, :] = window + row += 1 + + # turn the kernel into shape(k*k, 1) + gaussian_kernel = gen_gaussian_kernel(k_size, sigma) + filter_array = ravel(gaussian_kernel) + + # reshape and get the dst image + dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) + + return dst + + +if __name__ == '__main__': + # read original image + img = imread(r'../image_data/lena.jpg') + # turn image in gray scale value + gray = cvtColor(img, COLOR_BGR2GRAY) + + # get values with two different mask size + gaussian3x3 = gaussian_filter(gray, 3, sigma=1) + gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) + + # show result images + imshow('gaussian filter with 3x3 mask', gaussian3x3) + imshow('gaussian filter with 5x5 mask', gaussian5x5) + waitKey() diff --git a/digital_image_processing/filters/median_filter.py b/digital_image_processing/filters/median_filter.py index eea4295632a1..ed20b1ab7f78 100644 --- a/digital_image_processing/filters/median_filter.py +++ b/digital_image_processing/filters/median_filter.py @@ -28,7 +28,7 @@ def median_filter(gray_img, mask=3): if __name__ == '__main__': # read original image - img = imread('lena.jpg') + img = imread('../image_data/lena.jpg') # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) diff --git a/digital_image_processing/image_data/lena.jpg b/digital_image_processing/image_data/lena.jpg new file mode 100644 index 0000000000000000000000000000000000000000..15c4d9764effe5ad9d84dc0e4af553788f80dc73 GIT binary patch literal 104428 zcmb5V_gfR+7cCq*gdU0lqLfe)ib|Ct(j}pXfE1~MbdX*IrB`Vop?4A>G!a6TCZa+> zzz{&XpmYIgB7%7ReBbx}0e8}rm0F)H}*?*q$KclAl&(ly-Q&H2>(9-^Ir(>X}rDLF@rKM-2X8`_Z|Bjd#flU9M z{I|&eHR+GZ6%5mEU^0kH%BR=Y+4prraQ+W!p(pr)au zqNSq%(El4%W&aoJUv+5z-6Rz?)&ELJNkz?0^DmT!>5u;+MQ72Lzk2hDQ)We2^MFeh z0e13_p_4;3|D6Lc{hL6^PQ?zm2beG-%Uw~5W*}#V$J~1=7-k_CkB3v!w3Ue}y=ieZ zS+(Aq4}kCvZ*A@Pjw=;wqa5mo#kSRgzZ&DEk3K!?_mbkK3B%WVDSVFoA{xBz`m-5o zt@5MjEh1Bm+q}Q1lM|^;Pl|Z)tdGOlTC+$E1WZQP1vH&)KA)-qaTlI6=cScFRI-i} z$!}m;yhCZE=YIj&P9qH>awD)yhi4o&=H8ytOt*nJD?ycohQVirM&)~(p~?9qqcWqf z8;-bw1qChQbjPeamAtd$Vo9Mx?!u4nKzW*@WAR$+N@t&Ac37mU zrdNpZFbZ&1TkIsJOJ2L(?GTu>;ut1?kDHe9IC}9x#we?12G=8RO)M0ViBOLo-60Jt z8ht@r4?5(e5ICM0*B3Jtx4x?RUK6E>3ZVwEE(A0;A5!+U_;_zs!>D#MhJAo33NVKaU6VKb$ z!apCr*1jLow29ROvL*_M%1wB9ix`{4StzW~4J-$1Oj;fh%qfp5K%Y$YATW44T|fhN z>wNSJT1sCJ97}L1u?xWE=m%F=Q;6twWAR{|`T)==2#nH>_}=hnw-=Z#K(Cx`!ZI-G zKEsAB*JCc*&Kgt9z@G8laXk|JaBTvM%FC{QpSbU-uC_X|asN@!rrav>Yl;Siepa=B z@o6(bLQ6yc$skTOLsPOaS(_;_pgaHQgwFGsi?%W{{%H-J)_Cqrab;fY)0?jae2PgT zf`k$L1Z<{^>Sy~3P(#lWyeB6$#}^7mOF&F{3x@NzW{|~ zKRyZGN&jA?6ciO(XmxwU=2>`oI|2>9K`*4Y9N9HLFm29MZUu-j);c)3x1k@2NZ|!U znPAu`c#B;PRmaE2NGyWbn!Gm(Ml|}~D1&?x0Wqtj_CzSpfnpI%##nI2nSDuZ^@c(6 z<-=L^+xY0drRg8ob>H{RS$X-uY1-GZTezyFt*+?Qm;k$qss$4bC3^|W^-L$VdvhPf zUc*tVaQH(MYXh3d7MDOS2TsA(gGy(PTY}7DDpufFgEfoZh%TGiYu9|ruPHq&Di3ob zH^&05l0&;6Hmuwf^odI&x!7qLdLKxHKoRXTBv7EyMXv%pzmG!r7Ek-A!48|+Ux2>F zsqIrfMva{y0Vo@3WCs?9(%TrC<(}q1%vC&n35r@`)qiRT1p-mqIhD6Kh>FPz{%2NQ zg(i&pKACJyTtm8*Cv(ekmJ5(IYRd!tWgpRUo#{6(@Dpi)+`hX~-49(lMYObd>DhhX z!Oa|{L;E#&!#K{fd|BGiQB`9pb_dsm)Vkc=V*}cCv;^Fm|LC0?cFd6t0G$9&d~@K= z*fl!@1!M9N)&5sswn=viT?Sr?A=u@{mT!_H;}5W8sKc6=*2sQ2;cerUd;sMB^Y7G| z8q9Hn0skIlU>purftR6;wJp1xKAyFyf!aJagTg-IdH({Q0>m1-cAXF75+#wf!!Z?Bc~u%7%uruc$_o-gA9#a8_O=gYwbh9tO-p z%0W#ZBV`r?o8#CSMsaD)`!6$N@6C-m1*BynZetfJSU6@Tqb9L=5PCMHq4QtXKL&!B z@j1=I2Q>T&R4?@(GopG%a?ZS^Zcw6u>9dhaX}b|m4$pqhX)Di1t5*Rv)U0>}Ay^phU05}v0h?dlTL^QW-Io4}NyTlHln5uGRPbEysQ zB$LpCdX&!m#>+OYB?}2dmI?Z??_|7>xhc!uc(b<`V``t=DceRkDAlBAO_Ihwmz&k& zq(uOuMxRc9&ri;T_*eXT5`7DB`?%2J48{X*E$?isP?ufIq76}IX*))+8)2o?*_t2K zfB4ywJ5ToIr9`oOTHEkt5me)zaBiK!$GOVho(Pkv8=+o#gg)Sw=57jQ#F%FqY8?)H!H!iRfFyF zcOTuPT2i1FNR_NhdMEv;CFkZU@QQ+lZ16p2p7{rK%b}$S?Xikl41RFOC&2Es&W9=C zsf`!U_FlRes*+aRgiWch+a)YE^)_1TUvB!xls91;s6*rSq(=9aB1?8cz0)wMdj&ED z&}zZMxj>j$z#3up^zGHeN5c3Lx!}riRLja-l}(e%4|8vh-D-(iBz2VenrkW~xO`1; z@GV{mrV=o-k4b1u9rhNyyQ}{3y7+Y)?=f$+0yN~ui`tKDSdFBSc9I(Rk@PeKnYbSL?TjN{t0Qg~?x48p`wk@C&vKaQknU!a^6=9s%N_<_~1 zWFT0>gl^vxTDEFdBqEBS#a?CasTFx+J&l_Ul2%wz2XkGGmR&8e__3pJE=chjf=1%G9Qkm>72TyghEe?Tl zrYTcicx64h6c3*I{ul6e?@CX?%TYwT#K+|YptUZk)s-PhO^}a&H~%R-7~6Gg`7eNY z2YT#f(fhQWyEW8Cg^BnpqP3g-(L zLf>j&9v#c|PO$2kuE)yvEABa((Js#pTPZ~E^yT?Kl zVveWhv;OfpDa~)_%zjLM-C6T_B*@G8U36ao%~?(;Do2!IVDsbqKhOOMs9y*WCHm2$ zR~)CfqNmVB`xwpSY%zp@4o*6?rArf815BgTeI0pBXq;|Ep3b&G0%Hy4K&$Gyj-}$i zB7e_93vjfKhlCo##?Upx6xmiI$UL10f!vtJB|fopQe#Ae*qof z1L3NQd?PG+U6UZI;>8MU<$7-o)iJrZtBVuto=x=;rKaM&aqqx$^{~n;_n8Ai9!7n2 zrfOkh%j?gFAXRsMGyUNefgy69SZVe2=#x%fV%C$wNkXp>Me|sO+-z@i88%AQDw#T8 zV06FxH=prh!+IrWys`jgR<>NS%EkJ#r*2Y+lvmFL^@5E<8}u^ESmpY^skMoB7V5+G zKCUXqb97GTnkp=kLDpP;lq91yL)EW=tr9LlP(Q;w3GXlz{iNRFZ569melQBd+a)&O z(?{yc{K{^UwX>Ekp7kzPkKXaaRKHIC$!`u)KTY<%jgE_pQ9M3e9(!{d^~qANx9g>p zT>2Rgg|+&N5sSF+v`XJQuS6Ew)HQ8}n$_8G^b<#a*(ghYcu#&3NrC{ESjpQ_IBw4AMMD;ji= z<(=M=U~{0Bl$4SN;LkreDraTZFDCHgFF-Ya#&{yzMMpE!c_7L-u75jl(pTTSCj}LV zNtg!);SL$^${j5&bAFXpDFVq9x5dbn_O|(qWWsT%$V@Vlb&fccRi<_c^Z2xP!jXH37dQ$0O0#rt4<4RB3tFf$W`(kpt^Zk!>ZN$x)6 zR~j>IMo^FS8D8d`%qEPymv5$uB%|sO)tnzfb15J2(wA6YEiIWoGda0yANtTbA;dU% zE_m8?<>mB5+Kkj&cJVv_%GIu<5>q_cHD9UREx|CsQPG+|`4rX&-sZGt^W_q_rX?tM zh77#E_YF3`HImg5?rIc}FRKFh*CDhPT)D=WN$rEUQgv=~Xs4et+Jx65+OT(jXSE5n z4mMwVr7brlATF{$0x_};6bL#hRBZSe2yxfSC&`JKsyPLdMhoPn2sc>i=)vN(5f7_3 zz4{_@^)%rLvoMp1G=cG(Dwe#AIx*4Qex3GD-xFh^7-0{^ACs#MyHC%Uzo&&VT9b*K z?0KhQQS-+o77rV8<`L)$N^pai)vt^m@9SG)cMus-0A%2D`Sd4&WtScAkCHp13RvJj ze25ii0JGW%aF+Z^coQF5eT(npcck~0R=0!J7aU9g15Tr?v$kvk&nu3mwYiULG6Bp3`pHGia7lR#5X;eI(WNOT$qko^+tK0Y>DDG+5M?MR(Y z1GG!)z={k4PE3eCTCo=Yj=RYt4my3@Xe&Ao1@A~qfQglcSt{{^J-|JY*T z5+rX3u(FA>l`;7|H?n8s5Z{FmD9g+im4)@~DY8tg_EkhYT%MG#wL@3*?k(rz~0 z*Uxh5N;E`~D0oKv?T(Gpwa0Gjk%=DFl@T0Y+iHuHyYjn$?b%++yOrfgy zlS;-^pv+o#mgRs&Y{#@hYrtG~?3EDCA6zaRge@yGZERL^RO$56FNVPs)kpDLbtZoS zFRCSyKY}GZt?#~7#PEI&1K?mW5#QqzbPL<>D{fzr&24?_dGi&GpBbm4$_!w&w)l5aT{PZ5hmfyUnBb zWeb3T*=3X7a<|>Rd?=lC9czO^aPl-#4TfdZQR^t!ue89)71v_|P)}du&Ay(X8Sh!- zuG{M#jEEkupcS@*PD-9KaN@%mVR3Q6mRvGxw;w$3kE^d+6jDkL=L-|`v3>ALE-_Rr z4S_H-gLXCS?J~>3(Kt8x&lmk|_PdUApW0|F82d9CJiShRyNDtXvA5Mlhb=xcf0{Xo zr7KGmH5#Efz2I`jOpQEpz{U*~m(;QI9^W}y{JwGqpOHB39T=2}GeW3m*Qk7Kea?EJ z3>K=YaqkZ}fGEhPcG3Q1yMC~6c>TJ>iGEN>w($eI#_rmR1G7KJ;Pp%}$aP&V?X-PR zrl4RDTErPAaY$;G^<^)Qtt$GyloLHQQ0iwDQCan+dz z?gS&3UmVA2itQ7rzI{Kc9ahOtwpIcztY9=ARF+OjXb7dCUftmd3;vLlsa*KB%!FXndg`9h8RBsPXX;H(_$!wkC#U_J8kcX}`0^@=w5w)t1Enb#E> z-%O}JzVe1QJ3OapHKD})dPUkHlAboJ2}VTX=V@78K~cGW@0;sLUX zw5sX7J!(0+==e55W4=c`B`#W!ZeOa*`eAU_D_ny&*<0VyR|L%!j~{|ig2!5Jgxk#1 z#Hp>mZE6+JY>qPi#c|q$TOJ6FZ_QjItvi&px*`HZ@81o)O-l+5h|U|ia_KqzI1T;S zZ0crB93ff2|1|xLuo-CvXr1`|V@Dx%S0($~t=;5nG&#|8WSIFjbT!{754!uw z(HUlSYV;Q{H-@UR*Lza44lfgT6MG&#v*9*3@{(=kf&QJC4Sc0pvdDGPKz1J0wbPTs z_5uUFehoMgQMxuVz5 zJyVgFQDDnYIwZx%2mxY=;^Fl?XsOjjSsI6z90rb7&P?um3TJU9`}qhAM;B#C7yXf9 z8S7^Ou7BoyA@~ugY0iV3HpNexx&Vg|nWlI>QC75esY--McR{D99z-a>v$6WP{Tp7Y ztWw6|SBsZXEx+386e?g=4`5aE!?11&&Haf+{1$hRihFw=cihYBpWmdfdyCvM;p`y8 zZoka=<3yTL=M?YWh9g}dR5qGwa9cf1gSyN0-zZoHCL__z(=9O*Fv83!zd7mE08qfW zSd@*GrFD;&8mFZ`VJ!LL(w$7}P+3wDbavr&I~*BeGRH}OKQ4>F;-@@l{gj5R#+`tm zWsKaAQCJvfJ%@ozBd`48-hRzG^|pwKl# zv8&7IfV0#HnPQe&+kBD8`bdH#RzgNk$zanUGUSicm8T&=QXTV&xAKI*_wSkdwqjmZ z>#jU9s0g}l`Z(yO@=m@*AcX4HglF4d03&+N< zBc8ox#;>7miM^qszEZ1RE(4?+#geoBRr;>cQAp}dPCRfl-kaJ>c*8q;HYC;CX+ioe zm$9K1K#=_1)x8-$=QfXk$}k6t&ei9>vvfzXt3IopUJYjPbftrnYqv|TQ^zhJ#(YXxRAc%ynkwRX_{2+wb*#V!m@OtKMwCR|)F&VGwu z=iJ|v%VGlC@gBLYp53?f(>2}+v2r39J*fMKzPE(N^^$jxM&8&(^qm8cZ?Fz(>!+jc zfuUFZmhq~mddt@RM}o<^xw;9DC>>-@{*NSUh-_%H>8@OzS9}hpxC0Qwz!v$ew++%U z$3*7=-FB?{bAq>K6Vki!bl&clwY)@CaP-H6O`&iLcZj>;+QW_DoJ{=`)mDJPQASSA z=%4!6j?mbi{%+MsLox@8>f`~MpQSA6-h$1(N6CyFA#m@@0-ZIcLA&j6V4zt&`F2}( zmyPIjr>%`Obms#43P6yNJMPLpPA7|L)WyI-EG&F_c~J)Cii zT-b)UxB-;2UzXn7_swfO^+_-6ayQA$LotwqpFN#FLS_VgSF~BExc|+A??Yac!fFwa zVKjo~zF|Gndr2(V)I49KZmr3!_rNxAqx>%*cnkFYdsNxithBJ} zZe_hWue)Eq_eWzf9JEU|g5rS8`nSl8HRY(g4s&<^Q5N}7Glqx>c*L1fuBeq3+e`B;wi(}hkjq? zoG;0>x%AVkN719Wlz9pj_CX*F#6?)M!N5)KsPvu+#Gv4O`c+-?c9lQwcNANk43G@_ zOwm2|$-QmEn^=-|C3xwsTOU%zXx1jlPo1grjgeRLeW~6{g=6CDzN>B>il)42ap^JR zjZE@>c4+fPCnjVU@Z0rmRO&1-h0G)_zJ-of*}unVFs1S~HNGlyMA||v6W#H38!YuK z*1>pd#FL9lVvVM~5I5+5{h`U^l*q=AOEFoKofgDuZ1{b9{cT8sKq&4e z1S=<^?L+%%$baMUomBP*OFkh6=v%WGNUg_{Ok?oSjR5Yvw~AB#(ydL?x>lnU|A;34 zv>*-;?3eo^$FlfJ+2o)eN_+Dc$Tk5XH+R(&LC{KsRN{GApUX`ef<7@wMuvK%pi0= zke529vevY!E8F8+wqj@rjOO7LKR_LgF+J$3mxF<;h z|4@q)y}5T)c1bx;!|u>b?A>1gY8ZS-;9s=2(j>b3oNQ1lX2EI1ogsVz0k?t;_Is+f z+;*7xn2NUX;zLB_m`fR!>I)3rJ}J|B+vA#%tsjGFoj z2$Z#6v$1~taKbE=Hv{-c?)lF&FRm9V{6BK9weBhkv)IZvRzf-SGz+zFtm|c|Rei|y z23~a#eHBkBD>Z%o8IWBQ^mX62>6p+kw+nR#WAvL>vO7B4>oYwJG#B>&LQ8=*%EC{2S|Hn- zi> zT_%cNkY8p(cw<%H^$rayPF(baMRJeO{hB(+;tK7!w{Rycy05C2Q5>;^kBr6$sC_pKY*E$KxGpDKHzABH1|9%2^@lR=zF9_lL@VnWL z%p@|)^8jS9c9+SjkZYU4PfzekHe;Ie;qm3qvt5YEFh&E0Tu)vuUEX&zaPZ3TBus_X z*9L8{J_Uf&5~?FvmnF3Aj77^^@_~%r11NtFMY{U*i25F)bI?~` zMobbJMw#?T&PVCt*1rlUnqwD(*A4eWxO3iQx@h++@2W(2-;3t;3rf~cGD0A5G*mUp z(FfFFo{oHDJ>-sxR-BtDg@3UqfcDYYyAG}myGFQvB7(9T;lRvNUA^n%qU5ACIMcJe z__jer3P)WdB2H!>^{yUSai<26rcrteP?q3sj!w<9Ezji$=!CY(@ zijG3?HjSs2P`3t^;ds#>Zyr<2HgunxX4E%|1rOHU!{*br?VmF1M8oqp)&An6Z`fGX ztZ$^{A?=_*R5l2v$3f{eTM)DJ1Szu?H%L$EeQ@wK2g4}KKz&s;q0qW)f}J9Yj}v1y zcI&{~lLDw5+CC>L_wUW=)0N1*?lKDxk=39bbunZFq(T;Z`knsuu1V;nU-*B*x*bFnOW??D6=<#Bc9vP%1x$f zz-NSqyt`wRt(527;M$qxV$bZIrg|DM@mM!=4zp&rQC~9ujNT6xu+zost9ZwLY)6zf zKfTc8=WJ$^)zqw=-tw~g-AoN$o;K_6kKVgtwEhB^d#^npn6dFlONM6Eq@B4RwY79C z%O{PZi|=F53c~1jqAPx*9tmF1j(Hy%|M|A(k01QHKX~E~BlC8RLT36R?Pq$lqZEo#qDy#epAiLT{dL5>GuiGyaSEprK z7jWTtb@oRRBf@K;(q+pKavMG*2-f{_lpz$UG}e(z<)%sHyhf&0Uz>QAuy}Wmc|ydC zC7|&EPI-;D5CJfOCu{nT@&J;QuXi1;5r?Midq^WUbA~?&ihx)LST$-6f8j#ym`!W0 zrFE^I3{mg|-eS^D3vO2Q;6S`wWi$@RR&Zs@2k-Fek<{t(sEdPJy{{RK%*fI1*1DSp zk*_e@>c>-PX^o~a+_MQY%P7CxZH^bO_sFB(Y8R5*SaaFl-m0w~uwxKMAW>CwY-#Vy z_8!as+1*arHEUF>dObjdjasPcbAYpjj|t9#U3J3XRIa7;gSzHucZgDFRM7HhV5{R` zy=7rn@pd(rAQ+Vo?!Wej=EZ^S#Rzgl!$glB99ymuq}DddU)51tSdzSAjDSx;^ceF+ zANh*6Z}7tJk0Y+qZoH(KZ2BEc;JJpkyLX^8{};e1z1dZ4on#3|W6shGcTc%HUMq^r z2AN5{$K+A>19`(gwlLeU_C&OXO?56oK17dG1B~8UDuXm8C$ebgQd_nWwY>frVSa_v zLD5^p`D+#h%3ezK4)fbDV_XeRIbK-@0P!~$Ys9Y~I^MTBywOvlhO{6k@{j^(9{;+K zYcT*5fZFJ)@Z`K1{0RYL_OFN8Kt!%8DDNutM==tu1PD0IRmCEoXgz5k#bu)c8x_Bw zWk_4rt{sml=)&R5TK&AH6W|&aVe^BiE>L>&)N6O{Dn!vm6NJvRQG$2z!}ujXF!R(F z6n-jtrQ{r*sMUc^7`6yp7lDoA1)^`;kc>q>)2z1 z9CA5>Sbau9<>bzz2(_41^e4Au@765RJIygI*{A?N#?~P(c3{eP( zqmzzjY(GpA`#UQ(%MNwOT|3s&l=HMKDKHtM61(u(w=y6b_vwBx4d$lCjm?OUm1O?? zfDi}}Kpjs7&U%&JB)KUr(?JjBL9wc7?b{&sJf`KmKU|10@~>D^z|E_?h1K;kdUHw! z?rdkoE1GXTH%Ckr?zL^(SXy_L4qUB)678m4#WPhegVW!J@LjnS!M^se)8q;Ic4f)B z8OJ~g$EL}#yEWc&dYuaT8vc5cb#bSnEAKC$x@!}Dp?k=opr9OXE%uBcT zVb8PN8J#tYhVQ%O4rF!dX;eH)EWY6U-S%;-AY{gF*b&TW7w^_XcnPx?hwV3>C61LcAVDoMFvEkoMz z;DE=Usi4XnRXyIm?vbF*^1YomcVF{0{3IadW}#u&xKj};hwP?r!INfLq+4s za$RxwHDwuG3lBn(VG{Aoy4bK_v30l4+GGU6HWL`H;0o3_px9Eld#AFE_XbKyoj~LijokCcJZ@!7)-w{xdDX6Q{c}Jl^jH0z_c2NkrWF2-VI} zlT`n1q@gC~iE%Jm)W+sTJcbICQ*eEg9D@s-X~=l;XVDZs@8)*17m-qY(SKA6@InTv z&-mnAT_;_H@8qJ0=DNJ}VvT*Y!-utVa^I!vV}2I`eS0-VH3agUy@F$cH{1g!)yg0f z)m9=+Cb+2fX;Eiplq4w&T2@Q%#f6lju;PuErd|2K5}Oliqc=$wIr~=$Jj`U@rs_6+ z0rE6!i!_zVu=CQkGp_TLkEQR1w2oA;?4p|0Q1gM6St?6N`t_)q%~E}sAc2?ym(3$) zK7Ds#^wv}HHJOw$Z><>%WUzEzbGsoQAY6^fuI{a@;Gd5*#H?}TZUEio~@b34=k>k5atp`*WeT+`&Wd5{QeH1OLqY@^& zTZscHMS=3tW&sDfUu`cMx}}MAb3deH6B}K6M75GHs!;L^#YP`I*-d_29`|jQynf|T zlM6FJ<>FDZf?9d9kE}SOEYpblj6-eRcFO$(5JRgvZq+>p}*!!J|D5HF46gk9;_s?yHDxc2O~qId7{2dN+f4GU%x-Lqz|9rYg!D7pj$1v z$0K?N#^QtJXD!XBfY#Iswo(H1#04#YF)koZN>j9(bJ``{#^d!DtzLX^nz0E3jX0dhl*y5`wVeSh>30cXw{S;0&G?yo&AAsC-+xFBPrK?}+Z z$;MT4zq?ay<^vXwqL_K!vF26OI3kssp{S_E1+$fP@u8v4LJxnwf12j?F{Fl>M&vjK z8Ne{DPIz~!$;^=feryW9y5PBXaIR2$J6-aUvR!2=E-qF?+f$ipruaoQp^7N=qT{;9 z$Ih4Ux1*}X`oFz@O+{StO?kMlyv>E?9L0L_i><9y4@^}7KcF!|jyNPvTVpv=c*PT5 zd~6pOD-?}DP(arI(<+;pGFB?b-@bmIQo(eTP~WQvh}mLF`Bd!##D&92C5~;ur3@!Xtld3i#X4k*m^o9<}=@^R2vl80dS$#kD(u z*jX!g<9bBftIxh~CogoYd3c7VFE>K{kE}|QAa2f8UjMWgn|DfCMTCFl{Jea>*xgZ4 z+j{3jl(VarGc_mPQ^?uvaPYlPvGDY4PYU=-fJ`a73C}l;lauyp&ee%?J&-k9)da0Z zV+w#r%<}gk$$H&^F!undISfPpV`q4oSH*0C=XjwHMdJyCkHq)i)v5=Ji9>8>*wKh6 zK8k*k#u-xsMDNy3$!JQ~LDk!1u-^eKxwTuHykPuP@(~V%9?M{ujHK|6HPusocW#8KeuUIe3 zoPOSUIoL&``cdT#Q5VXWX)MCCu*(f>tOD}7nj4?%zRfp#p|3J%%D=nWevj+bqWnxi z$Kk@>3bh!*;9qn2h(+uxZ+%eGLmibmGkWWm$EOB^-n|vmVs7c;(w+2OkQ*W&KosoC zH*Tr!noTUelk=<}UqvMGBmu{MHRx#?$<-ou+pc!nxd`}cM64cI`fxf4PWNxTglB1)5MqcUC?CXp- z#De>UR)SD(4NpB(@mYj7*3U`*c$-Chok2PM(T>;DhZ%oFH|8<<2E7TDty*bMzN2$N z6{_HqebW=ZS(n7kg};ETE4Jbm_W@9#vhmHlSCNy8a?^+y40s6O#?sQhOdK#4kl?8A zT1Ccn0wio%=6r(xNV@xx;wH;UXzDZ$jQ`!BqjS=tnuEXGFA=7v+VS1UN^gQYDz5q8 ze>y1>dZqw2+LGYFcgnS(E=&jd)Kid7Kt?WWr|R-qjwd{R0!dp`eIW9Kp~N~V!$h$q z&b-?_NfH(CD{%C2NNfkkaTCkLk@jn|3Iyg+k8wB_ukHfP2Iv;GPaYGdrkkqNLtPMw z2?|M*mU9ks+!)5-8kwz_2Q|Qn>PIh^E-i8^L&*|dh$uF*dsA!Jp*6>K0g0>9RkNBL z7zXQRh3Ui!Ejg8js>e- z-Z_`Mt3;UCyZRuGs^!&@g`ihD1SXuS7S=dp$pi`$VDCMcG%m*cG&q}HO-^G=WOA7- z+bY{~p1qi&GRiE^x0+`&D*Ip?+}>4ivJj{rNiALOmcZ7UrZ6*czo91BNwPttY$2%m zEZGlwYj<{GQZl#J1Vq^Savyg6(Knjdd_Urbp~l731~umqor%GPcG%hcru>6eO>{M; zg0ou0#Ch~XCY^>tkiNk@BLY9>#2FVFMeD!yV|m=*V7P^DM=8E&kurI zSgZybjA|bhx2IcMtDAz6yj^V*)$~-e)#}twCj|PVCyj!=^(N)KoZU(;RgLp00HaCY zLCWPG@hfw zVxhF~474SxAbHwSM@nK#Ge%GAOx9pOlmB?}smQ8*c%UtbXgb#zgitG7HcTd~iDd6X8EzlU z2M2xsWNRR^=9!Po%;8}c)h=Dr4BJsYr24j9(%p4XSyd&)eI*aaGJwFJ7Nw1$sQ&_< zM%YJ&@4US2oFS{X^e1S-!j3hx?HnW5cqeA3|ITks^a+fk`#ti_EozEyOnlIo1_I&} zf=jC8n22{XFT7o>U%R%h+9vCfOIyC3prb!VMx36oRhvSCR@gx3(JH6FSbj<0uvO1g zhQ*Pp#t73K>(MTgFZ&NvAiDop&O&dzvUSB5W80uN&VE1#m!{>$KKi+olKlqbKwHg; zS^JRt299*4X%T+`oyu16y7FC{H-&?sxFB+Zf^aF#?o ze4*mE;B|}hYoh|TvCKuiO%13j5B#FRAw^5)u7@*X#wBFq&i)~hR4ln0Q5BdLzEXN`xZ3DkN zl=AP+y(x0;IT()%q6X1#Dp1+LTWsw^Gw0RKaBW8oW;{`ow|=`n&P~a4WBr}Env7Oe zJjoziHtxv3uvte~iJ%@~J{W0fT;R13amkvXgzO6cDBz=?b3~yZ&&p2IsPW|UuU-Qa z2KMCEj1Wlz?j9RKtQ1qShzvUEOjWYcErWQ(3+((!>*gt+X0HOW9b3GDAxTe~#1~y>6P5)Ck>xcdL zpEs$T@k+rKSloMJCP7jIMorZFr|9m(RmZPa7wXp-A$l|@)en!)58Dzh9zF#DPLTMhIkZ-p7^wxMSue0u9Wrnl6nXpzB4%#3yg5cG@tT(78WJeSTh0 zr8t^G84rk1M-@}Fh3$&Z;iYry^4-ePG+?*c#a4K2v}bN5Y>~H7=Db75-Rk%EJWXvY z`6_hYAaTkBqI3Lk{?_$sd&Bxk7SE@_i&{$T$|EvQ`qITYs8CvF58B|EM_cHh>(br-hC_2%q`&id;qwj5Tk1`3L4AO00ct7_S;OGAG}k{;aqjD%5d|ZrzD&8bp9CT~{cKVx;sZ;oYoWB9cGgW^l4qJ|NU#f5_AA zyeq$zZPxP0)$CUjAfYPT+J}f;crJGSsl+g(w5I>0vFCKzF^v^Q`=WuFqg6{hM4r|#! z)t@utxe~@xk9e7kBOciQYTWZbtiwOK*=@5%Xlnt-07e_+c$0*jB;#prJb&o%Nte*t zd%q};OfU9a@UBq!&+lT)sdQy*?U4&%m{EzH;^gToZ2s-K|GtF;ET;1Y-KmyoUjk8P znh7w>DzJBdHJ{ViWMnWW1nC(UBPNl>`LPl%V;q^a2kzKZ>wj#TMTfI%xNe%AV<^48!s@h%#04V8dnLdv%3lZmRd zocaAn5nai*@snf)qKQ8s4b=*J96SwG4jiP> z=WKR?25FCB_qKzYEo!hQ4mw3hhjnL(%i!wuYMyTYmJyamWGlxQ?NL!F;?Ye^Lr`!)hMVo z0t!JnM2(5tQhtWc8Es88TT2Nl5<;_W{q&o7p``X&jH`9bqyPfd0%mp-`gOA5)#u8T zB}PaiF-#v_r+=M_b**OXwZYD{-Kk8gT1%B^?ot)u24Yfn1cB)`zxzISrG}bBAQA}@ zbo+zzwFvb{Y4EhLqNc`hm@t#4-^SVlfDWO`W|G3vo^zN8-0$b-Wq8AHMvJ6*&PRgM zI6qoe^1y&e1c^wo2j&)(lq4hsfI^@_+pndEFtS2vS_xVdGQkASvp?F?id%?El(zzt z203XTe=A`_S{ z_e)cs%5?x8$?~z4%~F>bJ?2uG=pdg@URr+k54}i#6FNKHbA>6wGUn5svN!axP0v&d zUCI(lk~1tTa5nhv4>`9+sA+2gTN!C_=7^G{sG&Ae^%Vjrswvt-m3+5K!iF zGbdGLjHGHkIoTRy29}pX#%$0|SS32h9HZ~0oxF!CNm>%1phN_KHIFZqm%Ck&Lc>I} zD??~XmQkHR_%)HHy6w~K+E(d6%ic1OjSqw-Idl6Kgr#lG0)mutNgC=5QHHrSp=DnKDuf?zE*I{eZ(k)iB`%;0UlF6 zW94R4>SdK>L!m=F1ZV_7pNxDzOMI@q6o!(+ueKJY=#(7+h>bNIjfBWt?GYKWpF~S? zQ6llKAcZA{Wp28Ypg{g((0O@{>^+PzAbR+!c9I1vf0WUYusUfv7~VPbwYiCKiySiS zZ%>MEN+!{H;;X~HVZ|m~ETm;^8tfEvFHVDdXF4<{vYB-+uQQ7Ge0kPZ1cB-Q0POF~ z+Nw8+&-AMC1qQ8mXos1-A@@sDz}Es=YSnZ9>0G)w@@E&^E-7^%c?$t?3R#w@7q$Nr@iHHYsBXgh= zy_+KHyj@d9t!hNX2NRh6J>q1*(0uJNM?{p;_w>t1d<25GTmT6XnP-_D2k&V$zzqr( zR@`bj`>7f`o7gBz*NT}@EP(~j4uX7fs?6yE2f{5gcih*FW8vp1UJ6=9a!fkzz96DZ zHkiw%{+9W2F#TFP_F7n|2?-T0ww)4B@+Le3b7`B-_oljOzlBhxZoZS9)CT}URCezc z4>*__+s8WEaXb(*1J_-66rDv91L~_~p)~BI6=xmYIgL~VK~dO7-d1+SS*BYFX0dBl zLh8`wt~yDK%hEuNhfbW?T$K)>CHlwEwINYZ`cM$iR8Cft{Kr_$wzl^?RJzcE<5mfLUFtqi!B?;1$X;3Nn@ zla(+hG37o`Tf=+>i#W19vpcta$KHe@wdRIWbbyqfeC{OaJ5M{rE-k+S$6mVUxYZIz z1bLsJJ$d!$jxg>%r=p>5iwx4edS6wlhEkS*aLgq;`-wV`PJ^M|)^`hgI@XttIO2un z{6_RzlBO=@oXoKXKv4d5PUPBO1aNN-VH`Tr@a@(Zs6vPFDyL3ol&JTl@;VR)Q?-rm z`~8Y0%^TUAc_+JYjZ{PkbbL3oTJ}QwvyUD=Kydo$rzL^Ju?Z>~=EJ7C^FPOc`YBtY zxtba@)0TxjDpp$yNHWRhgXONCQD@Xw)!5qwy5)xzCo7U6W37iOY8+r1_uOPSQ{zj{ zLvJQ|9=#2l(bPFxOPc6mRSdokM{2w&X;5?>b@&;zjBzJJ*Ir&4Xfuw4J5&61_47q7 z*3?uz-ItY-3jBvsti9h*dW$q^4mjdJF?BC@>O<*CAt^E8Q02L^TdMD$|oYO)Je5 zscn!7mjH<#Ms4Y;3WX%5qPgOwsz^%63Lb-$w)7lBUu<#Yc!wDYv%1{{Wu6JUo!Z+hpR3m5OAg52O_Y_*P8MPhAC{Gg8en zUFU_gB657z63FWD@fqBp&+}7wy zp1v-u9gHqj;jD3UQeG4f_*|!}Xe}fiHazXmU&NE}qPgxXq3$_$cWqSHWfeQFUe`4< zVMQ_vKT=i?KVYJmDyvZZyG_S0$B#u@Lx@j>RSBUsAnG^~$o_W=`O3q%t2-uwq0h|zbgE27kq2ml@wM~7 z%ChU}OHIjv;ZzMoZOYGo6+Xl@-IaLleQ`eFx=kJwzwZRQb@wb4His7lXi*v?#8g1n zO{^u^%KLV*sSTkeL~5`EgC1hmVl88-Gsm%A`vAmY#9(CckVA*JhoRAH%nOxFptR;= zF#}oCt%w$+hSmymh!O<+Ps|Gn;5Ee>QhAKa37ZuoB9v55x(5FMd)o%`3)9H~4>w7z zmRwV8Hw^|c4uLDKcdQpi9~bRJzMEqzs_w@##_2-GXmf4A#uC$tih ztEQ(rGa*1qXO!865dOP-)L1)@E1aB0LzEcKzOJ1>q*M~NvnXaxX$epQ6g;Pujr%(B zmi4-CHg3A7(uN*bEVP8=OJ+vHklRkbQ9dtGlZ>ieTVC_0U;y949$&Z6JUZ>uR*ITL zgr_uum1sKh+fTi1*PRP$u<;wYEHhvFY*o^M#dSM`82vZJ8Y)?FDk%v{z&fPv1pImH zYd!GQQvqlK6p#dvb&v1*TLbo2?FzzD-PK=P3Ii&U%$`S6J#^@8w0KpBYjL}2r?@WX zt4IPu*@20%L48$h_~|BV9*Ir-D-Z)XGXpIzch#Wp0WphUnX@ewAT`IHb1X z&_Y$r!RN8EqS<0OUeY|pm9f-QPZ)e}4i~nB9eHWRD}3K~b_~OHH}&fHX{K6Jg~t>C z+poY|mOZe$NM9Uu;&nw$9aF;Yr7J}mQ0Ik0Kq^rC(_VJb--$nJK}}3}IfCyc_pczP z@a~i)3G~-f`VLcUKFdz2#JT}VQZyx7^@2wK0HwMw!MHDE-`C7FKex-Ds>*yviRt<{ z{{Z&{6RCs0i(_LZRZT?N8zZ|Z5;DS;bli<#?J#~5XzRM{RWmNs zsi3yo%75(y$l5^j6VHF6v@I*9O8boGHgu`oa)CU7)=u%%+iN4s-C?rJv7j>LG`^JE zOgNRf1<*=Ll_f{dUtjIDykVQDCI0~8cY+#9n*;=skQ4#i#C)f$+wDtlUX{c;+vI=1P#B2ney!qO3b?xT6arr z6qg-wAWCEn2;XS`09M|7J;6722fC^5`gRf?LPAQC00XbrUzMVJJ#bFv;T8^Is)Qv^ zcOqpFN~d$BiW1d+B))x$?sX-#PkOl!AdLsl{o4`sd_biZJaWW&38d&0n>!P|CN*HS@Q=v1jD@WmrmX_nCNT;VtRG7_}Z^~^c?M#S%8kmu`U#Z5xq%9?@@3a3M+ zypE&pE$tL&ZFy9s5FqG$;DI}78vg)`Jf~wa!Eor3M3~S{gc#}tw6AkoR?ap#!&L=d zmk{a_x67m_Fen`3QRlRLt)M$NR*^)7WKLBi6_OG zpG#dmpO&#q%R~?YK`WgHFgf(HyjAz4x?xPhA7!X;l4hMHDk4Di*Ki}@X@?Y66jJ7f zGS0GNpWjPEV0P5&A+)I)9}c!7ag-FCs7cH3Yxg$77dJMDDb1xJLtpN?o2kVRM1hrY z5v>0JduJ{^J5JRb&MufJ7Kj9T{I)-4+BXs)u}A}%PGO)TC*jW7tF$s#>=h|!AQdEn zpgdVXMVv7c8GyUfYY9e-%DlJ>Ntvbp*vH&t7VyaHQk!>P=q5t&-)3G|;{ zR+OWwAcvevnepZHMw>#7*6Cn8Y)^#4fT`em_!?ggGpb0t?5=s8wJ5?-= zcvECWr&TRYTvJZlZ52X+Nd+T)CL`}#O>jR0-aKXFP9EW{+RKR-h3eaN4#b2tsc~Nf zgXL(Jn5KP@+tmp`Fcf4->#p4W2h!Rz@TkEJS8-nw@jCEQhwvMmrIjLJxalb(b{-I~ zJ1?GLPe~;Ffw!K@oKC3HQOfbS8hM=u&3^n)FZy9wci?P4OoY(g4JC%5Bm|`Z01yV7 zY3d`bvYQT?rMKLwQV^dS0flHIZO;2?Jgt5HAvm@3j0N26h6O^qw#WxOnI?BV2-qDt z8)xgG;sY)R0?dMzK@bMI5gK~@w6riLxM3_Ob93&zq=~fjaWdcA*Qz19>DenvY90x3 zwJ0Q`XE&7jnf+|ArLKLP)W^C~K!%DmBSWuKJhsxv-EY!e-R1Fnz5+`{C2LR}-$F+% zV@*l3i-xtzx(2Jzhl-Z|T4W_Kw-F+D_YQb0L?5#Gol<;r@xhVxj zQSYl{@9qtHSf+xOl`M?sz?Vcq1Se23r9Nk^qb?hjOuF0mm1Afi=V1+j-8QKczq~*P z<2qa2>xdgr}Kn+DnbFw1YWHr9|up?Hk!Q>u&10q|#h8sClF-I@~M#kf3?#D?>Gcnm@+Nlh4Kr^#bLq9b ze|Jmk*B{5f1R#$#!>=yALXob%*u!+_cBE8Q)pxnuVYFsY@Q8p1g)%p=Q<&EG#23o$ zfZ406sZ=pROHNdjl0k*2d+GoIug9&M{{Rrhc*^lOcL-hTar(D1IE1=$KtA%+JeGpS^>qnbwTc@E@gX15H;+g<#jk`2nVtN09c(;#@<3PALqyAy zuP@Js+n7R}8|=Ef`uR>E;$oKNQrb%CF80?bNIn&L zQe1soge4ro>&tnxB$i3Ywt#h~SKzUghHB7VDYqfV$H-gqi<63PMxRAHNmAHR2`&Tg zwKI`iglZ?w&t1JPw@@f>v_D*f4LFl6u(^m@xtQhs?E>2?y&M#`l@hM17n=ce%{eYT zBV5WJXWbi%IHqCyspjZ#)fmX5kztVuT6Ka5Iw%RW8qmX(YvI>iG|?)SCY|&@FH^_U zPfMvPd!ghn+A&q)inRsi?m}UvS34B)N#uIix`w7G5|@H|l0D7ir!SGTMLi>4&X?GE z3wieChZFz~MujT#(g^ammhWamLWF0h8i-NxHnF@7iewM1uV!Ixy8HbWO?gj<>u$d@ z?zqiErj=?|VuGq_g&d}L%RPEo)gA7p%&^!c0HwsMLZUg3J^pqds>D}iJATc2D=k56 zD6-fpE)BD{8~P2c?uPBZZ>nWgzOhP$kI56`aWFFG=xun{Zo1+4C?~~c_q6MRBCEdX zS*mGhbxyc{k+CXAr%qO0iFcLY+LWi##+h=BRIwUQOGn+F#do)whLi_0c=KvXqh%hx zc5!syRMoF7v}p1UY>E*cUprf!nswJ+C`Ur!e7qCS;k3iw(QRicQ85&`5l9~*q!$A!@HG+T8u zOruQej)#F|N$?T6dD>p(y^&1vT~G?}kYMPcXa`b;-U)iC2}w+;DqKP7=xz3$bS!2R z&Z)&jf|)r@t^)fZUfYWlEBKCZ4UW@&ka1@Z>8O(ZYVPAvbSxk#NT_edh$I-2BHUH% z!CO^x-vZ~oSaq6;XNz?SRHUWEst7XxYCg8_&C7@>-n-4;cuIniI;TVa?aOb(ld>~i zpL5S)roxg)dFnpn?zcbudy4*>5d93g2OG5b z@gAUigi(N=Xx-9}2q}dKCy@DAp@x!{in9U)W(pg9iwE$csSi@JmvX6{+(J?$`E?s| zvC~bm6tx2oa{@-Ef1R*Xn-J@+*C9QjYHqcuqyyfZs?1fchIt7-wxRn%xYIOGw6)|8 z9To0&K^5ECI#m+Bl}6Imt(Oa>T~F=zQe*SSIkiQtFh|Dpi;y!AKIF2!XDj z=i_O7Osq@99w4sf!aX%JG#h|_G_4pVC{ z3*j6$!`rDeS5-1|9}}(p(jbP1_{J!y@pp>Q)qQ01gz`j_vdBrv5bH;_xI=O zm&a3EOyMkV%0alcn)+L<*YdB%d$$_aGB4UnOVw?pz)Ook zLW~G9OJx55^0rpGJGAA@7n{70smr`ZvC`d27e_4&az-o*N2ZH$LsK zp@(Z#O53V!DiW;i`>>s4N#sA(ysEWS30(kgn2hk3nHuXljX@$c)CrzeMxvw&GQ8PR z9+KizGY|>TYp)|9e)f(_?6!TW*2=UQQne8V2R(UC$InYr(`3=WyGy6<7L!a8moht) zAp|B0jP#v#{{S}ianZ8M%|%T@nK;l~ptR~IacVoTUuTE0{wGE%yeJ%1D@p|f z$POqfK{27z*L^wLeZNk|9=n^lZuY=SU`A9&%k;K;AH;<_KTQ$T?u@0UFFD?sUkX7+~BbO>@%+6qKb(Mq;7|i%(9V{l%kjeZU!D-Zg2?>G5VfrgX6n zwjl*5OoW~P0MzXkz*Ni{J2n(#nWWizalrv88Am`l@9?q#$WdBTlmjY_Bp=^vdv)Ze zP@n(?Mp-la*&-C-@PbtaCziGZft5j^-C(w8N@Kg#QZxs1ug97B*}`d1SPdl^r9uR9 zld+?`m)1_Bq?ahN{*n$p8@+? z-{6fiErf)U0THg|NBgq8QcSeg-7uwNTuJa+Hv|CPI#BN+&`9+A=VE^Jlq{$O>Cauh zzv{ynK9%$&FF6gyfCvUhD;Lqz5l(y1KqFFi``Xyq92(**l2rcyxJrh^G{jIT#VIQ> zqz(M0JpQ)LJ)_!bEUbhmq&NKF6PH-FrNk5&Zl_9GP*Rhk&n|Y%oulTSo}uj9B|-vp z1~sv`Te8%TG<69MjD?S@SZ#N^$SvqU?g#>AXGn;SRxG$1WK%+38IY{2PGbr4^VDf! zSK3$c*Hhe;OX^CGKoz+k3m4q%_aO&BvPzVtCrA(hh?vydrAk~_5Wp}zfTyY1W4;42 zQX&aEPO+gH^s}aElJW{x>T;zLlAm-8yOF0j>CcsrZRLm3hxI!ZB>*3Z=eR#hd(JbV z(69m|=wvL$<4;eOl|Ja^9XwLhPNtr$v{rJ+5TWNY>m=`KifVF&WKyL>f?`JTy#4xE zc9@0Khueh}9nubiO?hc4^_xuH>u|D#l>(&zNl_Cp2g_RzCDo$JPV!0x+PP9zkUT*{ zLMKzG(@|}?_+Vinhr2Q2EN52I+x|CwxRSC70j3*_$vn#|e)K4dUkk z?2!CI{P0Hz(>vNd2ESmjk87+__Atb6I^?OUCFMgBPjdtkowU|QyvI^vr@F6YI^vg3 z*NCJgC~gXZht!>Z8uPWK#%rpUk(%cNYLv%#;)jV~ofLKDu7_C!o$XsvP^O7-MuaI) z3r&J1Cu#bVHfe-#7Bu!&y?7n z>b>Yuc%tt{SDh`xw8dlwJX$Ggh#H#(yZl^Lw%tWasnmrKYDTF-OdO35>)&7XY0Ijy z+q&-vqq$0-d`?dLc>Z@6xSjqY#Y)$kU#`05y&-@cyZH6j$de-Re)F&PTd663xRkk8 zxk?!^vJ(PN>E&mXS71$AYnw{j?;THkrKGLJ&XAe+MxI)H?H_fzx(Wo<-wrnDD)-qr zQj-9bpnoy5m0lO!?zy8cQPCFRNMeUdsK8ld^?0M zejrz>;k$}y*knybLI;5ZawqweKstHa-@unG)5D4;*q~`Cr}vw2*7b12C@ATnw~j1; zW^lRSKIgAAwrL!~TF>3r&(ryp;f?{rTq3)J)a5laucRvQeb76?Nr_Ly>^fMMuNqYQ zV>dn>CHeLtMIx@zqpSxT#%US?-ABo{9A7HWtDx zF@~FJhUKSEuyUCbqSdXZGM6sS6*ExHWsdHwScZQsMLzJ#O| zP08He{{Fm&hTdvm-S6K86xB5y#$<(4Ei3;3ySXJlf7;&ei}IO}yRbCnFbb5YYOKjI zo;l8vKFFOtUGaD=O;Qy+hKW&aPD;`N_mFz(WOW*EY4Kl%(Q>zWyLlu!5PORA3Cu?5 zSmdGgA6eyS->$rVnx%6>;iI*`0mHBH#0e)Vi%%^9Cn|M4m3UUh$#OK1c^KhGotm%nBR)n1;Kia~z7o|NS&2`-Rk`$DMtRw|A zboYlT>#?$pUzN>NB7&?2Dwfz&HI1Xf>Z3qLz{R`{I(>L`_uq;RT6aiEBY%JK^Wu$a zA8l*?Ce=!#7pv+Gt*L5dlrzLSIn#Rp;fu z*Gnx$#k@b=KS4!I^;+qd-G!kZ0%Brzo?i=G*D&wDugxxfH0S-XdvW3K*ODW?Z;A`1 zj*FZ06#uz4uO%v zMXv6A2bW%4(QOSP1$Ta<-UT88mSm0W@fB-?x`y(ED9T2F{qJa6d&T!(_H;H-LIQw2 zPVx8F-W|jWWnzuxONmb8!c;tuQ8ps>8zsGodC^a|ezelk+EofVPQXcveaCnk0r9g4 zIfC)!(A8Zd;tE_y%+k3nCz128_wh<<#?N??g#^h89(=!VOE;y(k5VaU?+}d)>H)JfR5?z9 z9{>W4Njd>-8^;FjF3dM~uA-&E z0SOxOI`oZxUY5dR6jL(12--+?z;ogU*TU<%{3(tcPX_HO+%w1BaXf&yaq}MJ6&H!` zmTBpw#TX(2MvxAg^tCN`c2DESYm8EG?+&gdu|TtyviGfS7;QU9kYvX|clEa1;jd+j zhU{B7gN#+o)VZ587i)5)6?7x{wIgvJwzF#S1$z|f!+)mT~a`RN`{Sz z`1BTSh0}h8;zx|n;5ZLIz)7*Mj9Hb?VdDJWb|3hTK6(X5_D}pcyD)YdregU;#?~ap zd1j{dtVmaK=TwvKBti4jb8EeoLOFfo(swC|uIh;1+7c7!j zmzOl%$9En5IVZHqxp2kY)z@>;p@!4pga84LA!b*t^z+%NnNgB;1Aca8-&E8+n5czv zR7`qVM6la#NG3{2Q9OmIAi3F{sZb37CGK0iW^JNY5R!f4npM_%*#7_y1ktCwfC>{c z8}qQO#_czDkibsyq0k!?(x6kaNGSpdQ3vm(zL18(vxGX8kgUl{Rg?$=uA1x4-7=Ol4jT+- z{v+ltw%BV!A!`o+2e7j9eBEW&swxZ=cZ8)$azPzpW;HN$(D_+|6wcK;)ha3)S`w&I zRGh{mZ8bZaD|%NZo}Em(+K#Fjln#-!Yowk1bh39{B|_>OeQEB&3h+rJj%4)z0CxBS z4bzZLOBEuPX{jlVN*>BmlHpKp4rx11!{w)?kl`j6#C%=ibv7Qmno`?a$2Lizz^CMj^GaquHF!E+K%a>r$})uB)GU5o_cbzUB!1feO@W6eI&LC ziH%A0x60a+T%kouObr5)`kyNi+|-G?DN>a}N`ye_JcYTPRZE^-A=Sk+b4wd;X?J_3 zslrk+^WT@3%FW(<1*j~+Qe?^cd3srA#5Ph4r6kFbq1MP02TTQ|Zly@`>t!c>RYUf# zjyM&W1P}>@9p=e5P_~w&sl=41!b(8UeEhBX=M$WjB*-w5f!C~A6{{-LkTXOOK0ELC z7L}K+0b*sSu~I45m1j()Cx0ykl6~^0)%j%!k`fk?;t@V)bNksgKuXZsSs}$J1g%Mk z*Qf30ZwRPM$!$t1AuuySKp=UKjQ+NCTGB2S&^X@3ISw%MrCsqU3j_rXe6{84{q1gW zS;QsQS!D_&kOWL~+pgB8%Dtea2tuGBl_q>7OzX>N9}8Rj2W1XEg3_~PR#{Y;AGZ9g zqY{jE1lb=1gbOV_fsmStbO5zzkVuiHgPn|NsnC{`rAUFMQ@-MCC4p$xiexmhLXrSf zo&7oVv0_x(lBrqPYDU`q>1;dhU*wThAL^9T5EUlxP)O4u%bVl$-{)+*+CgYrE+8c; zNJ`ZjYG9G4Kib-Q{{W~8yULPIa113{lM~bB7R-I4VxI1($dE=w4qU+>-psJje^k&; zx+WNL0yiHujqe9l{{SFxHl^mxJ^{~NI-PoHV+*Ors*>93Uvb4YfE&!dT#^sK{Juif zp|O3b$3oH+qncdX@B4MJeb~xt|@n!R>WTCA1|p)ZuO{YL;M#aF6_S%ARI_rfrz`sl|{}x2`{h zna0U}BTmu(0D1oa`2*^(rxBF`_8sYO}4N5X(YlAoNMdO+KV0B7c*`#RYOl$meUDwm(o-lZ9_7jQoogCk^)cC zG^laD5`7nM@VliX3RRq{QZhK(dCZj_WXYa`YJ&ks6&ZhLXq77(?m%0CvTryD5kG`Uw$VITm=o$Ept~_l>S-?ldo9i=V*#6 zvl3%mSmiy>QdpsFVRde%OK6j+B>T$WZ|!ShlIpndoz&G0(Mg(}0Vbg-Ih5+B{@^_0 zS?VndwkCq@PXYP-AtjN)`5W)cuDoTgJBsDOR~rmnY%LV+H~Gm2#^92B$p^({FB;~r ztC7p%@OaZ*)Ts+92i_!r0P0ju!`962TiS}A=BUJX-BDtil>pPBA`7oaxR5srpF!ne z>!F*|iWh@dmH5e{y6MVI4bWBjVS6YM&SG`=TBk6+?svajdb(4tZtmlA%lY~#x@NEZ zX47fBDE*q}rgVl_Xa40!^!Kn~#E9k8*v9It7hMAD-fc;uVL$bB@!=@bRDb2pEXf6n zsVxeJGSVq9kP>Al;AfWBPVi!@7c!bUXH?TIKCb-*MI|tO@vwubowXZV*7v-+`PmCC ziOaC!d2~@qF(Vc4BI~(O7j@ODDdl7r34xVo`C#(XP&!zi0cG~aP^9c6bo1x*vd-1KvHU8rpw&a36sQsq=sL)scS!Qrm7!^?-MMKKO@rP=`YEwxh06IuY>sS?d+Ql;tzv1;Nf0)2Q>b zAGC})P+U)mg_#H^R^)0&l+BsnH~Op7oT?HNnF>mVu?9_u4zL#*_1A(}X`L*91Ks*5 zyW18PS_&086qpIAT6_jN^fr&X@1@?=iha~6w^EscWOCQzxFeOBT(_+)>cL@omZZq2 zrdmXhJpOvvdj9~#l-PQ#qK`0JN$;tF=9K8;C(9`W4p#SLn|`|MVxy!4nA$9P_0_iI zO>3{=OHujm6qd($on$Sz@qCPZEem*KrtaJ24bqgnr6A@)2C6}bjqlmRE zRAKf~#TrhxgWv=NDnZolBVGDfw+dmr9fGM^7-Ep$H;NLb-MuP=w#gj_Ku*J5x3`X| zjyGy`IY}wWMlDfxKqO18mfm zDsZJs9KersdPgfu)H`NK3=wta~COVEws@9D1?)zpU7Lw3h$~F zQ08?jFNsI=*3x4D76QQz;~_oc=%gO6b>phJY7a{`VQYEt5Tlk3+gt8cEz}`FNdyuk zaYJuY)ce&>t14SSl1V&- zYJDwCvXDp|6HGr2{Y*}k=FQ>aR-(9S8BHrmX~g(U6>}tin<>Z6E!?~q;C3qFh4AuI zPjO-TnzgB09F39(nJR%6rMPF>2A3V*hUvpBs9m&62}N6p)}YUcdh7|?=WOfv{`RJK zhy9l>o&{W&mv?&c0jmN&ciSrqSu7QrOsg9k$+()+)IPur=m=4# zE)z0jNFpL6{+(>b>A2Xgpha^IcdK>ms%0t6tja2lHxdU)p0Xv_cwI?upgJ3Iw5a!8 z+`@pzBnl{Tan3WThcD5fC5=gfNR>TM#;B{OvG zUNuX~i5d~0o?}fQka_5B9IA?{r|NGv^-+VyvRQtnXb&R9L02&?V%jeMi zEr+iB5rvq#C|F7|Gz2z)Ieq-?PIepMD?BN|OxIV_esh2*=Ri98+Vo)t`n^F&Qj&uv z2qHRL506)Vs;jbL?zifmQb*Xuoyp!8yF>Y_9zi6T@eOQ7;0Z}+B$5V$DTop0Wa%4i zwn7RDK->fJ{l0eew^HMUwuu=PAw%W&7RgNV_xJ@-Io))N>6VIud?#fCq{fy>Ew3q2 zM1q|_I-f5qIH+}9+DafOh#-xlpUd?&MsjAzb{S9#V^KdYzY9d()={`k%Mc3Ekadzq z`po*<;utwp;=+|6LCv<>+0$s&TvADh2|MlUWWttEwvnJHf&tf4YRR_C&~q#sP})^W zg@#f+V9{?4^uSR?uue0#Ov_b zTBW+_nOfFeMCqzb@2{k9Ym0*EUS`8-P>ir(kaf~#$?-`K>BtF{G(#?8w1x~2!UA3Q zk*Ow5``DNAvgQqv6sXikEzhln@F)wXKmZAE#U8#^DQ#*aywFN?24J4H!;%BES?aI% zieY`UlSbll077IWo#g)jn`WNUY^7IP))5K>hzgk&(^tbQT`3MIB&U}t7R`O8S5(Ez zP?l0su!EIJAQ3vuPWta-@S+V%N#+v@3-)dU#bY}5*;XTYuJ{s8U;u-m00HqHwlKLu zGNq{*l7b|zM%(r0>tJiUQc9vRzJPsEn!1PJuk<$}F|^MmE;#!7EOxRiwCGg(hGnKJf#cmU5uF z91JZf8AfdMG+@aJR#oLLA`WT@zrq@_dr!MDn#rM61}=R81YM&nsOPd~1-kTYtn z4K_r5nXZ$JyH#KuHoWQ;7^agl8*ecP4uY@K{adMgUTUuUzv`T&LrF`HDaI1xkTh5Q z*AGO%DFo{W;ml6KH4Zh~!-s7+rxQ2w01PNdl&UxS+pE~>=|xpqsEr~j1I}k|g-0r? z$lY!q_YLvApUE^%Qtb7!xvVqBf3bok5^Cq^dxTsBCRYGc)S>7~Qt4doxn&Aq_%SkgS zNq}R|UEyUVOISARPF-vV05o(n-J1A&`+9t|*4bwiVFuVOF0l8_xS1`fa9laca~*x% z_p^*Cal4Ib9ipPBc9x2rqH1d!5|+t{Z6I0$zT4uj;cI)ZQ89#Sc z@%eTBbwt-y+i~FhJjNcll8)iFzzRxayVR4+n=z}tDRB8WmHZEM=4DXQp}BFzff)dw zbe+#F`Pq{1JFgF1?q0XGMp{H9yLVG&@wl)v_i5^MBkRi1_YDp4jce6--ynxvPGF^p zO(i+hHjOn`TUywG@3{H()slxif>_^Dom`hq>%>~tuN&&Hp)~ERnsXh?2vUdSpdWbX zJX)I_qLrJziB*)XA(hgm8$xvNK+-@QwcpCjYLj-|^tANXa)VUON>PzMAa{~SQVjZ8 zjv~d6(^WTj(5af6#h@}#x=u!tM3pbdgCp0at8DD~f4!&fnmQ~gb-6;wO;sDDJ5ZNU z3X`Y25A%BbH0C`?eBGQfxg37@b+JmrYCY=J;UGzpdimHPJZ{F=^}5ISYlE6%>}^O( zca7%ahIs_%Ltq0Fq|9%owj!R2qNtprz-~^1-3L*UF>meq{qC*iYb%X6@rLUjcJFOv zAf(FMJMYaqXnNV@^^WeguEZ_CQ&P}VsHttU-MWp3r>8HDnd-lfyko*uk0jxWCt3u1 zN+{e?JHh=~Ng(O2hhCQRdiJEk*rMtF7f|c;xPf&n(hIrOM3t!^DJdc#&b++r+AI~0 zBQuEy{v!VR^|-eclbN$vGj3+wJdOVRxoFxt>YLFe)m1d(P5`jd8~_q#KeqP$S9{&q zSvhGQFNfBVS9hQV$kb*d`C@m{)m{C-i^Bf^!p}R0tFIfi=UPJ8br*w(am4{7C?v#Y z+tbd_JR0J|{4K%90`ZX-o7cS^=AKy-H;wG`7mMG*?)Mf2I|?$gIxSzzJmX=^?`aFV zj_jqWa+--KVFkq(T6G~=lu0BdM0kXeVOxufoIl0)i#IL7j;NPhw1C|z)sU$28B7p$ z*ofB3xrncdDkq%3@RQ++M6GTvk=(=q?;O0kz>{GaNmO22moI_PpU+-P*+h2C^P%?e zKgst-R5y#QJ{zdY+v#yBVQCPDqI?E6(@QB=UfoS+v{N4SwKLt8q6tVN^2h#3AlMr1 z;=-4C>H zR8YFsRG@^Cq6)&ZW$^+AvChRohS$vet&H4tZ^!sl$RJ_4a2N64%dI_C+`MmC0-e!8c3ZTE<)FJ)YqT8PxuG87q7l3`7#MpAh}kDrx{s4xY=bGVD= zACGRY&J>HWmC70*5i2_ZuRem$@cms2ZPVet7*RJ)+elfcyj>nA5fBxdbeRKvVA#Ur z;q5*gqj49bp~X1fcNVo~Ii^7qGZQjo?X`e)Op=f3_eVZH-EvB*XKZe>g^w;ir-wUu zsHzLA5n_b0y2W=Fb7{`q6(eCR3DP>Q2gA<9*KHOU!^Jf(xZ94Q04V#TeV}MQ8~NMy zUE@%jt*R@&003%(8VIJvmVc3nZNhoj}^sY*QkZmS0pQ0(H_f>+rXWu8%sKF(7Vi z4cb45sKXdurwCnj$wh5z5mNBf)3ANxr}Gd<1I(Lz_Xf3n1Txgl*xARcs;i1P&Aut| z4N0Y{Kf!LGrrLQ*%GgNJZY!3iPoNeJ#g~mvJiFC~u;Zz9{{V&IG^+WlXUPNi~M&NK>r#LjJYK={}Xhxn_F{iX4B*>YZ2 zgRIfG=}M?5;S3}VydVjVM3cR#ik zWt=;7-`Cq%a|aTtYCMJN)ThGaZUMI_e;W=y(e{Du>wi&PmCdf`!L-Q3_i~b{O4P|E z<}`rG;1 zRr!133{O>m-j6BQ>#Ciosd;P6TyaFLN+;CKwEqAL(>2v{R2`Tyk2Al?X2hSYuYAn? zqq+}1B>fb{#@p93f}xdwrrnm-Qy>)W%Tv5*u9o|HQPtknA=bj4TYA;D;tE#L3d%D{ z)ENdxIn!$_<#Vi4C9h^l?%fFh49fJ^MQ$|xEdKxu-c@O@Rp6*!c-nwz6XMVfK-_H| zVtHF!OGVsMJ3Np^>6J|z%kHR9+03w+N_8a2nDd^t)18XAGVUwHO)bhtJE}lC*C6Fm zr>~b@bIRH858VsISEE!Wk@Yz1p$kHG$_z$W-c0T}={D&{WPTRXaNCD;&Qvv)rREY! zm!@SAI)D2=>MXk$tQdYCNd3-CDA;D2_s}aMsk%#&?_%trN)VK!0-&Gf1E1e3OW~`$ z(==aONzSbThU5Elv}M^&?dw_#gD^=1jNeaykClmG9UmNumrSskaJ(bt*&y&_sEjmX5qqr<_|U3e7U2M4ds8zaeK?h+BakXDKVH zj-I9Rve-(>f|MkU36OdDTIS&3VOc;(ZUR(%Q6@yk&OR2Vu3Cs~EIg=E35>#Y5w}iu zxcENe97`)pU`nMXISyKR+dqpJ78|FO!L6n|){DUHcWh@0As}demM228=4gU5hzNjS z^xxLP_!6N)j0^z8Ks&#Y0wb26X2fljw&4zDN^^2EsJ1!5!0NJ+<;j0IO!+((I{sT|pqH!lD93!(H_0`&&p}%Tc9JkY`eWBp<)Hwr}k|f^KTT2Ug4= zg9pmT;gAVz314%;0(?bN6L0ByP< znX8BjYM6;dOU@-okPuXM8x03d^xx-a3@HxP_pPBN1sV*bf@jNJXX|FPt^_xgM3v`) zK?F$O&dwT5EkGmR>Eg*PEoy(s1CZN=gM+t5@)8rD|SO1QkQGpVJLCr)U2Upr9+j^C z-DxwuxN(XbUDH~{?3dD9r+q4g2_(#e=^`!L4jb_TkBS@~!n{nOP+c|ohw0sY`bA2+ z?(8LW?E$nX5KL*Uv!4}4=R*v`mA#MOFyZg9#e7W6wJ^*-?r*MyeGl+;71tZCX0F?@ z`r43OQ>gA8a*sd`SuC+5ln|v3UonjpR-vz_EMIZq8>)|qPhOYh6HYr$R^2_! zh)_zF7vjuzAZ@1R+58?B)H&@Z%a30@4y4?dIKbZD^!K^KFcicZuMe%*PIEYZAPSz{lZ3&2lZ(&&c|5y4pGxI z&F=FJwcIbfq^Vw_zMCje^2~xn`FdKUpfz}|^kvqXajG)%#Wfiq1(Ibdh}Ap%t-hd! zF-+F8K+(Tk_xx;&l4nQ-y6fb3)lT8W;tY9+6I*$s+0fYtrK4I&MLR@Bbw~3MPTpND zV^b=g=Alj3b)p(U1xgwcbtK32Y4M*sGQ+oX7XyC8*ac*e=u{r@AQECXB1CeuejvmP zcBQ+f<5=$)w+9 zl^%1hr=6YE-mlfvBImox9DULe+^BQjb@@%C)_@B}%f|-?4t;fW?9|>)-f6n-w+d3U z%a5b~0B1=gk*|>JHlAg4m~w@`VsJE;lBHGm&Oli*WSyt`+A{9DX|Tc#FMhJ%KrXng zM4nr1VB5;~y)n)yufVjbOH?#1F#UTuVQ(R2K`n{@0O%x<2W=qQ`dV{UErx(BoAuV}a-R{o#f#Lf>QoFnO1U(311jHF^@Bd=G1t?0o*`p9^7p)4!Mru0X$_X) z`jB#^gaNXEA}8f!xP^@{#tOsE(^Ot;Q#_helAK6dOl$&wmr<{$IJG>_XzB&hBMo3I zD*g3QP@ucQwFH*bqOTBAj)fvdhizwQw!;p?omR~3Z**wTcJn;a3d)AkIi<(Eceerd z^E#>P-wW{@9o9K?TzG`{bg3^@-YKa{k_15ml#dtQ^~0D>@whm>bg_##j)#|aUbOWn za8l-Qf~}UMCqO`e4!Zm-F~#0BW2XJRhB1>jb5FRYjoWq@2019A3}{3Vtn-Zk@SSEW z$5^eaw&uMn9=t2op79AQg-L;$2s)B;FXS;KzrlzTRTVVn~g-9#XG$M7jd*bJ7JEG)5p29apJ>r)uiXN%G;Pvv!$rmA(TtRinhPwaA9s(>7mt!e+pD6N`8k zh`d7fT3ist?(?&0uNqsw1=dt1s;SaJce_dw z5)=ZYso@4dRK#r;$rLjSy`bBe*RNoy5nNnH_6yA-W#o7iqj_iD;^*ugk`z zYH=wEaZW2TTuQ+TDn2Rj&Zc!dw6lB*jX3Ry@k(&-4DX7%``Y%q&wou#R2FI)2_{_t z#&m#4pAesggScgY@$YDEAyRPT3taElUKOsTw%n#=N>fP(nVp~k;^+pJ>BnWx$NVYm z6Le8uuFy4$_^VuUGQv_EZtp4t1i;rY1`nS70!&K2hX{xIg6?9<(6!NPn$#~fOx zYWu`W7j4pzP1|?VBPeY%p#y1%@o#7@2XK1*Ta_G2zPDXHzt`7u=8T zKSus{Dq@ceTo`KV7kwoH21qJck_-r*rps4U_p0`G-6=pI%x`Ay-Wi)qN%w)19M8th zYHtPih;4zI2j&B!Q>2MIn*>HzYpF>~pCP$YZWMO~ErBTpR7TwXHg3UkrQoFkGL1CX zeSJFFKW|#lAoq$A24S|E06lH#kfj0M5(*)bSuS_wHZQDn4frU_qnp} zK9(C(l1Kd~H$`3vLzbi+Cd^r3;)R){vi5$yxNH=2Vv)~*2p|%?LWp|F4e7fmHz!BPOe;Hm1+to zP@Jn?>I8f>7J|Wi4&o*>ucvnA!xaf>#f*w^3QBj>`ddJ7@3A8ekyVMECD5Unv>g|= zhJSB6LGjVjoYK2rAF%!w;*So)u+jY%>+XF?R0j%pGmJ5XPzsiGDBO}y zE=SkW-5l(1*?$i3X6$bE#EEG&4NB@ODxnE!AW88bj| ztR)J8q@DDgD5}P1>?uWt<;RCy2lA8RRnk_u)baOQ#E+L1EBN7d_oD4l#dPpzg}BL@ zoE3r}$UB8fFH6BlSaIa&QnWS_5G2Vi5&;HAD!Q)aQ&FKVtmI1NCE|Pps0h?-V}C7q zTg};Vmml_m(O5|fTF4}WsRv;a57y2vVyaNvWlBL<2PoVQSx-rwZP2MHVWFjMJbX7i z&k}>CrDP2a8x6Yg-6K^SvWFBDure)bDG3|v z%a}XH_W6g=QF&CjmQ<-KN$$%_QiN%yS^0Wx7LmR%{{Zo&Q!_|A^tkVKl(wG`GDKxj z3Lc!rFJ z@|&WfZtI|FAuXpWGLShyTe8P9>;g4q4vR1NR=pZ)+3)=NIFY^ zg%F~xv@!sVzJINqsfOv8?ozc9o}*d&{Vd(UuJ}BcBf@hPCqjR1ZIyG2-E~orz1flu zC0P`u7&;FZEl<~bH7yj9rq$t51V)~Q&li{tLV+hxXJa$+vI}VVQ<8TiXSb|qy_bdL z1kLAEmq-mtc_}*b{{R;Fayu&^k^l!yth=9-q_z|XB4cYJv?MP#d*ad(XZH29o&X9> zb<%z<6jBJy;ZQua`P<+DI(_oDyoE{CWRRdDHP?Nti>{>xN?aE#_8?XWYyIr&=U;M49E zp-CtSREP&q41WIreCyvc(nP0R?NPu9cO8RRB~0ca2a3NiP# zwk1OaYf@eDNR?%YK3dxx=9`jMUaS4`nqFx_XqHw|U`f+YrL(_i)I6)Ep(#NbMuZMs zPKWH6I1PzJv<<`M>s#tCP$8lcu>^v7k2AagY~&`LLB*t< zij+VknFF80UrmO#X-L~|v>bG(1 z1u9)_*HqgtCsoRnu3#Q|Yq{6;vXsK5P!ktj4Bvfy;AhU$VKaEjy?@Wp%EigydotbWmD!<@@uuLw^V!C7fy5 za`NGIb?~Pz3@v;w*(ngO&J=EhoTw3?E@l(U>ufJyN9_nHQ$b1zmn0b{;Xm735Oz`R z1AKN&gb%v{{V3BH_UML)L+GQ9}(Q`e+;UmysA-5hS*YGsAt@vLcjLgKg{a4CfS=AaKeT9 z(~hv4LY3-#-oR3U{{T}?4~?Y`ZhPa@%ShdVKjktYJi0&u5+q(3lOV?L(?uK01 z;kUY}v0X;nz7R-hRwLjC|pn2~HX33W7%AnJ7UAA9?a{{V8! zVU?stPaEy^)1MEQGO^DcZ^XTb*x}8=Qq^VKc)XhGVy8d+uv~>T6X7ydBcyp*)&Rq_ zmkkLN?lkh60SzJ~wwTmG`0HqEisQH#zb_swG`81Ceb>~pb%u~qlprfd0#&L;@#!{_ zzi$uWP5XV`TJPOwAxmojFQMf>v|FH4G?)ZTH|OWa%ks7+&27)m!=9V_B=OcMz35$P z=E5x^qNV16%tV$@H!Aq;9X7LUJ9jm5P=^mb`nH?dp^D{dfxFZDw)+KNh(4^MNkxE#D6ZLdRde-(?~lwfjr0u zRYT>Crtc$Nxvw=>qij;Qcu)+PNl9s9LiW&)?Pru%b}P8(9=_VS=&NfVZ#o)!ptQD= zGN7fInbI_yHp30wp?=d?kcF^R)jb=ep>8S+5j%|p4zp&Ms~%$Op6^=g>Mo12jS7QN zShA(2W(2K4Ae|;;YioZ=Q52bS0na!2A0-F5kB=~U^zh-wMeh&sw+~WYsk!)xb=BOf zND2;CCo>BWPL7Q<%b-?S#i!LxUZpnu8k|e55DEVPwvnWB3LR|&hpv0Z{-<)T@Vb>xbW)+k zsICi+h|DENRDq!;V_s9Hw+_H*gN%UpNYr)o)n@S=R(RQ$F1-9XrWe&^_m3|R<2*#f zix*)=b+tlsIZ+Tw06Ky-lC7d_HI2BPiYuNxEn*q_Iy<$!(_C8Blo=s6HY@Ydh)6$6N-&)Ode{*t?FG<>Z>0>KmcY z;cmEuskUBF0U;!VtgHyjq!>HfU6rkmO&U7&S#u$OdHSEZ{#8GVA9CieZw^$|`%O~Z z0X^RCi8xgwk|470?uRkZcO+>h*8&Yk2`1H zAKkCtxXOm{yjxSrUF6xQdofTTs2Ne@HPoKAvpDI0xnDxY9mDnNH*43@JF!M465SOu zZJeY303z?i9Ramr`6KZv$2T|)8*%)4r~F#tMl<8qGoZouB_&I=E;@kC5(0~BbDDsS zP!HEJC#9u;_(5`D9vxnoBZc>?b-0eDlHMf5AfD=#q7tuWX=iOo%^H}ErqmW0#Z`Pb zyq>PP+Nu5`%_FE=wN)-b3rR|fQkab-5J{bSSh1{UiKzQ8UYMZQ=YFdB_If%{f)Ip* zD{v>Chb)KNnES?QJD$r;fq5NsWepXbYJf2Yx5&Z_z$X60DW_a zIxrKdG*NLJF%WuOzL8HJnZj*JOaU-7`hVmDpOT@Epb;|r0T7837v%V z=VMFm^vJNa%&KH3khc|{qH2lVBc5FHb#eL*LzR;n+USITr=}TM$D5Cjhk}K^@3(4R zRVrGH&YYuMqg~W_&61;Y*&0??Wkx(8dB7v6vwHfroTyUUrv*VqB#{THKN}@n`xI1* ze7Hi?fD%X=?*I>lpw_jFuuC%+fGnMh=B2lCkVr=2d|G+(8UyjN*JWtD{{T6o-U4+A zSA+@a&LDrQKwNEAUNufQ`y~kgfQgb%pVHHp6G^10ar2@S0VoR5GIsLPE%RbLLX4%X zy|+_slm-K8a7oiC9QsK3S^Y9vr%!nD%0}c*(0y$TZ>3ZvG}JVO)0E{2_d$)P(AYP$ zjt9h8+l9A<%SVeVs7v&v1yl4JlerZf$*&CNS<@C!*KdoV{D8W z+<&^1=N-+?=)^5Ja535}z@&!6%BRfoa5!lLiQNusTBgwtM>Wo^ja)a46DJ!3)W zCfX+D;Xe;vQ#EPBl&(~`%1eq{a!f(j=N}7a+(kiKO+bsw3R5UkzD0G_2P&G)1#SHZ zBa|O2XnqX2Ux`;sQAoi{l{BNg(?EPWiShv1U&PVLB^GuPEy*2&NY>O7wf^0Egj+#z z3RHVN+d!7ml$c9s1231xEOUkUbwZW7h_NkeH+>x=9qmKTs38rdKJtks0Ox2PBIEuL z_GH2e$NYH56t`^}Y08_TE+@aKB2H8%a!G;lwgjXq@Ni&cxDGpEsMc$dhB9iBN`9fWv>xLDF$$XT6svlGmP?~6e)5V=;v#j81aH>XKV>c)-dsrHwFtftzp1;Uw82f&S{3~BeKld-!F@Yxt<>VFeGN(O0C0+JzTv8DpKjoWtj&IM+0gC|Ha z`bX_*;{(?}i!l>4S&2&|sl$>am=U+1TU{(uCY6-7fO3RrQX{6i&iY%H*B3|KJDo~r zQ8RJ|gSto}7KYqOB}2#o| zoBCI0F6&E^|kDAUW2XEDuksG$%rr0l*2TPBXYq&J`fHX#21e@i#3LGkKf4FNt| z+08-MJ4MiU);?AheJ9V!Sa5#ra78Xu*k08(MP$t!iVG)zi~9ujpQNc6OIL^gmN z@g`wHVh=xFvu7dZ-dbK$<4sl+v#zi-I{o?Ct#iz{$*1mO2BIKsKOld8mNc}1Wxs31 z_E8tJy~Al%WQ2tPm@)v~cAHuqo~paf?Me$)U?O^S^3$I7s_)8m_aSQu5OWhI5Bb!5 zI@-JRqb&=&idssh*o*H)bj{pTjq2*&bbtx+isX(llB=h*&5hF`osz+D;@v`xI1ul_I zoj^<#M$`5!oV!IbmE9FBt3%zB-W_AiTSZ>3I%pkE*^);3>&$evdhHg6lXASE4pNdv zR7qNOohR(t>^+233v&sM7;FvvRtmog+{R07mkcF(83JKZzdI9Q*9(jnTM1S`lAO!d zIvmmG^RWIUW4XnzG89thc(Ej9)E#%M^ z$A?7?#-=p0g(JL3a$7M9C;}v%&Cha)3&=Qig6%q(1ZhQLLPVdNs zWqBY3D^-o;?fZJ#Jq#u6p=}KkGOU6*b>+WJ`dV7zk43 z{k<&BCu<<`6tv)JGVRhF;KMKp*uOId>qq}h{&Qu$s_o%Ub{^FdNn+o(v-@G1IPui~-A%FBY`yEspDytLO|Z7J&Vos`N~p@FQD zCx7MI*!)5%AB`B|(3cx{3;s19;4XH`X@nV#M{7xBAm}QoPG_ zbSOnT3FQA-c+f&ZfaGPI@wa4Z9z$FPN&FdExM#*B96d&{d`u=aBq_O zDLcmdcDa>ZHwuEDd9tM`NYg-M1J{tVi?0aRQk34s0%j+X+RbjW zcJR**y?XmGs7psn?RNc{W+Jz`&G64Y3A*>N%gwqlm z4&3_x04hC)&D>x1_3X}mp zDOTHw18_mpsD=LkdS84q;qz2?wNr|(zn)XY$5WZaG?)nrD)(nL+U;$|8BbEs*<^j% zK+x;;*<>*qs%IBAHrd-~GTYCevRxcbrMN4-nd)}SO*UG)QVNfDwM-}lbMxA4Z-}vL z6}T3Tf|9K%Q|vOQ`=!ZPIlLuPyrf9v0P7ad6zN@Gbo-61VQ`c=xDJmSshe_Czr!p$u7ttLdFhCFMZX zJ4#b(O-#sMXpMGI)algvTGzp}^_asBUVWZv9m#o=HJ5IDmc#r{r00IF7jbrw0d*TcK0EXOUx$&jM!FfXu($>|m9q_mW zsJG0-q;1SkOA{Dt#fllm#Ev_UODOIl(YeAzRq(2km^5pBoyw}EAxT+FZYYF+08Ho9 zl25t-F=2Wu-oB2jG1Q|+5KQg5V^TIFOKDEjm}7;UL%?_|jaTjN{lQm%GUI;GDYGGJ z3e+q>h#^Nq`r9w@5u3LQ-e&5$F*OzONQ4z8vXeRlNdPG(K6>sf9L#%Pq4}x7J6{fM zufL{;=!>g3>yGZ)Utu*gZaCTkkhRjc1q2TX@SO;ro0Fxi9um{zPAzcaitQJD6Bl(8 zwX3Xq+0d3-&)xXQ1Fm5j0#$1FvTtU5bK18biV7mOE@~Bp-#4)%A{(PR-MJ*3#WrR+!Z;o~I%m?$)Gcbn^g=r-H=}XBSZXM zA}z^M_B!A;_8e{1*VeBq+Nt#|C?%GYDJkYe#{8`ti7{Kn)v&{`bs340PS84^^J$Dx zdC=V#SQO5wMM~K!08DIcSyfk6*Ivkcsm10#7)+Tb`x{}I7`Jq2rxbm=v$$9dkzGAa z;ZaBmgt)ayOlY58s*YZE__tHv2H$xuQ~@P9wEzhu^xiG!zof#qBCBs&$S$CUkflnD z4Pbm@Pw!}3itnkuFGXJUDtZ=>5ZD=EvA8?Hw~usf-0X;@qnfKTqZ)JAd!j3zsLI5IClO+1s zrtV7Lq*_+Wb$4vD&uc`^PK{nZnUOl~)aavWZsfGJI9f_bf)2nPY^C#e(caf$o2;a4 zgrMg<$dB`B8e6P7qO>nUHAvUv`dRH>8*$VqDWVF5t0{@oQR%g*dCbcNXKK*!T)BJO z$AvUk7A;-lbF!3o$}N(ha;&O!Bz2g!Tex`E{{VbAKaVeZklNA_hHKkd%}nGG?2erZ z+Ek2-p8){vw?sb>&L7pQ54~GVfKb}iq)d`VzLWQ@xi8uZjr*G!w9=CZb)Z{P$%H6t zI_tlbYi%#WbD4{vdGhP8qTb^%M^}WyR^7m{Kb5e1GjR^On)AIlMSs0g>S@BOZg(G< zNLH^jdI6%qI>OGnMYR45#P|LL!IgK86n`VZrF%Ng?WbNxq$qqQ-0$G06{{DBFt$0o zYrD#(?-p9VN|(AxQ)(xfl&Jpz_ZhcDsqpnJ*MaYg*SsrfrrmW4DasTu1f~?HOoc10iny_foyAz*_r7mrsmB+1xtVKRKn4O}Z>R_Nv=uEn%7b0d zZBSHF1Rh>{ZSwMqIK$v=79Siy4F?2WTZHwFw!o=dzV7}Q(8}NqtuhjWnkQNE)C);_ z3f*|rA(S{2AgJZ=5@%gB8hnAXdJ-9FDDD=Kl!n8aWds=@=>va4JnbUtXlZWmXe}oy zd@6Iij`Lk2PM{uK?cp~!RlAZH#It>uKJ=B6h26rMNdU8DZ*&C2iu9{S(B~7Ao zZv^O1)EKfg)#|A#NOT0Pd6vqT3C#p;q{h2^IoV_*+38!NVZ^qogvli`tzc^(Ke0D8 zw*jMyfFuIqjrcu=sxfvcYMmuYRYR#qb`S^&Jj9JQJo?4A&KkH_!59vf=%HCTX;Y$1 z0~^E-xSMBgz&s>&uJK+csb*V3le$WvfOQ1<5vQfKi}zZw75vrLPaz2ak(8JNXq~nF zMYFi|TTMWLyERz@Y}=Gwz&oSZl5a|eGWXsj`4g`3uC}z?doWhnNC6^dN8jG|1-l$` z4pB8jNYYZ22q`;s)6T>+7>bGZ`=>@#B|No(8~y&4!qvIb%3L;IJ-Ln3=UNRRO3+MY z%y;ws?d1yBE@X{8;k5bvE%h%@sgSfj-ki?De7+WMmmw}P_<#ZTx$hg;Kuxt#ZOLA; zcWwnO!y28$onvpEl5s7Cr7;wcR2GOrQ ztz#TPu~Q)3Ao3eaUIM96gE67AMWtDbYf07ufS!l++RhfU1wsm@0*Mi|kxPome=%C@ z70m1R@wL{l(R$FERJN|{j_A&SWg8Jc=FF;)OR8{@lnut}BcJVQ7v&8kBn?axnopgh ztI~|BUO*M36V%7|-^$*x-QcZbLD^&A(i^7`{{S;8J|z#>h@Q4v}ERV7j4h=6@fn2oh7ePNo(h3xBXwU8|MrVvzQ zd0Ncu^O~Ne2z^B-No~#3ubGkQDO?gD9R%j}`g&L|hN(*F z@+GYR8M7ZP_p!}6AP)yIDcpQ5hMBHwyi!WnT4Q95c|OeJibSNMRn9#Amd^d4+*rEm zLIEQ#pphH$2V>>V+9LKtsHRy?U5WR%8uhk!?G=%$im7RFN?uvZ%zDPB)6Ul6fu^OW z#3OLhLtSqbhOtc&+{P}7c9LWmSVn+mlP7(qJ#0aRsGe0eRJwiPniC*tto(XwXe;&S z(~6!Ud1dGc3WX*K<=1-@T@N!-%KN;g6PGMOpVWH!+pEsjn3_i*sf@Tdf{5v<+G()M zp#%a6(0j3{kBPGDO*3tGZRH>|M}!g3iH+>tlw?ZAV<1FruTFlJc#3p@;tD|}BqS(C zW4Bo|`}}O8OM;j)DrBWNrQ|>+U?vhZ8jtbQOA~O`=)={w_qF49UR4DnYISVV7;*fu z4W#TO=_F_*+6yX6o!A7ZBT*ppllRus*jA_bW#X6Cggl(5y=}oD$d89B|zmV z8;v>nZD$ndG%ls(Q>{lV6`*DiPMR5r-rrY!P__YfiTIrfXOv8D_ZD73xV6u^y`izP z!$I~6)BHNP!AHOj(R9>z!>UEoi6VmVO14Q-p$eXfQAzpO+wn-aZ-zTZqNcEg(m!%A zxN!eE@DY%C-=0($^1S z(mk#0tD1&gzmTdsfCg%t%b80=1dSy`{mqH6rPR&ANV}5lVO{k=S9x0Gkx&NdpCK9z zBF`{p8KJsv=a{X1wN*GGwNI->0{|s4up7X#ID-=1R|UrN=9%~DnC5`S5JpTYa6?JV*EhKoh>EFsE-t;IBuM}ieOwt=R?(;Qvm<}2b(IKD2slDXTq zl7@xKo89IC3N55gKu^0Mq-oB<+z7-1^0+ab?@x!Cdamia`}#`KR9$2(VWcHH=nBft zl5&Byx7aQdG;m&1VZaZ$>gySeVwC1vMf--Ax#MB6=pjr|k1DV0!k*&1sc6`4h7$7W zsZ*KN46+FWQb;3c)0nY8Y6l*@xTMY1cTu`&n7ZjrA>0J58NQ_NHUWPLyF+)-)V)-b zS$HAJmg&+nEi9yv3CcH8l3;lbqEGJ3O^7(Th3K&D%|zokj*Ya^5R{Sa)Swaq)OINn zB9iT{D$rdR2JNE2=qx=}%cJ;}MKKANW8Dhd!VGP> z*358y*7hgjHP3|d_!Q~|LR*2A0I5Wn-@_exbhnKekBau^v&>VvtM>9WmupVc1l|vZ z-3VH;=THD8I>w}H@z&QaA>q~u#aMQ(r@nH76I9%SiJB)80z%rTZA%CwXhKMhbqWRs zvq)c!f6K1_0Qt4j%k?fXUsc~UhWsp~6n7vP=P@2#V#arE<&1cTgK@?-s;+ISi>~iQ zQ-~+KOBE_gSyN~y{{V4mKvqzBN1cs{)^5moLv*>f=HlNpV|;M?hvGiqNze#r)e|dJzz&W z8}>Nj!>Yb94+U{jYO8L1Yj&!Y#sN~pRU=lNiO_;dXOLOxZME66ff#eM&IhF74-0Bp zy|Hcj;Qlpv(wQN(NB}GOK}m_|W16gw9K@T4L7FjlxY?t7ak=mx!j>6DB~?S?Cd>x+ z;01v{JEKkya4O@&SYC^={{R6(nx#@gu?_T;_BbK0n(_04MOe1%2rsw_xb>uaUsV4ZTX;a>~W>A%XLT6#Q z*UHw`1gvJZ=y=m45}*Q_B61Tm9-wP(RQiY1OP2YrZsY#|BlzXR(#ftXID(i6g`)&m zbN>Li_?{fR_Nq9MhrOQi!}V8-X$Vc=JIPog0TZW92d37uxMg)yS6`3U-K9!GLXw7- zxl?1A8o;00!M&w0>DuwR>TOB(9&rmQtfC%=2WB2RKO|8yj7h?FIzH>Rl^oO?_BV z?#TB+=6;*mK{k&ceW_H?zIP)rSIw$9m+x9{{SQ82paiWjaB!0-&ezxEi@dGOlQy?OslLLB|~dO0M}J*YdcxBNNXAe$0UKP6u9YpN#~>h>S5X}8IYi5aJ=jrzBq(b# zO`-1hOUE!-h=n0TL8sr&(zNyMHdKIf1%Lre$T6?$Yrz0rWG4m2_EMKa4av?tKzLxZbn8ct_BqDo?P z-fhO-+PpufH?{3Xv?U?AS^`n-o_lFC&wXOW;FErr6lq;A0g<);01it5-M@vDI3<5n zR$l`RRlSj$!!t?_3Cc(yC?8n+7V7t9Twi!&p2$>p{q*;G;luAz*O>nR^om@~tg3g_ zC0d?-cH{Lc;_JSUsvwl9r^M+HXK;SI{U-$zR;5Q#j^v+c#@o5Vx%oABo zlHzt6XA|+aLC0fgq|7;w=j^gKbdg;D0BQagJvggy(%ks!`MRmYH0&<9*D0TU8wDsS zAxBXLK-Zr7S`w9Yfwujj;-=M4kPPKOB_wDJnB}h8*vqvY-Caw?E5$dM%TY;0!wu6Z z0Otsn%83MjG70|x<-LWdOJSyi(h`66)RiQUU+FSAbg@ymNlwRGQU}oz@L4mpxGB{w z07J4{If2S$TM@4~I)k^Ex14EEntE)80u(_~jERw_JwSu<7Iwu6QAJWJ6o%5T32^F; zTY;yh{VfBCFBR0*IYm%_phn@YhtsE1sn#am087GvcNGf!Kifw8vL~Lu>EF1MNM*2_zF;j=%ONb+SZl@yPCRg7SfhLQjsJp z$o~MFa_ai0NM9!x6nnvr06C? z^#xlAI%)B>zou?sVxiiCZDe5U=xk;~yPse8`&qNDq$mVvlc*kkUoV}8(}}B?Nz4)N z9TYd^GHkmy?IZbn!cm~gu0nrb^Ju;YH$`-07T)Sr$AL+b3~qVEZDw_~4Y-x54J$T- zq|e{!Z*;XOT79K%CoXRax6*#LN}z`l5S@tMD2@4Aoms&b4V>*(HdDm1ln2yEROblZ zW^^+IN5;*aWo`ur5K}7B3=F!E2j43^NkhmXnsk8>nV*;6TYamhNaN~-JB!W!Nuyz7;wU61sz}0XoK>;Zl#OpGA{{YRatNHd= zY~~6iDiYY#nfv-!^Rr^y6=7^P2+WWIl4o((m-(>uXa0zlbVBm2i^JDlRT32JPEZO) zyuEd?%_|Niys;^rhbsbb-D+74sl3Sv8B{bnZ};V6#){huKpIFXfuY)dw!_pq?ntW{ zX-$$>u>ze&0Z{~nX4q>#epb$XqZ(}7^*#WiMw8A3w4LOR^6yf^i2w~m>F^fLy`mX$ z%aW-Mx0ne5T&e{{Z#}m`34F%1Xjmi3)cXEjjg8Y^5ieR)A~w8uhU*A8{xl zB|$_eNfJqb2q#F}orf=$*+wUQx0FK4k9HDHL%G*a*2MUE0Zp$X$%W{oHlj+l*Iz?B z?{2d$Ud6saR?Nmi4>V0o+8=C!;DR-6CwbTz_}Nvsw4AAEpcJMQq6j7x%0%+hpUb6(Sb4|VY*ZkmED1UgHG`m;{{R-4x@*la@7rZz zNCQ;?Cw&L@^00GQiv(O?gjq(Hk==sgrzeRKuar*5dlYcHhj;H5IDvI=?+>Y_>aRMW z(@wgqsYLFhro&V4u-*!zt;E->H%;H8i%}&+l9WPZ^zzczHXp)wpAGLCJWGZzC8qLV zml0Bgdxkjn z%rwp1*i&Yi=A1p_iznV~Bq(X`8QKg9c5ChDa&g*`-p>?#0!m!GDf3faAxN4Ow+?1W zfJBfq=cSzX`s|a&E-mp>4`28zhs^svCc7z{a{45!8kKjS_X!>VW6BAVZC`dC;U^Tk zIdOLqQ)BCk*_yjpLv*#32>$@5sdPKAldO(W>up{Ugkd#UH*GV^o;&(J-hcyZX}25d zu=N<7SL(wXXB&ZX+xNwQHvn5(Y&{m8$2dC`a9-|a^~d*JRTEWo>!`ckt4L3JjU{P5 zgm1LlI`)O_1$JS460A3ds>#2va+eu;LYqPrwzH%KX8BrMwl^Iy_3MaltOdm0B0Tjf zDPF6(992plOHBnP5Rjz;kf1i)Wb(BcfG%`#dmG)tlIMMzDmql90n|r)q#&6pP})Qu zQ99Y)5kXUo&m6OhMl}s?tpkR(7rOScwmdSC;lw&(4rgq6jWs$1!xd6J!oCGx?^is! ztJ@PTi@Uv83k!cRdH6c!$bys|bW)Tw=IgRH5_=DDdx(5Xyy;T?+}*^k_L);I7Mu>o zgJ?la{{ZE^n&VtOjX3MXi?aqArUlVJ`l%>hZF0~;*O}^pmvt(X_V&F+&KAM zeC$2$vvtV(x4QoTi(Xf$VO5o)Rud&CNeh5E2_VG(052hHTI=HFEz5OPT-Z|x4*IT% zLbmdC0Is31naKzPA{0ikuDuPb-WOq2v5k|5uUoZsH5AFILu_}!DGntkl7gpEBzbFT ztCt$xcjh;vy6*-bLxS>Qx_XfMP*TVR1+t93G{G8^B05X}M2A3A7f3CmZiTOE%f}Ml zPTtj2tu%&`JSjOs0Rbf-Y0wXaittkF?&{my8&F*DJmRp`Q*`wVr}EIXqq@(Z$tqEu z(Ht(vcgGHKJ2(1j6uK&b+|@8! z?-JuC0+K-@bePs>rK)LYc2^rKNH31#RB6L18k?Vh7{PTbK(DB5E}ETag))|0V5xfT ztEtzJ2d$xT)&Br-;hX_+;3w}l+;CD0*7BvJL5j-P;I>^{jS|>EOoIhW>TFes@lOp{ z!?#WOgeu;4<7$%eV-`^tvsJXJr2rM;J~Rxi!lyz2Jxi{`d<}cF9~Iu>ZxHDc&Je=Q zu)D^gZGwkGX#uuCIude?0OudgYbz^h=_#Ev&vm2U!_N94qhsnHm7`MbJMteds<=BH za0-ipJUv$(v9-(>it$ScZwOrrY$(&E%>%_T<OFFLbH=VSk}c z*0{6cqGfwFC*4^Z`2+B@Zv*&QbYg5x{{Z426x|_Lbu&Vn1l@HB(K%)pAJCYY{`Szk zJi?FF6L?-|TC6>u63RGkN3Q zAhmVVAc{I^0BQt5pRYgst?P|ke&MfWoG``PdR4bqe^k@W*>be77NAJ{#lSt0~#s;rQ`W9B0ND8-&ywnXEKN-C1ObR^U&Klc8$TkpKnXicy7L}nsuh{cCqBPpcI6*bub5C z($o+Bj$=$VX>Ys*e^t>cs3bCjQ6)qGq6j>Opy@hJ`q+r#rk*^&kbFjos5o5MUx zbrsahP)kp(1u6g%Hs&G?wS5*ir@au^YOt-cjL8{vS3UMNSyKz)epBuesW9q@j-x~9 zt!y!Rcgjf)sD*ffg1JGoyVdQm@>YTgBt~HyMS?ID=9;z5D3O^Yr6d3OafF)?uegl2FUNCSVb>1xLiW4p5j zr`v0mrV!g@YAaTnCVyU5%Di&?K{(3wVzB=J2yPKf%G^>7Hr}pJ;IQ}4q4jJz$=r{9B>_0E8waS~$}76s>u(tJ?!NRZfEm)t8i&BmudAgV#%7tW}2v z#Zc3%w1kR+ryK7SHBN9gopqfz^0u-3Chtcm`&i*Bs;1m3tGFxa&=Pb>3T&o+C+lvD zUzU6=#DB#7mOi1TH%P#sJ9=TnVSYMZsHvnQ_<;tI^$!62(4_+gM~v^G@mi$4RuJQK z>Oz<-GMuVyAxU+!I>}KINtlWBwwU}=u12acTX>1eOwLd^>vby{WlG#h1zN|x0P1Gh zrh>7$n}UtuNT*cmF0i*&3p1SY!wmrMYPAYPcx*)&uybi zbZdoJc{nEk;Xoe0g|t_AWi7fIPIW<&W1gD-0E;ii=j^cY7~REN1bOAmdg!AZB|>k^ zToxKsH2}{k*u|}sx$KBbX-B$%kUCf&gV#bBpjGa)=2N zAxCraw==DfI&7`jBV5w*y(+CP023+GLopxUP5mw9n!wwMAQJ{uK$z?IV*0{}qE57vGb7>k|N1|>Sp=G%zO0U#8}HNuLsusQ8O9 zVZ|##RiMzRTc0TPvXzb~w~=N6GBx}A7M;U*s)S@aWWo9>TF6=wL5Wg_UomLv%bmi4 zk>ZC5*Ihb(_L6Xh!g3-LA_VLsdHO}Zg)`nsatx4x^@#Y`nB{QWRR^%{hmFwa3t0s- zxhWzi&#ju(uxVWlstSgQ(?TbGg^RtNDrS3ur@C~~f3>3TJGGLuGQA)KSibBO7v`dY#4w|k+=g3w4@C}mKcA`ZVF+SN8Dnsh0}x}a1P zfg1$r^U&>U6S6f+X0WWZqQ7`3?stg$aUOo*LC6Kwg~2B5ogRW`LG0^DR$M~mb4wX}8bPSR+W*=#IiAZF8+^ZQ#ic7aYx z7uoL!l#?XxWBqCVY()_wR@<642qEq(2;%Ctk&7G*_laM$619ay872}Zpd7kuVhf4t zh8t3vX-kxh+73i}+`gQx4~TB}lZ>4%K|-CM%p@KD^!ix04pE_WLDjNCi39%J<&z?L z4L(G3w@{iuB5#mZ#~sP@Qxr9H=0Qr5Qm+nSAw#d0lVqH$Xbkysft*b?h6sBh`cXWsS>5F zd6bz*If==>f;9Qs`s{PrcNFpNiCjRfqi^^Zw+bef>zRA{l16}TLURI5vtJYM+&zGw zdhfljHidIcg^D2HE)6z6)97uXe+~ZG*uLZJyNL!H!)d>7Y%PgdtY;4?MU2$-AC^?x zutJrZH`_yEzfW2EH%&~y=U&45Y6%>;+r#LQW0;3yN!i5vIFaXLVd>_s?jqpK4Z{8; zy~8{ik@l{tc8%dxkOFF#B}ozdp*b|_qh+e^T1pF;-j~HwY*R1>cV8d?ne*FA8sR?8 zID?B<3F2NA!q<(@eb$cp^20Z)z3a^=i7p2d@1(&X>C0x#-Xfh-@qpm7M}J07#wkoei^8)Yye(Yax4!-gI%cx_<3E5cE~}S)&3si?jl6 zb-zA4o;M?sU$qZx9B0AA+|1x7t1Ammr@Ffer4IlUKq&y_NYzqE(%6r-e{1|n#w>47 zdf}V)sgP+)Z&Fe|uI0DM9_$>X$c(@P8hP0s)LpLYc-@Z>?g_X*hTSdQYo(;4c|@!g zPG=TUM~WapBo2nna3%`E{3OCm;(TFu3&Rw-QYx;ipf{Z@B%l!MlkX6rARV&nJ6o;% zJMi5d94wYdvbx)8a!)@W@v_Wfn5@ouWG=sm)5m|wPwvhVf9d7}{{WY9`w%#9j6qC= zP~6omCD&eQU=%4qK}rho0|FEbYBn}4RwTiAF9|P$7j;RX#JBwl#aX9yAl;1?flWG+ z4vTV3f$ohrI#gF)AjMU8f_TS_uM>LW4CTAHRSeBiC@dVsB*9P%3QA)_nL9<7!2C78 z@egPUTjE}?RpVUJ(RkDh$y<*=nLCh4k<6#c+gO1EBU%9E_Urs+Uf16{-E+A-&)|6P z zyMMfuDN1eL?ZK=POdUE~V`5vTzVT;@6>QbAhVI-p`e>=>oq|xjiB8 z>fU~)fof?%P^FI&(y^Fmq9ksq5+~tm>Rv;wZnRKJ-CDdFr5OJJjh6;6 zORY5Z{dg&h#*n-LMN5cZj3!CSqYBgci5)FYUNo1r$$UFe3h$|(TS`fDR4FRTdL0Nl z?P=T>ecpHjAKZ7vK4d$0RWSHkfHHFhYX_{4LF8;%+H&i|hlN#qD2akJBnj#*P-8wHV(uN@3u67d1NV8T4b$G#r@W_l!6FnPAe4|uI{Ymg zcE0O$wGV}o>rG}!N{BNeW;~?tpfPV0n9~0Mr?_3hlr?2-y6$(HQ-NtQsPK{H=dG!G z*-&z2*O*g{uBLHtH*X}z4qZ5#7-G6?8G@4SMd5o?dlL;LXya>?l$6IqXZBC4@q4)i5ppA73BV%;p@ejRs)95q%MYY$deVypI`UKpaaumS(jzb&G?^+IF^HjoDXjGsCKsfVy*l6YH^nC#3n+B&}v6M zd1Bg%Hd9RyF|cdwIp2~7wytOcyGL5vl6KR@LUxhtaoU4}H*G%7SN>;BF>Ea|nldgbl1-q$= zxM72F1_DkN#lec|blswj)jrr(WcPVgcHHapwy8+g3|uz@4qR8tR=cvS zBoAh(NzR<4d`ABOIMFRdZ2^JM%-ulJ+&F30${z|>Vi>H%jR@4<_CIiaRiG}*rKMBX zQU=zSR2@R~1g0lnDfv(g*H`}dx?{Kj7;-UEnbP=#V_z-3^wmWwo_K58VeNtVF-&cdJRbHW%8>dQ}VGlZg zEEOk7G6HqzJ!LqB*;=a&;!DEe#Pz0~+V)dbb6#&YOK%keoh3w#b54`2^W|iAHsQ|@ z#y+{YMZ@=3TTfAYUAKlMf7!uqj8Zxs4h4yVa)33NC#AYJABAC*)W9?sKG(VO-;fH) zYU(M$3?MPSKQq?)XtSRaIDf<*3t~@U$F#4}x~EQ80Z|Lre8<<s3U{Z-*6{L}{+Oa<@IH>#Jzi-79pd2uma@Dv1P= zd_+!%lz9tTO)OP$9X2*bgHpyvDZhAKdB&HE_xtZ&&nv*SB@F;XHk9lU{!85wvONJ#5Z)5kUCICwziWBZK90j}i7)&*EWs z&{Ja@?&PhZ3rmS^u}Mlw^QYXM2|IvetaY|Jprxt1u&YRn=%>9NOKy}9NGV3+&}}4X z(9O3;;yp!4OU0|L%92#w^>#YL#HLj}&U65Id&)kb9mTO`H>Vc`({|CG@dd{!9B`J- zWUIi0tI`rD&U)E)8sqvwZaVyw2@Z{iz$)_otu;5ggGnJFO82Cl$^PFfexgk}6sOju zCo0KE3xEe99`xz@dD$f)Z`3H z&c1~tq$LFPPQ3j7KRY#9%*sj^DUe8wx=p_ogc(bKqzy*ioAir%Kqlo@S+0xPTPuZ0G~l0XEUr~`fdEQLj4sngzsD2)=36%)3frnYNSP~(b0?}TU3&)Gn7@l8}GBFd#j3Y^hCQE6AP-|4R^ zbfurDwUuttwX*$SzTsDJE5hZ{#+tTJvSGn5+^? zWW?xp{rT9l4$}8c0J1AAxsNktnNk(<$0$^-3nUUpdFN4>{6LRdPx-s?I z$VCf<+B?nqBrhu}AUK6iq!IxHa|YDm?+mPK+|11vxV89beGgn!7`rC@4dQ)>Jng5a zztdGu_FwEEZyT!n#oeH5=<560RMb6BRJ5t=>RxX0cS-RXj;DCjQSesq;CBmKRt>pu zZ6zHI<3?Gi4lTN5!a(ttR~kqLV|3cM;_qnO5rt{0?~DV7spyshn_}~-rte;;QP3f_ z)DK-Cb?I!IS4G4OUwc$>3yHtQF4`tgr_FVGoDMvK3GSQC$j-tJ``d3#MOBJM;^JD- zYjCmUVZXTYT=u?3Ks=BBe zd771yfQP&!tSk9^d7$a1rL zk(LSI#|ZdCkJ!W4))U0IyBH>~yJG82FS65xraVefl`0Hts4-x!)BID!Cy0;XOeaL$ z)@e|tZ$(h0K`W>#Ig%D&s3vmxkgi7BdiL!fPk`UJ?hYeilwUZx%e4(Pd{NRRZq%h~ zkOU!&S?MwSO+#Yl{^uO>`nRDD&e+H|HH|y1Et)aXq8Dj0HZ5}lsDTZ81 zM9EPJS?MbCwnOa^!YW=F(5m{qDNWkV=XyE+03Ey1q2AQAmrr>6i6byhSV$Uc%T09N z72?~N0{Z^|(~LmnJ^s6Vk^_N3$)KJmh8IgA+s0N!*P*80}2~vs@AZ7%?HWs%j8NbK#*CkaOq-9o1{_h<~ z00D22C&t`W5c2OAZzbNfMPaV~eZ?gi%$U=hkB(EOmX!WB<4S&|#?a%BAhMOc?*#LR z+D7(fmDMm@ea6+eQ;US8{*VNI_V;&`R5s-~3C!HBzYu}}G6czuG_qG}Yy#4>+gC3) zg6S@LClYB|DtQGhz%V?eFbsl3$4y4C`?HS;@fRKV%XHvtfrS*f;P$$MBvUXnQs#7l zAao>aI@%u*(_SyKkfjxZ>5xH8X}*yf4ZmA$uEqQzJ)JlVoJUo6saUrkC%U3#E%@o^ zkA_DuOql-w>OCyK6RkL15r6l)MvoqTo2gPk{-ILXo3|cA_*!eShYhe!DdI`QRX1a2 z1n|v<*|}*$KnlviuX!BGlqb+8XH#uWfUwh-#rIi#)wH1X;ZUa@24G5#pACn?!F&wh z)g}z##nFUl>HDXt)G9Ahp*`(NlL`huqyU)e6=P04@xzB5jd(Lz#cXu=a-r20u8Xy$ zj`F^!i9;y$f=T27Cfv$bzM@f^P&Dx;kEtkZUaUHE6)?GVn$S57z0Y``eUpCG-KTJ8 zW{e(!`kSi0uL)}8xzgk=p<_a|Ksj4aH6KoP#grBJ&x#k_PCduhs;lox^@SuPVnvo2EfM-6MOYmec&GNIw~#X4g&yrfrI5 zO4tesAOMjC00KZZ`N#U2@AU8sq5L)Q#5f%nYbSbVZh3ePwe|u_3t_}vb#9>3q@y4R zK;1B@2joGt4-~i+hOzqzsa4d%>l#=Lt!dO5J}qr*(OpbbBP$K3Jc(N8G;KO^w4?Y5 zijtSsNpWhFDJD9{?eR8?By>kJ4yl~g3@-1i=XYUy?}qhhxN1@SQHqkKI*R7OODv4O z1d#>@DU&}-Lx5eN5r8fSZ@fRlX0G&vxTk69LQ32SQiO?!2Pr%L)-SwxTY0Xpysc@X z9B3dow1cLW}$bYOFPckly zZVuV+aXqIn^=H)3Hnb%$mg(+wKIv{99CTG5^tWgvXf{4~zq+BGqy8;<8k#2ZDJq8)r0)_8!PNf% zdrx79TTSau9VyDA;y@l+8PWxvP+Ve)m35A`6W%EEnI!M~+9@S%)FtetB?b}@HX7~s z%E4KH*e-<`GJ-umOLX=#yqS4T(uAZE*(3p^0Rq5Zh~ES5jw@nXbl~nc2J4{dnt)zZtaik7lTE*=xhp6wm#ICilq^*w%j?#Af^RaO^BLjxv zaU4c-L-B8D2_9RneO}lb3*8uIqUgtWki-wT z=8CGK$kUtqMTN8qmY@_hi>pX!ec`D>00451M_K%IOz6?I)*V?0ow9eDC1v0Mo ziO(iOg(vI&ZAsyKs4AecwCXC{aOx*2WKYa}?`uPa*Q*r$r8s|3?NM8TvWP5`xi5mD zsFHj_Pg%Co;pDXc0L9-$gnV6_t~ssQ_?ukW@ctI!AF_}7DmE$?CqQy26QR>Y{dKkq z|oU;_g}gxRJ8*OP%ZaL2YEgenA#(r>2Q}H)3*FC@>N6{WAY?? z&}gT9>WX@D@mid4kcG&R)*$Tz>1oTi4%6biV?&1*T=H6Vbc!n?GPO0^&X%+AA0T|79uonnPogQ@W-z$IFq zapogWg@DyY)8d}$Vsr>Z0nbSvuhQ0)+R~_QwrM-CAp^owGvz*0ZfA&2=^S6h#V{Z> zfuVg`$O=P*<~>HKvo{p+Y^V&xl5*zUS!e$MDQhl}tjdBWAnDB6qRB1{&U@Rz_0!VI z+Q3TqY`)UF1qgpa7p#NV<;+?A=T$*a`wOG*6z_Kx3Q)=lr;r|m{A|ZLR6N)@R;d{T zgSNW;n))8`a(L{^oBXrzAmKY^D zv{Yo|H09Ivv|VlR97ac$JHni#X6rxR-)kRA5&r;Cq=clHOvHH$MN^B?{JfjHu9{G{ zmavp*wxi@eTUhuaXw^|9iDs(bs0EhWD|DRzPHlA9a}i<;C&7FB6VwIQuv%yON4!p( zn_2uF?DE3_H-++*t>q*rsPa7G*9G5%uFH{thS^9+jfUD;MkDbARHU*EPd~x|^8jo$ zRfZ1WUC(tig&HJyV={8=sq8{rk?K7p9BFL4q|MYk={6x zpk#IDY_yn_MMkf3t5c%mny)H1X&o*tqPvj^(xm`a^#vXW3j!9M98T0#5kZob-kY`Phk z5^hv(F{)ei%01yFGDt$^CTDTzEoOEuaKC*A)cHwmW)q^lV~{qeaYf+L>57(?;G~Hv z+{eRReJ0kQVwcjaQJ4av=#o%#MyFl(+STH5Wy0RBp^(0?0J=HCX40BQ(6kal03}N0 z6Z+cFqEHQq&;-t!X{SHFcB?p4;@M%g*5L#IBo2SR_Oj_KkQolF2_Qf`&X(lWO>lX- z8oK?tJE&QXJ7}8mMditYLyE zZ%gi>G?#lyE-64EE*<&Cr%k;qABr9hW2Y2Ug%lW0bw+7dA?nD{;>t;9h z2;xr}@y+M_DVmG2Z7rdg&-Orb|uN&(HJ#Hf?xEN_Z#S{CoW_$C*`fAS05 zg&WfMp$YbCHj;c{3f5Pl8M^$eBYtpR;l`N$xx1G26n7QPQnzn=#<^o67rD;i(5f|# zM3Lof^BLKO#2iQ*Z>QtgbFmB#aj80a>VA6lvIfAoMvnErscWh(^fya))d#OC;@luM zn35JxBLh!CZ3)AQd`o+~ePUcca3-UR^7wYEG(Y8!^qAglUA+zdWV;a;FK*A#g40BDdAF}VVITKD015^me)vyCn5f}VPf7d>+6FXqso z9)6u(F7q&$k`!QavlyDt%Y?qNce#U2&A$HtGCrFqely>gL$mEYE-<~S8oaSpWi!pv zRyKgP+fXJ~ue|D5rL7Jm(!FrE zeDK-&M_sJDZ?(Lqs!Ww+No}$LB!EKYMsXkIYhLK^b=%Oxk7c&-Wh^ z_)$;BjBQ-1tVwyS)L*rA?iCfhNm7CSkO6=OfC19k3yCh>*s~tcVrD89#SP-qbq~CT zrAbsm^yYH{J|k;%1BF1 zu1Z+neQZm-0Niz|VL^pMO*D^ayRYU>m$kltX?22ey*1x+V=Ka%>@T8;Y5xGFW#Jwe znbr&#Bo2nqLoG7Yq&%QR0Hwlt$S0t+=lF*9a^fcjc(GN8Yi{8E%X_|EX1luuH1i-d zQ~}8efFoYE&Hn(!E8c15X_G2-L&lwoKp^thdDqLWm{Cm~ObnHV;DDhqcW7ETtE;is z1zzLl9PZ1W^ax$ULi%d&r^-|ihFjE#ST0#9@SD2a^dz6Zi+;s z@{$B1owKBBPGjh!&e^}Q?+xAHe`gvd90^V$#;7$FMQr|KbZLx|a2HqI+9N(-^-8VHWwYR-}LxCttKr2#|dd!_advUL{$879V z+takWn3)KElM7uAxl4p@rLF^PX4TaLp>fE}qtFEFloNLTIGwgrdS5K|8{w7wvqwcx zii~MhNikJdm=@_|ZkEI;LJX*+Xi`P7_h3sk-s7g{JwTRx!P{3nXu#)AWKB-1cUeMYO>?0s|>c=E8ON% z+!3sc9pOv)%2Jwiv`UEpu4O!lwQhRNVifPS!Z&h-FHU&i1XJ@R`qn=sD7Kql_aGE4D0l<#ra;QnN~*> zWvI+lH0n8YwR4N_N08_MX8~E1x%YnK>u8C~ono5dwC?RQaYC2X-%i~CVG0Y&?yew> zKgEP9nLt8HUm!s%gVcfqd@NykUmg7xaA8uVEhKDbPdFzA*fOs8A%-D{M#w^ zQoh)^FX~5~bOh!AYY;hs%=r`2+V73P-W)V`yqU<*SnC1_7G)jX0Sk-#V#622vB_;5 zR!_$3ZuV(@6(z)yO2jKP4WsXSR2ZqJ8Le1ctZYh&8~*mS@dNB3r96caRAi_oKs>qg z{?@K>V+Gb!@K1$GAqtOph}8Ae*fHKCir-*mv9vUe6>oh~H1jSvgn&v&2pu9nTV;ON zNT#N~DJasWQl+g!IdFv#lR6zbMYWCi;b1uGlN#x%kU{?Q@U|-LX^9yB0GF*xT>CqD zSqemzEmH&J56jNY@KzZyHh?xv@wc)nH#t^VQiYe8ZE@nMypq{$Bi;pCrcTqRloRP` zhHKop`#@nT#|lcQYcA2NlHqVzHVU%aaLS zZ$4e8s<>TiB7iU)X(z|>BHU}^Mi+kqahm(XmxUVUn)-g7g$)D;%7_D)g$=*OkzhwL zl0I7d{{Vz5OIX|U{GY;(Vbe=}VOJ^t~>?6)&%VTZh*na~50KvFDM^LpT4pldq za-HN!_11otw;HSLF!Ff3qA6nzaU)@(yReruI#D5)mF+#&ERy9wE>m_WNYCkp27`HsA zd31nsQ<1^aSa40BZE9(2aS1aD2`5OO?kwG2B!Y&*5;ajen4W(VXAh`APJF;9ZhbYI zFm#sO$^x_+wxOp{x5m<8vWU4BN+s5^m8k_eNQ8qk9(=6P_lg#vJRqm}6|mEB%WHgF z{onx-GzDNU_1AwpAoXGrwIxACB_SZjv(KKkwLZgQnq7H_~iWYy>D>z}X<{>Z_;} zl*n3@DM~;)f1fY2esBweEM2tC-xre^o^c^dQ5^pOZeJT$ot=1ZRf+H4T z)fpNlBu$b^$9NH+S=-}fnPAkoG9rCM+Ylb<9p-~A$Zk|?wB_dlOr1CBXSCNlt|(+k z11{4YEiXrK01J*CPg9^CR(`5#b~Hjlbldi`N@{RznFlRcwVJpORN4V5g(0|-gvgCR z*I!?qnqCgF(+X|6f>IC;MM=-kc^;n+jizhp-tNL3Bf2CQ3g3M-o~F>(i)>S+YC}s> zmG2hRCz$!c{{R;5G04z0T>?nlPKYZPRk*5EBfcSGM~Ti;w%Uz8wzj(qRxwk3lr)gF zm8(06I&M#vr}niejT2HPqM?W=gu;Q;X4_~R{cURY1ahU!Nb<5sE-qX=$4NZ4!_yIGSY zB_L(r%GPBl$bgilAQ7n4Yq#G^aq0DS_^a!H6P5bCNp|a4LpgIGXnOrVy)8oV)D~{) zphN=MCPbgVzdL9ehMPBgg>sV}d3oA}?E=~b*-*$S%c#{*cizHNk|!P|AA^6nV7d2= z>RtZ;m{q@*Db7!ZbOl=dpDvMY0e9hLabJfRa`D1fvndyHJ)ZQXT9OvT$L4@_DI(NP zCb{oh=ZKD7w>8k^L0kJFr7Z8i&(ha672&zzwb4y^;~V|PA5aQv>7{u|bwVT)(@j5p zt=Q>=f(DlXl#Oq<`M$_%%Na&fXM#xjZOK`eC2t9^9cnIIFF{LxUc`|7?|T?wg=G>O zY-+Airm<|*+Xo-@FnwPTF2aXIF9-W2AZ&@>Ou^rS^(x$q^2bV!0FaV z)!}`Fl7SYj0{d88?V!;8R!+P5B~r~u2$1iecp}t zH>LL0zQn^~9eFxyD)6LpBwC5%P5FxN>yqu^))k`^7;XBM{{RZ3rm1aj*F6XZrlg>i z6DL`K3WyRxBFUwryg%SKpAoUr3$>M131aAH`QBu@LwXPhCJK(5YIYW_uWU@-9aZ6d zw@FP^d(@@2>Z)1+NT))ILRe)2U?jjQnUx9N+K3@#w57$#*{c*q?s9Jhv!} zaPI23_&rp^l}cfFV&!<$S2oo9UFA@uBO+Dd&6T;-Y!W)!_2CW)yDp9v-JBe_Zlo@* z^TTgcUezET@pUU~x|I>gfS@)^A8YT7y~x=bm?dW+G9s&AW^(O+m`Nh=l9kc9&VWl6}WpOLjY zh-+DP=BZuW(t}RYu?v!Ol#Nca*Ot2S8d}=pHVkU_!`xEgu*|CbABjc#cm7!ixl+4| zk)*<5#+4fgHl}WTI<{z9y>Hir4FZ!D3MtN~$TJ8}AVPOPGqsS^vA~i#w^#LADmMnR zFDs8t2>DqI-A>-uh3!hyK?+-|LCpJsKJJ^Sc@JA(oDktI9ltnNdsI7!TT{%C`}b{9 zfGTe)Nl-?iN!a<6+L63-P~NnPr@PTjO80S5+0qhg@yd)K<4n?QKF*zUd=8D224t1FS35*(NIS`b+kibsGGWiXg^LGq&RY z0E=)!{3YQNJV?gRRny_;6L+*wo2kc=ML1AUE|m}<#)l~0M%LdLhqJy5$DN0(Z(J>W zqOzuvjrAt3m2$6YX=N$~Cn*GIIS92G!(JnBhaGT2?!de)$L8w2E|e|$nmfYj?@;sV z1T40;fg}W_BgFue$hLIFouqF58en_F1mF%J;+C&k+V!sUQ+2APq<2yvFq5G1K___B zTRADL#M~i?rGbtgxEq^s+d;?2p2?*_j-9QLKfE2F8v(B8OOh?M?YA{x*Y>=-ao1qH zO~bAyyG>VkvsIRrRmoE76;!$LC(%d*&VYk#;n@#`mxmvC?Q-C1w^p0AH3FjdeJao} zl?5$C`RzOFVeCD2U-;(rpyAdTrVrlOj`D4aRuHceoLa(C4*HTvI&3Y`z6o{)#a);% z^X;J{q(hcaji;N{{W~V8N!QkpwNi((tdU)yK35b zJ=&!zgrx~d+(G{T08wa?ESA3-#=SOH+u?(ay;@^ zoE>$Do>R|j0$uL7uoSWiQeqZk%n2WQ+G3iyN@%f{O~{^_ojk>>*ae@Om7&)PM)s=@ zwznG+GDz|1n_=f_w}=%;Sq-6J07+J9KMDER(-2hwNLI*NQ6xe@k?CrKi`Ugf(|4uB zQY;r8D3Wy=h#xa=0}bw&VX=QuStR{=6z&8lf}%o_lO;p!Pr}3QRFu~xNGB>%3PBwG zdH(>LP2mf*_in*>RJatSr^Ka=^xJ*)HuHYq<4;6tn|Cu{rAkQ$Pw&dsn=K4wvA-!+ zhi5z8wr`f|s@F24=%6J!^7>nOu}I!F;Uz#R862cjX&?Mzb+elo)jstSN` z=ZNX`w?gy^=C!jX?_+-!(Z}4EGrp zlC&%-KMZ%(!B+sM)Fg&fY_)e7OlBL^h62FTphDOsja&_`YSSFc@(NA~ieJ2vV9!B#%;b^0AfxRNSqaw^FAADlKJ5Pl-|n zu>|ew&uas5VGdPedS_CO@lDkwmAC=SqMVT@(@vUsn`kNCMk0AwkDAVr{{T!6lIyn% zuLF#@7lCh*`qF}i8G2O&XK1trofM%q=C^MPv3E~u#odilsJBuRQt(+ORIr@WtQg2Q z{-0ZKe!q-PmGoi17q^-3K_nYaIdpe=9%WTdCe4@fzs5o24pc+R>PV z!5|WO1I~2QoLi^3Lgq!mgeWeCiOia0h#O8&0QpbK*eCGm!HwgNBD+%Jd%;4sUIQSV zb0moqr;F+*mAX4kb++~ENl4aWROo@_p_BC!G!wQXqNySQv}I$8K?IFe z?yV{Y0pH8+Es70uotakB30|K zp&+D*1NPe9UwNmOmG@GRL4`IWa!>F2Sg6Uhii3r=OqAMGlC=^w)p5>x{qJV(=R?`j zu?0GbGDd*yXX+5)Y?Tm5Dg}5e3NyCq60o5F10)bh*mVNM2Ww?j^tstZyHMhi z;R;Mh%&gEio`2%ev{!9bB)^!t>Dy9EjzXez)E|e}m6yJ%mcwqVDUd-R9XSy*Ya6ou z2L2~~e;KP~P+TDdjglj8t)){^+Db=Cczsu-W$zVr@NWXr;cPt05W+%|ft<#>3m8NE>Wy#+nw!+{7f+RSuE)M#)za z+E^%TXpyy}oMH7;Xrcj7BF@=T+ysLsne(!aB_8n-4w3{#o5aHK3SJ+O*>D=Nx#w2h zQ9#Y2kpn_TXwZ`z4x-U_f?8cNmf=8TT5lHw&^gvAB4k>+0op@TPI4pb((}D(9}mK_KlL zTJP*PfY(CkbwudtA~w{;s!9jwX|E(u=FF!csFA4j`CC|aQMlQpT1i9&xRaQtM1>Fa z@rzT6J?4nVz^f@TGIIVaSMb(}$_5hJb_fC_>FH|%ogjpvW=gpM)5-L=W``MkV>b; zr23d2TVE`t*65aC1SvYfwHe2T6ltndg@KtRB$1%!`p3@0QyjC8G-ecktgyB;$C!rY z#xC91UcGc_bg3^m+JaW;leykB`{yTcRNhyU{@Z!IQ2N%HQ;x1wNt3ys@1=#fiV!jD zign-p)2TWTb`X4sKihi|;hy#zOJoeiGD3!gNP`E`-9lH%B|8s-xuQ1Inq#Vo zn^I1Yo>QcGTWRp&bEB}(w%76N?6Q9mIgD}Rf0noRrkUCt?g9j7yF$-ag~&nYH12v6VGLPh7O+sH;eZQ3pc`0cs~` z9c>$Pa4QvY^7EpiT}yX;z`Di1dRLb}DTYB>+)`Ei#DNexiy_BOGt(xf@8Ks49u#;^ z>d4b6%o4hQ2}+i;{J@dC^76K>GWfrD?mr>dMPX`#WN+!%ZOr%+sPicfEVEa{+m`X- z?fgBN)nXQ!M1ovPK&!oUjmXS)AJZJIps+<*Z;4nRi1l=#51Y1?#Jr^laUqganFmsG z?mGM}Nz+~zE+DBi#i+i1ZddGSJMt4xM$P0<%MFaCeogG(_A(!BiAIy;#0(TcMBO zTvWl;Ej*VI;ac9Of|DjEyh;GmbJo}b@2I#g>~#JO#qK(mXs;@&YNp#NQEf?4PGBT! zylf;v+}oj?FUAPPxC-UIv6}muyeW<9ZlJUPrx<3S6(UI31(E^sk4&Z84}iCp3+*F# zV#|({DvJGiPPiHa@|{pnb4k?Z3Q*IZ%}r!Zu^esl8hw=Tr{t;ZiPpe>`6OS|SfGv} zaHk$(o)cZ%Ps4a=*Rb8n^Q?==qz?Bx>It4wH1wV98E|7d8ue4*Y;M?UmP2jS(Y5)k zCQNQ%!7~R^CtGc9%KT2aIDgqf_2DlOu(d7W?A1;>F6W#9!c&>hr0xkxAjde3V@zvu zV9TEeV)r~xcr?;;TYeQbQFAV!F_EJ^nNqRkZaW?#^bvJ!uZjwKTl7bdcPlqs=I_c{c z&9}9|iZKmy_wD?;i_W&G#Hnj-1;-p)p6un=op<`%LvX`{IIFg0!BdOz%|pv-lDsG( zG{Ln(zx^Gx$sO8K2ZRu3Q`XxXv(I8LY^p^@ET*Sofk{YofRMKmpLDF9Mpy!O*3ql1 zhK=rXzje*;Z9E4@=&E3AX~~hm4fMXJ$nx1^55nhyb1Nwa4x>+#iQOWU9K_y4qUKDC5S% z7b#?oHpb$T)Z;a5b49OU*6;Gaoyj~k*-o;W8aigkN$nr7 zy}k51Zgf1AJ@~nPA-A3ZzrXx9@G}xpyj*P#-`A}jLLBaOT0N9N@VFo-nUSW(+}c&& zd(>Wr_P!r=N?MY&y7ARgW_3FA*IP_~$0~11gMU}vORT7I)h*`=(Bj-A$x?|_l3?#* zyUgFW&L3*-tu-z-%b5sEAu^au0}@pkbTgz80^15aIvgsTM#0`Yo@GW7a- zAHY=VR}(H3(iJT~#%a=&tw4kVv}qi~9#+&izYbG3#b!gONO9U=u(Hre1eKDXL8q>k z&0IU6a+ir0Fv(Nge-x#0)>hFeR5%8+w$|5NM5KPV9a7#5wxu*3DL^ei5Yt8@q~?xV z*;YOrBX9mIRq*@TF&lZKJObTKB{K{yB246iCvYMs?^_&Qi*dx{eQ=;;1!=qpiwt2} zV)F=b2p|Fvhhg+EY)?Rnq$nvZ<^+_L4f*qpdFkhFYXHVTIlmxqb;|0|mSxct+|H=9 zhJio|)kK*DkM-+fd%UH!l*uJ=k#X*jKhXKuI_IXSTSvr_Af|HaXJfzI*oL01NJ>zr zp};bOIsp-{*ZkYt>8cK;x7iRf`wDX-MFB`sO!t65G6tVNm8GeiYcjICE7dYI(0{+u z!*^?neO=lD46EPG@zc+HPO@7MEzH3RRLZjbjze2awCs~k%O&q7Qtd0rErPtD07spx z9x7pzd0i#sp>B6B1*IU71VB4_TGMc$NEucX3INVGj$_kbouThaS}LXrLtyGdi6cYk zHr9TY@t0`|s%g6k1H4rc#5&A#dEjSm-WFChLwhWKOV2hG8tVyHIXuCzRt}}@ONTJh zoyORLmh^cbg3{Saa;9b_AWu7A*WM7JsCBnlX(3<`2oOwPvxL!4==x4TU+NY0g_b^QW7=ameXSVM_OGD#H=8w zES)q5Yf~J1;teki_w3NClu~lG!CR`$B^gRi<4sR99Ie)< zsT+sTHWu(7J}a44);kccG98K07hMz!qr#|LZMc&4LoBULl1POpojp@v{Ch-~v0d!i zTp?{bYEY@y!X!lX5&rFKUChz3gmBFx=}J*uQn%bop7UokrAgEfK0OY$uJKLS-F-#n zTD@IxHp@ybd+IKX*}wRtojTbx48ZlPFz8Y(0vx@{2B3bFOCD>SY>J%?%L=7d}DqB!L6b-!W6u;2;h?BL! z^dTrZ?wb2x&B7^X{3D4pQwe_LF5Ww6a9MM4t{_1jBHqrGsW zduUWG@YH4!XmHytp&4PZ??l-T#WhAcR>U~3AO6>xAax0KTXWY<^@~bemrzPe zr9SU7W_M*e-*qInri8(zxw1DPNs4u)Ah)2I-pfU}{nm`I%QoeRREY5X?$ZL(t{&tSH1x>a}WcSsrt5O?z5LC$yd zw^wyOUDsodpb=oc+_cTqUnqaQ5SYxh4-V(ASp99VyDDCZG!3B?qi>uq(}9+II=WqO|}Qqn;i5filhYz8C;Vtf_xk{@z;t$T!A zQmN7sH5#UR8x_&CTyPRp6Pr}VmK?!sA;!>_)e3?Ym_R)&Uq?jhRVk1LgTtih`VFnj zD*)|Ist=P?`J}1Z65EZD1dQPGi&8v(Wd8sUs4yfX_+*37N5(!@yp*J(kGovxJVb~V zqkBU>mhSq86hKiCGq={j!~Xb2;TLs9mpyo+P)87*r)|)PDxHX(d`Is~SR4$%^*Gk_ zSF~kn>!VM5cvZTx0uY?CCQiHa*QVAB#8_Vc0LR>EMis;K3#hEEeS<@T`4EM9Yvycc!Tf7NF~M%UB`jWzl+?JTW>acRsVJSn z4gjg0k_NVy;6?|l$9x{H#0*igwOyC0eVsW|{{U~hA=b$NOr#U=o^xbzUk#eOQCE54 znnIw3MMy%mZa_J-8kjMsKDyYPk6|OOzRH(N9L;k$>I#tT^N#LkF_rPd-Xz}3r@n7C z3uU5mwCjm;Gfo8`=GQVz>J`6RPmi23#JqBD87m3Lp4ZRwa>%uFXIj!Vk^4k;{E#R zy>APIYf^!gq>R8NYK;L(NHey*E%foaRvTz-^Vtgb7$y@&E=Lb*+rq(7eX+Q^bYPA* zUwk;>W${l@NpYc;>J-bNLaoAp9Y_G`prt_@_)kkl@W--lD8H^GVtiyP9>cea(NxMG zVMX*Pf;><(-)WKu!q!g-dnoX8jNPE$;-$lm>8^{Oj=fbkwbNXHVe*oxWxxq>1xHQ3 z7U&OQj178T)Ypqxrj?84=R^I)JBp(~OUVQzLI98=2q&j0HpbSzOg*AJ`J4dE>x+}% zIq|muw7;u~w2qzZwT_K9*GpWRTVHFc-?A0X>Ud{#;9I8QMK#%XRVC_lA*{|R#Vg)X zk6jMK(#M^+c;R$#M~0__*kNra6W`Z*jdSgL*L@n5l(y`fiY!t}Ju83{4f*@@i;@FwyHFKTv@h6J=4u(8I{{XCz20-39h=xIMmNNXG} z@;jrGborh9t+uM>$m~ZD63L@>9s}}sK00ti^)$3?)t0ELhz_!%65#})QJDQn*XLq< z6L*@+rly@G33UiUi6~Emq`4qzsX9QgieIT}_KNJ??K{h9)`^n}PFRWfSnG%N3|-1X zsneDB!6+$60VL!E85)>czBV?fkl$o{O%~K3hTJ!HD!Z3ZmV%kBY`mPBXtB?fNVdzx zw~$pLuWE-99i^{eq$SL-m6t(-wvw3V7RQ+0oflUTDkz?Uq*jMPC*BH$0jPwHerDQs z`MxHO`MYk)r6{#UO6XF~Se9B*h~^8VpF_OZ3|7*@&k^-U&{_(nxNtvkt{f9w-E#H6E5)eg==4+Yktb4(!JPF(@dX4Fc^5@S*ilzEFxx)!vjWfiV+ zFHEr#4?cDoyDQvmcVLiAB}5S*9cRkZ_i67_lA*9O9V1?G%kN84$KODqGi+|0Q&*v< zR2V7+AP{p-u?EvLm)cecaamOaWFpYa-B}$jslt?$sDcDfPfhJp;~vp&VZ2WD(Doa= zmrqQnU3(1$Bc6~oI(Z&_En^&B@)`*!DI#Q{Uz9h)D0Q};3JJG?3k}5+|qND@j z)&v2qq#cy%53&{150o~>zGAeAWP@XUIB{Vk=tJY4imVG5R#!3%X`A~Nor zv$e1dUu)_+ww$(=y26U`r@Nv)ak#YJ3GH2qDpvcnSJhe&q2N$blc+j~BkWpjkhR&e z>Eox^r1+o17=|lKVQhdK`TiE`;l0sYNqyfX`>eA{R!DXK01n4^J!}=)DfQ9Zrm@8( zZMB&rBDB|CBjs$v#m?Rs-tVWSyPHkxdz7FhYhZwu)0zT`jB?kVhjBM)J}YB{w}$p~0jMxY#6+d?#H`RN9%I+uQ;L_5#o(>VEX3EIJjFFwmic$Ssk~iV&MiYk=TIO3HUp68 zJgu$xW{I;@nuD`8^FNQm^WqB5$`8}9>f`cAxXZ?sHI*!8K`sQVF7dwSdHQQi>?xASoKDDNdpX z{xRn&wR4ITs+*jx)?8#M#;%%Xn_AeVL!>vTL=Zq4>lEN+_bF zg{qI;QQlUBpNz-Pm9=MR+nMXfiZ@l=cr2-rimw_aEh*C@l>Ouoc@aPTw!`0t?eH+4 zY5YA?QiUZCR4$#;NXkaPxJme1qMS&>)wk~!>Mtsm!D5>9q^UtD)D_b>(ukippIcLp zyRfV?aLM!pCA5vtPyy>v`BJz>i4=Hoi=DK1P|Ok&5J%}_YDBGy7T5|%1eGajI~biK zdk!LiGSY)hK}jhgdS(V>{cKVjC}@&`l(hjw?d#!AeNdcIb$wqB0pchgo?>< z5Rx*IPJ#g*Q)rv%LYW0!@K>16J{{Uv{Mc3nnIwQjYKh@{-_0rp41>K>_L>+zI0Q0sp;(^*$wS$0F zRXj%sB}?3wdRT2MaT`SPkH6l}o|O*l2!p1Y*>>suosQ`y2@tNnmQ860S#X&nlya~v zh{n*>mVBL~%aTqslqWG7={nonA;+G~jX)iFX>UN68wV^-=617&T0(gqTUhub1;C*t zc@18iXoNxu&}v84-;$L;%sf2AZDrJjEgj)Zf@eW*J;(qB7>#Ckvo`ll&|%jL`H!b8 zq=4ecSum3CA=LBGfoXadK&MiB$O=0Kr!JCDmi>3>t%l3>2EBdDq2rW6TX_tPpnCcL z0EI>EOx-qe@d_ZRP>q$Si3fcI+p<(f;&fe7j#h^5kN8@q>hEV3Sxbv(tPIhVgQv$^ zYu?Nb)3V@Uw!PN~NtxeWeiq2Q2fE$7s_H6`2Xuvd=tv%*`D!v7vsUkRM-mu zBq))v6DOYb&EoO~#`f|~DOhEaygoC-#)y@FC zMM9fwEg;EBAP?7_th!X84I?Co@KN507oOY*V5F79kCtzcHA|zmu-8^Ht+q! zgQBB(9=5*+{TpWwoEKYw)AFvv%}A2bTK+36aTglk9?dsxZ4MlD71-+fO53ZhBt-)& z{#0qAj-#w}u-9f>8CAqQaxcsAYIT}*dqq`Cpp=3}Ehl=|wMFFdzM z%-}l$N9{k_+FGUBZWM4s58$jklqRh*~MxTD9(y2uM!5l1IjQTQ*a0n)t*# zGQ=2#NL?)k8mFeFY`6p|$5om@m?jQlc?9}c$F){8yC|+}uZPr#QL0;sdaY!bLV~}T zf;8WAXB zUPxybQPfes&Mc+6XzJ+8OQ@#3sZpD~P?%4K5_ORuy@Y75y6!pFCidc^;haH3SxS~` z6;20#L|`d`G}aV#nVAQro^Xo&#aIU#o*h4jDz98SS$(aQQe*|jT+E_}kfLG|QLMl- zu7Fzc#27OQTr`;+YMs>HuDrUeOGes4X`EY*EgliFQl~%>ppKDh9t3~Yb;Z4U98WK) z-Ki3`5-#JQw=RDzxbPf`J3Vkq32>te-WN3`%7nblDpsn6jM7u#QGzxk1M#+o{6BG) zBE!5;zc0m8rC3^?>2)`?TjY0axYBcl1F(rd0(x4Az&w7rac2+i1YXohrM#*ydaIq< z;CwGO+8jbu1b^-p(y={lZ*V^k)Q-g%qUnD6b&70Nc!~xMGG%oI)dVR5HzgrS6a8B0 zZc*_i8^6_^Tii<7)b$_WG-h~#pNspe*Ouup5=G+3{D&J_C=o_pq3g;EI{FPzy1?GC!Yleo79Cil4YrnwOOZTm@Q<;ZwG}yzJ8Gtru1! zO>?Lal0raUp;?40L9YDybmcvFBA+2cDIlzji$iGxQ?Ld+wf_KCXWrfQ7yHO+jmF?B zAyg_oNHIE(_rCI6uXBQ?BIX9@lD!>UH_*IRkmE~tGSC$uEiwr{y=+53P!`jaVJOJz zR>4}eQc6spAs}tce4(gKC1b1hr<7Sx0R+603X`OK4&H~Arm59UPSB%WMsn0UOP$G1 zNfLtxLQgJJVCG?KKu5Ar;!TrYCeoL&RVC!|PFjXrZA(GT;!JNN)1NC_G?)JX@jKGJ z%4gxHXz6vBCRqs3&;J0~>AkA_Wc3YuRQ0T(UE?K53K5kgDoltTd+Vi+E(`4!(y5zM z;%e@)*$tG16*lC7uF{n#Xm_wxEia~LhMzPt{U zJ;{$-UAI;GrPHlBw?F}5eCKbWwol<+BX;SjNT)*KmsA}}mLMbz1bRll`C9e3v05rA zn|&22RFGE8fUSSsu(-`0N`h>I)1chc%8;CzyHZHnq(5iOSS(PNuiGO`Z!QxT@0AVr0-UJ$!b z{kH!A7JFXctEbB1!7Fdx8;-gUUxmCeybwYXCw4AXgV-ktyHXr-0bTSz)qyPcD`t0Kvj;8|E08-%*k4P)N#GGE+SueC zOfBU=Naki^ugcA$t2sr5zx5wmB-NBrO(}4xb6R;2EUf-JTwEEVq@=pIcXqV3zTpa5 zfX&ZRdVgbJ`df;Qg6K^{^zDMr{h`be&!)ra&dw-iiFf(A#b(>EG(^JN~J&zV@aL- ztX+21xm$>6u#HtZ8un))ZMP&96#`FAV0`^;8CP_F4s{A!9v8CI$%794Z z02A=kPoU{w?jKN^j8S4*vkXpfH<_jwaE%(_wVXzCs&F+^q-71cRr;*2yD&P~qY9)isf~Ww{`( z0hg}6GhFqJpd-1wR!$2@p&(UU%27~O=ehuTXeZ-g zJ}z)HtZ?GeK4AeyODkGAAGh$MU0^1%p{D>IFd&)KfoXS;w>`%1+f|A-?|rRc(C4&Ic=f6J^u5+b9ksf>rNM!cMyV z`B@iPOO2_Pz?T3rM&4ewbc7Tj6(L4e0M-vacKEtgyh;QmBtenRIeh+>GVW>zHO8tX z%2yQ~(~CJ0RA6c8uG)376)ux03JN2cPdJ$)Ye`g7y3@L9cPiW+Egw`09106Ec>yuM z&c(AbqdRY^MbLygmQkBgsEvu`^|1CNd;}?Er&RcWCQ>>01uls>2;3c;#A9OKD!Z2EvQsS&md>08 z#fo<5ZtT0=Qz53yc{BuobR>F4y=|oUBX^b(?R7)JMQZ?@z9LSLX58l)GDi6exvjn# zk-!njX+9SP2b)sY2rvPkpQk^aty*=Ix0I2Xod?6x)prXTEw+NQx=A4X4BF0Z{OU>x z0YnLe>MhSJ1>dr!zx~@MjyO#Vi5ifdi5h+X0DDpVdw2`20;`K8_h>CfP#cn!a z1nsQMgRDo&*JW-dqsG`H4l40=Xsf%a#UoiX&;tXegv?rv;=SO@TuX7qqB2w|QW9Z4 zF2CcIi?Kc~djs%kj7og3^48H;N|%VPrW#G$+m%$0m8GXrNLY|_MufqbAL_&y0*&k~ zUw(uJ)XilWY&a96x!0RW(?}$rD6p0t#LL4gqr4fX@KatY6&WCANhun{&hsAuW^g+5 z0uW)Lfac=5D~~woTD}|LS4tbDecTOquA%g|nYNN@*PJZ}K%W5wbQbf%cX0j5O?%;L zYBuSvyV`56w-D}TDQgN(eA*Q{A;f@S#2WLc zluUgyyEC!*>DRxCyfOXDj4sR@S9W2_MKMuW^wrk{{$MCnEwE!riJo$7j|lHpao-B@ zMiE;+&YQCBagghdLyZSir3Vi4l}HKOK%vss1tvARaed=T?dJVG-peeu-ClHML&4As zWGwG7Ae})35^SYD0bdNS%t3uoVYIh(-`s;7&ic6E9UVRjUDHT2u)2%*(z+h*aU$vN@jUY zwy$SC(Hs`xk74WU9b;@OSkpL3)n1o_NlIK51e~Z#1i(pIQd7u@CwR7B?Jt0tcY;?n z?wgHuICBoxcdyo=Gf_n1&;w4kpkgz4b~;B(Q2bTmmlf{b6RQhd7>2zVI{vw?_AyN> z^r0wPsnwaRk~AtJNe9Gt(@S8nYH9IGR#Qw!H?xT2rH!;YooqBd`sylKOP%hdBO!Qm zcenxDA48$kZK|vLVRoFyeXID(Q^lNVQS4%*cXw42Y5^3qX;JQ)NPr*>Bt-s|qlu^P z)7@4pIy@?wBi2EWUtX4y#TUW9@8f%WGcAV_5Yr48OAVw1r3s!xENXrxY|6F5s<8DN zDlLV0P?ZCepD=u)&ME2Rq^4vMH!E5+9K1aIRYE~4jF(StMqORl)k>XsG>Vj@JQV;P zBoao`<@;Hc1J6|AS8~2G<ePle7XE0fwDZhNRUCVV93sa4mDI<|E zV0Db%Zve zTUaOtK|Y%K{VikKNG+W5W{f_nsyxgkL1}X#Ygx#2BVF{9@itv7uASAB8BAyj zhNo%Lz~nhgN;5kN1aVV$9pv&cl|?Pu>#1t3tjShl2C!hqNsooB4jpk`najyHMdb3) zR?C66!B&oFbOTOg+OidCroFDZ&{N)}Ks>UjfJ_l5%yk>`vV26juNphSIEwFmv@K^V zz0rtR_`#DW(0bWjT@z}EYqTV3<`axIywZbhg4TFX7|~QTmzk>&Q~*+!JNeGLi&^+` z@NV;EgtYQA1p-q$odF+Nwiw~38msQ?w{_~{fPf&JrcYFWVCrq8_+7=DoYEz_%h9wg zB6UzIDdo3aKAmlkufwWoU)~xm#SS3_Om_rbU(^o_$HY?NfPhKR^aJ88BTGsjN|I!y zDTy2Ce5?zFvE9dB&~l!+l_4Yy>2w${1n;LS8)4i_cDb3f)}R2aswH5V-acl*hVxRH z#9t{=*G?8i5>A~s@2QSulo6UxG#{xTP(QRh!T>X zp1(hr!pC&Cr5*7NCA0;l1H2Qg&-b_4ZW4-`s))~mZ$p4?HYsKLRHP{(A#NmUOi2B` zEW)D>8YdQpsS^oF3NaI;i0d=!VjA&C(@m{!B&9$=%eP(Z+W!E*ZoziA(`~1`AQd_~ z9}mNwyaMNRtW-`m*6P2%Dbn-medTy*l3>rec8|W6=BH@xFV}HbwAJf))3oE4W*Vod zr@NA(KnZOGEy3#KkbnAmTYT}u8C7B48ea8xW0`86Wzv@txX7Xm5%WJQa>olUq}}(u zNNH+%u=gtgS*0poWqHqs>+!a;;kq$AvdBiQ0i*u_Z3*^3;}uSZHiC55se}-dI{yGPew!O_D(={C*CmIgk+MpeUNq@`tkN)h z)X-BER4vs60Gzpi@oWK`Pj+j&5qNQq;c>*~MLNJzkb-qW$=l44VOGW9%QbE|rGt7U zZ8)gV1mz}U%qG?+Wok&`eI07*QUeba6zD^E@JUH<^bRd}|LgG@@0uwn{OpiZOz02thFy^L!O zLM!jrdyrQ0)|N^Yr~d$+Xzi>Yd(_Q`Sh`m2&Rh%VYEjr7bRss)1b>Sn76ACC z0OoNWY^%jm8cbnHeIyX7+s2lzlz;&_oJ!98rC+VP7e!4@ygzUU2`dx{%u=HOcS{kk zrMU@!s>FF)jDXY+e(9gl%D-PI*Ihs-F{-Goj89FHvEE{sf9SAbux)Ne10aw z{7q-jLw;m?5R|x)RxQZ=5Y`yUUfR^9g_qt^gl-ZEBVRH4+Eu{WSZzW|fy%Ed4&4}v z?zSiNqj_lZ_%1jL?y zQDPU~N|WMB2vLwHea}k?V%nvlryEGi;mfMF^o_Ur2(hsnHD(x63FkFqA1IcqE;o*#7|V(8C3cJ5_u**M_2_!y|A$8(U%CN<&P5 z(bOc3dRq;Qy^h4@E#arNlAKaUK6W#~M>z9rxiO$Ky^}RgsnQb~jdZhgg}79spa+<< zrc&5BvmHe3WsymkSm=Ut14?fFI@hY?0ko=gvPCqlCJ6+dr+a&@tIE(yV$n4fVKU;^ zltzgvi+cHTyFjjr7d!;Yv%d(&NYr{S#VzCZP+Zj}btYys^yRIhUaF~Ppt+y(Qm+GkV0GpD_wb?kJ-2A$ZKMe)+bcV#9qQ% zs70NfFO<w=q`swqv%h_{^jZ$LhQBoA@@~Gs{eLe%0mdWF^#$MIqRjtA$EG!3z zT_fS6<<=QNP$Wiz24VYJ!ay>Grgs^E+Bq1tNx>`B-ZU+|hg3q7p#aC}YfHUcOG8A& zD37n5xm@Dz-4|UMZ1z$}t4oyYK}aOXDmp;xY9F+X=<63l=}O6SDFHi}Cr`e%yeWOE zu?nT8K~jo*3CIlfkG^&g#~4!pVD;4Ejxnv(wMNf+#m!0qda-)K75xa>XXR;7(>2ov zNuxR2e=cQ4mZ_AECwFjY)SkVE6_7Y9*jD4k3%xs7_O8T34e<8k9ph!`4p+Gn8f6=} zrIG+h)RH+`KD&w>J>sVrac%Ct6;k2rlLp~Bm+nidwxt2lksaFwK>q;Tc}sMt!~jSd z1kHr|Q}&nRA8H;iwQ%1{b*w#d1)GBmP&wVv(FB4+ibxuekfK&~^Mhb+E#SHy&E1u+ z2XU*uUe~4{;+;JMRS9g~3N5tbYf8LQKrorqLFcb7wwuH> zm5pE3cXdMZFw@Ij1gt4xMNtp|+|JzN($$6wzaGOl#_hjQl0_@YTEY~Sk(86jYpm%u zxN+KVEKP~-+xrXM>#3uyb2om4{$oTYNG4!u*O>FRu3`N^d=k2HOk|Wbd4Cv7)R<=O zE*ie`zpZX{QlO{_>IChyokST0s1L4+rkM?bg{@_1%m^nkPR4q37CzxlF}klVDP7l_ z)j615^pf(H3c*2H3I~~#<{uNVi%jung)L#MPkB+$ptnkpx0+H}kaMU)XG5eB13_z{ ze`O#i&3N`^HnQ4$0KIOC&d(SV3S+7umfyn3yWe$VR@!lELP;Vv@J~M!+d1*uhLoHw zdiTKhWyMiWs%n=iDXS`ohueXwG>tj$)-5C1YqSez8?o7+i3v(lx^y)}?Nh=KqJ;ig zQ91=k1EB)eA0BU9F?(Suya&g+s;ULD_j8AF9W6SPxhF4<0TLn%=y~~{o4hP}Z`R8> z16@Zungzku-e*ES{^&b}d}YD7%Yj#=#ax%ye^A|oQ?}60-l-}DD<}CtR%kqe{H`^Qw8CCH%zK}R49H`=7Aa3gS3pGB+v4b zYvOxY@X&64Kq2NLdcMtrOXfGe*0r^^>qXv|@Wh-GV*dc){n{(2T%`&$F03TFN_)fw zM8qfo5O$Hht4t5YP6KwdMQ>;9U4V`j#TS*z8x)mh665L71tmabP$xmoJnSvQoBHu) z>s{M=S60W=c^R8=kdc@Lq#t~Ij)$4FMhoFCFXE3JX|Ed0M4Afwg0+wM_3#gN z<#U11ls57HvNFQ|0I4IbmsZocz@7uW;p?aP@>kL@GB+{ru^SP6K6>l8BlymJsyip~ zJF;FNZMdwT1&yV2yI}Els8Etblc9=oi*d%wUAR0;tGh=h~#{SU#+@(+AE3t zJ^uimyV>iH)l`?R8@%ejg;w5zs5rZs=FjFJ0Bl6qf4gmp$8wB69+gHTBZKvUbl7W4~K-9TdinNqc6(@u>if^&g&Nhp1B5 zD>NYz-s4k_oc$A!~@RMS% zQ$+KPBp@mLt&pSPObzz?n|q@Pt)g|Rme#efKt_4+`p2wq%FG@B)ds?LNnPtjFj`WA z18YnUWjwV$zgrR}xu%&#aHY)aUL^&hU`IVhlVR4Jrey(6Gno6TDkLU)fDXDImYBoq za;>*pb%Z$CJ_S1gB_xkMtwhbZ%&u#-@J=u5$t|*;^`xb3tSujxIg&*6jbxqq*sBEB z(&D?3Ojc8^)h(dNaZr%j(gvi?n~q;A2UXK|%raa_S_g+Dcv6!FbQ(cASc`&{RLQ+6 z?&ljpS9o)%ZZ#<;0D;TwS#4xw(_9@wXGZYZ^%^5=4cWb{OI9muYSM;Mq9&b$l^FwK zM3J!9rL7!0*t+0UD!&m|p|lezQ<0lebpQ^0{Ono6N@iHO8K}w@0VQft)i4Be&~Ibq zRw}liFc1uqgSwJ6f+N$+TOCu1ROhw+U&7i`;m~Ej9=uS#80@ctuIhDr9wC075D18j z$6yDRr{!ZCgNCeK!8FZZZY^m!kmH(}9FF9P<)yvdm5K}QmX!k%l@d&A_CMXHY1>6Q z;nG60NQG^wje1xIRa86oTiH$2`CJP$JUFSmA9J*q*)HCX0NQiCk&(Fn05&n9YL4t$ zYZG`pRzWHt2#c+C=U=I* zN<)ehxdUVOHnsS9LVK1}QTdCAs!+03Sw_m1%mK`%bP;arVXzsc zOG*JHIt?I=Z82GO-1p@Q?z`^lrmd!M!;I9j7L^F*2(z3Y;t%wvkRt`IH#Xnrf3oM; zjv-xEKzpy2_S2u2;IHQuPSGNxGa*Wqs!HR;ks?P{isRX}FrqQTO z6O_p$f8!jt7VM8{FTw+}uN##8@qsB3gzuG=D7!|`?pC5n@hA86w>G<1{v7?KdnZ*t zdEa<1_@%~`!Y_NdvbOU708)S&eRj6?mm0(IMrDcicO#+e$puMLB9hXJb*nda_^vh{tG3BN<;EE-4mrPEpg$+5LK2vfB+be3gTyR7V2LRua@o`g)X6TsymK_ zlC7o1YGeNZ+4W3;Eye`TT zVRfl#2q5SZGAB-wn=AN)oV3yNxln6E>Why6exXq}mNmWHd8_4@RuZ=q+JKUjtGrMg z`GKXT?w%(<+=VUm6*fFlU}owknY4pAChiQkO7$9H_K0*A!2(vIBzaHyv@PR+)ptCm zkfWWM6PHC3Jgl!YcefR2WG`;WqMwRsORWz1DN=`uQ|^JL2}uwJgKvkCv@^HG>2@h0;J&Me|s$FmXq^m%=N>irWXe<+n zDxRvULIR44+<_-`9b-Xeh~ly@2K$sZpD6>vHU#OvJ422jT@_fGl7ZJymlafo#(fD< zR+Bq@Y*b7jl7ws$wZIU%ci6uLqY7}k>}_p;qQX?_D z#sHx-i%OE3RDe<-0|TX}MMJeUWkl|E^Bk?ms_LI5OSzJMseG^()H%-Jq(wr44piuq z0P{Q9H}4e<$vs89B}fgV0(4h9L}MGp6c>7`(DGA}CP+5&&aeY@2;&9zDV{UOG}wNX zZ>duoljUq}+fVTyV}ciR!s}?eQUM4+Sb}Z)w-0Zu6~N26cU^sAYHM9V?$~I`hb?|q zBRZ@#4=LS&S|CvzLe>uXAu;h;7YRm^2!sCO)VeY@ zSeS7cs3!s270vD<@ZmQl%!DWgr<3o$Pw|@ z+Sj!=23JLJD)Ukc3dxy6Y@>gbvNr>1(@(}1!wJk%;0Zxi@O2=3zJCi;9Au)HJ8%~B z4ykQJ;(KL+J3sN8hXxP*<7?s_VSC{VT-_J1lOG-qiPKdezn4 zl?hQ=+;FJ%B}bn-T#eJMx>s^CqI3jqN2RN~%9iMRi8m6lB0!`5D!_acN=kdcOpbeg zwyufYty4qJfkue2u6%%M0Y1TJ8^3_}PXsX)#frF+hRfKS6f}pBw$5{P)0W<=$`0~Y z+hFN3vCi0Yw>KH9J3)4###}*mo4Tc{zgF8V_vZO5@ z49nLc>Uwe$^tQh2%fkUt!rJ7bdDD*Z%Ue^_iZ36Rr#0$O+FU3c&UxJb$s!B z)=?>SHzfm2fa+V)xzrF-+Q-1Nj^G*_=!?d{e_N#4l$!?;Z%B2J?!xA@@ zbouqOJK3C3aH5X86`>V0E2&@Sr1ebuPZ(dj9~A zMHgLxF^3iVK~y6O-3n^Z@bi82bw zCtZ4-y=^PlTNU7LA8{`Dsp17<*L)ghTDoMYcQq>Tg+bVYsgtgjy^jUg7qIs}$SQ^p z)3~{}AZS08a$_8E!@dFCm#gqbdKT_Vr+bdzpyR8h2uZ4>NdOfkB}#d*sRKHHlErr~4lnKlcGSB&M{vfahOpi%s>^s> zuc&8LJLM(hB?S24Dh_GPA3I5LS?&_{R^zP?Y90>00K#tH;o#P zyQ&nZ@>ivi%HGAjh`AtU2bkgykJm%Mr%}lALz(+`0K7m$zh{B}0FRdT-ooR6Sn|5^ zi~yUah-mBG;`6B>5;K7UbuxAR?el^+Vu$>V$DUBnb*Kflu$;M+l#{0737Zvm+~ESa z7028~!>VVZ>|Iy4T+1ztu2Dbvtf?fbJ=I2?HQvJ&2>pZ z3JWlt>N*i5Xil>he_2YJJg-$(p&6Z8$%&FeWWg|f?fJ!<(TW!@VwPPYX>}?&7}OAS zB=puk79pTIGNU8QWEM-}3!acAm#Il9TPaha#S&1ybFhLU2D@AB$|@=fdzTPs8=-Oz1UYvh*Ff{_Enb=UcI2GN`|r%1+0 z2uT6f*5HGzBob#)13~n)yTJ@5i~A4PJ5++=R$UblsUXNCo?aN&*3|_yGx#rz=(^EV zG^|@C3k3KS3Pg#GV0r0f5l$w2&~XC%6WJ-<3nP?lbXwa>g1J>K&u~_vkrU$(J$2jk+Qto6UKhJ9QQS=g zWI1XoL5!oA^FE$h+XYnL`j-GS2ib2Z+yxsPP4A+ar*OKYQ&P49i5=?XjHB;SVvDZt zQ|JnMRiO)k>8a_pqwvMh)!2lz(JrLHape;#+{xdr_LQS(NOQjLaw1|6m4thRtgp)8 zNjvaLzLZlj;et{nKr303rkiUYJA0r|tgcelNdY5LshRj2d3g#URQ@FdEQKj60#78` zM&!HMQiG~dDoKJ0_t*Sdp!)?>mJB5Br|`AfrDSo$CV41`*P6bD*0u^&H8*yaY7_}a zx(C+4H!Emvn>>M+Km-WVJ{BsuYZFfD6xl0K%K|{>Y98#vRg=Wn>49prX=}n+LXhkz zq!0kwIa*qZ^l_Flcm64o6nE3>U@9x&O{Ga({#=lfH`jlar|7R{%0rH+S-}BGBV!v_ zcRwn|%|_wD9#K?>fKX7=V;;XdKdHNJd_#1(a$mP=6|}D>E38yB7L^W=Y%z7#Ep8!c zJ`u43EK7CNYyzSPI&ad`if0Fc3RgTMDFiNXekI?69m9(*+U_!TSD;NL;Mx@RZXRrS z9@MC*zKZhaZf{^)=J(<5AfdrnhJew&)#hpIn0bXI#Db98f`sTs^S9RD(&Z9^iAq)h z3Q-CRw?DrZ-@@{XiB~(lr+5{I8BQU(2ejWeV+}{QHZ@Yf2UUOx^S435apO?IOImMz z1H5->Vz6cr6Ubkx>1 z`=x4Wq~s}pR2)6&76-(*>6)wi+a03~JyS-I;8Io=7L=(9M&nr@Uy)7IdeF0R zUG&AIG+Y7II377uloOgK`j69{n@tW_+v)NPaZE^c(Z^+KcCmkI>?Ma5tcY&;r#TWr zV5NstRllD8e67FnGpoL_gDGgIBafz`Vab9?&G7v#g#Q2y`;w0O?W&5Fk{oL3r+w1q zV?UQomPnm72j^|X-9qc{-|+AvsAv)K272!1`J?^Sc!Lg?-UXA`}4MDBJI)h%15{$O@8zkt8UX>*RE_ za+ZLn5~PHgNlNF`ZDkR-TsZ@r>=4~$!%Vbhc>symF0y0&*kbo-&0VK@xGxfA>Z7n)mT3ta>PPvKa*2b~JaHQFu-PJdUZ~`+FGJ+Sb zguy34^66l_O@*&I767MSU=&KpNfF}MK-M?-TKccLS|P+KvaIq$fbGwIRvo`CDr&Yv zC}f1GGD3jdPQ0LN@Si&!6Y}c5HCM1I6NY#yo~Gk|rR5c^N$(P+XkrI0T1fegA}v|s z>_2!{aenE$E-GgOuGOI+OaN!6G54*n>?uP1E!wtPVMstp%t_SG$I{L_Kk#|HS=t)z ztM)?TDU@7N$|8Ks`rA0nVbs-gIzzBF3Hu;~({`I!U*x(Oz#E#P?ctT#MDQU(jT)YM zSlaKq(uJvR9b!j4ES?v;e}>$wQ=kBlfB=m&7Lo|aoazHWb>3V=i;KT=sd4k~-W< ziM&>dcGl{h*iP{l!M}(f;xk3Sx@z1lb%9fPI+doKl&_w#KP|b$Zf&Z&Kyfjg6Nl?6 z*HIZ-GY6Hph1%lrzWDLl9;dr~$0=#*2tdvXa>*ZJ+HZw0sBvsSneG_DbK;)ibfvKw zhzEebG$VZ9IP@dRHW&YeEyavYYtskYe>7P=$Zwzgm;ZJH`h(N z`tM^Kiw{#_ng*^mSCtt_DomYYuh~6yv+Iips`9yrKgH zc51J?8S(YozWEnD`C6>i4}M>SoW$q=)2+I3!IZar;WjIqJ>h&Lt2B5My||~rDwgQ+ zbsc3gk(m_;TF{fWRRT;aL!|xh*{;f$%Qv?V=u-L{L0u|fAt578w(|b=*5Yvp+i}Hm zoN2kEYsTsyw7wAjBXm@@wn~zw2sw;|fsKOQ@Ko|gT8`|-fmfBLa1dsqZf4!)_&Jg{@MU#JLMsi@m z>-yUGQ*3)GTjs3_cjcwH{cFc-qUbo0wCm%*CW&nnfHjbau)J;8{m@B6}; zPO(Q^)9)Y&IS{Z)ej}}|rda;~rBYZ@b0$YkHQ$-FMaK49UDr~H)S#pki91f3`q*lB zkub~8ui;sRhRGpev%B7F^^ zC=|^~UPUXAlmnemd@-mb`AFzU8}hRul(>S2Im>em)4PW1rMz)%*vbM|PVIY1C+ zY6v;Kna$SPqDpz|9Ko>n7cORTClT)F=xZBsyW1gbHn|Og5_0pHIgi5996ZH$zYmvw zwMRst-GCBS{-dbNQvabn!SvQR- zH5U!$ldmrV{{Zk(W30!`-X7uY>wa7fRkYOJv~?vF6pJ~NDI1R^2-nG4TDor^T$uj= z8R7fZmg-&F$*1-gOK%B4Delw0r!Rz)$O~OO9KLGG6JJ>3O=~M%(|MsTK~jRjL$N#Q zBYeS2u@Tq74VJ-r9ftF6P zZE)Z&AYv=#=U)?X17YfQKKllpl!AtZ>=(*(|6HZ8>$X z(Y=+0#vChzsW=C8xQQ)K%fVw^nUJD@}u@TOz^TN-e3=u&WAD7}A(wi22!Gm#1-D~pY}kO!XDPzFpO zUx5IB`q4GP9_fn@1DN`2ZD^ad_YGJgY zPk5YBR)mwN)9KgcV~!xwP_GYRW+@g?P~|hKs!2@Br6du{ZFTFU*fNbJijbt#va+|q zUWDWXh$GK^`tzGgk=KUj$Lstjbt3ZE4y=jsr7%aZF!e%TOV@dFo=Hg6N8TNG(_IAZ zXsjmcE_>$iO*4Vy76WNoltdK-`owGJZ`k>DEj>u?RjstJ+bUUJ=O`)$51-59XSfRF zr^I-Mm5*XeNqzAl3O**$sZo+({H;{3Ybh@7xT(@cUsa~7RrYYXKZW1~xn9x{QC8ZD zin7U4gs2{8QgxnwR?eNHl}U8*@{XyKoH4FBAg0 zw{}6wI{5*w`LzMs+T=yo#OtA@c-P&w6ynZcq6)SXtQAkd@6Q#3PG5{U&i>%#xy32N zFtE@pMV5i!+G_7yB*i6NNo|La6i}5CrIoEd5P1kj-g?^Sy6I_XZee$@%WZdyFobSr zetm6J@IsYqyUpCT)A?>8DRH%OLO|1PciWM*sN*@FLu{?n-MCIrIsX8wAjG96tG3NI=mfn9b$Cn6#P_hZVlXZ zkrl^O8dw3;WYFa)B4e-8#5ZG$ZAAe@LVRQxkGM7wx?Doi0a}ubyLI^5cJ8TKic*tZ{#)a6p$NbbOb2bkV@n+M%>IS^Y} zDo|ADW7K{A_9eO>L#s$}Y7GrfQ)rf6;bm&r1?-J3chr{J{KFYY01-c}iY|v;QchP2 ziBW^jY!i04q1}{)K{6B$^RAye7+kKl;moPj>Ma&W-&x7ZCcB?;D{K)4c^HcjP`6KC zPP%H8g&}Q}tu7CGM%EpmTXNb?qnY!IOK~ISs|&jv@3`|j$dKK_GaTn zCm1jV#8ZXwRa1_*ns%WSbwkFq>98X*we$Gnx@+wTa^y;H23C&kUGj3P@?lU?qM#(e z2T2<5G6(cS_>lHny8B&rM#TIvRVo*FiZxYSk0@%@Q)4@15vYA;geE(yXdaz=-m{gcotTNK&an-gSe7;{owr}AL zOx0f#@xC~xVCSZ~-ED;lB3)QW6U$H2<*~51eyO$81?ZKW#aw_Y0Ck!BHp_p5b>I9q zhIo$@)gTXQzFTZLlmw8|YEeu_GPK)QVTylayA+k7Q=LI83I1Jj?aBy08)W_*!_PgR}`R#DUyA{sp-#OT`btR+K}p&ps4^5N$Pdl&faO3`?AWx zlo|1lO}-Xt_C``sJCamDAdoz{Zy(!xD~;OO1X?Y2re>wEgcP?hbklC1udcRjP^7t; zppc+601kTT^8IYBONnL@mFPY4r0NGv`u$?jXskk&-yzZm^+XAc%pJzRD>9Ejs?h3@ zyc%sZz$HY(el-I-PM(^6wuGwgnG5eDJi=i+2^;IEiPq8=rD#J=AyWzyB$yLuyPoT) z#Fw=_%}BKs)Tkt-JB@XKH5;E;wen5bL`hy##AcKMvL(SZbywv$rn>1foW4B3>8wYs zuU^SKAigmEK7SG3w_@5tkPy;{-gQ2k0bLn)mURytUskjfKE(=DT6sRzoAA0Mp9AJYL3hxI*BlyeeG@$di&z#=uPS-!+b9a>P-A%-9rF}^cY)M;of$x`vueBqUh4Iz+ zH$@(}W``9D;N)pPAf!{A|Mu-7Ql#YZRaTrQ|x3ppomprkh$yo4%{4TdM#z-hz3i zNtovmrQZAxYi-0d6xvG&}6C)ygHw_^0#IC4p+T=@b2sO zjHyx?ObHTX4L`NGy@yt|uciu2t!BpNad(oFU6iJ$Xp_c{{Fd$Ls;d7V7ZTW7Ax zPB^?HK!*qr(sTw!!ag>?TuZK{E2ntQ%IHiDw6`0qXf-Yu;#W(>8~spx6Xc{OooH=Z zkYQZB{WrBm#2Ay1__GZII< z0zl2uM_JC7rA;;$dZMzNm#+mZpnlU2OK{Ndz5InT? z^0Ue$G+TP2w?dY|Ly1%nXOJF;nB`(jIf?FTn+Q8eb=)kf{;I0Z-CN0??Y$3$F$9@0 z$U!{Cjfk`xxltjrKv(Bxj4Oq^E*fjM76$JOe~Kz;sc5d|2r9eSTZt-BKgzh}B<(h+ z`($Ej++D@`%lWIX+1U=d(@y0FzK2esP(kSf_p@#dUzdf!#%fGOTX}_Eh)b(YTi!C$ zfwcsaJrqZz4M5#qI#gZPg>4#c@D{pu7K)VxYUqs$KvCB*1|m$I?PQWU(zKJq(FVve z=64gnUdj^yP}Wqbj7L)m{tDWhZAxxZL>#(u)So>$SZeUZHMFRqy_rG>co*LVDm+P0 z(9g&8*2K4Ubw(Lxp9VJa9Tk;9+QpSGGN(YP2`eC0Ja8H*o2#FlJ+T84kg&o11A+N!=lGReD?{4iyY0#kw8B&ly z@a9oEbmwfl*pG=gzN;9wO?_9?3M!NYI)_{;1|wMgm zY4%J!ww%3EhI~cUHldILJkhSkPP#>oeS|qc)asB`c8vlPr~`gx`h50EaYgEj%97{9 z+z`iRXX4x{?l3pcMu;HvPh0&6j1-$BXy0?lR$R*L7W3dGyxY z_oFH-IH%OkcNF7#r1xsfsncBq+KS`db~)kN>-fXM`;8Tq>$=fh?E!h)ucT5ydp5e3 z*9s$$HjltRiZ>7`ct=l)aW4(%uRFHyyxP0(Yn$60OLYa*DNQ_c6V0_I42?yVNi*YN z19PU@bK9RSd3Y;-M=++#4xz(SvDZ=#w(uOTns%J+VcA29oFvEGKEb$l{J*$^jj#H2 z(%zM{p(358R@g!tAm+;n(I9F`CM}zAp{&8YIlQjtOI__{a)7Mal069rOAnz4h+xy|w@Y%KUXt@W|Uj9he)~ z_}f4@cnt!ku?1MJq;j&U{{YOQ1UA}LASWULR74F(J#;#Cim9QdaoO?-^_d0ssb7XD`pEm9@8L z3@iLOrPes|NCQ#?MxWpGvQLPs-32L)r&}!-!}JZ7qqRL~tlAr@j^?B&YM3CYB_S~} z$ZfHR`P(h_mi8<~+7}PqO(-a^=u*mc3Xd0*YLlk=?QLo)-Eo5YfC>^)27_QA{{U-b zd}7;po3%RYS*c2p#&rOLqJQ>)26^k{Y`y>-D;**J)}O-D<8B|L$~Pnhp!g_`?(aoh z7fX654L6zF?_Z6rN)p@XQXWZ3Sb$QkXIcLMRs`WK)@g18)zTpdN|lr-r$U_o*q>Pz zJ!ORl8d?*c7Cazm2S3uuYTR8^`*Tg{21+&$59K~fM1ba4An0=L0(t#y<_cWOw1p-l z2@ySiTRo;yTVYw-P+3R?Mo%tZ8S=AN8}K+sKAx5$yH}Q2 zfwL-FkOo7sJx}Rt2I(bKXr_XtM<`2&DiSi2)^+^_i*Cn5o!Mm|q@1#U`& zgsh~@YLGw{CcCQMMntyuX)w6o<^ApO0Glk;Y*!an1xTb=DDXX&)s9#rN0E7Va_keQI#H;6T=*o@srCJCCYzLLO zP5%JzJ#Z;Et`5MRqOST>_m_3x<y`>N0I&bf{s?89?5<0?tKuPTa__@g(8Ezg&`^tP2jX`8Bz;!la3j;k?{ zQy?FdT9NEeaDT`9J>cuP#33Ot4&GPM>|WBl9Yh6lbm_aoue-nR1o4@Lxo$WK$xCe*tl#;t?oCn9;>KT zFfF7L;u=n%gS2!#EoF8z!zUH-m5Q3CQnuIy#lVnya?^jMt5?I%temiu8H!XSz?n0z z*tUc05p>i40L*GD)d?)J6Zwe~uAuzQg2yN9=-k`zMNiVi_MAFG!bt%^X0p}wF3c3+#5K;sao1A5OStw-0;XGm<|gmXEp-jcTTT5 zmTBqKr32P~&9R?vjxfDLb5vZHRYbU{h&=TXZAHcGT-F=Il~sk%JGPWSSEaeJ#|(7# zG{$e5#i?zVPk`zSN$I~USw#oyF%Unsx~+G@SZ`?l-NQh$z5938q2<-&8QodVxzNd< zfZooqT@6J=LRfjEl_@f`1dSCwTj}Y_&v6+_TvMUohJxW^O+>naK|uOa0gmT81(RQi3b^qi#xpsZ?4=y$P{ZOI3gskh-?0LnZZ`=Csp`mdUsy*xKJ=7>6BSG&TM?>Z1XIG`-koci0bqi^E z+$mOE!T}Z(uA_4JY1bBV4CFEd&RCe=r^9*7JslyJaHQ`ebloCHrJ?+en)pY7S zc?ZOmAfzcPOi0bSKR+vFX&u?f{{SMs_)y-jDe(HO&DkcWJ{P-`017N6SyRYmnPg8nQGVoehU21#7I_^k;@U@!KSKX^BM$$P+ zkH4L&o;3wi-Og6hq@~7JohtOyZP)LmsH81zQyh7PMjFED2pf>FPvSen*J}8~Lv_=j zxl?$W=M>OS{iggY1epGixb(I`zAO8>N=g-kXFzp*+76^iNCb_~hfiOHw{LB$_+l#CRG^VO#IH7P`g)>cE!EULcIgND5Z5Bd1fXz2R%D-E^!{R3#sr-?dh>Pyh%? z8BkAEAJWe7-4z}%#U`$$#_5otr97gT9JHLg&ct&grKIo)zW}SgQLhv_-6iRV>ILTW z>r;qx#Ik@w!ia+hajcDbY%TYRS1a|{hLZK5pii>j6bY$ev^W$q56f^8Ht`^ynu|Qd z_?7A!+N+B8U_8nkF)1M@P!B^OlN-dw_Kn1s`lv2;?t7(#G=wyyrPq`Bkf|1TPgT94I z%dUb2i#s4;q$7&$UHGE9qL!+i4jM5zJHk_-pV0g@n;8+gvv_s$Lrs3k&vy&k(I56^ zp>wnue(>Ry6#_9UFR8os;Hh{r8c9qFv?OjPRU~K(?K<8UZ5AS=!hgjvCFM;+d}n^3 zy-0#7t0|d1$Wc3Zc|CVkUL{qRb$u(H(XC*qNPV2z z0P}7G9Y%*?XC0e6Rbq>i9npb(@#W(B~BC?rAqMe0+l@tvL(L}+WM%E?O3>UcD zjsD$Vbf%&Ti5g^Ufo}nAd`0;1;lovUaCeV1?c*o7JB@IY4x*^KnnhB&g&|qOvu027 zDM2PcIZW&{wPD3x%U6yAxN(jcz;|=kjm3$dyK3<2nrFt+jbKPb5+tOpZTxw26|cE& zy1v!U-5fZ@3-&jvO71%9cZn(iDhZNAg-Y^~)>U<&-_qQ-L_O0}jPSQLz$9(0^xwzsx%Y`M zE+fGFVyVDfOuB_F<%im3w9+`@Ro%mBQ%I4tg#)Ddj*e;XYMP8xD;;eaSf+FZq=A^9 z0s&5d9}%+)+ZkWHLB$u}74d~rF5Wk_Yxjj>lojG}YE%FwU{0L?i$~lwjZ;#-Ybl4c zR6Y_C6(FEYi3WE(tcq-elHLN}m8XTT5x2Gd$5ZG&h|3RgI~8!&{Bd|{`E$ERc#6cV zm8PgEDoHB@l71GnJ6-V=I75f3x+!ZC z-CcUJAtd;Qn~i?@T0gP}57qoSkt(L{%M5q*J{-B0t>@2wnYH+M6u4BCFaGZ6@*1C= zkhp<073`;H4NqR`{=xTKw6_&C185^7Db1%d@UcsDh^I&iT0kHiz>rF$37PWx+B)uO zEO$(hM~Ee82|G_uht|@}8iFzN5VcMgp+G25G|^hyNECfpp}fFCS>{jo>rW?R;C^VctHRK=NgILEdfNZwHFYe zL05~z8lTslrRlPVKy0UCkaKKjPf&wD_8YE4O31QO zqC`&H`TE%6=d5g}GKnfeKva$P+SR4cc&3;(rDpJ=0RvN|jqvSUjKRQ0k_Mn}uis01 z5wwEq8Hhr6N0(hkcH(=r234k=PtkKv*+Tsz*E{wu*NsQbj)V1rn`TL-J&(`>4=2SG^1OWn&?2KEjZsC`cfPu_8x9BV}&wAo~<7Z|tRO`4Cqt z`##Vo4)CVt6^KYpHQ!3vkVFQVNc}<5#}s&?>94z4evYvq_aZ`71nC58YVWnCC#CH3 zd0t!}rUkl+YO0hp8{I7#EziM2Un@~~YqUG?PU~oxszzm7yun1t~|wW(J=NSXT!cZfnS8a;XHLc|b`V#-Dv{d#U7Uy^^QJ zD@LfDRG>6al>Y!RgB;>C^3?q85qmZi+K+gsPMW4;sng+SwD{8Fucu3tj)5m675GNm z*-Z4;o?%S#7Fs{uKm(UMZYNfYvkteIWrS*a=xvOW7SX-OHS}4WZU||nY!NC4 zwmvCU(}F5W9Z*w=DS>Wu;tTK!hfBp^1(V(pxs#_$Yd+qbNY16)wC^P8Bn9%;cD5GB zIOgo4SF;dSTvk|2nIy>feiqPtEll~C=iB!mqUbmb4WhzYUB^_8C%#cy{{XO{W?ZP4 zUZjO+H1*!h?;FrzyNrPH68aP21$rRIpIL~rOO^CgrFY#>DM&_Sq{3&y2oN{aO@%Kz z>3FXERou`ejNvIMNidn)eaViy?{0$?FmcPkZmpJJE=LtN!|FT77T38~d$gESgry*9 z&NVv3Yhvp9=I(}6ieZ#D5`q5!xzp?V`B}ZyNQ@_UigwgXt3X&v1Q1|pw!E~oP5R=h zs?yq0pcb%Jvam>kOl`ba)<@b)rokwhYq!mMrLBIvD`KY>nITaK1_!3U+TRMPZmM@L z7aj?1B65-vN~fIti#S!%Zi*1SXDr-=%;!vyGQUbtdej5(*^>DauJ86Y)P= zGK?G8B=Q@ZES*tDTFa>cr(H7%2?PQ1w(k5PZwFq)mF~L%ZKNrtqeL0jCu6tP)innI zZmY753aeMOR22}Xfy_662O*)hg6t`TDmZ(MRO0{yy!uk;G9<)7pG!5L5sspn>}W`_ z8Y3MO&TYczP3KN(u*-{a6D<^#5$|tqW&R*IT{lk^ZhG~TFFLl}2_Ezmk$pTimY*W-vPG*Tdhi4N>lEno>t9M$^}6eNj@Btv&4W_zhkEq z?i8UwK^YlJOo$)|pN}trwxGJabm3VBP?=VqS_!sX?11B=4pX%uAR-7Ra+uU>wzkyQ zIufcRk>W9_0zlH-zY_tq4!1M)U4s;PE@?c1lB5c8#en2#ltJ1?wyZef^LKs8S$J0* zwCpgq94Ai*5`TMIR~rr}I)bG8q|ANv`_|OQYl^CdxN~1h$x0Vi1u#)CTh4NmuaPFe z)3i-i)^Q{%Fv)Vxu^$!hDm-U(+<57=rLJ$s8TH0~)b*1CiwEm0&vDpdafR4Yv_`Zoz^Z7+9VEV0;=jFS>~xj!O&Uo|Un6sr8M=H&q(9pi8Js~|>Pp)Dfj%ec!G=p71u>LWv-PRG=Ujjkz5lTiy#(N~5T%b%EWZCRcLAkf1<3kHQDa(N{ao z(?0bzbwPECjN#}&PGjPY#+v*#*IQ0pttRTZXz=n@7Q4mL;@i&$CY*+wNch@rJ;L5< zrnb%w<#pp1+={$wE303rNOQhX5xSI2>&$9(J8ke2yC~Zzsb;>HDp2A>&8@-|HcC&X zv12>N>To8pmr}A&r;voD1v&D-02G-g%gArYI{Up{ywcEhZKbiJg$My|3D!?P@oK;$ zMQLyfYUaG|{2y55;fQXP*SG8sGj}jsIU9Viq%yPUqbKaz((LiaE7rRT(eT$5Q#5bp zpKVtyRYG#Q^C^RqK8H9d@aF0Vr8#ms^(uejcftbOu2xzar$`BDMChZWdUUjv`-KJH zK|^|__mgFP{QvD>e&)eS8;l;+~M)+WI?6SR*EYB0V$ zrtVyAgIRK432!PWD#!_WhhtEcsuT$Z2{X#s-w}3J$9G0Ms<^R*8&6%=H5+N9zZpml zRZ}`bP=)K`8I_kXl7k0rEh*Tawe9P0UuNRsiV;yl>t4ufYD~837a=|H>L7xlw9T}R zIpL%D#G6K?-EILpQ;z&q7LM^Foj2VORJ;#4tH+>1DY~8KQ>>{V&%jQ=+X+QSQHs^}Z1X3O@mqSzs4&`W?m7(s=g0*Gd1EWjw3i=SylGof zuA8>2@&e`(i36nmn;q@6_&b7{!x(k8`=SfPD9(iQPcD|Edm3;Jye)ILf8W$uA8|oW zh3r)`@f(jjX{)gTmK5e$Fr=Y67y$kK&5QVkz6Tc3(|*Qj*O}D=gHg?MS3mA|Um% zzT=gg0EHp6#1OeBEX41p*3c~kS$IxUWgS%Cez_?sDMyVf0zm`m&dpR@6-6Ncf}^bT zoj&?nPNe}T?-pfBL=*(Zlhfn+*^~6j4G`*xkvi%@8X5Uot~#qO2nod{;mWlS z7QCl#($f@gEvEuW0VN|-vV?9x_}T>tY2eZZZ4R)l&-(o=?uMzsP?nSYrz(tT&*^D2 z>VuV+X+<yXz336cMn4^Rbo|s&OoL3eipgca1s^ovVwD^({zB zfs$n>Xr5&9v6atxQ<{`EMo^SxQO)=BwT(75D=COUc8~(IFze`3q9mwm0PAAAwx>Hp zsahoKI#>e?zLJExQbuik`LTV_`jSIx*JJ23vv?nNg@~(WR}@oB_Gn2GN0p?g92rbb zf&}!m6(gxZ3K|fZ2|Vp9M^Hc}B6R?Z6j}>X!nt+$*zmnrZ?x7P;sPjCs!T<6mX@G2 z541oe{{ZnR<<{9AtB34YP}4jRKk4a0K?yRYd&g1FUH<^Zx~uraaG{)c*>nDG%K=q5 zR`PDNC`Mq(lsG)ZC?AEnxr3@&yl8?FfTO+-O%o!Ky^qb1%Dl zzT14PtGbLkdtDT(G|O~sqyn;JjM8UV<>#%LR&fUxTu!Af1tCZoO46vxoj}+8ZS}Wr zYle;Le)P6HN|IEVI)fygHPCD4U_4WU=&Kc!fL6BDuNcs%XiNeP?NWkK3UF@#D_@qjIN_&ld%xTLp7N|vL3Aoz-C}pt57(c{i{b_aeJ(on zA|U~1!lay_N0#97&~5UnuWD<~>Z?kFjv>Z@{Gz#o)?mogeRkyXEHajbFrBlNc~{GSuhmA;gdl_mlKIFb#IT#?P0?5K)1HrD`>e1C+GV%!FclJ0V~K;(5}DpVwaJ5OD0Y;o5cHHC1S z^$o5H8997F9jy_;iW|QPVI~n$xKbO;;+3Ymn`NKG^R{*w;f@ffxi0(3w`<&NhM3PJ z`TA>Y&RUF0skG3GxySB-ik#v&zIT4nzmQo+wl8Q?Q-0O7D}#y-5VZvzJh|I5TzI0d z8eU4Nd8lQVfUERWH#RG>%5pc=0X<1J3AIh~-F0E9sz_wGbwX4i zNb=>rmi2M4D=QW44R}IC=>smjqjRUq!pzpac&H(Tm8_;yl_RL+ev{Wuwz4pV#u>Sn zdDjAf6PS{{LE1H#kYigA7)6j0NG)=q@pa|w?L4PoA+(gWnL$7eH`9Jx?VWM;^ZZKo zOYGJaB?{GUDni7WFg)X4amv>x6Wyt-N~mcZ2vXMxC^?`Q)BqrB7Nl>hkuF|s(zKxB z5vFH&7Al7u(zQ^GiA<{~+!!WI{W^NvMDQAx>bUQ=87fbF zUPSVkB$Ma0ufR#rKg(|B&tkL`nGHB&2cq*Qn=#*0oK59fAQtM{{Uji9cIsUmcY(j zMV@Ic$g4_d8B&&?d}azTPd!f7)t4))MLTI+NizV<3FmB;*-dIFaK7iUInE4-&ghBbm)%Jc60KQjpTrg9<3tZJ&F3JylP^E7tR& z0S{5Bs)Q|R&}DHX&%$k?sT*lokQ4->I!>F~m+fV7Q{p}pVjG#y8dpNR;b%espN)dU zEX-0Tk)U&Zu7ac&kdFm{yI@|T;^CWhS3`}eovJX)OACSvp*qInuC~ckO}AJnsZiny z+|J{nwEz@kf$$&*5PAAq&*R4u>#>FkxbW-koQ~AQr};xk$(N?YNhjfI!sc$Gn>Aw> za@9{x;FpRtZ6rvQMxQu=IDF?KY-6^yNs&YX+&biFOvRO;y{R*->Kv)z?U5Ry4_ z=5^O?g`C_}%cQ=GP0mC-l1V~}vZPF(O$_?k))xY*_N1w&3sZE>FY=O{$x$TuxkjRP zf%63#%cZ!AUBrUY8k^Mqcu6(Rhz!xhTzOelrIuILU5j9-%t|>4Belj%F2~2C#NRewpbkz*! ze@wV?C+?xHtD2_y;+yw9VOxzgUcBL^a@&m7I4`>zazt4#Zo*r!q*-%;f>IdKzlL zFZQ1m7iCaM%U4g8CC1hN0Fp!)+-i0t+W5eDa}eR42-b0TgZPQ_U3T7-wO5_m#X&+^ zN)X~+gs8?s6jd7lnB{7ZiC9AIxUmyhz=7(MsxUNNY@G!rgzJ zJ&;vSJ%}Rb!13lf;;D|%d{M)EZ@@Q&*Ky&xyPE$1!!=I5d!eV{y5y(~>PiwKPlZNi z0FfHoHM>&HTf&_SLg0h|7LrFfo{~n}{VjiXhvCgO1I5b6TsyuQuEJN%=);M1uuL?x zDLG1jB}geTJwe(9v*p)AUSEE$n(uYo#DpcL#E6`{i5rO=`q^}Vmltl2rtIR2D|826 zejbS{&ZP|1t+vo4x0P+Tpb#X++=tZL<`Jc)sH_U7QquC&JG6IsgwDQ#HJ^lYvaTYE zfHq%B+o)*gSaGscsfikh>PFK%;w>SDYj1`tJKQ&PDc60_>JlX?Fe738tPJuNFoD0a zYfTV)^Bulw@Znbug*S0dl=nddt^r{ap6sF3G9>g)zLBq4wY1+CIAg);Hx41hl!bZEO>$S6$-*IuX8Za2B#LA&$LKK$CNOT$G0G@i8-o{uXvaJQ>RBCZD z>u*Ig)0$2tYZTypgwNUZOe4SiQT05 zp~uB91aOB8R#08e65UNph$(g937L-yQyjIJ*2W#5dnr?4C((W1jivgvAa|-#NeMCu z0H5t^YXxv)4`IqQw@*dv&6v#E0%CO9B5hz@cQxF@CYG2O3Ir)l?X>M>H8{LbKxwF( zk(^HMJ|w2lVNa4_QC95k;iZ~908VZSCg|91j+rS!TL2}s4S613v0^K@C@AJo)j*>( z!Po1pqA6yTB?u{2WdkZ~0!ObQ{k<(EcT^`b+eEKHDM&pJ`tfKT{PwWtj3wtR5E~;l1V@+3Z3~0`url!RaA_f!)hl& zkWvPMb^U(%z!EIHv2iKII$RE=VbWt!j%F6$|fX}^YXK5 zsx>&$o((H7Co~N<*!2GZc9j|21eA{uBn;XE7Hd#D+{$HSr6v`w+kEx=(%%-HO0ANS zqK~I!GFxne?v+U$M&7e;A>verJBWiTSkp~9Y0}PXDcs7Z8bVM~bvpu2oxU{66xu_L z1WX7g-XDK@S`R!z_TY<@{*Cgdlie>Vi3Mjt%blg}+LEV;Q-d^|xw*-WEIml2GK9e+ zE19J-VC$!)rl=I4-+D+HN4!biH|O{C^}GsQP{50BnxvLc;?fjz5CqTqHlMjF4HH3n zIh`;BZKnNfBX+pnK<9it7x(uTCAlj*wp%Jt%0#EE4gQ*1@HM*4RmY)L1{%GbTgWbu zASM9QNZi=o;=DkV<`Dqv&eg@v5T#~e$ORnw4puO^s+Q3S%m9&=e|sNJ;4BKmVi2^Q z6@hnEC23B0(?9?^pR;Ln5~d4jBnW^e!q+`=NYH>J6@C2dM?&#=wPkR`ObOG^<7REM zo2t#o3r*7wE#P~ky2^q70LcUcK1cMo4=#F2>>G+N94A#Ma_g;n znby>RPl078mpJm@=iUa&U1&BIHq;TNxa0VZ@b~`!NBd`DG}2Kfo|gGaFDgQf5=z7` z$oTi3wz`W+-yc1HD?{+@PO?OJfPJ(+_a4Y|_>x|wLR6BKl>n@Y)bs1Dp)X1auUikK zBq|1PG1hmGN%+|-n)ENU+SQU0l*l~}-d%k(HlJ$kYPC(i*vbQEmV-bv`H^E9!xNU9 zwzyT6D#D0zg$QUMhY2J^&z{?BV2jg(6!*P)GcyBa2*92|3bX$J2;47G zh4Dp02&;41+;jyrt-}2Fo$b<`Uw2&BZNjVC^nD+e*ig?J2-e)c?B9-^;C3n(r-(A) z3Q|x3RQ-=zA9k7iK=GCT0EJbDaJtJYaAaLUNRXK2uKxf(OLJU*3#!HOV)&bU+)*{y zbkfvD=9@GDbZ6Rw@f5lEX-89rt_#_dR4gd z&aETF;UO|$M4b|JJ6P8AqrdSLW2&y854%!MXPzo5Dctjcu5Envv{LYeHOSeicOX$v z?^Z!ck)%%F0n*zahww~0;r8ZldQNBU;EL??GbBy3erL@H+*o~!j*!#^g*f<9P@JYg zGDe*?I&ar&8*tYHUU%hcZ!5~2I+srFALWtH=^Acr;|g4EVq4TH^q%j$9v1;2K*qli zJh$G~(|48MgDxeqgpT}p&?7O@CrFrsI*&Ne+d(XjcDza*(g<0Xie-J)P+^OW%33$z zA-u`}Y-CLI8+`fNtggNpzVC%P+968{IZ8wi5jqWLLCW6ot~#r)ty9jlw;Bn7oRE@v z2svPGRYLED3gbj6As(cg} zO2SY&ku$EG^#1@hH^o(pyDsJ3*K0-^Os^;&FNecu{{RwrR}WC#w9XdLP)@F?3D1Wc)2fU>Y03xlmrEN|1=zBnbUY zs?OWI6iqG+s>IhsthY|G>t#n&{KVTqaJsz?V5_34oD7P(*dP%f$eRiFn69N9H@=lx zl3V^9_$PSq5w*F+MO30p{wpa)J38i(z5eSN_GPANms)LW%&e(8h}S4F7S?!hwwt{R z1t8^#nD|>Mc4}!w##XS93T zJ^>O^`#1|q*BX%|>IR(u0DESh-&nsLVcs89U6=;pO+&Ye3r^HJq5=?o?6J&(M^B}+ zeKJ5#fCWk9!>lb|s>My55?aKnY0z4Tq>CZfz~ZYV|*OKZss%rN?h)11!LlBr10rXcV5mOGU8ji^6qyn!JUj zb*WissYDeOL})>RWN8O|ZTcmeFa?jC4DN7JSUm~5SP!E+Uy|TSQkD6O%s>G3A3I4= zQdHjMVy(5Wykxcy^DaqH@?NLRpMkTBs)6g;tN3G8E!s-^Jxu{lx6l6qydm(sj?gVy8FFx{Ie;4DIkmE=alS@i6 zDs&U$R>yb;&exoxJKL|}1t4=Q&-oh9+^py`y4 zD;0LwxTtZJ;d5~Z3e=XbCotS>3 z)g9$_DKwalmBJx#+Etw@F+LJ@5D)0SnOYhv67o{s+LcAb~=IMZPuRdoz`|z z7TANNqJ3(A_PqIZ^i&62G`n-59FFBh@E-ZPIK{&iU<^-rs_(4598sjb*5rFV?9xJ+ zbwYe4Y4Bzn!a?U}+yvt;B)~VV=fh4Q+%r>j)+rT41DEqu62A(!3RXju4M``Rt4xB2Kzl&OX0!CDDt~imyjeRO_vx@2^-{ zN~)S9DYYnpIe-LDEUDft809RGwCFeM>*wZ*k_JChvHJDasP~VzZZEnoB;ZUhcGJIy zs?vR**iK|oE#aLRn;@3Fc~A7}VkRw|DJmJHarzpXoW1iQ3ooNN65s_%(2*H*Ivx7k zRN?+SqUpPE=M!)1rGaM)=g1;(@V|}!04lG#Fv2QH zMFkjrMMZ5bCP_O_NF$e)_Puyb!n&c6>%sNsQb8?p9W?aQ<>YM>!;TrIq;~C9FCwse@rLM8I9CQ+PuK zU9=4cT}oV9k^#-QiREIN3%#qoeamPmLQE$?1Z+833!;*ow%Qv}TaBF3ciaunm8Tn| zL!@mb0Kny}jrQJtHpNRcuYPA0tYk69ECP8-!yy4hkaU$uh}?bpS=(x-X@K{sPSyz&xd%_41bV=WDrq-yE1=Wpc zJ=G$I(6k{9G?Jo{5Tm(K6W4F=W$CigI+s(S5Ko@F4gDHdiouzO>47Y++ET`FBNkC9h zfM;XN6$ac4_Rl|4+_K_Uq!VWz*Oplnq{ zmXyJ&K+7$MTP78th~+;Jf3=@6PYwk4N>_p)9sWHn;Z)t?WvCLU2^wj(r{!mKs#{7) zN&=u{B6d4Z>G!R^+}#f&uASY=Dk70$2E&$-{;W-N732j4LpJ0Me)O~pbft=fx}>BW zrCuE-NguRYcIGxcp z!c~kqlis#M2szwsqDJ~{teYO(^_0e$E;X2fVG@ECCqtsPAKumV)p1{#LG;sB)Tx!g zQSKHBOzQ`z@;Yr|965YFRaVfbMo91n5@hDhsQ_)u=Vw#KW0Z%BS!^{R*;toV(@f(c zp-3S|P^q->fv zsx=&a;$LMXMF?M<^ziR0nbLfT5pRJCkgu29_8PAG&QFuR87hL1Y zUP58qvO$3ZeF;2|Q)ZMGP4$VZ5lMGGU0c$UbTV|(bpv?Yot)rnrnd8}XwWo3Leik6 yIl0^)cx&|dTJ_=g3hA!ftp!xbFQr7MI#PT?eYDnXD$1cp9n&fbS5{0Jy8qc;#+b|i literal 0 HcmV?d00001 From 217615abf68592e69725bbb4ef8d86713e9be1ce Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Fri, 5 Jul 2019 04:34:46 -0400 Subject: [PATCH 155/594] Removed Unused Variables (#949) - Removed two unused variables. - Changed `a` to `_` since the `a` variable is never used. This addresses [3 alerts from lgtm](https://lgtm.com/projects/g/TheAlgorithms/Python/snapshot/d55bbcd204dfbd436914a5f9031a6a8fdf22f6f4/files/sorts/Odd-Even_transposition_parallel.py?sort=name&dir=ASC&mode=heatmap). --- sorts/Odd-Even_transposition_parallel.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/sorts/Odd-Even_transposition_parallel.py b/sorts/Odd-Even_transposition_parallel.py index d7f983fc0469..9bf81a39e27a 100644 --- a/sorts/Odd-Even_transposition_parallel.py +++ b/sorts/Odd-Even_transposition_parallel.py @@ -70,13 +70,11 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): def OddEvenTransposition(arr): processArray = [] - tempRrcv = None - tempLrcv = None resultPipe = [] #initialize the list of pipes where the values will be retrieved - for a in arr: + for _ in arr: resultPipe.append(Pipe()) #creates the processes From 1c9d995b9eb05f439fee5892210af3ab659f9760 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Fri, 5 Jul 2019 04:36:48 -0400 Subject: [PATCH 156/594] Implement Three New Algorithms (#948) * Create average_median.py I created a program to calculate the median of a list of numbers. * Changed Odd to Even in String * Create decimal_to_binary.py - Added 'conversions' folder. - Created a decimal to binary converter. * Implemented Decimal to Octal Algorithm - I created a decimal to octal converter based on the converter in the TheAlgorithms/Python project. - I added two newlines to make the output of decimal_to_binary.py better. --- conversions/decimal_to_binary.py | 25 +++++++++++++++++++ conversions/decimal_to_octal.py | 38 +++++++++++++++++++++++++++++ maths/average_median.py | 41 ++++++++++++++++++++++++++++++++ 3 files changed, 104 insertions(+) create mode 100644 conversions/decimal_to_binary.py create mode 100644 conversions/decimal_to_octal.py create mode 100644 maths/average_median.py diff --git a/conversions/decimal_to_binary.py b/conversions/decimal_to_binary.py new file mode 100644 index 000000000000..43ceee61a388 --- /dev/null +++ b/conversions/decimal_to_binary.py @@ -0,0 +1,25 @@ +"""Convert a Decimal Number to a Binary Number.""" + + +def decimal_to_binary(num): + """Convert a Decimal Number to a Binary Number.""" + binary = [] + while num > 0: + binary.insert(0, num % 2) + num >>= 1 + return "".join(str(e) for e in binary) + + +def main(): + """Print binary equivelents of decimal numbers.""" + print("\n2 in binary is:") + print(decimal_to_binary(2)) # = 10 + print("\n7 in binary is:") + print(decimal_to_binary(7)) # = 111 + print("\n35 in binary is:") + print(decimal_to_binary(35)) # = 100011 + print("\n") + + +if __name__ == '__main__': + main() diff --git a/conversions/decimal_to_octal.py b/conversions/decimal_to_octal.py new file mode 100644 index 000000000000..187a0300e33a --- /dev/null +++ b/conversions/decimal_to_octal.py @@ -0,0 +1,38 @@ +"""Convert a Decimal Number to an Octal Number.""" + +import math + +# Modified from: +# https://github.com/TheAlgorithms/Javascript/blob/master/Conversions/DecimalToOctal.js + + +def decimal_to_octal(num): + """Convert a Decimal Number to an Octal Number.""" + octal = 0 + counter = 0 + while num > 0: + remainder = num % 8 + octal = octal + (remainder * math.pow(10, counter)) + counter += 1 + num = math.floor(num / 8) # basically /= 8 without remainder if any + # This formatting removes trailing '.0' from `octal`. + return'{0:g}'.format(float(octal)) + + +def main(): + """Print octal equivelents of decimal numbers.""" + print("\n2 in octal is:") + print(decimal_to_octal(2)) # = 2 + print("\n8 in octal is:") + print(decimal_to_octal(8)) # = 10 + print("\n65 in octal is:") + print(decimal_to_octal(65)) # = 101 + print("\n216 in octal is:") + print(decimal_to_octal(216)) # = 330 + print("\n512 in octal is:") + print(decimal_to_octal(512)) # = 1000 + print("\n") + + +if __name__ == '__main__': + main() diff --git a/maths/average_median.py b/maths/average_median.py new file mode 100644 index 000000000000..565bb4afd112 --- /dev/null +++ b/maths/average_median.py @@ -0,0 +1,41 @@ +""" +Find median of a list of numbers. + +Read more about medians: + https://en.wikipedia.org/wiki/Median +""" + + +def median(nums): + """Find median of a list of numbers.""" + # Sort list + sorted_list = sorted(nums) + print("List of numbers:") + print(sorted_list) + + # Is number of items in list even? + if len(sorted_list) % 2 == 0: + # Find index for first middle value. + mid_index_1 = len(sorted_list) / 2 + # Find index for second middle value. + mid_index_2 = -(len(sorted_list) / 2) - 1 + # Divide middle values by 2 to get average (mean). + med = (sorted_list[mid_index_1] + sorted_list[mid_index_2]) / float(2) + return med # Return makes `else:` unnecessary. + # Number of items is odd. + mid_index = (len(sorted_list) - 1) / 2 + # Middle index is median. + med = sorted_list[mid_index] + return med + + +def main(): + """Call average module to find median of a specific list of numbers.""" + print("Odd number of numbers:") + print(median([2, 4, 6, 8, 20, 50, 70])) + print("Even number of numbers:") + print(median([2, 4, 6, 8, 20, 50])) + + +if __name__ == '__main__': + main() From 506bb5ccfe97fe5b37faa2bcd9df0fd0fab07ac0 Mon Sep 17 00:00:00 2001 From: Jarred Allen Date: Fri, 5 Jul 2019 01:43:16 -0700 Subject: [PATCH 157/594] Add Red-Black Binary Search Trees (#954) * Wrote most of an rbt, missing just removal * Added some convenience methods. * Added a color method * Wrote code to delete, but has issues :( * Fixed a bug in Red-Black trees * Fixed bug in tree color validation and delete repairing * Clean up == comparison to None --- data_structures/binary_tree/red_black_tree.py | 665 ++++++++++++++++++ 1 file changed, 665 insertions(+) create mode 100644 data_structures/binary_tree/red_black_tree.py diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py new file mode 100644 index 000000000000..4ca1301dd8fe --- /dev/null +++ b/data_structures/binary_tree/red_black_tree.py @@ -0,0 +1,665 @@ +class RedBlackTree: + """ + A Red-Black tree, which is a self-balancing BST (binary search + tree). + + This tree has similar performance to AVL trees, but the balancing is + less strict, so it will perform faster for writing/deleting nodes + and slower for reading in the average case, though, because they're + both balanced binary search trees, both will get the same asymptotic + perfomance. + + To read more about them, https://en.wikipedia.org/wiki/Red–black_tree + + Unless otherwise specified, all asymptotic runtimes are specified in + terms of the size of the tree. + """ + def __init__(self, label=None, color=0, parent=None, left=None, right=None): + """Initialize a new Red-Black Tree node with the given values: + label: The value associated with this node + color: 0 if black, 1 if red + parent: The parent to this node + left: This node's left child + right: This node's right child + """ + self.label = label + self.parent = parent + self.left = left + self.right = right + self.color = color + + # Here are functions which are specific to red-black trees + + def rotate_left(self): + """Rotate the subtree rooted at this node to the left and + returns the new root to this subtree. + + Perfoming one rotation can be done in O(1). + """ + parent = self.parent + right = self.right + self.right = right.left + if self.right: + self.right.parent = self + self.parent = right + right.left = self + if parent is not None: + if parent.left is self: + parent.left = right + else: + parent.right = right + right.parent = parent + return right + + def rotate_right(self): + """Rotate the subtree rooted at this node to the right and + returns the new root to this subtree. + + Performing one rotation can be done in O(1). + """ + parent = self.parent + left = self.left + self.left = left.right + if self.left: + self.left.parent = self + self.parent = left + left.right = self + if parent is not None: + if parent.right is self: + parent.right = left + else: + parent.left = left + left.parent = parent + return left + + def insert(self, label): + """Inserts label into the subtree rooted at self, performs any + rotations necessary to maintain balance, and then returns the + new root to this subtree (likely self). + + This is guaranteed to run in O(log(n)) time. + """ + if self.label is None: + # Only possible with an empty tree + self.label = label + return self + if self.label == label: + return self + elif self.label > label: + if self.left: + self.left.insert(label) + else: + self.left = RedBlackTree(label, 1, self) + self.left._insert_repair() + else: + if self.right: + self.right.insert(label) + else: + self.right = RedBlackTree(label, 1, self) + self.right._insert_repair() + return self.parent or self + + def _insert_repair(self): + """Repair the coloring from inserting into a tree.""" + if self.parent is None: + # This node is the root, so it just needs to be black + self.color = 0 + elif color(self.parent) == 0: + # If the parent is black, then it just needs to be red + self.color = 1 + else: + uncle = self.parent.sibling + if color(uncle) == 0: + if self.is_left() and self.parent.is_right(): + self.parent.rotate_right() + self.right._insert_repair() + elif self.is_right() and self.parent.is_left(): + self.parent.rotate_left() + self.left._insert_repair() + elif self.is_left(): + self.grandparent.rotate_right() + self.parent.color = 0 + self.parent.right.color = 1 + else: + self.grandparent.rotate_left() + self.parent.color = 0 + self.parent.left.color = 1 + else: + self.parent.color = 0 + uncle.color = 0 + self.grandparent.color = 1 + self.grandparent._insert_repair() + + def remove(self, label): + """Remove label from this tree.""" + if self.label == label: + if self.left and self.right: + # It's easier to balance a node with at most one child, + # so we replace this node with the greatest one less than + # it and remove that. + value = self.left.get_max() + self.label = value + self.left.remove(value) + else: + # This node has at most one non-None child, so we don't + # need to replace + child = self.left or self.right + if self.color == 1: + # This node is red, and its child is black + # The only way this happens to a node with one child + # is if both children are None leaves. + # We can just remove this node and call it a day. + if self.is_left(): + self.parent.left = None + else: + self.parent.right = None + else: + # The node is black + if child is None: + # This node and its child are black + if self.parent is None: + # The tree is now empty + return RedBlackTree(None) + else: + self._remove_repair() + if self.is_left(): + self.parent.left = None + else: + self.parent.right = None + self.parent = None + else: + # This node is black and its child is red + # Move the child node here and make it black + self.label = child.label + self.left = child.left + self.right = child.right + if self.left: + self.left.parent = self + if self.right: + self.right.parent = self + elif self.label > label: + if self.left: + self.left.remove(label) + else: + if self.right: + self.right.remove(label) + return self.parent or self + + def _remove_repair(self): + """Repair the coloring of the tree that may have been messed up.""" + if color(self.sibling) == 1: + self.sibling.color = 0 + self.parent.color = 1 + if self.is_left(): + self.parent.rotate_left() + else: + self.parent.rotate_right() + if color(self.parent) == 0 and color(self.sibling) == 0 \ + and color(self.sibling.left) == 0 \ + and color(self.sibling.right) == 0: + self.sibling.color = 1 + self.parent._remove_repair() + return + if color(self.parent) == 1 and color(self.sibling) == 0 \ + and color(self.sibling.left) == 0 \ + and color(self.sibling.right) == 0: + self.sibling.color = 1 + self.parent.color = 0 + return + if (self.is_left() + and color(self.sibling) == 0 + and color(self.sibling.right) == 0 + and color(self.sibling.left) == 1): + self.sibling.rotate_right() + self.sibling.color = 0 + self.sibling.right.color = 1 + if (self.is_right() + and color(self.sibling) == 0 + and color(self.sibling.right) == 1 + and color(self.sibling.left) == 0): + self.sibling.rotate_left() + self.sibling.color = 0 + self.sibling.left.color = 1 + if (self.is_left() + and color(self.sibling) == 0 + and color(self.sibling.right) == 1): + self.parent.rotate_left() + self.grandparent.color = self.parent.color + self.parent.color = 0 + self.parent.sibling.color = 0 + if (self.is_right() + and color(self.sibling) == 0 + and color(self.sibling.left) == 1): + self.parent.rotate_right() + self.grandparent.color = self.parent.color + self.parent.color = 0 + self.parent.sibling.color = 0 + + def check_color_properties(self): + """Check the coloring of the tree, and return True iff the tree + is colored in a way which matches these five properties: + (wording stolen from wikipedia article) + 1. Each node is either red or black. + 2. The root node is black. + 3. All leaves are black. + 4. If a node is red, then both its children are black. + 5. Every path from any node to all of its descendent NIL nodes + has the same number of black nodes. + + This function runs in O(n) time, because properties 4 and 5 take + that long to check. + """ + # I assume property 1 to hold because there is nothing that can + # make the color be anything other than 0 or 1. + + # Property 2 + if self.color: + # The root was red + print('Property 2') + return False; + + # Property 3 does not need to be checked, because None is assumed + # to be black and is all the leaves. + + # Property 4 + if not self.check_coloring(): + print('Property 4') + return False + + # Property 5 + if self.black_height() is None: + print('Property 5') + return False + # All properties were met + return True + + def check_coloring(self): + """A helper function to recursively check Property 4 of a + Red-Black Tree. See check_color_properties for more info. + """ + if self.color == 1: + if color(self.left) == 1 or color(self.right) == 1: + return False + if self.left and not self.left.check_coloring(): + return False + if self.right and not self.right.check_coloring(): + return False + return True + + def black_height(self): + """Returns the number of black nodes from this node to the + leaves of the tree, or None if there isn't one such value (the + tree is color incorrectly). + """ + if self is None: + # If we're already at a leaf, there is no path + return 1 + left = RedBlackTree.black_height(self.left) + right = RedBlackTree.black_height(self.right) + if left is None or right is None: + # There are issues with coloring below children nodes + return None + if left != right: + # The two children have unequal depths + return None + # Return the black depth of children, plus one if this node is + # black + return left + (1-self.color) + + # Here are functions which are general to all binary search trees + + def __contains__(self, label): + """Search through the tree for label, returning True iff it is + found somewhere in the tree. + + Guaranteed to run in O(log(n)) time. + """ + return self.search(label) is not None + + def search(self, label): + """Search through the tree for label, returning its node if + it's found, and None otherwise. + + This method is guaranteed to run in O(log(n)) time. + """ + if self.label == label: + return self + elif label > self.label: + if self.right is None: + return None + else: + return self.right.search(label) + else: + if self.left is None: + return None + else: + return self.left.search(label) + + def floor(self, label): + """Returns the largest element in this tree which is at most label. + + This method is guaranteed to run in O(log(n)) time.""" + if self.label == label: + return self.label + elif self.label > label: + if self.left: + return self.left.floor(label) + else: + return None + else: + if self.right: + attempt = self.right.floor(label) + if attempt is not None: + return attempt + return self.label + + def ceil(self, label): + """Returns the smallest element in this tree which is at least label. + + This method is guaranteed to run in O(log(n)) time. + """ + if self.label == label: + return self.label + elif self.label < label: + if self.right: + return self.right.ceil(label) + else: + return None + else: + if self.left: + attempt = self.left.ceil(label) + if attempt is not None: + return attempt + return self.label + + def get_max(self): + """Returns the largest element in this tree. + + This method is guaranteed to run in O(log(n)) time. + """ + if self.right: + # Go as far right as possible + return self.right.get_max() + else: + return self.label + + def get_min(self): + """Returns the smallest element in this tree. + + This method is guaranteed to run in O(log(n)) time. + """ + if self.left: + # Go as far left as possible + return self.left.get_min() + else: + return self.label + + @property + def grandparent(self): + """Get the current node's grandparent, or None if it doesn't exist.""" + if self.parent is None: + return None + else: + return self.parent.parent + + @property + def sibling(self): + """Get the current node's sibling, or None if it doesn't exist.""" + if self.parent is None: + return None + elif self.parent.left is self: + return self.parent.right + else: + return self.parent.left + + def is_left(self): + """Returns true iff this node is the left child of its parent.""" + return self.parent and self.parent.left is self + + def is_right(self): + """Returns true iff this node is the right child of its parent.""" + return self.parent and self.parent.right is self + + def __bool__(self): + return True + + def __len__(self): + """ + Return the number of nodes in this tree. + """ + ln = 1 + if self.left: + ln += len(self.left) + if self.right: + ln += len(self.right) + return ln + + def preorder_traverse(self): + yield self.label + if self.left: + yield from self.left.preorder_traverse() + if self.right: + yield from self.right.preorder_traverse() + + def inorder_traverse(self): + if self.left: + yield from self.left.inorder_traverse() + yield self.label + if self.right: + yield from self.right.inorder_traverse() + + + def postorder_traverse(self): + if self.left: + yield from self.left.postorder_traverse() + if self.right: + yield from self.right.postorder_traverse() + yield self.label + + def __repr__(self): + from pprint import pformat + if self.left is None and self.right is None: + return "'%s %s'" % (self.label, (self.color and 'red') or 'blk') + return pformat({'%s %s' % (self.label, (self.color and 'red') or 'blk'): + (self.left, self.right)}, + indent=1) + + def __eq__(self, other): + """Test if two trees are equal.""" + if self.label == other.label: + return self.left == other.left and self.right == other.right + else: + return False + +def color(node): + """Returns the color of a node, allowing for None leaves.""" + if node is None: + return 0 + else: + return node.color + +""" +Code for testing the various functions of the red-black tree. +""" + +def test_rotations(): + """Test that the rotate_left and rotate_right functions work.""" + # Make a tree to test on + tree = RedBlackTree(0) + tree.left = RedBlackTree(-10, parent=tree) + tree.right = RedBlackTree(10, parent=tree) + tree.left.left = RedBlackTree(-20, parent=tree.left) + tree.left.right = RedBlackTree(-5, parent=tree.left) + tree.right.left = RedBlackTree(5, parent=tree.right) + tree.right.right = RedBlackTree(20, parent=tree.right) + # Make the right rotation + left_rot = RedBlackTree(10) + left_rot.left = RedBlackTree(0, parent=left_rot) + left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) + left_rot.left.right = RedBlackTree(5, parent=left_rot.left) + left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) + left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) + left_rot.right = RedBlackTree(20, parent=left_rot) + tree = tree.rotate_left() + if tree != left_rot: + return False + tree = tree.rotate_right() + tree = tree.rotate_right() + # Make the left rotation + right_rot = RedBlackTree(-10) + right_rot.left = RedBlackTree(-20, parent=right_rot) + right_rot.right = RedBlackTree(0, parent=right_rot) + right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) + right_rot.right.right = RedBlackTree(10, parent=right_rot.right) + right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) + right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) + if tree != right_rot: + return False + return True + +def test_insertion_speed(): + """Test that the tree balances inserts to O(log(n)) by doing a lot + of them. + """ + tree = RedBlackTree(-1) + for i in range(300000): + tree = tree.insert(i) + return True + +def test_insert(): + """Test the insert() method of the tree correctly balances, colors, + and inserts. + """ + tree = RedBlackTree(0) + tree.insert(8) + tree.insert(-8) + tree.insert(4) + tree.insert(12) + tree.insert(10) + tree.insert(11) + ans = RedBlackTree(0, 0) + ans.left = RedBlackTree(-8, 0, ans) + ans.right = RedBlackTree(8, 1, ans) + ans.right.left = RedBlackTree(4, 0, ans.right) + ans.right.right = RedBlackTree(11, 0, ans.right) + ans.right.right.left = RedBlackTree(10, 1, ans.right.right) + ans.right.right.right = RedBlackTree(12, 1, ans.right.right) + return tree == ans + +def test_insert_and_search(): + """Tests searching through the tree for values.""" + tree = RedBlackTree(0) + tree.insert(8) + tree.insert(-8) + tree.insert(4) + tree.insert(12) + tree.insert(10) + tree.insert(11) + if 5 in tree or -6 in tree or -10 in tree or 13 in tree: + # Found something not in there + return False + if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): + # Didn't find something in there + return False + return True + +def test_insert_delete(): + """Test the insert() and delete() method of the tree, verifying the + insertion and removal of elements, and the balancing of the tree. + """ + tree = RedBlackTree(0) + tree = tree.insert(-12) + tree = tree.insert(8) + tree = tree.insert(-8) + tree = tree.insert(15) + tree = tree.insert(4) + tree = tree.insert(12) + tree = tree.insert(10) + tree = tree.insert(9) + tree = tree.insert(11) + tree = tree.remove(15) + tree = tree.remove(-12) + tree = tree.remove(9) + if not tree.check_color_properties(): + return False + if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: + return False + return True + +def test_floor_ceil(): + """Tests the floor and ceiling functions in the tree.""" + tree = RedBlackTree(0) + tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] + for val, floor, ceil in tuples: + if tree.floor(val) != floor or tree.ceil(val) != ceil: + return False + return True + +def test_min_max(): + """Tests the min and max functions in the tree.""" + tree = RedBlackTree(0) + tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + if tree.get_max() != 22 or tree.get_min() != -16: + return False + return True + +def test_tree_traversal(): + """Tests the three different tree traversal functions.""" + tree = RedBlackTree(0) + tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: + return False + if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: + return False + if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: + return False + return True + +def main(): + if test_rotations(): + print('Rotating right and left works!') + else: + print('Rotating right and left doesn\'t work. :(') + if test_insert(): + print('Inserting works!') + else: + print('Inserting doesn\'t work :(') + if test_insert_and_search(): + print('Searching works!') + else: + print('Searching doesn\'t work :(') + if test_insert_delete(): + print('Deleting works!') + else: + print('Deleting doesn\'t work :(') + if test_floor_ceil(): + print('Floor and ceil work!') + else: + print('Floor and ceil don\'t work :(') + if test_tree_traversal(): + print('Tree traversal works!') + else: + print('Tree traversal doesn\'t work :(') + print('Testing tree balancing...') + print('This should only be a few seconds.') + test_insertion_speed() + print('Done!') + +if __name__ == '__main__': + main() From afb98e6c232dac73fb895f9e06a645a82410fd9e Mon Sep 17 00:00:00 2001 From: Dhandarah Date: Fri, 5 Jul 2019 05:47:18 -0300 Subject: [PATCH 158/594] KNN (#944) Creates an example of KNN algorithm using sklearn library. --- machine_learning/knn_sklearn.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 machine_learning/knn_sklearn.py diff --git a/machine_learning/knn_sklearn.py b/machine_learning/knn_sklearn.py new file mode 100644 index 000000000000..64582564304f --- /dev/null +++ b/machine_learning/knn_sklearn.py @@ -0,0 +1,28 @@ +from sklearn.model_selection import train_test_split +from sklearn.datasets import load_iris +from sklearn.neighbors import KNeighborsClassifier + +#Load iris file +iris = load_iris() +iris.keys() + + +print('Target names: \n {} '.format(iris.target_names)) +print('\n Features: \n {}'.format(iris.feature_names)) + +#Train set e Test set +X_train, X_test, y_train, y_test = train_test_split(iris['data'],iris['target'], random_state=4) + +#KNN + +knn = KNeighborsClassifier (n_neighbors = 1) +knn.fit(X_train, y_train) + +#new array to test +X_new = [[1,2,1,4], + [2,3,4,5]] + +prediction = knn.predict(X_new) + +print('\nNew array: \n {}' + '\n\nTarget Names Prediction: \n {}'.format(X_new, iris['target_names'][prediction])) From 831558d38dd00c7b4d64743ca4f3fe62d16e71d1 Mon Sep 17 00:00:00 2001 From: Hetal Kuvadia Date: Fri, 5 Jul 2019 14:18:36 +0530 Subject: [PATCH 159/594] #945 Backtracking Algorithms (#953) * Adding nqueens.py for backtracking * Adding sum_of_subsets.py for backtracking * Update nqueens.py * Rename nqueens.py to n_queens.py * Deleting /other/n_queens.py --- backtracking/n_queens.py | 84 ++++++++++++++++++++++++++++++++++ backtracking/sum_of_subsets.py | 45 ++++++++++++++++++ other/n_queens.py | 77 ------------------------------- 3 files changed, 129 insertions(+), 77 deletions(-) create mode 100644 backtracking/n_queens.py create mode 100644 backtracking/sum_of_subsets.py delete mode 100644 other/n_queens.py diff --git a/backtracking/n_queens.py b/backtracking/n_queens.py new file mode 100644 index 000000000000..dfd4498b166b --- /dev/null +++ b/backtracking/n_queens.py @@ -0,0 +1,84 @@ +''' + + The nqueens problem is of placing N queens on a N * N + chess board such that no queen can attack any other queens placed + on that chess board. + This means that one queen cannot have any other queen on its horizontal, vertical and + diagonal lines. + +''' +solution = [] + +def isSafe(board, row, column): + ''' + This function returns a boolean value True if it is safe to place a queen there considering + the current state of the board. + + Parameters : + board(2D matrix) : board + row ,column : coordinates of the cell on a board + + Returns : + Boolean Value + + ''' + for i in range(len(board)): + if board[row][i] == 1: + return False + for i in range(len(board)): + if board[i][column] == 1: + return False + for i,j in zip(range(row,-1,-1),range(column,-1,-1)): + if board[i][j] == 1: + return False + for i,j in zip(range(row,-1,-1),range(column,len(board))): + if board[i][j] == 1: + return False + return True + +def solve(board, row): + ''' + It creates a state space tree and calls the safe function untill it receives a + False Boolean and terminates that brach and backtracks to the next + poosible solution branch. + ''' + if row >= len(board): + ''' + If the row number exceeds N we have board with a successful combination + and that combination is appended to the solution list and the board is printed. + + ''' + solution.append(board) + printboard(board) + print() + return + for i in range(len(board)): + ''' + For every row it iterates through each column to check if it is feesible to place a + queen there. + If all the combinations for that particaular branch are successfull the board is + reinitialized for the next possible combination. + ''' + if isSafe(board,row,i): + board[row][i] = 1 + solve(board,row+1) + board[row][i] = 0 + return False + +def printboard(board): + ''' + Prints the boards that have a successfull combination. + ''' + for i in range(len(board)): + for j in range(len(board)): + if board[i][j] == 1: + print("Q", end = " ") + else : + print(".", end = " ") + print() + +#n=int(input("The no. of queens")) +n = 8 +board = [[0 for i in range(n)]for j in range(n)] +solve(board, 0) +print("The total no. of solutions are :", len(solution)) diff --git a/backtracking/sum_of_subsets.py b/backtracking/sum_of_subsets.py new file mode 100644 index 000000000000..b01bffbb651d --- /dev/null +++ b/backtracking/sum_of_subsets.py @@ -0,0 +1,45 @@ +''' + The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, + determine all possible subsets of the given set whose summation sum equal to given M. + + Summation of the chosen numbers must be equal to given number M and one number can + be used only once. +''' + +def generate_sum_of_subsets_soln(nums, max_sum): + result = [] + path = [] + num_index = 0 + remaining_nums_sum = sum(nums) + create_state_space_tree(nums, max_sum, num_index, path,result, remaining_nums_sum) + return result + +def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_sum): + ''' + Creates a state space tree to iterate through each branch using DFS. + It terminates the branching of a node when any of the two conditions + given below satisfy. + This algorithm follows depth-fist-search and backtracks when the node is not branchable. + + ''' + if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: + return + if sum(path) == max_sum: + result.append(path) + return + for num_index in range(num_index,len(nums)): + create_state_space_tree(nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index]) + +''' +remove the comment to take an input from the user + +print("Enter the elements") +nums = list(map(int, input().split())) +print("Enter max_sum sum") +max_sum = int(input()) + +''' +nums = [3, 34, 4, 12, 5, 2] +max_sum = 9 +result = generate_sum_of_subsets_soln(nums,max_sum) +print(*result) \ No newline at end of file diff --git a/other/n_queens.py b/other/n_queens.py deleted file mode 100644 index 0e80a0cff5e9..000000000000 --- a/other/n_queens.py +++ /dev/null @@ -1,77 +0,0 @@ -#! /usr/bin/python3 -import sys - -def nqueens(board_width): - board = [0] - current_row = 0 - while True: - conflict = False - - for review_index in range(0, current_row): - left = board[review_index] - (current_row - review_index) - right = board[review_index] + (current_row - review_index); - if (board[current_row] == board[review_index] or (left >= 0 and left == board[current_row]) or (right < board_width and right == board[current_row])): - conflict = True; - break - - if (current_row == 0 and conflict == False): - board.append(0) - current_row = 1 - continue - - if (conflict == True): - board[current_row] += 1 - - if (current_row == 0 and board[current_row] == board_width): - print("No solution exists for specificed board size.") - return None - - while True: - if (board[current_row] == board_width): - board[current_row] = 0 - if (current_row == 0): - print("No solution exists for specificed board size.") - return None - - board.pop() - current_row -= 1 - board[current_row] += 1 - - if board[current_row] != board_width: - break - else: - current_row += 1 - if (current_row == board_width): - break - - board.append(0) - return board - -def print_board(board): - if (board == None): - return - - board_width = len(board) - for row in range(board_width): - line_print = [] - for column in range(board_width): - if column == board[row]: - line_print.append("Q") - else: - line_print.append(".") - print(line_print) - - -if __name__ == '__main__': - default_width = 8 - for arg in sys.argv: - if (arg.isdecimal() and int(arg) > 3): - default_width = int(arg) - break - - if (default_width == 8): - print("Running algorithm with board size of 8. Specify an alternative Chess board size for N-Queens as a command line argument.") - - board = nqueens(default_width) - print(board) - print_board(board) From 4e413c018342e71e064c3bdd4a692121bda14fcb Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 11:11:20 +0530 Subject: [PATCH 160/594] Updated README --- CONTRIBUTING.md | 12 +- DIRECTORY.py | 50 +++ README.md | 346 ++++++++++++++++++ .../image_data}/PSNR-example-base.png | Bin .../image_data}/PSNR-example-comp-10.jpg | Bin .../image_data}/compressed_image.png | Bin .../image_data}/example_image.jpg | Bin .../image_data}/example_wikipedia_image.jpg | Bin .../image_data}/original_image.png | Bin .../peak_signal_to_noise_ratio.py | 8 +- data_structures/__init__.py | 0 data_structures/arrays.py | 3 - data_structures/avl.py | 181 --------- data_structures/{ => binary_tree}/LCA.py | 0 .../binary_tree}/basic_binary_tree.py | 0 data_structures/hashing/__init__.py | 6 - .../hashing/number_theory/__init__.py | 0 .../{swapNodes.py => swap_nodes.py} | 0 data_structures/queue/__init__.py | 0 .../{next.py => next_greater_element.py} | 0 data_structures/union_find/__init__.py | 0 .../union_find/tests_union_find.py | 78 ---- data_structures/union_find/union_find.py | 87 ----- .../Social_Network_Ads.csv | 0 .../random_forest_classification.py | 0 .../random_forest_classifier.ipynb} | 0 .../Position_Salaries.csv | 0 .../random_forest_regression.ipynb} | 0 .../random_forest_regression.py | 0 maths/Hanoi.py | 29 -- maths/{lucasSeries.py => lucas series.py} | 0 maths/tests/__init__.py | 1 - maths/tests/test_fibonacci.py | 34 -- matrix/{spiralPrint.py => spiral_print.py} | 0 ....py => back_propagation_neural_network.py} | 0 ...b => fully_connected_neural_network.ipynb} | 0 .../game_o_life.py => game_of_life.py} | 0 other/game_of_life/sample.gif | Bin 228847 -> 0 bytes searches/test_interpolation_search.py | 93 ----- searches/test_tabu_search.py | 46 --- simple_client/README.md | 6 - simple_client/client.py | 29 -- simple_client/server.py | 21 -- sorts/sorting_graphs.png | Bin 10362 -> 0 bytes sorts/tests.py | 76 ---- 45 files changed, 404 insertions(+), 702 deletions(-) create mode 100644 DIRECTORY.py rename {compression_analysis => compression/image_data}/PSNR-example-base.png (100%) rename {compression_analysis => compression/image_data}/PSNR-example-comp-10.jpg (100%) rename {compression_analysis => compression/image_data}/compressed_image.png (100%) rename {compression_analysis => compression/image_data}/example_image.jpg (100%) rename {compression_analysis => compression/image_data}/example_wikipedia_image.jpg (100%) rename {compression_analysis => compression/image_data}/original_image.png (100%) rename compression_analysis/psnr.py => compression/peak_signal_to_noise_ratio.py (71%) delete mode 100644 data_structures/__init__.py delete mode 100644 data_structures/arrays.py delete mode 100644 data_structures/avl.py rename data_structures/{ => binary_tree}/LCA.py (100%) rename {binary_tree => data_structures/binary_tree}/basic_binary_tree.py (100%) delete mode 100644 data_structures/hashing/__init__.py delete mode 100644 data_structures/hashing/number_theory/__init__.py rename data_structures/linked_list/{swapNodes.py => swap_nodes.py} (100%) delete mode 100644 data_structures/queue/__init__.py rename data_structures/stacks/{next.py => next_greater_element.py} (100%) delete mode 100644 data_structures/union_find/__init__.py delete mode 100644 data_structures/union_find/tests_union_find.py delete mode 100644 data_structures/union_find/union_find.py rename machine_learning/{Random Forest Classification => random_forest_classification}/Social_Network_Ads.csv (100%) rename machine_learning/{Random Forest Classification => random_forest_classification}/random_forest_classification.py (100%) rename machine_learning/{Random Forest Classification/Random Forest Classifier.ipynb => random_forest_classification/random_forest_classifier.ipynb} (100%) rename machine_learning/{Random Forest Regression => random_forest_regression}/Position_Salaries.csv (100%) rename machine_learning/{Random Forest Regression/Random Forest Regression.ipynb => random_forest_regression/random_forest_regression.ipynb} (100%) rename machine_learning/{Random Forest Regression => random_forest_regression}/random_forest_regression.py (100%) delete mode 100644 maths/Hanoi.py rename maths/{lucasSeries.py => lucas series.py} (100%) delete mode 100644 maths/tests/__init__.py delete mode 100644 maths/tests/test_fibonacci.py rename matrix/{spiralPrint.py => spiral_print.py} (100%) rename neural_network/{bpnn.py => back_propagation_neural_network.py} (100%) rename neural_network/{fcn.ipynb => fully_connected_neural_network.ipynb} (100%) rename other/{game_of_life/game_o_life.py => game_of_life.py} (100%) delete mode 100644 other/game_of_life/sample.gif delete mode 100644 searches/test_interpolation_search.py delete mode 100644 searches/test_tabu_search.py delete mode 100644 simple_client/README.md delete mode 100644 simple_client/client.py delete mode 100644 simple_client/server.py delete mode 100644 sorts/sorting_graphs.png delete mode 100644 sorts/tests.py diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 19b928c187f9..ac632574e870 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -72,9 +72,9 @@ We want your work to be readable by others; therefore, we encourage you to note - Write tests to illustrate your work. - The following "testing" approaches are not encouraged: + The following "testing" approaches are **not** encouraged: - ```python + ```python* input('Enter your input:') # Or even worse... input = eval(raw_input("Enter your input: ")) @@ -97,13 +97,9 @@ We want your work to be readable by others; therefore, we encourage you to note #### Other Standard While Submitting Your Work -- File extension for code should be `.py`. - -- Please file your work to let others use it in the future. Here are the examples that are acceptable: +- File extension for code should be `.py`. Jupiter notebook files are acceptable in machine learning algorithms. - - Camel cases - - `-` Hyphenated names - - `_` Underscore-separated names +- Strictly use snake case (underscore separated) in your file name, as it will be easy to parse in future using scripts. If possible, follow the standard *within* the folder you are submitting to. diff --git a/DIRECTORY.py b/DIRECTORY.py new file mode 100644 index 000000000000..434b2a3dd3ed --- /dev/null +++ b/DIRECTORY.py @@ -0,0 +1,50 @@ +import os + +def getListOfFiles(dirName): + # create a list of file and sub directories + # names in the given directory + listOfFile = os.listdir(dirName) + allFiles = list() + # Iterate over all the entries + for entry in listOfFile: + # if entry == listOfFile[len(listOfFile)-1]: + # continue + if entry=='.git': + continue + # Create full path + fullPath = os.path.join(dirName, entry) + entryName = entry.split('_') + # print(entryName) + ffname = '' + try: + for word in entryName: + temp = word[0].upper() + word[1:] + ffname = ffname + ' ' + temp + # print(temp) + final_fn = ffname.replace('.py', '') + final_fn = final_fn.strip() + print('* ['+final_fn+']('+fullPath+')') + # pass + except: + pass + # If entry is a directory then get the list of files in this directory + if os.path.isdir(fullPath): + print ('\n## '+entry) + filesInCurrDir = getListOfFiles(fullPath) + for file in filesInCurrDir: + fileName = file.split('/') + fileName = fileName[len(fileName)-1] + + # print (fileName) + allFiles = allFiles + filesInCurrDir + else: + allFiles.append(fullPath) + + return allFiles + + +dirName = './'; + +# Get the list of all files in directory tree at given path +listOfFiles = getListOfFiles(dirName) +# print (listOfFiles) \ No newline at end of file diff --git a/README.md b/README.md index 527b80269fdc..9edddb60552a 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,5 @@ # The Algorithms - Python + [![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms)   [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) @@ -7,6 +8,17 @@ These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. +## Owners + +Anup Kumar Panwar +  [[Gmail](mailto:1anuppanwar@gmail.com?Subject=The%20Algorithms%20-%20Python) +  [Gihub](https://github.com/anupkumarpanwar) +  [LinkedIn](https://www.linkedin.com/in/anupkumarpanwar/)] + +Chetan Kaushik +  [[Gmail](mailto:dynamitechetan@gmail.com?Subject=The%20Algorithms%20-%20Python) +  [Gihub](https://github.com/dynamitechetan) +  [LinkedIn](https://www.linkedin.com/in/chetankaushik/)] ## Contribution Guidelines @@ -15,3 +27,337 @@ Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. ## Community Channel We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. + +# Algorithms + +## Hashes + +- [Md5](./hashes/md5.py) +- [Chaos Machine](./hashes/chaos_machine.py) +- [Sha1](./hashes/sha1.py) + +## File Transfer Protocol + +- [Ftp Client Server](./file_transfer_protocol/ftp_client_server.py) +- [Ftp Send Receive](./file_transfer_protocol/ftp_send_receive.py) + +## Backtracking + +- [N Queens](./backtracking/n_queens.py) +- [Sum Of Subsets](./backtracking/sum_of_subsets.py) + +## Ciphers + +- [Transposition Cipher](./ciphers/transposition_cipher.py) +- [Atbash](./ciphers/Atbash.py) +- [Rot13](./ciphers/rot13.py) +- [Rabin Miller](./ciphers/rabin_miller.py) +- [Transposition Cipher Encrypt Decrypt File](./ciphers/transposition_cipher_encrypt_decrypt_file.py) +- [Affine Cipher](./ciphers/affine_cipher.py) +- [Trafid Cipher](./ciphers/trafid_cipher.py) +- [Base16](./ciphers/base16.py) +- [Elgamal Key Generator](./ciphers/elgamal_key_generator.py) +- [Rsa Cipher](./ciphers/rsa_cipher.py) +- [Prehistoric Men.txt](./ciphers/prehistoric_men.txt) +- [Vigenere Cipher](./ciphers/vigenere_cipher.py) +- [Xor Cipher](./ciphers/xor_cipher.py) +- [Brute Force Caesar Cipher](./ciphers/brute_force_caesar_cipher.py) +- [Rsa Key Generator](./ciphers/rsa_key_generator.py) +- [Simple Substitution Cipher](./ciphers/simple_substitution_cipher.py) +- [Playfair Cipher](./ciphers/playfair_cipher.py) +- [Morse Code Implementation](./ciphers/morse_Code_implementation.py) +- [Base32](./ciphers/base32.py) +- [Base85](./ciphers/base85.py) +- [Base64 Cipher](./ciphers/base64_cipher.py) +- [Onepad Cipher](./ciphers/onepad_cipher.py) +- [Caesar Cipher](./ciphers/caesar_cipher.py) +- [Hill Cipher](./ciphers/hill_cipher.py) +- [Cryptomath Module](./ciphers/cryptomath_module.py) + +## Arithmetic Analysis + +- [Bisection](./arithmetic_analysis/bisection.py) +- [Newton Method](./arithmetic_analysis/newton_method.py) +- [Newton Raphson Method](./arithmetic_analysis/newton_raphson_method.py) +- [Intersection](./arithmetic_analysis/intersection.py) +- [Lu Decomposition](./arithmetic_analysis/lu_decomposition.py) + +## Boolean Algebra + +- [Quine Mc Cluskey](./boolean_algebra/quine_mc_cluskey.py) + +## Traversals + +- [Binary Tree Traversals](./traversals/binary_tree_traversals.py) + +## Maths + +- [Average](./maths/average.py) +- [Abs Max](./maths/abs_Max.py) +- [Average Median](./maths/average_median.py) +- [Trapezoidal Rule](./maths/trapezoidal_rule.py) +- [Prime Check](./maths/Prime_Check.py) +- [Modular Exponential](./maths/modular_exponential.py) +- [Newton Raphson](./maths/newton_raphson.py) +- [Factorial Recursive](./maths/factorial_recursive.py) +- [Extended Euclidean Algorithm](./maths/extended_euclidean_algorithm.py) +- [Greater Common Divisor](./maths/greater_common_divisor.py) +- [Fibonacci](./maths/fibonacci.py) +- [Find Lcm](./maths/find_lcm.py) +- [Find Max](./maths/Find_Max.py) +- [Fermat Little Theorem](./maths/fermat_little_theorem.py) +- [Factorial Python](./maths/factorial_python.py) +- [Fibonacci Sequence Recursion](./maths/fibonacci_sequence_recursion.py) +- [Sieve Of Eratosthenes](./maths/sieve_of_eratosthenes.py) +- [Abs Min](./maths/abs_Min.py) +- [Lucas Series](./maths/lucasSeries.py) +- [Segmented Sieve](./maths/segmented_sieve.py) +- [Find Min](./maths/Find_Min.py) +- [Abs](./maths/abs.py) +- [Simpson Rule](./maths/simpson_rule.py) +- [Basic Maths](./maths/basic_maths.py) +- [3n+1](./maths/3n+1.py) +- [Binary Exponentiation](./maths/Binary_Exponentiation.py) + +## Digital Image Processing + +- ## Filters + + - [Median Filter](./digital_image_processing/filters/median_filter.py) + - [Gaussian Filter](./digital_image_processing/filters/gaussian_filter.py) + + +## Compression + +- [Peak Signal To Noise Ratio](./compression_analysis/peak_signal_to_noise_ratio.py) +- [Huffman](./compression/huffman.py) + +## Graphs + +- [BFS Shortest Path](./graphs/bfs_shortest_path.py) +- [Directed And Undirected (Weighted) Graph](<./graphs/Directed_and_Undirected_(Weighted)_Graph.py>) +- [Minimum Spanning Tree Prims](./graphs/minimum_spanning_tree_prims.py) +- [Graph Matrix](./graphs/graph_matrix.py) +- [Basic Graphs](./graphs/basic_graphs.py) +- [Dijkstra 2](./graphs/dijkstra_2.py) +- [Tarjans Strongly Connected Components](./graphs/tarjans_scc.py) +- [Check Bipartite Graph BFS](./graphs/check_bipartite_graph_bfs.py) +- [Depth First Search](./graphs/depth_first_search.py) +- [Kahns Algorithm Long](./graphs/kahns_algorithm_long.py) +- [Breadth First Search](./graphs/breadth_first_search.py) +- [Dijkstra](./graphs/dijkstra.py) +- [Articulation Points](./graphs/articulation_points.py) +- [Bellman Ford](./graphs/bellman_ford.py) +- [Check Bipartite Graph Dfs](./graphs/check_bipartite_graph_dfs.py) +- [Strongly Connected Components Kosaraju](./graphs/scc_kosaraju.py) +- [Multi Hueristic Astar](./graphs/multi_hueristic_astar.py) +- [Page Rank](./graphs/page_rank.py) +- [Eulerian Path And Circuit For Undirected Graph](./graphs/Eulerian_path_and_circuit_for_undirected_graph.py) +- [Edmonds Karp Multiple Source And Sink](./graphs/edmonds_karp_multiple_source_and_sink.py) +- [Floyd Warshall](./graphs/floyd_warshall.py) +- [Minimum Spanning Tree Kruskal](./graphs/minimum_spanning_tree_kruskal.py) +- [Prim](./graphs/prim.py) +- [Kahns Algorithm Topo](./graphs/kahns_algorithm_topo.py) +- [BFS](./graphs/BFS.py) +- [Finding Bridges](./graphs/finding_bridges.py) +- [Graph List](./graphs/graph_list.py) +- [Dijkstra Algorithm](./graphs/dijkstra_algorithm.py) +- [A Star](./graphs/a_star.py) +- [Even Tree](./graphs/even_tree.py) +- [DFS](./graphs/DFS.py) + +## Networking Flow + +- [Minimum Cut](./networking_flow/minimum_cut.py) +- [Ford Fulkerson](./networking_flow/ford_fulkerson.py) + +## Matrix + +- [Matrix Operation](./matrix/matrix_operation.py) +- [Searching In Sorted Matrix](./matrix/searching_in_sorted_matrix.py) +- [Spiral Print](./matrix/spiral_print.py) + +## Searches + +- [Quick Select](./searches/quick_select.py) +- [Binary Search](./searches/binary_search.py) +- [Interpolation Search](./searches/interpolation_search.py) +- [Jump Search](./searches/jump_search.py) +- [Linear Search](./searches/linear_search.py) +- [Ternary Search](./searches/ternary_search.py) +- [Tabu Search](./searches/tabu_search.py) +- [Sentinel Linear Search](./searches/sentinel_linear_search.py) + +## Conversions + +- [Decimal To Binary](./conversions/decimal_to_binary.py) +- [Decimal To Octal](./conversions/decimal_to_octal.py) + +## Dynamic Programming + +- [Fractional Knapsack](./dynamic_programming/Fractional_Knapsack.py) +- [Sum Of Subset](./dynamic_programming/sum_of_subset.py) +- [Fast Fibonacci](./dynamic_programming/fast_fibonacci.py) +- [Bitmask](./dynamic_programming/bitmask.py) +- [Abbreviation](./dynamic_programming/abbreviation.py) +- [Rod Cutting](./dynamic_programming/rod_cutting.py) +- [Knapsack](./dynamic_programming/knapsack.py) +- [Max Sub Array](./dynamic_programming/max_sub_array.py) +- [Fibonacci](./dynamic_programming/fibonacci.py) +- [Minimum Partition](./dynamic_programming/minimum_partition.py) +- [K Means Clustering Tensorflow](./dynamic_programming/k_means_clustering_tensorflow.py) +- [Coin Change](./dynamic_programming/coin_change.py) +- [Subset Generation](./dynamic_programming/subset_generation.py) +- [Floyd Warshall](./dynamic_programming/floyd_warshall.py) +- [Longest Sub Array](./dynamic_programming/longest_sub_array.py) +- [Integer Partition](./dynamic_programming/integer_partition.py) +- [Matrix Chain Order](./dynamic_programming/matrix_chain_order.py) +- [Edit Distance](./dynamic_programming/edit_distance.py) +- [Longest Common Subsequence](./dynamic_programming/longest_common_subsequence.py) +- [Longest Increasing Subsequence O(nlogn)](<./dynamic_programming/longest_increasing_subsequence_O(nlogn).py>) +- [Longest Increasing Subsequence](./dynamic_programming/longest_increasing_subsequence.py) + +## Divide And Conquer + +- [Max Subarray Sum](./divide_and_conquer/max_subarray_sum.py) +- [Max Sub Array Sum](./divide_and_conquer/max_sub_array_sum.py) +- [Closest Pair Of Points](./divide_and_conquer/closest_pair_of_points.py) + +## Strings + +- [Knuth Morris Pratt](./strings/knuth_morris_pratt.py) +- [Rabin Karp](./strings/rabin_karp.py) +- [Naive String Search](./strings/naive_String_Search.py) +- [Levenshtein Distance](./strings/levenshtein_distance.py) +- [Min Cost String Conversion](./strings/min_cost_string_conversion.py) +- [Boyer Moore Search](./strings/Boyer_Moore_Search.py) +- [Manacher](./strings/manacher.py) + +## Sorts + +- [Quick Sort](./sorts/quick_sort.py) +- [Selection Sort](./sorts/selection_sort.py) +- [Bitonic Sort](./sorts/Bitonic_Sort.py) +- [Cycle Sort](./sorts/cycle_sort.py) +- [Comb Sort](./sorts/comb_sort.py) +- [Topological Sort](./sorts/topological_sort.py) +- [Merge Sort Fastest](./sorts/merge_sort_fastest.py) +- [Random Pivot Quick Sort](./sorts/random_pivot_quick_sort.py) +- [Heap Sort](./sorts/heap_sort.py) +- [Insertion Sort](./sorts/insertion_sort.py) +- [Counting Sort](./sorts/counting_sort.py) +- [Bucket Sort](./sorts/bucket_sort.py) +- [Quick Sort 3 Partition](./sorts/quick_sort_3_partition.py) +- [Bogo Sort](./sorts/bogo_sort.py) +- [Shell Sort](./sorts/shell_sort.py) +- [Pigeon Sort](./sorts/pigeon_sort.py) +- [Odd-Even Transposition Parallel](./sorts/Odd-Even_transposition_parallel.py) +- [Tree Sort](./sorts/tree_sort.py) +- [Cocktail Shaker Sort](./sorts/cocktail_shaker_sort.py) +- [Random Normal Distribution Quicksort](./sorts/random_normal_distribution_quicksort.py) +- [Wiggle Sort](./sorts/wiggle_sort.py) +- [Pancake Sort](./sorts/pancake_sort.py) +- [External Sort](./sorts/external_sort.py) +- [Tim Sort](./sorts/tim_sort.py) +- [Sorting Graphs.png](./sorts/sorting_graphs.png) +- [Radix Sort](./sorts/radix_sort.py) +- [Odd-Even Transposition Single-threaded](./sorts/Odd-Even_transposition_single-threaded.py) +- [Bubble Sort](./sorts/bubble_sort.py) +- [Gnome Sort](./sorts/gnome_sort.py) +- [Merge Sort](./sorts/merge_sort.py) + +## Machine Learning + +- [Perceptron](./machine_learning/perceptron.py) +- [Random Forest Classifier](./machine_learning/random_forest_classification/random_forest_classifier.ipynb) +- [NaiveBayes.ipynb](./machine_learning/NaiveBayes.ipynb) +- [Scoring Functions](./machine_learning/scoring_functions.py) +- [Logistic Regression](./machine_learning/logistic_regression.py) +- [Gradient Descent](./machine_learning/gradient_descent.py) +- [Linear Regression](./machine_learning/linear_regression.py) +- [Random Forest Regression](./machine_learning/random_forest_regression/random_forest_regression.py) +- [Random Forest Regression](./machine_learning/random_forest_regression/random_forest_regression.ipynb) +- [Reuters One Vs Rest Classifier.ipynb](./machine_learning/reuters_one_vs_rest_classifier.ipynb) +- [Decision Tree](./machine_learning/decision_tree.py) +- [Knn Sklearn](./machine_learning/knn_sklearn.py) +- [K Means Clust](./machine_learning/k_means_clust.py) + +## Neural Network + +- [Perceptron](./neural_network/perceptron.py) +- [Fully Connected Neural Network](./neural_network/fully_connected_neural_network.ipynb) +- [Convolution Neural Network](./neural_network/convolution_neural_network.py) +- [Back Propagation Neural Network](./neural_network/back_propagation_neural_network.py) + +## Data Structures + +- ## Binary Tree + + - [Basic Binary Tree](./data_structures/binary_tree/basic_binary_tree.py) + - [Red Black Tree](./data_structures/binary_tree/red_black_tree.py) + - [Fenwick Tree](./data_structures/binary_tree/fenwick_tree.py) + - [Treap](./data_structures/binary_tree/treap.py) + - [AVL Tree](./data_structures/binary_tree/AVL_tree.py) + - [Segment Tree](./data_structures/binary_tree/segment_tree.py) + - [Lazy Segment Tree](./data_structures/binary_tree/lazy_segment_tree.py) + - [Binary Search Tree](./data_structures/binary_tree/binary_search_tree.py) + +- ## Trie + + - [Trie](./data_structures/trie/trie.py) + +- ## Linked List + + - [Swap Nodes](./data_structures/linked_list/swap_nodes.py) + - [Doubly Linked List](./data_structures/linked_list/doubly_linked_list.py) + - [Singly Linked List](./data_structures/linked_list/singly_linked_list.py) + - [Is Palindrome](./data_structures/linked_list/is_Palindrome.py) + +- ## Stacks + + - [Postfix Evaluation](./data_structures/stacks/postfix_evaluation.py) + - [Balanced Parentheses](./data_structures/stacks/balanced_parentheses.py) + - [Infix To Prefix Conversion](./data_structures/stacks/infix_to_prefix_conversion.py) + - [Stack](./data_structures/stacks/stack.py) + - [Infix To Postfix Conversion](./data_structures/stacks/infix_to_postfix_conversion.py) + - [Next Greater Element](./data_structures/stacks/next_greater_element.py) + - [Stock Span Problem](./data_structures/stacks/stock_span_problem.py) + +- ## Queue + + - [Queue On Pseudo Stack](./data_structures/queue/queue_on_pseudo_stack.py) + - [Double Ended Queue](./data_structures/queue/double_ended_queue.py) + - [Queue On List](./data_structures/queue/queue_on_list.py) + +- ## Heap + + - [Heap](./data_structures/heap/heap.py) + +- ## Hashing + + - [Hash Table With Linked List](./data_structures/hashing/hash_table_with_linked_list.py) + - [Quadratic Probing](./data_structures/hashing/quadratic_probing.py) + - [Hash Table](./data_structures/hashing/hash_table.py) + - [Double Hash](./data_structures/hashing/double_hash.py) + + +## Other + +- [Detecting English Programmatically](./other/detecting_english_programmatically.py) +- [Fischer Yates Shuffle](./other/fischer_yates_shuffle.py) +- [Primelib](./other/primelib.py) +- [Binary Exponentiation 2](./other/binary_exponentiation_2.py) +- [Anagrams](./other/anagrams.py) +- [Palindrome](./other/palindrome.py) +- [Finding Primes](./other/finding_Primes.py) +- [Two Sum](./other/two_sum.py) +- [Password Generator](./other/password_generator.py) +- [Linear Congruential Generator](./other/linear_congruential_generator.py) +- [Frequency Finder](./other/frequency_finder.py) +- [Euclidean Gcd](./other/euclidean_gcd.py) +- [Word Patterns](./other/word_patterns.py) +- [Nested Brackets](./other/nested_brackets.py) +- [Binary Exponentiation](./other/binary_exponentiation.py) +- [Sierpinski Triangle](./other/sierpinski_triangle.py) +- [Game Of Life](./other/game_of_life.py) +- [Tower Of Hanoi](./other/tower_of_hanoi.py) diff --git a/compression_analysis/PSNR-example-base.png b/compression/image_data/PSNR-example-base.png similarity index 100% rename from compression_analysis/PSNR-example-base.png rename to compression/image_data/PSNR-example-base.png diff --git a/compression_analysis/PSNR-example-comp-10.jpg b/compression/image_data/PSNR-example-comp-10.jpg similarity index 100% rename from compression_analysis/PSNR-example-comp-10.jpg rename to compression/image_data/PSNR-example-comp-10.jpg diff --git a/compression_analysis/compressed_image.png b/compression/image_data/compressed_image.png similarity index 100% rename from compression_analysis/compressed_image.png rename to compression/image_data/compressed_image.png diff --git a/compression_analysis/example_image.jpg b/compression/image_data/example_image.jpg similarity index 100% rename from compression_analysis/example_image.jpg rename to compression/image_data/example_image.jpg diff --git a/compression_analysis/example_wikipedia_image.jpg b/compression/image_data/example_wikipedia_image.jpg similarity index 100% rename from compression_analysis/example_wikipedia_image.jpg rename to compression/image_data/example_wikipedia_image.jpg diff --git a/compression_analysis/original_image.png b/compression/image_data/original_image.png similarity index 100% rename from compression_analysis/original_image.png rename to compression/image_data/original_image.png diff --git a/compression_analysis/psnr.py b/compression/peak_signal_to_noise_ratio.py similarity index 71% rename from compression_analysis/psnr.py rename to compression/peak_signal_to_noise_ratio.py index 0f21aac07d34..b0efb1462dcc 100644 --- a/compression_analysis/psnr.py +++ b/compression/peak_signal_to_noise_ratio.py @@ -21,11 +21,11 @@ def psnr(original, contrast): def main(): dir_path = os.path.dirname(os.path.realpath(__file__)) # Loading images (original image and compressed image) - original = cv2.imread(os.path.join(dir_path, 'original_image.png')) - contrast = cv2.imread(os.path.join(dir_path, 'compressed_image.png'), 1) + original = cv2.imread(os.path.join(dir_path, 'image_data/original_image.png')) + contrast = cv2.imread(os.path.join(dir_path, 'image_data/compressed_image.png'), 1) - original2 = cv2.imread(os.path.join(dir_path, 'PSNR-example-base.png')) - contrast2 = cv2.imread(os.path.join(dir_path, 'PSNR-example-comp-10.jpg'), 1) + original2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-base.png')) + contrast2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-comp-10.jpg'), 1) # Value expected: 29.73dB print("-- First Test --") diff --git a/data_structures/__init__.py b/data_structures/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/data_structures/arrays.py b/data_structures/arrays.py deleted file mode 100644 index feb061013556..000000000000 --- a/data_structures/arrays.py +++ /dev/null @@ -1,3 +0,0 @@ -arr = [10, 20, 30, 40] -arr[1] = 30 # set element 1 (20) of array to 30 -print(arr) diff --git a/data_structures/avl.py b/data_structures/avl.py deleted file mode 100644 index d01e8f825368..000000000000 --- a/data_structures/avl.py +++ /dev/null @@ -1,181 +0,0 @@ -""" -An AVL tree -""" -from __future__ import print_function - - -class Node: - - def __init__(self, label): - self.label = label - self._parent = None - self._left = None - self._right = None - self.height = 0 - - @property - def right(self): - return self._right - - @right.setter - def right(self, node): - if node is not None: - node._parent = self - self._right = node - - @property - def left(self): - return self._left - - @left.setter - def left(self, node): - if node is not None: - node._parent = self - self._left = node - - @property - def parent(self): - return self._parent - - @parent.setter - def parent(self, node): - if node is not None: - self._parent = node - self.height = self.parent.height + 1 - else: - self.height = 0 - - -class AVL: - - def __init__(self): - self.root = None - self.size = 0 - - def insert(self, value): - node = Node(value) - - if self.root is None: - self.root = node - self.root.height = 0 - self.size = 1 - else: - # Same as Binary Tree - dad_node = None - curr_node = self.root - - while True: - if curr_node is not None: - - dad_node = curr_node - - if node.label < curr_node.label: - curr_node = curr_node.left - else: - curr_node = curr_node.right - else: - node.height = dad_node.height - dad_node.height += 1 - if node.label < dad_node.label: - dad_node.left = node - else: - dad_node.right = node - self.rebalance(node) - self.size += 1 - break - - def rebalance(self, node): - n = node - - while n is not None: - height_right = n.height - height_left = n.height - - if n.right is not None: - height_right = n.right.height - - if n.left is not None: - height_left = n.left.height - - if abs(height_left - height_right) > 1: - if height_left > height_right: - left_child = n.left - if left_child is not None: - h_right = (left_child.right.height - if (left_child.right is not None) else 0) - h_left = (left_child.left.height - if (left_child.left is not None) else 0) - if (h_left > h_right): - self.rotate_left(n) - break - else: - self.double_rotate_right(n) - break - else: - right_child = n.right - if right_child is not None: - h_right = (right_child.right.height - if (right_child.right is not None) else 0) - h_left = (right_child.left.height - if (right_child.left is not None) else 0) - if (h_left > h_right): - self.double_rotate_left(n) - break - else: - self.rotate_right(n) - break - n = n.parent - - def rotate_left(self, node): - aux = node.parent.label - node.parent.label = node.label - node.parent.right = Node(aux) - node.parent.right.height = node.parent.height + 1 - node.parent.left = node.right - - - def rotate_right(self, node): - aux = node.parent.label - node.parent.label = node.label - node.parent.left = Node(aux) - node.parent.left.height = node.parent.height + 1 - node.parent.right = node.right - - def double_rotate_left(self, node): - self.rotate_right(node.getRight().getRight()) - self.rotate_left(node) - - def double_rotate_right(self, node): - self.rotate_left(node.getLeft().getLeft()) - self.rotate_right(node) - - def empty(self): - if self.root is None: - return True - return False - - def preShow(self, curr_node): - if curr_node is not None: - self.preShow(curr_node.left) - print(curr_node.label, end=" ") - self.preShow(curr_node.right) - - def preorder(self, curr_node): - if curr_node is not None: - self.preShow(curr_node.left) - self.preShow(curr_node.right) - print(curr_node.label, end=" ") - - def getRoot(self): - return self.root - -t = AVL() -t.insert(1) -t.insert(2) -t.insert(3) -# t.preShow(t.root) -# print("\n") -# t.insert(4) -# t.insert(5) -# t.preShow(t.root) -# t.preorden(t.root) diff --git a/data_structures/LCA.py b/data_structures/binary_tree/LCA.py similarity index 100% rename from data_structures/LCA.py rename to data_structures/binary_tree/LCA.py diff --git a/binary_tree/basic_binary_tree.py b/data_structures/binary_tree/basic_binary_tree.py similarity index 100% rename from binary_tree/basic_binary_tree.py rename to data_structures/binary_tree/basic_binary_tree.py diff --git a/data_structures/hashing/__init__.py b/data_structures/hashing/__init__.py deleted file mode 100644 index b96ddd478458..000000000000 --- a/data_structures/hashing/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from .hash_table import HashTable - -class QuadraticProbing(HashTable): - - def __init__(self): - super(self.__class__, self).__init__() diff --git a/data_structures/hashing/number_theory/__init__.py b/data_structures/hashing/number_theory/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/data_structures/linked_list/swapNodes.py b/data_structures/linked_list/swap_nodes.py similarity index 100% rename from data_structures/linked_list/swapNodes.py rename to data_structures/linked_list/swap_nodes.py diff --git a/data_structures/queue/__init__.py b/data_structures/queue/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/data_structures/stacks/next.py b/data_structures/stacks/next_greater_element.py similarity index 100% rename from data_structures/stacks/next.py rename to data_structures/stacks/next_greater_element.py diff --git a/data_structures/union_find/__init__.py b/data_structures/union_find/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/data_structures/union_find/tests_union_find.py b/data_structures/union_find/tests_union_find.py deleted file mode 100644 index b0708778ddbd..000000000000 --- a/data_structures/union_find/tests_union_find.py +++ /dev/null @@ -1,78 +0,0 @@ -from __future__ import absolute_import -from .union_find import UnionFind -import unittest - - -class TestUnionFind(unittest.TestCase): - def test_init_with_valid_size(self): - uf = UnionFind(5) - self.assertEqual(uf.size, 5) - - def test_init_with_invalid_size(self): - with self.assertRaises(ValueError): - uf = UnionFind(0) - - with self.assertRaises(ValueError): - uf = UnionFind(-5) - - def test_union_with_valid_values(self): - uf = UnionFind(10) - - for i in range(11): - for j in range(11): - uf.union(i, j) - - def test_union_with_invalid_values(self): - uf = UnionFind(10) - - with self.assertRaises(ValueError): - uf.union(-1, 1) - - with self.assertRaises(ValueError): - uf.union(11, 1) - - def test_same_set_with_valid_values(self): - uf = UnionFind(10) - - for i in range(11): - for j in range(11): - if i == j: - self.assertTrue(uf.same_set(i, j)) - else: - self.assertFalse(uf.same_set(i, j)) - - uf.union(1, 2) - self.assertTrue(uf.same_set(1, 2)) - - uf.union(3, 4) - self.assertTrue(uf.same_set(3, 4)) - - self.assertFalse(uf.same_set(1, 3)) - self.assertFalse(uf.same_set(1, 4)) - self.assertFalse(uf.same_set(2, 3)) - self.assertFalse(uf.same_set(2, 4)) - - uf.union(1, 3) - self.assertTrue(uf.same_set(1, 3)) - self.assertTrue(uf.same_set(1, 4)) - self.assertTrue(uf.same_set(2, 3)) - self.assertTrue(uf.same_set(2, 4)) - - uf.union(4, 10) - self.assertTrue(uf.same_set(1, 10)) - self.assertTrue(uf.same_set(2, 10)) - self.assertTrue(uf.same_set(3, 10)) - self.assertTrue(uf.same_set(4, 10)) - - def test_same_set_with_invalid_values(self): - uf = UnionFind(10) - - with self.assertRaises(ValueError): - uf.same_set(-1, 1) - - with self.assertRaises(ValueError): - uf.same_set(11, 0) - - -if __name__ == '__main__': - unittest.main() diff --git a/data_structures/union_find/union_find.py b/data_structures/union_find/union_find.py deleted file mode 100644 index 40eea67ac944..000000000000 --- a/data_structures/union_find/union_find.py +++ /dev/null @@ -1,87 +0,0 @@ -class UnionFind(): - """ - https://en.wikipedia.org/wiki/Disjoint-set_data_structure - - The union-find is a disjoint-set data structure - - You can merge two sets and tell if one set belongs to - another one. - - It's used on the Kruskal Algorithm - (https://en.wikipedia.org/wiki/Kruskal%27s_algorithm) - - The elements are in range [0, size] - """ - def __init__(self, size): - if size <= 0: - raise ValueError("size should be greater than 0") - - self.size = size - - # The below plus 1 is because we are using elements - # in range [0, size]. It makes more sense. - - # Every set begins with only itself - self.root = [i for i in range(size+1)] - - # This is used for heuristic union by rank - self.weight = [0 for i in range(size+1)] - - def union(self, u, v): - """ - Union of the sets u and v. - Complexity: log(n). - Amortized complexity: < 5 (it's very fast). - """ - - self._validate_element_range(u, "u") - self._validate_element_range(v, "v") - - if u == v: - return - - # Using union by rank will guarantee the - # log(n) complexity - rootu = self._root(u) - rootv = self._root(v) - weight_u = self.weight[rootu] - weight_v = self.weight[rootv] - if weight_u >= weight_v: - self.root[rootv] = rootu - if weight_u == weight_v: - self.weight[rootu] += 1 - else: - self.root[rootu] = rootv - - def same_set(self, u, v): - """ - Return true if the elements u and v belongs to - the same set - """ - - self._validate_element_range(u, "u") - self._validate_element_range(v, "v") - - return self._root(u) == self._root(v) - - def _root(self, u): - """ - Get the element set root. - This uses the heuristic path compression - See wikipedia article for more details. - """ - - if u != self.root[u]: - self.root[u] = self._root(self.root[u]) - - return self.root[u] - - def _validate_element_range(self, u, element_name): - """ - Raises ValueError if element is not in range - """ - if u < 0 or u > self.size: - msg = ("element {0} with value {1} " - "should be in range [0~{2}]")\ - .format(element_name, u, self.size) - raise ValueError(msg) diff --git a/machine_learning/Random Forest Classification/Social_Network_Ads.csv b/machine_learning/random_forest_classification/Social_Network_Ads.csv similarity index 100% rename from machine_learning/Random Forest Classification/Social_Network_Ads.csv rename to machine_learning/random_forest_classification/Social_Network_Ads.csv diff --git a/machine_learning/Random Forest Classification/random_forest_classification.py b/machine_learning/random_forest_classification/random_forest_classification.py similarity index 100% rename from machine_learning/Random Forest Classification/random_forest_classification.py rename to machine_learning/random_forest_classification/random_forest_classification.py diff --git a/machine_learning/Random Forest Classification/Random Forest Classifier.ipynb b/machine_learning/random_forest_classification/random_forest_classifier.ipynb similarity index 100% rename from machine_learning/Random Forest Classification/Random Forest Classifier.ipynb rename to machine_learning/random_forest_classification/random_forest_classifier.ipynb diff --git a/machine_learning/Random Forest Regression/Position_Salaries.csv b/machine_learning/random_forest_regression/Position_Salaries.csv similarity index 100% rename from machine_learning/Random Forest Regression/Position_Salaries.csv rename to machine_learning/random_forest_regression/Position_Salaries.csv diff --git a/machine_learning/Random Forest Regression/Random Forest Regression.ipynb b/machine_learning/random_forest_regression/random_forest_regression.ipynb similarity index 100% rename from machine_learning/Random Forest Regression/Random Forest Regression.ipynb rename to machine_learning/random_forest_regression/random_forest_regression.ipynb diff --git a/machine_learning/Random Forest Regression/random_forest_regression.py b/machine_learning/random_forest_regression/random_forest_regression.py similarity index 100% rename from machine_learning/Random Forest Regression/random_forest_regression.py rename to machine_learning/random_forest_regression/random_forest_regression.py diff --git a/maths/Hanoi.py b/maths/Hanoi.py deleted file mode 100644 index c7b435a8fe3e..000000000000 --- a/maths/Hanoi.py +++ /dev/null @@ -1,29 +0,0 @@ -"""Tower of Hanoi.""" - -# @author willx75 -# Tower of Hanoi recursion game algorithm is a game, it consists of three rods -# and a number of disks of different sizes, which can slide onto any rod - -import logging - -log = logging.getLogger() -logging.basicConfig(level=logging.DEBUG) - - -def Tower_Of_Hanoi(n, source, dest, by, movement): - """Tower of Hanoi - Move plates to different rods.""" - if n == 0: - return n - elif n == 1: - movement += 1 - # no print statement - # (you could make it an optional flag for printing logs) - logging.debug('Move the plate from', source, 'to', dest) - return movement - else: - - movement = movement + Tower_Of_Hanoi(n - 1, source, by, dest, 0) - logging.debug('Move the plate from', source, 'to', dest) - - movement = movement + 1 + Tower_Of_Hanoi(n - 1, by, dest, source, 0) - return movement diff --git a/maths/lucasSeries.py b/maths/lucas series.py similarity index 100% rename from maths/lucasSeries.py rename to maths/lucas series.py diff --git a/maths/tests/__init__.py b/maths/tests/__init__.py deleted file mode 100644 index 2c4a6048556c..000000000000 --- a/maths/tests/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .. import fibonacci diff --git a/maths/tests/test_fibonacci.py b/maths/tests/test_fibonacci.py deleted file mode 100644 index 7d36c755e346..000000000000 --- a/maths/tests/test_fibonacci.py +++ /dev/null @@ -1,34 +0,0 @@ -""" -To run with slash: -1. run pip install slash (may need to install C++ builds from Visual Studio website) -2. In the command prompt navigate to your project folder -3. then type--> slash run -vv -k tags:fibonacci .. - -vv indicates the level of verbosity (how much stuff you want the test to spit out after running) - -k is a way to select the tests you want to run. This becomes much more important in large scale projects. -""" - -import slash -from .. import fibonacci - -default_fib = [0, 1, 1, 2, 3, 5, 8] - - -@slash.tag('fibonacci') -@slash.parametrize(('n', 'seq'), [(2, [0, 1]), (3, [0, 1, 1]), (9, [0, 1, 1, 2, 3, 5, 8, 13, 21])]) -def test_different_sequence_lengths(n, seq): - """Test output of varying fibonacci sequence lengths""" - iterative = fibonacci.fib_iterative(n) - formula = fibonacci.fib_formula(n) - assert iterative == seq - assert formula == seq - - -@slash.tag('fibonacci') -@slash.parametrize('n', [7.3, 7.8, 7.0]) -def test_float_input_iterative(n): - """Test when user enters a float value""" - iterative = fibonacci.fib_iterative(n) - formula = fibonacci.fib_formula(n) - assert iterative == default_fib - assert formula == default_fib - diff --git a/matrix/spiralPrint.py b/matrix/spiral_print.py similarity index 100% rename from matrix/spiralPrint.py rename to matrix/spiral_print.py diff --git a/neural_network/bpnn.py b/neural_network/back_propagation_neural_network.py similarity index 100% rename from neural_network/bpnn.py rename to neural_network/back_propagation_neural_network.py diff --git a/neural_network/fcn.ipynb b/neural_network/fully_connected_neural_network.ipynb similarity index 100% rename from neural_network/fcn.ipynb rename to neural_network/fully_connected_neural_network.ipynb diff --git a/other/game_of_life/game_o_life.py b/other/game_of_life.py similarity index 100% rename from other/game_of_life/game_o_life.py rename to other/game_of_life.py diff --git a/other/game_of_life/sample.gif b/other/game_of_life/sample.gif deleted file mode 100644 index 0bf2ae1f95e4604f6840d5804846924ed72ea966..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 228847 zcmdSALv$rh7`GWa>Dac_v2Aqhq+{E*ZhT|AW81dvq+{FYoB4k;-^?s#&dg>u^Db*u zb*k#rdFuJS(y~%KyvDK+z2L9IVE+|3I5-3Z1SBLR6ciLRG&Bqh3@j`x92^`10s3d)ZkKTuIo(a_M)(a|w5FfcJOv9PePv9WP*aBy*P@$m5Q@$m@=2nY!Y ziHL}ZiHS)_NJvRZ$;ikkC@83?sAygw+9?&0C#>FMd^<>l?|?c?L) z>+9?9?;jW#7#^)u&}texU{siyu7@!va-6my0*5qzP`S(v9Y~i_6Q)o12^4+uOUl zyZih5hlhv9$H%9qrkEe>Q7Pnd zWEzS_VsL-jY>zh-k0p?b0|;dsOD2+O)hhKT8cV0rSxqN%WSjoXWb?RQY)>?m&E<=P zA`rh%5{4DHo6dlUN<+ zq9)|=5|#PA*Uk(jII|dV&lE~TusGDv7;rB*2?VgjoTnhdA2yP) zG=#vg7&yST(@r=ZdXsS^X`Hi|=#SR70~x(}CsY_@T{vS|4N}eG2r2}tBjrA@yD<^D zx5R>|Qm~*25soLx#fWUwmpv56yzq7!GMQ!ug(i&fSr0tdCvOKIuOu0$4q5+krVhEovLWdFnfl)n}J zPPA+U3{OIZE;=ayyhQ#)pL_uL1$KeOppUYCw5}Wy(Lp61-G} znh_GvFgNh(7I`!~cf;dx7w<{7Fktg8# z(ym<5Y>R|Ul(k&|f#Vq@qyO)KG~zc6lb3u+=F2c-W!y3%bp}`>47JA~4T(RoaKX6$ z^D_-$5Lxho3|%&3Bph46y@R1_c$#6JjGi9~JPJm8Dc>oXEJP4q$#xRhO2Z5c)G@jH zeBDXa4~K3!J2z6S9rEM!O!Q>MUmGi==9(FV9&|5^GK#d{{m8|xe+1>icSlxVh>?SX z!HJNZTi)|iCC1@lGEmP%Ol2H1WdN!yLWa@&d0?cd`gXmdzVYCW`2xJd2Y|D{UJ-DHJx{HH2gTEq} zD~wT`WyEoMDI-8X^$Wq8B52Z37pSBqOtMq7hf^sRqU6nrP+{LBXr#~pip?h2YO0c{ zZb>m(!v~m>OEAZZ;bcY*RiH=b zp`u|w2NaQn)oM&BqowSW?&d>U`*bO@=fsrZ$3uEQ(jV4H*=ZB}Ce{k|V+9~3xrsg! zQ;5JZZJF$hjqYRC`t%>Jwuu=B8&#`VRSShqPE>jO5g%8~GQOC_QTL*-90;~kkpQ$A zzRt%yVURVAkgOORHQO}lM{Lxy68pS=Eo%V`GCae~kzCMbGC4GptOSOSSeWWEg|`6V zNBzruw1OKYNzWM^6TNCYrQ`4ELn}VAEWD7`<`ODOI)$Bf)r4O4BJNykIP*$140m;M zvg2{-&`mX6uEa7y_bp}UEVTrrmI_&_2o=1j<#K?11u9vkRGtlP6}nj^Vs)h!FS%xz z6(@y0)3i1;geG*FdkwC4mFO%WsTl&S)?Tqde_uDLCjhIGy6{pGia=W*hN=$kiNT1f zNV^pRyUYL?-k8jGYH0SMT-(4-8lPch3~1KK7{{pKVy&ZN()uT>hu$WWeiO+M`};oyos@b&@g6TWIz|Z`tB=Dzv0sgFNul1(|79M9+ObkI60j zlHOeMaCi|m_h;@8h;!Ln-i6pzr&945427!s1(j=#q95ev8fu=)c|w2+wWy1d%8yz* zk7vur%2P$e(pABp=K%BU9m7w2+Wyswde^wiLF}%vu~ped%g!rhwU_D9cn{@2$V)c9 z+H0i8oXsu%7!Cy9Ewu5^(z^Z@F5l~mC$;RI;#*g?!jxM#C-rG$=(lXPy32pD;kztz zZ%ONT$^WH2cH84SP4wdJL6>=Ut#sWj>q0ZkP{NqMXq^TY>+A^kzP5uXm>)tPw+=PU z<7~4w_&33nJ89S8hh>?UEwj5x;b{s(qLR2tRFF@wa3-g%caPs@1x_iJ@xfpuW5v+I z@`5pS=Og)@i?rrWK1aQ$d+2Lz$fildCZ?CI`CY2Yw$22lI^nuN)h<|27X^f$$`KA8 zF;SlC^ z;pxAi8FX+O_?_+tp5XzRVTf{OhKd`U0vnj@9$cmwY*rS84`)N3;fdsBN4y?Lq3u?| z?R%acg5DMqtmQ2W6S4yx`hzw!MKgr{IglqRm~Y(oq0L_yH*A1206{y9vLsBZ-S#>? zkPGg&%6b_1gJr^LsG3YT>8d(WM)>GRn68(*az>b8l<|vOkQ%nXt)WCXu^gw2_y zGn`mU8$K+;2#E$D$Sz)$h0CLu2#h;=nrQ$NzV}jcv z$)n;ROk(kl;!x6KFRA0nJgr8a1OC!REYdn1of*!I$AJUmu_+Udd33MOd~dxHlC0ub zM-w0*Vo;?*85V3#-$Fpz;dkS)zay;SX#v$iC~$SPcoteI!V2> zG1)w!gzd3;ULmsPFw7#@LL!2>4YCZjPBiXWSZQ0@Y3Q`+R~)HgP=pnjtf!P7jvJbq6X<>In3f$(|IpZn ze{ndfqW1h!rlwPJ%1q#}4ocd<427p7ITR*C=V8fImxYgW;mK4`$&?m@Mseb;B}II` zPmWs45L?c?d(Fh`NT}vjYX}n@zQg(P7mvU^#Pm38NG7U)F2ke3Zir5_S2mUfHC`mN zP}u5j#!hcr&QtU-;a})cJeOKD^IAyhQ#hy{$gc~~wvLhJD?HpVV&E$w%PM9;DCM*+ zQqNKrsZ@Y74~KY4FVi;Fnk>Z7csH>HKH5JGZ7jsrG2ER^upF->8lSRF~mL2vjJOqK(hny{%e2VNvCY<^o?5aW}ej^M$6{46*EcrUvum+j{tCFsHi|y{61@@74s9Hpq^uv&w`) zfQP?sD^60Q92s?9PzL2=s)b&1{$$&gRt-f(P5XNLdRlp+EgH}kvjPIFdXcrx1l1ls z@;5; zcb78tVJZMLkwLamzh%;WRoXrMVqSRJ-H~12E$d)liYSM}SNflx}8)+fFo2y-X64=LQG z(|aY~e?!m{)KUKzu}3O1ry0NR8D>CcsRCc1g10J>l5o&9yN4X9`X9FnH6t7CbpPgC zFG^LF3e2Dkej({cKM8@Fc#a5CMgNm;TePnMXHJZyUjt6`@TP47gMR7T=P>#5FoJxt z3t&jLyIkbY$c3Dx^wm&!_7I_d5=ZQaBTrAI`e!^6wY{X)HpTAIQ_u5@W&V${6zcl_^{?UA7c+ULukrZ8IwRUKp;B5 zTe*k2b31EdJ!>HBq`Oq1xlExIT5i&Gda|avtpR3Aj&9;Kdg_R4vXXELreccG?w6=t zKMUDt+f`jUQZmHW7#G9TI?XhS!nD=r)OgM)9mjM862>TF_DasL^_=NEr0IbZXJouk zwe9gH2Da&(s#Ssd!tR)(tAT^@p7hF&?Ccr*D#6gL)S4iWTZeRkKi;+Lszr#JAUZ~0NWNP^1V z>^v!u({O5ZNtlv*wr5}!7QyWoZ~bEL^=nWS8-#Lop9I2IJZ)L*9Z9z)9we(X_yeQ4 zm(Hq#va1c`6x+w8m#KE}>WJ%+1@|mNM~F2Z6sgvaH83*+utM+vn9@uVo^RFA9p)s^GE|lf(cs z43V2OVv|JwZF&C-Kg>-v7w2LQg31f(wN;~ZxyEo~oFn_UX^8}Y3=jw};+;op!_DcQ zomupYT_fk+Z@6|i{wdVC(?L`lV)k#3mGG|x&)#{*NFnlHhwJuq0Tn^yIaW{}f9=XO z|4>Srman}TzXgpjD*`iXnqu@`7XlJPuN>D;sT9O|QpSzwAlDJ)&+46%DH z8+-fSD%~)CxtX!HV0I%FWxjT{nT+4RF5p0;=0e$UVW#J@DfXfW+^$M#74!142I4epZTD}3(nzM^Rm6poENI-C`7%GRrqb$Kh1ouVS=9FCWJalC*YIpG^Nb$< zELrK=$LGd_IBTC+^lKZ*ZdaMzpe!jQPNH=4!8ZYe}f~tF{yicSP&o5=6qy zj`b~#!0kxJoxc7up28qx9n;ZlA^Nw7#mjAk?>)oKofH!2o@@Ia<>@|;c$eemin#e6 zCjYv&`VMw8(?9;teclcGk7g9%)3bm_SGfn7;43BY)sNYWqMh#I9n7^}3<>2-#h$Ag z!y9483x)jq=6mL-qVe5tc7YH75vBwR&~W(0Z%#1 z7w}99&U4RmThAT4FWAjHV80<7CKSr-X`j^2j|n)*8!3`QsvHva2CA_@y!VK_sjcoaZDAoYZ+dL)xXgqTH{$zCFv zNN>=a67`ErA&b*~cQ~_&6dehM6^V}X4kr~BKB#??)|Fx^k|UFE`MjBGtU{$m)!wJ^ zVg;z&5x`WAd8OTGKGTVreSa>QVLQjXBgb~5mrE;bQOb~Ry_;kG4uU4c{bSU_SbBq1 zjm4r_9__qI1*221H)e&QIhup_)3`kfPY<+Q?Nzfs&rK%JoU2P|xl&`WWmdClYq?k| zJr_{(@U*?%13UUcr2i)NH(Yc{$l=rDdVd_b$l<2b%k5&3C86XCuk-MDx=Mb#=gs%> z{BTB#nMJSrzO#GIbQdJ#=JWo%w`h4QVCnZ6{QjzpBn$@IEGH5H>Z)oO+ooV;fg+fm z5`m-flN~(8r92y`T`is$MdBBj5<`_!ll`Mml|)Fe0}2pS4L6QbWe=fEP*zO4^fCHgOd8Ms<&NciT97>l>}p|ZE`vGJAGE+vRq;Q>GMPuici=Xs*@dj>N*1H7IsmoBLH2uTeFA zV7b$2?rTG{3K_UJrmn7q_{Xe;2RzScfBF$U)0>1-an6YtXw31eIOitm%=P+UZ!UH+ z$?GftZBsU3T3R$Ut$T7&xA%W@rtd&|PbbXcTBhQNczTX#Zu_}kqEHat8oV0$->;w< z+999F%|K#2qicuZ2{{@mf5xRB=tI_Wi-vGI%paJs8R8!OdUf-;1$1luzd$WpRm zd98OXXU@KdfCK_WMa>7XISe*PA%z9y()WdC8VG|YE|~(`38OmWZ4^ul%QDuB0xW@4 zB$Xjx6+yc3b|n4#Q-%c;83X3<%a!UY9-Kd22o3NfQePAT8IF7)7%4$ zmr;`Yi>MQG9S0pWPXS~N!jn;ngd%NluZ!8a0$PbbJR?Xd5f)68l(*CCI#UGl1cOTy z2u>*WgYjtZ;9{&7QWr6bs(tO_kFg7K%PB|y>ej>)mS)+-YIFqnkyAR0$w)^WCjwKH zN$}psj%h1oq(o+sQW-KQ>C@MRv{qdx zQwYuJJVDX9dU-Bvof0J!zP$1}d{P+`+lBjJ9tv{}K!>RuGsbK@Ib9T4$4Fx|cB76N znUBVtX-b;kLACkGID=)Zthuv`e>8G3GCi=F^74_gof%E$e1YuwDjSwn zz21t#d1?h3hsJ`4lj-gcwfSwplNAvBgvvrP9aOFrm#9rznC3|l@75V6e`V1^EJq1v z;ZZ3JEv+p|ttFA3*|5MQdU~(AgW!tgYJpCTH%hWS_l~Kt0Pk$t2ZsdgO75?*O!O@L z6+LkK5>*V#=>)zNMz+*S-m>%DEC+bD903W+OjpBuNr~0adRH|Jf6}=+9-uPJWW9@zj zo_V&VPNPq&MQpf@k$(pL$RG4(Z)CgV>a_J(bc~ij4g0fMv&~WfR(%f^)1u$!uXXfU z?QC}n{jw~A>5%fsWaKKiBwNX2l(wMmTyz6p#O*Vibke1N#_pF(`a(WhHGwJCwrUWD zgaGd3b^jHYXSMbA%Ga8Tnd=WH0>#VDi0+NlTg!I6z0D8KK8wRL1A{7s$4#z&b7Mz% zZr{~u_P2qOYnHHk-@msGZ%zoK=AoB9`+EUXLxg#(Q5{+PwRl{OSs^We2%8o1eRV5+TJb50)!8=?86Nc=;^DjKTK9{4 z)iIu)XQ1Z3(TzwC>_eDZna@hZa%&;?t`ng{=V8&TX>qhk3PON@5mLI#PlMh2{JiYq zOwH?A@7@-XQ$O8o!jCch`lJ9&*hy-ud?rdi;0mHM?G@y0j`9Ph+kj8%U!P%Vvx{NSfs$|(AE1ABIv0V z42;2o$9HqhFtlaN|Hi$~clUMowR`XKHeA^60B7%QOgi8pwa@S5F<`Ui$KRw9VgC!Q zy^poAfR~m&{~OP}&pp_0UG0UB;QB#q@D%^YxP*Y`I^maV&%lp;7QdIde9&#%_w8kV z;NETi+aXOK{bx*tECIx_z(4$cNQr*1D_(%A$bx)-%Muf8ib!XS2#j4noVN&gw+OhD9)kMJb2H zIEKX~h9%U8CC!GV+=ivYhGkNQWlM(Tnuq0whb55U!2a{?&(6yPH2a0RktbW|nRr0E@t*V5t^iY?QI8wMM0NWVZF`LX&E{)607>m7m>a z7wGwouzK!!XV}YuxI{F~b8j*l*|Djf)7o&H5e_YF!T0XWHkU4*J^khBx{{S52{4S) z#YlJsCer6;+}; z04VKSl?KbatP`i1p>tV?oAlx=XPUR3Cnq44R#1vNby}Y)y5m!xrrTC}pXLi3dzS>+ zX~LfslKPxb6~!V*Z$-pO(Qg)q$l080q+t7;|4}u+peZYepr?1!L*cuq(7MMVt*i!W zRi=QDTj?2`)U)_5YkXD^s%mFz0GD;m4+vNF9SHJQ4FkP^tH!&L$*ZPXdc>OWESuBI zW>byLs;2eT(rc$RkC>IV!ElCJjiZRxvyPCO?1HYV18B#<$I&g#o`-$gI_;0FwcFl| z1D^bJW@kjFW)#g&k^uxfzj}qQ(kA{L_(#X_=MSwHY3QQda|kSB2#{hfD^y0y5EwGJ7c!dy651O1q{B zrB`*QWtPZQx0Q0LxaXW|`mGDFn~$>RCnZ4OPpka?l@- zJ*I^Xq1)W&+QpAJ^uLmVHpQC}hbi2BA))@i_TnNLy^C&-WxbF2R6D$LV)ZaNPS;0} zoX@c0l=wXVBIp?_Y@315Oj!#wiy8$Yw7VYIi ztWXL}pbCv`Y{uK-n-sqJf|mv~X!utjVNjB$bbE!gt8{ttyGmQi_J&-dN z(}0|Wj^%|@6_C=bNNImMuE2~Gn89HTD_9}>zTc2sGE6uW!7-sORvQ?BRLW2RJtbV^ zlIBf@$KV((FDA<7lu3a{E4?8f^)&?;z_ggqtr#~YXUZJJJi^KCz)(h0$kHu2Swbk8 zj=yirsCd|)vV&8~5M`Bf`!MItq@JBha?LfiEkmywmh|$t&q)Ny(ePb&6pS;eX|rxq z3b(<{1j;cKq!C)-{lg;+Ls2V4WU>;!JePNzL@%N+vGOLgQ858NSokjfIYzor!O2VX z>4Bn)Rq#d&c8LzPpv;x4D4B|D$MmEbv6Q=&;h|hv_JvQSRG{1J$#gg`i}yXFS}0f3 zCx0fR)TMu1_Fi%qaxc-ws>D3iSaC62@qhfnMywSo-m1sHsEvuuQgYN+d)32r>=$fjb=8D*} zGtuJZUC*!>u5sSFlIQo`h!0w|FLG!6kh>(Z05Z3v`h)BwUwx!D9#C5wnwj8BU37(j zh~a>ta#-PVnl-VP_QBF0&i~f4SiD#B`Zyh&lDG7U(_y7QdqvQVYc*axgh zeQDlZ#Q+og3OQ(9WszC9!WSwr67#+Tmz_8sWin-m5Q(t&>(` z>2Z`sM~P$Y@AST})!~!NV8J}mE)>Bt9XU^|7?2Y<&e`n1Uxyv}AdPydRG||sHO6Z@5{}6}L-n?wNH;ptm)nP+k*2nV-wyh| zy8|u+l(*LZ=VUy3YcP%GK&Yw-IbY_MSU7RjJ2aMY{H?DjA`^9aqBVRqUw!YU# zI3#afLW%dzt9~B~pi>8-j^_$cygv<>z{c+p!R(|y|5{HHDm{!qOhqV*nFRWOZX`^f zQ-t5b1AG5=wZ5nIJiZ5n6Ca);0}B@eV{pViULB#m0=%015Ta=2*MelJoKeq$ka&U- zX@jwGnc!vQaWiCLqws!cdqVIqlfem+z)4Z@2++WpV##RJWdv_LhOokEu=9jonukiW z`SV1PTWJOUTo0va5B&}8E#`$Tauz7*^;;q%%#}@AbUdum)BhKoeeh8zt5+BSPq>m+ zxN>>8c9fbfZm@oamO+%ik+zO;yRMQkwx|fFmok`kq>fu8 z5=_A9f;Wk2q;5zg)3_PvaV!!Z)-B95ipWaI_l-4douAs$w-ic_!c$@o)^{1wF%3?3 zCOP_&Ceo~kBag>hXPvGv$_+^xplt%!iU72!2o{yw=Z{6dxdB>uaGS>gKTiQ#5Haj! z#w%s|*pePe)XaYxVy`@+nnzV&!eeEJnWx7^PhtE<-q2Pk;t*aLS7^Q0&SG;~qUjpq zG`S5A#_9H=0Q+xIsWS1T*m0*(Ry&RHZIr zT-Qb~c4*niCfvl@)+pGe#3Zk1WlMd`Cq~T7C_M|uAgCz442_yK`lZsuZ7bCZE6ea9 zsdOxjUK!x}2*?mMI>@yhNTL((!kNsf^J}*>IZHcvco=vtlkmEqT&@ai^8gC#c+k=T z-+7dzyy<1U?e7Z%O+9tQ&f_;5Of7NcBMQ0BlT%60N%Y?%>@t9|(z@dBz*tRc^Nxsw z@C1@IS!3^Hvxl@y&om?1bZzT&?T~a++;sDDOUQR&7wZiEMu*6hbdI*PPue7-hLH9F zmrkCrDjb&tn9K-|jBd%y23p&6ofO?@wk$lQP+rbxolJb`Fz@z2yN=8x0LAh=IHBwrq^O#$phl<{-!kK{Z@h(Zk6LSECte^G@D5!s}a zgoiM)cl*K>@>hc09sE3urz)2?B{jedr<-K4u)$;ua2u`ncJ>1%{{U}P0 zjD2@<6ZPM0aA{{I%1pay2a*hNIz6 zKjJiR<$U5azyBTnte^}&>$e9AI)agsY3@62(J%TBqT)^73)~VuSpacqbnm&jXNFBD zU0LRzQ)=TvfDLg)sZV8b5GbvZJ~i@95x1)P*FqW!R}##wygSLlCkaTVTu$RsmYWIQtNTrCRkx-hDUnj(N6faT7A9@jp<26 z>U4y@3;%L^t4expjBW{QD#sk49@Ev_`@Ztwwv3vT#W|rwGuG0t2P;stW>JOwB4`^ZJ;({=!WS<8MX(H2b(= zWj9>7Z5N+uyUfPOH?=PS-}^l8xV-6>2};KFe;`8+?CF|UqwaY?V*eIQZ1(i-9oVE| zqIkbd@TvYBgC+TPIsbI{{?~WRg8z-aW%Pn;!Vh*(s`#lV3yutj2ac~SNtQ(n8Av6% zFPJEW7PbeKq$YZ&KTnRhO$y+PLQh1l4`{$Je*F`kkD*!aL%*#85ob2|gPA3q&2AAX zzl0x0XjmM?tG;u*TQ)FO5*LP1l3$hKI!r$LD_U#Qc=nIQP^aiZB#X5PDhY=KCiw!B zZY)_7t$P(Spw^$%bOqa3OHdQ7I94+z`Wp_nnp3JF&N#<_(3pKJLuE4Fvpbi70z&#y z13J!^1GNl{S4s-2(OXHhk@o%x}Q4VA@m4mbT9+dd;8tb{FwW+cA(E_KQ- z>PP;@wABS`swLDP#yH*?e9fgS!t*~|h48aN7XLkB0;^mJ7D`E1ixhF>G$)&M!zMuK z+y{^yp`hr4lBFhne&kje@pYyWZH=0hvV1B|t_&J&)@2Gj){j>h!0dEQd45HV6<~Bs z*^GKAjkqUY>U>BAK);l)Ib?Mv^-&2N{8?fwPp1(5I-dYCv-7StQ}pFnLSug_RsTA< z@xWgKnB0c&LQ|?(%lyJK!3YucxA{t&97^t#swBlE5Gg)U{o&AD#;$Vy(dokp4AF?U zG$++*d0qLlxL6~XTMoTtvs@7M>}Ok}FTa!}*(-&i27zn~GcbYPFSl3;?SH5#Xubaa zj#U|^e??7zSlX3V?=D7VM;bFpI}2k`pOrg7$`-RSFXhk-n5njI3EvE@)#R&51zp+h z@yV=FPc-T`+EbGd(CjS2x9L4F(Rg=J?@z+FtFzzCvU_PB@x`~>m^15(^6d=wu6oRb zGyl58m%GwT&)9CcvFRZ&yd%f9-W1Gt+4mqkt<-82P>J*HYug2H;qLjWs#D|S+4~Hy z4|ZG84=h8_ZTpqh1W9Zg3~sk7%)TJ;k(i!rahP&#~Sh6H4KZ0+vm(wXQiSi zkJ5)cOhD!wz5gkQ86!F3&dIi}|D}%`nLM&q%w{I*XNq8pTN7%=;BWS2deNyeUPtbd zG@~cYMU6KmzspRO8+$}s4AY{qT9pd@X;9btNAB0?5tgLpI_u?AHBnO?C_$XxVqV>A ziqQHoeX9Ay{Ev=|a_!HYB&7D%RFApkYz4mt3yZ;BylHV}4xS&1rvl%2^DN93)hH)t z`C^-Y5UOc;iJE5nOi1(7c;u z9aNIn^f>7Q3rl5{3{%SJPEhAw@zZPisc9Z}sAzZ?y#s(g6xutYp6wRV0ZKaGgy%ZX zuk-Hy<4!;EE|_q97&32^^0&55(v)~|nxt-_n*`>us2hM}AN`HlUsp{LZRyH4qblWxcI&^T+P7(u6p9gh9J8;3eqwL2P4=OJWd??@TYt*%i%qQ6zI z8{}?K_MXjYmCsvoxZ$Z`o*%0+%PU%CUV3#tukV)E)7+3?gH)ftwpX=p_g(L+k1_Y% z{mVUk8)$XR$bWYx52wr0?cGs}@Irh;ri(wYbe_BS3KqomZ-0wvb(bXeb#U%?XYzMY zv2b9IRb4=9N*-J5-2P`e`*;7!chh|!`G{-Bci~H4`ukddBeh~onJ=qWP@8Aa4owhV zndsV>9YTg5()zE9R)36fX)Lecr}SX_s6d$TprKa>?DgPr?hst*5NRsOAGqcXjUn=@ zA*2~LtnERO=%Fs`Qq1dqT7i%Rp_3t@{Nrrm<1KOenpRjfRgBqL?3Q+{%zF4?dprY9n7(DSqg6bvSIiEs({HcPd)#P?@>n6$ zIQ9Lo92Gk$57qv&sO^k|IaemAiFkvkIHI-q*C-y0j<8Q2fcja&K$3sFStwe0;tZKj zK!nY$c8JYs5}kB>4-C*s26#s8DzXpqNYM^Jp8#rGB@3B5WNQGwRQ-s~<9TI+MDP-2 zXl;mKlDS8c4BG=x%7Nb)$rKgIVme7guW>Zxl!j!MY1D~%Yf*@@R65ZXF+WqDal`BP zQ;65;b)!96ToZ>QlTnv&ZSf+f%-uPxWnJjfyhGE_Dy$7<)5qEUHR1I@Cx-go8Ukz? zg2o&X6X^u9skp6Vv9hL-(U#HhNtjPoUeakJ#~E*LnO-pIy{ef;a9L3>nW17?cJFA} z(OE%7SwYs}kZ?ciy-6~nLvW+Bzhx3S&#k*Rvi;$6ywOv?Xmf1RtiUaD;!c1`6**0j zIls!2W;0#qz3mrybJsI-H|08Vx8GS?Hrx`%GJm^e|9s3fc+KuI&3k@Izc0=U@XnQ0 z2khv$J@DqAzDK?2xc^5gPk4Z5X ztypT5XgA4q^Uc$#SIGOi?C@$F|M>Y?iA%#Y1HV)*=LTfba~S6^hsYo zjAUyu>NiG$GjP#2o2aKJiU;)QF}j%L$3e>(PQP28L?#xU!81XORBC&W2!e*KesJvsE1szVL z2!g-2MD<1H)dq$kXj-9#qaAbRh7)@5phxt#9RG(D4p0ZK;i=^Z06cOTLT$!TT2nP< zi<13Vo|89Hk9sC|eChn$^20=S-pHbaBJj-YL6|Itb0;@Y$-p zVwa@rV|)~0n`3mH;p&QYou$8>ZkiDK&SCBDcClk$=)xCdUu>giVqa?I+hJR7l#9D> zY+xpMn$vEpbe|G)#iLyh3qZDAZ#KVdY1Vt(=B%>7iFpyXCsF4%-8%8f0*wkL$0hH@ z;8nC)`Q`h0ibi5kd6{fup>X`gp%Pj?7{NPz8waX+dU&LyufC1B-g?%_Irf!#oHfPg zsh*eQ$NLmk#(_=an0cQQ9`C$S( z(_04qy0g;o{!dhjw~2FXIF9qj+ww>M{3nO}{Mim5b%io7J)uA!*WCG^pEVWS^q)tE zjukPVO5xNazYdJ zUyB^tr=6zuIQqVLk`f!FIJ=zAj<~HyHngS;Z9Z!D?2>77YS)xm0j%C4Iz=m0HMON~YOb0J#cC^; z-}zT34`Lk+GJv1tdnMXDbJo4G)KfWEUwQnWP;*`mPVq<}6-)!Sad}_*Me>gvMB)4M zxxjb~0ED73GvcOr$PI1ur@ECe-sZ1ZC`=~E(z775b_pe7=fWuP4DpuC1yy2pftle# z8BT;jF!!etl3XjJM%e{m(Q@&j{CT7V-=gg%#~;_x94h4!k6e#XaaCgG(IcH|pJu`RRwSU6aZ$IDrynh@1el69^KUkbB zs4wWJp`bm`Q9n7a&&bJN@EW!4sVBQtIzsI`@#6lf;O`s@FLgCCN)Ayk55C`xW&*SylIJd zzJ$c3Z5&nH_PD3dtg&L49i%(-(N>=MJB~E%?0c6AS1x%3{vzW+BgzqPknQzPGWXDg z4JuR~B>2g1(m!8!tB=(rdFg4=^ZCSbI7Y`bKF;_tYL19Ca3WzBM5f08_%E#K^VLbx zZ62wnhWLE9sG~!v#TU0J{tY!*+e~BMi~3wcj|+32!>v)}JSSrD#O3E@B5#`!M`?#j7no~TjdJ&$XU-nBp)iwgMo)A(`TB_7pgwjD5RF0G(J?g4Qm zzv;VJNZZ(#PUFzL(cisR&aO?dCGOl>vJA<;q1hZ=t=K17Q9N$cc#it?B4WWaESv{2 zKi99C1Z0C!*M#O3)ykL3?uzR zT2<+-5$zJ;RK0^eb36Hy58JAUbQ-Ss*DS!%GCM+HkGGLs%E;m5>%}9Lcvkbox2Rvm zD1Q5Uq`rf|=%rGpr#*vN-$^KwQ((l?_Ai`U)ix2&q-3&<&`iqqO>OaJzU3?rrOTxf z*iCET!;$v4ajn;ZxKs$zy|8D&_34|x4QzmFV4#254&z;}a{GA#PT4Al66fga%nOXZ zi%t%s4x%VS%Yu{%1fSuOmE%fiNzBB)0sg~t8~J6^c-yhp_`?d9=ZOAIz@8efA6e_& zd>2^ov@_Fx`+(?9W$__9I*gjSbtW<6Qzdw20 zN);GAs*pMzJl!A{hfxfVtkj>reWQG20vJ5(D&KiYMS}rf=*$N2Ex%j@qT%RKC)#s2 z2EB!GeV7ybSR9nx8}v#o*g4E?&Qg~c#zqPYlF$lSBnUZwWfg15Oy9)HI2X*t8T6AT zP~OY_vFHn@HUpbu($kf7=Zgl)FK{lL@ri8YqeAJHo zfg#{9U(q0wfiS`Z@b9Z&EB7G#8!&QOGAza-%s`uIv=5}}#q^TKE&MG6015Ijg;u(Q z7dW78$sWln;(sk{uKO+c=xHh$hKM1qwEtc|#5><4!u5wD{zO+kN)L;Z>) zDfu9Ow}TIFBG(9^S%v)luxMxg&{jfoD!LdCNU*A_=I$Dx9riCAJJ!iEs z;Dmu4QAE#ND=D(wWK;Golq(LnfgheukJC33-Uoud5QrqWaRYgS3UOk9v{Apg$WkU_ ze+)PvT!SOu#aB?p|9pvr^0*Vy-NlSb^D`mhgbG1?9C3^?@!#uWi^AgTu408@5@>8Re2#nY(zoy8zMK#9!7Nsx~3&h$LaSeKTc3$PD~5y)nCI?i2rd&a8ioh=>d1}H>o&;* zPc!%rLT%hbKF1j4ajFSQV!*NX{^`yW31AsOW7i3D6#lS7)Vq^6Mgg&zHZnAE~(TI9!#m z;wxV!=CfU=jVUWE`Nea(o0byMH`Ho!6*=p4A2!zZpwV7}hn$p9B>Z)AvD`1F?(}eC zdU^V-R*B!}X6+woSVj3<12BEOf2*w(fII@jf=~;^S8R?H>hOZ*DsGH5-qTu}Xya+} zuLpBN8!0&O4CyJYC&}{H!HicoCJ?FyYxOW1;!6rGnvy1p2-ckeoJh>cu-p*r6~eq| zanH9DzzVXvWFHA$qO|yU2AjA@ z&rX_9v(9|1n~D@&I{pS>LOSa5{3n;|b)Ec7_A{TfEYg>Z)(N5Q=JfHwKlAr;#d%wB zbFq41WCaGMzKI3kfAlyW&kveuT=2dipdVYz1Wt;NJ(cYoDEV$_NLdBmWLHzI#gGIMG$q%18CGR6O64lJ#t8GZD__Gd$1 z_U&su+25DcK!k6EFUM8j$rlsSd@O0>ic*+rqpDh?*wdO;%Q;oLUJjg7MU?3EvxXOh z4D;50=AH}oWh}gN4*g&0mfD6KZftSf-d7_Vy~OtOR_@Q2`MQHQmCL1Fq&08+{wLnG{w^cG9_|ylRuchEzLQi-IkPKwXmc{Y(X7+Un}sv5yUz zDSYRD3KlCr9Ty*rxmMJ<9X-T@+!BSfe^!;Yob_wH@jr^>Q98ItlTuPQ8T?#$+qWvW ze}6D&%d6S2^;FM3uT_LdV_? zeL7evW+(iCe?0^e3#NEsG1o=3@h1%F;4||!uJIdra;Vw&o`{bXVtki6)c`^{Q`2OA zAxaTe*HvgP?pv{5OkIu$bayoD#(`v3!xQjpmt0dyNy!^-`yXv~gM?0Vk~?h^N-nrr z_N&|u=36R}|Xe5%*bui_!)|Ni|O(0JkGvx{&h z2o7z&ed(N!7c$9`Yn}^^v>sARj*Hu(+P>9A4CQ;Mnh$qV((y>jVP+ouXg1H@YnmBG zK~DO<=gviwQ!JcLdP2__6j(@`HU;&Is@iOq1 z#A!x}oj;NE47tW8))JpkRY07Qc_c}eQq6ayv0;fZ6gE3*;f1PWXQc(wCJX`&HMa*(ytmU%d&N>CO2upz;5|16x+;m!V9sZJ&>B#L)Q(};CNJ3%OaeTL zWH=qt)tNN@W@6^;n;}`$44B5)3Os(+Y3w>oQ|fh8Lgge{%_YgwrdRPfn!FXJwRy^< z16~m{w~nG&W7;k;iSjjfQaIX4JuDp*TD0f{j0+RAwh3?&RG^Zv8De;@2+}CEz2u`oc)P%<- zfh|Ge^fZfS{gs*XvGzcKhh|*I!lrpRPc4h1tL(MlCQ!P$LZjl`AmMP8*=|0UtYORe z<>jKTc=(aHo!he z4{ijf{-sOywDr!AupA|Qor|>k%pIw*Vg2rf+@Ru1J9huQER~oz0dQ}{F z+m=V?{D%2gu`!swyZtf=>>ymb_`pNk`ITF|G0hRfBR!u)aZd?Le~NpUq=Bj2WxZt_ zNZ4=DkEC-H2FILl%!XAJ^Rcc+x7vh=d*n1<_%43~nnxq9dE)H=HcW*KyMm3}<7Rdj z_%p55!Z-M1n@0!vwVsIELau?{iqp_4jBRQ@bB`zs)tBdfd1?f7vutTyRa)GKLO0g4 zpFdc<%Uf=iXcUwYGv=qj{+@gZ9HMRjd}JeUBlkjFe)Io-SO+7;pg+Y z#{JV`g0JOTtA?9fe{USD{Dx$(JU8NqE}N8O2dn_nYoDJl>B)9ZeT=ks*)qLu%^G*3 zkbwc47RnFNSRJ?hO33q~%Yc+|?Nh9VUzfYG7aF$T9_M)i3BEmVX}SeQY_0kTBUT^L zBm!P&8@}QXD$ode*QARI3j)>!VbDw2;{`_UYN_*T;7GfDf|wFWYvD-;dV}4GtOEyc zg5q(#dfAnzy>UK(Ll_1`G`vC{{)VtxhcMFvKi-D$(DOWlnV<S!7@=RE;Wlv&NiK{>eC?5-!k(;;)+4G)mekdi23GQlNkf(8s>dau6mn zQ`dCWFIb6T<`6c^xj==@Fg9yOd+G1))*+sR-~%aMpFJ0C0XdGlQhEglF`oEBV; zy48ljzNJ7w{RMvI4bXR*+$EMa(s9r@@$eu`>mi!( z*M;Ge3ExW^d2X~!s)WVj#BC$yRk*5zQ$PcD#`sG!faiCIjBMw>! z{OUvWk*26WKGREnf*60mk=O75N7n=c_$;X);j)@uK^sx3IZ=EmQEPjgOSk3>d?ARr zXtloRSqS$DzvZ5_+)c66DS!086`&n!r3d;bjVlLP5cK7|QrZP1@gQ#ekl%ZJu1{cM%j*vFF|pl>Rtninz}uP&|fsi7p%cb7ZUv*niAg2}dR( z7{bj?B*J;;MBhy3H1{LcDo(9i4dH3KEETC;2!3pWZV`s>dL<6?eQhQ59RUZTl_V!s-CPr;vy zi404*%1^QN(ov=N4njnLed2_9VTL}Su#zMfH2BL`1b&0bZ_H907~meg1W7vJ1-FFg zVmK3BvO7blqKA6NK#F!rXb~c?WH4DtN0sT0b}K)%G!X_us5;3o)DW??Hq*D+uysIF zSs9o+ZD{*T0J%0?gED|o0l+u|V1fuRh49|hj^gD{&9;DNe4me+8_d|K%UFX(t-wK> zKAC&)%>Cv}Cyfjm=~SQXOh#+?DRtKJV4{UZ78h!kdqI|RXcpa7r55Oa#=4r|NCTeXU~VqarrfvWIN;0>vUHu$&R`5%zGa=X?Jgk+SWRCNLYfjszcsV z+}4bE2;Ph#D`$pJl-@@gt@!(bw*;odSK0&B?$ck=8#%tPbYJnGrO;jlpxy6&QG4a8 zk!_1(=>8@6y(%n6{_*P`g$W)bVOHoRk++f99p=DV*yjdR^-$ty!c9Ng${Xcy5s$r% zXbK*061jPc#s!ct{(NQ(nGN0+l#5q9KTcT$Ol^zHVw3knjFV_P`B1@zG*-9Niw1hn z!$+H9ExK#rVVr40>xE%~uuOFqu}-nPLBO_BJ+9G~GQ7JOa>E%Ah~1o|m&Ek&&}4J^ z+}NE0`pihnUaNdqDNl)IlB>5(VYaTsvZpb}y*0-M$ak+qB+A#w3|R;WFLfw29kNxb zG(8NU)Rq&`jTT_mqVM(-9 zaksHG+>X_Bly;^tdpC^9&fsLD(Xs9*oaDsnrcc1BZD;2_<RjL=HYB;*)G)@0$}TvUL`12M|`3SH9oj8W6dX@|Ns^$&it zw(dF&t4!*<=^{2T3dV%Yrro;rUXj&lh>@h1Oh~CExx2Jv3E?V!+Gom{OowYXry~M zoAKNR4SE$R`>c*q@fbi8ti?by@b0w`s-Q&3X6_e#W^eW(9VfXo-7hF6A)N`+MIlt` zvStnQ1Twg^vmjw#NFZFNu5$0#JzT- zl>R6)c;0&yZxTX{c_z`P7=M}&jbTAsaQjIyH6H9Go}Qo%mZ5YbwOLzAZ|E`(mc)@O5R?tLMWK7{RP&R1@E5sP2wFEa?72q$ zR@5wKD-Ip1NaRRJMTWHMD5usuPV`z}8P2VbJO`v+B*uR*34gx@tOnnt8K)OwbYfnw z0*Of1DIGAn@Y+{Hso?8k2Cy!&|2=JNV5i;o&@0x2YmIE+w>CL%1#s*yFq%OpoBCEL zn4>}O=E!!H`$dk|qJZgtC~%tXze*OqkylqDGXn_FPe%zOZKl|Gk zB{w!(#8tWz70G91i}(iw0jZL#mQB{M`T^?+S}9L-mEja|r-G?0*yu@?V) zdPy-$jDwyvmh?j3*cC+VVB)l*{_i@p9Ao(2!TB3+{Rah)=1~U&JMzROnB`6L@>fTX z{>9!&ZqCNEdnsE!?o|%S@}^cyC)Gy6wUP#`mQ@EQU@hT#1`&UUk6a$H*sob|;&h9` z((hf>`qm?4cn9*m9m{1`P5q0?(2an?ZK1+v4@sg zTnXOjPIbVMX<^RSd|NHgDZN8aiNdePvwf!l2a5Zx{cSDoJ3{>MW&8TqfL<78c0E=V zS=%t*8Gu^Y?4tcJc9ZBlbcYAP_H2dADza^_<+z=-eD@cC4Ej#`HIbyw>5p1K6;}tF zqwZ(-PCC*p@yxa!1E+_$Na3m$BX0%7=uD8`%}6I*JB88n>>M5c1&)QV%l5Jz!ie-L zy9j9mNBR{U$RQsVI#}}Qur3f*-yRDsxkq@g0GCB+*I#TfByZ%0E{8nAM3Vw_5zo1- z?^y!`^WDazq)Pj3uTcbE5W2jw_Se@6s`d;j>IPsAuy*u+H|7hPqzsl74;G>`CKw1h zr1r|8b6%be#=Z`2wBjV@H)xV#hvEq_Y1`94f}ePFx#!sU%t8QpK=7HLQbI_h8&JS9 zXhAYJ|tJ6g~# zu4l7Z*j28_oEgXt@=xv%cGML%kr(EM3N|e^{s05-)qwp`!vMEnGkQoWK7amhB_G^~sj*HoXjgk?7{0&cPhc z;+|Vboi8QC?g$cnRUAFA7fp%!Ex8FOhZ-nP=rEjQ^lOjhq0z7Gr{|0L7#7Yz41pid zs4Op=sjwOR<0eIeUE|dFV{vSv<>_4i;tHZbW0j=iW~h|bJ>ypgobUONL9{-x?+KDqez{oorXC11Tc`tV& zD-cmUc;3Sm;oJ}pr$;l`cxX zWOJ&5n{NkK=BMuL=FRN)uXAdsa#(LQhs|;xMRW3R;pV^$n^(D|l)3t%x$~2W?alCE zv)o)r?x0LY+h#6fNp2_%hq*L>Pc}e+(Mc#AK&+ehMmzI6I_@{Y{5h-qK3q7RM!xh= zzT|$s7<$2X#sVMfG-+aKbl-xfn=IXy0-c3|h`|D5T~$%R!lmMTOW6>M)I#7up+fL` zXY?XRS)7+I|L-8je;;`M6R((lq`;4)pZFgGPkeqChz3iQnm5jL=)ZjKiF7aj>d$j- zjQ$^=d!pr71}oY*^HAOY!Yfwf1bZi*Ir8i#|ChHdB?!}S$< zaGQW=?y^$~?O=Bm!$_vagXPAc*D+heu8xMS0cYfW(oNN?Jt0(bGtzTgrauEO_RSwt zSd_;T#3Jyu=h+Q<@K9_e7w=AVXYhPbfs1IGXg7 zY6Q_K6f&fx1e7XF(R&+KG?Yc^q2&^9*1`Cbw;R#U4A%2DY|Z_fv0{d|c{=Q9GF$Of z#5Tn7KQ{XR1vvzXW-MqJ{slP>bcnG1wLAy5VV&FR8Is1jZ;eyU8)S0eoTfcHT6U(0 zoeZZ;cS}h(Y<{}TAVHKO5B~)pN|&&ArN!C4ea(8gwj0I7`4O6eluj(|UR2_`_<0$= z$*OP$b=W@ra$%4AJ;E}_RbXEYSs;5~3}Xlx`cqmFeOIbh!waD;EnT6rsFX-0UaE8- zl0D3=Gngwe9-wSxP8wyrJp}ZT3p!LzUwg3_Pgu6Hq%5D`9OAsyTgggS>YB6@--0r z#ir_>&uTE20g~1^jv{Ki)Sm#VMcwlVx}uize6HGA&N4PEqS`)0GqbCu@NW9*7>^$@ zx3f3_3wKDi#E9Xf2%EvSzhV^%&zLF!lil>PK?YBP!spSN?q-*#dTSG=uiK*-nWM#` z9LX%6Ap7yXvc;TU`y=GiH?bL}73l;rz9HKwOzsMT*T=~#E9aw^>x{IO{92J|2TjFK z3L?7OHG@S2FhvH8I9 z^9k)LK>xIh&FgNi-4FHge9#XiAaj)NLHKNfO(Y=Ym7|i={`|N)(@ZMxGeCaxz!7=J zR>1aff0(i*a&X!olejfCcJeE1X4dJO)vaDK@;)VJ;c5KGySl$GND_X(CN2t&&^5Lr z-}#<)Tcv;$j+^vhC@6?7X zQUO!NyBpv3V+fLW(HJXZiVy?c1@fDLvM(AUPNsP3Xl!PRGjT1BG#OJ-^Vj=pI$8EU zH^x?AB)47rmZ?YO4~xxWE@3dGC`jTs(m{smZbmwhH{>uXLyUlMP+BT>?o8csgo^m4 zxKG5B-Igt#%Cg$Jv+ryo_63y=;3y_wNPVryM%OM3D`( z7NR503olhu42hum`0UdU{&4K^D(|ntBhBQCc=a^euMA;bZwhj&xijAc*hrZc%9Z0? zWC|7#D!t#IqT=N)#v``ndygsrq~uYTeOtOb=KZ&boW4}@eg2m+TaE5!+@int)>>%% zusCwpa&@8-Nh`XU%2cO{pqgThRa;H}Gn|T-A-jh9-m@!L9_8OgnbwiA;|-IX)rq9# zYAHP$f|N6fQF!v^y|>yg81a=8j@A`yTIN{bN~zLIhlFUudE=A`brU!hLYQ`4aUq_N zQUxS~9dvJD%JVv~h6T&k=-;P@#kF0>Hp}rfsAVmAq)CCel6sY)aef1{ner8l3*4`5 zITNeJ(1De*MCdoOX`|D^m6gkOxMmYF|0knBuFqLZ$8q-TmtX@nzwL)X{NBdO!{q}l zloGAmQi6^sNoq znO7AP;f#wfHz((49t31?Bo=tCF_5@)Xj*C~)smVsyWRP{K>mdF%kOZe-Hli))*@49 zM|OBy??#=YYtwh-cLf*k#=PHQc`PRHGMMm;1c)qW77<(1KFtq<0O_lo>2v9n&RvpY zPQx3hYnVk%g9(bt1rqYR@=m>h$;sy_Un}sG-F(NCEIDREQuG9h?(1JHy8?_H7O6qF z<8{{#gnDGV`c7&|zZ5TbC|T@V4O`~^3i1A|l0CElM^B6yTFFP1PFjB>$)kTtsHf>} z&Mfp@{KB&v0{J)a7`ZQK|7~ctnKQEE^;>3esUeZTbSfTb&A;-@rR%OZ^zUx!c`Wp5 zw{VbkxJwfZLOMrk`JX0pF0E+T-@g77umX|Oua15f*W20l^;N}9{=_kV5K^RF*(yR` zhq|bEP-pKfv`A}vSmZ8TZDm5-Xgg$o#i)Wl@BXjKh21L;*wPR({oLcl%{(IK_)}r9uxdmXSCh9Wt!|HWqjIb3A^3vl->H6jX3AmwR zL+;zHF8}F!x~ng_(r`Lab6|XIB1N%V{&zw5;d{SD7}*8wb0S@Lc^`}HnBN3SBm;uD zf;y5--|^F)@6u*#1b%GvnV<?Z5hrLNhG)pJ+xhd!##RL~- zw$=z3kP6t`3F+!IprQw=yb2(*2L2KSk`x2K1q)KWk$*`j5gQi76dF<nL&=0LQH1~@~kp*=;AN^O^F!iaXM2zBlV zvxe|RJ}39Wh&&p@GOG|d<8S%nY&7-+6+QF-VwY} z?`ET@6JkD5$Gn|XPYsLs)yVd$g#Lja_Y#J8TpW81`}Srq02LAW@#2dFmMErRYJrT$_KAZP#0SyEBc;_@eM~VY>F5Wc{NBO` z5MMU_X!oWB#<>K>`dH9gU`kJXEjV$ZR$l-fXO-}S%PN*ZCJ8~PsDWn41eGGXi528B zF!FJ91SXl4Bz-T5loSAU4}^1G$2`wPN^hp$NRu30QjYLcE8BCPl`^?`jV~9wc_0+@MPSZe5|4x_gi|`K{ zRP4V?F!o97)`@l`RO@9(s^5e`pr6tU)H4PU$_piNOC{;yw^3^h8UMsAflxa9>6G!k z@7eR2hm)G8P^Skl>=G^bS|`o|mUReCJD$&SlgYTT{kYSOM z5SJb78ZWBDg)19^B?$Sn5L=-mLbkw83eQ=q%TYti@RP}n9%QHXN%m{XB^XL8xzp#= zO&E61lP=7=g6FZL=X|q`5EaZ9*Ugvo&6iHimu<(#|zXqFCyN) z`Trk+{*(Ir&r+-C|I52IsA?>2%JQG3RwPCn|B+^=*vI%krB)2Dv|H-FsJ$S}5>>cU zwN(XcR@pAwavc0FQt4F1L?j(()mToIdW35l>lHZ3X+{m#A1<_dtWHK*Yq8F^={{_b z`Tu2I1BXbBS%mX(toKWT(F5*MT*Uf&^Ho0#HZXJzWsd7gGRzl<4irDV{KvpO7Oy)knAbW*wClzK`O6iwF47G(6Y|K&QAs^0C zY!l0TFH6cWGxxX4*=80dD$KeBu|wO>bxmuSF$L{2KEARmPvitJ9Lf&;6s)MrGmY4* z{q2J&mz-W0Di2?EElVwLI>tS&+Emo5Y!>%fv~?ef6F05B=<;KgPrnX5lsVatFm9dS z0XtUCqLb2eE)tKN0Ph${DY_4iQdNIrmr1$EJy#OC^dTLDH~KedF*t2K;b4vuS}f`F zL74*5qan}skx!%SI5f58{6>Fk$9Z@4|Bhj$=$vN#sP(V=Q}QXJ61q;5%ss^=6J^nl zBH3o#t)6D#(V+cM_8qbJ?fkn!A|F~bpIZW` zH;cRk8ux+l6+zXK6ioPG?TOxHl3dx4?{Qs+vA0dan(g9A}9JCY~PmJ#+^Fax>u_LAMS6k z+J8S@e7^sV|NZGn$>{B`)tBo@-yc~1=wlvc$&wG`y_99A#~n$1%SM=vNj?lDRVPQ~ zOYHnOmLK}`BL__>pN~Gr8U(!4eWbn=C0vmRdw&s&=`<&LjBo}cZ98+`2cnAqQm*!6 zY}Hdy*X{`?t?};~Tzw-o*K;1rs+{15>!94-!zjB2&6~=dXp)v-Gkp`Ov!q^a32EU> zjRVOhs^b>i_F>0KN6V<2lHqws37^Mn0BZ=9`Hp6BgxHMb23j1Rj6f9J0 zVNorMT=g>Fa^d5#FZ^f(%KApNGcQu9#C8R%M8&;)Pv{bn>ANg=Z^-Aj+~V#Z6~2yd zDtUCVWv^da@}xokL@qO=J=qrbkeA8;Wx2oN(iBLr$!0{JTjY@%EQ_v(4DTmyXR(W$ zu`0n+HnZJ9jBn}9711Zj`rMQJDwRTd^?8%^6H{tQi& zxt3^p0CNl)LuYA@cvJ#Gszz9N+Ty$#ia-TvZZYk-3SWk*NPGLKLQ74U48BET64M&1 z(9}ruUqE^Q#u%gD&p+6fb*Tzvi1T@l$#xH?tX^cvwdDT7EC9=|{9n|?K`w53rmntq z`-s5hL2tQFv#C?)uXdtb`~u}H)Llc~y#jS?_f>Djq{Y7zVrP(Ld_%RGvF*~z)Q<3_ z{zc@%>QkaVeMLN6cie05x0%LxJ9$$FZmR;^46h>ZZ#rIls18DrUwcJz`x{lUI)q?k z?VZqV=SO@K{bmvqLW`s>ys%WCkTjEeeOLuq=0WHWQq%K=#-6GWy6{21RXj89jyMp9 zpN7BWhYro3rD|-VF6rOMP!juD$fKiH(anj4+y=VH=)r#ujA;`7{KE2d)vhNoWynez zB5QDcTXVRvm5euN5Iq~#NxE|o?eoh*aTE!bNw=)YAnJCo{ERzDx{EeSH0lw(p0S?3 zI~K+P3m~7%oF}!OWpVch?F@B%%-G{4zmJPj9L}X6vym8&nn+@m|GKW$CjZ)^CY?2_ z=&TuW<2}%y`L4c%A#`89Y(bvh)btSPWD=JeIB11`ZH6-^_Tne}34>z4BWDec-P{VcGgbqCfmh`!j%@ zjEXyOXyL&BeXo<DU^h_ z>lUiveX;XT0$EyrS0i)b=JGyeSM1q*;%vz{|Jf%z{q;R72&Ra;?za#XC10}Hx`NG)H_8Y%T7jsDSA`AW5_&8Wg3g?`F4D}ui+3<^c3TFJa* zIXnByw*luu%C+WR-MlOI@w(I_UU_a;(gB)rDJ&c>6<7+rhW8wJ61OBOFNcbD&r61W z&GS9W|0x^4m{Fu$3^hnCr=AXi5 zc*c}`sPQ!mShO}REU3% zb8{Xrs25nf3524A27tYTr9z9SLZee8*=~O@pm@cY0F}LQRrx`3i6NTSHcBv%hgU#F zPG|_PGsm8~;hyjpYhG#Yu#q)T-F-WsDdqC{seEp2rC^cYc=0J zAI*xouUVgNKxOMZL?NiJ4NkOrp_3TDhfvLNgh zdr;JwP)-V|4`JbWRK5yYK~;@(WvCI2yWtpp;iOc4Z{K-_6hu7tMzotnynGiKO%wS- zGLn)u;&oUg<6gw;h7dkcE`R#)j{^XOw^6f{Q9#Kkr&>!1P*h8Pl&Lh-V@~?*O_aGM z#l}GB+keB?M${}UdIH8hMF@qwjyZMg?G~?0 z7tbhzwAIpz&M68rPmDiH=Hs%7$3p|M!xNaA6IkXG2G6B&?&8yTOC$^Z zH+T5j&ntForV!aAQTIlFC^E!Kf+iK)VDiK2Zjyh5hDs3ypx4tG7kf*WB#z^!q+5k_ zY%vfH!bXC1IR+{Gn>2$;7(!$c{2JkzG%1-SFe@~vC^WhlXkZvTC7vj;MkYL;NC-j{ z=vxx&52uBr#kI|)VG@AL&`1eWVyo-ZoDn~I8I(JkJ?rAro{G}JG8uN-;a?b_4z+m} z^Cdn`Q;93kFulC!T(vZ-SD9ru8Jhwz$LHy|kc{-Cn*mt>=2Gou)3>C&Ysr;HdyQj|~9E#**l(+ZFqrQt3MCTA*$UD5u`yQUm zEtrd83zZrI$)tjs{^TnN=Cl0we9Zqhz%ls&dQbL03wbp|QNQPZkEi{we2iW$w*c3F z6!QAiT1saL|DQr$h3wC9#QzF;OVsjuawS>llL!Y&wV@0a5RU_iD)t%?GP#)o?GTMB z%Ovz<+vx_}^#)XuYTVfBn+?;WrF$w2ZFF1ff)(nXjNMEN(Jk7dRnu~*649w!lwWmav5lYVEHn#+ww zh7Sc7Cp#B75`p?{>kkW^{p9{D8NPWPihCF?OuG$dO+R!LbH^T}74>@j(;^++-Xf5@wr)g5oeRN2)O`;Kn1{Reb zg}!dlgfx-%_;)**rM=CDsn&vMaj7&r0yJ5WYk^{qpvn2-46F^b!c3?px>}kt=a!Yy zf{8VvNW#RIE;a%Q(+kQjZ24S3SkhDyj65k}WJ)eK+_Ei+<();8|JtFp&Ch52yQS26 zZELUCZJD~96N0X15jw&uw^H-BFY&PW{B7Ew`eT~|oBFlXt8y_TNxQV#!aj@Rs`Z9N z-4^U5A&1(<=(38&;~lxf-~;@!%H}Q3(v#nqCg^L8=b*66h&O!9EL}uohZSA*s&v)e zge1b`Jy>cO&SDs5!qt6`V~Z}m?~Rx_I}c?q8C8}lmq@hj#!#yQnz{(pM>v^m9Y=4^ zFeZn^(3UT3C0?~zFq}+0NcYRByWJSq%+|^9>=WMy5ek4ElPG`|0aJ3;a`hVZ%)y*avLu_a)ZA?j^aiAeI*gcps<94TcyoSt5OrBxn(+2=-r9u zpc0uQYWjN!HIqW{G{RaKbv~X(=ph&@+J#hEc5gsPXkk0pI(_qTAM#CjC(aP?X5`C* zwlpvKPoD=SqQ@r9`hM6+obThT=h6VL5)oEHto?E)w#;DmC+x(W$QAmEOCH72KS2<4 z3mO9%(ZQEk&`^QR=>Y;c^}?RyE5WgQ75Nu`PZL?J?O*HL#^DjJW=e;-tA&?-VJ&JIE@d zWIR8Ws6Je%tUkk_`p#ALQ9W6gbbkD-9#btSQbnvgOgWhGk_#iFc!|+gd5!SgNpp(c z6vINretj>Gl81_qt3_oWkE4L&W#M1V)MlTqziF%zHpFg>1@S9?eYrg-;UNp7S-Q1` zXUsIJ7nW)q`0hE=M8@9(_SFMD-ngk=>8dr~sz*vDNyr}TQM4`)N>M16p+!;YR1wpE z08JN@Ta=iFx8y|m*up(6iWI*!YOG41S57^a8EzA^wJ_3G&EN0RKKOP(+O0E+UX>f; zG3k_||EbB^`e+J9`#TuzTtV4m%ThtS&=B^qjso|{N+wNrD&%AR7j-0y{*Skdbv|*` zwF=4(dLE0hJG?Tj^%_o~`$f8+np8T>mH07sdYt!~zTW>_az<%&Z98@?pCga2s}Fu0 z$;PyjT~?m|elIpa%vXUTQPny^V%Vn{(MB4|7O@rau5mqPJBt+Fs@%km~L|lFo@DS|wK6Ho95>Ru6NfHf+_h`{HsF}kKfzhDxlI^L-jt6f}Toy>7pmY^A?qA0nCv|=>3e{zg<7LL#=&{zzI>-(l`Sf z_Y2L+W8rrHnim@!}P7${|Nmu5%X`03?cfupL|4`n##zk0zJfgK$cZw>*U6jpW zU#jYCs)F2uPVs3{qr>A6mU$(%sU>l<;?1bXI^mV$v3u-Dv>;b`J$CGWd{!x>cp_3+ zcVN&In&dSG6#HU!(3BCv_G?JA(5q+jK~c{1c6HIw>rZ9+nTOY}ZG{M*P^M4$c(OiQ zevC6!2^R%J*iRcO-{OBh++36t9qic+DNS8`{C_Ar>$f%=KTDSyT4-^Kw75fYf);mo zcXxM}Bsjqmg1b}Pp%jN=#oZxTX>lp(^3LpjcW17hl|LZA<;s)$IiGXxYdV6vO*rwz ze9OwW)*Je$?!kwA4frW<@CW$H!$TUQXx);R@E8@z<&1oY<*Z3?U@fw?_P`_k&XtdB zGSs+Kv35=OJ6B-EU~Yrjwa5wrr|_O#QR-ZD^iOL1UmnI>k!y{~$H5k*@de9Q-fA+1 z3X&d_G+IH#Gk)6g6F&h%uLlia59i^8A|AEo^4^z z>>PX!!<}v78a2|`M@V*QW7M9T>Gnf;0F;S$F*sB(g?G@J6rzl~cvzb$etH`9F3j*X zEWa&;RUBrAfR=(`PBfW2+7JgoI-W;5c9VDZO|ZKpl%>snAK#{%F?~>>5h8cn z(uGAiNqsrTwDD(pImZCDez5(4T#omv+-+cPE6n_IDfgNr_t{alFkZ$TfUuV*Cmsw% z+`-@bxwg0Dz9`H?Iih>>J{0G@+v0WDwA@F`iuc4ZdF+G*fmQ`C`(QtzP*(YZs=ERs z`a&dLAvaTKqhBGGe7=CZX~T5kQAELK3@1Rl1$Dc#%)J}Q)9D&xzT&7e;e8R8e4_fO z38P-Ik!P`PJJ)e*F;;o8@v@ED`;sA<67j|&v&^Esl9J;8HM;r7jPjo;=id{W|B`ZK z75{%J=h;7$L-19)_(dH?l|2EaWQBUK`x}GQ3+68@9&MLSFW$U1M6JZB7p3e)>Xb7nxn}QvFq|Am$KtH zYCGhHSRBU#S-{s6N&%j$1vDNKRrZUGisKaym@)zIvY$Jh5h>P>xMk;CQyGLG{0)8F zqp)o{JQIZ5Z%SvPklK?$!c-EcJsmSVf4hW#9-Iv^vzXLV`lqihb!<$EGP;g`x$`m! zc}eJ-=}(V>&@*}Q9;@-~=J78G`;k=_5a5LRgDew$wif0VPy1Bq80x~oOWlp9=}GT4;H1-CPXl%%7D zmcqg%A?Zk(bVh>0_-6l#uyXfy`;0belB258UIF9U7U>1%DuQr0WCJS45I*q!zE97Wl(W1 zX>I&?j@Qqur3yHEi@9H={kLr-=2GYLg;=&eti+b>s59x~U*Mwp5?5zs4t+WZbeHEgvAjrQIcD)}XED|8SSgu^ug378H1fwo;FaoK%M@3i|q1Qn-{R=IkS%HPsuJG zPn0wC=0nl-Tw+2O--^@531^cih6ulc)rXqf)I|0i^&R;$2lrh_tR$c(DmTV&U-jS( z?e=5!9{?hh^Py@iTIXl+VRqrf%m#S_w&x~l1goI0=b63tSd9ky!&*n|LV&NU1%Kei z0IF2SSu=fnz{$AI2JzLr%_QF8vQO>R;W{vc<9a*e%;T#Pyf#?&ZD|kkfvjm#_|MW9 zj>zNuii!yG&&}E2zt6Dpo}tQqeg6JeD7U}y`CDD#S4Z(-YaW|t9~nf@r4z&V8cctE z8cuzM0aUr!`8Y{&OaAt!N~9@OzK^1;5dQmth$b`23q#^uOkCM$?w7>f%8L|l_FWl~ zBo6rzfwz6fcFd6>l;-cOX4ol$Wxxtp@^5YU`*+Ge#W4FBBeGh#Sd`^rH+Htab>0rF zJE?&nVpJp&FQn_yor4|ll}J%8q<|y5zHyI_@|>c) zYi01Ru4eQoBA_<8&64q+ij!+tq>0y%`x=Cm!Y@8U2RM{f5ywsaI{EMwi`3wE=t$@4&m$__-?!Y zF50MZ)uIGV(UR~T+yaY!E_3m_3Dw)IWkvc8hIDBc1c)L3}N)uCh`2(Vp*!OEAIS^sp_4SZ;!+ zDE1yAB=|_Yus!v&+^acNSd4fn-KR1Nl4+Leih?qG$;wME`l1TEcXi(5RgqK}ous-%;feASVxZ_GM$7TA)T z9U!MPZVvil>CG)4w^?1?u2#10c^e0nYTPr%R`&&N+NR=bJWCbUj`VNZ7sqS7TgKLY z`rmYHzNz(nn)W@B<#j3lzOIey#sn9zsrF?_;lexV~U@$4b0q ze>1y|T<}7n(^pttSbfnKRYoa66#;`!;?{9RX$s>;D(Rak8|l(VD}ACCG%UwCpy?-l z%?Q338O2hO>_=MGCCF=*m6~V7I2bFgPf?C21;%S3(ts>kth8p)Xd8D}3Vr$0kADN)}4vr^&Q)+F5P7P-Fjv-Pj4KvpcO@6*kr9R!aAXqwQ=f$J7_eixSEjDDH@AvuP2O;4&ugIxDeY`;H1l9UBicAJIoz3=61e9^ zmop}VeSy*vxF0#sBS5g?>Rt*xz&H6hL9nhOhO_oP$mnW1*{C7UCZoTFl=8>I>;=1+ zk-xgl{pC;Aj!K*kTaA|Xncur!n_))BkrnsHmSn#gFatI07gU)Ih~01@c79E1sx5oQ zqs?>K*PN?)YZG>-^l9zvZF5Fh6#o zBVu7L(jnpK_z$c@ZGWy?+aI(`C*L08QCz1Svs@ErJ{B8?PaKv5Q46TA56W zJgg9%uifbSS@;l4J-G4be&6}gMK4&OAmpx*PFycK$iXWFxeyXxM5@GN`6I(o>pW!I z#!hP>^d-W7MZ>V&>hlXk5Y4MF3~BOaDKXOF0QMbsh19SJi|`Hn@Up`2v;OeBop3;8 zcmQ<-w`7EZgdhiJ$l41%o5F}YX;(A`fC!qOX+y;0y!JDCz-N9jp)z5qGC$9V$jTcL zH7M8SLTGz>6oIaXl#UA-A`07=(TpMb12mMzHkt?#W>4(s)T-278vPa3!(&)9K*qw{ z7r2!U)b|x}L^JWX4KOAK9X%~C>R2F+5Ej5iydYcSSg0GA!QRnED49PfMb_6&*EZ7D zJ0jg9V$PW-6?{7lO4$JeU&Rz@Mwe5^h?}v`c{qR61(Vc)vr61~KrwY?F_yzI>XtFF zQ3`IY(Gs>E)ic4r-Az?=sekQj4)U`NLnFUEO}5!O_o9(Z>PBhO$G2%R%`sS~=-Bt^ zejIC!pTbQrc8|Zd4keJZA8)nZWngSx6pfXR4`E0+8|JL>RX&kT+(%Fw7BhL>YCre} zKbFPa41Ypd()S;Vzhcn%wo8W&U{$bv*EkH)2dZS;#^5a}@Q8~O>$wWICO=zDR=i4X z(N3cEh;s7LBC_)*AyKCyL58(6$j}}_K9U4}AmG47NWX#M1){`84FhhjA*HWe_@SQt zJj9>xqHGYr`e+Ca!sZ7`gwjHaKOw1to?op@YBXUYwAD#fE_e}=w!|x>_WyuX=sCN%waxM zF){;YnZYs=3t9>akxPyP#Dp)!CIKA%83TZJF}ZhMPZPmb(#*EF$$_OVt|NSfOLS#= z2~LbrFWXX`?=r{V!ONH88P%1l{ooLE^LEA$6?#%lcW}FW2#7zcsZFFCJx*IMW||R% zk`ZS#l-8?dn3`vi%?ipUd2XBR6^PuXR z-9_KZI1VgXUc+*34>Ov4bN||iG+w*%!7A$MWB+ za;m;LH+UExsTM+xI9TeYH*loxUZ|6Pot zQxPYJxBWen-{VQ)c(FB}!yoeR3dcC{#CpYwfBG~WV7WAXSEjlgMJfF?c^2leYSq3N zBlPq9d{PNU#Anz9~P7c0w6W3J)z|Htkyd88wvi!6!ZH0Uv`Ef zNKutmINfwcxlu*e|M+sO4yN;T;K#rk4qJ1E!m)+D>c52-tBgfw>Yv!p>o`Dyg*$F$ zmd#umyt|Uj-8P2fp97hMxPL5KWfMd!m;h&*@nXw5uROkQ2B zs5fjko6($7Xg?y~P}=6}5s&J`MU#~<!=GuhE|V_S zsTuC{P*p!6P0Cgor)}`Fsk2}V)((CZvz9#wTTHKP4<4@RlG2M^Yp>ZZAA&i9s0BWg2(0NhFL}@LWg8=lq6ABW)OCo}36oP1-{tZ{8u3bnTOXO| z>iIDHF@A$I7wIUMq}YuRVu}gxxW4Ub;=X!%-$?=TLzZ-QekxksShmBcj*2HVPsWc)UlFYjOb5HZ&nE=6n({c z-o1@vH8jF7Bkr^6`Vtvixs~NC+e>ydC5NmGUx@kaC0g_HlW{WFFxp=t$^3W8meQ-H z-xizt|M1i)3pnU}De|qu&{hl9DO$yAT4ZJW@jaF?(v;XIRmxc^IZ9WO`n5$_ZCJ4y zUpX^jmo`Fzj%wUM+|gu}^O}*2ZaUnHdyCvoT!6Ru1jwWT|Gr<=6Zy*_F*$OVTKKta zD|fx3uu#$aam3(a!4$sR9KqENG*VEmSx@)OxuO6#Vf!oJs#8NPbpdcP!PBCpPp+fOUza5w2( z;GFcr2*H^TsPI$Awo7nM`XYOry3tjYv4bxvJg9_ znTB{P2Maq{dNk|Jai;00c_FJU)R|Yfr<aassVMHhQ z?(_`(PEaqfJHrlz?F$cj)ePAhQTcPHFIpslvv=TzvVsOEJf@F{%q#pI+PDA7GDQi2h&*C6AZWq$u}yW1_ZE@BC5<~-z_oTs{cy< z-64d|z9bMob%db#{B(bg2gTtoOPnS(wZ~9C)ExS~2Tu>lF!W~+noTku zmqni?L;nOS+~4$?8`h7iY-ldp#*LlnGd%+hAN`}I26;Rq-x?W8;oJ`ndtDX~D;b80 zCFGF9N{e3zuPU8MmH0Kk-(8QhP+@*OYf5^R>)?1a_L&>1I_ObZdQzd#!#R&G!c(@W zIJNhzVU#kAEGP5$nB}+rq7)6Us+NzVc_wJ#k%hMbVARh;r?Y(Pa9v9J%CWyBHM=Z~ z`(=-kGG&KvFWajY`hl*`?iXA}Cv15g)B-EM4;-nB*j!&vjHW$eV^r_7NyY?Z4&R^z zE^ROK^|;Af1dw-@W0CS7U<7MPycXJa>L(i@msB?bDs5Bi-3B1@f(jEl?srIXhX>ar z+zDW-UDDm|2>qObi~znp#T-Br-0~tZ%y5s&=58X^(mjp|kb|IV!jRIr#Gd!ulN#ju z;S^(E`hh%eNnK#JIP+LT`SJ+c>$ak$drl`HC{qQ;f3`!!tNZbOx6sMbz!tgE!Y=c( z^}T@G=>%J63g*eoUcjqIHukR`3ymwY9S(;Hw{Gu)TjN?zh7c1=!!B;;F*?oGJq22p2oPg01Sue}IFGw8urtwqAucHg`9LSYQx^G1g#gmj`U#Wy1EyjyxYe2|HZOF0^GX)B<1kzJXT zFVn_gdp;0jy8wzA26QZ%cC|7$p)oi{#1_kv59mhq>5{*A5eKG^8(MUEb0ZR!{P|0B zoa7>~%Ok!Jm1fn~dx%=nt~F#FWHmw@*3Hxdz_O#^^nRHrO9r2pJjV#KwD__*N!+bll27*|SM%YyLs>AM zOfS^zbXZD~Om?PS_9V$&{2g()iJ#MuoMi*pXvfcJ&(7$;&hS4Ig42I7G4}6-khJ(8 z2;phL`acqa*?%B}?SB!1TH?P5K>$VeA3}Im_C`*dg<+QISqW>GIk^IF)m(+fnEPCN zQh|7*MsGcSWpmA1yeDc-*I2XDX!XmdoF8^mv(@(olW4`E#bu<&<%I!xoI1z$7>IzY z=GfQCvMU8;rZKLK+kDh|$9qCn!2CEtTne5uuE(p~TglNK+!|nUGT9iBC?(A2X%gRs z=YoB=Qv2&b8H~p}L3no#9^v8*!RqQzJ4`D_IyB{^3(cjhbX6W4@;rFXeI+unL9Blq zxnDe}-T2VZ6%1`1IG_l2rj^Wd`1`wbGXPmfPhof<=9%~Th8C0&g=vij3E7jn%CjUt zkEWC$h$j9K`Mw175s3ZmAS;lLiKtMLR+<4fhG`#^W}aX-U=bK`_2fB`G`4;E)*EZ( z*|2j0jFVNR52q4k-?wHtiS5%pl}*(3iZhf2XlODlr4MN#ri8=ULHg;3`wA%aURH29 z0f4oej6n1beC<>&*OzA*Y$av0K9UDX8Uaw{V&40yW{K?kWo1S+`>7XW07e;{GR1Gx zav<6=hgn)RevIWY6RqVj+2IUYiO4b$7y}11CZ;rg;A=ag;>q-Pu{$| z@#pAqy*ci^$(OOY%&H3f_W^I~XSPRAnneH#tc`T?9q|0|^dsgLXWR$d@Nd!Y8JpVl z$4c5p3mj_WmNO-tJ8GA;S-O6$I}m-jDoL-EeUN_0R~pV?{-yj9)i9;c-n;lqYzYPC zuU;ISKaRaERPE~Dw%Go>ZN~Qz`aOi3`1)LuW(R{Y{!LGnyV^SsM`-)p^TXOP){WH} z*ghDm@H_AEF>B3=)vC!4@jeoV=^Sk({K?<tfuK zWow7l#@RV7&GgF>JI+H=}IZRk?Nw_RDO<0m7zqtp=@v>>u_ zO16h=Iw49v4RES(f%+(8lZFK9eI*^aoK!huE4Z4RAq-kjV?5%x2gbA(uM7ZT&V7&J-ah;Q+u)>~fWV#UQt`16}ewge>e>hL#p z;K@!f5`@oy0nu_N%cI08rxgEY{j~qHG1e?2w)T!aIaz3$X0Q0O!swZb&v%*&URWn> zO|=6QzgR|9azudh-RBPZVx|Zgc?03PXtwf178|`r7BhvgL2CXO>4wx{Ul zIKLak{D6itrIlv2r9Q{yikYe+t}kgD%;9c;cfPdR3z@etvJS6FQBzF z<{J7p6Q3y{+097GHOvqOmEtKb;BTx_v0ru*3%!m}*FsvL!B-=CxR+A*aUf4zdq_y8 zdfwfgp$KKmWN5p4NTI@8DL+2}8KacM_UEMx3d=1iyqa*BdMQ4sy*lhUeo~&g9i3jg zbjCI$x*WrbF6~ZvqrbMWSFT*uPfjy6uP(P(&0dXzi5Do`1Sv^o(xUyLc}b>K!0r^I z-7?x?%EVeCMq1A2(XJ^?Cs$23Tdt^0tX9v)0e=mzP%qNZ=`dyvb{)ttPW+~ma6boJ zk|!4>Sk}(LpU(z%F%uTkEo2DI=Or8IShabMb9gta@RHlxk^=Olg9!yn2dwQ#oAkp< zcq>Guki_)axBA~BwFDcS%$=s&78{mv6FP*Io~-guUH)dl7A-S3joT?p3O)%JrJ8qe zgZ3#YpH{n~n#Ba4we@YajvNP;miFW6v*-4Oa3vzsVgqq2Yu?D8LA9tm%qDMsv~&}8 zvIkS^LO;Lu>AA#A4#~yb{O)M|^^o<~M;w;5zf6mak4~S$J_N!p2tB{x2ScMM1-7s% zZTcpZz5u28l=aa2d#P)_NV8{cFXy)o1fP7017B{F+{h2|PN>CuWEIq$FGk-#x*-Bt zED2w?4M$LOLNdPZ(h1&;s3z2>mMZQs8QhKPPSmHjeBWaWxEnLY_OSF}v3|GR`W=Ok z9hn&rxX%-z*?+Z{p?3eC@A{kWgk@wERo$4S5L|CEtHC4oF;MFBWZI-NHp%Fy@0?_x z`+(ShtIUYw-ahZLi+5^cAx@KRo3a1XNhqweM}H5c`r0vXeY4;abfmfCJXe|n_c3DC ztr^sJXeep2wi>e6%g|XUspIzNd2_*Q7G=HH662CoIl`}TlRe2Z@iPrK*>RkSze zc6_)^U@oBtO(`{s^n+MzWapeh<;PN&eYxAez&1SFZO!}x97us;Ae2)BQun;%YkSx{7P#kh;ZrN#Ua&p~i?LyhIuz~9D1wqaz%As;|qK&o)r-Ov|N zL7Mwg>wI3jsG)ebVs4k=&xXR8pieE4h>!yZuW0T5J`HkyiC0AALQwugZv{f%2#ISK z-7RlruSh;C3haSM)vZY5y$Ishks7*Q-!&uWBBM}g!{luN5@lvbv*DHD;T$Cqwyliz zP#GKkXtj&zp%(X38z7A&kZ&;Boq^lGjPqJYF=&`RtV~}(HX8Xy#vtOBE~*R!T;z{0 zGl-R?3Dk_{;Kv=Y0%w%HOOuU)-^!8_8(ZIib{FoZzs5*YK z6?&^L#I9n#{!Ow@iLI6`tuAdKs~%bRUSF#|s6vXYwx_l0xRm0UZp6p^xM&`?aaq$z ze$Q#!_?cVRxy9Jeb1_ESVDgs%2~DwH{4s2j3AMHf0SK?d#Q-eZ7@GYA#-aoPx413p zg!h(-!n1b1zCni2@L%DH-?tM7hM8Xx`AbB z6&u^*{**<+m@26EUp~oX{?xbN$W0Kt45Or+ouK4hymXsU0>TG#JH-?=m21E}uSvBl zg376km-2v|ut}bsE8SQl-NcSMlPY}#D(nc>r<_xA1*cGQXH2@K^DSxH`z5IGr@f(% zJ~>Z%d@UDg14)xg0*Glu=_ONu4NTF%F8xq3G3c*v$-jnTLY906Y+-X5k%{G8?C7f5 zOHd4=l&=|?(L=r)49U;?g5T1>`%n}2Qtc{XA#RLm?T2g?K5%dvT+}mDurKq4jrp@z z@EdVBW`CB>4ZLN<|8Ft)0?%tP+__~0;ybUWeW@!pf0+5}W!7?erYlj>yUT0{F!bwE zY7Ri=p7=B3(C>&b2OyWjcb;>Pms>=Xvjj-)KnML?ps-m;`n$w|!j$(GO{8BAgvylq zxiNceAVlPM2$X6CBd@e%rEF;HRByVb*tDr z(KRQFEx#vQC^2*%TW^0KB&UcPijdZOAQt%)aJqe4ulknykfpEIll=FOw`Yg~8NK}W zGj=816KcDI<*rZv`X{~#`75zBw?w}wf4e91-Fx|pXfx!3l7BOTlmMC=q0cx>7J-~b z-HH|mTW+f3TU%{~W1|djfwQ9+QX)~AB#qqO7c9cTt>wgcu@v4JZ{v7JWl7_?2Yf9O z?oZ38p9$R`SonUPps`foZ}+u?5V66GQkbuY)l;Pjm#j422-_9g>Q=lo_OsEq)XlUQ zmHiNl$nGx@b5r)w&33}LrAxkB<1W<*k#Dp%@k?kcO?`bYSLPlj&CLLf()UAToR+^V z&7h&`KhS))cU_RMZ&zViG!-;_D3-79$q4#U$Ddq^)Cl+A_1A~^uLD=jVx}ut6PP{} zB#FOdE*UGf*Q;(0&S1!FH|}?Eu94?vsr-5!vs+c54Xbi1*_W?w&UTJrm6(n`t~Bl+ zT|TMZbRIKk`5p{Elrd-Gsgdz*f6xad^a>{Ryrc?9t|Q;8bV>SCkM7EW*+KIq^M-I0 z(OW{>$&fdOjAc&6(UJTl^IAh_x6PBOvu=5J_n9*Pr}#05hBJ!ijhzs}O&V8Z1Bc5?qiz2t=Z{j!-N|HG;lk&J`-1?Pv; z)`OadpPe^9AI`qsTpsTB5`ECE>L;!3lh|k&M%_fi? zdArN(;(Irjn<#R5RNE8y@RJlLeL6y#JPxKaD3w4=)k|MZq&i!n}KhiVE>aOcvY+~lW}&=;Q@*va8wa6t(Z zi^#I3Bwtz1Y;Ji*(yf&T`C|xa5d2I;DL!ll-3t~9)FjEB+SEgj1WS#TV@uo*J<65^ zE2FV1SqbdDTSo7V4z0^v} zwrUW}S$Ee-d-3SJ*U4<$=-ATPf>k@V8?!F_y2a_l>5PPj*yL^=(Zy0-8`J{Yfc*54 zICwm>Okv(se2Q4gDB0ik0CbD}Q#zfzs3KhG=BUM?**H=Ad!WkoCL`UR>#Q$_OpcIY z=|vD#!jaIOf@z=`aqrM9y)6OOjuLKs6n9OXwH4Vq*;AFlw*PlnNM~{6I%L?VcO^FY zq+NjxHq!9IO9<&-OjR%O z6!4qyF8p2bf(Hoi9zKT;eGBHQJN~|8v7tNVVCW6)IX?L)AvpEJyTMl?{e<|YbOo~4 zoO9<$>B_FXYS{cG{JW8^C-Zg8pk!?aU;L>rX@^Dk1flez(_r@=+~|Sg#^iDQq`@A( zVNBy&H$rY5X`r?>BYn~PDreeil$%!bv4ym4{+OXhF!fyv>ku-8i9Y5cbD40m5vI6q zor;sPNKx7n-?X-jPx_L#De7$KYHzc1X?3#%`-FdHtt6-C^k50&-k4JQl7l4MQC1Wn z;hwXRz0n+39P2+;%I29pmeouXY@Cw<^URYl>ND9`Uv!dYqwZ5Y-ZT)LSf1EvfX^H) zr3j`~DP7R^J_h*b;t{7@-RzNIeiBb5T~`ab?I_;qj$15#zK^nm<6*eCF&5Ba$Fp(j80 zgXsJ~#^cki*v)#a@k0w;@NJ3-a`P{FZKDgKetEoydsAq3&)UKtVE8;nWO(bMtU|1`f(HcV=Q< z(%WzlfjcL^2M@6mAINFi${%Yu;uRv|Ia=gj`p8zk5H-ArQ4O*a>&Uo>$ic$MgA9#X zq9`xP2zx$y1!#zjZPfCMsFs#@ie-GtxAHLS&D zBV{RpO%lLYGCr=v6uxCfP6$~^GoW@!RBIs+X@Mq0IrNA;aWse^(h!)Vb! zf-Q@{tNd6^-zZj4tifVTQ<*AZgZY_QT&<;Ahb+^3_b`#&SOWe}y~BX%+fYf#c)@w| zNrcJ>gKEJ*Jjt-9bs1=@H3q-e(fmAKp*TLGj_{8(Z6I}Q5mh`-D$xaluWfMxLwKSW zW#R&YHN@K%=}YyjP2!$EDPj_iHV z{=An=R&F;*4LN+L765d^lJli#MM5kVAp@xX(r$h_(%!1nksn8tc-!37y@R5@rLZ5G z*A9n&qfdPql}rw^l#)wADNT`V0LaHbD!3u9IK7PHK7!R|bzp#vmwN-%sP|GmMA6yAq$G(bDt_{j}@^ zqsyZO7gF}6pgS|r!6D-$J@Fx8pLZV6H-I$A$kSgbsGSdtrz9K(izvlUC|jZoUxZaI z#TC#+)dC`x7Clj6p^7AtZGgy*k&qTS`w(Adbw8tCIkFHEqk(c3M|!_3Km8$eqme^U z-=RA_0B&NJZK0jLh*|DP)0Ta>mreAaJL>wm)pO3!sMK9(z%C}@d0 z9W_>HrK;A}WHIqn&exi9`M)uMILJ3x&Qw_OdppTA(r>kAD>Snj)p?KYca1HSu0liJ z#ds3mBBqis9+>v^e2R6|L z|Ne9z(&4f@JJ79TsG%=)*oek=YI0yq=lutlpo1CIl1Y)eu5UM}DEu3tI56M`t&Myj zdB_RtK~5M%Om;I8eceaR`HjBs+vs=YrQ}f`kLW3b-eaU0M&AkdQ%X|Q5N*dEq%j!9 zkW}k_^yA&$r;PiAAqz20aA>dWmxsm$eeq|D#n-XTg8k>^J(qKtDthZ1og&KE?R&aMv<-#tD}6S@9w z_aGSmv%oW8rX2b*D;I?b`1NIGWXP#~-iyiR&)ssa;pmzMhv(9DcyncSS?{ zONIBe`_fq)F<>|Rd9wUHsXt*a-TY4EE@f|}MWQ*9oGF#@g|&x!nySM=jXRXJ&AoE| zFFzN?TB_o=4G-)6aCQi!`NQppr_6@y2<0Yb3^5;NC~%jA8PdKIY-3<4w@VG|rN*>7 zls72G%HK^QuHvxV`$bPe-?<@W4gY|oS5DH83X-Lc3_k#z>NVg;r9{+o4<9yaj`ag( z7_6~uQH~i}zIJ_boR^drC#Xmc3oiFzQd|;~>iZbO)>xR(kC330O9lI1iqm!3ior|L zQ**ep^#TsCvZ<6*x-SdzSPrBWn3TLnC*`Xh?Np{m#Pc$NMPlXUDmylsa+Fs*5__dD zQfRd{Tk*|ui>S0v>;54& z8;*^}F|>0Jy=s5FXC6jk=n7wJSw{xhSs_ONnN3Y!g!LSSe5HPDhJCWWDRB}3U4_I01pKtE6s?L>0 zeUd`i@bybk8^w#sKK=aS_*b@* zlUdttrg`e%#_W1n@K#FHq#m$YJrhQk5a(&5iaL@76hs z&$7v<1iD^k&o57jcr?Lxam_S&)}-wMU~M z^2|9cJFcoZ2ZYX~enAc0MKwVG$vL%5i|Ke-?L&8>hX1IEID9xBs!z1=tD+#&Q)6_%vrbAAa9B7s^iVFv-TwEZCfY19$u?1Hm zRPs=XziGW<72Ab>;S6G>bu*|G^~KZ&lRvQ>EmCs!GZoqq(Zy9+91jDP{yWn94m>6BYIZ^9@#$Wo{ECjCLv1 z{;c*c+@{pt|B4>++9dkWISRb|4XSnTqf6}Wp$B(l+~gceSQ`DU&heWX?=+zNTRMMp zc7?w9MvznK~H)su+!O-TkfNCc&;2- zo3Uu{<95=e;-u}vV@j0BLyxfNw}D*$^NgN@Q=h;4yBmgAGd;h4_w>}A*M@w*==u9p zs+m9y?V=C8k`DdA$;Np3e$pg>04c|fdJ+*e=HwBE2>Roza9=lxZ73u7GDIHW`u)xL_u1F0MyM| zJdy#;oy03rme@_&Rzd03opC5q4J~B+D6Cdq^TjAjU2|Ln z-r|9=9kJdESs#ZozYoObPQ!R^{Kj5TUl(0d!D}8Tlt}7E=OCy;h-^U3jt^2w8uS|l z^o|AuCRU6Zj@XI-$?u!Q+JcHNbp3Rtptq!w4Pcxb-Z=n6k@(n1Yuc9_MJN67FxG`0j|S{a2TtZiA)*E#^|*H+^B$1zWyuz0 zdYs}Z*n{z*2g!l?afFOK#$}Fmx6xy|ItvUznpCNSt-?~}R6^*<*w9o^$y33E^W}&y zCnLR!SBgqYTJ}Pk+j-g|R|<}GTBo)ONY#iRXRoM&*7K%2Orq`FWIbg0CkL0EKn93XZaRbQ811OvgEf}Z-|0Zp_6ThPOv zzxJc#SJVL8IV~kCqDt}t@G=*}$!9a;CDSUGBhqkDeOIir~-g219viZ$XOyUY~{RDI1?nlE59gSP$JC zGjPssc@9|^=Fh{Nlf$?FF+rex=7eI4@(d06EEb(i_Df!G1R5TbA?R(W1hAh<+ETWz z;K{-GN^i3$G}^ zep@R_si4x0Al)SmN;gOk-7s{=&^-*@F?0{zU5a!{ch}I;1Il>$;@*4Cch@@W{ul3l z_isN>9TP26vN!LxZk+9TFS+7kabFMlu`+o?>(*jF!}#qDGs0{W9L8-+z(~lwHsT?& zGl#kKVWT^S)6k=}t;sejTPJ{^s?N=3Chmq#*zdNvf9{##Yx>I88k4mb5~Iovnaz7y zi3uSzLY;#1+g5R|=4{!l@cq#_r1)f)pSSffJm0jGV!Hft)9Cw;K><<6`?!;tWBPWa z@WJ#sev!WRO~QP(%>8MpvC1Pk!pQUaz=DBAAb$D>J0vTNN;B#EtZMMLaqX4R8-rFo zi*9?^wj+ZYzd9JhlHqFv%E+Kz*hF#bcC1emoJ@(spP|rGz+YzDi%w8$H%^#$_+5-J zYR3Br(QxfCpQ*LM?L;lX!##+8Bw)^*Q*a27VrnXv111)`-^-NOEi*H>^#IZbDK;M# zfWW7i2jQ+v=2m%~ON_-{pz?jIjAYt}gWw=K9(aMpoHfk3!99bhSbczQzmQ2f@@G-3 zmd!@7x#h!QNwLSWRRuDyfc{9V$mYp#0V|QGtW#T2$oZPI`>)wCFbT*-H(ZX0B)@>Pn|gn0Z5F!xd#r6KPz>I zT_zE)42*}Lzc|((v!bp#n0?FLb=I#U1LB^SP7YA|{6^>$pZ?%rQ8t6zp?$cZLL={Mdfu zyVM)9(os1;Iq7zJs)iI&pAn*DzV=nv=)76|zYW5_(n1aL;iTmp`TN%(``i z!mbUW_(O>y0qYKBH4mi`&cXCCZ^A2Z3^NwYe!YVJLvQ?-|0f=u0|y{3UTmm4l2s=T z4J7-mK{=R7`b_UheEj*>|AK4afqkJm13GnCo0wM2Z z!AIK!a|}W=So_9y`le*s1ets#7tvDF)W<3O|d>L09Re8v;Njup_;UD{?M z-b=cZ2h&iLd$QWKL6=6{1^b_Up92h>6O-}Cj(9R^R7I!FOG8b^&0mguO;ok!b%~1s z@N<7*dZS&&O)G}2^IdWRmK?phSHM48d9{#jVo0 zb?J26NIzH(8fV5v;}52WeRA9IVpas^^CD#2a;41Bwv}jR|wv zq^Cf=zim@R>r54#b;tE|f&-1vCO-X@BSlE*XzYV~W@rqfp-c^V3lZU$el zX-Ba-SzW;F60kJmJmU3lxwIYSiJ4adwE7Sn@-*1m5-oRLPQ z+xT&~p$m?J4 zp2cDj;n6grT)>r@M6EEh&0C^JAfG03tj7V?VSL7Ph)i?!wxl1JA063)rGkYm7rZql zR4L3v%I+rW$O-y=M2&MTxK{Ad+ZhnoS5IpSAo7hMU6}MmRuAB{l^(IB# z`%lddI*TBwk^^&*V@sjmOFv_q8%qrm_0{!e2D+QiFDvcEUUaPVZSl5dPV35*gI0k9 zmj3!N4&1@sHRcYU`to|L9-}@+*T~(rb1XdDE7EK#q-Sdn>n}@4$7bXNZ_iAkv5!#Z z7W!Z2UPng7V2QB_3~+1zAnJj$t^U@J^}9Y~{unbjjtnTob3gpt@Hi#6Vwc+UUT(k0 zMdB^vw%ZT>#Il!{^RrpK!fz3l{>aU|s|ffj-iO$D(KRw?o6}r-c|!JtCCo_mNUB8e zYZX$e5?ALqxKrN0Q`EfnH!iaop1<;jqpU6%N+_Gax<*vc8eZ?=r&q*OiDA}yD{toT672g=_Q}3A@}Bt z%~>v-Y5e4eb|QEvwN2{MJ3#r3BW@NdCSy3SB() z3>Ymm0^I9O{W&>redGq%441h4O3|8VwwN95AV z7u4LWIAIm^vpf&8Nlt^kZ=PweK?yFR3NSOl3EsU7N|Ong zLiYy%+>tF|+KXW-cVPwi;imk4FEGMkF5%NO)GeH0e{Vx^@Ez@B!>uv2;M!oH7O-kXVBr`R-+sM8aq0;edk$aF<3rvnls6U-$qb`Zsq1MfuCEelJN#X~fSiV;GeuFNwfjOjtH zC6I)HWD8F|PV=KgcNAOa8QSYmF+Py7FR@ za0gCg?syxHFYlU$37PSwc5%_1F4Ky&tXF;I+gQMK9AxwIDf%@M2x2aU|7LRv?NuM; zHT+|KwKrN*;}^@MJAGi*o6C#35*5L)h1ha6AMZHIH*E~>|hTOXu`eoIQsRL)xjfjE;V`pip0J|Sl8TA898BV!P!{IEMCk9lzg(fa zyhL0ET;EbFt@=JK$dWuZ!j#c4X@g%?TYsW+QzJ~wRW9) z>$OXpz9wyRc@V-0UN_X@=#pF_o%&w&YLH#x*hXHlYM@!Nw$pAqibLa-N_3sc!}RSh zDJ*)LLTiS&*5iTL{F6&_d_FSgfz|9kE(T2Mzu88Au17Cg zrfJzu1d@SVv(me9uJ7B9sO(4I$xc}ZUu3&&oSZ3^*tx%bY}wMKif!2Sbfmq5x)D;` z?IxR9+!v>F=X`>@ZV(780Ed0FPSS&&mniW*hb3}QFl!1P)3w-=Ya|}r77f(Hli^!r* zqLE8PWt@%?i=r@jeCv@_GW1y3UBcn5=-7#aA{u;BR?g@Y$wsaDa9OX z#!yeX-=d^NbsPJ7bOx>M%wm7eJ5fSgo%U0oLa+y)fbka9`WKRHv3B2D*d6)KWoma` z=&Fnvgq`Ggb4^W&+sqeCz+*i7=HSa;Vp97f*8*(Xx6)}k&0=WRIh3a#MOCaD!_Vrn zE9+pGGP>i54vpbdYSx%K@?&gMJlPBeF^b&YQ&|KSrNVv%Mu8-=lgTrVuUVNq#9z^u zFg0;2)9$I}3J%)_T^Th}F=?jIf3sY6t(ZJY_j)F%S<56->8}A(8P}z39H6gIwXijH z!+_O@xtTa?zWR(QuMJwl*ALklH@sR}aCy`;)r}c8-qHaKkl$)R+^5CLmI0L$%AN^p zo0?@L1UIbn?n&c7tHOt+w($A%bNK;lIZ zcf5;d||W&nI9?I&U;>~6tpe+qo@w9N!R)VQfW4A*=+7uB&w$_j=3Y(Y&YLl z3@&)%I@fs4J=-!3Z-O0DI##ND8eSSf#yx#+l(zhO(l+MKJbfOsw*nSk3qnUczg1bM zp1m96MpcRXe(mz>@Dc^;+aJ!-tK=xasPXSAlMGlgPKn@X%*Jm*PB~+un;K-RB1R^B-i+Ur$2WY z)kl-FJSE-l*R&Y6@SsDccVzAHkh+fh*)(MOc&{*8c}{p-bM-AktmsGY0lsIh8b8SZ zV#k`3OT85-ExM!Xr#IS!ygbq*SgkS*uHO@zZG31g4}B6QdNS5sK@0Z>1E4pBKs2sm zIX^3<+~r(6tWO^CgC+!{-gJ%4D^+4XUA7ghy#7w#+4v zheuhy0iK0Q=JI&=RYTqBHxt*)3U?&0(E!UClTXL0v;j~1!uXj-$M3aY9=TOjjrNw4 zD~dPLw_Thmj;7}wfT~!&q(5Z8yzYe3+3^v1(^$4)wvk)89$q^ilpSa&|FmEc@}tw{ zl){}lcPfyGd}P4ff$CfO`E0LWem+YoIZTb{*-mz)`s*)PGb)Wbi;Yle7SVyH zs<`~q%m*er`N(zj^VRUAw<`}ESXcO#hR3~4e>OmO_dj|fuRdwl>#~lTJZU1Y4-|xB zPwu>DI{a^1?H?a(0_^_`ug^B-Dy=dje7I)f?oh2h@Xf?3CAqx4J=OD%bzByPZ*)t9 z#R`jbA=#*p&;6Bi9Q=Dl?0gV%fBVfT1I|0+x>2`htI9sJ-)$TqPYbI#3j-99QQCi@ zKmJ~N@daGcDU-VgXx0Znf&wpRIG42D-S%y;;DK+Y)14FHXuC-{R zrUEDsZWmzzFZqLMf=r*a1~VXnGI4_G7lR#dg6R;7TtEj;&k#abkRU)^U@-)z$?MCI zxda2XyQV*@S7?`ZsD7`vA`z~9x~~d@Y4?3YLQx3uuAW;Z*8g9FglX~-r>UBRN&fv*7U3U~11m-mTq2qIDq0XQJT zTCKrDfB=BqUsbSBbA$&kV?4|(5vF6N2I2F7I9x{jD7A?J;6h*^3A*4qb$Mag&wwFD zPA@GOL+D*Yq-BX;HC!HrKTvPclh-SK?G-~)6t6!NZ+Q@}gOPC0 zkf1J`KqC`{I~)^EA6KyFTT5-HzYt$nVx%JFCprxXM-T2Tjp0U3)G0tFGV27h941nS zCW=reF-%K zMUYaE9*+q~QI$;sF!GZVndr;m%IZidnWlUaNVNf^9($#>?x#qgruw_5P^9_1XJ8tU zRnw+V<9eSA!gT6zC0EG^-e?W^2=Qsqv?aR_12V)%NmBViybfH_)eh3{7Ly@b={1ND z3)Ku!M4B|QJ+v)dT_Bl-Kf}E(;}=6r9;1y~1R&7bvl8rG!AQLC6|W46GDJ;d@<>~g zO-?M!M8cuZ1hPI)>-w~P?#0X$E@SF|WMPzL;q+yFTVl5B#>_5f%pQb55wH{)NcKE& zmL@EV1EycBWA7yp#SYRaAWlCej;@1585872e#(^#%5cWag;+yPF*EpE#oa@4lZKM| z_+v!yzM{SI>ILMIwncd|SXS}pi{|S?#s*9r(`d1V3 zk1fS4zccM%Dh{V;r`J@mQo;v`^?!K@8BI{g88nPlLwIblA2X5`r%S&U%9Dfe;8W$C zNh4WD^^6NO#y^mKM^{JlVYN3Dp}t`Zq}YllSM! zy)^e~FUMLrzxFv(EqwA-caiCj<+eS8ayM86XTJqwdp83P$6@Ll#bb!8Z&SPm4J>}T zO{cR;7Bw2SP>I2&>HVu8pGKcPjlY8;+0mG^<}1_Da`-PS;9} zbtW;BH$(7_z&`^(`Py4bol31+V05w2d?0pkgnm$sHE=tUo0iAaf~g*;2Id?AeheUN zPcwn=O@j+UKi#%&OR_Kb>4p5|^rZ2{tMimVuBpWAy3GPzF`^ht?-Bs3=;2^B~N#x|3YPN4~H$#z| zd)F;ptO&vHMBG%B}foUBG+C~ehqEzqV;@iL{6K9pz0)xA1+r1>P+YC}%i#-mYj$@#GTR&xQxMrOH{c0(5?87l} znW0-s0@#sLUtWkJ?-Nos_#RGtN{~CJgB!mV{6#vw=NJ0>%slBY z%2Q#1RU3%0I`bTN=-c^|+k^6m!ocmL7)Ez-@EVj5jg=u4t351uX=k%g9L9x}_%$^8 z!nje9NEEMt*vdP*C*@iQA*Gd%P&^er}B{Py)!xdA`(ku zh4Qd5%GH)2@t!M)=;eNf-Q9@k_F+1P;{Hf*nNTv1>nELH%jd;QoHo_tdIO<5#BGNh zj?@zpTi3MgdU8pI&!1T{i$i(O2PdLhadYU9iKYCu0F|g!ZmSE862YCt$)4dv;Q33S zC@Pbpp>i3&?)||Cir~1P@|2r*Z<1vWCKF{UPGQ3g5I2d2F3tw0Xf9d<$_p(?B$>*` z5K)!Y7M%XuIt!_#DP55yDTNR56m!H_Yy4{M>oJzrCa}*_UTIY*e84MvvA3o60;JSV zmJ)~M4%cXql`l;_E)|PeQ{Y?}td*ZE!pJVwA&i_!i*T-*l&DCVeYJo!>>lg>DMufF zzBFWC)73{r$M`Q(;dkoU+E9xMBarFWM_Mh12>TPWHVa766Mik~tMi0^Q7P zEvv8xoe|~f`e-E^YqJQ2!ONTa-@(XJn<@ZbL3=ZYeKxB-rj=eit5!=3lbRzqLvOQQ zw$;In+BC+8bXU5rVuFRu^$=t2a3n5$zRSVAVN~?QrKMx#@eDC5u6=RFCcgKnCVHqs z_a-N*tI+*?d^1z?p3X7D(ICsu5xh}P;LuZhTtlwOWbo{V+_%8lnji_Vu?icJOKina zh!3I3xpI1sy3k74d8P@bBau5k_BlALW%WI}XXVqgF;d;P0jB|>!sh>9+#b%I(-k|{ zzgh>gZP??%^t)6I@Ih%y>!73)7!kLQn6f{Ye*w$h_1Cr$V+%FkI^mR8)ET1%RqPu5 zZ!CMf+J-FFhmjdAS^Hfd7HhTHxIb-mZu5>_jJxMp(bAtEUzxIQo+(dN#;s+0fSgwVz;SpVkl znQw*$G(7g%yZ+{%L-Ou%u{dPK2+oYL-MyT&w{w?inLG7p0jQEYf?6Upt?f=qN69Ot zUwgzOt6h5B*DAZIBR7pH5LE#-Gl2>^TlJ@q?n&|sGljbK+wL9Lnd}SGnRh$HJzn)l zA%C0%_KaPEcAVU=NPH)g%st(KYg=+y%;!1;PY|F>p-oZ?HP z=i{1qKu*a0!ENi#?$MQn&mt8QZ>W;NIktQ0R10!lwTmn@m{K_C4{c?pE!Rb)%Ih7h zbA*hz=q0#Ea|b;dL1g0pD``WkRmHo63B-SX+UN5JSfu}&l(nGTk@9$>`l9hQ=56!a z&6Cp!jpYztMsvdTv!^~-ZiV}HUfuLOs@&>*q5i#wh={i9xgA`kr)+%Cf3gZ`93VJ(~y7O{8N~*;Ybgn<#((KcX((B?!J}b*a^NJ2oc2%p+OI&`WQ+s6N+9O z($VZ#tL8gD5GuJ7I)fI*PaQTb9YzBPiFXU}wFuKigc%b(bs*tBMWMu2;kV)8mnGq6 z1K~>peqRSXqwoSRUVt43Mj?&UZM zkS#|D)^CML7sk*Ju&kzYZ45CkdBqIl#wuyi?Zep*G3a;rW3-y08BBtzU(lk2h!x7j z{eoNWrpltHM$^G$F$Wm!7~-b9tmhDMQ3Ua^T=6=xx~lZ9e_#wLo<8^dQT$%NOcG?t^yeGKW(guz@?!!?q$Z< zWgjvJBmK7`-XukZzess0Eoax3;(ed)i4F-WOn1l-B2`Pj4@y5uj|>#>#Q@nC&}U>x zX2kDh@L@nhGBTVQ6B+?u1n-0BhiR+iG8+zs>+VzX!&3~Tp|wew6^qH8_o+1?4=!tF zQ~_oO%y<}rRxdFNqQqVAcO#bO*m86g4M$|KE|ekz|0qXy+~b)zQua0IJ5~p&*f!(XXe4hOk<}gAAB5k2j9)>s*2}H&0U>By(fgZ z$RCe>*G3*gTmij5MK%Rdy%7_^fWdZCRlW;ye|+Rx0>Wnywb7MUKv z3qNm_T9)ex!YP%j!XC;qT9(b3GjXxdNNQ40?wD))9(e4kKf5sC1r9ZrpVR};gk~DP zNZS_11m7MpHOtx9erU?{#x!jT9+0JLa~)qU@5rI*XN#$< z{agc9M_SeP7X_c=**L+;ue!tLvh(CW>wAtrLeR)AIz-5Yje7BnqK_@f29G%#Uxs9D zTMb7tpQ@BJkGYI!zi&5DsT*c#=)$+1W109e1D%@CY2SCPmwJ8p?uX<`(G}#yk6G6- zMN%?18wnXD?s7D$uJmbu-U?4QulDIDb@dk*O+WcQU*9&DhrhmE?)5N$AuFYEOInHo zg!JyZy^QcHOU(u!-8O}vYR=%X z&_T{*mBU7<3YyNoXH-#D-~AkgkUi5hcE?=Mjzjuc2biGcoUX^MW0VqU*lE;IK|yyx z$=c(5Ht|_S`?^>q(+}b~D%^Iv+d%GLzmrzeJ-?v>a{qli_?ha@j9zB33|3S5IZi7U~LZ zFOD>ND4n8-!a7(Szx}6x`O3y?%^`7|iC^JWNfg+g7<_+K?=k-&b%SqqZVG>q>s`j+d)y?&*l!E z3b*n7a3#MZT?pcg{m8guf7Dtow9QH5&4Wd`HS}2=`QBCI&xd8h0qKdd)A(ecB4k!` zuYmXKMET`yj3lC=BU+p!>1p#ThGALGRGj25L7P*}sWJ+;3W-lYJDIE0?fRc!;Ze5c zEZTh|@{u@B&7Gudtarl(6h)R+!4_}XJx7VEM^XloCs~p}Z9h?61AdI^S1Z|MSU&L$}b5eO1y7uFz-OBl}c~l_kv2CX>N-Ogi2pd znr{Eh4bL)X`<}txk#7sl`BO~t9-15|pX{_gN-xO{nur!3%Tn|CxaNXSMg*D(-R6eL z{7nD)#X&}s?vd)9y7$z3UbmtzOx6v`y5dl->(J2a5^u!q6y2ppsAyFQeh8ELXc%sZ zko^&Me+izyvR#0T{Rhpru<3>>jdH40CbdeEJ|0WWAk*<(6)Ja8@A6+JKU^!wcEZOV z93IROPkvX>I-W!HTCaw@rMvMl?+&m#(IK;KOC^?L^LZ6i4~;r$q6bMX>6(b zt(#XGV`?)_%YVyWaZjqftw)`;vlb~|iq9r!AlE?J&jXm3D{u&!P?GJfto76@d{gWB z^cUU=VJ-?_YFGEMI%LGYUfyN8lOIE6&Q(VZ&92p) zX?5;V*Tgk8>0VPqI*zgQeby>IBA8;k8j5RT@k)$dT(r{)`)^s$6k zrg7|+dOOy@O2|jwO;m~WUe!#F@GEVJRfqJ?;3ee=?g3f;TRYUUz8qwwH$w&#>)N}W2DJ-?h!>~u;qrwnI|paOf+OxO+2 z0uPqW$x;363Mymy3hYReeXy;%*_8q>Rcw|>+xMDM8l zvEEc2<7c;E^IrDG+G8+hT(MkEh*hp1zFr-ZYM1G-vdSCPBBE<20Va(?2)DSrt90nE z?O1~wa&#(Poq<+1!6Wceq$s5K{FGAtUrsLJDVT2>O6_V?3@a-GPqDZ=pYz`dUUc6&Y*Y*kz9bRN&`dmY;S4 zFT*H!Sw+|2S$u`2r6S-W^YZ8BZV_yG)f>hrNiVfTG zg|n*+%8f2p=ZBJ-?oAP-?D2<%^>YH$KQ}4a$}Oyajnu6lu{v_iZg$eMi{G-!xkvbU z6@Nz3nfKiL&DH)Uq)etWHDOc_sKW~+k#fZs4}_TqVuuA{76d+9)Ix{39`*+)7twCZ zI26u_ct{2P;ryx@8nkg|pIIys3YH`x2zHmyzY7+oXr=t%6~qjbV+96_pj$CAgn0D^ zzugb!NDb+r@zrm^6Xy@br}dHc3cXAW4KDFflqE)k*{c9tEolSQfrgs=LD~^vg6N@o zLqLETmxQN&8kn*L z{Jxmi6BtV56^#7r5#fvoi(K>!hCA;qe2y4$jDZKnc|p?CA<$L`&o1~$ODU%np#-og zkPVFmninG=>_nDju+R#GIcIv{JfB$|BCr8r+7$62N7kqf!?dN6c2tip&FGnh`)d>hRc8WY5CxYTN;FeH)W#gqro?+5B0 zU;qwf9ZQE|$KbKYi>jwUgLB!q3k>re$rxfw`=Fah+Zn|_vOH6_alUENH?s7oOHSxz zu9)}!$P1q+1QQBzY+XYgg0GJ6q{-e3qUMt;QO5C$BDr>l!qnEl-pSNmR4B(I+2uaTG zOF>&oWnM5<7Dx`ijR)-uTkFu;g3`J*QzWgWoe#;=-lvDaQ|zoG9Y7SkOQFWY+NuL# zpA(Z7Ez{YEJ;imH$q-69_XZinUWE`lXlYVzn{!25BG?)lr3sC1%}9_VGZTg_I<p z@xI|%%h$3C*3p~0S-69N{-_CIx9R;)YvD4jAYhI#diGjbPRk(J_CDu>cIG$dOhJYm z?~Kf-6zJVYi?y3ngT4%D0ZViesA^wsHpBv}J#)Jx@437s?gP|K%m;}n7syXcCYbSf zlYeHJPVOyB6B+UcR1lC{aFLoOItzWaU!ZZAlogS=2`Zc}N*0VPoLwpuS`I|9arD2p zO#3cpsbeJ*sUtOFsqo;U1hrH-3RI1>RDX#4j!~q+P^8=LD!g1Q1}!vZQZN!MX-+Cq z0Tc&BlqkYVG{CQ&UX@z5zyGgE=>L%o{*?cS#SRJ)-4elo7UW1oo+)}})n<3BS^ z4kab2UeaU+jK*-w#6+vpSv6*52a8s=HTF#vv4)Et3w-*S_d@%l6xK?kJ-E@fVnV2~ z>A1Meg0k4J!|TVYDCqT#($a^^*1i}8LIhdiul6x1CU%c5;Pv4^#gm`QAE!#YeS=mR z?N>Uh<*#3u%`M%JN4Hn!WsWrg+7)B>WY39mEm5>24Q2PYtni)2FSOGGKH{e*guXzL z-m=E-PR@}N1A|M!4H)0$ zn{q{dC_qtLhJ6i{Ubf~fokZIjx^%ge3eyK3$K|v9R4KYjY4+1bfCwl=Rxt?4Zw%;%y&Aiq)$Hh$0%xV)# z-@@Ykn>A;Pni;=sa6V(cIm)Br%zjhc`c$dovc0IScU=!JZdp7^qlYqEueJ+irG2~i zP&};GXF`0{sr>CEK8Fgfid4-2nvt*5K)gez`rvbaeU~9>QYnt1H+*w7P45$Zvszgv zQw@B%cgW61eMd5{EQNk7G<1AkImw!oz(r;El6h@FEB<98+HIx_AFF8?cZ#KOddU=P zVa6$u^>(S-l9=1rvhdU+b3A`FW8QH=X(L--Vy+pv<||WFWbbpwikS9lU`Y#{N9#P_ z>}RdU-Bt{-@oJ0yedwheZ^U}PtfgRZADCvu3+fD>=J&473BWdj|6!tNJBC&`kQ}S0 zVY~K?yReyRHjWy4?xM0vTjzBX)>s`~)e8%sev`5C#Lj!2l+*r4Yf7RV@)+|MSz8|SRJ&Yf{-buG@3;3x&B{gMczvw3XL5Su28b&_{f>b%8WdBW zhiVc2{j;@Gh)kJol_*B9IhDM*3o})jvR55md2PV=L&GqAL~qottN~ADep)Ji2i4va z!m43L`%V_4FTd$ENcvLo>7QG2Whvf4!B-D=W*9neHXa5v@)G|FH;10O4kS4##}BreOg}T3)b{c7_?s{z>)R4 z!cyv!^of?a4Uq?E&jlN;iIYJaMU-N$9zR2nT>h`^btJGJz9OXX!f-9LKW}(W5m;&{ z;qSrAfsn8Ei4knVuMYnRhjoeD^dxn8LTyG3G`1Yvo6o1 zBCm_-r4_9n{w!eDn1)BU!PswyD zWWP7$ysiATo5MNF!7bONB>1ExV~@0N1RnKF zjNGa;vSxi1^I5^UiFA;+uy<5ST6uAl-14LNVD1ZOWVd?0XzVfHbvU>HF6hx7Q+CE= z0a>f(9B=nIbx2Pnfz3uPu z#-={$k&%5_7BnIh>N5Q`dM}klAYAOM-bIYXveKn>3@FTvgr3Uoe~OFhb)Z;u-{~9_ zn7NPg=)M}hth5@tXqybgZp=ehf{O=CRD@eL;NU8))pJ2}?fe?~KeAfSww+AMgu7mI z*qbX2rVJ+DHkyb%0#%LLrU!)*9pqwc$m^VD^c_B>fPky`qkFrua0KJW;txxlva$WuHsp{U|iptgcRyR48#_1!e@^h7&Zr zO79%rizZxy8erQyy8O%gwspa_^V&O`eqV42frI}S3N5tdS~o!KV&&X%m}L%r@4r8y z>jr^WqS|661@<>+?m73h4XG}Fqv{xX{_Zk_)=~Pruy%Asu8HOnRJ0B$1OO&>b54)9 zMJ_(dS<7N~-Ko|KbA0yRn*ZomJNtKcpb#l~$Xm+&TXg`{h zX!y9N4V(T-_ZuxL9@$>=>+w`S0PUReK6lXWueQ&yL|{0tM#P;lMyo$dbKpgqIX2u6 z9j=AR034eNDBdR}8Uhlg2ZWUdQFwWMzzEzaaeEF3)&Mh;rUM=8g2U&7sTOTGWP=$1 zLZ4d6-U3424A}`q*ogqN@ri6c^Lt4kf&>7;VzR*LLH>ELlERSWxwf_n1HTf6l6r*0 z3$Wi0Z2?VwfE<8CnLdc%IxH5&RR(4*mF_E<7QQYKp7B1sfKbW-WUlOex08C^_9bv>}p#Fj5&GQXhd+%+FK`a2i36?AiB9n}yJ) zM|2Q*RG|45^jfgNS+#-MUFohp=`#NO(Y#z=x`9ze$*R<+{3g?l48Hf`k(N}vdhGI$;5BL zZ8M3Y{b*yML2+mhtKW#o#?*K^hWOmXC}K^j$;L0R1~V0DfoH^EA^}yBjIU&eE)pK` zxR~x^*H2XIue6xRD0+zZ?QEPGU1Ag5E0~CqbU20_M8)S8+ZLWAF`Our3VwYEV!nz$ zZB2Y-m2~Wt?7-*Eco?Tj8>c&;Al;Uf`orrNzc}C?lCkKg2J%!BPpX~OlDbd+(5B25 zo(wohvCiOLNQnA6?6CIY!{Sh!9WjM~056D<#fLFLr^F**3Ft?kelF`m2ug2|O<KfK zg8wBb&zE@ij*1|fVah}z@)^tj@&5h$REq$gO%n8OM>3Mypgv2k;a{17r6ducobe*a zAFsXPDKk8kBvPm=^EQ3{Ve)yjZYtgDk+vAIV z@^NNc>#&%Mm0X!VTW_`7PYro_RYWlyhfptnHK1JcXEqCV8ft_;(n4=Khi&1YVJ3Le z?Q#6}ya_+oUkD=e!5_mxV@>za+Wmvlv*~$b`O7*!!!S%s7+HAJlY>I_wfKITeb^Mi zsv^D3B8gpXlNC+`S$L{yK+<6fwLD*WD^XPAd%mrxj{^}|K;b1zv$*VWSYf0v-9dcR zH`IG$UA1{2bt3;>>#hyJWx*oh>2j;skMz6ja)L5N@m{LiC%N4uae}>)MC|4;I!UVf zGONT-d)BjAqRSu)2lX>+xRNc!ZfTYglz1`EYXAfHjj63AGb7n}?a z52G%&_RA7KDl5uw9+`q6xzui~^N@0%h$^c0+dovg>*#){&J1?9Eo&o)vZ-8?pgEgHLe{~&u2Oo&XD5m6{mXhFobnGE@_1$ zh@@e}d9cl2(QxP_c$jq<2^A(EVNN399zAVmAs;ih;o%z3TlS@d2pkYLMhji}QaTX* zRos>%tbx`~5mPH!g@55TsO$U+X1Yn#eBt{kpWABO++xRN{-)TdhO~K6HR+UNp_rDn zV70NnpEr%DYt0#1jvcUcz6RJcXzuf!5!nqyL2*dk^j6VF%)S-))3U9}>A*i3x8e=T zhNz3C?#278=Lf_&vU&%Lf=LYy9UT21VncAdy;nhl4}$(>Ee}M;!+ZWhg)u^+9r~#& zNFh*nhtQwpLB5)uvvEQ8$KlbpB9Avr;(vK=S6fO%uGapEz5TDFb^rU}9`?Uq>n0ro zlrA=E0-CDN&;NFRe;Tc~ShPGR`NjQSC=aD7=^LuxS1~N#yq8n>-!XOHX`(H!qnqiuMvu4#m0x?UT$J06!h9+R;%Emti1}D=}j7n*D-NXxv+#oNl+lpNRF{B zED(_QJ=5z5{*$b@R26agEVGvM6|OBlU3@*WY9`kNi1Pe`gZDzXQE8if>-R9Uqg=Bep>HLa+Ft!(OF- zdQ1CmfkWbkTiA!M@Vzlvt0b#?LNKK!9qE1Tvx|e|@qAhaUYlNaF#@-_mnKwOcQVi7 z-6dRQCYbM5B-$6mWK|Dan#{%hn<{lKNAJ0I z8AQ;*d}yGn459c~Kuu+M_EtpWA|y4(P|84F!}oiN)QmPO8bGi{xOntKY1((n_p111 z8HomHB_k@OvLK4|WP_?qpx>U_*@70-p0{+Za9gtkN)gA2R;rNpYuq*BBZt>h7cy+e zH*h~*8b6-JD(&#Cy;ZRms#Lj2@1VaNmEA1G?|1wuPn*2;XA7faO#peB`XlR9daHYG z*dwXgtuTK9qnBG~T&7vp!@|0dQchaOnl*lg{+JGCeHL)d<`0FzL7Z1qDu+{tt5;rI zxsE|41M01jsc6~4oPARRf2vbx#PZ6aU9;kK)#Q}0?96Ueb2kvjEdyjU&qyjcBF40p z_-AEICjE16fisZUW7WWVzGa!8Xx{*^@Y~C=J%ytN#1OF-&FR$vv3Idt$66N~B5k-H zs|o!7$qcskbdIJEnmz?d9lw()D>g>;kUb)!wcT}ZHUri4q8W7FK#0-Sh@>@pnJ1m2 zb=i3vTlGM_q33aa3T;%OBgNtZBv0PI3Ti_AVt+ArrM)sM0bu!%nhj5C4rvdb`hA*I z!$n#g!3QcAeHLT!^YjV=o9p=dkB&u0D0oM@E_scl&1p9n`y=Qd{UOAmxi#s!irI8q+?sJ2f1?4u}7C_Yf7tC`NmZ7h{n zJ=DzbMS8*M^7z?_w51J(s+um!xhNgD-aX7HdNo$LjUAc%d6@r>>s4%pb4YP(FmEqi zks%uESkmXXSjl)(ls2@-CYVw2g<5Yam&)ErJ$X6%Mxb$z-7$;bX(g3Yu+O5H#Fc4j zm5$uPtnZVVj|3v>Qtm4B{~GMkx@Zt?let1s4llxVq0N+4uR~ip zb@?vasxn6e2kwWwoznENxZt{&tv{JoFM}`Vi*DEM$DVb{l`eCC{a~6qixUqlKdXyt zb@bJ&t9GxYGdQMKZ+20&@%-DNagt{(xZRAxeH{KWZl`v7Gf@K%KEkrTLn zZ2TJ!`z-||-la-*swP_3Z=9EUePDwB0fizPM4V9oS?h|W(B*9C-zKkZ~s2hxcoaU5cE<&7~CmonQR_$9iGFp0^@7^ z1`h+f3~AE*nU74vj!T?vo(zg~!OfnAlG?$qnE~x-!9VMQv2BCSZ-U=OIunoq$8|#T znn4u%_}}*&XnY(mn}a_rgs^FY3w44R^}f(CJF+6do=mPEg}i13L$S9(0%Vr_u+WX( zP~FDRf5d^#Ps_xi-~+lad3p-j1@J>?Sh-ACjCI)lR#>qNlk!3ksZ2P8!7mVMSiB|t zO;_JkLD>9G&$3j=8m0%p5VBLybMO&#g6SJDoAm8U-0A8H-H8g%YnDNjiUq~|?lb~0 z04IczFFhfsbM!C^%gB1ZNU~iMJv~zoWXL6P)NlT%A77&=_f27X3J3hwS$7tR$f!r+ zXfiV0WL?M~%V@mtXt;M^c2D%{`9NTVZ23Z1?Y;tZpT9}S2?C3e9SFl$h^i|U{q6(C zzqOkN#_mmfK_H$`YvDc^|M;EP^qq0^U_kd>tgnsF)L`tcR$K^r+!``=QAmQXKaK(2 zKN3S-t~9t17|ng>4i<>#7>JLLWarU~w+}UCl#79r1s-DX-N7uYF9WX^5}E~KaMBzx z@7e`JlFPn|HS^~I1$+2n48Fk53^U3IUkk02RUzt)|nIxdVW!*NnuQOApS()-JxDJBBuHxc#)F_*`UWxN z7An_ig)o53kSSad?)3z%AB0od(RY`|8DokjD<+mj#n+U@43Q*#yB7~8cU97b!+{w+ za|kN^jMJVBv>il6i$V+tMskp$*J3unl3ppCF>YrzHUy7^)AugI?O~~8I(!I~vP?q# zOfX*-m`BgzI^wlnwyGU?pCy$7neE>KJ}rxyjRNc*gfi_X++fOHz;gsNa{da39N*_; zw}6=i6WoHHQCpyin0kDpHR4$aYHkpGrajSbim( z$T9>|EKtgNiWgJaTp2b2tTW~RMS?_g>^Cru)Y0mDQN6=weIh}C`B@;ZBZWrHEo!5R zryHzf59>KJ1A>~qF6V!&ChgoGhkv|%F0ox9$h|cJ3z8GSS}ZiTh~@xLs~Yf_SCydU zYq!i)TQpQFk8th^SvXbH8rRrl{T5hR$pDPpRJH6F{`%p4X+plt<-YMVssNXoq~-iz z9*t9Xq5aHbzrF}nae6u{qCdY3FA1#j6T2JTv`fK@1G+ve<@f9cNr;I3i>g{|rV31r zYFrOWzlY>XKA!{9fY5!3H^7lj@*5@{k~g`2M8u^z5Ynk;qevB{1q!rh+Pl-6zl9FH@TMU>87uJu; zH6N$UgNdE$$m$dwn`STMPm-zvi2=y{CBEGf0M0F-_4ir>r&TGBmvj4_J3p=07WCG+ z^I1Bd3!rHA-R~doa6akP`UP4sG-JHWFoExD%(>X$_+8aD<0}ifWe>agbK8)6H*nih zIsD=F1_EPvyv(7alS3>O?L0piqOq%8d6;5%Yxv(a@;pTj#POiO5q5>#ltH`4&x9dF zMaI#^D{ece@ygYty7UQrrt*U>aKgoUwQ-VbdFXn|#H0Uhp$*uHe9;j;CLm|XX6%ew z<|Fqlv9WwP23z&p3TX6FTOaeDap^)BZT;EJyb1Tr`Fg(zEAVXj4hEbGt7ROGobMIl z5kDxDq*u3YKuFUb4r{j}JdPU-+gwkO5JA7wc2hZ*v+sX8{eJh71`$m4GjYu?4hwb> zK54}#d^Vbi>W|0u`!{hz+dosyOszk7GOYZL4ExVWb z7bC3Es8Q^jACtDOepOn~Txz{;WadX^melnvy@l?ru(zI+VfyF}gMuxyEF37oZSz`x zvX-`28j%&Wv@V@;()9VtQ5vkH_*s!Gg8{KogoPH`CXv#b{B96~l}#e!J*4lXZLE3f zCTYnFL3RXpoZ?1)`|!S;5CSW%xS)Wd-d4VF5MRyg=pA**ZU0BqWRUOhhxhY7V&c%> ziL5GC*e81m`JdhW(;ZWYnRMmf@g#@98&uyP@CIMy(fp%D7Ew31Iz1yLvW@%86w|X|`JG43~R?fQL~;AAA1K zK!r}lrdotdThX?sHb2i3u3RupD^$dy)@wd(wL-5XY+WaQQ$?tIjOyJH-XWjB@g!7wZ16`7iv-Xn=19GVB|yf0fzc1iVRxBN9u7KW#Cl zP>3;e&w|tf$}jR+wYM}H%fkp*bt;Nxt8nqlO!{UBAyC;DYvG2_Xl>{AT4eeP0t3AH{?u14eB!_RpwW} zv6aI)oh$c!mmcDke>k^MeH=?}8)-&6oTM#d)<+&C%BzP4x2+3f)n4zS=1*+WYS)Tb ze0s2Q&XaY0ro^}=ewDA0L^XAUT5|cbFs$!e`~)%w26677L}Ei? zOZGlaFM^f#l$HqrdUBN2=O0~EEUBJe8N_bBfkBy;A7b3Z?)d9uohqzad0K`}rQ8$q zCbmMGcj!WqBWB!eF!YffZmbJu3jq(5%>08je@ct1o!6z*Vx_t87QMJz ze>JGa9v~neJ`vz-ozd1X^O>-9+^^RyX|;V%gQB%LAVVZ{ z>PJ?pQF2GyxE14)b-|i**}9z)%Y@fx1@0a^)MJTrKqRNov(ZJg1NQ0CASD!a{TYwl zQ4+mvp+(#)nS1cy`^l(03;)FS%Q0cN>-Io8^q&KYO&3vKnVL-h5*w4q zn34m1cQLs+)%!f)E!MFh9ItD25NS%U0eH^d3CZFRvPQQoVPWCSqS--AkTK(eefSWi!PcYuttcH4fx1=bX zsn?jS^H$P*NACa~wL9GPQuzF0=&Whw1QEPjZyV5>QsJII+voy-il$n3nlgm;@=EV) zcO9PoTLrKi;~oymJG(1O+PzI_Hj$`z!wvGrdj|hjRz}=!>vZ|Qfm~Lr3A$SQ@lc?Y zu6r_G(<_^~rPMW(hqr9&_a7YJUVlKTo1M6-r6_eNJZkashy53qWV~yl3)AE-}F@RmVa4@6XHP zE12L#njZ*+co4at>xv7ZyE)PY?0NZ-ZHv?R$bWzZY{`L%tiY6|AU`_rQG_<9UP#af zYMwi13O&i8WRT08nlOg937WFcoX@S5H8ZJ|43gc=D=Z1%rX*w{iwvHIn#lk{=PZNR zeQdF3!@l$y-WP=5&V|d}g)1mXh$9Jg6bw?QT&VWFecj$U`xrZ5n7Qyl=CmP1^AXbX zCca1)e`YsB1^wU%lb`dVs0j40H=DN3z{vKL$nieva7L4_3!goijNAqzKkr4hyo@^5 zjf~NYdgdL~pTD#v%7CNXG;~v1WN2Oj6tvVZ>KM4E)iT-9Akx9noz8}ri95c_T z)ryRkoQ`Q+Ff2ia5(7brJTV~{vAb7b`8)$sq;>X-XlgI7VKM?cThAojxVp>OT}Ze& zsbcRP@hWqeE=IhG7X*P3;^-X<@&qqOfK1bQ`h9}7nGKhi6YMd3<*wqEF+xv;qPpgR z)_00Hy8Oo&c08W(qwd^T_tH3U;3Gy{6oC|BnJV$387XFxX;EV5VA4x+@23|@9}LIq z-Gt=pcyFELAIQz*SJ334(7004Pqw({={>{ zDrOWk!hR0IK}8wzWyxuF8EsJ+xjPwr|KGNZAE7UzSm-03&W}Q#(aQNN{Ad66Kh$@@ zK*D?JXi8z%57Nnf^lCEyo3~J$qE}9PW_$QQcncAy{9ereIzLiKxgb(XF8vSnou!m` z@I?5l(|RiL)6Z9%`30($xtC}s=}(YQzVo76ZgMq^5BQ_WG1!1bH5F&*#mL6L^ z^Qic>zo`%BM=|xH>(upa{bz&q(WYupalOmqNeLZ1@%yitzh`gX1)(P~y?^$~eJ?u@ zE?bf%^}4A2H3jJgTUBB=K} zvu+II10z)&DY;&L(5FQ*OI_Z6CM#u$;gZc@&cjmj_|M5gn~DC!`m0j-#kOC=_u|Oj zrNmb6jUqN`f&+V$aAZ!xTJ?0LW%)B2`O91Y>cYAsM zXm93qi&&y_I z20c3mr~HLLwo@cA19HB8yEvw_1uMVew9T{bsI2YxoN`fnLqFiGbA2=8Fto56N{@tJ z#O(QWO_5c{P7`34{BWi{W+{pw5d7_lC4HRyGysn2)I&yE`7QOzTHno)v`6-Aa0r^| z>Q8>=ZPNU{-UtA`6Qg7tXDo8OM0|1~_4tN1U0FFOaYV|ODDBuINE)U^Bj(dAlj z&As=pFq#VBM&yy8&t`0azt2{pd?3+UvaU1H4ivCPxQp->C)~@1oD%Hkr*obx6ql%7 zESEQPk{nhK#M2+w&2uI->Qh74?-}2XG4POZoh$|rfow^ z%3Pw?cKTkETsSEuT8OafPe7^ioFIf(& zW~CRE|MUEcl-`*<0rcjDSvoe7Y6aibOJ4cuDWtCie167G=x?S)#!UOlJrejlQ|mRq zk0>tZL{NU2*(2w|_vgvA%#Sf^|EvaS@m?H<_ePobe!<9kUW^Apg@vr)+98=}n(!h& zPj38p>dRLs@uS2w@^e24mC;DKMar~CjWpf8J6-)KEzrJ+UN1z%iHfmoC|h~~XYS{& zK9vHbk`a0|b$@Jfv*h%QA>SC3kNL?RBxbcmb#6N_4b+HtyZS|g$v^n&&4nCf#d1VX zuv_kiA>mzYA>)wGP?YvmGTuGCB|UjX!kuht?#dfRdGMe(!d<3R#Tp+A^M{P{6kDxP z5xWHNyP5_QG{oQPO}MbK(xIj|_uqFPGsuXIvoByR%EfcgmQf9Y=`{X!#`8jQNihvV z1bmxbHd|5oXlxj|*{=CW=_U25@9cw)=bG?0%n2qGeS{4v25`CCQs{Ze%XsGx76JZ5cE#l?E2UBq?1Kr0p_Eg zuqm15+nXVmUo-oPvIw!rG*1`#clB7HVDB(R(QHQqQVjmMN>E0|3p1RbbmseVo zZl(WXcdmc*wG)Uc)&Kb}*j5p}E z<5c}*eLeZ>aJZR6Ce5uX+~_^AcT16dwIBe^*kb3PnPk-o_``E`TduHSIY7xf>ksnx zgI)XdNij$@oOToH-BFXz=`YW?e!uj!<)(wn^>U=<;er%o{8-aB%xacTfc(B9_7RLj zI)?^0>cE|w1<wB}92 z;0_)rmAn?23%uR{RcF=4zRS&vuWM~Xh9Z_G+~KQm9~-f&&(Qi)D5M1%2a5A%oW%l& z@Vtit#H%QtQ|(`1i}Z#^T;z3R+Wum1opgIwmPCYYHx=nMg;VVr!&NozWlzCcRdrZW z!hWEJ?lZ$M%2ytza-e;*JyXqDS#GIXtV6mu*MKss9&2~#EpD8be&uB}9(6SN=1>1! z)@J3o%CWU{@q&u;O%2PwqoA^AmO-Uga?F*wFcxf?|K=v>hpMd!ba^RaR`)G_maTjJ z^3RK|aW;HmGp&TS7FqeNjx@EG2b zTj{)2*NFw5J$xHh8L{lcvkOqV)GgPf8+-$eNo;Ynp(1?a&()*c>gb|%1E_+tEL-&T zKyDFfNVZ>dLCTlofe(KgH=VQ_07@rGfr3V>)x5}>v15ut(f23gYW=%q^$SkS%gw3I zmVy^&x&nzvYi%D9Jc4tpn+Hjfe~y|IsPhxq!|j&|lRxH{F5lzG!183If8slY*wSB4}U{`a%|KOmfa-Y6lJBHP-sTg;25Nus}xdwg!l- zHzZI`-D5!kWfAGS`Bl~5TQ+I|g3%k<2T)8X4TTDYkH|+kDg?z~IK^SerY$IbqK|_6 zgthR8J#5JaYq^J$36)1`vCT(UV2Eds>3$;%gI-2^^+Y4}gj@G*N$6v~G6WA>ianp# zG2Y<1m5lvFD>kqYHVlg$Ep;BhjBPA6C@+biaSO@wF`C1OBqEOOK)N_h#Z_L%888u> z0c?vRAaUB!JpFEZ=y935@tWufJWoI70Uk3aMdeaG3y7^Vsx*jXNSCa|?niwRH9X$^E@@cK13xN+PTz&e z3iad#k5}zWG$Df|Lx4tF$&1J!PPwGUu#}R!_$41Km!`g-_H{Av+$Zf&H;r;3z;026 zOE|EXKHY^S4Sd{PWi2o=W z-bCcI7Us-jq&&iv{@GDI7l|#fFu*#bNs|>0O+)+*k6-nYAwIPG7oN9KoX04W^^3E<%4=WLpBUzp>kaV41xs<|Hddz9sy>&!qla zkMTdwq-07H7k)tA#_)S$;0HgsJ$U6-2LDgDM+!ZE{$HV_yzVp(Hk(Y4ThUmCkjGQD zxhx#cMzefFWS?9riBJf6V#yoIw6Z1O1pG?LtdfO%Irgi=jTLjH$|V9}!a9sPu_n{y z#v>&33r)fka(p8A94qlUXNRjJx@AU@p6`}U{62DR^h6T+{r&T?w);mk12j&hrOvuP zoC%NEsJ_m8Bv-n=&+(_5)L^tkjL8^9(P4#Ns9NSD^3uGv)bNNCb`G>!f1x-{o$bfv zyxf+8cU%SM|83C?nc%FxMau3hgj)K?-+??2GHXzDO}Otxy>_|0{Sr=wBqH|y)=yL~#r9Y3zKta@|`9h{0 z&8+-nf(n9YJ0T|txgE!#2`>yH7AUh;Q12#Vh?9@d-;q;twktOL4ZmmbFIHt)gyE-w zb~CMtTXqn#ng@)@G3J;|S;6+{Oeuv$uXY1N7|V4cQi(;9Q>9s1?ewN(Z7mfOZG;bs zQ#Tj(iz4a{SV{_S^bSgx9z1QMi<-&_3s7N6y4fb;t-ku{lt13k`_uYrS5%ea9&VO> z%b#=5?RxQ!w))+{aC)U5L&dSr=(wz-eUe%Q2g1v%p*&+qv8}3N0Ks38gowyEK^`Og zIMefsE7n?1=CBN#DFZ}vkT+@ur_v8MY_(7)1Gcm87!&#*&8`@aKSp8+&i(Eo0+71d zpzBtC1Cgc+e5?4oi*eeo{1{``_$4q?Ymj~*s!oBCcgVe(wK-OEG@%pQZA@^?@lr#? zgN;2`{N3NZ3DFH~kDo81mrctRVssi>$#om^r!=OA>$?r#sm2!Q|C?(>SSq)h>zG3X zuG_Wo{BBh2DvXKL}qOHAs{Gi3iU+w^qg- zWec1|{-GBB-Gb%ff7o9U?|;$8JNEZrMB*RlYHIJ%=xlcSk^5$m&OhMyD&R5Te1lCK zHMs++qHj2`>_nXuHRIj?X&2!Nn!CbNdVJ*A`&WHZwUskBxJSB3#cZaG^{Zo(>3g;- zo)^+GE%)_o9_*whg#CF=IjvrSPhJ8Ldpqv&BXcr3wTvSA)vx0V?JBI~M4MNy-n`*w zV3>NGuzuseu}%-;dl|2!j@mOcujeb3ZvIft#QTZ%ZSy=oA&FZQw~E=X6}k)>T<&OJ z-~5{DS!rDNNqv)g3X(PCYglKz^4cN;19>tG}k2qg3k$z8!)q|qAUkx2o54H47dN4G7SimTqJ7K(=*^j z$$#NdPod>2TBOF5{cf%)tNo{tf$46TP+$r;F13|i$I$jgZ4Y`XMS^ddu1sV9M%{^^ z5IclCSwOQIW$7HT|irc3qP$#oEiGgZvQZYmsh+Jqk3rBj+} zh8@$ZP!a8_2!5U!8Dm*=U!9 zEqK1~0vipVvW*e%n`Oo!Xx$pZ$*H1;eZJMJIWeoq1&Fl*Hc@KqQ^f@*w|(2;X|@;- zIPJ-2TMZ*ulUZ3|(x_;wsTg8z8{Bc$s{Uil3D$162zci;wyb+KJlb~mf(x+PhA7=m z?OdvJQ92jpeC$u{x(^=>c<#vd?@ikG?c_-p{7fo*4%m+?jgM|0{HZawpxp-Uzr(oy z4-;VKk8&|suWZ(Cghr;thiq71_@CWy^U8Oh4$}J749ugYyD8RIe z4PQOEltbVpe47sNe6nTSNt`45l6~>rnXp~}ir2hXQCSkpE+3cw${yp9Y1AkTtJ% zk+}RryRP|%6Qv^!Y$cojws|s(#I7b|RXy!#jfi+p(9dt^3#MkrqW>A_sBIK{dRzMM zWLE;~@ANA{j)t;Nzs?_8M{v@Idm1Uvsk)aPcEk81*>H2CEL-v=7*%mlbjHWXh`*Y2 zTn+GbMMn~;s>x@nSHqHP?r*zQce$BB>H5{j^g&SOxqg?Q0Z~hSew5#(>K}#$72H*(e|}K zua+~z9GGNL8TlY^|G9rCU?^oRX129cu;!OAZu>9m7S}Bj)Im*~XbG{zgxy*6S)zB= z_MgH#ZyeOcJ>TEUIgi6^b%jv~!=ngq7nHpOWm)+8Nw!eot1`c$$;IS!!bDTLXz6;3 z8}N290io8AKz$QMjG7Fn?B4i;bC>?L^BlDNcgGL+p&?a#77bf z>>b|UkEYDHZJ=XD;Vzf`iPR`OR$oYlsn7Ypxx4$tJ6XdZkNf!m);W!9Cb!!X&fe4Mv+2ATTzB%~PEhMTSKgbmpC zrBCB_2z@_Ta1U(H4Vf8~fdkn7{%Uz&$yCS(xgd@G!-F3S}Yh z&w61}dZDUh=AwGxs$SuG7$Wq@a7yBE69v7eQL7CAgOGfLv%I7RBw}P+va~P4f*I(5 z0WmI&n4JsXZ!$smiO?&BETf0ZFxv-`c^?x+g!kGW9Tj=Y3KvocLuwb6x^{bo<=sKJX1LWp#L&`_{MD7K zR*-A34bJYBo4)`dU@-;_F(f6Pa`cklBcoFlgnAd;24-Zs6av*SqFb3&%NBU&N@Ed8 zu>;811VYd8?l@ZO*cR>Rp_xFgSMjFwakXC=7SaRbtu&ItAbVGy8-wvdd<p>bdrjH0x0IN+>MUuckYLq= zGMmp-6wBID0tM9W5=#CmkS{E&@oOU!b7cPVd8D@0oRX z2F1D#Y5AAg^v*)v$z$E*U9N-_XJ96A!XM9&FgtU2x5CFHa^?*EbcYT2nb(te#S$$F zZARr9UP?G5UCvgO5(T+pO znQu7vrGB0OGn>BlCqZ8~aRZ&ttvT94g$mCpCEvIxC=n{z7pg84@}3v+C_(ORiySBO zii(T!`-`$~0+}LGzmgPRm0DX-QXMgFhpEl@4}vt$OlLr0|h&Uns$ zREU#|YDqG{n=AN#NOXP*1|fd?ks{Wr|B6d?+99Uua_lUV3_6was$P9$UQYwSyaUnf ze%Fo@4T2jwj!$P_>v8VVQ>u392cJ8G&KXTckrrmpLi4sn$fY_c0vjZ z&G={w+2&NK)__b#QqkIAwf0Chj&E82f{VFC;aHoX++3G;SO2O$@@#7m??sn_f0Z+2 zs6g4&`5S0{ueZ>_`wtn9TgJ>5%HSW!x9z@Ul`gdT@sjuF#oiX4>c1@ZKUt?kDbNWC zmVhm@MQ>fdt&>-#K^VhVG@fZ=z#L7qLr*g>QBwnT@a!yPM&=%K#yp%T5V;VJ{Ti|n z)@QDl82SEYVAGV|W*!k?&vCU8!_g11H055Cvoyh8B{Przds3>Kz?+RUm69q~uma05 zl9(h%h}l_7DflX^K$u_i7e#5Cu-JrxHzKlPF@Tse>7!yoyBYe$dihYb_@<|iWh3+} z!@nO?EM-rCWReG6EavAJ%8@Y#DswFDW=8Dp+oWsoETt6q=98Bdh9a8iQ=|#PiHqZB zTUfv;fx{_fs&VD4=BUJM3X77|2nxcox?QC&MV%Yv71ixGyGJ#3uSb@jT*CJ3PJ@gN z`*j1rJ;yq8{uo5VG|J$lV$VFosd{-0lR;)K(7^=BpRdH(ylWE0nRw#c=iCnMSE^~> zTocWydQcK_>8d!#s#V#+Rl#p~?eW#MTj0%TEf`mV{hJMjx+AwYzG>yTYo+t?xhZiF z`^6xAy5q$Vb4lgJFnjayML$*-J8$m4aYqk%?)A$0lKazR-f{ka>z*xoBN z6RNlUUh4thP^xE#9K7p)%1)YFg7?_&el3z@pKe5oRtU9!Dp~faI5LO>^m~dB(JiIO z?{M@}g+Bb;{j;+QN=#E8*RI7P=(#^o3pl0Rb#LX&-7T8NZL=x}?Qq$z*gQ2myGL~T z$@jl3Zrljj!~J{y?TC|kag5ir{pzRm-KQN>!!G3Ijg5=;g}B$hj@!f(uE1i%xU=|n zz*+R;gUf8I7__-ry?zIEK_k3H)q2SkXgHmEHxn(52MzV4;!N}O zy!IN8K>kSE!ej*Bvd6Yi60EV_!zl87T`PJ3!M$uKyJoUZULhVHiK2?QogVnAu$J;(LW40rHIHw{@w1|m zHe+NO$kW=rl}<{(DF#a3VBO^^+^%}aqu!};$2{5ydtmbYI~CC`C8Ai7)JlAu z3iy7MP8STAz2|sjy*4b>0v=4z0F@h`zaj1zPODKrcQAZ@MD!y+t@iGs+_;%{uCLW4 zCw>;+kS+t!uL;d`>u|J=D_eBKSO1oEqDm}1qBowbBVHg@r5sbfWLb7y|H%n;V)M~n zZ!tftNx#v_)U={|;SkDO`N-h}W;0rR+l7vtXC0G^Won&r-nQ}2pL z?b9GG$cKNpKENmhGf+EY`67I%j^F8H8uc4-HPbZ+tXtPCF6!AF~^o=Eh02OENP@8Q=V zN>~Y&$$mFEmscelQC7yPXo}*vRoK^S5`TROQNamyY(Q4J!~VgGhe|&$Pg~1M1Y1V( z)DVzYpL=YI_cnF9=vxD`w?M^zvU_Z1M2Gw?k!)3q zT(v#{8!Ar3FC%AFO6A^h|2#2l8k}3TahaZ6gM|~3PM-+)mS80p&t-S^j12~`c@hZUOva5Pun*5NY z5l**z;a;w2FebJcuFS*K(vL~?IpZJso~(2J@O{9i98uE!V8X28#$?yD538aL-QRQp z)UuDX8XCtqEpy@G$`$|K9=&7o8EsPlZi52c)l1aS9dvHIdTxB|)U^|asy*@&Ti0JW zAeTTfd$D*xdEazV|95LwZZA;set2!UX-2C(1%AIn@Cft2WqS8wQ6J)E`BzEMPL926 zDauA~+B~Q7^}Oh~k~;WwXqSC7+4JZ0pDgrnqkL0q1a;Lg!91Dg=Qm&QaBO%gwmo6| zXI6LhE2UtkciO4_j(5hr(;26zmCJA<)H+*f&jpgHX z&KG><&5IMMy*wb^m?|cRPWYo&5Km7o7NA6aNAQkJNu4Q>oe*qeu7c3z3Lx?v3j+h6 z8?rIGa=<(%Uxn6A8S*L+GQa{I>J>z7CEW$Q|1o-DyM+Y43{zqZlfHAmZUR~g`nc+P zOA38v-3Obeip$x4{^$+7kPi_c3&-^iH;0A)ejTna6f&J3rWff3;seW+h9^Lr6l^ua z_Cn?N7?b7=ZSS}lZQWw#BNQcdeW4JSbazx=1mrm{Bv3XoYS*^z5;9yENpVLP2LmSB zMEXZYj><*RK8;81NBa3lTZB0g(nUQ}fN;qK%@ezq`UDpvgNO%xOD7p%-O=HaF+1Lr z;DXOJ`w^3J+Q>m|UNnhpnBzBCw4gvt=%7QzpbOSs^ZF!= z0}By!FHm+6u&U}RkjzM6Wm_ZWUzuk}gF5)esA zpFK=kZ58=QsIbdqa24a;E{1=Hq2gH-lim*{n=;#M4AOmEgbbunh~B%M&qAmaqG!pd z&Mt(mA?l=_@~HbE$UQ)hJTVg^-9R9Hx|Fh?FY$$ttKk(iM+hQqC-V+w zA;SX0Br^+-a@W02l?C}*VFp@Zq@^svID{P%52P*1K1D931%R|X$zfS=7#stZEDSwo zboy8pcQ=?MRqs_G?<)ohlYl!imSogN#Wk`3Z4P|;bfGrnMBff#yX+!6j4|a)`uOXLL$C#g*p1zx&(>5r2esBNQ*PUb7p3B!I@4$rj(3rp6 zL~tqTS*x{2eF6JT!MkW*sn%Q>5$n&<7RcH{Wmey!{r?8U|9{R2|G#A#p+uN81e;Fj z|I9RWPbo(%`WPd5;eV}b?erycT2h3u{0~w-y0FZHVd6h}_d`PZ$rOo%|5QNV3pwI= z&_1V?OO>hNNsSH9T5Fdx^nm}qdB&hqWK|=6EON=d+{`)@os~gyuvBI`8xdyc$hO|~ zZf6|F(7VtuKfG~m=ZLh{G6syEFy`RRWiX6^=k4?t>CrowOvQLpy2v{}2~({=8T#_C zm7{63WoI?=JN4FCudk`j2)N{yn*XEboDp=({82@1dJ3!e*s2ibm8e?2zU+(shLNi&JTM-1mQp1?Qi!I0-K%v#60fKA>%=@Ik}I2pRw|j>v!YGm;oiP z=f4E}MBC3*eo0NX9CAQa^h*mn`Sw=?zpTQqFd`nHxhZ+{z(&+taT)XQzDm70O*#~0 zGghMvNgGKpRk{^VmX=CpdwkBkok$N-c$+B0SXL-2UL3KV{6!89PkJ55pP#BHzF-x? zVX*k#*~p80H%*_jB}Y=dJB>2N3JTwb3%&TctLo5+%#Co~1<`|TeWOaeTZRNmvPHXF z0NSAh<+i#&XUw@Ai#p_fVKM(PQoIg255DU!Jm?#ybhl@+}UNJI}8IV?A;!=SfC zy(wEN&#F{{f6cELGB}ED4s6M+Zp&U^D?ESx?l__cv7h^GKm^8KK9=9>*g&PK>?Av9 zlA+PG6xa`FW^u!Eu3V27O-Ak(8#uSlR*#&v{qAQwYrmR%0yXY-E6!R@Pmj(N_fc%M z&E~j{AHP3RSALXz&UO5|=dC>Zc`uQ!<9Qz$09(JCf^Efh;5rcdqMbH@(q)Ko@5o{p zzh?BJhqJ5Qb(Duj#bfMcL2P}K$eD`Mgt#D<=g%Lws-AEpb%4{9lKhD0^nf_db+xAY zYFCNf>F(C>LN`?$F!OIkT6IBfCkfZ-M1B{8h5v1_Z&Zz%07+W%Xvw=|%|8zp@?r0KoqoDib$Amp60cqlXNzN-T&IpvuNFH8#`j6bd zE+7!01tw{oG%LAVBz9dH;w#b3i{Uq>^hb7IUkL=_Rw?s`PEidOt1qK%PPqB{l zN!0g06qGa-Qe`q3xL9(Pe|$-leKAWVOiuV9eC`gTU|_+N$Nq^O$LnrXge?J5dR?5H zQ1>dDMPg_eBbht>T(ppDM@CYA5(h@q@`W)7LrL`wAzYX47f;W^D6v$%kZpzyQJc@G z!<;H2d^?i+`GG2SU{qjfK_=^n-T2SEX^)?VOrn4G)bNV5Vvwjzz=Od3IAtGi&cil_ z|HFMAqL(Mv?Jp76%cw6@#@`}vc795Wk!cXAeg$_`GP`jevV!bq9K0@<<+rw|lj0jh z8TytLCsH(Vt35?=cn*{SO4Ep?t74%syQ*aOFA;|gsm=#wXFLzn`qA>G-Iul+RR_~d zFFebJu*)@>z+X#m3Nv&9uypF*OsTpP7r+0@8qm$EGyAo%QdpSH;DB$oF}b|T**Mx@ zD>|iW3dro$;Q$^io3A@>tWg^}k_TbvUC-3jP71SIs7f#N#m|0K2Oc}_vg#*%X{y@{ zW3$02UmWwjsn5l!vXytJ=t>qqn21${t5htRHIaM-2cS-#b5H3n#+NqLbU0aAJ9J}h zHZ`^~*y{vc8Lsh6D)#X^qqlhKFA{h+56hByq`WhxjbLp2M^vqs!3=GdnlE3G&GRpf z`T4uw%WJl<0;Hd@cowZ)q_UIlCx*2ys1(y~RK*oFSYCbatkb3Lz^V4!(ct-dLpe_X z2l%?e>~H6JyNGeEvO3$wsSc^|My!h_x9`SxtA$S0Raalp*hKjYA|Lv-ImoTwSE3Rj zS2l5Oi0SC)5ty)m&bd~q2FsFi+NZR)!7V}b@c-fLtiRfD_bpwcNLyOmp}4zyp|}=z zx1d3TJ0!RT5}e`=#T|-kao6Gw#XTL)_nv#!o%vzbtobjV_w(+(AES{9-Zbo|vv{C_ z`SE08+hqvZRfL@yoxj?U562(s^43q!wWrRxt!i>elRho0#>jC~KH|Jqe>ROCYozuG zH%$*T#;dmA;S9dOK8)HDbh-9&0Vk(D*jW~Cu#U5Bazb60=7b)aLhB@4Er=LRrT#Yh zyhA$A*Fl|7j4YqZWcki!VP`E6tPFvRugo*rvx#2AK|_hh<-$}tI1BX1F-5Un~o5C7iy04nstGiA~t;B(+zuPU#8AR$X*_!bde5KqkqF7pGNIQ7qd6N5!)bay~ zjItBS;g5JQ&${VLK6Nnz)9}NjjVCvc2=>*&;KRnj!uneS1b@uwx5JPv#-p1a=(2@T zn*J0yPu>tb;+%K1wTRowsZChP1@_>*uy|=VN^X4;6M44iOX5WxNlJ?{rM^E(>>L;G z=akiewa4gp=eu6)=5t?jXwgbL@7aG<1${cST%)Z`S2D#b@TGL{_m*fkSw%tcuiGxyB1wZ<3kBMAODj#2%5m)W$uzCbeWF!?;)?b*rT?DRVQWq(^4MLPH zjS+qUoyxwA9Y;3t%15_F3hn2SS!Zz<>45Qu{7W}P$4|actwF9Uji`c>Ac#-V)hZDG$>)!(h%xP&|*1K-t zepzntm)G*v5f5Zl_vf*)hiZXP=k@S!S#dqSa8Ublb_Ln&2KDj;R^bJ1(i$R6gN4JqBDBaSx&uMGbhSLfqjSzt$dr@2UL4vXfH?=5 zJpwOeye~5TgS;WN6rr?y!59qzR&#;6ZXQKAKKl4B-8`Yv_~f!OV7vHG$D0sqy5OZA zFlm@1um~Jw0_I=0FvSPuNvrm{hQjJX5W+IPmTsOs>~t?Z^aG2q0`UFCCp`Bx!*1t< z5(jv4u)}lRUB3-zC!;tso%w3fDiq+$I2ZY;MGU@AI}J<|sL8v(bJL5Yv1~z3&lo zUKFyHq-9l2%6@BHdK0VYL9}oib6pg9K^Nr^5;xW;&fuXjk&N>(+%R8T4_U_nwb+G# zKAZ@ZPPx}x&O*w^G`^oML}~smu680GlOP^D+-h_)p&JF7K?Q~4h%k6MA|u5mLPSc# zxFmF>Z7iW}fiaSIfzmpGvf-l8fkcn(#AOL%krbAdqQnfoc$y~JDVXnPzNF>)#NUBQ zC02>FP4ot`NdRjVWm)^xTTUa_cua1%V;HAu2Es=J|8Qo&$s@m+XPQ>xTl zYN>2$1*$0_Pa2r>YyEOI93hckWH3ojHe=+?;F7Q8}0Gpj*n5aQiJ5_mu(Ui(1`u{XsaMU8+pw{fj zrSSYK1;$CM6e#MAW{>asPs0WGovu3lWP#Fin|&yrUa>@3?A3fTj_ub9gSH56G~6$p z)n>Byr-x@>BZco)c!y1lNKfzd9Z$`Av6w9L@C_oB2 z5n?uZXMOvlzk`F+^4j@f-q#B8p2&$V!cKXb#H-Ga?QveD{YAEA8*l zj(&jrhvCWtKLIu}<$-PMtEE8ayOTp;Vf_;$TgS_fc7ObB3S^_&kT*RSyPkNKkGtQ?A5r&W z=-Dy%A=#EW_|$t5vkp*<$vY2H_CuV94$GJAb?TbSSVk&nm^d4_kjsvKmF(D+R0&ZY zx@4dslawc#5&AMueycCOtX8mEIGgH`BC+gKkF??LQM3BMFzZMCYkb_$3=LGNh-IHL zW|6yiWo6wm09vBWwAWvz7**s&M1hv5dFs7RpGvdelxDcsOrau3*P~a%_*^4cSFK7w z@D`V?6n4L*C0kKH{+&eYlk&|q7;5v^EM+RDekID<=KVs>M1g}Zr`DTm1v8m~0ag8Z z-m;Y)4B6A={+BIhtv40-XCz2jY$p|*u}0@ZtaOj^qmZ&c?h9k2musuQ(Yy8DN_B@T z>_FBwNx4ODk^5RKW!KwP!co7q8&P!sN3FwFgy}7#`iuPhj;BF%;M?X^*+t$jO*rEL zB-ztW;K?s08g@pQwG&84+U=K5mFm}#`fn>6I#sz(gUboYR-}@DU>2~2kg9*aGv4DE z&K_qI6`OkajPherg_ReRbu zF#q`ZwN9oOWl4_MpTI0xTlyENKK?0)HA6wabj8AjlDrx}2vhupo^e zl#rOC{*EC@dx*S1l~qd}jnc?7UYo`OR{Q4rF4JIx;0}kh=lgt?r(5~rc})67CK_V* zVrlMs)f7keO$L4$1;C&#X`Yj6?1P9_TBfmL<@v3etQ8-cFGz!9fwLEBZ!KamuS49x`@@v7War2+C}jl%4T{&0No9h6!*NZ;ft(ub+qhY{;;6 zHEVFb|GFum_F|yr0U9g+Ol}O@j4tzn zmW%F8_3Byy9>uOOUdr<={A3^W%Rq8hfLXtSBg|ds2v_=aB2$(J1=X2E zbgTKUEsulO8DQKDs@?x371FOgS>*RCYk&I>gfX4}eS>yy^!u}L<@ijZ-Kr{t@TeS$ zF558K*q@h``t~@5`rEyk`yBi%E)LzqOWZek1O9T(fXv5r?$bNQszGP?ntmD9wZTNJ zlIwej;I8y(_0WO6V;v940bi`Z9~tW$L!j1_)y2Jir=La@7VM~oyTx!K)3)w`dlMVC zS!=spquFfcBw3h!nObhkOtkS-caE*oi1aoA?)pd1x2A)=#s~d z-_UJX}6lx=1$jE$W^0ETi;VifZ2k=W+d3 zx^Wl*uI!vl&3fzSe!MNhJNdJ%^{7ooc9V$PUgeQhBDhYXJkVc#QixD~Jix<0qqAjR zGCSFNcS8_02KF878FM>*cX|LjsW`~C^bC#?J=Ea&dzUtNc;6BElsD(BtmQ{cV-lI; zNAWrUWzT*ekK>OP;8EHy3Wq&A-c>T#rQJOcAK7o#nG}c5O=>QHfX~0K-X=gQkk2%b z+0>V=!I2oBnKU`*GoR3AZ_pQB2k%`fx_NE}6fPba7rxsd)=fX51}9t;8^2wg3^!kU zsSq)%5Y9banp-Hx456a@oBlcPQ}xgyO_K?O%AMkBE+Lk&R zgDxO`AlltT%{?e)9y#*eK$QBcIINA>9*USZrm;`pxM|8b$F4ZK>^KH7(U;coKgHt- z$>Sf*yxDvFN%yIVQ!ps$Lx1o2baF?%x(KE(_G3yx_zdSJXy8H-8ws4K(5+y~&FSL{9&-lcr0nUd{h) zpg2BO%YP8{+wgweQs}#B*$jS_j9FBdm;X;M0Y~yG$j5i$QS(1?{?!NhAG5iGP896n zShD|q2|T+6YXO+lJt_b6L23$>L%C7kKFR*mb&o~IY2^AxwIOFeU%RiKhFxjnwtyX= zRf*OSv_e>IBUi1hoMXUPT{`~*xB%kvR&!u41zl*mKHxYQwGr%FT14XgSP%B;r@(&q z`;TO&%{DGbf!}E}B#Pd)FFD0{`PcVIHz_{;+WnwhBtMa3zPirIGUXOS5~3f6wRJAu z1&VqN%S+;8_Z7kqr;aT@k-J3Dz4$M7#~I(nDz!CVHqX}B!i9WWZce{tAcD!1+gtB0 z_NGdW#@gE+ZvJczXDN5I?{8JMyq*DebQnH19`|PXzo|encARIYG7Nk#;P&15H3hCo zFt*6mXEm(1VTrPMntN-iFF0sSfr3slIS}k1j~pAy812OHzU;7^2zJ8hoJfhzqU0#j z$;RAhUeIkqoKOtjMnqIft+9#(?%hf}_sMlq0s+lT9&}0UE;rFoCFQq=#0&lbr{3E>@_%e9!~WHxs6T@B*V8(jpTx;PWjZl9_QKg!;RH&=8Id7B=(l& z3|qRn<=;)8`UcO;@DGoO#_;doI~$9=%OIL?C-CKx!e%Tdm{Jn`a5<*RDeX2xCYf<% zBCbjdnlvK9XA9EQ!JWsUt@N`7JZP4eg zLJxp8EH}}4m4;ruVncpSr?1YB`F0d+i(F348_=!J!Dy_6tp-Xct5X!v{p!ozN)(S%30cK^6uv*q?4o7U#YDJRA3LY7>HNJ*D{ zn?I@qt;;qoPr{^N`)2}ZmpO|tWKJ9eMqJN4#n+!mDPN_W{25HBNH_Ne@Wc|R5{_~| zG4dD6$5266oGEGDb7Zz>P)u_#_0VvTJCV^il5o8&q#SpKG`ct#@`<$zm^9$%bPIGHq6tO?NE`ri+kNP zpy|y7v;xuU?QS{J87EPNLc6kKUW*r*w}_EKk(8)iP^eNMa<-AJmL)TIXD@Z)a-J&XHM!oxRSr6c{eBG!N6=9$#;Bei_oO%#6&t@ z`eajvDX>Fr0nZAR(iO!}hMZEN$Ts@7;M8xq7&vSiSoMK4RGMy{w}Z`1SX3&udV%g#DmSYlFjCd* z`j^z+@co6yWQG)Xnfk9S6;9=a+P&<6A(3mBD*`Barb|@duy1(sF6zk*cNENIG;6e=N zN1h#>n!T`{Bi?1tnjOE;x_tLKJx}a!l7-yS>6?u7bhRw!8Dy6$M@!!kJ!Q4Irn@U? z$jYy7X79#{RWV1PcGE41xA6lLRue1i&O^{Xsa z)+70>`z%A&y^9pz7qXC_d29@uJIpP=EjO1=vm|c)O;W~78HF<`}#L`*8eFX_U}_(xA4~1 zn0j~(+0#kC!WEwQ2(mG=RlqA0f8bjW6i(2j2H(*J|B$-_Qjudty-~P?8fKAq??!+$ z#0j+slSsyQVM`lyB) z;LCbZhLXtuGzUPNAh1a?c$vmZi!S7vmsF1r9K-{WMG4w3By!iLjVOS)U^{^Z0!8wy z5J3aZO!$QU12lm}A>0GOixXiW^RRwQ{Zn4On50m-PCe&WUlWtDvt=MIwXU=MYMB7b z74z`0TAfTl#3dvmd7k;RnxxvV~GnErb{ypsWNa9A)7KO;LIkY2Viq5lp2 z%fV3QV*L;lx0OC2ZhomxAdtYID3^8YJXRIAn`q za~^7w2S38MF}GIrla19*)(^gm59QZ~qy%C0!b7HHl6VuclOo~?lEsixIPO5n;R*>0 zI*;%a_x)t|-oz^E)JW;na*NbA|JP;O@Be+v|KDYKs&9V&tIc!n-CS))|FMm(vcj&Z0| zyDj3wkXzY8lyP{5fp^VwoafV2S4PVu^GXZy_Qs00%ITLMKCd4>DBQ09HVt@QPcLh9 zTJ7<#6v!O*sNU|5W6mlsYht$?%;2>`Cs}0KZz)ioQY^n`KAg2P>gHkezMfyKZ`l|v zcjG-RZufsjrqtSawmAT0G#YJfdM5a6m&f89V{!_UlAMcNAyXyEmt_jO>4#G|Bu`9Zaz+|g<9DWQ zD$~ihTy9{aht?nSSk}y3(gxnY>XwZ;y+K2CP5L*8dGFY;(g{sLubUD2{c=#eFDI9+ zlwB5|M|J3Cx<@!^qmOqZDaUP{s{rLwVX&$uRWZN{3U*LOR0)! zJzTr+Yx+{GwwkZlVW#ZW9$9nLDtA!u(eHYq{-fPx=#VnMZ1igz(YvM1EX1q2_OcI- z8h>+fxA>$*doq-%o^sXRxD_O$s>ZS5wthC^C=zRR{1F^OF#lQ%P~lG!7cyD0gsehG zjl~ledgf&E(xfO2OZ+&LYncFDvAT;GR~drfyj)KP?XeS~#RrP1$6>@KXHZ|qh368P zV1%RelJPr*Yfug26emk^Ih{cadgNab^k>t8&)7FzzGMILkctmyp>i-WBRYkXy);#b zaZxwE1AzF1b|!ppA2yw@=>~@1{D|uyr=k#c8IZJmCl^B%lSENWDx-SN3vD%jpOiN! zc~=E>>!hHYJ0DcpQA{kjoWxTb#FebBPKx%Srd*?y=j*M8g*aI-H*H~kr^bL|u3ISk z&`TO8Oe6@A7qBbC2F+LPl7_JhIQOrIEp#tZ=SK>78kz?3oN9tx-fi*jZv1k3Tado9 z{7ztMa1_*hk@3d|8sSQyylx+xd4-rB5CWzsryN0HPsBUIcLd`>gqPn@6pO^i!sU{F zPsQi^0CKH5p&Vn!l|zaiEcmrlH>S)wWNDP^(GqO~ram>9#gu?lbsN zcx0>^0f$sNaB!`$pNLi5XiAiQeFLTWP_q(WM1f`K{NhMCsD`B29$-?SH%+lsFBpDoO}U`=9le3J%a_?o z4@qBmgDb%H$^K}(ep!uM%QJxM#LAk(;NXNuYp!kesn&M37Szy${T{fy+-UH^l!s=Q zWE?P@w^~uv&}!gjd$HlIkME`Yqce}r_Eu1RE%m5lre)pk0}9Wp(y^Z;Uw@oozc&%A z80);yb8Mw*C6)ZZ*N#L(4k_O;;V?;##nHs^!b#gWi?QIEPdf3IuG^rqnPXzZWhGp) zHCU*h_u=((8ZvD)drYYBaCBvkfs}1Nj^e9x7dXcCCTw1TPX;q0%=n^xEJ#Z+9W+PT zUWD;asax|mJVrSn=qBvekf94jMFO13Rb@ZBs2Y9(l{QPZgm$oK?|eyx&bB7I48(bN>Uo$nwoiE2WOT% z*i9h}hrMMkFj8dDox|=*xgPY%xR~MECTyC~P^&z=wq3SKo~gg4uYj%;7*D|$zG}!+ z1s@&>%JR($!f3QBpNy@u>MMk|>yz8c_01gw1AJ(1CR05fMhaSn7Ym9@4)=DHlpm7& zK{Ku1*LxbTaTo6%Dt7p$0TL~`)3OV0Vb>oxq~L_>&zG?>l$a?uT$~MQ6^}@?3h`h@ z^xv~v9xoBhs}?MfmJN=hhQUK2?f9?BTO8NVzO+>*2$AN_-7>MNJfoA?fe&@tQWmASIH$&+zS;NJBS}gTX#uEEX*8qvd-`>oJgM8Wz3(ub#l3w2`8L6ddI;~)d#)kxsz@zNXxU6ZVhMnD}4OBQET=o{!L57<$3nldE5Va0^Y z=lpbo^#MP~+tO4~$}r{13=QH@cy3~H4XmvtV&(IzqzJaR^x|%0;^hmlEC}M1(Ppv; zrVhhk1272C0lY(vq{0F?<3qTrHQsFmHq`rc_fu=*Q>pWP(JZplE3(xM3#6S4<+%!d zi4uy73-mDsn}?Y)<3m<>pHZIDK^vk)2l3>Cm;uh&<~)|DpxIKnX+e6)6St zeF;Ueg8<~e>=8x+)S>})sk}siw-(!lK6nj*=i(3#d}ayNaO^&?qLoD6fU$28XD*%Z zpVtvkNJIrbzbk&^+Ki97i+|=kT?n1^J(gG#T|mnoSJYnQ_?xIzjW5M0WNq`o{T?B% zAs)lYq`$O7I#8ldsEwM#f|69Dl{}(tJgjY}`LnfI-XjMoqDX9_*v#M3?aJ_3aoCp^ zLI^Ko;;>?$N6qf(Y`5uHu04#F2b=@?{EzTsO3q`=dV{-@9Wn6Pr^0+#=VI)WV@oIE z&@bYq@Z#U51YpZ5;Wn}1H+}kiMSwk^MClo1@1C$X?>s1#@a|5D0rhJviLC6!b0b^L zmrV`2>;lESlNKme{%`}{yo9cHLWzpq&b2TfpVw=_(At?q;S{;g+leAvNh;QIjd4jj zvVPA0KQL`c)mN1({o=Ej&3|B8e~=@)AKoJ#VfWt_xn-1^T!j~c!T*@2RUpE?LqgB< zNYCbJR+{Zw&XSoz)=C?0fu#A_N`;yrlE@myg&M)$9D}sUXP9Q1>B@+lc!p`pXPAB% zXIbm`P>QLK=5acl6@={7qtWQp+4BljFw+~~X&@+)RvE0XP;FVC#Qd5%`Od{;G*dC_ zgFS(ZbYIEeoOWU&X4{?${;moGZPwGZpMUSsm0E8X*ZZK14G})iFfEbxHA|`OUT^gI z94;FEuX8v~%fHUye%ZI@dsFU8<@bfISATH4M}AFY@1^LijKz+TWv|}6Ug6dC<9Inw z=JofuKQ6#{e{Lf1)6mUlYqV5%qhKUWd~$zOrN-Z(^@?t*;F;*KY4zADJXjb*0w5#& z!(APz{WmwH+{n?D#<(bff?kSfKAX8*c{=pj4Mp@>JgOKD)p-q7Me6;T1Qs6pbts!; zN;X7Y3XuOrTYNAv(IDa0g5Bgg&qC%cjDI!7+VURf00d=BTf{n3-jWmh#|lW1K%qFZZMGcI*$S3B)j zWK}nB%4J`_3_3h+_zixZe%*pC?b~^g+Oibxp_QC8$J8(FwfwoKXZ2N^)jMiaVkiby z#O*w=*1h}~W#9Q0%cnRU^=qVK_peOr@%m3>bWRa-nn!!RQkG>^S;WZNyZr`W;)MY! zR{APK?85h}LxlB5)$VL-3>PDdGe@U`q?<<;@rd52>M{3OYmN!3=QQdh>^h2OTw$r0 zYgz@)Uze<*)qG&DBj3i>&g;&+HTTrVRXhJ^|1_}x=q{{RRccVA&b>u=eS-*&?VTVN zorc?RRxFn6Kdrtx6lPrux^E-Q4_qtxw2puJ!F?kl7U?!APkgm%OTEhA?t6HF)YT?o zHIu+b^t}SBgz%6&Ls($v$^I4uvf9vDDmv|D^Mi(}B{V0{xA{2HHoe8yu7$;8s|DGJ z#|qx!<8#z-!2~!(d8+snJob^Sc=t*PXn%%Gf7*CDsaPjoah?bo)TQ5( zm*Q_tBW)ME)-~SX$A2RH=th7+v4=J%&J_PX953EfEjjE9h2Q%~QZ5Sp#(6wek$8}b zI)%%<76z?m8H6{4{7;Vu33tM~n2(8O7&^Hiv&Qll6)x8!8+p|Rd!OP#v3 z;8rOf0n~G(IeJ=RwcRN?3UK;TqT=KK8pJ)Oc1la8pb?A@QL+loM)*05M z+tvXTySHYwVO$m0mw@jPUFtO@SWZ4T42C!Jv(*CJCBaE(x>ye>`Rw)VF}_U36pT9U z&)N9oUuBlO!waMTosE}YoJ_s0EmAzTJ}l9#7O$?eH9;`jnc2)Q2uRk~bITgJ*g{v% zVKnVe%<88M`opO8jVd~{&UHD<+Z7nmqZwG(xepEdstt*aZ7hm)g1A4N;S{S+4pcR1 z+UKwjM$6o+JL9DWSEDSzPKz?{EKun!tf5|mDc!d>Z7%K{FX!T^QUZxM=?^AfHu8VW z(*>>FK<8M-NsyvtM_cU=Gqx!C4_{$j#8-~MFYiZ3$U))yTWk{w3i_Lw+Px+6XW>~( zrq|7hy^cvIk+KSM#CYHOIF&41Hf8!T2B(7_54Phjw6_FEbYf-uwi8}2m=_8!bfin< zC6q`0X5qZ6+YfOLp%$v4xAlx+YUMyA7cbMjMjjqeLKvhO6KnG6>5MAmacUj=d^suS zl@dZQWlcp{^&H%l1g~yVe;@(eIh>bUNx8gUVUQ5*;O*bUr1ibnkzuusNPw+!74+s? zPrYPQvoYj6Kkx*23ollL9@ggR$XRwXH}|>w)G_lLi1QbCfkXSa{|ac?@?VbV>2t{ zB57&d&Sl@y)TA#)Sv_v}6@8GktHf}1zI5)Nni9>VUeoZsxoER-l*gI*d+lmT?(oM} zu(cSw<5r6jF&I_qm4}0uhK*QqTi8Tl-in^49>nwRfZDbuFpyoe^n01W{g;g?;huwE z%{gPH75{;0v{i$wWU{-Qr3KoW$?WC-MAbQB|LkB}v5i75UaQ>s#())Urf&=iVXU zdm@q9fq^3r>^!9nG( z!BpkyA~MKVRcFlLmoR=~e&pjZMB8ZP6fu8@c+zn(x|EvtmZ2xA5Jk zmBPQBP#~XVsUOR#JNC;x%12&6HJ;LaAp@$6`fs=gg4fZ5Jpk(JDKr-#*C39pEsc#5 z@XiCP$t>V6B!Eap{EM?&^K)$7!Zk)S$WhwieNxaauT!Q;(1!*~Ha@*Lv0!2e-#6Sr z*}TEb$?h*)gMVx*>+y>9%ms_ksY>Bn-_P=`)r1hwgv4HY{gKonxs_F?b7VmAf!BwA zM*=_bdbi;ztMaKWyIYSyJ-OyswO-PvB!YA5!I{YF?Ki4ANuZ4e+o}Th9GEAN&ef?A za^G$1+YdnmpfCjS`Gt7!^7MnlwT&age2v_}Yk0nI8Wmo{*u?f2RpvwO*A>&kT#`^C zAV^r4GD^98Y#I34S@^-vLTn<*h`CJ{)4hmPzDO4FuLSrGa6Fp^OP+$gz?=aVzxhbo z+sF>AD4hZCrXucs{2+0@s1X;pvX_LtDAAB)kEES%Kk4LtY4ZwPaz^ukLyJPDJwUJ` zAG6SK?jl09S%*E8$T!t7nlgM};4#{rUgu%T@A6}NwAGWLv6p+Me+nWuWQ33i!mee& z$8?ZEl(;3Wm?w`&;`ulkx;VI0T$+=oLmnGulRqH=Hu_aOUPyc{98yaiPqWWPH~386 zrC8L~QtX!rH}f`}{4v}F36WjSbyhA)bUp$|i5hf?Zeof0jd9{SuJ*Vw`Mrr^#ftB7 zqTbfI81g3Ns3(cg2WflC;qrwsc;W@9du*8|0o`qM?vyR9v7$oEx(1*LGq5k9xH)RL zpk_>m1w3^(rX(M(&=1eE@RyPW%HH|}hx=#^_(S%?EN+t`QLPPclSkjerRR-}sRO|c zG08esjddyBvnfja%KuLpmSRygfay|&mw=gwy3&bq;|9$uIS^pJ8sGx{Ajng`lxnp$q|tn19`>@Cg3;bf7SiywrP8wZ%X@yLamdfyw$PgzVkO z`{v8t$skEQ%IMUK{aH_q8nEyk_i=kYaPwDr3;XG+ga2zXCLg|qjlK&CWj{Cmi-yrG z!DyB?FXx$OXm9uj+G+lQ_Drk(XK0tt_;63HcYUx)mZx+FRJ#GK53jMtA-a2BEF({P z@19v1iy`>md=DVOXj};VL^D4gq_B>x9r%fqj{GY&+LaE3;GA|<9Cvm`-{MUmevS_% zgJe{MqHpqi#M^qAnE*~H>RjLF>rt*5-}&B5jDCKYY3%bJ7`eQ}Tfmm4tkm6FyfSzA z=Ok52eli%lsdYZgn6P$B&Ip~$GI>8kRuyWK)3g$sDvXbvrr#_}nV!3Eg_ZGbk$^h0 zbRQKC=f4l9`W`STSri9er7x0?t>5|`d1vyxWSTicZ=Fx97_ncdcO5>Jml-TuM5ZDZ#-aH4Zm?JtFP zTsy64dt5hfS$g~o?Mu1UtCsH^8s}o<9qM*61?`&;{*z|^r_hRvSC}+j#hP8 z8CH8jWE21Tub$)2F`8w%pQxxuY(>A6i0yiD*CL$y3LQq+dnf(uXnUNhBYq4dC!|{i zf5=VG9}28qt{nF3de8ZblJ$M@2<>JWbr#LN9o@Jss_$*v3j+vj4)+0hN^p(<*yUq%4i*O~3|xCca|CJ-63&%! zyj4$Kx8~!Pa?v-dJ`Ya~HG#X#1)EMpejeqPtQCMwpwS&@D~z$YahrLtps<~}9h+k= zDA+GyuRh4Yalb$d-TV+MzrstlY`ERIFiVf*;cJng-@`#!=P2ikzBKg58R(j@k6cr? z>*m=Y<&aQE$kdYiZnG-O(@{rSoz48OhL*O;@P_-g({*n?#8svXYsJ<)k;26C5hH8+ z{ni{%?eP5e-zYT z8vg3tfEb$BC#%m}8ILj?;&Vyk_InR{Xo@sHktbt9-yRu$0M0R?D*bUrupdPnn-+9^ z*8LPDLOhL@%^`t2TMEHc&%sbmY^t6ZH~BU~uE?OBKw~;?q~l{E*Vst2t`i@{Etv6< zd#|JO_!FyaUdq+1$Iq9h4iUic+~FOWewM{(b}tD6vbnu}!FDH>KFa$s^NEt1&U@!L^ zu{M-QS)NAac@iITJV#2fNejbrhby{(kTQ`39XEb#BI^9;STI?qrrSSS;JRMW>hp#Xbu~DIBuRy44w3}ThK9R~GMMAZC z9h1&yJ)Qp)TK^60%!kHmf(bL#u=IfELaQq#qu#g4`ufIStQ3p5*e)OGCbV6zOnY9G;+>tl7bBinZSd)T>mX`=zMZ8AauNTHG_2K( zZix~?c|?JRY|(`~Y6R|WTKVu7yO0c*#V=fSEf#~m2MdiYMcu9mt3|cvEaTWuYk%XR zud#-HZBeaKEOUe$CEeSU zwSrj|d7dVK^-yHkAV;}R~!W01;$3CM}P{nDJDJ9@91tQ##U5qt;TG}y75 z;+(2kg$+}(lq-@U@4l_&uZTNgh-&a0`?yOru7Pe>pgg`WMV2tLAXEj-#s4k`yqYWA zxx%aAJo4$|omtTU5oNLONd{6cx6NFW5=9;Q#y>1lTK@@9Lp|NSd{~YD@TFiB>G&!q zc3oQJCZB$_D1}(4``t&+&d-M4iM&*1EdC{Vo`y>};FDe9O3V~Jw@X<@;fAM(dvepB zOEvp80^616skV>BF(SvukXIh#Cx*#Q$iPvjj=e<$qN~%Y+=(AJzRfFAF$xzt%o^K^ zDdf5T4yQgMLQHvQ+Z&|q}Uca-3`o%CKz7&rjsxy%5hHmH(v(m#y z88-gXS1EUk6297Je%$BEFHqE8p*Wbi`@c;N&{LP3Jo8oM0@1={FmDx8cl8hPR0;M# z=~6OfU~OTS04ArvdmOc=UE6o?Z{YYKgStSYi9isZH7-gpBTo=I3Jy&X1K)G`lm=Lf z>q$rFI~&Br26dZ;Irv$GybcW!-Ls464e8wt@uK$G2Zg-hviatrt%~ml;uYuF`xaOr zyPpv3RnKF#XU1R&j+F{oPXP1QgB?(;0P`HfDqt6FsdFn<$33+#t{$EP%sExT%Jl)n zmKF#kxc?$Yn8~dIc))lvA?&s*Ob(zY+z7eD4EGWb+7k<})6#zyzIjlD-)w~IHHv-> z3&&xPNE-kq){Nkdie$ElgNY~E?EN@1Yi=2l>+SW$?g#$}Gcsj4c z@34d%KoRBH*6kjuKW4R+w0!40h$ivFqO_uuWMoI@0c-OFOUY4nXV$aY&H{do-^{xDawQSAOhMSFGAzZ0F0k?j5PS`IrZ7 z=L-}!;+vQPbKZ}rL|K7xhPSS-2eqzI_+F*NTXGA0rRIJ!0IWaP=kAZQ#``8KISFRD zW#}&SlHEe*&INW+{+K=xRJ;juX4A`(H+WhV%7ZPK z&c{EOoB#xw)@e6MY}a9@m~b)x zfvz>2G~C#mAW3i+4&ax4r*7;|01KrzhR`R4$VR={H%ZZk#odL(@~3!Or*L(`+Ut_D zrA^Wo>9Q^XWC~Mo6cLsA?*Fhf^WGjZ@whibe6oxv$;w+-=D1%t+J#J z!zt6rF!-8j5UF-FQ)0IXQ?OO3Fn~J@cC`)jQX16xzIGoG{89G1`@`Q7iIL>oxxToo z6OvoL>g}K;R!$m)iK3mcH=M!fBTdPB6H&^!^?JHj2R|!}D(#PT>W`PK^5jG&^u9OfDYx^6+rGMYA zR^IlCuDQFlwZq@?vF;LbN(FntS2Y;j=NYFk`0g;B_ z?`(aR!Zwsife?W4r@&ZlGI*AsBZ@X;spQN}b?Gu2H==0j@FyY-dQm8&g(A!;CHQy% z+OZNGmy{4~`sB%YN$@~kq%4E=1XNL6hB{6~Zg4G51EhlwXGW6!on&|~y(3YTRJ@~U zU9oSeX5UUvtKu|jZKdqCT5Kh+oYAx!n1AQ_Ez208WBEO_T|MJFcowo}PJ@AFoogs! zGb5K^D7T+&%u%ulgF2L0X1)m8DlR&Vk1z}j&(X~$mXu0%5oVTUPcG(_H=mpD zYq!0P+{!CNd)Te)qlu)hs$n=hf{*OnAJx94*JP@5&|PAx@3UcKZW#0`rEi>yc*oSV z#}i`Kyj3yG(s0r)Z{K<@^4wJIclck#z4cQZj+>?XiQtj|!2<+$2;OLdyE_DTcW9(> z>&D$7XyY!82X_zd?hxENm+#K*%ie{D0gIYPD14yv;{H2^gkxKQ9lI^hWHB7;Qs`6AuwlJ7Erdf(%+lHtSB z<*;B8)0a`bVRV8q}s^5BaxHT!OjNg7GFVfqVFy#$*OM*s>eVO{nlsWIn$7s> zaS4S)@9{8|hcsnlEFJv`8at&>ecDvkzG2kjH|~9o2N~D=Q?#93In<+wdvV^3LBdm< zgEZ21Lb^%}+R0a>2j$Nb8^qtL`E~Bxg@#V>MNIH#wTbS#D3(1=R*4B|N%kAOb<9Ad`u$f9-jk@);u1uK0w?tLZ1Q$eeo*f;I zT@*3ETD>{5_MuA7hBy{?yd)}XDZ)O+zFTjj`+OJhQuU`CX@ z8aj<1+j`dn;=4mw?5;kPXxqR6*iKxGjGQsq{z5+=A7*S&a5P*bb?}m@Hjd7Ql9GHe zOHyT8D7kINE4ui#S5ccV@<2sLpW36WFPT^roIoXLA%zvsmQ-_cZ;V9WPRwNk<1o@}G>t}T(jm3E@( zI59^Yvy^ixa*7v3f%49lv^b~Nxt#qr6j*=2Rhw4jxP`Yt%`QtOR+4ISsy1oABgy<* zx@ES23+Iu`p8c8$4RoMP!7!DpRG%k>MJF*LDJy30>fPgdAj$DK5qB$|Pa|IB-rsHvuGB69O@)69wk+B}!4HYEYTkQVE3O zvHH?HNQ+uUqdi#o#+rqiUIQ_JtIRAa>C1ZKTnglx3Lkf0my$~}XfBD$>2y!8X-Ol+ z{YHqi@4(=qMbis2x$5T1Mypw6!GlzT%2VD3e~MnaO`x&1y^YD7wsou0bC@B+ zOf3PTkqoifw@Pj8{uaz73SKk5@;2IJe!Q|aYSM>pgA13pFe#my@x84> zoCH=lAHV8gh~kB3@wcC1j`aJ#t33>kG^RLT7;G%~s{EzMbR1K=L$Js`_{H0lG3IK7 zc*ZG`tb3P^HEmd!zFasx2NQcGG6sm8k(eTvD@}wCYOBG`zR+P zwMjV2)8V+xK5ZC(uQ-bZvH3)%xy{U<})=fJ#dd$mZu+bdrEHbiUNw4Y5T5#b)NTWR2C#a{PIUN#P{Tu3 zYx!JlAmMKOVAVcIF>S>oeo`tHstSH8?q4S@>GK=g zjP!He4(bB-!BNx>qkGi4M$Pu9YO)M z(Vibf3{iD=-6kGxaX*@_;#+QZKsa^(kgzc3o7U)^L1Sfcy|$?DQT>FohKABs#BsV; zcDFnEw9>i-9d|qbF2rs-&d-Zgl{rF|eH8hvb^BrKp;A`=N^bwzNrud0@?6)*M$>)} zA^PzRc;NU0dk12e?X@_~>y)^2jy$O?={c2%Jk{3tcUG%Ae))Itdxknk2KNSX# zs13AE3UI^?_oowjFbV$|5U!i=f6*82s_v`Q<)uLvRwWGPF#%_VgZ;%Ju1MgJ1Mu`U zyYHZ^*uM8*fes4|I48i@H$2!!Q&D$8?JXTJ@m)l^d0>;JUo+67wU`A!7ZLC-5=IjV zCXh%6It~D=?0^b+mXWS7pK1;9A}N)jaK2e77f4Se!+vDaU{qf*E^tBout07KS*4xF zA<)w9JUqf4KL(8_W>+Jo7Z{VH!o5R4f{7oSyc-lU<2x>*{Jz8k5hXS{T>9NZtgo0e zM~cytavUC*jDX(wO>G>*TpaHWWlW>iF)}|zvo#$cO58Ob(>0*oQi*9%*6K@fyx^w< z?!EZ0yB_+0NI+qNitZpeHT?O=ikt^yjbj0%0+om$d! zs*2WOA``9x>`#(GiR%9+s7C(z?@*mDX8c9i>)#&cNX+{GHgMc00txYy4^(K_z1Ec+ddyPpqm`s*t;WaXD9KuRm zS^nU(H}1PLVZZW74*a8DK^N_xK?hk)>k z-XbcERPo;!tW0I)H2^q?TE;~xNvJ}LyNTLcbh}BGyQW3rKSCcUm8?pEMQL`Wixe69 z&ewZsPQydwS%z;t_LJR?=;?Ay)35hag;7fBM1pB#RDMQC3=n_14BHfRR^pwM=3#S| z{~Sn9E>DW>B4QLB3B)_C`=1}?$IP06%yi!u z0d)YC^C;Haei+I*A|JKr-(rgfT#9Dzq7!hwf%FA@ELaHro+O;6 z97B)(dk&Erx#K12PmnZq5MSQI=`ruGgfGk=p?xH=3&$d(f8<>ll_m zWK4LKFL5h8MQa(kMJO#r%~$CpXjdQqLD+JDU&u7tGw}!6OKQI$wzEi(K!H7WiBu{= zZCs}j6;;gLp!6P1bg}?C4F_+kyfZsz{4s< zI2v%qo`y*BMFeMfAdp=x{4L1x2b_LNlDR%_t(i`OXLu^w>pK4nMv0W9%yfMEb;0Yd z&3{1kq0BcNu{1Ax39g2c9HJD}tSt=a{#4foH5Oe(87i=~p+e}||poS9qqN&Vngau{?r+eWdN8-nQI(R_+`&ccbm zet8SyCT7`(crTMt+?frp+T9>7|2Ti6+43>M-Y$)CX-TiCQPiX;!&PDw`0}CEi>d%v zGS^p16vHE^#+nO5{AVlZ# zR(#a%RNxHi=e8~A#Wb6OU#TXgSS=q^E=5RiXCyM)Zu{sqyzzCH+bpwBt!-Vl2HioY z7#tkyeh)<3Q`B*Q&q-ap*WR7pDWt60+oK9tx2`r(e^4+2;R{rMjDhviDqNs-r?SK` zDknRU?67vw%NQ5A4ZthnoiOb(=P51r2l_raM;olHFnUZ4G0)66A>#6Q&d85()m^RZ ztnBmT$W1s^a%Cauv5P7e9!2V_%~NG@e~U34=4jF8DAh?;9Wa|K1SjgvJ0JU2^3C<> zV^@_S3{-)5#aeyc+J9!9TC)-_GBX@01PW@9)?$*8!; zekb7hivvDL17G&>UM&Fz(;i3F`xP8`!*rf8`q@?nzyh;j!hJ0sou8^jB)TM&E#^1K0n zUc~)zO#OMMz1lS;!v}z<$i!CD{u%?`*TQmFE_M`mQcRZE=Cs}wa}2anp7i%bjL3m! z+kvnxs|bjV8GXQIJz1L$NTdwVQ!O@8w^Y!Cg-9K^ z8y^Vk4f_4|2qGc~4V@4EJ}6;F7vd!x!X**x$VRF)7^FiG_5%>6uN5W%}iW)E*}GUu}l>kSD1{nj%$oHLZbJ?Vfb9u^+fq@8jgD*`is6#GOX2Sn4kO+#s{ z0e%>W;0+HDeG=q8B(!P}ay)NTFJ)2-P%)$N>1u>5-M(&-M9?-wjA$A*-bVntwH%O@ zdI1m?s>nxE(tga6Z=6M z=Obaa;~s`kl}>vx|0zFx!|DxLui#W{c9E zFzK)#OuyPX6zm>2ZKetgkldMD8|_LA(r7wfcbjI*TkxMq6?`ntW+5T?ucgRcrwH>a z?i>ZZovT>iB+d14K@-O^dSUq1kwS-n+)iI5^s_?;=;2(wN7wYc!`JQppB>Etht9vw z&yQF=>l&>O7C$9gPw_VVRdInEL0HtqD}k20$eST4^w6Ka=vzf3pBd%@j;752#ZulL1;W-;xNo)2w_S2r|W*t*A1bS^yU2 zZqD?tg-w0fzLEx_^?`_ct=d6uBvIl4SdN>4UL+>F{-7XA!+N?fm9*4Kn$CCWFv#2a zDBtI`8EIG&SBh&`3NO7KU`PUlpjwuH8Heb}H*SH;vTge3kE$@Nfs8eS?wk}^L)^O4 zwLW}|6_S$*HWhCDk6x#ZiEn9lbC#T2E4=Q(HkHvEARF`geTXcJS9N2=VQYQIP-WXa z1<YMz;w_8G0* ze(*k8&bgH)$JTzB!DYmG1eT7Ql0?!a?5w~Sn#xIYijbkd-=U?iv+Jx^dTO{-Eu}!z}pPuU;DIUB!j88o$R3C z3Dnc6xZe_sQg{?~HIc9CCuXQjJR~R-x;ZLns^nFvR-|g3sSndvI)lZKde3JqdpDeV zcCxgc_1>+v8oKaQo$PmhLrsv@HO*Iq#9B76wi1(eRQDe%}qN#5)5D79t)}U?3 z#uOd^4^8Gn&_6R9@bCBpAA}}7E^($Fhz>f3!6D*b>Q}Caw(4?zDFxF98$L-%iM~aw z3V^e@uAuX7_vEeo3FZ~}@i8K=%BXmmb-z$%U*zJrH=MzZ2W3GrsYM~^3$sZ70g2wo|z6uUe$T_jGxk3dB zEMEzC;%jYOx+fJCqiT;d92%aSsX)!an>5&3^6Tt2chU+ zEycHA-cY|SocmTnxNum)l^L>nWTeigWx}nI240mim4&pa!W(K=o^6D5E!D;txUJ=G zm=re$#HJo=>x&T7Emb41N^9}FEI{xIYh}jQWLF&^p&`wTGGRIGw2`enWYK{TXC)cq z?rR??{p+HXx}V-3Dbnroqr8&1z1oXrAcW<1GVS{jVp8J)qzp9yh4M5nsr4%{l~}pA z)(O#M8)fF1^M?`r3-^e&Nx|f(L93Nf``gYodRyUx`9 z{KghAc+v>%LUVJ_+ic!^Ai=L8v(3)ZNK?k(IDef4Ee2DwZ)rKZ_G!FWLF$@y(yxDm zz9M|(vJpriPKYjAIH8F#<7<2=Rq6iqncdK$MFHJHWr*d1%_7TIdQ_mX!6_dj?9^(v zPX@RBcsM= zEnHw<3bh3o?9M^)A*z8_XS9JE@%lMiK!QNHWgz~{rQ zHyIy_vu`zk$JYkE%}eIj*Ft=lK%erq>l zVS2Nep3`+plr+KbFg`~-Xf<>@aZ9pJn%r1nj|G@Ow%4U5S*d!H(%7+W*9p_Z*u zij{9XtI}WTN`C?P!6yW}y%JUuKO=dDp6fZeBwVL&&C!jngQn72eG0f88W>YBfi>J{jK8LU!ye>3CTBG zVoAxvzID?Et(&=;f)(IBFYGB_hP-d>K4WcezvK7@9O&myMA}4qh(2!k@wo4z6>ZAv z5Ixu{3!SIJJ6(V0Ki&&vb#T)s-wQaem#=A3RHRgZdYW%l+3r5h*-g~l$+E%~>Am(( za^#-*#sAtg>HLv&k$>YK-Q#Dz=Z8S&#(wSfZO*OPoUbQdw_eqk;H}p)x0iFM??_!h zAG@Dqk>^Ta076Ot7G1!Kcz}>a0KP~d%p#CDJdmEildV5sfyb!>Dc~!z4f}!v19D*R zufVH3gP!RCWu#yS3BSv?2G{N`m-8U9TW=E4U<}h>LZlE^%|Py+VEA6}!+?Lud+%fm z`3-Iba-c04vQ8~+phZ!zyBb&7dr;f1KMw&Y`)!ycZP+jIu+2N5HnJ;l!3Rnk%vWR& z3io{WgON;Phq(d5cwwQIsW>W9Bzl~}#z2+?n7?hY-E2~LLOfVT84P$2u@Zsg?0F=o z`qFKKe~?40%^-$vBL-=Fxdt^W3BX_6BI?6kilu@+7Dk-xF&c+{$32MnK@+LN9?1<1 zXG@A450CsV6>fAL*((+GYC3O~Ql2ZeoeOuOrm?)+c25B)6MTwx*$-v30PZ0N*TP&j z4g|M~AxrnsuDCIzxE{^!-eoB~(+9qM2j5Nazo&&oJO#&)YK1=?L=l+9&LA2wBLOqC zEqW243HtXXaHCu-(J@AMWn77fx#X)n9B21{=`{2~b*H_Wc+b0|E_;}v8 z)6lPU?UdHgW06Z^#UB~+J2T)7&B2BQ8oT>O&?lKso7PvjR|X-U9}%*{n&kU_hmtr0 zb8RThrHsL!vMq5PWuj8aBRENSjKfuiQVpU6mhLw_03E$cqBysf1u>ovoCTudq=!_o znr|9RMdgJ&O_Mm}hdw52Tn-k-rix3O1?llU6iOQ$5~!rviWF`|G8R7UMcd6u$EGt3 zQPF0lTv%CT0mtk2(?Qse78wCYY3g}lZ~36PQKXG|E|C($3kAdK)+I)%G|cbq z^r!K`zIQ=~t9c0#m~Xih&eSzrY6uObWehMLw~jBXUWL%4wRrWGS$8C>*;b=tcrVoq zD!3WdP4+*S)c+>pw`*8%zqV~$F|N03+VDcN&GihmsT5Xc@V3uC>~3a(oz6YlH(iME zu@)Z@rR=oF?eVj8hPRYWb^eobc;11q?CDsEV!?0Oj4|=#*!!#?SJNAT>QmE0IMV8r zva20A*+4c=;5={}h^#TBkp1d|V63yH8tt8ws~-I@ZOhRO;MdaccpYe}>lgmZTR$L9 zT){Re{nW-eB|i^40*y*kto~Li`;j_}X&hCrE#T6gGfz)BRK4&v9^*npJzvnU-G;;N zcJ48hd41j`@% z?<#+R%PSv?u~f&cyncW~D2Jp=B|;%BS=3p9(&~cF3EvK1$IDQLw;t$&3Yd0}(SZ^a zAeE%*$U-Iy=@FeJY*VPM*=2R{h^{qjip@1KYtZ2cyy8!EwyQB~#37*uHjdM<4-LmT z(kRasDw7M783X^_uvNTiM&<7Uo&;WDn5#=>_a|CjlQ0FBQkTSiTMN@#dPQpHx@=vz z7>$sH=mco1AP0_K{O_@f|2-d*tSJ9VQ{K1$=aV!H`Ftmu)`;TFrnVcBP)?tY`ve71 z*_Aw?hKsS(sugXT6396~X4p<`pywy_oNhYu|MY%>UN~hciMQ|-vdk99D!Ml+>VeGj?Jl-Rtp~8heBKMj=c_u|8u;$l`*`G=35u7h++DZ2AIay}X zmUg^L35j^Mx{rD$-YuoGTlEbI)Nm%-A;?l(33ub#j|ELXUaji48darNBzE3Ky6zG? zRc$V_XThzyx2tt_gR@ZQFdnt-mI|2MstpILu83xHqs~H>oWtt%;;u%Md!)dULo@FW z(nl1ZUv4xWJjrX&u{*CEQ&gW_9W|1EjrK+xdyg_rrZU8e4k>SYUyl0qQ~TM@Q@20v z?`-wpM5SFFg67khfbJ%lWbYoiGhA}~u?OEfrO%i}VRoon*s>nI=x7&SC~cd6-2fG# z^%W5$K9sg=fbL_N8nDyzrnACS2UB*=Tr?fammJwa4whBNH=aB1ds6M$?Q8uHErl!Y#m^n%yb&B}KSBSQ`r z(23h^MG^^#HBRaxdxVlJ??Fqm{_^jF8E)rhJp~5?zPaE}cfhQ-JTE$}kfXV?9U`Rt z7U|`fiw?$SM%y#$pk+JzUMbxRG&@^WrVXtM*%&(v2VO*%jlS&UF3M2H%goyh?7uuq z48AK7t(@Bm_NgB5y3d(9+e^(kf}Zwr3eJg8o!#d)_EDS6%jBvbd)y97gC0MeGp|;x zvsLkXuLN8w5kP68F)mX9(JHy#EA^TRUMbN+2MVn^9?E`v^~KrNvbr^cLX}>y>n4YY zc+eX8!2Y6W@r7<>)~a38?y`5*trrojG5?HpEw}QnU2<;5*MNE>hwtLKj|39(!Ep5g zbZ=ooln7Qd+%_V3KxWAvQ=y*QG3hZpzg|{NGnm`s-#()P`Ksme$nRRsc+Sidhm|0W z9j&T7{>UP|1x<{d%&0t7top{~&qvKUH9plyflj)rMlUv#d~`m1TOONeSeR((aWEj| zWd#Wpm%{zdwj!vXW}x^9l$fXW?b=TnTOFNM-#-8G0O=iBWZ$s@;eRx3pLamKaqANv ziWBP!7Zz@#eU9&vDZk$UkwX0t7Wk0q{1LU({%X>`fw^ETXaKPT?AQY=>WwumwBh)m zdu(r)B$);c_v?H$%6kXuaCeMi7YZ0ZRk4ljfG>Vf;Md|nc4QAuDK>5ZKO3@pU08rX zF`Ed?DwTa1H^2Ph?FDTW;QH_`i6!e6`~xSCu>Je64kD6NtjQdQ&-$!&|)D4}xq zwUbAXU&?zMFZ7>jeJYhuN!L)zq|mme(1f{wn3+I_aNnspf#YN>eM@{lI!7O5D?G_i zc*r1?)4i9;Y+xLlht928L2`JfM2J;@Ena9?=o@ep9XMlFBR~uM0}2l40$T#jGZ7(5 zsbL2a;kO>(OAdd@RFCHYNPGYoJ6WOzsIM;>Q9#G+Y6;v;acr?9{*)Xta)+0js!-t+ zS#|(v0CG(re<}ieJrDgfq$N2c1!%o@>Y>A1M2_eJ;LRe3&ue|!B>1+x;MXb6>p~}y zXeoWM84V)v$Kr~)-ZTFerhLC(XO8DSW$6JDjp0Rz?Mzkjn}O&c@EyXWQ5NlaHLN^u zVjqh6&OBnV#pB=yK{xoZHX*$0QY`3%F$rp{y97X0m>w-5kY+K8j+ckwP%oaJ^gr~Lge&g{nOSV~G99CzNVS*^3iteHp+il{{U^LTL9j&^9nN{-pxa6<3O8R;VTn{(CVozWQhT&K&hW)^cT4TrP!UqjsX3*OFu zwgSQx3tNChmIy;S_2eQ8Ud>{t9)TRMeHuo|J*Bv>* zOOdTFH;hWAe@TlXP-_c<8kMRFp{=FM_h#TmFp=We)6$AW6)N72aiK1r3;8}SMdd4m zhq4nV&sIVOR!~XWN#K?6jE_*;3on$`H6Jogp$a&p1{*`v_EK@P7vs_`u?P3uRU1*_ zlD69kv9g>I>5YQi#|bU6kx+RJb3SaM6n_u3mZbCZBSp>q`NV9k9Tja%Rbm3xm$oWQ zxTMoB`e8pzFP1`sXf6Gka{m`w(;pSX3);PYlvOj}ZdSz3mD)(awpxy>KHqpTR`)W{ zFa`F}9PiiEGdxjQm+`ey)YrE zRws6=X*E&bxL`MO?XK&z47!0Yy2%cBKqYXvnzTV9FCJoiNHRR35%?^sTL9rRK#AwP z#>0-VUS;x5Do^i&T#mDsz6{#}};=(G!ikw^iv5!DKxvnH;;*H_)&XxpcMpGU9W@N~kJZi8tDUfS0NbOf$5 zqsSZ{vg^uy{bxzs6NCc>CrP1qc^H9Mtt7TI1VS-_)f8Bx7)VcjoM`boem$b<3w(f2pNjsl5V;zi65Wfu z&N_t-cNt;W)r;t+IflXiz*k=RS=s-igCpz~m&kxc{J_CMx<3<>zh7K3*EhX!lR(q*sF}f|pK= zYxIN2dWFK@_Sj+_dwycx;R8gMu;PHK1s}0ADJ93T;@?st&as$C1B`14f`W}GkM9Q> zVr!K~8O#pf&SRU`C?%2eQRhb^$ks%TCN=B~GpnYJlzh5~YQO$K?8!B1Sh${ zX}9oeGxn>81h2~(t^4PFjvLxZ(#7Z`gxP)J!c?UiSa~iE1)Z2%+AsPc+q`cmyVl=B zm2)iBVwsK)6ok^Hq9NDfxVuZ@ijagu(~qWbQ>ZNSUI(Z)(TT*Tq~Ew@JPm^3!{Y{4 zXo#_E4+28GCPGZWuYuIQ}k8wGnMPor)#>b zxlzJ;4>`%o;s)Q^)>IcTv02e;TUq1%?4HIkSASRpYc<-0f{x=fycXl@E9(h#;dWB| z%lH}H?#8uTX_k66x*hNvqjK?6OZnyHU-4{BGgCOM!bdJ)jB=)INx4)R zX9!ryV%sO7@y{xyvf+o_DT z@cBq_ci;UDzGaA2w2ddUI4CCWOw)WQh0CF00#tYY+M2n^x(&!MMXZ6R1u*UD7p3){ z&e%yWGmi0a(8GRaI%69|YM`E{!nm_n?bQ1%;#qhmBR+Eup|)>m2t{_ujZ@|$oLGw8 z@pMbE~oa~ch>6i>Ot&&z**H)^>3L82fy!zF0f;kM^o zaXf&~Jl|Txk>ahjO8HlZ{gNyVqsK>GpKGPN`QtH7U*5Y6&s_~sKg?^Il)Fu0=jmAQ#g}%_orBF5g5YK~e z!#vq8fJU%bL5M9WmeGaUTCY8hg}_nMezN-S^RdiUOV6b5+;dd>;WZUs(_%+KljIAB z=3mNervwk7vlnhqN`12U;9jN2#d$qS8wu9mjGtucYvr_Os85kbGee zau0w026+K=aO446iA& zA4SUlcvJC%xNdhLjz@#3_8p8G%kDDu#2=;Np5E(FH6hwzrd}Idgy(>6~Ywhrcp`vMDUY1}KNb6J$$ZWegzF zLH2b922-W}NYm7CyZ5&X4-+^D)*lS{ZYg}~XNeCnGg{lX;2BhjK(<`EQm#tT8hK-t zDh}3Mkc~rjPg}4AEGTEejHB+2j8(y!!L;a>j@-!VrI!8|=Hau~5bA{xZ$S8kSj0WP zyc$ro%!X0*yRWqctwhq8c$PlJNpv!GEw?)(eRZN0rlwnbfa7awPhd$9= z=*~_|{k-!efjMkY;XPq25^s$9E~f>Z8?Kga2wm*o_i;|Cv3Y|MSoCoOR=BW_@f5uA zdjG3N??3-uesxlR`InR0`Db4Qwd(&^l@ZK-|MA}@=8xKVU0&lC--A$J7G3_^z9fUZ zRJqkmpaPgVOQxZ8Hc7bb}r_0l5H>F)S&H{UCbm(f%zcr7#Y`W;}%EE*K?_n<8Lm4cr+%L^; zbyHyZs>-XIn{$}Wt45EkgZbeqqdnh%HI>cdcHg37;IM=D`3Yrr*+8e03;q}JaDQFx z1s7=};4M+HS^y`>fngv0OsuIxnrwX;C{2!B z!vpnCko6sHZn*hx6L(E)B$K>Y_IkSfHWH%4LRF1kx^Qvh$Gw6@^_D_tK_F39u}OR> zgLGEq5rZ(iqT|uJytY!trlL>>QWl=iH@x?=bsVtl>V_!0o!fh6brRBZB$HA*a+z*j z6qAQ+S3hto!<-&v9AQzXhIhg5)2AkGED{G$5iy()gW*?tLN1AyYxBZzVUTwdx z9JF_Sz9nAo>_TAr8uNbN{7=^b+u)x<%x~ycz1Wm8PJRCRkr%P{)@>I7#zHNB2FgMr zOIxVcEiPM@irUtOJ6bZ&+);)z9mX()EjhgT_9L&x-=SIVOnj$gs-KX=7t}A7Qp`wh zlX2*EwHgmaaQjUt&uleos26pU3FVHe)z$aQvRF`Siqu#%f8u19dbGDLp0Pu_xs`Ns z7i0R5y0|pI|z4;Lkr<75J-QJ~#uEBRvR2*_N9W)S>3j{YD6qmyrfpWAE!1ZXMZqNyQOgp}X+B_X zH6cV#mD9IE%lhlg>5w1GS|XaSNA+S7BzY98~=)!?3+Vd`!VL zojQO>CeHdYV}h9Co5OS^4TV}D4uZ6--f(xSuW6C$k6d}dz!}Op*TM--%S%fcQDF9k zqQ=qocawge{7|ftFpBL8cL*J{w3kyFmx?y(emYG1MpDTxP0dqET?C}gYUH-0l`^bU zjuKx+@vc;EXrc3&Dc)CsiSYn4ZC+j@q|%LqK_+QQvvKRN!kB;2;LR~K8LO%$6(Rcag-fTKQDoJ>}y2jL;Kes>@D!5G|s1`>AB$s znMh4rPk?U!+-==`H}eW|kyi9IUUjEinqw}q?%GhJUi}!e<9@?RCs$MCguE3Ih;emq zwINc6xmal+d~8+UqfOg;gI8Fl{oEO?YG(B#N5m7;DTF7TDr^3sJA;sCY`*r~E#FJ9 zXYI7PN$H_XiG2u7UV&Qf*HGM<_C&qGaQ}SguG?9VsEF`6F2EY62ydS6b3P&^{x5v= z8lL^db>txC9*6hLZ`Ez5gJQM1Hg+o`k)%wbbVmB-gKO{)mw%D!UT1&L&IcdLn7%)| zcAO_JH+Qi$m=^TxS$;l?MVswn%;6c%%D9Z5;{VQi+&CPK%>j>WWttx`TpUx0wg=(M z$)tKN)I7cUsefu=A)YiM>Sce0{Df|sW1A27wIR^!ALY0fO8W1U#U zLC#u%^)SZ)&QxHn7FiWm=}a9jqRGl6Lpj8&^b!svt&i5WTPEmeiLEf-tmwi&#to(E zbU$`O@q5|KJ@M?1!K^C+X&+0`@;4-zZ@comoTzEmFR~}hM-gUyvDsdjkzPw}MDnqC z0X_|M347QlqK(^GXn)_wRD-P(pHoG7ue}ewgK9gQc-$SY9gT_;1|3GBdoFmSiSPBU%5AjXnVxC#n=$D9+mZp zO>I4GHuo&GeA)K6tkIAFxOe!IM_wppGq`z*CdoDB(TfO#f&cWYfV60UT9-)sK9RM zZ-g)#x-eGZFrO{);v~=PS^pZU@E$*RG3^D@ir{eIoLEG-arI7k=B`Q{%%ofl9BK|W zL=IU=5sS{(+oIL*k`m1Yc;^>u6cUI+i@i$*rTtTdE9mq?fsU41l64Elbt!65sXlGA zVCvg|w1bH5aPVuuxa`_%P|6ojq}Z!vSx=xeF=)5o5rI3v)#n~iU#~MsCAxTH4< zCaHr+Ah&gI8=0!KpcOb89;Wt5exot6>3vL^Mr4avOnxIIJ~*bhC?+}>?H`m_a;(_5 zX&>K%(YikUm!v5ECppFc33I9N{?C|;{PSO!`-bVi7ITw1Z1y~Xb^8-v*@8&rbGu+kk9yeYN9a*@>`=^}!_8ru*54 ztJSIe*IBcbTet1SEV#WSZxY+p`9z^Zl{K96@vfmS#^M|f1l=FZDnch#9sQoq51T&w z?I^pF`5#*G7|6dBG9?N8NOb*03WJZ+D40P1Ksf}%Dx5r!)VY^jl-w8D08A7`m+V2) zNcR!)F>8M-QhG>gJ4$3Rd^?)|aBw?@`vG|;R?KU5%`ZRXPAyKBMB6YPslSOTfoqPo zz(mGcoLWU;I#}m*+Y7vt6cs?Yr>tE#w3TKHDK1L4>tCG8a2&Rxm2fTc+|S0^MWM{` zR}eG*8H_1I_cN5V#Uc-~G-R2-!F;fu0Bl6C3f}hQEh(bc@uCk*!@IV0&h~{E6u*yZ zDJnV0Z8^+@7uGIW7sYoJZ=@;@zXpk)YN*L7rH)X^s*WF))Ka=dq-?8H-um0t{=>rm zvu0c;jj_HD1#pnFFkN)ofa=xH>;U(L3)C$Zw$!H7>AZ`9+&z=-t z-^D%A9_q&}K1Q!cQSM~;++q9#tVOiKL4n}Jd4Shjw83MI;4HE(&Fmzm$Cf{-XCKpO zER2TiIcyZ)%Pw0~f~@$eWZM#y@7Y4SeLdW>`;xp$_8~qkJWA2*p#vK1YjnghB(yFb z^!His0-yIAl(qf;q3$i4>Tulc>|YWRoCJ3W?(XjH?(XjHZX0)ZcXtTx5Zv828+Y53 z|8#oV={)CY&ztu2TdZ04bze(P9c)mbD;1u~Rsj`90zsXpd2)~dL0QKEhok?5_tXJJ zXdj3o4cp83lnw9r*97WyXYznV@E20mzs1~+tB~GK>>mc=n4_Dqp&9iC5B4kAm|JmS z;N;o-J%0?Gs9EdKS;w1YU!Nr4Y|zO)L)FMh8X& z1}>vSNQ@C&+Q#3a*|UXt6%#^n3h)KO#3K*d+t}?J%i;D{ppX%%GU1YeIq)y$R5+(&!K3%TQO4MuSR&UJ+3`z_MVQ|y zev4!%CQF7Fzk|$ECm~UA(-(}GO!gH%U#j4aP-3(jHf5L|l(x7X(>OPKY11012_j9o-qebdVtF@ZpK2;(c z74_~iXjRF@nweXrKqDq=^WmbWMDbKveFwILgkH(UHq=YaL8t|%tRjT*(TK#f8pGRCY{Y{%iO2Er*gMv-V3li4AR zLB%&jm2VvMfHB5lXBmT$VNAc7vA6l{SAj>y-)8XS7^jwferIw~?|Wk@O+~NQdCqhl zbB$;OIEgak9)CX;aJrlcuDKP>K|Qn@LzTC@AS@gJog9!-%`Im;$5B=9Arf(Rr1ub6 z&pw@0e03=f{Y1-MsK>h!oV0RtGAoU$SC#M~W>7L+DiW)#M5OAMZI@u{7%)$Ik~F71 zLvxD_)ImekuOU;@6ZK!RK_5KpA=^6FDM5i}jV76kI}eoADo-|8m&?o9)Q@p4bLVyC zUSs_m_aTSpitvSOCwG9 zF3n`$@?cVrhm6kby$fH|-KyG{z--f6K|v^ccz#yn9F4$aKZrxBFb|qB3dcEWRA%Ox zHt5{D^Ra`CgUj}3GvBRiLg?;r{+arMm>N-qN_+bUv^Fhf8o@Fqkz)ZzPnc@3L%Egw z8Tr9Wb-gZfg`Yf#h1OHklJ=rVu6TmSnM-{IY|7^Y0IB77X4eCpo5@5k8=AZ<|DluZ zJ^p^doW!C2i-^V}YH5yji{OfcRpeW=?h zkCUfX>BKF;K&OIc?)pE8ybq3QFz2acUQRa{{-(934eq&KHa8fJHOm_~L(UEJXt~KF zb_K70c$3mNwy$ykyrT->TFaa$-pYaAp5>5&_j5A*nuQsKC%&SmqCJ}7{TbuMI=kCT zHk`=EV85<-Ija6|t>@QbW?$G{4?|>=lqI^!Y#tuvo{p7YApLLI{3~XCF&})Zik%?a zaKNR=C~CgOM%Gs#MyE_1<(^4a_M9{-Uv(QJUs7wGTuQ$y-2(z9`CGIC+C}0Y6pA z$(}e(%hMhJZ%n)}oXLbFJCbDU#K@iOls!v|6%1t%BZyRptIC6QN}M1_Tdo){ivU#| zqo`WGApKPATCA!`I!Y2a>4RCKW|Ux&m2SqFcH}Zuzj_pGr$~03<>x}7uIjnxp_=P^ zZIPE71y7ltXNeSvp65d_o?8%w^^#U-FKC(Klb~5~Dv(CnaawBKoRVIe7r1s>Se)W% zSzO-Ifu9Pl8RoRiXjqE;n_0DHNmbMF;JK65ld(or1Nf1-XEtbRX`MVu8U<|7WIdy9 za+l1cZpNv}uqwkgq$+3`XE{9&+%a4}Z$nMN&Tcz-DWxq1wMgmJmr_vGdfd&KUUs8h za4Gb>_5YxcEBdiv*M|vjO>Z&uDMzz|e|@zNMnZlA4XUbI#|>b>Ryla$yKRt;5YmY| zj$sl3Zeq!5x$Q=2A4jNEl7`=wCf7w48>ZNILHSBtx7LX>l8e-Lxh`{6Op{`-cbLga zq~%6!GT%3uh2=)hnidXds&5vhBQ@a`C>%Cf{z?bED=ZnpnzStG>Q%AE8Yb$@t=l+R z-Gc#chS{xl+E(U|qXL#PENN5Ur_XoH9(2~WyD4PV5*9cw;&$sLrU?)K?)lWH$8DE9 zdzkyZmmh}*f!iGlt=b-=%J_Ob9jec=U7K?zayZWv@xdKY^?G<6HqCOn_vaM85ieV! zL`#pC9^EyHvP=Hb@K1A6;9D?3JC|}1;PGX5@{1Zh2t+x%Cwqh*G z_)P_@$~erNaKNGOtvnHUJWSlLbWpo1Vbe zLm6W=I7*1Q+DIB$=AUGpPa+dMCjH`&=o^(sW^gkA8^dUjw~+lI%YmuXa6?_=ZK7^S zF;V-sAw{R1g!YVNwE56B)fHqC?F%jat7J~wll+#W zJ4a`LEwrzMV4*;JDN)GhcsG#g1PzgrIP5D*!D3>WoUV~vbk8pX+~(<((QrSzMGlDDRE3@TNnY|W}-o_h=7cn;-UO8UZ}qzsW(4P|!{ z=Av&ll&3kGiiNVtzWgeb%F*L3fto6`JTO4DSF*Nx+iF`57Aio0hHCQ`ifZc`kgSqY zxZn$8@pe+>U(m}a0WjIjTg8Y)OLFMX)~CR*s1muaQF$T!J`^AVlD>UZ#}ZYok5*PS zF>=@Fx)E-)IX5zceq9Z;QH?zKQmVy)$+=jgnrs&WKClu=SaXiFO1$n zI0ituXEjnKr7ng{tuNaM2Oca%3%qZgmGFlAr{T7|q0b?B3Q`}TwRMCqq$tj8oP`Kq zqXDI?PuQv-fqjpJPs6;Xg$Q0F8OZC}ztOt4HGBzP|ZQfU^D4@)ymHI9CBt@=o z6XRN2mOC2tXIV~u+S!lwn>`g!TRNDf##%Kps}F74oj}eO7+a~`RGd;hsHZy}ww&Ja zqxsqGYn5C!?9(RooyUj2uV6k=;>nLJM!QS2{o?s^8(DPs`9j^6a=N=MBD;2pWDI*J z$ITY45zg_En%UYBtpc4=&jLgW*TNE=^M2p@u3bF0mXFK}{^3s2%bLfr2cJvGkIueh zJe4?D-9KTuY*Wbi;|WZ<%Q1d$YbFR9Y((9``n7L+&A#1@XK|9LV#UWS_#PZ?x)(eU zKI_Fj9;qRmPN5?!X9h;jYE!-}&323DDv7Vk=emK&C2udGIt4q0lTRA>a3y-Ep6CR* zpmDcmtjyf5BKY*n`=p-oaxgy6*((pjL@pTU!(4{uhiP9Qru?ko3mz@jQ#gx#-t)Y? znR}!J^N|8yv4#A;?)q82EPH0o`WXiL^d$Lpn^^p5QVuk=dI)paXY(^Rv4X`2fF4yv zX_JCew?x3O0WA2kJFtF*^3eJ2&p9grA?`?Ojzak4Pdw{SJ>rRXV#FlQ&EOvR*HxA3 z$rx&d|7&s}q;nAOiVjhmDGqtC9HiEGNHE)MAd9;VNt-=+n_u-{a32IOKgMsg6>`-! zX{f}IJ!Aj!FM&=WAK8*EZKY3iox!P)Vl77BsRf@;QX!j9soFiK(K&S9%!pG~W< zcN>bwQ&@Re0Ij-aet=kzejAkqk*;mHYjhbyl)5+~k)D~jTynTt;)+r}PS>6sPN@>5M;@j1B-ybN3Sx;;y^FGP zjtV}O`Q`@5g7m3P2H;-1;vE8Z&>~w&qK`$R8%?6i&E49_KS3?UZF0q3jOf%+_kDHO zZg$oFC;8JSl{0sRbBzCKq~l*%)#!gq-1a-y-?(nfaDna&fcyxUN1I-SRp z;1ikZXck`7)S1Y!St$@4PPaI7#Yz8tG1D1DcA0{o{FZ@v7|{>ZZ${q@fy@q;Qb993F>pe)5myPrH!LFv8%-`VbU}+? zM~$FDS}_DL!+bZ2X8-D96vKVgWE9Ikd}kCV+`w!cFJ!_(z#x|6N|+!a+H9Oy!UJt0 zFDWZtY_6*Ntds(0i>aBadjVk@U>GQBn$AxXp^#xccXA|bKis~TRa-_UI1WhGB1oXHUI4!fAMTyoJPw*P!exB{<}2JQ}cIObmR+uc|?XJ zMFo2WXJQVx3hfjqQ8$crP=&T=X%*Y1T69*!@i2bi@<-QV({f1D@^}82uDiAM)J;36 zcJ}MDbu)hsG(n4(P)p@{C&CcbrS%=F@nv_- z;aOS0o2^=D@0WSjx{mKuZdawyRMOQwP;59G{e_Z~RDT3?EE%+4JBqG{ZCy6zMt&EP zFiH`pS}%=J6<0Zi{Nxg^RHE+9LTVJA+EAWiO$=_7tDOTl%$N>)=S}}}CG9NEcZqU0 zEtJY>v9OP216qJ5U2~40Rg3lO_F9PMDOoB6hy2kqrA$`q}EV^kfKvAbvD9TLw$w~eamm|a#{N5ZF807M}W^*gUk@QN~ z6L%se#rxb+6$)k*FH&pvI75GguLlwJ@h+ZKO3A#Qv`;K_>a<;MonC%lwT-)${Qlul zRmal9Y%*mAezTs{ zc^&+w%3&7=enPi-H=jG(R(XQtxP+#sh2Wn4KuAl0fEf&c^WJg!jUfObOYe^wy!9PD zt#AH!SRk(T&W~%fe%}Zn>2KoVm!b30)I}3 z0V0p3FhYXEv@s)VpVSTfG(~3HnCM1q#*wNt?9!l=(C2Knw&Nk~(Ni4p0A|+Ux}``% zxtSN+dpnN$N+}Qe)s!cGP4?f63~@o`dI*#Xxt}6m&QIsqY3Ovcrm`B=J-IkFiekLs zwI2zK1%betLUPNmVj33<8Hi@7^p>ia>!wp_2Ti%`x%kqlJB#U^r{O#p6>=rQ=o^6N zf?=pcxusCCOd>G7n03)eGqBXH zrn~Cv496-xa6IODGFp%ZLend z>$v2z1WWUH8rE(2HK&KeSM#kseR|bGBEO0%U4jXVNL|sW#Ckk41CcMR(v-4 z@T@Y_-t1rYQp3qNx12fGSog55qs?}vUH2Wi%LUciXH{zJ3eTyhtJtREqEmM}BGu;- zx5Rr!YWogpC39?nP8C^N;x+}fyT$TCh%xh5J-DG1s*kLY88mXyq1HRvnH%2xV@lSM zeNaKgI_#svP&mGgfG%Z0RY`guoB$l26Ry@%pfC(RtanJl=HJ5{B4gE_R)y+lI_oi4I`Kwp4xy~rM*mVuwekuX}~1KF|IRw z)4n5ZDsSPD<$U2NzVgHuYl#}&731n0yz8u4 zS&BMw%7C`}H8U1E6PU{>x;vG^GW4FR>k^i6)af!C7PCcFs_df8h{RUivvOP-Ty=B} zZZ-bm^B(C=sp!Yo0n!_*oNFfF3`!rc##&k&Tcmt4EoQDYGZuH7~(AB)~$oxTXB1?BGI|Vko8K#z+o^qHn&a({I}Oa3cjK-Qb~t4pPT3gV5L;# z^BFd{CP@eI0CR47KDQius+;XG04@83^Vocjq=Kdn?ERPV(%mi_VW8|APn7a@`4s-z zT~&hDD7xRHQ~kxgnvl;KMs>X-4}xg3*khUP2<=8S?Lh4W)5VoZk8Q2wmsa&l!}S!iaN^VEw=FA=ks=;1hosc5T|;yKxm=hAe!~Bfi|UzpvhZ z4E^A?E=8oCg1vJ{wsp_q3q7hwz@Cj{KTqQuJUtHa?3!x{HU%DDo4@Ow2GYU#-yXU3 zuzN+mRLicni?;Rv-SDyI|sbjuH6S z&z!MFpZ9$ft6y%6@gq?AhX3(A%liuHFRh|842V)2oy{W{7M|uap>!f zswEm0L~9Z>P;AfI>`k$3+R!4_MI20XtOa!A=KTCQ!*CKdcX&&sms59=ToIRn5?2XF z)=$w39F*#N@U&ZYzf;3hYGa&B@pKT@VkT#@6vs4x3g98Lms-IxV`p!B2rU>?G=U0( z3dhh=XLk@Mqd)NuQTIF|6b}nZBlBs)v@u5yQ0I?2Aqxvfk2M$IFAKK_w@)?4OD^+{ z5D$e5w+UVe&zOyH7cloSH!OSNt|0fRdWt~2i>yVBD#4I!8dYzB^7}}NA{&Z2a&u9F zR1R5;)Fk&ac+_hM*BX8DcV-W~E2f+#k92ub^*0M1F|}_smwR%Eu2D40ZdKR}2QadG z{9=h22&dX1_as~4+9Ho88IGYmi8)9M@o}~FH_=*wicS)@dl-$KVK-|19(N68{~;bH z;cTxLZrjtQxUQ}M-;OxE;;K^?^@m**u^bWELj*G&5u1YlKlJ#iGhpu6J(ZL_w_|Z zE$02FO`g(HHDd-3ll56uP1AlyYZS-zCA*Sll&DzX1weI2q-ERN7Lg`dV~Jtqcz80K zD0zL2GtNUpkd)33Bc#kP0Nfmvg~suYX%{Bas+VUS8DyN6=7mxM%ZgGgf#si+K|*Oo z=$K_CSfK~zEVf}9#;Cd_2GYC+{bKwqxCi{AU)OILX;r^wf=XaCNNAPb(9Gyn)mSD# zMd7y0B6V)O)G`*=v~0Vs)#_`gRot@YxpdfcO4(}Lc8>N`(|S$GZr6SfcC+hQCujvF zzqK6MHT?sbwf5(Vu&JOgk3hOs5S9s)KJY|}Qa@N&&Au;jVhAwlb3Pws=)_YhsUJmi z(QeQqQ__eZr=t7Oz>i%j?Kp{1I7v2rdn!#f^YIMV6e#!;w`qb88#mj-hcX*yUXmBY zY$G3*b+u5VB6B-M-4C}iX`ukOF;wFygS4t2!NZuZe|&l`Z0=XwGG$#$0bEBKI$s2D z&=EybZXupV8-%bt>O4-Hn{rU^ilkPw1$mRv0QZM=wb~By6=j+CeKRXO0^)NeYot

6v*)o0{zx~#g1z6Kd#b7nEf6f zwK#gDo{y*77tXM!J}A-tglbG%f2W@O2id*un{IT#pogB=KahQ~cQXViRlnbeN8{lv z<>hcT!Xf$EvVK__2NPRoKp~Q&p_R}R`QKo{=(RON8vYHD?jwLFLK4EoGY$nagYx0I zP6lu_ClwK%vk+4Y27v;nfl|^E$oG%J$f69);?|=mwd_e0w((Koh=l*pn2XSZe+B3U z5uy)?^D|z|0FZ@^5N94m*=y{>;UtVO&oSC~j;3P0r3rtRGL7<+*7`nB6%oX$i=~t~ z#5*tGeV{;(VWq%^Cs&PqWjaljaZI4gc{^~xVHZ^xK8%OyGybiRF2tSD;GHzNkE4ev zA>1#V>}_n4Z7MNAf76gE+DAgKM>uJ4Go3ulEX6>EilIX~FCyc3#5AOgYau)DwFo$5 zsh41LY<9>5YGktYc_iWgU8AvisghxQ!YnJ&+JTf4`(9d2XSFJZ|RW zoq!0hSkE(e-;+4LB^wL0d;F!+aLR!fAtyrZkY^KB_V^ic%uDqW7wy0PMNWPRe~XEDuwbR7_`FNTKU4VYSf|jJ$C!;e9_%fudZ<05z2b2O~K$ z0taJqoRW_#ekqloEVy7XYANzm^h3SKmQk`)3MUh)(wxK|3lT1qSY^Ho_vREk>t*wrm$~B-E#_#Hf zX|PEK>3pl~uX#&WOS>;IJypq?PML40hOv2o@{;TAm~T>j23yxCuUF4@q%&g<3p_;P~L{cB~rsn@dtdUQPB06K8E?8Be zRS3tXY6v`QJFqdKkm;Cfph$`QoM>=gTc61&k*q#eL34|WpU>hQ?^1uKaj6&713bAo zTuxoO#2f2%vOd|S;r`OmQPWpPU{}gdzS5<5(=RM(RYPo92*&K%$^)T06C5e)ziJu$ z(sftFM7s`^sM13ATM-0qfYiQ&<`I#P{;ZENSbPI))%UP5@Gr&0*>&y{KDrO{**b)! zOsZ9Kq&KUorWhws<5D6E_if`+G__D4BGGUR(}_-jBkq&c*J_?=>~dz(m2i|-2itj^ zVnETaj%GIp9F1Nn8W{rj$0FY~yER+tr6!~c1h-d5vNW8-pf^q5@jO$-mL#O(4^O0W z8RiKSoFkm>MSlM5NGO&)C?`m_q^|LdulAM5HA6p>=)o$lX1S|&@ad<&)lB?+u%ij0 z0rdborq_*uRZ3;na!&QDolB=VsWO7*M4c-u(=9EnQ|AyDtxMr9tZjPF=hWcF4ay!? z{le}(XCutTBUi(@tTB^3OpA?sTo>Ja_-)FcUUOE}1)cBb`aV%NTW_qc66Mi~p>!Lo zZLV$NBnW+;Q44$cL+oNKx(YGt$lH5Lt<~UtPFiUXZ?A7`&7&&Bx{KsMBMPqUpU4+YLId}f1J4WKPwBKVIRxC5s{fe&wK4Vhf}>VDb2_% zuIeP0A!9VixRou&TG$gCv4Zx!JiW5cu#2Li&Pn|8mhX)=TDEa^3IjW*4r`oIPI1|6 z(N&iYH_x^A-9R85?_St#t2#f->l5X!H7^b~FIC^1)MfMS#_Z=bfsAhVkAq{Ex##3) zUb14k)l-KA&)8}(Y4r%ks9x;J%1EP=fb5g7dF&|zKK!HPQn#@ChsE}>Szq6>M-TF* z`~D+fC7e(zKVA-dJrmAjKCEYg4IFC*Qq$~lpySFa`gmUx>^a+bY@`C3rk7ZUMNc=yp%plYOHN_d>=r;RS~MO|etRT1(8;{#pmh0H&NI6y?r zKgT4%Er3>J_Att9j7s(dRau zb%|1_>0OxGQ^@(ZaDC!%XzM41@RN}B|IoqyKOZpKa5$01Wc7Kl{{%+!gre|dI-E_1 zndJ5ur!ts;3#e+XIX=%U)~iiUQZ3n7try!79y52<&a_wiFht0~HrJI72Y+EH*(NtU zHcwW{3x!9$Ul)&8^TBeZE8P`WS0}42EMB}mo>#i-oj-r}R=z#2oauGP;&=GgecZck zIDH{h$@A|(bl-G?B}~%`g2Y1252~hU!wW)JJi!l!w>-&L*erh74HpYx$BQ6eGu|_x zXepbIoN6a8jHI7q-dEN*EHhGK(s)`hBHMCbh!N&oBnrd)F;Wnxf~s*4k13m`7AFmJ zNE|N@7FP=kSI{7lSG!0nR@EY1JxtI;I6M@X2_a8UvgmIr5wJ;l#K>~!U?$VR?C>B< z_2>yF6?Rd5EKLtMYAW^AOfV}mawmOJOyi89I4uS!j_*sv8%7qCXlMXWi}OTDfMpRW zmc*t01wddWxNey8tg30r@~pb;sN$@q>j8LH`{xH$RaOuJ_DR8TNw{?bG3^8>Y?`++ zGj|R~!ls!?H>x^n&9<^CdyCWEuypr`)wc35)Qz^_v_i|e^rRS?Mwu`Op}=?{*=a?q}8zV zd>YUDVH%wsO2LA@i3ZgoW2)w00t0`8Jt1P|3J^!zB!+I2nWb*1%s*~zN@ zV=*hZg1~E1A>T%*T6vq`i*4(U5+XvvZg}RhOS+TQp!xYSTgc5Z{Ma`xLnwtabkJ)}wVz zrNi@NU>Eyg{CLS%3kdAT)IGnH|!s~ zBpvXkzX;y~Hi7><2^0Y2T{k!kE+yNNewEZ&e>48<6y1MejoaH(a%Tbc#rv_rMSlY&1G`5kYmR z_yvVyyt%cpC@J}{K!Zi(X+JS>XTg|^<3)T9w-lLB1d)6K5={y>N&QaQcvDeBvW+px zf7Nb%0;AGP4dm$)hbOVA-3QqS#pdJsF~+Hd%%;R965{-n$bh;&bf(->R>Wt=j0FI6 zTX4EezICHV0*I8T&|``&a^Cu2VVZs>Le{DxF`M`Kh-$Zd8fQ*P{uF$0#8aOz=`&uR z3r2ya|Mt>lh}1;#jpyX*ru=UwLsR~F7MXAe=5&PUK_;5Z3Fr1$UlvMvGIkUmKiQ3f zO6Y=@C_q9&&SS3Oi&JrtwMDWEw5mv+_mL-4?IMJ?wJ~1w#CcI2f<={vl8LRRzHS205Omsjj{O>_rq92!6>bfc zxG*5;I(@C|(C0iy9-^YT1Iu@NK3`OAoF$%4CwI>jT*`uA1)ncsJMELTEM}l~OjLt= ziK*!IA*$B6DBTH5VGe^xkaois?F6CFHbQPw49aZO<8f`*!alGJZ~K-jA-NgA-e(G^ z-&#uVUFxsY0i2k}F~e*W*OT_t=-4wgqS%MW6<1tRzaQO4kD80)t&k``Tph+JS&|d$ zp-j@4(?>(Q9Q%U@RH#Q3CO8ioBFVa#=%t({;A%|4aW<4DcpcAwjB;)O>wqIRtJKV8-*1wU*l3h326;{whT55%CMzt6AvN` zC?jrFwWp^>-U)aJ@iUWzJH{mEbA24|>ZS|c(wt>dCwc7rSO;*{6xCU{gLxUw z!K-m8WUsZ7O`pa;y03Tv2^*GjER5@J)rC2LV2rq2O<-@OVE3Ms@m~ii7t9{1hwx!l?v-=BT3oiS5yw>vQ!L(xkB_y3@^U zktqmP?6i~JWM?1|nQgj@!SQe)Q%da($MfoR1zN4uH?0B)+93i@zfHF^KmOgF=fjEJ z+BvE?Se)P+?V;&^JU*YLBSY$%6 zC5z<$BntwOvJzrSPD^nd)+|c$Qa%f`h?EMTU}-_cVg$6B=yxFh#4vCJ_I}fy&nu6bx|Wi zm_8Eii??=eP(cR=MgAsDAGOY@liN~8F2BwXzL6$<+ z+e(hhR;L-N$PLsm>Tfg&f7K9u8fG)m-jnBu8K;ouR0X<=7G&sfQy0~l#9Wq#eBfQ} z3}bz?R!zS_G1;0c0i29%#NJvA9k{sN3|;8F-M|U5L7u0w9^0ty<$h<(PfI>ZTJEx8 z1B-1XQTuo7$(p^`9C8tU=^itz7uhX(*+Op~Ci%5I9Tvs&-Y-_=w_P0ytg^cD?X@3m zr67n|-BCL*g&^Z*l`-)v3)RR>7US7@pwgTYwmy=PfDK2b$4bsZ965 zQf5qd)1Z>9;iLMtcejFB3}5`qp4?*3D`H=5huZCYF4fdYYf>+Gpg`fHWSHe2&Kb8K z!PsAs!&|>I$~zr;<(c)63E)=$lz&_w{h-812%549!g&jaq;sz?R)`BA0_3{GVDu*x z(FZ{?=YP{;=R$Lo3Pmg;P~=bJ!Uo1sg1M!CMaVu4#6U0zvM=Z&#ySofGCM?c5#^gJ zry&xmUWL?ft-DVhK)-ettlW#zHBEt5F@8K#+@wJVeCXIvYp-9ut+Aj_`|aB31;YipX%< z#{BXqAgdJ-=Y6qHa+W5R7LFK4T2dgXvNjpze=Z`JOVABVI+XkzsN&jcNafunp_kDZ zH^9108ZyaCNo@?FlS=Q07gULDl)MPjtOs|64Bda4&}#b|Elv?E`(36fW-57Z~;Ta zH<2QIY@mE-1(INWl{ub`Mi0Q!ISxmqK#VVPFiy0o2;Ie00sup$=K5c627EODvMv982PJzA`FRH?eOhIuq4>a>?#s6eU$ z9xg1XUA!e%@GmARJ&b4cYaZ8$pipZJuwjh|LN@Rvfea}sF(+(cYp#u{x#>7Ge?+z< z+F|N1%TAy#8b&vJIDo4c^e4zYJE+QpS%@qbRo60_;G3lTY4lM$SXX--LjRB?*mJd! z?bp~>xZ$oi3e0sBy|GqyW?aZjoNUMwqIaGUf{r3nwCfPmEcZ|;J^Hv7ZW(F1+q2DS zHYa!=fUrGxnu_(F5VgZCk1*sWI2)S|67GyB zp>^G~)ah`sw|XBu@QV-?&$xH2mrVl+g(FRn3gR^hl($6}&xvC5_fzUnk> zCf%-48~a{d1P;6xIl73f?Be*Yo>^}_OS&#Q1(Dg9retAeyQk3+d7mh=HEFnMXg>um zsLthKkrq)(oc-f`myb~;C1I4vGTh``M1F3ZveGtB^vqnAzP=)usJu|PWossL&WrRo zKN{)W%%4he7Ja0i&^%1d=!B~yL0L61`o@y|K>^~yf6n^DYg+GRHBT0klsC<5Qd$T< zt6X@$cED8Lycub83-nxv-YT!x>97{o>fG2-h3c5!6fr$EU6Ge&t=%NEQ+2A}GXFu^ zW6(Y6v+cP&r+bil3A#w(>Gb6xX={&mwGSWknA?w0AArwRg%#Z}Kz>x|NAJF>dCuIp zx@e4Dp_@Kd3VX|YQ#~44ow`Zsd^@C%ZJ#ugz0FvEJ7S+{pLUzR&3S!0=I`}r=;d_I zMbjx2!~fiRNIt~p0v@1hdFFA+nv@$uIX>0!$7J?tdT8$_>7F zHZ1^nI-3=`@WPa5B*+3yic|WZ4{Xw1fw=*Y20)5{pgEJ1G8fwlf{Mh7@qfPz0@V$o zS%KR;q2|pXov3P$HCtHS)-6eO%eI#Y&69$I2IHFS(h_Xl z&d*1NnyyGk;Dzf|zsO~GF6q;f?amF=e4G9k>AF9jxY7jHUx>OC222>M>IQ^my_5UC zDtepyF<(?(s|C1ZU5>zOn}ke6nmL|a={*i%cKdU+Zj zZi5(OJM2P#JY7P|7>aQ zE;D6u76Yt`y8P8BcsCg0o|s|*Z{B~sa!o)0PO)x-1a+9i9bjdjGF*+q*~<7Sd)%|4 z<#;pK4YYbp4l^1+yIUsNmK4I}Gz1CtJD>;oOTiq{R>L-BW8TpWp+L+DF-A?~%q&@9%((FJDS~?xTst zW3lqS$u#qa3SW646YGB;O5k5$p%20j(1&z*6!`UZSRg#(??957;15CC5c0vDY4hcN z)El@^wj_gIu&U7ZP+c&X=>T`uf0P&P;d7&ic<+~9*#JqyMK~_v?hhuyJ~+vEuM!19 z6nsaKYaZEfEpEB5bY(;In)U!92wlvn6G8g5qDX7+Y}p+QF-}i=4+oqGT#4`zZr@ol zFVOC@b^$lr%dC$zlN!O#Q}W~D`tSiGVzD2m#6*&cL`lYDgmfHrEHJgPSqtL7V~@w= zZ%QKUg^DSHKADf2xrl1&L#lG5KN^8WDJ|9qC{7$bIyVhov2aVfzR;M+i1X9~+$CxW z<&%bj2&q%bg}?GKr-C48(-z-~V(QXl^0enuH?=n*>zT&w`x7YaD9zZ}RDQX*CT6pK zE9T&{5D$o(Prd~^hi8J4dujuia^Y8xD_%TW{Jtgy#RMY>l%I+PGz{5O50LWXO7@k6 zPv$`;n+niG&H&c_=Het5i``>zxy3N&VBc$r$#EhURVNjLgUH3Z&1a#_ zBPXZMnathgyiS~~nJ_9r1lbgv$m3Imgow)AEa3{P7-?m;$Ylvt6~ao4DomEBg^mW6 z@}G8tk{qj2t#b_mKlj$U@uV;wZ7Za8P2|8HP0DG=q{+@VTs z;Jc#Usisi>_^pZm_k5$X_N0Lf`v(2`Dr0o2ZWGa^$SjsqF*Xa)h2IG_hbYy5q@(7Y zx9($-LcoMpw{A22kvGjpuu~Q$shS&eHZ2Sy)piokE0zgU6+=S0%`us(S;nJUli$yL zlBB9nGMcGoHd9Jdd=xrTcH7cao>&21Fsy_+}%&(jLO-&3( zCOV*bU?0m3!1#sUTJrv$7@j@0Vph%G7-6y$)p@pTKDE-w61o&!k8NaR;>I5_zh3Jr zUC|{`qb98Tm+kNq!!@-UYq7XlRK&^r&E)Y%=RCDceB&=Qm&1gvDN$;(wE+rQ!(=-u z6&PQsLY)Oav6N4-dSXYKo}&~njo-vHb_FNN;|G{Yy1$)-f=leCr0)$QzLSFM-ai~~ zP2fnO%s?z#&!G35D^_AA@bWhQ!gU{D0A?=Rqz1C)rjHjRn3pNx_N(YQP6qifGZ@$a zC!G_Qo+_FgbgGeLdefJ+lkY3J)F(vIC&Y(_?{XrlK}-djPNTN0f`~kQ=6qf~%Lo}T zavaMyzMkuK@KrWHVJ=vrUI)c!T198hZAvRL+rn`lC8}j?ROi>{tA>HZ#nqEu$6Res zIj(U-b{V{wddX3-k{EV8&?{2+yr>;4U@eqzEVWMG*Fa~B{h*7k4?up{@qQOI!Jk_3OLU#h))BSg zv)B;hbcu(IQs($1-^BeKpspWmD#_l*HpL*ruh<^G_$(tEw_OgG>;o+p} zo9!j{awya0F=~c)nq6ypQpn*sxt|3rE`2(V&3Q4}+qNPzZWFS z4h^+@FxKObc>xb_qu(7s`5^4Ea(CDnj+qsV$#P>fsY{`=+QM-*U24w~ih4MGc3Ph; zQyQVR(X0e6*WKq>zcYU}I=C8{!&9BDqHDQKuXwiD?y9?kiKVP~sO>k$S?OFZ2;H8> zr!wWQ5H{VfgOf}y;Qfm6%}$T7odGQXXO89b?G!2{k~RugI%7W=Xd1 zX17_2{~Kai9{-QfkUSAsQFZB{G!pemeJG zvI1Xf&%?c_>!FoJ0CSF+QH+@ZRBkNy*Y8ChLOJmk$zHc%HM8M1y%pfdx5D>eRnRT8!Dv&T)%^J6B^)^>t@J-!;47m?l`tfv6c z4qz}rl^fyWfvWOtL!>VTiAzlwdvHss(?gKlq*XJ240t=#(gqRV$aD0rHA<5`-rrUT zIW;xPi{xfBiHbos-<8P~uGJYS_^maKFqfh^)v3unU7KrtTX$LH*_w3uOA+srw`y3Z zldy)+@J=;GYnfFssXF`K3>I*ei+0=c;!@#iCrsV-8U|+ zJ*)Tew{L_6U=# zXZ~=~ipQnCe_P3`3Sx?Bd&IrR{Wy43n~4YCTj2}8ly;t<&-i}n+I%Mc`sX{$FCqw( zoG-{v{Np~fu8oyD%8Y3}a}IJr61zLTv>3d<0waRmu=7v1%=)v!>-g}j4fb)!(O|~y zxmZ8LpVH6pS@tQ`;d(Se9d?+=!E^==G52>CV z^~5GVYT|b5OP@Fr-CiuffT8f?uX+nribJ5DapCI*d%}+#g_wfEJuy(5D0c~Mh=1Td z?)%EG>1zkA2SQ`b&%qhQ=8|}g4S3?I{!s}{2JRFmBFhqloi>3VeXx~ zEB*I0;X=%cZM$M872CG4V;dFQcEz?`v2EM7cRl;pea>{B?moSypFd{iE!=C}>-u~z zjur;iB^HsAQGW$ZB#l-jRY}8qGoni2n7t*h?>NW?H3B-{)TK}ZO_pQ@oKr1VhwMG5##Y(TJL;yec!n7$xb9TgL zMuw^i4(IG+P3u=MN~b99l`XpF;O>cY+2F@@Es>O_1y(8zJ*mYxLHYKcbo#3rOPsz$ z4E5UuB5xxjz31Jh_KOEu-x#TicSRNn^tP+@Pds{0Fw{LjI=a9l_U&s;SI%XFY6ogB zO$19!%4LZvH?n~pgvqhr&CoX?VM@DBY;FS-CJ2#lEC$6Mm@Od+jL|5Kt3l(Kx$9pi zL2VjFD0-<$6h#xUbvJcd?gFQ31Ie}g>j0{Y@ zOb@rfs^M`NX0f_-!=c2JsPI$5SVZUIhE zI3RU8&csQi^=vy@bGg8sJUQRje^;91tRn@1nhTch1jb*pKNtd=mY1$V$#tTnU@))z zvyO?}V%t1orgKgqTaNP9_x?Qb0e6B^s$5mqG)Q z+jgS8Cv}{2tDm0o+u88nu^)JqMlLa$p(&nw;k#^&6Vg|bY@Fc!40ozUXyxND7!My9 z>|Qk0-V-sh(zGk2+!kiPm(YZq414q3Weu*oQr)?tIojOl-fFM@et+rPJK2al)z(*_ zYi)}M+LJSV96ES$bBpVw^N1x4XTMr&~1`p@>&5IcRwyBj#w}rFWhvq=Oz)ivN_%T(v3 z>y#&WF6L8rxA(O*|NAP2UdsQ-|NVc5-ud6Ucn-Befk(s#Z8cEfkyD}>6nJ!&T95hxN#?xD=olcgC6xFOAJsz(N z^MR_xr+6Li0c&(VtUSQ?r;2MS29v3cPVcsxJ+;DWVAmhRmlH8GU&;?Ny`R??YI=+p zSfRN72Y4W_4^W09F$lFS#6TX$6iPRQ-|v{nh4@l=H*`EJbT^!~>3BEd`yl0BB+H`t zUKF4dR1SyzS2-NgU*&Lc&=UJ`kXT^_f|B&D#tE|c&?bpOvJwX|s=B2I$=WU_2Pyi& zREMd?$$-N&^Pf>L5=pegMD0$g& zUL@P;aek~Q^+`dZs>MlRs_Ch^2QyMaVUeA^1x`srn8$2!!6Bt?F`wT9@3~a9$N>r4jD3 z>;f>{RCeAR5p;IavX5^{Uv+}tNZ)qx<*~{>y3SIiqPbVAx+`&Kt+dnji}YsMFwA;U zj|CDBZLcL$W@7j6=oNi2l(%%+PE*y6xWQgsT&;9mGgJrjenaiUVU*l)jS+(UQU_rM z%fVagATC_nUh*xt^a(DK0mmuP4==#@w*hIE=}G#M_!&u(%9$Ai#*LggRQAf01rZ|| z)^W|HMQ0)TGwq6LqB!s4<#!L0rd;zQ+{IPaIapUQN5oZ^v9h*KXJE5Z@#DiLNzljr z*3S^qmf=7Q;LHvtW0jj=v=l1mELR>E=X6qWr~PgWbE&(VhuVhg5vB<~msrY^71yS2 zj4anOESor?Of?D`_fGwi&D(L^)@9oz+W`XiRpwV;)|+ku(vBMCJ>-(_mjz;5W?A^2i}I>9bZ`zQfQe2 zesx3-_(lM8Al92$A^(%kcm!4hLn!6Pcpz&*MsIdfU*`I^Kp^k^CPF8g@CiJlmWXs7 za>{T&IhQ?)u&_AH#E=kG-E~->(ZZd1sK~qs($DYbyFz79qV#+>Tmd6+SOZXm-h~R5 zmZ&7yXZeE+b@tKTGq_FaH@om&0?vv=HX7Oq`O=%@p7gP<}UZdR62%|5?zvsWZDOoqL8DUJxnI0#$4B2V)_W|*;xU=%#*#${KX<^= z))%ij=n6BD%7>WV{caqb+ajzhEyp$&`Z!gj*;l%+FR76BMIq#UAKim?6)Ud{Q21a; zCG%3p!x)FkF%XWq)xUtsdQEj_1#(~DEtJ6J9f1?xZ0vPf*=Z2HF-OY@~pwN`Mx z@}8+&duMs>R}h+vH8|ep{b_CMVPTa6_1U=1sPf=Ft91AS<|j;=83$f;kTcmrEnro> zJ@Z~PjaQA2Q%j@Yi><&miPl7^t!`}9x#6c1uu|&_&QgAxL}}wknYnoe%No9P8OR^m zcxfT9q6ppGxnOPX#!Yw73*9;)Qw~UtpgXdGt~JTDBB__qsR>N3^qr_8W7p)`%{yqX zb}n*j)>`!jHgpOKFzENSD=#0yc0Eg!X)0N6Fc>sr=wC)DtXJ*{O^!!9&XR?0YWN&ZK3(|%XBTkcpDCL-{S0<&HnHmDicz78i zrUpzLc0OgTQQ*W(kFc_USDqi8Qe)5fh1cc5i)n(&fcwC;twa6B%>`m+TVo*-3!I_* z<(DMp#6*jVji^k1=eBXAj63BkJ)FJ|dMrxVC|7cxifT`#E4N?nRjOspsk%;z6{+fw zC(t#S>~W4wsyZUYeONhs&@P>{JysJGTN_SQuMHNNHNKr&Q*tLwUNt&Bl%?+|H^**J zR+cspKwcT7W5gdN?{rE)T}m|9Y{`Iepn!J?`@`ODL&>%DVoY8KbHDF=i)rbnki7}l zdf&yIY8hmoy!qD-x1>!Sp$tQ=t=#x`_=`Lt?9~R7a(~mX z5Zk8z9lf*AcoB5uj|Ls9kP6y4vpy6QKBxK5{ItkK_xDhjUY(<$`i$7*ZSVi)Vk!m9@K` z6)$|DnCj|quN=(qUm9`q@w~VyT^rKi|M>Xx;(e4O|Dkceau9t z|0{$Fp(Iihd#)E6KACRtr>>`k5JC&eJT=l}aa|vhs^VQg+C0#4@iYJ`oi*qTfsN)- zEd&)QP(Of*6b#KaqeaMH=3*re!E(bUStayB$ciWrq~z+%4wC3hT6ZJ07xxd`w1NSq z;zrq}hr)oWlOiGOE-EuY`$@o2fbu4lVwT71h*^#U5V|D8AEC@NH~7E2E6PraGF?vp zF;`Z0T2|5Y&pgDz;cDbH$gua`{<-s9pSZSTaCYNr4~9NUn0tWOMSNb)>A~B znb`AKR9@aI&KPOdIWFjx*uQ63a$Li!xlTI7<5596%n_bRI>Mf=O*+a_CS5SLPWPs6 zMOzJBFUYzla#tI+IgUCNenDHG$48QQrz6P!W-Hl+xp6`5 zE331RmeP8ohtL&PQ@hby>VueBe%7Ofw%o(R+Htt`;<^(vFEVh`_KXgB3-E@AynRfZmDsI2BUu6^55 zYoPcM|E=byX#oD0dNdG|a>DcCsQ*fM%n#i}>3ChgEyYtT&|p^+V8clW#Z26bR9EUp z?v(vSX*mhG?mFmuWGZ#tQ9_LLWwYmMO3)T{U!_vvdF%SeS`)J!F|nAC!YUzryU_Eqw!?{mSnjopg}&w zhIpgL$c(=em=^8}#^7mEod12jApv`x=#O}W2o+jV2=_&iT`DFE0t?b>{IG7AMY^Z} zIQ6esPGTJXHx|yjqy#I$!+Jrp23hm_6gSSJaz(fLh4(5nj4KTa>8443mRhv!iP>s= z(kU%qlKNh0H2M$;l${M^lu<8(rEp4V6~>3360mxjp@*YUZu8kFM8_gS#p09OiXPY+ zWCV2U(y(6+>D|dD`Ke1Xj{=Lu=H15~8tdcPfZ-JE?XGklE_3O}J%`*+R8v0qu$k#? zlODdvnIoEhiAs!S$^#)7m32E&z58* z3VvxU5GTw%_v zntQ&l>Zy3VP+Di}P2~zgrnB9U!RW@5YR`i2zn*ZGXuTlLDC*=3*-0^ryuYb)SrC>8I*b+ zjoBX4G-%a8!F@5L%AK$z+W1$l%*OL=Z5yGvWk}}IA>(cRShl%sY2wnQ{cYnqy1C3IOfm zW3>0-+1*DKeC(14a527zxC51OJj)uczI;c+oNiIAKOrWq)j0XZJY&1Djq*QJi<^eL%5@_{h%YcfxN75`o zdu;9Ywd?Hx)t4KKwxB~HB&Yv^yY+6mKc|it0sZ;z4ADd`Wpjb+@yZ_!$bFxk$n$&$ z)`)ZDv%uqVe+u44LCse?@boN{-JgW&@c#aZzCq9TK|xvnCzL1)p&}43bvpo#j&jxS zj{wL-Yr$%^6Kp>*v=g!cfZ7dR2ov88Q+5A~fOsv)vqNhNosZ}lpv+fbxike;)E|_r zMe}?)FtYvuaiSErWD=AcC&p!-8;^c7L@F=N2WcXrD7&)nO`++N%dp;nD20kCosrh)p7j1Q=p1slPf80T$@xPsR6Zinxdz7C(g(7{niTTOM`0L?Y zC<=Ibv>!bep$0ls5A;a2zx5jdMBi;2Xc{a4-wPT_$gMdDJ~nWbITuU;QvgjdHi$QG z651e@0;?)ESZkL6p_{1}FT5ZG$Oi`fEr1dQ9{DCz{O<(BU+tj8E9B2V@;BtewexpR zt6W8BfuhdTXT<12kM$THah@Qs#>_Bh#DkfVH5=EMa@lX;khF~!l}0=`9~Ox}krD9R z&qw=!Dh``hi1m0kLSir#rNp0&9n;uDBA|+MAX4uJgL!8Wk?jCE5sStWl-~BOrniQH?Rv6 zHem}+OMu&FGN2MS!-q^4ZXoxpDHWE(E&$B;hmx%v%Fx|9M103GTOH*T+5eotn&DME zv79F2nx_$=y>t_P~_H3-OQ7 z7>+mRr)v8i(L3gHICsqWup%oByv`j)#Wm)j01XGD_|X*VODWwdei>BGCize!)bUVA z#SblXTR)KCPgktpNG#CaJ9-KYS6b09Qv$D~Ld~HbEO}%JSEjSzZ-egATFX&8}?9_JxZ&~#$7gPaZ!KXS0OK=%2Y#4 zU6~{Tq%%~3U2$w&tO#Vfm^ZeZ1ac-b7nmd&YeZD-_z#0-Bj|<+HAxOeVOrrFZ7P0A z)$B51$VKs*V~-sRF11}%&0i=A*-8y6x?nU50%Y7`xOLC`8?x6gRy`=1$6g#L+bJ7~ zD8?+&9&}UWpF1gihw3-VpVi8LS)6ln5=-|2*@KQQlKlJH;vm*se>bOJ<273BKn8&I zHO+p<=EPNwaZi;6pG*qvUKv0j!E~XLT}bzDA6~`A^sP*5ON5l%8PwpUeB6jlcEuK@&aWz`BV_`X z4ps~|=0!Jo(M^Tb;+Qa%&y1@G-^un`<^FN2nzUxi$@v3&EcnH4S{j zMt++dWzi4X&6w4_`xff1ZEO^eQ1TjdkHby3I`7BT>ye9BBttic39GQ+Qj}e!Q#qnj z^$L*hq|aRFKl-MovZR84o5%cdCj7KG){6kB6_FWdzIt|V1!cxh+Ko-QohQL*YXb_c z*^Z;@milj-ntHONtWr4jrUrktK#y2D(pV0N@HJ@`M=ma~xtHH<+I3oMN9H4VMqV5= zci&Z-kHNebUy}cgfY4U>L(2+FVq;rPj%$Y|M?CNn)gOh^n#N%|Qe^G@Y#cYo6-p+i zRPv{@C$ZdkpWDeDT7h>V;*KpEzu9Qg-o{bXH#3aex8>gx5dXwqf=?)?H+vQe=E+Ki z;9Pq*bM7MSiM!w<+T=NNaRCGMkC%t}XS#oWdHiRJf@*eGB%bo`^N(aQy_pjKvWsJ% z4i;PgFY}LIHmDl@W&V+#bTARnQ`Da*3EIUul`K(!7Hk~-YyMHH*}@v82{ivGS<6Qj z(FB@*WLb!I2F;#tw3CMIZnVoYY;~iWe8K0LW-#aoM!b`$z@*)bVc^N#M@A=AH>2`e_ z8eS!sRdtuS+-*Hz%=_+uQ*O(F`I~L~6&)0B`NN4)?gXN$n(qW*n*LRNa|=;Ng~OxS+Xa-XZjz*K`ft*Q`%aSKrkH8kZB`h$r$v>!ZidbO59tF$QS@guB}j~Y z)+Z@8cYg(l!S3gc$Trf}r;4-}HcHBHTQyF?gr8~TZjM^17Wj-=)E9?yRaG1&qtTa~Rjtyi zUum+?w`NY3)6|}9!j?8Y<#}4^bizbdrhJ0*veSOgTfOepCii0K|Bfat-6p_Aeba*4 zZOl0Mrwqfc#LGLgDt9+pTCM6=VFlAzek%{tI9*>kQx}UFx#MrnltIU-vJW^G3qeE~ z%^6X(BimVI=kG2cgatoCorFbS2i}Aw_rVfdS@9U&(&btY6_-_^{0o{+ zDMaI@0-Ne{oAoafcmUuA#}!WXx)n1#n<)2CsQsY7Qf0-&IJy(Z+#oT6>W(cxf;(dX z%E)s~bby!pp^RbD{_vRdK!Nyba9zIh3D*nm_ z^%?<*!Ao(FIr06buN-6hb{rPmTX0UycK*y(YYOYqz@*ySe4VD??TOgHmi=YhlK?cV z(O%;A7Tt;X$K-ZuEBoqEOw|{tb2HJc1$@&h-5lim+(h~lqGRm^CiO?k&niD0cS10b z0TtS!iVvMf3Y_`x^N&Q)j~JXt@u7iJOa|fdp`7Stu_R=x+puzdzcC~OgLmq4hrX2v zf!)-E0O5)C5&Yb~#Va5NFbU@%`GyE%ATzomDuv! zZ2D{h14$_L%h2d#(rpsEa3LKLme^U#c)0J^*=NiZW<4f^)To4mLuJA7OsqLw!*%#g zO{fX;@Y(cI&!WD`=45?E$Bgwrcs7P&8RsCB0w-$%45Qw zm?A%8#axJcbn@h5NBxy%zM3(2gEXvX4#3iD8P zY@(cOgpwqj649_x!hB8C(j&)Gc{fQSRbrVkfu2+O%Jgw$L$Px5T?;iObEU#2@d~34 z)9dW7i)gtj#nXT@yG3-FpxTV^p414-SbQ}V7srF7i(at(W?Wo|6= zv^7O5{mNN&ZeBJbpM^7e=<*){BM6n&c_NP(X6!lTlDVQ0TFOJOCsA+Q#tC^;|*7`s+RBK#-jg!ZjHll=D<&)Pkasv@jS*-PmD_8n)*%1+AF%9Fw8Z3osfNA8vyJgTt|m zLPm)z%Y>UMOnwPk#t4h?IfpuXNh@z#vNo;V8lrnCRN{Jc`RL<1O@t!{a1bk$0sTK@ zAm-B<7AvQ3t9)apbGT-3V_$}F{y|JCLK6nIw)N|-bACzV!VV;Pk zBu_L{IK}Wrp1e;;%}Us871MpJ%I-bRm&i7jsacaAx2AWacr|*LdRb`jD>@7=Bv#sA z=qX=mb~j8CMmctt81%h*4$|L2Cg7POGI3AfSKv$7wVXgmdXmo510butcfsRVhdcSU z5k-crW%uA_Cf{9-6ECcs$L^M4otyc0tUJw~6gR<5*}=Yk`A1kc`tM-Tg^_N zEi8%dcuV>2U@VDL_V_I$sJ+BMb8@`(Zg?VFC}I-I1LSCcmCDxzRXCq5)fj>1?%F{f z&KAqjiHVFoo6>Gi*c412z|GDu7CwI)PwQQcRSdQ2M+evJ2~(wIb@;~ai`UKZfo1E?WeVR%_NDbitT_gS-{!;VW=YR`@^fm^PpG261=)GBV|_7L zrsItO)Ogg~z+;t?9We~amYtAqfMy4U(g?02oLc`339_7NDX$wlZiOt8+HS>6f~D*jnWVXFrfBmt z1E{aySZjQO9KZVQjb>%n0R>xB(*sZNX!jdwE$B*E3A^cgTbwSf!eD^)`1b;QF)*eU z95qcQVG2m{y3sfM%=Ea-&Uf=jI<yISeD z{f2HNv5mQTCK~Gp?>auZ^Tn^D=MNQN(G#H+pT{Vi1I)f{x2xgEcpGB=q>M4Pic7Ln|yy2P{jJK<0vYP%x=6Z(^* zC^<5Zf&wYv0;q#Z7w-5+txx?~%^y#q#DeKPI_X}tvbS^e~6T_=3mHYBq%AGr^t}KDKB! z0cR1GzTR&_PxLG!psJL~PJ2X@fiY*{p%BaVInkx*R&M{=J`dh;|$10Wu_x#LWP%<-!ue2H#WQ@Kco8^0G1pI7r%kWk*gA9+K6J%(#(ga@cA*E?l%R4B9yCcrY(k!D` zpjBToqc27K9MYn!n$#+OvRjZuSkX>@Irb6)5 zh{uizLr~20j2Ip7`oQi;Nwl;ZRn`>JOKau%eDCSsyVfj(+@+UoO8Stg3PGgS5edHo zNcW}xY<%238)&hl(gihq!x>^-rMO-1+D9Y>7%leJ5B}+>U3T!I=0rC(u~GSEFD1>! z#<$X<9CRkx#BChN`O-JdS}xGcb3l(WKdQf2RkF1`Y%&^;G(oHCsM%N%&sL2&Jce_S zG*O{Hclgo-=yJ?4W8^Ger|sREj$h5+sP7iv46ZGw^)S6jaWUu zs36L{sD~N1>0pk>XL)O$SIPpxAF}NGaa(B|^0DGHbZ1QC9B#{ zI&IL?{=94`%5OY15hEkfzPmDPoq8lV%`0WBX;yo&9}3Z;VnTn%s#gF0ar91&Z*PpL zO2|{?-ib*s-APT#a>*&?`&rn=Olavl<6?p;9^R54K!<5L%7b@iUL_2Vc_l2J4rx`n z^a5i&NVT7NBwoNELC+c;ztU7wyNe&W0k>!(GnuVz-=}@);1{?KyRX zxK;N0duzSxjHXBJSi3d594uA|>{< z5!tWAn0w@djE7Mnw5WMlcZ!3o$Q4mGiI}*1&$*nlH_>k6`S?$6_}sTMM{<2+Q}_tB`pL832JYF#lo*6ZN8V(zhus#1eO5uIz)-dFonPPGt#8#ZC~qk2`=WmL(=EXWqtPX!9qFimuS^i5XNG^2NeaS#Y5_vnh9m*4 z;+eEM2X)bvPrOckIJXb42eamN2Nl|iogpn**tckqhS^t!YNybug@>R46X@AWK#S(4ia6MpEoWKkK09hE>j2Jq&{~kS(F{!W;#4|?zCQd(FAFC zK)X;!1j+m2ylye)xhj7xx^UTQ+e!v&5rF3VE)G+X2pIy?-G6;WA0QT zm$ymer!J2(%MiloZ0J$Q(bcX~JBQ7qCD^sxH(JP;v(B}Mikz7RM^39Z9G${E%KJsPAS%(tJOrk5HdFlqm)Kgg$8eXmc1dhs(uM z-&$p>TS;zdVR|zO`a}?AfRjkG@=dHE32+wZKjZtJ=xrgMMl~ty4rBc=9%h;Oi;g%^ zt72CSvp;N@6OlVjg^gAXgxBwjCx%a?b7bdBx$k2?b1MjnR!k=6S!QFb1C}&aE2>P> zDk#>E60=m6Dny|xUU1Gw4!P?4e6~pP;iRG&J(DH}9WwJfk2!4JS7w84nu1nOjD71z z`9!LlEf);!pI&tiE+1QaU~ELczAYBa)is*+@40siZ$6Tr##?4xRYW&#(S_Z%c#~Z_ zdsb~fsodB*)`kKlhp!2jo$x`e~8fe5m{6Y$@8v;Pkd(=&~=f(ZDy50&v-oI#XG2U)<)he*=Xf@og zO;R)FOKQA3!zJ--jP86BzR+m}dJ>i$eL+Sww>>^d3HWI?3VQ{ z@lHG$XwGr`fPToa`;4GYXaW1h`IpB4)H1pYJhsY?r2=@$TF|%4exd*@3y!%Eyj@{p zz;u|KVHj&Alx8?~+wiUwlLv&69qVKXi3IzXmc5v@AWYm?;b0152N80Ojkp=A6H-N9 z;^+NDP7#TNBz_GL=94px;HT&(7nr0P>mD9>niQ?XhkpfOw=`qZ%V8!~EhkZy+ZXhs zEceHk*etmhDoQ1@P4?s5KrS-kyhwZ&)BIRI7^?huSuQ|fGE6u~`nMUS%Fg!TGAqeD z#5xFdNNxjlQXG_=x&bTx${uVCXwFnL+^QW1mmap2`FFlz7X|vkyph*xVx56r%lNRg zITQa=LeYB~$d1Yg0cwlq2t$opLwypbULbo#0 zgV0|2{T1En+8FAt^tv~Ob=;N_QD{B2|C3T=(Lj_+rnxGLV`Sf$p}$C zPwFT{?RwpqtwdX`y7X*j%0w^|Sk|Q5%{j?r_$FL~mY|e`lhSvB%Ec;4oDarNGTfba zBdYnK&Wj8-6OB>2zLi)Vh9utmLdGdspjbmlWz&iXVx|15t(IGpkkb+!DsauMUB`OU zqmS2d+vrWk&G09Ijp{DFT4jrVH2q5R+ zWbz4bN|uLq#n{KgncYB@(?+h^L2FN|QlsbZPKL0n!{ElrrK=B!Klj%bIiWmq#X{#D zJNi@%m-pjqCf+T}3HVEo+b-1}y4#j-`a(wxmk)PoMcuJ)h1GJr&DYhgjxXOIhPnzL zNanlaR!F2ijXm%OpiWc2X6QYmQpSEDU6Jg1Zfg)z_SDGN`0KS2LR|TG!>bks;Ag@> z2`y(I$4xs7a_`)54gEl)XD~u=%9S*y5Ne;U32rpn`DAaNjC31I2_%0v(Db4d&H@dC za&YF|+l2N%pGk4A6Zi{*+ck#26iCVZxFRf2GPp zT54}=RUnSNg^AkLSS#TK7LIqoQNVM`7!8Ue5CBM-sSzA(g4TD5l;Xuj=;Otr0(VJl zktHN#k@+>(cgVEv`){n{nX}$WahU-U3O@9S6r{=7ij?FfjiYftlnz||p#;=MVUoEL z3WcN1X@rucQjm5E>1>0f(m$gR_eN%fhVG0xX^4f@<6{5f(P%ZBWeTgzIE1Jik%TmH zlq;OaVK>1@eDh04kHfV-E$MXR^R5kfCxIYD~;k>Gj*l-}U!8$t5ay|ed=JEA#R zLGpFE^ZUGT^y39EP`QEP_Hw?@H$#OS5YHUQRDR5T6)NseO`lIhgyWeWMjxAQn(x(N z9w?tKl?<5A@8Q9dm@=8w>_tsuG6CG8hl>J$jvPmDBYCnM3Xb^7M5|yU@)GLvE@h~t z0xGAtLd(iI_zOOl9aPHT5+Lkx91zV+&7WK z(hd{$F9$?THvPt<*K*1r9H<*^R+6%zh{!-cWjb&1PN1)=;1=kbEd@O9(NF&_Up>D? z58Ll76YVdrzxQ|U+}z0Y)QebNOjqQ0&`I~cf{mkjrR@s1ul9L)o9#${~@V&BQ`~W5e%TJUZ1(-HfzRi3_KVhs{pBl$)*3`D5G0JmJNx`NS z9alE$g<#Ls=Z5MJ{c7)9rPzz`p&+<6VGzl;E?h{W%9e35sgc1VUvB}Z_>Gm<9LQ39 zhMO*T#WL@Q|F9~Z#UQgavk-I1a)aC%&j%U3NL|~=fd}7->Wj2QHRHVTvob|ojoJCj zW%bVQ@u~~@=ikL94>OrrdL~2nN}hCfWBg> zT`81IOUPokUPkM~hy=?WcQ8&oF%h6>eEH12iZQ#_U8XXB84pR5p=p2RqeEmr?!j>x zXY)vlw4p<$8<*b1ckfGk3}S|r3?7dbg3@~nip~M?ZsWOT-jSdGuG-;W?SxGK6H)&^ z-4y?a_iX;Vo5C_M4kYU1c{W)uG}@lwXL&Z;PIQ*n0eS16ceWs-v?9Z$+;sNAlW;<8 zyU&xA{8E9tW#0}k7YW@CM5TYm^+PZ%Squg`AMb>cCY$euQ5Kc_ zEzg)82DKMSIs(ca5Ul(|o)Pu4TTYNL0)SA)3Xrm&uz=M{phGAKIEXjq1RNwO;!}Q$ z*Ak>MPL+$6AdfT6hBi*OxE(hA$2_B%knN?rVUABSl=&|b1WEJYVEli`Gs2NcmU=7c za^)AMpAG_wo4jHE*PhKk%^e7m8mj6)wqXVvel9Pp3Hz`(R~qIjI4XvD^EpJ`h62d8gT3HDrSkxsI_tVuHrylm5hexdKs87ZglbXhs0>w1wro9=k` zKvP#`R*{M<`FzA;rwpzZVb{yEAa*SQ!4GFI1IxW|U5Bm*r!**IZDloN^9q~pH7h%@5pQW}F*pl%{F}e}L!*VIPSWu2ODo4->i}!C^(>vgM17Nh zAofrXq0wel(~nA%?HGjYJBNkQjfdILBXP#Hl=Qf@y+^eO#d>(4;uz2NH-fF4s%gxAgEm}QO8`Q~O zE-x)Bk^*|A_wzVW-uD-)vYijGemUNrYkFI}S9@;-UfQ2M`1fDI^Dg*eue%rcUTX>T z&ac!q7Y9jRUKytKhzF`_+KbL=8@5la7jgAEm}5K_!PTt@`!*H;{PVW6TSOrY zIam`aMihe>cZ^I15f>(Czl)TMiAseW7cN>$j2>m!6346HsdulA;nye}l!T;Vl(~%B z(;~`fF{uv;YcxAaS;4|29lelG(gD{b0>f4n^ZSj2a1NqU0C`qDn1__WmmCkaH_q2x zIhur^m8YB4!9TIWxPuA1U><6@YMl-Rz24G5|j84^uu@KjzEJ}OsD|)ao7CE)=$#`naQNlkEab7IQ609nz z8-ka7K8xx*ZV}H$U$9aIW7-o{O7OAOR6?_48L?2QH$2E^tZuKvimg!;|L14)G%^-M{K{vJ8jD4Mpd!%vyT;jEUzcjCP|^h*qM%kW zHfd>x}PUVj%Xj}gRP#=&j8y3 zvTkMW84WE3}n62 z{$}{Fa51k9m z#ZI4x6?K^$c-NKBn9@jjeah9?*9=j&z7<|oN&r*4R}UW2(?~2gvD3+56F82hCm#l| z@Ew)MDC=2~A4OCoJh3l&m-i`S>> zWvDt8Gt!-CimZ%j4LTM*1)C@fxr`BMG;V8N9IlnM&98GgS1RF|yUnK5HPBmEbAFuI z4nB?ayPRp7eDKi4SWae`xXfq58=B{9u9kl}O0h0GH{a77|03E{GURn(>&jF_(f^p4 zu6B}Jq9uF2X7bJVZuLC&sx{`o6izpi?!FL}6z> zm^7pr>c)uVR*(MjNT2@*;MZ=qM@RP1!4*diYNqFzIR|^`1LO|yY5JM#EPC@_nk0t{1&;QLC@t>)Qf9?(ZyNTf6 zyn+8)0fL6A^;BcQf|oMXN)|55}$`1a|+#5VojRx z#oYjgMK{$*wnKIFXs*X$v=}~!5uGqW^itwDQS!9;$O)p-{RCD<_pAhY)sy(dADX2m zV(N;m2PwqPVK}MAb;>%)CPi2?X}Tb4Lewf6L`~oh0C2P1OpVP{-5*zCQ(a%Fjs64E*70J~Q2ed+@;_1&8AhQ9Dil>_`)tOSt(k>m z({1M#hxGQ-1MMpvFg=zGW|UPA=Uu4}86~-&%*bo<$I#c8d)`0Fznj3RrC;~C8L-ld z&?{=!4j`PR)egGYuixkq1i+;X`z>nJjhKjx*O}6H<6e(4`Jy{cByB|Ajc>^WUQPBW zK+R13$QRk3MxRx8n&y=fzMrLo{g|GUCs;}BQc-KNTuiW@a5mQU-B4dP)N9%uFfmH~ zz6wC(y!~yB=(N}a71(x~qV)ff_ZCcXFzS}>mk=OG zAh<(tclQ9n-5r9vy9amo#-)))8h1$u?$)@wyGv*I?wmb$pR?zjsi~T(TT}O6tarU@ zJ!_>+9?Zs6M`EN7pfRO+V%`8yW7pJo~jC1(Rq!FL#j$J++aGcQ@U26a4x9e4Tdp zFx@@Q3O1TES$evXtbA9u7ZAt4af-f>_C8D@Xf-$zHn9I^=MZi1=+VadH+W7ol(S%T zfpi2^9GcH$Hle#BMmHzoJ-w7AVO#>pC@wVIcq$3u&?52-r1srP5_i}zxSP$p!Z4vP zWO9*?B3rNp57@NtDa%TNnB!JZ%Q7% z#na6-ed*0}QiyZznJN%u@ivQxfQ?i*fCuMH6-*&T8tXYY^XSAYW?O70ge@I^!eVz` zPLW=g(IWSL+AX^>i~5sxifo!)N{nmPXJOi*>=?=9s+$b=?|36?qe-cau0!-rnX>GD z;c1;Wn(wDzM)lmoGdhqkP^~6D870m1HiwzzMho^li?3N=HCur+xGP+57?Zp+tS(*y>XDdJtU6;bB6SvpK z2p|xr9m1t6kCwnFxx=KD!U7FuE3mj7-5ki{;Lb#ht9^rEr`Zdm6V4%PWRYmxRYm)# z=6{u9#!LxPG^2y`&8pdI*KJIhF3#43xP}y{sc4aYgp}BsdJb{OkQFp&WLvBA69pb? zD=zf33`aN`r!Fa%?r9c`-b%Z5+Gr2(X@z5|QijXV4f<|VdNirm(uu8`*i284hJ@E8 zuhNh%%FNZ-r%~nfjao3)>Ey-DRhykc>A0zrb?VjA8k^nh6pgYLZ*$zK8XM(oN-=d- z4cu$D`6D!ukP3Fln(~8IiC_aN1P`(i9>zChDgeiUXlx0(7)d*CO?St!eu z^UJyH2n=jhVTasrYMk9+Q*%rx1Ublz0mHr1ylEO>$iJJ`vRJzdTbsXExd{)$J;scH znh^{!qatah_P}P%z7?RRrR0k>POHn4-nIM+rk;*(QU-n!BwfL78wV_Ll<|-4vbq3N z3UghrglDZB{uXS;d|%QFTJ=Xwg~^PS^m$zr&<+W9_yo z#nasT4EFO0GETlq67)M^&({O#PtC}+Vj68YSDas1N4VHlicna-k5uh^E!2f9aP9bv z`VD%RP}G7-n%hIE&!~?))=tkT+BuK6^6c4^UZd(hy;E>Z97`iV5Nzy$McLTp^Iai` z^lYPM8V-DJ+9;gn>G=69aH_`ovW;_p-@Gkf6C$}3R(QmK9q_3kWB+N)@72}2&W|zc zetAfy_;K7f_bg#lpe&O7X;9kPwW2zEOS;P|*<{+JT#<-E4EhLh^D?P$5CrSbx3S4q zpP6LMo*aquYk5J@>Qv)TzdGFcZu&d6dSo{nY7WC)+mlRRy^i|-c@B8b?AZ$7mMC-K zM?*E->Qxl7%{HY|uC-Phwz!IDEb=rh&y~C@LZjss6Tf1W_2tRbzoUO$m=~P*>wY zp+3Di)pm>{#Bwo~=gt%7Z%ojUr^Y9&wWuBxrY2)HL3Fl7DMJlz)%l zcRSe4Ky#y^%CuxNrOHq$IiwP|4bwJamFnW%1t4S3mE`<8_!CW_8}X4@VU+V*_fqHW z0h5-b(DnwRRC()Os@M;gC+GTuOv?&&-sm}^xly2aP<50^1+=>Dqs>1Ly`l5jfG1uN zE1h~!2)1+k-J@*(neC0wXWS@g5Pcf6WS?c+{1!X6ZxQL?!HL`vwJa3nE6K`eg=suK zGrB;0gERy~bVoZM{%yd71z>@~p!W+d9A`fpp*zg+HwyC!X)iUPn7NNZr-P~g+$x4? z;J_;zYY*xyjb8$733JOoG*5t5W<;t z*K>#`^bmEKP-}*+dJMeOE;7BdBpS!B&Pm=-+8t|*{LviZsTzeb*0RYXIIgzSgpK0i zn^m9nF!#xXX-c6YF*pC9wh$%pFsmL~yOIx6`6O0-{i%JZbO3sO@)BvwFVaZg>r?)_ z;;{Wo$y7%4kr6z?8%<8#1CaJt+w_Azq~4*A+58kNKSk(aEVJ$8L$j+B=3-_7o^t z^Wb4KDTPB9vsUi>J-^DlL!%K$i9!9;_zly)I8x!{BW6)cBCQH5xkdw~ubxL=v#qkJ zJ|;n33$8?iFPaB4!*)XdM+r`MN>BR}B*N{Mx1qO7$)WZltE-lNvZKWKO@6YwzqC^s z?xGUZSSi4td9lQ~5QWCy^7sp3l~P@%Nw~ojR6|_7A{x%gR>u^#9JDg&sVeafDamxN z5yKMI&Z$)lBlJdiBh+JTa*YkUjIfy_22WS%KaopVQcb0Qr^KZjG3*7$4GkO7xmb*H zEU`?OiN)ixdyHZ3vD0J9m%KVVGJc?pfXk4l3vyxKB3yk@@*3YMu9rKWHQ@(dk3;&d zAi+I^2qwin$YMN^|e(qRA9^HeX^cD=*aK!xY6vvlm{GfsVC*ag1A`og}eLIA8&6! znj**PC{fcyX`BJ#>NYYzbuenZF(iGCLFWL;5-RXVGQQpcgB#|_5-ADE*>xaFZ9 zf2KkeJ#%9$dj9?=NNs`%g+KwXcDE>Ueh6%iQEB+XkPvD^EY_(ByNu3|J6F`U3N&hL zZElXckBhcm-ST^dn{M%rMqxWp!y*1^*>~KwMV78qNwJ+;#ruw%dxZXBdV2*F)+;!@ zOY9~rtsVLOzABgDZ3PHV|01rgb>+>X=K-u*;h*OpEz|0GAgmi*MRZ~OcCZ7w89o8j zyFJ{_A5Oy8{~T%l{B(FOv#6ynN7e{amKwGD_Cj60oyXAenYc|j$7SWg>+ODMR?c}vuHn5N6=ts2`e6W#PQI*8TX=$xJ3y z_lSB5;e7K(D~*$u^is3|N(kuC)92Bs(e31tI}%7sQGQ>Y4oXtP5a_Z z@mEQ}0hAWrh-BNQu48ja<<;e< zvKb`Yy5r3b9?AUZB0a3P`lpiDOHs&0%5P;V=M!ItEYUz-y!L?A95c6QU#K0oG+@@t z(8V!Yi;s0_jZZ%C?{*&c!TS%+i^+ebN&eM&`Tw%MvF^w4=DZZJz40LAlK-nf!S| zXnb;gbLBRgQG(ZZ=N9cy-M9KiYUgwHwBLEm#1h5pJ=6JmE^`xUK+^-H zIM43S)NY>ND=g2ONFX+A*%xW_uDuPzkMDUl!_bWyRow~09umVz;;6SGkwn!C zBWaoj(Ie^GXo_T5(s;IGi6ILHehga&MPht(AGYEd;W8%^zU5j{#2-)|nrg`xgzY5L zR9l+GtC>qrrfOOrzELUrA9mA?qIgTv%$7XOlVpjDwL)#u=1W8zsBrhgT(H$j!#or+ zs57*B7Wdr)P#Q`DgX4J33K^M(4z+zy`ehipb#hrb$*(oA3!LQ-|ne8R|iN z1Yhc=WS)r|eRb$dbH=QF2whga2?$#tQL@CXi-2~8wW$&6@w$lJH#z*JDIxN{bL#jLhEhCqbN;VaSijQ?8 z%mi32DeUoj?88LOmDl6GtD~4c7lqNOrQ^K5B~y|Cr8gOJ!mEz0KPBXETQrZY-P#7F zPl0h9%YAwaN+Y&=HYR^6nHH=uY^fIw>tc7UttMWpSLE9?JfLeejX9Xvk`|0v^8(9) zSQ~-lrv#gRzdoUFMN%_9Sj5Hic(F#(cM)uhJjY`01j>$cTCNz_V?a*K6zKL!o^_uN zgbQ+AK#3E;)?V;BG5<-qMHlu7@_v`MPR9fkbl!v-Uwa`l6bB5JgVAr5{H6)dcmbzK zGIO2F{z$sNX8kAoGD|e1>I@;eTluzBKi>atby-eGVxK-9{Bz^CZ|!jvNy;B({AC>I z(|+1tM>aneen-E%4*hvg>lpB0ye>-d5u3J;*#J{u`lV-v>$ZwEcufpzy~9}K_bO6| z{ZhWR3{THTkYf;Y<#%{yEil|tJbmca?BWNhpX1EUPz!IB_EG+)~9fj75C$0!+Ai;pN*ywXPQAa8&lck<6hHyi=6ksGV zwU~60}xJhGI*O#~~HKRZ5v0kWLdJlfQ17uG*JU-I!MPOIK|g+fDJuV^LYJ z+pv_TlW(&F^@ zu@U`hrJqBnFvToPEJX>Qls=-V6~gbDi%Zuj?U<=$5cqAe2X0A4k-6kNBJ7rlB8s`J z6&K^{18Lyjt0o}2mb@=7C&q}H2|{7aXTU<2*)CK`hifd&My3->&{2D{S(L>5lvO3Y z`%|HN&Nxqn>gVrEE90Ch?lDU=D`eVpdf+R*HyZ2wiJYs8x;FJ(rXG)Z!kX-COq5SO zRy?$pGXgZQI+-2o*{m4g`pI6l+hgVDi#zi@9zAw>o8D1Lz23ALwUJoF@If_a%<$gpXCa3;gN}HPJ*Q_rq;Q{a5pXBycJbNZH(FoXcX)Rf3DgOdJC9bV`du4aUI036OLO(PJM%GgV;}@x(n{c-*g(%?K@UI<>jqz){)yDf<$qc# zhk>yA^BBjO!?b{txFQovVRC$`*wf?mp&JWCefzO|J=e7NL{N)<_$jWT<$z5$F_+TQrt`A5Y3pE5>VcfR1 z0c5%!!%deF*9a#T+#F+1V~!Oc_4G-&#v)FaNvr?(lsU|#{CG#`;Xk5pqf=`!w_@JR z4V0gRo@vh9rFam-pPm`F>zGZS9`VKYpV%F69Zj)aqA`^SCHi4=p?jmush}1$~^K6z=@?ab{Nc z?iO^oD@D z*l}#{j)fi67AO2~8gZUZwYTJC&eo_p!5!`I|D~z=Up$%q6+rQyOPzn%FaK{-_1^&~ z{*N?O|MkiACUxFAFRB&)y{THU+mq|3#dW&uZ@0bXr^$W3ZiXccXE4frncHJVoG0t? zII)ABgUZ3wNp+JvU9LG_?z`c*vD6G*Mkc{OR=C=VFZ^S>w)1o&y6$1`pe*!~cgH;g z&iLa$4$VA;|LX@73wPSfm=tr(1CGn`bC4}<#)b$opQRD&XD*M)pjG{Y0*^C!T#dIL z%tJvqo;f9HBr3pj%N?tWW?O=F+_LB!=USPG*c*U?TvQNhSrjRPPDA1Ftt}%VQF1HI z)D?wwk-|>VcpxD~wMTslCA8e?20wVjXm;$C(@4_;Xq@uoJ7WjGmKNosWUVwqHw1f5Pos?OhOR%>s3aX0%$e_c;WwaUt2aWW~w;BmesMeylnth^zxNB+CpATq9U6ekw6{ z=q__Zax{65+M)Fej^s`11RwTO|89+ZVCnVcjiK*L)n1|RPqR8XXqyMpP4=3fHq?Mf z!HulOR9QZD!=q!ejw8UJ4&X3Jy{Dk`DVPe^s%*~A z;~CCl_?uQWRH9qRsQZ&cjnY2;U5ddqk~;($Pw;4=FEeLp8uJ&U$zpgNRrAvHRL(in z+GB(fca5ZVm3rxI@CR?hmvk+01GWGku;nSzg|_{H7X`56Zj_6*`=xHRWu4E*pZ9>n ziMaV72P2p9FhP3sR@cx)pm0=$9IO3gbd$lQuf*l#X}I$??(&=$-jMsuvTjW?3e&~_ z>-salBGwJEtT5Isf-W=G-J!8IzwDCO@$0cf=%15^pY&!z^#?fMuB-c|?&q6}`r~WS z`|gP*-}Q>j0MS2UGNBKWT}H4q-wJdLmu|Sav0Bfy;Tcx;mF@}Qgo*=9qc%Q}0>8d! z*T^0grM*lB{j!U_V4&=sLl{fyv8k$IU~HH}`h_m$qOOI z-^K$@_i^s^MZI_3(yqzC<8_9Q3#lbfy?784Vp5Ff;?Vp2E>cWXLpedCphzAQ0Y{>Z zl{(IMN1lvU`WUw^DfEV%ihF2C!TTyX|HDQL4KEs}%!qTp&-ZHyuc6C~TEnu2XxbvI zk)qCNk7i^_J@fLB{ENEuhapN9X_`@^w8~WG)>Rg1gq}{kYgf>96kFiXXqa4mI;11% zBKI(z6qJ-@cUgk-D>H){)>w~~CdY~iuoj;IswRFm6{7XgvMyMV}~ zAMcTi&O3~yd=8YP5;@4Am@xw?ph~*KxR?PL6FgyWsocy1;O9uI@8*c)S^dbR?{0%0PLPy|8rXpXw~<@fz8rDXs0~`(vU);HV z-Vr)-gd=U-Dlm0(^p)sE8m+_dYmvjwF@N(hrl##r^S_{6GNvyTuZ!z#(LQpF6pPWp zu8{4s6=UTPMrOsuQ0T{Hb5hptSS*=tk>;5@mN~@SkwAHr7iTJs=SEJWV4odA2z3?# zGAPkWN@O>RQ+#)+U}gxu=?6ks20D<98N+#dOen6Qx5mDEN+7TN?uaJWFc(N*(d z+nLXa4HaKcl@IAYOgmz54o~YIDd?(xD|U|nc|g_@hh-fD_c&;5R;P5gy*o6Mn(cK%r$QhXr+%GQ*-N{q4*$_CjcWfvS zk?l%X2)i^apMB$wOeeHgJqD~~rp>i>3Z6%y$E`Lq+{fI->S>YSE#67A6g=lxM#X9^ zKA=E+FxerBLN5>ikmr#@Xg+lNY-=2weE>Aidu3ztT#W7R(Vo+Gna2d#qNTnW9;h-% z@9HpQW#CndWprfQUD@sQcc19Kafw_8>_496HsL8;C#-uP&>FP0Wf3bEQ2XgpbDxN|CR@mDnQ|y@k|78x z6U0}1if1s*&|s3ob`Fipk8UQ6!v18>Q~Rm1YTdbZ&#~v?1Mz1DCqJL=R@0UJ3r@rJ zzuml}`Qi^PFyHXF=EO}4LSjlM@rFMwCJ4i7axd^jv!WplC#t?94M2~?{mx2}ma!BG zFIr5dzZrNyX3rvuTPRJi;)z7*(7G&<0sq zKb3%>1+}1siW+~air9v^rNyf1@$w3*j{b~eaNh0!b!{)6&u;o4w8S+{=-OL z6*`OPdeSI~GQ!y8;oqL$y!BqvzO^GK`pg`)uC3Z@r0to>_tKy5-0pPA=REmVqTQj+ z$NZVuHU!1i{^usX97|6Uot*A36iJ55UQA8f%RXF-%FBL2kCV%RFX0UN9b~c+&O-?~ zF>EGuK9y&>%)x{%y6o)?7vDKOvg@_^9ah-2gy~n<^y;ZbFDD(aRxbvm+JPJ;q};1> zGc>ZX*bqc9TkDu->r+72uJgMbwd>u^H;_ znrGEKg|sVpyO!zPd9W_aPw@Z=Q9L>?h!FcUwPlgWd%vBcos;ZgjpO4n?B~(P`#TBe z!OH}&&G8hKvJLUpE?;l({taGMf7YyB=4jt({te+*FQ$jIh=BLv>@TE0bz^U&6Li%z zRpv4Iq#$CE@C^)-17Gwa6+Jp9rr6hK?jTWyJoOXY@%|3Q1P(RN?3__vPk8=@sW0O* zhJRixH@mx_N88bVZgA??{d%4Ml8e8&X!@D|g(a}p=1n;tB*Kd(_yD659%GDuA&EK! zLy|WX`O1XPd3r;LE3;!+LV7TJ>_aVW3Xq)O#h^LNKiEG+BmYtP{ZbVZ1SO-*{}}x~ z|11zbf)tJHW3oywavXf*7v(~N=dVSUa3i^* zweg64)M=C$$-wnKzEZJg{e(CUQxgIRH+g=jLzLT4IV_d*t*H>cgrVdW>1b!v_z#t8w+UW>4d<>jO*dT z!NiDK-zkPp51H~66`Jx8oCezh{^{HI&+D}?mT#911SePHx$Vf&`8naPbE@; z)2YTRWMEt-QV~&sOm09S6GWNMZOJ7q4OV=zQK~G`=Ou!$QMU|a)A=ZkWa6iX!AVQ# zB|X;VB(Mf*lyK^~SGFLuiX$<*aP@F2&g|;rBQuR5os*i8cq#&zROJy7@?{6Ws4G}Rqe?^j>I-^ROf>bNC z=;{vmf@g$CPWd}IQ#(?;Lunz& z-EWpL&r=+-(n(y-%j#YftxZdT3GX7n)5YTNu|h}r$WwEVP!~Q#E{d-?-!H6kWy&dF zB7?q2C2X#$42)Ts3}XX(E?t#MX>E%p9)hFM*`a%bFQ)8ynNxIWZ72XiMH8maK~pUHd6Nkjsh+kBZb zQFjfgB6gSpFo0PR)<*5^m?P3|FGwV|YMjS`6h*N0oS?0plwBvS9)Zpv%g|MkFA=#U zdBl7wnR`)S4yEb*DWr{w1(ct&?56VeDk|YhJ3_Lv<(6CiNp#oLcGEoO zcUE1XIe;p%Ut;FFOBkdXi=23$Lau*~x0bbbX;1CJsNdvq45@pH;|hbVstx%49P&Qz z{Pgce*v&B8)`39>826yV~a`&dPtZGsVG=FE|IxfnsH zwtE=ekz;>CuY>PR_n(hiaRU9p9fh1q-*8fO3(jqa9?o35 z-uhekt?OE-L2yKKh;y>RD&X%sG=5V>VEq|}`}+ki9^v|d)lhq|PwP3;f}SSunDM@y zLovt225F5o zR_(R_D-H9n*30AM{~Qt~{Xf{Bb^oSeqS1BR8osC+OBcPdKOx(yWgqf1R{v&y8f)gT zy~@0?KXZ-h;{->Vs&tdA;H~{+-`Jlq-_DO#N4SmFx_-bcztXqV7}bTK(i;$RvThIj z4GH^SXqYS~!;v|Hw=Yxk+n0$e%cuFgJd)^-d5h|UW85z@;&|RXCy6@ zi`adW$kizNs86dP))-c5+ltx!W-Eq&JlsS|I11O)N-)TRNc1Z)!lG&HtLTZ=n~CdE4tTo{_9OuA@^?2Ha&$WL`QSG*jfXX?g z;_;OvCz!8ml7Le145|UfyqXDEdCfIcwD;|T@O3BM^`!mrQ#r8c?9w||6cFkd7w6`nig%O@d)P+e)G2MtR!lvX7+>TgOf{iec;wV%I2xxcNV z_>uhvhaA|KKFgz!e-I02P$rkulljb;1|%gji>gtEpk_rB)7{n3Yc)hdb9r!?oogA4 zDu-~ZJQ>-?9X%;2M)13}$XOFvDXof!2qzBmc{KVw9J1wzrw$}Rf7P)E$9#bohUe$n zt4`PpDpo_WYI}8aO0+($}1JP>dGs}BLSQd(m8Y(dmjpv(qZhDvv}3Np3*_73m7pW2N^rl~aFn(5|v@E{56 z!BnE6fQi+woYb~S^h)H`V%4HDWzs_xh7QB?*eG|VKgJm! zSh-Xk$01DZ4a0O?wTxRQCV0_`W6q!&ovaew^&^U@v(fq~c4*ZPz2*6)tB8iW%tXbi zw^iE%jV7;pMlXLPow=XbwRg*Q^WMk!TXkIQZlUX%V$n;p=-VyddKn&4mibb3G}{Xz ztG|}X=%4#*MvcavxcP{$VNT7}^iX1Y0(IwzI&mTnVM}MmEBLQku-n;I&pn=>bN=k% z{5aSF^K3se4|LuA+`_1FL+BuaVP60s5MKn5coQPI@W@{iF+1J{ua{z{yAq6l2{|V- zAQr-*y3n7Au$VUdD*(GwVw=hDy4<9rc%hCSsvDutpq<@|t0M?E6^~%Ny#Q)*VK<-j zi_$SIEle&RVYT?iQMUWTT|1>TTUWUIr4o?vm}`*>gl6_tPH^mB^?Y`!=dZO*rVLgu z5-Gd}fC)_#IWl!E#Od-j8HrG6!< zGV-2@K%p`{fQmR!uKi%dNp1z>3@zw@xQ#=T~;RYBc=`=zxMxQEm*xt&}H zQ}Kv3m|u70;`6Z2+<*j`d?|rq)biEV{3!N&*mXTqj*TDIP7n`C=!_X7?wA-B1hc?j!-vm_5eQ`1aQq$X(8S za?1G{so&7O*d7>F_YxYRWyDDs0DgqelX@r0`6aLlZxGuD;eE}Q;0j(ToDc*BDI;ra z^H8H7`1Ukg|6GYyz%hFgRbtVWJM@IpyNcr`2kZM1zQ(7f#TwY<>aR)dC7r{OseyvBh z(E?TA&%X64?eI%;2Sk1F>vNN=8B?dZWUHE%?-uQvX2NXD8~3j6Y}?v{MwlFryL1`a zuIfs3>uwF)!Qe*&B$BRIm8SEWch6b$KVc=gE^-hEMp=43u{YI(qh)b9^_9J8ozNS5 zJ)I6>O*rSltZHs&3*^z4_q}$tP@jEbP8@*+fOQXuXr;FB)T*rOTw=3`Kpm z<8vs2XcMADr_~)Yvc0ZK3hB@GvwvaxX+YLQ<*5=>Vfq?dd)RheOpMaCnnI+a)3_pS z@)&F9Z2DK-Egj-5@1ZkW{S0L}w&#RKlXcT}87tiHKk@i^d4xVh{$RHE)beM)Yl(}3 z8GG0X(yw;k3zB?L+WxiLnYqtA)qFShq2O$Fr=mX2V&1$wj_EL|Z7u247b)bqu&utg z9n$5(bl%-hB2L^SMP<1BYaFNXrDaT0=>GQ<_ZZuC^{WBa)toA)pX#ss-Oh)}aAC+B z>ULcJE-)3G^HfJo5umtV?-QW#h;-`jaFM(Ub)4=_T4nmdovHrr5wpFT=5rwQm}u8F zOy~(~JP5(&izaczuOO>QI>O@buh<{aIcuZjU`9XAC5iRKXE>5FHw+_2&xpqNPWscl zUhX6N$#E<>O8Hew-vF0KE9jBQ%TpzNn?0ybBzBoK=Vg6z$tL zN{rTdA=7HJ>|z{O4Eao2Bs1HB!(~qq5@J(?7b_)1L`E6PWn@TLASKwmQA_20qD-=U zB?-<(&l+h|;FyX6K*L~K>s~8toS{5fIn`!AW$o?e z=%LFgfUW?4-_TA_O(mNwR;s;vE^-B;xTd{}g^1v&k_R)*GG~(kxJf`#p)#kbn4u+N z^;}aiROUriy=9U>^eJGZYq2&uwM=l~bSktM$aIPzXTmrBeHxQ_wxgVMq7@Tq0bO%XThnTHdCw5!!Q=P8A-|+@<#pnZa{Zg?X7Hiec@-Ch!EP6~TJS7GOv&-0 z*cC&JjMQ6`0(za42xGc@4=butH0RQ(bDJ@qFdICA@}l;Oe0?eR^pO zS-fDCxV7}!Wi%@4>P}AW&)^>j^lJtWvYsW8xz7mL29KFN6Ym`4eVX^{ahE2%`5kgA zAP4bxc++GmH&nFp2Vem}OM;D)>Z&PGs^~PIEip2!ovO8RclfBQ-JFAF!_i&C(m?Vk zGwASzRnq}7C)a?fqCj+_wv0XB1H;wAQ6;Dqz^+iwq@0k7Zl)NVvPcbZR{@=3$(t;H zTO#JluBuvfkmVo1vNgf{C4TQ2*oRkl_s-V4t8 zk36jhz`16>gYtz1(1cBuB>ap%ydWSDn5*S#3ZK#rjJS~0nw3E{8VrG_|2mH&f#+0Q%p&h?nfQJRjq;CagSs(@@20c3?WyyQ=iKg z-N#mc{)YZntM6pgQr)uaz%>N>>ZUBck-%pDvVEcSHr2aR_>%TDJdzu7jMa0ItjWb& z880R06f%=YI+t|pD;W`P^LfYte-(3hjlYVQxLf@_KJ zl$-3J=bY=V`!BTq$HDP0e1Fy+y-2zg1aY22RY>l~*6Hs$t#kb{^hg$0Cr0j^;GkK+ zPlMBvhmVHY(8Owz0UL{#X9)EELe^>RAU?n;bWp2dCigLBARuWsAhuM|$AjX1gtq2= zK+?PqLJQh=%^yD`y-{iWKSX$8Ecn7(1`y!-6D|0WWcZOTc>PDX-G7Op|5u0U|Hg1n zt`m<_!rPZ@-_qAhE*dtA--E`_+i4f3LRYiQ&!=~1vJ)zM!sK6gKE1~hB;eKUhQ#un1jly`*g21UKNzls^~ z?)1QP7-3X;K_GV6U{*LBWd@l$e7WV8C5^%jqt5%6|WuiSeRi9;H3l@$ds34 zMg>0XWjm$ulmgt&Jg9Tnhg+#LyvFaTbM4%DX|hA(yvovS+gdFnV$&XJiX*Rh4sGb- zJP++N*;)^sbLwu(JqyrzKyE-b&m$W=>oz)jXqETVkyC9HUxh~_!28&>71T!WXr*$$ z3$BD+P5}10n=^~@-I}> zG~zxijJ=Cq0*lebJ|dq=yutmbn2mnitQef3W6%rU2tvCY{wUkEE?W=hgq~GlaQQK) zC$T>UIO+GuP%$jB&5$vLzAwPh13Bw!s8*m}y%=+pKdqQKBI;yIp&fa4(H#qYJzKC$ zC1RV0Dey~M(yI4MST_H)TGvrNt)B+9Q!dJCp6~Qp;BF1z?rhi)IM?NY1YYLwbVWP( zwNwRDS1bqVW0yCtnClCD-_y1q=hezRhv%Crj6YL9yw2%L+XU^0k?rMok9(fT%-bd9 zO`X~AoAOT)d;GK^zI&a5O zCl>A~LQ#F9yN<0gpX3UdAtzhZjRI#_005uD{kCEu^j1vf&r37fQ`H0=48`~PzdV0} zC@w^g$d(LtO3}m64(%JRH11nOf2C+$SP@yvz`NCnY>SVokypxnfKBd6^i43?TOLE? z#1;c})P!a%uFKz){7&!q90YwQfQTCWkW3;|7S4%h43lWw3rCtrCDW0k0?^8*9;b*( z%0k4V{`M_T?aW%cr$FqC{r8oY6QyCtm#N-`&urE;Va>cIuq5;CWVMN;_LxQp^^m^Y zVzdxz*Zk69nnIzyop=`HZDReTfd|Gb)1Blk%^IE|5&yG9a+^E~O$({OK~~DxSz@Yk z;1I)ERdU}0g^Z~5;G!v*DP?EpU1+!nq=U_-OpQ`n>#<*F={V##bAzVzqny5q#P|Nn zA)+ZQIkm0QOj+b{mgFEg3sE_jd6yBk{RsK{cSwM&6e_|#yf)iu3BGFn=y$)%e}0qs z920ev-J68K;yS00a}8}UhjgVVc(EnqAU0U+P1Y%>HmM4uXHm&F9ioTXOK>AnZt@Ia zE0aFj6i!#ru(DbcML1*9pqNQZv2QCI%9s_ea2&qz_oma@Zh$PYhcY^u{1ye6dEN|* z@(%Sgs(Ux~f^I+wN-eg5xe}JgoNgN8+xTV+nYk78x zw2nz?b=GJzX+f5ei`B?)!K4vSJAcZ_*9q%HA3v*Wq&lUZ>E=X4gg$AgF1CS`m2qAv znsDkpHCWsT%2+QWE!#K__r|8C=d|*XUJZh4UaL4U@Y3xXEre_Nf>q5Hxy-k#!C7N? zeQKCVFLUS(*UB=q_9^F?=!hwza`T8DL$+1_IBl+dUA_XjkAGDPy{M!AmehOZ+29Nx zuKmi5+1KuP;ITxrN#>V>*bvevpntA=9rmIi2(ddbu)b?g9N@<~{T*hW3xr%!9qL11 z_*=n~42$bX4?tj)Y_`xz$!Ov9Sh1L=hntIPTdS)XQ-eFgL&L056zgzei~?5vEs!e{ z7v8k(%PaSj_eq}<5?xMS&mAY@UlSC}FF^5!Yj~ByDLil2^Z@<9spWs(fmq}^>(wZ!M(>sHJA1^mBS?#in@a%`QUp7}6) zM~rUaTbx;g){M2YO;!4qsxI2o3n(541A~(*$<2vE8c5Hp^^-N-gUbqz5Z(+vWXF#Jf zEMd9{)=1`C;KdD6f3H1e88Nx%fKSg~=%#&{|HucL$zLb>)b5a>?C6cH>iGWw*QCJl zDn{nwl!S+F%LtdwLZiF8Zy;Y-f7m(I7vt_c{#Yn)JD7RkJa>WsD8^wn#zFv8&md4Ho?96y52 zsy%H9qKo1Iv<6dQiM8a_do3K_4dw}FW1P&p0ds)~-R{!OW8(OJ@awYuWPo`+j@QsM zD%&0GtDj?(aKIY(epKDcrF&e}%gG->^>r}xlO*)zbI(Kb68PuXsUcK(H=w9D-~+{v zIq@G*lOM(5KOS62oJuuO2K^qIKcltyVzkKQUj1-a5BwD#fV|+NQXE)x6*zzsg#M9* zVlZ%aUV}Cxkh+DL(eo?WTbvQc`H;&$jaq~Aqw#%%&k&9({{scLRN!BOydn$wVr8Ex zv=qOVdR*-V^R@(vM}&NR%LIxBy@v!chlakGhTiss^6iEivxk0845i0a|Bu@4|8hFe zzYlKLn24p&`%s)Ni8yRS%X~a0*1EXgquRUhTt@cCgY}TTT%1$KQukA(S-ki5X{%&W zhq9k6PG}mT4u2L_jV&)`#^S@za*UtH4CSpr=;wE$PS2Q24_pRo@}$h)sKZKyN`PoY#Yq9jOinneN9-Ph(qJ zjRrD(#-xX>P*!wy6AjKf&+Yh=Q;Hqwuh^Mu37GihreabktvkuYoU{}vYSt8HN$Pb? z1+f_Vj|OSmc84Ys1|WDUKjUdjvrK`U$dU*>nO^fO`!Iz4jDTA0{oK&Q%!Fv)C$3V_ zA8=92`2qb_2jLNSWqXC(T!4bYgf1FN4Hb>29iWmKs5~i~Yxl5JJZyNjtQcxZ_g7ho z45bD%w5^S}GG(}pqRMmWiLP4U2tWz$e2Q9*3z?&1u<4}&9M^&=k1cCPd-hI>MnRS5MXXhIF#W9qoP5^j+a|&$g8> z5@A-!eHsLg)-dGS7e(-f^mM=O{u^~~*%SxZe`!Vt4#8c5ySpbijk`NE-ndKS?(Xg$ z+({s~d*i_!f_t+}ZPnE7|EZm+c{5Y{A?~VE=XdVw5?!sgMi9Wi{4?Q(c-e^8sd1US zV7JCLK)^uMFhY^^!a92XGyBSlG|l32tbE|bpo%jI*qFie6~STB_e{=gN)(EGV<0*w z==Frh#>}TAPCmwcFyt(yBm)i_I$!WpUTo?ZX3dwN`uH z`sWS%DNeCz2cRI-ibMB=T(^C1(kkNPA9ZpM!*$-iIj50xAc0e#oEXpk=Ibu*b6!%S zm+AhzNS?utJxhL_Cw3p(YfAR@nlqa(%nY}tI$w2e=T{i|J>MbwiVrC!4Ido2D)TcmP`ylJ1wr~P4(^VDZsS#KBY z{V2T*0JI)#RVe=gmI;zzuakZN_TYmbqQ2?y(u#a6{0ELBAoB-U)?;R#1llS8MT#ou z&%Z$nfr`Ayppo+a$;D#xmzqaFb?3$ZI>Jh^GE0J~O*2rhHbbNA@)zsNw)lq)$|#IA za_nYEJdNaVuz|P{ZruYRXTxPEJ)*AqbW3j*6C0gNFxp&V8}-&JO&suJvHzXNP&T{@ zS(r~Wamals?=~nlO58vc;|LqDGLkTAN~ywVg{Gi0kaWXl8nO}I%c}B4>)b1W_AzM? zHq(i|JUNYCH-k{eX(m-9Vy_1%11PFah_0Wfss=RyHvTrGlc4Xj#w9h~Y|Ya6Fe0&^ z%*qikbHs#$5nb_onPq(SB>AuR|zo5t)~4ajAbV=|MDz$lo)O_ca6?WB3*A z&eG^&OUG@E!$hn`+||#vQLEaXp^>B1Y$IuxsCzSz>YwAg>R_X?X3vD{H^O8~RV1KfoZH;ap}g-} zF{X49i`~gObMD^0ihUW#C7hpp4)ZhB;5Ik0I{~@YyFGB@Ve+2wcCTFNLRS7KU_gAT zISV{@HU5DD^h@UBKS!o0qhi{J)=@iFeWWfUC^Jn1Y|FnNMrp<8WAk`)6oJ_eZQQZJ7d|6)4GV_1J_TCwI0(OIxcC&Wy8SiopEE%yo>Z)NI zvv_HFe_>FAO0HZJt*mE~XbW0`p|^RqR(rDeEt&`VyQX!oE!t}$0-8R?xI`{?IL0d2 znCZy3FVmoH?$lzE+bew_5Z4B9h&4)oKHV>x_Y|D!pDn=0m=}Gs9?0Q5D#YYfmHJFD zOX_x0Jd(XFuZl89a+;XOvUa4*Kr@rb?V8noD*B30)4R%f@!1ds_tS_@Os8v9O*fLL zPOte=hfhJBYtEpqDqX8gOB4E;uGDLTj(Vk=bVJ^m3XpJdnUWi$p_%ARn7nRg^Zd@L z<*Z1iHO(@k)Qz^i#+DR1`5P!6^fP9gWyg*rV$q8`2n6%A3|c`9&DgkO(N|qI|+5ZMascjCcC(PVpy% z!zC~6Wzbu+<8xkEbLkL%4nV~9K6wp&etEi#i*yk(rG3|*D^!dRR=FLXL~ooDI$s#< zOgv{UvRLswBhPbMQHJp#eq2BEVd2$OV$M=4)ZQ?_E!x4ys2a9+yz)9{+Uo}yk84gh zWnMHi&9!?DJ46565WV=S*16BXEzVcwv7CIqcoJ-e);84%iQ<@guB+;Jbl-R91c1G^ z-j-7a?Rl>Pdl&m_;=TAI@qPA|5;@URY`{x7>bh`w$zXe-h`KJtm3*fZ+2YmW8 zeDd6VKS=u%!UUWz_~Vot;8}t((v6Cj0l7$<9h;IrPy7Ou-e)1@a9ok?|B1B60J4gS@V}Kj+;k7!# zDALWVZRn7ggHS-N-zI%a?vs{Uy@}#_1V^t0WyA8ATI#*->0|73-yDR&FN8;B%V3m8 zcT#^!gmnA>WPE9oz{iCH{2(Mg2uUyk;BYOV%h3ZZ1TXXfBb+=Hk`qQtyX&Swm%^gK*G>ggzQDl-G1bS z|C8{|d2fY;Zb2{1yB8=8o~C-a4`Ka;)c}ox^74FE%4SV_%9`b0HHyP)BIqbLEK5M=uH+?LZ^`nu|7wwYY_ zI+zb`o%5HfE)!SRk@>{+0+I%bE1N{!?TwK+P4?Y)o7M&H9{XP3)U}gAVtQkjG@EZ_{EJ%xA66%u#+P|fiuWOz7KQt*%^Vc75( z-ussFRNNra`MfG7_X6w_QF^TNnT;BM=~%*k`WX|DteU#~=>P`~@sAgy?zheT7GZN@ z=D<%3*s$IvKN^0#|8tjHfOl5u!ydHt$1l+M$oECeX2F4+eg1F5jZ`}!fHDk9eyaIF zxm@Ul>`OR3Rv~(X78)senJ(;2{;Sz;UqVw&B)6jpupTdwA-A4h=MOUOkL>}JOseQK z{2i%L>EA8+GwjxSQ@Es-gAHBE4!WOBN%q9s1TaP&#gb7VUQW$F_FW`MafFCQxVx=%KDa%uNss7tb=0f%*lfe!b3Io`bG%;2R z6Nk?0C)$@sSzF7jE~y&HVAIW+kq`J)E{vEpSJmy(YYkQ6l_zqsY6_i@O;j!hYc$tv zc-vT2i!mlb*_llTc7CZM_EDo)>T=pV(6vF#x!as z7{E^E+om%*%XRXpjTyuzCYOaQe*jlWvO6 zF@5C`U{v_`$AB>xPXuDgS^Aa#9!sv0J*^pr@bWAfphxcq;hbS`iVh|+BxRUui8W#O z%>%6G%V=AEuqAPH*29Ep(dyzuno8{*pJa5-pn%sSf+mBd_mNMo8&hSR#ReHo#}!Z} zQxcr_7GM7GBTbLnfv6I=%=QsVIo}tyPWD+Zz4TJ|lgDIKdC!Hrh^QTEA$Na`apf}r zovkw>P>s@~bV~*&o!+wA%@S3vV!j_bx}iwa9gEnGCO z$a+R)nQ>L+U3Zb8bvu)+xjYy{5Y@>UXi>al z>$Ux~H7^^KaLTmBpOVMxubm6yxFr$tITBP*UJI;J<`0=$g7H;o&@9I^_I!<(pC;j0YXOE)) zSLQuTj7J?Vo(ug6Co~S?wQykPtwk^8>#3sOGjjqILNojD`5hPfck^j6FcaEPnEHC= z?!2)@3g)TZ?7D4zd%nyA+i1K|%rAoRx2!(W`tM3P!zDSx4y(Mm`yMp-pBMY~?>nJ| ziviu;Pq=-LaAnZQ7{^`mX76c|7)o2|1fs^Z?=H_SJd`@Ez`z;eC}?eD=pydNhT+ri|ih-H!^b<_2o7} z9EIWtZ^K^oB+qs(zHj^Jei)C~6si-yYt*7C)C8_h$oe*VqjwJZ%}Ee2u{z>jXQL(b ze78ooKScEQI&`zSPJ`=PRH2#Rgo!VW9QX-UD&G>39ZxyFaEKC_ZkNtiqMH!?ubmE77zn1cDEbVyBq8yR9(!)Nk z#1qeW?8?c|zn36HeC?$1Duv;DVjmXM_tJFv=l47fx$%HvrlVS=sni;@`$34cbbA@d zCGADoqAJ>nDel|&Br)FzDoXQ)KYC^5`(o&n=i-td=M|3Ocf79|MXirY(t-co*R6wV zUY-^Upf4`X1z1*AZjZeCx>@`9XsaXLWKK$3HZrYhJ5uRw3cGax7Hnp)oon?21iC~G zjr88OS%f6X)s0p2NFmmS13DUe@1*j!~@kh%C0c{itKGj(_UqTGX9zS=;ok zbFTp71YK4nEV#I#2HFQT?&~?XC^wt_&eRW+!Hp;@TP8H;j`Pl#NOh|Tjit=%k(!`Z z-((x;?QZ(mnP)&gQq%pRr#|X!vr3&$M|}z5pElE>Zq$n71~JsU6OWU~&X^7h4eyIq zDAe?y{AW<7W@FVJuj*70v+^~7irMRM%uvo(WszaN`(}>fZQ&k1;VV>ZmBPH|$4Q=H z&uECMgzr-mW}enah9Ot)!`?vM?HE*d6sm=rd7AMByfjDph9)XfwEUF~UVQ8WX-W+o zcWHnazQKp}Av9z}iJ-@wZ{mV@SZLHr!H2qk)#bwbV&c(g8LLyi`1a9%jukiLmV+R> ztMn5e!-PSFv*l66X8Tc`;*<$E$h|{(NvTMJBi??HV+nB#P;1vmswbMD(YaBExhVT~ zdz1a{f&6Bu_(!FTLGf$24UHSf8f~$bL5RsdgwdDapHQ`POj0t)$geEo(S&ANA707; zLXSbeF(ESK7#1Trj?*VJBqy958aNA!cV(xf^yD33hrQy7Su1wr#P6f%t4khwHfv@+ z8kUKeb*U+qr&(UZNZ7nPftsn$aM$ zkFeD@{*mq?!|U064MufB*#I+Zs7a5>)p^t^(lYz!5wPe3y!>c6X2#(zrND$$hC3{C zt_YNoCiveGfj5S79@9=)Yal)r*z4MUBa14Mbs0Tqu-G>TDJL0k6g{jDrVt~BHkS5S zG(dyJOHqxsXN68AE)%0*`g6HMaRp;)X=321qgDO8kvly!th8r!UzUODTQ-hj+3n8? zS04aFwvG!s5jJI$bVsoR&|0fqrZOWHpcui2t*T^4X8v7LsRlK)O77NrTAY4yy`rhQ zM!=@HK4Njozp+Nmj6sj@da?a(D&0+;kf9T?pX4aMuDCNvZDwcblYu%%0dm##29??t zF*ipe~xDsSwyX*2uKLD}G6QRk~2xCwLQ z-n-;jXQnEy|6xw~S1)mWfadI`E5G}1s?54T3X}C&?uXDX8aP@sa&qzf@SQZP4(hC< z6lhU$e+F*rvE|p;uoOf71e;$D=yho&b6@_Jrn2c=EUU>nde9SeOO9LUsQVUl*Xvur z_A7dPWi3{6MB>gN?sMg+$5zXzed15k`rzF*cu*)_b^WJ>&-uP4_|BT3Q)o2%3odh> z=a>adqtrmQY~?4#i36W&>$!1lk!^^Bo8M9Vfu}|8?4dQ>4sK2spX^7>+rbb1_OG_5 zi;}VrGs-Y$;=Wc|&HM!AsIe|-o`Y7?w2yPGFV29h>Vxvs6)sg^exM-z5f6r^{LhV@ zYF$q2*6;XBqQd{GFNu0I#QqIs3A3Ms+SzLJWU=-#tJXRX*&2vER}E{-Hk}1?N=phb zMb&E6a}dl=>)fqcBDkxjbk`XA(f|&HqdJU*Kw6=)EeZ3Mdiz338r~6WTwFY1n$O&R zbzXn@e0f;Znb5hx;&B=C?6f0Y4#Cgbfx!93-&B}~_cGbOq!tQ;(1>o`P(}5vO-?>> zBIcxo`}TOUub^%lM(aey)V)uccTzl^_StaN`)_`Z#+wa}Dvi&3QU#29kqQJkd02-+ zah@6F0Ob5-oYIx%2q!@2 z`sUS_=XAUGN%UyvX~Cp>83vO~g(2r^)z$OIk8xYNrjh>)jQNL&FBs%8b1r8}1k1k* zJ^F><2ZV15%<2w!{)Q90zDD-Vsq^hr%Zt~{Q0U(8C3k})8*JvWlpXI)dP%I4{7pO& z`d1SD7&+OkiaRNNhLZjAf=Jp&Vbuf9`}!I$-3#%l6PBwz-84A10q-U2K<^1jpgVDf zsZw8`9_RG^F6w&wk8t0fjn6OiFR;$8H_c!4W8Yplyx!dVY?lwfS~Gq=l>RWhdbeQ$ zpLo3xEbZwn+#KD(`(?VS92|%<;I9x*99%~v2qQsTz>}LkX`8JUO<-x5*Y`5NkikG& z4=({%!*6&3iLESX7IrZq0$d&}JeIy3hh_r2EJAq3e9}P!JUn6#4kG35F!zCIkN`Gr z#eR(7c@r^0?hvU%o>2D?VofI{cwLR~?^^E?7|hT;&QSEjU_WZ@tJVO#+0d^Kq1ff2 zdfS{1>HbcKewNt(k^BA!_SgTc@ctwB{ckq4{b%lT-hH>f<|$0*+#D~~%ag{+6W*Mx zNFQvwRd~0~Z1kvq`iknpdzmm8cOqB&LUFy%jK7(h?Ye&*+-ji^HmUMtJF%b$HIPcz z@02*_>(1LG+Sq;w+MAdYpSl*1curr{^s#5{@qD_iu}JsNID-2C{_@Pr;j^}q( zpq3Pb>?Lk&j3((Z7lIA?vt@)o+G?y%d?i^3B!ki{MNpXxkOS$M+e~zs7Te;zFgB#V zIkBu9?)dZJ1nu}x`92gmiBX5=NlTK*=q19~9T>+cEW%U8izm*TrTiSArAjl3+}%qw zPOVsqMF(2#XHvwpQ)D@e2A769E{>R~Eh^*Bqz%|w9azFXjg;kqLvhM;(NH2S3p$Ab zMUs)iqvcMq!UM|1sS5u+_l45Go7zBw78Tj=@bS{h+EL4Q_&5~7rdoZHpP^=A89-gj zef&gS*L^-ZUGod}z$Six9bnlY!aP!0boVhG2g5HU*T3{yU zX_HnwZnM6`=zq&b-KB27Y{7diJ?0la%WJGlD0$GOZ>91)Gl=^Ztjk_V2%t5CBTZh< zuxqCD?Wp^uhq|~QBz&XEC(<6KsfHUa`<0$CZDmE6gBC{>{JD*Xl_F6ci}_JqkL`7D zu3jevlTX|Rt!D;h=ip70+6%|`FWeBRMpvJP!F$`)f4_%Tx-^P!NxDs&!)zSyG#q=+ z?%Mi=y?6f(LDTOcsUpI6TdFmFS1Gc9E`SxgUEAZ|g*B)l<7A%7t41TCm0pWT@6Cmm zAe-jYQXEmz+k;YW? z;2V92v`)dGSz9*l>=7@MoGhw9U>~8Id=NBynM}%ywh-@=vL%w79$dLhMc`d?Aj3-Px zo7?WZp7RzlDu{;{j}{UCkQQV5c^MZHo%ZcZc{}XW9}|BW%1)eRX(7ZfiQ$4K0O1Cn1lSncL`qjGDRW0gMh$~7-A(ZyA)Fp8lBkkl(tg{ZC=@L{oMG}%3Wh- z$49{2fC`m0LVO^5rF`duYVllpZ$_%JPVX-I})`oM9((D zpphGH2RJV_q-+)Mt3l}G-1pgYouKmtEMSaL=e{{-l!Sctx!Ec4vn2gb5+(YG^vyxJ z3hv9Xurv1-eOt>PMzZ40Zkg@DAO_s)+*YO3?1 zs`U#l**r`NvZ}c9i2KQT0={&IW|6fCBaL23x<{q9rAh%*3nfJ+mCL!KUCCT2!T}7a zYFVz*n&|2d=Zp)QEITu6ugTozUlz2`8`b?oC(9pQ7$U3bms(+Ea$M~Q^{-bly%TL} z+%Ij~K6EO%px#xRaaFg%6XO16#`&2lQ-xvGkyq3alJq;lR`VuE^J@?K_sp|G836{Y z@h9pg2cjDD+YE6V*9E3*eJGQT+=;Ld8#iU_t)3HTRbFG!wKaa>NMs#xEw_)VHI1QG zC9X=V$B(17%M~P3K&W>F-M614 zqwlL{a!`GdT?;o)vv{~Y2wfmFJP1YaAGQTa3%?X$dZ+iI{$Q5Y8fW6?#vJ^pei`j3 z$4}@SUCs`Lj|q}!)cB-5B)Wg863UnjH&mRD!km_vWU{5!bC*ML&TNyOok(vAGx{T? zAr)?CFTy{gPnGx@x|7W)?;YAMYAy_LGftnOGfbX%Q*Tr_d{Hi6q@F}*YNU(E)O4zsT#(4z365$qVKWIaO(f@SJa25-#A1(T1Mwpltrz|n- zztU&UrD<4}YPKEWccdBqguRUrpEyRGX{pn6V}*+wGOvq1;Tp)TCB>g5BwuVTpOSPd z3By3dL5{%7S+Zp*{V+Tl2rcj*`olGOd6U9q*U)&XcvwSs@9VD@>s zi2JtdY<*+G9DB1H7$11PZUMM{UbaDPQ~e6P2&9_rV(x<59Rl@cR0Ff zw(O8=SpI=h^c8%|qSGnMO)Qo~O-Q78+)b5lmz0$L>z~ynM|k3_86?~J6x(~AJgz_Q^0@J|b;I>kR=TlUN!U40GUcTnwvlKAem#yB z^G-=-xJz%TU7X7C2(&}GOZkO(PWDE!z5u#!J?PAF>ixHoS9?ng#<Jp3ZMvYV&j{GMfUp@Ku;r)zu9SBlrC9owhZ z#szRD9KSLw-CctBc8Lo19S|QK4?f+0RotZG1_X2EkJhGu;b99$>vQiO5aecrj3*&62h} zh>ACuS3Q{2BUswQOQc+~e<@g|G*}4|ph9b}W~ron81SdjkC-|*1Q?>(rq4hdXu=!X zJrES?9%>2iVa*$23kj8kcxbh$=+T6smRY|A3Al%cu}FuR^o7YDgx#hFt&@dwn@NRx zYRSan%KMgwAH#;iT5>9vg?n&OrbvgU9a4wFM+oBvRSsI@>_*(sM4${uBuhoYqyIkw z57W|&S1DJ&F;FW z>*qMgYU{w3bO?pJ)*A2Bohp_ag7{`N%PeXXDG z!`;r*ko#ATSH~yVgPk~ryT;qMKV6G!?|$#rP5D`E*nHPdqRm=?a0cc^7D)U{My_W+ z@QeWj3K|8Dxa_xog9-cQ3(QELaL7MUG^lS!IY%7o{doIrNg?xj#bPZ+Fff_IXYrPn zQc7e)b0b=enol_a21m6hQOPNJTY+XUT|Jpq!Ad3NvttC6i;m8&Ih&~;pI$n4jCN^8 zX951Vi1FVe``Pm|5(ha1H4z6nUgvxkd48D)mifUr)`tb*)c>~wxLh_!SmzxfFZqs; zf7Xwr^UVZBF55hLS|0@$L}t=eoMm`Xlvh+DQdB`DJ2H1Yaz?!fYMfR&NNSmnJ4ox? zo+3%>H4z1Dss=Z-tQ-2t$4;ZhggdJmXJcV)GTRd)tg9E?+|IJP32y9K^L?w<+IGEw zpq9f@hSe5GXs1ToOa~$U&ufzs`=56z(r1y+qpNkm2OWHe`p@pnXGz9xRCl^ zUpJr0?3Xp7w+Cc_)jv(?Oyn+y2sLTh`zTd$oQ5dM)*wkz+{^W2*}vtKL*eGC9pYEF zi0UU{u8FRlk>8Lxf!qQ|*F93;<8MP*e6|cp0zIovqiWClHAAEp`WMD3npG5Sv}tQ* zb3)FtR7+vL`j-%65y`U|herAI)vrswu22(?vgb3fqbgUv=)p?O;U+Rc&(dE6>>l@` zaNTlVgJ_CfkL7ep)a_k&b-(Go7q80p$n4d<_O{d1+Czx1W@;1UJNfd;$!vo#k7bjH zjX-Pp-sI`I#U?#xJCh0X&&wopV&0sAFi^^EUcI1F~fl0!?b`Q=M&-vXz}F%d?$SV#DMg6YEd&kGiA~hq_vG& zp7AEZq&HSI^)ET~dlNcb;F;JI%+691g2X>6nVr8gg6Y2tY+3zrPD%QN4-?S}|EVFv zM8U^xmo^VfTk)6~yU`z}5`Zd#p)tysXi4m1MGs1HVsg=F_J=9tID6rj$9Wxqvi>Yy zWm+Xl!jBRhr3_bL5%;Ux-fer$UjU9aJU82NPihk3oKy04)v~yT=|mR;Gi3JSbHtnM zQY1PdF)}bRB>hcNtv75Q`X4FrwArPZup5~2b(hr!Lx&(_i42%X#c#Pl_DZD&vOG>% zYTS`b_9yhHRLT`mQSDUaTy);ju3b!3ZJFkoOWIm23Kx?Kz~c-?axYd1!*cOp0_|0b zgJ*HC0)DdTaiUXZwLF`|_V}!L689Xk3|ETB1jKAk%IzIcCc{TmN#{(y8T|gxOcfmW z_fk{%XiQex6*7w(ozJ1;$U+HLqCnyL+~VZ}ju?2w(P2zwN|x}B)t2q|9nq)CJ zKzca9x{%k0c7oNKFtpD;(4xIe(Y9RKGQb7=ZWYJC=4V=NmMAujCYSKu6-XIXVG}W{ z@KK=umCVgnMx~x8HKM8-)uC8MMSrZsgFkQDj^!$CH=)v5G+&-NTM1Wbt$NF+T*Pc4 z$eLrJS@y(W9fECZIzS)y>sYn4menH5q)No5D7(?5On)eg&h~gkgKSG(*SZ<9*%RJ0%w`Ap zmen_9?iQAB2ep$@i^5nOz4P>;IJMiM)KS}TY4zORwZ9Nm@%@-a#y5Hf$Z*p;F_vz% zr(?DwqgjJINp#dLs5_wtt#5E^rf+32t8G5%X-DEJ67#cw`tjJ7OL;nJc9z^m4)j&K zTYE^fmA!SnH)~eJd*1@>3nQP=ZUJUJn^dg!uUS|yJet2z*#3PPvsqsi#cTg084(oc zy~TgTm9X%7F8TCqj3DIJK8VdGE=`ne>zekP&diZRA9)_D%Huay%%PDv{Z`b9{1B(4 zV;oX*p-&24aLYotNyPXJD+b#LzBYS7WS2pp=zWeR5GN%k8jEg|aSX-I$siATKi)&T z5Fhm%N{f_T_0f%W0)K=mOKN`~y^pVlqu){V7`cgz5V;l|)QBIa$0QQQHWg5MozF2! zPD?l{Ul6n5P!U!t&C@X+8^~!Prq>Cu&+My5Qnf|1+nkk249x1ccln@y%qfbpP^{`2 z6;oO%_KDW6B9zS|L)S*NH*+eMthwCQj>AatrzWw647goOI2U&Q`^f%uocS5{cfL;l z;o3{t)U!;W2p3mXL`!H{jZL^$r?q!TOADCX3x1D{0r{)8*n5yaHB%S}krq0^&T}!V0J+#(=Li`q@*&G^To=U^ zAEGel6-?CJv^=LCaM2vB^&Tj7+Mo>>ew^Q!SaKJ7Bfb#1zxa!*`H;~mMD0J-xqV^V zVvy+4%g5&-%c)4vt-sRcu>S%OXCas}C26tN%pagId-|}GEg4JQ2(iipG!QOo2Q>?E+fv;Ru6{}&Haqcoe((uQA4{9PI?XK}=E;5m`u6$l>u(H_i^M4d440@=QN zqqGbZx*?-05421mXF3d|RVQPk4PyTj$UWr4%`3y3?!w;|)FU3m_uz8}7i`HBC}!y^ zDJ>>cuDsD2e7WF{)#6A6AEM5!yC4yw5l-J$}9EugD%jGQyUc!YG?RcAeL{5gV zy3sn+r{h$#an5K)wMer>Nk`THFCDD^|4>|Bue}$Sb2U{Ru19mVrr=Pf&KBTGOUm|S z4m-}bi%iYZSYPpQ30efChlc2B^`jJkpdGJ$~1#j*?()QU&YC4Idm z7AwV<p?SE&KNQsj8$n?U`Rl6W6Vb6W=Srw%cr&-!5Epg9lF*`YbwXa-n1Rf3sTz=<=H+|0?dRKseJuQVOai?29)jB6w{=f}2ZVXlsbXIWm~M}C?-7L3utf`Kl+@kc;@;Wv?S}?L*uD<3x>fO8CutX@-Z!*TFz;?3A;U_l?n|NJ{cmy&pBGtXWf! z;Yc-5m`_|Q6$0bO@gtiA{OIMdy)diNo+Y=t5S zUk)Jn`X;+uicB!>!1IBycD0lA>G#g8QBA@Vc3v3|4#*Ag_Nzy2ysC@)yPu582`7sV zayM!^+EX>Z5U*$7=|9G{t2RHcq_1r7{%fM)_Bq}mcQJtAjl0w<-#o|BJ(U^;RD6ZuVNvS}5I3`Sch1VXn9S zMbRY!^Y4cMweR&r|J>m9{)(UTzkTU~tug=B@QzwVHpYvLXgaA{h_! z7X3yYEeWC>AGre@iePlqQ`5Zs)dhO=w>Gi*LN!OWPJpGNEFsjP?BW|}#1wr~-_U8U z>8226uEld{l>@$H7QVW)^)pDui|Am{{x4rSQI&KHe_t(24UA1ibEG{IAdHAsu3n#JSpk{d%+ zMM{!qBn`xoY%?F~g>%s*BTq(YEW)~}49>&UMN!BzD9JYU%~Q}^h;ho;M_EZ`l7Fft zFx3Q(?KC^3SqD%t$#RTMV_$i-t!lFUE*+O~Q%>v|SNeveIb=sNoG8R=RN|ELpcc*bb!pn)0E-cQeMFLjW6ao(s+b?24hVRfNn++?p*J^% z>gZsbD*(M|UB^BeT8k3mU|CDtSW46t2J0EU0h>;MxB90Bz&I(~!YqXwQuX%vcj%qbGe1u!GP6Cx~Gi2o-a;q2i z`teaiMBO&3_?~Xg11HI0V=%&zK8KHY0HZ(;80L zzewRFqwL%Bmbq-jB_sbD)ue$)?@-lfVY{#1Ah!+@BYxzK}3I9m-*? z96>a+nXgk_Ei7^KSfZh~BRzkSAy5xhk zv<;tcbz?sfu&GvA;l;`CcWY!7PoWkzX1wOu$#$-ez&1Cd>$W%=5`tUzTOzw_PRF9T zA!WJE(YND99~6?pO@POpXIB?yrOUqn3?2)gV(p35y*A;(-v6SE70iwqualq@< z9;U8vjRH;yA?pVw^Jj_u5nby0o^h;O|2vr8Wc|#7I5AWefh)t z99`vrkAkM3g&!Jl{ZtYZeP-ly4|IEdkJ7?4Vkp74lW@)(R`w1Z!gZ?MVUf3=UAxPS z;!OKHHSZp3xSm}$R|m7)Z?1NPLcf&XM0@D1gExG_*cGMjKN1%iN}XQDe0ka5ynH0L z;Loana^HhB-Wn(K_{2|8<*#Zlt`FpqcQ>cDtbC-#@M|%tdL|SO$NV|MZ z58##zkkk|)J#@C&RU*LiCz$aKB%{OC0@3pZV$fnS!#jM&4FXXHDoO<^x%fSPlKo)r zZH(iqE9RCoD|^~%UeDu87OEzWM+2aBh#vquSOm|*gf!9wBdGi5TlkUD*m@oW5wnMg zrDG{Tz|zAk^tU2%!+|cip;@z`g6|(vhCNmKEkM#hcUs5q;S?^sLG+7ZL}_7WZGq50 z%P@xrBJd%-tZR^as{JRJfCNiVL-B}|bQi0jhzx0wI7oO7E%7cK*c{flKw7Q{&yLeI z(xSkjGTg2D5U17>RD~C{92U~#=4JaOBIAJ+)iR0;#-tZM8daR8UpiWwHee_`nxHKD zW++aA%%C7?FUO;rih2Pp0ktsXds=6Nkbnmaak?*q_K`h2X#?4SYza z|F7S1{{Oz=B=~>b@&(=-*VUV?72|_#)C{hZ({*9j&-W04^%?tzGm(^53#IZ(KI2G@tJ4&ec)p>SoT_sYad>-? z|MCs=88%%lpoz>fUm3A)@o(S{q2bJ6G>!6Uxd;990&*M4&UDqH$S8b({~e7$ zsa8hHaXB8L>$%N+Mpt7Q%!!IwP486KdEU3R<|Pwc)hlITJ0+`r z`K>k4g_=9)`g&mr&zi}$^|GA(=UU?qGEKF%E%+@I+$}v0KZ@dx^I> z@jKzU9c_lWJO*A}g;KeYBfLfs=r~(szayp521x*tvfxL$hp8FneS-6P#xwB=_w+fA z1_6xIK^ExqvKtvEjCWmN{o*5*I;4Pqn_uPW8}%;y!n^Od(0SPkw4lC$9Doh{OitX_ zdycxQ6dSj$rCy+u_n&h`{vGwpy|AVwoEPkAWKw*)I_ANLp+{qVrpRd|!9)L?I}m_X zZ3Oci_}kl#l?lEn-#>h)Bk6CT38|nFJU*{5Mnk+CHlJ~)ipOtk*!qykBisj*@IGAV zKq!>w1?d(?8W|rn9){6WU=|85M4X4!yFnH6D(7t-2gw-)W+sv)D)GqJB&%t^CiG1+km8sys!3yQ+zgp znLMIrir6ALS7bB-Ma{PK85Mkj>U-R^#~$fas!KX1Af{d48Jh9INMe+kqt!1QNor^H zikpw1S8h+%5WY8<e3MCsRimFZd4wvyuZK@@>%JPt#=lY_fOM$jfCU=9X=6RjF zCSM_IqayLu&E>`Vwh$(5^QfE+5U6!cuf}1)i)LpZvFa^=**ASyVYn8deR_1utV)-9 zTk;*JyvJN$Oh|e>%K0P8 zIeX#nUD~f${CY1~%Q_L`Rxae&w4e!0V>fxN>emxun-N*=e>zKgxUkBtel`=ce(D7o zrnUZ3r~3I0Ew!{8`nG)4>C5q2In+=Dz|P8cC!}pi*z>2X+o|Tap}ir_4cpieX=S|0 zhhJ_S3PnzRyBMs1u+bG}9w;)6I_Rp88%+- zGv|xx7q`vn6CRwmZW|mfA6=NulD?UUf0^IcM(!r<@t_BSiE(e4yYw|IUbu)?<|k}B zvfjMovbkGrWX;2mZn~2r5{^w1dX(53dKr0))=raayZq2cU7_*oELG*BYhkY`*I1{n zO1*8}Yr4rQ=9#(2+Mp=ES}C}mwd8*u2T_+^uD>=8cl`KM9Jrnrqc-@OdBV<6{RA|& z4f4v0h{xPmP&W!t>>C7p_XutTme8GZ>J(W||B!S76RF$>=7?E*_a8DgU_=TfNXNZ>Ygty`E41w6ABD?B;Rjf&j1xYWR?9+530Kz}K&_Mj-^+fUGH%Gd zZ%onKlbMc)<7(dNz2=)Xevyc{8Hz*9p5aT%lENN^{n;h>2p8)`(^0FH5f&ai2vjVR z@UK7ce}dJV9ki*Y5qdhX_%Q65;T#YihUq;YQ0w9kb@JG00g-uNQdkC}Ne2Gnv6)!{ z|8WNs4&$=7>V0eTZzv96h2U98agxkAvT1t3O9VHg2e)wq<4F@Ol=@<58HuNPA+}-C zehHD5CIm=_^ic;YJ_K>%@jDNN+yX-k4+AOCLv{*67qDHvnFrS;g=7x-+T!_;g!4Nc zdb^~DEn0YE4eR=}frZq=v=74Wm-L_k!}g#<=aE*P?7OhnYL?r?yG?ETpORP0Imp7WXAllN+XWG(k;K6GMK6F7VYMVQzt~EyE zqaqu8tRq=$xm0X!F=#wI_NYzKVK~;UI5reMjx#Mn*4_JNSo01ZLpm*Ph)Xcr7;;-TD#B@61D54nDedlt`SfK;^l(gtruU~WhDR|p>=Xp8XuNbu5 ze0Z0;d`L5O$?4|!3qCl1{Ncy7Ek>yI#nNR<28!NXCjgcUQz;Nm5Hl|bvrX6_1b3&= zAe6B8&LE7`@Ln&R66j_Kq>VNv^0{dm+KHfvr^t@vfD$hdWIPZjj=IO2D~KWd!bvD7 zgfhGx218ax>Mu>Kv5`O}O0}1$oNQhsAZu!|nGET2Oy==%c+Lnmn!rp-Q=fq}NLQ); zn9GIEgDFXNoG6RU0)(g^WU?Hm=;s6xQ|jl1-Gm=y0qN6C3!*(>EDFcHhcN986}i%j z_6=5wi+dbA3Ni%H6R1ja!zB*`i#{^3X5ext$&)y?>K98(-!HI~8i5;Jy47v4&& zKG4>+DP0=0u7kwf<-Zc>Pqi8*MqsPzXSlv;H!kD1&^50cKH1c414ju!`v>gwb;s0) z#|==OG}i64!&WvOZ^x2$ozFfa)K$e7Z46cq7t1x-5W60=RUx{icD+f0N7Q|9N5~P31iGLYd@k zXm*Mcpka3|6LETEo|fnqYfv*IUcVET1E8_~R#J*;&{NY(Z4y?|o4;Qqz^h1IM)@4Y zxDr-}5V!K9T_$x6@xv`$57-`$1+T-Lo~LX=N%7hj=y-N&DYqC)wRC$~g|zH!LA^Qr zL1s^CX^fELtJtRFc6qK(i}9-3YU0(sZOc?z;214+YUUcL8XaR<{-gWEr40(iZQpH} zt-ff@e)ZwFN`~8XFDu3&SZ&Lp*~Grh46dSTN?-J_yVDxXI_ywXwaa)URbpt{+tnlI zE!xqOn|ijZyEK2{G4*A;>D;_GxCoq;^U!--mCE5fe>U#OCWB49svz zSALJYKSgF9+_tk2w4h8Vn7IQ7@sy>nh}0r9hI$8L+p&+Zc*IxyY@@umAR8Mj6CQt@ zgM{#>H&c06pQa}Q z=yI0-esh#cM`jfvdYp%~uGr6~*&mxlTo_7vEXn{C@0p>vLxfTGLuBBZHY(G|h!Cbm zvMnq=URjb7G8{{>dL)tfdhgp`%AYeGvbtD5$i6ZLNXef#rdVjH(`&$t)x*rD^wFA% zc|7;%Q7c)^2a++|4-P{)qS%kSN3l@!{vO?e&JcZ_V+(|-btn%u-{Og8Q!0zM)jY^p z6*6M$AD&2TX<)hnI|E5}>*e-HZ?lLKN+!V?0%py0xwoW8YA+IKaEys@P%0+E*XDKM z>67_l?nj(7QKaI**y+xWO-a{p z<#d0jRj1vWD$7Z%2Jf(x(eZ4=-Z`!EHeQH74JXMvi>U3V2dJ#=u{s(nTGfFi>Fp$3 z@@%|Gr$0c-g$G47r2cU-F}E|hzaA1_jjV^8(|h|=Me5PZ&h&((eoV4C*CnWEij50u zK26PdR&|1NEl}N;%GVsi&(hB24dJq-^5a0ht+Zl(I0>tYwmiM--y94K*T&IqO)K{E z{J4EVPH0566B{{QeY+&(iE^_cd|N^ZvAyZJuk(Ag+eEB2tZHI(-#i=unr2g1=L z;Z<+{i$^aA=PZZqiqSiXSLa)LTzjVD=0TlJ8o}?Sj~c2j_Uf>G@g}AJ17bFB4NaL7 zLv2& zoV~}FZoBQY#mSjAp?ZGo@b<1zS6f+kRHcuDSlslTpO;76%t-$1wd01=v!*^;O?x9`6k~#VVm4&nBWfPLSByxIoc=(cpi}Xg2uIUQJq!H4hfIl zhv0NM=B9C{@y)765GJ-u*+T*xm0n^s&W<%SJx(NmC5eCl7dfkSSE#cWqp0yK3%1u& zsmGUW)_9j#yY~x#&B3Tbg?wE_Yc8CfI+_(9S4V~Slzq)p#jv}zw(sPL6I=WG^n^?4 zBp#D>jQ%DaziUdwh4PhE>L}vh-mfq2*H|71N4v|%)9m;+-2O%r3`ltMr%ZPlPVcK0 z-MF(fx(6LdX7{Rg&kHf&{`y1iGk}rjx81I*woP8m_#BOVW|#S&-PWCPU|lR^)6JJB zpYx{{Ijl=Lyr(cUe(Yg>tlJ!LO2CzpqN=-mI#T~s?1#`oiH7O3BH~BV<8##PKT*d@s2(UT#Ea2X+? z#MK+1%NP{a8}#EaNau5~lSyD4q@tj@q2QelikUkqX)yayu(Oy)eQ+?3v(K7wNB~g) z+O4M^r8gaE2-X)TyFVd4BB7G~9Pw&&=59trL!tVVeiL89{Ggpz15^Ej&BOSG9mCCe z=X=AV!onO&!-j~%#o|o)#XJK-!hhw3zq(q5hx%t@+GMgjw7dEjh5g9oaO_zKuMjsZ zX$h|^2G*sb%ZLSn#C4*-g|@etCLZZ`hq-kZh5T^~>lY6h4Es*#=4#sk@%qS)7eQ)?}WkP(WeF^!%A1ws@=GYv$eA4b1^iJ`)9 zI1CHqG>LH}ay}1>HWrFuA&tF;jQ!35oToH=p~U@`8VhKNrT!d&Smy9O%^ra>?muL9 z|G^Hn`LDQp{~XQzr_$H|>$1Pc&A-e}^z2NW+q3uo=_q?athRSE-VqHY;Wx*9ax5Il zX|Rd7YH`kttXd4Idgq!sn+OLxAzgY?yG2Y67BJ}D^GNQUY&PhfWFOo-Jsj#qRc{jh z1+%_G=l=SFc%-R#0%cp-7pqmRe+V3@YB=>-xTrW8uu6$# z-liz*OxpI0?<%-yPwT!EY%Twths<*kpG^#(-h0eMTk&VLN6MjMM%T+~06TERVGz>_ z?#A(1P~FZEJ%(0cSU#I4ar8?=CEb|7v~|tcwriTBHrrqXvj)N8Jag|)QQSMd*YY>{ zX(70z#u)_0PA6SCAv#rMeks+a`A!M=3Vji$_qe$5U^-VZV-nMcWt<|Nr4?(lJvIaT zLEh?9J%g^-nGooZu&?I5}DO-Q{9O@`W7jO(q@6|A!570Insbk{_ZhyMvt&eT?x7Z^a?cCHM{tt~dFaMV z_FwEx_3Lb;=(pZ+0`7*JNj|;Wp-je@_x=T;?spqHrEcp-QQytw(~jO^F3qFE@~)>Q z2>zSb>Ax54BX=1&R~N!oIk!UR5U^7Ts=e!tM!`g2?4g885Yvc#`^ zOK(R*G3y0}^ewq&owlxB?+OqD_Vrapus)X<_Xagi(NLZ#eWQ3{M_IlI)(Ov>=%whj z*p^oTvn6hx@TCgoPJfqO{F4ib+R|G`RxA4P$C0ETYM_{*1d9DYMy*n3rf>chA(=RZ zUi1x*0fj1@0mlfvVn%q<*hJ}UH)m=LGn4&AGFq%`OL-*>i`x-CMs&JB^JoZ%KOHGn z2)R)4$qh>=#6jy%JCHb`cgWP8A(L&q#-%Mzx}1b)|*;jB#X zTOsdm(4=B-Lhxgz8Q0;{pd;cOZ7EkNH9@#+Ft9Fn!nsrr1vWQ?Ui{a)SCK$ZVtu43 zbADQH=`Thj1&Hv($U>@PKUvrjgD7RS!bGA^%CHzQ#T3Qd*03_0hO@6*jkXQK7HKyn zf|WLnaSXw8a#65~^JhQE|J;eo>D?3N#ov{-2pfqPQ&)>0up||^pGf5cn+xL$xwTb* z>N%`(+Q;T0;k%QIcdrG*Mj6@xD$Dcy!DB>s>E!87S7f7o0q zfi5YJza`~5${RxcqG&s5;kr6+l-<+jPfU3$eiLp?h8K3G6GVwGSHm_N@h5^$v}81d zLx-4~AX%!^MuA$zVfD=jt#k&XXj&VHYQ&96RG%PLw6xF`tHw2p3=~2nKQVI%rF-Le?>?zFexL6JSlauuG8yLJ zsyCyt8T&EPY7Tyq_7OT=R|)<$w{>&gr*xO@YUs6#*brgIdY~WUeWn|TJk7tCbZv51 zuJjAmF7If?AwINYweP2Uk8nt#n!}np9(3fOVCGLwi?ywGh1QXqFE?Pk82CQgl$JE} zi<1m1N0Z>A?>eYy%qp&rD;;H6`KY(Zg!k6jgAdC-x+3!lm+g8ZSDb(H%NpR8Bh5s` z+WatSnEwK{>z7^r&lvK8JQLC*Cycb#;z125G9 z`f{>FhOB)Q?P8(RO@<8C1;x|qnSD0^rBa*9qqDYg=dDXH=Q` z!LWbtJQ%3=sZ>4Okh;^yA3>KQ81KP{_?GkCaOW~RN$;LIe`Vr*Sf7cbpMQb5PuFQW z_InA=uPb~V&lXvpH~zLfS%KZ}^t4NYLGL#u_O_3YUf@NMfnwX8L1zeav{!)XJG&no zrs;Z$pKzTaHin8bh5rG-0PULvMwq{>kpCx;!(Uccd^f)`MHciS09mRyVJhISSiloR z;FX9v!V?YtzWNt8Po^;A)O&ANr@-9(KnI8*UJh@pJ8hk5|J2Z+*Sr9Tp&;0!ATV^W zHEHm^Sa7dFFv^hv`Bx8`pH~8}yTSL*IYfi^GHAEc9PR z4&O_VxM(R16ybu|Pr{^XEp%2jJT?&%MQ0{U(o3dNNHt0?J4n-cKtD*gM+rJe{HXYw z_3=u zxOKhNN5wyFf)5TKpsu1-&{)A`ao)TXP=4M#?+QoKw6#G=U$>e3y3_jaD9b*QwgCqV zT5FvYC!ToS5HP0{i6gXjtC(2OG2phcI4@k}{a-}GUIa@*3}lzy@dB&dGciDbWc+Km+hTkpg#in#CF=|sD0rQ3Dg zEyT}{)B5FSsI=7;9^z%5d@GS(;3yvRj5E+l1s&j`aN=%zX(O113{SzQfF46$6d~vE-~9(iqZtXJR^+lN6HMm0>W-M32

*nO~I~nPKp^a3hFd*cJfSF14Cq5P7iJF zJ3^C&$o!N7Z^?}QF=LrDs~Mfv+-#}OUc3fNfy!%u3X-kLPaV2lKSS(<4D47f4LmCu z3yX!q?tdr6O|!&{$LX(Y6J%(`CYIG_z?bz60^lk$m3HI> zAF+lA5d+&xjJe4HlSDZt8yin4t<<#}@!omybuS!}En=!xEDc)+#@Bi#fk%cu8{k9q z>->Q$Gs)VxWux`%I{g7_JVr(&Vs(fHeX3_MXT#l5Va~%`x5ndwedC`qZ@vj z!Bc2dYH3HM9RuOi2!Utt6AEVK+c-%8fwpKba3Ki3ddwxbcg;k$NmPJYBS?nbu-&<( zQWo+mfM#?lTVaU-2XQ1E0%v3uU!jko88+%u#N-fJgZrwK&T7lj?=sfwiQ_xmaVzFm>`nX|;{$d%-Ujr% zIvHJEKbn5|z2*;ri_tkrKdoC-ldgrdjZxz7tPWbv079aQm zipi^+D#9I|KWrTrAY0)%VVz$wzmvVFoH1=>Gh&DQaK+}`Yx;Nd`v^`(3qcDzTGr`` zSQl?;%KlQ?#mm)@%l<-THP4{CW-DUZG%#-|88NK@) zqzB$d+I-&+u6x{_Tz;P2OnB(_eHyRvJr6q1b$Spw0eJmF_KUmq-96;%CH0Gi^n-Kr zgIMzNy7zkr{rrk)@&k?Yg*L?)D;N_&31M zuPuw0H6|7OW!@*x_hxgxcOP9V`L8G`TmJNPM;U?eqT&f2Xabbm!8i)yk-?a*lyM=r z9+ZYcgxDNA;RH!T1VCET!fjdZ;H8~lhFf+(Ey)ZLh`=jJ5QzaA(^BZbl3 z31XygO7{}Ju~M0M$qRDsC#jf9OeZN?rje!Scvz4n875=j7(P+R!60CphlZfT&S!>prIhAG94u4X)bO^M~jnmkt(+zX+mNsHbrlb1x8@*7rEkm|a7ug5dtD7w+J`b9p zb3RPMj_aL=i^h8>z-7rZn2Vw7-LiS9Qe(T{_BTXBx~&HEV@7Q;0t3kYH!iQ26(jO4 zJ8eIShPHh%MhY9_;P=ld*9wf$()CpYIL?l4?ByLyLv#h2PKH!=JWlFdvpgCTM3-Yu zQxKinKc?8>@ZzVhu0O`!nKnf(XD38#7Uz^xteXr!nVsJ+>W9)jEE%WRJS>}+R6VR% zgU%mT?FZ=|*PIt^9@pIts~*7{HU{GWeV@PUYFh!9B5vD?fT$;3*vH6P339t}j=p%I zh(VY;^A$?As zlXGHU?6c%rZ^!C=W8YfcHHlvCXZ{{MHF)lW`&Uq>??o3=Kh>N2)k|*FeK*H}M2YZE zW+Vg>s$;=e9s`J-w4XXcdLGgceU(qQw1^-1&f=tl?q>eA@aZN>0@m6`>@VaN*X@lWr1o zdRjox^JR#c&MNkUTK)Dle5ksyJkHyll#~J>Dk|$3^guF42J;6Ojtd#6`eUw_hbnDe z!7foOD4Hq)l3%e+Hd^w;m^!0jMCN5b_@ZuK&Hh+Y=jF`l@S04`jZ?}%cRz50u~>Pl zNZh3NEY{08o;j{pnp+mt1ZZ`@8X7NSbwizCacAoO`&rcCr6PW+Fqth_e2}`T;n&fe zam$8A1~=L*MLgK6h;X%4RN&!;=-GKJ^9f7LcjMM=uW{_xwK|rk=(I14O=;n`5sc6f zl>F@di)pY z;xxs2pupRPfR3wh_CsPpK@Sy0sAWSe=6xwcRFoog!EAm$a`|zG1%l3yax&+Axq7hi z{ez2mPP9$s-3nJutJLaL8*QPr}Q_AAtq2|62V zfOjdM&y`}8ardqZr|LQ&?5=;Lv->mBuJ z&4@ytN^{IiFuk;onO1r_dhYoCnWNK}k~1b%iiLCAS&xXgE#P8XT7R`|Q+wwf*JACa zOPJ@RC)EQYM$(2h!~$pKhzt*rN9t`uH~$uW^9tGX9tb zf;n{gu>wguIf7W!pM&dKL#efbh!@d5UNQ$?y|(Qy0L)YY9a2i6O2yI>RhDVcHwvU$lgnfyaXa4vEmTd~?%Mv!*E=!;+w-4DZ65^zt!8nK8%e0547R7@H zORG5NzL7CYYvCQMozl#;{>^E>bwvg)^rm<~LeT8tj5eRoe7a$H;IVJ3!np9^hyqEiFnLTY#BA80&t=Xsq5Q5nDFdplV2 zv#shluK7%6ZKCttu4ll{WM8h6yF9*bl1b@RA^9xc@$#7HRX>&eY`b2Q=Gp5UeUed~ zG+LFdUfOkimM5Cs517s8LIR^>6KerX;03hnswxpqDL$!S2^5^uOkWetUgMSKe5QX46 z783d4g?yU{eGE4@l!kqP`skU<3V#3w2TD$wmY2;OeA(P%a|3Tw%@c)A(#$<@F7EL1V?xl&BoeqZ zEi6+s6RC1DniniYaOZB0ERIZ8H)Mw}P8z$;*KTOF-PX1n zg*?xs*X7HAb=Ku1;9VJ$lpAoKjpIdV>XwkRxt~`ztGZv%2K=+^fs;J1T6O7(s#*(I zS!Z0g-F~kGZI<+mn zZhXOKP2z_h@0d0-fH9jsXQJU1T0DIBx_?s5=oH+1?0irEz?c|3jig(G#Ww*AbT9M} zZG6=?vxi-v-@Awy_rRuT{+qqsj~OFqX25=on;jNm?i;8I0`@y~1Tn$c#oq5u$|+^| zvE=ncrtb1z@cs)c`iflQNk}1~LHGiB%F?BHXddE0kp@KB`ffikqV3&Kov}X$ilL3x zjk|;4zUJCqB>XA9mkSfP-bRY~A&f685-vqMfSg5%Mp=x&D}oD)016Qy#qJN8KOsir zZ4s#oSMW9YT+lf2t+%Gs!ERSd?>;|ufMWp3!}$*Otx$b{2Uz06?^!^AS1%@j7*C`D zA5Ua-Ai_X5!w`NqP4bE|j4$KpYQ!@ABMqeolePX=2B|28*4^-@V8=vS>LOoR4N9ys z6#mM$gq&=Ec=yk;WbalodI8Zx|{4GmAEZPKk^Our3putQbm1`?JWd zY|J$a*MV@^X^172dpe7>m<$$061GBdKyfL487U8^$^4|gi?PBwwIx$aT8$}f<#yk$ zdix1yIlXWQ@^iKp)v)UHIBOxt*Iex!kEyowi)u&G3S9qEzAjVI+V(GJc%S{$RX#U( z06V3O0?{;jnHFl?ylD-bQk2I{(d(BR^) z=M{su=t0G!e2T@UopQ$1xFoBy$|25TFzM;8U|U8$oAy;VG8a%j`lDLrLA?7Jd~ddM z&)|N_9rp@kYMijXj5IHAd)k1`*tem(?&s#3}1K3a%~5`z04@z~Ya}>VFiSLN7FG z{U+fJ4~i|vDTH9qJ8}fMHHaS<*0B#2i4rE7WQFB<# z<`ebla0p6C!NK}0Jx(_MN)}W!%0FF1Qe!2EElV7iXQ8-QNk|?nL{5WdNwHWJE%2;} zecU-~FPv(bBTq?knun#bYiknTlaxtl`8*en>uR)5h#0g+l|8MC;l|D~#aBf7eU=`Y z>EiSn--lhVpvK^Wh&+RsEXtyql zok6RrS7Jsu+fUW^wVB4-+5|jnkI^l?sIpgYmfEvVAuaV6?o}*2k1Oot-SQ)UqZ}g( zEcT%`Q$`2BI)$d#9Yps%j~^9X$S43u#LHTt4(aA&79|g*P>7}sr0 zuC$3eS-9*#td~z>Vs>~W8lcC;U22z~p5AB1mz;HwQ4h`S?;j+@_BBp1b4xYv3zF*B z3eM=q%9HgDDLZnH{53#?kjG#!(unPH_LDq?+F8`()Gii*`@J;yED6-%LX#M)Xofl#YXk@oUG<@-IIHxt2_KWP%mKt zdh@AE41AH~>v@2|NBD{8`70#sr~Xg0|5xer&ljKN=^c@HN~Ln`;rgP{6f&9KOo@i# z@eB^L^nbhf?5zE7;}HAn?|&GFpZ=F|DE=>uLy>Z^ zKXz~=x??RBI|H%*$~XkK-CiHfW=f3;kGC~gMpPMD`FJZf+l(~2Z}8Co0DT+K{;#6c zUL1dRoQ|<6=w01~_8{`OAE~@OZYsZ3XoZ$7-PvFEWPt4m+B^uK)(;o!@#OH?dhVLH z#V{tjOdoG%_u=MrefPZ|7mn57ecxM!^}Tyx)N>`F>r)7Q;8y0g+>pL}lp*ePI5s_g z2$T{@quQz&*bpSU{ZOSeHQxbZ7Kaf>{M^|y1Trp&&qgw=lp1Msl(+20pah#|O9+0! zGK%Xz3o4AGAucP7k!Ct3jguFJ*-J#Hv)E6DrW)E$L2!pTNc|QragZjY8Fr9v;4x(C zi!h+EpRq7Jye+6XGn}3^g2!HxJ$fCUl>_)9xt)Xa5KfUF!Zl=Gpnm{!933xfX;hSq z|7>2IXgg9Cm+E6_Seox6Zdrzr4YUlO-!DEX2j?_Nu2$5#lAl^NF0?IImG75ZnRX-} zoYn-uaOBr!qeP_D-LBuE!AHt(oockz`neME^)T%vjRXDa=wslRM8T3jMHNsIwWr&sKSOYtqw=;niF= z-Gp*p39K4#o)_z`N?Ud0KX?A$7ay<3^T*An83c|Q08(_?RtPsPU?-G_FKKC)OBa1_ zO%f4(e?e0=eMZsh0_|YRLl(_DUr4h}p^yRp>eym^m@BsiI>}=@tHKu4S~r{KsgUd2 z_IjWWdV4+0tg-cM?0@C%FdDvW=aG-+<5#>)>85qKiejMe6rY38o1Q0SLw~;>GvZI1 zSf^m+J9jP813$`#PAT+OW zIYx!_=M%2li(}%|n|p$lR&z~$oBi7S#7KA2p;So- zJBi*+>}c(JZL&KOK$W>M_a8edWzZ9?KAvcZ@ z+{+;7RuRj+ns$?!Mk16b9S~|`q>A?1Qy`|2*nq5$cgrIszl`s1Rw+vmk|sgtryBX@ zk7E0i+oVUbHRGhT-a92y@w1C6u?)Rg@qiD)k|+0%j64HiBYcnoRkDm3r{Ff`t<6TINAYE|v81mbm+R<``#IitKPDv;BGG z829P@NckA5?mbvok_FT#cj+Ey{!WTd0)syF_|9y$-zOvJt0G?w|1qi>G%pl|Ims;3 zn1n_)D>9!vZRUC{k4&~D$bj10&N4?qac?G|$c3ETY!(5cqN0WN=!zq@3;IcyCnM9Q z6ufhn`&v+Dd_$o;XD*e3cwYKzJ7p+);Vy-!C|VJrZTcyQrkr<}LMkj>X&D!dPV-)l zUI*A+G2q~=L{`e=PrZ=puB{=d=}5}n zXG~N36%M=Cut~Z#62|b4nat!`0&_HPg(!S`+%VX=M%CE5Qv7*|UgV)R``*yRhD>ub zUbO*h8+>M})IMXQTP#qrK17@bs|CdiE43x9WWWDhx@Kt%>Z{Gn{b?wOLktD#KdZu@ z#n#$wE(QIjiyF0-(tgmuAQ@7*ukuhlC>>q9+%WH$pk)A@gBDg0=UR({ z%bhLqC5T7P)N`|py+Ls5Z~0@DC+8Br?N5642q0q!^lC$xN}X@?4UMyKR~{K$dNH4t zs%+yd{*J+EypwZKz#Uu#@}6zMl8E+YGS_-Dbm(Q7KM{d-jzT}p=eaW`-o|Ru+nA>9}k~Ah?M| z=1tESGrhBcpB^(Ayl`5unPNsqjXs+pngzQ}X)Z&-RaRzwoj(g-qCg|*l%^|TI$qQu z%S=(&>+e#km2zUSKeIsL$clZqwjoi_w7C4jTA-k@TN{gA)Q-4fWl?2qxM;C*SoXu- zxZ+1Q7k6ab#b{+iRhy043gw1vydrPBDTy?t{h&wf(gH>YC#jwHOh)uW zbaRO5xPq0Qwai!0cZg#|{(GEN9bB#N!9DpSY$ENhDadY3hc!~Gmj;73IC`u3jXLYA}E+@pNe436Ktz zJyauT-DEU-32@eS&H;3+N`lJka+F+DNO&1E_z~=t=X-M(qlJuXDwk8(9>|k<&*H6L zGdJm7x)wa;EiSKC*oSR6rPeN{5bq*&q@AN6z%>=JuA$wCEnQB_SE1dlF7LW0L#s{) z2F-6;8{RJC1Q@s04_;avNbb|O;{8CAHQdi`$EOjC;tvH6AtFb7Iplrzgw;+3<&A-)QY#x6_qtcHdB5Suj6$$$;0 z*jvlIay&|k-oojC^{g$biF>pCik#d|dU=6nx$|YZg2CV|K>57;D~9z|&j%0rsu!Ms z)BaC2FFd0aid>~;Kf33s-9S_J@U`7%-$>0N;tWy8;WLj&CTq+Zc+F9IPbjCc%yH@4 zCY;T&!!MCL{zUDx7~z0Nw$a>Umy%FzW4&SEwfnmEd%jdd z22n-kZJUNwVeiPxg4qf)5HkjtAT>>b$oFuSW7V<9U;4sTuMr|R%!Q9t7y~7(VSii# z`pc~2s1>yhG0@mWi@Y4D4dx87A}ED+)#<~Wq~@^s?*<447=4|jCD0Yz#CV#oDLlOl z2(TPQqrTSLj6`VR+a(V*|8O*n`msaMjXvDKgJPJ(GD^m|(1mj|ZNT!?}06MhMA-Q-RD@%FBU*M?0sq?@o{PcC(#ArT(;Ib8LZ%hjNLm^7Jzw*~ zWumDKHrKQTwR4v6ow-PHzbu7FVy?{Dk%7DiMY3dlA&gTQnF=*^nq_=(cD;p$^GTr@ z>_ADod}&i= zI?q%%YH=U&DR>Mh+X$AdGDD_R5rdo`9&)MpQ+axGw!9E~VpYwKW~KS-WMUa6IX_ec zHUhR{tS^4LPE^C1Dp&iA_8xi*|y~gLX(TQ8#Ct$bx8bSr5$E z{l7Fw2=C1+GQ}@pQ;CkuH(W4P6^BKT z9a>7%h}Y3ErNOa&QeTt?t(Dn(j;zl_Csv8~UMMue5wfP8YN0b>IQPtqME{JcOK`aK zEI`wHDhDy%7byU?(=gvJ9y4#=86F&uKW<0KOi+ARfknbwgQ69J5CaStf2a+>uyj4! z=hA-cJ6pFQOV#{Fn%ElcV+(Upoq>>fKqU7b?AxiTAY2A?6P_)!0@>h@{%b+~%pXwW zEzz`yxzQkyC@~FNKX0)^X7Sk$IRjP{VU~DMi85$?3_};rWhj{u6NQ0h$;7~i0-Ue8 zY=Y+Pu46I57@8tt8k_purx9@*yEwMR#(g->ZbcbPlWxM;4L9It%aAvIy6t@492Lgr zl>JqPGMX z4L$Nzc*Hn__Vbfy7>QNk0=Cw&&I;1Jc9u2MTF|(fIV-_a%g#ilV@Ba&m!;>1`T{8X zh1c9lFJ(QMsD%sC_Q;bTv=*qq(R@mG_`ajXiXul@OhB!1tjenN<*X%kr(4p5KN>ge zg|B%}_53=JfMt#J@k84oZlvJw9Jq?Q4Z|VQCplGC8@c`%Z-sT{+w7>}0M$%5k=?99XEG@!c@`K}w9gtkT1;3uYKWm(%2yw2}- zximWkT~L5Loo^?cJEb7!Tpqc*Bwrr5zhqwqm%+-2H*yKu70D7)3A zZvWdk8b{+*`1R|5lso_3yM%53VRY`_0pvEKG}tdU6TBe^s?|BJcO%Sjn!|XurFX|e znYz5++}DpJN@xbVI*6Swgg;_I1+r@%T34b?%wlradw_>uo40I#=ZM^&==Lv*Ynryb z-_&&$aea~Aq4gzSwncNjcknQk0-ETK^a2r8IZ%SoOekAV)GSQ2xUoP zBs}q!6~>Blv6Cg8X)F^Y%To)Jrj(8s;wQl8iIY2;0?l&Mt&$hX(|2vKOp+aT*eSB? zcG4(3J!gdFa}2;R1euUg7Dx7Bh?a->IxjGB`LQ<(=70cI&F!M|>rxA+uAVfN+)N)2 zjna5(mXqwFbWN;sa4=irNoG|WHf~tHsEB2Ga|qOF()aNd)2hy$hmGnwbhwSW%A0ap z$FZ4{vxYtq?z6_ZFJ@I~eWp^WiP;-4WJMbr>6HSYXHnbM7=J0Vc)bNI`u2j>464-M z)lzm2OT}>cU9b2+o8K9T(pUcL_+zC#uy9_sf4*}k+V>4GNi({l>fve)V1ou61{)>5 z)n{L5@YDy8@q0PCP(ida0f@V$Z#tL?pzX&^_<+o#ESI?J<9z&g4pSKjGR~%=1m5Mt zl6p|ivzZ_Mn5m*%l*YWOR*1`j`0fbHVvR=?(^A$uHpB8g@SJI-tK6IIpJG8DM2Vn=QRpG`E_tnDwQdX0|R@lh}6Z=hbsTiKqNa7*D&!-?p~qhi%vwsjJ)x z7s~qvdC?6gGIfZ_r>uVv{m#s`5mPSy2X}ATRR_2ydnO@};KAM99fAjUcMt9k8;9Ty z!C~X>8+UhicXxN+45#m`S@-rieb(w%Ju_e8d20Qu>Q|!0md#eYKK(E9?cXkzFVsk) z)vhiQ**!HUzV*ExaN;0(-UQ0%0k-=>GSaWZ{0ZuJN*oZ|9)~n0unN~n(B2d-Qv2GU z%=#Gcp7&+(Y2TW5qLWVVAtF+xUC5823%rzX^kiWMv+N)*g?4wa?i0H^$-K^e*#v%@ zFk;5QF!%Z|?dVzl{8{|Dq(aG4@%M@FAhyv_wCn0jmZS{|3l@2QVDgC$oJJ!t_uSuL zu!5!PS7+u9qK|KbE<6by$-k!r^(s(LAV*{riiJo}!JV6x7}6_Q*cGeT$rqS|e&Hh6 z(HRyVTc*}xfhs)g1G;pIj`s4ydDzGolqKN?O* z@tFFHj5W_xH}jF#)4c9HKJEwp55xo zyNcgm4%1_Z_4tW2i2vk#6M}#@j(}^H^PP^%A~v9O`SC0t*esrdiDQi6VU(3TrWA`t zW(w89Spydi#$=rR`jtq@eF|a7G+f8LlCZSL^fZE)qNie%RuQZ15lcT$`_!6_ z=J>c+B3vJuK$oV{bhJ471)(@Cz1XzEVQDBTF+q>F{6(>J`L?pYPS6)jW5rFpg5V7B zK-)_+NOfBIxnJJ^17XAYnMT_Wt%0K#t-L>~rFMh*!Ke;?0vDomVy}Ikex|PY_XFA* zzU)HfW2=pJwUo{_Vgduu&!$7ptki#tZ!-{bw=q61!=l zhlBk4_H2Q)3=|As+jOt0bn`|lDC|kA4PqIIK8G98kSvU_d^rO*(H}7}i*XK(={Nv6 zT1=Rd3erhFGZPf^ATe5o_8N{`rzp)xf1Z8{v@$77ZGbcVwd9th-Cva@AiX8Z_e`kH z2b00QZLp$^og9O&*Z#U>Uh(C5BJzH;;70T4$x|~WQS&xPD;;yO%hJ7?=1z}|!V+hR ztGyAu0wl7nDE)M}ASc2S9w>8?hKdtta$k_Qihe3zSiJPp4Umw#Mr1^zzBD<`R{;_W@Uz$q?VGR%GP``bY{!FSp5oc>99n#RX25AjHqwu z9Lf`LXQ>~;WLM}x0-4`DX>1b#T%qVd`#$eZYu~3H{lP!I&7Qc-wh1w+hWHn+5;&B7 z0_mM{q()ETxo^0c3a>}&c(t;hs17#Q@B7})K8^)0Ac3T&05_XkOA6RS2VKAr$@=Y_ zEXU|P$UP$)?#RWmjZCw@HlstA5ERaPV)QP)C~$T+FIcqMM@#6)`*QCkmfV{xEiuCJ@R;W*|_kgOFf{w6k#B5e*>@9wiq4Y&6jWCbv(wFCVemfTEluM9Xc%d083}B z?EDN%7Y6MIECcRays}T670G)+MqVc@vF^%Jy7x5~H>Er4kE;}`(#FwV+g=?=pG)x{ zdp92U^BSdq>g+vGPAtoJ#@jg%J*f|w+qu0Gow);|{%ET4Z8fB)&`AoOS9 zo9{Sbo#(xSS{acas&lSFZ0yg|luk>R7>#>XS?QuM2X4||LpAjBfZMu`~ zwosC9-kwi(;p6_y_jqlX&c0ox18E@b7X3r%RIo?G5ZBnPrYi#UPeKXEX25SPWU9t2arpZCO(hhGpG4wlC4g*I zq=JU65L9CE?NGrFif`C!$_J5*qxkzy1ksTAP9*M9$W9c>(cn%r!qfNNzgq(0yD|9C zp}Vof=7YO&-#DT7;tx~A_7Y$uKHLUPo2Q*%-5_X_WUVNP{REQ?PGg`&x0zm&HT`2j zi2eA_!UX4O*8>l?ChiJp^EiIN|D>eKk{NE+0B&_ zuBj5kQ)26>n9|o5eiURQvzLSgf{)Bf!2Tc$QsMG#EXuOzA+8glI(K&(P~=fqws0Fz zGrzF2zl27#5B=7%I%H{Kw{%_s*4kj2+>}aSLKjD^o-pCq+IZ8O^t>@H;RUyPRWtm& z<+7jVqV;y(@}e!>IlRK>{9G%&9n7_8+d1-C+AinG*WJzn`l7kAa|N`2*@LebPTd#9 z#zWih4xgr4gWFK;6f~4MQM24oBYDNL^zIIf_5x~}>;ll2;AWH(zZl)J)UAJiB5eZmM zRTyK}x9Ol$Uv+p9aaju&i2TT2&l!wyn7F*Zm9P65O1W+YLV71|-z36g>|Aq!(RZ&T z&(ZfTH8arnFDwvL9Wx3gZ;Z1l+Aa?jZD}))zUAs_9HCU4Hs{p@;UAwS*+)I9HD9c& zT(oOJdR{8SchsB_JcW36j=1FUoLF&WlH49E*w)|T@Dj9aE?VZb9Xsqq#WzF8Al5&M zr4ZzodUHg!D;$3t|uQW1r53K~BG>lLyG5e}+l z+8BM|aI-JX%+N6ee*}T+V)UidlTio&KSHXJwufFRx+K;n14xMtVl4`LeycFCDmvk# z#T2pA?~{kmD5WE}F!#6rVe-)G%`O6c2eP;`M9NFcVC^suL^j44IL{8^5hM;ooL)Iu zk-{LtE{Ju)O!WZt9OaSScfV( zW9Z_!mMJD?hNduM{uGyqQ=xDS!?!s&SAFfI-BKNaUaMAX!Ih@DA!Egq~|6lSdQ3$0IWyyAE<%d#T;(WwHYditgYn(Czz? zB;g?`duQDwX^oX5X96fiSZ=1mWyQ1J{mC!!ISJ#tCk$!e$pj^KreC_83Sjk*ye+6v zDf*n^HiZ%7@*QWgfKmmbc$>Mu0&DW9RXC)rOE@x*6HmpROO$0alv9CoDjTXv+GMx*S8aO)WPJHLWctkY8=7(v^j3)Aby^(Ho7?EA`?KQlc(N z=Q_0#IX|Qss{k|5(2}EJ| zl3t$}ZO2A8e@$%J7e$R+oTam2628d)F)Bv3sxnHKPs3km($M{aYl5_WrPUP!u zOTXixl^E$Fa4&Q2yk@x+Yo^v{BNEHYl(7CWgwMUxCu5X>O>LU^s6J=g3GPy z#_cZ&_9&G+4pZxmU;_SOYfT&X>&wyjQc|dFrGri~(C0+QWP3%k^EUOf@4GBqRNI%G z&$&N&`9&T6%1~|iggR9*^()2Zx9)bsJ-NuOGw?v*u2Sow_57qlvxfj0%Z^2l5R1-% zlio{FnQD?oxx6(}F3g!2Dl~e{>~Fj@I87h2o)iJPj_d9`CTHp&&BihtAjI3AfY|jo zo+y%lwRBmi>J!JU&i|CP+cNb5VFoDR@qA`Fsh8NWgC3%d)0Z?to ztH*=0w8DdYfTEIjATGqVAVyl>q@}rUuT`} z5V$OJfhYELy#dT2bc!MC2a&eASze`cI$)>8)zTfV$zEUAr2R<`cLz<4)fW6^Bty-Q zXV>!0U?BDFDsBO%>0}>nXu{ATspGX9hhkxP%SzWjS7WCg*>x?f%)(ztar;M#TTtk_ zWiCcDkz^+0j1Ru`=CanY<9#j5M(ah^!D~ffm2-%g_Q_5NueRX3)*_v?m5*-vsiiGj z?grm>BSh-_Nlr`f&{6C}&fQ7ZPK$X57k_o;qI&WTHxE34elLsG71+qrPl@jl+$?rY zxXZpDUivhK(|D6XFjRoW|J;y(|51rSBpUi?amRx{>frBRp$xS= zPdK6!QrB>q!`-+g5$GI2B}JyhJ32;%z|k74Z62%Tjh7ATxu_&A~6;vUDl zZhFD8Dh5xAwsgWGp0>u5v*on*yS~(!&V1BSS_7_mi?z;Lf%)IY4IuY!dkE#XT?ge%eE$-J-cPqZNGYVcBxoj&myT3gb!L^^G6ft{X-x=v-SG>DZtaiG-c0 zRz|~Wsvj#A(t%0cO?zsP$cN2gh&(sVL5)Vpn3;*bBTb`8V$SNuf$(@WW`bL4k)@ya zGhVIKPZHzXsR#Hrt0`d?-kE7pFY3Dqg&pI&IUEI@*?Dc#-8%W-!Msz80twatVT&Hx zn^sH9S#~wrZ@4bufD08DaF`2>&o-B>YEHv}ecI2CP9#3e4+gj&7nYB^n}a%Rp8MoRY+8hqHr7?oo0T%0FOshi zc+|TQ<>prV9|AqEJ?JK0b;kKC)VClG&RnllMQmB_Rm|U+9|n~8e?BU?WimgBal+di z?R(_&9cMRO0CqcA==s++vJsEpRNE?EinecH-qAUJrGK4tg>04hg4ED?glp#tpC|G4 zqJTfbtkiF%oACU2p!DvuoIg?%;Wwpk-PfHLL}a%rFnGk>%S$$X4u*?upZYoWrpEoB z+_JtHQ_|wkp9Fy^cH>pqsEkNq-XPs|iYEah(Qp zO`QAoOn~lC62C-^_pFsJ>jkTfF}_)W4_ByJlAl8^ztGpoACUA(QB-EZ2*VR|l(lkhxMsolVMIZEETWRV zC|nXIBObai(I%%+jep&ygnVxWNzRHk_v5A@^H~MHlSxb2*DA!i&$2R!z*e&_3pm1C zrp3^jn*(5G;h)WQmuU5b$by*Cr=SCQ>ZE18T*`~^cZ+Fjsf`P$s|zd=oK9}d6i2#M z8g^Mo4a?VMK7SpL$xC1|wjR+CxSsFrMWb_k6W8&foTaW;A@#W1UcqOtX_sW642D(I zUvO8?hp!I`H?}g2j8*qfv8q;%q%lBA<7-izJ9d&s zcLbN~T;HmFsGlPI8af(#9IdtHz372XNpMdSq(Lh`xvttF5x^M5S!1BDde6u}PafvdinTrp z*N7&|q?FJ)`HYLzbp~l?>PL%3(f~L7t^=Qty0=Rs_H$U1{c5NAl!;U-c_@CV8mwV1 zZ4^Z=K8Vw=nHu`QH{mSSYl@TZwS!B~O2O=tfO6BmNV_+ok4EM0NrX8t<$1V1NQIVrzABt~JFCoyfpvrXb z0@1IPS!$oC4m1Z>($`)A%9nKIo)_M@SgO5nRQVWCoV~ zJiTS2#`(3_%;a~Iuw32!-2d*i%~;LFQ? z@m$J}NB00;P`?J&HiIA!g;o(v$A!Pw~1~p>*>KwH`oy_cHAK>Z-SLyZhOe z2NbB|Hbvil^BK%@crbQ5bzpQ*5X`x+bYU`%cyL*r$o*U2mV5c7|GuJ!cSpz8eGMn| zt`o8SGFa|)TPXg4UVs?Y#meOO0<>2+2}`m!zt^Vp-u zMjQJ+Q_b%)GhG3et?78v@Zo>GiF$pSA^lI;?*Fe}l$vXgW{Q+bb;p|PP8KQ+M@%?f z?t7Q(E4Ihq>^Lrp+kL{zX<98Vx4%b|JPiGGxGI|rWia(l&T`zEs*(G)-1>ZfI@JJ1 zxs#1~b-0}DQ)*DZe73zEo*PM^_aS$G64=3LK*Z;lf9t*~O!wjY{FwS@3#l>Ax0NV4 z!|z9bZt?2u zfN)%5QaSAYqs)lN{lv6s`S?eL)zh=3X&1JKR&gnehn4Y=O%qa;6X(mRQSrIaaUH<8 zbf$i_d(T>SGw5W#@n?c1z2@Py(@}Hi5iq8ieF~OA`1;GejpF?}cUc{+x1>r3m^uDJ z_-jYJU6&tq=|a0W-RPy&H@Q)*KJ=9!`~GU{Q6?*VA8GntB?;Qmj=Gi0V#S z#I$Nf`hhgXF}ew>8%v^#4+D%Z3Cd|Q_rta`6D1fk7kOwZs+o@GEW#a^5BE@<`L3XI z*QEAvz&fghA)_~~&k=;PWIVvl-f8XuU|+Fzysz)E&kf3$cRu)lLe01t)^jX+eQ?Ou zeFyGbN&}Nb9}UB!ms|~_9kJXD;`B7!^pkpqI4n{q&J+AI3ZdK&3nOKlw{>Q`+)WES z<~fVZ80w#O6AVTI%YLOZC`WYx_t}EH8&ronMp2I+}S_r?~Gu z?wBE>+DsN~Zg7(j=bvT|%E4-e@y{VO5q@BZf>a7Z z<^q2J6_O{tz5xnJP9B-8oVQY5)+cy_z89h^GnD`Xsk~&75lp7v(mncDy^*$X)4wk%NjR3S7#g1pjbADIqo&0EO3dPaLVHRVLU)jh*xe=(*dG*M zHg^o!l_I2gN)s@?4onQl^(*KfI{I}SXG>&E`I(Jd8D=6bUwfR&(2dC?A1VABP@~+g ziAZ${DPAj{wAi(nNUx-d&0sknCfjI49WRb;$O@f_&S=zpoE+GrO`ec3#HG1Dm5RDU zZt8t7-1VyHvN6~ znZ;7_bs#hOr|-2!jH?uaw#Ab^%<(?CUn%u(m)b)WZv|lQazr(5uHI$?E7U z|W$E2`no4@HsyR%Hk%UiPA z?_p$`4Nt$aqLhFPX&Ci{7l7jfRBmHST1QO_LGiPME@(0a(FTq*o9(i8jW`)U`pcM4VP#&sowIMo*@%th zh?WmBb%Pw;skKnEc6iuqr8TmZTF}bmdO>BAl_1ET`bkrn3^h;6pH4I?SEt0P+Hd-9 z!)1bICFCzhoA-_l#E4X^_cOKr1^l_iBDdaSMqm3wPetaTN6!n0z0&a(h%Xeoao-Qc zcdasH+*G6cT`agWtjg}s4(C?2w{p*9SLHG-tz?TJMh-NTJwTY}7kmA?*UD2=_wn8wQ48^~X(~Vg# zH*K9tD}Pw3zgo)QLIOO0(sHWk08aLo#-!tB?`FGl;G26jWWp%wVK_PWd!RMqAsL$p zn{#xHv||4S8#S&n>YGhXJ_m~0y(+K~LNhOltj`1i z%XM~~#-<2S-J;70*pdkX`Dv`}PP9JH3d`n~&`?V&LwvZ&z4Y3cd3@aO8qUM0^&mHm zQ`KPc1d$w8@ep3iR4yFhNt>)%e!(*pt(JM);d-{+R4avyo*3On~tGUC1SUTl9ewM3ddn7@SJCpm(+2Nh%*a9A|S*zqOYGyT*Z`mEc zMfSR)h2~V3qh)zv{6A`KgG5}b!9BN48@ML`g0R(__R``To%9rNOYn;ppetB-I*7j| z3xyxGmxXV{+vhdvgx(EWto{1Djc1>x-7Winj~o44Jkh@uH2-`9`X`I*f0}9jF9c0} z&tQGW{CL|Bj*HS3ACg}h z&meldCK$*SM)czLNFK;%iFyZ=EXVmEW=}bsX8s$Aj=~rwi90*9 z`i>umO|qdX=Y8^8Gop4D_jlFm|iz8zuO3_EM zczr0&f(T=5H$kC5ElsZjFSz6 z7gm(h&16xO`zaaP+$@$@*jy=5_gSMr(Pp{0(DO`myC~1kwPcjzsb z-0(xSX~2w>ifzKnmZBFv4w?mtUVujATk)s3W7@8dzm_N>^QAI$*sIPl)V$Nz*(yS) zX;pT8R!XR>fR%G*R74chR;kcyvS3mr*dB@P$0-b`QX>rZv>5<@fh!vlj9gV2qLtGu zA7GN(cNnW&i>R^Wx)}Y3pb>SPO!^Qs#-aq)j>D2QqNH6iYWKC>3R2}Kt8l`aP9y}He3BL*?g=92)p=88-CxQ@#y>fKJ^ z{AFGYYc^!BcAH1WJuYlhV7V^Ipyjx(#IX>$uO+D_xNa=)Hi~X1Pg)3FkI9Y~FLh0P zR_;39``QxM->E5*w_e!V6ZTTSwVwr)>lwe)G^cROU;7++E`&|lUV-DT^m;#0VtuBM z_|xdI@dPE#E5r7K0V-|&&-FmeOJJa1YB4+%XMFpp)uca)C!qpYND5*iW5CD?-YbYq zaNVpjkh_XdUD`FJbMTU=bVu)waytWui!>O_%@YDI(TG9_#l*==nj;(GDttaT6s+&D zcB45!#>B}a$ch_-*s7cSV%|)*VNLCoCH@WR{2k72<^ua&ErCm@uOW5){W0 z_C&KdP%h~+tsAL4dO=(sYAn?bMVol{l*IayG9Jbw1$|$vV$Ezuj#Ubt26Ar#eSk58 z{gafOU})0(RX#y#NQZQNp-fW*ISY$mjhBcWPyuyMxUBe>jsZ&W_$)DNxH-Qea}5w) ztAMM+4bSmdTouLeK%A>C)peMK^cMX3m-m8-SW`4F<7k&c;u?D54@|9g2r!qJ!@0=c zMmSnsn^LHUN-jk8G#h2EKnUJoD(*Bo8z9 z%$$N8S0GSzB$N7mN+qba5Vh~9Ui6qK5~eOfU2z9B8iET{;k;Zm9Fv`9%OTerFBA$Syy6R z@rB4z^mRG80#uNz+`aOXz)*dTFcIX!bVx9Oy&&%pCV#H1k&?*15VAkV99>8J6{CfB z*n8eFeT_nsREsMxW1bM*2~4LsN3PXk!%~ArdSscas^z&2AZfEMw=sQ5-*AvGu6Ne5 zdpQ~d(sHmR1lqttVo+wBv764Y*}M_101tD5v}W&=Tq;INPYakELg^UnV<2?T>LptX zeJ>CzBo}iO*u;8~$`p1}$42TUI_R@8yepu7XJ2Ai7US7CNJ*_b*UtbT5r%zJR`@6a7Iy~Q`pU`D-Pbh5|*(|cA8!+iAS(RZVk@w?SRecpZ ztwlR9C?79s@Fb$!msnyT!)pjhonLCCS?#EaaJIQ*JH)0s8=v=!jIge& zCyAsQAMs-Gs(4<2pQ1+7AU~se{~1#Qe#lsMoW-%{H0`uKHdFg~tidlmjsjbrDoxK1 zy}7TB3O%DJ0%}s69`nHTEoLPm$rQ6VgbZf7$h|6KV0dcKS-$_hIY$szQYR@v7NnB7 zg3I!xK*nhnlGnVt)X6ACso#X~o&CWlU?zytVNyDC`WxQy9C1>c=h` zJjQI^Q#$SewM@RlF4(1$CgvuxI&xlS(|X44=mNP`=fGjN*rw{7nY!-e zLE5?(VGFq9c6tUkY<-bEUq{kjy8dcXGE!joa9+7Z#z)y3Gd3N10nGn`SSpSLvafPz z-O;7{Irxh|_A2-MC6!{pWVo>D+A+~{*GZMNPyamDa{6N!pyNr(0d&Izs5#*D;+zyB zyUu=BIuwI^yZnrG#Ch{y?AStxIbp; zUN~Rhetkr~P^-{W;0M2>ps6K0d_sSW`GbmNw&{mWq#p6XI&A#w|3lI&TL6{%Bc*YA z_3e)jPRRn1@?jMkaqtn|E>Q@D4Tpge+4Nja0E6FyZWv2*h+z~@kg-AZFY;c4zeETU zq+$H{#k;Z6>_@wC@}g9G@ydM4`U#M_p?f}>HduN|x>4Uul9M8vVq%PBO$tQK3b2-d z*Jp*N%IVEw*~46kOi!%S)zppifTdf0q+I81R-#5cC%B8|U_ z$GJH$8tzo;DJFB1c|hiptwPTj>LQtv9O~o}uxGVINoh+Lwz*XK^m0;pLv?&9$m2@0 zM5^P92L`|={W-m;{{!6fXBYw1vc{B`CdPk8Q7f?yNk6=(-rF8FrlHMGE4>gWhP$ju zCwt|0?HA(_knCl99(~P?`<{*H!+wi(8~xo$g?#IfRBSK=h00|EFHzd10&LO>W9TP- zPo>@y@NQ+_*B!GA$11Q&uTs5W{6G zCgH{I*AsS-GRKp`EylNb;uMkd(_!pqPUXmQc*_H-EFYm}Z`BWEwwBLWQlkMxdG@R^ zzZam-oVx`uVx0=_;^#P^qp=8h@3#Z5b6<>c7`wj1f3OZQY#z7%!%)J_wx-?s;G41T z_DIOG?!C|Ju4S+W^b<3Fb!F5-HeS4<@08O zK938LHw2!l3MsCaOU}M#u4{XIM6;{W8W^vfaWR60TPQkPULhlrS+51Gmgl!&XV~cY zd(J2V$8p4EeA;{S5}%uuQ%iXMl$zK9M{9qvXQ8W>GXRQcN# z9YZlRC^=0=dlNW0N0a|I-%DU(?WKS?S=nR4}a<>8_+Q>sbEdN-Yt+J4>V)#ID=^AXNt z>{74LeJ+dXM2(_{P8l`$8D~rou}_!OG+^Q#p19I7oX7e&Xoqd9LNuDkIl(&aWMH38 zNQ4C%hMs`Vam09nyo-q9TGBgZUIS=7zZZ}>aoI2*=JCaBu&9XUi$OB zvqBmSOrqCvF`37)QrHr!wIHuWVTAcuPWNCUy_5wTN0?0VHfoV;>@mNk=3FXQ0;YO8 z3P8FD83?TPHIfO{C=5|W+&3z3!ztA|s*~RxLQ7GyhSqj2REa<^1||5F=#7Ldluy%D z_|MV&9tvLU1?5#l<)47RTB5;IDN35d8?VvhpsafGkw`^H z3a+JPa>mA5;CTQ#Y~PBaREv}hy-Lo?S{l1t`fqM*W1W%}V7apDdL6;ce7NEXmuSXE zTGcc_R1X9ObX@Qtiqe{@D;VgDzpH1uWSIZpR1hM6?$4bFfMGqyV`~>%7R3F8^rdO-T@yW$vQ2=~} zs|*ovWT`gLAtesa&?0zcrL6D1rVjqlyd$~luwLCwa9&X1;(kW%BaN-}Xv4j=BJo^* zQ~q*hsAh_xa7+GBi>#CNCt7Q9zum=CuV}gGO0x>By z?17w{xzp#(eciFKak?w$aKT`&fFd?W_O) zC13u#LZunv{}w72*E<|J8{WEB&wo$q8cbjCjXY0ox)wGFZkl?wUm-D({(M8C-1LRT zQvd7soxL&30iNk_GXPof>sA0JbG)7^7T|C)2tTMO+vCd`g+UNuM$xwBZG!lA7-K)> zP6X?`*-qro{i2;Hp8La{=wDD&yMKkz&39wO$^Ri#rW=*QWS|~)!^uU5mgDKrmGTox z^ouhS85}fHlW?1p^OL<|H1yTg>yGyQ!P%inKn#=J{q)vyszNoV{$iwzKZzO<86FOE z6wW?S?i6Vu=+E=nOT~qUsb7(fDOKdX1JF{E5E7}}r@tsRABR~UH0(`(y=c5P*ab;FNTyy0ztqoG zG(%{H%XhXfOVV`_m4{Z=!*C2UiX+UV&Xyv}ohtM#^1-6^$5=>Lb$#QtLK!3`z+qx~ zFYv@1q-!}n8fF@iwouAh#>F08I+kAQbjhu3G+y=-h-_!K3erNn zby_MOo^0A0H7(8t5@ zD34g~>BvhqLO6YqFOLL>20?)*Jt;6k--UwWC+XQDHik_GtKr9YgTT&1TcbvULh4UH zbm&_neh4-65RWs`6^CoXq+<$FdYgyJ0EyA!9(e@xVOLpOW5N4x@ zAyVRb+Drdp3-7x2E)KNijl`C2?PAN^42eoQgr`g6kfD4Trq6bW&!^g>h9H%c(KU}L zpOwZe<`CUMjS-RVlBK7r8R<@*X6qnLVvJq_8pxI=bxWAIs`eLA4;O}dV;2ype3$-U zkR{GBNmBL;ec!}Nl@Bj9ue2c z5{~<_BI^SjIpUp!{MzFT1$p@ID{>J9A;E*}Eo8hKV$QKJ*%Cg?z(i4s;VEY~RCz+{ z!)a0MHs1_Zc`9DYd-W2Y@Ys|5_~tb%-bZ34t}0*(E!8FfW?TqnxNzFjWDpK{ngj_A zxKT{5NYOZJ(|lg6!mFED@GPurQkN@uhNH?stpcK-`y~U9tQv={Yzt)5LE>H3bQ4!> zXs;_$O*mZJU!DW5JIC0QVe2(5P5)_E(PO1s`CWdr&>?vDI}|NdZlrmjvcNW*cjYhp z6stxB-!((>9!VQJO~E*}W6(A=u{-OCbY_Zbab`L=#Dax;dH(pc?$77}k}1vdYz#mm ze6QU2N_=h{lB2d~P2HZ&MSHe{RdA$D+tHauDU$ZD%?z5EGmFDoW8_>-GU^ea?|yAY zk)x^A9rSzSY0NR|LG#dA%S|6g7p~vM`ev*ga8XKiSB(@|R(p1f4YfJ4?cDi=#;y_} zVl!bAy$HTP-EV_p^Lx(%C>l>fQzxjJetEWA6W&aQJ*^snV6vl%g-KeRr)|S8xdqL; zN=BR3Fm$r9|3?#36lCrW-U?$s-#*4)|It`{l%-Crd3Y_2S1j@*;~`4#=(rULwYF=s z;pk#!b$(hBS{6_R`CClV8Oq*Qm&vx*1UoRHamwx|mPIC<4B51~{{4!5*FkAdTiIRh zec~Ccq)}D}g?&#G*MgK7OQ_paA~h33sa- z4|aG7`i2DO@O6aZlxK5Z#QYh_AZN)RhZbz%T)b7~>3IW<$0pV)BU=GZ3UI7LS{G*v zzoTS9dg+J!_s`w&Yyhi7YfJ8vg|X=j6**tLTI<5+5g$B9=hk#Oh`0nyn z$WM@#nrEOn?&Z1C0x;a`%Zj{EdWyVMtTOGFyUuGHA3V-~xumVBL=`naETsLW@(BH0 zaaNiu6Yl%)JpV)QF$yv2%2(-iZQR>PYNF-Zua##%M(}BjqHxT zv?&yQRx_P`r)$i5x+i?#TasP`;XgnDENqhKzaS2JKwpWM#F=&RU{{>I-W6&(7HWt3av7VokG#S}9+O`f|Xr@G`bn^69nbpp40*%whpqcr}$Do;7$$I-A zi1$~T#>%af07RM(E@9Qqz`x`Y;{V5W2C$Z+%d5h6vLL3@lL4>Hezw92P0>GQ&tbjB z<>r6Oi_<8w)#FdXVT0@@wq2Pr-~`s@bS|;0NE!pJ)!#>~2ZDp&>Fs%JZgvTB3fuU2 zd+yJ75Ce{yshysdj~p3HHn_l#&)IjXN)K-b+JB_d^Ob#}V1lz$Am~3T=cwIc`u^y; zk9tAa!vp%k=U(55-Qc1^^g_wM{L~M_$obejrfL7LL{Bvtv8W23hLN&lVp858sqr}@ zVL3r8V{IitWn(|J;e>p5EkJRi6DDutUdoTK6tonSlu(ld3!AZWpO@3pX(6-APU^i%NXuG zDugF0IVvjjo-K(2`|?@j7wP3FpM+P*vaYAduMHc3WXGFJDu|IRi7S&~aJJ&wo|{Ok zHMv?&)8(*ea_fqNpv{UE3|=zo#oB zyG{LY9Tf0rUYXh`;u5X}$ZA%r)hShZSmfA9Ja2S3H(FRGm~RSiCbUB>S*9YOBCGPm zTgqw&_&CxJW~jyJ?vzClz3L3!vRm%5zbd}f#p`?U-W%v}xUer6m$udGlXu{$t~!iR z0oLrNB00eGE*BqM!av{WA2$_GWFF;%2>8@D!fvbqI{-2SH#Jp!Ue2OiO>Z}`7xVTf z(R9l<&c1|jzUD!j%=6owl4vrw6S_8p7s=`gdYYN8Z5t0sC3imei-L=Bw@Z~1dLG5z zo;1&q2#Pn?&`JD#kCw6r)HhG?9R1uarCPM(J+q!3=7TVsPwZnJpDkbF$hZ1-@xxpK z%%}X%w$A$3mS!DSVS7GX;9Q4@ck0=86&aI1nADrK2;ccGprOcr;4ZzPAN-n_w533b z*o4H$;cd0LB*zNa{Dv~!)e=!jPUNYfESZcAIZhS`=}2U-zL1Pk9S}$hz4rA6U2tmC zjttDTOEAfND1<#<;KXet1rx5`RrQtWkC%plnRihv1-@ulqCgh>Oj2`!xk3T zvM?&Pg0vCp_5;whhE))W(x6x2bsQ7#y-_q!&FVMCmB_%tkNqen+8x-tpXq6p3Vc4R zi1=Hg;=#QNETPKEgmZ&QocM|&(GYoGshTjid8*@*M!$c#+8*L_=#O7i(xd#WG_3OR zx;a_o8EG~R>~%WGRgV%=zqoLSfTHCyZzUKP45;+hrwKb(^Vg!>QVb+xQ+hP9Sif<~ z4F7ag>NuTYTu_%H2RNETesDYMp$9A!MdOfnWS3!5Xa#vg(|#%x+(x9xQkLHU&cUq* zv}2rDPG5epJ&)?}t@Mu%49+luzfuZZaZcuSq6ECgOAF35$?LGOW_k1&aQ8?Ih_~Nl ziAk zR8dJF8mvJgYRRyBreazbC6;-H|qJ>q&G@VoL!Cas=n8e}$uOxj~F7;9q=PKMa zYG}NdGKulJV!)n-Nt=bnm_v1#UE~b00EVXTymjphwKX@xN#A&ok-HlkSXnMwtsQ?F z5Ln-K)a#4u3BQXlhSw%?ZUEwo*#b~6lTzm)1n^$dv*S@)m=@X zv4w*A3};WT9Bl`t#nt%REbFgUs{r>UHVZ)NoaiYM6R@&+pVk)I&zjBlYy6O9PTW4~U-k%)lj%=R-*qzK08633ndi0z( zbb&o=xxJbmuf9*@>Ro8QxgVa5bY$w$@@YQbo-y=g>a}}-N8i2?I)6d(>re`s*1>LCi)lpT&|cfI;V0hG*hvWwk$sCUYv!D#@__xsKC8nS|&p( zNqv8g$P{Ea8#et6B%O8xjpxM`BurtJI(GZ?-lkA|He*kTUd(DD>bBXC@-q};nWW<7!&GV^`T~LZL&VO2D{H=EXTMQNw z1(rmXB4eB6>)B%;+f@^n7?nq(TUdhH0h*_UZJKwx`Th7Oe{*mJV2Nttn~&pa5fxi# z1Q$(at^JnAfpK-bUY5Tb$Hzly3V+bxS589GFt!WlY) zprz@%g0XmLyCD%hPrBf6RM4c~MXmC3(X@DGdr^hT?DcV7a8C!~vw`QOQL(GG)!_wY z4!X45sMp;Lmd4f9aAQ0UV_Ivg)rwd*w6~MO7}mE_;uPh#)6yJgw=?n|N?=x5&DuE! zK@U%LQj;Xfd4b&r{$5!-S|=T}0z8ZJF)tlMS=nyZ!CAH+X=7ibSdmc%FS#4`x@@R> zz`1rBAo8hi1(nW{)P#1-0R$sB)@jEvMb;m;qou%(>&&Kn6&8sv5*AxPN%UvcEDvwR zqn+jFhc#!MME6s=s`kHU(dnSM)3lZVkGNb|@8olhE7_;wt{JPzi%28_(n;bD+0!eF z5`5ch?uUHGTZ|dL;yV|niG_P&mkp2c&6)7GOUxuWlV{~FpNhKa24U}keI>oZS9wr{ z*UO_;%H_|U*38vt1FK>^b(rrhdBSqO>w>r@n2T``f|It$t#FVVP`|#y$h&1M5z5et zm*H&5_&8K$eJ7jmin+QVx8v5+RDSHP`+G^tY@}bMYF3PXedz_Bbj;jwFl#^h92B$; zI|?5hB3Rs88EPd!jP!E-D|2kmuYG6TxCFE2$@d2%VlN!V{}rhNR{RZB!@~`bFJau` z7>V)2)n)LCTC~g>*;vMFz0r#vl;awWr#Y3(k&k`!%^u6sMz#HskaY~Co(9>cLYi%f z%Zr{P*_T9x+zg8-f#j7WnMeZi?~->kVGsi-B~Dh7HAe#F8B^Fo;E8OKvioGRFv$`N znsSODhbldDu@t3a4ed@}Kz{^O@b`Bf@;Zgg_ui{D4>)zN}} zRA&&S=sSy4(!4d(ne=m5IW5#uho1DB4^!z#HFT(jqHLZypr#G_?ZdpD1#x z8NcW*wzh6$@=D{&z7WI(`-sWYd6J8G*&`9Ely0UTEsxMwKZY>Eo^5?+uGXpwzwT9L7|#k z$n93Fy)~vjyBJ)KG_<%;{Vj5r%iQKV_qouGu5_nM-Rf$IxYnJ>KC`P`>~a?(+x;$h zy-U(rIyNhC&CPkmqDs2rQH<-|nt2fmGx`c9ys87033qj=}LvL_5)x($T~NZm~8S>EWlM7=$WrGTDGE z8D-j$!1|&wWUO2+15YNrU!JCgbL8bJYxyx;W>>+PYkX$Mq04P6RCyBIh)ZZygw+g(_tO`kBgV4s@eYH|YvK`p#EY-lAbVW<34{ zot0J>mI?M(P$QW}qXt;1-&~Y98)(&HPOy4Y%~8mjy3>AKb5^&BXeXXJOTScdR6_ls zVE201za}cL|4VES8JpS39xjc++~rw%xQXH*UMl+gj_Zh{YXZa)a31A4d0x u!Trc))0W+1gE!dZO|^gk03rDV1quMg04x9i000310RR991OST#1OPkWbdkyc diff --git a/searches/test_interpolation_search.py b/searches/test_interpolation_search.py deleted file mode 100644 index 60bb3af22e0f..000000000000 --- a/searches/test_interpolation_search.py +++ /dev/null @@ -1,93 +0,0 @@ -import unittest -from interpolation_search import interpolation_search, interpolation_search_by_recursion - -class Test_interpolation_search(unittest.TestCase): - def setUp(self): - # un-sorted case - self.collection1 = [5,3,4,6,7] - self.item1 = 4 - # sorted case, result exists - self.collection2 = [10,30,40,45,50,66,77,93] - self.item2 = 66 - # sorted case, result doesn't exist - self.collection3 = [10,30,40,45,50,66,77,93] - self.item3 = 67 - # equal elements case, result exists - self.collection4 = [10,10,10,10,10] - self.item4 = 10 - # equal elements case, result doesn't exist - self.collection5 = [10,10,10,10,10] - self.item5 = 3 - # 1 element case, result exists - self.collection6 = [10] - self.item6 = 10 - # 1 element case, result doesn't exists - self.collection7 = [10] - self.item7 = 1 - - def tearDown(self): - pass - - def test_interpolation_search(self): - self.assertEqual(interpolation_search(self.collection1, self.item1), None) - - self.assertEqual(interpolation_search(self.collection2, self.item2), self.collection2.index(self.item2)) - - self.assertEqual(interpolation_search(self.collection3, self.item3), None) - - self.assertEqual(interpolation_search(self.collection4, self.item4), self.collection4.index(self.item4)) - - self.assertEqual(interpolation_search(self.collection5, self.item5), None) - - self.assertEqual(interpolation_search(self.collection6, self.item6), self.collection6.index(self.item6)) - - self.assertEqual(interpolation_search(self.collection7, self.item7), None) - - - -class Test_interpolation_search_by_recursion(unittest.TestCase): - def setUp(self): - # un-sorted case - self.collection1 = [5,3,4,6,7] - self.item1 = 4 - # sorted case, result exists - self.collection2 = [10,30,40,45,50,66,77,93] - self.item2 = 66 - # sorted case, result doesn't exist - self.collection3 = [10,30,40,45,50,66,77,93] - self.item3 = 67 - # equal elements case, result exists - self.collection4 = [10,10,10,10,10] - self.item4 = 10 - # equal elements case, result doesn't exist - self.collection5 = [10,10,10,10,10] - self.item5 = 3 - # 1 element case, result exists - self.collection6 = [10] - self.item6 = 10 - # 1 element case, result doesn't exists - self.collection7 = [10] - self.item7 = 1 - - def tearDown(self): - pass - - def test_interpolation_search_by_recursion(self): - self.assertEqual(interpolation_search_by_recursion(self.collection1, self.item1, 0, len(self.collection1)-1), None) - - self.assertEqual(interpolation_search_by_recursion(self.collection2, self.item2, 0, len(self.collection2)-1), self.collection2.index(self.item2)) - - self.assertEqual(interpolation_search_by_recursion(self.collection3, self.item3, 0, len(self.collection3)-1), None) - - self.assertEqual(interpolation_search_by_recursion(self.collection4, self.item4, 0, len(self.collection4)-1), self.collection4.index(self.item4)) - - self.assertEqual(interpolation_search_by_recursion(self.collection5, self.item5, 0, len(self.collection5)-1), None) - - self.assertEqual(interpolation_search_by_recursion(self.collection6, self.item6, 0, len(self.collection6)-1), self.collection6.index(self.item6)) - - self.assertEqual(interpolation_search_by_recursion(self.collection7, self.item7, 0, len(self.collection7)-1), None) - - - -if __name__ == '__main__': - unittest.main() diff --git a/searches/test_tabu_search.py b/searches/test_tabu_search.py deleted file mode 100644 index e6f73e6a9002..000000000000 --- a/searches/test_tabu_search.py +++ /dev/null @@ -1,46 +0,0 @@ -import unittest -import os -from tabu_search import generate_neighbours, generate_first_solution, find_neighborhood, tabu_search - -TEST_FILE = os.path.join(os.path.dirname(__file__), './tabu_test_data.txt') - -NEIGHBOURS_DICT = {'a': [['b', '20'], ['c', '18'], ['d', '22'], ['e', '26']], - 'c': [['a', '18'], ['b', '10'], ['d', '23'], ['e', '24']], - 'b': [['a', '20'], ['c', '10'], ['d', '11'], ['e', '12']], - 'e': [['a', '26'], ['b', '12'], ['c', '24'], ['d', '40']], - 'd': [['a', '22'], ['b', '11'], ['c', '23'], ['e', '40']]} - -FIRST_SOLUTION = ['a', 'c', 'b', 'd', 'e', 'a'] - -DISTANCE = 105 - -NEIGHBOURHOOD_OF_SOLUTIONS = [['a', 'e', 'b', 'd', 'c', 'a', 90], - ['a', 'c', 'd', 'b', 'e', 'a', 90], - ['a', 'd', 'b', 'c', 'e', 'a', 93], - ['a', 'c', 'b', 'e', 'd', 'a', 102], - ['a', 'c', 'e', 'd', 'b', 'a', 113], - ['a', 'b', 'c', 'd', 'e', 'a', 119]] - - -class TestClass(unittest.TestCase): - def test_generate_neighbours(self): - neighbours = generate_neighbours(TEST_FILE) - - self.assertEqual(NEIGHBOURS_DICT, neighbours) - - def test_generate_first_solutions(self): - first_solution, distance = generate_first_solution(TEST_FILE, NEIGHBOURS_DICT) - - self.assertEqual(FIRST_SOLUTION, first_solution) - self.assertEqual(DISTANCE, distance) - - def test_find_neighbours(self): - neighbour_of_solutions = find_neighborhood(FIRST_SOLUTION, NEIGHBOURS_DICT) - - self.assertEqual(NEIGHBOURHOOD_OF_SOLUTIONS, neighbour_of_solutions) - - def test_tabu_search(self): - best_sol, best_cost = tabu_search(FIRST_SOLUTION, DISTANCE, NEIGHBOURS_DICT, 4, 3) - - self.assertEqual(['a', 'd', 'b', 'e', 'c', 'a'], best_sol) - self.assertEqual(87, best_cost) diff --git a/simple_client/README.md b/simple_client/README.md deleted file mode 100644 index f51947f2105a..000000000000 --- a/simple_client/README.md +++ /dev/null @@ -1,6 +0,0 @@ -# simple client server - -#### Note: -- Run **`server.py`** first. -- Now, run **`client.py`**. -- verify the output. diff --git a/simple_client/client.py b/simple_client/client.py deleted file mode 100644 index db162f43c78a..000000000000 --- a/simple_client/client.py +++ /dev/null @@ -1,29 +0,0 @@ -# client.py - -import socket - -HOST, PORT = '127.0.0.1', 1400 - -s = socket.socket( - - socket.AF_INET, # ADDRESS FAMILIES - #Name Purpose - #AF_UNIX, AF_LOCAL Local communication - #AF_INET IPv4 Internet protocols - #AF_INET6 IPv6 Internet protocols - #AF_APPLETALK Appletalk - #AF_BLUETOOTH Bluetooth - - - socket.SOCK_STREAM # SOCKET TYPES - #Name Way of Interaction - #SOCK_STREAM TCP - #SOCK_DGRAM UDP -) -s.connect((HOST, PORT)) - -s.send('Hello World'.encode('ascii'))#in UDP use sendto() -data = s.recv(1024)#in UDP use recvfrom() - -s.close()#end the connection -print(repr(data.decode('ascii'))) diff --git a/simple_client/server.py b/simple_client/server.py deleted file mode 100644 index c23075608a90..000000000000 --- a/simple_client/server.py +++ /dev/null @@ -1,21 +0,0 @@ -# server.py - -import socket - -HOST, PORT = '127.0.0.1', 1400 - -s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)#refer to client.py -s.bind((HOST, PORT)) -s.listen(1)#listen for 1 connection - -conn, addr = s.accept()#start the actual data flow - -print('connected to:', addr) - -while 1: - data = conn.recv(1024).decode('ascii')#receive 1024 bytes and decode using ascii - if not data: - break - conn.send((data + ' [ addition by server ]').encode('ascii')) - -conn.close() diff --git a/sorts/sorting_graphs.png b/sorts/sorting_graphs.png deleted file mode 100644 index 628245f3eb398f3617a994de89154630e1287402..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 10362 zcmb_?cT|(v*Dj&Sz#uYG98ijUHmWE^nka~fND)a0AOt~bkSM*wpooHi4oyKodP@i$ z36Ovef+C#+LRFBG1O%iLLhcF9e0SDe_q*%&$NeKK>pkx|`|NYh-p_vaKJQa=Q$v1U zFP{YP{`m)iL%a(y7i{pIB$unWP%WL7r=_)$S zn=0;ZmVdFqC{M2pzW!u#mb=DqfN)$L!iY(SnX(^$DfJ<0q%bf_ROPp{SVEoo`3gd_57#z|D*XollybJ8U{z$ zP-FT%!iqTI#l^K8fr6fhy;aJ5U*56cvBP2Zwh|!=l`4VDU)J_E3Azj_cF$vHT6b^S zw@uh8KMfJya0^QdAkfEsTe(DE56%r)5261Y@^8XhDKO;|hnU2}jMa_slCDiYb`iU? z4#Ft)$xxsAU*HG^)yg(Bb18hYabRbiW;Pu2^=V*uJ53)wHk~yu@VR`iTBxE4ajE6E ziuB!c7yK9CBaH#5owSJUG|!0Llp#BI7}mbIs(ow0RX0NoHSzkOg!W7OU`oMSWn!58 zXvD`8X|D$nRhf)k)4MI2eYl+-ikba6b6 z%#ca?#7Vlk=kW8Z@nR|AOPk?J&2u_SAH#oP_AqzN$aCxK*a#h3@DUX^b28yixxR_H zArcL{ksd}Loit_8H_ZrpG(uMM_r!?Z>FA;Hex%%H^N0^4E983vnm!v4J{M56IX1~; zOcpJU)(?H|Ifv_?>(0#B11BNdSVv&e3E7H`3sp7FovEevw7kTN=?vW`?XgVJ6(1z3 zrF4znwumfmILX+~W(N7&H|f?(Q9!;msXYu;NXdP)zpLU#F^8r)YcMm-ZCt zkr#aD&B;CyI|JD+1Qp{5>%CUV-OFTwuH9{cW12NoMAc$YcuLcrM>$y_eEFe^Zrre9 z^IE?@7ka~aUk0%pwSpk;I4WFyqnjfXVTkNWVS<(SjjFgboAPh1@QCY#1>st#S89 zXEmL~lkRxJ{B)pD*#{-! zaPEmy8}X95c=GDbT9Iz1AI59!Z6(z!YD1fF-9AEfNd97|<0R1vky&?dG*u#aKIdJG zF>>jT{;-Ym~%DE{0*= z#|ZRn@QbU-)0yVG5xMF63!OVc$1@pAt~pMW{sJ;XmocD=p)z0}*J+d`(L)uS=(ST3 zKTcVfU9E-CfCl$SMY8$4u^E)&_5x z33tZ{qzy~@i8Y*l)P*&otd^FQm7RW4SI|Fa^^u01O`n;&GK^V!*ffR*2Q&3OZJzox zjId@*u)L+)IS)%reG#$S9`PC1dmW))fK^55oVlpP)V*oa;z6T_t>sB}Z7|vpy9Vj! zoUhw7csq|&yP74nd-c#Uf70eyrk3~%ykY+Mvyr&10_C6|-xh`&=CVc?b}uN2My%JZ zb?WSmbRD~J|4nZbVlk+}+m16x^ishTwtMTW#!}O26;_9auI6pe-8;R}=5r>@p0I%= zkQRd4ocuPF$fPX92`nKUnHsTNGZ>b?x!qxyu00p1PzJ-4{%fa$9a>}=aoS8ipx}uQ_~L<228Tn8 z31e|Fx`tof7UJ~2c=X6I7LQlAKP+8HGvwZsBZgCaghBrz&={%>s_2nU%F<`2NAr8TInl*zNBRkKj9=e@J zxIk_UhsoSmvZo%jwFuw_vma2btiu9opA|AQPM(GO49t#2-U-CH=D-J_h{epud)60 zm6y?@dfnaky7F|fJm>N)q|8Fw@{+geshejC>C zwF3XsR3c>Ifj+^7})M~WH(HJEXwb6AqmC+Unme~~lK@5|FuS#JJb zzMX#|zOUF!2miGgns07PxSNNUnLQj^9CI6Q9C5>ftpg<*|NSebp7*^ zJVQjmCV93yljg`C8ENo#p{ldLp1@eFf|L#a!EvC!%+1gJaVYKmh7o!8;|0FTMAa#hb-3mZjJ}2lhuRQ=6%0) zywKx=J=m0H^EHs%>5btXEh)-MS8Vw9=UTt95_GpVGwenSwG|?V<6e3@ogjZjIODnQooUF+IkQzC6PLz`m3Kg{}qb?2D=mUZ<`BL#dgH6jm?` zx}dpOGXUm@V-!Sh03vKYaGk?a2p929M)FKZD1BqGi=E`tqhqy&TkY1uPB}IBbZZom z-zY=)*yhzBa@bZJwX}?vZmKbpytXx+=qgP~we@lrsbH}?1;Nd1=5{uPWQ)RV!M$cb zzoN{fA-eGapOu0r1!=r+wo8i#(4ldC4=ZQAR-`aIR)SSKn@id8$x8fi!34(^E3~JD zHhTresUcG&Nc;D%Sa6dAGXB?DYlZ#gW=Fqc=EOc_Yj6Gd}aMc35ZR z+sCA8SXqjkRbjlix|-I-kd1|!z?CWaM>@+b9OQ;Jh+Jw98BoWs;Q=yWz+#!KsTT*%6rCN%K?Dv1HXzawaAcIl!&=v#EP2bB+%{QV35*>F_pffs=D&c<2o?9e zRcoo~ysC=I-C9dv&pn0rPG6K*w+2Vu=}}Q=l0kBO6HCGb9%Y?yU#_1A;J@UK)`{j2 zR~arEjmFmwNPpIcM9FOMB8dz8cG99HUDMA)Ej#sp&bAi4mt;`+8KNj}X>d?)^6V%5 zPn+PJ^fi(FBc5fWRg(snTi7E#FgDc+nGuXQ>x$TjZ0zWCF37nqsctMFZ>YV9}Y z;CoH`Zxz5^bD!&=YH^O;iB&st9-YNE^ZLU!$J3%q!QmHJSGyEsc;P6IIML-|rC=vb zV^7~^4vzjID`2&W4jwlsxmlFyZ<8ca2E5f-!MZ^wWFwzNgV$+8N+wy_8qL7dojEL! zbN5DS&anJDGi-zGzD^}ZW4r46+eaFFT+`3q(W8#mqw2QS%IzA{LwgQL1WIKFOaxJq zZEw?phLA6)Y$_EwiZykeWR#>#62Y|8Y>A9>B zFHJx?{OKUkrR=WuD2d0~Xf2_uyFcM1jcbJ}xcS8_-D+b=Xb=k2G_YHh2?6SPkz6eg z4r46a29&h7r%Xi)GC0wWf*vA@w_iRMkhC8bwR_Sw9#oVS>_NUiFcKuWw;XfJ$;k=$ zh=iP;%@eGgSAi_QC9r!{Ng2W8ug5gzUJp$9^0s{~ ztX<{)^~m$uWT;pLu=)to6~C2rFnBylZzD?@cL31g?!n&P=l)9*nX^6F*(RgUGc%Q1j+`2=xBBZlY%9E<_zH`Ep^=p+=8U`ltL2CnkQjPln zFb@xeP?e||!J#4JyPQpIp;>lT{LzK+#sD=BEFO=)ukG>Xq)B>m_l4}{(RdW;rpSSrt;dSh?<}KsH@c?*zjSFZzdjn|*XosoG>TDPJ_AO;e=;vrv0FNin zH`W`XolZO4Oo2O`b4iXjP(}gc_9QOfzLBp6OvLkCE#MJ%%VIfRd-h$2-tNGAbg79( zN8QZ3T0sBasKf_d`CT0_ZUCj~&~)r9Kf$NGO4uY`M73Oa;)EhI9s%1Nrv0UPi?<09zJ>FS{Qw!%Oxn0D+j=x zUBGyXs-}?An!LkJXn*4U6v8h~vdr5x_A{s^KtI$pxbGh~cwUttmGV+M$eZLLjAY&e z=_q-HTr3hPwfxakM?x)fXata(#`-0Ub;ili2lsM_ z9=n*O1)qDS-LSah*A#BQJZ4nx8U;pgVtce8aR)WvtCzI05=@a&?>@&A$wX2) zgoC^0NHM3prol6@Ccq&9gWJO9G8VL)z^qno+!D_r!S#;6Yl|J=oJ> zuXH2A)$Zx9tQ7aKs0!?%unfhP*Rl_n5^<0hUSr%u$qJf%wFcsT!AxhG`tN7nI{`zV;RA z5D9cH%Ys1gFfVu+*6e%i^7$%2zb~a+9}=|eI0#$>8Y@!Tujh|}?f2=|+i;#N3AhP( z#2Xvn7qWK`K=>kM+q7W-AORT%1Nq1p8J_)tx$7W|$=28~_ML|%j2H_meQ};7Y=aT1 z8pv$3X$EcWP3-k5P>ebPujMy&(9veW^MR9>qv!%v?Ykfs&2&ed(nCu zaF)N?op5Md{67Q2m9N9oiMm;f^yL`ceOkZ9Sc)LrmnY4zsxP+);f#JjIR1}-}UZ+(p!xK}?;`ldWh0~l(z zL7#Ey$;uQ_vVYA=4x&py0EMnKamq(Z$lH_zk7-85OoYdWsBM3>qD}-Ho5Z|}tOaql zs=XXAMs$h?AX}iUR+u!wf>{dSP~=6xX9__GBjmQr<8}T`fpXgc<^>n``*DU`k)}UB zaYljuMN3>&xWYzL1Ty!dQ^|}KMX11(Z0f!2z7D$=Ws>sgO5JC|p8J)GpfUGLDyISieyyQlPW>kiRhZs6F?91Y#hGFp>aV|7)?|ehaFcliF zJmz8g-$7;|M?a>&%DJ<@AkBVc%IU)pU|=d*{($=x0=nqp2fO)D_1=gIFuZ^(`?#;H z6;iKwH-hmo8D=L1UyqDjf5)eEH}8Ox(49y5Jk|}xuhLcAEi|W}o$qfGMZC5Tnn@9n z^a0*N0R>2uzb7Dc?z>wn)|=C;lH0gw1)E!4f&&n##1D&`l!Nyv0CPBHRAZhZQWY=? zD=RLN<%c0r;jVv4fd%?L243OSnBc%!cB-8h23n3HfNS`7>TUEp2#==Ixa2@o(X{&P z1n@tc{?HbONORyUuFXb?p|hGslKEIN@GKei2@Voy5rSC-JB07c7I3_m-Z`V?GH^wB z+kfSZ+ONGYa#S!;lXZaf-WY_%zpgCr^&l?tk~_Qb5(8&@WjrUEG%^BYXA3n~Kc61} zSr+g4()uBg83J}cLc;Kox#T9)JO+z>C&M4uT_yS9HlU$G#GtY15zBxW&SYt zc{7;N&00M6ujBiCer%u5r)~f~pN|it7d}0Fs?e^{U-cKufN?)7F%9p#No`qRf^_Rz z7uzI1&PEgIM(2B{oql}#Xk7+HbG+RrV}N4s+kbQgT;^=I!a=xknxaW#z>?zFk{9rU zgR!~m;v)DF1}|9wsV~RkRthyo{}ZCmwI5X_F!0*!BkIHYVUu2rxLog{0={_ zryacJ=HFOZscbvnaKRiH0^!4>&#;Or}yPhMDr>1Xa*80Z9KLe ziaPmkq$}L5NAm;oIAsf*@Bv|zQ?7FapezX2d;m2=y6S9Rg&hO? zmxQT#-t00YD1-*UJkJXbadt?sW`C&N<l_XDQqfi>=}QUg%#E3As>P=x;x z$<+(J!Uw(4U|vn*u_18-VdekjQ5HKSh%RBR8_d>A9HV!L*IIYjds&OO0vZ*WbcUB4 zSA=+?w~_8(Ee-$&mkUMKsahK@Z{u`o52NLg9PA>OtSoQ|4kkiX^)={t2QGGzmX9KU z;YKg?#S&-s)t2=EC9X9Ta|7iLN)zrN6QQtf0=^D|)T)2D(rKXL&inr4Gq(V+X7X`o zzNvYxL&b8+U236TWtGHznT*XMKp*k}qRH}EHw3ND76{A1@|#083k~8#3L1Roa1Ol? z;EEH~)b(=4qfQ0nVLBTmj${|XSa*N_nBO_kfJOxAMb)Tny_X3%jDXfR*DDho9!Q6z zWrepc(4-vtl(Togof=@F(TTL%f0j3X$F0p~phOZ3>hCyBYjM^8Q=Dmillk+|6m9qS z)nM+3cHn*7=0wNYd9-g+96rQ;^9m zF>QuIvy^n`*G8%r(0UafP0Vr1I&>&sG&`ifrw=xKsKPDg>-!j2RalT56eQYL6D2Ye zj%rw302QZ8&KOw0EW1~4ms8MzT;8tz_S?%Uk_(*T~W)uKU#;l;eRBL&uQc_KyeotUMG9`Hx2W@z4mQ? zd=h}-zEOeeNprc}a#;_|4~pp2Kp+=dsFnGHP>hSplvxGfG*gf zMEt9BmP5`3|pSoSv_c4#*rEoxHXCUP(@_1hCoDL^iKUJv#A9*c* zPq-`~=;s>bo+#qIb7W(Qjo)}$NKpV~*dTltUgea|US)%cvAlx^-tx4+-&=K?r$x~Y zZJ$6Mf`A^s|8QJ43h+E_i?;X4xn9A}DgWi}8Fluvb?HYS!@upX@P00F%v&|(99cUnd7?G;nJv|DraS3M{oIaegWo0+~8^PK7L7u{`=3J-o|wS zJz{VEVHR5D9`|#J^Y=e&1yu$&2u9vSPb`9i@V~?gy6wpV=_4|+L}Np?4=EmcZmGf2m+PTG~;vi0Ser%lREXRRD6L&zl+_#p$k_onTp6=eB3&WM} z!xeYjKP8_jDKGEl%4?eE-nEI?-}XCzKu}nBMf(LDb^J=a{N0)VTa7(xg|CnQNSxyS zLAa4wV4I2t$t@^5$~89o(MT%cyMdxl!Dc$utxu6k_f3Nbo~(KQ%O#tpzz69%A^vwJ z0js_R@O*&xD7Zq6Kcf6Dn)=a(%3U*mPG@HG8(&X;vzZQ6Ps-uuE06>fu+nz`Z-uHz zlF)|0KbY>m{G}BNt{H2Q_f&DsYYQ@zc*B!LALx^}c%bo{1g&N~HGSbF@-D4>Q~~YG?UY z_rcU(ta8qHITmX+{UP4x1+H0qxdF=%zAQi6mMeZ{i2n$e8Ck0^?{ zmEyZj>}gP34Dz+sthtlP7Zb_l8|6J7nTW_0f1ZB$>**!x=(*XZsyozLKHcYj>jt#s z@{7P(lXRcj%yZxNY4*D0q31hlART9K{>Tii6ZsZ5Et zPmV&3)AO|p0}d*>#W}j&t-^JIpMZ+R3)X2*|nK+Gn|Lft_ghZcX{{b?yR4Md&bM?ZaZo~^SJ zpq-A{-(ag5KjRFzQq~#ZH+|0Ik-pDa&wRP!XI*TSyf8LoGj%E9%BEj|&`Kad0e3@A zUI_#?b5q|<;Q)>go-_dBb$-_;Wx+H6LSl~mQY`-b`2NHEX#<*0*1o(q9Q&i#pr6uG zpQe^*->|j^;gwBR=(4O$!AR+=D%K2;8o_*<(lpucvvI606eK$l;l^ZLa=;*v7BfYZJVPOfH#NoInRJUx9s`!IL#6s3ygx-ZS8u?61PAC5oF8h@ zeLc$ZVp_5k7f|iv!YtS}scR4^ht{X0J|hh-)|8xQsxw%)N*C%m0X2Fa+wfD9YbR$o zS<-kx7gLq}F0DqtTI{z*9T$B0+3O(CEAzBovXKS^Y{S3rX~5lIk|(H_#~;&DV|~+M z^6K0PB9Yi|8pM}A!N1Fc*Fc70@=t;ACb;g&mC0pYGzQGNj^O-|V!Gi?aqK|fW6G?u z_3-e^@r$8b_r;VQAN}17Zpq&*f=WOED4ScYUvSOzOYL&0CVPYe5J-9^p`&?B!#lq> zN?5@Ld@g2i;0CzgVcn0^gX@j~km}tQ0@q9PPyU96LKZteVVs)3y*k(UQ%`X<&ugG? zY6NZux~>X+XoBy5bp{sw?^|7<;D3LN2DbR0Z`A&WX4c?;3jq1jKRy553}pV(%#!*4 pP42&@`_JV5TMO1;-wx)1HEY#83w)so_@GR{{l7)3!wl2 diff --git a/sorts/tests.py b/sorts/tests.py deleted file mode 100644 index ec8c8361912f..000000000000 --- a/sorts/tests.py +++ /dev/null @@ -1,76 +0,0 @@ -"""Test Sort Algorithms for Errors.""" - -from bogo_sort import bogo_sort -from bubble_sort import bubble_sort -from bucket_sort import bucket_sort -from cocktail_shaker_sort import cocktail_shaker_sort -from comb_sort import comb_sort -from counting_sort import counting_sort -from cycle_sort import cycle_sort -from gnome_sort import gnome_sort -from heap_sort import heap_sort -from insertion_sort import insertion_sort -from merge_sort_fastest import merge_sort as merge_sort_fastest -from merge_sort import merge_sort -from pancake_sort import pancake_sort -from quick_sort_3_partition import quick_sort_3partition -from quick_sort import quick_sort -from radix_sort import radix_sort -from random_pivot_quick_sort import quick_sort_random -from selection_sort import selection_sort -from shell_sort import shell_sort -from tim_sort import tim_sort -from topological_sort import topological_sort -from tree_sort import tree_sort -from wiggle_sort import wiggle_sort - - -TEST_CASES = [ - {'input': [8, 7, 6, 5, 4, 3, -2, -5], 'expected': [-5, -2, 3, 4, 5, 6, 7, 8]}, - {'input': [-5, -2, 3, 4, 5, 6, 7, 8], 'expected': [-5, -2, 3, 4, 5, 6, 7, 8]}, - {'input': [5, 6, 1, 4, 0, 1, -2, -5, 3, 7], 'expected': [-5, -2, 0, 1, 1, 3, 4, 5, 6, 7]}, - {'input': [2, -2], 'expected': [-2, 2]}, - {'input': [1], 'expected': [1]}, - {'input': [], 'expected': []}, -] - -''' - TODO: - - Fix some broken tests in particular cases (as [] for example), - - Unify the input format: should always be function(input_collection) (no additional args) - - Unify the output format: should always be a collection instead of - updating input elements and returning None - - Rewrite some algorithms in function format (in case there is no function definition) -''' - -TEST_FUNCTIONS = [ - bogo_sort, - bubble_sort, - bucket_sort, - cocktail_shaker_sort, - comb_sort, - counting_sort, - cycle_sort, - gnome_sort, - heap_sort, - insertion_sort, - merge_sort_fastest, - merge_sort, - pancake_sort, - quick_sort_3partition, - quick_sort, - radix_sort, - quick_sort_random, - selection_sort, - shell_sort, - tim_sort, - topological_sort, - tree_sort, - wiggle_sort, -] - - -for function in TEST_FUNCTIONS: - for case in TEST_CASES: - result = function(case['input']) - assert result == case['expected'], 'Executed function: {}, {} != {}'.format(function.__name__, result, case['expected']) From f30f8493e6ef91f9d95ae88b0d2b59ef1f102681 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 11:12:26 +0530 Subject: [PATCH 161/594] Updated README --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 9edddb60552a..a609dc077a77 100644 --- a/README.md +++ b/README.md @@ -129,7 +129,7 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. ## Compression -- [Peak Signal To Noise Ratio](./compression_analysis/peak_signal_to_noise_ratio.py) +- [Peak Signal To Noise Ratio](./compression/peak_signal_to_noise_ratio.py) - [Huffman](./compression/huffman.py) ## Graphs From b23834062c5a78e2aeda70336eb66c07c7209181 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 11:14:55 +0530 Subject: [PATCH 162/594] refactor --- DIRECTORY.py | 50 -------------------------------------------------- 1 file changed, 50 deletions(-) delete mode 100644 DIRECTORY.py diff --git a/DIRECTORY.py b/DIRECTORY.py deleted file mode 100644 index 434b2a3dd3ed..000000000000 --- a/DIRECTORY.py +++ /dev/null @@ -1,50 +0,0 @@ -import os - -def getListOfFiles(dirName): - # create a list of file and sub directories - # names in the given directory - listOfFile = os.listdir(dirName) - allFiles = list() - # Iterate over all the entries - for entry in listOfFile: - # if entry == listOfFile[len(listOfFile)-1]: - # continue - if entry=='.git': - continue - # Create full path - fullPath = os.path.join(dirName, entry) - entryName = entry.split('_') - # print(entryName) - ffname = '' - try: - for word in entryName: - temp = word[0].upper() + word[1:] - ffname = ffname + ' ' + temp - # print(temp) - final_fn = ffname.replace('.py', '') - final_fn = final_fn.strip() - print('* ['+final_fn+']('+fullPath+')') - # pass - except: - pass - # If entry is a directory then get the list of files in this directory - if os.path.isdir(fullPath): - print ('\n## '+entry) - filesInCurrDir = getListOfFiles(fullPath) - for file in filesInCurrDir: - fileName = file.split('/') - fileName = fileName[len(fileName)-1] - - # print (fileName) - allFiles = allFiles + filesInCurrDir - else: - allFiles.append(fullPath) - - return allFiles - - -dirName = './'; - -# Get the list of all files in directory tree at given path -listOfFiles = getListOfFiles(dirName) -# print (listOfFiles) \ No newline at end of file From 1161393b39516f97b359a14dc9043d298bc897be Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 11:21:08 +0530 Subject: [PATCH 163/594] updated CONTRIBUTING.md --- CONTRIBUTING.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ac632574e870..03de387a8acd 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -107,6 +107,8 @@ We want your work to be readable by others; therefore, we encourage you to note - If you have modified/added documentation work, make sure your language is concise and contains no grammar mistake. +- Update the README file if you have added any new algorithm. Only entry corresponding to the algorithm is to be made, not need to add sample data, test files or solutions to problems like Project Euler, in the README. + - Add a corresponding explanation to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). - Most importantly, From aa663037f6f5d09b9cb47baa34c61aa1d7d2cbe1 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 13:47:56 +0530 Subject: [PATCH 164/594] Create FUNDING.yml --- .github/FUNDING.yml | 12 ++++++++++++ 1 file changed, 12 insertions(+) create mode 100644 .github/FUNDING.yml diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml new file mode 100644 index 000000000000..f07cea8a90f8 --- /dev/null +++ b/.github/FUNDING.yml @@ -0,0 +1,12 @@ +# These are supported funding model platforms + +github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2] +patreon: # Replace with a single Patreon username +open_collective: # Replace with a single Open Collective username +ko_fi: # Replace with a single Ko-fi username +tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel +community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry +liberapay: TheAlgorithms +issuehunt: # Replace with a single IssueHunt username +otechie: # Replace with a single Otechie username +custom: ['http://paypal.me/TheAlgorithms/1000'] From 1951b4ca79665ea34253cd845540a34cd656d2f1 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 6 Jul 2019 14:04:27 +0530 Subject: [PATCH 165/594] Update FUNDING.yml --- .github/FUNDING.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml index f07cea8a90f8..514c9327e231 100644 --- a/.github/FUNDING.yml +++ b/.github/FUNDING.yml @@ -9,4 +9,4 @@ community_bridge: # Replace with a single Community Bridge project-name e.g., cl liberapay: TheAlgorithms issuehunt: # Replace with a single IssueHunt username otechie: # Replace with a single Otechie username -custom: ['http://paypal.me/TheAlgorithms/1000'] +custom: ['http://paypal.me/TheAlgorithms/1000', 'https://donorbox.org/thealgorithms'] From cc4cf3ece7e10f15435365ee331c3530f6c777f5 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Sat, 6 Jul 2019 17:43:50 +0430 Subject: [PATCH 166/594] Generate all subsequences using backtracking (#961) * Add all_subsequences to backtracking directory --- backtracking/all_subsequences.py | 42 ++++++++++++++++++++++++++++++++ 1 file changed, 42 insertions(+) create mode 100644 backtracking/all_subsequences.py diff --git a/backtracking/all_subsequences.py b/backtracking/all_subsequences.py new file mode 100644 index 000000000000..d868377234a8 --- /dev/null +++ b/backtracking/all_subsequences.py @@ -0,0 +1,42 @@ +''' + In this problem, we want to determine all possible subsequences + of the given sequence. We use backtracking to solve this problem. + + Time complexity: O(2^n), + where n denotes the length of the given sequence. +''' + + +def generate_all_subsequences(sequence): + create_state_space_tree(sequence, [], 0) + + +def create_state_space_tree(sequence, current_subsequence, index): + ''' + Creates a state space tree to iterate through each branch using DFS. + We know that each state has exactly two children. + It terminates when it reaches the end of the given sequence. + ''' + + if index == len(sequence): + print(current_subsequence) + return + + create_state_space_tree(sequence, current_subsequence, index + 1) + current_subsequence.append(sequence[index]) + create_state_space_tree(sequence, current_subsequence, index + 1) + current_subsequence.pop() + + +''' +remove the comment to take an input from the user + +print("Enter the elements") +sequence = list(map(int, input().split())) +''' + +sequence = [3, 1, 2, 4] +generate_all_subsequences(sequence) + +sequence = ["A", "B", "C"] +generate_all_subsequences(sequence) From 839160f83a46413b94ba9817edc2ec37bcad36fc Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Sat, 6 Jul 2019 17:49:36 +0430 Subject: [PATCH 167/594] Generate all permutations of a sequence, using backtracking (#962) * Fix typo * Add all_permutations algorithm to backtracking directory --- backtracking/all_permutations.py | 45 ++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 backtracking/all_permutations.py diff --git a/backtracking/all_permutations.py b/backtracking/all_permutations.py new file mode 100644 index 000000000000..8c332970ba53 --- /dev/null +++ b/backtracking/all_permutations.py @@ -0,0 +1,45 @@ +''' + In this problem, we want to determine all possible permutations + of the given sequence. We use backtracking to solve this problem. + + Time complexity: O(n!), + where n denotes the length of the given sequence. +''' + + +def generate_all_permutations(sequence): + create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))]) + + +def create_state_space_tree(sequence, current_sequence, index, index_used): + ''' + Creates a state space tree to iterate through each branch using DFS. + We know that each state has exactly len(sequence) - index children. + It terminates when it reaches the end of the given sequence. + ''' + + if index == len(sequence): + print(current_sequence) + return + + for i in range(len(sequence)): + if not index_used[i]: + current_sequence.append(sequence[i]) + index_used[i] = True + create_state_space_tree(sequence, current_sequence, index + 1, index_used) + current_sequence.pop() + index_used[i] = False + + +''' +remove the comment to take an input from the user + +print("Enter the elements") +sequence = list(map(int, input().split())) +''' + +sequence = [3, 1, 2, 4] +generate_all_permutations(sequence) + +sequence = ["A", "B", "C"] +generate_all_permutations(sequence) From 781b7f86e720b9c5164047e46f2dedd807b9165b Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Sat, 6 Jul 2019 19:02:06 +0430 Subject: [PATCH 168/594] Fix readme and duplicate (#967) * Fix typo * Add all_permutations algorithm to backtracking directory * Update backtracking and D&C algorithms in README Update backtracking and divide_and_conquer algorithms in README * Remove the duplicated file --- README.md | 3 +- divide_and_conquer/max_sub_array_sum.py | 72 ------------------------- 2 files changed, 2 insertions(+), 73 deletions(-) delete mode 100644 divide_and_conquer/max_sub_array_sum.py diff --git a/README.md b/README.md index a609dc077a77..a28475791432 100644 --- a/README.md +++ b/README.md @@ -45,6 +45,8 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. - [N Queens](./backtracking/n_queens.py) - [Sum Of Subsets](./backtracking/sum_of_subsets.py) +- [All Subsequences](./backtracking/all_subsequences.py) +- [All Permutations](./backtracking/all_permutations.py) ## Ciphers @@ -220,7 +222,6 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. ## Divide And Conquer - [Max Subarray Sum](./divide_and_conquer/max_subarray_sum.py) -- [Max Sub Array Sum](./divide_and_conquer/max_sub_array_sum.py) - [Closest Pair Of Points](./divide_and_conquer/closest_pair_of_points.py) ## Strings diff --git a/divide_and_conquer/max_sub_array_sum.py b/divide_and_conquer/max_sub_array_sum.py deleted file mode 100644 index 531a45abca6f..000000000000 --- a/divide_and_conquer/max_sub_array_sum.py +++ /dev/null @@ -1,72 +0,0 @@ -""" -Given a array of length n, max_sub_array_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. - -Time complexity : O(n log n) - -Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) - -""" - - -def max_sum_from_start(array): - """ This function finds the maximum contiguous sum of array from 0 index - - Parameters : - array (list[int]) : given array - - Returns : - max_sum (int) : maximum contiguous sum of array from 0 index - - """ - array_sum = 0 - max_sum = float("-inf") - for num in array: - array_sum += num - if array_sum > max_sum: - max_sum = array_sum - return max_sum - - -def max_cross_array_sum(array, left, mid, right): - """ This function finds the maximum contiguous sum of left and right arrays - - Parameters : - array, left, mid, right (list[int], int, int, int) - - Returns : - (int) : maximum of sum of contiguous sum of left and right arrays - - """ - - max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) - max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) - return max_sum_of_left + max_sum_of_right - - -def max_sub_array_sum(array, left, right): - """ This function finds the maximum of sum of contiguous sub-array using divide and conquer method - - Parameters : - array, left, right (list[int], int, int) : given array, current left index and current right index - - Returns : - int : maximum of sum of contiguous sub-array - - """ - - # base case: array has only one element - if left == right: - return array[right] - - # Recursion - mid = (left + right) // 2 - left_half_sum = max_sub_array_sum(array, left, mid) - right_half_sum = max_sub_array_sum(array, mid + 1, right) - cross_sum = max_cross_array_sum(array, left, mid, right) - return max(left_half_sum, right_half_sum, cross_sum) - - -array = [-2, -5, 6, -2, -3, 1, 5, -6] -array_length = len(array) -print("Maximum sum of contiguous subarray:", max_sub_array_sum(array, 0, array_length - 1)) - From 69bed590368a10479a9ad225402aa540628a0457 Mon Sep 17 00:00:00 2001 From: Erfan Alimohammadi Date: Sat, 6 Jul 2019 20:01:52 +0430 Subject: [PATCH 169/594] Fix backtrack time complexity (#965) * Update backtracking/all_permutations.py --- backtracking/all_permutations.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/backtracking/all_permutations.py b/backtracking/all_permutations.py index 8c332970ba53..299b708fef4e 100644 --- a/backtracking/all_permutations.py +++ b/backtracking/all_permutations.py @@ -2,7 +2,7 @@ In this problem, we want to determine all possible permutations of the given sequence. We use backtracking to solve this problem. - Time complexity: O(n!), + Time complexity: O(n! * n), where n denotes the length of the given sequence. ''' From 26df2aab1ee79de5a4b288a64ad9c118bfccab73 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Sat, 6 Jul 2019 11:35:12 -0400 Subject: [PATCH 170/594] Removed Unused `import sys` (#922) I removed `import sys` because it is not used in the program. This addresses a [recommendation from lgtm](https://lgtm.com/projects/g/TheAlgorithms/Python/snapshot/66c4afbd0f28f9989f35ddbeb5c9263390c5d192/files/ciphers/caesar_cipher.py?sort=name&dir=ASC&mode=heatmap) --- ciphers/caesar_cipher.py | 1 - 1 file changed, 1 deletion(-) diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 39c069c95a7c..e22f19b4851d 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -1,4 +1,3 @@ -import sys def encrypt(strng, key): encrypted = '' for x in strng: From 4ff2a9dd4e1a517cb0526ff51233bb6f1fc3fc8d Mon Sep 17 00:00:00 2001 From: Aditi Agarwal <31546143+aditiagarwal34550@users.noreply.github.com> Date: Sat, 6 Jul 2019 21:59:58 -0700 Subject: [PATCH 171/594] minimax (#947) * minimax.py minimax algorithm is used for game like tic tac toe. It traces the path and selects the optimal move. * minimax.py Minimax is used in decision making and game theory to find the optimal move for a player, when your opponent also plays optimally. It is widely used in games like Tic-Tac-Toe, Chess. * Delete minimax.py * Update minimax.py * Minimax is a backtracking algorithm that is used in game theory to find the optimal move for a player, assuming that your opponent also plays optimally --- backtracking/minimax.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 backtracking/minimax.py diff --git a/backtracking/minimax.py b/backtracking/minimax.py new file mode 100644 index 000000000000..5168306e71fc --- /dev/null +++ b/backtracking/minimax.py @@ -0,0 +1,28 @@ +import math + +''' Minimax helps to achieve maximum score in a game by checking all possible moves + depth is current depth in game tree. + nodeIndex is index of current node in scores[]. + if move is of maximizer return true else false + leaves of game tree is stored in scores[] + height is maximum height of Game tree +''' + +def minimax (Depth, nodeIndex, isMax, scores, height): + + if Depth == height: + return scores[nodeIndex] + + if isMax: + return (max(minimax(Depth + 1, nodeIndex * 2, False, scores, height), + minimax(Depth + 1, nodeIndex * 2 + 1, False, scores, height))) + return (min(minimax(Depth + 1, nodeIndex * 2, True, scores, height), + minimax(Depth + 1, nodeIndex * 2 + 1, True, scores, height))) + +if __name__ == "__main__": + + scores = [90, 23, 6, 33, 21, 65, 123, 34423] + height = math.log(len(scores), 2) + + print("Optimal value : ", end = "") + print(minimax(0, 0, True, scores, height)) From 95324927288135c740688d16db34381298139d66 Mon Sep 17 00:00:00 2001 From: Shahabaldin Mohammadi <45038855+stevelex-elex@users.noreply.github.com> Date: Sun, 7 Jul 2019 11:19:15 +0430 Subject: [PATCH 172/594] added enigma machine algorithm (#932) --- hashes/enigma_machine.py | 61 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 hashes/enigma_machine.py diff --git a/hashes/enigma_machine.py b/hashes/enigma_machine.py new file mode 100644 index 000000000000..bd410c5cb21d --- /dev/null +++ b/hashes/enigma_machine.py @@ -0,0 +1,61 @@ +from __future__ import print_function + +alphabets = [chr(i) for i in range(32, 126)] +gear_one = [i for i in range(len(alphabets))] +gear_two = [i for i in range(len(alphabets))] +gear_three = [i for i in range(len(alphabets))] +reflector = [i for i in reversed(range(len(alphabets)))] +code = [] +gear_one_pos = gear_two_pos = gear_three_pos = 0 + + +def rotator(): + global gear_one_pos + global gear_two_pos + global gear_three_pos + i = gear_one[0] + gear_one.append(i) + del gear_one[0] + gear_one_pos += 1 + if gear_one_pos % int(len(alphabets)) == 0: + i = gear_two[0] + gear_two.append(i) + del gear_two[0] + gear_two_pos += 1 + if gear_two_pos % int(len(alphabets)) == 0: + i = gear_three[0] + gear_three.append(i) + del gear_three[0] + gear_three_pos += 1 + + +def engine(input_character): + target = alphabets.index(input_character) + target = gear_one[target] + target = gear_two[target] + target = gear_three[target] + target = reflector[target] + target = gear_three.index(target) + target = gear_two.index(target) + target = gear_one.index(target) + code.append(alphabets[target]) + rotator() + + +if __name__ == '__main__': + decode = input("Type your message:\n") + decode = list(decode) + while True: + try: + token = int(input("Please set token:(must be only digits)\n")) + break + except Exception as error: + print(error) + for i in range(token): + rotator() + for i in decode: + engine(i) + print("\n" + "".join(code)) + print( + f"\nYour Token is {token} please write it down.\nIf you want to decode " + f"this message again you should input same digits as token!") From 234b0a77c4d6186c9f0326233af84a8f75b35b6e Mon Sep 17 00:00:00 2001 From: Hector S Date: Sun, 7 Jul 2019 11:17:38 -0400 Subject: [PATCH 173/594] Simplied password_generator.py (#968) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py * Added main() function and simplified password generation. * Modified password_generator.py file according to suggestions in #968 --- other/password_generator.py | 66 +++++++++++++++++++++++-------------- 1 file changed, 42 insertions(+), 24 deletions(-) diff --git a/other/password_generator.py b/other/password_generator.py index 8916079fc758..fd0701041240 100644 --- a/other/password_generator.py +++ b/other/password_generator.py @@ -1,35 +1,53 @@ +"""Password generator allows you to generate a random password of length N.""" from __future__ import print_function -import string -import random - -letters = [letter for letter in string.ascii_letters] -digits = [digit for digit in string.digits] -symbols = [symbol for symbol in string.punctuation] -chars = letters + digits + symbols -random.shuffle(chars) - -min_length = 8 -max_length = 16 -password = ''.join(random.choice(chars) for x in range(random.randint(min_length, max_length))) -print('Password: ' + password) -print('[ If you are thinking of using this passsword, You better save it. ]') - - -# ALTERNATIVE METHODS +from random import choice +from string import ascii_letters, digits, punctuation + + +def password_generator(length=8): + """ + >>> len(password_generator()) + 8 + >>> len(password_generator(length=16)) + 16 + >>> len(password_generator(257)) + 257 + >>> len(password_generator(length=0)) + 0 + >>> len(password_generator(-1)) + 0 + """ + chars = tuple(ascii_letters) + tuple(digits) + tuple(punctuation) + return ''.join(choice(chars) for x in range(length)) + + +# ALTERNATIVE METHODS # ctbi= characters that must be in password -# i= how many letters or characters the password length will be -def password_generator(ctbi, i): - # Password generator = full boot with random_number, random_letters, and random_character FUNCTIONS - pass # Put your code here... +# i= how many letters or characters the password length will be +def alternative_password_generator(ctbi, i): + # Password generator = full boot with random_number, random_letters, and + # random_character FUNCTIONS + pass # Put your code here... def random_number(ctbi, i): - pass # Put your code here... + pass # Put your code here... def random_letters(ctbi, i): - pass # Put your code here... + pass # Put your code here... def random_characters(ctbi, i): - pass # Put your code here... + pass # Put your code here... + + +def main(): + length = int( + input('Please indicate the max length of your password: ').strip()) + print('Password generated:', password_generator(length)) + print('[If you are thinking of using this passsword, You better save it.]') + + +if __name__ == '__main__': + main() From 2b365284c80bbc2c7e5676481ed56308a5b1d888 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Sun, 7 Jul 2019 11:45:42 -0400 Subject: [PATCH 174/594] Removed Unnecessary Assignment for 'error' Var (#920) `error = abs(f(a))` was declared on line 24 and line 32. It is unnecessary to have in both places. I removed the second instance since it wastes resources to keep redefining the variable inside the for loop. This fixes an [issue found by lgtm](https://lgtm.com/projects/g/TheAlgorithms/Python/snapshot/66c4afbd0f28f9989f35ddbeb5c9263390c5d192/files/maths/newton_raphson.py?sort=name&dir=ASC&mode=heatmap) --- maths/newton_raphson.py | 1 - 1 file changed, 1 deletion(-) diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py index cc6c92734fd4..d89f264acdd8 100644 --- a/maths/newton_raphson.py +++ b/maths/newton_raphson.py @@ -29,7 +29,6 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=Fal a = a - f(a)/f1(a) #Calculate the next estimate if logsteps: steps.append(a) - error = abs(f(a)) if error < maxerror: break else: From b7f13d991cccd370d8ff5b27c1bdc36237a13473 Mon Sep 17 00:00:00 2001 From: cclauss Date: Mon, 8 Jul 2019 17:27:51 +0200 Subject: [PATCH 175/594] Travis CI: Run black, doctest, flake8, mypy, and pytest (#964) * Travis CI: Add type checking with mypy * Create requirements.txt * script: mypy --ignore-missing-stubs=cv2,numpy . * Delete requirements.txt * script: mypy --ignore-missing-imports . * Run doctests * Disable doctest -v other/detecting_english_programmatically.py * Pytest * No | * pytest || true * Run black doctest flake8 mypy pytest * after_success: Build Directory.md * Typo in filename: Dictionary.txt --> dictionary.txt' Discovered via doctest run in #964 * python -m doctest -v * pip install black flake8 mypy pytest * pytest --doctest-glob='*.py' * pytest --doctest-modules * pytest --doctest-modules ./sorts * pytest --doctest-modules ./ciphers ./other ./searches ./sorts ./strings || true * if __name__ == "__main__": * if __name__ == "__main__": * if __name__ == '__main__': * if __name__ == '__main__': * if __name__ == '__main__': * Create requirements.txt * Update requirements.txt * if __name__ == "__main__": * Lose the doctests * if __name__ == '__main__': * Remove print-a-tuple * doctest: Added missing spaces * Update tabu_search.py * The >>> are not doctests so change to >>) * Travis CI: Run black, doctest, flake8, mypy, and pytest * Link to the separate DIRECTORY.md file * Update README.md --- .travis.yml | 13 +- README.md | 339 +------------------- ciphers/Atbash.py | 4 +- ciphers/caesar_cipher.py | 5 +- other/detecting_english_programmatically.py | 2 +- other/sierpinski_triangle.py | 17 +- other/tower_of_hanoi.py | 4 +- requirements.txt | 6 + searches/tabu_search.py | 4 +- sorts/Bitonic_Sort.py | 25 +- sorts/bubble_sort.py | 2 +- 11 files changed, 56 insertions(+), 365 deletions(-) create mode 100644 requirements.txt diff --git a/.travis.yml b/.travis.yml index 8676e5127334..e67bd431a7c1 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,5 +1,14 @@ language: python dist: xenial # required for Python >= 3.7 python: 3.7 -install: pip install flake8 -script: flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics +cache: pip +install: pip install -r requirements.txt +before_script: + - black --check . || true + - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics +script: + - mypy --ignore-missing-imports . + - pytest --doctest-modules ./ciphers ./other ./searches ./sorts ./strings +after_success: + - python ./~script.py + - cat DIRECTORY.md diff --git a/README.md b/README.md index a28475791432..30eccd361673 100644 --- a/README.md +++ b/README.md @@ -12,12 +12,12 @@ These implementations are for learning purposes. They may be less efficient than Anup Kumar Panwar   [[Gmail](mailto:1anuppanwar@gmail.com?Subject=The%20Algorithms%20-%20Python) -  [Gihub](https://github.com/anupkumarpanwar) +  [GitHub](https://github.com/anupkumarpanwar)   [LinkedIn](https://www.linkedin.com/in/anupkumarpanwar/)] Chetan Kaushik   [[Gmail](mailto:dynamitechetan@gmail.com?Subject=The%20Algorithms%20-%20Python) -  [Gihub](https://github.com/dynamitechetan) +  [GitHub](https://github.com/dynamitechetan)   [LinkedIn](https://www.linkedin.com/in/chetankaushik/)] ## Contribution Guidelines @@ -28,337 +28,6 @@ Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. -# Algorithms +## Algorithms -## Hashes - -- [Md5](./hashes/md5.py) -- [Chaos Machine](./hashes/chaos_machine.py) -- [Sha1](./hashes/sha1.py) - -## File Transfer Protocol - -- [Ftp Client Server](./file_transfer_protocol/ftp_client_server.py) -- [Ftp Send Receive](./file_transfer_protocol/ftp_send_receive.py) - -## Backtracking - -- [N Queens](./backtracking/n_queens.py) -- [Sum Of Subsets](./backtracking/sum_of_subsets.py) -- [All Subsequences](./backtracking/all_subsequences.py) -- [All Permutations](./backtracking/all_permutations.py) - -## Ciphers - -- [Transposition Cipher](./ciphers/transposition_cipher.py) -- [Atbash](./ciphers/Atbash.py) -- [Rot13](./ciphers/rot13.py) -- [Rabin Miller](./ciphers/rabin_miller.py) -- [Transposition Cipher Encrypt Decrypt File](./ciphers/transposition_cipher_encrypt_decrypt_file.py) -- [Affine Cipher](./ciphers/affine_cipher.py) -- [Trafid Cipher](./ciphers/trafid_cipher.py) -- [Base16](./ciphers/base16.py) -- [Elgamal Key Generator](./ciphers/elgamal_key_generator.py) -- [Rsa Cipher](./ciphers/rsa_cipher.py) -- [Prehistoric Men.txt](./ciphers/prehistoric_men.txt) -- [Vigenere Cipher](./ciphers/vigenere_cipher.py) -- [Xor Cipher](./ciphers/xor_cipher.py) -- [Brute Force Caesar Cipher](./ciphers/brute_force_caesar_cipher.py) -- [Rsa Key Generator](./ciphers/rsa_key_generator.py) -- [Simple Substitution Cipher](./ciphers/simple_substitution_cipher.py) -- [Playfair Cipher](./ciphers/playfair_cipher.py) -- [Morse Code Implementation](./ciphers/morse_Code_implementation.py) -- [Base32](./ciphers/base32.py) -- [Base85](./ciphers/base85.py) -- [Base64 Cipher](./ciphers/base64_cipher.py) -- [Onepad Cipher](./ciphers/onepad_cipher.py) -- [Caesar Cipher](./ciphers/caesar_cipher.py) -- [Hill Cipher](./ciphers/hill_cipher.py) -- [Cryptomath Module](./ciphers/cryptomath_module.py) - -## Arithmetic Analysis - -- [Bisection](./arithmetic_analysis/bisection.py) -- [Newton Method](./arithmetic_analysis/newton_method.py) -- [Newton Raphson Method](./arithmetic_analysis/newton_raphson_method.py) -- [Intersection](./arithmetic_analysis/intersection.py) -- [Lu Decomposition](./arithmetic_analysis/lu_decomposition.py) - -## Boolean Algebra - -- [Quine Mc Cluskey](./boolean_algebra/quine_mc_cluskey.py) - -## Traversals - -- [Binary Tree Traversals](./traversals/binary_tree_traversals.py) - -## Maths - -- [Average](./maths/average.py) -- [Abs Max](./maths/abs_Max.py) -- [Average Median](./maths/average_median.py) -- [Trapezoidal Rule](./maths/trapezoidal_rule.py) -- [Prime Check](./maths/Prime_Check.py) -- [Modular Exponential](./maths/modular_exponential.py) -- [Newton Raphson](./maths/newton_raphson.py) -- [Factorial Recursive](./maths/factorial_recursive.py) -- [Extended Euclidean Algorithm](./maths/extended_euclidean_algorithm.py) -- [Greater Common Divisor](./maths/greater_common_divisor.py) -- [Fibonacci](./maths/fibonacci.py) -- [Find Lcm](./maths/find_lcm.py) -- [Find Max](./maths/Find_Max.py) -- [Fermat Little Theorem](./maths/fermat_little_theorem.py) -- [Factorial Python](./maths/factorial_python.py) -- [Fibonacci Sequence Recursion](./maths/fibonacci_sequence_recursion.py) -- [Sieve Of Eratosthenes](./maths/sieve_of_eratosthenes.py) -- [Abs Min](./maths/abs_Min.py) -- [Lucas Series](./maths/lucasSeries.py) -- [Segmented Sieve](./maths/segmented_sieve.py) -- [Find Min](./maths/Find_Min.py) -- [Abs](./maths/abs.py) -- [Simpson Rule](./maths/simpson_rule.py) -- [Basic Maths](./maths/basic_maths.py) -- [3n+1](./maths/3n+1.py) -- [Binary Exponentiation](./maths/Binary_Exponentiation.py) - -## Digital Image Processing - -- ## Filters - - - [Median Filter](./digital_image_processing/filters/median_filter.py) - - [Gaussian Filter](./digital_image_processing/filters/gaussian_filter.py) - - -## Compression - -- [Peak Signal To Noise Ratio](./compression/peak_signal_to_noise_ratio.py) -- [Huffman](./compression/huffman.py) - -## Graphs - -- [BFS Shortest Path](./graphs/bfs_shortest_path.py) -- [Directed And Undirected (Weighted) Graph](<./graphs/Directed_and_Undirected_(Weighted)_Graph.py>) -- [Minimum Spanning Tree Prims](./graphs/minimum_spanning_tree_prims.py) -- [Graph Matrix](./graphs/graph_matrix.py) -- [Basic Graphs](./graphs/basic_graphs.py) -- [Dijkstra 2](./graphs/dijkstra_2.py) -- [Tarjans Strongly Connected Components](./graphs/tarjans_scc.py) -- [Check Bipartite Graph BFS](./graphs/check_bipartite_graph_bfs.py) -- [Depth First Search](./graphs/depth_first_search.py) -- [Kahns Algorithm Long](./graphs/kahns_algorithm_long.py) -- [Breadth First Search](./graphs/breadth_first_search.py) -- [Dijkstra](./graphs/dijkstra.py) -- [Articulation Points](./graphs/articulation_points.py) -- [Bellman Ford](./graphs/bellman_ford.py) -- [Check Bipartite Graph Dfs](./graphs/check_bipartite_graph_dfs.py) -- [Strongly Connected Components Kosaraju](./graphs/scc_kosaraju.py) -- [Multi Hueristic Astar](./graphs/multi_hueristic_astar.py) -- [Page Rank](./graphs/page_rank.py) -- [Eulerian Path And Circuit For Undirected Graph](./graphs/Eulerian_path_and_circuit_for_undirected_graph.py) -- [Edmonds Karp Multiple Source And Sink](./graphs/edmonds_karp_multiple_source_and_sink.py) -- [Floyd Warshall](./graphs/floyd_warshall.py) -- [Minimum Spanning Tree Kruskal](./graphs/minimum_spanning_tree_kruskal.py) -- [Prim](./graphs/prim.py) -- [Kahns Algorithm Topo](./graphs/kahns_algorithm_topo.py) -- [BFS](./graphs/BFS.py) -- [Finding Bridges](./graphs/finding_bridges.py) -- [Graph List](./graphs/graph_list.py) -- [Dijkstra Algorithm](./graphs/dijkstra_algorithm.py) -- [A Star](./graphs/a_star.py) -- [Even Tree](./graphs/even_tree.py) -- [DFS](./graphs/DFS.py) - -## Networking Flow - -- [Minimum Cut](./networking_flow/minimum_cut.py) -- [Ford Fulkerson](./networking_flow/ford_fulkerson.py) - -## Matrix - -- [Matrix Operation](./matrix/matrix_operation.py) -- [Searching In Sorted Matrix](./matrix/searching_in_sorted_matrix.py) -- [Spiral Print](./matrix/spiral_print.py) - -## Searches - -- [Quick Select](./searches/quick_select.py) -- [Binary Search](./searches/binary_search.py) -- [Interpolation Search](./searches/interpolation_search.py) -- [Jump Search](./searches/jump_search.py) -- [Linear Search](./searches/linear_search.py) -- [Ternary Search](./searches/ternary_search.py) -- [Tabu Search](./searches/tabu_search.py) -- [Sentinel Linear Search](./searches/sentinel_linear_search.py) - -## Conversions - -- [Decimal To Binary](./conversions/decimal_to_binary.py) -- [Decimal To Octal](./conversions/decimal_to_octal.py) - -## Dynamic Programming - -- [Fractional Knapsack](./dynamic_programming/Fractional_Knapsack.py) -- [Sum Of Subset](./dynamic_programming/sum_of_subset.py) -- [Fast Fibonacci](./dynamic_programming/fast_fibonacci.py) -- [Bitmask](./dynamic_programming/bitmask.py) -- [Abbreviation](./dynamic_programming/abbreviation.py) -- [Rod Cutting](./dynamic_programming/rod_cutting.py) -- [Knapsack](./dynamic_programming/knapsack.py) -- [Max Sub Array](./dynamic_programming/max_sub_array.py) -- [Fibonacci](./dynamic_programming/fibonacci.py) -- [Minimum Partition](./dynamic_programming/minimum_partition.py) -- [K Means Clustering Tensorflow](./dynamic_programming/k_means_clustering_tensorflow.py) -- [Coin Change](./dynamic_programming/coin_change.py) -- [Subset Generation](./dynamic_programming/subset_generation.py) -- [Floyd Warshall](./dynamic_programming/floyd_warshall.py) -- [Longest Sub Array](./dynamic_programming/longest_sub_array.py) -- [Integer Partition](./dynamic_programming/integer_partition.py) -- [Matrix Chain Order](./dynamic_programming/matrix_chain_order.py) -- [Edit Distance](./dynamic_programming/edit_distance.py) -- [Longest Common Subsequence](./dynamic_programming/longest_common_subsequence.py) -- [Longest Increasing Subsequence O(nlogn)](<./dynamic_programming/longest_increasing_subsequence_O(nlogn).py>) -- [Longest Increasing Subsequence](./dynamic_programming/longest_increasing_subsequence.py) - -## Divide And Conquer - -- [Max Subarray Sum](./divide_and_conquer/max_subarray_sum.py) -- [Closest Pair Of Points](./divide_and_conquer/closest_pair_of_points.py) - -## Strings - -- [Knuth Morris Pratt](./strings/knuth_morris_pratt.py) -- [Rabin Karp](./strings/rabin_karp.py) -- [Naive String Search](./strings/naive_String_Search.py) -- [Levenshtein Distance](./strings/levenshtein_distance.py) -- [Min Cost String Conversion](./strings/min_cost_string_conversion.py) -- [Boyer Moore Search](./strings/Boyer_Moore_Search.py) -- [Manacher](./strings/manacher.py) - -## Sorts - -- [Quick Sort](./sorts/quick_sort.py) -- [Selection Sort](./sorts/selection_sort.py) -- [Bitonic Sort](./sorts/Bitonic_Sort.py) -- [Cycle Sort](./sorts/cycle_sort.py) -- [Comb Sort](./sorts/comb_sort.py) -- [Topological Sort](./sorts/topological_sort.py) -- [Merge Sort Fastest](./sorts/merge_sort_fastest.py) -- [Random Pivot Quick Sort](./sorts/random_pivot_quick_sort.py) -- [Heap Sort](./sorts/heap_sort.py) -- [Insertion Sort](./sorts/insertion_sort.py) -- [Counting Sort](./sorts/counting_sort.py) -- [Bucket Sort](./sorts/bucket_sort.py) -- [Quick Sort 3 Partition](./sorts/quick_sort_3_partition.py) -- [Bogo Sort](./sorts/bogo_sort.py) -- [Shell Sort](./sorts/shell_sort.py) -- [Pigeon Sort](./sorts/pigeon_sort.py) -- [Odd-Even Transposition Parallel](./sorts/Odd-Even_transposition_parallel.py) -- [Tree Sort](./sorts/tree_sort.py) -- [Cocktail Shaker Sort](./sorts/cocktail_shaker_sort.py) -- [Random Normal Distribution Quicksort](./sorts/random_normal_distribution_quicksort.py) -- [Wiggle Sort](./sorts/wiggle_sort.py) -- [Pancake Sort](./sorts/pancake_sort.py) -- [External Sort](./sorts/external_sort.py) -- [Tim Sort](./sorts/tim_sort.py) -- [Sorting Graphs.png](./sorts/sorting_graphs.png) -- [Radix Sort](./sorts/radix_sort.py) -- [Odd-Even Transposition Single-threaded](./sorts/Odd-Even_transposition_single-threaded.py) -- [Bubble Sort](./sorts/bubble_sort.py) -- [Gnome Sort](./sorts/gnome_sort.py) -- [Merge Sort](./sorts/merge_sort.py) - -## Machine Learning - -- [Perceptron](./machine_learning/perceptron.py) -- [Random Forest Classifier](./machine_learning/random_forest_classification/random_forest_classifier.ipynb) -- [NaiveBayes.ipynb](./machine_learning/NaiveBayes.ipynb) -- [Scoring Functions](./machine_learning/scoring_functions.py) -- [Logistic Regression](./machine_learning/logistic_regression.py) -- [Gradient Descent](./machine_learning/gradient_descent.py) -- [Linear Regression](./machine_learning/linear_regression.py) -- [Random Forest Regression](./machine_learning/random_forest_regression/random_forest_regression.py) -- [Random Forest Regression](./machine_learning/random_forest_regression/random_forest_regression.ipynb) -- [Reuters One Vs Rest Classifier.ipynb](./machine_learning/reuters_one_vs_rest_classifier.ipynb) -- [Decision Tree](./machine_learning/decision_tree.py) -- [Knn Sklearn](./machine_learning/knn_sklearn.py) -- [K Means Clust](./machine_learning/k_means_clust.py) - -## Neural Network - -- [Perceptron](./neural_network/perceptron.py) -- [Fully Connected Neural Network](./neural_network/fully_connected_neural_network.ipynb) -- [Convolution Neural Network](./neural_network/convolution_neural_network.py) -- [Back Propagation Neural Network](./neural_network/back_propagation_neural_network.py) - -## Data Structures - -- ## Binary Tree - - - [Basic Binary Tree](./data_structures/binary_tree/basic_binary_tree.py) - - [Red Black Tree](./data_structures/binary_tree/red_black_tree.py) - - [Fenwick Tree](./data_structures/binary_tree/fenwick_tree.py) - - [Treap](./data_structures/binary_tree/treap.py) - - [AVL Tree](./data_structures/binary_tree/AVL_tree.py) - - [Segment Tree](./data_structures/binary_tree/segment_tree.py) - - [Lazy Segment Tree](./data_structures/binary_tree/lazy_segment_tree.py) - - [Binary Search Tree](./data_structures/binary_tree/binary_search_tree.py) - -- ## Trie - - - [Trie](./data_structures/trie/trie.py) - -- ## Linked List - - - [Swap Nodes](./data_structures/linked_list/swap_nodes.py) - - [Doubly Linked List](./data_structures/linked_list/doubly_linked_list.py) - - [Singly Linked List](./data_structures/linked_list/singly_linked_list.py) - - [Is Palindrome](./data_structures/linked_list/is_Palindrome.py) - -- ## Stacks - - - [Postfix Evaluation](./data_structures/stacks/postfix_evaluation.py) - - [Balanced Parentheses](./data_structures/stacks/balanced_parentheses.py) - - [Infix To Prefix Conversion](./data_structures/stacks/infix_to_prefix_conversion.py) - - [Stack](./data_structures/stacks/stack.py) - - [Infix To Postfix Conversion](./data_structures/stacks/infix_to_postfix_conversion.py) - - [Next Greater Element](./data_structures/stacks/next_greater_element.py) - - [Stock Span Problem](./data_structures/stacks/stock_span_problem.py) - -- ## Queue - - - [Queue On Pseudo Stack](./data_structures/queue/queue_on_pseudo_stack.py) - - [Double Ended Queue](./data_structures/queue/double_ended_queue.py) - - [Queue On List](./data_structures/queue/queue_on_list.py) - -- ## Heap - - - [Heap](./data_structures/heap/heap.py) - -- ## Hashing - - - [Hash Table With Linked List](./data_structures/hashing/hash_table_with_linked_list.py) - - [Quadratic Probing](./data_structures/hashing/quadratic_probing.py) - - [Hash Table](./data_structures/hashing/hash_table.py) - - [Double Hash](./data_structures/hashing/double_hash.py) - - -## Other - -- [Detecting English Programmatically](./other/detecting_english_programmatically.py) -- [Fischer Yates Shuffle](./other/fischer_yates_shuffle.py) -- [Primelib](./other/primelib.py) -- [Binary Exponentiation 2](./other/binary_exponentiation_2.py) -- [Anagrams](./other/anagrams.py) -- [Palindrome](./other/palindrome.py) -- [Finding Primes](./other/finding_Primes.py) -- [Two Sum](./other/two_sum.py) -- [Password Generator](./other/password_generator.py) -- [Linear Congruential Generator](./other/linear_congruential_generator.py) -- [Frequency Finder](./other/frequency_finder.py) -- [Euclidean Gcd](./other/euclidean_gcd.py) -- [Word Patterns](./other/word_patterns.py) -- [Nested Brackets](./other/nested_brackets.py) -- [Binary Exponentiation](./other/binary_exponentiation.py) -- [Sierpinski Triangle](./other/sierpinski_triangle.py) -- [Game Of Life](./other/game_of_life.py) -- [Tower Of Hanoi](./other/tower_of_hanoi.py) +See our [directory](DIRECTORY.md). diff --git a/ciphers/Atbash.py b/ciphers/Atbash.py index 162614c727ee..5653f0213745 100644 --- a/ciphers/Atbash.py +++ b/ciphers/Atbash.py @@ -18,4 +18,6 @@ def Atbash(): output+=i print(output) -Atbash() + +if __name__ == '__main__': + Atbash() diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index e22f19b4851d..872b5d8195c1 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -59,4 +59,7 @@ def main(): elif choice == '4': print ("Goodbye.") break -main() + + +if __name__ == '__main__': + main() diff --git a/other/detecting_english_programmatically.py b/other/detecting_english_programmatically.py index 005fd3c10ca3..8b73ff6cf0c3 100644 --- a/other/detecting_english_programmatically.py +++ b/other/detecting_english_programmatically.py @@ -6,7 +6,7 @@ def loadDictionary(): path = os.path.split(os.path.realpath(__file__)) englishWords = {} - with open(path[0] + '/Dictionary.txt') as dictionaryFile: + with open(path[0] + '/dictionary.txt') as dictionaryFile: for word in dictionaryFile.read().split('\n'): englishWords[word] = None return englishWords diff --git a/other/sierpinski_triangle.py b/other/sierpinski_triangle.py index 329a8ce5c43f..fc22aad96059 100644 --- a/other/sierpinski_triangle.py +++ b/other/sierpinski_triangle.py @@ -27,13 +27,6 @@ import turtle import sys PROGNAME = 'Sierpinski Triangle' -if len(sys.argv) !=2: - raise Exception('right format for using this script: $python fractals.py ') - -myPen = turtle.Turtle() -myPen.ht() -myPen.speed(5) -myPen.pencolor('red') points = [[-175,-125],[0,175],[175,-125]] #size of triangle @@ -64,4 +57,12 @@ def triangle(points,depth): depth-1) -triangle(points,int(sys.argv[1])) +if __name__ == '__main__': + if len(sys.argv) !=2: + raise ValueError('right format for using this script: ' + '$python fractals.py ') + myPen = turtle.Turtle() + myPen.ht() + myPen.speed(5) + myPen.pencolor('red') + triangle(points,int(sys.argv[1])) diff --git a/other/tower_of_hanoi.py b/other/tower_of_hanoi.py index dc15b2ce8e58..9cc5b9e40543 100644 --- a/other/tower_of_hanoi.py +++ b/other/tower_of_hanoi.py @@ -16,10 +16,10 @@ def moveTower(height, fromPole, toPole, withPole): moveTower(height-1, withPole, toPole, fromPole) def moveDisk(fp,tp): - print(('moving disk from', fp, 'to', tp)) + print('moving disk from', fp, 'to', tp) def main(): - height = int(input('Height of hanoi: ')) + height = int(input('Height of hanoi: ').strip()) moveTower(height, 'A', 'B', 'C') if __name__ == '__main__': diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 000000000000..30179ac345b3 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,6 @@ +black +flake8 +matplotlib +mypy +numpy +pytest diff --git a/searches/tabu_search.py b/searches/tabu_search.py index e21ddd53cc78..ffd84f8ac031 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -38,7 +38,7 @@ def generate_neighbours(path): and the cost (distance) for each neighbor. Example of dict_of_neighbours: - >>> dict_of_neighbours[a] + >>) dict_of_neighbours[a] [[b,20],[c,18],[d,22],[e,26]] This indicates the neighbors of node (city) 'a', which has neighbor the node 'b' with distance 20, @@ -130,7 +130,7 @@ def find_neighborhood(solution, dict_of_neighbours): Example: - >>> find_neighborhood(['a','c','b','d','e','a']) + >>) find_neighborhood(['a','c','b','d','e','a']) [['a','e','b','d','c','a',90], [['a','c','d','b','e','a',90],['a','d','b','c','e','a',93], ['a','c','b','e','d','a',102], ['a','c','e','d','b','a',113], ['a','b','c','d','e','a',93]] diff --git a/sorts/Bitonic_Sort.py b/sorts/Bitonic_Sort.py index bae95b4346f6..ba40a1f698ee 100644 --- a/sorts/Bitonic_Sort.py +++ b/sorts/Bitonic_Sort.py @@ -42,15 +42,16 @@ def sort(a, N, up): bitonicSort(a, 0, N, up) -# Driver code to test above -a = [] - -n = int(input()) -for i in range(n): - a.append(int(input())) -up = 1 - -sort(a, n, up) -print("\n\nSorted array is") -for i in range(n): - print("%d" % a[i]) +if __name__ == "__main__": + # Driver code to test above + a = [] + + n = int(input().strip()) + for i in range(n): + a.append(int(input().strip())) + up = 1 + + sort(a, n, up) + print("\n\nSorted array is") + for i in range(n): + print("%d" % a[i]) diff --git a/sorts/bubble_sort.py b/sorts/bubble_sort.py index e17fc3358d53..4e2c19b65e02 100644 --- a/sorts/bubble_sort.py +++ b/sorts/bubble_sort.py @@ -19,7 +19,7 @@ def bubble_sort(collection): [-45, -5, -2] >>> bubble_sort([-23,0,6,-4,34]) - [-23,-4,0,6,34] + [-23, -4, 0, 6, 34] """ length = len(collection) for i in range(length-1): From 78cd3df3fc5935922f13db36c61c3b2680f138d7 Mon Sep 17 00:00:00 2001 From: cclauss Date: Mon, 8 Jul 2019 17:38:47 +0200 Subject: [PATCH 176/594] Update CONTRIBUTING.md to match #964 (#969) * Update CONTRIBUTING.md to match #964 Blocked by #964 * Do not modify README or DIRECTORY file. * Update CONTRIBUTING.md --- CONTRIBUTING.md | 27 ++++++++++++++++++++++----- 1 file changed, 22 insertions(+), 5 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 03de387a8acd..02235ee89973 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -28,6 +28,13 @@ We appreciate any contribution, from fixing a grammar mistake in a comment to im We want your work to be readable by others; therefore, we encourage you to note the following: - Please write in Python 3.x. +- Please consider running [__python/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not a requirement but it does make your code more readable. There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python core team. To use it, + ```bash + pip3 install black # only required the first time + black my-submission.py + ``` + +- All submissions will need to pass the test __flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics__ before they will be accepted so if possible, try this test locally on your Python file(s) before submitting your pull request. - If you know [PEP 8](https://www.python.org/dev/peps/pep-0008/) already, you will have no problem in coding style, though we do not follow it strictly. Read the remaining section and have fun coding! @@ -74,11 +81,17 @@ We want your work to be readable by others; therefore, we encourage you to note The following "testing" approaches are **not** encouraged: - ```python* + ```python input('Enter your input:') # Or even worse... input = eval(raw_input("Enter your input: ")) ``` + + However, if your code uses __input()__ then we encourage you to gracefully deal with leading and trailing whitespace in user input by adding __.strip()__ to the end as in: + + ```python + starting_value = int(input("Please enter a starting value: ").strip()) + ``` Please write down your test case, like the following: @@ -92,8 +105,10 @@ We want your work to be readable by others; therefore, we encourage you to note print("1 + 2 = ", sumab(1,2)) # 1+2 = 3 print("6 + 4 = ", sumab(6,4)) # 6+4 = 10 ``` + + Better yet, if you know how to write [__doctests__](https://docs.python.org/3/library/doctest.html), please consider adding them. -- Avoid importing external libraries for basic algorithms. Use those libraries for complicated algorithms. +- Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. #### Other Standard While Submitting Your Work @@ -105,15 +120,17 @@ We want your work to be readable by others; therefore, we encourage you to note - If you have modified/added code work, make sure the code compiles before submitting. -- If you have modified/added documentation work, make sure your language is concise and contains no grammar mistake. +- If you have modified/added documentation work, ensure your language is concise and contains no grammar errors. -- Update the README file if you have added any new algorithm. Only entry corresponding to the algorithm is to be made, not need to add sample data, test files or solutions to problems like Project Euler, in the README. +- Do not update the README.md or DIRECTORY.md file which will be periodically autogenerated by our Travis CI processes. - Add a corresponding explanation to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). +- All submissions will be tested with [__mypy__](http://www.mypy-lang.org) so we encourage to add [__Python type hints__](https://docs.python.org/3/library/typing.html) where it makes sense to do so. + - Most importantly, - - **Be consistent with this guidelines while submitting.** + - **Be consistent in the use of these guidelines when submitting.** - **Join** [Gitter](https://gitter.im/TheAlgorithms) **now!** - Happy coding! From 32d5c1a9b270dec417bb93ecf0e5d9a25170224f Mon Sep 17 00:00:00 2001 From: Animesh Singh <46104817+Blues1998@users.noreply.github.com> Date: Mon, 8 Jul 2019 22:28:58 +0530 Subject: [PATCH 177/594] Project Euler Problem #13 Python Solution (#935) * Create text file for numbers * Create sol2.py * Pythonic version of Problem #16 solution * Update sol2.py * Valid Python code for Python version 2-3 * Update sol2.py --- project_euler/problem_13/num.txt | 100 +++++++++++++++++++++++++++++++ project_euler/problem_13/sol2.py | 5 ++ project_euler/problem_16/sol2.py | 6 ++ 3 files changed, 111 insertions(+) create mode 100644 project_euler/problem_13/num.txt create mode 100644 project_euler/problem_13/sol2.py create mode 100644 project_euler/problem_16/sol2.py diff --git a/project_euler/problem_13/num.txt b/project_euler/problem_13/num.txt new file mode 100644 index 000000000000..43b568e812a8 --- /dev/null +++ b/project_euler/problem_13/num.txt @@ -0,0 +1,100 @@ +37107287533902102798797998220837590246510135740250 +46376937677490009712648124896970078050417018260538 +74324986199524741059474233309513058123726617309629 +91942213363574161572522430563301811072406154908250 +23067588207539346171171980310421047513778063246676 +89261670696623633820136378418383684178734361726757 +28112879812849979408065481931592621691275889832738 +44274228917432520321923589422876796487670272189318 +47451445736001306439091167216856844588711603153276 +70386486105843025439939619828917593665686757934951 +62176457141856560629502157223196586755079324193331 +64906352462741904929101432445813822663347944758178 +92575867718337217661963751590579239728245598838407 +58203565325359399008402633568948830189458628227828 +80181199384826282014278194139940567587151170094390 +35398664372827112653829987240784473053190104293586 +86515506006295864861532075273371959191420517255829 +71693888707715466499115593487603532921714970056938 +54370070576826684624621495650076471787294438377604 +53282654108756828443191190634694037855217779295145 +36123272525000296071075082563815656710885258350721 +45876576172410976447339110607218265236877223636045 +17423706905851860660448207621209813287860733969412 +81142660418086830619328460811191061556940512689692 +51934325451728388641918047049293215058642563049483 +62467221648435076201727918039944693004732956340691 +15732444386908125794514089057706229429197107928209 +55037687525678773091862540744969844508330393682126 +18336384825330154686196124348767681297534375946515 +80386287592878490201521685554828717201219257766954 +78182833757993103614740356856449095527097864797581 +16726320100436897842553539920931837441497806860984 +48403098129077791799088218795327364475675590848030 +87086987551392711854517078544161852424320693150332 +59959406895756536782107074926966537676326235447210 +69793950679652694742597709739166693763042633987085 +41052684708299085211399427365734116182760315001271 +65378607361501080857009149939512557028198746004375 +35829035317434717326932123578154982629742552737307 +94953759765105305946966067683156574377167401875275 +88902802571733229619176668713819931811048770190271 +25267680276078003013678680992525463401061632866526 +36270218540497705585629946580636237993140746255962 +24074486908231174977792365466257246923322810917141 +91430288197103288597806669760892938638285025333403 +34413065578016127815921815005561868836468420090470 +23053081172816430487623791969842487255036638784583 +11487696932154902810424020138335124462181441773470 +63783299490636259666498587618221225225512486764533 +67720186971698544312419572409913959008952310058822 +95548255300263520781532296796249481641953868218774 +76085327132285723110424803456124867697064507995236 +37774242535411291684276865538926205024910326572967 +23701913275725675285653248258265463092207058596522 +29798860272258331913126375147341994889534765745501 +18495701454879288984856827726077713721403798879715 +38298203783031473527721580348144513491373226651381 +34829543829199918180278916522431027392251122869539 +40957953066405232632538044100059654939159879593635 +29746152185502371307642255121183693803580388584903 +41698116222072977186158236678424689157993532961922 +62467957194401269043877107275048102390895523597457 +23189706772547915061505504953922979530901129967519 +86188088225875314529584099251203829009407770775672 +11306739708304724483816533873502340845647058077308 +82959174767140363198008187129011875491310547126581 +97623331044818386269515456334926366572897563400500 +42846280183517070527831839425882145521227251250327 +55121603546981200581762165212827652751691296897789 +32238195734329339946437501907836945765883352399886 +75506164965184775180738168837861091527357929701337 +62177842752192623401942399639168044983993173312731 +32924185707147349566916674687634660915035914677504 +99518671430235219628894890102423325116913619626622 +73267460800591547471830798392868535206946944540724 +76841822524674417161514036427982273348055556214818 +97142617910342598647204516893989422179826088076852 +87783646182799346313767754307809363333018982642090 +10848802521674670883215120185883543223812876952786 +71329612474782464538636993009049310363619763878039 +62184073572399794223406235393808339651327408011116 +66627891981488087797941876876144230030984490851411 +60661826293682836764744779239180335110989069790714 +85786944089552990653640447425576083659976645795096 +66024396409905389607120198219976047599490197230297 +64913982680032973156037120041377903785566085089252 +16730939319872750275468906903707539413042652315011 +94809377245048795150954100921645863754710598436791 +78639167021187492431995700641917969777599028300699 +15368713711936614952811305876380278410754449733078 +40789923115535562561142322423255033685442488917353 +44889911501440648020369068063960672322193204149535 +41503128880339536053299340368006977710650566631954 +81234880673210146739058568557934581403627822703280 +82616570773948327592232845941706525094512325230608 +22918802058777319719839450180888072429661980811197 +77158542502016545090413245809786882778948721859617 +72107838435069186155435662884062257473692284509516 +20849603980134001723930671666823555245252804609722 +53503534226472524250874054075591789781264330331690 diff --git a/project_euler/problem_13/sol2.py b/project_euler/problem_13/sol2.py new file mode 100644 index 000000000000..c1416bcd6e7d --- /dev/null +++ b/project_euler/problem_13/sol2.py @@ -0,0 +1,5 @@ +sum = 0 +with open("num.txt",'r') as f: + for line in f: + sum += int(line) +print(str(sum)[:10]) diff --git a/project_euler/problem_16/sol2.py b/project_euler/problem_16/sol2.py new file mode 100644 index 000000000000..cce3d2354bb1 --- /dev/null +++ b/project_euler/problem_16/sol2.py @@ -0,0 +1,6 @@ +from __future__ import print_function +n = 2**1000 +r = 0 +while n: + r, n = r + n % 10, n // 10 +print(r) From e2d9953952053130c63c51ce62c5ceb6cb084e91 Mon Sep 17 00:00:00 2001 From: Shoujue Xu Date: Tue, 9 Jul 2019 01:26:26 +0800 Subject: [PATCH 178/594] convolve and sobel (#971) * add gaussian filter algorithm and lena.jpg * add img_convolve algorithm and sobel_filter --- digital_image_processing/filters/convolve.py | 49 +++++++++++++++++++ .../filters/sobel_filter.py | 31 ++++++++++++ 2 files changed, 80 insertions(+) create mode 100644 digital_image_processing/filters/convolve.py create mode 100644 digital_image_processing/filters/sobel_filter.py diff --git a/digital_image_processing/filters/convolve.py b/digital_image_processing/filters/convolve.py new file mode 100644 index 000000000000..b7600d74c294 --- /dev/null +++ b/digital_image_processing/filters/convolve.py @@ -0,0 +1,49 @@ +# @Author : lightXu +# @File : convolve.py +# @Time : 2019/7/8 0008 下午 16:13 +from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey +from numpy import array, zeros, ravel, pad, dot, uint8 + + +def im2col(image, block_size): + rows, cols = image.shape + dst_height = cols - block_size[1] + 1 + dst_width = rows - block_size[0] + 1 + image_array = zeros((dst_height * dst_width, block_size[1] * block_size[0])) + row = 0 + for i in range(0, dst_height): + for j in range(0, dst_width): + window = ravel(image[i:i + block_size[0], j:j + block_size[1]]) + image_array[row, :] = window + row += 1 + + return image_array + + +def img_convolve(image, filter_kernel): + height, width = image.shape[0], image.shape[1] + k_size = filter_kernel.shape[0] + pad_size = k_size//2 + # Pads image with the edge values of array. + image_tmp = pad(image, pad_size, mode='edge') + + # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows + image_array = im2col(image_tmp, (k_size, k_size)) + + # turn the kernel into shape(k*k, 1) + kernel_array = ravel(filter_kernel) + # reshape and get the dst image + dst = dot(image_array, kernel_array).reshape(height, width) + return dst + + +if __name__ == '__main__': + # read original image + img = imread(r'../image_data/lena.jpg') + # turn image in gray scale value + gray = cvtColor(img, COLOR_BGR2GRAY) + # Laplace operator + Laplace_kernel = array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) + out = img_convolve(gray, Laplace_kernel).astype(uint8) + imshow('Laplacian', out) + waitKey(0) diff --git a/digital_image_processing/filters/sobel_filter.py b/digital_image_processing/filters/sobel_filter.py new file mode 100644 index 000000000000..0c797320a110 --- /dev/null +++ b/digital_image_processing/filters/sobel_filter.py @@ -0,0 +1,31 @@ +# @Author : lightXu +# @File : sobel_filter.py +# @Time : 2019/7/8 0008 下午 16:26 +import numpy as np +from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey +from digital_image_processing.filters.convolve import img_convolve + + +def sobel_filter(image): + kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) + kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) + + dst_x = img_convolve(image, kernel_x) + dst_y = img_convolve(image, kernel_y) + dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8) + degree = np.arctan2(dst_y, dst_x) + return dst, degree + + +if __name__ == '__main__': + # read original image + img = imread('../image_data/lena.jpg') + # turn image in gray scale value + gray = cvtColor(img, COLOR_BGR2GRAY) + + sobel, d = sobel_filter(gray) + + # show result images + imshow('sobel filter', sobel) + imshow('sobel degree', d) + waitKey(0) From 8b2d1b7f509a1124abdd037803db32880402da19 Mon Sep 17 00:00:00 2001 From: Jasper <46252815+jasper256@users.noreply.github.com> Date: Tue, 9 Jul 2019 03:03:18 -0400 Subject: [PATCH 179/594] added decimal to hexadecimal conversion (#977) * added decimal to hexadecimal conversion * fixed error occuring as more digits were needed --- conversions/decimal_to_hexadecimal.py | 43 +++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 conversions/decimal_to_hexadecimal.py diff --git a/conversions/decimal_to_hexadecimal.py b/conversions/decimal_to_hexadecimal.py new file mode 100644 index 000000000000..f91fac063adc --- /dev/null +++ b/conversions/decimal_to_hexadecimal.py @@ -0,0 +1,43 @@ +""" Convert Base 10 (Decimal) Values to Hexadecimal Representations """ + +# set decimal value for each hexadecimal digit +values = { + 0:'0', + 1:'1', + 2:'2', + 3:'3', + 4:'4', + 5:'5', + 6:'6', + 7:'7', + 8:'8', + 9:'9', + 10:'a', + 11:'b', + 12:'c', + 13:'d', + 14:'e', + 15:'f' +} + +def decimal_to_hexadecimal(decimal): + """ take decimal value, return hexadecimal representation as str """ + hexadecimal = '' + while decimal > 0: + remainder = decimal % 16 + decimal -= remainder + hexadecimal = values[remainder] + hexadecimal + decimal /= 16 + return hexadecimal + +def main(): + """ print test cases """ + print("5 in hexadecimal is", decimal_to_hexadecimal(5)) + print("15 in hexadecimal is", decimal_to_hexadecimal(15)) + print("37 in hexadecimal is", decimal_to_hexadecimal(37)) + print("255 in hexadecimal is", decimal_to_hexadecimal(255)) + print("4096 in hexadecimal is", decimal_to_hexadecimal(4096)) + print("999098 in hexadecimal is", decimal_to_hexadecimal(999098)) + +if __name__ == '__main__': + main() \ No newline at end of file From c85312da89dcc5bb1ad397feffc0e055dc576e85 Mon Sep 17 00:00:00 2001 From: Dharni0607 <30770547+Dharni0607@users.noreply.github.com> Date: Tue, 9 Jul 2019 20:50:43 +0530 Subject: [PATCH 180/594] updates in closest pair of points algorithm (#979) * updated closest pair of points (n*(logn)^2) to (n*logn) --- divide_and_conquer/closest_pair_of_points.py | 49 +++++++++++--------- 1 file changed, 28 insertions(+), 21 deletions(-) diff --git a/divide_and_conquer/closest_pair_of_points.py b/divide_and_conquer/closest_pair_of_points.py index cc5be428db79..ee06d27063df 100644 --- a/divide_and_conquer/closest_pair_of_points.py +++ b/divide_and_conquer/closest_pair_of_points.py @@ -1,27 +1,27 @@ """ -The algorithm finds distance btw closest pair of points in the given n points. +The algorithm finds distance between closest pair of points +in the given n points. Approach used -> Divide and conquer -The points are sorted based on Xco-ords -& by applying divide and conquer approach, +The points are sorted based on Xco-ords and +then based on Yco-ords separately. +And by applying divide and conquer approach, minimum distance is obtained recursively. ->> closest points lie on different sides of partition +>> Closest points can lie on different sides of partition. This case handled by forming a strip of points whose Xco-ords distance is less than closest_pair_dis -from mid-point's Xco-ords. +from mid-point's Xco-ords. Points sorted based on Yco-ords +are used in this step to reduce sorting time. Closest pair distance is found in the strip of points. (closest_in_strip) min(closest_pair_dis, closest_in_strip) would be the final answer. -Time complexity: O(n * (logn)^2) +Time complexity: O(n * log n) """ -import math - - def euclidean_distance_sqr(point1, point2): - return pow(point1[0] - point2[0], 2) + pow(point1[1] - point2[1], 2) + return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 def column_based_sort(array, column = 0): @@ -66,7 +66,7 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): return min_dis -def closest_pair_of_points_sqr(points, points_counts): +def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts): """ divide and conquer approach Parameters : @@ -79,12 +79,16 @@ def closest_pair_of_points_sqr(points, points_counts): # base case if points_counts <= 3: - return dis_between_closest_pair(points, points_counts) + return dis_between_closest_pair(points_sorted_on_x, points_counts) # recursion mid = points_counts//2 - closest_in_left = closest_pair_of_points(points[:mid], mid) - closest_in_right = closest_pair_of_points(points[mid:], points_counts - mid) + closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x, + points_sorted_on_y[:mid], + mid) + closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y, + points_sorted_on_y[mid:], + points_counts - mid) closest_pair_dis = min(closest_in_left, closest_in_right) """ cross_strip contains the points, whose Xcoords are at a @@ -92,22 +96,25 @@ def closest_pair_of_points_sqr(points, points_counts): """ cross_strip = [] - for point in points: - if abs(point[0] - points[mid][0]) < closest_pair_dis: + for point in points_sorted_on_x: + if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(point) - cross_strip = column_based_sort(cross_strip, 1) closest_in_strip = dis_between_closest_in_strip(cross_strip, len(cross_strip), closest_pair_dis) return min(closest_pair_dis, closest_in_strip) def closest_pair_of_points(points, points_counts): - return math.sqrt(closest_pair_of_points_sqr(points, points_counts)) + points_sorted_on_x = column_based_sort(points, column = 0) + points_sorted_on_y = column_based_sort(points, column = 1) + return (closest_pair_of_points_sqr(points_sorted_on_x, + points_sorted_on_y, + points_counts)) ** 0.5 -points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (0, 2), (5, 6), (1, 2)] -points = column_based_sort(points) -print("Distance:", closest_pair_of_points(points, len(points))) +if __name__ == "__main__": + points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] + print("Distance:", closest_pair_of_points(points, len(points))) From e6eaa078e292dc856f1027331e8de30b43a918f9 Mon Sep 17 00:00:00 2001 From: cclauss Date: Wed, 10 Jul 2019 06:59:39 +0200 Subject: [PATCH 181/594] Pytest the entire repo (#980) * Pytest the entire repo * Do each directory for now... * YAML files hate tabs * Add more requirements * pip install opencv-python * Comment out FTP * Add pandas and sklearn to requirements * Comment out FTP, graphs, machine_learning, maths, neural_network, project_euler * Update .travis.yml * Comment out Data structures * if __name__ == "__main__": * pytest --ignore= * pytest . * Update .travis.yml * pytest . --doctest-modules --ignore=${IGNORE} * Ignore --ignore because it just hangs --- .travis.yml | 24 ++++++++++++++++++- ...longest_increasing_subsequence_O(nlogn).py | 5 ++-- requirements.txt | 5 ++++ 3 files changed, 31 insertions(+), 3 deletions(-) diff --git a/.travis.yml b/.travis.yml index e67bd431a7c1..0e35fd084268 100644 --- a/.travis.yml +++ b/.travis.yml @@ -2,13 +2,35 @@ language: python dist: xenial # required for Python >= 3.7 python: 3.7 cache: pip +before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt before_script: - black --check . || true - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics script: - mypy --ignore-missing-imports . - - pytest --doctest-modules ./ciphers ./other ./searches ./sorts ./strings + #- IGNORE="data_structures,file_transfer_protocol,graphs,machine_learning,maths,neural_network,project_euler" + #- pytest . --doctest-modules --ignore=${IGNORE} + - pytest --doctest-modules + arithmetic_analysis + backtracking + boolean_algebra + ciphers + compression + conversions + digital_image_processing + divide_and_conquer + dynamic_programming + hashes + linear_algebra_python + matrix + networking_flow + other + searches + sorts + strings + traversals + after_success: - python ./~script.py - cat DIRECTORY.md diff --git a/dynamic_programming/longest_increasing_subsequence_O(nlogn).py b/dynamic_programming/longest_increasing_subsequence_O(nlogn).py index 21122a04d69f..86bec089adc7 100644 --- a/dynamic_programming/longest_increasing_subsequence_O(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_O(nlogn).py @@ -37,5 +37,6 @@ def LongestIncreasingSubsequenceLength(v): return length -v = [2, 5, 3, 7, 11, 8, 10, 13, 6] -print(LongestIncreasingSubsequenceLength(v)) +if __name__ == "__main__": + v = [2, 5, 3, 7, 11, 8, 10, 13, 6] + print(LongestIncreasingSubsequenceLength(v)) diff --git a/requirements.txt b/requirements.txt index 30179ac345b3..91d3df33323d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,4 +3,9 @@ flake8 matplotlib mypy numpy +opencv-python +pandas pytest +sklearn +sympy +tensorflow From add1aef0645790f2688c8ad44ddfdf6638ab8cb1 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Wed, 10 Jul 2019 01:21:04 -0400 Subject: [PATCH 182/594] Rename average.py to average_mean.py (#939) 'average.py' is ambiguous. There are several kinds of averages, so 'average_mean.py' is a more precise name. --- maths/{average.py => average_mean.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename maths/{average.py => average_mean.py} (100%) diff --git a/maths/average.py b/maths/average_mean.py similarity index 100% rename from maths/average.py rename to maths/average_mean.py From 34dee749a725b0d47811161b0598b9f806ce88cd Mon Sep 17 00:00:00 2001 From: Shoujue Xu Date: Wed, 10 Jul 2019 22:41:05 +0800 Subject: [PATCH 183/594] add canny edge detection algorithm and modify sobel_filter (#991) * add gaussian filter algorithm and lena.jpg * add img_convolve algorithm and sobel_filter * add canny edge detection algorithm and modify sobel_filter * format to avoid the backslashes --- .../edge_detection/__init__.py | 0 .../edge_detection/canny.py | 107 ++++++++++++++++++ .../filters/sobel_filter.py | 23 ++-- 3 files changed, 122 insertions(+), 8 deletions(-) create mode 100644 digital_image_processing/edge_detection/__init__.py create mode 100644 digital_image_processing/edge_detection/canny.py diff --git a/digital_image_processing/edge_detection/__init__.py b/digital_image_processing/edge_detection/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/digital_image_processing/edge_detection/canny.py b/digital_image_processing/edge_detection/canny.py new file mode 100644 index 000000000000..7fde75a90a48 --- /dev/null +++ b/digital_image_processing/edge_detection/canny.py @@ -0,0 +1,107 @@ +import cv2 +import numpy as np +from digital_image_processing.filters.convolve import img_convolve +from digital_image_processing.filters.sobel_filter import sobel_filter + +PI = 180 + + +def gen_gaussian_kernel(k_size, sigma): + center = k_size // 2 + x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center] + g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) + return g + + +def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): + image_row, image_col = image.shape[0], image.shape[1] + # gaussian_filter + gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4)) + # get the gradient and degree by sobel_filter + sobel_grad, sobel_theta = sobel_filter(gaussian_out) + gradient_direction = np.rad2deg(sobel_theta) + gradient_direction += PI + + dst = np.zeros((image_row, image_col)) + + """ + Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels + in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed. + """ + for row in range(1, image_row - 1): + for col in range(1, image_col - 1): + direction = gradient_direction[row, col] + + if ( + 0 <= direction < 22.5 + or 15 * PI / 8 <= direction <= 2 * PI + or 7 * PI / 8 <= direction <= 9 * PI / 8 + ): + W = sobel_grad[row, col - 1] + E = sobel_grad[row, col + 1] + if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E: + dst[row, col] = sobel_grad[row, col] + + elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8): + SW = sobel_grad[row + 1, col - 1] + NE = sobel_grad[row - 1, col + 1] + if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE: + dst[row, col] = sobel_grad[row, col] + + elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8): + N = sobel_grad[row - 1, col] + S = sobel_grad[row + 1, col] + if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S: + dst[row, col] = sobel_grad[row, col] + + elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8): + NW = sobel_grad[row - 1, col - 1] + SE = sobel_grad[row + 1, col + 1] + if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE: + dst[row, col] = sobel_grad[row, col] + + """ + High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold + value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high + threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge + pixel's value is smaller than the low threshold value, it will be suppressed. + """ + if dst[row, col] >= threshold_high: + dst[row, col] = strong + elif dst[row, col] <= threshold_low: + dst[row, col] = 0 + else: + dst[row, col] = weak + + """ + Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while + noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected + neighborhood, that weak edge point can be identified as one that should be preserved. + """ + for row in range(1, image_row): + for col in range(1, image_col): + if dst[row, col] == weak: + if 255 in ( + dst[row, col + 1], + dst[row, col - 1], + dst[row - 1, col], + dst[row + 1, col], + dst[row - 1, col - 1], + dst[row + 1, col - 1], + dst[row - 1, col + 1], + dst[row + 1, col + 1], + ): + dst[row, col] = strong + else: + dst[row, col] = 0 + + return dst + + +if __name__ == '__main__': + # read original image in gray mode + lena = cv2.imread(r'../image_data/lena.jpg', 0) + # canny edge detection + canny_dst = canny(lena) + cv2.imshow('canny', canny_dst) + cv2.waitKey(0) diff --git a/digital_image_processing/filters/sobel_filter.py b/digital_image_processing/filters/sobel_filter.py index 0c797320a110..f3ef407d49e5 100644 --- a/digital_image_processing/filters/sobel_filter.py +++ b/digital_image_processing/filters/sobel_filter.py @@ -10,11 +10,18 @@ def sobel_filter(image): kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) - dst_x = img_convolve(image, kernel_x) - dst_y = img_convolve(image, kernel_y) - dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8) - degree = np.arctan2(dst_y, dst_x) - return dst, degree + dst_x = np.abs(img_convolve(image, kernel_x)) + dst_y = np.abs(img_convolve(image, kernel_y)) + # modify the pix within [0, 255] + dst_x = dst_x * 255/np.max(dst_x) + dst_y = dst_y * 255/np.max(dst_y) + + dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y))) + dst_xy = dst_xy * 255/np.max(dst_xy) + dst = dst_xy.astype(np.uint8) + + theta = np.arctan2(dst_y, dst_x) + return dst, theta if __name__ == '__main__': @@ -23,9 +30,9 @@ def sobel_filter(image): # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) - sobel, d = sobel_filter(gray) + sobel_grad, sobel_theta = sobel_filter(gray) # show result images - imshow('sobel filter', sobel) - imshow('sobel degree', d) + imshow('sobel filter', sobel_grad) + imshow('sobel theta', sobel_theta) waitKey(0) From 2ad5be99192ade89c26752fb9d6fb7c32bc0337f Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Wed, 10 Jul 2019 16:00:30 -0400 Subject: [PATCH 184/594] Modified Docstrings to Fix Errors (#975) I modified the Docstrings at the beginning of the file to fix D400, W0105, and E402. --- graphs/BFS.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/graphs/BFS.py b/graphs/BFS.py index bf9b572cec50..6bbdd9e25435 100644 --- a/graphs/BFS.py +++ b/graphs/BFS.py @@ -1,6 +1,8 @@ -"""pseudo-code""" - """ +BFS. + +pseudo-code: + BFS(graph G, start vertex s): // all nodes initially unexplored mark s as explored From 897f1d0fb4c4f78dd8a7e82820e843f7f9f38738 Mon Sep 17 00:00:00 2001 From: PatOnTheBack <51241310+PatOnTheBack@users.noreply.github.com> Date: Wed, 10 Jul 2019 16:09:24 -0400 Subject: [PATCH 185/594] Improved Formatting and Style of Math Algos (#960) * Improved Formatting and Style I improved formatting and style to make PyLama happier. Linters used: - mccabe - pep257 - pydocstyle - pep8 - pycodestyle - pyflakes - pylint - isort * Create volume.py This script calculates the volumes of various shapes. * Delete lucasSeries.py * Revert "Delete lucasSeries.py" This reverts commit 64c19f7a6c8b74e15bed07f0f0337598a001ceb4. * Update lucasSeries.py --- maths/Binary_Exponentiation.py | 26 +++---- maths/Find_Min.py | 17 +++-- maths/Prime_Check.py | 49 +++++++------ maths/abs.py | 13 ++-- maths/extended_euclidean_algorithm.py | 53 +++++++++----- maths/fermat_little_theorem.py | 6 +- maths/greater_common_divisor.py | 18 +++-- maths/modular_exponential.py | 31 ++++---- maths/segmented_sieve.py | 43 ++++++----- maths/sieve_of_eratosthenes.py | 31 ++++---- maths/simpson_rule.py | 60 ++++++++-------- maths/trapezoidal_rule.py | 24 +++---- maths/volume.py | 100 ++++++++++++++++++++++++++ 13 files changed, 314 insertions(+), 157 deletions(-) create mode 100644 maths/volume.py diff --git a/maths/Binary_Exponentiation.py b/maths/Binary_Exponentiation.py index 2411cd58a76b..cf789afc6f22 100644 --- a/maths/Binary_Exponentiation.py +++ b/maths/Binary_Exponentiation.py @@ -1,25 +1,27 @@ -#Author : Junth Basnet -#Time Complexity : O(logn) +"""Binary Exponentiation.""" + +# Author : Junth Basnet +# Time Complexity : O(logn) + def binary_exponentiation(a, n): - + if (n == 0): return 1 - + elif (n % 2 == 1): return binary_exponentiation(a, n - 1) * a - + else: b = binary_exponentiation(a, n / 2) return b * b - + try: - base = int(input('Enter Base : ')) - power = int(input("Enter Power : ")) + BASE = int(input('Enter Base : ')) + POWER = int(input("Enter Power : ")) except ValueError: - print ("Invalid literal for integer") + print("Invalid literal for integer") -result = binary_exponentiation(base, power) -print("{}^({}) : {}".format(base, power, result)) - +RESULT = binary_exponentiation(BASE, POWER) +print("{}^({}) : {}".format(BASE, POWER, RESULT)) diff --git a/maths/Find_Min.py b/maths/Find_Min.py index 86207984e3da..c720da268a25 100644 --- a/maths/Find_Min.py +++ b/maths/Find_Min.py @@ -1,12 +1,17 @@ +"""Find Minimum Number in a List.""" + + def main(): - def findMin(x): - minNum = x[0] + """Find Minimum Number in a List.""" + def find_min(x): + min_num = x[0] for i in x: - if minNum > i: - minNum = i - return minNum + if min_num > i: + min_num = i + return min_num + + print(find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])) # = -56 - print(findMin([0,1,2,3,4,5,-3,24,-56])) # = -56 if __name__ == '__main__': main() diff --git a/maths/Prime_Check.py b/maths/Prime_Check.py index 8c5c181689dd..9249834dc069 100644 --- a/maths/Prime_Check.py +++ b/maths/Prime_Check.py @@ -1,9 +1,13 @@ +"""Prime Check.""" + import math import unittest -def primeCheck(number): +def prime_check(number): """ + Check to See if a Number is Prime. + A number is prime if it has exactly two dividers: 1 and itself. """ if number < 2: @@ -24,31 +28,30 @@ def primeCheck(number): class Test(unittest.TestCase): def test_primes(self): - self.assertTrue(primeCheck(2)) - self.assertTrue(primeCheck(3)) - self.assertTrue(primeCheck(5)) - self.assertTrue(primeCheck(7)) - self.assertTrue(primeCheck(11)) - self.assertTrue(primeCheck(13)) - self.assertTrue(primeCheck(17)) - self.assertTrue(primeCheck(19)) - self.assertTrue(primeCheck(23)) - self.assertTrue(primeCheck(29)) + self.assertTrue(prime_check(2)) + self.assertTrue(prime_check(3)) + self.assertTrue(prime_check(5)) + self.assertTrue(prime_check(7)) + self.assertTrue(prime_check(11)) + self.assertTrue(prime_check(13)) + self.assertTrue(prime_check(17)) + self.assertTrue(prime_check(19)) + self.assertTrue(prime_check(23)) + self.assertTrue(prime_check(29)) def test_not_primes(self): - self.assertFalse(primeCheck(-19), - "Negative numbers are not prime.") - self.assertFalse(primeCheck(0), - "Zero doesn't have any divider, primes must have two") - self.assertFalse(primeCheck(1), - "One just have 1 divider, primes must have two.") - self.assertFalse(primeCheck(2 * 2)) - self.assertFalse(primeCheck(2 * 3)) - self.assertFalse(primeCheck(3 * 3)) - self.assertFalse(primeCheck(3 * 5)) - self.assertFalse(primeCheck(3 * 5 * 7)) + self.assertFalse(prime_check(-19), + "Negative numbers are not prime.") + self.assertFalse(prime_check(0), + "Zero doesn't have any divider, primes must have two") + self.assertFalse(prime_check(1), + "One just have 1 divider, primes must have two.") + self.assertFalse(prime_check(2 * 2)) + self.assertFalse(prime_check(2 * 3)) + self.assertFalse(prime_check(3 * 3)) + self.assertFalse(prime_check(3 * 5)) + self.assertFalse(prime_check(3 * 5 * 7)) if __name__ == '__main__': unittest.main() - diff --git a/maths/abs.py b/maths/abs.py index 624823fc183e..2734e58ceee6 100644 --- a/maths/abs.py +++ b/maths/abs.py @@ -1,24 +1,25 @@ """Absolute Value.""" -def absVal(num): +def abs_val(num): """ Find the absolute value of a number. - >>absVal(-5) + >>abs_val(-5) 5 - >>absVal(0) + >>abs_val(0) 0 """ if num < 0: return -num - else: - return num + + # Returns if number is not < 0 + return num def main(): """Print absolute value of -34.""" - print(absVal(-34)) # = 34 + print(abs_val(-34)) # = 34 if __name__ == '__main__': diff --git a/maths/extended_euclidean_algorithm.py b/maths/extended_euclidean_algorithm.py index f5a3cc88e474..fc3798e7e432 100644 --- a/maths/extended_euclidean_algorithm.py +++ b/maths/extended_euclidean_algorithm.py @@ -1,20 +1,38 @@ +""" +Extended Euclidean Algorithm. + +Finds 2 numbers a and b such that it satisfies +the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) +""" + # @Author: S. Sharma # @Date: 2019-02-25T12:08:53-06:00 # @Email: silentcat@protonmail.com -# @Last modified by: silentcat -# @Last modified time: 2019-02-26T07:07:38-06:00 +# @Last modified by: PatOnTheBack +# @Last modified time: 2019-07-05 import sys -# Finds 2 numbers a and b such that it satisfies -# the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) + def extended_euclidean_algorithm(m, n): - a = 0; aprime = 1; b = 1; bprime = 0 - q = 0; r = 0 + """ + Extended Euclidean Algorithm. + + Finds 2 numbers a and b such that it satisfies + the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) + """ + a = 0 + a_prime = 1 + b = 1 + b_prime = 0 + q = 0 + r = 0 if m > n: - c = m; d = n + c = m + d = n else: - c = n; d = m + c = n + d = m while True: q = int(c / d) @@ -24,22 +42,24 @@ def extended_euclidean_algorithm(m, n): c = d d = r - t = aprime - aprime = a - a = t - q*a + t = a_prime + a_prime = a + a = t - q * a - t = bprime - bprime = b - b = t - q*b + t = b_prime + b_prime = b + b = t - q * b pair = None if m > n: - pair = (a,b) + pair = (a, b) else: - pair = (b,a) + pair = (b, a) return pair + def main(): + """Call Extended Euclidean Algorithm.""" if len(sys.argv) < 3: print('2 integer arguments required') exit(1) @@ -47,5 +67,6 @@ def main(): n = int(sys.argv[2]) print(extended_euclidean_algorithm(m, n)) + if __name__ == '__main__': main() diff --git a/maths/fermat_little_theorem.py b/maths/fermat_little_theorem.py index 93af98684894..8cf60dafe3ca 100644 --- a/maths/fermat_little_theorem.py +++ b/maths/fermat_little_theorem.py @@ -5,13 +5,13 @@ def binary_exponentiation(a, n, mod): - + if (n == 0): return 1 - + elif (n % 2 == 1): return (binary_exponentiation(a, n - 1, mod) * a) % mod - + else: b = binary_exponentiation(a, n / 2, mod) return (b * b) % mod diff --git a/maths/greater_common_divisor.py b/maths/greater_common_divisor.py index 15adaca1fb8d..adc7811e8317 100644 --- a/maths/greater_common_divisor.py +++ b/maths/greater_common_divisor.py @@ -1,15 +1,25 @@ -# Greater Common Divisor - https://en.wikipedia.org/wiki/Greatest_common_divisor +""" +Greater Common Divisor. + +Wikipedia reference: https://en.wikipedia.org/wiki/Greatest_common_divisor +""" + + def gcd(a, b): + """Calculate Greater Common Divisor (GCD).""" return b if a == 0 else gcd(b % a, a) + def main(): + """Call GCD Function.""" try: nums = input("Enter two Integers separated by comma (,): ").split(',') - num1 = int(nums[0]); num2 = int(nums[1]) + num_1 = int(nums[0]) + num_2 = int(nums[1]) except (IndexError, UnboundLocalError, ValueError): print("Wrong Input") - print(f"gcd({num1}, {num2}) = {gcd(num1, num2)}") + print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}") + if __name__ == '__main__': main() - diff --git a/maths/modular_exponential.py b/maths/modular_exponential.py index b3f4c00bd5d8..750de7cba99e 100644 --- a/maths/modular_exponential.py +++ b/maths/modular_exponential.py @@ -1,20 +1,25 @@ -def modularExponential(base, power, mod): - if power < 0: - return -1 - base %= mod - result = 1 +"""Modular Exponential.""" - while power > 0: - if power & 1: - result = (result * base) % mod - power = power >> 1 - base = (base * base) % mod - return result + +def modular_exponential(base, power, mod): + """Calculate Modular Exponential.""" + if power < 0: + return -1 + base %= mod + result = 1 + + while power > 0: + if power & 1: + result = (result * base) % mod + power = power >> 1 + base = (base * base) % mod + return result def main(): - print(modularExponential(3, 200, 13)) + """Call Modular Exponential Function.""" + print(modular_exponential(3, 200, 13)) if __name__ == '__main__': - main() + main() diff --git a/maths/segmented_sieve.py b/maths/segmented_sieve.py index 52ca6fbe601d..b15ec2480678 100644 --- a/maths/segmented_sieve.py +++ b/maths/segmented_sieve.py @@ -1,46 +1,51 @@ +"""Segmented Sieve.""" + import math + def sieve(n): + """Segmented Sieve.""" in_prime = [] start = 2 - end = int(math.sqrt(n)) # Size of every segment + end = int(math.sqrt(n)) # Size of every segment temp = [True] * (end + 1) prime = [] - - while(start <= end): - if temp[start] == True: + + while start <= end: + if temp[start] is True: in_prime.append(start) - for i in range(start*start, end+1, start): - if temp[i] == True: + for i in range(start * start, end + 1, start): + if temp[i] is True: temp[i] = False start += 1 prime += in_prime - + low = end + 1 high = low + end - 1 if high > n: high = n - - while(low <= n): - temp = [True] * (high-low+1) + + while low <= n: + temp = [True] * (high - low + 1) for each in in_prime: - + t = math.floor(low / each) * each if t < low: t += each - - for j in range(t, high+1, each): + + for j in range(t, high + 1, each): temp[j - low] = False - + for j in range(len(temp)): - if temp[j] == True: - prime.append(j+low) - + if temp[j] is True: + prime.append(j + low) + low = high + 1 high = low + end - 1 if high > n: high = n - + return prime -print(sieve(10**6)) \ No newline at end of file + +print(sieve(10**6)) diff --git a/maths/sieve_of_eratosthenes.py b/maths/sieve_of_eratosthenes.py index 26c17fa6ffec..11c123693694 100644 --- a/maths/sieve_of_eratosthenes.py +++ b/maths/sieve_of_eratosthenes.py @@ -1,24 +1,29 @@ +"""Sieve of Eratosthones.""" + import math -n = int(input("Enter n: ")) + +N = int(input("Enter n: ")) + def sieve(n): - l = [True] * (n+1) + """Sieve of Eratosthones.""" + l = [True] * (n + 1) prime = [] start = 2 - end = int(math.sqrt(n)) - while(start <= end): - if l[start] == True: + end = int(math.sqrt(n)) + while start <= end: + if l[start] is True: prime.append(start) - for i in range(start*start, n+1, start): - if l[i] == True: + for i in range(start * start, n + 1, start): + if l[i] is True: l[i] = False start += 1 - - for j in range(end+1,n+1): - if l[j] == True: + + for j in range(end + 1, n + 1): + if l[j] is True: prime.append(j) - + return prime -print(sieve(n)) - + +print(sieve(N)) diff --git a/maths/simpson_rule.py b/maths/simpson_rule.py index 091c86c17f1b..2b237d2e1a4e 100644 --- a/maths/simpson_rule.py +++ b/maths/simpson_rule.py @@ -1,49 +1,49 @@ -''' +""" Numerical integration or quadrature for a smooth function f with known values at x_i -This method is the classical approch of suming 'Equally Spaced Abscissas' +This method is the classical approch of suming 'Equally Spaced Abscissas' -method 2: +method 2: "Simpson Rule" -''' +""" from __future__ import print_function def method_2(boundary, steps): # "Simpson Rule" # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) - h = (boundary[1] - boundary[0]) / steps - a = boundary[0] - b = boundary[1] - x_i = makePoints(a,b,h) - y = 0.0 - y += (h/3.0)*f(a) - cnt = 2 - for i in x_i: - y += (h/3)*(4-2*(cnt%2))*f(i) - cnt += 1 - y += (h/3.0)*f(b) - return y - -def makePoints(a,b,h): - x = a + h - while x < (b-h): - yield x - x = x + h + h = (boundary[1] - boundary[0]) / steps + a = boundary[0] + b = boundary[1] + x_i = make_points(a,b,h) + y = 0.0 + y += (h/3.0)*f(a) + cnt = 2 + for i in x_i: + y += (h/3)*(4-2*(cnt%2))*f(i) + cnt += 1 + y += (h/3.0)*f(b) + return y + +def make_points(a,b,h): + x = a + h + while x < (b-h): + yield x + x = x + h def f(x): #enter your function here - y = (x-0)*(x-0) - return y + y = (x-0)*(x-0) + return y def main(): - a = 0.0 #Lower bound of integration - b = 1.0 #Upper bound of integration - steps = 10.0 #define number of steps or resolution - boundary = [a, b] #define boundary of integration - y = method_2(boundary, steps) - print('y = {0}'.format(y)) + a = 0.0 #Lower bound of integration + b = 1.0 #Upper bound of integration + steps = 10.0 #define number of steps or resolution + boundary = [a, b] #define boundary of integration + y = method_2(boundary, steps) + print('y = {0}'.format(y)) if __name__ == '__main__': main() diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index 52310c1ed3b0..789f263c6991 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -1,12 +1,12 @@ -''' +""" Numerical integration or quadrature for a smooth function f with known values at x_i -This method is the classical approch of suming 'Equally Spaced Abscissas' +This method is the classical approch of suming 'Equally Spaced Abscissas' -method 1: +method 1: "extended trapezoidal rule" -''' +""" from __future__ import print_function def method_1(boundary, steps): @@ -15,21 +15,21 @@ def method_1(boundary, steps): h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] - x_i = makePoints(a,b,h) - y = 0.0 + x_i = make_points(a,b,h) + y = 0.0 y += (h/2.0)*f(a) for i in x_i: #print(i) y += h*f(i) - y += (h/2.0)*f(b) - return y + y += (h/2.0)*f(b) + return y -def makePoints(a,b,h): - x = a + h +def make_points(a,b,h): + x = a + h while x < (b-h): yield x x = x + h - + def f(x): #enter your function here y = (x-0)*(x-0) return y @@ -37,7 +37,7 @@ def f(x): #enter your function here def main(): a = 0.0 #Lower bound of integration b = 1.0 #Upper bound of integration - steps = 10.0 #define number of steps or resolution + steps = 10.0 #define number of steps or resolution boundary = [a, b] #define boundary of integration y = method_1(boundary, steps) print('y = {0}'.format(y)) diff --git a/maths/volume.py b/maths/volume.py new file mode 100644 index 000000000000..171bc538f5a4 --- /dev/null +++ b/maths/volume.py @@ -0,0 +1,100 @@ +""" +Find Volumes of Various Shapes. + +Wikipedia reference: https://en.wikipedia.org/wiki/Volume +""" + +from math import pi + +PI = pi + + +def vol_cube(side_length): + """Calculate the Volume of a Cube.""" + # Cube side_length. + return float(side_length ** 3) + + +def vol_cuboid(width, height, length): + """Calculate the Volume of a Cuboid.""" + # Multiply lengths together. + return float(width * height * length) + + +def vol_cone(area_of_base, height): + """ + Calculate the Volume of a Cone. + + Wikipedia reference: https://en.wikipedia.org/wiki/Cone + volume = (1/3) * area_of_base * height + """ + return (float(1) / 3) * area_of_base * height + + +def vol_right_circ_cone(radius, height): + """ + Calculate the Volume of a Right Circular Cone. + + Wikipedia reference: https://en.wikipedia.org/wiki/Cone + volume = (1/3) * pi * radius^2 * height + """ + + import math + + return (float(1) / 3) * PI * (radius ** 2) * height + + +def vol_prism(area_of_base, height): + """ + Calculate the Volume of a Prism. + + V = Bh + Wikipedia reference: https://en.wikipedia.org/wiki/Prism_(geometry) + """ + return float(area_of_base * height) + + +def vol_pyramid(area_of_base, height): + """ + Calculate the Volume of a Prism. + + V = (1/3) * Bh + Wikipedia reference: https://en.wikipedia.org/wiki/Pyramid_(geometry) + """ + return (float(1) / 3) * area_of_base * height + + +def vol_sphere(radius): + """ + Calculate the Volume of a Sphere. + + V = (4/3) * pi * r^3 + Wikipedia reference: https://en.wikipedia.org/wiki/Sphere + """ + return (float(4) / 3) * PI * radius ** 3 + + +def vol_circular_cylinder(radius, height): + """Calculate the Volume of a Circular Cylinder. + + Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder + volume = pi * radius^2 * height + """ + return PI * radius ** 2 * height + + +def main(): + """Print the Results of Various Volume Calculations.""" + print("Volumes:") + print("Cube: " + str(vol_cube(2))) # = 8 + print("Cuboid: " + str(vol_cuboid(2, 2, 2))) # = 8 + print("Cone: " + str(vol_cone(2, 2))) # ~= 1.33 + print("Right Circular Cone: " + str(vol_right_circ_cone(2, 2))) # ~= 8.38 + print("Prism: " + str(vol_prism(2, 2))) # = 4 + print("Pyramid: " + str(vol_pyramid(2, 2))) # ~= 1.33 + print("Sphere: " + str(vol_sphere(2))) # ~= 33.5 + print("Circular Cylinder: " + str(vol_circular_cylinder(2, 2))) # ~= 25.1 + + +if __name__ == "__main__": + main() From 37fbd8ca2ed404767ad8514edd6e0330c0306a58 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 11 Jul 2019 04:38:10 +0800 Subject: [PATCH 186/594] Update average_median.py (#998) added doctest, fixed TypeError: list indices must be integers or slices, not float error due to number/2 producing float as index. --- maths/average_median.py | 43 +++++++++++++++++------------------------ 1 file changed, 18 insertions(+), 25 deletions(-) diff --git a/maths/average_median.py b/maths/average_median.py index 565bb4afd112..eab0107d8da8 100644 --- a/maths/average_median.py +++ b/maths/average_median.py @@ -1,41 +1,34 @@ -""" -Find median of a list of numbers. +def median(nums): + """ + Find median of a list of numbers. -Read more about medians: - https://en.wikipedia.org/wiki/Median -""" + >>> median([0]) + 0 + >>> median([4,1,3,2]) + 2.5 + Args: + nums: List of nums -def median(nums): - """Find median of a list of numbers.""" - # Sort list + Returns: + Median. + """ sorted_list = sorted(nums) - print("List of numbers:") - print(sorted_list) - - # Is number of items in list even? + med = None if len(sorted_list) % 2 == 0: - # Find index for first middle value. - mid_index_1 = len(sorted_list) / 2 - # Find index for second middle value. - mid_index_2 = -(len(sorted_list) / 2) - 1 - # Divide middle values by 2 to get average (mean). + mid_index_1 = len(sorted_list) // 2 + mid_index_2 = (len(sorted_list) // 2) - 1 med = (sorted_list[mid_index_1] + sorted_list[mid_index_2]) / float(2) - return med # Return makes `else:` unnecessary. - # Number of items is odd. - mid_index = (len(sorted_list) - 1) / 2 - # Middle index is median. - med = sorted_list[mid_index] + else: + mid_index = (len(sorted_list) - 1) // 2 + med = sorted_list[mid_index] return med - def main(): - """Call average module to find median of a specific list of numbers.""" print("Odd number of numbers:") print(median([2, 4, 6, 8, 20, 50, 70])) print("Even number of numbers:") print(median([2, 4, 6, 8, 20, 50])) - if __name__ == '__main__': main() From b79a197e8c05251cf9443cbc5c15bb66ae23f3d8 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 11 Jul 2019 12:43:03 +0800 Subject: [PATCH 187/594] Update abs_Max.py (#997) * Update abs_Max.py fix docstring for doctest to work properly (add space after >>>) * Update abs_Max.py --- maths/abs_Max.py | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/maths/abs_Max.py b/maths/abs_Max.py index 7ff9e4d3ca09..28f631f0100e 100644 --- a/maths/abs_Max.py +++ b/maths/abs_Max.py @@ -1,8 +1,10 @@ -def absMax(x): +from typing import List + +def abs_max(x: List[int]) -> int: """ - #>>>absMax([0,5,1,11]) + >>> abs_max([0,5,1,11]) 11 - >>absMax([3,-10,-2]) + >>> abs_max([3,-10,-2]) -10 """ j =x[0] @@ -11,15 +13,20 @@ def absMax(x): j = i return j +def abs_max_sort(x): + """ + >>> abs_max_sort([0,5,1,11]) + 11 + >>> abs_max_sort([3,-10,-2]) + -10 + """ + return sorted(x,key=abs)[-1] def main(): a = [1,2,-11] - print(absMax(a)) # = -11 - + assert abs_max(a) == -11 + assert abs_max_sort(a) == -11 if __name__ == '__main__': main() -""" -print abs Max -""" From 5f991f7740f8bbb801d5442e07f6e2881e3a7e1d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alfonso=20Rodr=C3=ADguez=20Pereira?= Date: Thu, 11 Jul 2019 11:16:42 +0200 Subject: [PATCH 188/594] #315 Renamed all files to snake_case (#993) --- ciphers/{Atbash.py => atbash.py} | 0 ...{morse_Code_implementation.py => morse_code_implementation.py} | 0 data_structures/binary_tree/{AVL_tree.py => avl_tree.py} | 0 data_structures/binary_tree/{LCA.py => lca.py} | 0 .../linked_list/{is_Palindrome.py => is_palindrome.py} | 0 .../{Fractional_Knapsack.py => fractional_knapsack.py} | 0 ...nce_O(nlogn).py => longest_increasing_subsequence_o(nlogn).py} | 0 graphs/{BFS.py => bfs.py} | 0 graphs/{DFS.py => dfs.py} | 0 ...hted)_Graph.py => directed_and_undirected_(weighted)_graph.py} | 0 ...graph.py => eulerian_path_and_circuit_for_undirected_graph.py} | 0 maths/{abs_Max.py => abs_max.py} | 0 maths/{abs_Min.py => abs_min.py} | 0 maths/{Binary_Exponentiation.py => binary_exponentiation.py} | 0 maths/{Find_Max.py => find_max.py} | 0 maths/{Find_Min.py => find_min.py} | 0 maths/{Prime_Check.py => prime_check.py} | 0 other/{finding_Primes.py => finding_primes.py} | 0 sorts/{Bitonic_Sort.py => bitonic_sort.py} | 0 ...ansposition_parallel.py => odd_even_transposition_parallel.py} | 0 ...ngle-threaded.py => odd_even_transposition_single_threaded.py} | 0 strings/{Boyer_Moore_Search.py => boyer_moore_search.py} | 0 strings/{naive_String_Search.py => naive_string_search.py} | 0 23 files changed, 0 insertions(+), 0 deletions(-) rename ciphers/{Atbash.py => atbash.py} (100%) rename ciphers/{morse_Code_implementation.py => morse_code_implementation.py} (100%) rename data_structures/binary_tree/{AVL_tree.py => avl_tree.py} (100%) rename data_structures/binary_tree/{LCA.py => lca.py} (100%) rename data_structures/linked_list/{is_Palindrome.py => is_palindrome.py} (100%) rename dynamic_programming/{Fractional_Knapsack.py => fractional_knapsack.py} (100%) rename dynamic_programming/{longest_increasing_subsequence_O(nlogn).py => longest_increasing_subsequence_o(nlogn).py} (100%) rename graphs/{BFS.py => bfs.py} (100%) rename graphs/{DFS.py => dfs.py} (100%) rename graphs/{Directed_and_Undirected_(Weighted)_Graph.py => directed_and_undirected_(weighted)_graph.py} (100%) rename graphs/{Eulerian_path_and_circuit_for_undirected_graph.py => eulerian_path_and_circuit_for_undirected_graph.py} (100%) rename maths/{abs_Max.py => abs_max.py} (100%) rename maths/{abs_Min.py => abs_min.py} (100%) rename maths/{Binary_Exponentiation.py => binary_exponentiation.py} (100%) rename maths/{Find_Max.py => find_max.py} (100%) rename maths/{Find_Min.py => find_min.py} (100%) rename maths/{Prime_Check.py => prime_check.py} (100%) rename other/{finding_Primes.py => finding_primes.py} (100%) rename sorts/{Bitonic_Sort.py => bitonic_sort.py} (100%) rename sorts/{Odd-Even_transposition_parallel.py => odd_even_transposition_parallel.py} (100%) rename sorts/{Odd-Even_transposition_single-threaded.py => odd_even_transposition_single_threaded.py} (100%) rename strings/{Boyer_Moore_Search.py => boyer_moore_search.py} (100%) rename strings/{naive_String_Search.py => naive_string_search.py} (100%) diff --git a/ciphers/Atbash.py b/ciphers/atbash.py similarity index 100% rename from ciphers/Atbash.py rename to ciphers/atbash.py diff --git a/ciphers/morse_Code_implementation.py b/ciphers/morse_code_implementation.py similarity index 100% rename from ciphers/morse_Code_implementation.py rename to ciphers/morse_code_implementation.py diff --git a/data_structures/binary_tree/AVL_tree.py b/data_structures/binary_tree/avl_tree.py similarity index 100% rename from data_structures/binary_tree/AVL_tree.py rename to data_structures/binary_tree/avl_tree.py diff --git a/data_structures/binary_tree/LCA.py b/data_structures/binary_tree/lca.py similarity index 100% rename from data_structures/binary_tree/LCA.py rename to data_structures/binary_tree/lca.py diff --git a/data_structures/linked_list/is_Palindrome.py b/data_structures/linked_list/is_palindrome.py similarity index 100% rename from data_structures/linked_list/is_Palindrome.py rename to data_structures/linked_list/is_palindrome.py diff --git a/dynamic_programming/Fractional_Knapsack.py b/dynamic_programming/fractional_knapsack.py similarity index 100% rename from dynamic_programming/Fractional_Knapsack.py rename to dynamic_programming/fractional_knapsack.py diff --git a/dynamic_programming/longest_increasing_subsequence_O(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py similarity index 100% rename from dynamic_programming/longest_increasing_subsequence_O(nlogn).py rename to dynamic_programming/longest_increasing_subsequence_o(nlogn).py diff --git a/graphs/BFS.py b/graphs/bfs.py similarity index 100% rename from graphs/BFS.py rename to graphs/bfs.py diff --git a/graphs/DFS.py b/graphs/dfs.py similarity index 100% rename from graphs/DFS.py rename to graphs/dfs.py diff --git a/graphs/Directed_and_Undirected_(Weighted)_Graph.py b/graphs/directed_and_undirected_(weighted)_graph.py similarity index 100% rename from graphs/Directed_and_Undirected_(Weighted)_Graph.py rename to graphs/directed_and_undirected_(weighted)_graph.py diff --git a/graphs/Eulerian_path_and_circuit_for_undirected_graph.py b/graphs/eulerian_path_and_circuit_for_undirected_graph.py similarity index 100% rename from graphs/Eulerian_path_and_circuit_for_undirected_graph.py rename to graphs/eulerian_path_and_circuit_for_undirected_graph.py diff --git a/maths/abs_Max.py b/maths/abs_max.py similarity index 100% rename from maths/abs_Max.py rename to maths/abs_max.py diff --git a/maths/abs_Min.py b/maths/abs_min.py similarity index 100% rename from maths/abs_Min.py rename to maths/abs_min.py diff --git a/maths/Binary_Exponentiation.py b/maths/binary_exponentiation.py similarity index 100% rename from maths/Binary_Exponentiation.py rename to maths/binary_exponentiation.py diff --git a/maths/Find_Max.py b/maths/find_max.py similarity index 100% rename from maths/Find_Max.py rename to maths/find_max.py diff --git a/maths/Find_Min.py b/maths/find_min.py similarity index 100% rename from maths/Find_Min.py rename to maths/find_min.py diff --git a/maths/Prime_Check.py b/maths/prime_check.py similarity index 100% rename from maths/Prime_Check.py rename to maths/prime_check.py diff --git a/other/finding_Primes.py b/other/finding_primes.py similarity index 100% rename from other/finding_Primes.py rename to other/finding_primes.py diff --git a/sorts/Bitonic_Sort.py b/sorts/bitonic_sort.py similarity index 100% rename from sorts/Bitonic_Sort.py rename to sorts/bitonic_sort.py diff --git a/sorts/Odd-Even_transposition_parallel.py b/sorts/odd_even_transposition_parallel.py similarity index 100% rename from sorts/Odd-Even_transposition_parallel.py rename to sorts/odd_even_transposition_parallel.py diff --git a/sorts/Odd-Even_transposition_single-threaded.py b/sorts/odd_even_transposition_single_threaded.py similarity index 100% rename from sorts/Odd-Even_transposition_single-threaded.py rename to sorts/odd_even_transposition_single_threaded.py diff --git a/strings/Boyer_Moore_Search.py b/strings/boyer_moore_search.py similarity index 100% rename from strings/Boyer_Moore_Search.py rename to strings/boyer_moore_search.py diff --git a/strings/naive_String_Search.py b/strings/naive_string_search.py similarity index 100% rename from strings/naive_String_Search.py rename to strings/naive_string_search.py From c2f2fa8b231999905564006cc3dd2db55de5ecc7 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Fri, 12 Jul 2019 00:20:41 +0800 Subject: [PATCH 189/594] Update abs_Min.py (#1004) * Update abs_Min.py * Create __init__.py * Rename abs_Min.py to abs_min.py * Update abs_min.py --- maths/__init__.py | 1 + maths/abs_min.py | 5 +++-- 2 files changed, 4 insertions(+), 2 deletions(-) create mode 100644 maths/__init__.py diff --git a/maths/__init__.py b/maths/__init__.py new file mode 100644 index 000000000000..8b137891791f --- /dev/null +++ b/maths/__init__.py @@ -0,0 +1 @@ + diff --git a/maths/abs_min.py b/maths/abs_min.py index 67d510551907..d546196aa1b5 100644 --- a/maths/abs_min.py +++ b/maths/abs_min.py @@ -1,4 +1,5 @@ -from Maths.abs import absVal +from abs import abs_val + def absMin(x): """ # >>>absMin([0,5,1,11]) @@ -8,7 +9,7 @@ def absMin(x): """ j = x[0] for i in x: - if absVal(i) < absVal(j): + if abs_val(i) < abs_val(j): j = i return j From f2eb965604ef704d1ffc1a79acaba8b8c58e204b Mon Sep 17 00:00:00 2001 From: FrogBattle <44649323+FrogBattle@users.noreply.github.com> Date: Thu, 11 Jul 2019 17:21:48 +0100 Subject: [PATCH 190/594] Update ~script.py (#990) Changing the boolean expression avoids the use of a continue statement. This way the code becomes easier/faster to compute on lower level and it has a better coding style. --- ~script.py | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/~script.py b/~script.py index c44f3436fcec..1fbb1e838c62 100644 --- a/~script.py +++ b/~script.py @@ -20,16 +20,15 @@ def _markdown(parent, ignores, ignores_ext, depth): for i in os.listdir(parent): full = os.path.join(parent, i) name, ext = os.path.splitext(i) - if i in ignores or ext in ignores_ext: - continue - if os.path.isfile(full): - # generate list - pre = parent.replace("./", "").replace(" ", "%20") - # replace all spaces to safe URL - child = i.replace(" ", "%20") - files.append((pre, child, name)) - else: - dirs.append(i) + if i not in ignores and ext not in ignores_ext: + if os.path.isfile(full): + # generate list + pre = parent.replace("./", "").replace(" ", "%20") + # replace all spaces to safe URL + child = i.replace(" ", "%20") + files.append((pre, child, name)) + else: + dirs.append(i) # Sort files files.sort(key=lambda e: e[2].lower()) for f in files: From 1dc9ec8fb2c51372800762b8e3f734eb93ec1814 Mon Sep 17 00:00:00 2001 From: obelisk0114 Date: Fri, 12 Jul 2019 08:16:14 -0700 Subject: [PATCH 191/594] Update Bucket Sort time complexity analysis (#918) --- sorts/bucket_sort.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index 5c4a71513ed3..0678b1194657 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -17,7 +17,12 @@ # number of buckets. # Time Complexity of Solution: -# Best Case O(n); Average Case O(n); Worst Case O(n) +# Worst case scenario occurs when all the elements are placed in a single bucket. The overall performance +# would then be dominated by the algorithm used to sort each bucket. In this case, O(n log n), because of TimSort +# +# Average Case O(n + (n^2)/k + k), where k is the number of buckets +# +# If k = O(n), time complexity is O(n) DEFAULT_BUCKET_SIZE = 5 From 1e0b33d3dd7eda32a97fe73df09df20e2004eb98 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sat, 13 Jul 2019 15:04:43 +0800 Subject: [PATCH 192/594] Update 3n+1.py (#996) * Update 3n+1.py Made variable names more meaningful and removed nested functions. * Update 3n+1.py * Update 3n+1.py * Update 3n+1.py --- maths/3n+1.py | 41 ++++++++++++++++++++++++++--------------- 1 file changed, 26 insertions(+), 15 deletions(-) diff --git a/maths/3n+1.py b/maths/3n+1.py index 6424fe0d8f15..d6c14ff0f47d 100644 --- a/maths/3n+1.py +++ b/maths/3n+1.py @@ -1,19 +1,30 @@ -def main(): - def n31(a):# a = initial number - c = 0 - l = [a] - while a != 1: - if a % 2 == 0:#if even divide it by 2 - a = a // 2 - elif a % 2 == 1:#if odd 3n+1 - a = 3*a +1 - c += 1#counter - l += [a] +from typing import Tuple, List + +def n31(a: int) -> Tuple[List[int], int]: + """ + Returns the Collatz sequence and its length of any postiver integer. + >>> n31(4) + ([4, 2, 1], 3) + """ - return l , c - print(n31(43)) - print(n31(98)[0][-1])# = a - print("It took {0} steps.".format(n31(13)[1]))#optional finish + if not isinstance(a, int): + raise TypeError('Must be int, not {0}'.format(type(a).__name__)) + if a < 1: + raise ValueError('Given integer must be greater than 1, not {0}'.format(a)) + + path = [a] + while a != 1: + if a % 2 == 0: + a = a // 2 + else: + a = 3*a +1 + path += [a] + return path, len(path) + +def main(): + num = 4 + path , length = n31(num) + print("The Collatz sequence of {0} took {1} steps. \nPath: {2}".format(num,length, path)) if __name__ == '__main__': main() From 7a6ebb85a2e8eda43131803f2104cdbba07cb164 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sat, 13 Jul 2019 15:10:02 +0800 Subject: [PATCH 193/594] Update edit_distance.py (#1001) added bottom up method. --- dynamic_programming/edit_distance.py | 34 ++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/dynamic_programming/edit_distance.py b/dynamic_programming/edit_distance.py index 335e5196ed53..b71f80d68935 100644 --- a/dynamic_programming/edit_distance.py +++ b/dynamic_programming/edit_distance.py @@ -52,6 +52,35 @@ def solve(self, A, B): return self.__solveDP(len(A)-1, len(B)-1) + +def min_distance_bottom_up(word1: str, word2: str) -> int: + """ + >>> min_distance_bottom_up("intention", "execution") + 5 + >>> min_distance_bottom_up("intention", "") + 9 + >>> min_distance_bottom_up("", "") + 0 + """ + m = len(word1) + n = len(word2) + dp = [[0 for _ in range(n+1) ] for _ in range(m+1)] + for i in range(m+1): + for j in range(n+1): + + if i == 0: #first string is empty + dp[i][j] = j + elif j == 0: #second string is empty + dp[i][j] = i + elif word1[i-1] == word2[j-1]: #last character of both substing is equal + dp[i][j] = dp[i-1][j-1] + else: + insert = dp[i][j-1] + delete = dp[i-1][j] + replace = dp[i-1][j-1] + dp[i][j] = 1 + min(insert, delete, replace) + return dp[m][n] + if __name__ == '__main__': try: raw_input # Python 2 @@ -71,5 +100,10 @@ def solve(self, A, B): print() print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) + print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2))) print() print("*************** End of Testing Edit Distance DP Algorithm ***************") + + + + From 7271c0d64acf4881636f08c4c2dcb00cbe757798 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Sat, 13 Jul 2019 15:12:54 +0800 Subject: [PATCH 194/594] Update rod_cutting.py (#995) * Update rod_cutting.py A hopefully clearer implementation without dependence on global variables. * Update rod_cutting.py added doctests * Update rod_cutting.py * Update rod_cutting.py --- dynamic_programming/rod_cutting.py | 115 ++++++++++++++--------------- 1 file changed, 57 insertions(+), 58 deletions(-) diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py index 34350cb8202b..c3111dcfc8a1 100644 --- a/dynamic_programming/rod_cutting.py +++ b/dynamic_programming/rod_cutting.py @@ -1,58 +1,57 @@ -### PROBLEM ### -""" -We are given a rod of length n and we are given the array of prices, also of -length n. This array contains the price for selling a rod at a certain length. -For example, prices[5] shows the price we can sell a rod of length 5. -Generalising, prices[x] shows the price a rod of length x can be sold. -We are tasked to find the optimal solution to sell the given rod. -""" - -### SOLUTION ### -""" -Profit(n) = max(1 m): - m = yesCut[i] - - solutions[n] = m - return m - - - -### EXAMPLE ### -length = 5 -#The first price, 0, is for when we have no rod. -prices = [0, 1, 3, 7, 9, 11, 13, 17, 21, 21, 30] -solutions = [-1 for x in range(length+1)] - -print(CutRod(length)) +from typing import List + +def rod_cutting(prices: List[int],length: int) -> int: + """ + Given a rod of length n and array of prices that indicate price at each length. + Determine the maximum value obtainable by cutting up the rod and selling the pieces + + >>> rod_cutting([1,5,8,9],4) + 10 + >>> rod_cutting([1,1,1],3) + 3 + >>> rod_cutting([1,2,3], -1) + Traceback (most recent call last): + ValueError: Given integer must be greater than 1, not -1 + >>> rod_cutting([1,2,3], 3.2) + Traceback (most recent call last): + TypeError: Must be int, not float + >>> rod_cutting([], 3) + Traceback (most recent call last): + AssertionError: prices list is shorted than length: 3 + + + + Args: + prices: list indicating price at each length, where prices[0] = 0 indicating rod of zero length has no value + length: length of rod + + Returns: + Maximum revenue attainable by cutting up the rod in any way. + """ + + prices.insert(0, 0) + if not isinstance(length, int): + raise TypeError('Must be int, not {0}'.format(type(length).__name__)) + if length < 0: + raise ValueError('Given integer must be greater than 1, not {0}'.format(length)) + assert len(prices) - 1 >= length, "prices list is shorted than length: {0}".format(length) + + return rod_cutting_recursive(prices, length) + +def rod_cutting_recursive(prices: List[int],length: int) -> int: + #base case + if length == 0: + return 0 + value = float('-inf') + for firstCutLocation in range(1,length+1): + value = max(value, prices[firstCutLocation]+rod_cutting_recursive(prices,length - firstCutLocation)) + return value + + +def main(): + assert rod_cutting([1,5,8,9,10,17,17,20,24,30],10) == 30 + # print(rod_cutting([],0)) + +if __name__ == '__main__': + main() + From d72586c5f4164ed2b518d6badea9d9a89e756689 Mon Sep 17 00:00:00 2001 From: Hector S Date: Sat, 13 Jul 2019 15:50:37 -0400 Subject: [PATCH 195/594] Updated ~script.py per #978 (#1013) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py * Moved and renamed ~script.py to scripts/build_directory_md.py Updated DIRECTORY.MD file * Modified .travis.yml per suggestion in #1013 * Fixed typo per suggestions in #1013 --- .travis.yml | 2 +- DIRECTORY.md | 123 +++++++++++--------- ~script.py => scripts/build_directory_md.py | 4 +- 3 files changed, 73 insertions(+), 56 deletions(-) rename ~script.py => scripts/build_directory_md.py (97%) diff --git a/.travis.yml b/.travis.yml index 0e35fd084268..9afc0c93a037 100644 --- a/.travis.yml +++ b/.travis.yml @@ -32,5 +32,5 @@ script: traversals after_success: - - python ./~script.py + - python scripts/build_directory_md.py - cat DIRECTORY.md diff --git a/DIRECTORY.md b/DIRECTORY.md index befd634c1eb0..66128228abc3 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -4,13 +4,17 @@ * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) -## Binary Tree - * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/binary_tree/basic_binary_tree.py) +## Backtracking + * [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) + * [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) + * [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) + * [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) + * [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Boolean Algebra * [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Ciphers * [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) - * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/Atbash.py) + * [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) @@ -20,7 +24,7 @@ * [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) - * [morse Code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_Code_implementation.py) + * [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [prehistoric men](https://github.com/TheAlgorithms/Python/blob/master/ciphers/prehistoric_men.txt) @@ -36,17 +40,21 @@ * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) -## Compression Analysis - * [psnr](https://github.com/TheAlgorithms/Python/blob/master/compression_analysis/psnr.py) + * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + * Image Data +## Conversions + * [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) + * [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) + * [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) ## Data Structures - * [arrays](https://github.com/TheAlgorithms/Python/blob/master/data_structures/arrays.py) - * [avl](https://github.com/TheAlgorithms/Python/blob/master/data_structures/avl.py) - * [LCA](https://github.com/TheAlgorithms/Python/blob/master/data_structures/LCA.py) * Binary Tree - * [AVL tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/AVL_tree.py) + * [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) + * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + * [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) + * [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * Hashing @@ -60,9 +68,9 @@ * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * Linked List * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) - * [is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_Palindrome.py) + * [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) - * [swapNodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swapNodes.py) + * [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) @@ -71,18 +79,24 @@ * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) - * [next](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next.py) + * [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) - * Union Find - * [tests union find](https://github.com/TheAlgorithms/Python/blob/master/data_structures/union_find/tests_union_find.py) - * [union find](https://github.com/TheAlgorithms/Python/blob/master/data_structures/union_find/union_find.py) ## Digital Image Processing + * Edge Detection + * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters + * [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) + * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) + * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) + * Image Data +## Divide And Conquer + * [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) + * [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) ## Dynamic Programming * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) @@ -91,19 +105,20 @@ * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) - * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/Fractional_Knapsack.py) + * [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) * [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) - * [longest increasing subsequence O(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_O(nlogn).py) + * [longest increasing subsequence o(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) + * [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## File Transfer Protocol * [ftp client server](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_client_server.py) * [ftp send receive](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_send_receive.py) @@ -112,19 +127,19 @@ * [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) - * [BFS](https://github.com/TheAlgorithms/Python/blob/master/graphs/BFS.py) + * [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) * [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) - * [DFS](https://github.com/TheAlgorithms/Python/blob/master/graphs/DFS.py) + * [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) * [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) - * [Directed and Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/Directed_and_Undirected_(Weighted)_Graph.py) + * [directed and undirected (weighted) graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) - * [Eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/Eulerian_path_and_circuit_for_undirected_graph.py) + * [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/floyd_warshall.py) @@ -141,6 +156,7 @@ * [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) ## Hashes * [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) + * [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Linear Algebra Python @@ -151,24 +167,26 @@ * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) + * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py) * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * Random Forest Classification - * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Classification/random_forest_classification.py) - * [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Classification/Social_Network_Ads.csv) + * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) + * [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/Social_Network_Ads.csv) * Random Forest Regression - * [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Regression/Position_Salaries.csv) - * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/Random%20Forest%20Regression/random_forest_regression.py) + * [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/Position_Salaries.csv) + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) ## Maths * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) - * [abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_Max.py) - * [abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_Min.py) - * [average](https://github.com/TheAlgorithms/Python/blob/master/maths/average.py) + * [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) + * [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) + * [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) - * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/Binary_Exponentiation.py) + * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) @@ -176,29 +194,27 @@ * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) - * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/Find_Max.py) - * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/Find_Min.py) + * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) + * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) - * [Hanoi](https://github.com/TheAlgorithms/Python/blob/master/maths/Hanoi.py) - * [lucasSeries](https://github.com/TheAlgorithms/Python/blob/master/maths/lucasSeries.py) + * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas%20series.py) * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) - * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/Prime_Check.py) + * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) - * Tests - * [test fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/tests/test_fibonacci.py) + * [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) ## Matrix * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) - * [spiralPrint](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiralPrint.py) + * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) ## Networking Flow * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network - * [bpnn](https://github.com/TheAlgorithms/Python/blob/master/neural_network/bpnn.py) + * [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other @@ -208,11 +224,11 @@ * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) * [dictionary](https://github.com/TheAlgorithms/Python/blob/master/other/dictionary.txt) * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) - * [finding Primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_Primes.py) + * [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py) * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) + * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) - * [n queens](https://github.com/TheAlgorithms/Python/blob/master/other/n_queens.py) * [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) * [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) @@ -222,9 +238,8 @@ * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) * [words](https://github.com/TheAlgorithms/Python/blob/master/other/words) - * Game Of Life - * [game o life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life/game_o_life.py) - * [sample](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life/sample.gif) + * Pycache + * [password generator.cpython-37](https://github.com/TheAlgorithms/Python/blob/master/other/__pycache__/password_generator.cpython-37.pyc) ## Project Euler * Problem 01 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) @@ -273,7 +288,9 @@ * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) * Problem 13 + * [num](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/num.txt) * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol2.py) * Problem 14 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) @@ -281,6 +298,7 @@ * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) * Problem 16 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) * Problem 17 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) * Problem 19 @@ -319,6 +337,8 @@ * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) * Problem 76 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) +## Scripts + * [build directory md](https://github.com/TheAlgorithms/Python/blob/master/scripts/build_directory_md.py) ## Searches * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) @@ -329,13 +349,8 @@ * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [tabu test data](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_test_data.txt) * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) - * [test interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/test_interpolation_search.py) - * [test tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/test_tabu_search.py) -## Simple Client - * [client](https://github.com/TheAlgorithms/Python/blob/master/simple_client/client.py) - * [server](https://github.com/TheAlgorithms/Python/blob/master/simple_client/server.py) ## Sorts - * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/Bitonic_Sort.py) + * [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) @@ -349,8 +364,8 @@ * [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) - * [Odd-Even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/Odd-Even_transposition_parallel.py) - * [Odd-Even transposition single-threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/Odd-Even_transposition_single-threaded.py) + * [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) + * [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) @@ -360,17 +375,17 @@ * [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) - * [tests](https://github.com/TheAlgorithms/Python/blob/master/sorts/tests.py) * [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings + * [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) - * [naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_String_Search.py) + * [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) ## Traversals * [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) diff --git a/~script.py b/scripts/build_directory_md.py similarity index 97% rename from ~script.py rename to scripts/build_directory_md.py index 1fbb1e838c62..47192701880d 100644 --- a/~script.py +++ b/scripts/build_directory_md.py @@ -51,8 +51,10 @@ def _markdown(parent, ignores, ignores_ext, depth): ignores = [".vs", ".gitignore", ".git", - "~script.py", + "scripts", "__init__.py", + "requirements.txt", + ".github" ] # Files with given entensions will be ignored ignores_ext = [ From 0d615398830e8a6fd1c3aa4bd6896de1b8200561 Mon Sep 17 00:00:00 2001 From: Rakshit Parashar <34675136+rishu2403@users.noreply.github.com> Date: Sat, 13 Jul 2019 12:54:38 -0700 Subject: [PATCH 196/594] Log_likelihood update (#1008) * Add files via upload This is a simple exploratory notebook that heavily expolits pandas and seaborn * Update logistic_regression.py * Update logistic_regression.py * Rename Food wastage analysis from 1961-2013 (FAO).ipynb to other/Food wastage analysis from 1961-2013 (FAO).ipynb * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py --- machine_learning/logistic_regression.py | 28 +- ...astage analysis from 1961-2013 (FAO).ipynb | 5916 +++++++++++++++++ 2 files changed, 5933 insertions(+), 11 deletions(-) create mode 100644 other/Food wastage analysis from 1961-2013 (FAO).ipynb diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py index 71952e792e81..9a60831862da 100644 --- a/machine_learning/logistic_regression.py +++ b/machine_learning/logistic_regression.py @@ -31,13 +31,16 @@ def sigmoid_function(z): def cost_function(h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() +def log_likelihood(X, Y, weights): + scores = np.dot(X, weights) + return np.sum(Y*scores - np.log(1 + np.exp(scores)) ) # here alpha is the learning rate, X is the feature matrix,y is the target matrix - def logistic_reg( alpha, X, y, + num_steps, max_iterations=70000, ): converged = False @@ -49,21 +52,24 @@ def logistic_reg( h = sigmoid_function(z) gradient = np.dot(X.T, h - y) / y.size theta = theta - alpha * gradient - z = np.dot(X, theta) h = sigmoid_function(z) J = cost_function(h, y) - iterations += 1 # update iterations - - if iterations == max_iterations: - print ('Maximum iterations exceeded!') - print ('Minimal cost function J=', J) - converged = True - + weights = np.zeros(X.shape[1]) + for step in range(num_steps): + scores = np.dot(X, weights) + predictions = sigmoid_function(scores) + if step % 10000 == 0: + print(log_likelihood(X,y,weights)) # Print log-likelihood every so often + return weights + + if iterations == max_iterations: + print ('Maximum iterations exceeded!') + print ('Minimal cost function J=', J) + converged = True return theta - # In[68]: if __name__ == '__main__': @@ -72,7 +78,7 @@ def logistic_reg( y = (iris.target != 0) * 1 alpha = 0.1 - theta = logistic_reg(alpha, X, y, max_iterations=70000) + theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000) print (theta) diff --git a/other/Food wastage analysis from 1961-2013 (FAO).ipynb b/other/Food wastage analysis from 1961-2013 (FAO).ipynb new file mode 100644 index 000000000000..384314c7e8f1 --- /dev/null +++ b/other/Food wastage analysis from 1961-2013 (FAO).ipynb @@ -0,0 +1,5916 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "1eecdb4a-89ca-4a1e-9c4c-7c44b2e628a1", + "_uuid": "110a8132a8179a9bed2fc8f1096592dc791f1661" + }, + "source": [ + "# About the dataset\n", + "\n", + "Context\n", + "Our world population is expected to grow from 7.3 billion today to 9.7 billion in the year 2050. Finding solutions for feeding the growing world population has become a hot topic for food and agriculture organizations, entrepreneurs and philanthropists. These solutions range from changing the way we grow our food to changing the way we eat. To make things harder, the world's climate is changing and it is both affecting and affected by the way we grow our food – agriculture. This dataset provides an insight on our worldwide food production - focusing on a comparison between food produced for human consumption and feed produced for animals.\n", + "\n", + "Content\n", + "The Food and Agriculture Organization of the United Nations provides free access to food and agriculture data for over 245 countries and territories, from the year 1961 to the most recent update (depends on the dataset). One dataset from the FAO's database is the Food Balance Sheets. It presents a comprehensive picture of the pattern of a country's food supply during a specified reference period, the last time an update was loaded to the FAO database was in 2013. The food balance sheet shows for each food item the sources of supply and its utilization. This chunk of the dataset is focused on two utilizations of each food item available:\n", + "\n", + "Food - refers to the total amount of the food item available as human food during the reference period.\n", + "Feed - refers to the quantity of the food item available for feeding to the livestock and poultry during the reference period.\n", + "Dataset's attributes:\n", + "\n", + "Area code - Country name abbreviation\n", + "Area - County name\n", + "Item - Food item\n", + "Element - Food or Feed\n", + "Latitude - geographic coordinate that specifies the north–south position of a point on the Earth's surface\n", + "Longitude - geographic coordinate that specifies the east-west position of a point on the Earth's surface\n", + "Production per year - Amount of food item produced in 1000 tonnes\n", + "\n", + "This is a simple exploratory notebook that heavily expolits pandas and seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", + "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" + }, + "outputs": [], + "source": [ + "# Importing libraries\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "# importing data\n", + "df = pd.read_csv(\"FAO.csv\", encoding = \"ISO-8859-1\")\n", + "pd.options.mode.chained_assignment = None\n", + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Area AbbreviationArea CodeAreaItem CodeItemElement CodeElementUnitlatitudelongitude...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0AFG2Afghanistan2511Wheat and products5142Food1000 tonnes33.9467.71...3249.03486.03704.04164.04252.04538.04605.04711.048104895
1AFG2Afghanistan2805Rice (Milled Equivalent)5142Food1000 tonnes33.9467.71...419.0445.0546.0455.0490.0415.0442.0476.0425422
2AFG2Afghanistan2513Barley and products5521Feed1000 tonnes33.9467.71...58.0236.0262.0263.0230.0379.0315.0203.0367360
3AFG2Afghanistan2513Barley and products5142Food1000 tonnes33.9467.71...185.043.044.048.062.055.060.072.07889
4AFG2Afghanistan2514Maize and products5521Feed1000 tonnes33.9467.71...120.0208.0233.0249.0247.0195.0178.0191.0200200
5AFG2Afghanistan2514Maize and products5142Food1000 tonnes33.9467.71...231.067.082.067.069.071.082.073.07776
6AFG2Afghanistan2517Millet and products5142Food1000 tonnes33.9467.71...15.021.011.019.021.018.014.014.01412
7AFG2Afghanistan2520Cereals, Other5142Food1000 tonnes33.9467.71...2.01.01.00.00.00.00.00.000
8AFG2Afghanistan2531Potatoes and products5142Food1000 tonnes33.9467.71...276.0294.0294.0260.0242.0250.0192.0169.0196230
9AFG2Afghanistan2536Sugar cane5521Feed1000 tonnes33.9467.71...50.029.061.065.054.0114.083.083.06981
10AFG2Afghanistan2537Sugar beet5521Feed1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
11AFG2Afghanistan2542Sugar (Raw Equivalent)5142Food1000 tonnes33.9467.71...124.0152.0169.0192.0217.0231.0240.0240.0250255
12AFG2Afghanistan2543Sweeteners, Other5142Food1000 tonnes33.9467.71...9.015.012.06.011.02.09.021.02416
13AFG2Afghanistan2745Honey5142Food1000 tonnes33.9467.71...3.03.03.03.03.03.03.02.022
14AFG2Afghanistan2549Pulses, Other and products5521Feed1000 tonnes33.9467.71...3.02.03.03.03.05.04.05.044
15AFG2Afghanistan2549Pulses, Other and products5142Food1000 tonnes33.9467.71...17.035.037.040.054.080.066.081.06374
16AFG2Afghanistan2551Nuts and products5142Food1000 tonnes33.9467.71...11.013.024.034.042.028.066.071.07044
17AFG2Afghanistan2560Coconuts - Incl Copra5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
18AFG2Afghanistan2561Sesame seed5142Food1000 tonnes33.9467.71...16.016.013.016.016.016.019.017.01616
19AFG2Afghanistan2563Olives (including preserved)5142Food1000 tonnes33.9467.71...1.01.00.00.02.03.02.02.022
20AFG2Afghanistan2571Soyabean Oil5142Food1000 tonnes33.9467.71...6.035.018.021.011.06.015.016.01616
21AFG2Afghanistan2572Groundnut Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
22AFG2Afghanistan2573Sunflowerseed Oil5142Food1000 tonnes33.9467.71...4.06.05.09.03.08.015.016.01723
23AFG2Afghanistan2574Rape and Mustard Oil5142Food1000 tonnes33.9467.71...0.01.03.05.06.06.01.02.022
24AFG2Afghanistan2575Cottonseed Oil5142Food1000 tonnes33.9467.71...2.03.03.03.03.04.03.03.034
25AFG2Afghanistan2577Palm Oil5142Food1000 tonnes33.9467.71...71.069.056.051.036.053.059.051.06164
26AFG2Afghanistan2579Sesameseed Oil5142Food1000 tonnes33.9467.71...1.01.01.02.02.01.01.02.011
27AFG2Afghanistan2580Olive Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.01.01.01.011
28AFG2Afghanistan2586Oilcrops Oil, Other5142Food1000 tonnes33.9467.71...0.01.00.00.03.01.02.02.022
29AFG2Afghanistan2601Tomatoes and products5142Food1000 tonnes33.9467.71...2.02.08.01.00.00.00.00.000
..................................................................
21447ZWE181Zimbabwe2765Crustaceans5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21448ZWE181Zimbabwe2766Cephalopods5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21449ZWE181Zimbabwe2767Molluscs, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.01.00.000
21450ZWE181Zimbabwe2775Aquatic Plants5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21451ZWE181Zimbabwe2680Infant food5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21452ZWE181Zimbabwe2905Cereals - Excluding Beer5521Feed1000 tonnes-19.0229.15...75.054.075.055.063.062.055.055.05555
21453ZWE181Zimbabwe2905Cereals - Excluding Beer5142Food1000 tonnes-19.0229.15...1844.01842.01944.01962.01918.01980.02011.02094.020712016
21454ZWE181Zimbabwe2907Starchy Roots5142Food1000 tonnes-19.0229.15...223.0236.0238.0228.0245.0258.0258.0269.0272276
21455ZWE181Zimbabwe2908Sugar Crops5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21456ZWE181Zimbabwe2909Sugar & Sweeteners5142Food1000 tonnes-19.0229.15...335.0313.0339.0302.0285.0287.0314.0336.0396416
21457ZWE181Zimbabwe2911Pulses5142Food1000 tonnes-19.0229.15...63.059.061.057.069.078.068.056.05255
21458ZWE181Zimbabwe2912Treenuts5142Food1000 tonnes-19.0229.15...1.02.01.02.02.03.04.02.043
21459ZWE181Zimbabwe2913Oilcrops5521Feed1000 tonnes-19.0229.15...36.046.041.033.031.019.024.017.02730
21460ZWE181Zimbabwe2913Oilcrops5142Food1000 tonnes-19.0229.15...60.059.061.062.048.044.041.040.03838
21461ZWE181Zimbabwe2914Vegetable Oils5142Food1000 tonnes-19.0229.15...111.0114.0112.0114.0134.0135.0137.0147.0159160
21462ZWE181Zimbabwe2918Vegetables5142Food1000 tonnes-19.0229.15...161.0166.0208.0185.0137.0179.0215.0217.0227227
21463ZWE181Zimbabwe2919Fruits - Excluding Wine5142Food1000 tonnes-19.0229.15...191.0134.0167.0177.0185.0184.0211.0230.0246217
21464ZWE181Zimbabwe2922Stimulants5142Food1000 tonnes-19.0229.15...7.021.014.024.016.011.023.011.01010
21465ZWE181Zimbabwe2923Spices5142Food1000 tonnes-19.0229.15...7.011.07.012.016.016.014.011.01212
21466ZWE181Zimbabwe2924Alcoholic Beverages5142Food1000 tonnes-19.0229.15...294.0290.0316.0355.0398.0437.0448.0476.0525516
21467ZWE181Zimbabwe2943Meat5142Food1000 tonnes-19.0229.15...222.0228.0233.0238.0242.0265.0262.0277.0280258
21468ZWE181Zimbabwe2945Offals5142Food1000 tonnes-19.0229.15...20.020.021.021.021.021.021.021.02222
21469ZWE181Zimbabwe2946Animal fats5142Food1000 tonnes-19.0229.15...26.026.029.029.027.031.030.025.02620
21470ZWE181Zimbabwe2949Eggs5142Food1000 tonnes-19.0229.15...15.018.018.021.022.027.027.024.02425
21471ZWE181Zimbabwe2948Milk - Excluding Butter5521Feed1000 tonnes-19.0229.15...21.021.021.021.021.023.025.025.03031
21472ZWE181Zimbabwe2948Milk - Excluding Butter5142Food1000 tonnes-19.0229.15...373.0357.0359.0356.0341.0385.0418.0457.0426451
21473ZWE181Zimbabwe2960Fish, Seafood5521Feed1000 tonnes-19.0229.15...5.04.09.06.09.05.015.015.01515
21474ZWE181Zimbabwe2960Fish, Seafood5142Food1000 tonnes-19.0229.15...18.014.017.014.015.018.029.040.04040
21475ZWE181Zimbabwe2961Aquatic Products, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21476ZWE181Zimbabwe2928Miscellaneous5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
\n", + "

21477 rows × 63 columns

\n", + "
" + ], + "text/plain": [ + " Area Abbreviation Area Code Area Item Code \\\n", + "0 AFG 2 Afghanistan 2511 \n", + "1 AFG 2 Afghanistan 2805 \n", + "2 AFG 2 Afghanistan 2513 \n", + "3 AFG 2 Afghanistan 2513 \n", + "4 AFG 2 Afghanistan 2514 \n", + "5 AFG 2 Afghanistan 2514 \n", + "6 AFG 2 Afghanistan 2517 \n", + "7 AFG 2 Afghanistan 2520 \n", + "8 AFG 2 Afghanistan 2531 \n", + "9 AFG 2 Afghanistan 2536 \n", + "10 AFG 2 Afghanistan 2537 \n", + "11 AFG 2 Afghanistan 2542 \n", + "12 AFG 2 Afghanistan 2543 \n", + "13 AFG 2 Afghanistan 2745 \n", + "14 AFG 2 Afghanistan 2549 \n", + "15 AFG 2 Afghanistan 2549 \n", + "16 AFG 2 Afghanistan 2551 \n", + "17 AFG 2 Afghanistan 2560 \n", + "18 AFG 2 Afghanistan 2561 \n", + "19 AFG 2 Afghanistan 2563 \n", + "20 AFG 2 Afghanistan 2571 \n", + "21 AFG 2 Afghanistan 2572 \n", + "22 AFG 2 Afghanistan 2573 \n", + "23 AFG 2 Afghanistan 2574 \n", + "24 AFG 2 Afghanistan 2575 \n", + "25 AFG 2 Afghanistan 2577 \n", + "26 AFG 2 Afghanistan 2579 \n", + "27 AFG 2 Afghanistan 2580 \n", + "28 AFG 2 Afghanistan 2586 \n", + "29 AFG 2 Afghanistan 2601 \n", + "... ... ... ... ... \n", + "21447 ZWE 181 Zimbabwe 2765 \n", + "21448 ZWE 181 Zimbabwe 2766 \n", + "21449 ZWE 181 Zimbabwe 2767 \n", + "21450 ZWE 181 Zimbabwe 2775 \n", + "21451 ZWE 181 Zimbabwe 2680 \n", + "21452 ZWE 181 Zimbabwe 2905 \n", + "21453 ZWE 181 Zimbabwe 2905 \n", + "21454 ZWE 181 Zimbabwe 2907 \n", + "21455 ZWE 181 Zimbabwe 2908 \n", + "21456 ZWE 181 Zimbabwe 2909 \n", + "21457 ZWE 181 Zimbabwe 2911 \n", + "21458 ZWE 181 Zimbabwe 2912 \n", + "21459 ZWE 181 Zimbabwe 2913 \n", + "21460 ZWE 181 Zimbabwe 2913 \n", + "21461 ZWE 181 Zimbabwe 2914 \n", + "21462 ZWE 181 Zimbabwe 2918 \n", + "21463 ZWE 181 Zimbabwe 2919 \n", + "21464 ZWE 181 Zimbabwe 2922 \n", + "21465 ZWE 181 Zimbabwe 2923 \n", + "21466 ZWE 181 Zimbabwe 2924 \n", + "21467 ZWE 181 Zimbabwe 2943 \n", + "21468 ZWE 181 Zimbabwe 2945 \n", + "21469 ZWE 181 Zimbabwe 2946 \n", + "21470 ZWE 181 Zimbabwe 2949 \n", + "21471 ZWE 181 Zimbabwe 2948 \n", + "21472 ZWE 181 Zimbabwe 2948 \n", + "21473 ZWE 181 Zimbabwe 2960 \n", + "21474 ZWE 181 Zimbabwe 2960 \n", + "21475 ZWE 181 Zimbabwe 2961 \n", + "21476 ZWE 181 Zimbabwe 2928 \n", + "\n", + " Item Element Code Element Unit \\\n", + "0 Wheat and products 5142 Food 1000 tonnes \n", + "1 Rice (Milled Equivalent) 5142 Food 1000 tonnes \n", + "2 Barley and products 5521 Feed 1000 tonnes \n", + "3 Barley and products 5142 Food 1000 tonnes \n", + "4 Maize and products 5521 Feed 1000 tonnes \n", + "5 Maize and products 5142 Food 1000 tonnes \n", + "6 Millet and products 5142 Food 1000 tonnes \n", + "7 Cereals, Other 5142 Food 1000 tonnes \n", + "8 Potatoes and products 5142 Food 1000 tonnes \n", + "9 Sugar cane 5521 Feed 1000 tonnes \n", + "10 Sugar beet 5521 Feed 1000 tonnes \n", + "11 Sugar (Raw Equivalent) 5142 Food 1000 tonnes \n", + "12 Sweeteners, Other 5142 Food 1000 tonnes \n", + "13 Honey 5142 Food 1000 tonnes \n", + "14 Pulses, Other and products 5521 Feed 1000 tonnes \n", + "15 Pulses, Other and products 5142 Food 1000 tonnes \n", + "16 Nuts and products 5142 Food 1000 tonnes \n", + "17 Coconuts - Incl Copra 5142 Food 1000 tonnes \n", + "18 Sesame seed 5142 Food 1000 tonnes \n", + "19 Olives (including preserved) 5142 Food 1000 tonnes \n", + "20 Soyabean Oil 5142 Food 1000 tonnes \n", + "21 Groundnut Oil 5142 Food 1000 tonnes \n", + "22 Sunflowerseed Oil 5142 Food 1000 tonnes \n", + "23 Rape and Mustard Oil 5142 Food 1000 tonnes \n", + "24 Cottonseed Oil 5142 Food 1000 tonnes \n", + "25 Palm Oil 5142 Food 1000 tonnes \n", + "26 Sesameseed Oil 5142 Food 1000 tonnes \n", + "27 Olive Oil 5142 Food 1000 tonnes \n", + "28 Oilcrops Oil, Other 5142 Food 1000 tonnes \n", + "29 Tomatoes and products 5142 Food 1000 tonnes \n", + "... ... ... ... ... \n", + "21447 Crustaceans 5142 Food 1000 tonnes \n", + "21448 Cephalopods 5142 Food 1000 tonnes \n", + "21449 Molluscs, Other 5142 Food 1000 tonnes \n", + "21450 Aquatic Plants 5142 Food 1000 tonnes \n", + "21451 Infant food 5142 Food 1000 tonnes \n", + "21452 Cereals - Excluding Beer 5521 Feed 1000 tonnes \n", + "21453 Cereals - Excluding Beer 5142 Food 1000 tonnes \n", + "21454 Starchy Roots 5142 Food 1000 tonnes \n", + "21455 Sugar Crops 5142 Food 1000 tonnes \n", + "21456 Sugar & Sweeteners 5142 Food 1000 tonnes \n", + "21457 Pulses 5142 Food 1000 tonnes \n", + "21458 Treenuts 5142 Food 1000 tonnes \n", + "21459 Oilcrops 5521 Feed 1000 tonnes \n", + "21460 Oilcrops 5142 Food 1000 tonnes \n", + "21461 Vegetable Oils 5142 Food 1000 tonnes \n", + "21462 Vegetables 5142 Food 1000 tonnes \n", + "21463 Fruits - Excluding Wine 5142 Food 1000 tonnes \n", + "21464 Stimulants 5142 Food 1000 tonnes \n", + "21465 Spices 5142 Food 1000 tonnes \n", + "21466 Alcoholic Beverages 5142 Food 1000 tonnes \n", + "21467 Meat 5142 Food 1000 tonnes \n", + "21468 Offals 5142 Food 1000 tonnes \n", + "21469 Animal fats 5142 Food 1000 tonnes \n", + "21470 Eggs 5142 Food 1000 tonnes \n", + "21471 Milk - Excluding Butter 5521 Feed 1000 tonnes \n", + "21472 Milk - Excluding Butter 5142 Food 1000 tonnes \n", + "21473 Fish, Seafood 5521 Feed 1000 tonnes \n", + "21474 Fish, Seafood 5142 Food 1000 tonnes \n", + "21475 Aquatic Products, Other 5142 Food 1000 tonnes \n", + "21476 Miscellaneous 5142 Food 1000 tonnes \n", + "\n", + " latitude longitude ... Y2004 Y2005 Y2006 Y2007 Y2008 \\\n", + "0 33.94 67.71 ... 3249.0 3486.0 3704.0 4164.0 4252.0 \n", + "1 33.94 67.71 ... 419.0 445.0 546.0 455.0 490.0 \n", + "2 33.94 67.71 ... 58.0 236.0 262.0 263.0 230.0 \n", + "3 33.94 67.71 ... 185.0 43.0 44.0 48.0 62.0 \n", + "4 33.94 67.71 ... 120.0 208.0 233.0 249.0 247.0 \n", + "5 33.94 67.71 ... 231.0 67.0 82.0 67.0 69.0 \n", + "6 33.94 67.71 ... 15.0 21.0 11.0 19.0 21.0 \n", + "7 33.94 67.71 ... 2.0 1.0 1.0 0.0 0.0 \n", + "8 33.94 67.71 ... 276.0 294.0 294.0 260.0 242.0 \n", + "9 33.94 67.71 ... 50.0 29.0 61.0 65.0 54.0 \n", + "10 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "11 33.94 67.71 ... 124.0 152.0 169.0 192.0 217.0 \n", + "12 33.94 67.71 ... 9.0 15.0 12.0 6.0 11.0 \n", + "13 33.94 67.71 ... 3.0 3.0 3.0 3.0 3.0 \n", + "14 33.94 67.71 ... 3.0 2.0 3.0 3.0 3.0 \n", + "15 33.94 67.71 ... 17.0 35.0 37.0 40.0 54.0 \n", + "16 33.94 67.71 ... 11.0 13.0 24.0 34.0 42.0 \n", + "17 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "18 33.94 67.71 ... 16.0 16.0 13.0 16.0 16.0 \n", + "19 33.94 67.71 ... 1.0 1.0 0.0 0.0 2.0 \n", + "20 33.94 67.71 ... 6.0 35.0 18.0 21.0 11.0 \n", + "21 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "22 33.94 67.71 ... 4.0 6.0 5.0 9.0 3.0 \n", + "23 33.94 67.71 ... 0.0 1.0 3.0 5.0 6.0 \n", + "24 33.94 67.71 ... 2.0 3.0 3.0 3.0 3.0 \n", + "25 33.94 67.71 ... 71.0 69.0 56.0 51.0 36.0 \n", + "26 33.94 67.71 ... 1.0 1.0 1.0 2.0 2.0 \n", + "27 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "28 33.94 67.71 ... 0.0 1.0 0.0 0.0 3.0 \n", + "29 33.94 67.71 ... 2.0 2.0 8.0 1.0 0.0 \n", + "... ... ... ... ... ... ... ... ... \n", + "21447 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21448 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21449 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21450 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21451 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21452 -19.02 29.15 ... 75.0 54.0 75.0 55.0 63.0 \n", + "21453 -19.02 29.15 ... 1844.0 1842.0 1944.0 1962.0 1918.0 \n", + "21454 -19.02 29.15 ... 223.0 236.0 238.0 228.0 245.0 \n", + "21455 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21456 -19.02 29.15 ... 335.0 313.0 339.0 302.0 285.0 \n", + "21457 -19.02 29.15 ... 63.0 59.0 61.0 57.0 69.0 \n", + "21458 -19.02 29.15 ... 1.0 2.0 1.0 2.0 2.0 \n", + "21459 -19.02 29.15 ... 36.0 46.0 41.0 33.0 31.0 \n", + "21460 -19.02 29.15 ... 60.0 59.0 61.0 62.0 48.0 \n", + "21461 -19.02 29.15 ... 111.0 114.0 112.0 114.0 134.0 \n", + "21462 -19.02 29.15 ... 161.0 166.0 208.0 185.0 137.0 \n", + "21463 -19.02 29.15 ... 191.0 134.0 167.0 177.0 185.0 \n", + "21464 -19.02 29.15 ... 7.0 21.0 14.0 24.0 16.0 \n", + "21465 -19.02 29.15 ... 7.0 11.0 7.0 12.0 16.0 \n", + "21466 -19.02 29.15 ... 294.0 290.0 316.0 355.0 398.0 \n", + "21467 -19.02 29.15 ... 222.0 228.0 233.0 238.0 242.0 \n", + "21468 -19.02 29.15 ... 20.0 20.0 21.0 21.0 21.0 \n", + "21469 -19.02 29.15 ... 26.0 26.0 29.0 29.0 27.0 \n", + "21470 -19.02 29.15 ... 15.0 18.0 18.0 21.0 22.0 \n", + "21471 -19.02 29.15 ... 21.0 21.0 21.0 21.0 21.0 \n", + "21472 -19.02 29.15 ... 373.0 357.0 359.0 356.0 341.0 \n", + "21473 -19.02 29.15 ... 5.0 4.0 9.0 6.0 9.0 \n", + "21474 -19.02 29.15 ... 18.0 14.0 17.0 14.0 15.0 \n", + "21475 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21476 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " Y2009 Y2010 Y2011 Y2012 Y2013 \n", + "0 4538.0 4605.0 4711.0 4810 4895 \n", + "1 415.0 442.0 476.0 425 422 \n", + "2 379.0 315.0 203.0 367 360 \n", + "3 55.0 60.0 72.0 78 89 \n", + "4 195.0 178.0 191.0 200 200 \n", + "5 71.0 82.0 73.0 77 76 \n", + "6 18.0 14.0 14.0 14 12 \n", + "7 0.0 0.0 0.0 0 0 \n", + "8 250.0 192.0 169.0 196 230 \n", + "9 114.0 83.0 83.0 69 81 \n", + "10 0.0 0.0 0.0 0 0 \n", + "11 231.0 240.0 240.0 250 255 \n", + "12 2.0 9.0 21.0 24 16 \n", + "13 3.0 3.0 2.0 2 2 \n", + "14 5.0 4.0 5.0 4 4 \n", + "15 80.0 66.0 81.0 63 74 \n", + "16 28.0 66.0 71.0 70 44 \n", + "17 0.0 0.0 0.0 0 0 \n", + "18 16.0 19.0 17.0 16 16 \n", + "19 3.0 2.0 2.0 2 2 \n", + "20 6.0 15.0 16.0 16 16 \n", + "21 0.0 0.0 0.0 0 0 \n", + "22 8.0 15.0 16.0 17 23 \n", + "23 6.0 1.0 2.0 2 2 \n", + "24 4.0 3.0 3.0 3 4 \n", + "25 53.0 59.0 51.0 61 64 \n", + "26 1.0 1.0 2.0 1 1 \n", + "27 1.0 1.0 1.0 1 1 \n", + "28 1.0 2.0 2.0 2 2 \n", + "29 0.0 0.0 0.0 0 0 \n", + "... ... ... ... ... ... \n", + "21447 0.0 0.0 0.0 0 0 \n", + "21448 0.0 0.0 0.0 0 0 \n", + "21449 0.0 1.0 0.0 0 0 \n", + "21450 0.0 0.0 0.0 0 0 \n", + "21451 0.0 0.0 0.0 0 0 \n", + "21452 62.0 55.0 55.0 55 55 \n", + "21453 1980.0 2011.0 2094.0 2071 2016 \n", + "21454 258.0 258.0 269.0 272 276 \n", + "21455 0.0 0.0 0.0 0 0 \n", + "21456 287.0 314.0 336.0 396 416 \n", + "21457 78.0 68.0 56.0 52 55 \n", + "21458 3.0 4.0 2.0 4 3 \n", + "21459 19.0 24.0 17.0 27 30 \n", + "21460 44.0 41.0 40.0 38 38 \n", + "21461 135.0 137.0 147.0 159 160 \n", + "21462 179.0 215.0 217.0 227 227 \n", + "21463 184.0 211.0 230.0 246 217 \n", + "21464 11.0 23.0 11.0 10 10 \n", + "21465 16.0 14.0 11.0 12 12 \n", + "21466 437.0 448.0 476.0 525 516 \n", + "21467 265.0 262.0 277.0 280 258 \n", + "21468 21.0 21.0 21.0 22 22 \n", + "21469 31.0 30.0 25.0 26 20 \n", + "21470 27.0 27.0 24.0 24 25 \n", + "21471 23.0 25.0 25.0 30 31 \n", + "21472 385.0 418.0 457.0 426 451 \n", + "21473 5.0 15.0 15.0 15 15 \n", + "21474 18.0 29.0 40.0 40 40 \n", + "21475 0.0 0.0 0.0 0 0 \n", + "21476 0.0 0.0 0.0 0 0 \n", + "\n", + "[21477 rows x 63 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "731a952c-b292-46e3-be7a-4afffe2b4ff1", + "_uuid": "5d165c279ce22afc0a874e32931d7b0ebb0717f9" + }, + "source": [ + "Let's see what the data looks like..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", + "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a", + "scrolled": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "25c3f986-fd14-4a3f-baff-02571ad665eb", + "_uuid": "5a7da58320ab35ab1bcf83a62209afbe40b672fe" + }, + "source": [ + "# Plot for annual produce of different countries with quantity in y-axis and years in x-axis" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Area AbbreviationArea CodeAreaItem CodeItemElement CodeElementUnitlatitudelongitude...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0AFG2Afghanistan2511Wheat and products5142Food1000 tonnes33.9467.71...3249.03486.03704.04164.04252.04538.04605.04711.048104895
1AFG2Afghanistan2805Rice (Milled Equivalent)5142Food1000 tonnes33.9467.71...419.0445.0546.0455.0490.0415.0442.0476.0425422
2AFG2Afghanistan2513Barley and products5521Feed1000 tonnes33.9467.71...58.0236.0262.0263.0230.0379.0315.0203.0367360
3AFG2Afghanistan2513Barley and products5142Food1000 tonnes33.9467.71...185.043.044.048.062.055.060.072.07889
4AFG2Afghanistan2514Maize and products5521Feed1000 tonnes33.9467.71...120.0208.0233.0249.0247.0195.0178.0191.0200200
5AFG2Afghanistan2514Maize and products5142Food1000 tonnes33.9467.71...231.067.082.067.069.071.082.073.07776
6AFG2Afghanistan2517Millet and products5142Food1000 tonnes33.9467.71...15.021.011.019.021.018.014.014.01412
7AFG2Afghanistan2520Cereals, Other5142Food1000 tonnes33.9467.71...2.01.01.00.00.00.00.00.000
8AFG2Afghanistan2531Potatoes and products5142Food1000 tonnes33.9467.71...276.0294.0294.0260.0242.0250.0192.0169.0196230
9AFG2Afghanistan2536Sugar cane5521Feed1000 tonnes33.9467.71...50.029.061.065.054.0114.083.083.06981
10AFG2Afghanistan2537Sugar beet5521Feed1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
11AFG2Afghanistan2542Sugar (Raw Equivalent)5142Food1000 tonnes33.9467.71...124.0152.0169.0192.0217.0231.0240.0240.0250255
12AFG2Afghanistan2543Sweeteners, Other5142Food1000 tonnes33.9467.71...9.015.012.06.011.02.09.021.02416
13AFG2Afghanistan2745Honey5142Food1000 tonnes33.9467.71...3.03.03.03.03.03.03.02.022
14AFG2Afghanistan2549Pulses, Other and products5521Feed1000 tonnes33.9467.71...3.02.03.03.03.05.04.05.044
15AFG2Afghanistan2549Pulses, Other and products5142Food1000 tonnes33.9467.71...17.035.037.040.054.080.066.081.06374
16AFG2Afghanistan2551Nuts and products5142Food1000 tonnes33.9467.71...11.013.024.034.042.028.066.071.07044
17AFG2Afghanistan2560Coconuts - Incl Copra5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
18AFG2Afghanistan2561Sesame seed5142Food1000 tonnes33.9467.71...16.016.013.016.016.016.019.017.01616
19AFG2Afghanistan2563Olives (including preserved)5142Food1000 tonnes33.9467.71...1.01.00.00.02.03.02.02.022
20AFG2Afghanistan2571Soyabean Oil5142Food1000 tonnes33.9467.71...6.035.018.021.011.06.015.016.01616
21AFG2Afghanistan2572Groundnut Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
22AFG2Afghanistan2573Sunflowerseed Oil5142Food1000 tonnes33.9467.71...4.06.05.09.03.08.015.016.01723
23AFG2Afghanistan2574Rape and Mustard Oil5142Food1000 tonnes33.9467.71...0.01.03.05.06.06.01.02.022
24AFG2Afghanistan2575Cottonseed Oil5142Food1000 tonnes33.9467.71...2.03.03.03.03.04.03.03.034
25AFG2Afghanistan2577Palm Oil5142Food1000 tonnes33.9467.71...71.069.056.051.036.053.059.051.06164
26AFG2Afghanistan2579Sesameseed Oil5142Food1000 tonnes33.9467.71...1.01.01.02.02.01.01.02.011
27AFG2Afghanistan2580Olive Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.01.01.01.011
28AFG2Afghanistan2586Oilcrops Oil, Other5142Food1000 tonnes33.9467.71...0.01.00.00.03.01.02.02.022
29AFG2Afghanistan2601Tomatoes and products5142Food1000 tonnes33.9467.71...2.02.08.01.00.00.00.00.000
..................................................................
21447ZWE181Zimbabwe2765Crustaceans5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21448ZWE181Zimbabwe2766Cephalopods5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21449ZWE181Zimbabwe2767Molluscs, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.01.00.000
21450ZWE181Zimbabwe2775Aquatic Plants5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21451ZWE181Zimbabwe2680Infant food5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21452ZWE181Zimbabwe2905Cereals - Excluding Beer5521Feed1000 tonnes-19.0229.15...75.054.075.055.063.062.055.055.05555
21453ZWE181Zimbabwe2905Cereals - Excluding Beer5142Food1000 tonnes-19.0229.15...1844.01842.01944.01962.01918.01980.02011.02094.020712016
21454ZWE181Zimbabwe2907Starchy Roots5142Food1000 tonnes-19.0229.15...223.0236.0238.0228.0245.0258.0258.0269.0272276
21455ZWE181Zimbabwe2908Sugar Crops5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21456ZWE181Zimbabwe2909Sugar & Sweeteners5142Food1000 tonnes-19.0229.15...335.0313.0339.0302.0285.0287.0314.0336.0396416
21457ZWE181Zimbabwe2911Pulses5142Food1000 tonnes-19.0229.15...63.059.061.057.069.078.068.056.05255
21458ZWE181Zimbabwe2912Treenuts5142Food1000 tonnes-19.0229.15...1.02.01.02.02.03.04.02.043
21459ZWE181Zimbabwe2913Oilcrops5521Feed1000 tonnes-19.0229.15...36.046.041.033.031.019.024.017.02730
21460ZWE181Zimbabwe2913Oilcrops5142Food1000 tonnes-19.0229.15...60.059.061.062.048.044.041.040.03838
21461ZWE181Zimbabwe2914Vegetable Oils5142Food1000 tonnes-19.0229.15...111.0114.0112.0114.0134.0135.0137.0147.0159160
21462ZWE181Zimbabwe2918Vegetables5142Food1000 tonnes-19.0229.15...161.0166.0208.0185.0137.0179.0215.0217.0227227
21463ZWE181Zimbabwe2919Fruits - Excluding Wine5142Food1000 tonnes-19.0229.15...191.0134.0167.0177.0185.0184.0211.0230.0246217
21464ZWE181Zimbabwe2922Stimulants5142Food1000 tonnes-19.0229.15...7.021.014.024.016.011.023.011.01010
21465ZWE181Zimbabwe2923Spices5142Food1000 tonnes-19.0229.15...7.011.07.012.016.016.014.011.01212
21466ZWE181Zimbabwe2924Alcoholic Beverages5142Food1000 tonnes-19.0229.15...294.0290.0316.0355.0398.0437.0448.0476.0525516
21467ZWE181Zimbabwe2943Meat5142Food1000 tonnes-19.0229.15...222.0228.0233.0238.0242.0265.0262.0277.0280258
21468ZWE181Zimbabwe2945Offals5142Food1000 tonnes-19.0229.15...20.020.021.021.021.021.021.021.02222
21469ZWE181Zimbabwe2946Animal fats5142Food1000 tonnes-19.0229.15...26.026.029.029.027.031.030.025.02620
21470ZWE181Zimbabwe2949Eggs5142Food1000 tonnes-19.0229.15...15.018.018.021.022.027.027.024.02425
21471ZWE181Zimbabwe2948Milk - Excluding Butter5521Feed1000 tonnes-19.0229.15...21.021.021.021.021.023.025.025.03031
21472ZWE181Zimbabwe2948Milk - Excluding Butter5142Food1000 tonnes-19.0229.15...373.0357.0359.0356.0341.0385.0418.0457.0426451
21473ZWE181Zimbabwe2960Fish, Seafood5521Feed1000 tonnes-19.0229.15...5.04.09.06.09.05.015.015.01515
21474ZWE181Zimbabwe2960Fish, Seafood5142Food1000 tonnes-19.0229.15...18.014.017.014.015.018.029.040.04040
21475ZWE181Zimbabwe2961Aquatic Products, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21476ZWE181Zimbabwe2928Miscellaneous5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
\n", + "

21477 rows × 63 columns

\n", + "
" + ], + "text/plain": [ + " Area Abbreviation Area Code Area Item Code \\\n", + "0 AFG 2 Afghanistan 2511 \n", + "1 AFG 2 Afghanistan 2805 \n", + "2 AFG 2 Afghanistan 2513 \n", + "3 AFG 2 Afghanistan 2513 \n", + "4 AFG 2 Afghanistan 2514 \n", + "5 AFG 2 Afghanistan 2514 \n", + "6 AFG 2 Afghanistan 2517 \n", + "7 AFG 2 Afghanistan 2520 \n", + "8 AFG 2 Afghanistan 2531 \n", + "9 AFG 2 Afghanistan 2536 \n", + "10 AFG 2 Afghanistan 2537 \n", + "11 AFG 2 Afghanistan 2542 \n", + "12 AFG 2 Afghanistan 2543 \n", + "13 AFG 2 Afghanistan 2745 \n", + "14 AFG 2 Afghanistan 2549 \n", + "15 AFG 2 Afghanistan 2549 \n", + "16 AFG 2 Afghanistan 2551 \n", + "17 AFG 2 Afghanistan 2560 \n", + "18 AFG 2 Afghanistan 2561 \n", + "19 AFG 2 Afghanistan 2563 \n", + "20 AFG 2 Afghanistan 2571 \n", + "21 AFG 2 Afghanistan 2572 \n", + "22 AFG 2 Afghanistan 2573 \n", + "23 AFG 2 Afghanistan 2574 \n", + "24 AFG 2 Afghanistan 2575 \n", + "25 AFG 2 Afghanistan 2577 \n", + "26 AFG 2 Afghanistan 2579 \n", + "27 AFG 2 Afghanistan 2580 \n", + "28 AFG 2 Afghanistan 2586 \n", + "29 AFG 2 Afghanistan 2601 \n", + "... ... ... ... ... \n", + "21447 ZWE 181 Zimbabwe 2765 \n", + "21448 ZWE 181 Zimbabwe 2766 \n", + "21449 ZWE 181 Zimbabwe 2767 \n", + "21450 ZWE 181 Zimbabwe 2775 \n", + "21451 ZWE 181 Zimbabwe 2680 \n", + "21452 ZWE 181 Zimbabwe 2905 \n", + "21453 ZWE 181 Zimbabwe 2905 \n", + "21454 ZWE 181 Zimbabwe 2907 \n", + "21455 ZWE 181 Zimbabwe 2908 \n", + "21456 ZWE 181 Zimbabwe 2909 \n", + "21457 ZWE 181 Zimbabwe 2911 \n", + "21458 ZWE 181 Zimbabwe 2912 \n", + "21459 ZWE 181 Zimbabwe 2913 \n", + "21460 ZWE 181 Zimbabwe 2913 \n", + "21461 ZWE 181 Zimbabwe 2914 \n", + "21462 ZWE 181 Zimbabwe 2918 \n", + "21463 ZWE 181 Zimbabwe 2919 \n", + "21464 ZWE 181 Zimbabwe 2922 \n", + "21465 ZWE 181 Zimbabwe 2923 \n", + "21466 ZWE 181 Zimbabwe 2924 \n", + "21467 ZWE 181 Zimbabwe 2943 \n", + "21468 ZWE 181 Zimbabwe 2945 \n", + "21469 ZWE 181 Zimbabwe 2946 \n", + "21470 ZWE 181 Zimbabwe 2949 \n", + "21471 ZWE 181 Zimbabwe 2948 \n", + "21472 ZWE 181 Zimbabwe 2948 \n", + "21473 ZWE 181 Zimbabwe 2960 \n", + "21474 ZWE 181 Zimbabwe 2960 \n", + "21475 ZWE 181 Zimbabwe 2961 \n", + "21476 ZWE 181 Zimbabwe 2928 \n", + "\n", + " Item Element Code Element Unit \\\n", + "0 Wheat and products 5142 Food 1000 tonnes \n", + "1 Rice (Milled Equivalent) 5142 Food 1000 tonnes \n", + "2 Barley and products 5521 Feed 1000 tonnes \n", + "3 Barley and products 5142 Food 1000 tonnes \n", + "4 Maize and products 5521 Feed 1000 tonnes \n", + "5 Maize and products 5142 Food 1000 tonnes \n", + "6 Millet and products 5142 Food 1000 tonnes \n", + "7 Cereals, Other 5142 Food 1000 tonnes \n", + "8 Potatoes and products 5142 Food 1000 tonnes \n", + "9 Sugar cane 5521 Feed 1000 tonnes \n", + "10 Sugar beet 5521 Feed 1000 tonnes \n", + "11 Sugar (Raw Equivalent) 5142 Food 1000 tonnes \n", + "12 Sweeteners, Other 5142 Food 1000 tonnes \n", + "13 Honey 5142 Food 1000 tonnes \n", + "14 Pulses, Other and products 5521 Feed 1000 tonnes \n", + "15 Pulses, Other and products 5142 Food 1000 tonnes \n", + "16 Nuts and products 5142 Food 1000 tonnes \n", + "17 Coconuts - Incl Copra 5142 Food 1000 tonnes \n", + "18 Sesame seed 5142 Food 1000 tonnes \n", + "19 Olives (including preserved) 5142 Food 1000 tonnes \n", + "20 Soyabean Oil 5142 Food 1000 tonnes \n", + "21 Groundnut Oil 5142 Food 1000 tonnes \n", + "22 Sunflowerseed Oil 5142 Food 1000 tonnes \n", + "23 Rape and Mustard Oil 5142 Food 1000 tonnes \n", + "24 Cottonseed Oil 5142 Food 1000 tonnes \n", + "25 Palm Oil 5142 Food 1000 tonnes \n", + "26 Sesameseed Oil 5142 Food 1000 tonnes \n", + "27 Olive Oil 5142 Food 1000 tonnes \n", + "28 Oilcrops Oil, Other 5142 Food 1000 tonnes \n", + "29 Tomatoes and products 5142 Food 1000 tonnes \n", + "... ... ... ... ... \n", + "21447 Crustaceans 5142 Food 1000 tonnes \n", + "21448 Cephalopods 5142 Food 1000 tonnes \n", + "21449 Molluscs, Other 5142 Food 1000 tonnes \n", + "21450 Aquatic Plants 5142 Food 1000 tonnes \n", + "21451 Infant food 5142 Food 1000 tonnes \n", + "21452 Cereals - Excluding Beer 5521 Feed 1000 tonnes \n", + "21453 Cereals - Excluding Beer 5142 Food 1000 tonnes \n", + "21454 Starchy Roots 5142 Food 1000 tonnes \n", + "21455 Sugar Crops 5142 Food 1000 tonnes \n", + "21456 Sugar & Sweeteners 5142 Food 1000 tonnes \n", + "21457 Pulses 5142 Food 1000 tonnes \n", + "21458 Treenuts 5142 Food 1000 tonnes \n", + "21459 Oilcrops 5521 Feed 1000 tonnes \n", + "21460 Oilcrops 5142 Food 1000 tonnes \n", + "21461 Vegetable Oils 5142 Food 1000 tonnes \n", + "21462 Vegetables 5142 Food 1000 tonnes \n", + "21463 Fruits - Excluding Wine 5142 Food 1000 tonnes \n", + "21464 Stimulants 5142 Food 1000 tonnes \n", + "21465 Spices 5142 Food 1000 tonnes \n", + "21466 Alcoholic Beverages 5142 Food 1000 tonnes \n", + "21467 Meat 5142 Food 1000 tonnes \n", + "21468 Offals 5142 Food 1000 tonnes \n", + "21469 Animal fats 5142 Food 1000 tonnes \n", + "21470 Eggs 5142 Food 1000 tonnes \n", + "21471 Milk - Excluding Butter 5521 Feed 1000 tonnes \n", + "21472 Milk - Excluding Butter 5142 Food 1000 tonnes \n", + "21473 Fish, Seafood 5521 Feed 1000 tonnes \n", + "21474 Fish, Seafood 5142 Food 1000 tonnes \n", + "21475 Aquatic Products, Other 5142 Food 1000 tonnes \n", + "21476 Miscellaneous 5142 Food 1000 tonnes \n", + "\n", + " latitude longitude ... Y2004 Y2005 Y2006 Y2007 Y2008 \\\n", + "0 33.94 67.71 ... 3249.0 3486.0 3704.0 4164.0 4252.0 \n", + "1 33.94 67.71 ... 419.0 445.0 546.0 455.0 490.0 \n", + "2 33.94 67.71 ... 58.0 236.0 262.0 263.0 230.0 \n", + "3 33.94 67.71 ... 185.0 43.0 44.0 48.0 62.0 \n", + "4 33.94 67.71 ... 120.0 208.0 233.0 249.0 247.0 \n", + "5 33.94 67.71 ... 231.0 67.0 82.0 67.0 69.0 \n", + "6 33.94 67.71 ... 15.0 21.0 11.0 19.0 21.0 \n", + "7 33.94 67.71 ... 2.0 1.0 1.0 0.0 0.0 \n", + "8 33.94 67.71 ... 276.0 294.0 294.0 260.0 242.0 \n", + "9 33.94 67.71 ... 50.0 29.0 61.0 65.0 54.0 \n", + "10 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "11 33.94 67.71 ... 124.0 152.0 169.0 192.0 217.0 \n", + "12 33.94 67.71 ... 9.0 15.0 12.0 6.0 11.0 \n", + "13 33.94 67.71 ... 3.0 3.0 3.0 3.0 3.0 \n", + "14 33.94 67.71 ... 3.0 2.0 3.0 3.0 3.0 \n", + "15 33.94 67.71 ... 17.0 35.0 37.0 40.0 54.0 \n", + "16 33.94 67.71 ... 11.0 13.0 24.0 34.0 42.0 \n", + "17 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "18 33.94 67.71 ... 16.0 16.0 13.0 16.0 16.0 \n", + "19 33.94 67.71 ... 1.0 1.0 0.0 0.0 2.0 \n", + "20 33.94 67.71 ... 6.0 35.0 18.0 21.0 11.0 \n", + "21 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "22 33.94 67.71 ... 4.0 6.0 5.0 9.0 3.0 \n", + "23 33.94 67.71 ... 0.0 1.0 3.0 5.0 6.0 \n", + "24 33.94 67.71 ... 2.0 3.0 3.0 3.0 3.0 \n", + "25 33.94 67.71 ... 71.0 69.0 56.0 51.0 36.0 \n", + "26 33.94 67.71 ... 1.0 1.0 1.0 2.0 2.0 \n", + "27 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", + "28 33.94 67.71 ... 0.0 1.0 0.0 0.0 3.0 \n", + "29 33.94 67.71 ... 2.0 2.0 8.0 1.0 0.0 \n", + "... ... ... ... ... ... ... ... ... \n", + "21447 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21448 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21449 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21450 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21451 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21452 -19.02 29.15 ... 75.0 54.0 75.0 55.0 63.0 \n", + "21453 -19.02 29.15 ... 1844.0 1842.0 1944.0 1962.0 1918.0 \n", + "21454 -19.02 29.15 ... 223.0 236.0 238.0 228.0 245.0 \n", + "21455 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21456 -19.02 29.15 ... 335.0 313.0 339.0 302.0 285.0 \n", + "21457 -19.02 29.15 ... 63.0 59.0 61.0 57.0 69.0 \n", + "21458 -19.02 29.15 ... 1.0 2.0 1.0 2.0 2.0 \n", + "21459 -19.02 29.15 ... 36.0 46.0 41.0 33.0 31.0 \n", + "21460 -19.02 29.15 ... 60.0 59.0 61.0 62.0 48.0 \n", + "21461 -19.02 29.15 ... 111.0 114.0 112.0 114.0 134.0 \n", + "21462 -19.02 29.15 ... 161.0 166.0 208.0 185.0 137.0 \n", + "21463 -19.02 29.15 ... 191.0 134.0 167.0 177.0 185.0 \n", + "21464 -19.02 29.15 ... 7.0 21.0 14.0 24.0 16.0 \n", + "21465 -19.02 29.15 ... 7.0 11.0 7.0 12.0 16.0 \n", + "21466 -19.02 29.15 ... 294.0 290.0 316.0 355.0 398.0 \n", + "21467 -19.02 29.15 ... 222.0 228.0 233.0 238.0 242.0 \n", + "21468 -19.02 29.15 ... 20.0 20.0 21.0 21.0 21.0 \n", + "21469 -19.02 29.15 ... 26.0 26.0 29.0 29.0 27.0 \n", + "21470 -19.02 29.15 ... 15.0 18.0 18.0 21.0 22.0 \n", + "21471 -19.02 29.15 ... 21.0 21.0 21.0 21.0 21.0 \n", + "21472 -19.02 29.15 ... 373.0 357.0 359.0 356.0 341.0 \n", + "21473 -19.02 29.15 ... 5.0 4.0 9.0 6.0 9.0 \n", + "21474 -19.02 29.15 ... 18.0 14.0 17.0 14.0 15.0 \n", + "21475 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "21476 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " Y2009 Y2010 Y2011 Y2012 Y2013 \n", + "0 4538.0 4605.0 4711.0 4810 4895 \n", + "1 415.0 442.0 476.0 425 422 \n", + "2 379.0 315.0 203.0 367 360 \n", + "3 55.0 60.0 72.0 78 89 \n", + "4 195.0 178.0 191.0 200 200 \n", + "5 71.0 82.0 73.0 77 76 \n", + "6 18.0 14.0 14.0 14 12 \n", + "7 0.0 0.0 0.0 0 0 \n", + "8 250.0 192.0 169.0 196 230 \n", + "9 114.0 83.0 83.0 69 81 \n", + "10 0.0 0.0 0.0 0 0 \n", + "11 231.0 240.0 240.0 250 255 \n", + "12 2.0 9.0 21.0 24 16 \n", + "13 3.0 3.0 2.0 2 2 \n", + "14 5.0 4.0 5.0 4 4 \n", + "15 80.0 66.0 81.0 63 74 \n", + "16 28.0 66.0 71.0 70 44 \n", + "17 0.0 0.0 0.0 0 0 \n", + "18 16.0 19.0 17.0 16 16 \n", + "19 3.0 2.0 2.0 2 2 \n", + "20 6.0 15.0 16.0 16 16 \n", + "21 0.0 0.0 0.0 0 0 \n", + "22 8.0 15.0 16.0 17 23 \n", + "23 6.0 1.0 2.0 2 2 \n", + "24 4.0 3.0 3.0 3 4 \n", + "25 53.0 59.0 51.0 61 64 \n", + "26 1.0 1.0 2.0 1 1 \n", + "27 1.0 1.0 1.0 1 1 \n", + "28 1.0 2.0 2.0 2 2 \n", + "29 0.0 0.0 0.0 0 0 \n", + "... ... ... ... ... ... \n", + "21447 0.0 0.0 0.0 0 0 \n", + "21448 0.0 0.0 0.0 0 0 \n", + "21449 0.0 1.0 0.0 0 0 \n", + "21450 0.0 0.0 0.0 0 0 \n", + "21451 0.0 0.0 0.0 0 0 \n", + "21452 62.0 55.0 55.0 55 55 \n", + "21453 1980.0 2011.0 2094.0 2071 2016 \n", + "21454 258.0 258.0 269.0 272 276 \n", + "21455 0.0 0.0 0.0 0 0 \n", + "21456 287.0 314.0 336.0 396 416 \n", + "21457 78.0 68.0 56.0 52 55 \n", + "21458 3.0 4.0 2.0 4 3 \n", + "21459 19.0 24.0 17.0 27 30 \n", + "21460 44.0 41.0 40.0 38 38 \n", + "21461 135.0 137.0 147.0 159 160 \n", + "21462 179.0 215.0 217.0 227 227 \n", + "21463 184.0 211.0 230.0 246 217 \n", + "21464 11.0 23.0 11.0 10 10 \n", + "21465 16.0 14.0 11.0 12 12 \n", + "21466 437.0 448.0 476.0 525 516 \n", + "21467 265.0 262.0 277.0 280 258 \n", + "21468 21.0 21.0 21.0 22 22 \n", + "21469 31.0 30.0 25.0 26 20 \n", + "21470 27.0 27.0 24.0 24 25 \n", + "21471 23.0 25.0 25.0 30 31 \n", + "21472 385.0 418.0 457.0 426 451 \n", + "21473 5.0 15.0 15.0 15 15 \n", + "21474 18.0 29.0 40.0 40 40 \n", + "21475 0.0 0.0 0.0 0 0 \n", + "21476 0.0 0.0 0.0 0 0 \n", + "\n", + "[21477 rows x 63 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "_cell_guid": "347e620f-b0e4-448e-81c7-e164f560c5a3", + "_uuid": "0acdd759950f5df3298224b0804562973663a11d", + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYAAAAQcCAYAAAAsgj+iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdcU1ffAPBfbkICgYAMWWEECJmEIQiCuCdVqhVxVqtWHDxU3LtqXcVZS52PvmqhKipaFdxWZWhFURTIBBRFtoBhhRGS9w8anoAkoKK29Xz/8SO5uffce84994zfucEplUpAEARBEARBEARBEARBEARB/n2wT50ABEEQBEEQBEEQBEEQBEEQ5MNAA8AIgiAIgiAIgiAIgiAIgiD/UmgAGEEQBEEQBEEQBEEQBEEQ5F8KDQAjCIIgCIIgCIIgCIIgCIL8S6EBYARBEARBEARBEARBEARBkH8pNACMIAiCIAiCIAiCIAiCIAjyL0X41An4WB4+fGhOIBAOAYALoIFvBEEQBEEQBEEQBEEQBEH+eRQAkCmXy2d6enqWdOYLn80AMIFAOGRpacnu3r17BYZhyk+dHgRBEARBEARBEARBEARBkLehUChwpaWlnKKiokMA8GVnvvM5RcK6dO/evRIN/iIIgiAIgiAIgiAIgiAI8k+EYZiye/fuUmh+y0HnvvMB0/N3g6HBXwRBEARBEARBEARBEARB/sn+GuPs9Lju5zQA/LcQFRXVDYfDeaalpemq/jZ79mwbOp3OnT17to2m78XHx1MGDBhA74o0JCYmkqdNm2ar6XOxWEzcv3+/SVccC/l08Hi8J4vF4jCZTA6Hw2Ffv35d/0MfMzc3V2f48OGObf8uFouJurq6PdhsNsfR0ZHL4/HYv/zyi+mHTs/bEIvFRGdnZ+6nTsfHoiofdDqdy2QyOevWrbNoamr61MnSav369eZVVVUtz61+/frRX716he/MdyMjI02NjY3dWCwWx8nJibtjxw6zrk4fmUz26GgbKpXK6+z+vL29mTQazYXJZHJcXFzYd+/e1Xu/FL5J27OFSqXyCgsLCQAAHh4erPc9VkFBAcHV1ZXFZrM5V65cMVD/zNvbm5mYmEgGaL4X7e3tXc6cOWP4vsd8V3l5eYTAwEAHGxsbHpfLZbu7u7OioqK6afvO25RH5J+jM/f124iPj6dQKBR31fNw0aJFVl25f4DW9662bTq7v6CgIBqVSuUxmUwOjUZz+eqrr2jPnj3Tef+Ufjjx8fEU9XbP1q1bu+/evbvT7Q7VM9LZ2Zk7cODAD3JvL1y40HrNmjUWbf+u3h7pqM2uDQ6H8wwJCWnpW6xZs8Zi4cKF1u+e4vZ19T2CACxbtsySTqdzGQwGh8VicW7evKm1DT9//nzrc+fOUbRt0/aeUBcZGWk6depUu/dJM0DXtBWQf66ioiI8i8XisFgsjpmZmZu5ubkri8XiUCgUdycnp3fuY8lkMpyfnx+DxWJxDh48aNyVaX4X27dvNxsxYkRLf7e8vByztbV1EYlExA997FGjRjlER0drbY92dj9UKpWnGiuIi4vTWn+8i8zMTBKLxeK095mnpydT1a/x9/d3rqioeK9xyerqalyvXr0YLBaLc+TIkVZlZNSoUQ5kMtmjsrKy5RhTpkyxw+Fwnh+y3a5+jm/rxx9/7L5v374PMh6HBoA/spiYGJMePXpUR0dHt2TosWPHumdkZAgOHDjw8mOkoW/fvrVHjx7N0/R5VlYW6eTJk2gA+B+ORCIpRCKRQCwWCzZs2JC/cuXKNyYY5HJ5lx6TRqM1Xrly5Wl7n9na2tYLhULB06dP+SdPnszZs2ePxc8//9zpzlhjY2PXJRRpKR/Z2dn8mzdvSq5du2a0ePHiLu8Yvg2FQgHaBqEPHDhgUV1d3fLcSkhIyDYzM+v0qHVgYGCFSCQSJCYmijdu3EjNy8v7278HPyoq6qlYLBaEhISULF68WOMk4YeWlpYmet99xMfHU+h0ep1QKBQMHz68ur1tcnJydIYNG8bYvHlzXlBQUGVn9tvVdYNCoYDAwEB6nz59ql++fJnB5/OFp06depqXl6e1Yf+25RH5fHl5eVULhULB48ePhbGxsaZJSUnkT52mjmzcuPGlWCwWPH36NNPd3b12wIABzLq6OtynTJO2e//mzZuUpKSklommpUuXloaFhZV1dt+qZ2RWVha/W7du8m3btnV/z+S+k47a7NoQiUTlpUuXjDuaDED+Xm7cuKF/9erVbhkZGQKJRCK4deuWxNHRsUHbd3bt2lUwevToKm3btL0nPoSuaCsg/1yWlpZNIpFIIBKJBFOnTi2dM2dOsUgkEqSmpgow7N2Hne7evUtubGzEiUQiQUhISEVnvtPVfVz1/S1cuPBVYWEhUTXpsnjxYuqkSZNesVgsrffp301ERESeSCQSREREvAwPD3/vCaB3lZycnGVsbKx4n33cuXNHH4fDgUgkEkyfPv2NMmJjY1MfExNjBNCclykpKQZmZmZ/28GFFStWlM6dO7f8Q+wbDQB/RFKpFEtNTTU4cuRI7u+//24MADBw4EC6TCbDPDw82AcPHjTm8/kkNzc3louLC3v+/PnW6rPqNTU1+OHDhzs6ODhwv/zySweFovk+Wbx4sZWLiwvb2dmZO3HiRHvV3729vZlz586l8ng8No1Gc1FFXKlHfF28eNFANVPHZrM5FRUV2KpVq6ipqakGLBaL88MPP5iLxWKip6cnk8PhsNUjSePj4yne3t7M9tKE/L1IpVK8kZGRHKA533x8fBiBgYEOTCaT2zbyVT1CRFMZksvlMHv2bBsXFxc2g8HgbNu2zQyg81G0HA6nYevWrXn79++3AAC4desW2cPDg8VmszkeHh6sJ0+ekACaIxICAgIcBw4cSO/Tpw+jbbTi1KlT7SIjI00BAEJDQ6lOTk5cBoPBmTVrlg0AwOHDh42dnZ25TCaT4+XlxVSlsb3yrE5bme/Zsyfziy++cKTRaC6hoaHUffv2mfB4PDaDweDw+XzSu+XQp0WlUuWHDh3KPXLkiLlCodCYv509f4lEQvT19WUwGAyOr68vIysriwjQHFU5ZMgQJyaTyWEymZzr16/ri8VioqOjI/frr7+243K5nJycHOLkyZPtXFxc2HQ6nbtgwQJrAICNGzeal5SU6PTr14/h4+PD+CvdLVFuu3fvNmUwGBwmk8kZPXq0Q0fna2dnV5+dnU2srKzEgoODaS4uLmw2m8357bffugEA1NbW4saOHUtjMBgcNpvdMjMeGRlpOmjQIKc+ffo402g0F03Re99//72F6vqpzgEAwNjYWA4A8Pz5cx0vLy+mKsKsbURsW3379q0pLi5uGYA8e/asobu7O4vD4bADAgIcpVIppromqnuWx+OxMzMzSQDNEXzqM+Lqz5aqqir8kCFDnJycnLiTJk2ya28QXn371atXW6iudWhoKLXttu3l/927d/XWrl1rc+vWLSMWi8Wprq5+Y+AoPz9fZ+jQoYw1a9bkT548WdpRPqjXDdqu+eDBg524XC6bTqdzt2/f3mHkd1xcHEVHR0e5dOnSUtXfGAxGw6pVq0raRkkNGDCAHh8fT1Fd+8LCQoKqTE+YMMGeTqdze/fu7aw6Xz6fT+rTp48zl8tle3p6MlWrgY4fP26kio728/Nj/BMmJz5nmvKruLgYP3jwYCcGg8Fxc3NjpaSkaI38MDQ0VPB4vFqxWEzSVO8qFAqYPXu2jbOzM5fBYLREP8XHx1O8vLyYHd27e/fuNeHxeGwWi8WZNGmSvaoTq6qLKisrsf79+9OZTCbH2dmZ21F0FYZhsHbt2hIzM7PG2NhYIwDt9VFYWBjV3d2d5eLiwk5OTib7+/s729raumzdurW7tvMDaL+u8fb2ZoaFhVF79uzJ3Lhxo0V7eSEWi4lRUVHd9+/fb8FisThXrlwxUI+2zczMJPn5+TFUK6Q6enb36tWrJj8/v6X+ba+uEYvFRAcHB+6YMWNoDAaDM3z4cEfVihX1Z1ViYiLZ29ubqdpXeno6uVevXgx7e3uX9lamqLd7pFIppqoPGQwG5+jRo1qjwPB4vHLq1KmlmzdvfiPKuKCggDBs2DAnFxcXtouLC/vatWv6AM1RyaNHj3ZomyapVIr5+voyOBwOm8FgtDwrka6Xn5+vY2JiItfT01MCAFhZWclpNFojgOY+n/oznkql8hYsWGCtyqu0tDTd9u6JzqRF/dl/5MgR46CgIBpA++059e1ReUHaampqgrdpF6nk5+cTpk+f7iASifRYLBaHz+eTzp8/T2Gz2RwGg8EJDg6myWQyHEBz2V+8eLGVp6cn8/Dhw8be3t7Mb7/91tbLy4vp6OjITUhIIA8dOtTJ3t7eZd68eS3tRE3PSTKZ7DF//nxrV1dX1h9//NFyz2AYBvv27Xu+ZMkSu8TERHJycjLlhx9+KAZoHfX54sULgp2dnQtA87N22LBhTkwmkxMYGOigvrJv7969JgwGg+Ps7MwNCwujAjRPcI4ePdpB9feNGzeat72mCxYssFbVB5MmTbJTKBRw//59PfVI/MzMTBKbzW43Cldl4MCB1SUlJS3PuISEBHLPnj2ZXC6X3bdvX2dVG8fT05M5Y8YMW3d3dxaDweCoVu7NmzfPev369S3pc3Bw4Obk5OgAAMjlcpzqPL744gvH9tr/FhYWrqpI3J9//rmlPzd27Fha220LCwsJAwcOpDMYDI6HhwfrwYMHurm5uTohISG0zMxMMovF4ojF4jcCNoKCgspPnz5tAgBw4cIFQ19f3yr1SYmBAwfSVX2FnTt3tjyLY2JijDgcDpvJZHJ69+7tDNBcvwUFBdF4PB6bzWZzjh8/bgQAUFVVhQUEBDgyGAzOyJEjHevr61sOoCmPKRSKe2hoKJXJZHLc3d1Z+fn5hLbXdOvWrd1dXFzYTCaTExAQ0O41fBtoAPgjOnbsWLf+/ftLXV1d67t169aUnJxMvnnzZrYqyiAkJKQiLCzMNjQ0tCQzM1NobW3dalZCKBTq7dmzJy87O5v/4sUL0vXr1w0AAJYsWVKSmZkpzMrK4stkMkw1uwHQfNNlZGQIt2zZkrd+/fo3ovt27NhhGRkZ+VwkEgnu3bsnMjAwUGzatCnfy8urWiQSCdauXVtibW0tT0pKkggEAuHJkyefLliwwK6jNCGfXn19PcZisTgODg7c8PBw+7Vr1xaqPktPT9fftm1bfk5ODr+j/bRXhnbt2mVmZGTUlJmZKXzy5Inw119/7f62y178/Pxqnz17pgsA4ObmVnf//n2RUCgUrF27Nn/p0qUtkY6PHj0yOHHixLN79+5JNO2ruLgYf+nSJeOsrCy+RCIRbN68uRAAICIiwuratWsSsVgsuHLlSjYAgLbyrKJtG5FIpLdv3748oVDIj42NNZVIJLoZGRnCKVOmvNqxY8cbD+d/Cg6H06BQKCA/P5+gLX87c/5z5syxmzRpUplEIhGMHz++bO7cubaqv/fp06dKLBYL+Hy+oEePHnUAALm5ubrTp08vEwqFAgaD0bBz5878zMxMoUgk4t+5c4eSkpKit3r16hJzc/PGhIQESUpKSquykJqaqrt9+3arhIQEiVgsFhw4cOCFtnMVCATEvLw8EofDqV+5cqXVgAEDKjMzM4VJSUni1atX21RWVmJbtmwxBwCQSCSC48ePP501axattrYWB9B8/5w+ffppZmYm/8KFCyaqBpDK2bNnDbOzs3XT09OFf0X5kS9fvmwAAJCZmSkEADh8+LDJoEGDpCKRSCAUCvk+Pj612tIcFxdnGBAQ8BqgufGzefNmq8TERIlAIBD26NGjdsOGDS0dfENDw6aMjAzh7NmzS7777rsOlw5nZGTo//zzz3lisZifm5tLioqK0jgAdOrUKcOLFy8aP3z4UCQWiwVr164tartNe/nv5+cnW7FiRYEqCtvAwOCNd/LPmTPHISQkpGTGjBktM/fa8kG9btB2zY8dO5bL5/OFjx8/Fhw4cMCiqKhI63KvjIwMPVdXV6350ZEXL17ozps3ryQ7O5tvZGTUpLqmM2fOtN+7d+8LPp8v3LZt28u5c+faAQAMGTKk+vHjxyKhUCgYO3Zs+fr16y3f5/jIh6Upv5YuXWrt5uZWK5FIBBs2bMj/5ptvtE5GFRUV4dPS0vTd3d1lmurdqKiobhkZGXpCoZD/xx9/SNasWWPz/PlzHYCO791Hjx7pxsbGmqSmpopEIpEAwzDl/v37TQH+VxedPXvW0NLSslEsFguysrL4Y8aM6VTkvaura61QKNTtqD6ytbVtePz4scjHx6d6xowZtLi4uJyUlBRRRESENUDzq9HaOz9tdc3r16/xDx48EP/www/F7eUFk8lsUI8+a7viYNKkSQ5z5swpEYvFgtTUVJGdnZ3GKCC5XA63bt2ijB49+rXqemmqa3Jzc3XnzJlTKpFIBBQKRdGZqGGhUKh348aNrHv37om2bdtmnZubq/HVGsuXL7cyNDRskkgkAolEIhgxYoTWiE+A5j7C2bNnTcrKylrVe7Nnz7ZduHBhcWZmpvD333/PmTNnDk1bmshksuLixYvZAoFAmJCQIFm5cqUNCvr4MEaPHl1ZUFBApNFoLl9//bXdxYsXW/pW2vp86szMzOQCgUA4Y8aM0oiICIuO7om3pak9p4LKC9LW27aLVKhUqnzv3r3PVWMTDg4ODbNnz3Y4efJkjkQiEcjlclCva3V1dRUPHz4Uz5o1qwIAgEgkKlJTU8XTp08vDQ4Oph88ePCFSCTinzx50qyoqAiv7Tkpk8kwFxcXWXp6umjYsGGt7hkfHx9Z//79pSNGjGDs2LEjT1dXV+tvTUVERJibm5s3isViwcqVK4uEQiEZoHnl26ZNm6gJCQmSzMxMQUpKisGJEyeMkpKS9MvLywkSiUSQlZXFnzNnzhsrWJYvX16cmZkpFIvF/KqqKnxsbKyht7e3rLq6Gq8KvomOjjb+6quvtEaSnj171mjIkCEVf50zbv78+XYXLlzI4fP5wokTJ5YtXbq0Jdijvr4e9/jxY9H27dvzZs2aRdO237/OT/e7774rkUgkAhKJpNi5c6fG5+Kff/6pt2vXLsukpCSxWCwW7Nmz543VL4sXL7bu2bNntUQiEXz//fcF06dPd6DRaI2RkZHPfXx8qkQikYDJZL4Ric3hcOqKioqIZWVl+OPHj5tMnjy51TU5ceLEMz6fL0xLSxPu2bPHorS0FP/ixQvCggUL7M6dO5cjFosFZ8+efQoAsGzZMuthw4ZJMzIyhImJieKVK1fa1tbW4rZs2dK9W7duTRKJRLBixYrCjvIYAKC6uhrfv3//KrFYLPDy8qres2fPGxPBU6dOLf8rnwUODg717W3zNj7LCJMlsU9sJUVVXbrcjmFJqd021k3rEq1Tp06ZhIeHlwA0z0JER0eb+Pv7t+pkpqWlGVy7di0bAGDmzJll69ataxkI4/F4NU5OTo0AAFwutzYnJ4cIAHD58mXKzp07Levq6rDXr18TOByODACkAADBwcEVAAB+fn41S5YseWOArlevXtWLFy+2HTduXPnEiRMrnJyc3ng6NzQ04L799lt7gUCgh2EYPH/+vCVSQlOakP/5/s73ttkV2V1a3ujG9NoNvTdoLW+qiQWA5uVk06dPd5BIJHwAAFdX15rOLlNprwzduHHDUCQSkS9cuGAM0BxBKBAIdLlcbp22falTKv/3nCwvL8ePHz/eITc3VxeHwykbGxtbZrb69OlTaWFhoXVZtYmJSROJRFJMmDDBfsSIEdLx48dLAZqX2U6ePJkWFBRUMXny5AoA7eVZpaMyb29v3wgAYGdnVx8QECAFAHBzc5MlJCS89fuT/ogS2pbnV3dp+TChGtQOmsp+6yWjqjzRlL9EIlHZmfNPS0vTv3z5cg4AwNy5c8t/+OEHGwCAu3fvUmJjY58BABAIBDA1NW169eoV3srKqmHQoEE1qnT8+uuvJkePHjWTy+W40tJSnSdPnuj6+PjINKX76tWrhoGBgRVWVlZyAABN5SUuLs6YxWIZEIlExa5du55bWFg03b592/Dq1avdIiMjLQGaGzbZ2dnEu3fvGnz33XclAAAeHh511tbWDRkZGboAAP7+/pWWlpZNAAAjRoyouH37tkHfvn1b6vIrV64YJiYmGnI4HA4AQG1tLSYSiXQDAgJaGo+9evWqmT17Nq2xsREbO3ZshZ+fX7vnN3XqVEeZTIYpFApITU0VAgDcvn1bPycnR9fb25sFANDY2Ijz9PRs2fc333xTDgAQEhJSvnr16g4HgHk8Xg2Hw2kAABg3blx5UlKSQXvLpwAArl+/bvj111+/olAoCk3XWlP+d6R3796VMTExpv/5z3/KVPt3zDPsPtH9P4ri3WlMawA4+uWP+KJfHrH6VTtj7hN+xsHpAnoxFIDlMyVpom5/wpVZR0wAABY6TMRZ3QXd4py0xtwXz4kPy8sIAABbei3AXp0W2Vt+Z9nuq2raM2XKFLv79+8b6OjoKGfNmlXSme9QqdR6VZ56eHjU5ubmkqRSKZaWlmYQHBzspNquoaEBBwDw7Nkz4ujRo21KS0t1GhoaMFtb2/rOpu9zIRAus62plnRpXalvwKjlsLe8dV2pKb/u379POXPmTDYAwJdfflk1a9YsQllZGd7U1LTVfZKammrAZrM5GIYpw8PDi7y8vOpWr15t3V69m5SURBk3blw5gUAAW1tbuY+PT3VycjLZyMhI0dG9e+XKFUpmZibZzc2NDQBQV1eHmZubt1oX26NHD9mqVats586dSx01apS0swNDqudFR/XRuHHjXgMA8Hi82pqaGszY2FhhbGysIJFIilevXuE1nd/t27cpmuqaiRMntnTc3vbeqaiowIqLi4lTp059DQBAJpOVAPBGx101iZ6fn090cXGpHT16dOVf17Td+t3R0bHB0tKyYejQoTUAAFOmTCmLjIw0B4BizGs8/tsYEV1HJ0dZXV2DVfSYRhq1O5mZR/Ak6o/yhMlHHzMAAEzHbcJN+fUxg6xv0CTvG0YctTuZKZUCvpA9gThqdzIzQ84h09ks2ajdyczO9DsAAExMTBTBwcFlERER5np6ei1t/Dt37hhmZWW1RKhXV1fjVe9gDAgIeG1gYKA0MDCQ+/r6ViYlJemPGzdOOn/+fJt79+4ZYBgGJSUlxJcvXxLs7Oy6dp3138ynaMMbGRkpMjMzBVeuXKH88ccflG+++cZpzZo1L+fNm1emrc+nbtKkSRUAAN7e3rWqOqUrtdeeU/9coVDgPsfy8ndSsHKVbX1WVpeWXZKzc6315k3v9Eqat20XafLkyRNdGxubeldX13oAgGnTppXt2bPHHABKAACmTp3aqv361VdfvQZo7qfQ6XSZqg9ja2tb//TpU+Lt27cNND0n8Xg8TJs2TeMrJxYsWFBy8+ZNo8DAwA4n4/7880+DZcuWFQEA+Pr6ypycnGQAAElJSfp+fn5Vqj7MuHHjyhISEijr1q0rfPr0qe706dNtR44cKf3qq6/emJy9ePGi4U8//WRZX1+Pe/36NcHDw6N23LhxlaNGjSqPjo42Xr9+ffHvv/9ucu7cuez20rR8+XLb5cuX275+/ZqQlJQkBABIS0vTzc7O1h0wYAADoHmVjqWlZcsk6ddff10O0NzGmTlzJkG14kcTKpXa0sebMmVK+X//+18z+Cuv2rp27Rpl9OjRFarnfXt9jAcPHhisW7cuGwBgzJgxlXPmzKGpv9tXmxEjRlQcPnzYOCMjgzx48OAa9c82b95sceXKlW4AAMXFxUShUEjKzc0l+vr6VjEYjAb19Ny+fdvw5s2bhjt37rQC+F/f8c6dO5SlS5cWAQD07t27wzweO3asVFdXVzFu3LhKAABPT8/a9l7T8+DBA/K6deusq6qq8DU1NfhBgwa9Uee/jc9yAPhTKCoqwt+7d89QIpHohYWFQVNTEw6Hwyn37dvX6ff+kkiklgYqHo8HuVyOq62txS1atMg+JSVFQKfTGxcuXGhdV1fXchOoZqMIBAI0NTW9UaFu3ry5aPTo0dLz588b+fn5sa9cufJGlOWmTZsszM3NG8+cOfNMoVCAnp6ep7Y0dfZ8kI9n8ODBNRUVFQTVEkQymdzSCSAQCEr1WXn18gPQfhlSKpW4HTt2vGj7js72llxo8ueff5IdHR1lAADLli2j9uvXr+r69es5YrGYOHDgwJblkepp1dHRaZXW+vp63F9/h8ePHwsvXLhgGBMTY7xv3z7ze/fuSY4fP/7i5s2b+hcuXDByd3fnPn78mL9161aN5Vmls2Uew7CW64NhWLv32D+FQCAg4vF4oFKpck35Gx8fT/kQ56+exyKRiLh7926Lhw8fCrt3794UFBREa1sm21IqlYDD4bTOvAM0vwM4KiqqVXSwUqmE2NjYbDc3t/q2f9cEh8Np/b9SqYT58+cXLlmy5JWmfQQEBFQnJiaKz5w5YzRt2jSHefPmFbf3fsqoqKinPj4+srCwMGpISIjdtWvXcpRKJfj7+1fGxcU9a2/f6kuaVNeFQCAoVcvDFQoFqE+ydHQ+bc9N2+fvY/ny5UVHjx41DQwMdLx+/Xq2jo7Om6MyajAM3+pjW6ptg7WlVatIvtfS1/jX0td4D1f3WgzD4Elmup5crv01vTweT3b+/PmWDnN0dPSLwsJCgpeXF7ttfam+vEsdkUhUfzYqZTIZ1tTUBBQKRa6amFMXFhZmFx4eXjR58mRpfHw8pb0VO8jfh6b8aq/eaK9u8vLyqr5161arDpmWerfdCL+/9q31/0qlEhccHFy2Z8+efE37cHV1rX/06JHgzJkzRqtWraLeuHGjcvv27YWatlf5qwNV1FF9pP6MUL8vMAyDxsZGnKa6VltdoxoUBnj7e0db3a5ONYleVlaGHzp0KD0iIsJ89erVJZrqd7FYTNSUHxiGtdRlCoWigwq06+vXFStWFPfo0YMzYcKEljQrlUpITU0Vtrcao73zOHDggElZWRkhIyNDSCKRlFQqlSeTydBK0g+EQCDAyJEjq0aOHFnl6uoqi46ONp05c2a5tj6fOrW2u/J9+mbqZUG1zL4zUHlB2nrbdpEmHdXh6s8HgNbPoLaQi/5hAAAgAElEQVR9GLlcjtP2nCQSiQoCQfNwGR6Ph7bvNsbj8S31vHqZ1/Ksa/e+srS0bOLz+fwzZ84Y/fLLL+axsbHGJ06ceK76vKqqCluyZIldamqqwMHBoXHevHkt9cGUKVPKv/76a8dRo0ZJdXV1FaqJ4rYiIiLyJk6c+Hr9+vUW06ZNo6Wnp4uUSiUwGAzZw4cPxe19p73nA4FAaPVsa2howNQ+V7bdXhOlUonrqI/R9np19pkO0BxJ6+fnx5k4cWKper6dO3eOcvfuXcrDhw+FBgYGSk9PT6ZMJsM0tUOUSiX8/vvvOVwu940JZw3bazwpAoHQ6r5ory8dEhLiEBcXJ+nZs2fdzp07zVJSUrT+KGhHPssB4M7MmHe16Oho4zFjxpQdP3685cbt2bMn89q1a61G+d3d3auPHj1qHBISUnH48OEOf4ittrYWAwCwtLSUS6VSLC4uzjgwMLBTL0cHaH7vjre3t8zb21uWkpKin5mZqUuj0Rqqq6tblopJpVK8jY1NAx6Ph927d5tq+5Em5E0dRep+DGlpaboKhQIsLCzemHm3sbGRl5eXE4qKivBGRkaKq1evGg0aNEjrEtAhQ4ZI9+3b133kyJFVJBJJmZ6eTlK9n6wzxGIxcfny5TazZ88uAQCorKzE29jYNAAAHDhwQOOyBicnp/rs7Gw9mUyGq62txZKTkw179+5dLZVKserqamz8+PHS/v37VzMYDB5Ac/keOHBgzcCBA2uuXr3a7enTp8TOlOePWebfJVK3qxUUFBBCQkLsp0+fXoJh2Hvnr4eHR82hQ4eM//Of/5QfOHDAxMvLqxoAoHfv3lXbtm3rvmbNmhK5XA7tzdhWVFTg9fT0FCYmJk15eXmE27dvG/Xr168KAEBfX79JKpViVlatX7s7fPjwyrFjx9JXrlxZbGlp2VRcXIzvKGpcZcCAAZU7duywOHr06AsMw+DOnTt6vXv3lvn7+1f/9ttvJl9++WVVeno6qbCwkOjq6lqXkpJCTk5ONiwuLsbr6+srLl261O3QoUO56vsMCAioXLdunfWsWbPKjYyMFM+ePdMhEolKKpXacv9JJBKig4NDw6JFi17V1NRgjx49IgNAuz9QRCKRlD/99FO+o6Mj79GjR7r9+/evWbRokV1mZibJxcWlvqqqCnv27JmOKhoiKirKZPPmzUX/93//Z+zh4VEDAGBvb9/w8OFD8syZMyuOHTvWTb1DmJGRoS8SiYjOzs4NsbGxJjNnzixtLx2qa71p0ybrkJCQcgqFomjvWmvK/844dOhQ3qhRoxzGjx9Pi42Nzc21qyq9lL5P99SpU8/T09NJ0zevZOTk5IjiDx40SX2eqh/1U/OA/p2zzwzXrVtunZSUlKV+zR/c4hsc/iPK7OaBm9lpaWm6gYtmcc6cOVPqriUNgYGBVd9//z1uy5Yt3ZctW1YKAKD68UEnJ6eGgwcPkpuamuDZs2c66enpnW6EmZiYKGxsbBoOHz5sPGPGjAqFQgEpKSl6vr6+sqqqKrxqGfrRo0c7/eOYn5N3idT9UDTlV69evaqOHDlium3btsL4+HiKsbGx3MTEpFPrnjXVu/369as6ePBg97CwsLKSkhLC/fv3DSIjI/PS09P1Orp3hw8fXjlmzBj6ypUri6lUqry4uBgvlUrxqmgWAIDc3Fwdc3NzeWhoaDmFQlH8+uuvWsufQqGAzZs3m5eWluoEBQVVlpeX47XVRx3RdH4kEknZUV0DoDkvKBRKU2Vl5RuvezExMVFYWlo2REdHd5syZcprmUyGk8vluLaDBiqmpqZNkZGRL8aOHUtfsmRJqab6HQCgsLCQeOPGDf3BgwfXHD9+3MTPz68aAIBafLd2OtW7aNy4cZXffvutbU1GBvn8/vvihQvPWl+6dKnbiUePJJWVlZiHRzDn4p9/Surr63EjD8x1Pv9/WeL4+HjKjhsxFuf33soODT1OrROmYYcPH84DACgtLcV37969w2edhYVFU2BgYMXx48fNJk6cWAbQvJJly5Yt5hs2bCgGALh7966eKjrv8uXL3TZt2lRYWVmJ3bt3j/LTTz/lR0dHG5uZmTWSSCRlXFwcpaCg4LNY8fcp2vBPnjwhYRgGPB6vHgAgLS1Nz8bGpuF9+3ya7gltTE1NGx89eqTr5uZWd/78eWMDA4MmgPbbc+p1nVQqxX+O5eXv5F0jdT8mbe0iTd9xd3evy8/PJ6qeOVFRUaZ9+vTpMAJXk848J9+Gra1tfUpKCtnf37/22LFjLcEEvr6+1SdOnDAePnx49f379/WePn2qBwDQt2/f6tWrV9sUFRXhTU1Nm2JjY00WLFhQXFBQQNDT01PMmDGjgk6n14eGhtqrH6empgaHYZjS0tJSXlFRgcXHxxuPHTu2HADAzc2tvqmpCdavX281ZswYrXUEgUCAdevWFcfExJieP3+eMnTo0Ori4mLirVu3yAMGDKitq6vDZWZmkry8vOoAAI4fP24yfPjw6vj4eIqpqanc0NBQQaPR6m/cuGEI0Py7PkVFRS33e35+PikhIYHcr1+/WvXnYnsCAgIqJ0yY4Lhs2bJiCwuLdvtzPj4+VYcPHzb58ccfi86dO0exsLBoNDQ07FQ7i8PhNKxYsSJ/1KhRrSJoX79+je/WrZvcwMBAmZqaqpuRkaEP0Pxu5OXLl9tKJBIig8FoUKVnwIABldu3bzc/cuRIHgC09B179+5dFRUVZTJ8+PDqP//8Uy8nJ0drHncmzQDNEwk2Njby+vp63KlTp0zs7e3fa5XgZzkA/CmcPn3adOnSpa0iKkaNGlURHR3dapD3l19+yZs8ebJDZGSk5dChQ1+rHrSamJmZNU2ePLmUw+FwbWxsGtzc3Gq0bd/W1q1bze/evWuIYZiSwWDIxo4dK8UwDAgEgpLJZHImTZr0av78+SVBQUFO586dM/b3969SX0KG/H2pli8CNM9U7du3L7e9WUwSiaRctGhRobe3N9vGxqaeTqd3+BqHBQsWvMrNzSXxeDy2UqnEmZiYNF66dClH23fy8vJIbDabU19fj9PX11fMnj27JDw8vAwAYNmyZUUzZ850iIyMtOzTp4/GwWc6nd4YGBhYwWazuQ4ODnVcLrcWoLniHjlyJF0VEbxx48a8v9Jpk5ubS1IqlTh/f//KXr16ySgUSofl+XMo86ryIZfLcXg8Xjl+/PiytWvXFgO8W/6q27dv34tvvvmG9vPPP1uamprKo6KiclV/nzZtmj2DwTDDMAx279793NbWttXAsq+vr8zFxaXW2dmZa2dnV9/m1QavAgICnM3NzRvV3wPs5eVVt2jRosI+ffqwMAxTuri41J45cya3M2mNiIgomDVrlh2LxeIolUqcjY1N/a1bt7KXLl1aMmXKFHsGg8HB4/Fw4MCBXNUPsnh5eVWrXlkSFBRUpv76B4DmJUl8Pl+3Z8+eLIDmCOdjx449Ux8Avnr1KiUyMtKSQCAoyWRy07Fjx9qNnlMxMDBQzp07tzgiIsLi1KlTzw8cOJA7YcIER9VSubVr1+arBlzq6+txrq6uLIVCgYuJiXkKAPDdd9+Vjhw5ks7j8dh9+/atVC/T7u7u1YsWLbIRiUR6Pj4+VVOmTHmtKR1jx46tfPToEdnd3Z2to6OjHDx4sHT37t2toiY05X9nYBgGp0+fzh00aBB97ty5Nj/99FO+pnxQp+maBwUFSf/73/92ZzAYHCcnp7rOPCMxDIO4uLic//znP7aRkZGWJiYmcjKZ3LRu3bqXQ4YMqd6zZ089k8nkMplMGYfDeat3BZ84ceJpSEiI/ZYtW6zkcjnuq6++Kvf19ZWtWrWqYOLEiU4WFhYNXl5eNS9evPhH/qDkv1FdXR1mYWHhqvr/3LlzizXl15YtWwomTZpEYzAYHD09PcXRo0e13tfqNNW7U6ZMeX337l0DNpvNxeFwyh9++OGlnZ2dPD09vcN719PTs2716tX5gwYNYigUCtDR0VFGRka+UO/YPnz4UG/FihU2qrbf3r17n7+ZOoDVq1fbREREWNXV1WEeHh41N2/eFOvq6iqtra3l2uqjjmg6Pzs7uw7rGgAATXkRFBT0euzYsU6XL1/utmvXrlYrP3777bdnISEh9hs2bLDW0dFRnj59OkdThBRA81JONpstU01stVfXEAgEpaOjY93hw4dNQ0ND7R0cHOoXL15cCgCwZs2agjlz5tC2bNnS6Onp2aoO8vDwqBk0aJBzQUEBcfHixYU0Gq1R02qqH3/8sXD69Ol2zs7OXAzDlCtXriz45ptvNNbXba5T0a+//try7sX//ve/eTNnzrRjMBicpqYmnI+PT5Wfn98LTWmaOXNmeUBAAN3FxYXN5XJrHRwcOv3KL+TtVFZW4ufNm2dXWVmJx+PxShqNVv/rr78+f98+X9t7ou3rXmJjY02vXr3a8mNtd+/eFf7www/5o0aNoltZWTWyWCxZTU0NBtB+e059STUqL0hnaWoXadqeTCYr9+/fnxscHOzU1NQEbm5utaq69l105jn5NlasWFE0ceJEp99++83M39+/ZWB6+fLlJcHBwQ4MBoPD4/Fq6XS6zMTEpMnJyalx5cqV+X379mUqlUrc0KFDX0+YMEGanJxMDgkJoamiUDdt2tRq1bilpWVTcHBwGYvF4lKp1AZVwIfK6NGjKyIiIqg7duzocLU5hmGwZMmSwm3btlmOGjUqKyYmJic8PNy2uroa39TUhAsLCytSDQAbGho2eXh4sGpqajBVAMy0adMqYmJiTP/6MfcaGxubluc/nU6X7d+/v3tISIg+nU6vW7Bggca88vHxkYWHhxf5+/uz8Hi80tXVtebUqVOt2iTbtm0rmDx5Mo3BYHD09fUVR44c6XQ7CwBAFdihbty4cdJDhw51ZzKZHDqdXufq6loDAGBrayv/6aefXnz55Zd0pVIJFhYWjYmJiVlbt24tmDVrli2DweAoFAqcvb193R9//JGzbNmy0nHjxtFUeczlcmsAADTlcWNj52Krli1blt+zZ0+2tbV1A4vFkqnGO96VxqVX/zZPnjzJdXNz07gc9++iqqoK09fXV2AYBv/973+NT548afLHH390euAFQRAE+XAiIyNNU1NT9du+SuLvgkql8lJTU4Wq90whCPLvFB8fT9mxY4dF21dJIJ+GWCwmjhw50jkrK6vDH9f9O1u4cKG1gYFB0/r16zsdnYQgCIJo19jYCI2NjTgymazMyMggDR8+nJGbm5uho6Pxdz//djw9PZm//PLLC02/W4J8Ok+ePDFzc3OjdWZbFAH8N3Pnzh1yeHi4nVKpBENDw6ajR4/mfuo0IQiCIAiCIAiCIAiCIG9HKpXi+/Xrx/jrvcPwyy+/PP8nDf4i/x4oAhhBEARBEARBEARBEARBEOQf5G0igNGvcSIIgiAIgiAIgiAIgiAIgvxLoQFgBEEQBEEQBEEQBEEQBEGQfyk0AIwgCIIgCIIgCIIgCIIgCPIvhQaAEQRBEARBEARBEARBEARB/qXQAPBHFhUV1Q2Hw3mmpaXpAgCIxWKis7MzFwAgMjLSdOrUqXZdcZytW7d23717t2lX7Av5Z8Lj8Z4sFovDZDI5HA6Hff36df2OvuPt7c1MTEwkd8XxExMTydOmTbPtin0hXU9VPuh0OpfJZHLWrVtn0dTU9KmT1YJMJnt86jQgn6+8vDxCYGCgg42NDY/L5bLd3d1ZUVFR3bR9p1+/fvRXr17hP2S6vL29mTQazYXFYnEcHR2527dvN/uYx/8cvU1dFB8fT+nMs3b+/PnW586do7xfyhBEOxwO5xkSEmKj+v+aNWssFi5caK3tO23LcFBQEO3IkSPG75MOKpXKKywsJLzPPlQ+l7bBsmXLLOl0OpfBYHBYLBbn5s2bWuuVztQpmuonsVhMtLCwcG3bBmSxWJxbt26RP2af8u7du3onT540+hD7jo+PpwwYMIDe0TEXLlxovWbNGot3PU5jYyOEhYVR7e3tXVgsFofFYnGWLVtm+a77e1fqfbqP1T4oKirCq87ZzMzMzdzc3FX1fw8PD9aHPj5A1/Rlly9f/tHzC0E+li55GCOdFxMTY9KjR4/q6OhoEw8Pj4IPdZylS5eWfqh9I/8MJBJJIRKJBAAAZ86cMVy5cqXNkCFDxB/j2I2NjdC3b9/avn371n6M4yFvT7185OfnE4KDgx2lUin+p59++mD1UmcoFApQKpWfMgnIZ06hUEBgYCB90qRJZXFxcc8AACQSCfH06dNaB4ATEhKyP0b6oqKinvbt27e2uLgY7+zszAsLCyvT1dVVfqzjI5rdvHmTYmBg0DRkyJAabdvt2rXrk9azyOeBSCQqL126ZFxYWFhkZWUl78x3OluGOwM9z9/NjRs39K9evdotIyNDoKenpywsLCTU19fjtH2nM3WKprxlMpkNVlZWDVeuXDEYMWJENQBAWlqabk1NDTZgwIDaAQMGfLS2fGpqKjk1NVV//Pjx0n/qMcPDw6nFxcU6QqGQTyaTlRUVFdiGDRveGFBU3R94/Ieft/1Y7QNLS8smVd9i4cKF1gYGBk3r168v/lDHa2xsBB0dnS7fb2RkpFVERERRl+8YQf4GUATwRySVSrHU1FSDI0eO5P7+++/tzqbn5+fr9OnTx5lGo7ksWrTISvX3wYMHO3G5XDadTm8V8UMmkz2+++47KpPJ5Li5ubHy8vIIAK1nL3fs2GHm4uLCZjKZnGHDhjlVVVWhfP/MSKVSvJGRkRzgzRnwqVOn2kVGRr4xs//TTz+Z0Wg0F29vb+aECRPsVdHpx48fN3J1dWWx2WyOn58fQ73MTZw40b53797OY8aMcVA/zq1bt8geHh4sNpvN8fDwYD158oT0cc4c6QwqlSo/dOhQ7pEjR8wVCgXI5XKYPXu2jYuLC5vBYHC2bdtmBtBcdry9vZnDhw93dHBw4H755ZcOCoVCtQ9eWFgY1d3dneXi4sJOTk4m+/v7O9va2rps3bq1O0BzHejr68vgcDhsBoPB+e2337oBNEefODo6cr/++ms7LpfLycnJIarSVlhYSHB3d2fFxMR8kIgQBGkrLi6OoqOjo1SfSGUwGA2rVq0qabtSZ8CAAfT4+HgKwP+i3FTlecKECfZ0Op3bu3dv5+rqahwAAJ/PJ/Xp08eZy+WyPT09marVQJrqVW0qKyvxenp6CgKBoFQ/fmVlJda/f386k8nkODs7cw8ePGgMABAaGkp1cnLiMhgMzqxZs2y0HbdtBJSzszNXLBYT20vH56i96yYWi4lRUVHd9+/fb8FisTgXL140oFKpPFVUXVVVFWZpaelaX1+PU4+qXLx4sZWLiwvb2dmZO3HiRHtVnYog7wuPxyunTp1aunnz5jeiGQsKCgjDhg1zcnFxYbu4uLCvXbum37YMX7lyxQAAICEhwcDDw4NlY2PDU48G/v777y1U7YQFCxZYA2h/ngO8fX9GJBIRVe2K8PDwlujl58+f63h5eTFZLBbH2dmZq0rrv0F+fr6OiYmJXE9PTwkAYGVlJafRaI0AmusL9TqFSqXyFixYYK1qa6WlpelqyluVsWPHlh8/ftxE9f/o6GiTr776qhyg9fPA29ubOXfuXCqPx2PTaDQX1X7kcjnMmjXLhsFgcBgMBmfTpk3mAABJSUnknj17MrlcLtvf39/5+fPnOpr2U1dXh/vxxx+t4+LijFksFkf17FIRi8VET09PJofDYauvbNTWNo2NjTV0cHDgenp6MmNjY9+YxNV0TKFQqOft7c20sbHhbdy40Vy1/d69e014PB6bxWJxJk2aZC+Xt55Xqaqqwo4fP9790KFDL8hkshIAwNjYWLFz584C1Tm0vT/Onj1r6O7uzuJwOOyAgABHqVSKacpHAM19qurqatzIkSMdGQwGZ8SIEY51dXUtkwbv0z45fPiwsbOzM5fJZHK8vLyYWoquVqro/fj4eErPnj2ZX3zxhSONRnMJDQ2l7tu3z4TH47EZDAaHz+eTAJon3n19fRkMBoPj6+vLyMrKIgI0l/WZM2fa+Pj4MEJDQ220HVNFU7+mvXokNDSUWl9fj7FYLM6XX37pANBxviPIPwkaCPyIjh071q1///5SV1fX+m7dujUlJye/sTwhPT1d//Tp008zMzP5Fy5cMFEtYTh27Fgun88XPn78WHDgwAGLoqIiPACATCbDfH19q8ViscDX17f6l19+6d52n5MnT67IzMwUisViAZPJlEVGRpq13Qb591E9vBwcHLjh4eH2a9euLezsd3Nzc3W2b99ulZKSIkxKSpJkZWXpqj4bMmRI9ePHj0VCoVAwduzY8vXr17fMaqenp5OvXr2arYqaU3Fzc6u7f/++SCgUCtauXZu/dOnSTj2wkY+Hw+E0KBQKyM/PJ+zatcvMyMioKTMzU/jkyRPhr7/+2l0kEhEBmhvFe/bsycvOzua/ePGCdP369ZZOhK2tbcPjx49FPj4+1TNmzKDFxcXlpKSkiCIiIqwBAMhksuLixYvZAoFAmJCQIFm5cqWNqpGem5urO3369DKhUChgMBgNAM3L8IcNG0Zfu3ZtwYQJEz5aNAjyecvIyNBzdXV9r4inFy9e6M6bN68kOzubb2Rk1BQVFWUMADBz5kz7vXv3vuDz+cJt27a9nDt3rh2A9nq1ralTpzoyGAwOj8dzWbx4cQGB0Hqs+OzZs4aWlpaNYrFYkJWVxR8zZkxlcXEx/tKlS8ZZWVl8iUQi2Lx5c+HbHhf5n/auG5PJbJg6dWrpnDlzikUikWDEiBHVLBar9tKlSxQAgJiYGKN+/fpJSSRSq5DIJUuWlGRmZgqzsrL4MpkMQ5NdSFdasmRJydmzZ03KyspahRnOnj3bduHChcWZmZnC33//PWfOnDm0tmV4+PDh1QAAxcXFOqmpqaLz589nrV27lgrQXM9kZ2frpqenC4VCoeDx48fky5cvGwC0/zxXedv+TGhoqN3MmTNLMzMzhZaWlo2q/Rw+fNhk0KBBUpFIJBAKhXwfH59/zYqz0aNHVxYUFBBpNJrL119/bXfx4sWWdlZn6wszMzO5QCAQzpgxozQiIsJCU96qTJ06tfzatWvdGhubL/G5c+eMp0yZUt7evuVyOS4jI0O4ZcuWvPXr11sDAOzYsaP78+fPSXw+XyCRSAQzZ84sq6+vx82bN8/u/PnzOXw+X/jNN9+8Wrx4MVXTfnR1dZUrVqwoCAwMrBCJRIKQkJAK9eNaW1vLk5KSJAKBQHjy5MmnCxYsaJmMba9tWltbiwsLC6NduHAh+8GDB+KSkpI3QkU1HTM7O1s3ISFB8uDBA+H27dut6+vrcY8ePdKNjY01SU1NFYlEIgGGYcr9+/e3CqARCAQkKyurBmNjY40zeer3B4VCUWzevNkqMTFRIhAIhD169KjdsGFDy4RN23wE0Nyn2r59u7menp5CIpEI1qxZUygQCNp9bcjbtk8iIiKsrl27JhGLxYIrV650SSSxSCTS27dvX55QKOTHxsaaSiQS3YyMDOGUKVNe7dixwxwAYM6cOXaTJk0qk0gkgvHjx5fNnTu35bWCOTk5unfu3JEcPHjwZWeOp6lf0149snfv3nzVKskLFy4860y+I8g/yef5Cohz/7GFEkGXvOe0hTmnFkbvydO2yalTp0zCw8NLAACCgoLKo6OjTRYuXFiivo2/v3+lpaVlEwDAiBEjKm7fvm3Qt2/f2i1btlhcvHixGwBAUVGRDp/P17W0tKzR0dFRqgZGPD09a27cuGHY9rgPHz7UW7NmDbWqqgpfU1OD79evHxpI+YgKVq6yrc/K6tLyRnJ2rrXevElreVNf4n/jxg396dOnO0gkEn5n9p+UlKTv4+NTZWFh0QQA8NVXX1VIJBJdAIBnz54RR48ebVNaWqrT0NCA2dra1qu+N3z48NcGBgZvrPcrLy/Hjx8/3iE3N1cXh8MpGxsbtS5l+5xc3bfL9lXe8y4tH2a29rXD5s7XWj7ao1qqeePGDUORSES+cOGCMQBAVVUVXiAQ6BKJRCWPx6txcnJqBADgcrm16tE948aNew0AwOPxamtqajBjY2OFsbGxgkQiKV69eoWnUCiK+fPn29y7d88AwzAoKSkhvnz5kgAAYGVl1TBo0KCWZYlyuRw3cOBA5q5du56rliQin59z587ZlpSUdOn9YW5uXjt69OhO3x9Tpkyxu3//voGOjo5y1qxZJR1/A4BKpdb7+fnJAAA8PDxqc3NzSVKpFEtLSzMIDg52Um3X0NCAA9Ber7alegVEQUEBwdfXlzVq1KhK9UGWHj16yFatWmU7d+5c6qhRo6TDhw+vbmxsBBKJpJgwYYL9iBEjpKqlrm9z3E9tvvCFraimrkvLAktft3YX2+6t68rOXrfg4OCKEydOGAcGBladOnXKJDQ09I3Xc12+fJmyc+dOy7q6Ouz169cEDocjAwDUTvs3+UT9DgAAExMTRXBwcFlERIS5np5ey6DUnTt3DLOysvRU/6+ursZXVFS0Gxj05Zdfvsbj8eDp6VlXVlamAwBw5coVw8TEREMOh8MBAKitrcVEIpGuo6NjQ9vnubq37c88evTI4PLlyzkAALNnzy7bsGGDDQBAr169ambPnk1rbGzExo4dW6Gqb7vap2jDGxkZKTIzMwVXrlyh/PHHH5RvvvnGac2aNS/nzZtX1tn6YtKkSRUAAN7e3rWqtpw2dnZ2cmdn57oLFy4YWllZNRIIBGXPnj3r2ts2ODi4AgDAz8+vZsmSJUQAgJs3bxrOmTOnVLUc38LCounBgwe6WVlZegMHDmQANL/yoHv37o3a9qNNQ0MD7ttvv7UXCAR6GIbB8+fPW1YTttc2pVAoTTY2NvU8Hq8eAGDy5Mllhw4deiNQqj1Dhw59raenp9TT05ObmJg0vnz5knDlyhVKZmYm2c3NjQ0AUFdXh5mbm2sNBf35559N9+3bZ/H69WtCcnKyEKB1e/f27YXofYoAACAASURBVNv6OTk5ut7e3iwAgMbGRpynp2dLm7e9fNTUp0pOTjaYN29eCQCAj4+P7NuAlfLsq3L74jsPFF/7rdK5degZvampCRaP+UWZn6BjdzrhAQxxnEmU8ZX6MRvvde9lMd7gxKa7nBNwFwAABthNg9M/PmBO77uOcHTNLa6ZaYbckW1TOWK22YvOXENteDxejb29fSMAgJ2dXX1AQIAUAMDNzU2WkJBAAQBIS0vTV937c+fOLf/hhx9agofGjBlT0XbyWxtN/ZrO1CPvku8I8nf2eQ4AfwJFRUX4e/fuGUokEr2wsDBoamrC4XA45YIFC1p1JnG41uNiOBwO4uPjKQkJCZTU1FQRhUJReHt7M2UyGQYAQCAQlBjW3F4jEAggl8vfGFibNWuWQ2xsbLavr68sMjLSVFWxIp+PwYMH11RUVBAKCwsJOjo6SvUlpu29V0zbO9vCwsLswsPDiyZPniyNj4+nqGb/AQD09fXbnfFetmwZtV+/flXXr1/PEYvFxIEDB77zEiLkwxAIBEQ8Hg9UKlWuVCpxO3bseBEUFFSpvk18fDxFPXoNj8e3qnN0dXWVAAAYhgGRSGzZDsMwaGxsxB04cMCkrKyMkJGRISSRSEoqlcpT1WVkMrlV2cHj8Uoej1dz+fJlIzQAjHxMPB5Pdv78+ZYOc3R09IvCwkKCl5cXm0AgtK0/2x0wUS//eDxeKZPJsKamJqBQKHLVxJw6TfWqv7+/86tXr3Tc3NxqTp48+Vz9O9bW1nIXF5faxMREffUBYFdX1/pHjx4Jzpw5Y7Rq1SrqjRs3Krdv3174+PFj4YULFwxjYmKM9+3bZ37v3j2JpuO2c55o0k6NtueguokTJ75ev349tbi4GJ+ZmUkODAxsVafW1tbiFi1aZJ+SkiKg0+mNCxcutK6rq0Or85AutWLFiuIePXpwJkyY8Er1N6VSCampqcL2Ju3bUj3bVd9T/Tt//vzCJUuWvFLfViwWE9s+z1XetT+DYdgbaQwICKhOTEwUnzlzxmjatGkO8+bNKw4LCyvr6Fz+KQgEAowcObJq5MiRVa6urrLo6GjTmTNnlne2vlDlGYFAULbXN2xPcHBw+YkTJ0zMzc0bg4KC2o3+bbNvaGpqwgE0lwccDtcqn5RKJY5Op8seP34s6ux+tNm0aZOFubl545kzZ54pFArQ09PzVH2mqW3atl/dWe3tT6lU4oKDg8v27NmTr+l7HA6nvrCwkFhRUYEZGxsrwsPDy8LDw8ucnZ25qnNUvz+USiX4+/tXtl05qdJePmrrU3XmfFvlEw6nVCoUOCUAEPAEpYdbjzci6elOzvWVVVVYRUU54VRsjKnnKOt8VbDau1K/vhiGteo/dKYsGBgYtFxDbe0kFU39GgCAjuqRzuQ7gvyTfJ4DwJ2YMe9q0dHRxmPGjCk7fvx4S8XUs2dPZm5ubqsZz+TkZMPi4mK8vr6+4tKlS90OHTqU++LFC6KRkVEThUJRpKWl6T558qTDX5hWV1tbi9nZ2TXW19fjYmJiTKysrBo7/hbSVTqK1P0Y0tLSdBUKBVhYWMhlMll9dna2nkwmw9XW1mLJycmGvXv3bjXA1qdPn5oVK1bYlpaW4rt169Z0/vx5YzabLQNonjW1s7NrBAA4evRop5bAVFZW4m1sbBoAAA4cOIBeQaLmXSJ1u1pBQQEhJCTEfvr06SUYhsGQIUOk+/bt6z5y5MgqEomkTE9PJ6neP/c+pFIp3szMrJFEIinj4uIoBQUFGiM+cDgcnDp1KveLL75wWrlypeXmzZvRjzF8ht4mUrerBAYGVn3//fe4LVu2dF+2bFkpAEB1dTUGAODk5NRw8OBBclNTEzx79kwnPT29089jExMThY2NTcPhw4eNZ8yYUaFQKCAlJUXP19dXpqleTU5OztK0v6qqKozP55OXL1/e6t7Izc3VMTc3l4eGhpZTKBTFr7/+aiqVSrHq6mps/Pjx0v79+1czGAzeX/to97g0Gq3+0qVL3f5KAzk/P/+Tv7f9XSJ1PxRN141CoTRVVla2LLU3MjJSuLm51cyePdtu0KBB0rYRS7W1tRgAgKWlpVwqlWJxcXHGgYGBrZY9I/8Cn6Dfoc7CwqIpMDCw4vjx42YTJ04sA2hecbhlyxbzDRs2FAMA3L17V8/Pz0/WtgxrEhAQULlu3TrrWbNmlRsZGSmePXumoz7x1Z7Xr1/j37Y/06NHj+qDBw+ahIaGlh88eLDlXpNIJEQHB4eGRYsWvaqpqcEePXpEBoAuHwD+FG34J0+ekDAMA1Xkalpamp6NjU3D+9YXHeXtlClTKjZu3EjV1dVV/PHHH2/1o9GDBw+u3L9/f/cRI0ZU6ejoQHFxMd7V1bWuvLyccOPGDf3BgwfX1NfX4zIyMkheXl7tRhYDABgaGjapnrdtSaVSvI2NTQMej4fdu3ebqt6vrom7u3vdy5cviXw+n8TlcutjYmJM2ttO2zHVDR8+vHLMmDH0lStXFlOpVHlxcTFeKpXi1SdgKRSKYsKECa++/fZbu99+++05mUxWyuVy0LTysX///jWLFi2yy8zMJLm4uNRXVVVhz54903F1ddW4GkdTn8rf37/6t99+MwkMDKx68OCB7v9d3kyYvGRwVt++PWvnU0fz5kemZldWVmLrR85w/vFklhgAYM2aOIvq6mr84tU7C7Z6zGWxR5BL2rZPmq9fz3oAADb7e87Tp6OJlpaWHyTiXp2Hh0fNoUP/z96dRzVx9Q8D/2aBAAbZ9y2BZJJMAmETBbWuPGoVa0VQQakrqLUK1q3YItW6UNeHaq3aFgVxadWqYNVKbVHrT1sssiUhQkWQRWQPBEK29w+f4aVIEBX3+znHc2QyuTOZuTN3me+9863Zhx9+WLd3715zX1/fboNBeqonEXS1a6qqqqjd3UeoVKpWoVCQaDSatjfnHUFeJyjK4AX58ccfLSZPnvyvQvq9996r37hxo13nZb6+vs1Tp05lCgQCflBQUP0777wjDw4OblSpVCQMw/DY2Fh7oVD4RG/mXb16dYWfnx9v6NChGJvN1lnoIm8WYg5gLpeLT5s2zXXPnj0lVCoVWCyWMigoqJ7H4/GnTJnC5PP5jzztZTKZypiYmMoBAwbwBg8ezMEwrNXExEQNALBmzZqK6dOnu/n4+HAsLCx6NQRm1apVVfHx8Y7e3t7cx1XYkBeDyB8sFos/YsQIbNSoUU1bt26tAACIiYmp4XK5be7u7jw2m82fP3++S19M2zFv3ry6nJycfgKBgHfo0CFzJpPZ4/2ISqXCmTNn/rl8+bLx5s2bezVsD0GeFZlMhrS0tOIrV64YOzg4uLu7u/NmzJjBiI+PvxcYGNjs5OSk4HA4/KVLlzrhOP5E804eOXLkn6SkJEviBW0nTpwwBXiy+2pERIQrl8vFhUIhb9q0aTVDhw791z7cvHnT0NPTk8flcvGEhAS7uLi4yoaGBsrYsWPZGIbhQ4cO5XzxxRdlPW03IiKivr6+nsLlcvFdu3ZZubi4vLV1h7a2NrKNjY0H8S8+Pt5G13ELDg5uOHv2rGnnlyyFhobWnz592nz69OmPRNRZWlqqw8PDH+A4zh83bhzrSet3CNJba9asqWpoaOh4ArFv376yv//+ux+GYbibmxt/165dVgDd5+HuTJ48uSkkJKRuwIABXAzD8Pfff9+toaGhx47jp2nPfP3116X79u2zFggEvMbGxo70L1y4YIzjOJ/H4+GnT582W7ly5f3eHYlXX1NTEyUiIoJJvLRTIpEYJiQkVDzr/eJx59bS0lLt6enZbGlpqeRyuU/UuRUTE/PA0dGxncvl8jkcDv7dd9+ZGxgYaI8ePVq8evVqRw6Hg/P5fDwzM7PHl/WNGzdOJpVKDbt7CVx0dHT1kSNHLIRCIVcqlRp0ntKkO0ZGRtqvvvrq7oQJE1g+Pj4cJyenbn9TT9vszMfHp+3TTz8tHzVqFIZhGD5y5EisrKzskXmF//vf/5bb2toquVwun8fj4QMGDOBOnTq1hpjyoDN7e3vV3r17S6ZNm+aKYRju4+PDzcvLM+i6Xme62lTLly+vbmlpoWAYhm/cuNHW3d39ifKHrvpJTEyMI4ZhOJvN5g8aNEg2aNCg5975CwCwZ8+e0pSUFEsMw/AjR45YfP31171+GPP++++ziTJ73LhxrrraNbruI+Hh4Q94PB4+ceJEZm/PO4K8Lkg9DfV+k+Tk5JQIhcKax6+JIAgAQGNjI9nExESjVCphzJgxrFmzZtVEREQ0vOz9QhAEQRAEQRAEQRAEedvl5ORYCoVCRm/WRRHACIJ0a8WKFfZcLhfHMIzv7OysmDFjBur8RRAEQRAEQRAEQRAEec28nXMAIwjyWPv27bv3svcBQRAEQRAEQRAEQRAEeTYoAhhBEARBEARBEARBEARBEOQNhTqAEQRBEARBEARBEARBEARB3lCoAxhBEARBEARBEARBEARBEOQNhTqAEQRBEARBEARBEARBEARB3lCoA/gFS05ONiWRSD7Z2dkGAACFhYX6bDab31fpR0dH2586dcq4r9JDXl8UCsWHy+XiHA4Hx3Gcd/HixX5Pmoafnx/n8uXLRl2XDxs2jFVTU0N51n1MTEy0MDMzE3K5XJzL5eLvv/8+41nTRHqHyB8sFovP4XDw+Ph4G7VaDQAAly9fNpo1a5YTAEBqaqpJbGysLQBAcHAwIykpyawvtr969Wrbzn97eXlx+yJdBOkLZWVl1KCgIKajo6M7n8/neXp6cpOTk01f9n4hL56RkZFXb9ddtmyZfVxcnM3z3B8E6S0SieQzf/58R+LvuLg4m2XLltn35TZyc3Npw4YNYzk7OwtcXV357777rmtZWZnOl4w/TbvnWeoeneswr5NVq1bZslgsPoZhOJfLxS9duvTEdXgEedGqqqooRJvO0tJSaG1t7UH83dbWRnrZ+4cgCIDOAhp5Po4ePWru7e3dnJKSYu7l5VXRl2mrVCrYuXNnn6aJvL5oNJpGIpGIAABOnDjRPzY21jEwMLCwt99XqVQ6P8vMzCzqg10EAICgoKD65OTk0r5KD+mdzvmjvLycGhIS4trY2EjZsWNHxTvvvCN/55135AAA4eHhjQDQ2NfbT0xMtNu8eXMV8Xd2drakr7eBIE9Do9FAUFAQKywsrDYtLe0OAIBUKtX/8ccfUQcwgiCvDX19fe3PP/9sVllZWWVnZ6e7UveU5HI5KSgoiL1p06aysLCwRgCAtLQ046qqKqqTk1Ofb+9pPK86zPOUkZHR78KFC6Z5eXkiQ0NDbWVlJVWhUKDOM+SVZ2trqybaFsuWLbOn0+nqdevW3X/Z+4UgyP+HIoBfoMbGRnJWVhY9KSmp5KeffnrkSbZMJiO/++67rhiG4ePHj3f18PDgEtGXJ0+e7O/p6cnFcZw3btw418bGRjIAgIODg/vy5cvtfHx8ON9//71Z56fky5cvtxMIBDw2m82fPn26i0ajebE/GHllNDY2UkxMTFQAAOnp6cYjRoxgEZ9FREQ4JyYmWgA8mp+IddRqNUyePJmxZMkSe2K9yspKamFhob6rqyt/2rRpLiwWiz948GB2c3MzCQBg27ZtlgKBgMfhcPAxY8a4yWSyXt9vdH33+++/N2Oz2XwOh4P7+vpyAB42QKZMmcLAMAzn8Xh4WloaioB/Qg4ODqpvv/22JCkpyVqj0fwrjyQmJlpEREQ4E+tevHjR2MfHh8NgMARHjhwxAdB9Drp+d8SIEaz09HTjRYsWOSgUCjKXy8UnTpzIBHiyKDsEeZ7S0tKM9fT0tCtXrnxALMMwrH3NmjXVuvL0jh07LOfOnetELN+2bZvlvHnzHAEARo8e7cbn83ksFou/detWS2IdIyMjr48++siBw+HgQqGQS0TNHT582MTDw4PL4/HwgIAArKdoOuTlqKiooI4ZM8ZNIBDwBAIB75dffumIzsvNzTUaNGgQ5uLiIti2bZslwMP6n7+/P4bjOA/DMPzQoUOmAA+jIXWVodeuXTMUCoVcDMPwwMBAtwcPHlAAHo7MWbhwoYO7uzuPwWAIzp8/T38ZxwB59VEoFG1ERMSDjRs3PhKVrisPYxiG19TUUDQaDZiamnru2rXLAgBg0qRJzK4jDPft22fu7e3dTHT+AgAEBQXJBgwY0FZYWKjv4+PDwXGcp2sUmkqlgqioKEeBQMDDMAzfsmWLJcDDh3ARERHObm5u/OHDh7Nqamo67oGnT5825vF4OIZheEhICKO1tZUE8LBeGhMTY09cY8RIy8737Nfl3lpeXq5nbm6uMjQ01AIA2NnZqRgMhlJXu87Pz48zd+5cJ19fX46rqys/MzPT6D//+Y+bi4uLgKi3AwDEx8fbsNlsPpvN5q9bt86aWK6rjEKQvvTpp5925L8NGzZ05L+YmBh7JpPJDwgIYI8fP96VyJtXr1418vDw4GIYho8ZM8attrb2mUeeIgiCOoBfqNTUVNPhw4c3enh4KExNTdVXr17919D6LVu2WJmamqqlUqkoPj6+QiQS9QMAqKyspG7cuNHu8uXLUpFIJPb29pavX7++ozJnYGCguXnzZmFkZGR95/RWrFhRnZ+fL759+3ZBa2sr+ejRoyYv5pcirwKig43JZPKXLl3qsnbt2srefK9rflIqlaRJkyYx2Wx2W2Ji4iMR5qWlpQZLliypLioqKjAxMVEnJyebAQCEh4fX5+fniwsLC0UcDqc1MTGx20plWlqaGTE86L///a9FT9/dvHmz3S+//CItLCwUnT9/vggAICEhwRoAQCqVig4fPvxPZGQkQy6Xo0iJJ4TjeLtGo4Hy8vIeG0RlZWW0P//8szAtLe12dHS0i1wuJz3pOfj666/LiQjkM2fO3Onr34IgzyIvL8/Qw8ND/iTfmTt3bt0vv/xiQkRpHTp0yDIyMrIWACA1NbWkoKBAfOvWLdHevXttqqqqKAAAra2tZH9//+bCwkKRv79/81dffWUFABAYGNh869YtiVgsFk2ZMqVu3bp1r93w5TddVFSU07Jly+7n5+eLf/rpp+IFCxYwiM/EYrFhRkbG7evXr0u2bNliX1JSomdkZKQ5e/ZskUgkEmdmZkpjY2Mdic4bXWXorFmzmBs3brwnlUpFfD6/ddWqVR0dOSqVipSXlydOSEgoW7duXZ8O6UfeLCtWrKg+efKkedfOE1152NfXtzkjI4N+8+ZNA0dHR8XVq1fpAADZ2dn9RowY0dI5jfz8fENvb+9u75X29vaqK1euSEUikfjYsWP/xMTEOHddZ+fOnZYmJibq/Px8cU5OjvjgwYNWEolEPyUlxbSoqIhWWFhYcODAgbt///03HeDhw+aoqCjmsWPHiqVSqUilUsGWLVusiPQsLS1VIpFIPGfOnAebN29+pNP7dbm3Tpo0qamiokKfwWAIZsyY4Xz27Fk6QM/tOn19fU1WVlbh7NmzH4SEhLD2799fKpFICo4dO2ZZVVVFuXLlitHhw4ctbt68Kc7KyhInJydb/fHHH4YAussoBOkrv/32m9GPP/5o8ffff4v//PNP8XfffWd148YNw19//bXfL7/8YiISiUTp6enFOTk5HQ+KPvjgA+aWLVvuSaVSEZvNbvvkk0/sXuZvQJA3xSv55PN5++yPz5yK6osemdf0WbDMWPL1g9eX9bTODz/8YL506dJqAIDg4OC6lJQU82XLllUTn1+7do1OfD5gwIA2DMPkAAC///57v+LiYgM/Pz8uwMMOOR8fn2biexEREfXQjXPnzhlv377dtq2tjdzQ0EDFcbwVXrNhUG+CX5PFTnXlzX2a38wd6PJREbwe81vnIf4ZGRn9Zs+ezZRKpQWPS7trflq0aJHLpEmT6hISEqq6W9/BwUEREBDQCgDg5eUlLykpoQEA3Lx50zAuLs5BJpNRWlpaKMOGDes273U3BYSu7/r6+jaHh4czgoOD68PDw+sBHl43H330UfX/tt9mb2/fnpeXZzBw4MDWx/3WV0HdcamTsqqlT/OHnm0/ufkUrMf80R2tVvvYdYKDg+soFAq4u7srnJycFLdu3TLQdQ6eYtcR5F9E4lVOLc3SPr0++tExOc5L6PX1MXPmTOc///yTrqenp42MjKzubp3+/ftrBg8eLDt27JiJu7t7m1KpJPn5+bUCACQkJNicPXvWFACgqqpKr6CgwMDW1rZFT09PO23atEYAAB8fn5aMjIz+AAB37tzRnzRpkuODBw/02tvbyU5OTopn/9WvvxXHc5ykVbI+zQuYrbF8yxThE98r//jjj/63b982JP5ubm6m1NfXkwEAxo0b10Cn07V0Ol3l7+/fdOXKlX6hoaGN0dHRjtevX6eTyWSorq7Wv3fvHhWg+zK0traWIpPJKOPHj28GAJg/f35tSEiIK7G9kJCQegCAgICAlhUrVug/21FAnreX1e4AADA3N9eEhITUbt682drQ0LBjKKCuPDx06NDmzMxMeklJif68efOqk5KSrO7cuaNnYmKiMjEx6fVQwvb2dtLcuXNdRCKRIZlMhrt379K6rpORkdFfIpEYnTlzxgwAQCaTUUQikUFmZqZxaGhoHZVKBQaDofT395cBAOTk5Bg4OjoqPDw8FAAAs2bNqt29e7c1AFQDAISFhdUDAPj5+cmJNDt7mnvry6jDm5iYaPLz80Xnz583/vXXX40/+OADt7i4uHv9+/dX62rXvf/++w0AAEKhsJXFYrW6uLgoAQCcnJwU//zzj/7vv/9Of/fddxv69++vAQAYP358/W+//WY8ePDgVl1lVF/+ZuTFu7Bnp1NN2d0+zbuWTi7yMQujn7jM/P33342DgoLqjY2NNQAPy8nffvuNLpfLye+++26DoaGh1tDQUDt69OgGgIdzCSsUCvKYMWOIMrBmxowZrj1tA0GQ3nkrO4BfhqqqKsr169f7S6VSw8WLF4NarSaRSCRtTExMR2NSV+eLVquFIUOGNBFzEXZF3Ew7k8vlpI8//tjlxo0bIhaLpVy2bJl9W1sbivh+S40ePbqlvr6eWllZSdXT09N2ng6k67xiXfOTr69v85UrV/rL5fL7RkZGj2RSfX39jmUUCkXb2tpKBgCIjIxkHj9+vMjf3781MTHRIjMzs9dTM+j67uHDh0svXbrU78yZMyaenp78W7duFfSm0xJ5PJFIpE+hUMDBwUGVk5Ojcz0SifTI37rOAZVK7ZrX0D0IeeW5u7u3nj59uqPzICUlpbSyspLq6+vL6ylPR0ZG1mzYsMEWw7C2GTNm1AA8nHInMzPTOCsrS2JsbKzx8/PjEPdIKpWqJZMffp1KpYJKpSIBACxevNh56dKlVeHh4Y3p6enGKMLz1aPVaiErK0tMp9Mfufl1d4/cu3eveW1tLTUvL09Mo9G0Dg4O7kQ+0FWG9sTAwEAL8DDfqNVqNOIF6dEnn3xy39vbG582bVoNsUxXHg4MDJTt27fP+t69e4qEhITyM2fOmB06dMhs0KBBzV3T5fP5bZcvX+52CpINGzbYWFtbK0+cOHFHo9GAoaGhT9d1tFotadu2baXBwcFNnZenp6ebdL2OiH3uSafrQkvcTzt7ne6tVCoVJkyYIJswYYLMw8Ojdf/+/ZaFhYVGutp1xG8nk8lAo9E6DhSZTAaVSkXSdex6KqMQpK/01MehYzkq1xDkOXkrO4B788S8r6WkpJhNnjy59vDhw3eJZQMGDOCUlJR0RG4EBAQ0Hz161CwoKEh28+ZNA6lUaggAMHz48JaPP/7YOT8/nyYQCBQymYx8584dPeIJeHfkcjkZAMDW1lbV2NhITktLMwsKCuo2Uhh5vh4XqfsiZGdnG2g0GrCxsVG1trYqioqKDFtbW0lyuZx89erV/oMHD36kYk+IioqquXTpkvGECRPcLly4UKSnp9erbcrlcrKzs7NSoVCQjh49am5nZ6fs7f7q+m5BQQFt5MiRLSNHjmy5cOGC6T///KM/ZMiQ5kOHDplPnDhRlpubS6usrNT38PBo6+22XranidTtaxUVFdT58+e7zJ49u5rokNLl5MmTZosXL66VSCS0srIymlAobNN1DhoaGij79+83UqvVcOfOHb3c3NyOoV1UKlWrUChInRsqCNLVk0Tq9pWgoCDZZ599RkpISLBatWrVAwCA5uZmMgCAm5tbu648PXLkyJbFixfrFxQU9MvLyysAAGhoaKCYmJiojY2NNdnZ2QadhzfqIpPJKM7OzkoAgAMHDlg8n1/5+nmaSN3nZciQIU0JCQnW69evvw/wcL5eIor33Llzphs2bKhsamoiX79+3XjHjh3lKSkpZpaWlkoajaZNS0szrqio6DFq18LCQt2/f3/1+fPn6WPHjm3+7rvvLPz9/XWW08ir7WW0OzqzsbFRBwUF1R8+fNhy+vTptQC68zCLxVLW19dTlUolCcfxdn9//+bdu3fbbt269ZGX9c6fP792x44dtkePHjUhRjMcP368v7Ozs7KxsZHi6OjYTqFQYNeuXRZqtfqR/QoMDGzcs2eP1YQJE2Q0Gk2bm5tLYzAYymHDhsn2799v9eGHH9aWl5frXb9+3Xj69Ol1np6ebeXl5fpEeyg5Odli6NChst4eh6e5t76MOnxOTg6NTCaDu7u7AgAgOzvbkMViKQoLC42etl03cuTI5jlz5jDWr19fpdVq4eeffzY7cODAP3fu3KE9aRmFvB6eJlL3eRkxYoRs0aJFjPj4+Cq1Wk06f/686ZEjR/5pamoiR0dHO69bt66qra2NdOnSJRNXV9dqOzs7lYGBgebixYv9AgMDW7777juLgICAXl/rCILo9lZ2AL8MP/74o8XKlSv/NQfre++9V79x48aO+WxWrFjxIDQ0lIFhGC4QCOQcDqfVzMxMbW9vr9q7d2/JtGnTXNvb20kAAGvXri3vqQPY0tJSHR4e/gDHcb6jo2O7UChEQ3neMsQcwAAPn7Du2bOnhEqlAovFUgYFKxNutwAAIABJREFUBdXzeDw+k8ls4/P5j53rMj4+/n5MTAxl8uTJzFOnTvVqztbVq1dX+Pn58RwcHNp5PJ68ubm513OK6fpuTEyMY0lJCU2r1ZKGDBnSNGjQoFZPT8+2mTNnumAYhlMoFNi7d28J8eIMRDcif6hUKhKFQtFOnTq1du3atR1v6u0u+gYAgMViKfz8/Di1tbV6O3fuvGtkZKRduXJldXfnIDAwsHn37t0KDofD53A4rTiOd+S18PDwBzweDxcIBHI0DzDyKiGTyZCWllb84YcfOiUmJtqam5urjIyM1PHx8fd6ytMAAJMmTarPzc01srKyUgMABAcHN+7bt88KwzDczc2trTdl8Zo1ayqmT5/uZmNj0+7r69tSWlr6yNBp5MVpa2sj29jYeBB/L1y48P6+ffvK5s2b54xhGK5Wq0kDBw6UBQQElAIAeHl5tYwaNYpdUVGhv3z58koGg6GcN29e3bhx41gCgYDH5/PlTCbzsQ8pk5KS7ixcuNBlyZIlZGdnZ8WRI0dKnt+vRN50a9asqTp48GDHfLk95WFPT88WosN2+PDhsk2bNjmMHj36kc4XOp2uPX36dNGSJUucVq1a5USlUrU8Hq91z549pdHR0dXBwcFup06dMhsyZIis8/QThJiYmJqSkhKau7s7T6vVkszNzZU///xz8cyZMxt+/fXX/hwOh89kMtv8/PxkAABGRkbab775piQkJMRNrVaDUCiUL1++/EHXdHs4Bq/FvbWpqYmyZMkS56amJgqFQtEyGAzFwYMH75qamqqetl03ZMgQeVhYWK23tzcPAGDmzJkPBg8e3Ort7d32pGUUgjypESNGyIODg2u9vLxwAIA5c+Y8IKbJGjVqVCOPx+M7OjoqhEJhi4mJiRoA4MCBA3cWLVrk3NbWRmYwGKgMRJA+onNIyJsmJyenRCgU1jx+zZdHpVJBe3s7ycjISFtQUED7z3/+gxUXF+cTw3oQBEFehAMHDpieOXPG9OTJkyUve18Q5HUyYsQIVnR09P333nsPRaogCIIgCIL0oLGxkWxiYqJpamoiDxw4kHvgwIE7r8t7XBDkVZGTk2MpFAoZvVkXRQC/QmQyGXno0KEcpVJJ0mq1sGPHjruo8xdBkBcpNTXV5PPPP3fYt29fycveFwR5XdTU1FB8fX15PB5Pjjp/EQRBEARBHi8sLIxRXFxsoFAoSOHh4TWo8xdBni8UAYwgCIIgCIIgCIIgCIIgCPIaeZIIYPSWTwRBEARBEARBEARBEARBkDcU6gBGEARBEARBEARBEARBEAR5Q6EOYARBEARBEARBEARBEARBkDcU6gBGEARBEARBEARBEARBEAR5Q6EO4BcsOTnZlEQi+WRnZxv0ddqJiYkWERERzn2dLvJ6Ki0tpU6YMMHVyclJ4Obmxh82bBgrNzeXpmv9wsJCfTabzX+abSUmJloEBQUxOy+rrKykmpmZCVtbW0lPkyYAgJGRkdfTfhfpGYVC8eFyuTiLxeJzOBw8Pj7eRq1W90na0dHR9qdOnTLuaZ3U1FST2NhY2z7ZIIL0sa73nt6Ur53zdEpKiunNmzc7yvneXBPIq+l5lUOFhYX633zzjTnxN6rDIX2NRCL5zJ8/35H4Oy4uzmbZsmX2fZX+pk2brLhcLk78Y7PZfBKJ5PP3338/VRunr661Z6nPvipWrVply2Kx+BiG4VwuF7906VK/Z02POE9E/Y/L5eJffPGFdV/t8/P03nvvMVNSUky7W+7g4ODO5XJxPp/P03WcNm3aZLVnzx7z7j57nClTpjBycnJ0tp+Q/6+qqopC5C1LS0uhtbW1B/F3W1vbv9qDQ4YMYdfX1/fYF/XRRx85pKWlPVJ3OnXqlPHo0aPdnmTffHx8ONeuXTN8ku88bbojR45kcblc3NnZWWBsbOxJHIOermNLS0thY2Mj6ptDnjvqy96Bt83Ro0fNvb29m1NSUsy9vLwqXvb+IG8mjUYDEydOZIWFhdWmp6f/AwBw7do1w4qKCj0PDw9FX29vxowZ9WvXrnWUyWRkY2NjDQBASkqKWWBgYIOhoaG2N2kolUrQ09Pr611DdKDRaBqJRCICACgvL6eGhIS4NjY2Unbs2PHM96WdO3c+No3w8PBGAGh81m0hyKuic54+deqUqUqlavTx8WkD6N01gbxdbt++TTt27Jj5ggUL6l72viBvJn19fe3PP/9sVllZWWVnZ6fq6/Q/+eSTB5988skD4u/Fixc74Diu7+3t3dbX23qbZGRk9Ltw4YJpXl6eyNDQUFtZWUlVKBRPHUwBAJCQkFCVkJBQBfCwo52o/70JNm/eXDZz5syGY8eOmSxevNhZJBKJO3+uVCqhcz59UsePHy955p18S9ja2qqJvLVs2TJ7Op2uXrdu3f3O62g0GtBqtXD16tXbj0vvq6++Kn9e+/o8Xbp0qQjgYUf1rl27rDMyMopf9j4hCAE9ZXiBGhsbyVlZWfSkpKSSn376yQwAID093djPz48zduxYVyaTyZ84cSJTo9EAAMCxY8dMmEwm38fHhzNr1iynESNGsAAA7t+/Txk9erQbhmG4UCjk3rhx45GnWYcPHzbx8PDg8ng8PCAgACsrK0Od/W+R9PR0YyqVql25cmVHhScgIKB17NixzY2NjWR/f38Mx3EehmH4oUOHOp6oq1QqmDx5MgPDMHzs2LGuMpmMDABw+vRpYx6Ph2MYhoeEhDC6RvWam5trBgwY0Hz06FETYtnx48fNw8LC6gAArly5YjRgwAAOn8/nDRkyhH337l09AAA/Pz/O4sWLHQYMGMD54osvbCQSib6npydXIBDwli5d+q8olc8++8xGIBDwMAzDY2Ji+iyCBQFwcHBQffvttyVJSUnWGo0G5HI5acqUKQwMw3Aej4cTT98TExMtRo8e7TZy5EiWg4OD+8aNG63i4+NteDweLhQKuffv36cAAAQHBzOSkpLM/pe2e0xMjD2R34jRD52j3crKyqiBgYFuHA4H53A4+MWLF/sBAIwePdqNz+fzWCwWf+vWrZYv5+ggyL/pKl+JPH3x4sV+GRkZpp9++qkjl8vFCwoKaJ2vCeT1V1FRQR0zZoybQCDgCQQC3i+//NIPAODs2bN0ItKHx+Ph9fX1ZI1GA1FRUY5sNpuPYRi+f/9+MwCANWvWOGRlZdG5XC7++eefWwMAVFVV6Q0dOpTt4uIiWLBgQUfk5t69e80xDMPZbDZ/4cKFDi/nVyOvGwqFoo2IiHiwceNGm66f6crDGIbhNTU1FI1GA6ampp67du2yAACYNGkSs6dRDOfOnaOfOXPGLCkp6S7Aw/pkVFSUI1Fv27JliyXAw7aQrjooQdc6hYWF+q6urvxp06a5sFgs/uDBg9nNzc0kgIf1TA6Hg3t6enK3b9/+WkS16lJeXq5nbm6uIgIo7OzsVAwGQwkAsHz5cjuBQMBjs9n86dOnuxBtxmvXrhkKhUIuhmF4YGCg24MHDyi93Z5EItEfOHAghmEYHhAQwC4uLtYDeBhdO3PmTOeBAwdiTk5OgnPnztEnT57MYDKZ/NDQUBfi+z/88EN/T09PLo7jvPHjx7s2NTU90r/w5ZdfWgkEAh6Hw8HHjRvnSpy39957jzl79mwnLy8vrqOjo3tycrIpAIBarYYZM2Y4u7m58UeOHMmqq6t7bDt27NixstLSUgOAh1GZH330kYOvry9n06ZN1kuWLLFft26dNfHZokWLHNzd3XkMBkNA1DmVSiXMnTvXibhXb9682YpY/9q1a4ZKpRKMjY09586d64TjOC8gIIBdVVVFAQDIy8ujDRkyhM3n83m+vr6cnkZcvo3y8/NpbDabHxYW5szn8/HS0lI9Gxsbj5qaGgrxWWhoqAuLxeK/8847bLlc3pE/iMjvo0ePmjAYDIGPjw/np59+6rhv/Prrr/08PT25PB4P9/b25ubl5dEAAGQyGXncuHGuGIbhEyZMcFUoFN32e8XExNgT11RYWJgzcU3pyie9TVeX48eP9+dyuTiGYXhYWJhL54c7sbGxdgKBgCcUCrmFhYX6AAAHDx409fDw4HK5XHzo0KHsyspKKsDDkb4DBw7E+Hw+LyIiwrlzBPEnn3xiy2az+Ww2m0/kYwQhoA7gFyg1NdV0+PDhjR4eHgpTU1P11atXjQAAxGKx4e7du8uKiooKSktLaRcvXqTL5XLS0qVLXc6dO3f75s2bhbW1tR0F38qVK+2FQqFcKpWK1q9fX/7BBx8wu24rMDCw+datWxKxWCyaMmVK3bp169BQ67dIbm6uoVAolHf3mZGRkebs2bNFIpFInJmZKY2NjXUkCruSkhKDBQsWPJBKpSJjY2PNli1brORyOSkqKop57NixYqlUKlKpVLBly5ZHCpNp06bV/fDDD+b/S0evpKSENmHCBJlCoSAtWbLE+fTp08UFBQXiDz74oGb58uUdDdiGhgbKX3/9Vfj555/fX7RokfO8efMe5Ofni21tbZXEOidPnuxfVFRkkJubKxaLxaJbt24ZnTt3jt7nB+4thuN4u0ajgfLycmpCQoI1AIBUKhUdPnz4n8jISAZRGZNKpYYnTpz456+//hJv2rTJwcjISCMWi0W+vr4te/futegubUtLS5VIJBLPmTPnwebNmx9piC5YsMB56NChssLCQlFBQYGIiB5KTU0tKSgoEN+6dUu0d+9eG6KijSDPm0KhIHce2rxp06aOh06PK18DAwNbRo8e3fDFF1/ck0gkIj6f3+ejLpCXKyoqymnZsmX38/PzxT/99FPxggULGAAA27Zts01MTLwrkUhE169fl9DpdE1ycrJpXl6eoVgsLvj111+lcXFxjnfv3tXbsGFDua+vb7NEIhGtXbu2GgBAJBIZnTp16h+xWFxw5swZs6KiIr2SkhK9+Ph4h99//10qEokKsrOz+3U3FBpBurNixYrqkydPmtfW1v6r/NSVh319fZszMjLoN2/eNHB0dFRcvXqVDgCQnZ3db8SIES3dbaOmpoYSGRnJ+Pbbb++Ym5trAAB27txpaWJios7Pzxfn5OSIDx48aCWRSPR7qoMSelqntLTUYMmSJdVFRUUFJiYm6uTkZDMAgLlz5zK2b99eeuvWLUkfH8IXbtKkSU0VFRX6DAZDMGPGDOezZ8921HdXrFhRnZ+fL759+3ZBa2srmQi8mDVrFnPjxo33pFKpiM/nt65atarXgRKRkZEus2bNqpFKpaLJkyfXf/jhh07EZ01NTZQbN25I169ffy80NJS1Zs2aqqKiooLc3Nx+f/31l0F5eTl1y5YtdleuXJGKRCKxQCCQb9y48ZEO+IiIiLr8/HxxYWGhiMlkKnbv3t3xUL+mpoZ68+ZNyYkTJ4rWrl3rAACQlJRkVlpaSpNKpQX79++/m52d/dg6/9GjR00xDGvttO/krKyswri4uOqu62q1WsjLyxNv2LChbN26dfYAAF9++aV1VVWVnlgsLpBKpaLZs2c/MjqjubmZMmjQoGaRSCT28/NriY2NtQcAmDdvnsvevXtLCwoKxBs3bry3cOFCNJ1PF8XFxQZRUVE1YrFYxGQylZ0/u3PnDm358uXVRUVFBQYGBpquD4ZkMhl56dKlLmfPnr39119/FVZVVekTn3l6erZlZWVJxGKxKDY2tmL16tUOAAAJCQlWpqamaqlUKvrkk08qxWKxUXf7tXr16vv/y5sFMpmMcvz48f7EZ93lk96m253Gxkbyhx9+yDh16lSRRCIRNTY2Uv773/92XAuWlpaq/Px88cyZM2uWLl3qCPDwwcatW7ckEolENG7cuAbigd6KFSsc3n333YaCggJxYGBgE9FXdPHixX6nT582y87OFt24cUP8zTff2HSekgxB3sqo0IrYNU6K27d7fbH2Bo3Nlttv3FDW0zo//PCD+dKlS6sBAIKDg+tSUlLMg4KCGt3d3Vvc3NyUAAB8Pl9eXFysb2xsrHZyclJwudx2gIeda99++60VAMCff/5pfOLEiSIAgIkTJ8oiIyOpXSt2d+7c0Z80aZLjgwcP9Nrb28lOTk6oAfqSXNiz06mm7G6f5jdLJxf5mIXRPeY3XTQaDSk6Otrx+vXrdDKZDNXV1fr37t2jAgDY2tq2/+c//2kBAJg5c2ZtYmKidU5OTpOjo6OCmDpi1qxZtbt377YGgH9VqEJDQxs+/vhj57q6OnJycrLZu+++W0+lUiE7O5t2+/Ztw5EjR2L/2z5YWVl1FPzTp0/vqGD9/fff9HPnzhUDAERFRdWuX7/eEQDg/Pnz/S9fvtwfx3EcAEAul5MlEonBuHHjmp/mGLxKTp065VRdXd2n+cPa2lo+adKkJ84fWu3D2TquXbtG/+ijj6oBALy8vNrs7e3b8/LyDAAAAgICZGZmZhozMzMNnU5Xh4SENAAAuLu7y3Nzc7v9HWFhYfUAAH5+fvIzZ848EgV57do14+PHj98BAKBSqWBhYaEGAEhISLA5e/asKcDDyLiCggIDW1vbbhugyJspWlzqJGlp69Prg9vPQL6T59zj9dF5ihSAh9G9WVlZ/QBQ+frSnPrQCapFfZoXwBqXw6TdT3yv/OOPP/rfvn27Y/RVc3Mzpb6+njxo0KDm5cuXO4WGhtZNnz693s3NTXPlyhXj0NDQOiqVCk5OTqqBAwc2X7161cjExETTNd0hQ4Y0Efc/FovVVlxcTHvw4AF10KBBMnt7exUAwNSpU+syMzPpM2fObHiWn468OC+r3QHwcIRWSEhI7ebNm60NDQ078pyuPDx06NDmzMxMeklJif68efOqk5KSrO7cuaNnYmKi6i7PAgDMnj3becqUKXVE/REAICMjo79EIjEiynyZTEYRiUQGTCZT2V0d1NnZuWOKip7qqQ4ODoqAgIBWAAAvLy95SUkJrba2liKTySjjx49vBgCYM2dO7aVLl0ygD7yMOryJiYkmPz9fdP78eeNff/3V+IMPPnCLi4u7t2TJktpz584Zb9++3batrY3c0NBAxXG8tba2trnz758/f35tSEiIa2/3Jycnp9+lS5duAwAsWrSodtOmTR1BGhMmTGgAAPD29m61srJSEtMasdns1qKiIppEIjEoKioyGDBgABcAQKlUkvz8/B6pm//1119G8fHx9jKZjNLS0kIZNWpUxxRgEydObCCTyTBw4MDW6upqfQCAy5cvG4eGhtZRKBRwc3NT+vn5yXTt/+rVq502bNhgb2Fhody/f38JsTw8PFzn9DpE3TUgIED+6aef6gMAXLp0yTg6OrqaSn3YPWJjY/PIizEoFIp2zpw59QAP81lYWJhrTU0NJScnhx4cHNwxJ61arX6mKTv6Qt1xqZOyqqVP866ebT+5+RTsqdqfTk5OimHDhnUbnOTs7Kzw8/MjruuWkpKSf0VQZ2dnGzCZzDbigXpYWFhtSkqKBQBAbW0tJTQ0lEFEfxP++OMP45UrV1YBAAwePLjVzc2tFbpx9uzZ/jt27LBVKBSkhoYGqpeXlzw0NLQJoPt80tt0u3Pz5k1DFovVSvTvzJw5szY1NdWcGLFLPHSIjIysS0hIsAcAKCoq0n///fedampqqAqFgsxms1sBAP7880/6l19+WfG/dBoiIyM1AAC///678cSJE+vpdLoWALRjxoxp+O233+jEtYsgb2UH8MtQVVVFuX79en+pVGq4ePFiUKvVJBKJpJ0wYUIjjUbrmCOVQqGASqUiER0x3enuMxKJ9K+Fixcvdl66dGlVeHh4Y3p6ujHx1Ap5O7i7u7eeOnWq2+HGe/fuNa+traXm5eWJaTSa1sHBwb21tZUMAEAi/bu+QiKRus1v3aHT6dphw4Y1paammp04ccJ827ZtZQAAWq2WxGKxWnVFZRBzBhPIZPIjG9RqtRAdHV25YsWKml7tDPLERCKRPoVCAQcHB1VP51xfX7/jQzKZDAYGBlri/yqVqtsKL7EOlUrV6lqnq/T0dOPMzEzjrKwsibGxscbPz49D5FMEeZlQ+YpotVrIysoS/6+B1WHjxo1VkyZNajx9+rRJQEAA7/z589LelqEA/76/UigUrVKp7LE+iCC98cknn9z39vbGp02b1lGH0pWHAwMDZfv27bO+d++eIiEhofzMmTNmhw4dMhs0aFC3D9y/+uori7KyMtrJkyfvdF6u1WpJ27ZtKw0ODm7qvDwxMdFCVx2U0FM9tes10traStZqtY/UX193VCoVJkyYIJswYYLMw8OjNSUlxWLevHl1H3/8scuNGzdELBZLuWzZMvu2trbnWi/qXMfrWv8j2qvDhg1rOnXq1B3dqQDMnz+fmZaWJh0wYEDb9u3bLW/cuNHxMixiGwD/buN2bdvqQswB3HU5nU7v9oHF/7apAXiYh4jOWq1WS3pcPuruc61WC6ampqo3aV7l56HzA6iuulzX3bYndJ2bFStWOAQGBjatXr26OD8/n/buu++yH/cdgkwmI69YscI5KytLxGQylUuWLPnXNdVdPulNuro8rjwn0iWRSB3/X7RokcvatWsrJk+e3HT8+PH+//3vf23+l1a3O4HqDMjjvJUdwL15Yt7XUlJSzCZPnlx7+PDhu8SyAQMGcC5fvtztkBahUNhWVlZGKyws1OdwOO3Hjh3reHPpoEGDZElJSRZbtmypTE9PNzYzM1MRQ64IMpmM4uzsrAQAOHDgQLfDspEX42kjdZ9FUFCQ7LPPPiNt27bN8uOPP64BAMjMzDRqbm4mNzY2UiwtLZU0Gk2blpZmXFFR0TGMprKyUj8jI6Pf6NGjWw4fPmweEBDQ7Onp2VZeXq6fn59PEwgEiuTkZIuhQ4d2+yR++vTpdXFxcQ7Nzc2UkSNHtgAAeHh4tNXV1VGJdBUKBSkvL4/m6+v7yJNIb2/v5v3795svWrSobv/+/R35dty4cU3x8fH2kZGRdSYmJpo7d+7o6evrax0cHPr8pSYv2tNE6va1iooK6vz5811mz55dTSaTYciQIc2HDh0ynzhxoiw3N5dWWVmp7+Hh0Xbjxo2+jb77n8GDB8u2bNliFRcXV61SqaCpqYnc0NBAMTExURsbG2uys7MNcnJynukN2Mjr6XGRui9Db8pXOp2u7m4eROQZPEWk7vMyZMiQpoSEBOv169ffB3g4/2ZAQEBrQUEBzc/Pr9XPz6/1xo0b/fLz8w2GDRsm279/v9XixYtrq6urqX/++Sc9MTGx7O7du/rNzc2PndbmnXfeaVm1apVTZWUl1crKSvXjjz+aL1q06JEhzcir62W0OzqzsbFRBwUF1R8+fNhy+vTptQC68zCLxVLW19dTlUolCcfxdn9//+bdu3fbbt26tbRruiKRSP+LL75w+O233yRdX+IbGBjYuGfPHqsJEybIaDSaNjc3l8ZgMJQ91UEJvVmnM0tLSzWdTldfuHCBPmbMmOYDBw6Y97T+k3gZdficnBwamUwGd3d3BQBAdna2oaOjY7tcLicDANja2qoaGxvJaWlpZkFBQfUWFhbq/v37q8+fP08fO3Zs83fffWfh7+/f6xFynp6ezd999515VFRU3TfffGPRU7RtVyNGjGhetWqVk0gk0sdxvL2pqYl89+5dPWLfCa2trWRHR0eVQqEg/fDDD+YuLi49jpx55513ZIcOHbJYsGBBXWlpqd5ff/1Fnz179nMNAhk9enTjnj17rMaOHSujUqlw//59StcoYJVKRUpOTjabPXt2/YEDBywGDhzYbGVlpbayslImJyebRkRENKjVavjzzz8N/f39ex0Z+jw8baTuq8jLy6vtzp07BhKJRB/DsPajR492XOMymYzi6OioBADYt29fR51s8ODBsuTkZPOxY8c2/9///Z9hcXHxI+9MamlpIZHJZK2tra2qvr6enJ6ebjZlypQeX8zam3R18fX1bS0uLjaUSqX6GIa1p6ammr/zzjsd19vBgwfN4uLiqvfv32/u4+PTTPw+Z2fndo1GAwcPHuz4fX5+frLk5GSzzz77rDo1NdWE6LgeMWKELDo62jkuLu6+QqEg/fLLLyaRkZEogArp8FZ2AL8MP/74o8XKlSsrOy9777336r///nur7gpBOp2u3b59+92xY8eyzc3NVV5eXh3DqhISEirCwsIYGIbhhoaGmgMHDjzy1HXNmjUV06dPd7OxsWn39fVtKS0tRZPRv0XIZDKcOXOmeNGiRU47d+60pdFoWkdHR8VXX31V5u3tXTdu3DiWQCDg8fl8OZPJ7OiIdXV1bfv+++8tFi1a5MJkMhXLly9/YGRkpP3mm29KQkJC3NRqNQiFQvny5cu7fZvu5MmTGxcsWMCYPn16DZn8sO/DwMBAe/To0eIlS5Y4y2QyilqtJi1cuPB+dx3AX3/9dem0adNcv/76a5uJEyfWd0q3qaCgoGOImZGRkSY1NfXOm9AB/LIQc5yqVCoShULRTp06tXbt2rX3AQBWrlxZPXPmTBcMw3AKhQJ79+4tIV5G8jzs2bOndNasWS4YhlmSyWTYtWvX3eDg4MZ9+/ZZYRiGu7m5tQmFQjT1A/JK6E35Gh4eXrdw4ULGN998Y3P8+HH09ufXWFtbG9nGxsaD+HvhwoX39+3bVzZv3jxnDMNwtVpNGjhwoCwgIKD0yy+/tL527Vp/MpmsxTCsdcqUKY00Gk177do1Oo/H45NIJO3nn39+z9nZWWVjY6OmUqlaDoeDh4WF1ZiZmT0y3BgAwMXFRRkXF1c+bNgwTKvVkkaNGtU4Y8YMNP0D8kTWrFlTdfDgwY73N+jKwwAAnp6eLWr1w+w4fPhw2aZNmxxGjx79SKfgF198Ydfa2kqePHkyq/PynTt3lsbExNSUlJTQ3N3deVqtlmRubq78+eefi+fNm6ezDkrozTpdfffddyXz5s1jGBoaakaOHNn0uPVfZU1NTZQlS5Y4NzU1USgUipbBYCgOHjx419LSUh0eHv4Ax3G+o6Nje+d6UVJS0p2FCxe6LFmyhOzs7Kw4cuRISW9lg4IbAAAgAElEQVS3t2fPntLZs2cztm3bZmtpaalMSUnp9XednJxUX3/99d3Q0FA3pVJJAgD4/PPPy7t2AK9atap8wIABPHt7+3Yul9va+cVX3Zk9e3b9b7/9ZoxhGN/V1bVtwIABz33Kt48//rjm9u3bBlwul0+hULRz58590Pll2gAPH+7evHnTaMuWLbampqbqkydPFgMAHDt2rDgyMtJlw4YN9kqlkhQSElL7sjuA3yTGxsaanTt33h03bhzb3Nxc5efn13z79m0DAIBVq1ZVRUVFMbZv3247ZMiQjmt/1apVD0JDQxkYhuHu7u5yPp//SDvC1tZWHRISUsvlcvkODg7tnftbdOlNurqYmJhoEhMTSyZOnMjSaDTg6+vbsmTJklric5lMRnF3d+eRyWTtDz/88A8AwKefflrx3nvvse3s7Nq9vLxaGhoaqAAAX375ZUVoaKjr0aNHLYYOHSozMzNT9evXTxMYGNgyceLEeqFQiAMAREVFVaPpH5DO3pqhZTk5OSVCofC1evrR2NhINjEx0Wg0GoiIiHBms9ltxItCEARBEARBEARBEAR5vpRKJZibm3vKZLJbL3tfEEQul5P09fW1VCoV0tPTjWNjYx1yc3Nf+5dgIk8nJyfHUigUMnqzLooAfoXt3LnT8siRI5ZKpZLE5/Ply5Yte606sBEEQRAEQRAEQRAEQZC+IRKJaDNnznRVq9VAo9G033zzTcnL3ifk9YAigBEEQRAEQRAEQRAEQRAEQV4jTxIBjF5QgiAIgiAIgiAIgiAIgiAI8oZCHcAIgiAIgiAIgiAIgiAIgiBvKNQBjCAIgiAIgiAIgiAIgiAI8oZCHcAIgiAIgiAIgiAIgiAIgiBvKNQB/IIlJyebkkgkn+zsbIPerL9u3TprmUzWcZ6GDRvGqqmpoTy/PXx2RkZGXt0tp1AoPlwuF+dwODiO47yLFy/266u0e8vPz49z+fJlo2dJ43VSWlpKnTBhgquTk5PAzc2NP2zYMFZubi7tWdJctmyZfVxcnM3Tfj84OJiRlJRkBgAwdepUl5s3b/bqWkD6FnE9slgsPofDwePj423UanWfpB0dHW1/6tQp457WSU1NNYmNjbXtkw12IzEx0cLMzEzI5XJxJpPJ//zzz62fx3YcHBzcKysrqV2Xd75OenM8kFdL17ImMTHRIiIiwrkv0u58D0Refd3VO7788kurXbt2WQA8e72ipKREb+zYsa7Pso8I0h0SieQzf/58R+LvuLg4m2XLltkD/DsPI6+eVatW2bJYLD6GYTiXy8UvXbr0xG2m7nS+X/XUpvzjjz8MSSSSz4kTJ/o/zXZ01Y1QvnuzVVVVUbhcLs7lcnFLS0uhtbW1B/F3W1sb6UnSunTpUr+5c+c66fq8qKhIb/z48ajsRJAn9MiNGXm+jh49au7t7d2ckpJi7uXlVfG49ffu3Wszf/78OmNjYw0AQGZmZtHz38vng0ajaSQSiQgA4MSJE/1jY2MdAwMDC3vzXY1GA1qt9vnu4BtGo9HAxIkTWWFhYbXp6en/AABcu3bNsKKiQs/Dw0PxsvcPAODYsWN3X/Y+vK06X4/l5eXUkJAQ18bGRsqOHTsee196nJ07dz42jfDw8EYAaHzWbfUkKCioPjk5ubSqqorC4/EE4eHh9SwWS/k8t9md3hwPBNFFqVSCnp7ey94NpJOVK1c+6It0lEolMBgM5fnz5//pi/QQpDN9fX3tzz//bFZZWVllZ2en6vxZX+Rhom5OobzScSmvnYyMjH4XLlwwzcvLExkaGmorKyupCoXiiTrPeqOnNmVKSoqFt7d38+HDh82Dg4Obun7+tOe+r+6dyKvJ1tZWTbQtli1bZk+n09Xr1q27/zRpjRw5smXkyJEtuj5nsVjKs2fPorITQZ4QigB+gRobG8lZWVn0pKSkkp9++qkj+ic9Pd3Yz8+PM3bsWFcmk8mfOHEiU6PRwBdffGFdXV2tN2zYMGzgwIEYwL+fqK5YscKOyWTyAwIC2EFBQUwi2qzz093Kykqqg4ODOwBAYWGhvo+PDwfHcV5PEbijR4924/P5PBaLxd+6daslsdzIyMjro48+cuBwOLhQKOSWlZVRAQAkEom+p6cnVyAQ8JYuXWrfy2NBMTExURHHxd/fH8NxnIdhGH7o0CFTYn9dXV35M2bMcObz+XhxcbE+AMD8+fMdcRzn+fv7YxUVFdSefnNzczNpwoQJrhiG4ePHj3ft/PQxPDzcWSAQ8FgsFj8mJqZX+/06SU9PN6ZSqdrOla2AgIBWf39/ua7jzWQy+VOnTnVhs9n8iRMnMk+dOmXs7e3NdXFxEfz2228dEU65ublGgwYNwlxcXATbtm2zBHhYGYyKinJks9l8DMPw/fv3mxHLIyIinN3c3PjDhw9n1dTUdDx46nze3vTz8SpzcHBQffvttyVJSUnWGo0G5HI5acqUKQwMw3Aej4enpaUZAzyMghw9erTbyJEjWQ4ODu4bN260io+Pt+HxeLhQKOTev3+fAvDvCEcHBwf3mJgYeyK/EaMfOkdUlpWVUQMDA904HA7O4XBw4t70pPciXWxtbdXOzs6KsrIyPQCAiooK6pgxY9wEAgFPIBDwfvnll34ADyurkyZNYnbN2+np6cYjRoxgEelFREQ4JyYmdkSwrFu3zsbd3Z3n7u7Oy8/PfyTCvvPxyMzMNPLy8uJyOBzc3d2dV19fj8rh14xUKtX39/fHMAzD/f39sdu3b+sDPDzPs2bNcvLy8uI6Ojq6E+e8p3tg5zL98uXLRn5+fhyAh3lx+vTpLoMHD2ZPnjyZqav8vnv3rp6vry+Hy+XibDabf/78efqLPyJvn64jYQ4cOGDh5eXFZbPZfKKsbGpqIoeEhDAEAgGPx+N1lLWJiYkW48aNcx05ciRr6NChWGFhoT6bzeYD9L6ehiC9QaFQtBEREQ82btz4yKitznk4Pz+fFhAQgBEj9AoKCmhPUjfXVX87duyYCZPJ5Pv4+HBmzZrlRJSjXa8fNpvNLyws1AfQXe6/TcrLy/XMzc1VhoaGWgAAOzs7FYPBUAIALF++3E4gEPDYbDZ/+vTpLhqNBgCerh2kK0pXo9FAenq6WXJycsmVK1f6y+VyEsCTnXuA7utGnc/9tm3bLAUCAY/D4eBjxoxx6zziFXmz5Ofn07hcLk78HRsba7ty5Uo7AAAfHx/OokWLHNzd3XkMBkNAlHunTp0yHj16tBsAwJkzZ4w5HA7O5XJxHMd5TU1N5M5pFhQU0Hx8fDg8Hg/n8/m8voqYR5A3EbrRvkCpqammw4cPb/Tw8FCYmpqqr1692tGhJhaLDXfv3l1WVFRUUFpaSrt48SL9008/rba2tlZmZmZKb9y4Ie2c1uXLl43S0tLM8vLyRGfPni3Ozc197I3O3t5edeXKFalIJBIfO3bsn5iYmG6Hs6amppYUFBSIb926Jdq7d69NVVUVBQCgtbWV7O/v31xYWCjy9/dv/uqrr6wAABYtWuQ8b968B/n5+WJbW1ud0XUKhYJMDMdeunSpy9q1aysBAIyMjDRnz54tEolE4szMTGlsbKwjUaEpKSkxmD17dq1YLBZhGNbe2tpK9vb2lotEIvHgwYNlq1ev7rGjcOvWrdaGhoYaqVQqiouLqxSJRB3Hafv27eX5+fliiURS8McffxjfuHHD8HHH8HWSm5trKBQK5V2X93S8y8rKDD7++ONqiURSUFxcbJCammqRlZUl2bBhw70NGzbYEWmIxWLDjIyM29evX5ds2bLFvqSkRC85Odk0Ly/PUCwWF/z666/SuLg4x7t37+qlpKSYFhUV0QoLCwsOHDhw9++//+62g+JNPx+vOhzH2zUaDZSXl1MTEhKsAQCkUqno8OHD/0RGRjKIBoBUKjU8ceLEP3/99Zd406ZNDkZGRhqxWCzy9fVt2bt3b7fD+iwtLVUikUg8Z86cB5s3b36kIbpgwQLnoUOHygoLC0UFBQUib2/vNoAnvxfpcvv2bX2FQkEeOHBgKwBAVFSU07Jly+7n5+eLf/rpp+IFCxYwiHW7y9uPO3b9+/dX5+XliaOioqo/+ugjncPV2traSOHh4W47d+4sLSwsFGVmZhbS6XTN49JHXjyivCL+bdq0qaOsWbBggXNYWFitVCoVTZ06tXbhwoUd5/z+/ft6WVlZktOnT99eu3atAwBAb++BXeXm5hpduHChKC0t7Y6u8vv77783HzVqVKNEIhGJxeKCgQMHPnLPR54/uVxOzs7OliQmJt6NjIxkAgDExsbajRgxoik/P1985cqVwk8//dSxqamJDADw999/048cOXLn+vXr/6rb9baehiC9tWLFiuqTJ0+a19bW6gzVDAsLYy5YsKC6sLBQlJWVJXF2dlY+Sd28u/qbXC4nLV261OXcuXO3b968WVhbW9urUae6yv23yaRJk5oqKir0GQyGYMaMGc5nz57tKDNWrFhRnZ+fL759+3ZBa2sr+ejRoyY9pdVTO0iXixcv0p2cnBR8Pl8xcOBA2Y8//tixjd6ce2Ldx9WNwsPD6/Pz88WFhYUiDofTmpiY+FZ2+CMAWq0W8vLyxBs2bChbt27dI237rVu32u7Zs+euRCIR/d///V+hkZHRv+rOzs7OyitXrkjFYrHo0KFDd6Kjo3XWxRHkbfdWTgHxa7LYqa68uU/ngTV3oMtHRfDKelrnhx9+MF+6dGk1AEBwcHBdSkqK+ZAhQ+QAAO7u7i1ubm5KAAA+ny8nol11+f333+njxo1roNPpWgDQBgYGNjxuH9vb20lz5851EYlEhmQyGe7evdvtXLAJCQk2Z8+eNQUAqKqq0isoKDCwtbVt0dPT006bNq0RAMDHx6clIyOjP8DDhsy5c+eKAQCioqJq169f79hdup2HnGdkZPSbPXs2UyqVFmg0GlJ0dLTj9evX6WQyGaqrq/Xv3btHBQCws7NrHzVqVMfwDzKZDPPmzasDAJgzZ07t5MmTWd1ti3D16lX6kiVLqgEABg4c2Iph2P9j777Dmrz6xoF/MyAkJAJhm0GQkAlEQLGISrH6FFugVtwDbR8cWBXF1doWX+uo1uLjSx1F+taBKFpqUXFVrcX1c0CRmYBQGTJkJ0BIIOP3B+/Ni0gYFsVxPtfldUnunfvknO859znn7qgcHz58mH7o0CErjUaDq66uNsrIyDDBGogGUl1iPqutsnlA05uRnamSPpXXY3ozpKfvm8FgqL28vFoAAHg8Xsv48eMVeDwePDw8lFu2bOkokLG0R6VSNd7e3oobN26Y3rhxgzZ9+vQ6IpEILBZLM2rUqKabN29SUlJSOj7ncDht3t7ejd2d18u6H6+aXOl6VnNT/oCmD1MqTykS7uh3+sCmWbl9+zZ1+fLlVQAA7u7uqqFDh7ZmZWWZAACMHj260cLCQmdhYaGjUqnaadOmNQAAuLq6KjMzM7u9jtmzZ9cDAHh5eSnPnDnzzNynt2/fpiUmJj4CACASiWBpaakF6H9e1NXZs2ctuFwuraioyCQqKqqIQqHoAQBu3bo15OHDhx2VlKamJgLWE7e7tG1hYdHj5Mjz58+vAwBYuHBh3VdffWUw6MzMzDSxsbFp8/X1VQIA0Ol01Pjbi7WJGaz8ysYB/X3w7GjKnVMlPf4+OpdXAO29NlNTU00BANLT002xMi8sLKxu06ZNHWVeUFBQA4FAAE9PT1Vtba0RAEBf88Cu/P39sTLeYPn9zjvvNC9evJjT1taGnzp1av3o0aPf2Dzz61tfswrqCwY0LXAtuMrNPpufqyztbPbs2XUAAJMmTWpqamrC19TUEP78888hly5dMo+OjrYDAFCr1biCggJjAICxY8cqbG1tn8lX+hqnIa+Xwap3ALSXM9OmTavdvn27DZlMfqbMqa+vxz958sQ4JCSkAQDgf8tJvVqt7nNs3l38ptVqgcViqQUCQSsAwMyZM+t++umnHh/WAhgu9/v8xQywwYjhzczMdNnZ2bkXL16kXb16lTZ//nynyMjIxytWrKi9cOECbdeuXXYqlQrf0NBAFIlELdDDdFo91YMMOXr0KH3q1Kl1AO337ejRo5bz589vAOjbvcdi995io7S0NHJkZCSjsbGR0NzcTPD19X2h04K9bZKSklhVVVUDmnZtbGyUkydP/sdlZldYXWL06NHKr7766pk2kHfeeacpIiKCNW3atLo5c+bUm5mZPZWXqVQq3L///W8HqVRKIRAI+tLSUlR2IogBb2UD8GCorKwk3LlzZ0h+fj552bJloNVqcTgcTr9///7HAAAkEqljglsCgQAajabHuZ56mg+XSCTqsZc5Yb32AAC2bt1qa2Nj0/brr78+0ul0QCaTPbtum5ycTEtJSaGlpqbKaDSazsvLi9/S0oLH9ovH47FjPHWOeDy+XxP0Tpgwobm+vp5YUVFB/PXXX81qa2uJWVlZUhKJpGcwGK7YMbs+4esKh8P1eM2d1+lMJpMZ79mzxzYtLU1qbW2tDQ4O5qhUqjeqR7yrq2tLUlLSM41tMTExdEPft7Gxccd9xOPxYGJiogdoT5Narbbji+z6neJwuB7TZHf3oLO34X686nJzc40JBAIwGAxNT/fSUBrB4/EG8y1sHSKRqO8tb8M8b17UGTYH8JUrV0yDg4OdP/74Yzmbzdbo9XpITU2VYo1rnXWXto2MjPRYzyeA9oaczutg5/K/6xv88vR6fY/LkdcfltYBni6nDeWBBAKhI21h6RtjamrakegMld+TJk1qun79et6vv/5qtmDBAscVK1Y8WbZsWe2AXhTSK0NlYmJiYoFEInlqzv2bN2+aGopt+hKnIUh/ffHFF088PDxEM2fOrOm6zFB531Os2Dn9GorfequndFem9lTuv22IRCIEBAQ0BgQENLq5ubXExcVZhoaG1q1evdrh7t27uVwuty0iImIoFiv3tx5kiEajgQsXLlhcvnzZfNeuXfZ6vR4aGhqI2EPyvtx7bHlvsdGiRYscExMTC7y9vVuio6MtU1JS0Mty31Bd42iVSoUnEokdacLExEQH0B4Tda5vYr777ruK4ODghqSkJDMvLy/h1atX8zqn682bN9symczWpKSkR62trTgajfaPXhqPIG+yt7IBuC9PzAdaXFycxZQpU2qPHTvW8dKrkSNH8n///fceh4Kamppq5XI53t7e/qnP33333aawsDAHpVJZ0dbWhrty5Yp5SEhINQAAi8VS37t3z9TPz08ZHx/f0QAol8sJTCazlUAgwJ49eyyxQKGzhoYGgpmZmZZGo+nS09NNMjIyeh0q5OHh0RQbG0tfunRpXWxsbJ/e7Jqenm6i0+nA1tZWI5fLCVZWVm0kEkl/9uxZWnl5ucHezzqdDg4ePGixaNGi+kOHDll6eXk19nTNY8aMaTp69Cg9MDCw8f79+yb5+e09Levr6wlkMllHp9O1paWlxD///NPM19e3T72y+ut5e+r+U4GBgY1ff/01Lioqymr16tU1AO3zjxYXFxv39fs25MKFC+Zbt26tUCgU+Dt37tD+85//lGm1WoiNjbVetmxZbVVVFfHevXvU6OjoUo1Gg4uNjbX+7LPPasvKyozu3LlDmzVrVl3n/b3M+/GqeZ6eugOtvLycuHDhQodPPvmkCo/Hd/xugoKCGjMzM0kVFRXGbm5uqrt37w5oTwKMj49P486dO60jIyOrNBoNKBQK/PPkRYZMmDChecqUKbU7duyw3bt3b9mYMWMUO3bssNm8efMTgPaXI2I9J7tL2xqNBgoKCsgtLS04pVKJv3nz5hAfH58mbP9Hjhyhb9u2rfJ//ud/LNzd3Q32VJJIJKonT54Yp6SkUHx9fZX19fV4KpWqQy/4Mqy3nrqDwd3dvfmnn36y+Oyzz+piYmLoI0aMaOppfV9f30ZDeSCTyWy9desWZfr06YqTJ08+88AOY6j8zs/PN3Z0dGxdvXp1TXNzM/6vv/6iAMAb2QA8ED11X5Tjx49bBAYGNl66dIlKo9G0lpaWWj8/P0VUVJTtoUOHSvB4PNy6dYvs4+PTYw/tvsRpyOtnMOodndna2moDAwPrjx07ZjVr1qyn8gc6na6zs7NrjYuLM583b15DS0sLTqPR4PoamxuK3yQSiaq0tJSUl5dnzOfzW0+cOEHHtuFwOOrz58+bAwDcvHmTUlZWRgJ4vjrIizYYMXxGRgYJj8eDq6urGgAgPT2dzGQyW5VKJR4AwM7OTiOXy/Fnz561CAwMrAfofz3IkNOnTw8RCATKmzdvPsQ+mzJlCufYsWPmEyZMeKqs6y127y02UiqVeDab3aZWq3EJCQl0e3v7l/6S3jfZi+ip+7xYLFZbdXW1UXV1NcHU1FT3+++/m33wwQe9jl7G5OTkkEaNGtUyatSoljt37lCzs7NNXF1dVdhyuVxO4HK5ajweD3v37rVEL45HEMPeygbgwfDLL79Yrlu3rqLzZx999FF9XFwcfdasWfWGtps/f37NpEmTnG1sbNo6zwPs6+ur9Pf3l4tEIjGDwVC7ubk1m5mZaQEAPv/88yczZswYlpCQYDl27NiON7euXLmyKjg42CkpKclizJgxjd0NBQsODpYfOHDAmsfjiZycnFQSiaTXYVf79u0rmTlz5rB9+/bZBgUFGbwWbE5FgPYeB/v37y8iEokQGhpaN2nSJK6Li4tQLBYrHR0dVYb2QSaTdTk5OWSxWGxHo9G0p06d+runa16zZk3VzJkzHXk8nkgsFitdXV2bAQC8vb1bXFxclM7OzmI2m6329PTssQL/OsLj8XDmzJnCpUuXsnbv3m1HIpH0TCZTvWnTpvLw8HB2X75vQ9zd3Zvfe+895/LycuM1a9ZUcDicNjab3XD79m2qUCgU43A4/aZNmx6z2WzNvHnzGq5evTqEz+eLHR0dVVijfWdvw/141WC/R41GgyMQCPoZM2bUbty48QkAwLp166rmzZvnwOPxRAQCAWJiYoqwl5G8CPv37y9ZsGCBA4/Hs8Lj8bBnz57i58mLerJx48bKESNGiLZs2VJx4MCB0tDQUDaPxxNptVrcqFGjGkePHl0C0H3aBmjvTSwUCsWOjo4qsVj81BBKtVqNc3NzE+h0OlxCQoLBNxKbmJjo4+PjC1esWMFWqVR4ExMT3fXr1/O7DmVDXm379+8vmT9/Pue///u/7SwtLTVHjhwp6mn9nvLAyMjI8iVLlnB27NjR5unpaTCNGyq/L126RIuOjrYjEol6CoWijY+PfzRgF4oAQHtPJVtbWzfs77CwsGfeaG5hYaF1d3cXNDU1EQ4cOPAIAGD79u3lixYtYgsEApFer8cxmUz1tWvXCno6Vl/iNAR5Hl9++WXl4cOHu52C4ejRo48WLlzosHnz5qFGRkb6X375pbCvsbmh+I1Kpep37dpV7O/v70yn0zWdGwBDQkLq4+PjLQUCgWj48OHNDg4OKoDnq4O8iRQKBWHFihVshUJBIBAIeg6Hoz58+HCxlZWVds6cOdUikUjMZDJbO38//a0HGXLs2DF6UFDQUw1zwcHB9TExMTZdG4B7i917i40+//zzci8vLyGDwWgVCoXKpqamt26+57cFhULRh4eHV3p6egpZLJaax+P1a7qqbdu22d67d4+Gw+H0QqGw5eOPP1ZgUyoBAERERFRNmzbNKTExke7r66voPFoRQZCn4d6WJyQZGRlFEonkmaFPrzO5XI43MzPTNTY24r29vfk//vhjMTanMIIgCNI/ERERQ6lUqvabb755poEHQRAEQZC+w+opOp0OQkJC2M7OzqqNGzdWDfZ5IQiCIMibJCMjw0oikXD6si7qAfwamzt3rsPDhw/JarUaN3PmzFrU+IsgCIIgCIIgyGDbvXu31fHjx63a2tpwYrFYGRER8UZ1xEEQBEGQ1w3qAYwgCIIgCIIgCIIgCIIgCPIa6U8P4LfyzaoIgiAIgiAIgiAIgiAIgiBvA9QAjCAIgiAIgiAIgiAIgiAI8oZCDcAIgiAIgiAIgiAIgiAIgiBvKNQAjCAIgiAIgiAIgiAIgiAI8oZCDcAv2ZEjR8xxOJxnenq6yYs+Vl5envGPP/5Ix/6+fv06ZcGCBawXfVzk1VFSUkIMCAgYxmKxXJycnMS+vr7czMxM0mCfFzL4CASCp0AgEGH/NmzYYPeijpWcnEzz8/Pjvqj9I8hAo1Ao7p3/jo6OtgwJCWEP1vkgg6drWgAA+O6776z37NljCdCeNoqKioywZQwGw7WiooL4Is+p8/ERxBAcDue5cOFCJvZ3ZGSkbURExFAAlIZedevXr7fjcrliHo8nEggEoj/++MN0MM8nODiYc/DgQYvBPAfk1VdZWUnA6hVWVlYSGxsbN+xvlUqF68s+PvroI8e4uDjzF32uCPK2eqEBKvKshIQEuoeHR1NcXBzd3d29vPMyjUYDROLA3ZKHDx+STpw4QV+yZEkdAMC4ceOU48aNUw7YAZBXmk6ng6CgIO7s2bNrk5OT/wYAuH37Nrm8vNzIzc1N/SKP3dbWBkZGRr2viAwaEomkk8lkuYN9Ht1B6QdB/g/6Pbx61q1bV439/+jRo1bDhw9v4XA4bYNxfAQxxNjYWH/+/HmLioqKSnt7e03nZQOVhga67oIAXLlyxfTSpUvmWVlZuWQyWV9RUUFUq9V9ajxDkMFkZ2enxeoWERERQ6lUqvabb7550tft29peWjGKIG8t1AP4JZLL5fjU1FTqwYMHi3777TcLgPaecaNGjeIFBgY68vl8MQDA2rVr7R0dHcWjR492DgwMdIyMjLQFAMjJySGNHTvWWSwWCz09PflYL+Lg4GDOggULWO7u7gImk+mKPaH98ssvGampqVSBQCDatGmTTedeeBEREUOnTZvG8fLy4jOZTNctW7bYYOc5YcIEJ7FYLORyueLvv//e6mV/T8jASE5OphGJRH3nIH/06NEt3t7eSm9vb55IJBLyeDzR0aNHzQHae4w7OjqKZ4LYd/MAACAASURBVMyY4eDs7CwOCgpyTEpKonl4eAgcHBxcrl27RgEAUCgU+GnTpnFcXFyEQqGwY/vo6GjLSZMmDRs/fjx37NixPJ1OB4sXL2Y6OzuLeTyeKDY21gKgvWG6u8+Tk5NpXl5efH9//2GOjo7ioKAgR51O9/K/uLdcSkoKxd3dXcDn80Wurq7C+vp6fNfej35+ftzk5GQaAMCcOXPYLi4uQi6XK161atVQbJ3ExMQhjo6OYk9PT35iYmLHk/wnT54QJkyY4MTj8UQSiURw9+5dMkB7njRr1iwHHx8f5ylTpji+zGtGkP7o2hMK6yHaUx524sQJM+z3sGDBAhZWFl+7do3i7u4uEAqFInd3d0FGRgYJ4Nn8dPLkyY5YXgsAEBQU5BgfH2/2Ui8c6RARETE0MjLS9uDBgxbZ2dmUkJCQYQKBQNTU1IQDAPjuu+9ssDIWi9WwbbB9ODs7i/Py8owBDMddFArFffny5Qw+ny+SSCSC0tJSYtd9RUVFWbm4uAj5fL7o/fffd2psbESxPQIAAAQCQR8SElK9bds2267LOqehlJQUCo/HEw0fPlyAxWcA7Y27ixcvZrq4uAh5PJ5o586dVgDd112QgVNWVmZEp9M1ZDJZDwBgb2+v4XA4bTdu3KCMHDmSLxaLhWPGjHEuLi42AgDw8vLih4WFMVxdXYUcDsfl4sWLVADD90+r1cLcuXPZXC5X7Ofnx/X19eViZdqaNWvsXVxchM7OzuJZs2Y5oDgcGQjZ2dkkgUAgwv7esGGD3bp16+wBADw9PfnLly9njBgxgv/tt9/adN7us88+Y0yfPt1Bq9VCSkpKR/ofN26cc2lpKTEjI4Pk6uoqxNb/66+/TDr/jSDIs1CQ+BLFx8ebv/vuu3I3Nze1ubm59ubNmxQAgMzMTNOdO3eWFRYW5ly/fp1y9uxZi6ysrNxz584VZmZmdgz5CQ0Nddi3b19JTk6OdOfOnY/DwsI6GmSePHlilJqaKjt9+vTDjRs3MgAAtm7dWjZixIgmmUyWu3Hjxqqu51NQUGCSkpKSf//+fen3338/FHu6HB8fX5STkyN98OBBbkxMjG1lZSXhxX87yEDLzMwkSySSZ3p8UygU3blz5wpyc3OlKSkp+Rs2bGBiAV5paanJ6tWrq2QyWU5hYaFJfHy8ZWpqqmzr1q2Pt27dag8AsGHDBns/Pz9Fdna29MaNG3lfffUVU6FQ4AEA/vrrL+rx48cf3blzJ//IkSPmWVlZZKlUmnP16tX8yMhIZnFxsZGhzwEApFIpee/evaUFBQU5JSUlpMuXL1Nf4lf2VlGr1fjOU0DExsZaqFQq3Jw5c5x2795dkpeXl5uSkpJHpVJ7jP537dpVlp2dLZXJZDm3bt2i3b17l6xUKnHLli3jnDlzpuD+/ft5VVVVHd0X161bN1QikSjz8/NzN2/eXDZ//vyOxt7MzEzKpUuXCs6ePfvoRV47gvSm6+/j22+/Hdr7Vt3nYUqlEhceHu5w4cKFh2lpaXm1tbUd3eUkEonq3r17MqlUmrtx48aydevWdQzX7pyfLly4sPrQoUOWAAC1tbWEtLQ06vTp0+UDf+VIf3zyySf1Li4uyiNHjvwtk8lyqVSqHgDAyspKk5ubK/3000+rt2/f/kzjW1eG4q6Wlha8t7d3U15eXq63t3fTDz/8YN112zlz5tRnZ2dL8/Lycvl8fkt0dDR6cI90WLt2bdWpU6fotbW1BmP50NBQx7179xY/ePBARiAQ9Njnu3fvtjIzM9NmZ2dLMzIypIcPH7aWyWTGAE/XXV7GdbxNJk+erCgvLzfmcDguc+fOZZ87d46qVqtxK1asYJ8+fbowJydHOn/+/Jo1a9YwsG00Gg0uKytLumPHjtJvvvlmKIDh+3fkyBGL0tJS47y8vJzDhw8Xpaend8Taa9eurcrOzpY+fPgwp6WlBZ+QkIAeNCIvnEKhwKempuZFRkZ2tFeEhoYyFQoFISEhobi1tRW3cuVK9pkzZwpzcnKks2bNql23bh1DIpGoSSSS7v79+yYAAAcOHLCaO3duzeBdCYK8+t7KMTuX9u9m1ZQWUwZyn1YsB+X7YStLe1rn5MmT9PDw8CoAgODg4Lq4uDh6YGCg3M3NrVkgELQCAPz555/USZMmNfxvJUI/ceLEBoD23sPp6enUadOmOWH7a21t7RgOFBQU1EAgEMDT01NVW1vbp7Gi//rXvxrIZLKeTCZr6HR62+PHj4lOTk5tO3bssD137pw5AEBlZaVRTk6OiZ2dXXO/vxQEAACSkpJYVVVVA5rebGxslJMnT+4xvRmi0+lwK1euZN65c4eKx+OhqqrK+PHjx0QAAAaDofby8moBAODxeC3jx49X4PF48PDwUG7ZsmUoAMCff/455NKlS+bR0dF2AABqtRpXUFBgDAAwduxYha2trRYA4MaNG7Tp06fXEYlEYLFYmlGjRjXdvHmTYuhzMzMznaura7OTk1MbAIBYLFYWFhYa//Nv69W2UlrCkjWrBjR9CExNlLuF7B7TR3dTQNy7d49sY2PT5uvrqwQAoNPpvXb9OHz4MP3QoUNWGo0GV11dbZSRkWGi1WqByWSqXV1d1QAAc+bMqf3pp5+s//cYtF9//bUAACAoKKhx0aJFRKxi6u/vj+V9CNIu6TMWVOUO6O8DbERKmLy3X7+P6Ohoy9TU1F7nYOwuD6PRaFoWi6XGyvmZM2fWYb+Huro6wowZMxyLiopMcDicvq2traNc75yffvjhh00rV650KCsrI8bHx1t8+OGH9W/btBDlG75kqR8+HNC0QHJ2Vg7dtvW5ytKezJ49ux4AwMvLS3nmzJle5800FHcZGRnpZ86cKQcA8PT0bL5y5cqQrtumpaWRIyMjGY2NjYTm5maCr68vejDwihmsegdAezk+bdq02u3bt9uQyeRnyvSamhpCc3MzfuLEic0AAPPnz6+7fPmyOQDAlStXhshkMgqWhhsbGwm5ubkmxsbG+s51lzfZYMTwZmZmuuzs7NyLFy/Srl69Sps/f75TRERE+cOHD8njx4/nAbSPprO2tu4YLz9t2rR6AIDRo0c3r1271hjA8P27ceMGdcqUKfUEAgHYbLbmnXfeacT2c+HCBdquXbvsVCoVvqGhgSgSiVoAAOUpr6Fc6XpWc1P+gKZdUypPKRLuGPAyc86cOXWd/96yZcvQESNGNMXHx5cAAKSnp5sUFBSY+Pn5daR/Ozu7NgCA+fPn1xw4cMBq+PDhj8+ePWuRkZHxSk5vhyCvireyAXgwVFZWEu7cuTMkPz+fvGzZMtBqtTgcDqcPCAiQUyiUjoBMr+++7UOr1QKNRtMYmrPTxMSkY0ND++iKRCJ1rEggEECj0eCSk5NpKSkptNTUVBmNRtN5eXnxW1paUE/x15Crq2tLUlLSMxXPmJgYem1tLTErK0tKIpH0DAbDFbvHxsbGHWkCj8d3pCsCgQBarRYH0J6+EhMTCyQSyVPzCN+8edO0L2m5p/TZXZrs6/Ui/5xerwccDvfMDSISifrOwwDVajUeAEAmkxnv2bPHNi0tTWptba0NDg7mqFQqPAAADtf9revu/mPHNDU1RWMNkVcekUjUa7VaAGivhHRutO0uD+spz1u/fj3D19e38fLly4V5eXnG48eP52PLOuenAADTp0+v/emnn+i//vor/eeffy4awEtCBhhWdhKJRD1WjnWTj+IA2ofTG4q7iESiHo9vD8GIRGK3ZeKiRYscExMTC7y9vVuio6MtU1JSaC/+CpHXyRdffPHEw8NDNHPmzGd6xvWUP+n1elxUVFRJcHCwovPnycnJtK75EzKwiEQiBAQENAYEBDS6ubm1/Pjjj9ZcLrflwYMHsu7W75TndI7Xu71/Z8+e7bZXr1KpxK1evdrh7t27uVwuty0iImIoFtMhyD9hZGT0VPmnUqnwRCKxI/PpOtrQ3d29OSMjw7S6uppgbW2t1ev1wOPxWtLS0vK67nvBggX1rq6u9seOHWvy8PBosrKy0r7Qi0GQ19xb2QDclyfmAy0uLs5iypQptceOHSvGPhs5ciT/+vXrTw1xf/fdd5vCwsIclEplRVtbG+7KlSvmISEh1XQ6XcdkMlt//vlni08//bRep9PB3bt3yd7e3i2GjmlmZqZtamrq1/QNDQ0NBDMzMy2NRtOlp6ebZGRkDOpbZ98Ez9tT958KDAxs/Prrr3FRUVFWq1evrgFon+etuLjY2MrKqo1EIunPnj1LKy8v71cvWz8/P0VUVJTtoUOHSvB4PNy6dYvs4+PzTDr09fVtjI2NtV62bFltVVUV8d69e9To6OhSjUaD6+7zzMxM8kBd++ukt566L5NEIlE9efLEOCUlheLr66usr6/HU6lUnZOTU2tsbCxFq9XCo0ePjLCpaerr6wlkMllHp9O1paWlxD///NPM19e3cfjw4arHjx8b5+TkkMRisTohIYGOHeOdd95pPHjwoOXOnTsrkpOTaRYWFpq+9DRG3lK99NQdDA4ODq1paWmU0NDQ+vj4ePPeHlRJJBJVaWkpKS8vz5jP57eeOHGi4/egUCgITCazFQAgJiamx6H7S5YsqRk1apTQysqqbcSIEaqBuZrXx4voqTsQqFSqVi6X9xprcTgc9fnz580BAG7evEkpKysjAfzzuEupVOLZbHabWq3GJSQk0O3t7dFbdF4xg1Hv6MzW1lYbGBhYf+zYMatZs2bVdl5mbW2tNTU11V29etX0vffea46Li+vInyZOnCjfv3+/dUBAQCOJRNJnZmaSXubLDl8FgxHDZ2RkkPB4PGCjqNLT08nOzs6q69evD7ly5YrphAkTmtVqNS4rK4vUU1lg6P6NHTu2KS4uznLZsmW15eXlxLt379JmzZpVp1Qq8QAAdnZ2Grlcjj979qxFYGBg/cu6bmRgvYieus+LxWK1VVdXG1VXVxNMTU11v//+u9kHH3zQYGj9Dz/8UD5+/HjF+++/73zt2rV8Dw8P1ZMnT4yvXbtG8fPzU6pUKlx2djZpxIgRKhqNpvPx8VGsXbuWHRMTU/QSLwtBXktvZQPwYPjll18s161bV9H5s48++qj+559/tnZwcOjoSenr66v09/eXi0QiMYPBULu5uTWbmZlpAQCOHz/+98KFCx127Nhhr9FocB9//HFdTw3AXl5eLUQiUc/n80WzZ8+u8fT0NLguJjg4WH7gwAFrHo8ncnJyUkkkEjT1w2sKj8fDmTNnCpcuXcravXu3HYlE0jOZTPWmTZvKw8PD2S4uLkKxWKx0dHTsV0PC9u3byxctWsQWCAQivV6PYzKZ6mvXrhV0XW/evHkNt2/fpgqFQjEOh9Nv2rTpMZvN1hj6PDMzc+AuHukVNscp9vf48ePl+/btK4uPjy9csWIFW6VS4U1MTHTXr1/PnzhxYtPevXvVfD5fzOfzW0QikRIAwNvbu8XFxUXp7OwsZrPZak9PzyYAAAqFov/hhx+KAwICuHQ6XTNq1KgmqVRKBgDYsWNH+ezZszk8Hk9EJpN1hw4dQvP9Iq+V5cuXVwcEBHBdXV2F48aNU3Q3rLozKpWq37VrV7G/v78znU7XuLu7d5Sr69evrwwNDXWMjo62Gzt2rKKn/bBYLI2Tk5MqMDDQYKUJGXgqlQpva2vrhv0dFhb21BvNQ0JCapYvX+6wdu1aXWpqqtTQfkJCQurj4+MtBQKBaPjw4c0ODg4qgH8ed33++eflXl5eQgaD0SoUCpX9ffCPvB2+/PLLysOHDz8zhzQAQExMTNGSJUscKBSKzsfHp5FGo2kBAFatWlVTVFREcnV1Fer1ehydTm87f/584cs987ePQqEgrFixgq1QKAgEAkHP4XDUhw8fLn706FH1ihUr2I2NjQStVosLCwt70lMDsKH7N3/+/PorV67QeDye2NHRUSWRSJrNzc21VlZW2jlz5lSLRCIxk8lsRXVAZKBQKBR9eHh4paenp5DFYql5PF6vbRKLFi2qb2xsJPj7+3OvXr36MCEhoTA8PJzV1NRE0Gq1uGXLllVi6T8kJKTu2rVrZkFBQT3GUQiCAPQ4NPFNkpGRUSSRSF6LScHlcjnezMxM19jYiPf29ub/+OOPxWPGjHnmZV4IgiAIgrz6sHJdp9NBSEgI29nZWdXdy1l70tjYiBeJRKIHDx5ILS0t0RBHBEEGBJY/AQBs2LDBrqKiwujgwYOvTO9BZOBh97yyspIwcuRI4a1bt2RsNlsz2OeFIM9jw4YNdmq1GhcVFVXR+9oI8ubJyMiwkkgknL6si3oAv4Lmzp3r8PDhQ7JarcbNnDmzFjX+IgiCIMjra/fu3VbHjx+3amtrw4nFYmVERES/HkgnJSXRwsLCOGFhYU9Q4y+CIAPp5MmTZlFRUfZarRbHYDDUx44dKxrsc0JerIkTJzorFApCW1sbbu3atRWo8Rd5XY0fP55bXl5unJKS8sz8wAiCPAv1AEYQBEEQBEEQBEEQBEEQBHmN9KcHMHqzJ4IgCIIgCIIgCIIgCIIgyBsKNQAjCIIgCIIgCIIgCIIgCIK8oVADMIIgCIIgCIIgCIIgCIIgyBsKNQAjCIIgCIIgCIIgCIIgCIK8oVAD8Et25MgRcxwO55menm7yso/t6+vLrampIbzs4yKDp6SkhBgQEDCMxWK5ODk5iX19fbmZmZmkF3U8CoXi/qL2jQwsAoHgKRAIRNi/DRs22A3k/m/fvk0+ceKE2UDuE0FelufNyyIiIoZGRkbaDsQ5BAcHcw4ePGgxEPtCnt+rUK6htIA8DxwO57lw4UIm9ndkZKRtRETEUACA7777znrPnj2WA3Usd3d3wUDtCwFYv369HZfLFfN4PJFAIBD98ccfpn3d1lB+cf36dcqCBQtYA3umCPJ/KisrCVi9wsrKSmJjY+OG/a1SqXB92cdHH33kGBcXZ/6izxWzfPlyxtmzZ2mGlh8+fNh8MNptEORFIQ72CbxtEhIS6B4eHk1xcXF0d3f38s7LNBoNEIkv7pakpKQUvLCdI68cnU4HQUFB3NmzZ9cmJyf/DdDeKFdeXm7k5uamHuzzQwYXiUTSyWSy3Be1/9TUVEpqaqrpjBkz5C/qGAiCIMjze9FxJzK4jI2N9efPn7eoqKiotLe313Retm7duuqBOAaWhtLT02UDsT8E4MqVK6aXLl0yz8rKyiWTyfqKigqiWq3uU+NZW1ubwWXjxo1Tjhs3TjlgJ4ogXdjZ2WmxukVERMRQKpWq/eabb570dfue0u+L8sMPP5T1tPzUqVMWeDy+3t3dXfWyzglBXiTUA/glksvl+NTUVOrBgweLfvvtNwsAgOTkZNqoUaN4gYGBjnw+X5yXl2fs6OgonjFjhoOzs7M4KCjIMSkpiebh4SFwcHBwuXbtGgUAQKFQ4KdNm8ZxcXERCoVC0dGjR80BAKKjoy3/9a9/OY0dO9bZwcHBZcmSJR1P/hkMhmtFRQURAGDChAlOYrFYyOVyxd9//73VYHwfyIuVnJxMIxKJ+s5B/ujRo1u8vb2V3t7ePJFIJOTxeB1pJy8vz3jYsGHimTNnOnC5XLGPj49zU1MTDgAgKirKysXFRcjn80Xvv/++U2NjIx4AQCaTGQ8fPlzg4uIiDA8PH4odRy6X47s7BvLqO3HihJmjo6PY09OTv2DBApafnx9Xq9WCg4ODS3l5OREAQKvVApvNdqmoqCAGBwdzZs+ezfb09ORzOByX48ePm6lUKty333479OzZsxYCgUAUGxuLeq4hr62vvvrKlsfjifh8vmjp0qUMAICcnBzS2LFjncVisdDT05PfXe8QQ/lmcHAwZ8GCBSx3d3cBk8l0xXpq6XQ6CAkJYTs5OYnfffddbk1NDWqZe0V17WGH9RI+cuSI+ejRo3k6nQ6Ki4uNOByOS0lJCVGj0cDixYuZLi4uQh6PJ9q5c6cVQHs5PXLkSP4HH3wwjMPhuCxdupSxf/9+uqurq5DH44lycnI6RuxcvnyZ1jmfBQBQKpW4qVOncng8nkgoFIqwXkzR0dGWISEhbGxbPz8/bnJyMg0715UrVw51c3MTXL16ldpdnv9yvkXkRSMQCPqQkJDqbdu2PTMqofNohZSUFAqPxxMNHz5csHjxYqazs7MYoL1x11C67Vx3Afi/3wCK//65srIyIzqdriGTyXoAAHt7ew2Hw2m7ceMGZeTIkXyxWCwcM2aMc3FxsREAgJeXF3/ZsmWMkSNH8rds2WIL0H1+kZycTMN+39euXaO4u7sLhEKhyN3dXZCRkfHCRgciSHZ2NkkgEIiwvzds2GC3bt06ewAAT09P/vLlyxkjRozgf/vttzadt/vss88Y06dPd9BqtWBra+u2fPlyhkQiEbi4uAhv3rxJ8fHxcWaxWC5RUVFWnfeNlaFr1qyxx47v7Owsnj59ugOXyxWPGzfOWalU4gCe7nG8ePFippOTk5jH44nCwsIYFy9epP75559mn3/+OUsgEIjy8vKMv/vuO2sstps0adIwrK780UcfOX7yyScdsd2RI0dQ3oe8klAD8EsUHx9v/u6778rd3NzU5ubm2ps3b1IAADIzM0137txZVlhYmAMAUFpaarJ69eoqmUyWU1hYaBIfH2+Zmpoq27p16+OtW7faAwBs2LDB3s/PT5GdnS29ceNG3ldffcVUKBR4AIDc3FxKUlLS31KpNOfMmTMWBQUFRt2cS1FOTo70wYMHuTExMbaVlZVoaog3TGZmJlkikTzzpJ9CoejOnTtXkJubK01JScnfsGEDU6fTAQBASUmJyYoVK6oKCgpyzMzMtEeOHLEAAJgzZ059dna2NC8vL5fP57dER0dbAQAsXbqUHRoaWp2dnS21s7Nr68sxkFeDWq3Gd54CIjY21kKpVOLCw8MdLly48DAtLS2vtraWCABAIBBg6tSptT/99BMdAOD06dNDhEJhC9ajqLS0lHTv3r28s2fPPly5cqWDTqeDL774ojwwMLBeJpPlLly4sH4wrxVBntfJkyeHnDt3ziItLU2Wl5eXu3HjxkoAgNDQUId9+/aV5OTkSHfu3Pk4LCyM3XVbQ/kmAMCTJ0+MUlNTZadPn364ceNGBgBAXFyceUFBASkvLy/n0KFDxX/99Rf15V0pMhBCQkIarK2t27Zv3269YMEChy+++KKczWZrdu/ebWVmZqbNzs6WZmRkSA8fPmwtk8mMAQBkMhl5//79pVKpNCcxMdEyPz/fJCsrSzpv3ryaqKiojspw13xWqVTiduzYYQMAkJ+fn3vs2LG/Fy1axMEqtYa0tLTgXVxcWjIzM2Vjx45t7i7PR94ca9eurTp16hS9trbWYJwfGhrquHfv3uIHDx7ICASCHvu8p3Tbte6CQfHfPzd58mRFeXm5MYfDcZk7dy773LlzVLVajVuxYgX79OnThTk5OdL58+fXrFmzhoFt09DQQLh//37epk2bngB0n190PoZEIlHdu3dPJpVKczdu3Fi2bt06ZtfzQJCXRaFQ4FNTU/MiIyOrsM9CQ0OZCoWCkJCQUEwgtGdfHA5HnZGRIfP09GxauHAh58KFC4W3b9+WffvttwyA9k4sJSUlxhkZGVKpVJp79+5d6uXLl00BAB49ekRas2ZNVUFBQY6JiYmu68Op0tJS4tWrV80ePnyYk5+fn7t58+ZKf3//pnfffVe+ffv2UplMlsvn81tDQkLqsNjO0dFRvXfv3o7YrqamhpiWlib79ddfC7DYDkFeNW9loFeXmM9qq2ymDOQ+jexMlfSpvNKe1jl58iQ9PDy8CgAgODi4Li4ujh4YGCh3c3NrFggErdh6DAZD7eXl1QIAwOPxWsaPH6/A4/Hg4eGh3LJly1AAgD///HPIpUuXzKOjo+0AANRqNa6goMAYAGDMmDEKS0tLLQAAl8tVFRYWkrhc7lNjKnbs2GF77tw5cwCAyspKo5ycHBM7O7vmgftGEEyudD2ruSl/QNObKZWnFAl39JjeDNHpdLiVK1cy79y5Q8Xj8VBVVWX8+PFjIkB72hs9enQLAIC7u7uyqKiIBACQlpZGjoyMZDQ2NhKam5sJvr6+cgCAv/76i3rhwoVCAIDFixfXbt68mdnTMdhstqb7s3p7rU3MYOVXNg5o+uDZ0ZQ7p0p6TB/dTQFx+/ZtMovFUmP50cyZM+t++uknawCAsLCwmqCgIG5kZGTVzz//bLVgwYIabLvg4OA6AoEArq6uahaLpX7w4AGaKwsZEF/f+ppVUF8woL8PrgVXudlnc5/yz8uXLw+ZO3duDY1G0wEA2NraauVyOT49PZ06bdo0J2y91tbWZxrdDOWbAABBQUENBAIBPD09VbW1tUYAACkpKbTp06fXEYlE4HA4bd7e3o3//GrfHFePSFl1ZU0DmhboDKryvRDhc5Wlhvz0008lYrFY7O7u3rx48eI6AIArV64MkclklDNnzlgAADQ2NhJyc3NNjI2N9a6urs0ODg5tAABsNls9adIkOQCARCJpSUlJ6ZiXsLt89vbt29Tly5dXAQC4u7urhg4d2pqVldVj/ksgEGDBggX1AAAPHjwwMZTnIwNnsOodAAB0Ol03bdq02u3bt9uQyeRnWmJramoIzc3N+IkTJzYDAMyfP7/u8uXL5gA9p9uudRfMmxb/DUYMb2ZmpsvOzs69ePEi7erVq7T58+c7RURElD98+JA8fvx4HkD7iBFra+uOut2sWbPqOu+jt7isrq6OMGPGDMeioiITHA6nb2tr69MUE8jrY6W0hCVrVg1o2hWYmih3C9kDWmYCAMyZM+ep9Ltly5ahI0aMaIqPjy/p/Pn06dMbAABcXV1bNBoNbsiQIbohQ4bo8Hi8Xi6X4y9dujTk2rVrZiKRSAQAoFQq8VKp1MTe3r6JzWZ3tK+4u7s3Y3VcjI2NjRaPx+tnzZrl8OGHH8oNTWF3//59yn/9138NxWK7995776nYDo/Hw6hRo1qqqqqMB+bbQZCB9VY2FXhn4QAAIABJREFUAA+GyspKwp07d4bk5+eTly1bBlqtFofD4fQBAQFyCoXyVEBmbGzc8fQdj8eDiYmJHqA9aNdqtTgAAL1eD4mJiQUSieSpuVxv3rxp2nl7AoHwTKGenJxMS0lJoaWmpspoNJrOy8uL39LSgnqDv2FcXV1bkpKSnhl6HxMTQ6+trSVmZWVJSSSSnsFguGL3v2vawT5ftGiRY2JiYoG3t3dLdHS0ZedKKR6P1/fnGMirS69/5lZ24HK5bVZWVpozZ87Q0tPTTZOSkv7GluFwT9cbuv6NIK8rvV7/THrWarVAo9E0vc2h3VO+iZXr2DEw6LfzeiASiXqtVgsA7Q0xneOsoqIiIzweDzU1NUStVgsEAgH0ej0uKiqqJDg4WNF5P8nJyTQSidRtzIfH4ztiPoDu81lDeTaRSNR37nWpVqs7yl9jY2MdNu9vT3k+8ub44osvnnh4eIhmzpxZ03VZT2mgp3Tbte6CQfHfwCASiRAQENAYEBDQ6Obm1vLjjz9ac7nclgcPHnQ71zL2kBLTW1y2fv16hq+vb+Ply5cL8/LyjMePH88f6GtAEIyRkdFTZZJKpcITicSOzIdKpT6Vft3d3ZszMjJMq6urCdbW1lrsc2xaFDweD53LThwOB21tbTi9Xg9r1qypWLVq1VN5XXZ2NqlLHRc0Gs1TPwoSiaTPyMiQJiUlDUlISKDHxMRY37p162HXa1m4cKHj2bNn80eOHKnatWuX1d27dzte0GgotkOQV8lb2QDclyfmAy0uLs5iypQptceOHSvGPhs5ciT/+vXrzzXE08/PTxEVFWV76NChEjweD7du3SL7+Pi09GXbhoYGgpmZmZZGo+nS09NNMjIy+vxmWaT/nren7j8VGBjY+PXXX+OioqKsVq9eXQPQPs9bcXGxsZWVVRuJRNKfPXuWVl5e3usTSqVSiWez2W1qtRqXkJBAt7e3bwMA8PDwaIqNjaUvXbq0LjY2tuNt0nK5nNDfY7yteuup+zJJJBJVaWkpKS8vz5jP57eeOHGC3nn5p59+Wh0aGuoYHBxc2/nFQadOnbJYtmxZrUwmI5WWlpIkEokqLy+P1NTUhCp9yD/S1566L4q/v79i69atQxcuXFhHo9F0T548Idja2mqZTGbrzz//bPHpp5/W63Q6uHv3Ltnb2/upMthQvmmIr69vY2xsrPVnn31WW1ZWZnTnzh1a115db7OB7qn7Tzg4OLSmpaVRQkND6+Pj482ximRbWxt88sknjocOHfr70KFDlps2bbL95ptvnkycOFG+f/9+64CAgEYSiaTPzMwkcTicfr3tprt8dsyYMU1Hjx6lBwUFNWZmZpIqKiqM3dzcVA0NDYTY2FiKVquFR48eGWVmZnYb5/WW5yMDYzDqHZ3Z2tpqAwMD648dO2Y1a9as2s7LrK2ttaamprqrV6+avvfee81xcXEdaeB50u2bFv8NRgyfkZFBwuPx4OrqqgYASE9PJzs7O6uuX78+5MqVK6YTJkxoVqvVuKysLNKIESO6fTFVd/nFH3/80VHnVCgUBCaT2QoAEBMTg94F8wZ6ET11nxeLxWqrrq42qq6uJpiamup+//13sw8++KDB0PoffvihfPz48Yr333/f+dq1a/lmZmZ9mkfG399fsX37dvt///vfdUOGDNEVFhYaUSiUPrXE1tfX41taWvCzZs2S+/r6NovFYjEAAJVK1WLTbAK0T6PEZDI1arUad/LkSbqDgwN6sTryWnkrG4AHwy+//GK5bt26is6fffTRR/U///yz9fNkHNu3by9ftGgRWyAQiPR6PY7JZKqvXbtW0Jdtg4OD5QcOHLDm8XgiJycnlUQiQVM/vIHweDycOXOmcOnSpazdu3fbkUgkPZPJVG/atKk8PDyc7eLiIhSLxUpHR8de32r6+eefl3t5eQkZDEarUChUNjU1EQAA9u3bVzJz5sxh+/btsw0KCuqY5zU0NLRu0qRJ3P4cA3m5sDmAsb/Hjx8v37dvX9muXbuK/f39nel0usbd3f2pvGHWrFnyZcuWERYtWvRUBZLL5aq9vLz4tbW1Rrt37y6mUCj6SZMmNX7//ff2AoFAtHr16go0DzDyOpo6darir7/+ogwfPlxoZGSknzBhgnzPnj1lx48f/3vhwoUOO3bssNdoNLiPP/64rmsDsKF805B58+Y1XL16dQifzxc7OjqqvLy80BQQrwCVSoW3tbV1w/4OCwt7snz58uqAgACuq6urcNy4cQpsaP0XX3xh/8477zT6+/s3jRo1Sunh4SGcPHmyfNWqVTVFRUUkV1dXoV6vx9Hp9Lbz588X9uc8ustn161bVzVv3jwHHo8nIhAIEBMTU0Qmk/UTJ05s2rt3r5rP54v5fH6LSCR65n0AAABUKlXfU56PvDm+/PLLysOHD3c7vUdMTEzRkiVLHCgUis7Hx6eRRqNpAQCeJ92i+O+fUygUhBUrVrAVCgWBQCDoORyO+vDhw8WPHj2qXrFiBbuxsZGg1WpxYWFhTww1AHeXX3Revn79+srQ0FDH6Ohou7Fjxyq62weCDBQKhaIPDw+v9PT0FLJYLDWPx+u109qiRYvqGxsbCf7+/tyrV68+0xO3OzNmzJBLpVKTESNGCAAATE1NdQkJCX/3th1A+7QokydP5ra2tuL0ej1s2bKlFABg7ty5dZ999pnDDz/8YHf69OmC9evXl40cOVI4dOjQVoFA0KJWq9HQLeS1gntbuqdnZGQUSSSSZ4Y+IQiCIP9HLpfjzczMdDqdDkJCQtjOzs6qjRs3VgEAXL9+nbJq1SpWWlpaHrZ+cHAwJyAgQP7JJ5+gBl4EQZDXTE95PvJ2wNIAAMCGDRvsKioqjA4ePPjK9B5EEARBEMSwjIwMK4lEwunLuqgHMIIgCNJh9+7dVsePH7dqa2vDicViZURERA1Ae6Xw0KFD1gcPHnw02OeIIAiCDAxDeT7y9jh58qRZVFSUvVarxTEYDPWxY8eKBvucEARBEAQZeKgHMIIgCIIgCIIgCIIgCIIgyGukPz2A0Qt6EARBEARBEARBEARBEARB3lCoARhBEARBEARBEARBEARBEOQNhRqAEQRBEARBEARBEARBEARB3lCoARhBEARBEARBEARBEARBEOQNhRqAX7IjR46Y43A4z/T0dJPn2T4uLs48LS2t39tGR0dbhoSEsAEAvvvuO+s9e/ZYPs/xkddHSUkJMSAgYBiLxXJxcnIS+/r6cjMzM0nPs6/o6GjLoqIio/5uFxERMTQyMtLW0HI+ny8KDAx07PxZenq6iUAgEAmFQlFOTs4z5+vr68utqakh9Pdc+orBYLjyeDwRj8cTjRw5kp+fn2880Mfo/HvsikKhuAMAFBUVGfn7+w8b6GNjCASCp0AgEGH/NmzYYAcA4OXlxb9+/Tql6/rHjx83EwqFIj6fL3JychLv3LnTqqf993SN/YV9JwjysvQ3zSUnJ9P8/Py4AADx8fFm2O8Jef3hcDjPyZMnd5RTbW1tYGFhIcHud18ZylsR5EXB4XCeCxcuZGJ/R0ZG2kZERAwdzHNC+mb9+vV2XC5XzOPxRAKBQPTHH3+YAgDMmDHD4Xnqgf3VuUxDkP7Iy8szdnZ2Fnf+rLf64D+F0iuC9B1xsE/gbZOQkED38PBoiouLo7u7u5f3d/ukpCRzjUYj9/T0VHVd1tbWBkZGvbfRrVu3rrq/x0VeLzqdDoKCgrizZ8+uTU5O/hsA4Pbt2+Ty8nIjNzc3dX/3d/ToUavhw4e3cDictq7LNBoNEIn9z0r++usvE71eD3fv3qUpFAr8kCFDdAAAv/zyi/mkSZMa/vOf/zz1+9DpdKDX6yElJaWg3wfrp5SUlHx7e3vNqlWrhkZGRtonJCQUv+hjdsXhcNouXrz494vaP4lE0slksty+rKtWq3Hh4eEO/+///T+pk5NTW0tLC+5FNIwPhOdNjwgyUObMmSMHAPlgnwcyMMhksi4vL4/c1NSEo1Kp+t9++22Ira3tM2Xhm6CvcSTyejA2NtafP3/eoqKiotLe3l7T3+1RehgcV65cMb106ZJ5VlZWLplM1ldUVBDVajUOAODEiRP9ike7xkToniIIgrzdUA/gl0gul+NTU1OpBw8eLPrtt98sAJ59YhUSEsKOjo62BABYunQpw8nJSczj8USLFi1iXr582fTKlSvmX331FVMgEIhycnJIXl5e/GXLljFGjhzJ37Jli+2xY8fM3NzcBEKhUDR69GheaWnpMy0hnZ/CRUVFWbm4uAj5fL7o/fffd2psbERp4g2QnJxMIxKJ+s6N/aNHj27x9/dvAgD4+uuvbV1cXIQ8Hk+0atWqoQDtT2yHDRsmnjlzpgOXyxX7+Pg4NzU14Q4ePGiRnZ1NCQkJGSYQCERNTU04BoPhumbNGntPT0/+zz//bPE86ejw4cP06dOn144bN05x/PhxcwCAEydOmB04cMA2Pj7eatSoUTzsnObOncsWi8WiwsJCYwaD4VpRUUEEANizZ48lj8cT8fl8EdZDy9BvICIiYui0adM4Xl5efCaT6bplyxab3s7Rx8enqaKioiNS3rdvH93V1VUoEAhEs2fPdtBo2utTFArFfeHChUyRSCT09vbmlZeXEwGe7vFVUVFBZDAYrti+ysrKjMaOHevM4XBcVq9ebd/12J2foGs0Gli0aBET65m8devWXs99IDU0NOA1Gg3O1tZWAwBAJpP1EolEDWD4+8bU1tYSGAyGq1arBQCAxsZGvJ2dnZtarcYZSjcymcx4+PDhAhcXF2F4eHhHbyWdTgeLFy9mOjs7i3k8nig2NrYjHx01ahQvMDDQkc/nP9XrAEH+ieTkZJqXlxff399/mKOjozgoKMhRp9MBAEBiYuIQR0dHsaenJz8xMdEc26Zz7/e+lMnIq++9996T//LLL+YAAMePH6cHBwfXYcuuXbtGcXd3FwiFQpG7u7sgIyODBADQ1NSECwgIGMbj8UQffvjhMJVKhcO2mTNnDtvFxUXI5XLFWBkM0F4GYmlqwYIFLCw+NHSM1NRUE6xM4vF4oqysLBJA/8vGWbNmOfj4+DhPmTLlqRE5yOuNQCDoQ0JCqrdt2/ZMz7v8/Hxjb29vHo/HE3l7e/MePnxoDAAQHBzMCQ0NZY4aNYq3dOlSJo/HE9XU1BB0Oh2Ym5sPx0YQTp482TEpKYmWl5dn7OnpyReJREKRSCS8fPmyKbb86NGjHfliUFCQY3x8vNnLuvbXWVlZmRGdTteQyWQ9AIC9vb0G64DROa48derUkOHDhwtEIpFw0qRJw+RyOR6gfSRb5xj9eeqKhty4cYMycuRIvlgsFo4ZM8a5uLjYCKC9k4lEIhHweDzRxIkTnaqrqwnY+YaFhTFcXV2FHA7H5eLFi1SA9rh28eLFTKwu0tuoMuTNkJKSQuHxeKLhw4cLsHgeoL3O010+8jwxmKHyEkGQdqix7yWKj483f/fdd+Vubm5qc3Nz7c2bNw0OBXzy5Anh/PnzFg8fPszJz8/P3bZtW8XEiRObJ0yY0LBly5bHMpksVywWqwEAGhoaCPfv38/btGnTk4kTJzY9ePBAJpVKc6dOnVr3zTff9DgMdc6cOfXZ2dnSvLy8XD6f3xIdHY0K4DdAZmYmWSKRKLtbdurUqSEFBQUmmZmZUqlUmvvgwQPKhQsXqAAAJSUlJitWrKgqKCjIMTMz0x45csTik08+qXdxcVEeOXLkb5lMlkulUvUAACYmJrq0tLS8RYsW1T9POjp9+jQ9JCSkfvbs2XUnTpygAwDMmDFDHhISUr1kyZInd+/ezQcAKCoqMvnkk09qpVJpLo/Ha8W2T01NNfn+++/tU1JS8vPy8nJjYmJKAAB6+g0UFBSYpKSk5N+/f1/6/fffD8V6VBhy/vx5s8DAwAaA9h7LiYmJ9NTUVJlMJsvF4/H6H3/80RIAoKWlBe/h4aHMzc2V+vj4NH7++ee9DrHMzMw0/eWXX/7Ozs7OOXPmDL2nocFRUVHWxcXFpJycnNz8/Pzc0NDQ2t723xu1Wo3vPAUE1pjaHVtbW+3EiRMb2Gy2W2BgoOP+/fvpWINub3mOpaWlViAQKM+fP08DAEhISDDz9fWVk0gkvaF0s3TpUnZoaGh1dna21M7OrqOn3ZEjR8yzsrLIUqk05+rVq/mRkZFMrPKRmZlpunPnzrLCwsKcf/rdIEhnUqmUvHfv3tKCgoKckpIS0uXLl6lKpRK3bNkyzpkzZwru37+fV1VV1W2Xqv6Wycirad68eXUnTpywUCqVOKlUSvH29m7GlkkkEtW9e/dkUqk0d+PGjWXr1q1jAgB8//33NmQyWZefn58bGRlZkZuba4pts2vXrrLs7GypTCbLuXXrFu3u3btkpVKJCw8Pd7hw4cLDtLS0vNraWmJvx/jhhx+sly5d+kQmk+VmZmZKHR0dW5+nbMzMzKRcunSp4OzZs49exveJvDxr166tOnXqFL22tvapqbOWLFnCnj17dm1+fn7ujBkzasPCwljYssLCQpNbt27lx8bGPh4xYkTTlStXqGlpaSZMJlN98+ZNKgBAenq6qZ+fX/PQoUM1N27cyM/NzZWeOHHi71WrVrEBABYuXFh96NAhS4D2B8FpaWnU6dOno5ERfTB58mRFeXm5MYfDcZk7dy773Llz1K7rVFRUELdt22Z//fr1/NzcXKmHh4dy8+bNHQ39nWN0gH9WV8So1WrcihUr2KdPny7MycmRzp8/v2bNmjUMAIAFCxY4btu27XF+fn6uWCxuWb9+fUccrNFocFlZWdIdO3aUfvPNN0MBAHbv3m1lZmamzc7OlmZkZEgPHz5sLZPJXsmRZcjACQ0Nddy7d2/xgwcPZAQCQY99bigfAeh/DGaovEQQpN1b2RMlKSmJVVVVNaDzsNnY2CgnT55c2tM6J0+epIeHh1cBAAQHB9fFxcXRAwMDuw2G6HS6lkQi6WbOnOnw4YcfymfMmGEwaJo1a1ZHT5RHjx4ZT548mVldXW3U2tqKZ7FYPQ73T0tLI0dGRjIaGxsJzc3NBF9fXxScDbCV0hKWrFk1oOlNYGqi3C1k95jeDLl48eKQ69evDxGJRCIAAKVSiZfJZCbDhg1rZTAY6tGjR7cAALi7uyuLiooMPjUNCQmpx/7f33SUkpJCodPpGh6P1zps2LDWsLAwTnV1NcHa2lrbdV17e/vW9957r7nr55cuXRoSGBhYjw1rtLW11QL0/Bv417/+1UAmk/VkMllDp9PbHj9+THRycnpmKK+vry+vpqbGyNLSUvOf//yn7H+/N1p2djZFIpEIAQBUKhXexsZGAwCAx+MhNDS0DgDg008/rZ0yZUqv81D9f/buO66pc38c+CcDQiAx7B2GkJNNRBQERUREsQq1IEVxtr0qjtZVpT+qotZysYrXS6kt13oduKVVESvWPautVllJCKDIBmWEhLBC8vvDG76ICUMR1/N+vXy95OSsnDzn84zzPM8ZNWpUg7W1dTucWEw/GwF4vYsLBoPYuu3sNAIe/uPPdGhpwR0YV6cP//FnTqrKN5gXYNmmt3s8EwCgx0m0LDkKmPJDt+mjL1NAADwddvjnn39WnzlzhpqYmGh9/vz5Qb/88ktRb2JOeHh43aFDh0yCg4NlR48eNV20aNFjAN3p5u+//6acOXOmEABgwYIFNd988409AMC1a9eoH3/8cS2RSAQ6na708vKSX79+3ZBGo6nc3NwaWSxWa9djI2+38piv6S35+f0aP0kMhsI27ttex08+n9+oiRNcLldRWFioT6VS2+3t7Vv4fH4LAMCMGTNqfv75Z4uu2/Y1T0Z0O/vjdvqTkkf9mhbM6Y6KCQuX9ZgWvLy8mkpLS0k7d+40HTdu3DP5W21tLSEiIsK5qKjIAIfDqdva2nAAANevX6d88cUX1ZrtMQzreCi7d+9e0z179pgrlUrc48eP9TIzMw3a29uBTqe3aOLYtGnTajVpStcxvL29G7du3WpTWlqqP23atDo+n9/yInljUFBQvebhLtL/Xle9AwDA1NRUFR4eXhMfH29JJpNVmuX37t0z0uSzCxcurN2wYUNHI0loaGidZtoAX19f+ZUrVyhFRUX6//jHP6p3795t8fDhQz0ajaak0WiqmpoawmeffeYoFArJeDweHj16RAIAmDRpknzZsmWOZWVlxAMHDphMmjSp7m2ceuB1lOFpNJoqJydHmJGRQb1w4QJ1zpw5LuvWrSv94osvOh7+X7582aiwsNDA09OTBQDQ1taG8/DwkGs+71xGB3i5uqJGVlYWKT8/nzx27FgM4OmoLAsLi7aamhqCTCYjTJo0SQ4AMG/evJrw8PCOd1iEh4fXAQD4+Pg0rlq1Sh8A4Pz584PEYrFhWlqaCQCATCYjCIVCA1SO6z+rUjPpkkpZv6ZdzJqq2DJV0G3cweG0963B4XDQ2NiIDwwMbAQAmDNnTu25c+eMAQBaW1tx2uIIQN/LYLrySwRBnkI9gAdIZWUl4datW4MWL17saGdnx09KSrJOS0szIRKJas1QBoCnT1cBAPT09OD+/fuisLCw+hMnThiPGTOGoWvfVCq1YwdLlixxWLRoUbVEIhEmJSU9amlp6fY3nj9/vnNSUlKxRCIRRkdHl/e0PvJ24PP5TZmZmVozfbVaDcuWLasQi8VCsVgsLC4uzlm+fPkTgKfzxWnWIxAIaqVSqTPT7Jzu+pqOUlJSTB88eGBgZ2fHd3R05Dc2NhJSUlK09kA1NDRUaVuuVqsBh8M9V2Ht7h4gkUidvx/o+n5XrlyRFBcXZ2EY1rRy5Urb/x0PFx4eXqO5bkVFRTnbtm3TOo+3pvBDJBLVmp6yCoUCp22d3nhTauWenp5NsbGx1RcvXpRkZGSYAPQu5kyfPr3+8uXLtKqqKkJOTo5hcHBwA0D36QaPxz/3tdVq3VdCVzpBkJelK2705h7ua56MvLmCgoLqY2Nj6bNnz67tvDw6OtrOz89Plp+fn3vq1KmC1tbWjt9YWxoRi8X6SUlJVleuXJFIJBLh2LFjpc3Nzfju4puuY0RFRdWePHmygEwmqyZOnIilpaVRXyRvNDIyQvHzHfb//t//qzp48KB5Y2Njr+IPhULpSA+BgYGyW7duUW/cuEEZP368zMzMTLl//36TESNGyAEAvv32WytLS8s2kUgkzM7OFra1tXUc4+OPP675+eefTffv3282f/78J/3/zd5dRCIRJk+eLPvXv/5VvmXLluITJ048U0ZWq9UwatSoBk2ZtLCwMPfo0aMd8wN3LqN3/ftF8yW1Wo1zdXVt0hxTIpEIb9y4kd/TdgYGBmrNd2pvb8dp9pWQkFCs2VdZWVl2aGhoQ2/OA3mzWVlZKaVS6TMjDmprawnm5uY65yHvLo70tQzWXZ6MIMh72gO4N0/M+1tKSopJaGhozcGDBzsy5+HDhzMBAAoKCshNTU04hUKBv379+qCRI0fKpVIpXi6X4yMiIqRjxoyRYxjGBwCgUCjtDQ0NOgOZTCYjODg4tAEAaIZedUehUOAdHBzaWlpacIcPHza1sbF5J19s8jq9aE/dlxEcHCxbu3YtLiEhwXzlypVPAJ72upXL5fiJEyc2rF+/3nb+/Pm1NBpN9fDhQ73ODb/aUCiU9q6ZeWd9SUft7e2Qnp5ueu/evVxnZ+c2AIBTp05R4+LibFasWNHrCkJQUFDD1KlTXWNiYqqsra3bq6qqCFZWVu19vQd0oVAo6h07dpQMGTKE8+2331YEBQU1hIaGusbExFTZ2dkpq6qqCFKplIBhWKtKpYLdu3ebzJ8/v27Pnj1mnp6eMgAAOp3e8ueffxr5+/srDhw48Ezh/fr164OqqqoIRuM2lwatPkf9+efkIvro0YoJywzdFf+9lFecl6c/I3EyI//HS3lnvvvO4uLFi9RTp0490NPTA813fdHv1ldSqRR/7do1o8mTJ8sAAG7fvk22tbVtBehdzKHRaCqBQNC4YMECh4CAAKmmZ5GudDN06FD5zp07TRctWlS7c+fOjn36+fnJdu7cabFkyZKa6upq4p9//klJTEwsycrKIr/iS4C8Jn3pqTuQhgwZ0lxaWqqfm5tL4nK5LYcPHzbVtl5/xSMEoDc9dV+lhQsXPqHRaO2enp5N6enpVM3yhoYGgr29fSsAQHJycsf0R6NGjZLv37/fNDg4WPbXX38ZSCQSQwCAuro6AplMVpmamraXlJQQL1++TPPz85MJBILmkpISUl5enj6TyWzVTI3U3TGEQqE+m81u4XK51Q8ePCDdv3+f/MEHH7zSvBHpu9dR7+jMysqqPTg4uO7gwYPm06dPrwEAcHd3b/z5559NFi9eXJucnGw6bNgwubZtXV1d2+rq6ohtbW04DofT6u3tLf/hhx+st27dWgwAIJVKCfb29q0EAgGSkpLMNA+9AQCioqKeeHl5sc3NzduGDRv23Mur3wavowyfmZlJwuPxoOndeO/ePbLm/tcYM2ZM48qVKx1ycnJIPB6vRSaT4R8+fNirFz2/aCxwc3Nrrq2tJZ4/f95o3LhxjS0tLbjs7GzSsGHDmgcNGtSekZFBCQoKku/atcvM29tba3rSCAwMlP74448WkydPlpFIJHVWVhbJycmpTfNCaOTl9dRT91Wh0WgqS0vLtpMnT1I//PBDWVVVFeHy5cu0VatWVScmJqouXLhgFBAQ0JiSktKRx3UXR7TprgymK79EEOQp9ERkgBw7dswsNDT0meE4H374Yd3/poGoY7PZ3KlTpzpzuVwFwNO5moKCghgYhnF8fX2ZmzZtKgEAmDFjRm1iYqI1m83m5ObmPjc8/+uvvy6fPn26i4eHB9PMzKzHN/5+9dVX5Z6enmxfX1+MwWC8lYUz5Hl4PB7S0tIKL1y4MIhOp/NcXV25sbGxtg4ODm2hoaEN4eHhtcOHD2dhGMb56KOPXOrr63U27gIAzJ49+8nnn3/uqHkJXNegp4IyAAAgAElEQVTP+5KOzpw5Q7WysmrVNP4CAEycOFFWUFBgoJnPtTeGDRvWvHLlygpfX18Wk8nkLFq0iA7Q93ugO46Ojm0hISG1W7dutfTw8Ghes2ZNWUBAAIZhGGfs2LFYSUmJHsDTt8Tn5uaSuVwu++rVq9R//vOfFQAAX331VdWuXbss3N3dWU+ePHnmgduwYcPkERERzjwejxscHFw3evRorXM2AwAsX778sb29fSuLxeIymUzOrl27tDY29UXXOYAXLVpkp2tdlUoFW7ZssXJycuKxWCzOxo0b7Xbt2vUQoPfX++OPP647efKkaedhiLrSzY4dO4r/85//WPJ4PHbnBw+zZs2q53K5TWw2mztmzBhsw4YNpQ4ODi/1GyPIizA0NFR///33jyZPnuzq4eHBpNPpWoet9mc8Ql4vFxeXtrVr11Z3XR4dHV25fv16+6FDh7I6V1q//PLL6sbGRgKGYZy4uDhrPp/fCADg7e3dxOPxFAwGgztr1iwnzbBtCoWi3rZt26OgoCCGh4cH09LSso1KpbZ3d4yUlBRTDMO4LBaLk5+fb7BgwYKagcgbkbfP119/XVlfX99RDvnxxx+LU1JSzDEM4xw6dMhsx44dOhuLhgwZ0ujs7NwMADBmzBhZdXW13rhx42QAAMuWLas+dOiQmUAgYEkkEoPO00zQ6XSli4tL88yZM1/6vQXvk4aGBsLs2bOdNS8CF4vF5M2bNz8z4szW1laZnJxcNG3atMEYhnE8PDxY2dnZBr3Zf29jwR9//DHIysrKTfPv+vXrhocPHy786quv7JlMJofL5XKuXLlCAQDYvXv3w+joaHsMwzhZWVnk+Ph4rSPkNJYvX/6ExWI18/l8NoPB4M6bN88RDdV/d+zdu/dhXFycDYvF4vj5+TGjo6PLuVxuS3JyctHChQsdhwwZwlKr1aDJ47qLI9p0VwbTlV8iCPIUrrshZ++SzMzMIoFAgIYfIQjS7wwNDd0VCsW9130eCIIgyNtLKpXiaTSaSqVSwezZsx0YDEZzbGzsc43OCPI2kMlkeA6Hw7l//77IzMwMtcQgyHtOk8cBAMTExFhXVFTo7d69+40c6YUgb5PMzExzgUDg1Jt1UQ9gBEEQBEEQBHnNtm/fbs5isTgMBoPb0NBA6Mu0SAjyJjlx4gQVwzDuvHnzqlHjL4IgAABHjx6lafK4mzdvUr799tuK131OCPK+QT2AEQRBEARBEARBEARBEARB3iKoBzCCIAiCIAiCIAiCIAiCIAiCGoARBEEQBEEQBEEQBEEQBEHeVagBGEEQBEEQBEEQBEEQBEEQ5B2FGoARBEEQBEEQBEEQBEEQBEHeUagBeIDt27fPGIfDedy7d8/gRbZPSUkxvnv3rs5tv/vuO4ukpCSzFz9D5F1SXFxMnDx58mA6nc5zcXHh+vn5uW7dutXc39/f9UX3mZeXp89gMLj9eZ7IwCMQCB4sFouj+RcTE2Ota92e4k5Prl69ajh37lz6i26PIAPN0NDQvS/rp6enU18mrvbFsmXLbE+cOEEdiGMhADgczmPKlCnOmr/b2trAxMRE0NPv3R9poqioSC8oKGjwy+wDeb8VFhbqBQQEuDg6OvLodDrvk08+oTc3N+Ne93kh3YuOjrZ2dXXlYhjGYbFYnIsXLxp5enoyr169atifx9GW16G4g7wMbfXEFStW2K5bt87qZdMwKv8gyMsjvu4TeN8cPnzYdOjQofKUlBRTd3f38r5uf+LECWOlUin18PBo7vpZW1sbrF69+nH/nCnytlOpVBASEuIaGRlZk56e/gAA4ObNm+Tjx48bv+5zQ14/EomkEovFwt6s213c6Y3Ro0crRo8erXiRbREEedb27dv7XHZAXhyZTFbl5eWR5XI5jkKhqI8fPz7IysqqbSCO7eTk1JaRkfFgII6FvHtUKhVMmTLF9R//+Ef10qVLC5VKJURGRjouXbrULjk5ufR1nx+i3fnz543Onj1rnJ2dLSSTyeqKigpiS0vLgDXao7iDvE5KpRKIRO1NVKj8gyAvD/UAHkBSqRR/584dyu7du4uOHz9uAvB8D5HZs2c7JCYmmgEALFq0yM7FxYWLYRhn/vz59ufOnTM6f/688Zo1a+xZLBYnNzeX5OnpyVyyZInd8OHDmZs2bbLSPGEDAEhISDDn8XhsJpPJmTBhgotMJkO/93skPT2dSiQS1Z0fCvj4+DT5+fnJGxsbCUFBQYOdnZ25ISEhziqVCgAAvvzySxsej8dmMBjc6dOnO2qWX7t2zZDJZHKGDBnC2rZtm+Xr+UbIQOhN3Ll58yZZIBCwMAzjBAYGujx+/JgAAODp6clcuHChHZ/PZzs5OfEyMjIoAM/GuUuXLhm6u7uz2Gw2x93dnZWZmUl6nd8XQbqTnp5O9fT0ZGqLl6mpqYOcnZ25Hh4ezNTU1I4Ha1VVVYRx48a5YBjGEQgErNu3b5MBnvaACQ8Pd/L09GTa29vzN23a1BFLd+zYYcrn89ksFosTGRnpqFQqQalUQlhYmBODweBiGMbZsGGDJQBAWFiY0+7du00AdMdspH8FBARIjx07ZgwAcOjQIdOwsLBazWe9iWm61vHz83PVpA82m8358ssvbQAAli5dartt2zZzNOIGeRmnTp2ikkgk1dKlS2sAAIhEIvz0008lR44cMY+Pj7cYN26cy9ixY13t7Oz4cXFxFuvXr7dis9kcgUDAqqqqIgDorkuEhYU5zZ07l+7u7s6yt7fna2IS8vLKysr0TE1NlWQyWQ0AYGNjo3RycnrmoVNycrIphmEcBoPBXbhwoR0AwObNmy2ioqLsNeskJiaazZkzhw4AMG7cOBcul8t2dXXlbt261bzrMSsqKohDhgxhHT58mNY57uTl5el7eHgwORwOm8PhsM+dO2f0Kr878n5ob2+H0NBQpy+++MIW4GlP9GXLltm6ubmxLly4QNFVtulc/rGzs+MvX77clsPhsDEM42hGVzc0NODDw8OdeDwem81mc/bv3486PiFIJ6hBcAAdOHDAeMyYMVI3N7cWY2Pj9uvXr+scAlFVVUX47bffTPLz83MlEokwLi6uIjAwsHHcuHH1mzZtKhWLxUIul9sCAFBfX0/466+/8jZs2FDVeR8zZsyoy8nJEeXl5QmZTGZTYmLicxk+8u7KysoiCwQCrb0uRSIR+YcffigpKCjILS4uJp07d44CALBq1arqnJwcUX5+fm5TUxP+8OHDNACAzz77zGnbtm3F9+/fFw/kd0BenZaWFnznKSB27txp0tu4M3fuXOe4uLhSiUQi5HK5TdHR0baa/SqVSlx2drZo8+bNJRs3brTtelyBQND8559/ikUikTA2NrZs9erV9l3XQZA3ibZ4qVAocEuWLHFKS0sr+Ouvv/Kqq6v1NOuvXr3aViAQKCQSifCbb74pmzNnTsf0AQUFBQZXrlyR/PXXX6KtW7fatrS04P7++2+D1NRU0zt37ojFYrEQj8erf/rpJ7M//vjDsKKiQk9zPy5evLim67npitlI/5o1a1btkSNHTBQKBU4kEhl6e3s3aj7rTUzTtc7IkSPlFy9epNTW1uIJBIL61q1bFACAW7duUQICAmQD9w2Rd1F2dvZz5UBTU1OVjY1Nq1KpxEkkEvIvv/zy4K+//hL985//tDM0NFSJRCLhsGHDGpOTk80Auq9LVFVV6d25c0d88uTJ/NjYWLuB/n7vqilTpjSUl5frOzk58WbOnOlw+vRpSufPi4qK9NavX293+fJliVAozL13755RSkqK8axZs+p+++23jsau1NRU08jIyDoAgAMHDhTl5uaK7t+/L0xOTraqrKwkaNYrKSkhTpgwwTU2NrZ82rRp0s7HsrW1VV67dk0iFApFR44cebB8+XKHV/39kXdbW1sbbsqUKc4MBqM5MTGxHACgqakJz+PxmrKyssQTJkyQ97ZsY25urhQKhaJPP/30cXx8vBUAQExMjI2/v39DTk6O6Nq1a3lr1qyxb2hoQG1eCPI/7+UUEEJRNL1RLunXOZSMKJiCw95c0t06R48eNV26dGk1AEBYWFhtSkqKaXBwsFTbuqampu0kEkk1bdo0x0mTJkkjIiK0rgcAMH369Fpty+/evUtet26dnUwmIzQ2NhL8/Px07gN5dValZtIllbJ+TW+YNVWxZaqg2/TWHT6f3+ji4tIGAMDlchWFhYX6AABnzpyhbtu2zbq5uRlfX19P5HA4TTU1NXKZTEaYNGmSHADg008/rbl48SJqZOgna2+spRfUFfRr+nA1cVV8M/KbbtOHtikg2traoKe4U1NTQ+icHubNm1cTHh7eMVdceHh4HQCAj49P46pVq/S7bl9bW0uIiIhwLioqMsDhcOq2tjY0FyGi04V9Inptmbxf7w9TO4oiYDa71/FTW7ykUqnt9vb2LXw+vwUAYMaMGTU///yzBQDAn3/+Sf3ll18KAABCQkJk8+fPJ9bU1BAAAMaPH19PJpPVZDJZaWpq2lZaWkrMyMig5uTkGAoEAjYAQHNzM97S0lIZERFRX1JSQpozZw49ODhY+tFHHzV0PTdtMRsA3sm8vjZVQm+rbOzXtKBnbaQwnYr1mBa8vLyaSktLSTt37jQdN27cM9e3NzFN1zpjxoyR/fvf/7YaPHhw6/jx46WXL18eJJPJ8KWlpSSBQNCSl5f3XAxF3j6vq96hVqsBh8OpdSwHHx8fmYmJicrExERFoVDaw8PD6wEA+Hy+IisryxCg+7pESEhIPYFAAA8Pj+aamhq9rsd5F7yOMjyNRlPl5OQIMzIyqBcuXKDOmTPHZd26dR1Tdly/ft1oxIgRMltbWyUAQERERO2VK1cos2bNqqfT6S0XLlww4nK5zQ8ePDAIDAyUAwBs3rzZ6vTp08YAAJWVlXq5ubkG1tbWjUqlEjd27Fjm9u3bH2nKdZ21trbiPvvsM0ehUEjG4/Hw6NEjNGrrbXFiMR2qhf2adsGSo4ApP3Qbd3A47cV6zfJFixY5TpkypXbz5s2Vms8IBALMnTu3TvN3b8s2mgccnp6eirS0NBMAgMuXLw86e/ascWJiojUAQEtLC66goEB/6NChLzSNHYK8a9DTkAFSWVlJuHXr1qDFixc72tnZ8ZOSkqzT0tJMiESiuvOQTc0cT3p6enD//n1RWFhY/YkTJ4zHjBnD0LVvKpWqdczn/PnznZOSkoolEokwOjq6vKWlBf3e7xE+n9+UmZmpNeMnkUgdFQICgQBKpRKnUChwK1eudPz1118LJRKJcObMmU+am5vxmooC8u7rS9zRxcDAQA3wdKhpe3v7cwknOjrazs/PT5afn5976tSpgtbWVhSXkDeatngJoLuSo1Y/197S0QijbV9qtRoXHh5eIxaLhWKxWFhUVJSzbdu2cgsLi/acnByhv7+/bMeOHZbTpk1z6rxPXTG7X7408pygoKD62NhY+uzZs5956N6bmKZrndGjRyuysrIMr169ShkzZoyMx+Mptm/fbs7n8xu77gNB+orP5zfdv3//mSH7tbW1+MrKSn0CgaDW19fviEd4PL4j/8bj8R1xrru6hGZ9AO1xD3lxRCIRJk+eLPvXv/5VvmXLluITJ050TLHR3bWeOnVq3aFDh0z2799vMnHixDo8Hg/p6enUK1euUO/cuSPOy8sTstnspqamJjwAAIFAUPP5/MYzZ85o7djx7bffWllaWraJRCJhdna2sK2tDeUxSLesrKyUUqmU0HlZbW0twdzcXAkAMGzYMPm1a9cGKRSKjkKUvr6+SjPvb1/KNp3qHGpNzFKr1ZCamlqgKVNVVFRko8ZfBPk/72UP4J6emL8KKSkpJqGhoTUHDx58pFk2fPhwJgBAQUEBuampCadQKPDXr18fNHLkSLlUKsXL5XJ8RESEdMyYMXIMw/gAABQKpb23wxgUCgXewcGhraWlBXf48GFTGxubAXlpCfKsl+mp+zKCg4Nla9euxSUkJJivXLnyCQDAlStXDC9dukTRtr5CocADAFhbWyulUin+1KlTJsHBwXXm5ubtFAql/ezZs5QJEybI9+zZYzqQ3+Nd11NP3YHUm7hjZmbWPmjQoPaMjAxKUFCQfNeuXWbe3t7P9RrRpaGhgWBvb98KAJCcnIympUG61ZeeugNpyJAhzaWlpfq5ubkkLpfbcvjw4Y64OGLECNnu3bvNtmzZUpGenk41MTFRmpqa6pycNygoqCE0NNQ1Jiamys7OTllVVUWQSqUEKpWqIpFIqrlz59ZjGNby6aefOnfeTlfMfnXf+vXqTU/dV2nhwoVPaDRau6enZ1N6enrHW8h7E9N0rWNgYKC2sbFpS0tLM4mPj6+oqqoirl27lr548eJKbftB3k6vo94B8HQEwpo1a/BJSUlmS5YsqVEqlbBo0SJ6eHj4E0NDw15NGP6+1yVeRxk+MzOThMfjQTPC5N69e2R7e/tWsVhMBgAYPXp0Y3R0NL2iooJoYWGhPHbsmOmiRYuqAQBmzpxZ5+7uzsnOzm6Jj48vBXg6VSCNRmunUqmqe/fuGWRmZnY8FMDhcHD06NGiDz74wCUmJsY6Li7umdgjlUoJ9vb2rQQCAZKSksza29sH7kIgL6eHnrqvCo1GU1laWradPHmS+uGHH8qqqqoIly9fpq1atao6JSXFfMGCBU8uXrxInTx5ssvZs2cL9PSeHTzwsmUbf3//hoSEBKs9e/YU4/F4uHHjBnnkyJFN/fw1EeSthZ7iDZBjx46ZhYaGPhO8Pvzww7r/TQNRx2azuVOnTnXmcrkKgKeZdVBQEAPDMI6vry9z06ZNJQAAM2bMqE1MTLRms9mc3NzcbofhfPXVV+Wenp5sX19fjMFgoCdf7xk8Hg9paWmFFy5cGESn03murq7c2NhYW1tbW62Fd3Nz8/YZM2Y85nA43IkTJ7oKBIKOHki7du0q+uKLLxyGDBnC0ryUAnm7dZ0DeNGiRXa9jTu7d+9+GB0dbY9hGCcrK4scHx/f67fyRkdHV65fv95+6NChLFSRQN5WhoaG6u+///7R5MmTXT08PJh0Or1V89nmzZvL//77b0MMwzhff/213Z49ex52ty8PD4/mNWvWlAUEBGAYhnHGjh2LlZSU6BUVFemNGjWKyWKxOJ9++qnzxo0bSztv113MRvqfi4tL29q1a6u7Lu9NTOtuHW9vb5m5ubmSSqWqAgMD5VVVVXr+/v69fqiGILrg8Xg4ceJEwa+//mri6OjIc3Z25pFIJFViYmJZb/eB6hIDr6GhgTB79mxnzQt5xWIxefPmzR3lLEdHx7Z169aV+fn5YWw2m+vm5qaYOXNmPQCAhYVFO4PBaCorKyP5+/srAADCwsKkSqUSh2EYJyYmxrZrXkEkEiEtLe3B1atXqfHx8RadP1u2bFn1oUOHzAQCAUsikRiQyWT0plGkR3v37n0YFxdnw2KxOH5+fszo6OhyzbuLAADWr19fJRAIFKGhoc5d88SXLdvEx8eXK5VKHIvF4jAYDO6aNWvQ/OQI0gnufRmyk5mZWSQQCJ687vNAEARBEARBEARBEARBEAR5GZmZmeYCgcCpN+uiHsAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcADbN++fcY4HM7j3r17Bv2xPzs7O35FRQWxt+sfOHCAFhMTYw0A8N1331kkJSWZ9cd5IG+m4uJi4uTJkwfT6XSei4sL18/Pz3Xr1q3m/v7+rtrWj4iIcLx7964BQN/TFvJ2IRAIHiwWi6P5p4kLGzdutJTJZB15g6Ghobu27V8mfnSOQwjyJtKV7vtDSkqK8ZdffmkDALBixQrbdevWWelaNzEx0Wz27NkO/XHczvG9J+np6VQqlTqEzWZznJ2dufPnz7fvj3PoytPTk3n16lXDrss7f+/+Kqts2rTJcvDgwdyQkBDnQ4cO0ZYvX27bm+1wOJzHlClTnDV/t7W1gYmJiUBXPqqRnp5O7WmdvigqKtILCgoa3F/7Q959mnyewWBwJ06cOLhz3q6NtrjXU7p78uQJIT4+3qI/zhf5P9HR0daurq5cDMM4LBaLc/HiRSNd8fJVQHVE5EXk5eXpMxgMbudlPZVzAACuXr1qOHfuXDrA07zz3LlzRn09dnf11hs3bpBxOJzHL7/8Mqiv++1p3xqJiYlmJiYmgs51q96WuQBe7J570WuFvN9Q484AO3z4sOnQoUPlKSkppu7u7uUvsy+lUtnnbWbMmCEFACkAwOrVqx+/zPGRN5tKpYKQkBDXyMjImvT09AcAADdv3iQfP37cWNc2R44ceTRwZ4i8TiQSSSUWi4VdlycnJ1vNmzevlkqlqrrb/mXiR+c4hCBvC6VSCUTiyxebtm3bZv3bb78V9MMp9Ulf4/uwYcPkly5dKpDL5Tg+n8/5/fff68aPH9/4qs5Pl/4qq+zatcvizJkz+SwWq1WlUsHGjRvtNm7cWNlTrCOTyaq8vDyyXC7HUSgU9fHjxwdZWVm19cc59YWTk1NbRkbGg4E+LvL26pzPh4SEOCckJFisX7++qi/76Cnd1dTUEHbt2mX51VdfoTpFPzl//rzR2bNnjbOzs4VkMlldUVFBbGlpwQ3kOaA6IjKQRo8erRg9erQCAODixYtUCoXSHhgY2G/ljZSUFLOhQ4fKDx48aBoWFtbQ9XOVSgVqtRoIBMJLHSc4OLhu3759xS+yra57rq2tDfT09LRu8yquFfLuQz2AB5BUKsXfuXOHsnv37qLjx4+bAAAsW7bMVvOUyNLS0m3q1KlOAAA7duww5fP5bBaLxYmMjHTUNPYaGhq6L1u2zNbNzY114cIFCgDAxo0brfh8PpvP57NzcnJIAAAHDx6kubm5sdhsNsfHxwcrKSkhAjzbq6bzE7mEhARzHo/HZjKZnAkTJrhoegmEhYU5zZ07l+7u7s6yt7fn796922RgrxryotLT06lEIlHdOUPx8fFp8vPzkzc2NhKCgoIGOzs7c0NCQpxVqqf1X129C3SlR+TdsmnTJsvq6mo9Pz8/zMvLC9Ms//zzz+2YTCZHIBCwNLGkc/y4efMmWSAQsDAM4wQGBro8fvyYAPA0PX366ad0d3d3FoPB4F66dMkQ4Nk4pCtWIcibID09nerl5YUFBwc7M5lMLgDAuHHjXLhcLtvV1ZW7detWc826hoaG7trulc6ysrJI+vr6Khsbm+eC6KZNmyxdXFy4GIZxJk+e/FyPO133yooVK2xDQ0OdRo4cybCzs+Pv3bvXOCoqyh7DMI6vry9D03DQOb6npqYO4nA4bCaTyfH29sa6HqszCoWi5nK5TcXFxfoAAA0NDfjw8HAnHo/HZrPZnP379xsDPL2vAwICXHx9fRlOTk68lStX2gA83yNo3bp1VitWrOjofbtnzx6zrjGis86xJicnh+Tj44MxmUwOh8Nh5+bmkrquv379eisGg8FlMBjcjRs3WgIAREZGOpSWlpJCQkJcN2zYYInH48HHx0d25MgRWnffXSMgIEB67NgxYwCAQ4cOmYaFhdVqPrt06ZKhu7s7i81mc9zd3VmZmZnPnZOudTw8PJg3b94ka9YbOnQo6/bt2+TTp09TNGVDNpvNqaurw3e+jnl5efoeHh5MDofD5nA4bNQDCOnJqFGj5AUFBSQA3TFMo6KigjhkyBDW4cOHaZ3T3Z07dww0ZUEMwzjZ2dmklStX2peUlJBYLBZnwYIF9lKpFO/t7Y1xOBw2hmEd8SEvL09/8ODB3GnTpjm6urpyR44cyZDL5QPaqPm2KCsr0zM1NVWSyWQ1AICNjY3SycnpmYdOycnJphiGcRgMBnfhwoV2AACbN2+2iIqK6hitkZiYaDZnzhw6QPf1yp7KeLrqiAjSV56ensyFCxfa8fl8tpOTEy8jI4MC8H8jZvLy8vT37dtn8dNPP1mxWCxORkYGpby8nDhhwgQXHo/H5vF47N9//90IAKCyspIwcuRIBpvN5kRGRjqq1Wqtx1SpVJCenm6yb9++omvXrg1SKBQ4gP+LSTNnznTgcrmcwsJC/RkzZjjweDy2q6srt+soIW3tLb2Rnp5OHT58OPODDz4Y7OTkxFu0aJHdjz/+aMrn89kYhnE05ZjO95ynpydzyZIldsOHD2du2rTJSlv5ry/XSluZ4gV+PuQdgX78AXTgwAHjMWPGSN3c3FqMjY3br1+/brh9+/ZysVgsvHHjRp6xsbFy6dKl1X///bdBamqq6Z07d8RisViIx+PVP/30kxkAQFNTE57H4zVlZWWJJ0yYIAcAGDRoUHt2drZowYIF1Z9//jkdACAwMFB+//59sUgkEk6dOrV248aN3Q63njFjRl1OTo4oLy9PyGQymxITEzsKhFVVVXp37twRnzx5Mj82NtbuVV4jpP9kZWWRBQKBQttnIpGI/MMPP5QUFBTkFhcXk86dO0fRtZ/u0iPy9mppacF3Hqa0c+dOkzVr1lRbWlq2XblyRXL79m0JwNOY4+3tLc/LyxN6e3vLv//+++eGes6dO9c5Li6uVCKRCLlcblN0dHRHoUmhUODv3bsnTkxMfDR//nznrtv2NVYhyEDLysoy2rJlS1lhYWEuAMCBAweKcnNzRffv3xcmJydbVVZWEgB6d69cunSJ4ubmpjUuJyYmWufk5AglEolwz549z/XW7e5eefToEenixYsFqampBVFRUc5jx45tkEgkQgMDA9XRo0efaeQsLy8nLlmyxOnXX38tzMvLE544caKwu+//+PFjwsOHD0njx4+XAQDExMTY+Pv7N+Tk5IiuXbuWt2bNGvuGhga85lodO3bsQU5OTm5aWpppb4Yr9xQjOouMjHSOioqqzsvLE965c0fs4ODwTKPItWvXDF8LPYIAACAASURBVA8ePGh29+5d0Z07d0T79u2zuHHjBvngwYPFmtgWGxtbDQAwbNiwxmvXrunM+zqbNWtW7ZEjR0wUCgVOJBIZent7d/S2EQgEzX/++adYJBIJY2Njy1avXv3cdBm61pk7d+6Tn3/+2fx/147U2tqK8/LyakpISLBOTEx8JBaLhbdu3RJTKJRneinb2toqr127JhEKhaIjR448WL58eb9ME4K8m9ra2uDs2bOD+Hx+E4DuGAYAUFJSQpwwYYJrbGxs+bRp054ZqfP9999bLFq0qEosFguzsrJEzs7OrQkJCaV0Or1FLBYLk5OTSw0NDVWnT58uEAqFoitXrkhiYmLsNZ0MiouLDb744ovqgoKCXBqN1r5v3z7UqUSLKVOmNJSXl+s7OTnxZs6c6XD69Oln4lRRUZHe+vXr7S5fviwRCoW59+7dM0pJSTGeNWtW3W+//dYxyi81NdU0MjKyrqd6ZU/5Vnd1RATpK6VSicvOzhZt3ry5ZOPGjc80sjKZzNbZs2c/joqKqhKLxcKgoCD5ggUL6CtWrKjKyckRHT9+vDAqKsoJAOCrr76y9fb2lotEImFISEh9RUWFvrbjnTt3jkKn01u4XG6Ll5eX7NixYx1loqKiIoNPPvmkRiQSCTEMa922bVtZTk6OSCwW5964cYN6+/btjge02tpbujp16pRJ57qV5iGXWCwm//jjjyUikSg3NTXVTCKRGGRnZ4tmzZr1JCEhwVLbvurr6wl//fVX3oYNG6q0lf/6cq16KlMg75f3sqfVMlExXdzY3K9zKLGMDBTb2Q4l3a1z9OhR06VLl1YDAISFhdWmpKSYjho1SqFSqWDq1KnOixcvrvL19VXExcVZ5OTkGAoEAjYAQHNzM97S0lIJAEAgEGDu3Ll1nfc7Z86cWgCAefPm1a5Zs4YOAPDw4UP9KVOm2D9+/FivtbUVT6fTW7o7t7t375LXrVtnJ5PJCI2NjQQ/P7+OQl9ISEg9gUAADw+P5pqaGu1jEBDdTiymQ7Wwf+fssuQoYMoP3aa37vD5/EYXF5c2AAAul6soLCzUmmkCAGRkZFB1pUfk5ZXHfE1vyc/v1/RBYjAUtnHfdps+dE0B0ZWenp5aUwn08PBoPH/+/DPzZ9XU1BBkMhlh0qRJcgCAefPm1YSHh3f0XoyMjKwFAJg4caJcLpfjnzx58sz4qr7GKuT9cvbH7fQnJY/69f4wpzsqJixc1uv46ebm1shisVo1f2/evNnq9OnTxgAAlZWVerm5uQbW1taNPd0rAAAVFRV6FhYWWuMnk8ls+uijj5xDQkLqZ8yYUd/18+7ulXHjxklJJJLa09Ozqb29HTd16tQGAAAul9v08OHDZ+L75cuXjTw9PWWa72RlZdWu7Xzu3LlDwTCMU1RUZLB48eJKBwcH5f+2H3T27FnjxMREawCAlpYWXEFBgT4AwKhRoxqsra3bAQAmTZpUd/nyZUpERMRz36WznmKExtGjRx1GjBhh2NzcbPWf//xH63yC5eXleh9//DHu8OHDDACAadOm4c+dO+eSm5vbNnnyZL1ff/3VVU9PTw0AIJPJCGQyGQ8APaYFLy+vptLSUtLOnTtNx40b90yjWG1tLSEiIsK5qKjIAIfDqdva2p7r1ahrnblz59Zt2bLFpqWlpfSnn34yj4yMfAIAMGLECPmXX35J//jjj2unT59e5+Li8kxlrbW1FffZZ585CoVCMh6Ph0ePHvW6NxIy8F5XvUPzoBcAwMvLS7Z06dInALpjmFKpxI0dO5a5ffv2R5o8vTNvb+/GrVu32pSWlupPmzatjs/nP5dfq1Qq3LJly+xv3bpFwePxUF1drV9aWkoEALCzs2vx8fFpAgBwd3dXFBUVvfnp9jWU4Wk0mionJ0eYkZFBvXDhAnXOnDku69atK9V8fv36daMRI0bIbG1tlQAAERERtVeuXKHMmjWrnk6nt1y4cMGIy+U2P3jwwCAwMFAeHx+vs17Zm3yruzoi8uZae2MtvaCuoF/TrquJq+Kbkd/oTLs4nPZO/Z2Xh4eH1wEA+Pj4NK5atUpn/VPjxo0bg/Lz8zsaYuVyOaGurg5/69Yt6q+//loAADBt2jTpggULtJZl9u/fbzp16tTa/61Xu3//frM5c+bUAwDY2Ni0BgQEdDzQ3bt3r+mePXvMlUol7vHjx3qZmZkGXl5eTQDa21u60jUFBJ/Pb3R0dGwDAHBwcGiZOHGiFABAIBA0XblyhaptX9OnT+8YadTbupKua9VTmQJ5v7yXDcCvQ2VlJeHWrVuDJBIJecmSJdDe3o7D4XDqH3/8sXTlypW2NjY2rUuXLq0BAFCr1bjw8PCaH374oazrfvT19VVd5yDE4/+vIzcOh1MDACxZssRh6dKllTNmzJCmp6dTuz5h62r+/PnOqampBd7e3k2JiYlmnYORgYFBx5gKXcMrkDcPn89vOnHihNbeFSQSqeOHJBAIoFQqdQ7D6y49Iu8+IpGo1sQYIpHYbVrRpmthsOvffY1VCDLQDA0NOwrK6enp1CtXrlDv3LkjplKpKk9PT2ZTUxMeoHf3CplMVkmlUq1lr0uXLuWfOXOGeuLECePvvvvONj8/P6fz593dK5qYTiAQnjkPPB7/3Hmo1WqdlbTONHMAZ2VlkcaMGcMKDw+v8/HxaVKr1ZCamlogEAieqYBcv37dSNv9TiQS1ZoegABPGx+6rtPd36+KSqUCAoHQ60JNUFBQfWxsLP3333/Pq66u7vgNo6Oj7fz8/GTnzp0rzMvL0x87diyz67a61qFSqSpfX9+GgwcPGqelpZnevXtXCAAQFxdXOWXKFOnJkydpPj4+7IyMDEnndPjtt99aWVpatv3yyy8PVSoVkMlkj5e7Gsi7SNuD3u5iGIFAUPP5/MYzZ87QtDUAR0VF1fr6+jYeP36cNnHiRGzHjh1FTCbzmTiQnJxsWlNTQ8zOzhaRSCS1nZ0dX7N/fX39zmVPtWY58jwikQiTJ0+WTZ48Webm5taUkpLSMfKuu7rY1KlT6w4dOmTCYrGaJ06cWIfH47stx/cm3+qujoggnVlZWSmlUukzD3Fra2sJzs7OHXFC065AJBKhvb29xwxfrVbDnTt3RBQK5bmE37kNRBulUglnzpwxOXfunPG2bdts1Go11NfXEzVTIHTOV8VisX5SUpLV3bt3RRYWFu1hYWFOncsr2tpbeqtzvRuPx3dcAzwer/MadH4/QW/rSrqulbYyhbu7e3NfvgPy7ngvG4B7emL+KqSkpJiEhobWHDx4sGNY5/Dhw5nR0dE2ly9fHvTHH3/kaZYHBQU1hIaGusbExFTZ2dkpq6qqCFKplIBhWKu2fe/bt880Li6ucteuXSbu7u6NAE97tmiGRu7Zs6fH4foKhQLv4ODQ1tLSgjt8+LCpjY3NgL/g5J31Ej11X0ZwcLBs7dq1uISEBPOVK1c+AQC4cuWK4aVLl3o15FWjr+kR6ZueeuoONCMjo3apVIq3sbHp1fpmZmbtgwYNas/IyKAEBQXJd+3aZebt7d1RcTx06JBJcHCw7OzZsxQqldpuZmb2zBP6vsYq5P3Sl566A6G+vp5Ao9HaqVSq6t69ewaZmZl9mnuVy+U2d67Ia7S3t0NhYaF+cHCwbPz48XJbW1vTrpWo/rpX/P39G1euXOkoFov1WSxWa1VVFUFXL2AAADc3t5alS5dW/POf/7Q+derUQ39//4aEhASrPXv2FOPxeLhx4wZ55MiRTQAA169fH1RVVUUwMjJS/fbbb8Y///xzkb29vbK2tpZYWVlJoNFoqrNnz9ICAgI6XsLSU4zQ+Pjjj4u//fZbQ19f36pZs2bVNzU14ZRKJa5zJen69euGn376qdPdu3fz1Wo1eHh4sPfs2fNg5MiRTXZ2dvz169cXaOZfjo2NtaLRaL1ubV64cOETGo3W7unp2ZSent7RANLQ0ECwt7dvBQBITk7WOjS6u3WioqKehIWFuQ4fPlyu+R1yc3NJnp6eTZ6enk23b982ysnJMfD09OyYOkQqlRLs7e1bCQQCJCUlmbW36/z5kDfA66h36NJdDMPhcHD06NGiDz74wCUmJsY6Li6usvO2QqFQn81mt3C53OoHDx6Q7t+/T/b09FQ0NjZ2tIxIpVKCubl5G4lEUp86dYpaXl7eYw+/N9prKMNnZmaS8Hg8aHpY37t3j2xvb98qFovJAACjR49ujI6OpldUVBAtLCyUx44dM120aFE1AMDMmTPr3N3dOdnZ2S3x8fGlAC9fjkd1xLdTdz11XxUajaaytLRsO3nyJPXDDz+UVVVVES5fvkxbtWpVdW/3QaVS2xsaGjrKP6NGjWrYvHmz5TfffFMF8PS9Iz4+Pk0jRoyQ/fe//zX77rvvKo4ePTqo8zYaJ0+eHMRisRTXr1/P1ywLDQ11OnjwoPG4ceOeechVV1dHIJPJKlNT0/aSkhLi5cuXaX5+fjLN59raWwaKrvJfb6+VtjIFagB+f6EnrwPk2LFjZqGhoc9M3fDhhx/WXb16lVpdXa03ZMgQNovF4ixbtszWw8Ojec2aNWUBAQEYhmGcsWPHYiUlJTqnXmhpacG5ubmxduzYYZWYmFgCAPD111+XT58+3cXDw4NpZmamc7i+pqfNV199Ve7p6cn29fXFGAwGCgjvADweD2lpaYUXLlwYRKfTea6urtzY2FhbW1vbPhXc+poekbdD1zmAFy1aZAcAMGfOnCcTJ05kdH4JXE927979MDo62h7DME5WVhY5Pj6+XPOZiYlJu7u7O2vJkiWOycnJRV237W2sQpA3QVhYmFSpVOIwDOPExMTYCgSCPlUCJkyYIM/NzTXs3CMW4OmceJGRkc4YhnF4PB5nwYIFVebm5s+06vXXvWJra6tMTEws+uijj1yZTCbno48+eu6Fc12tXLny8e3bt6lisVg/Pj6+XKlU4lgsFofBYHDXrFnT8W6AYcOGySMiIpx5PB43ODi4bvTo0QoSiaReuXJlhaenJzsgIMDV1dX1mTJGTzGis/379z/84YcfLDEM4wwbNuy5F+2NGjVKERkZWTN06FC2h4cHe9asWY81jdNdXb16lTplypReD2V2cXFpW7t27XOV2Ojo6Mr169fbDx06lKWrIba7dXx9fRVGRkbtn3zyyRPNsu+++86SwWBwmUwmh0wmq6ZOnfrMeS5btqz60KFDZgKBgCWRSAzIZDIazon0Sk8xjEgkQlpa2oOrV69S4+Pjn5kPNiUlxRTDMC6LxeLk5+cbLFiwoMba2rrdw8NDzmAwuAsWLLD/xz/+UZuZmWnE4/HY+/fvN3V2dkZ1ij5qaGggzJ4921nzUlCxWEzevHlzR7nK0dGxbd26dWV+fn4Ym83murm5KWbOnFkPAGBhYdHOYDCaysrKSP7+/gqAly/Hozoi0hd79+59GBcXZ8NisTh+fn7M6Ojoci6X2+vp3cLCwupPnz5trHmx2X/+85+Sv//+2wjDMI6Liws3KSnJAgAgPj6+/MaNGxQOh8M+e/YszcbG5rkHGgcPHjQNCQmp77L/uiNHjjz3EN3b27uJx+MpGAwGd9asWU4eHh7PNBBra2/pquscwP31glZd5b/eXqueyhTI+wX3vgzpz8zMLBIIBE96XvP9MWfOHPrQoUMVmqknEARB+pOnpydz69atJaNHj9b60isEeR998skn9A8//LB+ypQpsp7XfnskJiaa3blzx0jb/HdvmpKSEuLHH388+I8//pC87nMpKirSGzNmDLOwsDCHQNA6/TGCIAiCIAiCaJWZmWkuEAicerMu6gH8nlq6dKnt33//3ePLWRAEQRAE6T8bN26s6DxkGhl4Dx480E9ISHjtw/KTkpLMRowYwV63bl0ZavxFEARBEARBXiXUAxhBEARBEARBEARBEARBEOQtgnoAIwiCIAiCIAiCIAiCIAiCIKgBGEEQBEEQBEEQBEEQBEEQ5F2FGoARBEEQBEEQBEEQBEEQBEHeUagBGEEQBEEQBEEQBEEQBEEQ5B2FGoAHEIFA8GCxWBwmk8nhcDjsc+fOGXW3fl5enj6DweAO1Pkh75bi4mLi5MmTB9PpdJ6LiwvXz8/PNSsri5Senk719/d31bZNRESE4927dw368zy0peMVK1bYrlu3zqo/j9OVp6cn8+rVq4aac3B0dOT98ssvg17V8UpKSoj+/v6uTCaTo7nenT/fsGGDJYlEGlpTU9Pxqvf09HQqlUodwmazOc7Oztz58+fbv6rz60oTjzT/8vLy9K9evWo4d+5cOgDAgQMHaDExMdYAAN99951FUlKS2UCdG4K8boaGhu6v+xyQNwMOh/OYMmWKs+bvtrY2MDExEejKRzW6y2vt7Oz4FRUVRAAAd3d3Vv+eMYI8pcnnGQwGd+LEiYNlMhmq970loqOjrV1dXbkYhnFYLBbn4sWL3dYZO5d5X6eeziMsLMxp9+7dJgNxLGTgvWidr3P9Iz09ndpTG4k2nfNVXcuvXbtmaGdnx79x4wa5cz3nZXWX3yPIm+a5mwR5dUgkkkosFgsBAH755ZdBMTEx9oGBgXmv+7yQd49KpYKQkBDXyMjImvT09AcAADdv3iSXl5frdbfdkSNHHg3MGQ6cwsJCvQkTJmBxcXElYWFhDa/qONHR0XZjx45tWLt2bTUAwO3bt8mdP09NTTXj8XiNBw4cMP7iiy9qNMuHDRsmv3TpUoFcLsfx+XzO77//Xjd+/PjGV3WeGp3jkQaTyWwdPXq0AgBgxowZUgCQAgCsXr368as+HwR50ymVSiASUbHpfUMmk1V5eXlkuVyOo1Ao6uPHjw+ysrJq66/937t3T9xf+0KQzjrn8yEhIc4JCQkW69evr3rd54V07/z580Znz541zs7OFpLJZHVFRQWxpaUF97rPC0FeldGjRys09Y+LFy9SKRRKe2BgYL/WhW7fvk2eNm2ay/79+wtHjhzZNHLkyCb4Xz0HQd4n6EnwayKVSgk0Gk35v//jvb29MQ6Hw8YwjLN//35jzXrt7e0wbdo0R1dXV+7IkSMZcrkcBwCQkJBgzuPx2EwmkzNhwgQXzVP9sLAwpxkzZjh4eXlh9vb2/NOnT1PCw8OdBg8ezA0LC3PS7HfGjBkOPB6P7erqyl2+fLmtZvmiRYvsXFxcuBiGcQayNyLSv9LT06lEIlHdueHOx8enKSgoSA4A0NjYSAgKChrs7OzMDQkJcVapVADw7NN0Q0ND988//9yOyWRyBAIBq6SkhAgAcPDgQZqbmxuLzWZzfHx8MM3yF3Xz5k2yQCBgYRjGCQwMdHn8+DFBcy4LFy604/P5bCcnJ15GRgYFAEAmk+E/+OCDwRiGcSZNmjTYzc2NpasHQFlZmd748eOxdevWlf2vQRMUCgVu6tSpThiGcdhsNufUqVNUAIDExESz8ePHu/j6+jIcHR15UVFRHen/X//6l7mTkxPP09OTOW3aNMfZs2c7dD1WZWWlHp1Ob9X87eXl1aT5f25uLkmhUOA3btxYdvToUVNt50qhUNRcLrepuLhY/8Wu5Mvr/AQ7MTHRTPM9B6LHNoK8idLT06leXl5YcHCwM5PJ5AIAjBs3zoXL5bJdXV25W7duNdes++9//9vMycmJN3z4cJ1xAnk7BQQESI8dO2YMAHDo0CHTsLCwWs1nly5dMnR3d2ex2WyOu7s7KzMzk9R1+8rKSsLIkSMZbDabExkZ6ahWqzs+0/Q2nzRp0uAjR47QNMvDwsKc9uzZY6xUKmHBggX2PB6PjWEYZ8uWLeYAAI8ePdIbNmwYU9PDU5NHIog2o0aNkhcUFJAAdMewvpb7VqxYYRsaGuo0cuRIhp2dHX/v3r3GUVFR9hiGcXx9fRmaRssvv/zShsfjsRkMBnf69OmOmjInol1ZWZmeqampkkwmqwEAbGxslE5OTm0AACdPnqSy2WwOhmGc8PBwp6ampucahpOTk00xDOMwGAzuwoUL7TTLDQ0N3RcuXGjH5XLZPj4+2KVLlww9PT2Z9vb2/AMHDtAAXqyMrI1SqYSwsDAnBoPBxTCMs2HDBsuu6+hKF7rK/3K5HDd58uSO8n9zczOut8dC3gy6fltN/SMvL09/3759Fj/99JMVi8XiZGRkUMrLy4kTJkxw4fF4bB6Px/7999+NALrPV7vKzMw0CAsLc/3vf//70N/fXwHwbD0nLCzMae7cuXR3d3eWvb09X9NLvb29HWbOnOng6urK9ff3d/Xz83PVfJaamjrI2dmZ6+HhwUxNTe1ou6mqqiKMGzfOBcMwjkAgYGk6BPU2XiLIq4YagAdQS0sLnsVicZydnblLly51jI2NrQAAMDQ0VJ0+fbpAKBSKrly5IomJibHXZILFxcUGX3zxRXVBQUEujUZr37dvnwkAwIwZM+pycnJEeXl5QiaT2ZSYmNhRgJNKpcQ//vhDEh8fXxIREcFYtWpVVX5+fq5YLCbfvHmTDACwbdu2spycHJFYLM69ceMG9fbt2+SqqirCb7/9ZpKfn58rkUiEcXFxFa/hMiH9ICsriywQCBS6PheJROQffvihpKCgILe4uJh07ty55yqOTU1NeG9vb3leXp7Q29tb/v3331sAAAQGBsrv378vFolEwqlTp9Zu3Lixx+EzJSUlpM7TDezbt89C89ncuXOd4+LiSiUSiZDL5TZFR0d3PJBQKpW47Oxs0ebNm0s2btxoCwCwZcsWC2Nj43aJRCJcv359uVAo1DlMKCoqynnevHnVn376aZ1m2ebNmy0BACQSifDgwYMP5s+f76RQKHAAAEKh0PDEiRMPRCJRblpamklBQYFeUVGR3tatW21u374tunbtmiQ/P1/rFBmLFy+u/vzzz528vLyw6Oho66Kioo7e1nv37jUNDQ2tDQoKkj98+NCgrKzsuUbzx48fEx4+fEgaP368rKfr2R808YjFYnECAwNdBuKYCPI2ysrKMtqyZUtZYWFhLgDAgQMHinJzc0X3798XJicnW1VWVhIePXqkFx8fb3vz5k3xtWvXJBKJhNzTfpG3x6xZs2qPHDliolAocCKRyNDb27ujZ5JAIGj+888/xSKRSBgbG1u2evXq5xpGvvrqK1tvb2+5SCQShoSE1FdUVDz3oC8iIqL2yJEjJgAAzc3NuBs3bgyaOnWqdPv27eY0Gq09JydHlJmZKdq7d6+FWCzW/+9//2saEBAgFYvFQpFIlOvl5aUzz0feb21tbXD27NlBfD6/CUB7DAN4sXLfo0ePSBcvXixITU0tiIqKch47dmyDRCIRGhgYqI4ePUoDAFi1alV1Tk6OKD8/P7epqQl/+PBhmrbzRJ6aMmVKQ3l5ub6TkxNv5syZDqdPn6YAPG2cXbBggfORI0cKJRKJUKlUwpYtWyw6b1tUVKS3fv16u8uXL0uEQmHuvXv3jFJSUowBnv6+/v7+stzcXJGRkVH7mjVr7K5duyY5duxYwTfffGMH0Pcysq7v8McffxhWVFToaeqUixcvrum6TnfpQlv5f+vWrZZkMlklkUiE69atq9CU/3tzLOTNoe231WAyma2zZ89+HBUVVSUWi4VBQUHyBQsW0FesWFGVk5MjOn78eGFUVJQTQO/yVY2IiAjXhISE4gkTJsh1rVNVVaV3584d8cmTJ/NjY2PtAAD27dtnUlJSop+Xl5e7d+/eonv37nXci0uWLHFKS0sr+Ouvv/Kqq6s77oXVq1fbCgQChUQiEX7zzTdlc+bM6ZhCqjfxEkFetfdyLOOq1Ey6pFLWr3MGYdZUxZapgpLu1uk8FOv8+fNGn3zyibNEIslVqVS4ZcuW2d+6dYuCx+Ohurpav7T0/7N352FNHWvAwN8sEBIIkbCTsITlJDkJmygIYqkLCp9CVbTghktV1Ou+4fVetbf22lqr9aFulLqh1n3Hqq1aoeqnLS5sSYhQERQEZAmEBMj2/eE9fCmyKu7ze54+lZOzTJLJzDtzZuY8ogIAcDicppCQEDUAgL+/v6qoqIgGAHD79m366tWrOfX19ZSGhgZKWFhYyxSG4cOH15LJZOjdu7fK2tpaExgYqAYAwDBMXVhYSAsJCVHv3buXvWfPHhutVkuqrKw0ycrKMuvdu7eaRqPp4+LiXIcPH66IjY1F0yJ6wKrrq5wLagp6NL95Wnmq1vZf22F+64i3t3eDh4eHBgBAJBKpCgsLn6s0TUxMDHFxcQoAgICAgIZLly5ZAgA8ePDAdOTIkdzKykqT5uZmsrOzc1Nn13N2dm4yXm5g8eLFTgAAVVVVlPr6esrw4cOVAAAzZsyoGjt2rDux39ixY2sAAEJCQhqWLVtmCgBw48YNiwULFlQAAPTt27cRw7B2G739+/evO3TokPU//vGPKiaTqSeOnzdvXgUAgL+/f6OTk1NzTk6OGQBAaGhonbW1tQ4AwNPTs7GwsJBWUVFBDQoKqre3t9cBAIwaNapGLpc/1wkcExNTFxoamnPy5EnWhQsXWAEBAXhOTk6ek5OT9uTJk+wTJ04UUCgUiIyMrElNTbX65z//WQkA4Gjws1wZm+yvblSTp4b9p/nWgXKPW/ByMzTZHAvV4Hhhl8sjBHlbVR+TO2ueNPRo+WniYK5ij8G6XH76+Pg0CASCltH969evtz937lwvgGcj//Py8sxKS0tN+vXrV+/k5KQFABg9enR1W+UE8uIk0kTnBqW8R/OCuQWmwoXrO80LQUFB6kePHtFSUlLYQ4YM+VtsVF1dTYmNjeUVFRWZkUgkg0ajeW4Uz82bN5knTpwoAACIi4tTJCQk6FrvM2bMGMXy5ctd1Go16fjx46zAwMB6CwsLw6VLlyxlMhnjzJkzVgAA9fX1FIlEYtavX7+GhIQEN41GQx4zZkwNESsib5831e4gbvQCAAQFBdUvWLDgKUDbZZiDg0PDi8R9Q4YMUdBoNENgYKBap9ORxowZUwcAIBKJ1A8ePDAFADh//jxz06ZNDo2NjeTa2loqT9ev9AAAIABJREFUjuPvzNTrNxHDs1gsfW5uruTChQvMy5cvMydPnuyxevXqR3379lVxudwmHx+fJgCAKVOmVG3dutUOACqIY69du2ZuXBfFxsZWp6enW0yaNKnWxMTEYPz90Gg0PfHdPX78uCXG7k6M7Onp2eZyOAKBoKmkpIQ2efJk56ioKMWoUaOeW4Kto3zRVvx/7do1i/nz51cAPCuTifi/K9f6EJWu/Jdz0/37PZp3aV5eKqd1/20375JIbQ9iNd7e1nfbkevXr1vev3+/5aa6Uqmk1NTUkLtSrxL69+9ft3PnTpuYmBhFe0t5RUdH11IoFAgICGisqqoyAQD4/fffLUaPHl1DoVDAxcVF269fv3oAgHv37plxudwmb2/vJgCACRMmVP3444+2AAB//PEH8/jx4wX/O2f9zJkzqcTzX7pSXiLIq4ZGAL8hQ4YMaaipqaGWlZVRk5OT2VVVVdScnBypTCaTWFtba9RqNRkAwNTUtGU+A4VCMWi1WhIAwMyZM3lbtmwplsvlksTExNKmpqaW79LMzMzwv/3/djyZTAatVkuSyWSmW7ZssU9PT5fL5XLJoEGDFI2NjWQTExO4d++eNCYmpvbUqVO9Pv74Y6/X94kgPcnb21udlZXVbqVPo9GM8xUQ+coYlUo1kMlk4t8t+8ydO9dlzpw5FXK5XLJly5aHxnmvpxF5mUqlgk6nIwEAdDTFp7UVK1Y86d27d0NUVJS7RvMsRu3o+Na/N41GQ+rO9ezt7XWzZs2qPnXq1AMfH5+GX375xeLWrVv0hw8f0iIiIjAOh+N95swZ9rFjx9j//xgHjb9fb5W/b++GJ0/KTJQNSlQuI8hbhMFgtMxXTktLY6anpzMzMzNl+fn5EqFQqCbq6/YaPsj7ISIionbNmjXO8fHx1cbbExMTOWFhYfX379/PO3v2bEFzc3ObZThRn7aHwWAY+vXrV3/ixAnLw4cPW8XFxVUDABgMBtLGjRuLZTKZRCaTSR4/fpwzevTousjISGVGRkY+h8NpnjJlCg89qBNpjbjRK5PJJHv37i0xMzMzdFSGvUjcR8STFArlb8cTbQ6VSkVasmSJ64kTJwrlcrlk4sSJTxsbG1Gc0wkqlQojRoyo/+6770o3bNhQfOrUKauuxKMd7dP6+zH+7roSY7cVI7e3r62trS43N1cycODA+m3bttnFxcW5Gb/eWb5oK/4HaLue7exayOtjb2+vVSgUFONt1dXVFBsbGy3xd3vfbXsMBgNkZmZKibKsoqIi28rKSg/Qeb1KSElJKQYAiI+Pd21vHyJdxDWN/9+W9mK+to4hkUgGgM7Ly07fCIL0gA9yBHBnd8xfh7t375rp9fqWgtLGxkZDo9EMZ8+eZZaWlnZ6B0ilUpFdXFw0TU1NpEOHDrEdHR27/ECSmpoaCp1O17PZbF1JSQn16tWrrLCwsHqFQkFWKpXk2NhYxccff6zEMMz75d4lAgDwMiN1X1RUVFT9qlWrSBs3brRZsmTJUwCA9PR0hlL58p2L9fX1FBcXFw0AwJ49e1oanL/99hsjKSnJ7uTJk0VdPZe1tbXO0tJSd+HCBYuIiAjlzp07rYODg9udngMAEBISojx06JBVVFRU/e3bt806m2r9448/lnzyySe82NhYt2PHjhWFhoYq9+/fz46Ojq7Pzs6mlZWVmfr4+DTeunWrzQ7zAQMGNPzzn/90rqyspPTq1Ut3+vRpK6FQ+NxIqzNnzjAHDhzYwGQy9TU1NeSHDx/SeDxec2pqKnvJkiWlX3311RNiXw6H4y2Xy00BAO5VXFB/98/EAgCA//znN7sTmZvMz549+6Arnx+CvO+6M1L3daitraWwWCwdk8nU37171ywrK8scAOCjjz5qSExMdH7y5AnFyspKf/LkSSuRSIRGZPagrozUfZVmz579lMVi6QIDA9VpaWlMYntdXR2Fy+U2AwAkJyfbtHVsv3796nft2mX9zTfflB05csSyrq6O0tZ+cXFx1Tt37rTJyckxP3r0aBEAQHh4uGL79u22I0aMqKfRaIbs7Gyam5ub5smTJ1Qej9e8ZMmSpw0NDeQ7d+4wAABNfX4LvQ3tDkJ7ZVhH2ov7ukKlUpEBABwcHLQKhYJ89uxZq6ioqJrOjntbvIkYPisri0Ymk4EYXXj37l06l8tt9vPza3z8+LFpbm4uTSwWN6WmploPGDDgb8uGEXVRWVkZ1dbWVnv06FH2nDlzKtq+0vO6GyO3p6ysjEqj0fRTpkypxTCsadq0aTzj118kXxBpi4qKqv/zzz/N5PJnM0I6u9aHqqORuq8Ki8XS29nZaU6fPs385JNP6svLyylXr15lLVu2rMt5kMlk6ozryNDQ0Lr169fbrV27thzg2bNjQkJC1F2tVwGedbCePn36r7CwMGzhwoVOmzdvLu1KWgYMGKDct2+f9dy5c6tKS0upt27dYo4bN67az8+v8dGjR6Z5eXk0kUjUdOjQoZaBPf369avfvXu39YYNG8rS0tKYVlZWWjabjRY+R94aH2QH8JtiPBXLYDDA9u3bi6hUKkyfPr06MjLSUywWC0UikYrH4zV2dq4VK1aUBgYGCjkcTrNQKFQplcp2C73WgoOD1WKxWOXl5SVycXFpCggIUAI8CwpHjBjhSSxC/uWXX741ASvSPWQyGc6cOVM4Z84c582bNzvQaDQDl8tt+v7770sePnz4UlNM/vWvf5WOGzfOw97evrlPnz4NxcXFNACAoqIiGvHAiu7YvXv3g9mzZ7vOnz+f7OLi0nTw4MGijvZftmxZ5aeffuqGYRguFotVfD5fbWVl1e60HzKZDEePHi0aPHiw5+zZs7nffffd40mTJrliGIZTKBRITk4u6ijdPB5Ps2jRorK+ffsK7ezsNBiGqVks1nPX+/PPPxmLFi1yoVAoBoPBQJo0adLTsLAw1fjx4z3S0tLuG+8bGRlZs3fvXrbxOpIAAEuWLKl0d3d3kMlkpsZTzt8U4o41giDPxMTEKH744QdbDMNwDw+PRl9f3wYAAFdXV01iYmJpv379hLa2thofHx9VV0a2IO8ODw8PzapVq55rxCYmJj6ZPn06LykpyWHAgAFtTj3++uuvS2NiYtxxHBcGBwcrHR0d2yzfR40aVTdr1izekCFDaonRSIsWLXpaVFRE8/b2FhoMBhKbzdb8/PPPhRcvXmQmJSU5UKlUA4PB0B04cADdOEQ61V4Z1pH24r6usLGx0U2YMKESx3ERl8tt7sr1PnR1dXWU+fPnu9TV1VEoFIrBzc2tae/evQ8ZDIZhx44dRWPHjvXQ6XTg6+urWrp0aaXxsa6urprVq1c/DgsLwwwGA2nw4MGKiRMn1nb12suXL6/oTozcnqKiIpPPPvvMTa/XkwAAvvjii0fGr79Ivli6dGlFXFwcD8MwXCQSqby9vRu6ci3k9dq7d++DOXPmuCQmJjoDACQmJpaKRKJOlwskxMTE1I4ZM8bj/PnzvTZv3lz8ww8/lEyfPt0FwzBcp9ORgoKC6kNCQoq7Wq8S6HS64fz58wX9+/fnf/XVVxpzc/NOO2UnT55cc+nSJSaGYSIej9fo6+vb0KtXLx2DwTB8//33D0eMGOHJZrO1QUFBSqlUSgcAWL9+fen48ePdMAzD6XS6fs+ePahuRt4q3Zre/C7Lysoq8vX1ffqm04Eg76uEhATutGnTqoKCgl7pqDetVgvNzc0kBoNhyMvLow0dOhQrLCzMNZ6609MUCgWZxWLpNRoNDBs2zHPKlClP4+PjuxxQv4vWrFljX1dXR/nuu++6dJccQZD/LykpyTozM9M8NTW1+E2nBUEQBEEQBOk+og345MkTSt++fYXXr1+Xubi4aDs/EkFen6ysLBtfX1+3ruyLRgAjCNIjkpOTX8sd9/r6evKAAQP4xPq833333cNX2fkLALBs2TKnjIwMy6amJlJYWFhdd0ZTvIu++eYb24MHD1ofP3688E2nBUEQBEEQBEEQ5HULDw/3qquro2g0GtKyZcvKUOcv8q5DI4ARBEEQBEEQBEEQBEEQBEHeId0ZAYyewoogCIIgCIIgCIIgCIIgCPKeQh3ACIIgCIIgCIIgCIIgCIIg7ynUAYwgCIIgCIIgCIIgCIIgCPKeQh3ACIIgCIIgCIIgCIIgCIIg7ynUAfwaUSiUAIFAgPP5fBzHceGvv/5q3tPXSEtLYw4cONCzO8cEBgbyMzIyGN29VkxMjNvu3butunsc8noUFxdTR4wY4e7s7Cz28PAQhYWFeWZnZ9M6yiOxsbGut2/fNuvJdOTn55uSSKSABQsWOBHbysrKqFQqtXd8fLxLT16rKy5fvmzu4+MjEAgEuLu7u2jx4sVOxq8PHjzYw8/PT2C8bfHixU52dnY+AoEA9/DwECUnJ7Nfb6p7HlEeEf/l5+ebZmRkMKZMmeLc2bEMBsO/J9KQn59v6uXlJeqJcyFIT3qRPM7hcLzLysqob+r6yKtBIpECRo4cySP+1mg0YGVl5dtZrGVc1x44cIC1cuVKh1edVgQxRtTzXl5eosjISPf6+nrU7ntHJCYmOnh6eoowDMMFAgF+5cqVF2ozpqWlMY3bm91pu6WmpvYikUgBd+/e/Vu7ICEhgevp6SlKSEjgtj4GlXUftrbi+sWLFzutXr3avqPjjNsfrfNsV7UXg3E4HG8Mw3AMw/C+ffvy5XK5aXfP3ZmkpCTr9tq0RDxXVFRkEhER4f6y17p7966ZQCDAhUIhnpeXRyO2E21bR0dHbysrK1/j9t3LXvNFjRkzxi0rK4vW+Z7I69QjDRWka2g0ml4mk0kAAI4fP265cuVKbnh4eP6bThfy/tHr9RAdHe05fvz4qrS0tL8AAG7cuEEvLS016ei4w4cPP3wV6eFyuU2//PJLLwAoBQBITU218vT0bHwV1+rMZ599xjt48GBhcHCwWqvVQlZWVktg+/TpU0peXp45g8HQyWQyU4FA0Ey8NmvWrPIvvviiPCcnhxYcHIxPmTKlhkajGd7Ee+gJxuURgc/nN3/00UeqN5UmBHmbabVaoFJR2PShodPp+vz8fLpSqSRZWFgYTp48aWlvb6/pzjkmTJigAADFK0oigrTJuJ6Pjo7mbdy40fbzzz8v78qxqLx7cy5dumR+8eLFXjk5ORI6nW4oKyujNjU1kV7kXFeuXGFaWFjowsPDG7p77KFDh9i9e/dW7tu3j+3v719KbD9w4IBtZWXlPTqd/rcYWKPRoLIOeSEfffSRimh/vEyebU96errc0dFRu2jRIqfVq1c7Hjp06JW0dzvi5uamuXDhwl8ve56jR4/2ioyMrP3uu+9KjbdnZ2fLAJ51RmdmZpqnpqYWv+y1XtaxY8eK3nQakOehO8FviEKhoLBYLO3//k0ODg7GcBwXYhiG79+/vxfAs7to7u7uori4OFdPT09R//79vZRKJQkAID09nYFhGO7n5ydISEjgtjWK7rfffmP4+/sLhEIh7u/vLyDuwCiVStKIESPcMQzDhw8f7t7Y2NgSVJw4ccLSz89PgOO4MDIy0l2hUJABAObMmcPx8PAQYRiGz5w5s+WOb3p6uoW/v7+Ay+V6o9HAb4+0tDQmlUo1LF++vJLYFhISoo6IiFACADQ0NFAiIiLceTyeKDo6mqfX6wHg76PBGQyG/7x58zh8Ph/39fUVlJSUUAEAfvrpJ5aPj49AKBTiISEhGLG9I2ZmZgZPT081ce7jx4+zR44cWU283t45FQoFecyYMW7Ends9e/b0AgCYMGGCi1gsFnp6eooWLVrUMoL39OnTTKFQiGMYho8dO9ZNrVY/FzBXV1dTXVxcNAAAVCoVAgICWjqi9+3bZzVkyJDaUaNGVe/du7fNUb7e3t5NZmZm+qdPn1I6e9/vGuMRa4sXL3YaO3asW2BgIJ/L5Xp/+eWXdq33f5Gy6/fff2fw+Xzcz89PsGnTpufOiSBvk7S0NGZQUBAWFRXF4/P5IgCAbdu2sb29vYUCgQAfP368q1arfe64IUOGeIhEIqGnp6fo22+/tSG2t1euymQyUz8/P4FYLBYaz5ZA3g6DBw9WHD16tBcAwMGDB9kxMTEt9Vd7sZaxjkYHIcjrEBoaqiwoKKABdFw+LVy40MnHx0dw+fJli6VLlzqKxWKhl5eXaNy4ca5ErNheG6R1Ph84cKBnWloaE6DtuO306dPM8PBwD2L/kydPWg4dOrTl7w/V48ePTdhstpboYHV0dNS6ublpANqPc41HP2ZkZDACAwP5+fn5pqmpqbY7duywFwgE+IULFywAutZ2UygU5MzMTIvdu3cXnTx5smWfQYMGearVarK/v78wJSXFKiYmxm369OncoKAgbM6cOVzjPFBSUkINDw/34PP5OJ/Px4lRne3lP+T9FxgYyJ89ezbH29tb6ObmJibyJNH+aCvPlpaWUocNG+YhFouFYrFY+Msvv5gDADx58oTSv39/L6FQiI8fP97VYOh8TE7//v2VZWVlLYOh2ovnGAyG/4wZM7g4jguDg4Ox0tJSKpF+oi1bVlZG5XA43sS5Hj9+bDJgwAAvNzc38ZIlSxxbX9t4dLRWq4WZM2dyifbtf//73+faQzdu3KD7+voKMAzDw8PDPSorKymHDx9m/fDDD/YHDhywCQoKwrr6uY8bN86VKH+XLl3akjZ7e3ufxYsXOxFlSnZ2Ng0AIDQ01IsYQWxhYeG/fft2dl5eHi0gIIAvFApxkUgkJGYlnDp1ihkcHIwNHTrUw83NTTxq1Cg34vwBAQH8Gzdu0DtKA/L6oQ7g16ipqYksEAhwHo8nWrBggeuaNWvKAAAYDIb+3LlzBRKJRJqeni5fuXIllwiyiouLzebPn19RUFCQx2KxdKmpqVYAANOnT+dt3br14b1792QUCqXNEs/X17fxjz/+kEmlUsmaNWseL1++nAsA8O2339rR6XS9XC6XrF69ukwikZgDPCvI1q1b55iRkSGXSCTS3r17q9auXWtfXl5O+fnnn63u37+fJ5fLJevWrSsjrlFeXm6SmZkpO3369P01a9ZwXvFHiHRRdnY23dfXt92RnFKplL5169aSgoKCvOLiYtqvv/5q0XoftVpNDg4OVubn50uCg4OV33//vS0AQHh4uPLevXsyqVQqGTNmTPUXX3zRpalecXFx1fv372cXFhaaUCgUg5OTU8sIqvbOuWLFCkdLS0udXC6XyOVyyfDhw+sBADZt2vQ4NzdXKpPJ8q5fv868desWXaVSkRISEniHDx8ulMvlEq1WCxs2bLBtnY6ZM2eWC4VCcXh4uMeGDRtsVCpVSyfx0aNH2RMnTqyePHly9fHjx9vsAL527RrD1dW1kcPhPN/r8w4hyiOBQIAbN8CMFRQUmKWnp8v//PNP6bfffuvUegTKi5Rdn332mdumTZuK7927J3vlbxJBekB2drb5hg0bHhcWFubduXPH7NixY+zMzEyZTCaTkMlkw44dO6xbH3PgwIGivLw86b179yTJycn2T548oQC0X67OmTPHZfr06ZW5ublSBweHbo0uRV69SZMmVR8+fNhKpVKRpFIpIzg4uGVkUnuxFoK8LTQaDVy8eNHS29tbDdBx+SQWi9XZ2dmyYcOGKZctW1aRm5srvX//fp5arSYfOnSIBdC1NkhrbcVtUVFR9QUFBWZE58quXbusp0yZ8vRVfQ7vipEjR9aVlpaaurm5iSdOnOhy7tw5CwCArsa5BD6f3xwfH185a9ascplMJiEGgXSl7XbgwIFeH3/8scLHx6epV69eumvXrjEAAK5cuVJAjCyfMWNGDQBAYWGh2fXr1+UpKSmPjM8xa9YslwEDBtTn5+dL8vLyJL17927837nbzH/Ih0Gr1ZJycnKk69evL/niiy/+dsO7rTybkJDgvHjx4vLc3FzpyZMnC2fNmuUGALBixQqn4OBgpVQqlURHR9eWlZV1utTBzz//zIqKiqoFAOgonlOr1eTevXurJBKJtH///vUrVqzo9MZ8dna2+dGjR//Kzc3NO3PmDLuj5TU3btxo+/DhQ1peXp5ELpdLpk+fXtV6nylTpvDWrVv3SC6XS0QikToxMdEpNjZWQXw+t27dkneWJsLmzZsf5ebmSqVSad5vv/1mabzco729vUYqlUri4+Offv311/YAANeuXbsvk8kk27dvL+JwOE2xsbG1Li4umt9//10ulUol+/fvf7Bw4cKWJQPz8vIYKSkpxQUFBbn379+nX758+bklPDpKA/J6fZhze079wxkqJN1e87ZDdrgKRm4t6WgX46lYly5dMp86dSpPLpfn6fV60sKFC7k3b960IJPJUFFRYfro0SMqAACHw2kKCQlRAwD4+/urioqKaE+fPqU0NDSQiakRkydPrv711197tb5edXU1JTY2lldUVGRGIpEMGo2GBABw7do1i/nz51cAAAQFBakxDFMBAFy9etW8sLDQLDAwUAAAoNFoSAEBAUo2m62j0Wj6uLg41+HDhytiY2NbpvZER0fXUigUCAgIaKyqqupweYEPVenKfzk33b/fo/mN5uWlclr33w7zW0e8vb0bPDw8NAAAIpFIVVhY+FylaWJiYoiLi1MAAAQEBDRcunTJEgDgwYMHpiNHjuRWVlaaNDc3k52dnZu6cs2YmJi6L774gmNvb68xHj3V0TkzMjIsDx061DJdxtbWVgcAsHfvXvaePXtstFotqbKy0iQrK8tMr9cDl8tt8vHxaQIAmDJlStXWrVvtAKDC+Frffvtt2dSpU6vT0tIsjxw5Yn306FHrP/74I7+kpIT68OFD2tChQ5VkMhmoVKrhzz//NOvbt28jAMCOHTvsU1NTbR89emR6/Pjx+13+sDtxcftm56clD3s0f9g4u6qGzV7Y5fKoPUOHDq2l0+kGOp2uZbPZmkePHlGJfAMA0N2yq6qqilJfX08ZPny4EgBg2rRpVVeuXGG9/DtG3lenTp1yrqio6NHfh52dnWrkyJFdLj99fHwaiOVgLly4wMzNzWX4+voKAQAaGxvJdnZ2z90MWr9+vf25c+d6AQA8efLEJC8vz8zBwaGhvXL1zp07FufPny8EAEhISKhau3Yt6kRsZaG02FnW0NijeUFgbqbaLHTpNC8EBQWpHz16REtJSWEPGTLkb9Ob24u1EKTFG2p3EDd6AQCCgoLqFyxY8BSg/fKJQqHAlClTaojjz58/z9y0aZNDY2Mjuba2lorjuPrp06fKrrRBWmsrbgsKClJ/+umnVSkpKex//OMfVXfu3LE4ceLEg5f5WHram4jhWSyWPjc3V3LhwgXm5cuXmZMnT/ZYvXr1o759+6q6Eud2pitttyNHjrAXLFhQAQAQExNTvW/fPnZoaGibA0tGjx5d09ZyITdu3GAeO3bsAcCzGXfW1tY6gPbzX3feA9K5y6lS5+rHyh7Nu2yOhWpwvLDdvEsitV39GW8fO3ZsDQBASEhIw7JlyzrttL1+/brl/fv36cTfSqWSUlNTQ7558ybzxIkTBQAAcXFxioSEBF175wgLC8OePn1qYm1trf3uu+8eA3Qcz5HJZJg+fXo1wLO2yujRozt9vlJoaGidg4ODDgBg+PDhNVevXrVob1m9K1euWM6aNavSxOTZz8/e3v5vaW/dXpoxY0bV2LFjX3j94F27drH37dvXUv5mZ2fTiRmw48ePrwEACAwMbLh48WJLm+zx48fUzz77jHf06NFCNputr6yspHz22WeuUqmUQaFQDCUlJS2znfz8/BpcXV01AABisVhVWFhoOnjw4IaupgF5vT7MDuC3wJAhQxpqamqoZWVl1OPHj7OqqqqoOTk5UhqNZuBwON5qtZoMAGBqatpyZ51CoRjUajW5K1McAAASExM5YWFh9b/++mthfn6+6aBBg/jEa20V0AaDAUJDQ+vOnj37XPB179496ZkzZywPHTpktX37drubN2/KAZ5N7Tc+Hnk7eHt7q0+dOtXukhzGa9dSKBTQarXPZQgqlWogk8nEv1v2mTt3rsuCBQueTJgwQZGWlsZsffe2PWZmZgYfHx/V9u3bHXJzc3OPHDnS0mBo75wGg+G5vCqTyUy3bNlif/v2bamtra0uJibGrbGxscu/CwAAkUjUJBKJKhcvXlxpbW3t9+TJE8revXvZdXV1FGdnZ2+AZwHGvn372H379i0F+P9rAO/du7fXjBkzeOHh4TkMBuO9zvSd5ZPk5GR2d8uu9oJDBHlbMRgMPfFvg8FAGjt2bNXWrVsft7d/WloaMz09nZmZmSljMpn6wMBAPvG7aK9cBQAgk8nvdXnyrouIiKhds2aN8y+//JJfUVHREj93FGshyJvU1o3ejsonU1NTPdGRp1KpSEuWLHG9deuWxNPTU7N48WKnzmItKpVqIGYBATzrgAZoP24DAJg9e3bV8OHDPc3MzAxRUVE1RIfIh45KpcKIESPqR4wYUe/j46Pet2+fdZ8+fdqd2UehUFo+e+L7bE9nbbcnT55Qbt68aSmXy+lz584FnU5HIpFIhu3btz8i6i9jFhYW+uc2tqOj/Ie8++zt7bUKheJvI7qrq6spPB6vZbAQkf+oVCrodLpOGwUGgwEyMzOlFhYWz2XWtvJjW9LT0+VMJlMXGxvLW7JkidOPP/74qCvxHIFou1CpVINO96yv1ngGqfE+7f1t7H/todcS8+Xk5NCSk5PtMzMzpTY2NrpPPvmEZ7xEIrHUDIVCafk+NBoNjB492n3VqlWlRCft2rVr7blcbvOpU6ceNDc3k5hMZsvDik1NTVvKADKZbGjdXuwsDcjr9WF2AHdyx/x1uHv3rpler28pKG1sbDQ0Gs1w9uxZZmlpaYd3w2xtbXXm5ub6y5cvmw8ePLhh3759bU5Vr6uro3C53GYAgOTk5JY1lkJDQ5X79+9nR0VF1f/5559mcrmcAQDw8ccfNyxZssQlNzeXJhaLm+rr68kPHjwwcXV11SiVSnJsbKzi448/VmJevJXHAAAgAElEQVQY5t3W9ZC2vcxI3RcVFRVVv2rVKtLGjRttlixZ8hTg2ZptSqXypYOs+vp6CrGG7p49e1qmPv/222+MpKQku5MnTxa1d2xiYuKTjz76qJ64Q9rZOT/++OO6TZs22e3atasEAKCyspJSU1NDodPpejabrSspKaFevXqVFRYWVu/n59f4+PFjUyL/pqamWg8YMKC+dRoOHTrE+vTTTxVkMhlycnLMKBSKwcbGRnfs2DH2yZMn7w8ZMqQB4FmDZejQoVhSUtLfFtmfPHlybWpqqvXWrVutly1b9tJTFTsbqfs2627ZZWNjo7OwsNBdvHjRYtiwYco9e/a0WXYhCKE7I3Vfh4iIiLrRo0d7rly5spzD4WjLy8spCoWCgmFYywMja2trKSwWS8dkMvV37941y8rK6vRp1r1791ampKSw58yZU52SkvLckhIIQFdG6r5Ks2fPfspisXSBgYFqYl1TgPZjLQRp8Ra0OwhdLZ9UKhUZAMDBwUGrUCjIZ8+etYqKiqrpqA3i4eHRnJKSwtDpdPDgwQOT7OxscwCA9uI2gGcPRrK3t9ds3LjR8fz5812e0vy6vIkYPisri0Ymk8Hb27sJAODu3bt0Lpfb3FGcy+Vym69fv8749NNP644cOdIyAITJZOrq6uq6tcTCvn37rEaPHl31008/tTwoq2/fvvxffvnFglhGoiv69+9fv2HDBtvVq1dXaLVaqKurI79I/Yi8mI5G6r4qLBZLb2dnpzl9+jTzk08+qS8vL6dcvXqVtWzZsi6PUm+dZ0NDQ+vWr19vt3bt2nKAZ2vjhoSEqPv161e/a9cu62+++absyJEjlp3lcwsLC8O2bdtK/Pz88P/+979lHcVzer0edu/ebTVz5syaPXv2WAcGBtYDADg7Ozf98ccf5gMHDlQdOHDgbwOtrl27ZlleXk4xNzfX//zzz71+/PHHovbSMmTIkLodO3bYDh8+vN7ExATKy8spxqOAra2tdZaWlroLFy5YREREKHfu3GkdHBzc5d+esdraWoq5ubnOyspK9/DhQ5OMjAzLYcOGdfigxlmzZjn7+/urpk6d2jIjRKFQUDw9PZvIZDJs3brVujsDr14kDcirg+64vUbGa27GxcW5b9++vYhKpcL06dOrs7KyzMVisXD//v1sHo/X6XD45OTkotmzZ7v6+fkJDAYDMJnM56Y9JCYmPvn888+5vXv3FhB3qwAAli5dWtHQ0EDBMAxft26dg7e3dwMAgJOTkzY5ObkoLi7OHcMwPCAgQJCTk2NWW1tLiYiI8MIwDB8wYAD/yy+/fGsCWaRtZDIZzpw5U3j58mVLZ2dnsaenp2jNmjVORCfry/jXv/5VOm7cOI+AgAC+tbV1y9TnoqIiWusnArfWp0+fxnnz5j23zlF75/zqq6/KamtrKV5eXiI+n4///PPPzODgYLVYLFZ5eXmJJk2a5BYQEKAEAGAwGIYdO3YUjR071gPDMJxMJsPSpUsrW19r//791u7u7mKBQIDHx8fzfvzxxweFhYWmpaWlpoMGDWqZriIQCJotLCx0xCL3xj7//POyrVu3Ohj/rj5EL1J27dy5s2j+/Pkufn5+gs7yC4K8bQICAhr//e9/Px48eDCGYRg+aNAgrKSk5G9D1mJiYhRarZaEYRi+cuVKJ19f306ntm7btq34hx9+sBOLxcLWo2eQt4OHh4dm1apVzzVi24u1EORt1NXyycbGRjdhwoRKHMdFkZGRnsb7tdcGCQ8PVzo7Ozfx+XzRggULnHEcVwEAtBe3EeLi4qocHR2b0XTgZ+rq6ijx8fE84uHbMpmMvn79+tKO4tzVq1eXLl++3CUgIIBvvC5zTExM7blz53oZPwSuM0ePHrUePXp0jfG2Tz75pKa9AUft2b59e3F6ejoTwzBcLBbjd+7cob9I/Yi8W/bu3ftg3bp1jgKBAA8LC+MnJiaWikSiLi0XCPB8nv3hhx9K7ty5Y45hGO7h4SHasmWLLQDA119/XXr9+nULHMeFFy9eZDk6OjZ3dm5XV1dNdHR09bfffmvXUTxHp9P1eXl5dJFIJMzIyGB+9dVXZQAAK1asKN+5c6etv7+/4OnTp38bSNmnTx9lbGwsTywWi6KiomraW/4BAGDRokWVXC63WSAQiPh8Pr5z587nflu7d+9+kJiYyP3fw9noX3/9dWlb5+pM//79VV5eXo0YhommTJni2rr8bU2r1cKuXbvsrly5Ykn0Wx0+fJi1ePHiin379tn4+voKHj58aGo807On04C8WqQPZdp+VlZWka+v73vzYAGFQkFmsVh6AICVK1c6lJWVmezevRt1zCJvTEJCAnfatGlVQUFB6jedFgRBEARBEKTn9XQbJD4+3sXf31+1aNGi96adhiDIu4vBYPirVKq7bzodCNJVWVlZNr6+vm5d2ffDXALiPXDkyBHWxo0bHXU6HYnD4TT99NNPRW86TciHLTk5+VHneyEIgiAIgiDvqp5sg4hEIiGdTtcnJyejQSwIgiAI8oqhEcAIgiAIgiAIgiAIgiAIgiDvkO6MAEZrACMIgiAIgiAIgiAIgiAIgrynUAcwgiAIgiAIgiAIgiAIgiDIewp1ACMIgiAIgiAIgiAIgiAIgrynUAcwgiAIgiAIgiAIgiAIgiDIewp1AL9GFAolQCAQ4Hw+H8dxXPjrr7+ad/ccDAbD/2XS8LLHI++O4uJi6ogRI9ydnZ3FHh4eorCwMM/s7GxaWloac+DAgZ5tHRMbG+t6+/Zts9ed1o4cOHCAtXLlSoeO9snPzzf18vIS9cT1Ovp83idEeUT8l5+fb/qm04Qgb4tXXVcuXrzYafXq1fav8hpIzyCRSAEjR47kEX9rNBqwsrLy7ayeMK5L0tLSmC8S8yHIyyDqeS8vL1FkZKR7fX09ave9IxITEx08PT1FGIbhAoEAv3LlSrfLj67EzwjSk9pqj3Ul3snIyGBMmTLFGeDF60sOh+NdVlZGbb198+bN1hiG4RiG4V5eXqL9+/f3AgBISkqyLioqMunsvF3d72VERUXxMAzD//Of/9i19Tqfz8ejoqJ4bb3WU97GPgDk1XjuR4K8OjQaTS+TySQAAMePH7dcuXIlNzw8PL8rx+r1ejAYDK82gch7Q6/XQ3R0tOf48eOr0tLS/gIAuHHjBr20tLTDCuzw4cMPX08Ku27ChAkKAFC86XS8b4zLo7ZoNBowMXml8Q6CvBe0Wi1QqSicel/R6XR9fn4+XalUkiwsLAwnT560tLe313TnHFeuXGFaWFjowsPDG15VOhGkNeN6Pjo6mrdx40bbzz//vLwrx6Jy7c25dOmS+cWLF3vl5ORI6HS6oaysjNrU1ETq7nlQ/Iy8Kz766CPVRx99pALo2fqysLDQZOPGjY737t2TWltb6xQKBZnoJN6/f7+Nn5+f2s3NrcP6vKv7vaji4mLq7du3LUpLS3Paev3OnTtmBoMBbt26xayrqyNbWlrqezoNWq32rewDQF4NdCf4DVEoFBQWi6X937/JwcHBGI7jQgzDcOLOVH5+vqm7u7to4sSJLiKRCC8sLDQFAJgxYwYXx3FhcHAwVlpaSgUA2Lhxo41YLBby+Xx82LBhHsRdfplMZurn5ycQi8XCBQsWOBHX1+v1kJCQwPXy8hJhGIanpKRYAQA8fPjQpE+fPnxixMCFCxcsXvdng7y8tLQ0JpVKNSxfvryS2BYSEqKOiIhQAgA0NDRQIiIi3Hk8nig6Opqn1z+rSwIDA/kZGRkMgGcj4ObNm8fh8/m4r6+voKSkhAoA8NNPP7F8fHwEQqEQDwkJwYjtHaWlb9++/P/zf/6Pu5ubm3jOnDmc7du3s729vYUYhuF5eXm0js6blJRkHR8f7wIAEBMT4zZlyhRnf39/AZfL9d69e7dV6+vl5+ebBgQE8HEcFxqPtE9LS2MGBgby23rfx44ds+TxeKKAgAD+sWPHer3s5/+uSkpKso6MjHQfNGiQ54ABA7DOyqa4uDhXT09PUf/+/b2USiUJACA3N5cWEhKCETMdiO931apV9mKxWIhhGL5o0SKnjtKBIG+L9upEBoPhv3DhQicfHx/B5cuXLZYuXeooFouFXl5eonHjxrkSZUteXh5twIABXiKRSBgQEMC/e/cuGl3xDho8eLDi6NGjvQAADh48yI6JiakmXvvtt98Y/v7+AqFQiPv7+wuysrJoxsfm5+ebpqam2u7YscNeIBDgFy5csOhuPYogLys0NFRZUFBAAwDYtm0b29vbWygQCPDx48e7arVaAHi+XDMeUZeRkcEIDAzkv8G38MF4/PixCZvN1tLpdAMAgKOjo9bNzU3D4XC8Z8+ezfH29hZ6e3sLc3NzezR+RpBXLTAwkE/kYTc3NzERUxEzZtqqL0tLS6nDhg3zEIvFQrFYLPzll1/MAQCePHlC6d+/v5dQKMTHjx/v2tZAubKyMhNzc3M9i8XSAQCwWCy9QCBo3r17t1Vubi4jPj7eXSAQ4EqlktRWHNfWfr///jujb9++fJFIJAwNDfV6+PChCQDAl19+aefh4SHCMAwfMWKEe+u0qFQq0pgxY9wwDMOFQiF+9uxZJgDAkCFDsOrqahPi/bY+bu/evexPP/206qOPPqo7ePBgSxs1MDCQ/9lnnzn36dOH7+7uLkpPT2cMHTrUw9XVVTx//vyWdlZXy3vjPoBjx45Z4jgu5PP5eHBwMAbQeayDvDtQB/Br1NTURBYIBDiPxxMtWLDAdc2aNWUAAAwGQ3/u3LkCiUQiTU9Pl69cuZJLNB6LiorMpk6dWiWVSiUYhjWr1Wpy7969VRKJRNq/f//6FStWOAEATJgwoSY3N1ean58v4fP56qSkJBsAgDlz5rhMnz69Mjc3V+rg4NBy5yo1NbVXTk4OXSqV5l2+fFm+evVq7sOHD0127drFHjx4sEImk0mkUmleUFCQ6g18VMhLys7Opvv6+rb73UmlUvrWrVtLCgoK8oqLi2m//vrrcxWOWq0mBwcHK/Pz8yXBwcHK77//3hYAIDw8XHnv3j2ZVCqVjBkzpvqLL77odHqZTCajb9++vUQqleYdO3bMWi6Xm+Xk5EgnTZr0dOPGjXbdOW95eblJZmam7PTp0/fXrFnDaf26k5OT9vfff5dLJBLp4cOH/1q0aJFLR+9bpVKR5s6d63bmzJmCP//8M7+iouKDGPZKlEcCgQAPDw/3ILbfuXPH4uDBgw9u3rwp76hsKi4uNps/f35FQUFBHovF0qWmploBAIwfP543a9asivz8fElmZqbMxcVFc+LECcuCggKz7OxsqVQqldy7d49x/vx5dHMJeeu1Vyeq1WqyWCxWZ2dny4YNG6ZctmxZRW5urvT+/ft5arWafOjQIRYAwPTp0123bdtWnJeXJ92wYcOj2bNnu3R8ReRtNGnSpOrDhw9bqVQqklQqZQQHB7eMTPL19W38448/ZFKpVLJmzZrHy5cv5xofy+fzm+Pj4ytnzZpVLpPJJBEREcoXqUcR5EVpNBq4ePGipbe3t/rOnTtmx44dY2dmZspkMpmETCYbduzYYQ3wfLn2ptP9oRo5cmRdaWmpqZubm3jixIku586da4mXLC0tdTk5OdKEhISKefPmOQP0XPyMIK+DVqsl5eTkSNevX1/yxRdf/G1ASFv1ZUJCgvPixYvLc3NzpSdPniycNWuWGwDAihUrnIKDg5VSqVQSHR1dW1ZW9txSdv369VPZ2NhonJ2dvceMGeP2008/sQAApk6dWiMWi1Wpqal/yWQyiYWFhaGtOK71fiYmJjB//nyX06dPF+bl5UknT578dOnSpRwAgKSkJIfc3FyJXC6X7Nmz57nRtOvXr7cDAJDL5ZKffvrpr5kzZ7qpVCrS2bNnC5ydnZuI99v6uNOnT7Pj4+Nrxo8fX3348GG28Wumpqb6zMzM/KlTp1aOHTvWMyUlpVgmk+UdPnzY5smTJ5QXKe9LS0upc+fOdTtx4kRhfn6+5NSpU4UAncc6yLvjgxxxsOr6KueCmgJGT57T08pTtbb/2pKO9jGeinXp0iXzqVOn8uRyeZ5eryctXLiQe/PmTQsymQwVFRWmjx49ogIAODo6Ng8ePLiloUEmk2H69OnVAADTpk2rGj16tCcAwO3bt+mrV6/m1NfXUxoaGihhYWEKgGedOefPny8EAEhISKhau3YtFwDg999/Z3766afVVCoVnJ2dtUFBQcpr164x+vXr15CQkOCm0WjIY8aMqQkJCVH35Of0IbqcKnWufqzs0fzG5lioBscLO8xvHfH29m7w8PDQAACIRCIVMbrcmImJiSEuLk4BABAQENBw6dIlSwCABw8emI4cOZJbWVlp0tzcTHZ2dm7qyvVcXV01AAAuLi5NkZGRCgAAX19fdXp6OrM7542Ojq6lUCgQEBDQWFVV9VxnbXNzM+mzzz5zlUgkdDKZDA8fPmy5Q9nW+2YymToul9vk7e3dBAAwYcKEqh9//NG2s/fUU6qPyZ01Txp6NH+YOJir2GOwLpdHxgYMGFBnb2+vAwDoqGzicDhNRPng7++vKioqotXU1JDLy8tN4+PjawEAGAyGAQAMFy5csMzIyLDEcRwHAFCpVGSZTGYWGRmJGphIhyTSROcGpbxHfx/mFpgKF67vUvnZXp1IoVBgypQpNcR+58+fZ27atMmhsbGRXFtbS8VxXK1QKOrv3r1rMXbs2JYbLM3Nzd2exos8s+xYlrP8SX2P5gXMganaMMa307wQFBSkfvToES0lJYU9ZMiQv02prq6upsTGxvKKiorMSCSSQaPRdPodv0g9iry73lS7g7jRCwAQFBRUv2DBgqebNm2yyc3NZfj6+goBABobG8l2dnZagOfLNeTNxPAsFkufm5sruXDhAvPy5cvMyZMne6xevfoRAMDkyZOrAQBmzJhR/e9//9sZoOfiZ+T9cnH7ZuenJQ97NO/aOLuqhs1e2G7eJZHarv6Mt48dO7YGACAkJKRh2bJlnT5/5Pr165b379+nE38rlUpKTU0N+ebNm8wTJ04UAADExcUpEhISdK2PpVKpkJGRcT89PZ3xyy+/WK5YscI5MzPTfNOmTaWt920rjoNWS6hkZ2fT7t+/Tx80aBAG8GxGta2trQYAgM/nq0eNGsWLjo6unTBhQm3r89+4ccNi3rx5FQAA/v7+jU5OTs05OTlmvXr1ei7dhPT0dAabzdZiGNbs7u7ePHv2bLfKykqKra2tDgBg1KhRtQDP2tOenp5qoq3t7Ozc9Ndff5levXrVorvl/dWrV80DAwPrBQJBMwAA0SZ8kVgHeTuhEcBvyJAhQxpqamqoZWVl1OTkZHZVVRU1JydHKpPJJNbW1hq1Wk0GeDY6uKPzEAXqzJkzeVu2bCmWy+WSxMTE0qamppbvlkwmPzcnor31hCMjI5UZGRn5HA6necqUKbwtW7ZYv8z7RN4Mb29vdVZWVruVPo1Ga8kAFAoFtFrtc4U4lUo1kMlk4t8t+8ydO9dlzpw5FXK5XLJly5aHxnmtK9cjk8lgZmZmIP6t0+m6dV7iWIC28/F///tfezs7O41UKpXk5ORINBpNy3nae9/tBSwfIuMyp6OyydTU1PizNGi1WlJ75YrBYICFCxeWyWQyiUwmkxQXF+cuWrTo6St/MwjyktqrE01NTfXE+pgqlYq0ZMkS1xMnThTK5XLJxIkTnzY2NpJ1Oh0wmUwtke9lMpnkr7/+ynujbwh5YREREbVr1qxxjo+PrzbenpiYyAkLC6u/f/9+3tmzZwuam5s7rRNfpB5FkO4ibvTKZDLJ3r17S8zMzAwGg4E0duzYKmJ7UVFRLtEZYlyuATyr24lZP0Tdj7weVCoVRowYUf/dd9+VbtiwofjUqVNWAM/iZgKJRDIA9Fz8jCAvy97eXqtQKCjG26qrqyk2NjZa4m8iH1Kp1JY2YEcMBgNkZmZKiTKroqIi28rKSg/w999De8hkMgwcOFD11VdfPdm/f/9faWlpzy31114c10ZaSJ6enmoiLXK5XHL9+vX7AAC//fbb/X/84x+Vt2/fNvf19cU1Gk3rYztNa2v79u1j//XXX2YcDsfb1dXVu6GhgbJv376W5VuM29Ot29r/a5d1ubw3Tmdb7eIXiXWQt9MHOQK4szvmr8Pdu3fN9Hp9S0FpY2OjodFohrNnzzJLS0vbvRtGrEczc+bMmj179lgHBgbWAzwbUefi4qJpamoiHTp0iO3o6KgBAOjdu7cyJSWFPWfOnOqUlJSWztywsLD6lJQU27lz51ZVVFRQ//jjD4ukpKQSuVxuyuPxmpcsWfK0oaGBfOfOHQYAVL3yD+Q99jIjdV9UVFRU/apVq0gbN260WbJkyVOAZ3cRlUrlSxfW9fX1FBcXFw0AwJ49e1ry1G+//cZISkqyO3nyZFFPnre7FAoFhcvlNlMoFNiyZYu1TtfujVUAAPDz82t89OiRaV5eHk0kEjUdOnSI3eEBPayzkbpvUnfKJgAANputd3BwaN63b1+vSZMm1arVapJWqyVFRkbWff75504zZ86sZrFY+gcPHpiYmpoaOByOtqPzIUhXR+q+Kl2pE1UqFRkAwMHBQatQKMhnz561ioqKqmGz2Xoul9u8a9cuq2nTptXo9Xq4desWPTg4GM2seQFdGan7Ks2ePfspi8XSBQYGqtPS0pjE9rq6OgqXy20GAEhOTrZp61gmk6mrq6traRT3VH2HvBvehnYHISIiom706NGeK1euLOdwONry8nKKQqGgYBjW3HpfLpfbfP36dcann35ad+TIkQ9yzdg3EcNnZWXRyGQyEDPT7t69S+dyuc35+fn01NRU9rp1657s3LnTyt/fvwEAlSdI2zoaqfuqsFgsvZ2dneb06dPMTz75pL68vJxy9epV1rJlyyq6eo7W9WVoaGjd+vXr7dauXVsO8Oyh5iEhIep+/frV79q1y/qbb74pO3LkiKXxMYSioiKTR48emYSGhqoAADIzMxkcDqcZAMDCwkJHdFa3F8e13s/Hx6exurqaeunSJfMhQ4Y0NDU1kXJycmj+/v6NhYWFplFRUfVDhw5VOjk5sf/XhmpphIaGhir379/Pjo6Ors/OzqaVlZWZ+vj4NBYXF7c5Gl+n00FaWhr77t27eTweTwMAcPbsWea6descFy9e3KVBNN0p7wkDBw5sWLJkiatMJjMVCATN5eXlFHt7e11XYh3k3YB67l8j4zU34+Li3Ldv315EpVJh+vTp1VlZWeZisVi4f/9+No/Ha2zvHHQ6XZ+Xl0cXiUTCjIwM5ldffVUGALBixYrSwMBA4YABAzAvL6+W47dt21b8ww8/2InFYqHxHblJkybVikQitVAoFH388cfYf/7zn0cuLi7aixcvMnEcFwmFQvz06dNWy5cv79LTgpG3C5lMhjNnzhRevnzZ0tnZWezp6Slas2aNExEgvox//etfpePGjfMICAjgW1tbt3TgFRUV0YgHVvTkebtr4cKFFQcPHrT29fUVyOVyMzqd3uEoegaDYfj+++8fjhgxwjMgIIDv7OzcbqX4oelO2UTYv3//g61bt9phGIb36dNHUFJSQh09enTd2LFjq/v27SvAMAwfNWqUR21t7XOBGoK8bbpSJ9rY2OgmTJhQieO4KDIy0tPX17dl2aaDBw/+tXv3bhs+n497eXmJjh8//sE+ZPJd5+HhoVm1atVzjdjExMQnn3/+Obd3796C9m44xsTE1J47d64X8ZCXnqrvEKS7AgICGv/9738/Hjx4MIZhGD5o0CCspKSkzQ6I1atXly5fvtwlICCAT6FQ0JDR16Suro4SHx/PIx4oJZPJ6OvXry8FAGhqaiL5+PgItm3bZp+UlFQC0HPxM4L0hL179z5Yt26do0AgwMPCwviJiYmlIpGoy8scta4vf/jhh5I7d+6YYxiGe3h4iLZs2WILAPD111+XXr9+3QLHceHFixdZjo6Oz7XfmpubSUuXLuXyeDyRQCDAjx07ZrVly5YSAID4+Pin8+bNcxUIBLiZmZm+vTjOeD+tVguHDh0qXLFiBZfP5+MikQhPT0+30Gq1pPHjx/MwDMPFYjGekJBQbtz5CwCwfPnyCp1OR8IwDI+NjfVITk4u6qjdfP78eaa9vX0z0fkLABAZGVlfUFBgRjx4rjPdKe8JTk5O2qSkpKJRo0Z58vl8fNSoUe4AXYt1kHdDu1N23zdZWVlFvr6+aMoxgrwiCQkJ3GnTplUFBQWh0W0IgiAIgiAI0kM4HI53Zmam1NHREXXyIgiCIC2ysrJsfH193bqy7we5BASCID0vOTn50ZtOA4IgCIIgCIIgCIIgCPJ3qAMYQRAEQRAEQRAEQd5Sjx8/znnTaUAQBEHebWgNYARBEARBEARBEARBEARBkPcU6gBGEARBEARBEARBEARBEAR5T6EOYARBEARBEARBEARBEARBkPcU6gBGEARBEARBEARBEARBEAR5T6EO4NeIQqEECAQCnM/n4ziOC3/99Vfzzo5hMBj+ryNtyPunuLiYOmLECHdnZ2exh4eHKCwszDM7O5uWlpbGHDhwoGdbx8TGxrrevn3brKfS8Mcff9AFAgEuEAhwFovlx+FwvAUCAR4SEoK1d4xWq4WAgAB+T6WhI5s2bbKxsrLyFQgEuLu7u2jz5s3WPXHe1NTUXqtWrbLviXN1h1KpJPXr1w8TCAT47t27rTralyiPiP/y8/NNX1W6OspzxmJiYtyIPILjuPDSpUsdlpExMTFunb3PnlBUVGQSERHh/qqvg7w9iLo3Pz/fdMeOHezO9s/Pzzf18vISvfqUIa8biUQKGDlyJI/4W6PRgJWVlW9XyrSuMq57V6xY4fAy5/rmm29st2zZ0iN1GfJuI+p5Ly8vUWRkpHt9fT25o7Jq4cKFTqdOnWICAAQGBvIzMjIYAABhYWGeT58+pbxIGlB+fDGJiYkOnp6eIgzDcIFAgF+5cqXNeIMv6LsAACAASURBVMj4OzPWU/GRcT5AkK5oq4xZvHix0+rVq197uwhBkOdR33QCPiQ0Gk0vk8kkAADHjx+3XLlyJTc8PDy/p86v1+vBYDAAhfJCMRryHtHr9RAdHe05fvz4qrS0tL8AAG7cuEEvLS016ei4w4cPP+zJdAQGBqqJPB8TE+M2YsQIxdSpU2s6OoZKpcLt27d77HfRmVGjRlXv2rWrpLi4mOrr6yuKjY1VODo6aonXNRoNmJh0+LE9Jz4+vrbHE9oF169fNyeRSEB85h0xLo/a8iLvuyd8+eWXj6ZOnVpz4sQJyzlz5rjK5fJO38ur5ubmprlw4cJfbzodyOt3//592uHDh9mzZs2qftNpQd4MOp2uz8/PpyuVSpKFhYXh5MmTlvb29pqeOr9Wq/1b3ZuUlOT49ddfP3nR8y1fvryyZ1KGvOuM6/no6Gjexo0bbceNG9duDLZ58+bStranp6cXvGgaUH7svkuXLplfvHixV05OjoROpxvKysqoTU1NpNb7abXadr8zBHnbval2BoJ86NAI4DdEoVBQWCxWSyfTqlWr7MVisRDDMHzRokVObexPDg4OxnAcF2IYhu/fv78XwLO7bO7u7qKJEye6iEQivLCw0NR41PDu3butYmJi3AAAdu3aZeXl5SXi8/l4nz59XssIS+TNSEtLY1KpVINx4B0SEqKOiIhQAgA0NDRQIiIi3Hk8nig6Opqn1+sB4O93+hkMhv+8efM4fD4f9/X1FZSUlFABAH766SeWj4+PQCgU4iEhIRixvbuqq6vJ/fr1a8nTBw8eZAE8CwiYTKYfAMC4ceNcDx8+zAIAGDRokOe4ceNcAQA2bNhgs3jxYidiu0gkEnp6eoo2bdpkY3yOOXPmcPh8Pu7n5yd4/Phxh+l0cXHRcjic5sLCQtP58+c7jR8/3jUkJMRr7NixPKVSSRo9erQbhmE4juPC8+fPWwAAiMViYVZWFo04R0BAAP///t//S9+0aZPNtGnTnAEAPvnkE97UqVOd/f39BVwu1zs1NbUXsf+KFSscMAzD+Xw+Pm/ePA4AQE5ODi00NNRLJBIJ+/Tpw8/Ozqa1TmtZWRl10KBBnhiG4f7+/oI///zTrKioyGTGjBluubm5jBcd0ZuUlGQdGRnpPmjQIM8BAwZgAG2XTUS5ExcX5+rp6Snq37+/l1KpJAEA5Obm0kJCQjBipkNeXh4NoP08156IiIj6kpISGsCzmxe+vr4CDMPw8PBwj8rKyr/d5Tp9+jQzPDzcg/j75MmTlkOHDvUAaD8fl5aWUocNG+YhFouFYrFY+Mv/Y+/Ow5o61seBv1kgJBAiYZcACSQnGyEiGAS3qli1AuWKO+LSWrdad8Wf1n0rRbx+qdZLbV2warVqEbAFd7RatSqyZUEsIAqIAgIhAUKS3x/ew0UEREVRnM/z+DwmOWfOCZnMvDPnPZNTp8wBAE6ePGmBZ0ULhUJRRUXFMxlTKpXK1Nvbmy8SiYTtvZMDeX+tWLHC6caNGxYCgUC0du1au/Z8/t7e3vwrV65Q8cc9e/YUXLt2jdp8O+T9MXjw4Mpff/21GwDAoUOHmKGhoY0XBM6fP0/z8vISCIVCkZeXlwDvE2JiYqwnTZrkgm83cOBAblJSEh3gabs0f/787p6enoKzZ89a4H3v7Nmznerq6ogCgUAUHBzMAQAICAhwx/u4LVu22ODltda2Nc20io6OtvHw8BDy+XzR0KFD3aurq1Hc/4Hq27evOjc3lwIAoNfroaX+u7WsUScnJ0lxcTFZpVKZcjgcMR4PDRs2zA2vU05OTpJZs2Y5SSQSoUQiEWZlZVEAnq2PMpmMj2/DZrM9kpOTLQCeTmTOmDGDhccaUVFRNgAABQUFJj4+Pnw8ixnfvqt78OCBCZPJbKBSqUYAAEdHxwY2m60DePp3Xrx4saO3tzd/9+7dVi+T6fuisWRLdQKn1+th5MiR7Llz53YHAAgLC3Px8PAQcrlccUvjVgRpiUwm48+ZM8epV69e/A0bNtg3r7/4HIZer4eJEye6cLlc8cCBA7kDBgzg4tvh7REAwMWLF2kymYwP0HpfjGIyBHkWCgTfIjyo53A44nnz5rmuXr26GADg+PHjlrm5uWYZGRkKhUIhv337Ng2fYMLRaDTDyZMnc+VyuSI1NTVn+fLlLHwCJT8/32zq1KllCoVCjmFYfWvH/+abbxxPnTqVo1Kp5MnJya98NR9592VkZFClUqmmtdcVCgV1x44dhbm5udn37t2jnD59+rmgWqvVEv38/NQqlUru5+en/u6772wBAIYMGaK+ffu2UqFQyEeNGlW+bt26V7pd1dzc3PjHH3/kyuVyxfnz53OWLVvm3Hybfv36VV+8eNHCYDDAo0ePTBQKBRUA4PLly/QBAwZUAwAcOnQoLzs7W5GWlqbYsWOHPT45qFarSR999FG1SqWS+/j4qHfs2GHTvPymsrKyKA8ePDAVCAR1AACZmZm0M2fO5MbHx+dt3rzZ3tTU1JiTkyOPi4vL+/zzzzm1tbWEf/3rX+U///wzEwDg7t27JhUVFWQ/Pz9t87IfP35MvnnzpvLYsWO5q1evdgJ4OpF++vRpxq1btxQqlUr+9ddflwAATJs2zTU2NvZedna2YtOmTfdnzZrl0ry8xYsXd+/Vq5c6JydHvnLlyqKpU6dy2Gy2LiYmpsDX17daqVTK+Xx+q20BwP/aI4FAIGo6eXrr1i2LQ4cO5V29ejWnrbbp3r17ZnPnzi3Nzc3NZjAY+ri4OCsAgAkTJnBmzpxZqlKp5Ddu3FC6uLjoANpX55r65ZdfuvF4PC0AwJQpUzibNm26n5OTIxeLxdqIiIhnBhtBQUHVubm5ZkVFRWQAgN27d1tPmTLlMUDr9XjGjBnOCxcufJiVlaX47bff7s6cOZMNABAdHe0QExNToFQq5VevXlVaWFg8M1PdvXv3hkuXLuXI5XLF4cOH/1mwYMFznw/SdWzcuPGBj4+PWqlUylevXl3ans9/ypQpj3/88UcbAICMjAxKfX09wdfX97l2AXl/hIeHlx8+fNhKo9EQFAoFzc/PrwZ/TSqV1l6/fl2pUCjkq1evfrB06VLWi8rTarVEDw8PbUZGhnLo0KFq/Pnvv//+AZ61mZCQkAcAcODAgfzs7GzF7du35bGxsfYlJSUkvIyW2ramwsLCKrKyshQqlUrO5/O1MTExbfaDSNek0+kgJSXFUiKRaAFa77/bIz8/32zmzJmPcnJy5HQ63RAVFdVY7ywtLfWZmZmKGTNmlH711VfPxXQAAA0NDYTMzExFZGRk4bp167oDAGzbts2GwWDos7KyFOnp6Yp9+/bZKpVK0927dzMHDx5cqVQq5QqFItvX17fVuLYrCQkJqSoqKjJls9keEydOdDl58uQz8ZKZmZnh5s2bqunTp7d5R11zbY0l26oTOp2OEBISwuHxeLUxMTFFAABbt259kJWVpVAqldmXL1+mowk1pL2ePHlC+vvvv1Vr16592No2cXFxVoWFhaYqlSp73759+WlpaS+8+NNaX4xiMgR51ge5BETR8hXOdXfudOh6RhQeT9N908bCNrdpcivWmTNnzKdOncrJycnJTk5Otrx48aKlSCQSAQBoNBqiUqk0Gz58eOOgwGAwEObPn8+6evWqBZFIhNLSUtP79++TAQAcHR3rBw8eXNPyUf/Hx8dHHRYWxg4NDa0ICwt7qaABeXUpO7c5Py4s6ND6ZuPsqhk6a36b9a0tEomkxt3dXQcAIBaLNXfv3n0uW9TExMQ4bty4SgAAb2/vmjNnzlgCAOTl5ZmGhISwHj16ZFJfX090dnaue5VzMBqN8NVXX7GuX79uQSQSoaSkxLS4uJhsY2PTmBkfEBCg/vHHH+3+/vtvqkgk0pSWlpo8ePCAnJaWZh4XF1cAALBp0yb75OTkbgAADx8+NFUoFBQ/Pz+NmZmZYcyYMVX/PX/NpUuXWgwefvvtN+Zff/1FNzExMXz33XcFNjY2egCATz75pIJGoxkBAP766y+LJUuWlAAA+Pj41NrZ2emys7Mp4eHhFYGBgdyoqKjiuLg45qefftri9yo4OPgJkUgEX19fbWlpqSkAwOnTpy0nTZr0+MyZM6zS0lIawNMsGLFYbLFjxw4Rvq+npyf88MMPz2TsMxgMGovF0v7www8MAAA/Pz/qf/7zH35VVRVJIpGYxMfHO4eEhLS7PWqqX79+Vfb29noAgNbaJjc3t3onJ6c6f39/LQCAl5eXJj8/n1JRUUF8+PChKb4Exn//fkaA9tU5AICvv/6aFRkZ6chkMnU//fRTfllZGam6upo0YsQINQDAF198UTZ69Ohn1uMlEokwZsyYsl27djG//PLLslu3blkcP348D6D1enz58mXLO3fuNA5Y1Go1qaKigti7d2/14sWLnceMGVM+fvz4Cnd392cmgOvr6wmff/65q1wupxKJRCgoKHguQxvpOPMV95yVNbUd2n4KzM0024Qur9R+tufznzJlSkVUVJRjXV3d/f/85z82EyZMePz6Z41A/JfOUCrv2LUo7UQaCNnxwrrg6+urvX//PmXXrl3MgICAyqavlZeXk8aOHcvJz883IxAIRp1O99yt2s2RSCSYMmVKu+KwyMhI+5MnT3YDACgpKTHJzs42c3BwqGmtbWvq5s2b1FWrVjlVV1eTampqSAMGDKhsvg3y5nXWuAO/0AsA4OvrWz1v3rzHBQUFJi313+09roODQ/3HH39cAwAQHh5eFhMTYwcADwEAJk+eXA4A8MUXX5R//fXXLU4Ajx49ugIAwN/fv2bJkiWmAABnzpyxVCqVtISEBCsAgOrqapJcLjfr3bt3zYwZM9g6nY44atSoCvyc36bOiOEZDIYhKytLnpycTD979ix98uTJ7qtWrbo/d+7cMgCASZMmvdIYrq2xZFt1Yvbs2a4hISHlkZGRjUvT7Nu3j7l3716bhoYGwqNHj0zS09PN0KTau6X8aI6zrqSmQ+uuiYO5hjkKa7PdIRBa7gLx58ePH//CJbUuXbpkMXLkyAoSiQQuLi4NvXv3rn7RPq31xSgmQ5BnfZATwO+CgICAmoqKCnJxcTHZaDTC/Pnzi5csWdJqgxQbG8ssKysjZ2ZmKigUitHJyUmi1WqJAE+v6DbdtmnDq9VqGx8cPHjw3rlz58wTEhIYPXr0EN++fTvbwcFB/wbeHtLJJBKJNj4+vtWMDgqFYsT/TyKRoKGh4bnemkwmG4lEIv7/xm3mzJnjMm/evJKwsLDKpKQkOp7B8bK+//5766qqKlJ2drbcxMQE7O3tPTUazTPngWFYfVlZGfnkyZOW/fr1UxcVFZns2bOH2a1btwZLS0tDfHw8/cqVK/SbN28qLCwsjN7e3nz8e0Emk5u+R6Ner28xIsHXAG7+vLm5eeP3ymg0Nn+58fzMzc0NN2/eNDt+/Dhz7969eS1tZ2Zm1lgAXpbRaGwxSCKTycYePXq0meXS2vl0hKbtSWttk0qlMjU1NX3m76vVaoltnVd76hzA/9YAxh+XlZW1a1HzWbNmlY0YMYJrZmZmDAoKqsDXFWutHhuNRrhx44bCwsLimZPetGlTSUhISOWJEycY/v7+wuTk5Jymf5ONGzfa29nZ6Y4dO5ZnMBiASqV6t+f8kK6hPZ8/nU439OvXr+rgwYPdEhISmDdv3uz0dayR1zds2LAnq1evdj516pSqtLS0MX6OiIhwGjBgQPXp06fvqlQq00GDBvEBnrY9TZe6qaura7zrztTU1EAmvzgET0pKoqemptJv3LihpNPpBplM9kwf11Lb1tT06dM5R48ezfXz89PGxMRYp6amPvdjUUjX1dqF3pb67/aW2TxuafoYr4//fb7FgACPh8hkMuBxmdFoJERHR98LDQ2tar79xYsXVceOHWNMmTKFM3fu3Idz5swpa++5vs/IZDIEBgZWBwYGVnt6emr3799vjU8A0+n0ttfQakVbY8m26oSPj4/60qVLlhqN5iGNRjMqlUrT7du329+8eVNha2urDw0NZdfW1qK7ihEAALC3t2+orKx8JnYvLy8ncTicOoBn6y+ZTDbq9U+nIgwGA+CTtm2NJ0gkUmPf2rSettYXo5gMQZ71QU4Av+iK+duQlpZmZjAYwN7evmH48OFVa9as6T59+vRyBoNhyMvLMzE1NTU6OTk1ZkJWVlaSbGxsdBQKxZiYmEgvKipqdX1Pa2tr3a1bt8ykUmntiRMnrCwsLPQAANnZ2ZRBgwbVDBo0qCYlJaXbP//8Y+rg4ICu1r5hr5Op+6qCgoKqV65cSYiOjrZZtGjRYwCA1NRUmlqtfu0Arbq6moTf1r93797GX3Y+f/48LSYmxu63337Lb085lZWVJFtb2wYTExP47bffLEtLS1v8JYAePXrU7Nq1y+7ChQuqgoICk0mTJrl/+umn5QBPbyPq1q1bg4WFhfHGjRtmmZmZb2Q91j59+lTv37/fevjw4epbt26ZPXr0yEQsFtcBAIwcObJ8/fr1jvX19QRvb+/a9pY5dOjQqi1btjikpqbmWFhYGB8+fEiyt7fXSyQSYd++fR9OmjTpiV6vh+vXr1ObLysxceJEl6KiovrNmzeXxMfH0//66y/Wrl27VPHx8fRTp07Z/fvf/+6QOtda29Ta9kwm0+Dg4FC/f//+buHh4U+0Wi2htYne9rK2ttZbWlrqk5OTLYYNG6b+6aefrP38/NTNt2Oz2Tp7e3tddHS04x9//JHzonL79u1bFRkZabd+/fqHAE/XGfb399dmZ2dTZDKZViaTaa9du2aelZVlJpPJGifkKysrSSwWq55EIsH27dut8cAVeTNeNVO3ozAYDL1arW4cyLT38585c+bj0NBQbq9evdR4Rj3ymtqRqfsmzZo16zGDwdDLZDItvpYvAEBVVRWJxWLVAwDExsY2LrHg7u5ev2vXLpper4e8vDyTjIyMdvVPZDLZWFdXR6BQKMYnT56QGAyGnk6nG9LS0szS09Nfqo/TaDREFxcXXV1dHeGXX35hOjo6dtiP1yHt9y6MOzpKcXGx6ZkzZ8wDAgJqDh48yPT392/sj+Pi4pibNm0q+emnn6y8vLxeeGcibsiQIZU7d+60DQwMrKZQKMaMjAwKm83WlZSUkDkcTv2iRYse19TUEG/dukUDgLc6AdwZMXx6ejqFSCSCRCKpAwBIS0uj4m3M63iZsWRTM2bMeHzu3Dl6YGCge0pKSm5FRQWJSqUamEymvrCwkHzhwgUGviwb8u54Uabum8JgMAx2dna6EydO0D/99NPqhw8fki5cuMBYsmRJ6f79+59ZhsjV1bX+5s2btGnTplUcOHCgGz5m6Nevn3r//v3Wc+bMKSsqKiJfu3aNjmcOs1is+suXL9PGjBlTdeTIkcZkp9b6YgAUkyFIU+hq3VvUdM3NcePGue3cuTOfTCbDyJEjq0aPHl3eq1cvAYZhon/961/uT548eebK2bRp08rT09PNPTw8hD///DOTw+G0OtG0du3aB59++inXz8+P3/SXqhcsWMDCMEzE4/HEvXv3ru7duzea/O2iiEQiJCQk3D179qyls7OzB5fLFa9evbo7PnH7OlasWFE0fvx4d29vb761tXXjRYr8/HwK/oMV7TF9+vSyv//+29zDw0N45MgRK1dX1xaXkujbt281AACfz6/v37+/5smTJ+T+/ftXAwCMGTOmUqvVEvl8vmj16tXdPT092z3geBnLli0r1Wq1BAzDRBMnTuT8+OOPeXgWS3h4eEViYiIzJCTkhbc0NTV+/PjKgICAyh49eogEAoFo06ZN9gAAhw8fvvvDDz/Y8vl8EY/HE8fHxzOa7xsVFVV07do1CwzDRGvXrnXas2dPi5nHr6s9bVNzP//8c96OHTvsMAwT+fj4CF71RwKb2rNnT15ERAQLwzBRRkYG9ZtvvmnxV6/HjRtX5ujoWN+eifgffvih8NatW+YYhonc3d3F27dvtwUA+Pbbb+3wH8ukUqmGUaNGPXPL9Pz580sPHTpkLZVKBTk5OWZUKvWVMnGQ94NMJtOSyWQjn88XrV271q69n3+/fv005ubm+qlTp6JbDbsId3d33cqVK0ubPx8REVGyZs0aVs+ePQVNLwgMGTJE7ezsXMfn88Xz5s1zFolE7Vq/NCws7JFQKBQFBwdzQkNDKxsaGggYhomWL1/eXSqVvlQft2zZsiKZTCbs168fxuPx2n2BEkFa4+bmVrt7925rDMNEFRUV5MWLFzf+2HBdXR3B09NT8P3339vHxMS0e/JpwYIFjwUCQa1EIhHyeDzxF1984arT6QgpKSl0kUgkFgqFohMnTlgtXbq01TVDu5KqqirSpEmTOO7u7mIMw0RKpZIaGRnZYtzTlgULFrja29t72tvbe/bo0UPwMmPJ5tasWfNQKpVqRo4cyZHJZFoPDw8Nj8cTh4eHs729vZ+7KI982Pbt25e3adMmR4FAIBowYAA/IiKiCE+caeqrr756dOXKFbpEIhFevXrVHI+pJk+eXOHo6FiPYZh46tSprlKptKZbt256AIBVq1YVLV261MXb25tPIpEax52t9cUAKCZDkKYIb/JW4ndJenp6vlQqRV96BHlDZsyYwfrss8/K0BpgSGeZNGmSi5eXl2bBggWorUc6VX5+vslHH33Ev3v3bhaJ1K5VTBAEQd5pKpXKNDAwkHfnzp3s5q85OTlJbty4oXB0dGxoaV8EQZCXUVlZSWQwGIaSkhJSr169hJcvX1a6uLi8UvuCYjKkq0tPT7eRSqXs9mz7QS4BgSBIx4uNjb3f2eeAfLjEYrGQSqUaYmNju8yttsj7afv27dYbNmxw2rRpUyEaaCAIgiAIgrycIUOG8Kqqqkg6nY6wZMmS4led/EUxGYI8C2UAIwiCIAiCIAiCIAiCIAiCvEdeJgMYrQGMIAiCIAiCIAiCIAiCIAjSRaEJYARBEARBEARBEARBEARBkC4KTQAjCIIgCIIgCIIgCIIgCIJ0UWgCGEEQBEEQBEEQBEEQBEEQpItCE8BvEYlE8hYIBCI+ny8SiUTC06dPm79oHxqN5vWibcaOHet68+ZNs445S6QruXfvHjkwMNDN2dnZw93dXTxgwABuRkYGpaVtVSqVKY/HE3fEcWUyGf/ixYu05s8fOHCAsXz5coeOOAbyegoLC8lBQUEcFoslEYvFwh49egji4uK6tbZ9UlISfeDAgdy3eY4I0lna0/e+qosXL9KmTJni/KbKRzoWgUDwDgkJ4eCPdTodWFlZSTuyPWwaxy1btuyZPtLLy0vQUcdBPiz4uIPH44mHDx/uVl1d3ea4r6PavY6MJz9UERERDlwuV4xhmEggEIjOnTv3wjEjzsnJSVJcXEx+k+eHIK1p6fu/cOHC7qtWrbJvafvQ0FD2nj17rNpbfmvjkReNMa9cuUI9fPgwo73HQZCuCnUObxGFQjEolUo5AMCxY8csly9fzhoyZIjqdcs9fPhwweufHdLVGAwGCA4O5k6YMKEsKSnpH4CnnV9RUZGJp6dnXWecU1hYWCUAVHbGsZH/MRgMEBQUxJ0wYUJZYmJiHgBATk6O6a+//trqBDCCIB2jf//+mv79+2s6+zyQ9qFSqQaVSkVVq9UECwsL42+//WZpb2+v66jyGxoanonjYmJiHL/55psS/HFaWpqyo46FfFiajjuCg4M50dHRtmvWrHnY2eeFtO3MmTPmKSkp3TIzM+VUKtVYXFxMrqurI3T2eSHIu+xFY8wbN27Qbty4YT527Fg0DkU+aCgDuJNUVlaSGAxGA/545cqV9h4eHkIMw0QLFizo3nx7vV4PEydOdOFyueKBAwdyBwwYwMWvljXNtmx69X7Pnj1WoaGhbICnV9fCwsJcfH19MRaLJTl58qTF6NGj2W5ubmJ8G6RrSUpKopPJZOPSpUsf4c/5+/trP/74Y/WMGTNYPB5PjGGYaNeuXc9dddVoNIRRo0axMQwTCYVCUWJiIh0AICYmxjogIMB90KBBXCcnJ8mmTZts16xZYy8UCkVSqVTw8OFDEl7G3r17rb28vAQ8Hk98/vx5Gr7/pEmTXAAADh48yPD09BQIhUKRv78/VlhYiC5IvSWJiYl0ExOTZ+oGhmH1K1asKFWpVKbe3t58kUgkbH6nQnV1NWnIkCHu7u7u4gkTJrjo9XoAAIiNjWViGCbi8XjiWbNmOeHb02g0r6+++sqJz+eLpFKpAH3GyPuksrKS6Ofnh4lEIiGGYaKff/65G8DT7BYOhyMeO3asK4/HEwcHB3Pi4+PpPXv2FLi6unrg7d358+dpXl5eAqFQKPLy8hKkp6dTAJ7NXqmsrCTibS2GYaK9e/d2AwAICwtz8fDwEHK5XHFLMQHydg0ePLgSv0B26NAhZmhoaDn+Wmufc9P+DgBg4MCB3KSkJDrA07Zx/vz53T09PQVnz561wOO42bNnO9XV1REFAoEoODiYg28L8HzW06RJk1xiYmKsAQBmz57t5O7uLsYwTDR9+nTW2/ibIO+Xvn37qnNzcykAAGvWrLHn8XhiHo8nXrdunV3zbdtq+9zc3MTjxo1z5XK54j59+vDUajUBAODSpUs0Pp8v6tGjh2Dr1q3PlYm034MHD0yYTGYDlUo1AgA4Ojo2sNlsXdPM3osXL9JkMhkfAKCkpITUp08fnlAoFE2YMMHVaDQ2lhUQEOAuFouFXC5XvGXLFhv8eRSfIW+bRqMhCgQCEf6PRCJ55+TkmAIAnD59mu7t7c1ns9kehw4dYgA8vTg6Y8YMFj4/EhUVZdO8zNTUVJpQKBTJ5XLTpn3u7t27rXg8npjP54t8fHz4tbW1hM2bN3dPTEy0EggEol27dlm11Xd//PHH7v369eO5urp6zJw5E/WpSJeCJoDfIjyo53A44nnz5rmuXr26GADg+PHjlrm5uWYZGRkKhUIhv337Nu2PP/6waLpvXFycVWFhoalKWv9T6gAAIABJREFUpcret29fflpamkXLR2ldZWUl+a+//sr55ptvCseOHctbsmTJwzt37mQrlUrqlStXqB31PpF3Q0ZGBlUqlT6XZRYXF9ctMzOTqlAoss+ePZuzatUqVkFBgUnTbSIjI+0AAHJycuQHDx78Z/r06WyNRkP473PUY8eO/fP3338rNm/e7ESj0QwKhULu4+NTExsba42XodFoiGlpacqYmJiC6dOnc6CZIUOGqG/fvq1UKBTyUaNGla9btw4tDfGWZGZmUj09PVvMQOzevXvDpUuXcuRyueLw4cP/LFiwwKXJfub/93//V6hSqbLz8/MpcXFxVvn5+SZr1qxxunDhQo5cLs9OS0sz379/fzcAAK1WS/Tz81OrVCq5n5+f+rvvvrN9W+8RQV4XjUYznDx5MlculytSU1Nzli9fzjIYDAAAUFhYaLZo0aJSpVKZfffuXbMDBw5Y37hxQ7lx48b7GzdudAQAkEqltdevX1cqFAr56tWrHyxduvS5QcSyZcscLS0t9Tk5OfKcnBz5iBEjqgEAtm7d+iArK0uhVCqzL1++TL927RrqoztReHh4+eHDh600Gg1BoVDQ/Pz8avDX2vM5N6fVaokeHh7ajIwM5dChQ9X4899///0DPGszISEhrz3n9vDhQ9Lvv/9udefOneycnBz5pk2bil/tXSJdlU6ng5SUFEuJRKK9dOkS7eDBg9Y3b95U3LhxQxEXF2d7+fLlZ9qXttq+e/fumc2dO7c0Nzc3m8Fg6OPi4qwAAD7//HP21q1b792+fRtlrL+mkJCQqqKiIlM2m+0xceJEl5MnT7Y55lu2bFl3Pz8/tUKhkAcHBz8pLi42xV87cOBAfnZ2tuL27dvy2NhY+5KSEhIAis+Qt49GoxmUSqVcqVTKJ0+e/Gjo0KEVGIbVAwAUFhZSrl+/rkpMTLwzf/58V41GQ9i2bZsNg8HQZ2VlKdLT0xX79u2zVSqVjXX79OnT5rNnz3ZNSEjIFYlE9U2P9c033zieOnUqR6VSyZOTk3PNzMyM/+///b+ioKCgCqVSKf/iiy8q2uq75XI5LT4+/h+FQpGdkJBglZub+8w4GUHeZx/k1b6zcQrn8gfq59YnfR1MJwvN4EnCwra2aXor1pkzZ8ynTp3KycnJyU5OTra8ePGipUgkEgE8nThTKpVmw4cPbxwUXLp0yWLkyJEVJBIJXFxcGnr37l39suc4YsSIJ0QiEXr27KmxtrbWyWQyLQAAhmHau3fvUvz9/bUvWybyYuVHc5x1JTUdWt9MHMw1zFFYm/WtNZcuXaKPGTOmnEwmg7Ozc4Ovr6/6zz//pPn4+DR+/leuXLH46quvSgEAvLy8art3716fmZlpBgDg7+9fbWVlZbCysjJYWFjoR48e/QQAQCKRaDIyMhrf54QJE8oBAIYPH65Wq9XEx48fk5qeR15enmlISAjr0aNHJvX19URnZ+dOWZais8kVEc416pwOrR/mFphGJIxsd/0IDw93uX79uoWJiYkxNTU15/PPP3eVy+VUIpEIBQUFjWtGSySSGjzIGjNmTPmlS5csTExMjL17967u3r17AwDA2LFjy1NTUy3Cw8OfmJiYGMeNG1cJAODt7V1z5swZy458n0jXt+RounNOSXWHfj8wB7omapT0hd8Pg8FAmD9/Puvq1asWRCIRSktLTe/fv08GAHBycqpr2ocOGjSoCu9fN2zY0B0AoLy8nDR27FhOfn6+GYFAMOp0uudu4b148aLlL7/88g/+2NbWVg8AsG/fPubevXttGhoaCI8ePTJJT0838/X1/aD76JWXVzrnVuR2aF3gWnE16/usf2Fd8PX11d6/f5+ya9cuZkBAwDO3j7bnc26ORCLBlClTKl7n3HFMJlNPoVAM48aNcx0xYkQlur313dNZ4w488QQAwNfXt3revHmPo6KibD/55JMnlpaWBgCAESNGVJw/f57ep0+fxvblRW0fPl7w8vLS5OfnU8rKykjV1dWkESNGqAEAPvvss7Jz5851ibU2OyOGZzAYhqysLHlycjL97Nmz9MmTJ7uvWrXqfmvbX716lX78+PFcAIBx48ZVzpgxQ4+/FhkZaX/y5MluAAAlJSUm2dnZZg4ODjUoPuv64uPjnUtLSzu07trZ2WlCQkLabHcIhJa7QPz5U6dOmcfFxdlevXq18WJRaGhoOYlEAolEUufs7Fx3+/ZtszNnzlgqlUpaQkKCFcDTuxDlcrmZqampMTc312z27Nns06dP57DZ7OeWZPLx8VGHhYWxQ0NDK8LCwlrsa9vqu/v27VtlbW2tBwDgcrm1d+/epXC53A5b+glBOtMHOQH8LggICKipqKggFxcXk41GI8yfP794yZIlj1vbvuntPG1p2uhqtdpnWmAzMzMjwNOBh6mpaWOBRCIRGhoa0NpSXYxEItHGx8c/t7xDe+pSW9s0rzt4vWpej5oHAM0fz5kzx2XevHklYWFhlUlJSfR169ah25zfEolEoj1x4kRj3di/f/+94uJiso+Pj3Djxo32dnZ2umPHjuUZDAagUqne+HYtfaZt1RUymWwkEon4/1E7g7xXYmNjmWVlZeTMzEwFhUIxOjk5SbRaLRGg9XaQRCKBXq8nAABEREQ4DRgwoPr06dN3VSqV6aBBg/jNj2E0Gp/7XimVStPt27fb37x5U2Fra6sPDQ1l19bWoju2OtmwYcOerF692vnUqVOq0tLSxvi5tc+ZTCYb8axJgKeTcfj/TU1NDWTyy4XgJiYmzcsj/Pd5uH37tiIhIcHyl19+sdq5c6fd1atXc175jSJdRtPEE1x7YsD2tn0kEsmo1WqJLbVjyOshk8kQGBhYHRgYWO3p6andv3+/NYlEamwD8M8Dh8daTSUlJdFTU1PpN27cUNLpdINMJuPj+6H4DHlT7O3tGyorK59J+ikvLydxOJy6goICkxkzZrBPnDiRy2AwGju0VsYXhOjo6HuhoaFVTV9LSkqi29nZ6erq6ohXr16lsdns5y56Hjx48N65c+fMExISGD169BDfvn07u/k2bcVozdu59lzYRZD3xQc5AfyiK+ZvQ1pampnBYAB7e/uG4cOHV61Zs6b79OnTyxkMhiEvL8/E1NTU6OTk1LhGcL9+/dT79++3njNnTllRURH52rVr9PHjx5c3L9fa2lp369YtM6lUWnvixAkrCwsLffNtkLfrVTN1X1dQUFD1ypUrCdHR0TaLFi16DPB0rSQrK6uGo0ePMufMmVNWWlpKvn79ukVMTExh02Cyb9++6p9//pkZHBxcnZGRQSkuLjb19PSsvXbtWruvJB86dMgqKCioOiUlxYJOp+vxK6m46upqkouLiw7g6XrBHfW+3zcvk6nbUfC6ERkZaRsREfEIAECtVhMBnq5PzmKx6kkkEmzfvt0aX+cX4OkSEEql0pTH49UfPXqUOW3atEf9+/eviYiIcC4uLibb2to2/Prrr8zZs2eXvu33hHRN7cnUfVMqKytJNjY2OgqFYkxMTKQXFRWZvniv/6mqqiKxWKx6AIDY2Njn1q4DAPjoo4+qtm7dard79+5CAIBHjx6RKioqSFQq1cBkMvWFhYXkCxcuMAYMGPDSd/10Ne3J1H2TZs2a9ZjBYOhlMpkWX8sXoPXP2d3dvX7Xrl00vV4PeXl5JhkZGeYtldscmUw21tXVESgUyjMzde7u7nW5ublUrVZL0Gg0xD///NOyT58+6srKSqJarSaOHTu28qOPPlJjGCbpqPeMdIx3YdyBGzRokPqzzz5jr1+/vsRoNMLvv/9utXfv3n+abvOybZ+NjY3ewsJCn5KSYjF06FD13r17mW/2Xbw9nRHDp6enU4hEIkgkkjoAgLS0NCqLxaqvra0lXr58mTZmzJiqI0eONF7E7927d/Xu3butv/322+IjR45YVlVVkQAAnjx5QmIwGHo6nW5IS0szS09Pb1cbhHQNL8rUfVMYDIbBzs5Od+LECfqnn35a/fDhQ9KFCxcYCxYsKB05cqTb+vXrHzT/MfLjx49bzZkzp0ypVFIKCwspUqm0dsiQIZU7d+60DQwMrKZQKMaMjAwKnu1raWmpj4uLuxsQEIBZWFgYAgMDn4mRsrOzKYMGDaoZNGhQTUpKSrd//vnH1NLSUo+PdQDaF6MhSFf0QU4Ad5amt2IZjUbYuXNnPplMhpEjR1ZlZ2eb9erVSwDwdI2cAwcO5DWdAJ48eXLFmTNn6BiGiTkcTq1UKq3p1q3bc5O7a9euffDpp59yHR0ddQKBQFtTU4Oyhj5QRCIREhIS7s6ePdt527ZtDhQKxchiseq+++67QrVaTRIKhWICgWBcu3btfRcXlwaVStUY4C9durQ0PDzcFcMwEYlEgtjY2Hz8xyjay8rKSu/l5SVQq9WkH3744bm1DFesWFE0fvx4d3t7+3ofH5+ae/fuUVoqB+l4RCIREhMT73755ZfOMTExDkwms4FGo+nXrFlzv3fv3prQ0FD3+Ph4q759+1ZTqdTGK/Q9evRQL1q0iKVUKqm+vr7V4eHhT0gkEqxaterBgAEDMKPRSBg8eHDlxIkTn3Tm+0OQ16HT6cDU1NQ4bdq08uHDh3M9PDyEYrFYw+Fwal+mnIiIiJJp06ZxYmJiHPr161fV0jabN28unjp1qguPxxMTiUTj8uXLiyZPnvzEw8NDw+PxxC4uLnXe3t7qlvZF3i53d3fdypUrn7u41drnPGTIEPWOHTvq+Hy+mM/na0UiUYvrrjcXFhb2SCgUijw8PDRN1wHmcrm6oKCgCqFQKOZwOLVisVgD8HSSJzAwkItnBG/YsOGdmWxE3j19+/bVTJgwoaxnz55CAIDw8PBHTZd/AAB4lbbvp59+yp82bRqbSqUaBg0a1GJ7h7RPVVUVae7cuS5VVVUkEolkZLPZdfv27StIT083mzlzJjsyMlLn7e3duA75N998UxQaGuomEomEfn5+akdHx3oAgNDQ0MoffvjBFsMwkbu7e61UKq1p/agI0nH27duXN3v2bJeIiAhnAICIiIii+/fvm2RlZZlv2LChO75UVnJy8h0AAC6XWyeTyfhlZWUm27ZtK6DRaMYFCxY8zs/Pp0gkEqHRaCQwmUzd77//fhc/hrOzc0NSUlLu8OHDeTQaLb/p8RcsWMDKz8+nGI1GQt++fat69+6tdXd3r9+yZYujQCAQLVq0qLg9MRqCdEWE9i4t8L5LT0/Pl0qlrS6x8D6orKwkMhgMQ0lJCalXr17Cy5cvK11cXBpevCeCIAiCIO3x119/UadPn87OzMxUdPa5IAiCIAiCIAiCtCY9Pd1GKpWy27MtygB+jwwZMoRXVVVF0ul0hCVLlhSjyV8EQRAE6TjffvutbWxsrF1UVBTKokQQBEEQBEEQpMtAGcAIgiAIgiAIgiAIgiAIgiDvkZfJAEbrwyIIgiAIgiAIgiAIgiAIgnRRaAIYQRAEQRAEQRAEQRAEQRCki0ITwAiCIAiCIAiCIAiCIAiCIF0UmgBGEARBEARBEARBEARBEATpotAE8FtEIpG8BQKBiM/ni0QikfD06dPmL9qHRqN5AQDk5+ebDBs2zO3NnyXSldy7d48cGBjo5uzs7OHu7i4eMGAANyMjg9LZ54V0vsLCQnJQUBCHxWJJxGKxsEePHoK4uLhur1tuaGgoe8+ePVbNn7948SJtypQpzq9bPoK8DXjfiyAEAsE7JCSEgz/W6XRgZWUlHThwIPdVyjtw4ABj+fLlDh13hgjSMnzcwePxxMOHD3errq5+qXHfsmXL3kg9ValUpjweT/wmyu4qIiIiHLhcrhjDMJFAIBCdO3fuhWNGHIq3kM4ik8n4x44ds2z63Lp16+wmTpzo8qaPrVKpTP/zn/8w3/RxEOR9hyaA3yIKhWJQKpVylUolX79+/YPly5ez2rsvm83WJScn//Mmzw/pWgwGAwQHB3P79+9fXVhYmHX37t3szZs3PygqKjLp7HNDOpfBYICgoCBuv3791Pfv38/Mzs5WHDly5J/CwkLTN3XM/v37a/bu3Vv4pspHEAR5E6hUqkGlUlHVajUBAOC3336ztLe3171qeWFhYZWbNm0q6bgzRJCW4eOOO3fuZJuYmBijo6Nt27OfwWAAvV4PMTExjm/6HJHnnTlzxjwlJaVbZmamPCcnR37+/PkcNze3+vbsq9PpULyFdJrRo0eXHTp06JlJ2GPHjjEnTpxY/qaPfefOHcrhw4fRBDCCvACaAO4klZWVJAaD0YA/Xrlypb2Hh4cQwzDRggULujffvunV8rFjx7oKBAKRQCAQWVlZSRctWuTYnjKQD0tSUhKdTCYbly5d+gh/zt/fX/vxxx+rZ8yYweLxeGIMw0S7du2ywreXyWT8YcOGuXE4HHFwcDDHYDAAAMDhw4cZHA5H7O3tzZ8yZYoznvn08OFDUkBAgDuGYSKpVCq4du0atVPeLPJSEhMT6SYmJs/UDQzD6lesWFGqUqlMvb29+SKRSNj0ToWkpCR6r169+J988okbm832mD17ttPOnTuZEolEiGGYKDs7uzGz/PTp03Rvb28+m832OHToEAPfH68358+fp3l5eQmEQqHIy8tLkJ6ejrLSkXdOZWUl0c/PDxOJREIMw0Q///xzN4Cn/TGHwxGPHDmSjWGYaNiwYY2ZdYsXL3b08PAQ8ng88fjx413xNlQmk/FnzZrlJJFIhGw22yM5OdmiE98a8pIGDx5c+euvv3YDADh06BAzNDS0cTBbVVVFHD16NNvDw0MoFAob68maNWvsR48ezQYAuH79OpXH44mrq6uJMTEx1pMmTXIBeHonxpAhQ9z5fL6Iz+eL8PZ2zZo19jweT8zj8cTr1q2ze+tvGOly+vbtq87NzaUAtFy/VCqVqZubm3jixIkuYrFYNHbsWHZdXR1RIBCIgoODOc2zdletWmW/cOHC7gAAqampNAzDRD169BDg8SVeZkvxBNK2Bw8emDCZzAYqlWoEAHB0dGxgs9k6JycnSXFxMRngaZavTCbjAwAsXLiw+/jx41379OnDGzlyJKdpvLVw4cLuo0ePZstkMj6LxZJs2LChsT0JCAhwF4vFQi6XK96yZYsN/jyNRvOaNWuWk1gsFvr7+2Pnz5+n4fsfOHCAAQDQ0NAAM2bMYOHjzqioKBtAPnjh4eEVZ8+eZWi1WgLA0zagtLTUxNfXV9NaPOXm5iYeN26cK5fLFffp04eHX2yVyWT8ixcv0gAAiouLyU5OThJ8n5balRUrVjjduHHDQiAQiNauXWvXtK8FABg4cCA3KSmJ/rb/JgjyrkETwG8RHkhxOBzxvHnzXFevXl0MAHD8+HHL3Nxcs4yMDIVCoZDfvn2b9scff7Q6ODx8+HCBUqmUJyQk5Hbr1q1hxowZZS9bBtL1ZWRkUKVSqab583Fxcd0yMzOpCoUi++zZszmrVq1iFRQUmAAAKBQK6o4dOwpzc3Oz7927Rzl9+rSFRqMhzJs3z/WPP/64c/PmTVVZWRkZL2vp0qXdpVKpJicnR75+/foHkydP5jQ/HvLuyczMpHp6ej5XNwAAunfv3nDp0qUcuVyuOHz48D8LFixoDJ6USiV1586dhQqFIvvo0aPWOTk5ZpmZmYrw8PDH0dHRjYOKwsJCyvXr11WJiYl35s+f76rRaAhNjyGVSmuvX7+uVCgU8tWrVz9YunRpu++GQJC3hUajGU6ePJkrl8sVqampOcuXL2fhE7r5+flmM2fOfJSTkyOn0+mGqKgoWwCAJUuWlGZlZSnu3LmTrdVqib/88gsDL6+hoYGQmZmpiIyMLFy3bh26SPseCQ8PLz98+LCVRqMhKBQKmp+fXw3+2vLlyx0HDhxYlZWVpbh06ZLq66+/ZlVVVRFXrlz5MC8vjxIXF9fts88+Y+/YsSOfTqcbmpY7c+ZMl379+lWrVCp5dna2vGfPnrWXLl2iHTx40PrmzZuKGzduKOLi4mwvX76MLq4ir0yn00FKSoqlRCLRtlW/8vPzzaZOnVqmUCjkR48ezccziBMSEvLaKn/atGmcHTt2FNy+fVtJIpGM+PNtxRNI60JCQqqKiopM2Wy2x8SJE11Onjz5wvFcRkYGLSUlJTcxMfG5zyo3N9csNTU15++//1Zs2bKle11dHQEA4MCBA/nZ2dmK27dvy2NjY+1LSkpIAABarZY4cODA6uzsbIW5ubn+66+/drp06VLOr7/+mrt+/XonAIBt27bZMBgMfVZWliI9PV2xb98+W6VS+cbuIkPeDw4ODnqpVFpz7NgxBgDAvn37mMHBwRUWFhatxlP37t0zmzt3bmlubm42g8HQx8XFPbeMXFOttSsbN2584OPjo1YqlfLVq1eXvvE3iyDvKfKLN+l6UnZuc35cWEDryDJtnF01Q2fNb/N2GzyQAnh6e8/UqVM5OTk52cnJyZYXL160FIlEIgAAjUZDVCqVZsOHD1e3VpZGoyGEhoa6//vf/76HYVj9li1b7F62DOTtiI+Pdy4tLe3Q+mZnZ6cJCQl5pdu7Ll26RB8zZkw5mUwGZ2fnBl9fX/Wff/5JYzAYBolEUuPu7q4DABCLxZq7d++a0ul0vbOzc51AIKgHABg3blz5jz/+aAsAcP36dfqxY8dyAQCCg4Orp0+fTi4rKyNZW1vrO+q9dnXzFfeclTW1HVo/BOZmmm1Cl3bXj/DwcJfr169bmJiYGFNTU3M+//xzV7lcTiUSiVBQUNCYnSuRSGpcXV11AAAuLi51w4cPrwQAkEql2tTU1Mar6qGhoeUkEgkkEkmds7Nz3e3bt82aHq+8vJw0duxYTn5+vhmBQDDqdLpnJogRpFH8l85QKu/Q7wfYiTQQsuOF3w+DwUCYP38+6+rVqxZEIhFKS0tN79+/TwYAcHBwqP/4449rAADCw8PLYmJi7ADg4R9//EHfunWrQ21tLfHJkydkkUikBYBKAIDRo0dXAAD4+/vXLFmyBA2UX1LR8hXOdXfudGhdoPB4mu6bNr6wLvj6+mrv379P2bVrFzMgIKCy6WsXLlywTElJ6RYTE+MAAFBXV0fIzc017dmzZ21cXFyej4+POCws7BFeX5q6cuUK/ejRo3kAAGQyGaytrfUXLlyw+OSTT55YWloaAABGjBhRcf78eXqfPn20HfOukbets8YdeOIJAICvr2/1vHnzHkdFRdm2VL9Gjx79xNHRsX7w4MHP1dO2PH78mFRTU0McMmRIDQDA5MmTy0+fPt0NAKC+vp7QWjzxvuiMGJ7BYBiysrLkycnJ9LNnz9InT57svmrVqvttlTls2LAnFhYWxpZe+/jjj59QqVQjlUptYDKZuvv375Pd3d11kZGR9idPnuwGAFBSUmKSnZ1t5uDgUGNiYmIcNWpUFQCAWCzWUigUA4VCMcpkMu2DBw9MAQDOnDljqVQqaQkJCVYAANXV1SS5XG6GjxWQzidXRDjXqHM6tO6aW2AakTCyzXZnzJgx5YcPH7aaOHHik+PHjzN//PHH/LbiKScnpzp/f38tAICXl5cmPz+/zXaiK7QrCNKZPsgJ4HdBQEBATUVFBbm4uJhsNBph/vz5xUuWLHnc3v3Dw8Ndg4KCKkJCQqoBAF6lDKRrk0gk2vj4+OeuohqNLcaHAABAoVAaXySRSNDQ0EBoa/uWXiMQCK3vgLwTJBKJ9sSJE411Y//+/feKi4vJPj4+wo0bN9rb2dnpjh07lmcwGIBKpXrj2zWtH0QiEczMzIz4//V6feMkLoHw7Hxu88cRERFOAwYMqD59+vRdlUplOmjQIH7Hv0sEeT2xsbHMsrIycmZmpoJCoRidnJwkWq2WCNByHddoNIRFixa5Xrt2Tc7lcnULFy7sXltb23inFf59IZPJz3xfkPfDsGHDnqxevdr51KlTqtLS0sb42Wg0wtGjR3OlUmld830UCoUZjUYzlJSUtHvt/bb6XAR5GU0TT3Bt1S8ajWZo7TUymWzEM/YAAPC2ra3y2oonkLaRyWQIDAysDgwMrPb09NTu37/fmkQiNX4GeF+EMzc3b/Wzaym2T0pKoqemptJv3LihpNPpBplMxsfLJJPJRiLxafFEIrFxfxKJ1Nh3GY1GQnR09L3Q0NCqjn7vyPstLCzsyddff+38559/0mpra4l9+/bVxMTEWLcWT5mamjatn8am9VCvf5pP1PROwva2K83brLq6OnTnO4LABzoB/KIr5m9DWlqamcFgAHt7+4bhw4dXrVmzpvv06dPLGQyGIS8vz8TU1NTo5OTU0NK+mzdvtlWr1aSmPyLysmUgb8+rZuq+rqCgoOqVK1cSoqOjbRYtWvQY4Ok6bVZWVg1Hjx5lzpkzp6y0tJR8/fp1i5iYmMKMjIwWbzGVSqW1hYWFFJVKZcrn8+ubLrDfu3fv6j179lhHRUUVJyUl0a2srBqYTGarQSjyvJfJ1O0oeN2IjIy0jYiIeAQAoFariQBP1ydnsVj1JBIJtm/fbo0HXy/j+PHjVnPmzClTKpWUwsJCilQqrT137lzjLYxVVVUkFotVDwAQGxuL1o1DWteOTN03pbKykmRjY6OjUCjGxMREelFRUWPWbnFxsemZM2fMAwICag4ePMj09/dXazQaIgCAg4NDQ2VlJTExMdEqKCioorPOv6tpT6bumzRr1qzHDAZDL5PJtE3XERw4cGBVdHS0/d69e+8RiUS4fPkytU+fPtqysjLS4sWLnc+dO6ecNWuWy549e6ymTp36TH3o06dPdVRUlO2qVatKGxoaoKqqijho0CD1Z599xl6/fn2J0WiE33//3Wrv3r3oR4DfY+/CuAP3MvWLTCYb6+rqCBQKxchisRrKy8vJJSUlJAaDYUhJSWEMHjy4ytbWVm9ubm44e/as+eDBg2v279/fGCN2RDzR2Tojhk9PT6cQiUSQSCR1AABpaWlUFotVX1tbS7x8+TJtzJgxVUeOHGnzNvkXefLkCYnBYOjpdLohLS3NLD09/aWCDMHcAAAgAElEQVTWZx4yZEjlzp07bQMDA6spFIoxIyODwmazdXhmOdL5XpSp+6YwGAxD7969q6dNm8YeOXJkOUDb8VRrnJ2d665fv24+cOBAzYEDBxrre2vtCoPB0KvVahK+nbu7e/2uXbtoer0e8vLyTDIyMtAa5AgCH+gEcGdpeiuW0WiEnTt35pPJZBg5cmRVdna2Wa9evQQAT6/AHzhwIK+1ydvt27c7mJiYGPGyPvvss0dLly599DJlIF0fkUiEhISEu7Nnz3betm2bw38D+LrvvvuuUK1Wk4RCoZhAIBjXrl1738XFpSEjI6PFciwsLIxbt24tGDZsGI/JZDZ4eXk13h4YGRlZNGHCBDaGYSIqlWrYu3dvm+vEIe8GIpEIiYmJd7/88kvnmJgYByaT2UCj0fRr1qy537t3b01oaKh7fHy8Vd++faupVOpLB/NcLrdOJpPxy8rKTLZt21ZAo9GeSRGKiIgomTZtGicmJsahX79+KHsEeafodDowNTU1Tps2rXz48OFcDw8PoVgs1nA4nFp8Gzc3t9rdu3dbz54925XD4dQtXrz4EZ1ON4SFhT0SiURiFotVL5VKX+pWauTd5u7urlu5cuVz6wp+8803RdOnT3cRCAQio9FIYLFYdefPn8+dOXOm8+eff/7I09Ozbt++ffmDBg3if/zxx9VN9925c+e9KVOmuGIYZkMkEmH79u0FAQEBNRMmTCjr2bOnEAAgPDz8EVr+Aekoffv21bRUv1Qq1XMTMmFhYY+EQqHIw8NDk5CQkLdo0aJimUwmZLFYdVwut7E9jI2NzZ85c6YrjUYz9OnTp5pOp+sBAObPn1/6uvHEh6iqqoo0d+5cl6qqKhKJRDKy2ey6ffv2FaSnp5vNnDmTHRkZqfP29n6t/iU0NLTyhx9+sMUwTOTu7l77sv3VggULHufn51MkEonQaDQSmEym7vfff7/7OueEdB3jxo0rnzx5svuhQ4f+AQBoK55qzbJlyx6OHTvW7ZdffrFuOlZorV2RyWRaMpls5PP5ogkTJjxeuXJl6Y4dO+r4fL6Yz+drRSJRi799giAfmjZv7+5K0tPT86VSKVoeAUFeQWVlJZHBYBgMBgNMmjTJhcfj1aIF9hEE6Yr++usv6vTp09mZmZmKll5XqVSmgYGBvDt37mS/7XNDEAR51+AxIgDA8uXLHYqLi0327NnzzmQ9IwiCIEhXlp6ebiOVStnt2RZlACMI8kLbtm2zOXTokI1OpyOIxWLNwoUL0cUUBEG6nG+//dY2NjbWLioqCk1eIAiCtMORI0cY0dHRjnq9nuDk5FR38ODB/M4+JwRBEARBnocygBEEQRAEQRAEQRAEQRAEQd4jL5MBjH4NEUEQBEEQBEEQBEEQBEEQpItCE8AIgiAIgiAIgiAIgiAIgiBdFJoARhAEQRAEQRAEQRAEQRAE6aLQBDCCIAiCIAiCIAiCIAiCIEgXhSaA3yISieQtEAhEfD5fJBKJhKdPnzZ/1bLmz5/fPT4+nt6R54d0Lffu3SMHBga6OTs7e7i7u4sHDBjAzcjIoLxsOcuWLXN42X1kMhmfzWZ78Pl8kYeHh/DKlStU/LUBAwZwHz9+THrZMpGOVVhYSA4KCuKwWCyJWCwW9ujRQxAXF9ftTR4TtVvI+4JGo3m96r4LFy7svmrVKvuOPB+k8xAIBO+QkBAO/lin04GVlZV04MCB3Ld1DqGhoew9e/ZYAQCMHTvW9ebNm2Zv69jI+wsfd/B4PPGgQYPeSOzVWnunUqlMeTyeGADg4sWLtClTpji/7rGSk5MtuFyuWCAQiNRqNaHpa03b7MOHDzNcXV097ty5Y/q6x+wsERERDlwuV4xhmEggEIjOnTv3ymPGlhw4cICxfPlyB4CO7bOatlXIh0cmk/GPHTtm2fS5devW2U2cONGls86pLU5OTpLi4mLyy+wzbNgwN7lcborvj39HMQwT/fzzzy8cR+FtVX5+vsmwYcPcXu3Mn9WRZYWGhrKdnJwk+JzViRMnOnzc1rR/aE4mk/EvXrxIA+iYOQOtVkvw9/fHBAKBaNeuXVaBgYFumZmZLz0f0pWgCeC3iEKhGJRKpVylUsnXr1//YPny5axXLWvbtm1FISEh1R15fkjXYTAYIDg4mNu/f//qwsLCrLt372Zv3rz5QVFRkcnLlhUTE+P4KucQFxf3j0qlkn/xxRelixcvbqzrqampuTY2NvpXKRPpGAaDAYKCgrj9+vVT379/PzM7O1tx5MiRfwoLC19rsNTQ0NDm66jdQrqaF9V55P1HpVINKpWKik84/fbbb5b29va6zjqfw4cPF3h7e9d21vGR9wc+7rhz5052t27dGqKiomw74zz69++v2bt3b+HrlhMXF8f86quvSpRKpdzCwsLY0jYnTpygL1682Pn333+/w+Px6ttTrk7XaV/nFp05c8Y8JSWlW2ZmpjwnJ0d+/vz5HDc3t3a9l/YKCwur3LRpU0lHlokgo0ePLjt06BCz6XPHjh1jTpw4sbyzzqkj3bhxw0yv1xNEIlHj9zE1NTVHqVTKf/3117tLly5t94UuNputS05O/ud1z0mn03VYWbgNGzbcVyqV8i1bthTOnTvXtaPKfVkdMWdw5coVmk6nIyiVSvkXX3xRMWvWrNKNGze+dHJbV4ImgDtJZWUlicFgNI4cV65cae/h4SHEMEy0YMGC7gBPr464ubmJx40b58rlcsV9+vTh4QOQpldYnZycJAsWLOguEomEGIaJ0tLSUGbIBy4pKYlOJpONS5cufYQ/5+/vrx02bJjaYDDAjBkzWDweT4xhmGjXrl1WAAAFBQUmPj4+fDxbJDk52WL27NlOdXV1RIFAIAoODuYAAAQEBLiLxWIhl8sVb9myxeZF59K/f/+ahw8fNk4sNr3aun37dmsMw0R8Pl+EZ1gdPHiQ4enpKRAKhSJ/f3+ssLDwpa7MIi+WmJhINzExeaZ+YBhWv2LFitKGhgaYMWMGC2+PoqKibACeThq3VG+SkpLovr6+WFBQEIfP54sBAJYsWeLI4XDE/v7+vKCgIA6eWdK03Vq8eLGjh4eHkMfjicePH+9qMBje/h8CQdrwMnU+IiLCgc1me/j7+2N37txpzCyIjo628fDwEPL5fNHQoUPdq6uriQBPvwtTpkxx9vLyErBYLAnKmHq3DR48uPLXX3/tBgBw6NAhZmhoaONg9uHDh6SAgAB3DMNEUqlUcO3aNSrA06y60aNHs2UyGZ/FYkk2bNhgh+/TWht55coVqlQqFWAYJhoyZIj7o0ePnst8aZodExYW5uLh4SHkcrliPHZEkJb07t275sGDB42xWGvjDg6HIx45ciQbwzDRsGHD3PA2q2nsdvHiRZpMJuPjZWVkZNB69+6Nubq6ekRHRz8XFyYlJdHxjPnKykriqFGj2BiGiTAME+3du/e5jLkTJ07QhUKhCMMw0ejRo9larZawdetWm5MnTzK//fbb7ng82lxycrLFl19+yU5ISMgVi8V1AAA5OTmmfn5+GIZhIj8/PwzPCg4NDWVPmzaN5evri82ePZtVVVVFHD16NNvDw0MoFAobM/lUKpWpt7c3XyQSCV/37s32evDggQmTyWygUqlGAABHR8eGvLy8/8/efYc1de4PAP9mAQmESJhCgABJyGCIKAiIOJALrksFtAURtRYVraNa8TrQOm61qG2pdZRei7Rq6RWriErrQKBYtYgyMgigyFT2CIGQ9fuDG35ow9A66/t5Hp9HkpP3nJzznned7/uGEBAQ4AAA8MMPP4zQ09Mb3d3djZFKpRgajeYMMHB9w2azuZp/enp6o8+fP2+QkJBgPH/+/D9FZT5tnaVSqWD+/Pk2Dg4OvIkTJzIaGxtRm/0tFhkZ2XLlyhVKV1cXBqD3/qmvrycEBARIAJ5+vIPP5+v6+voyeTwex93d3VEzxqEtTz8Zyc5kMnklJSU6AAAHDx6kOjs7c9hsNjc8PNxW28P74fRvk5KSjGfOnNmq7b3W1lacoaFh32Dltm3bzJlMJo/JZPK2b99u9uT2/aNgXVxc2Hl5eX3jNx4eHo45OTmkzMxMkpubG5vD4XDd3NzYBQUFugAACQkJxkFBQfaTJ09m+Pr6svqnNVCZlZ6eTvbw8HAMDAy0t7Oz482aNctuqL7XlClTJPX19X3BYzk5OaSxY8c68ng8zvjx45kPHjwgaI530aJF1m5ubmwmk8nLzMwkAfx5dkH/a6JQKEBbXdPfUGMG/Wlri9XU1OAXLlxoJxKJiGw2m8vn83UDAwMlOTk5hq/bg7+XCQ0Av0SagTQ7OzveqlWrbLdu3VoHAHD69GnDsrIyvcLCQqFQKBTcvXuXdPHiRQMAgMrKSr2VK1fWl5WV8SkUijI5OVlrJ9HExEQhEAiEixYtati9ezeaevqWKywsJLq6ukq1vZecnDyiqKiIKBQK+VeuXBHHxcXRHjx4QDh69Ch1ypQpbSKRSCAUCvmenp7SgwcP1mgiSNLS0u4DABw/fryCz+cL7969Kzhy5Ij5w4cPB52ace7cOcOgoKA/VZZ5eXl6e/fuHZmVlSUuKSkRHDlypBIAYOrUqZK7d++KhEKhIDQ0tHn79u1v9VO6F6GoqIjo4uKiNX988cUXJhQKRVlcXCwsKCgQHjt2zFQkEukMlG8AAAoLC/Xj4+NrysvL+dnZ2aRz584ZFRUVCc6fP19eWFiotbP08ccf1xcXFwtLS0v5XV1d2B9//JHyIr8zgjyt4eb5nJwc0s8//0wtKioSpKenlxUUFPTl+YiIiJbi4mJhSUmJwNHRsSshIaGvU/Ho0SNCXl6e6OzZs6Vbt261ehXfERmeyMjI5pSUFCOpVIoRCoUkLy+vTs1769evt3R1dZWKxWLBjh07aqKiovo6JmVlZXpZWVniP/74Q7h3715LmUyGGayMXLBggd2///3varFYLODxeF2xsbGDDuru37+/pri4WCgSifi5ublkzeAzgvSnUCggMzOTHBwc3AoweL+joqJCb+nSpQ1isVhAJpNVw4kaFgqFxMuXL5feuHFDFB8fb1lRUTHgbLMNGzaMNDQ0VIrFYoFYLBZMnz79sVlBUqkUs2TJEruUlJRysVgsUCgUEB8fb/rRRx81+vv7t+7cubNa0x7tr6enBzN37lxGampqmZubW1+E/NKlS23Cw8ObxGKxYO7cuU3Lli3ri9ArLy/Xy83NFScmJlZv3Lhx5KRJk9qLi4uFOTk5JZs3b6a1t7djLS0tFTk5OWKBQCBMSUm5t2bNmhc+lT04OLi9trZWh06nO82bN8/m/PnzBuPHj5fy+XwSAEB2drYBg8Hoys7OJmVmZuq7ublJAAaub0QikUAkEgni4uJqeDxep7+/f+dA+37aOuv7778fUVZWpltSUsJPSkp6kJ+fb/Bizw7yOrOwsFC6urp2pqamUgAAjh07Rp01a1YLFot9pvGOxYsX2x48eLCSz+cL4+Pjq5ctW2YD8HR5Oj8/X+/UqVPUvLw8kUgkEmCxWPXhw4eNn9xuOP3bmzdvGowbN+6x/pOfnx+LyWTyAgMDHbdu3VoD0DtQeuLECePbt28L8/LyhMnJyaa5ubkD1s8hISHNx48fpwL0BmTV19cTfH19pa6urt23bt0SCYVCwdatW2vWr1/fN6M2Pz/f4OTJk/dv3Lgh7p/WYGWWUCgkfv3111VlZWX8yspK3UuXLg16v6amplL8/f1bAQBkMhlm5cqVNmfPni3n8/nCqKioxnXr1vW1XaVSKfbOnTuihISEB9HR0Vof0vX3NHXNQGMG/Wlri1lZWSkOHjz4YMyYMRKRSCTg8XgyHA4Htra23Tdu3CANdYx/V2/lU7rmU2Jr+cPO53rRCRb6Umooa9DpTZqBNIDe6T0LFy60E4vF/IyMDMPs7GxDLpfLBei9gUQikZ69vX2PlZWVzNvbuwsAwM3NTVpRUaF1zZLw8PAWAAAPDw9pWloaiiR6jQiEsdadEvFzzW/6Biwpl7PnmabT5eTkkOfMmdOMx+PB2tpa4enpKfntt99I48aN61yyZAldLpdjQ0NDWzT57kl79uwxP3/+/AgAgIcPHxL4fL6ehYXFnyre+fPn23d1dWFVKhXk5eUJn3z/l19+MZw5c2bLyJEjFQAA5ubmSgCA+/fv6wQHB9MaGhoIPT09WGtra9mzfM83xcenCqzFDzuea/5gWZCl8aGuw84fkZGRNrdu3TIgEAhqGo0mE4lEJE050tHRgRMIBHoD5RsKhaJycXHpZLPZPQAA165dMwgKCmr93/RM9dSpU7U+Kb948SJ5//79Ft3d3djW1lY8l8vtAoC25/H9kb+PLblbrMtayp7r/cEwYkh3+OwY8v4Ybp7PzMw0mDZtWiuZTFYBAAQEBPTl+du3bxPj4uKsOjo6cJ2dnTg/P7++PD5r1qxWHA4H7u7u3U1NTU+9PM/b5kqy0Lq5RvJc8wLVykA6ZT5nyLzg6enZVV1drZuYmEj19/d/rJy6desWOTU1tQwAYNasWR3R0dH4pqYmHEBvXiASiWoikaigUqny6upq/EBlZFNTE66jowM3ffp0CQDABx980BQWFjbomn7Hjh2jJiUlmSgUCkxDQwOhoKBAz9PTU2vdjbw6r6rfoQk8qamp0XFycpIGBwe3AwAM1u+wsLDoCQgI6AQAiIyMbEpISDADgEeD7UeTnw0MDBReXl7tOTk5+h4eHlofMmdnZxv++OOPfVOVTU1NH5veW1BQoEej0WQuLi4yAIAFCxY0ff3112YAUD/o+SAQ1KNHj5YcPnzYxNPTs++83LlzR//ixYvlAADLli1r/uSTT/oGUGbPnt2Cx/d2ha9du2b4yy+/jEhISLD437nDlJWV6WCwyWbFxVeMOjulWAAMLP6gG/vHH+84wl8wVBueQqGoiouLBRkZGeQrV66Qo6KiHOLi4qptbW278/Pz9fLz8/U//PDDR5mZmWSlUonx8fGRAAxe3xQVFelu2rSJlpmZKdbV1dW6fMZQaWirs7KysvrqSTqdLvfy8kLLfL0mVgsrrUWd3c+13GHr60m/4NgMWu7MmTOnOSUlxWjevHmtp0+fpn777bcVAIOXO9rGO9ra2rB37twxCAsLc9Ck3dPT07f293DzdEZGBrm4uJjk6urKAQDo7u7GmpmZ/SkEeDj924aGBoKFhcVjoaNZWVnikSNHKvh8vm5AQABr2rRp/GvXrhlMmzat1dDQUAUAMH369JbMzEyyj4+P1vp5/vz5Lf7+/qzPP/+8Njk52WjmzJktAADNzc24uXPn2lVUVOhhMBi1XC7v+/6+vr7tmr5zfz09PZj333/fViAQELFYLDx48KBv7MjZ2bnTwcFBDgDA4/Gk5eXlWpf+27x5M23Lli205uZmfFZWlhAAoLCwULe0tJQ4efJkFkBv9L+pqWnfuQgPD28GAAgKCpJIJBLsUGv3Pk1dM9CYQX+DtcWeZGJioqiqqnpr290oAvgV8ff372xpacHX1dXh1Wo1rF69uk7zNKuysrJ4zZo1jQAAOjo6fQUaDodTKxQKjLb09PT01AAAeDx+wG2Qt4ezs3NXQUGB1kpfrdZeRwYFBUmys7NLrKysehYsWGB34MCBPz0dTU9PJ2dlZZHz8vJEJSUlAg6H09XV1aW1HElOTr5XWVlZFBwc3PzBBx/8KWJCrVYDBoP508GsWLHCJiYmpl4sFgsOHDjwQCaToXLqOXN2du4qLCzsyx/ff/995bVr18QtLS14tVqN2bdvX6WmPKqpqSmaPXt2+0D5BgCARCL1zSEabDsNqVSKWbt2re3p06fLxWKxYN68eY3d3d3oOiOvleHmeQAADEZ7tRsdHW134MCBSrFYLIiNja3tX55p6u2h9oW8HgIDA1u3bt1qPX/+/MfWMtR27TR1W/9OKQ6HA4VCgXle11okEukcOHDAPCsrSywWiwWTJ09uQ+Uo0p8m8KSioqKop6cHs3v3bjOA3jw7UL/jybJM8zcOh1Nrpgs/2e4b6DPa/K/tN+j7zwKDwUBaWtq9u3fv6g/3x4sNDAwea7ucOnWqTHNO6urqikaPHt19J7+I1Du47Cwd7eYkValeTlmNx+NhxowZHZ9//nltfHx85ZkzZ4y8vb0laWlpFAKBoJ45c2b777//bvD7778bTJkypQNg4Pqmvb0dO2fOHIdDhw49oNPpg857fpY6a7Dribx9IiIiWnNzcw1/++03Und3N3b8+PFSgMHLHW3jHUqlEshkskKzvUgkEty7d48PoD1P4/F4df8lDWQyGeZ/+8WEhYU1adKoqKgo3r9/f23/Yx5u/1ZXV1c1UL+Xx+PJjI2N5fn5+XpPW47Z2dnJR4wYobh58ybx9OnT1MjIyGYAgNjYWCs/P7+O0tJS/rlz58p6enr69v1kO1Rj165d5mZmZnKhUCgoKioSyOXyvs9oa5NoS2Pnzp3VDx48KNqwYUPNggUL7AB6zyODwejSnEexWCzIzc0t1XxGWz0w0DUZaPuBDDRm8OQ2TxroMzKZDDvQ+XsbvJURwEM9MX8Z7ty5o6dSqcDc3FwRFBTUvm3bNsvo6OhmCoWiun//PqF/QYi82Z41UvevmDlzZseWLVsw+/btM1m7dm0jAEBWVhZJIpFg/fz8OhITE01XrFjRVF9fj79165ZBQkJClVgs1rGzs+tZu3ZtY2dnJzY/P58EAE14PF4tk8kwurq66tbWVhyFQlGSyWTVnTt39PpPddZGV1dX/fnnn9fY29s75+fn640ePbpvWl5gYGB7aGgoY+PGjY8sLCyUjx49wpmbmys7OjpwNjY2coDetZZe6Il6DTxNpO7zoskfe/bsMY2NjW0AAJBIJFgAgKlTp7YdOnTIdMaMGR26urrqwsJCXTqdLh8o3xQWFj42pWnixImSZcuW2Uql0jq5XI65fPnyiPnz5zf030YqlWIBACwsLBRtbW3Yc+fO9T3tRpD+hhOp+6IMN89PnjxZsmjRIvqOHTvq5HI55tKlSyOioqIaAHrzuo2NjVwmk2F+/PFH6siRI9/eRcf+ouFE6r5Iy5Yta6RQKEoPD4+u9PT0vl/FHjduXMd3331nHB8fX5eenk42MjJSUKnUATsWA5WRxsbGSkNDQ2VGRoZBYGCg5D//+Y+xl5eXZKB0WlpacEQiUUWlUpVVVVX4a9euUfz8/FD03WvoVfc7jI2NlQkJCZWhoaGMjz/+uGGwfkddXZ3O5cuX9f39/TtPnDhB9fb2lgAA0Gi0ntzcXNKcOXPaf/rpp8dmGl68eHHErl276trb27E3btwgf/755zX9O/r9TZw4sX3//v1mR48erQIAaGhowPWPAh41alR3TU2NTnFxsa6Tk5MsOTnZ2NfXd1j5mkwmqzIyMkp9fHzY5ubmijVr1jS6ubl1fvvtt0bLly9vPnLkCHXMmDFa76lJkya179u3zzwpKakSi8VCbm4u0cfHpys3l95Jo41veXfuJ4++/PJL47UfnTVQq38uGd6ZfzYFBQW6WCwWnJ2dZQAAd+7cIdJotJ6JEydKPvjgA3pYWFiTpaWloqWlBd/Y2EjQ/CjkQPXNu+++S4+IiGgMDAwcsDzReNo6S1NPLl++vKmmpoZw48YN8nvvvfe3+MGvN91QkbovCoVCUY0bN65j8eLF9NmzZ/flhacd76BSqSoajdZz9OhRo0WLFrWoVCq4efMm0cvLq0tbnqbT6bILFy6MAAD47bffSDU1NboAvf3N2bNnMzZu3PjIyspK8ejRI1xbWxuOxWL1/ZDbcPu3TCazWygU6jo6Ov7pRxlramrw1dXVugwGo4dAIGjahQ/VajVcuHDBKCkpadAfaQsNDW3+97//bdHR0YHz8PDoAgBob2/H0Wi0HgCAI0eODPm7OwC9vzNFo9F6cDgcHDhwwFipfLbfUMPhcLB58+b6kydPmqSmphpOnz69o7m5Ga+pH2QyGaaoqEh3zJgx3QAAJ0+eNJo5c2bHL7/8YkAmk5XGxsbKga4JwMB1jTYDjRn03+Zp2mL379/X7b9U0NvmrRwAflU0U7EAep9SHDp0qAKPx8Ps2bPb+Xy+3tixY9kAvU90jh8/fh+Px6NBYOSZYLFYSEtLK4+JibH+4osvLHR1ddU0Gk321VdfVQUFBUmuX79uwOFweBgMRv3JJ59U29jYKL766ivjhIQECzweryaRSMrjx4/fBwCIiIho4HA4XCcnJ2lKSkrFN998Y8pisbgODg7drq6uA665pGFgYKBetmzZo927d5v/9NNPDzSvjxkzpnvt2rV1vr6+bCwWq3ZycpKmpqZWbNq0qfa9995zMDc37xkzZkxnZWWl1mVPkGeHxWLh3Llz5cuXL7dOSEiwoFKpChKJpNy2bVv1okWLWioqKnSdnZ05arUaQ6VS5RcuXCiPjIxs1ZZvCgsLH0vbz89PGhgY2MblcnlWVlYyFxeXTgqF8lglbWJiooyIiGjgcrk8Go3WM5x8hCAvi1wuBx0dHfVw8/z48eOl77zzTrOTkxPPyspK5uHh0deI3bBhQ62HhwfHysqqh8PhSCUSyaBT4pDXl4ODg3zLli1/moa+Z8+e2vDwcDqLxeISiURVUlLSn9Yn7W+wMvK77767v2zZMtuVK1dibWxsZCdPnqwYKB0vL68uJycnKZPJ5NnY2Mjc3d2HHNxB3l4+Pj5dHA6nSzMYOlC/w97evvvo0aPGMTExtnZ2drJ169Y1AADExcXVLl26lL5nzx65u7v7Y3W2m5tb55QpU5i1tbU669atq6PT6XLND/086dNPP61buHChDZPJ5GGxWPXGjRtro6Ki+pbNIZFI6sOHD1eEhYU5KJVKcHV1lWqOYTjMzc2VGRkZYj8/P7apqani0KFDlVFRUfQvv/zSwtjYWJGcnFyh7XO7d++ujY6OtmGz2Vy1Wo2h0WiyzMzMstWrV9eHhIQ4nDlzxmj8+PEdRCLxheQGvEgAACAASURBVEeNtbe341auXGnT3t6Ow+FwajqdLjt27NgDMpmsbGpqIkycOFECAMDlcrsePXqkwGJ7A/y01TdisVgnIyPD6N69e3o//PCDCQDAN998o/UcDJTGYMcaGRnZeuXKFUNHR0eenZ1dt4eHB3oIhcC7777bHBUV5XDy5Mm+Qc9nGe84efLkvQ8++MB2z549IxUKBeadd95pNjY2VmrL0/Pnz285fvy4MZvN5o4aNarT1ta2GwDA3d29e/PmzTVTpkxhqVQqIBAI6oSEhMr+A8AhISFtw+nfBgUFtV69epUcHBzcl8/9/PxYWCwWFAoFJi4urtra2lphbW2tCA8Pbxo9ejQHACAyMrJhoOUfNObNm9eyZcsWm1WrVvVFJ8fGxj5cvHixXUJCgoWvr2/7UOcdAOB5lllYLBZiY2Nr9+7daxESEtL+448/lq9cudKmo6MDp1QqMcuWLXukGQA2MjJSurm5sSUSCe6bb765D9C7tIW2awIAMFBdo81AYwb9txluW6yqqgqvq6urtrW1fWsDMp7bVLTXXUFBQYWrq2vjqz4OBEGQv7u2tjYshUJRdXR0YL28vBwPHz78QDMFDEFed7///jsxOjqaXlRU9Ke1yxHkeUBlJPI6Kikp0ZkxYwaztLSU/6qPBUEQ5HUjkUgwPj4+jrdv3xZp1g9HADw8PBz37t1bNWHChNe+HfPJJ5+YGRoaqjTLj/xdFBQUmLi6utKHsy3KuQiCIMhzNW/ePNvS0lKiTCbDvPvuu01oYAN5U3z22WemR44cMYuPj3/lS0Uhf1+ojEQQBEGQN4uBgYE6Li6u9v79+zpMJvNPy0Agr78RI0YoY2Jiml71cbxKKAIYQRAEQRAEQRAEQRAEQRDkDfI0EcDo14IRBEEQBEEQBEEQBEEQBEH+ptAAMIIgCIIgCIIgCIIgCIIgyN8UGgBGEARBEARBEARBEARBEAT5m0IDwAjylkpMTDS6evWq/qs+DgRBEARBEARBEARBEOTFQQPALxEOh3Nns9lcR0dHLpfL5Vy6dOmVDr4lJCQYz58/3+ZVHgPy4lRWVuJnzJhhb21t7eTg4MDz8/NjFBYW6gIAnDp1yrCmpkbn22+/NSkvLycAAJSUlOgcPnyY+lf2+dFHH1nGxcWZAwCEhITQ09PTyQAAHh4ejtnZ2aRnSdPNzY39V44J0a6qqgo/c+ZMOxqN5szj8TijRo1iJycnj3jVx4UgrwMSieSm+X9KSgrF1tbWqbS0VOd5pJ2enk6eNGkS48nX+5efw7F9+3azjo4O1I57wTAYjHtwcLCd5m+5XA5GRkau2q7hcDQ2NuJ2795t+vyOEEG00/Q7mEwmb/LkyYzGxkbc897HQOVWSUmJDpPJ5AEAZGdnkxYsWGD9V/eVkZFhwGAweGw2myuRSDD933vW+3SwvlD/euBli42NtWAwGDwWi8Vls9nc5xmw8Sq/F/L35uHh4ZiammrY/7Xt27ebzZs3z6aiooIQGBhoP9jnB+uLlpSU6GAwGPddu3aZaV6bP3++TUJCgvHzOXoEeTugjsNLpKurqxKJRIKSkhLBjh07ajZu3Egb7mdVKhUolcoXeXjI34hKpYJZs2YxJkyY0FFVVVVcXl7O//TTT2tqa2sJAAChoaHt27Zte3TixIkHDg4OcgCA0tJS3ZSUlL80APwi3LlzR/TkawqF4lUcyt+GSqWCmTNnMnx9fSXV1dVFfD5f+NNPP92rqqoa1gAXOv/I2+Ls2bPkdevWWV+4cKGUyWT2vOrj6e/IkSPmEokEteNeMCKRqCopKSFqBpx+/vlnQ3Nzc/mzptfU1IT7z3/+Yzb0li8GKr/fHpp+R2lpKX/EiBGK+Pj4V/LgYcKECdKkpKSqv5pOcnIy9cMPP3woEokEBgYG6v7vPe/79FW6fPmy/i+//DKiqKhIIBaLBZmZmWJ7e/vXqv5BEG3CwsKaTp48+VhfMjU1lTpv3rxmOp0uz8jIuDfY54fqi1KpVMWRI0fMuru7MQNtgyDI4FDH4RVpa2vDUSiUvlb4li1bzJ2cnDgsFou7Zs0aS4DeJ1329va8efPm2fB4PG55ebkOiURyW7ZsmRWPx+N4e3uzMjMzSR4eHo40Gs35+PHjFIA/P82eNGkSQxOJ+eWXXxrT6XSnsWPHOl6/ft1As82JEycoLi4ubA6Hw/X29mZVVVXhX97ZQJ639PR0Mh6PV69fv75B85q3t3dXYGCgRKVSwZIlS2hMJpPHYrG4iYmJRgAAmzZtssrLyzNgs9ncTz75xEyhUMCSJUtomnwZHx9vom1fsbGxFnQ63cnb25tVWlqqq3nd0NBQqaurq+q/7Z49e0yXLl3a9+AjISHBOCoqyhoAYNu2beZMJpPHZDJ527dv7+scayIV0tPTyZ6enqyZM2faOTo68gAADh48SHV2duaw2WxueHi4LerYDs+5c+fIBALhsfzBYrF6Nm3aVD/QdX/y/JeUlOjY2dnx5s6da8tkMnmzZs2yO3PmDHn06NFsW1tbp8zMTBIAQGZmJsnNzY3N4XC4bm5u7IKCAl2A3msfEBDg4Ovry7S1tXXS5IvPP//c5P333++LFNq3b5/J4sWLh/2wDEGel4yMDIPly5fT09LSyng8ngxg4LrSz8+PwWazuWw2m0smk0d99dVXxiUlJTru7u6OXC6XM9Csn6ysLBKHw+EKBAIdAAChUEjU1Ok7d+40AwBob2/HTpw4keHo6MhlMpm8xMREo507d5rV19cT/Pz8WJ6eniwAgIiICBsnJycOg8HgadoRAABWVlbOa9asseRyuRwWi8W9c+eO3ss4f38nU6ZMafvvf/87AgDg5MmT1JCQkGbNe48ePcL5+/s7sFgsrqurK/vmzZtEgN7IyLCwMPqT13Pt2rW0qqoqXTabzV2yZAkNYPA24LvvvmvLYDB4Pj4+TM3gFp/P1/X19WXyeDyOu7u7o+aa8vl8XVdXV7aTkxNn9erVloPVnwPVucjf07hx4zpramr6HvIOlOfs7Ox4s2fPprNYLG5gYKC9ZpaBlZWVc11dHR6gN6LXw8PDUZNWYWEhady4cSxbW1unffv2/amt2H/WQ1tbGzY0NJTOYrG4LBaLm5SU9KeZR2fPniVzOBwui8XihoWF0bu6ujD79+83OX/+PPWzzz6znDVrlt2TnwF4tvu0P5FIpDNq1Ci2k5MTZ9WqVX1l6EDt5unTp9unpKRQNNuFhITQk5KSRgyn7B9MTU0NgUqlKohEohoAYOTIkYr79+8TAgICHAAAfvjhhxF6enqju7u7MVKpFEOj0ZwBBi4XBvpeAE9f9iDIYCIjI1uuXLlC6erqwgD05qX6+npCQECApP+sgIH6Gk/2RZ9Mn0qlKsaPH9/x9ddf/ynqd9++fSZOTk4cR0dH7j/+8Q8HTdkVEhJCj4iIsPH09GTRaDTn8+fPG4SFhdHt7e15ISEh9Bd6QhDkNYQGgF8imUyGZbPZXDs7O96qVatst27dWgcAcPr0acOysjK9wsJCoVAoFNy9e5d08eJFAwCAiooKvYULFzYJhUIBi8Xq6erqwk6aNKmDz+cL9fX1lZs3b7bKyckR//e//y3bsWOH1WD7f/DgAWH37t2W169fF+Xk5IjFYnFf42fq1KmSu3fvioRCoSA0NLR5+/btFi/2bCAvUmFhIdHV1VWq7b3k5OQRRUVFRKFQyL9y5Yo4Li6O9uDBA8KuXbtqxowZIxGJRIKtW7fWf/HFFyYUCkVZXFwsLCgoEB47dsxUJBI9FiGak5ND+vnnn6lFRUWC9PT0soKCgr5G7nfffVc1derUzv7bR0ZGtly4cKGvsX/q1ClqeHh4S05ODunEiRPGt2/fFubl5QmTk5NNc3Nz/9Q4Lyws1I+Pj68pLy/n5+fn6506dYqal5cnEolEAiwWqz58+DCaBjQMRUVFRBcXF635Y7Dr3v/8AwBUVVXprV27tl4kEvHLy8v1jh8/bpyXlyfatWtX9a5du0YCALi6unbfunVLJBQKBVu3bq1Zv35932CuQCAgnTlz5p5QKOSnpaUZlZWVEd5///3mX3/9lSKTyTAAAD/88INJdHR004s/Kwjy/3p6ejBz585lpKamlrm5uXVrXh+orszKyioTiUSCxMTEipEjR/aEh4e3WlpaKnJycsQCgUCYkpJyb82aNY9NM7506ZJ+TEyMbVpaWhmXy+0BACgrK9PLysoS//HHH8K9e/daymQyzOnTpw0tLCzkJSUlgtLSUv7s2bPbN2/eXG9mZibPysoS37x5UwwAsH///pri4mKhSCTi5+bmkvsPcJiYmCgEAoFw0aJFDbt37x72MhNIr8jIyOaUlBQjqVSKEQqFJC8vr766bf369Zaurq5SsVgs2LFjR01UVFTf4JS267lv375qa2trmUgkEhw5cqR6sDZgZWWl3sqVK+vLysr4FApFmZycbAQAsHjxYtuDBw9W8vl8YXx8fPWyZctsAABWrFhhHRMTU19cXCy0tLR8LPqxf/k93DoX+XtQKBSQmZlJDg4ObgUYut+xdOnSBrFYLCCTyarhRA0LhULi5cuXS2/cuCGKj4+3rKioIAy07YYNG0YaGhoqxWKxQCwWC6ZPn97R/32pVIpZsmSJXUpKSrlYLBYoFAqIj483/eijjxr9/f1bd+7cWZ2WlnZfW9rPep9qxMTE2CxevLihuLhYaGFh0Xf/DNRunjt3bnNKSooRAEB3dzcmNzfXMDQ0tG2osn8owcHB7bW1tTp0Ot1p3rx5NufPnzcYP368lM/nkwAAsrOzDRgMRld2djYpMzNT383NTQIwcLkw0Pd6lrIHQQZjYWGhdHV17UxNTaUAABw7dow6a9asFiz28SGngfoaT/ZFte0jLi6u7sCBA+ZPBv1ERES0FBcXC0tKSgSOjo5dCQkJfQ+j2tra8L///rt49+7dVXPnzmV+/PHHj0pLS/kikYh4/fp1VPchb5W3MsrzzJkz1vX19c+0HulAzMzMpMHBwYNOb9JMxQLond6zcOFCO7FYzM/IyDDMzs425HK5XAAAqVSKFYlEevb29j0jR47smTJlSl8DhkAgqENDQ9sBAHg8Xpeurq5KV1dX7eHh0dX/yb422dnZ+uPGjeuwtLRUAADMnj27WSwW6wEA3L9/Xyc4OJjW0NBA6OnpwVpbW8v+2hlBNFYLK61Fnd3PNb+x9fWkX3Bsnmk6XU5ODnnOnDnNeDwerK2tFZ6enpLffvuNRKFQHovWvXz5sqFIJCKlpaUZAQB0dHTgBAKBHpvN7puGlpmZaTBt2rRWMpmsAgAICAhoHWzflpaWCmtra9mVK1f0eTxe97179/SmTp0q2bVrl9m0adNaDQ0NVQAA06dPb8nMzCT7+Ph09f+8i4tLp2b/GRkZ5OLiYpKrqysHAKC7uxtrZmb25oUAn1luDfWC55o/wIwrheCvh50/IiMjbW7dumVAIBDUNBpNpu266+joqPuffwAAKysrmYeHRxcAAIvF6po8eXI7FouF0aNHS3fu3GkJANDc3IybO3euXUVFhR4Gg1HL5fK+KJLx48e3GxsbKwEAGAxGd3l5uS6DwZD4+Ph0pKSkUJydnbvlcjlGsw/k7VO7cZO1rLT0ud4fukym1PLfuwa9PwgEgnr06NGSw4cPm3h6evZtO1hdWVdXh1+wYIHdjz/+WG5sbKxsamrCvf/++7YCgYCIxWLhwYMHfTMkysrK9GJiYuiXLl0S0+n0vg55QEBAK5FIVBOJRAWVSpVXV1fjR48e3bVp0ybrZcuWWf3zn/9sCwwMlGg75mPHjlGTkpJMFAoFpqGhgVBQUKDn6enZBQAQHh7eAgDg4eEh1dzbb5pfDn1h3Vj14LnmBRNrW+k/lq0esqz09PTsqq6u1k1MTKT6+/u39X/v1q1b5NTU1DIAgFmzZnVER0fjm5qacADar+eTaQ/WBrSyspJ5e3t3AQC4ublJKyoqdNva2rB37twxCAsLc9Ck0dPTgwEAuHPnjsGvv/5aBgCwePHipm3btvU9cOtffl+7ds1gOHUu8ny8qn6HJvCkpqZGx8nJSRocHNwOMHies7Cw6AkICOgEAIiMjGxKSEgwA4BHg+0nKCio1cDAQG1gYKDw8vJqz8nJ0ffw8ND6kDk7O9vwxx9/7JsGbmpq+tj6dgUFBXo0Gk3m4uIiAwBYsGBB09dff20GAFoHg/p71vtUIz8/3+DixYvlAABLlixp2rFjB221sNL6F6KZEWnjp8oZd+85AgAYxB/GzhHVMClsD2XhFNAPuCXSbWtuxhvsPYIJFdWylAoFVJSV6kk7O7GAwYDsg4+wgXnivojpodrwFApFVVxcLMjIyCBfuXKFHBUV5RAXF1dta2vbnZ+fr5efn6//4YcfPsrMzCQrlUqMj4+PZLByQdv3Anj6smeo84+8Xj4+VWAtftjxXMsdlgVZGh/qOmi5M2fOnOaUlBSjefPmtZ4+fZr67bffVjy5zUB9TB0dHfWfEnwCm83uGTVqVOeRI0ceWyri9u3bxLi4OKuOjg5cZ2cnzs/Pr68MmD59equmf2JsbCzv33cpLy/X1eR1BHkbvJUDwK8Df3//zpaWFnxdXR1erVbD6tWr6z7++OPG/tuUlJTokEikxwbl8Hi8WvMUDYvFgq6urhoAAIfDgVKpxGi2Uan+/2MymazvsRsGo30Gz4oVK2xWrVr1MCIioi09PZ28fft2S60bIm8EZ2fnrjNnzmjt5KvVQ9atmu0w+/btqwwJCWkfbLuB8tRAQkNDW06ePGnEZrO7g4KCWrBY7LCPqf/9oFarMWFhYU1ff/11zVMdAALOzs5dZ8+e7csf33//fWVdXR1+zJgxHCsrqx5t1z09PZ38ZHnUv6GGxWJBT0/vT+VRbGyslZ+fX8elS5fKS0pKdCZPnuyo7fM4HK5vcDg6Orpx165dFiwWq3vevHmPlYsI8jJgMBhIS0u7N2HCBNaGDRssdu/e/RBg4LpSoVBASEiIfWxsbO3YsWO7AQB27dplbmZmJk9NTb2vUqmASCS6a9I3MzOTy2Qy7I0bN0h0Or2vk6Kp0wF67yOFQoFxcXGR5efnC1JTUymbNm2yunz5cvvevXvr+h+vSCTSOXDggPnt27eFpqamypCQEHp3d3df3a+5N/F4vFqhUKCpvM8gMDCwdevWrda//vprSX19fV/7WVv9hcFg1ADar+eT2w7WBnyyjOzq6sIqlUogk8kKTUDBcD1Rfz7NR5E3lCbwpKmpCRcQEMDYvXu32ebNm+sHy3NPtuk0f+NwuL6+RVdXF1bbNgP93Z9arR7y/b/iWe7T/rBY7LAPAIvFAplCUba1NOOaGhvwxqamcgCAuppqHYKOjtqZzZaq1QB5ub8ZDJXWk/B4PMyYMaNjxowZHS4uLl3ff/+9sbe3tyQtLY1CIBDUM2fObA8PD6crlUrM/v37q4YqF7R9r6cte572OyBvp4iIiNbNmzdb//bbb6Tu7m7s+PHj//QwaKA+pmbJyqHExcU9nDNnjoOnp2ffDILo6Gi7U6dOlXl5eXUlJCQYZ2Vl9aXVv3/yZN8FtYmQt81bOQA81BPzl+HOnTt6KpUKzM3NFUFBQe3btm2zjI6ObqZQKKr79+8ThvMEbCAODg49iYmJJKVSCffv3ycUFhbqAwBMmDChMzY21vrhw4c4IyMj1c8//2zE4/G6AHqfvNnY2MgBAJKSktA0+ufoWSN1/4qZM2d2bNmyBbNv3z6TtWvXNgL0rjUpkUiwfn5+HYmJiaYrVqxoqq+vx9+6dcsgISGh6sGDBzoSiaQvGmLq1Klthw4dMp0xY0aHrq6uurCwUJdOp8s1EUMAAJMnT5YsWrSIvmPHjjq5XI65dOnSiKioqAZtx6Qxb968Fjc3N25RUZFs9+7d1U+k81CtVsOFCxeMkpKSBv2hgMDAwPbZs2czNm7c+MjKykrx6NEjXFtbG47FYr1ZP5TxFJG6z4smf+zZs8c0Nja2AQBA82NSA133Z91Xe3s7jkaj9QAAHDlyROs60k+aPHly54oVK3T4fL5+UVER/1n3jbz5horUfZHIZLIqIyOj1MfHh21ubq5Ys2ZN40B15fLly2lcLlcaHR3donmtra0NR6PRenA4HBw4cMC4/w+5GhoaKpOTk8v9/f1ZBgYGqhkzZjw2Dbq/iooKgpmZmSImJqaZTCarjh07ZgwAoK+vr2xra8OOHDkSWlpacEQiUUWlUpVVVVX4a9euUfz8/AZM8000nEjdF2nZsmWNFApF6eHh0dW/kzpu3LiO7777zjg+Pr4uPT2dbGRkpKBSqaqB0qFQKMrOzs6+wZSnbQNSqVQVjUbrOXr0qNGiRYtaVCoV3Lx5k+jl5dU1atQoSVJSktEHH3zQcvTo0QF/SOdZ6lzk2b3qfoexsbEyISGhMjQ0lPHxxx83DJbn6urqdC5fvqzv7+/feeLECaq3t7cEAIBGo/Xk5uaS5syZ0/7TTz89FmBw8eLFEbt27aprb2/H3rhxg/z555/XaJZxetLEiRPb9+/fb3b06NEqAICGhgZc/yjgUaNGddfU1OgUFxfrOjk5yZKTk419fX2HXZb9lft09OjRksTERGpMTExzYmKiMUBvG/7YrcyOxK/+bZp+7VppfX09fsysZZwrN26IbWxsFD+W5VP+s3eryYOiInxxRYVQT09P/f6hPdY0Gq3nkzlBj7788kvjX9esNshQq0uG+x0KCgp0sVgsODs7ywAA7ty5Q6TRaD0TJ06UfPDBB/SwsLAmS0tLRUtLC76xsZHg7u7ejcViYaByQdv3Anj6sgd5swwVqfuiUCgU1bhx4zoWL15Mnz17drO2bQbqa1AoFGX/vuhA3NzcuplMZteVK1coHh4enQC9Eew2NjZymUyG+fHHH6kjR458I38EEkFetLdyAPhV0UzFAuh96nro0KEKPB4Ps2fPbufz+Xpjx45lA/RGaRw/fvw+Ho9/pkp46tSpkq+//lrm6OjIc3R07OJyuVIAAFtbW3lsbGztuHHjOKampnIXFxepJkpv06ZNte+9956Dubl5z5gxYzorKyvRVJ83GBaLhbS0tPKYmBjrL774wkJXV1dNo9FkX331VVVQUJDk+vXrBhwOh4fBYNSffPJJtY2NjcLc3FyJx+PVjo6O3PDw8MbNmzfXV1RU6Do7O3PUajWGSqXKL1y4UN5/P+PHj5e+8847zU5OTrz/LQegdWpyf6ampkomk9lVWlpKnDRpklSTTnh4eNPo0aM5AACRkZENQ01FdXd37968eXPNlClTWCqVCggEgjohIaHyjRsAfgWwWCycO3eufPny5dYJCQkWVCpVQSKRlNu2batetGhRy1DX/WnExsY+XLx4sV1CQoKFr6/voNHk/QUHB7cUFhaSnpweiiAvk7m5uTIjI0Ps5+fHNjU1VQxUV37zzTfmDAajm81mGwIAbNmypWb16tX1ISEhDmfOnDEaP358B5FIfGywwdraWpGenl4WFBTEJJFIFQMdw+3bt4n/+te/aFgsFvB4vPrgwYMPAACioqIag4KCmGZmZvKbN2+KnZycpEwmk2djYyNzd3cfsixGno6Dg4N8y5Ytf5qGvmfPntrw8HA6i8XiEolEVVJSktb1STUsLCyU7u7uEiaTyZs8eXLbkSNHqp+2DXjy5Ml7H3zwge2ePXtGKhQKzDvvvNPs5eXV9dVXX1VFRETYJSQkWAQEBLQaGBhoLT+fpc5F3mw+Pj5dHA6n69tvvzVavnx580B5zt7evvvo0aPGMTExtnZ2drJ169Y1AADExcXVLl26lL5nzx65u7v7Y7/v4Obm1jllyhRmbW2tzrp16+rodLq8pKRE67J0n376ad3ChQttmEwmD4vFqjdu3FgbFRXVt3wYiURSHz58uCIsLMxBqVSCq6urVHMMw/FX7tODBw9Wvvvuu/YHDx40nzVrVt/DvMjIyFZt7WYAgHfeead96dKldv7+/q2aKMOhyv6htLe341auXGnT3t6Ow+FwajqdLjt27NgDMpmsbGpqIkycOFECAMDlcrsePXqk0MwMHahcGOh7Pe/+J4JovPvuu81RUVEOJ0+e1Ppgcc2aNY3a+hoeHh5d/fuiA60DDACwZcuWOh8fH67m7w0bNtR6eHhwrKysejgcjnQ4A8kI8jbCvC3TwAoKCipcXV3RVGIEQZA3wKRJkxirV69+9M9//vNvFcWIIAjyonR0dGD19fVVWCwWvvnmG6OUlBTqlStXnvkBHvJ2KSkp0ZkxYwaztLQUzbxBEARBkDdEQUGBiaurK30426IIYARBEOS10djYiBszZgyHw+FI0eAvgiDI8OXm5pJWrVplo1arwdDQUJmUlFTxqo8JQRAEQRAEeT2gCGAEQRAEQRAEQRAEQRAEQZA3yNNEAKNf9EQQBEEQBEEQBEEQBEEQBPmbQgPACIIgCIIgCIIgCIIgCIIgf1NoABhBEARBEARBEARBEARBEORvCg0AIwiCIAiCIAiCIAiCIAiC/E2hAWAE+RurrKzEz5gxw97a2trJwcGB5+fnxygsLNT9q+lu2LDBov/fbm5u7L+aJvJyVVVV4WfOnGlHo9GceTweZ9SoUezk5OQRCQkJxvPnz7d51ceHIK8SiURy0/w/JSWFYmtr61RaWqrzKo8JeTUwGIx7cHCwneZvuVwORkZGrpMmTWK8yuNCkKHgcDh3NpvNZTKZvMmTJzMaGxtxr+pYUDvx6cTGxlowGAwei8Xistls7tWrV/WH+szq1astz5w5QwYA2L59u1lHR8dz6ed/9NFHlnFxcebPI62QkBD6d999Z/Q80kJePyqVCtzd3R1/+uknQ81r3377rZGvry/zVR4XgiD/Dw0Av0SahpijoyOXy+VyLl26NGhlXlJSosNkMnkAANnZ2aQFCxZYD7b9Z599ZnrgwAHjpzmm77//fsS6detGAvRW8GZmZi6aUMNlHwAAIABJREFUxuLx48cpmteftuKvqKggBAYG2j/NZ/p7suHi5+f33BuuA32vgoICXQ8PD0c2m821t7fnvffee7YAANevXyempKRQhkp3uNsN15IlS2gMBoO3ZMkS2r///W/TL7/8cljXWKVSwaxZsxgTJkzoqKqqKi4vL+d/+umnNbW1tQTNNgqF4pmOKSEhYWT/v+/cuSN6poSQV0KlUsHMmTMZvr6+kurq6iI+ny/86aef7lVVVaEBLgTp5+zZs+R169ZZX7hwoZTJZPa86uNBXj4ikagqKSkhSiQSDADAzz//bGhubi5/mjTk8qfaHEGeC11dXZVIJBKUlpbyR4wYoYiPjzd9VceC2onDd/nyZf1ffvllRFFRkUAsFgsyMzPF9vb2Q9Y/X3zxRW1wcHAHAMCRI0fMJRLJX+7no7ILeRpYLBYOHz78YMOGDdZSqRTT3t6O3bFjh9Xhw4crX/WxIQjSCw0Av0SahlhJSYlgx44dNRs3bqQN97MTJkyQJiUlVQ22zfr16xtWrFjR9DTHtH//fou1a9c2aP5eunTpI5FIJEhJSSlfsWIFXalUPk1yANDbWKDT6fKMjIx7T/3h/3my4ZKVlVVmYmLy9AfzDJYvX26zcuXKRyKRSHDv3j3+mjVr6gEA8vLySOfPnx9yYHe42w3X8ePHTYuKigRHjhyp/vDDD5sOHz48rMH49PR0Mh6PV69fv77v+np7e3cpFAqMp6cna+bMmXaOjo48AIBt27aZM5lMHpPJ5G3fvt1Ms72/v78Dj8fjMBgM3t69e00AAGJiYqxkMhmWzWZzZ82aZQfw/9FybW1tWC8vLxaXy+WwWCzuDz/8MOJ5nQfk+Tl37hyZQCA8ljdYLFbPpk2b6gEAHj58SPD19WXa2to6LV26tK+cioiIsHFycuIwGAzemjVrLDWvW1lZOa9Zs8ZSc93v3LmjBwCQmZlJcnNzY3M4HK6bmxu7oKDgL0efI8jLkpGRYbB8+XJ6WlpaGY/HkwEA1NbW4v/xj384ODk5cZycnDi//vqrPkDvA8WwsDC6h4eHI41Gc965c6cZAMCqVassd+zY0Vemfvjhh1Y7d+40Q2Xlm2XKlClt//3vf0cAAJw8eZIaEhLSrHnv0aNHOH9/fwcWi8V1dXVl37x5kwjQmyfee+89Wx8fH+bs2bPtpFIpJjQ0lM5isbgcDod77tw5MkDvg9jo6Ggai8Xislgs7q5du8wAALKyskhubm5sR0dHrrOzM6elpQU7UBoIMpRx48Z11tTU6AD0PgResmQJjclk8lgsFjcxMdEIoLfdOHbsWMdp06bZ0+l0p5iYGKtDhw5RnZ2dOSwWi8vn83UBAE6cOEFxcXFhczgcrre3N6uqqgoPMHA5CIDaiU+jpqaGQKVSFUQiUQ0AMHLkSMX9+/cJAQEBDgAAP/zwwwg9Pb3R3d3dGKlUiqHRaM4A/x9du3PnTrP6+nqCn58fy9PTk3X8+HEKm83mstlsLp1Od7KysnIGAMjJySGNHTvWkcfjccaPH8988OABAQDAw8PDccWKFVZjx4513Llz52N9jn379pk4OTlxHB0duf/4xz8cNME6ISEh9AULFli7ubmxaTSasybKV6VSwfz5820cHBx4EydOZDQ2NuJf3plEXoWxY8d2BwQEtG3ZssVi/fr1lnPmzGni8Xiyr776ytjZ2ZnDZrO58+bNs1EqlSCXy4FMJo9asmQJjcvlcsaPH8+8evWq/tixYx1pNJqzJqBKLpfD4sWLaZqyaP/+/SYAAGfOnCF7eXmxAgICHOh0utM777xDf6VfHkHeAGgA+BVpa2vDUSgUBcDADbH+0tPTyZMmTWIolUqwsrJy7h8Na2Nj41RVVYXvH9E6UAXdX2Fhoa6Ojo5q5MiRfwoDHT16dDcOh4OHDx8+VlF7eHg4ZmdnkwAA6urq8JpGREJCgnFQUJD95MmTGb6+vqz+0csJCQnGAQEBDsMdUHqy4QLQO8BUV1eHB9A+WFlSUqJjb2/Pe/fdd20ZDAbPx8eHqYnWGc656K++vp5ga2vb96Tdw8Ojq7u7G/Ppp59anjt3zojNZnMTExONtA1uaduuvb0dGxYWRndycuJwOBytjd2B8sDkyZMZXV1dWDc3N05iYqIRmUxW0Wg0WWZmJmmw7/C/60t0dXWVDvCefnx8fE15eTk/JyeHdOLECePbt28L8/LyhMnJyaa5ublEAIDjx49X8Pl84d27dwVHjhwxf/jwIe7gwYM1mocZaWlp9/unSyKRVOfPny8TCATCrKws8caNG2kqlWqoQ0VesqKiIqKLi4vWvAEAIBAISGfOnLknFAr5aWlpRmVlZQQAgP3799cUFxcLRSIRPzc3l6wZ6AAAMDExUQgEAuGiRYsadu/ebQ4A4Orq2n3r1i2RUCgUbN26tWb9+vXDfuiFIK9ST08PZu7cuYzU1NQyNze3bs3rS5Yssf7oo48eFRcXC3/++efypUuX0jXvlZWV6WVlZYn/+OMP4d69ey1lMhkmJiam8eTJk8YAAEqlEs6cOWO0ePHiJlRWvlkiIyObU1JSjKRSKUYoFJK8vLw6Ne+tX7/e0tXVVSoWiwU7duyoiYqK6lsuorCwkPTLL7+UnTt37v6ePXvMAADEYrHgxIkT96Kjo+lSqRSzb98+0wcPHujy+XyBWCwWLF68uKm7uxsTERHh8MUXX1SWlJQIsrKySgwMDFQDpfHyzwjyJlEoFJCZmUkODg5uBQBITk4eUVRURBQKhfwrV66I4+LiaJrBP5FIRDx06FCVUCjknzp1ylgsFusVFRUJIyMjG/ft22cGADB16lTJ3bt3RUKhUBAaGtq8ffv2vmXBtJWD/Y8FlX1DCw4Obq+trdWh0+lO8+bNszl//rzB+PHjpXw+nwQAkJ2dbcBgMLqys7NJmZmZ+m5ubpL+n9+8eXO9mZmZPCsrS3zz5k1xREREm0gkEohEIgGXy5WuWLHioUwmw6xcudLm7Nmz5Xw+XxgVFdW4bt06K00ara2tuD/++KPkk08+edQ/7YiIiJbi4mJhSUmJwNHRsSshIcFE896jR48IeXl5orNnz5Zu3brVCqB3pmlZWZluSUkJPykp6UF+fr7Biz17yOvgs88+q01NTTW+evWq4fbt2x/+8ccfemfPnh2Rn58vFIlEAqVSiUlMTKQCAEgkElxgYGC7QCAQ6ujoqLdt22Z5/fr1kpMnT5bv2LHDEgBg3759pmZmZoqioiJhQUGBMDEx0UyzLBefzyclJiZWlpWVFZeWlhKvXLky5HIpCPI2eyufwgmEsdadEvGQA2hPQ9+AJeVy9gwaoauJmpTJZJjGxkbChQsXxACPN8Tq6urwHh4enICAAIm2NHA4HAQEBLQeP358xKpVq5quXr2qT6PReqytrR8bxI2IiGhZu3ZtIwDAypUrLRMSEkw00X0amZmZBgMNAl29elUfi8WqtQ0ODyQ/P9+gsLCQb25uriwpKXlsKrlAICAVFBQIiESiisFgOK1bt+4Rg8GQ79+/v8bc3FypUCjA29vb8ebNm8TNmzfXHzp0yDwrK0v85P77D1aq1Wpwd3fnTJkypcPExERZWVmp98MPP9zz9vZ+MG3aNPvk5GSjmJiY5uGci/6WL1/+aNq0aSw3N7fOKVOmtC1fvrzJxMRE+a9//as2Ly9PPzk5uRIAoLm5GXvr1i0RgUCAM2fOkNevX0/75Zdfyp/czm/tQY6c8x7Wwc9MoVAoYPPVu/Y/NmV14nD/v6JFU2Mjvh47isBZOa9LLpdjduTetTvdcdWcPHu72tzyOjiO81amy8As/cBvZs2jF+p8eum+9aRJk0qGe22e5OLi0slms3sAAK5du2Ywbdq0VkNDQxUAwPTp01syMzPJPj4+XXv27DE/f/78CIDeqFA+n69nYWHROVC6KpUKs3r1atqNGzcMsFgs1NfX61RXV+NtbGyeba2Jt8CW3C3WZS1lz7U8YhgxpDt8dgxaHvUXGRlpc+vWLQMCgaCOjo6uHz9+fLuxsbESAIDBYHSXl5frMhgM+bFjx6hJSUkmCoUC09DQQCgoKNDz9PTsAgAIDw9vAQDw8PCQpqWlGQEANDc34+bOnWtXUVGhh8Fg1HK5HA1UIE/lSrLQurlG8lzvD6qVgXTKfM6g9weBQFCPHj1acvjwYRNPT8++bXNzcw1LS0v7HnxIJBJcS0sLFgAgICCglUgkqolEooJKpcqrq6vxjo6OPSNGjFDk5uYS6+rqCDweT2phYaGUyWSorHxKzafE1vKHnc81LxAs9KXUUNaQZaWnp2dXdXW1bmJiItXf37+t/3u3bt0ip6amlgEAzJo1qyM6Ohrf1NSEAwAIDAxsNTAwUAMAXL9+3eDDDz+sBwBwc3PrtrS07CkqKtK7evWq4dKlSxsIhN7VmczNzZW3bt0impmZyf38/KQAAFQqVTVYGppyGHk9vep+R01NjY6Tk5M0ODi4HQAgJyeHPGfOnGY8Hg/W1tYKT09PyW+//UaiUCgqZ2fnTltbWzkAgI2NjSwoKKgNAMDV1bUrKyuLDABw//59neDgYFpDQwOhp6cHa21tLdPsU1s56ODg0LeOwJvWTvz4VIG1+GHHc712LAuyND7UdcBrR6FQVMXFxYKMjAzylStXyFFRUQ5xcXHVtra23fn5+Xr5+fn6H3744aPMzEyyUqnE+Pj4aO0zPmnz5s3menp6qn/9618Nf/zxh15paSlx8uTJLIDeQBRTU9O+6/Tee+81a0vj9u3bxLi4OKuOjg5cZ2cnzs/Pr688nDVrVisOhwN3d/fupqYmAgBAVlZWX16j0+lyLy+vjuGeJ+QvOrPcGuoFzzXvghlXCsFfD1lnGhoaqoKDg5sNDAyURCJRffHiRcPCwkJ9Z2dnLgBAd3c3lkaj9QAA6Onpqd555512AAAul9tFoVCUBAIBxo4d26WZtXD58mXDsrIy4unTp6kAAB0dHTiBQKALADBq1Ki+MsvJyUlaXl6uM2XKlAH7qgjytnsrB4BfFU3UJEDv+k4LFy60E4vF/IEaYmPGjNHaoA8PD2/evn275apVq5qOHz/+2FREjcEqaI26ujqCqanpYw2uw4cPm//000/G+vr6yuTk5HtY7PCDxH19fdvNzc21LtPwLANK2gw0WBkWFtZqZWUl8/b27gIAcHNzk1ZUVOgO91z0t2rVqqZ//vOf7WfOnDE8d+7ciKSkJFOBQCB4crvhDm7VVlfrKAzk2Lra6r6pdzKZDEsikfpCHjo62nDGJqZyDAYDOjo6arIhRSnp6MBS/3fO+iMQCGqppGnIC+Ps7Nx15swZrT+00H/farVa6+fT09PJWVlZ5Ly8PBGZTFZ5eHg4dnV1DbrfI0eOUJuamvBFRUVCXV1dtZWVlfNQn0FePmdn566zZ8/25Y3vv/++sq6uDj9mzBgOAICOjk5fpsDhcGq5XI4RiUQ6Bw4cML99+7bQ1NRUGRISQu/u7u67tnp6emoAADwer1YoFBgAgNjYWCs/P7+OS5culZeUlOhMnjzZ8eV9SwR5dhgMBtLS0u5NmDCBtWHDBovdu3c/BOgtL/Py8oSaQb3+dHV1+983oLkPFi5c2Pjtt9+a1NfXExYuXNgEgMrKN1FgYGDr1q1brX/99deS+vr6vvaztjoUg8GoAQD09fWHrGvVanXf9oO9NlgaCKKNpt/R1NSECwgIYOzevdts8+bN9YPlo/7lGBaL7avbsVgsKJVKDADAihUrbFatWvUwIiKiLT09nbx9+3ZLbZ/vXw5qoLJvePB4PMyYMaNjxowZHS4uLl3ff/+9sbe3tyQtLY1CIBDUM2fObA8PD6crlUrM/v37hxyQO3v2LPnMmTPUGzduiAAA1Go1hsFgdN29e1fr2sxkMllrWHZ0dPT/sXffcU1e++PAP1mEFZAZIIQh2QkgwyBLFPRWWqFeUVFQbmsVF7UiKn61TtRCHbeNthW1ar3iaNEqoMXWVkHtTy0WWUkIoAiyNwkjJCS/P7jhIgIuFMd5v16+XpI84yQ5z1nP55zHPjk5udjT07NDIBCYaG4KAPyvHfjf4/fug8Gge//vIiwWC5pxBLVaDXPmzKn/+uuvK/tuo1AoAI/H9y1z1EQiUQXQ0//QlB9qtRq+/vrrBx9++OEjNxDOnTtH0tLSUvXdv3+ZgyDIo97JAeAn3TF/FSZNmtTW1NSEr6qqwj9rgz4gIKDtk08+IVZWVuLT09NHbd++vbL/NkNV0Bo6OjqqlpaWR/LA4sWLa7Zu3VrTf1sNPB6v1qwL3H/aYd9Bxf6eZ0BpIEN9V/3PoWlQPs130Z+dnZ1ixYoVDStWrGig0+ncrKwsnf7bPO3gllb++a7kEyfuOTs7ywd6HwBg/vzDVCeqU/uKqBkNAADTpu2yn+kxszE8/MMW3TX/cDl/vL032nf79u3mNa01T7x2g4KCpBs2bMDs3r3bVBMBnZGRoXvlypVHpl/5+/vL5s+fbxcXF1etVqvh4sWLRkePHr13//59oqGhYTeJRFJlZ2dr5+Tk9E6pwePxarlcjunb0AfoWdrE1NRUQSQS1ampqaTKykr0ULEneJZI3eGiyRsJCQlmsbGxdQAAT3pYSFNTE05HR0dlbGzcXV5ejr969aqhn5/fkJEcra2tOM0d/sTERNOhtkWQgTwpUvdlIpFIqvT09CJvb28WmUxWRkdH1/v4+LQmJCSYx8XF1QD0PPRTc+NxMPPmzWvevn07RalUYkJCQu4BoLLyeTxNpO7LtGTJknpDQ8NuPp/fkZaW1tuOGDdunPTIkSMmO3furEpLSyMZGRkpNRG7ffn4+MiOHz9uHBwcLM3NzSVWVVVpOTk5dU6aNKl1//79Zh988IGUQCBATU0NztnZubOmpkYrIyND18/Pr72pqQmrr6+vGuwYr/abQJ7VSPc7TExMugUCQdmMGTNoq1evrvPz85MePHjQLCoqqqG2thZ/+/ZtfYFAUJ6bm/tYW3cgUqkUZ2NjowAAOHr06DM9fPpNK/uGitR9WXJycohYLBYcHR3lAADZ2dk61tbWXRMmTJAtXLjQbubMmQ1WVlbKpqYmfH19PcHNze2xMkBPT6+7paUFa2lpCRKJROuzzz6zTU9Pl2huXjo5OXU2NjbiL1++rDdp0qQ2uVyOycvLI7q7uw9ZnrS3t2NtbGwUcrkcc+rUKWNLS8shnxKnyWvLli1rqKioINy8eZM0WHQxMsyeIlL3VQkMDJTOmjXLYe3atbWWlpbK6upqnFQqxdnZ2T3Vw3UnT57c+u2335q///77UgKBADk5OUQHBwf0YF4EeQ7ojusIyc7O1lapVEAmk5V+fn7S5ORkY6VSCZWVlfjbt2/r+/r6Djp1AYvFQmBgYPPSpUupNBqtw8LC4rEo0f4V9EDH4XK5nSUlJc/0UCYqlSq/ffu2HgBAUlLSgNGlT2ugASXNe5qGS/99/P39ZRcvXhwllUqxra2t2IsXLxpNnDhxyEGop/ku+kpOTjbQrFlWVlaGb25uxtna2nYZGBh09x0kG2xwq/92EydObN29ezdZs8aZZn3dvp4lD0gkEiKPx3vidE8sFgspKSklv//+uwGVSuXRaDTupk2brKysrB5prPn4+LSHhYU1uLq6st3c3Njz5s2r8/b27ggJCWlRKpUYBoPBWbdunZWzs3NvesLDw+vYbHbvQ+A0FixY0JiTk6PH4/HYx48fN7a3t0cd09cQFouF1NTUkmvXrpEoFIqjo6Mje+7cuXabN29+ONg+np6eHTwer51Op3PnzZtn5+bm9sQph7GxsdWbN2+2dnV1ZT3PAyURZKSRyeTu9PR0ya5duyyPHz8+6sCBA+V///23HoPB4Dg4OHD37dtn9qRjaGtrq728vFqDg4Mb8fiee3eorHzzODg4KDZs2PDY8lEJCQmVf//9ty6DweCsX7+ecvTo0fsD7b9mzZra7u5uDIPB4ISGhjokJiaW6ujoqKOjo+usra27WCwWl8lkcr7//ntjbW1tdVJSUsny5cttmEwmZ8KECYz29nbsYMd4+Z8eedN5e3t3sNnsjkOHDhnNmzevmcvldrDZbO6ECRMYW7ZsefgsSzCsX7++cs6cOQ5ubm5MExOTZ1q6AZV9T9ba2oqLiIiwd3Bw4DIYDI5YLNZJSEionDBhgqyhoYEwYcIEGUDPdHkmk9kx0GzNf/3rX/WBgYF0Dw8PRmJioklLSwtu2rRpNBaLxfHz86Npa2urT506VbJ27VprJpPJ4XK5nIyMjCeuz7t27dpKPp/P9vX1ZdDp9Cf+dvPmzWsePXq0nMlkcj/55BMbPp+PloB4B/H5/I61a9dWTpw4kcFgMDgBAQGMysrKpw5EXLVqVZ2Dg0Mnh8Ph0ul07qJFi2zRsnII8nww78p0spycnFJnZ+f6kUwDDodzo9PpHQA9kaxbtmypmD17dotKpYIlS5ZY//HHH4YYDEa9evXqqoULFzYVFhZqTZ06lV5UVFSQlpZG2r17N/nKlSvFAACZmZm6fn5+bIFAUPrpp582APQ8fVdfX79769atNQkJCWYCgcCCQqF0sdnsdplMhjtz5kxp3/RIpVKsi4sLWyKRFGCx2Ef277td39ezs7O1Q0NDR+vp6al8fX1bz5w5Y1JRUZEnEAhM+q572zft/d+bOHEiLSYmpmbq1KnSkJAQu+zsbD0bGxu5lpaWeurUqc3Lly9v2L59u/mhQ4fMzM3NFbdu3ZJQKBTHrKwskaWlpXLz5s3kpKQkUwCAefPm1W3cuLG27/kAADZu3EiWyWS4PXv2VA72XQz2eRcsWGB9+fLlUZopKJ999ln10qVLG2tqanABAQEMpVKJiYmJqbK3t+9asGCBvbGxsdLX17c1OTnZpKKiIq//dnPmzGmOjIy0ycrK0lOr1Zj/PsStuO85B8sDAD1PTm5vb8/WbMvhcNi///570bOsz4wgCIKMjO7ubuByuZyffvqpRBPRhSAIgiAIgiAI8qJycnJMnZ2d7Z5mWzQA/I77+OOPqR9++GHztGnT0B3ZN8CNGzd0du7caXHu3LkBI4wQBEGQ18edO3e0P/zwQ3pgYGDTwYMHB42wRxAEQRAEQRAEeVbPMgD8Tq4BjPzP1q1bqzIzM/WevCXyOqitrSUkJCRUjHQ6EARBkCdzc3PrfPjwYd5IpwNBEARBEARBkHcbGgB+x1GpVGV4eHjLSKcDeTr//Oc/W0c6DQiCIAiCIAiCIAiCIMibAz0EDkEQBEEQBEEQBEEQBEEQ5C2FBoARBEEQBEEQBEEQBEEQBEHeUmgAGEEQBEEQBEEQBEEQBEEQ5C2FBoBfIRwO58ZisThMJpPD4XDYv/3227A+fO3LL78027dvn8lwHnMoAoHAJCIiwuZpXufz+czMzEzdV5W251VaWkqYMmXK6JFOx3ApKyvDT506dTSVSuU5ODhw/fz8aLm5ucTBtqdQKI5VVVVobfB3QHl5OT4oKMje2trakcvlsseMGcM6duzYqJFOF4K8DnR1dV00/z99+rShra0tr6ioSGuoerbve89a5/355586p0+fNtT8nZSUZLhu3TqLF/kMyPDAYDBu06ZNs9f8rVAowMjIyHnixIm0V52WkJAQuyNHjhj1fz0zM1P3o48+or7q9CCvN02/g06nc/39/Wn19fW44Tr2cOY5Pp/PtLOz47FYLA6LxeIMlMcHM1hf5HkUFhZq7d+/31jz90hdV9XV1TjNd2Fqaupsbm7upPm7s7MTM9A+Pj4+9KamJqxSqQQ3NzcmAMC5c+dIkyZNcui/7bFjx0Zt2LCBPNj5r1+/rpucnGwwfJ8IeVccO3ZslCavav5hsVi3H3/88YXy08qVK602btz4WJ592/rtCPIqoIGeV4hIJKrEYrEQAODMmTMG69ats548eXLhcB1/zZo1dcN1rJGmVCoBj3/12dPOzk6Rnp5+75Wf+CVQqVQQHBxMCwsLa0hLS7sH0DPIUFlZSXBycpKPdPqQkaNSqSAoKIgWFhbWkJqaeh8AQCKRaP3000+PDAArFAogEAgjk0gEeQ2cP3+etGrVKmp6enoRnU7vGqyeVSgUL1QHZ2Vl6WZlZemFhoa2AAD89+Gs6AGtrwEdHR1VYWGhjkwmw+jr66t//vlnAzKZrBjpdPU1fvz49vHjx7ePdDqQ10vffsf06dPtdu7caZaQkFA9HMce7jx37Nixe68iDw/VrikqKiKePn3aePHixY0AI3ddWVhYdGt+t5UrV1rp6+t3b926tWaofa5fv16k+f+dO3eG7FtGREQ0D/X+7du3dfPz83VmzJiBHjyNPJOIiIjmvvlr165dpqdPnzYJCQl5KXnpbeq3I8irgiKAR0hLSwvO0NBQCdAzGLNo0SJrOp3OZTAYnIMHDxoBADx48IDg7u7O1Ny9T09P1wfoiUz69NNPKUwmk+Ps7MwqLy/HAzx6d2z37t2mPB6PzWQyOe+9956DVCp97Le+cuWKrouLC4vNZnNcXFxYOTk5RICeu+n/+Mc/HHx9fem2tra8xYsXW2v2+frrr03s7Ox4Y8eOZf7555/6z/PZz549azBmzBgWh8NhBwYGjm5pacEC9ESfrlq1ytLNzY156NAh4753D3E4nJtEItGqrKzEv/feew48Ho/N4/HYv/76qx4AQGVlJd7Ly4vO4XDYYWFhtlZWVr2RrJs3bybT6XQunU7nbt261RwAYMmSJZT4+HgzTZpWrlxptWnTJnJhYaEWnU7nPul7CA8Pt+HxeGwajcaNjo62ep7v4WVLS0sj4fF4dd9BCS8vrw6lUonpG7kUERFhIxAIeiPatm7dSnZ0dGQ7Ojqy8/PziQAAJ06cMHRycmKx2WyOl5cXQ5PnkDdTamoqiUAgPJI3GAxG1/r162sFAoFJYGDgaH9/f5qvry8DAGDDhg1kHo/HZjAYnL75/dtvvzV2dHRks1gsTlhYmK1SqQQAgOQ1N/GWAAAgAElEQVTkZAMOh8NmMpkcT09PBgBAa2srdubMmXY8Ho/NZrM5x48fR9HGyGstPT1df9myZXYpKSnFXC5XDvBoPcvn85lRUVGUsWPHMrdt20buH6Fy9OhRExcXFxadTudeuXJFF2DgerezsxPzxRdfWKWmphqxWCzOwYMHjYYzqg15cQEBAS2aG2QnT540DgkJadS8V1NTg5s0aZIDg8HgODs7s27duqUDAODn50fTtGFIJNKYvXv3mhQWFmq5ubkxORwOu+9MsLS0NNLYsWOZ77///mg7Ozve0qVLKd99952xo6Mjm8FgcAoKCnpn7vz2228kNzc3pp2dHe/kyZOGmv019Xp1dTXO29ubzmazOX3bQ33bNwAAGzduJK9cudIKAKCgoIDo6+tL53K5bDc3N2Z2drb2q/hekVdn3LhxbRUVFVoAj+YXgEfbgUuXLqU4ODhwGQwGJzIy0hoA4PDhw0Z0Op3LZDI57u7uzP7HeJ7+xNMYrI0xWF9ksD7CypUrrebMmWPr7e1Nnz59uv1g1+H69espWVlZ+iwWi7Nlyxbzvp9xsOt85cqVVjNnzrTj8/lMa2trx23btpk/1w/0lPz9/WlcLpdNo9G4e/bsMdW8TiaTnerr63EKhQJIJNKY/vv98ccfehwOh11YWKi1Z88e0/nz51MBAA4cOND723p4eDBkMhlm586dlj///LOxJhr7999/1xszZgyLzWZzXF1dWXl5eUQAgD179phOmTJltI+PD93W1pa3bNkyysv87MibJTc3l7hz506rEydO3JfJZFhPT08Gh8NhMxiM3j5AYWGhlr29PTc0NNSWTqdzg4OD7c+dO0dydXVl2dra8jRtp/8eT3fcuHEMW1tb3u7du001+2vqtcGuawRBHoUGcV4huVyOZbFYHLlcjqmvrydcvHhRAtAzXSIvL09HJBIVVFVV4fl8Pvsf//iH7PDhw8YBAQEtCQkJ1UqlEjSDuB0dHVhPT0/Z3r17KxYvXmy9d+9esy+//LKq77nCw8ObYmJi6gEAli9fbiUQCEzXr19f23cbZ2fnztu3b4sJBAKcO3eOtGbNGutLly6VAAAIhULdnJwcoY6OjopGo/FWrVpVQyAQID4+3urOnTsiY2Pjbi8vLyaPxxvwzvh/O7K9jbKysjIiAEBVVRV+x44dlpmZmRIDAwPV+vXrLeLi4si7du2qAgDQ1tZWae5ca+7Af/HFF2bXrl0jMRiMrqCgIPuVK1fWvPfee7KioiKt9957j37v3r2CtWvXWvn5+Um/+OKL6uTkZIOTJ0+aAgBcu3ZN98SJEyZ37twRqdVqcHNzYwcEBEjnzp3buGLFCpu1a9fWAQCcP3/eKD09vUilUj3yOQb6Hmg0mmLPnj0VZDK5W6lUgpeXF/PWrVs6Hh4eHc+ZNV6K3NxcHWdn52eOXDAwMOjOy8sT7du3z+TTTz+lXrlypXjy5Mmy2bNni7FYLOzZs8d069atFgcPHnz4MtKNvHx5eXk6Tk5Og+aNv//+Wz83N7eATCZ3nz171qC4uFg7NzdXpFarYdKkSbRffvlFn0wmK5OTk42zsrLERCJRPXfuXJv9+/ebTJ8+vSUqKsru6tWrYhaL1VVTU4MDAFi3bp3lxIkTW3/66afS+vp6nLu7Ozs4OLjVwMBANVg6EGSkdHV1YUJDQ2m//vproYuLS+dg2zU3N+P++uuvQoCegYC+77W3t2Ozs7PFv/zyi35kZKR9UVFRwWD17v/93/9VZmVl6R07dqwMoGfg5OV+QuRZzJs3r3HTpk2WoaGhzSKRSPeTTz5p0Aw8rVmzxsrZ2bn98uXLJSkpKaR//etf9mKxWJiRkVEM0NMO+eSTT+zCwsKatbS01NeuXZPo6uqq8/LyiHPmzBmdn58vAgAQi8U6ycnJ98zNzZW2traORCKxPi8vTxQXF2e+e/du88OHD5cDAJSXlxNv375dKBQKiZMmTWJ++OGHeX3TunbtWitPT0/Zrl27qk6dOmWoaQ8NZcGCBbYHDhx44OjoKP/jjz/0lixZYnPz5k3J8H+TyEhQKpVw5coV0ieffFI/1HY1NTW4ixcvGt27dy8fi8WCZsmI+Ph4y19//VVib2+vGGgZiWftT9BotMci6CMiIkZra2urAACuXr1aWFlZSRiojREUFNQ6WF9k0aJF1IH6CAA9g0e3bt0S6+vrq6VSKXag63D79u0Vu3fvJl+5cqUYoGeQW5O+wa5zAIDi4mLtP//8s7C5uRnHZrN5q1evriMSiern/b2GcvLkyftkMrlbKpVix4wZw543b16TmZlZ91D7pKen669atYqamppa7ODgoLhw4ULve/Hx8VYZGRmFVCpVWV9fj9PX11evXr26Kj8/X0dT5jQ0NOCysrLEeDwekpOTDdauXUu5cOHCPQAAkUike/fuXSGBQFDTaDTH1atX19rZ2b1WMySQV08ul2PCwsJGx8XFldPp9C6FQgEXLlwoNjY2VlVVVeE9PDxYYWFhzQAA5eXl2qdPn77n5ub2wMnJiZ2UlGSSlZUlPnHixKjt27dbTpw4sQQAQCQS6dy5c0cklUpxLi4unJCQkEdmSVlZWSkHq18RBPmfd3IAeIWojCpu6xzW9WhZetrtX7Ftyofapu9UrMuXL+t9/PHH9hKJpODatWukWbNmNeLxeKBSqUoPDw/Z9evXdceNG9e2aNEiO4VCgZ0xY0aTl5dXBwAAgUBQz549uwUAwM3Nre3y5cuPratz584dnY0bN1KkUimura0N5+fn99hU0sbGRlxoaKh9aWmpNgaDUSsUit51pXx8fFpNTEy6AQBoNFpnSUkJsba2Fj9u3DiplZWVEgBg+vTpjRKJZMAokaCgoCZNRxagJ1IKAODq1at6JSUl2nw+nwUAoFAoMG5ubjLNdhEREU19j/Prr7/qHTt2zOzmzZtiAIAbN24YFBUV6Wjel8lkuKamJuzt27f1z507VwwAMGPGjFYDA4Pu/55P//3332/WDDJ98MEHTVeuXCF9/vnntQ0NDfjS0lJCVVUV3tDQsJtOp3cVFhZq9T3/QN8DjUZT/PDDD8ZHjx41VSqVmLq6OkJOTo72oAPA55ZRoVY4vOsfm3PaYdo3Q+a35/Wvf/2rEQBg4cKFjZ9//jkVAOD+/fta06ZNs66rqyN0dXVhqVQqWkJimFSuW0+VFxUNa/4g0untVju2P3X+mDdvns3t27f1CQSCOjIystbX17eVTCZ3AwCkp6cbZGZmGnA4HA5Az6CWWCzWzs7OxuTn5+s6OzuzAQA6Ozux5ubmyqtXr+rx+Xwpi8XqAgDQHOfq1asGly5dGiUQCCwAehqHxcXFWq6uroMOriHIpe++otaXPxjW68OUatv+3pIVQ14fBAJB7erqKtu/f7+ph4fHoNvOmTOncbD3wsLCGgEAAgMDZTKZDFtfX49rbm7GDlbvIkM7d+4ctba2dljzgrm5efu0adOeWFZ6eHh0PHz4kHjw4EHjSZMmPdKeun37NunMmTPFAADBwcHSyMhIfENDA87ExKS7qqoK/9FHH9mfOnWqxMTEpLuhoQH3ySef2AqFQh0sFgsPHjzojex1dHRss7W1VQAA2NjYyAMDA1sAAJydnTsyMjJ6B6JCQkIacTgcODo6yqlUqvzu3buPtMNu3rxJOnv2bDEAwOzZs1sWLVo05OBQS0sLNjs7W3/mzJm9a4V2dXWhfDmMRqrfoQk8qaio0OLxeO3Tpk0bchq2sbFxN5FIVM2ePdv2gw8+aNEsSePu7i4LDw+3CwkJaQoPD2/qv9+z9icGGgDuvwTE4cOHjQdqY2RmZuoN1hcZrI8AADBlypRmfX19NUBP/h7sOuxvOa1cBw5MZEbp5etybWkdcGCiQTAAmI2v0VZ8N575qW6V1vKpGND5z/sMHQC4NAeHUR/wZwJRa/AB4Bdow+/YsYOcnp4+CgCgpqZGSyQSEc3MzAa9oS+RSHSWL19uc/nyZYmNjY2y//tjx46VzZkzx3769OkD/rYAPQPAs2bNsisrK3usz+fj49NqZGSkAgAYPXp0R0lJiRYaAH49bLixgVrcVDys5Q7NiNYe5x33xLwbHR1txWAwOiIjI5sAAFQqFWbFihXWN2/e1MdisVBbW6v18OFDPAAAhUKR8/n8DgAABoPR4e/v34rFYsHV1bV927ZtvTfWAwMDm/X19dX6+vpKT0/P1mvXrunx+fzevP8s1zWCvMvQEhAjZNKkSW1NTU34qqoqvFo9cBshMDBQlpmZWUihULo++ugje83DZfB4vBqL7fnp8Hg8KJXKxxrqkZGR9vv27SuTSCTC2NjYSrlc/thvHRsbS/Hz85MWFRUVpKamFnd1dfVuo6X1v4YLDofrbcxhMC/WJ1Cr1eDj49MqFouFYrFYWFJSUvDjjz8+0LxPIpF6owEfPHhAWLRokd3p06dLDA0NVZr9s7KyRJr9a2trc42MjFSDfYeDvQ7QM0h9/Phxo6SkpEemc/Y10PcgFou19u3bR87IyJBIJBKhv79/S2dn52t3LTk6Onbk5OQ8VvETCAR130hnuVz+yI+qyVsAABgMRg0AEBUVZbN06dJaiUQi3Ldv34OB8hPy5nB0dOzIzc3tzRv/+c9/yq5evSppamrCAwDo6ur2ZhC1Wg0rVqyo0lxzZWVl+dHR0fVqtRozc+bMBs3rpaWl+Xv27KlUq9UDlhNqtRqSk5OLNdtXVVXlocFf5HWFwWAgJSXl3t27d/XWrl076MPY+tZZAx2j/99D1bvI623KlCnNmzZtokZERDzSXhionYHBYNRKpRJCQkJGx8bGVo4dO7YTAGD79u1kc3NzhUgkEubl5QkVCkXv7983YhCLxYK2trZa8//u7m5Mn2P3P9dj5+9bj2vg8fhH6n5Nu6W7uxtIJJJSUzaLxWKhJmoSebNpAk9KS0vzurq6MPHx8eYAg7cDCQQC3L17VxQSEtJ87ty5URMmTKADAJw4caJs27ZtleXl5VpjxozhVldXPxIF/Dz9iScZrI0BMHhfZLA+AgCAnp5e7wce6jp8FppUYLFY9f9ew4AaXkrwL5w7d470559/ku7cuSMqLCwUMpnM9o6OjiHTbm5uriAQCOrbt28POBB48uTJB1u2bKksLS3VcnZ25tbV1T0W4b169WrK5MmTW4uKigp+/vnn4r79hr7lFg6HG7BPirxb0tLSSBcuXDD6/vvvewPBEhMTjRsaGvB5eXkisVgsNDExUWjybt8yom/dh8PhnqnuG67rGkHedu9kBPCT7pi/CtnZ2doqlQrIZLLSz89PevDgQbOoqKiG2tpa/O3bt/UFAkG5RCLRsre374qJialva2vD/v3337oA0PA0x29vb8fa2Ngo5HI55tSpU8aWlpaP3Y1tbW3FWVtbdwEAJCYmPnGK4Pjx49tiY2Op1dXVOCMjI9XPP/9sxOVyn2nZgwkTJrTFxMTY5OfnE3k8nlwqlWLv37//2EPJ5HI5Zvr06aPj4uIq+r7n4+PTmpCQYB4XF1cD0PNQMy8vrw4+ny/7z3/+Y7x9+/bqs2fPGrS2tuIAAPz9/WXz58+3i4uLq1ar1XDx4kWjo0eP3gPomdK5cOFCu6amJnxGRsZTP4yvqakJp6OjozI2Nu4uLy/HX7161dDPz0866A4vKVL3SYKCgqQbNmzA7N6921SzHEhGRoauUqmE4uJinY6ODkx7ezv2+vXrBt7e3r1R2MeOHTPesWNH9ffff2/k4uLSBgAglUpxNjY2CoCedS1H4vO8rZ4lUne4aPJGQkKCWWxsbB0AgEwmG7ChFBgY2Lp582aryMjIRkNDQ9X9+/cJWlpa6ilTprROnz6dtm7duhoKhaKsqanBtbS04CZOnNgWExNjKxaLtTRLQJDJ5O6JEye27t69m3z06NEyLBYLN27c0PH29n6tlk1BXj9PitR9mUgkkio9Pb3I29ubRSaTldHR0UNOn+7v5MmTRkFBQdJLly7pk0ikbhMTk+7B6l0DA4Puwa5BpMfTROq+TEuWLKk3NDTs5vP5HX2nho8bN0565MgRk507d1alpaWRjIyMlMbGxqpFixZZczicdk0EFEDP8x+sra27cDgc7Nu3z6S7e8jg3AGdPXvWKCoqqkEsFhPLy8uJzs7OnX/88Ufvklvjxo2THj582OTLL7+s+vHHH3vbQ9bW1srGxkZ8dXU1ztDQUHXp0iXDgICAVmNjY5W1tXXX4cOHjebPn9+kUqng1q1bOp6enqh8HiYj3e8wMTHpFggEZTNmzKCtXr26zsHBQT5QO7ClpQUrk8mwoaGhLRMmTJAxGAxHgJ41ov39/dv8/f3bLl26NOrevXuPzJZ71v7E0xisjTFUX2SwPkL/Yw92HRoaGnbLZLJHBkAFxdSOfx68UvzNRx9RzcrNlJrrfPW11VTRgczCvZqHtEX2PKQtnE7npq04co/JZHYNx/fQV3NzM27UqFFKfX19dVZWlnZeXt4T1zgdNWqU8syZM2WTJ0+m6+vrl02ZMkXW932RSEQMCAhomzhxYlt6evqo0tJSAolEeqQ+kkqlOGtrawUAwIEDB1Af4A3xNJG6w62urg63aNEiux9++OGe5uYLQM81Z2pqqiASierU1FRSZWWl1lDHGcgvv/wyavv27VWtra3Ymzdvkv79739X9L0ZMRz1K4K8C97JAeCRopmKBdBzl/q7774rxePxMG/evOY///xTn81mczEYjHrLli0PbWxslHv37jURCAQWeDxeraur252UlHT/ac+1du3aSj6fz6ZQKF1sNru9f4MGACA2NrZ6wYIF9gKBwMLX1/eJT+e0tbVVxMbGVo4bN45tZmamcHJyau97Z+5pWFlZKRMTE0tnz549WjPFcNOmTRX9B4AvX76sl5+fr7dt2zYrzfSP9PT0ogMHDpQvWLDAhsFgcLq7uzEeHh5SLy+vsvj4+MoZM2aM5nA4Rp6enjIzMzPFqFGjun18fNrDwsIaXF1d2QAA8+bNq9MMOrm7u3e2tbVhyWRyl2ba5dPw9PTs4PF47XQ6nWtjYyPvu4TF6wSLxUJKSkrJ0qVLqV999ZUFkUhUW1tby/fu3VseFBTUxGazufb29p1cLveRqWNyuRzj5OTEUqlUmFOnTt0DAFi/fn3lnDlzHMhkcpe7u3ubZk1n5M2ExWIhNTW1ZNmyZVSBQGBhbGys1NXV7d68efPD/tEk06dPby0oKNAeO3YsC6AnOjgpKem+m5tb5+eff14REBDAUKlUQCAQ1AKBoCwgIKBNIBCU/vOf/6SpVCowMTFR/Pnnn0Xx8fGVkZGRNiwWi6NWqzHW1tZyzTp7CPK6IpPJ3enp6RI/Pz+WmZnZY9Nnh2JkZNTt4uLCkslkuAMHDtwHGLzeDQwMlO7atcuSxWJxYmJiqgY/KjJSHBwcFBs2bKjt/3pCQkJlWFiYHYPB4Ojo6KiOHj16HwDgwIEDZBqN1slisQwAADZs2FCxYsWK2pCQEIdz584Z+fj4SHV0dJ55DXQajSbn8/nMhoYGwldfffVAV1f3kXDD+Pj4ypCQkNEcDoft6ekps7S07ALoidSLiYmp4vP5bGtrazmNRuudgXHy5Ml7CxcutE1ISLBUKpWYf/7zn41oAPjt4u3t3cFmszsOHTpktGzZssaB2oHNzc24qVOn0jSDKtu2bSsHAIiOjrYuLS0lqtVqjI+PT+u4ceM6Ll682HsT5Fn7E09jqDbGYH2RwfoI/Y892HXI5/M78Hi8mslkcsLCwurd3Nx6r4HBrvNXadasWS2HDh0yYzKZHBqN1unk5NTW9/3BIqNtbW0Vqampxe+//z79yJEjj6T7008/pT58+FBLrVZj/Pz8WsaOHdtJoVCUX3/9tQWbzeasWbOmKjY2tnrRokV2e/bssfDx8RmW3xd5O+3Zs8essbERHxUVZdv39ZiYmKozZ84Y83g8NpfLbbe3t3/mGYAuLi5tAQEB9MrKSq1Vq1ZV2dnZKfou3Tgc9SuCvAswQ02Rf5vk5OSUOjs7P1P0DvLm6OjowODxeDWBQIDLly/rRUVF2WrWW0YQBEEQBHkXUSgUx6ysLJGlpeUz3cBAEOTNoFAowNTUdExDQ8NdPB7FdiEIgrxrcnJyTJ2dne2eZltUSyBvheLiYq1Zs2Y5aKIEEhMTS0c6TQiCIAiCIAiCIC+DUqkEBoPBjYiIqEODvwiCIMiToJoCeSs4OjrKRSIRivhFEARBEAT5r4qKiryRTgOCIC8HHo+H+/fvo4c2IgiCIE8FPXAEQRAEQRAEQRAEQRAEQRDkLYUGgBEEQRAEQRAEQRAEQRAEQd5SaAAYQRAEQRAEQRAEQRAEQRDkLYUGgBEEQRAEQRAEQRAEQRAEQd5SaAD4FcLhcG4sFovDZDI5HA6H/dtvv+kNtX1hYaHW/v37jV9V+pC3T1lZGX7q1KmjqVQqz8HBgevn50fLzc0ljnS6kJFXXl6ODwoKsre2tnbkcrnsMWPGsI4dOzbqVaZBV1fX5VWeD0GeVt+8efr0aUNbW1teUVGR1ss4l5+fH62+vh5XX1+Pi4+PN3sZ50CeHwaDcZs2bZq95m+FQgFGRkbOEydOpI1kuhDkSTT9DjqdzvX396fV19fjXtW5Uf3+/Kqrq3EsFovDYrE4pqamzubm5k4sFotDIpHGODg4cJ/lWF9++aXZvn37TAAAQkJC7I4cOWI0HGnk8/nMzMxM3eE4FvL2OHbs2ChN3tX8w2Kxbt99953xlClTRj/LsZ41jwkEApOIiAibZ081grxb0ADwK0QkElVisVhYWFgojIuLq1i3bp31UNsXFRURT58+jQaAkeeiUqkgODiYNn78eGl5eXl+SUlJwRdffFFRWVlJeJFjdnd3D2cykRGgUqkgKCiI5uvrK3v48GFeQUGB6Mcff7xXXl7+yACXQqEYqSQiyGvh/PnzpFWrVlEvXrxYRKfTu17GOTIyMopNTU27GxoacN9//735yzgH8vx0dHRUhYWFOjKZDAMA8PPPPxuQyeTXunBEZTcC8L9+R1FRUcGoUaOUO3fuRDeY3gAWFhbdYrFYKBaLhREREXWLFy+uEYvFwqysLCEW+2xd9zVr1tRFRUU1vKSkIsgjIiIimjV5VywWCxcsWFDr5uYmi4yMbExPT7830ulDEAQNAI+YlpYWnKGhoRKgZzBm0aJF1nQ6nctgMDgHDx40AgBYv349JSsrS5/FYnG2bNlinpWVpe3o6MhmsVgcBoPBycvLI37++efkbdu2mQMAfPLJJ9Rx48YxAHo6rR9++KE9AEB4eLgNj8dj02g0bnR0tJUmDRQKxTE6OtqKw+GwGQwGJzs7WxsA4MqVK7ouLi4sNpvNcXFxYeXk5KCI0TdQWloaCY/Hq9esWVOnec3Ly6tj//79ZsePH++N9AwODrZPSkoyFAgEJgEBAQ6+vr50Ozs7XkxMjCVATyT66NGjuXPnzrXhcrmckpISrb6RHUeOHDEKCQmxAwA4fPiwEZ1O5zKZTI67uzvzFX5c5BmkpqaSCATCI3mDwWB0rV+/vlYgEJgEBgaO9vf3p/n6+jIAADZs2EDm8XhsBoPB0ZQhmnwxe/ZsWxqNxvX29qZrBkh2795tyuPx2Ewmk/Pee+85SKVSLACAWCzWGjNmDIvH47E/++yz3rKopaUF6+npydCURX3zJ4KMlPT0dP1ly5bZpaSkFHO5XDnA4xFUmrJw7ty5NklJSYYAAJMnT3aYOXOmHQDAv//9b9Ply5dbAQBMmjTJgcvlsmk0GnfXrl2mmmNQKBTHqqoqfExMjHV5eTmRxWJxFi1aNOQNYuTVCggIaPnpp59GAQCcPHnSOCQkpBEAoLu7G2xtbXmVlZV4zd82Nja8qqoq/IkTJwydnJxYbDab4+XlxSgvL8cDAKxcudJq5syZdnw+n2ltbe2oacMVFhZq2dvbc0NDQ23pdDo3ODjY/ty5cyRXV1eWra0t78qVK7oAg7fRBiq7EURj3LhxbRUVFVoAL1Ze6erqunz66acUJpPJcXZ2ZmnyNarfX43u7m54lnbXypUrrTZu3Ejuf5xVq1ZZ8ng8Np1O586ZM8dWpVIBQE/U5ZIlSyiOjo5sOzs7Xnp6uj4AgEwmw0ydOnU0g8HgfPDBB6M7Ozsxr/BjI2+g3Nxc4s6dO61OnDhxv7i4WItOp3MBeuqqSZMmOfj7+9MoFIrjjh07zDZv3kxms9kcZ2dnVk1NTe9MhaNHj5q4uLiw6HQ690l1IABARUUFoX8/9mnGSs6ePWswZswYFofDYQcGBo5uaWlBY2TIWwtl7ldILpdjWSwWx97envvZZ5/Zbtq0qQqgZ7pEXl6ejkgkKvj9998lGzdutH7w4AFh+/btFe7u7jKxWCzctGlT7d69e82WLl1aIxaLhbm5uSJ7e/uuiRMnym7cuKEPAHD37l3dtrY2nFwux2RmZur7+PhIAQD27NlTkZ+fLxKLxQU3btwg3bp1S0eTJlNTU6VQKBTNnz+/Lj4+ngwA4Ozs3Hn79m2xSCQSbtq0qWLNmjWoI/oGys3N1XF2dm7v//rChQvrjh49agIA0NDQgLtz547+rFmzWv67j95PP/10Lz8/vyAlJcVYM/WmtLRU++OPP24QiURCBoMxaBRcfHy85a+//iopLCwUpqenF7+sz4a8mLy8PB0nJ6fH8obG33//rX/y5Mn7N2/elJw9e9aguLhYOzc3VyQSiYR3797V/eWXX/QBAMrKyrSXL19eW1xcXGBoaNh97NgxIwCA8PDwpvz8fFFhYaGQyWR2CAQCUwCApUuX2ixYsKAuPz9fZGFh0Ruipqurq7pw4UKxUCgUZWRkSNatW2et6YwgyEjo6urChIaG0s6cOVPs4uLS+aTtx48fL83MzCQBAFRXV2tJJBJtAIAbN27o+/n5yQAAkpKSSgsKCkR3794VJiYmkqurqx+Zjr179+6HVCpVLhaLhVozKfEAACAASURBVImJiQ9fxudCns+8efMaT58+bdTe3o4RiUS6np6ebQAAOBwOZsyY0XDo0CFjAIDz588bsNnsDktLS+XkyZNld+/eFYtEIuGMGTMat27daqE5XnFxsXZGRobkr7/+Eu3atctKLpdjAADKy8u1Y2JiasVicUFJSYl2UlKSSVZWlnj79u0Pt2/fbgkwdButb9n9ar8h5HWmVCrhypUrpGnTpjUDvFh51dHRgfX09JQVFhYKPT09ZXv37jUDQPX7q/Ks7a7BrF69ujY/P19UVFRU0NHRgT116pSh5j2lUonJy8sTJSQklG/dutUKAGDXrl3mOjo6KolEIty4cWOVUCgcchlD5N0ml8sxYWFho+Pi4soHmj0lkUh0zpw5c++vv/4SffHFFxRdXV2VSCQSuru7tyUmJppotmtvb8dmZ2eLBQLBg8jISHuAoevAgfqxTxorqaqqwu/YscMyMzNTIhQKRa6uru1xcXGP3TRBkLcFfqQTMBJWJ+dQJdXSYV23iGFBat85w7l8qG00U7EAAC5fvqz38ccf20skkoJr166RZs2a1YjH44FKpSo9PDxk169f1zU0NHykheTp6dm2a9cuy4cPH2rNnj27ydHRUe7j49P+r3/9S6+pqQlLJBLVTk5OsmvXrun+v//3/0h79+4tAwD44YcfjI8ePWqqVCoxdXV1hJycHG0PD48OAICwsLAmAAA+n9+ekpJiBADQ2NiICw0NtS8tLdXGYDBqhUKB7vK+gA03NlCLm4qHNb/RjGjtcd5xQ+a3wXzwwQeyFStW2FZUVOCTkpKMPvjggyYCoWdVCB8fn1YLC4vu/27XdPXqVf3Q0NBmS0vLroCAgLYnHdvd3V0WHh5uFxIS0hQeHt70POl71/x+TERtrJANa/4wpui3B0Swnzp/zJs3z+b27dv6BAJBHRkZWevr69tKJpO7AQDS09MNMjMzDTgcDgegpzEmFou1R48e3UWhUOReXl4dAAAuLi7tpaWlRACAO3fu6GzcuJEilUpxbW1tOD8/vxaAnsGJX375pQQAYNGiRQ1xcXHWAAAqlQqzYsUK65s3b+pjsViora3VevjwId7GxkY5nN8L8uZpTJZQFdVtw3p9ECz02o1nMIa8PggEgtrV1VW2f/9+Uw8PjydeS5MnT5Z988035Dt37mgzGIyO5uZm3IMHDwh37tzRO3jwYBkAQEJCAvnChQujAACqq6sJBQUF2hYWFk8sV5EeQlEstU0mGda8oKfPaOewE574+3p4eHQ8fPiQePDgQeNJkya19H1vyZIl9cHBwbSNGzfWHj582PSjjz6qBwC4f/++1rRp06zr6uoIXV1dWCqVKtfs849//KNZR0dHraOjozQ2NlY8fPgQDwBAoVDkfD6/AwCAwWB0+Pv7t2KxWHB1dW3ftm2bFcDQbbS+ZTfy+hipfocm8KSiokKLx+O1T5s2rRXgxcorAoGgnj17dgsAgJubW9vly5cNAN7e+v11a8M/a7trML/88gtpz549Fp2dndjm5mY8h8PpAIAWAICZM2c2AQB4eXm1rV69WgsA4Pr16/rLly+vBegpDxkMxqBBBMjroXLdeqq8qGhY8y6RTm+32rH9iXk3OjraisFgdERGRg7YF/Ty8pIaGRmpjIyMVPr6+t0zZ85sBgBwdHRsz83N7U1zWFhYIwBAYGCgTCaTYevr63HNzc3YwerAgfqxsbGxdUONlVy9elWvpKREm8/nswAAFAoFxs3NTfZi3xSCvL5QBPAImTRpUltTUxO+qqoKr1arn2qfxYsXN54/f75YR0dHFRgYyEhJSSERiUS1tbW1/JtvvjHl8/my8ePHyy5fvkx68OAB0cXFpVMsFmvt27ePnJGRIZFIJEJ/f/+Wzs7O3t9dW1tbDQCAx+PVSqUSAwAQGxtL8fPzkxYVFRWkpqYWd3V1oXzyBnJ0dOzIyckZsOKfNWtWw6FDh4yPHz9uEhkZWa95HYN5dKxf87eurq5qoNcBADo6Onr/OHHiRNm2bdsqy8vLtcaMGcPtH+GGvB4cHR07+jaw/vOf/5RdvXpV0tTUhAd49PdWq9WwYsWKKs16XmVlZfnR0dH1AABaWlq9hRcOh+stQyIjI+337dtXJpFIhLGxsZVyuby3DMFisY8VeImJicYNDQ34vLw8kVgsFpqYmCg6OjpQuYOMGAwGAykpKffu3r2rt3bt2t7ITTwer9asg65SqUDT8bC3t1e0tLTgU1NTDX19faXe3t6yY8eOGenp6amMjIxUaWlppIyMDFJWVpa4sLBQyGazO1Aef7NMmTKledOmTdSIiIjGvq/TaDSFqampMiUlhZSdna03c+bMFgCAqKgom6VLl9ZKJBLhvn37HvQtB4lEYt+yEzRlZ98yFYvF9rbRcDgcdHd3P7GN1r+uRt5tmsCT0tLSvK6uLkx8fLw5wIuVV3g8Xq1ZhxaPx/fmXQBUv78Kz9Pu6q+9vR0TExNje/bs2RKJRCKcO3du/SB9w95yB+DxPgKCDCQtLY104cIFo++//75ssG0Gq+uwWOwjZcpA/dKh6sCBtn/SWIlarQYfH59WTT+npKSk4Mcff3zw4t8Egrye3skI4CfdMX8VsrOztVUqFZDJZKWfn5/04MGDZlFRUQ21tbX427dv6wsEgvIHDx5oyWSy3gE0oVCoxWaz5Vwut/bevXvEu3fv6gQHB0u9vLxk33zzDfm7774rdXNz61i3bp01j8drx2Kx0NTUhNPR0VEZGxt3l5eX469evWro5+cnHSptra2tOGtr6y4AgMTExCGnECFP9rx3+V9UUFCQdMOGDZjdu3ebxsTE1AMAZGRk6MpkMuzixYvrPTw82Kampgp3d/fe6c3Xr183qKmpwenp6akuXrw46tChQ6UDHdvExETx999/azs7O3eeP3/eSF9fvxsAoKCggOjv79/m7+/fdunSpVH37t3TsrCw6HglH/gN9SyRusNFkzcSEhLMYmNj6wAAZDLZgJ2FwMDA1s2bN1tFRkY2Ghoaqu7fv0/o23AbSHt7O9bGxkYhl8sxp06dMra0tFQAALi6usoOHjxovHTp0saDBw/2TvFqaWnBmZqaKohEojo1NZVUWVmpNfjRkXfJkyJ1XyYSiaRKT08v8vb2ZpHJZGV0dHS9ra1t1507d3QXLFjQlJSUNKpvR8XNzU2WmJho/ttvv0lqa2vxYWFhDh988EETAEBzczPO0NCwm0QiqbKzs7VzcnIemz5raGjY3dbWhgZGBvE0kbov05IlS+oNDQ27+Xx+R1paGqnve/Pnz69bsGCBfUhISAMe39O0lkqlOBsbGwVAzzqGw5UO1EZ784x0v8PExKRbIBCUzZgxg7Z69eo6IpGoftHyqr+3tX4fqTb8sxqs3TXYtgAAFhYWypaWFmxqaqpRUFDQkLP2fHx8ZMePHzcOCgqS/vXXX9oSyfDOxkCG39NE6g63uro63KJFi+x++OGHe0ZGRi98Q/LkyZNGQUFB0kuXLumTSKRuExOT7qHqwMH6sUONlUyYMKEtJibGJj8/n8jj8eRSqRR7//59gpOTk3yAJCHIG++dHAAeKZqpWAA9UXXfffddKR6Ph3nz5jX/+eef+mw2m4vBYNRbtmx5aGNjoySTyd14PF7NZDI5YWFh9Z2dndiffvrJBI/Hq83MzBRffPFFJQCAn5+fVCAQWPj7+7cZGBioiESi2tvbWwYA4Onp2cHj8drpdDrXxsZG/jRTGmJjY6sXLFhgLxAILHx9fVtf7reCvCxYLBZSUlJKli5dSv3qq68sNHdA9+7dW06lUpUODg6dQUFBzX33cXd3l2mm1YSEhDSMHz++vbCw8LHG+pYtWyo+/PBDmqWlpYLFYnVoBi2io6OtS0tLiWq1GuPj49M6btw4NPj7GsJisZCamlqybNkyqkAgsDA2Nlbq6up2b968+WH/yJzp06e3FhQUaI8dO5YF0BNhlpSUdB+Pxw86CLx27dpKPp/PplAoXWw2u11zI+vbb78tmz179uhvv/2WHBwc3NvZWLBgQWNgYCCNx+OxuVxuu729/RPXXEWQV4FMJnenp6dL/Pz8WGZmZspPP/20burUqTRHR0f2+PHjW3V0dHo7OD4+PrJr164Z8Hg8uVwu72ppacGNHz9eCgAQEhLScuDAATMGg8FxcHDodHZ2fmzpBwsLi243NzcZnU7n+vv7t6B1gF8vDg4Oig0bNtQO9N6cOXNaoqKicJGRkQ2a19avX185Z84cBzKZ3OXu7t5WVlY2LA/URW005Hl4e3t3sNnsjkOHDhktW7as8UXLq/5Q/T6yBmt3DcTU1LQ7PDy8jsPhcK2trbue5vddtWpV7ezZs+0ZDAaHy+W2Ozo6ouWLkMfs2bPHrLGxER8VFWXb93XNg1OflZGRUbeLiwtLJpPhDhw4cB9g6DpwoH4swNBjJVZWVsrExMTS2bNnj+7q6sIAAGzatKkCDQAjbyvM0y4/8KbLyckpdXZ2rn/ylgjy9pNKpVgOh8O5e/euyMTEpBug56msWVlZeseOHRt0yg6CIAiCII/KzMzUjY6Opt65c6dwpNOCIAiCIAiCvDtycnJMnZ2d7Z5mWzTVEEHeMefOnSMxGAzuwoULazWDvwiCIAiCPLt169ZZzJ4922HHjh0VI50WBEEQBEEQBBkMigBGEARBEARBEARBEARBEAR5g6AIYARBEARBEARBEARBEARBEAQNACMIgiAIgiAIgiAIgiAIgryt0AAwgiAIgiAIgiAIgiAIgiDIWwoNACMIgiAIgiAIgiAIgiAIgryl0ADwK4TD4dxYLBaHyWRyOBwO+7ffftMbjuOGhoba3rlzRxsAgEKhOFZVVeGH47jIm6+srAw/derU0VQqlefg4MD18/Oj5ebmEl/0uCtXrrTauHEjeaD3XFxcWC96fOTlKy8vxwcFBdlbW1s7crlc9pgxY1jHjh0b9TzH2rp1q7lUKn3p9Ymurq7Lyz4HggA8mtdOnz5taGtryysqKtIayTRprF271mKk0/AuwWAwbgsXLrTW/L1x40byypUrrYbj2H3bb4OVbytWrLA6d+4caTjOh7xbYmNjLWg0GpfBYHBYLBbnjz/+GLLf8TR5LS0tjTRY/0UgEJhERETYAAB0d3fD9OnT7WbOnGmnUqnAz8+PVl9fj6uvr8fFx8ebafYpLCzU2r9/v/HzfL7nNVhfiUKhOL733nsOmr+PHDliFBISYvc850hKSjJct24dKqsRBEGQ1woaAH6FiESiSiwWCwsLC4VxcXEV69ats+6/jVKpfObjnj59+oGbm1vnsCQSeWuoVCoIDg6mjR8/XlpeXp5fUlJS8MUXX1RUVlYSXuZ5s7OzxS/z+MiLU6lUEBQURPP19ZU9fPgwr6CgQPTjjz/eKy8vf64BrsTERLJMJkP1CfLWOX/+PGnVqlXUixcvFtHp9K6n2UehULzUNAkEAsuXegLkEVpaWuqLFy8avYyb60/Tfvvqq68qp02bJh3ucyNvt8uXL+tdunRpVF5enlAikQivXLkiGT169JBl2NPktT/++IN07do1/aG2UalUMHfuXFuFQoE5depUKRaLhYyMjGJTU9PuhoYG3Pfff2+u2baoqIh4+vTpVzoAPJS8vDzdrKws7Rc9Tnh4eMuOHTuqhyNNCIIgCDJcUId9hLS0tOAMDQ2VAD130z08PBhBQUH2TCaTCwAwadIkBy6Xy6bRaNxdu3aZAvTcTWaxWBwWi8Wxs7PjUSgURwAAPp/PzMzM1B25T4O8jtLS0kh4PF69Zs2aOs1rXl5eHenp6QaafGRubu40Y8YMOwCAb7/91tjR0ZHNYrE4YWFhtpqbEcnJyQYcDofNZDI5np6eDM2xRCKRDp/PZ1pbWztu27attzGviWJqaWnBenp6MjgcDpvBYHCOHz/+XNGlyPBLTU0lEQiER/IGg8HoWr9+fW3fCB4AgIkTJ9LS0tJIAADh4eE2PB6PTaPRuNHR0VYAANu2bTOvra0l+Pn5MTw8PBgAAGfPnjUYM2YMi8PhsAMDA0e3tLRgAXqia6Kioihjxoxh8Xg89vXr13V9fHzoVCqV9+WXX5oBPF2+QXkLeRXS09P1ly1bZpeSklLM5XLlTU1NWAqF4iiXyzEAAI2Njb1/8/l8ZlRUFGXs2LHMbdu2kQsKCojOzs4sHo/HXrFihZWmXJw2bZp93/waHBxsn5SUZBgaGmqrKZeNjIycY2JiLB88eEBwd3dnslgsDp1O56anp+svXbqUIpfLsSwWixMcHGwPMHB7AaCnLP70008pTCaT4+zszCovL0ezg54DDodTR0RE1O3YseOxWS8nTpwwdHJyYrHZbI6XlxdD8x2vXLnSavr06Xbe3t50CoXi+MMPP4xavHixNYPB4Pj6+tI1eah/+23hwoXWHA6H7enpyaisrMQDAISEhNgdOXLECABg1apVljwej02n07lz5syxValUr+ZLQN44FRUVBGNjY6WOjo4aAMDS0lJpZ2enABg8H/XNaxQKxTE6OtpKU89mZ2drFxYWah07dsxs//79ZBaLxUlPTx9wIHj+/PnUxsZG/NmzZ+/jcDjQHK+qqgofExNjXV5eTmSxWJxFixZZr1+/npKVlaXPYrE4W7ZsMc/KytLWtEUZDAYnLy/vsVlrA7VFBkszAEB1dTXO29ubzmazOWFhYbZqtXrQ723ZsmU1W7dufewmW2trK3bmzJl2PB6PzWaze9sdTk5OrL4Dxnw+n3nt2jXdvm2pw4cPG9HpdC6TyeS4u7szn/DTIQiCIMhLgwaAXyFNp83e3p772Wef2W7atKlK815ubq7ezp07K0pKSgoAAJKSkkoLCgpEd+/eFSYmJpKrq6tx4eHhLWKxWCgWi4UcDqc9KioK3VlGBpWbm6vj7Ozc3v/1r776qlIsFgtv3LhROGrUKOVnn31W+/fff2snJycbZ2VlicVisRCLxar3799vUllZiY+KirI7e/ZsSWFhofDcuXMlmuMUFxdrZ2RkSP766y/Rrl27rDQdWg1dXV3VhQsXioVCoSgjI0Oybt06a9RZfT3k5eXpODk5PZY3nmTPnj0V+fn5IrFYXHDjxg3SrVu3dD7//PNac3NzRUZGhuTWrVuSqqoq/I4dOywzMzMlQqFQ5Orq2h4XF9c7cEKlUrvu3r0r9vDwkM2fP98uNTW15NatW+L4+HgrgKfLNyhvIS9bV1cXJjQ0lHbmzJliFxeXTgAAIyMjlaenp/THH380BAA4fPiw8fvvv99EJBLVAADNzc24v/76q3DLli01UVFR1KVLl9bm5+eLrKysekOCFy5cWHf06FETAICGhgbcnTt39GfNmtVy+vTpB2KxWJiSklI8atQo5aJFixoOHz5sHBAQ0CIWi4UikajAw8Oj/dtvv63QzCZKSUm5DzBwewEAoKOjA+vp6SkrLCwUenp6yvbu3WvW/3MiT2f16tW1Z8+eNW5oaMD1fX3y5Mmyu3fvikUikXDGjBmNW7du7Z3y/eDBA+Iff/xRnJycXLx48WJ7f3//VolEItTW1lZp8lBfHR0dWFdX13ahUCjy9vaWrl279rFlJlavXl2bn58vKioqKujo6MCeOnXqseMgCADAtGnTWisrK7Xs7Ox4c+fOtblw4ULvYO3T5iNTU1OlUCgUzZ8/vy4+Pp7MZDK7IiIi6hYvXlwjFouFU6ZMkfXf5/z588a5ubl6KSkp9wiExyec7d69+yGVSpWLxWJhYmLiw+3bt1e4u7vLxGKxcNOmTbV79+41W7p0aY1YLBbm5uaK7O3tH4taHqgtMliaAQDWrl1r5enpKROJRMLg4ODmqqqqQWc7RURENObn5+vm5+c/MvC8bt06y4kTJ7bm5+eLrl27Vvj5559bt7a2YkNCQhqTkpKMAQAePHhAqK2tJfj6+j7SvoqPj7f89ddfJYWFhcL09PTiwc6NIAiCIC/buxkNcm4ZFWqFwxsxa85ph2nflA+1iabTBtAzNevjjz+2l0gkBQAATk5ObSwWq7eRk5CQQL5w4cIoAIDq6mpCQUGBtoWFRRsAwOeff07W1tZW/d///V/dQOdBXi+V69ZT5UVFw5rfiHR6u9WO7UPmt6GoVCqYMWOG/bJly2p8fX3bd+zYYZafn6/r7OzMBgDo7Oz8/+zdeXiV5aHu//tZa2VOCBkgAZKQyEyYiYCiRREQEERFe3CgtGpRrBU99Jzu7r2729/ePbu6d6uW6rG1VsGpaluLoALKEBwQlCkMIYRAgISEIZB5zlrP7w9WOKgMYXyTle/nunJl5XmnO8m7Mtx58r6uzp07N2VmZkaMGDGisvncTEhI8DbvY8KECWVhYWE2LCysKTY2trGwsNDTo0ePxlOOYR5//PGkdevWRbpcLh05ciS4sLDQk5KScv7XOQlgy194NrmkYP8lPT/ik7vX3Dzn8RafHzNnzkz58ssvI4OCguzs2bOPnGm9hQsXxi5YsCC+qanJHD16NCgrKyt05MiRtaeuk5mZGbFnz57QESNG9JWkxsZGM3z48JO/JH73u98tk6SBAwfWVFdXu2JiYnwxMTG+kJAQX0lJiTsqKsp3rvOGc6v9WLRoUfKRI0cu6fOjc+fONbfddttZnx9BQUF22LBhVX/4wx/iR44ceXLd2bNnH33qqacSZ86cWfb666/H/+lPf9rXvOzuu+8+3vx48+bNkR999FGeJD344IPHfvnLXyZJ0i233FL1+OOPdz948KDnjTfeiLnllltKm0uSmpoaM3369B7PPPPMgd69ezeMGjWq+qGHHkptbGx03XnnnaXXXnvt155rzc7080JQUJCdMWNGuSQNHz68esWKFR0u9GPWGjy+80ByTnXdJT0X+kaE1jzbL+WcXytjY2N9d91117Enn3yyc1hY2Mm/NuXn5wffdtttSUePHg1qaGhwJScn1zcvGzduXHlISIgdMWJErdfrNXfeeWeFJKWnp9fm5+d/q4ByuVx68MEHj0vS/ffff+yOO+7o+c11li5dGvX0008n1tXVucrKyjz9+/evlVR+ge8+rhQHfu+Ijo72bd++PXvZsmVRK1eujJo1a1aPf/u3fyt87LHHjrX0PLrnnntKJWnEiBE1ixcvjmlJrPT09Jo9e/aErlmzJnzChAnV5/tuXXPNNdW/+c1vuhQWFgbPmDGjdODAgfXfXOdsP4ucLvO6deui3n333TxJmjFjRvlDDz3k/eY+m3k8Hj322GOH/v3f/z1x0qRJFc3jmZmZHZYvX95x/vz5iZJUX19v8vLygr/3ve+Vjhs3rvczzzxT9Oqrr8ZMnTq19Jv7zMjIqLr33ntTp0+fXnrvvfd+azkAAFcKM4AdMm7cuOrS0lJP8zXlwsPDT/5C8f7770etWbMmasOGDTm7du3K7tevX21tba1LOnE9wkWLFsW++uqr+53KjrZh4MCBtVlZWaf9hWPevHldu3Tp0jB37txjkmStNXfdddex5hnm+/bt2/70008XWWtljDndLtQ8602S3G63mpqavrbiH//4x9hjx455tm3btjMnJyc7Li6usfk8hrMGDhxYu3Xr1pPnxmuvvXYgMzMzt7S01OPxeOyps2nr6+tdkpSTkxP83HPPJaxZsyY3Nzc3e+zYseV1dXXf+nxaa3XddddVNJ9Le/bs2fHOO++c/HoVGhpqpRNlR3Bw8MlzyOVyqbGx0bTkvOHcwuVmjNHixYv3btmyJeLUm65NmDChurCwMOSDDz6I9Hq95uqrrz55/daoqKgWTUP/7ne/e+yll16Kff311+Nmz55d0jw+c+bM7lOnTi1tvgbnpEmTqj755JNd3bp1a/j+97+f9txzz8V9c19n+3nB4/FYl+vE08Lj8XzrazTOz89+9rPDb775Znx1dfXJrzWPPvpoyiOPPHIkNzc3+7nnntvf/PVS+n/fI91u99c+Fy6Xq0Wfi29+762pqTHz5s3r/u677+7Jzc3Nvu+++0pO9zUYaObxeDRlypTKZ555pui///u/DyxatCjmfM6j5u/XHo/HtvTrR8+ePetef/31PTNnzuxxIdfSffjhh4+/9957eWFhYb5Jkyb1Xrx48dduSneun0XOlLn5+dcSc+bMOb5+/fqo/fv3n/xDjbVWf/vb3/Kaf7YpLi7eNmzYsLq0tLTGjh07Nq1fvz7s3XffjZ05c+bxb+7vzTffPPCrX/2qqKCgIHjIkCHpzf+lAQDAldY+ZwCfY6bulbB58+ZQn8+nhISEb81YKysrc0dHR3ujoqJ8mzdvDs3KyoqQpNzc3OC5c+d2X7ZsWW5kZOSZL2CFVuViZupejKlTp1b+/Oc/N7/97W/j582bVyJJa9asCV+8eHF0ZmZmhy+++GJX87oTJ06suOOOO3r+8z//8+Fu3bo1HT582F1eXu6+8cYbq+fNm9c9JycnuG/fvg2HDx92nzoL+GzKy8vd8fHxjSEhIXbJkiVRRUVFF3SDsUB3PjN1L5Xmc+Opp57q9NOf/vSoJDXfxK1Hjx4Nf/rTn8K9Xq/y8/ODtm7dGiFJpaWl7rCwMF9sbKy3oKDAk5mZGT1mzJhKSYqIiPCWl5e7unTpohtuuKF63rx5Kdu3bw8ZMGBAfWVlpSs/Pz9o0KBB35rFczotOW84t9qPc83UvZyioqJ8y5Yt2z169Oi+CQkJTU888USJJM2YMePYD37wg6vmzZtXfKZthwwZUrVgwYKYH/7wh6Uvv/zy125w9PDDD5eMHDmyX3x8fGNGRkadJP3617/uVFVV5T71pkG5ubnBaWlpDfPmzSuprq52bdq0KVzSMY/HY+vr601ISIg9088LgaglM3Uvp4SEBO/UqVNL33zzzfi77777mCRVVla6U1JSGiWp+dIeF8rn8+mVV16JmT17dumCBQviRowY8bWbcdXU1LgkKTExsam8vNy1ZMmS0842RCvkwO8dWVlZIS6XS80zaDdv3hyW1cPc5AAAIABJREFUlJTUcLHnUVRUlLeiouKsBeb48eOrn3322f3Tpk3rlZmZuevUG2hGR0d7T/0jSnR0tLeqqurk/rKzs4P79etXn56efmTv3r0hW7ZsCbv11ltPPhfO9rPImYwaNary5Zdfjvuv//qv4nfeeafDufKHhITYOXPmHP7d736XeO2111ZK0o033ljx29/+NmHBggUHXC6XPv/887DRo0fXStKdd955/D//8z8TKysr3SNGjPjWf2rs2LEjZOzYsdVjx46tXr58ece9e/cGJyYmnvY/OgAAuJzaZwHskOZrAEsn/pL8wgsv7PN4vv0pmD59evmLL77YqXfv3v179OhRN3jw4GpJ+uMf/xhXXl7uvu2223pKUkJCQsOaNWu4lhROy+VyafHixXseeeSR5GeffTYxJCTEJiUl1dfW1rqOHDkSNGTIkH6SNHHixLJnn3226F//9V8P3nTTTb19Pp+CgoLs/PnzD9x0003V8+fP33f77bf39Pl8iouLa1y7du3ulhz/wQcfPD5p0qSeAwYM6Jeenl6TlpZ21jud48pxuVxasmTJnh/96EfJ8+fPT4yNjW0KDw/3/vKXvywcP3581fPPP1/fp0+f9D59+tT279+/RpKuueaa2gEDBtT06tUrPSUlpf7UyzrMmjWrZNKkSb06d+7cuH79+tw//vGP+2bMmHFVQ0ODkaRf/OIXB1taALfkvOHcwpWSkJDgXbZsWe6YMWP6durUqem+++4re+CBB4499dRT3R544IFvzfRq9vvf/77g3nvvTZs/f37ihAkTyiIjI0/+4Sw5ObmpR48edVOnTi1rHnvuuecSg4KCbPPPCPfff//RsLAw3/z58xM9Ho8NDw/3vvHGG/mSdO+99x7t169f/wEDBtS8/fbb+0738wIuj3/5l385tHDhwk6nvF10991390hISGjIyMioPnDgwLduWNVSYWFhvh07doSlp6cnRkVFed999929py6Pj4/33nvvvUf79++fnpSU1MDnGmdTUVHhfuyxx1IqKircbrfbpqam1i9cuHD/xZ5H06dPL7vzzjt7LF26tOOzzz574HTXAZaku+++u/zIkSNFEydO7PX555/nNI8nJiZ6hw8fXtWrV6/0sWPHls+fP/+gx+Oxffr06X/PPfeU1NXVuf7617/GeTwe26lTp8Zf//rXRafu92w/i5zJk08+WTR9+vSr/DdYrOrSpcu3riv8TXPnzi15+umnT94M7sknnyyaPXt2St++fftba01SUlL96tWr8yTpvvvuK/35z3+eMnfu3KLT7euJJ55I2rdvX4i11lx33XUVo0aNovwFADjCnO1OqIEkKytr3+DBg0vOvSYAAMDpvfLKKzHvvfdex0WLFuWfaZ3KykpXRESEz+Vy6cUXX4x5++23Y1euXLmneVn//v37b9myZWdcXFyL/qMCAAAAAL4pKysrfvDgwaktWZcZwAAAAC0wa9as5NWrV0e///77Z/1PiM8//zx87ty5KdZadejQwbtgwYJ9krRo0aKoOXPmpM6ZM+cw5S8AAACAK4UZwAAAAAAAAADQhpzPDGDuHgwAAAAAAAAAAao9FcA+n89nnA4BAAAAAAAAABfK33H6Wrp+eyqAtx89ejSaEhgAAAAAAABAW+Tz+czRo0ejJW1v6Tbt5iZwTU1NDx46dOilQ4cODVD7Kr4BAAAAAAAABAafpO1NTU0PtnSDdnMTOAAAAAAAAABob5gJCwAAAAAAAAABigIYAAAAAAAAAAIUBTAAAAAAAAAABCgKYAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAIEBRAAMAAAAAAABAgKIABgAAAAAAAIAARQEMAAAAAAAAAAGKAhgAAAAAAAAAAhQFMAAAAAAAAAAEKI/TAa6U+Ph4m5qa6nQMAAAAAAAAALgoGzduLLHWdmrJuu2mAE5NTdWGDRucjgEAAAAAAAAAF8UYs7+l63IJCAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAIEBRAAMAAAAAAABAgKIABgAAAAAAAIAARQEMAAAAAAAAAAGKAhgAAAAAAAAAAhQFMAAAAAAAAAAEKApgAAAAAAAAAAhQFMAAAAAAAAAAEKAogAEAAAAAAAAgQFEAAwAAAAAAAECAogAGAAAAAAAAgABFAQwAAAAAAAAAAYoCGAAAAAAAAAACFAUwAAAAAAAAAAQoCmAAAAAAAAAACFAUwAAAAAAAAAAQoCiAAQAAAAAAACBAUQADAAAAAAAAQICiAAYAAAAAAACAAEUBDAAAAAAAAAABigIYAAAAAAAAAAIUBTAAAAAAAAAABCgKYAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAtFmNDV6nI7RqFMAAAAAAAAAA2hxrrXauLdarP1urw/sqnI7TanmcDgAAAAAAAAAA56PiWK3WvLFLB7KPq0vPaIWEU3OeCR8ZAAAAAAAAAG2C9Vnt+PSg1r67R1bSd2b01oDvdJNxGaejtVoUwAAAAAAAAABavbIjNVr9Wo6KdpcpqW+MbryvrzrEhzkdq9WjAAYAAAAAAADQavl8VltXFWj9e3vl8rh048y+6ndtFxnDrN+WoAAGAAAAAAAA0CodL6rWqtd26nB+hVIHxmnMPX0VGRPidKw2hQIYAAAAAAAAQKvi9fq0+aMD+uqDfAWHeDT+/v7qdXUCs34vAAUwAAAAAAAAgFbjaEGlVr26UyUFVeoxrLO+M6O3wjsEOx2rzaIABgAAAAAAAOA4b6NPG5bu06Zl+xUSGaSJDw1Qj6GdnY7V5lEAAwAAAAAAAHDUofxyrXo1R6XF1eozKlHX3dVLoRFBTscKCBTAAAAAAAAAABzR2ODVl0vylbXigCI6hmjKo4PVfUCc07ECCgUwAAAAAAAAgCuuaHepVr2ao/KjtUq/vquuvaOngsOoKy81PqIAAAAAAAAArpiGuiat+8cebVtzUB3iQzXt8SFK6hvrdKyARQEMAAAAAAAA4IooyD6u1a/nqLK0ToPGJmnUtB4KCnE7HSugUQADAAAAAAAAuKzqaxr1+d/ytHNtsTomhOuOnwxXlx7RTsdqFyiAAQAAAAAAAFw2BTuPa+WCbNVUNmrYzd119ZRUeYKY9XulUAADAAAAAAAAuCx2rSvWqldz1DExXJMfGaTO3Ts4HandoQAGAAAAAAAAcMlt/uiA1r6bp259YjT54YEKDqOKdAIfdQAAAAAAAACXjPVZff5unrJWFKjn8M4a9/3+cge5nI7VblEAAwAAAAAAALgkvE0+rVy4U7u/OqyBNybp+rt6ybiM07HaNQpgAAAAAAAAABetoa5Jy17croLs4xp121UadnN3GUP56zQKYAAAAAAAAAAXpaaiQR88n6WjBVUa+72+6ndtV6cjwY8CGAAAAAAAAMAFKz9aqyXzt6i6rF6THx6o1EHxTkfCKSiAAQAAAAAAAFyQowcqteS5LPm8Pk17YqgSr4p2OhK+gQIYAAAAAAAAwHkrzDmuD/+wTSFhHt32xHDFdolwOhJOgwIYAAAAAAAAwHnZveGwVizIVsfO4Zr648GKjAl1OhLOgAIYAAAAAAAAQIttXV2oT9/JVZce0Zo8Z5BCI4KcjoSzoAAGAAAAAAAAcE7WWq1/b682LtuvtMHxmvBAujzBbqdj4RwogAEAAAAAAACclc/rU+Ybu7RzbbH6X99VY2b0lsvtcjoWWoACGAAAAAAAAMAZNTZ49dGftmvftmPKuCVVI6akyRjjdCy0EAUwAAAAAAAAgNOqq27UB89n6VB+hcbc3VsDxiQ5HQnniQIYAAAAAAAAwLdUHq/TkvlbVF5Sq4k/HKAewzo7HQkX4JwX6jDGhBpjvjTGZBljdhhj/j//eJoxZr0xZrcx5m1jTLB/PMT/dp5/eeop+/qZf3yXMebmU8Yn+sfyjDH/dMr4eR8DAAAAAAAAwMU5VlSlv//XRlWX1evWx4ZQ/rZhLblSc72ksdbawZKGSJpojBkl6SlJz1hre0kqlfSAf/0HJJVaa3tKesa/nowx/SXNkJQuaaKk/2uMcRtj3JKelzRJUn9Jd/vX1fkeAwAAAAAAAMDFKc4r0z9+s0nWWt3+k+Hq1jvG6Ui4COcsgO0JVf43g/wvVtJYSX/zjy+UdJv/8TT/2/Ivv8mcuCr0NElvWWvrrbX5kvIkjfC/5Flr91prGyS9JWmaf5vzPQYAAAAAAACAC5SfdVTv/W6LwqKCNf1/DVd8UqTTkXCRWjIDWP6ZulskHZH0saQ9ksqstU3+VQoldfM/7iapQJL8y8slxZ06/o1tzjQedwHHAAAAAAAAAHABsj8r0tI/bFNct0jd8ZNh6hAf5nQkXAItugmctdYraYgxpqOkf0jqd7rV/K9PNxPXnmX8dCX02dY/2zG+xhgzW9JsSUpJSTnNJgAAAAAAAED7Zq3VxqX7tX7xXqWkx2ri7IEKCnE7HQuXSItmADez1pZJypQ0SlJHY0xzgZwkqcj/uFBSsiT5l0dLOn7q+De2OdN4yQUc45t5X7TWZlhrMzp16nQ+7yoAAAAAAADQLnz1wT6tX7xXfUYmavIjgyh/A8w5C2BjTCf/zF8ZY8IkjZO0U9JqSXf6V5sl6T3/48X+t+Vfvspaa/3jM4wxIcaYNEm9JH0p6StJvYwxacaYYJ24Udxi/zbnewwAAAAAAAAALbRx2T599X6++l6TqJtm9ZPbfV7zRdEGtOQSEF0kLTTGuHWiMH7HWvu+MSZb0lvGmF9J2izpz/71/yzpNWNMnk7Myp0hSdbaHcaYdyRlS2qS9CP/pSVkjHlU0nJJbkkvW2t3+Pf10/M5BgAAAAAAAICW2bLigNYt2qteVyfoxpn9ZFynu+oq2jrTXibOZmRk2A0bNjgdAwAAAAAAAHDctsxCffJWrnoM66QJD6TLxczfNsUYs9Fam9GSdfnMAgAAAAAAAO1I9mdF+uStXKUOitd4yt+Ax2cXAAAAAAAAaCdy1hVr9Rs5SkmP08QfDuCav+0An2EAAAAAAACgHdi94bBWLdyppD4xmvTQALmDqAbbAz7LAAAAAAAAQIDbu/moPn45W4k9ojV5ziB5gt1OR8IVQgEMAAAAAAAABLB9W0u0/KXtSkiN0pRHBysohPK3PaEABgAAAAAAAALUgexjWvriNsUnRWrKj4coONTjdCRcYRTAAAAAAAAAQAAq3FWqD1/YppjECE19bIhCwih/2yMKYAAAAAAAACDAFOWV6YPnsxTdKUzT5g5RaESQ05HgEApgAAAAAAAAIIAcyi/X+89lKTImVLfOHaKwqGCnI8FBFMAAAAAAAABAgDh6oFJL5mcpLCpY0x4fqojoEKcjwWEUwAAAAAAAAEAAKCms0nu/26yQMI9ue2KoImMof0EBDAAAAAAAALR5x4uqtfh3m+UJcmvaE0MVFRvqdCS0EhTAAAAAAAAAQBtWdrhG7z27WcYY3fbEUEV3CnM6EloRCmAAAAAAAACgjaooqdV7z26WtVbTHh+qjgnhTkdCK0MBDAAAAAAAALRBlcfrtOjpzWps8OrWuUMV2zXC6UhohSiAAQAAAAAAgDamqrRei57ZrPraJt362BDFJ0U6HQmtFAUwAAAAAAAA0IbUVDTovWc3q7aiQVN/PFidu3dwOhJaMQpgAAAAAAAAoI2orTpR/laV1mnKjwcr8apopyOhlaMABgAAAAAAANqAuupGLf7dFpUfrdUtjwxS154dnY6ENoACGAAAAAAAAGjl6mubtGT+Fh0vrtbkhwcqqW+s05HQRnicDgAAAAAAAADgzOqqGrXk91tUUlClSQ8PVEp6nNOR0IZQAAMAAAAAAACtVHV5/YnLPhyp1aSHByp1ULzTkdDGUAADAAAAAAAArVDl8Tot/t0WVZXW6ZZHBymZyz7gAlAAAwAAAAAAAK1M+dEavffMFtXXNOrWx4aoCzd8wwWiAAYAAAAAAABakePF1Vr87GY1Nfk07Ymh6ty9g9OR0IZRAAMAAAAAAACtxNGCSi2Zv0UyRrf/z2GK6xbpdCS0cRTAAAAAAAAAQCtwKL9c7/8+S0Ehbk17fKg6JoQ7HQkBgAIYAAAAAAAAcNjB3FJ98PxWhXUI1rTHh6hDXJjTkRAgKIABAAAAAAAAB+3fcUxL/7BNHeLDNO3xIYqIDnE6EgIIBTAAAAAAAADgkL2bj2r5S9sV2zVCtz42RGFRwU5HQoChAAYAAAAAAAAcsGv9Ia1cuFMJqVGa8uhghYQHOR0JAYgCGAAAAAAAALjCdnx6UJlv7lK33h01ec4gBYdS0+Hy4MwCAAAAAAAArqCslQX67K+71X1AnCbOHiBPsNvpSAhgFMAAAAAAAADAFbLhw31av3ivegztpPEPpMvtcTkdCQGOAhgAAAAAAAC4zKy1WvfeXm1atl+9Rybopu/1k8tN+YvLjwIYAAAAAAAAuIysz+qzv+7W1tWFSr++q8bc3UfGZZyOhXaCAhgAAAAAAAC4THw+q8w3crTz82INHpes0dN7yhjKX1w5FMAAAAAAAADAZeD1+rRywU7t/uqwMm5J1YgpaZS/uOIogAEAAAAAAIBLrKnRq49e2qH8rBJdc3sPDbu5u9OR0E5RAAMAAAAAAACXUGODV0tf2KqCnaX6zozeGnhDktOR0I5RAAMAAAAAAACXSENtk95/PkuH9pRr7Pf6qd+1XZyOhHaOAhgAAAAAAAC4BOqqG7Vk/haVFFRp/APp6pWR4HQkgAIYAAAAAAAAuFjHDlZp+Z+2q7ykVhMfHqi0QfFORwIkUQADAAAAAAAAF8xaqx2fHNRnf8tTcJhHU388REl9YpyOBZxEAQwAAAAAAABcgLrqRq16dafys0qUkh6rm2b1V3iHYKdjAV9DAQwAAAAAAACcp4O5pVrxSrZqKho0+s6eGjw2WcZlnI4FfAsFMAAAAAAAANBCPq9PX324Txs/3KcOncI0/X8PV+fuHZyOBZwRBTAAAAAAAADQAhXHarXi5WwV7ylX31GJun5GbwWHUq+hdeMMBQAAAAAAAM4hb+MRZb6RI5/Pavz9/dV7RKLTkYAWoQAGAAAAAAAAzqCxwavP3tmt7M+K1Dm1gyY8kK7oTmFOxwJajAIYAAAAAAAAOI2Swkp99NIOlR6u0bCbu2vErWlyu11OxwLOCwUwAAAAAAAAcAprrbZlHtTav+cpJNyjWx8bouR+sU7HAi4IBTAAAAAAAADgV1vVoFWv5mjf1hJ1HxCnm2b1U1hUsNOxgAtGAQwAAAAAAABIKtxVqhUv71BtdaOuu6uXBo1NkjHG6VjARaEABgAAAAAAQLvm9fr01ZJ8bVy+Xx07h+uWRwerU3KU07GAS4ICGAAAAAAAAO1WRUmtPvrzDh3Or1C/0V10/Xd7KyjE7XQs4JKhAAYAAAAAAEC7tHvDYWW+niNJmvBgunplJDicCLj0KIABAAAAAADQrjTWe/Xp27naubZYCWkdNOGBdHWID3M6FnBZUAADAAAAAACg3Th6oFIf/XmHyo7UaPik7rp6SprcbpfTsYDLhgIYAAAAAAAA7ULexiP6+JUdCosI0rTHhyqpT4zTkYDLjgIYAAAAAAAAAS9v4xF99OcdSkjtoMmPDFRYZLDTkYArggIYAAAAAAAAAW33hsP6+OVsJaZ10JQfD1ZwKJUY2g/OdgAAAAAAAASsk+XvVR005VHKX7Q/XOEaAAAAAAAAAWn3V4f18Z93UP6iXeOsBwAAAAAAQMDJ/eqQVrycrS49O+qWHw2i/EW7xZkPAAAAAACAgJL75SGteIXyF5AogAEAAAAAABBAdq0/pJULTpS/Ux4drKAQt9ORAEdRAAMAAAAAACAgNJe/XXt11C0/ovwFJApgAAAAAAAABICT5W/vjrrlEcpfoBkFMAAAAAAAANq0XeuKtWLhTnXr7Z/5G0z5CzSjAAYAAAAAAECblbOuWCsX7lS33jG65UeDKH+Bb6AABgAAAAAAQJuU80WxVr66U0l9YjT5Ecpf4HQogAEAAAAAANDm7FxbrFWvUf4C50IBDAAAAAAAgDZl59oirXotR8l9YzR5ziB5KH+BM6IABgAAAAAAQJuR/XmRVr+eo+R+sZr88EDKX+AcKIABAAAAAADQJjSXvyn9YjWJ8hdoEQpgAAAAAAAAtHrZn/nL3/6xmjRnoDxBlL9AS1AAAwAAAAAAoFXb8elBZb6xSynp/pm/lL9Ai1EAAwAAAAAAoNX6f+VvnCY9PIDyFzhPFMAAAAAAAABolbZ/clBr3tyl7gPiNPEhyl/gQlAAAwAAAAAAoNU5Wf4OjNOk2QPlDnI5HQlokyiAAQAAAAAA0KpsX1OoNX/JVerAOE2k/AUuCgUwAAAAAAAAWgXrs9qyokBr381T6qB4TfzhAMpf4CJRAAMAAAAAAMBx1WX1WvnqThVkH1ePoZ00/v50yl/gEjjns8gYk2yMWW2M2WmM2WGMmesf/6Ux5qAxZov/ZfIp2/zMGJNnjNlljLn5lPGJ/rE8Y8w/nTKeZoxZb4zZbYx52xgT7B8P8b+d51+eeq5jAAAAAAAAoG3J23hEf/mP9SrOK9OYe/ro5tnM/AUulZbMAG6SNM9au8kYEyVpozHmY/+yZ6y1vzl1ZWNMf0kzJKVL6ipphTGmt3/x85LGSyqU9JUxZrG1NlvSU/59vWWM+YOkByS94H9daq3taYyZ4V/vf5zpGNZa74V+IAAAAAAAAHBl1dc26dO3c7Vr3SF17h6l8fenq2NCuNOxgIByzgLYWlssqdj/uNIYs1NSt7NsMk3SW9baekn5xpg8SSP8y/KstXslyRjzlqRp/v2NlXSPf52Fkn6pEwXwNP9jSfqbpOeMMeYsx/iiJe80AAAAAAAAnFW0u0wrXslWVVm9Mm5JVcbkVLndzPoFLrXzelb5L8EwVNJ6/9CjxpitxpiXjTEx/rFukgpO2azQP3am8ThJZdbapm+Mf21f/uXl/vXPtC8AAAAAAAC0Yt4mn774R57+8fQmGbfRHT8ZppFTr6L8BS6TFt8EzhgTKenvkh631lYYY16Q9B+SrP/1byXdL8mcZnOr05fN9izr6yzLzrbNqZlnS5otSSkpKafZBAAAAAAAAFfK8aJqffzKDpUUVKn/6C4afVcvBYe2uJ4CcAFa9AwzxgTpRPn7hrX2XUmy1h4+ZfmfJL3vf7NQUvIpmydJKvI/Pt14iaSOxhiPf5bvqes376vQGOORFC3p+DmOcZK19kVJL0pSRkbGtwpiAAAAAAAAXH7WZ7U1s1Bf/GOPgkPdmjxnoNIGd3I6FtAunHNuvf+au3+WtNNa+/Qp411OWe12Sdv9jxdLmmGMCTHGpEnqJelLSV9J6mWMSTPGBOvETdwWW2utpNWS7vRvP0vSe6fsa5b/8Z2SVvnXP9MxAAAAAAAA0IpUldZrye+36LN3diupb4xm/Hwk5S9wBbVkBvBoSTMlbTPGbPGP/bOku40xQ3Ti0gv7JD0kSdbaHcaYdyRlS2qS9CNrrVeSjDGPSlouyS3pZWvtDv/+firpLWPMryRt1onCWf7Xr/lv8nZcJ0rjsx4DAAAAAAAArUPexiPKfCNH3iafxtzTR+nXd9WJuYYArhRzYkJt4MvIyLAbNmxwOgYAAAAAAEDAq69t0qdv5WrX+kPq3D1K4+9PV8eEcKdjAQHDGLPRWpvRknW5yjYAAAAAAAAumaLdZVrxSraqyuqVcUuqMianyu0+51VIAVwmFMAAAAAAAAC4aN4mn75cslebPjqgDvFhuuMnw5R4VbTTsYB2jwIYAAAAAAAAF+VYUZVWvJKtkoIq9R/dRaPv6qXgUGonoDXgmQgAAAAAAIALYn1WW1cX6ot/7FFwmFuT5wxU2uBOTscCcAoKYAAAAAAAAJy3qtJ6rXo1WwU7S9V9YJzGzuyn8A7BTscC8A0UwAAAAAAAADgrb5NPDbVNqq9tUkNtk44drNLnf8uTt8mnMff0Ufr1XWWMcTomgNOgAAYAAAAAAAhgXu+J8vbEi/dkidtQ26T6miY11DV9bexE0ev92ttNjb5v7bdz9yiNvz9dHRPCHXivALQUBTAAAAAAAEAAOXawSls+PqADO4+roeb05e03eYJdCg7zKCTMo+Awj0LDPeoQF6pg/9shYe6Tj4NDPQqNDFJCWge53a4r8B4BuBgUwAAAAAAAAG2ctVaFu0pPFL87jssT7NJVQzspPCpYIeGer5W3zSVvc+EbFOamyAUCGAUwAAAAAABAG+Xz+pS36Yi2fFygowcqFdYhWCNvvUoDxnRTaESQ0/EAtAIUwAAAAAAAAG1MQ12Tdn5erKyVBao8XqeOCeG68b6+6j0yQZ4gt9PxALQiFMAAAAAAAABtRHV5vbauLtSOTw6qvqZJXXpG6/r/0UupA+NlXMbpeABaIQpgAAAAAACAVu54cbW2fHxAu748JJ/XqseQThoyIUWJadFORwPQylEAAwAAAAAAtELWWhXnlWnzRwe0b9sxuYNc6n9tVw0el6yOncOdjgegjaAABgAAAAAAaEV8Pqu9m49q80f7dWR/pUIjg3T1lDQNHNNNYVHBTscD0MZQAAMAAAAAALQCjQ1e5awt1pYVB1RRUqfoTmEac3dv9bmmi4KCubEbgAtDAQwAAAAAAOCgmooGbcss1PY1B1VX3aiEtA66dnpPpQ3uJBc3dgNwkSiAAQAAAAAAHFB2uEZbVhxQzrpD8jb6lDooXkMnpKhLj2gZQ/EL4NKgAAYAAAAAALiCSgortXHpfuVtOiK326U+oxI1ZFyyYhIjnI4GIABRAAMAAAAAAFwBh/aWa8PSfdq/7ZiCQt0aNqG7Bo1NUkR0iNPRAAQwCmAAAAAAAIDLxFqrwpxSbVy6TwdzyxQaEaSRt6ZpwJgkhUYEOR0PQDtAAQwAAAAAAHCJWZ9V/tYSbVy2X0f2VSgiOlij7+xaKkBJAAAgAElEQVSp/td1VXAodQyAK4evOAAAAAAAAJeIz+tT3sYj2rhsv44XVatDfKhuuLeP+o7qIneQy+l4ANohCmAAAAAAAICL5G30KWddsTZ9dEAVR2sV0yVC437QX70yOsvlpvgF4BwKYAAAAAAAgAvUWO9V9mdF2vzxAVWX1atz9yiNfnig0gbFy7iM0/EAgAIYAAAAAADgfNXXNGpb5kFlrSpQXVWjuvbqqLHf66vkfrEyhuIXQOtBAQwAAAAAANBCtZUN2rKyQNszC9VQ51X3AXEaPrG7uvTs6HQ0ADgtCmAAAAAAAIBzqCqt0+aPDyj70yI1NfnUY2hnDZ/YXZ1SopyOBgBnRQEMAAAAAABwBmVHarR5+X7lrDskWan3yAQNu7m7YhIjnI4GAC1CAQwAAAAAANol67OqqWxQ1fF6VZXWqfJ4napK61V1vE6VpSfGasob5Pa4lH5dVw2ZkKIOcWFOxwaA80IBDAAAAAAAAo61Vg21TaoqrT9Z7J54XXey8K0qrZfPa7+2nSfYpciYUEXFhiiua5yiO4ep7zVdFBEd4tB7AgAXhwIYAAAAAAC0WWVHanRoT/m3Z+8er1Njvfdr67pcRhEdQxQZG6KEtGj1HB6iyJhQRcaGKjImRFGxoQoJ98gY49B7AwCXHgUwAAAAAABoc7yNPm1Yuk+blu8/OYs3LCpIUbGhikkIV3K/mBPlrr/YjYwJVXh0sFwuyl0A7QsFMAAAAAAAaFOKdpdp9es5Kjtco94jEpQxOVVRcaHyBLmdjgYArQ4FMAAAAAAAaBPqaxq19h97lP1pkaLiQjXlx4PVPT3O6VgA0KpRAAMAAAAAgFbNWqu9m4/qk7dzVVvRoMHjkjVy6lUKCmHGLwCcCwUwAAAAAABotapK6/TJW7nKzypRfHKkbnlkkDp37+B0LABoMyiAAQAAAABAq2N9Vts/OagvFu2R9Vpdc0cPDbkpWS63y+loANCmUAADAAAAAIBW5VhRlTJfz9GhvRVK6hujG+7to+hO4U7HAoA2iQIYAAAAAAC0Ck2NXm1cul+blu9XcKhH477fT71HJsoY43Q0AGizKIABAAAAAIDjinaXafXrOSo7XKPeIxN03Z29FBYV7HQsAGjzKIABAAAAAIBj6msatfYfe5T9aZGi4kI19ceDlZIe53QsAAgYFMAAAAAAAOCKs9Zqz6aj+vTtXNVWNmjI+BSNmJKmoBC309EAIKBQAAMAAAAAgCuqqrROa/6Sq31bSxSfHKkpjw5Wp5Qop2MBQECiAAYAAAAAAFeE9Vlt/+Sgvli0R9Zrde0dPTX4piS53C6nowFAwKIABgAAAAAAl92xoiplvp6jQ3srlNwvRmPu6avoTmFOxwKAgEcBDAAAAAAALpv6mkZtWVGgTcv3KzjUo3E/6K/eIxJkjHE6GgC0CxTAAAAAAADgkis/WqOsVYXaubZYTfVe9RmZqNF39VRYZLDT0QCgXaEABgAAAAAAl4S1VsV55dqy4oDyt5bI5TLqdXWCBt+UrE7J3OQNAJxAAQwAAAAAAC6K1+vTno1HtGVFgY4eqFRIhEfDJ3bXwBuSFBEd4nQ8AGjXKIABAAAAAMAFqatu1I5PD2pb5kFVl9UrJjFcY+7poz6jEhUU7HY6HgBAFMAAAAAAAOA8lR2uUdaqAuV8UaymBp+S+sbohnv7qHt6nIyLm7sBQGtCAQwAAAAAAM7JWquDuWXKWlmgfdtK5HIb9R6RqMFjkxWfFOl0PADAGVAAAwAAAACAM/I2+bR7w2FlrSxQSUGVQiODlDE5VQO+043r+wJAG0ABDAAAAAAAvqWuqlHbPzmobWsKVVPeoJguEbrxvr7qPSJBHq7vCwBtBgUwAAAAAAA4qfRQtbJWFmjXukNqavQpuX+sbvpespL7x8oYru8LAG0NBTAAAAAAAO2ctVaFOaXKWlmg/duPye1xqffIBA0em6y4blzfFwDaMgpgAAAAAADaMWutVr26UzlfHFJYVJCunpKmAd/ppvAOwU5HAwBcAhTAAAAAAAC0Y1krC5TzxSENHZ+iEbemyRPE9X0BIJBQAAMAAAAA0E4VZB/X2r/nqcfQTrrm9h4yLq7xCwCBxuV0AAAAAAAAcOWVHanR8pe2K7ZrhMbO6kf5CwABigIYAAAAAIB2pqGuSR++sE0y0qSHByk4lH8QBoBARQEMAAAAAEA7Yn1WK17JVtnhGt38wwGK7hTmdCQAwGVEAQwAAAAAQDvy1Qf5ys8q0ejpPZXcN9bpOACAy4wCGAAAAACAdmLP5iP66oN96ntNogaNTXI6DgDgCqAABgAAAACgHTh2sEorFuxUQloHjbmnj4zhpm8A0B5QAAMAAAAAEODqqhr14QtbFRzq1qSHBsoT5HY6EgDgCqEABgAAAAAggPm8Pi1/abuqyuo16aGBiugY4nQkAMAVRAEMAAAAAEAAW/vuHhXmlOqGe/oo8apop+MAAK4wCmAAAAAAAAJUzhfFylpZoEFjk9Tv2q5OxwEAOIACGAAAAACAAHQ4v0KZb+xStz4xGj29p9NxAAAOoQAGAAAAACDAVJfXa+kftiqiY7Am/nCAXG5+/QeA9orvAAAAAAAABBBvo09L/7BN9XVeTZ4zSKGRQU5HAgA4iAIYAAAAAIAAYa3Vmr/s0uH8Co2b1U9x3SKdjgQAcBgFMAAAAAAAAWJb5kHtXFusjMmp6jGss9NxAACtAAUwAAAAAAABoHBXqT77626lDorXiClpTscBALQSFMAAAAAAALRxFSW1Wv7idnVMCNf4H/SXcRmnIwEAWgkKYAAAAAAA2rDGeq8+fGGbrLWaPGeggsM8TkcCALQiFMAAAAAAALRR1lqtXJit40VVmvBAujp2Dnc6EgCglaEABgAAAACgjdq4dL/2bDqqa+7oqZT0OKfjAABaIQpgAAAAAADaoPytJVq/ZK96j0zQkHHJTscBALRSFMAAAAAAALQxx4ur9fHLO9QpOUo33ttXxnDTNwDA6VEAAwAAAADQhtTXNOrDF7bKE+zW5DkD5Ql2Ox0JANCKUQADAAAAANBG+HxWH/15hyqP1WnS7AGKjAl1OhIAoJU7ZwFsjEk2xqw2xuw0xuwwxsz1j8caYz42xuz2v47xjxtjzHxjTJ4xZqsxZtgp+5rlX3+3MWbWKePDjTHb/NvMN/7/XbmQYwAAAAAAEKjWLdqjAzuO6zszeqtLz45OxwEAtAEtmQHcJGmetbafpFGSfmSM6S/pnySttNb2krTS/7YkTZLUy/8yW9IL0okyV9IvJI2UNELSL5oLXf86s0/ZbqJ//LyOAQAAAABAoMr98pA2f3RAA8Z0U/r13ZyOAwBoI85ZAFtri621m/yPKyXtlNRN0jRJC/2rLZR0m//xNEmv2hPWSepojOki6WZJH1trj1trSyV9LGmif1kHa+0X1lor6dVv7Ot8jgEAAAAAQECxPqtNy/dr5cKd6tqro677bi+nIwEA2hDP+axsjEmVNFTSekkJ1tpi6URJbIzp7F+tm6SCUzYr9I+dbbzwNOO6gGMUn8/7AwAAAABAa1ZVWqcVC7J1cFeZegztpBvu6yu3m9v5AABarsUFsDEmUtLfJT1ura3wX6b3tKueZsxewPhZ47RkG2PMbJ24RIRSUlLOsUsAAAAAAFqPvI1HlPlGjrxeqxtn9lW/a7voLL+LAwBwWi0qgI0xQTpR/r5hrX3XP3zYGNPFPzO3i6Qj/vFCScmnbJ4kqcg/fsM3xjP940mnWf9CjvE11toXJb0oSRkZGecqlQEAAAAAcFxDXZM+fWe3ctYWq3P3KI2/P10dE8KdjgUAaKPO+X8j5sSfF/8saae19ulTFi2WNMv/eJak904Z/545YZSkcv9lHJZLmmCMifHf/G2CpOX+ZZXGmFH+Y33vG/s6n2MAAAAAANBmHc6v0Dv/5yvlfFGs4ZO6647/PZzyFwBwUVoyA3i0pJmSthljtvjH/lnSk5LeMcY8IOmApLv8yz6UNFlSnqQaST+QJGvtcWPMf0j6yr/ev1trj/sfz5G0QFKYpKX+F53vMQAAAAAAaIt8PqtNy/bry/fzFREdrNv/51B17RXjdCwAQAAw1raPKyNkZGTYDRs2OB0DAAAAAICvqThWqxWvZKs4r1w9Mzrrhnv6KCQ8yOlYAIBWzBiz0Vqb0ZJ1W3wTOAAAAAAAcGnt/uqwMt/cJWutxn2/n3qPTORGbwCAS4oCGAAAAACAK6yhtkmfvJWrXesPKfGqDhr3g3RFdwpzOhYAIABRAAMAAAAAcAUV7ynXild2qPJYna6+JVUZk1Plcp/zHu0AAFwQCmAAAAAAAK4An9enDUv3a8OH+xQZE6LbfzJcXXpEOx0LABDgKIABAAAAALjMyo/WasUrO3Rob4X6jEzU9TN6KySMX8kBAJcf320AAAAAALhMrLXKXX9Ia97KlTFG4x/or95XJzodCwDQjlAAAwAAAABwGdTXNGrNX3K1+6vD6tIzWuN+0F8d4rjRGwDgyqIABgAAAADgEivaXaaPX9mh6rIGjbz1Kg2b2F0ul3E6FgCgHaIABgAAAADgEvF6ffrq/XxtWrZfUfFhuuN/DVNiGjd6AwA4hwIYAAAAAIBL4NjBKq16LUdH9lWo37VddN13eyk4lF+7AQDO4jsRAAAAAAAXoeJYrb5ckq9d6w8pJMyjm384QD2Hd3Y6FgAAkiiAAQAAAAC4ILVVDdq4dL+2rSmUkdHQcSkaNrG7QiOCnI4GAMBJFMAAAAAAAJyHxnqvslYVaPPy/Wqs96rvNV109ZQ0RcWGOh0NAIBvoQAGAAD/P3v3HR3XfZh5/7nTgRlg0DvABvYCiqRIyqpWIalC2XIUW5LXdhzbUuK1nJOsT9rmjZOzG++bPUm8ryWvYyW24xK3FNsSLYmiREqkJIsUG1hAkCDRey9TMPW+f8wIJCVSLAJ5Ub6fc+bMzG/u3PsMRIozD37zuwAA4DIkE0mdeLNL+7Y1KTQS1dxVBdr40fnKL/NZHQ0AgIuiAAYAAAAA4H2YpqnGQ31661eNGu4JqWS+X5u/sEJl1TlWRwMA4JIogAEAAAAAuIiOk0N68xdn1Ns8qtxSr+77/ZWau6pAhmFYHQ0AgMtCAQwAAAAAwLv0twf0m1+cUevxAfly3frwp5ZoycYS2ew2q6MBAHBFKIABAAAAAEgb7Q9r33NNOrmvW+4Mh2762AKtuqNCDpfd6mgAAFwVCmAAAAAAwKwXDkR14PkWHd3dLsMwdMM9VVqzeY48XqfV0QAA+EAogAEAAAAAs1YsklDtK2069FKLYpGElnyoVOsfmCdfrsfqaAAATAoKYAAAAADArJNIJHXijS69va1JodGo5tUUaONHFiivzGt1NAAAJhUFMAAAAABg1jBNU2cO9mnvs40a7gmptNqvLU+sVOkCv9XRAAC4JiiAAQAAAAAzWjyWUGfDsFrrBtV6bEBD3SHllnp13xdXae7KfBmGYXVEAACuGQpgAAAAAMCMYpqmhrpDaqsbVGvdgDpPDSseS8rmMFRWnaM1m+do0YYS2WwUvwCAmY8CGAAAAAAw7Y0HY2qvH1Jb3YBa6wYVGIpIknKKM7XsljJVLstT+aJcOd12i5MCAHB9UQADAAAAAKadZNJUb8uoWo8Pqq1uQD1NozJNyZXhUMWSXK27L0+Vy/KUnZ9hdVQAACxFAQwAAAAAmBYCQxG11g2orW5QbfWDigTjkiEVzcnW2nvnqmpZnornZctmt1kdFQCAKYMCGAAAAAAwJZ178ra2ukENdgYlSV6/S/NWFahqeb4ql+TJ43NanBQAgKmLAhgAAAAAMGXEYwnVvd6plmMD6jg1rEQsKbvDptJqv5ZsLFXV8jzllXllGJzADQCAy0EBDAAAAACYEkb7w3rxmWPqax1Tbkmmlt9apqpl+SpblCOni5O3AQBwNSiAAQAAAACWazk+oB3fPS4zKd33+ys1r6bQ6kgAAMwIFMAAAAAAAMuYSVP7X2jWvm1Nyi/zacsTK5RTlGl1LAAAZgwKYAAAAACAJcaDMb38vTq1HBvQ4g0luv2Ti1nqAQCASUYBDAAAAAC47vpax/TiM0cVGIro9kcXaflt5ZzYDQCAa4ACGAAAAABwXZ14s1Ov/eSUMnxOPfSVNSqZ57c6EgAAMxYFMAAAAADguojHEtrz8wbV7elU+eJcbf78cmVkuayOBQDAjEYBDAAAAAC45kYHwtr+zDH1toxpzeY52vDgPNnsNqtjAQAw41EAAwAAAACuqda6Ae34Tp2SiaTu/b2Vmr+60OpIAADMGhTAAAAAAIBrwkyaOvBis/Y+16S8Uq/ufWKlcoozrY4FAMCsQgEMAAAAAJh0kVBML3+vTs1HB7RofbHu+OQSOd12q2MBADDrUAADAAAAACZVf/uYXvjHowoMRnTbI4u04vZyGYZhdSwAAGYlCmAAAAAAwKSpf6tLr/7rSXkyHXroK2tUMt9vdSQAAGY1CmAAAAAAwAeWiCX1+r816NjuDpUvytGmz69QZrbL6lgAAMx6FMAAAAAAgA9kbHBcLz5zTL3No7rhnipt/Oh82ew2q2MBAABRAAMAAAAAPoC2+kG99M/HlYgnteWJFVpwQ5HVkQAAwDkogAEAAAAAV8xMmjr4Uov2/qpROSVe3fvECuWWeK2OBQAA3oUCGAAAAABwRSLhuF75lzo11fZr4boi3fFflsjl4eMlAABTEf9CAwAAAAAu29jguJ77xmGN9IZ1y8cXatWHK2QYhtWxAADARVAAAwAAAAAuy0BHQM89VavYeFxb/2C1KhbnWh0JAABcAgUwAAAAAOCSOk4N6flvHZXTZdNDX1mrggqf1ZEAAMBloAAGAAAAALyv0wd6teN7x+UvyNDWL69WVp7H6kgAAOAyUQADAAAAAC7qyK427fl5g0rn+3XfF1fJ43VaHQkAAFwBCmAAAAAAwHuYSVNv/eqMDm5v1byaAm363HI5XHarYwEAgCtEAQwAAAAAOE8intTOH57Qqb09WnFbuW59ZJFsNsPqWAAA4CpQAAMAAAAAJkTH43rxmWNqqxvUhgfna+29c2QYlL8AAExXFMAAAAAAAElSaDSqbU/Xqr89oA9/aomW3VxmdSQAAPABUQADAAAAADTcE9JzTx1WaDSq+35/peauLLA6EgAAmAQUwAAAAAAwy/U0jWrbN2slSR/9wzUqnpdtcSIAADBZKIABAAAAYBZrOTagF585qsxsl7Y+uVo5xZlWRwIAAJOIAhgAAAAAZqkTb3Zq149OqqDCpwe+VKPMbJfVkQAAwCSjAAYAAACAWcY0TR14oVl7n21S5dJcbXlipVwePh4CADAT8S88AAAAAMwiyaSpPT89pWO7O7RoQ7Hu/NRS2R02q2MBAIBrhAIYAAAAAGaJeDShHd+tU+PhPt2wqUo3fXSBDJthdSwAAHANUQADAAAAwCwwHozp+f97RF2NI7rl4wtVc2el1ZEAAMB1QAEMAAAAADPc2OC4nvvGYY30h7Xpc8u1cF2x1ZEAAMB1QgEMAAAAADPYQEdAzz1Vq1gkoQefXK3yxblWRwIAANcRBTAAAAAAzFAdJ4f0/LeOyOm262NfWaP8cp/VkQAAwHVGAQwAAAAAM9DpA73a8b3j8hdkaOuXVysrz2N1JAAAYAEKYAAAAACYQSLhuN78j9Oqe71TpQv8uu+Lq+TxOq2OBQAALEIBDAAAAAAzRMvxAb36o3oFhyNafU+VNjw4Tw6n3epYAADAQhTAAAAAADDNjQdjeuPfG1T/m27llnr1sT9eoZJ5fqtjAQCAKYACGAAAAACmsaYj/Xr1X+sVHotp7ZY5uvH+ebI7bVbHAgAAUwQFMAAAAABMQ+OBmPb8/JRO7etRfrlX939xlYrmZFsdCwAATDEUwAAAAAAwzZw51KvXfnJKkUBMN94/V2vvnSu7g1m/AADgvSiAAQAAAGCaCI9Ftfunp3T6QK8KKn168Ms1KqjIsjoWAACYwiiAAQAAAGCKM01Tpw/0avdPTykajmvDg/N1w+Yq2e3M+gUAAO+PAhgAAAAAprDgSES7f3JKjYf7VDQnS3d+Zqnyy3xWxwIAANMEBTAAAAAATEGmaerUvh7t+fkpxSNJ3fTQAq2+u1I2Zv0CAIArQAEMAAAAAFNMYCii135cr+ajAyqZn607P71UuSVeq2MBAIBpiAIYAAAAAKYI0zRV/5suvf5vp5WMJ3Xzw9VadWelbDbD6mgAAGCaogAGAAAAgClgbHBcr/5rvVqPD6q02q87P71UOUWZVscCAADTHAUwAAAAAFjINE3Vvd6pN/7jtExTuvUTi7Ty9nIZzPoFAACTgAIYAAAAACwy2h/Wrh/Vq71+SOWLc3Xnp5YouyDD6lgAAGAGoQAGAAAAAAs0Hu7Tju/VyTCk2x9brOW3lskwmPULAAAml+1SGxiG8V3DMHoNwzh2zthfGYbRYRjG4fTlvnMe+zPDME4bhnHSMIzN54xvSY+dNgzjT88Zn2cYxl7DMBoMw/iZYRiu9Lg7ff90+vG5lzoGAAAAAEwHXaeH9dJ3jiuvJFOP/uUGrbitnPIXAABcE5csgCX9i6QtFxj/ummaq9OX5yXJMIxlkh6RtDz9nP9rGIbdMAy7pG9KulfSMkmPpreVpL9N72uhpCFJn0uPf07SkGma1ZK+nt7uose4spcNAAAAANYY6g7q1986Il+uWw88WaOsPI/VkQAAwAx2yQLYNM3dkgYvc38fkfRT0zQjpmk2STotaX36cto0zUbTNKOSfirpI0bqV9x3Svr39PO/L+mj5+zr++nb/y7prvT2FzsGAAAAAExpodGotj1dK5vN0NYna5Thc1kdCQAAzHCXMwP4Yr5kGMaR9BIRuemxcklt52zTnh672Hi+pGHTNOPvGj9vX+nHR9LbX2xfAAAAADBlxSIJ/fqbtQqNRHX/F2vkL8y0OhIAAJgFrrYA/pakBZJWS+qS9Pfp8QstWmVexfjV7Os9DMN43DCM/YZh7O/r67vQJgAAAABwzSUTSb30z8fU1zqmTZ9fruJ52VZHAgAAs8RVFcCmafaYppkwTTMp6Z90dgmGdkmV52xaIanzfcb7JeUYhuF41/h5+0o/7ldqKYqL7etCOZ8xTXOdaZrrCgsLr+alAgAAAMAHYpqmdv/0lJqPDui2RxZpXg2fTQAAwPVzVQWwYRil59x9SNKx9O1nJT1iGIbbMIx5khZK2ifpbUkLDcOYZxiGS6mTuD1rmqYpaZekh9PP/4ykX52zr8+kbz8saWd6+4sdAwAAAACmnIPbW3R8T6fWbK7SitsrrI4DAABmGcelNjAM4yeS7pBUYBhGu6SvSrrDMIzVSi290CzpCUkyTfO4YRg/l1QnKS7pv5qmmUjv50uStkuyS/quaZrH04f4E0k/NQzjf0o6JOk76fHvSPqhYRinlZr5+8iljgEAAAAAU8nJvd1665eNWnhjsTZ+ZIHVcQAAwCxkpCbVznzr1q0z9+/fb3UMAAAAALNEe/2gnnuqVqUL/Nr65GrZnR/kHNwAAABnGYZxwDTNdZezLe9AAAAAAGCSDXQE9MI/HlVOcabu/b2VlL8AAMAyvAsBAAAAgEkUGBrXtqdr5XTb9cCXauTOdFodCQAAzGIUwAAAAAAwSaLhuLY9fUSRcFwPPFmjrDyP1ZEAAMAsRwEMAAAAAJMgEU/qhW8f1VBXUPc+vlIFFVlWRwIAAKAABgAAAIAPyjRN7fpRvdrrh/ThTy1R5bI8qyMBAABIogAGAAAAgA9s33NNOvlWt9ZvnaclN5VaHQcAAGACBTAAAAAAfADH93Ro//PNWnZzqdbdN9fqOAAAAOehAAYAAACAq9R8tF+v/eSUqpbn67bHFsswDKsjAQAAnIcCGAAAAACuQm/LqLb/83EVVPi0+QvLZbfz8QoAAEw9vEMBAAAAgCs02h/Wtm8eUYbXqfv/6yq5PA6rIwEAAFwQBTAAAAAAXIHxYEzPPVWrZDypB56skdfvtjoSAADARVEAAwAAAMBliscSev5bRzQ6ENZ9v79KeaVeqyMBAAC8LwpgAAAAALgMZtLUy987oa7TI7r7d5apbGGO1ZEAAAAuiQIYAAAAAC7DG/95WmcO9upDv1WtheuKrY4DAABwWSiAAQAAAOASane2qfblNq36cIVW311pdRwAAIDLRgEMAAAAAO/jzKFevf5vDZq/ulA3//ZCGYZhdSQAAIDLRgEMAAAAABfRdWZEO75bp5J52brnd5fJZqP8BQAA04vD6gAAAAAAMNWYSVPHdnfozV+ckS/Xrfu+uEoOl93qWAAAAFeMAhgAAAAAzjHSF9LOH9Srs2FYVcvy9OFPLVWGz2V1LAAAgKtCAQwAAAAASs36PfJqu9765RnZ7Dbd+eklWnJTKWv+AgCAaY0CGAAAAMCsN9wT0s4fnlDX6RHNWZGvOz65WL5cj9WxAAAAPjAKYAAAAACzVjJp6sjONu39VaNsDpvu+sxSLd5YwqxfAAAwY1AAAwAAAJiVhrqD2vmDenU3jmjuynzd/tgS+XLdVscCAACYVBTAAAAAAGaVZNJU7Stt2vtsoxxOm+7+7DItWl/MrF8AADAjUQADAAAAmDWGuoN65fsn1NM0qrmrCnTHJxfL62fWLwAA01UyGlXwzTfl3bBBtowMq+NMSRTAAAAAAGa8ZNLU4Zdbte/ZJjncNt3zu8u08EZm/QIAMB0lx8cVfOMNjW7frsDOXUoGAip/6hvKvuceq6NNSRTAAAAAAGa0wc6gXvnBCfU2j2r+6kLd9ugiZv0CADDNJMNhBXbv0dj27Qq8+qqSoZDsfr+ytmxW9ubN8m7YYHXEKYsCGAAAAMCMlEwkdWhHq/Zta5LL7dCmzy9X9doiZv0CADBNJINBBXbv1uj2lxR47TWZ4bDseXnKfuABZW3eJO/69TKcTqtjTnkUwAAAAABmnIeD7KUAACAASURBVIGOgHb+4IR6W8a04IZC3fboYmVmu6yOBQAALiERCCiw61WNvbRdgd17ZEYishcUKOehjypr02Zlrlsrw0GleSX4aQEAAACYMRKJpA5tb9XbzzfJ5XFo8xdWqHptkdWxAADA+0iMjmps506NbX9JwddflxmLyVFUpJzf/m1lb96kjDVrZNjtVsectiiAAQAAAMwIAx0BvfL9E+prHVP12iLd9sgiZWQx6xcAgKkoMTyssVd2avSl7Qq++RspFpOjtFS5jz2mrM2blbG6RobNZnXMGYECGAAAAMC0lkgkdfDFFu1/vlnuTIe2PL5CC9Yw6xcAgKkmPjiosZdfTs303btXisflLC9X3qc+pewtm+VZuZK1+q8BCmAAAAAA04ppmgqNRtXfFlBf25hOH+jVQHtAC28s1q2fWKgMH7N+AQCYCpLhsMaPH1e49ogCe/YotG+flEzKWVWl/M9+VlmbN8uzfBml7zVGAQwAAABgykomTQ33hNTfPqb+toD62wPqbxtTeCw2sU1OcabufWKl5t9QaGFSAABmN9M0FW1u1viRIwrX1ip8uFbjJ09KiYQkyTV/vvIf/4Kyt2yRe/FiSt/riAIYAAAAwJQQiyQ00HG25O1rC2iwI6B4LClJsjkM5Zf5NHdlgQoqfSqoyFJ+hU/uDD7WAABwvSVGRhQ+clThI7UK19ZqvPaIEiMjkiSb1yvPqpXK/8LnlbGqRhk1q+TIz7c48ezFOyUAAAAA111qCYcx9benlnHobwtouDckmanH3ZkOFVT6tPy28omyN7c0U3Y7J4MBAOB6M+NxRRoaFK5Nz+6trVW0sTH1oGHIXV2trE33KKOmRp5Vq+ResECG3W5taEygAAYAAABwTQWHI+o8PZxewiFV9oZGoxOPZ+V7VFDh06L1xSqo8KmgMku+XDdfDQUAwCKx3t7zlnIIHzsmMxyWJNnz8pRRUyP/gw8qY3WNPCtWyO7zWZwY74cCGAAAAMCkGw/GdOZgrxre7lFHw7BkSja7obwyr6qW56mgIis9s9cnd6bT6rgAAMxqsY4Ojb2yU6FDBxWurVW8syv1gNMpz9Klynn4YWXUpJZycFZU8EvaaYYCGAAAAMCkiEUTaj7Sr1P7etR6fEDJhKmc4kytf2Ce5q4sUF6ZV3YHSzgAADAVRJubNfrSDo299JLGjx2TJDnLypS5erUyPvMZeVatkmfZMtncbouT4oOiAAYAAABw1RKJpNrqBtXwdo8aa/sVjyTkzXFr1YcrtGh9iQoqfcwSAgBgCjBNU5GGBo2lS9/IqVOSJM+qVSr6yn9T1j33yDVnjsUpcS1QAAMAAAC4ImbSVFfjiBr29ej0gV6NB2NyZzq0aH2xFt1YrLLqHBk2Sl8AAKxmmqbGj9dp7KWXNPbSS4o2N0uGoYy1a1T853+mrHvukbO01OqYuMYogAEAAABckmmaGugIqOHtHp16u0eBwYgcTpvm1RRo4foSVS3LY3kHAACmADOZVPhwbar03bFDsY4OyW5X5voblfc7n1HWXXfJUVhodUxcRxTAAAAAAC5qpC88UfoOdQVlsxmqXJ6njR9ZoHk1BXJ5+EgBAIDVzERCof0HJkrfeG+v5HTK+6GbVPDF35fvzjvlyM21OiYswrs1AAAAAOcJjUZ1+kCPTu3rUU/TqCSptNqv2x9brAVrCpXhc1mcEAAAmLGYgm/tTZW+r7yixOCgDI9HvltvUdamTfLdcYfsWVlWx8QUQAEMAAAAQJFwXI2H+tSwv0ftJwZlmlJ+hU83PbRAC28sVlaex+qIAADMeslIRME33tDY9pc0tmuXkqOjsmVmynfHHanS97ZbZcvMtDomphgKYAAAAGAWMU1TweGoBjoC6m8f00BHUAMdAQ11h2QmTWUXeLRmyxwtvLFY+WU+q+MCAABJsY4ODXznuxr55S+VDIVky85W1p13KmvTJnlv/pBsbrfVETGFUQADAAAAM1Q8ltBgZzBd9gY00BHQQHtQ48HYxDa+PLcKKrI0r6ZAc1cVqHhutgzDsDA1AAB4R6SxUQPP/JNGtm2TDEP+++9X9gMPyLthvQyn0+p4mCYogAEAAIBpLjWrNzJR8va3BzTQHtBwb1hm0pQkOVw25ZX5NP+GQuWX+1RQ4VN+uVfuTD48AgAw1YSPHdfAM89obMcOGW638j75mPI++1k5S0qsjoZpiAIYAAAAmEbi0YQGu4ITJe9AR0D9HQFFgvGJbbLyPcov92nBmqKJsje7MEM2GzN7AQCYykJvv63+bz+j4Ouvy5aVpfwnHlfepz8tR16e1dEwjVEAAwAAAFOQaZoaGxxPrdH7zvINHQEN94Rkpib1yuG2K7/MqwVrilRQ7lN+hU/55T65M3ibDwDAdGGapoJ79qj/288ofOCA7Hl5KvyjP1Luo4/InpVldTzMALwzBAAAACwWHY9rsDN4dp3ejtTs3uh4YmKb7IL0rN61Z8tef0GGDGb1AgAwLZmJhMZ27FD/t59R5MQJOUpLVfwXf6Gc3/qYbBkZVsfDDEIBDAAAAFwnyaSp0b7wxLIN78zsHe0fn9jG5bErv8KnRRtKJpZvyCvzyuXhrTsAADOBGY1q5LltGvinf1K0uVmuuXNV+rWvyf/A/TJcLqvjYQbiXSQAAABwDYwHYxpoTxe96bJ3sDOoeCwpSTIMKac4U0VzsrX0Q2Xp5Ru8ysrzyDCY1QsAwEyTDIc1/O//oYHvflfxri65ly1V+f/5P8q6524ZdrvV8TCDUQADAAAAkyA4ElHd653qbhzVQEdAweHIxGMen1P55T4tv7Vc+RVe5Zf7lFfqlcPFhz0AAGa6xNiYhn78Ew1+//tKDA4qY80alf71X8l766380hfXBQUwAAAA8AH0t4+p9uU2nXq7R8mkqfwynyoW5yq/3DdR9mZmu/iABwDALBMfHNTgD36goX/9sZJjY/LeeqsKnnhcmevWWR0NswwFMAAAAHCFzKSplmMDOvxKmzpODsnhsmn5reVadWeFcooyrY4HAAAsFOvq0sD3vqfhn/+bzEhEWZs2Kf/xLyhj+XKro2GWogAGAAAALlMsktDJt7pUu7Ndwz0h+XLduumhBVp2S5k8XqfV8QAAwCUkhocV3LtPZmRcZjwhMxGXEgmZ8YSUiKfHzr199nEzEZfSj597+9znmePjCu7bJ5mm/Fu3Kv8Ln5d7/nyrXzZmOQpgAAAA4BKCwxEdebVdx/d0KBKMq2hOlu753DItWFMku91mdTwAAPA+kuGwArt2aWTbrxXYs0eKxS7/yXZ76gRtDoeM97vtsEv21O3cj39c+b/7WTnLy6/diwKuAAUwAAAAcBF9rWM6/EqrTu/vVTJpan5NoWrurlTpAj9r+gIAMIWZ8biCb+3V6HPPaWzHDiVDITmKi5X3qU8pe9M9sufmpgpbx8VLXdnt/HuPGYECGAAAADiHmTTVfLRfta+0qePUsJxuu1bcllrf11/I+r4AAExVpmlq/OhRjTy3TaMvvKBEf79sWVnKuu9e+R/Yqswb16WKXWCWoQAGAAAAlFrft/43Xard2aaR3rB8uW596GPVWnZLqdyZrO8LAMBUFWlq0uhz2zTy622KtbTKcLnku+MOZW99QL7bbpPN7bY6ImApCmAAAADMaoGhcR19tV3H93QqEoqraG62Nn1+vhbcUCgb6/sCADAlxfv6NPr88xp5bpvGjx2TDEOZGzao4PHHlXXPPbJnZ1sdEZgyKIABAAAwK/W2jOrwy206c6BXpmlq/g2FqrmrSiXzs1nvDwCAKSgRCGjspR0a3facgm/tlZJJeZYtU9Gf/Imy77tPzuIiqyMCUxIFMAAAAGaNRCKpliMDOvxKq7pOj8jpsWvlhyu06sMVyi7IsDoeAAB4l2Q0quDu3RrZ9msFdu2SGYnIWVmp/Ccel3/rVrnnz7c6IjDlUQADAABgRkskkuqoH9Lpg71qOtyv8WBMWXke3fxwtZbdXCZXBm+JAQCYSsxkUqG392t02zaNbt+u5Oio7Hl5ynn4Yfm3PiBPTQ3f1gGuAO92AQAAMOMk4km1T5S+fYqE4nJ67Jq7skDVa4s0d2U+6/sCADDFmImERl94Uf3f/KaiTU0yMjOVdfdd8j/wgLw33STDyUlZgatBAQwAAIAZIRFLqu3EoM4c7FXTkX5FQnG5PHbNrSlQ9ZoiVS7Lk8NptzomAAB4FzOZ1Nj27ep7+puKnjkj98KFKvvff6usu++WLTPT6njAtEcBDAAAgGkrHkuorW5QZw72qelIv6LhuFwZDs17p/Rdmie7k5m+AABMRWYyqbEdL6v/6acVaWiQa8EClX/9H5S1ebMMG/9+A5OFAhgAAADTSjyWUOvxszN9Y+MJuTMdmr+6QAveKX0dfGgEAGCqMk1TgZ071ffU04rU18s1b57K/u7vlH3vFhl2vq0DTDYKYAAAAFyW6HhcLUcHdOZQr9rrh+TyOOTNccuX65Y31y1fjjt1Pyd13+t3T1oRG48m1HJ8QGcO9qn5SL9ikYTcXoeq1xRpwdoiVSzOpfQFAGCKM01TgVdfVf9TT2u8rk7OOVUq+99/q+z776f4Ba4hCmAAAABc1Hgwpuaj/TpzsE9tdYNKxJPKyHZp3upCmQlTgeFx9bWNqflov+LR5Huen5HtOlsM577rOj3u8lz4LWksmpgonJuPDigeScjjdWrhulTpW744V3ZO5AYAwJRnmqaCe/ao76mnNX70qJyVlSr92tfkf3CrDAfVFHCt8bcMAAAA5wmPRdVU25+a6XtiSMmkKV+uW8tvK9OCG4pUssAvm8047zmmaSoSiis4HFFgOJK6HoooODSuwHBUYwNhdZ0ZViQYf8/xXBmO95TCQ90htRxLlcoen1OL1herek2RyhflyEbpCwDAtGCapoJvvKn+p55SuLZWzvJylf7P/yH/Rz4iw+m0Oh4wa1AAAwAAQMGRiBoP9enMoV51nhqWaUrZBR7V3FWp+WsKVTwnW8a7St9zGYYhj9cpj9ep/HLfRbeLRRMKDkcUHHpXUTwcUWBoXIMdAQVHo8rwObV4Y6mq1xSqbCGlLwAA04lpmgrt3au+bzyl8MGDcpSWquSv/1o5D31UhstldTxg1qEABgAAmKXGBsd15mCvGg/1qatxRDKl3JJMrdkyRwtuKFJBpU+GcfHS92o4XXblFGUqpyjzotskE0kZhvG+hTMAAJiagvv2qf+ppxV6+205iotV8tW/lP+3fks2il/AMhTAAAAAs8hwbyg10/dgr3pbxiRJ+eU+rX9gnhbcUKS8Mq/FCcVsXwAApqHQgQPqe+pphd56S47CQhX/9/+unI//tmxut9XRgFmPAhgAAGCGG+wM6syhXp051KeB9oAkqWhOlm56aIHm31D4vrNxAQAA3k/o0CH1P/W0gm++KXtBgYr/7E+V84lPyObxWB0NQBoFMAAAwAw0OhDWiTe6dOZgr4a6Q5Kk0gV+3fxwtebfUKjs/AyLEwIAgOksfPSo+p56SsHde2TPy1PRH/+xch99RLYM3mMAUw0FMAAAwAySTJo6srNNe59tVCKWVNmiHK28o0LzVxfKm8NXMAEAwAcTaWxS39e/rrEdO2TPyVHhf/sj5T32mGxe65eRAnBhFMAAAAAzRH97QLt+eEK9LWOaszJftz2yiJm+AABgUsR6etX/zW9q+D/+Qza3WwVPfkl5n/kd2X0Uv8BURwEMAAAwzcVjCe1/vlmHtrfK7XVo0+eWq3pdkQzDsDoaAACY5hJjYxr45+9o8Pvfl5lIKPexx1Twe0/IkZ9vdTQAl4kCGAAAYBrrbBjWrh/Va7gnpMUbS3TLwwvl8TmtjgUAAKa5ZCSioR//RAP/+I9KjIwo+4EHVPgHX5arstLqaACuEAUwAADANBQNx/XmL87o+O4OZeV7tPXLNapaxkwcAADwwZiJhEaee0593/iG4p1d8t5yi4r+6A/lWbbM6mgArhIFMAAAwDTTVNun135ySqGRiGruqtT6rfPk8vC2DgAAXD3TNBV47TX1/f0/KNLQIM/y5Sr7m7+R96abrI4G4APikwIAAMA0ERqNas/PTun0gV7llXl17xMrVTwv2+pYAABgmgsfPqzev/t7hfbvl3NOlcq//g/K2rxZhs1mdTQAk+CSf5MNw/iuYRi9hmEcO2cszzCMHYZhNKSvc9PjhmEY3zAM47RhGEcMw1hzznM+k96+wTCMz5wzvtYwjKPp53zDSJ+t5GqOAQAAMBOZpqkTb3bpx3/1lhpr+7Thwfn6+J/fSPkLAAA+kEhjo9qffFLNjzyqSHOzSr76l1qwbZuy772X8heYQS7nb/O/SNryrrE/lfSKaZoLJb2Svi9J90pamL48LulbUqrMlfRVSRskrZf01XcK3fQ2j5/zvC1XcwwAAICZaKQvrGf/v8Pa+YMTyivz6pG/WK91982V3cGHMgAAcHViPT3q+n/+Uo1bH1TwjTdV8OUnVb39ReU++qgMJyeTBWaaSy4BYZrmbsMw5r5r+COS7kjf/r6kVyX9SXr8B6ZpmpLeMgwjxzCM0vS2O0zTHJQkwzB2SNpiGMarkrJN0/xNevwHkj4q6YUrPYZpml1X9tIBAACmrmQiqdqd7dr3bKMMu6HbH12k5beWy7AZVkcDAADTVGJ0VAP/9M8a/OEPZSYSyv3kYyr4vd+TIy/P6mgArqGrXQO4+J3C1TTNLsMwitLj5ZLaztmuPT32fuPtFxi/mmNQAAMAgBmhv31Mu35Yr96WMc1dVaDbH10kX67H6lgAAGASmcmk+ttbZUjKLiySKyPzmh0rGYlo6F9/rP5vf1vJkRFlb92qwj/4slwVFdfsmACmjsk+CdyFpqSYVzF+Ncd474aG8bhSy0SoqqrqErsFAACwVjyW0P5fN+vQS61yex3a9Pnlql5bpPQpEgAAwDQXHB5Sy5FDaq49qJajhxUaGZ54zOP1KauwSP7CImUXFCn73OvCInl8WVf8nsBMJDTy7HPq+8Y3FO/qkveWW1T0R38oz7Jlk/3SAExhV1sA97yz7EJ6iYfe9Hi7pMpztquQ1Jkev+Nd46+mxysusP3VHOM9TNN8RtIzkrRu3bpLFcsAAACW6WwY0q4fndRwT0hLbirRzQ8vlMfLGnwAAExn8VhMnSfr1Fx7UM1HDqmvuVGSlJHt15yVqzW3Zo3sDodG+/s02ter0f5eDXV1quXIYcUi4+fty+n2pEvhQmUXFp9zu0jZhcXy+nNk2GwyEwmN19crfOCAhv/t3xVpaJBnxQqV/a+vybtxoxU/BgAWu9oC+FlJn5H0/6avf3XO+JcMw/ipUid8G0kXuNslfe2cE79tkvRnpmkOGoYxZhjGRkl7JX1a0lNXc4yrfB0AAACWioTj+s1/ntbxPZ3KLvDowT9YrcqlrMMHAMB0ZJqmhro6UoVv7UG11R1VPBKRzW5X2eKluuWRT2tuzRoVzZ0vw3bxE7qapqnxwNhEKTza13vO7T51NZzUeDBw3nNshk2ZMuQJhuQJR5QRjcufm6fF/+tvVPzRh/hGETCLGalzqb3PBobxE6Vm7xZI6pH0VUm/lPRzSVWSWiX9drrMNSQ9LWmLpJCkz5qmuT+9n9+V9Ofp3f6NaZrfS4+vk/QvkjKUOvnbk6ZpmoZh5F/pMd7PunXrzP37L7kZAADAdWGappoO92v3T08qNBpVzV2VWr91vpxuu9XRAADAFRgPBtR6rDa1rMORQxrtS32BObe0THNW3aC5NWtUuWzlpK3xmwgEFD50SCNvvaX+Qwc13HRGYZuhsMuhSF6uxn1ehWQqPB6aeE5B1VzNWVmjqhWrVbF0+TVdbxjA9WEYxgHTNNdd1raXKoBnCgpgAAAwVXScHNJbv2pUd+OI8st9+vCnlqh4brbVsQAAwGVIJhLqPnNKzbWH1HzkoLobTsk0k3JlZKpqRY3m1qRKX39RyaQcL97fr9D+AwodOKDQgf2K1J+UkknJbpdn+XJlrl2rzHVrlbFmjRy5uWefF42qv7VZLcdq1Xr0sDpO1ikRi8lmt6ukenG6EK5R6cLFsjtYdgqYbiiAL4ACGAAAWK2neVR7f3VGbSeG5PW7tO7+eVp6c6ns9ot/BRQAgOshNDKs8NiofHn5cmVkslxAWjIaVbSpWcFQQG0tjWptqFfriaOKBIOSYahkwULNrVmjOatuUGn1YtkdV7vSZoppmoq1t6cL3/0K7z+gaHOzJMnweJRRU3O28K2pkc3rvex9x6IRdZ48odajh9V6rFbdjacl05TT7VHF0uWqWrlac1auVkHlnPddnuJaMpNJBYeHNNLbI7vDocK58z/wzxSYqSiAL4ACGAAAWGWgI6C9zzaqqbZfHp9Ta7fM0YrbyuVwsdwDAOD6C42OqLfxtLobT6unsUE9jWc0NtA38bjT7ZEvv0BZefnKyi+QL69AWfn56esC+fLylZGVPSNLYjMW0+jBg+rY9Yq6jh1Rf1+PhjxOBT0uSZInGldBIKyiWFJFhkOeTK9sPq/sXq9sXq9smelrny91/c7l3G2852yTkaHImcZ02btfof0HFO9NLSFh8/uVuWaNMtetVebatfIsWybD5Zq01zoeCKit7ohajtaq9VithjrbJaVOUFe1IjU7eM7K1fIXFU/aMSUpGg5ppLdHw73dGu3t0XBPt0Z6uzXS26PR3h7FY9GJbR0ut0qrF6l8yTKVL16m0kVL5M68/NIbmMkogC+AAhgAAFxvw70hvb2tSafe7pHLbdfqe6pUc1elXB5msgAAro9wYEw9jafVc6ZBPU2n1dN4emKNWim1Tm3x/IUqnrdA3rx8BQcHNDY4oMBAv8YG+zU2OKDg4KBMM3nefu1Op7LyCuTLz09fpwrj1HWqJPb6cyybSXq5xsdG1b77NXW+9aZ6mk5rMDCqgMshpcttj8OpwuJSlRWXqdSfp2ybQ2YopGQwpGQgoGQweN4lEQykHgsGpXj8irI4iouVuXatMtatVebadXIvrL6uP7+xgX61HqtVS3qGcHBoUJLkLy7RnBWrVbVytSqXr1Rmtv9995NMJDQ20K+R3m4N93RrtO/8kjc8OnLe9q6MTPmLS5RTVCJ/cYn8hcXyF5coNh5Wx8kT6qivU2/zGZnJpGQYKqyaq/Ily1S2OFUKZxcUXrOfCTCVUQBfAAUwAAC4XgJD43r7+WbVv9Elm93QqjsrdMM9c+Txsb4eAODqmMmkxo/XSTZDzrIy2XNy3jMDdzwYUG/TGXWfaUiVvo0NGuntmXg8p7hUxfOr05eFKpo3Xx6v75LHTiYSCo4MKTAwoMDgQKoYHuhP3R7oV2CwX2MDA0omzi88DcNQpsutDNOQJxaXN9MnX2GRsisqlVNdrZyly5RdViHHJM5qfT/hsVH1NJ1R5763UrN7e7sUOCezJ2mqwJ+rourFKr/pQypdWSNfbv5VzXQ2TVNmNHrhknhiLFUUO8vLlXnjOjnLy6fMrGrTNDXY0TZRBrcdP6JoOCxJKpq7QFUra1SxdIXi0Uiq5E3P6B3p7dZYf5+SicTEvmx2u7ILis4rd/1FJfIXpW57vL5Lvu7oeFhdDSfVefKEOk7WqfNUvWLjqTxZBYUqT5fB5UuWKb+ySjYb37LCzEcBfAEUwAAA4FoLj0V14MUWHXutQ6Zpavmt5Vp77xx5/W6rowEApiEzkVD44EGNvrhdYy+9pHjf2WUa4t5MBctKNJaTrRG3XYPxqMbCoYnH/YXFqaJ3wcLU9bxqeXyXLnsvK1cyqXhfn6ItLYq1tSna0qpIS4sCbS0a6+5WKB7VuNORurgcingzNe5yKmwmlLhA0eeSoUy3R97sHGUVFim7okLZlXPkSy83kfXOkhNXMBs2ODyk3qYz6mk6ra5jR9XbdFqBUHDi8YxITDmGXYWlZSqtWaPKu+6Rv3rhpPx8ZqLUie8aJtYP7jx1QolzZjhnZPvPzuAtKk4XvCXKKS6RLy9fNvvkFrLJREJ9rc3qqK9LFcL1xxVIz1h2ZWSqbPHSdCm8VCXVi+R0eyb1+MBUQAF8ARTAAADgWomEYjr8cpsOv9KmRDShxTeV6sb75iq7IMPqaACAacaMxxXaf0Cj21/U2I6XFR0YUNiXqeQNqxRdMF8DI0Pq6+7QaDAw8ZyMeFLZgZD84Yj8oYj84YhcSVOOwkI5S0vlKCuVs7RMztJSOctK5SxL3bb5/RedeWnG44p1d59X8kZbWxVrbVG0rV3m+PjZjR0OucrL5ZxTJVdllVxzquSsqpKrao6cFeWypWf4mqap8OCghuqOa+TUSY22Nmu0u1OBoSGFQgGFDSnidCjisE8swfAOm80mb5ZfvsJCZeUXypeXf94lEgqpN73ERc/pBgVHhyeemxmJyh+KKMfhUkn1IpVvvEW5t90mV0X5JP6Xm11ikXH1NJ6W2+uTv6hYLo+173lM09RoX686Ttapo/64Ok+eUH9bi6TUDOTiedWpUji9lnCmP8fSvJhcgcEBdTbUq2p5zaT9oms6oAC+AApgAAAw2WKRhI7satOhl1oVCcVVvbZI67fOU24JJycBAFy+WCik7ld2qHvXTvUfP6qxeEyhDLfCWT6Fkucvq5CVX6ji+QtS6/aml3PIzPYrOT6ueHe3Yp2dinV1KdbZlbru6lSss1Pxzi6Zsdh5+zIyM1OlcGmqFDacTkXbWhVrbVO0o0M6Z3vD7ZarqlLOqjlyVVaeU/JWyVlaKsPxwda3N01Tif5+RZqaNH76jEYaTmmktVlj3V0Kjo5o3GHTuMORKogzXBp3OBTXe/sMX8JU9khA/nBEOU63SlbVKPemm+XduEHOOXOmzBILuPbCgTF1napXR/1xdZw8oe4zp5RI/5n2FxUrIytbrowMuTIy5fJkyJmRmbrvyTg7fu59T2rMmb5t/4B/5nF1EvGY+pqb1HnqhDpP1auzoV5j/alvR3zkK3+h6hs3WpzwCT+iKgAAIABJREFU+qEAvgAKYAAAMFkSsaSOv96h/S+0KDwa1ZyV+dqwdb4Kq7KsjgYAmKJi0YhGero11N2p4e4uDXW0a6DhpIa7OxWKRc+b8ep2e5RXUamcsgrllpQpp6Q0fV121bPbzGRSicHBs+VwZ6diXZ2Kn1MWm5HI2Vm8VVXnlbyOoiLLTuiWjEYVa2lRpKlJ0aZmRZuaFGlqVLC5ReHxkMadDtmTSfmdbmXfeKO8GzYqc8N6uRcupPDFhHgspp7G0+o8WaeepjOKhIKKhsOKhUOKhMOKjqduJy7z5H0OpytVBl+gJPblFyi/vFJ55ZXKL6+cVbNSJ1tweGii7O1qqFfPmdOKx6KSUr8QK120RGULl6hs0RIVzZsvu2P2nHODAvgCKIABAMAHlUwkVf9Wt97+dZMCgxGVLczRxo8uUOmC9z8bNgBg5jOTSY2HggoODmiop0vDXemiN134jg32S+d8/nYlksocj8qbSCq3okqFa9ep5PY7lFc5l7LoMpmmqcTgoKJNTTIyMuRZskTGJK81i9knEY8pGg6nL6HU9Xj6/nhI0VD6OhxWbGI8rGgolN4upNH+vonZxpKU6c9RXnnFRCn8TjHsy7u6kwzOVIl4XH0tTRNlb+epeo32pU5kaXc4VDS/eqLsLV20RFl5BRYnttaVFMDMVwcAALgEM2nq9MFe7XuuScM9IRXNydKd/2WpKpbm8qYdAGYo0zQVDYcUGh1RaGREodFhhc+7ParQSHosfTGTyfP28c6JsUryCzU3Ychx6rQyhkeV5XQp9447lL1li7w33yybm5OFXg3DMOTIz5cjP9/qKJhB7A6nMrKcysjKvup9JJMJjfb2aqCjTYMdbanrznbVv7lbkeDZkxG6MjKUV1ZxXimcV16pnOKSST9x3lQUGhmeWMah61S9us80KB6NSJJ8efkqW7hEN2x5ID27t1oO5+yZ3TvZmAEMAACmteh4XNFw4prtv69tTHufbdRAe0B5ZV5teHC+5tUUUPwCmNJGert17NVXVLKgWvPXrJ/V/88yTVPxWFTxaFTxSETxaETjwYBCIyNny9tzi9yREYXGRhQeGb7oV8FdGZnK9PuVmZ2jjGz/xO3M7Gxl5uTKn1cgZ1OzIrteVWDnLiUDAdmys5V1553K2rJZ3g99aOLEaABmD9M0FRoZ1kD7OcVw+hIYGpzYzu5wKKekLFUIV1SeLYnLyuV0eyx8BVcvEY+pv7VlouztbKjXSE+3JMlmd6ho3nyVLVqamt27cImyCwotTjz1sQTEBVAAAwAwvY0HYxrqCmqwK6ihrpAGu4Ma6goqMBS55sfOLszQhq3zVL2uWDbb7C1RAEx9wz3d2vuLn6tu9ytKJlK/HCuau0AbP/YJVd+40bI1XK9EIh5TW90xRYJBxaOpwjYWiaQK3PT9eDT6nrFz78cmyt7oxGyy9+NwudMlrl+Z/hxlZPnPv599/u0LzUIzk0kFf/Mbjfzilwrs2qVkMCi73y/f3Xcpe/NmeTdulEHpC+AiIqGgBjvaz5813NGmkZ4emWb62wWGoeyCQuUUl8hfXKqc4lL5i0qUU1yinJJSuTOtPRFxIh7XaF9Paumbrk4NdXdqqKtTw92dGu3rm3gd3tw8lS1cMrF+b/H8ajn4/+MVowC+AApgAACmh/BYNF3yBjXYFZq4HRqNTmzjcNqUW+pVbmmmcku8yvBdu6+DebxOza0pkN0+9UsTALNXqvj9mY6/9opsdrtW3b1F6+5/SG11R7X3Fz/TUFenCirnaMPHPqFFG2+WzTb1vlocHB7SkZdfVO2O5xUcHrrgNoZhk8PtlsPlktPtlsPpksPlfu+Y2y2Hy52673KlTtaUHnO4XHJ7fWcL3uwcOT1XP6MuPjSkkf/8hYZ+/jPFWlpl9/uVtekeZW3eIu+G9TL4yjKADyAei2m4q0MDHe2p2cKd7Rrp6dZwb7fCoyPnbevxZZ1fDhcXKyd925ebNym/BEwmEhrp60kXvF0a7u6cKHxH+nrOWwrHlZGp3NLUCSxzS0qVX1GlskVLlVVQOKu/mTJZKIAvgAIYAICpwzRNhUbPL3rfmd07Hjh7wgyn267cUq/ySjPT16lLVp5HBjNxAUDD3V166xc/U93unRPF7/oHH5Yv7+yaqMlkQiff3KO3/vNnGuxoU25ZhTY+9HEtufn2KbHGZE/TGR164VnVv/GaEvG45q5eq5p77lNOUfF7yl2b3TElSgPTNBU+fFjDP/2pRl94UWY0qoy1a5X7yCPK2ryJ5R0AXBeRUEgjvd2pQrinS8M9XRrp7dFwT5dG+3rPK2PtTqf8hcXKKTk7azhVFJcou6hYTtfZtciTiYRG+/s03NUxcSLL1HWnRv5/9u47OM77zvP8++mckHMgQBBMYARJUJREUXJSloNseSyvd+wJuzu3tVd1V3VXd7tXV7Vbe1d3++eFP7Zu7iasZz2WLVuesWcd5BmPJFIiKWaCAQwAkTPQCJ27n+e5P55GAyAhSpQIguHzqnrqSb9++tctqoH+4Pd8f+NjhTtMALyBIGW19ZTW1VNWW+8EvjV1lNXVEywuuS8+sx9WCoBXoABYRERkZZZpcenIMMPXZ3G5DFxuA8NtONv5fZfbwFi277ppP39+4XFuFy7X4nVsy2ZmPLEY9o7GSScW6yr6Qx7KapcHvWV1YSJlfv3SKCKygujoMMff+jGXDv8Ot9vDri+9wP6vfGNZ8Hsz27K4evwDjr/1BhP9vZTW1PHY177Jtqc/j9tzb0epWqbJ9RNHOf2rnzPUdQmvP8C2Z77InhdeoaJh3T3ty50wY3Hm/u4XRN/4EemuLlzhMCVf/Qql33qdwJbNa909EZECM5djfmrSCYXHRpgZWxoUj5JNJZe1j5RXUFxZTTI2z+zYKJa5+Lu61x9wAt6aukLQu7AOlZTq9/U1ogB4BQqARUREbjXaM8u7P7zC5EDMCVvzYa1l2lhL1vbC2vpsvzcEIt5CuLs07A0V+/SLo4jIJ+AEvz/i0uF/dILfZ190gt+y8k98Dduy6D71IcfeeoOxnusUV1Xz2FdfY/vnnl31GdaTsXk6/+E3nH37vzA/OUFxVQ17XniFHZ9/lkA4sqrP/Vmkrlwl+sYPmfv5L7DicfxtbZS9/jolr7yMK7y2NTdFRO6Ubdsk5+eYGR1hdnw0HxKPMjcxTqCoKF+yYTHoDZeW6Xf1+5AC4BUoABYREVmUnM9w9GfdXP5ghEiZn4OvbaJ178fX4rItG8teDIQt01lsa+m+VQiLFwJkbCipChIs0i2xIiKfRnRkiGNv/YjLh9/B7fWy+9kX2P+V1wiXln3qa9q2zY2zJzn20zcYuXaFSHkF+7/yDXZ+8flltwLfDZMDfZz51S+4dPgfyWXSrNu2kz0vfYXWfY/dl/WIAax0mvm33yb6wzdInj6N4fNR/OKLlH37dQK7dysMERGRNaUAeAUKgEVERMCybC4dGebY33STTZns/tI6Ol5ajy/gWeuuiYjICqaHhzj+1htcPvJuPvh1Rvx+luD3ZrZt0995jmNvvcHg5QuESkrZ/+Wvs/vZlz7T5Gi2ZdFz5iSnf/Vz+jvP4vH62PrU59j74pepam65a/2/2zL9/UR/9CNm3/oZZjSKt7mJsm+9TsmrX8NTdvfedxERkc9CAfAKFACLiMijbqx3jvd+eIXxvnkaNpfy9OtbKK/XbasiIvej6eFBjr31I7oWgt/nXmL/l79+V4PflQxc6uTYT9+g/8I5gkXF7Hv5a7Q//wr+UOgTXyOdSHDx3b/nzK9/wczoCJHyCtqfe5mdX3yeUHHJKvb+07NzOWLvvEP0jR8RP3IE3G6KvvB5Sl9/nfATT2C4XGvdRRERkWUUAK9AAbCIiDyqUvEsx/6mm4tHhgkV+Tj42kY27a/RrasiIrdh2zYzo8MMXOzEMk0i5RUUVVQSKa8gVFyyaoHg1NAAx9/6EV3vv4fb66X9+ZfpeOXVVQ9+bzZ89TLHfvoGN86eIhCOsPelr7LnxS/ftk7vzOgIZ379Cy6881syySR1m7ey98WvsOmxJ3F77s87TbJj48z85E1m3vwJudFRPNXVlP7e71H6zdfw1tSsdfdEREQ+kgLgFSgAFhGRR41t2Vw+OsLRn3WTTuTY9blGHvtyC77g/fklXERkrcVnovRfOEf/hXP0dZ5lfnJixXYut4dIeTmR8kqKyiuWhMOV+e0KwqXldxR6Tg0NcOynb9D1wXt4fD7an3uZ/V/+OqGS0rv18j6V0etXOfazH9F98ji+YIg9L3yZfS9/lWBRMbBYPuL0r/6WnjMncbncbHniKfa++BVqN25e075/FNu2SRw7RvSHbzD/D/8Apkn4yScp/fbrFH3+8xj3aVgtIiKylALgFSgAFhGRR8nEwDzv/fAKoz1z1G0s4enXt1DZeP/Ori4ishYyqSSDly/Q33mWvs5zTPb3AuAPh2navpumne007diNLxgkNj3F/PQksanJ/PaUsx2dYn5qilwmvfzihkG4pNQJiSuckNjZriRSVlE4NjcxwbG3FoPfPc+/Qscrr6558Huz8d4ejr31BteOf4DXH2D3cy9RWlPLmV//HVOD/YRKStn1pRfZ/eyLRMrK17q7t8iOjZE4doz4sePEjx0jNzKCu6SEkq9/nbJv/R6+9evXuosiIiJ3RAHwChQAi4jIoyCdzHH85z1ceGeQQMTLk1/fyJbHa1XuQUQEMHM5Rq9fpa/zLP0XzjJy7QqWaeL2emnYso2mne0072ynumUDLpf7E1/Xtm1S8RixfCg8P50PiaemiC1sT0+SjsdXfLzXH6D9hXzwe5/WyF0wOdDH8Z/9mK4P3gPbpnp9K3tf+gpbnnwaj9e71t0ryEWjJD48QfzYURLHjpO5cQMAd0kJoQMHKPriFyh6/nlcn2GSOxERkbWkAHgFCoBFRORhZts2Vz8c4/2fXic1n2HH0w089pUNBML3z5dxEZF7zbZtpgb6CiUdBi5dIJtKgmFQ07KRpp27ad7RTv3WNrw+/6r3J5tKOSOHpyeZz48kxjDY+YXn7vvg92bR0WHS8Tg1GzbeF39kNGNxkqdOEj96jPjx46S7usC2cYVCBPd3ED7wOOHHD+DfulUTuomIyENBAfAKFACLiMjDamooxntvXGX42gzV64v53D/ZQlVT0Vp3S0SkIBadJjY1icfvx+sP4PX7nW2f/66HcXOTE04d386z9F84R3wmCkBpbR3NO9tp2tnOuu27CEb0Ofkgs9JpkmfOEj9+jMTRYyQ7O8E0Mbxegnv2EH7icUIHHie4cwfGfTQyWURE5G65kwBY1e1FREQeUJlUjhN/d4NzvxvEF3Tzue9sYdvBegzX2o/EEnmUpOIxosNDTA8PMjM2SuPW7TTval/rbq0p27aZ7O+l++Rxrp88zljPtY9s6/H68AQCeH35UDi/eHyLYbHXH1hyLuCcC/gLj7FMk8HLF+jrPEd0eBCAYHFJPvB1RvkWV1Xfq5cvq8DO5UhduODU8D1+jOTpM9jpNLhcBHbuoOKf/TPCjx8guGePyjqIiIjcRAGwiIjIA8a2ba6fGuf9N68Rn82w7al6nvhaK4GIRjiJrBbLNJkdH2U6H/RGhweZHh4iOjJEYnbmlvYtezp45vf/mIqGdWvQ27Vh5rIMXrpI96njdJ86ztzEOAB1m7bw1OvfpbKpmVwmQzadJptOkUunF7czabKpNNlMmlw6RTadJpNIEI9O54857bKpNLZtrfj8Xn+Axm072PXF52ne2U7lumbd6v8Asy2L9LVrxI86NXwTJ05g5Wso+7dsoez1bxF6/HFCHR24izSaW0RE5HZUAkJEROQBEh2N894bVxnsilLVVMTT395MbcuDVTdS5H6WnJ9zgt3hQaZHhpgecsLembFRLDNXaBcsKqasvpHy+gbK6xsL25HyCs69/UuOvfUjsukU7c+9zBOvfZtgUfEavqrVk4rHuHH2FN0nj9N79hTpRByP10fTrnZa9x2gdd9jhEvL7trz2baNmcs5gXDGCYRzmTS2ZVHZ1Izboz+EPUjMWIzs0DDZ4SGyw8P57fzS14c5OwuAr7mZ0ONODd/QgQN4ysvXuOciIiJrTzWAV6AAWEREHmQz4wkuHh7m/O8G8PjcPP7VDWx/ugGXyj2I3DEzl2NmbKRQtsEZ0TvE9MgQqfm5QjuX20Npbd0tIW9ZfePH1o9NzM7wwZs/4Pzf/wZ/KMTj3/g27c+/9FAElLPjo3SfdEb5Dl6+iGWahEpK2bD3MVo7DtC8czdev27Bf9TZto0ZjS4PdYeGFreHh7Hm5pY9xvB68dbX422ox9vQSHDvXsKPH8BbV7dGr0JEROT+pQB4BQqARUTkQROLprh2cpxrJ8aY6J8HA7YeqOWJr28kVOxb6+6JPDAyqSTDXZcYuNTJwOULjHVfwzLNwvlQSSnl9Y35kLehsC6pqsHldn+m557o7+Xdv/oz+s6foayugWd+/4/YsPcxDOPB+eONbVmM9lyj++SHdJ86zmR/LwAVjU207nNC39qNm3G5Ptt7JQ8W27LIjY8vjty9KdzNjoxgJ5PLHuMKh52AdyHkrV9cPPX1eCorVbZDRETkE1IAvAIFwCIi8iBIzmfoPj3O1RNjjFx3bn2tbi5i0/4aNu6rJlKmUXUiH2dZ4Hupk7Ge61imicvtprZ1Mw1t26lsbCqEvf5QeFX7Y9s2N86c5J2/+jOiw4M07djN5777z6hqblnV5/0sspk0AxfOc/3kMXpOfUh8JorhctG4dTutHQfYsO8xymrr17qbcg+ZMzMkOztJnj1H8uxZkufPY83PL2vjLitbFuoWQt6GBrz19biKix+oP36IiIjczxQAr0ABsIiI3K/SyRw9Zya4fnKMga4otmVTVhdm8/5qNnbUUFodWusuitzXMskEQ1cuM3Cpk8FLnYx2X8O2LCfw3biFddt2sm7bTuo3b8UbWLs/opi5HOd++0uOvvnXpBMJdn7hOQ5+658SKildsz4tlZidoef0CbpPHaf3/Bly6TTeQJCW9n20dhygpX3fQ1vLWJazcznS1687Qe/ZcyTPnSNz44Zz0uXCv3kzwd27CbRtLYS73ro6XCH9vBIREblXFACvQAGwiIjcT7IZk97zk1w/OU7fhSnMnEVxZYCNHTVs3l9DeX1Yo6REPsKywPdiJ6M9C4Gvh9qNm++bwPejJGPzHP3JX3Pu7V/i8fk48Oq32PvSV/F47219YNuyGO/toef0CW6cOclI91WwbYoqqmjteIzWfQdo3LbznvdL7r3c5CTJc+cKYW/ywgXsRAIAd3k5wfZ2grt3O6Hvjh24I6s7al5EREQ+ngLgFSgAFhGRtWbmLAYuTXP1xBg3zk+SS5uESnxs3FfNpv011KzXrbEiK3nQA9+PMj08yLt/9Wf0nD5BSXUNT3/nD9l04OCqfg6kE3H6zp+h58xJes+eIj4TBcOgrnUzLXs62LDvMarXb9Bn0UPMzmRIdXUthr3nzpEdHHROejwE2toKYW9wTzvehgb9exAREbkPKQBegQJgEZFHh2VaxKJp5qZSzE0mmZ9KMTeVZH4yxfx0CpfbIFIWIFzqJ1LqJ1y2fB0q9uFy351JaCzLZuhqlOsnxug+M0E6kcMf9tC6t5pNHTXUbyrF5dIXa5EFtm2TnJtlrOf6shq+D0Pg+1F6z5/h3e//f0wO9NGwdTuf/94/p2bDxrtybdu2mR4aKIzyHbpyCcs08YfDrN+1lw1797N+9977pgyF3H3Z0dFlpRxSFy9iZzIAeGprF8Pe9nYC29pwPQT/T4mIiDwKFACvQAGwiMjDw7Zs4rNOwDs/mXSC3oXtyRSxmTS2tfjzzTAgXOanuCJIcUUA07SJz6SJRVPEZzKYOWvZ9Q0DQiV+JyBeCIfz20vXHu/KM97bts3YjTmunRjj+qlxEnMZvH43Le2VbOqoYV1bOW6PZjmXR49t26Ri88xPTTI/NcH81FR+PUlsatI5Pj2Jmc0CPLSB70os06Tzd2/z/o//M8n5ObY//QWeev27RMor7vha2XSKgYud9Jw5yY0zJ5mbGAOgqmk9LXs6aNm7n/pNW3G5V/4MkweTlUiQ7u4mffUa6Wv55epVchMTABh+P4EdOxYD39278NbWrnGvRURE5NNSALwCBcAiIg8O27ZJzmcLo3bnppLLwt756RRWbvnPr1CJzwl4KwMUVQQornTC3qKKIJFyP+6PGNFr2zapeJZYNJ0PhfPrmTTxaIrYTIZ4NEUmZd7y2EDYe8vo4Wza5PrJceanU7g9Lpp3VrCpo4bmnRV4fQpb5OHl/L8UWwxylwS8semFY1PkMulljzNcLiLlFRSVV1JUUUlRZRVF5RVUNDY/1IHvR0kn4hz/2Y85/cu/xXC7eeyrr9Hxyqt4/bd/H2bHR53A9/QJBi52kstm8Pj9NO9sZ8Oe/axv30dxZdU9ehWymuxMhvSN3sWQN79kBwch/93OCATwt7bi37iRwM6dTu3eLZsxfL417r2IiIjcLQqAV6AAWERkdZlZi2zaJJPKkU2bzpIyyaRzhe2F44U2KXPFx6STOczs8lG5gYi3EOgWVzoBb1FFIH8s8JGjce+WTCq3PCCO5kPiwkjiNMn5LIbLYF1bGZv219Cyuwp/0LOq/RK51yzTZPhaFwMXzjM7PuYEvdNO0JtL3xTuGi7C5eVOsFvhBLtFFVUUVSysKwmVluJy6Y8jN5sZG+W9H/w5145/QKSikqe//T22HnwGw+X8McvMZRnqukzPGae0w/TQAABldfW0tDujfBvbdmgCtweYbZpkBwZI3RT0Znr7IJdzGnk8+FvW49+0adnibWzE0AhvERGRh5oC4BUoABYRuTsyqRzH/qaHwStRskuCW8v8hD9PDPD53Xj9brwBj7P2u/EFFo/5Am6KFsLefMDrC9z/QaqZtTBN64Hoq8idSMzN0nv2FD1nTtJ37jSpeAwMg0hZ+ZKRu5VEyisLwW5RRSXh0jKVGfiMBi9d4B+///8yfqObuo1baDv0OQYudtLXeYZMMonb46Fx20427OmgZU8HZXUNa91luUO2bZMbHV1StiG/7u7GXvijimHgXbcuH/BuXAx716/XqF4REZFHlALgFSgAFhH57MZ65/jtn19kdiLJ+h0VBMLexRA3sDTI9RT2bz7m8bo0m7jIfc62LMZ7ewoTh410XwXbJlRS6owu3dNB8652AuHIWnf1kWBbFhff+x1H3vg+8eg0kYpKNuRH+Tbt2IUvEFzrLgrOfycrFsOcm8OcncWan8ecncOcm8Wam3eOr7Cdm5jAisUK1/HU1NwyotffugFXKLSGr05ERETuNwqAV6AAWETk07MsmzNv9/Hhz28QKvHxpT/YRsOWsrXulsgDy8zlGLl+haHLF/EGglQ0rqOisYlwadma/YEknYjT13mWntMn6D17ivhMFAyD2tZNtLR3sGHvfmpaWgslCOTey6ZSxKJTlNbW6w9p94gVj5M4dYrs0FA+zJ3Dmp9b3J6by4e5c1jz84UavCtyu3EXF+MqLsJdXFLY9pRXLI7q3bgRd0nJvXuBIiIi8sC6kwBY96iKiMhtzU+n+Pu/uMTwtRla91bzue9sIRBWTUmRO2HbNlOD/fR3nqWv8ywDly6QTSVvaecPh6loaCoEwhUN6yhvbKKoovKuB362bTM9NFioITvUdRHLNPGHw6zftZeWPR20tO8jVFJ6V59XPj1vIKASD6vMNk1SFy8S/+AD4kfeJ3HuHGSzhfOG3+8EtyXFuIuK8VRV4dvYiruoGHdJMa7i4ny4W+Rsl5TgLirCVVyCKxxScC8iIiJrQiOARUTkI10/Nc47P+jCNG2e/tZmtj5Rqy+vIp9QbHqKvs6zTuh74Rzx6DTgTNLVtKOd5p3trNu+i1w2w9RgP1ODA0wPOevJwX5S83OFa/mCQcob1i0PhxvXUVxZfUcjcrOZNAMXz9Nz+iQ3zpxkbmIMgMqm9bTs6WDDng7qN7epbq88UjKDg8Tf/8AJfY8dw5qdBSCwbRvhg08SfvJJ/Bs34iouxuX3r3FvRURERBwqAbECBcAiIp9cJpXj8I+u0nV0lOr1xTz7R9sorVbtQZHbySQTDFy6QF/nGfo7zzE12A9AsKiYph27ad61h+ad7RRXVX+i6yXmZgvB8NRgfyEcjs9EC208fj/l9Y2F0cILwXBJTS0ulxPizo6PFUb5Dlw4Ty6bweP307RjNxv27Kdlzz6KKz9Zn0QeBubcHPHjx53A9/0PyPY7/696amsLgW/4iSfwlJevcU9FREREPpoC4BUoABYR+WRGb8zy2z+/xPxkkn0vrqfj5fW43ar5KXcmk0oSHR5iemSI6PAQsegUVU3raWzbQeW65oeijqyZyzF6/Sp9+bIOo9evYJkmHq+PhrbtNO9sp3nXHqqa1t/V15uMzTM9OMDU0GI4PDU0QGxqstDG7fVSXteAaZpMDw0AUFpTR8veDja0d9C4bScen++u9UnkfmZnsyTPny+M8k2ePw+WhSsUInTggBP4HnwSX0uL7nIRERGRB4YC4BUoABYRuT3Lsjn9614+/LtewqU+nv3D7dRvUu1P+WiWZTI3MUF0eJDp4SGiI4NER4aYHh4iNj212NAwCIQjpGLzgFPntmHLNhq2bqexbQc1Gzbi9tz/0xIs1Mx1At8zDF7qJJNMgmFQ07KR5l1OWYf6zW1rEq6mEwmmhxYD4emhASzTZP3uvbTs2U9ZnSYOk0eDbdtkensLgW/i+HGseBxcLgI7dxA5eJDwk08S3L0bw6ua9iIiIvJgUgC8AgXAIiIfbW4qyd//xSVGrs+yqaOaZ/7JFvwhfSkWRzI2vxjyFsLeIWbGRjCXTI7kD4cpr2ukrL6B8vr8uq6B0tp6PD4fcxPjDF6+4Cxdl4gODwJOGYP6TVto2LqDxrbt1G3agtcfWKu3z/dTAAAgAElEQVSXW5BNpZgZH2Wi70Zh8raFYLu0po6mnU5Zh3XbdxGMFK1xb0UebblolMTRo8Q+cELf3PAIAN516wojfMMHDuAuKVnjnoqIiIjcHQqAV6AAWERkZddOjPHOX1/Btm2e+fYWNj9Wo1GCjyDLNImODDM9MuiUbhgeLJRwWDoZmcvtpqSmjvL6BsrqlgS99Y0Ei4rv6N9OfCbK0JVL+VD4IhN9N8C2cbk91GxopbFtB41tO6jf0kYgHFmNl006EWdmdITo6DCzY6NER4eZGR1hZmykMGkbQGChju/O3TTvbKekunZV+iMin4ydyzllHY4cIXb4CKkLF5zPj+JiwgcOFGr5+pqa1rqrIiIiIqtCAfAKFACLiCyXSeZ4742rXDk+Su2GYr70h9spqQqudbfkHkrMzXLjzEl6zpyk79xp0ol44VyopHTZKN6y+kbK6xsoqa7F5XavSn9S8RjDVy8zdPkig5cvMtp9DcvMgWFQ1bS+UDKisW074dKyT3RN27ZJzs8VQt2Z0WFmxkad9egIySXhNkC4rJzSmjpKa+sK6/L6xrtex1dE7lx2dLQQ+MY/+ABrfh5cLoK7dxN+6iCRgwcJ7NiB8QCUlBERERH5rBQAr0ABsIjIopHuWf7+Ly4yP5Wi4+UWOl5sxqWJ3h56tm0zfqObnjMnuHH6JCPdV8G2CZWU0rKng6btuwqhrz8UXuvuks2kGb12hcHLFxnsusjw1cvk0mkAyurqCyUjGrZux+PzFULdmbERoqNO2Ds7Nros2MYwKKqopKy2jtKaeifoXQh7a+rwBta+9ISIOKx0muSpU07ge+Qw6WvXAfDU1BA+9BSRpw4RfuJxlXUQERGRR5IC4BUoABYRAcu0OPmrPk7+spdImZ9n/2g7da364vwwyyQT9J0/64S+Z085ZQ0Mg9rWTWzYs5+WPR3UtLQ+EKNbzVyO8d5uJxC+fIHhrkuk4rFb2hkuFyXVNZTW1heC3YWgt6S6Fo8mfRK5LxUmbzvyPrEjh0kc/xA7lcLwegnt7yD81CEih57Ct3GjShWJiIjII08B8AoUAIvIo8CyTBKzs8RnoiRnZ/D4/PjDYfzhMJmkm3f+uoexG/NsOVDLodc34w/qNtmH0fTwEDfOnKDn9AkGL1/EMnP4giHW797Lhr37aWnfR6ikdK27+ZnZlsXkYD9DXZewbYuyfOBbVFmFW7eAi9wRK50mdfEihseDu7QUd1kZrkhk1YNWMxYncfwYsSNHiB8+QnbQmRzS19xM+JAT+Ib278cVCq1qP0REREQeNAqAV6AAWETuNwufv5/ky3U2nSIejRKfiRKfmSYWjZKYjRKLTpOYiRKbiRKPTpOcm8O2rdtcycAbCBIqLsIXChMIOeGwPxTJr8MEwmH84Qj+wrkwgbBz3hcIPhAjRR81uWyWwcsXuHH6BD1nTjAzOgJARWMTLXs62LCng/ot2xSKisgy2eFhYu8dJvbee8SPHsVOJpc38Hhwl5XiKS0rhMLOUoqn7OZjZbhLy3CFQ7f9uWbbNumurkLgmzhzBrJZjFCI8OOPEzn0FOGnnsK3bt0qv3oRERGRB9udBMD6JigicpdYlk06niU5nyUVz5Ccz5KMZUnFMiRjC8ezJOczpGJZEvMZrGwCXyCNx5fG7UniMhLYdhzLjJPLzJNNzZGOz5LLpG55PsPlIlxSSrisnKLyCmo3bCRcWka4tJxwWRnB4hJS8RRnfnON4WtjFFcYNG8vwrbTpBNx0vEY6UScmdERUok46XicbCq5witb+qQG/mAIfzhM7cYtHPy9f0p5fcMqvaNyO/PTk9w4c4obZ07Qd/4s2XQKj9fHuu072fvSV9mwp4OS6tq17qaI3EfsbJbk2bPE3nuP2Dvvkr52DQBvQwOlr75K+OCTGB4PuWgUMzqDGY06y0yUXDRKuqfbOT4zA6a58pN4vXhuCYZLcJeVkRsZJfb+EcyJSQD8W7dS8QffI/zUIUJ72jF8vnv1VoiIiIg8UhQAi4jcRjKWYX4q5QS58/kgN5YlFcsHuQuBbyxLKpGFj7ipwhtwE4x48fgSWNl+zFQvuVg3meQst0S7hhfDCIMrjGGUYLjq8QTy+64w3kARoaJSgiUlhIr9BMNeAkU+ghEvgYiXYH47nczxwU+vEJup4eA3D7D3hfW4XLcfbWyZJulkgnR8MSBOx+OkEjHnWH4/OT9H96kPuf7hB+x+9iUe/8brhIpVS3g1ZZIJxvtu0Hv2ND1nTjDR2wNAUWUV257+Ahv27mfd9p14/ZrETEQW5SYniR0+Quy9d4kfeR9rfh48HkIdHVS/+iqRZ57Gt2HDHZV6sC0La34eM+oEw+bMzGJgnA+LF/bTV6/mj8/gLi4mfPAg4UOHCB98Em919Sq+chERERFZoBIQIiI3mZ9O0XNmgu4z44x0z94S6houwwla80sgkg9fixaO+fJBrBczF2ey7zKDlzsZuHSe2bFRAILFJazbvov6TVuIlFfkR+6WES4rxxcIOqOJEwtBc34dyyzfXhJEJ2NZzOytpR+KKwM8+8fbqW25++FsfCbKB2/+gM5/eBtfMMiBV3+PPS98GY9GcH0mlmkSHRlmcqCXyf5eJvqd9ez4GOCM/K7f3MaGvfvZsKeDinXNmgxJRApsyyJ14QKxd98j9u67pC5cAMBTVUX4maeJPP004SefxB2J3Nt+mSYYhsoIiYiIiNwlqgG8AgXAInI7sxMJuk9P0H16nPG+eQAqGiK07q2isjGyGPJGvPhDno8M3JLzcwxc6qT/wnkGLpxjetiZzMYfDtPYtpOmHbto2r7rrod2tm2Ty1iFMDgVy5JNmzRtL8cXWN2bPaYG+3nvB39Bz+kTFFfVcOjb32XLk08rlPwYtm2TmJ1hou8Gk/29TA70MdHXy9RQP2Y2Czhhb1ldA1VN66nML41btxO4x8GNiNzfzNlZ4u+/74S+hw9jTk+Dy0Vw924i+dDX39amz2URERGRh4gC4BUoABaRm02PxOk5M8710xNMDcYAqG4uYsOeKlr3VFNa8/EzjqcTcQYvX2Tg4jn6L5xnou8GAF5/gMa27azbvoumHbupWt+Cy+Ve1dez1vo6z/LuX/0ZE303qN24mWd+/49p3Lp9rbt1X8imU0wN9BdG804O9DLR10tyfq7QJlxWTuW6ZqqaW6hc10xl03oqGtZpRLWI3MK2bdJXrxZG+SbPngXTxF1aSvjQIWeU71MH8ZSVrXVXRURERGSVKABegQJgEbFtm6mhWGGkb3Q0AUDthhJa91axYU8VxRXB214jm04xdOUyAxfO0X/xPGPd17FtC7fXS8OWNtZt38267buobd2E2/PolVm3LJPLh9/hyBvfJzY9xabHnuTQP/keZXWPxkRxuUyG+akJJvv7mOi/wWR/H5MDvURHRyD/89bj9zsB77r1VDWvp3LdeiqbmlVDWURuKzc5SeLkSeIfHCX23nvkRp2SQoFt2wqlHYK7dmG4H+4/NoqIiIiIQwHwChQAizx8zFyW2fEx5ied2cQNlwvD5dQXdLlcGIYLDIPoaJKhKzMMXpkhFs1gGAY1LSU0ba+keXsloZKA037pYhi48nUKx250M3DxPP0XzjNy7QqWmcPldlO7cQtNO3axbtsu6jdv1UjNJbLpFKf+7m/48G9/gpnLsvu5l3jiG98mWFS81l37xGzLIhmbJzk/R3Ju1lnPz5GcmyM5P0tybo5EYd9pk00vmdLPMCirrXNKNyyEvU3rKa2uVQ1MEflY2dFREidOkPjwBImTJ8nccO4wcYXDhA8eJPLM04SfOoS3RhOpiYiIiDyKFACvQAGwyIPJtm3i0Wmmh4eIjgwRHRkkOjLM9PAgs+Nj2NatE5+tBsNwUd3SWqjhW791G77A7UcLywoTxX39W+x5/pU1C8tty2J6eIi5yfFloW5ibnZZkJucnyMVi2HbK//78voDBItLCBYVEywuJpRfB4tKCJeWOeUbGtfh9Qfu8SsUkQeRbdtkBwcLYW/ixAmyg04NeVdREaG9ewk9tp/Q/v0E2towvN417rGIiIiIrDUFwCtQACxyf0snEvmA11kWA99hsqlkoZ3H56esto6y+kbK6hoor2+guLIay7aZHJhn6Mo0I9dnSCUyuFxQ1RShpqWIqqYwXp8Ly7KwbRvbsgqLZVlg2845y1x23rIsyhvW0di2nUBYE299WpMDfbz3g7/gxpmT93SiuGw6xWj3NYavXGboyiWGr14mHY8va2O4XE6QW1RMaEmoWwh4ixa3Q8UlBIqK8Pr8q9pvEXm42bZN5saNZYFvbmwMAHdpKaH9HYT27yfU0YF/yxaVdRARERGRWygAXoECYJG1Z+ZyzI6POaN4h4eYXgh8h4eIz0QXGxoGJVXV+ZC3nvI6J+wtq2+gqLwCG4PYdIrZ8SSzEwnG++e5cW6SVCyLx+eieXsFrXurad5ZgS/w6NXhvZ/1nT/Lu//ZmSiubuMWnv79P7qrE8XFZ6JO0HvlEkNXLjN+oxvLNAEob1hHw5Y26rdso6yugVB+xK4/FFJJBhFZVbZlkb52jcQJJ+xNnDyJOTUFgLuqkvD+/QQ7Ogjv34+vtVWfSSIiIiLysRQAr0ABsMi9lZibZbznOqM91xnruc7UYD+z46OFMA4gWFS8GPLm12V1DZTW1OFye5ifTjEzniwEvbMTzvbcZBLLXPzs8gXcNO+spHVvFU3bK/D6NFLqfmZZJpfe+0fef+P7xKLTzkRx3/kDymrr7+g6tmUxNTSwOLr3ymVmxkYAcHu91LZuLgS+9Zu3PlD1h0XkwWbncqS6rhTC3uTJk5izswB46uuWBb7e5uZVvxtCRERERB4+CoBXoABYZPWkYjHGeq4z2nOtEPrOTYwVzpfVNVDZ1JwPeRsKo3l9gTDzUylmxhfD3dmJBLPjSeanUljW4ueTx++mpCpIaVWQkuoQJdVBSqqClFSFCJf4MFz68vygWT5RXI72517i8W+8/pFB7c3lHEaudpGKxwAIFpcUwt6GLduo2dCK26MamSKyuuxMhszgEJm+XjJ9fWT7+8n09pI8dx4rX27G29xEqGOhpMN+fI0Na9xrEREREXkYKABegQJgedjZto2Vs8lmTMystXydWdzPZUyyGevWNlkLwzBwuQxcbgPDvWTbtbhtZlPEpgeYn+xjdqKfufE+ErMThX6Ey6opq2uhvH495Y0bqGhsIRAOk4xlmV0IeieSzI4nmJ9KsfQjyBtwU1odyge7QSfkze+Hin0aIfWQis9E+eDHP6Dzd2/jCwV5/NVv0f7Cl0nHY/mw9+Jtyzk0bGmjtLZe/z5EZFXY2SzZoSEyfX3O0ptf9/eTHRqCJZORuoqL8TU3E9i+rVDD11tTs4a9FxEREZGHlQLgFSgAlgfZ9EicK8dGmOifJ5e5NbjNZizMjMmn+d/ZMMDtc+PxuLCxsU0by7SxLBszl8bOjWOZY1i5UWxzHNtarNVruIox3DW4PDXO2l2N4Qre9vn8IU8+3A0thrxVIUqrgwQiXoV4j7DJgT7e+89/zo2zp/AGgoXJ/zxeHzWtm1TOQURWjZ3LOSFvf/9iwJtfskNDsKR8kSsSwdfc7Czrmwvb3uZm3KWl+jkmIiIiIveEAuAVKACWB00qluXayTG6jo4w3jeP4TKoWhfBF/Tg8brw+NyLa9+StXdh7Rxze114fW7cPme9vI0bl8fAMAyyqRTjvT2M9VzLl3O4zvTwIAupcqSikur1G6lq2kBlUyuVTRvwh4qwTBvbWgyNC9umhWU5xyzTxh/0UFodIhDRbflye73nz3Dlg/eoaFhHvco5iMhdYOdy5KamyY2PkRsfJzsySqY/H/D29pEZGoJcrtDeFQrhXRLu+prXFwJfd1mZQl4RERERWXMKgFegAFgeBKZp0X9hiq5jo/Sen8QybSoaImx9opbNj9USKvbd8hjbtsllM2QSCdKJeH5JkEk6+4vHl+wnE2RuOpbLZgrXjJSVU9O6iZqWjdS0bqSmZSPh0rJ7+VaIiIh8LNuyMGdmyI2PF5bs2Bi58Yllx3JTU8tKNQAYoZAT6jY13TKi111RoZBXRERERO5rdxIAe1a7MyKyMtu2MbNZMskEIz0TXP9wgN4LI6TjCbwBk+p1fsrrfXj9JlP9p3n3SsIJdheC2+RCuJvAMnMf+3zeQBB/KIQ/FMYXDBKIFFFcXVs4FghHqGxqpqZlI5HyinvwDoiIiKzMtm2sWIzcWH7E7vj48lB3bIzsxDi5iUnIZm95vLu8HE91NZ7qKvxtW/FWV+f3a/BUV+OtqcZdWamQV0REREQeCQqARe6S+EyUgUudJGaizgjbZHJxtO3Cfn47nT/3UcFtNg69U9B7FgyXC38whC8UwhcM4Q+FiJSXUx5sxB8K4QuF8QedELewX2gbdgLfUBCXy32P3xEREXnY2JkM6e5uUpe7SF+/jp1KYudM7FwOO5eFXA47m3P2zdzy/fxCbvm+nctCNodtmottVgh1AVxFRYVgN7x/fyHQXTjmra7GXVWFy3frHTMiIiIiIo8qBcAin1ImlWTw8gX6zp+lv/MskwN9y857fH58wWAhjPUFQxRVVpNJuTCiFrmsjcvro6iymIbN1azbXkuktDjfPph/TBCPz68RSiIics+Zs7Okuq6Q7rpM6nIXqa4u0t3dhXDW8PlwBYPg9WJ4PIUFjxvDs/yYEfDjcoedba8HPJ4lbdw37TttXOEInpoaJ9itqcFTVYUrFFrjd0VERERE5MGjAFjkE7JMk9Huq/SdP0tf51lGrnVhmSYer4+Gtu20Hfo8zTvbKamuxRcM4nI7I25t22asd44rR0e5dnKMdCJHuMTHY1+rZcvjdZTXhdf4lYmIyKPMtm1yw8OkurryQe9l0pe7yA4NFdq4KysJtLUROXSIQNtW/Fvb8DU3Ybh1d4mIiIiIyP1OAbDIR7Btm+nhQWeE74WzDFzsJJNMgGFQ09JKxyuv0rSznYYt2/CscKtpLJriyvFRuo6OMjOWwON10dJexdYnamncWo7LpVG9IiJyb9mZDOmeHqeEw5KRvdbcnNPAMPCtX09w9y5Kv/UtAm1bCWzdiqeqam07LiIiIiIin5oCYJEl4jNR+judEb59nWeJTU8BUFJTy9aDT9O8s51123cRLCpe8fHZjEnPmQm6jo4weCUKNtRtLGHPc1vZuLcaX1D/y4mIyL1hpVKkOjsLIW+q6zKZa9exF0o4BAL4t2ym+MUXC0Gvf/NmlVkQEREREXnIKI2SR9pCHd/+zrP0nV+s4xuIFNG0YzfNu9pp2tFOaU3tba+TmMtw/ncDdL47RCaZo6giwP6X1rPl8VpKqvRFWkRE7p3UlSvM/PhNZn/xi8LIXnd5uVPC4Q++h3/rVgJtbfiam1XCQURERETkEaAA+CH1j3/5pwxcPI/L48Xt8eD2eHDl126vF3f+eOGYx4Pb413W3jnvxe313Nre7cXt8+LxeHH7fLg9Xjw+b37t7Lu93jWdvMy2LMxcLr9ksfLbseg0/RecwHehjq/b66Vh63YO5ev4Vq/fgOFyfexzzE0mOfvbfi59MIKZs2jdU8XOzzVSv7EUQyUeRETkHjFjceZ+9Utm3vwJqfPnMbxeip57juKXXyawYzueqipNKCoiIiIi8ohSAPyQCpeVU1JTWwhArVyOTCKxGIaaucVwNJvNt3HWd5MTOPuc0NnrxeNdHhIvhMYLbTxeH26v889yoW9WLodp5gp9zGUX+7rw2hZel5nLFo5ZpvnRHcvX8d33yqs072infmsbXp//E7+uqaEYp9/u49qJcQwDtjxey55nmyir1YRuIiJyb9i2Taqzk5k332Tuv/wSK5HAt7GVmn/zryn+ylfwlJWtdRdFREREROQ+oAD4IfXYV1/7VI+zbRvLNLFyOXKFUbPZ5UFrNlsIjXPZjHM+kyGXy2JmnBA2l3GO5xbaZjNLtrPO47JO23Qi6VxjSRsgHwwvjExeHJXs8XpwB4O3jG72eBfa5UcruxdGOy8d4ezBHw7TsGUboeKSO35/RntmOfXrPnrPT+Lxu9n1hUbav7iOSFngU73fIiIid8qcnWX2579g5ic/IX3lCkYwSPGLL1L6zdcItrdrpK+IiIiIiCyjAFiWMQyjEJh6UagJTijef2ma07/uY/jaDP6wh/2vtLDrc40EIt617p6IiDwCbNsmefIk0TffZP43b2On0wS2b6f23/07il95GXckstZdFBERERGR+5QCYJGPYFk23afHOf2bPiYHYkTK/Dz1zU1se6oer1+T5oiIyOrLTU0x+zd/w8ybPyHT24srEqHk669S9s1vEti2ba27JyIiIiIiDwAFwCI3MbMWXcdGOPN2P7MTSUprQnzhu1vZ/Fgtbs/HTwwnIiLyWdiWRfz9D5j5yU+Y/93vIJsluHcvdX/yJxS/8DyuYHCtuygiIiIiIg8QBcAieZlUjouHhzn39/3EZzNUNRXxwr/YQUt7FS6X6imKiMjqyo6OMvPWW8z+5Kdkh4dxl5ZS/p3vUPrN1/C3tq5190RERERE5AGlAFgeeclYhvO/G6TznUHSiRwNW8r44h9so3FrmSbSERGRVWXncsTefZeZH79J7PBhsCzCTz5B9X//3xH50pdw+Xxr3UUREREREXnAfaYA2DCMXmAeMIGcbdsdhmGUAz8C1gO9wO/Zth01nCTt/wReAhLAH9i2fTp/ne8B/3P+sv+rbdv/KX98H/CXQBD4JfDf2LZtf9RzfJbXIo+e+ekUZ3/bz6Ujw+SyFhvaq9j7fDM1LcVr3TUREbmP2baNnclgxeOLSyKxfH/JYha2b21jzs1hJ5N4qqqo+Of/nNLXvoFv3bq1fokiIiIiIvIQuRsjgD9v2/bkkv1/DfyDbdv/wTCMf53f/x+BF4FN+eUA8B+BA/kw998CHYANnDIM4+f5QPc/Av8COIYTAL8A/Oo2zyHysaZH4pz5TR9XPxwDYPNjNex5vpnyuvAa90xERO4Htm2TGx4mcfo0iVOnSF+5ihWbzwe5TohLLveJrmX4fLjC4WWLu7QUb0MDrlAIVyRM+MABIs88g+HRjVkiIiIiInL3rcY3ja8Cn8tv/yfgHZxw9qvA923btoFjhmGUGoZRl2/7W9u2pwEMw/gt8IJhGO8AxbZtH80f/z7wNZwA+KOeQx4Qtm1jWzaWaWMtrAuLhZmzyGUsclmLXNZ0tjMmZtZZ57JW4ZjTxsLMmGQzFmZ24fySdgvXyFrk0iYer4sdzzTQ/mwTReWBtX47RERkDdmmSfrqVRKnTpM8fYrE6TPkRkcBcEUiBNra8K1fjysUviXMXb6EnIB3YT8UwlAJBxERERERWWOfNQC2gbcNw7CB/8e27T8FamzbHgGwbXvEMIzqfNsGYGDJYwfzx253fHCF49zmOWSV5LIm0ZEEU8MxpobizIwlMLPmCuGtE+AuO27lj5k29pJjd4NhgMfnxuNz4fE6a7fXhdfnxuNzE4j48HhdhfNun4twsZ+tT9QSLNKXchGRR5GVTJI83+mEvadOkzx7FisWA8BTU0No3z6C+/YS2rcP/6ZNGG73GvdYRERERETk0/usAfBB27aH8wHsbw3D6LpN25Vm07I/xfFPzDCMf4FTQoKmpqY7eegjy7Zs5qZSTA3F8kuc6eEYM+NJ7Hxo6/a4KKkO4vW7cbkNXG4Dj8+Ny2UU9p1tFy63geE2cOf3DffNbfLtlj7WbeD25gNdr6sQ8BaO+fLHvPnra6I2ERG5jdz0NMnTp0mcOk3i9ClSFy8VSjj4N22i+JWXCe3bR2jvXjz19fq5IiIiIiIiD5XPFADbtj2cX48bhvEz4DFgzDCMuvzI3DpgPN98EFg6q0kjMJw//rmbjr+TP964Qntu8xw39+9PgT8F6OjouDtDTh8iyViGqaE4U0MxpodiTA3HmRqOk0ubhTbFlQEqGiK07q2mvD5MRUOE0uogLrdrDXsuIiJ3i5VOk7lxg/T1bszZGVyBIK5gACMQxBXwO+tgACMQwBUM4go424bff18GpbZtk+3vL4S9yVOnydy4AYDh9RLYtYuKP/xDZ4Tvnj24S0rWuMciIiIiIiKr61MHwIZhhAGXbdvz+e3ngH8P/Bz4HvAf8uu/zT/k58B/bRjGGziTwM3mA9zfAP+bYRhl+XbPAf/Gtu1pwzDmDcN4HDgOfBf4v5dca6XnkBUUyjcsjOoddkLfxGym0CYQ9lLREKbtyToq6sNUNEYorwvjC2hCGhGRh4GVSJDuuUGm+zrp692ku7tJd18nOzAIlnXnFzQMJxQOBDCCAVyBIEbA7wTIgQDGQlgcDODyBzACfgy3B9wuDMPlrN1ucLkx3C4wXM7a5XbOudzgMm7fxu12+uFykentzYe+pzEnnblpXSUlhPbupeTrrxLat4/A9u24/P67/M6KiIiIiIjc3z5LulcD/Cw/+scD/LVt2782DOME8GPDMP4Y6Ae+mW//S+Al4DqQAP4QIB/0/i/AiXy7f78wIRzwL4G/BII4k7/9Kn/8P3zEc0jepfeH6b84zdRQjNnxBHZ+/LPb46KsLkRTWznlDREqGpxRvaFi3305kktERO6MGYuR6e5eFvJmrneTHRpabOT14l/fTKBtGyWvfBn/xlZ8ra14KiqwUymsVAormcJOJbFSaWedTGGlkthJ5/ztzlnxONb0NHYy6eynUtjJJLZlgWlS+KF0l3kbG4kcfJLg3n2E9u3Ft2EDhkt3rIiIiIiIyKPNsFfpS9j9pqOjwz558uRad+Oe+Ye/vMRw96wzmrchkl/ClFSpfIOIyMPAnJkh3dND+vr1ZYFvbnS00Mbw+fBt2IC/tbUQ8vo3bsS3bh2G17tmfbdt2xl1bJpOKGxZhXC4sG+at7YxLbBMZ20vb+Opq8NbU7Nmr0lEREREROReMgzjlG3bHZ+kre7vf0h94bttGHqmRwkAACAASURBVC6N6BUReRhYiQTxDz8kcfQoqStXSXdfx5yYLJw3gkH8GzYQPvAYvtaN+De24m9txdvY6JRJuM8YhgFuN7jdK874KiIiIiIiInePAuCHlMJfEZEHl23bZLq7iR0+QvzwYRInT2JnMhiBAP4tm4kcenrJqN6NeOvrVOpAREREREREVqQAWERE5D5gzs8TP3qU+OEjxI4cITcyAoB/00bKvvMdIoeeIrhvnyYxExG5x96enCVhWjxfWUJQpdRERETkAaQAWEREZA3YlkW6q2txlO/Zs5DL4YpECD/xBOF/+V8ReeopvPX1a91VEZFHVsq0+JOLvSQtmyK3i1eqS/lmTTmPl4ZxaQJlERF5WKRmYeIqTF0HtxfClRCqdNbBcvD41rqH8hkpABYREblHctEo8fc/IH74MLH338ecdOr4+re1UfFHf+SM8m1vX9MJ2kREZNHx2ThJy+Z/aKmlN5nm5+Mz/HBkmsaAl9dqynmttoyNocBad1NEROTj2TbEJ2DiCkx0weTV/PYViI3e/rH+EghXQKgiHwwv3c6HxaGK/PFK8IVBfyi9rygAFhGRR4ZtmqS7u7HTGVzhMK5IGHc4jBEKOROTrcLzpTo7iR0+QuzIYVLnO8G2cZeUED54kPDTh4gcPIinququP7eIiHx2/zg9h88w+JN1VYTdbv73zSa/npjlzdEo/1ffGP9H3xh7i0O8VlPG12rKKPfq65WIiKwxy4K5QWdE70QXTF5Z3E7NLLbzRaByM7R+Aao2Q+UWqNwEVg4SUxCfhMQkxKec/cSkc2x2EEbOOttWduU+uP35YDgfFC+ExL4wYDthtG3lty1nHxa3bz5X2L95+6a2B/9bqN2xmu/uA0u/oYiIyEMrNzVF8tw5kmfPkTx3jlRnJ1YicWtDl8sJhAuhcCS/vWSdD4sLx8LOMVc4jDsSKRw35+YKo3zj77+POTsLhkFw1y4q/9W/InLoKQI7dmC43ff+DRERkTvyzvQ8B0rDhPOf2WG3m2/UlvON2nJG01neGovy49Fp/qdrQ/zb68N8qaKY12rL+FJFMX5NzikiIqvJzEH0hhPsTlzJj+jtgslrkF3ynSdUCVVbYPurzrpqixP2Ftd/tlG6tg3p+ZVD4sTUkhB5yulnfAqyccAAw+U8t+Favl/Y5tZzhf2bH7ekbXru07+eh5wCYBEReSjYmQyprq5C2Js8d47s4KBz0uMhsHUrJa++SnD3LlyRIqx4HCsew4rFMONxrFgcKxZzjsdimPEY2fEx53j+WOEv05+Au7KSyOc/T/jQU4SffBJPWdkqvXIREVkNI+kMXfH/n703j5Utue/7PlVn6737bm/fhsPZODOcMTWihuIiilRMyqJiO5LgSIkER7aFeEGCBEHiBAjyR2AYMRA4QYAYthPKsmPEtmJDiKiIkq0hOSQlLiOJywzJmeHMvHnvvvWuvXefpSp/1Dl9Tvfte999673vvfoAhV9VnTrdp7tPn+V7fvX7jfiFY/NjsR8LPP7GmSP89dMrvNYb8pvXtvg317b43fU2Ldfhzx9p8QvHFvmRxt2ZZWKxWCyWh4TBJmy8ZeLzbvwQNt40gu/GW9MeuI1TxpP3Az8+LfRWl+7OdgkBpYYpi++5O+9huWNYAdhisVgs9x1aa+KrV6e9e197DR2GALhHj1J+/nkWfumXKD//HKX3vQ9Zur0YjVpr9GCQi8X9glg8EY77CNel+qEXCZ58EmG9vywWi+W+5UubXQB+crG+5zghBM/UKzxTr/Dfv+cEL291+c2rm/zLq5v8xuUNHin7/MKxRX7u6AJny8G92HSLxWKx7Ma4B2/9AVz4OpRbUD9uSiO15YWDiV0bDWHz7YLIWxB8Bxv5OOHAwjkj7j7x00bgXXnchHII9j5fWR5uhL4Jb6b7mRdeeEG/8sorB70ZFovFYrkF1HDI6LXXpgTf+Pp1AEQQUHr6acrPPWfK88/hHTt2wFtssVgslvud//S18/zhdo9v//jTt+TB240TPre2zW9e3eIPt3sAvNis8gvHFvnZIy0arg0FZLFYLPeE3hq88bvwg9+Bt74AydjEqE3GO8e6ZagfM+ER6sen65O+4+D6N78dKoHtCzPevKnY274IFPS5+nFYei8sPQpLj6X198LCWXBswmiLQQjxx1rrF/Y11grAFovFYtkPOo6Jrl4luniR8OJFVLeHcB1wXGOlRGT1iXUQacn6TH3vPh2OGX33uxPBd/T665AkAHhnzuRi73PPUXricYR/CxdgFovFYrHsQqI1z371VT651OB/e+rsbb/exVHIv7m6xW9e2+SHgzGBFHxquckvHF3g44sNPGlDRFgsFssdZfMdI/j+4HNw4WuAhuYZeOoz8OTPwOkXQSfQvQKdK8Z2r0DncqHvsrHzhOLK8rTn8JRIfMzExi0KvOtvmji4SZi/RtDIhd3lx1Kx970mnIL15rXsAysAz8EKwBaLxXJjkm43FXhXiVYvEl64aNqrq0SXL0Mc39PtkdUqpfc/OyX4uouL93QbLBaLxfLw8aedAT/9x2/wv7/vLP/B0TsXw11rzbe6Q37z6ia/dX2LzShhxXf5yyeW+ZWTS6z41qvLYrFYbgmt4ep34PufM8Lv9ddM/9FnjeD75M/AsWdvPryD1jDc2ikKF233KvTX5q/v+EbQzYTeYqkuH0y4CcsDgxWA52AFYIvFYgGdJMRXr04LvKup4HvxIsn29tR4p9XCO30a//Tp1J7CO30G//QpZKMJKkEnCcQxWiljkwQdJ5Ck9SSBPfp0Ept6oU84kuCppwgefdR4BVssFovFcg/5++ev8vfeucp3P/wMy/7dSZsSKsVLG13+6eV1XtrsEkjBzx1d4K+dWuGpWvmuvKfFYrE8UCQxXPjD1NP3d0wYBSHhzIfgyc/Ak3/OxMu9F8Qh9K7monBQNyJv8zRIez9juTtYAXgOVgC2WCwPIjpJUMMRatBHD4eowQA1HKL6A1S/R3T5CuHFC0SpwBtevgxRIVOs6+KdOJEKvKeMPXUa/8xpvFOncOp26pHFYrFYHj7+/J+8yVApfv+FJ+7J+73RH/F/rK7xm1c3GSrNxxZq/NrpI3xisY603mEWi8WSEw7grZeM4PvG7xrvXLcEj37CePk+/mnjWWuxPATcjAB8dx5nWywWy32IGo+JLl1OPWIvGtH00iV0FCE8F1wX4XoIN41vO9V2wXXSetrnuSau7by2l66jtRFsB5l4O0ANBuhBQcwdDCbL9GBQGDtEj0Y3/Fyy2cQ/dYrgqaeo/9k/mwu9p8/gHTtqtsNisVgsFgtgkre90unzt84cvWfv+Xi1xN974jR/+z3H+b8ub/DZ1XX+4++8zXsrAX/t1Ao/f2yBqp0RY7FYHlYGm/B6lsTtJYiHUGoZsffJn4H3fhL86r5eqh8nfGGzy7e6A56tl/lIq87SXZrpYbEcJuxebrFYHhq01sRra0Srq4U4t6uEq0bsja9dmxovggDv5ElEKYAoRk/CG0R5O+0jitBxbGJE3S5CICsVRKWMrFSQ5QqyUsGp1ZFHjiIrZUShX5bLyKqxU/3VCt6xYzjN5u1vk8VisVgsDwlf2eqSaPiJhXs/C2bRc/nPzh7lr58+wm+vbfMPL17nv3ljlb/79hV++cQSv3pqmeOBTXxqsVgeQLSGaACjNow6MO7ApT82ou+7XwWtoHESPvDLJrzD2R8HZ39x06+NI35/o83n1zp8ZbvLWGkEkN25PVsr89GFOj+xWOeDzSplR961j2mxHBQ2BITFYnmgUP0+4eolotWLRtzNQh+sGrFXj6czuLpHjxqP2FNpCIRTp/BOm/AH7vIyQt7cyd8IxLGJhVssUWzi3xbbcQRCIMplZKWKTAVfEQQIO93TYrFYLJYD4b9+/SL/+toW3//IM/g3eR1wp9Fa8412n3+0usbvrrWRAv79Iwv82qkVnm9UDnTbLBaLZYo4NKLtqG3KpN6Zrk8ty+ppWyc7X/fI+/Ikbsef31fSNK01bw7GfH69zefX2/xJZwDA6ZLPTy83+dRygx9pVHmtN+TlrS4vb3V5pT0g0ppACn60UeVji3U+ulDn/fUyzkN0bxYrjSOw96P3CTYG8BysAGyx3P9opUg2NoiuXiO+djW3l68YL97VSyQbG1PryEoF74xJWuadPDUV59Y7eQIZBAf0aSwWi8VisRw2tNb82Ne+z1O1Er/x7HsOenOmeHc45rOr6/zzKxv0EsUHm1V+7dQKP73SfKjECYvFckAMNmHjh7D+Jmy8mdq3YLhpBNx4eOPXCBqmlJpQSm3Q2KXehKX3wOL+jsWJ1rzS7vP59Ta/t97h7aFx/Hl/vcynl5t8ernJU9XSrsJmP074WrvPy1tdvrzZ5Xt9E2qv6Tp8ZKFmPIQX6pwr+w+kOPrt7oDPrq7zW9e3WHBdXmxVebFV48VWlccrJRuP/pBiBeA5WAHYYjnc6CQhXt9Ihd2rxFdTgffqVaJrqb1+fTqBGYDn4R09infqlBF5T51OrfHkdVqtB/IEbbFYLBaL5c7z9mDMj3/9+/zdx0/xn5w8nEmEunHCv7iyyT9eXePCKOR0yeevnlrml44vUXdtnGCLxXIbJDFsnc8F3vU3ctF3sJ6Pkx5q8VF6y09RqzSQmaAbNHNxtyj0Bg0I6iDv7DFqkChe3uzy+fU2/3ajw0YU4wnBh1s1PrXS5FNLDU6Ubi1szloY8ZWtnvEQ3uxyaWzuQ0+VPD62UOdjC3U+vFBjxd9fGIrDSKgUv7PW5v9cXeOVzoCKI/mLR1oMEsUfbfe5GprPvOg5/FizNhGFn66WceXB32NvRzGv9oa81hsa2x3y9586w3P1h2eGjBWA52AFYIvl4NBxTLy+noq6mcB7jehaaq9eJb5+HZLpKT/C93GPHcM7etTYY5k9hnvUtJ3FxZsO02CxWCwWi8Uyj8+urvHfvXmJr734FOfKh3uWUKI1v7fe5h9dXONr7T41R/KLxxf5q6dWOHvIt91isRwwg82CJ+8b6PUf0tu6yGZviw2nyqbXZNNrsVk9wWb9HJuV42yWlth0G2yIEptKsBUlKMATguOBx4nA41TJ52TJ52TgGVvyOBX41O7gw6n1MObfbrT5vfU2X9rsMlSauiP55FKDTy83+cRSg8Ydfhimtebt4ZiXt3p8ebPLV7a7dGIFwNO1Eh9NBeEfa1Xvi4Sd18YR//TyOv/s8gbXw5hHyj6/enKFv3R8cfLdaa25MAr5o+0eX9vu87V2j/PDEICaI/nRZpUPtWq82KzyXKNCcBfvybXWrI4jXusO+W5vMBF8V0e5c9gx3+PpWpn/6pFj/JmHKESSFYDnYAVgi+XuoOOY+Pr1PBzDlat5eIZM7F1bA6Wm1hOlUkHYPZYLvKmw6x4/br13LRaLxWKx3FN+5Ttv88ZgxNdefN9Bb8pN8e3ugH98cY3fur5FouHTy01+7fQKLzar9lrKYjmkrIcxb/RHvDkYMUgUUoBEGCsEEqb7JhYcIRACpNZIFSFVjKNiRBIhdYRMIpy0Pxp32WpfZ7O/zcZwwGYUs0mQiryp0Os3iYQ7dztdYRJU5sVh0XNZ8lwarsNmFHNpHHF5FLI6DrkyjkhmZKam63AiE4XnCMXHfG9Pj9K303i+v7fe5pvtPgo4EXh8Kg3t8KFW9Z7GbI+V5ju9AV/e7PGlrS6vtPuEWuMLwQvNKh9bqPGxhTrvr1cOhacsGBH1lc6Az66u8dtr28QaPrnY4K+cWubji/V9hXi4Mg75+nbfiMLtPq+nYTJKUvCBRpUXW1U+1KzxgWblloXwSGneHIwmHr3fTT1827FxFhPAeysBT9fKPFMr80y9zNO18n3tiX07WAF4DlYAtlhuHh1FRty9do3oypXca/dKHpYhXl/fKe6Wy6moexTv2HFjM7H3+HG8o0eRzaa9IbFYLBaLxXJoCJXiqa+8ys8fXeB/euL0QW/OLXF1HPHrl9b5p5fW2YoT3l8r86GFGqdLPmdK/sRWbagIi+WesRZGvNEf8Xp/xBuDMa/3hrzRH7AR33stRmpFi5AlqYyYW6qwWKmz6HtTAu+S57Lom3bdkTd135ZozbVxxKVxxKVRyOooNALxOOTSyPRtxdMzPyWkXsTGazgTh6+OIz6/3uGNgREan66VJqLvs7Xyobmf7CcJ39hO4wdv9Xi1Z+IhN1zJh1t1PrpQ42OLdR4t3/tk38NE8VvXt/j11XW+0xvScCW/eGyJv3xymUcqtzdbZCOM+UbbeAj/UbvHq90hCvPQ4Ll6xcQQblb5YLNK09v5gKEbJ3n4hlTw/UF/RJjqlGUpeCoVep+ulXm2VuaJWum+8LK+V1gBeA5WALZYcnSSkGxuEm9sEK+tE2+sk6yvTyVXi65eIVnfgJljhKxUcFMRN/fePZqHZTh+DFmvH5qTscVisVgsFst++OpWl5/71lv8k2ce4dMrzYPenNtikCj+9bVN/tnlDd7sjxiq6eu5Rc/hdCoIZ+VMOeB0yedUybM315Y7zlgpvtcbseg5nAz8Q+MVeafQWrMexUbkzcTeTpfXB2M2Vf5ZG8mAx/vv8ET/HR7vn+eJwTs8Fl6n6fkoN0A5JRI3QLkB2imh3IDEKaFcH+UEaMdHuSUS6Zs+GaBdj8QJUNJHOT5aeign6/Nw/AqLS2dYrC/QdJ1DkTSyHycTgTi3qUA8Drk8igi1xhHwYrPGp5ebfGq5wZn7JLzNWhjx1a0eX97q8qWt7iRUwYnAS8NFmKRyR4K757W6Ogr5jUsmcehmlPBEtcSvnlzm548u3LWHgN044ZvtPl9LPYT/tDMg0hoBPF0r82KrypLnTgTfLKQEmPPSs7UKz9RzwffRSnAo9tfDjBWA52AFYMuDzpSou75BvL5GMqmvk2ys5/WtrR3CLoCs1Wa8do2gOwnLcOwYTr1+AJ/OYrFYLBaL5e7yd966zD+4eJ3vf+TZByqZWiZMXRyGXBiFXJxTxjMC8bLnGmG47E95DxuB2Kfs2PwLlhuzOgp5aaPDS5sdXt7qMUjMrEFXwOmSz7lywLlywCNlUz9bDjhb8ikd4v2rKPS+3h/xervNG90ub4wSNnXu4diIezzRf4cn+ud5fHCeJ4YXedzXHGsuI5YehcVHYem9ptSPgRW5plBasx7GBFLM9Ry9n9Ba8+4o5OXNLi9vdfnKVo/t1AP6yWqJn1io89HFOh9qVm9bmNVa89XtHp9dXefz623AhAT61VPLfLhVOxDv4z/p9CcxhF9pDxgqxSNlfxLC4elamWfrFY76rnUiuwWsADwHKwBb7jd0HJN0uyTb26hOh6TdJtnaMiLuRirwTuqpqDsTigFMrF13aQl3eRlneblQX8JdWsZdMX3O0jJOrXoAn9RisVgsFovl4Pmz33ydiiP5rQ88dtCbck9RWrMWxhMx+MJwWhxeHYWT6bgZR3x3Igw/Ugl4pJyXRc85tDfxsdJcCSNWRyHHfO+2pz9bpgmV4hvtPn+w0eGlze4kPuipkscnFht8ZKFOL044PxzzzjDk3eGYd4Zjukl+DyMwoQCMOOzzSCoMZ/U7/nBGa7RKGMQR7fGYdhSyHUa0o5jtOLOK9TDkzf6I1yPJFv5k9WbU5YlBJvS+yxNiwONlj6MLRxFL74VM7G2eBuf+FjItd4ZEa17tDXl5s8uXt7p8vd1nrDSugBcaVeMhvFjn+XoFb5+e8v044f+5tsVnL63zet942v9Hx5f4lZPLnC75N36Be0SkNKFSNgzRHcQKwHOwArDlINBao/oDVHubJBNx2x2SdkHUbae20yZpt1HbbZJOB9Xr7fq6IgiMaLuybETcpSXclWWcpRlRd3kZWbXJPywWi8VisVj2Yi2MeParr/HfPnKc//zc0YPenEOF0pprYbTDg/jCMOTdUcilUUjRBaHhSs6VA96TicKpQHyu7LPs3V0Pr0zgvTic7+l8eRxOJad6X7XEZ460+MxKi8erpbu2XYeacADrr8Pa63D9+zDcgsoSVJeNrSxDNbPL4JWnVr88Cnlps8tLGx2+tNWlnyg8IXixVeUTiw0+udTgscrucU+11mxGyUQMPj8MeWc45t1hyPnRmLUwnhq/6GgekRHn6HMu3uZceI1Hhquc7bxFZbzNtvBpiyC1JbZlibYs05YltmWFtlNh26nSdiq03Rrbbo22WyeSu0/FF1qxEHV4bHjBhG1INnncUzxRK3Nk4SRiOfXmXTgHrn2oYLk5honim20TP/jlrS7f7Q7RQM2R/HjLxA7+6EKdx+f8j94ZjPn1S+v8i6sbdGLFs7Uyv3pqmb9wZMHO1HhIsALwHKwA/HCjlUKl3rRJp4uOInQcGZsW4rjQjqeW7To2jNDx9FjV7aaCboek04E43n3DPA+n2cRpNHLbaiIbzam202wiGw2cVgt3ZcWKuhaLxWKxWCx3kH99dZO/+f0LfP5HHuf5RuWgN+e+YqwUF1LR7vxwzNvDkPMDI+ZdnBGH6440YnDFCMTnyr4RiivBvsThWGkuj3cKu6ujaK7AK4Bjgbcj3vHJkseb/TGfW9vmG+0+Gni8UuIzR5r87EqLJ6ulB+9ae9yD9Tdg7QemXE/t9gUg/dKkB+WWEYHV/HuYyG/wzZUX+YPFF3mp/gzf98wDk5OM+ITf55NVwUcWatRqqYgcNOaHN9DavE9/HfrXob9m6r2sbkpv2OXd2OUdt8X58knOl05yvnyC8+UTXAqOosX+RC6pFU1CmjqiSUSLiCYxLRHTFAlNmdASiqbUtCQ0paLpCFoS6q6D9AJYeAQW3wNB7VZ+AYtlX2xG8SR+8Mtb3Umc3KO+O/EObroOv3FpnZc2u7gCPrPS4q+cWuGFRuXBO3ZZ9sQKwHOwAvCdwXi09lGdDrgu0vcRvo8IAsQ9Shahw5B4e9uIuVOlnde3tqaXtdtzwyPcFFIiPC8vrjup47kIz0d4Hk6timw2cTIRt2nE3UlfKxd8RfnwZC61WCwWi8VieVj5W997l5c2O7z64WeQ9trsjhEqxcVRyNuD3LMzKxdH02JtLROH05iwJ0o+a2E0JfReGUc7BN7jcwTeLH7xicDDl3sLhFfHEf/f2jafW2vzte0eCni0HKSewU2eqd1n1+vjnvHmXfsBrH0/9ez9AbQv5GMcH5Yeg5Un4MhTxq48BYuPgOMZcXa0Df0NGKxztbPJS92EPxgHvKxadIWPqxN+bPgWn9j6Yz557Ys80f0Bc78lx889icstGLVzgXeuyCzM+NoRIyBXV6Ca1mtHptrj8hIXlcs7gzHvprGsW65D03VoecaaukvNkfa/bbkveXc45itbPV7eMiEjNiMTP/iI7/LLJ5b4lRPLHL2LyeQshxsrAM/BCsA7UePxTuE0FUt3bbfbu3u0Og4iCJCel4vCE+shvZ19wveR/s4+PRrPEXhNUf3+rp9JBAFOqzVdFmbajcZErBWeO1fUpdiX9dtsyBaLxWKxWCwPHEprnvvD1/hIq8Y/ePrcQW/OQ0OkNBdHBVF4kIcAuDAaE+s7I/DeDGthxO+utfnc2jZf3e6RaDhb8idhIp6vHyIxeNQxHr3Xv5+Kvano276Yj3ECWH48FXifhCNPGrvwyJ7xaGOleaWTxfLt8FrPxPI9Hnh8YrHOJ5cafHShPh2PN+wbD97Beiocb6T1Qt9oG0rNGWF3BWoraXvFiL/S3ndZLPNQWvO93pCrYczHFmp39PhnuT+xAvAcHjYBuPeVrzJ+881UtJ0ReVNBVw+Hu64vSiUjljabOwXVZhOnUUfHCToco8MQNR6bcAhhiB6P0VGhbzye9Kso3NGnwxCV1oteulnIA1N2bofbauEsLEz1yXJ5189ksVgsFovFYrHM8mp3wE+98gb/65Nn+EvHFw96cw43WkPnElz5Nlz+lvHmbJ6E5ilonDK2fuy2BbxIadajiCXPPTCBYyOM+b31Nr+9ts2Xt7rEGk4GHp850uJnV1p8oFG58x6lSpmwCFPC6boRUyftNdh4Gzqr+XpuCZYfM168E7H3KWidvWHisX6ccH5kErKdH4b8aWfAl7Y6dGKFI+CDzTyW71MPYmgMi8ViuY+5GQHYpqF8QNn+V/+K7u//PjhOLuI2m3jHj1N66qn54u5C3idLB5MEQccxOgyNR7Brd0+LxWKxWCwWy93li5tdAD6+WD/gLTlkaG3iw175Vi74Xvm2ESEBhASvCmF3ej3hQOMENFJhuHkSmqcL7VNQXpgfFzbFk4LjwW1mrk9iI1APt4zn6XALhtt5WyUmYVdWnMAIqa4Pboklx+eX3BK/tOyzvRLwe32Hz3UUv766xj+8uMZx3+VnVlp85kiLH21WceZ9niSe7wm7W3u4CXqXsHVBM0/Gdu7DRuRdedIIvgvndhXdtdashTHnh2POj0LOpwnWMsF3PZqe3XnM9/iZlRafXGzwscU6Ddd641osFsuDgPUAfkCJt7YQjoOs1RB2WoDFYrFYLBaLxTKXn//TH7IRxXzhg08e9KYcHFrD5ttG4M0E3yvfNmIpgHSNd+mJ5+D486YcfRr8ihFZ25eMZ3D7oqm3V/N25zIk4fT7eZW9BeLGSfPaWkPY2yne7tUebpu+ceeufFUdp8q/XfoQn1v5OC8tfpCxDDgSbvLntr7OZzp/woujt3HRRvgdbe/+QuUFI+ZW01KZtUt5u7JkhOldCJVidRQZUXci8hqB991hyLAwy1IAJwKPc+WAs2V/2pZ8Wp51wrFYLDdGKw1KT2yxrpWGpNgmH5ModKwhUehEo2Nlxqb9OlGQWp1oiNNxxf60j3R9nahJvfXn30twtnHQX889w4aAmMPDJgBbLBaLxWKxWCyWveknCU99+VX+yqll/of3njzozbk3KAWbb6UevZnY+x0Yt81yx4cj74Pjz8GJ54098jR4tzhDUCkTtqCzaoThiUBcaPeuATP3pUEDosEuicJSpGeELrtGrAAAIABJREFU1PKCSTBWXoBS68btUtOI2kkI8Si3cdYeQ1woU+18fC9O+HdJi89xnD+QxxkKlyU14CfCC1RcB+kGOG6A45WQXgnplnH8Co5XwpEOUoBE4AhwhEAKgYOpi7Qva8u0LTCJ6y6kQu/5YcilUUjRb7gsBWdSQXdW6D1d8gmsg5DFYgFUmBCvDYmvD4iuD4xdH6LDZFrQTdgh9t4zHIFwJcIR4EiEKxCO3LW/8VNn8E89PDN6bAgIi8VisVgsFovFYrkBf7jVI9San1x8QL2FVGIShRVDOFz9jvGqBRP24Ngz8OzP54LvylN7epveNFJC/agpJ39k/pg4hO7lXBDurELvOvjVvQVdr7JnKIkbb1vp1oVtoAb8hbT0k4QvbHT53No2X283ibQm0SZpUxJpVIhp0yfRJsHc7Ugoi57DuXLAjzar/PzRhSmh96jv2li9FotlQtKPiNcykXc4EXuT7XE+SIK7WMZdKSNLLkhhxFUpENLYvI6xzrxlBbvL+sLNRNtUwE2tSIVcnEzYFfZYdgexArDFYrFYLBaLxWJ5KPniZpeyFHywWT3oTbk1tIbBJmyfh613YftdE7d3Ur9ovFfBiKXHnoXnfykN4/CciR/reAf6EQAjOC+cM+U+peo4fOaIiQm8X7TWKCApisWkVoPCWLNcozEi8orvUrexeS0WSwGtNUknnPbmvT4kXhugelE+0JV4K2X8sw28H63gHinjHangLpURrp0d8CBjBWCLxWKxWCwWi8XyUPKlrS4fatUoOdJ4yw63TSKuwWZqN0xcWeGYsAGlpvE8zeqlJvh14+V6txh1jJg7V+C9kHvzZpQXoXXGxOh94s8Ze/x5WH5s10RhloNBFEI8WCwWy37QiSbeGs0IvQPitSF6nEzGiZKLd6RM6clFI/AeqeCtlHEWSsYj1/LQYQVgi8VisVgsFovF8mARh7mAOxFzC4LuYJOLYcwPj/xNfuWH/wQ+/y+N+Hsrk/KFNPFqi6LwRChu7eyf7RPSJEubiLoFsXfr3Z2JxPwatM4ab9lHfsKIvQtnTV/rDJQe0HAWFovF8pCgY2VE3o0R8caQeH1IvDEi2RgSb42nYvDKuo93pEzlA0dyofdIBVnzbPgEyxRWALZYLBaLxWKxWCyHG61h1DZxYXvXZsp1U4pi76xXbBGvApUlvnjsZwD4eDmCZ34OKkvGe7aymNvKook3q5V5/1HbCMVZfVJm+jbeyutR/+Y+qxNA67QRdE/+SCr2ZgLvWbNN9qbeYrFYptBaQ6xQwzgvowQ1jNFTfcbqSCHLLk7VQ1Y9ZM3bURcl9655y+pYEW9mAm9qN1Khd3tEMbOjCBzcpRLeyRrl96/gLpVSj94KsmxlPcv+sHuKxWKxWCwWi+Xm0BrCPiShmTavYlN0Mt1Wcdqe6Zs7Tk2353pizrkJmyuEib3HCAeCmvHaDBrGYzKom7pXfvDFtXicJttaNZ6n7VUTK7Z7GRzfeJgG9fw7mrTn9dVMCATnFm8r4nEu4PauFgTd1Hav5u1kvHN9x4faMaitQO0IrDxphNzKwoyYu5TX06RfX3z1HU52Bjz2F//n/f3m5YVb+4xJNF8ozoRkFUGz4MVbO3p3Q0pYLBbLPtGJImmHxFsjku0xydaIeGtMsj0i3h6TtM1xWbgOwhMmqZcrEZ7cUcfbfdmszcai9ES0NSJuMhFwJ8JuoU2y9ywO4UtkyUWUXYTvkGyOGPUi9Ciev4IEWS0Kw35er3o4ten6rGCsI0W8uVPgjdeH5rsrbK4oObjLZfzTddznV3CXyrjLZdylErJqvXktt48VgC0Wi8VisdwaWhthQ0WpjXdvK2UEDemC9Ix13L3bD7oAojVEA/N5Xf+gt8YIsoNN6F+H/hr01mbqWXvdCHLzxLgHAenmYvCsOBzUp9ul5pxlqYjsBAe3Dw+3p4Xddlq2077e1ZkVBNSPQeOE+d+OuzDuGRsP9/eeXuXGwrFKjJBbFHVnwxtkVJZSYfcILL3X2NpRs51ZvXbEhFO4hZviWGm+vNXlZ1dad/+m2vGgumyKxWKxHCJ0lBghd2s8LfKmNumEO57HyrqPuxDgn6rjPL1kjsGRQscKPWtjhepFk/rsuJuOuiNBll1k2UOUHGTZxVsIkCUXWTbCriy7k7Ysu5NxsuTumuRMxwo1iEh6Eapvyrx6dKl3Y8G4YgRhPUpIOtMir6y4uEtlgnMNnILA6y6VkRX3vhN5tdYkkWI8jAmHMeNBbOqpHQ8i0z9MCAcR42FMHCpz2hYCIcjrzOlLvw4hp5cjmHxXQoIg73/+p86wdLJ277+M+wArAFsslv2TxGYaY5iV3kx9MKc/bas4FXQcY4WT1tP2vD7h5CLQVHveGMcc/Sf1eetm68j57zH1WoVtEcULhewsJKbb8/qmTuC7rKeV8aBLQiOUTeqFvng8s3w8PTaeXb+wXKdzh7RmcvWR1XV2NaILFyZ6H2PTunTBr5ibfq8yp141IohfTftn6jYRzZ0n88rM/oPjbqHdM4LOjnZhbDwqCLjxLsJuoV8nN96m22Hyn85EYccIKZM+N2+7QbrvpfudV033w93qe+yrbrC7oKSUOQ5m4ljYnRbLwtTO1iftmXEU/09VI5hln6NYvKxe2ee4tGi9t4jbX8vLYCM/ZhSRHlRXjHiVeVhWl6GyDG5p57F8x3G40DfXzh7f3TnHXgrHoanOOV2zfXPGqDj9LTrmdxh10nqx3TXtUQc6l2H8g3yZina+5jyka4Rg15+xgfFcnWtvMF565sHBuJt6km4Zwbe/AYN181tGg5nt8KFxHJon4T0fg+Y5WEzjxTZPQ+Pk7g8hknjOfl7Yr3f7L4y70Fmd7hMS6keNeLvyBDzysVzIrR3Nl1VXzH/7LvKn3QGdWPHxRRsv12KxPJhopY2o2Y2MmLs9Jt4eTYm9qjdzPpPgNAOcVong0RZOK8BdKOEsBLitEk4r2FVEvent0xqUnhKLdVQQh2MFCCOMZgKuL++KSCpcidMIcBrB/rZ9H4KxTMM2GJE39eSt3N1z262itWY8iOlvj+ltjxn3ozlibkw4Sm0q7o6HMSreW8WXjiCouPhll6Ds4voOSpl7THPZqdGTW1A9uYzTWV3vb7m5TdU8+aHjd+lbuv+xArDFctjRGqKhEWjiYUGMCaeFmSTc6X23W3239aN5Am6hHo/2v93SNQKFXzOChXTz6b6Tqb/Fdryzb54QYbkxTioUOF76SLQgOu+oF4Xpmfrk2mqXsSoyon80vPn4hmCEo93EY7c0Lf7suNCbJ7zP9O+1bJ4AlQmMcwWrTGx0Z5bPGSPE9FT2HVPdC/u73mMK/Nz1IvN9T4TbWVG3z75dKdxSLiT6NeOd55aMp5700s/qpQLrbNvdpX+PcdI1nyk77mTlltrpd1FcHo/NMaxzOd0n0+NZNLx5T1Uh8/3RK5vPEPbz730/33F2DAwa6RT5mvFUbJ4y37GfekX61fy/FPYLD9nSdu964dhceKB2u/j1XNBdfA+c/jEjutWOpJ6KR9L2yi17WD6waG32t3HHCK9b501pX4D2ZePVGg/ThyVxvq9m/+e4a7xes/98dr6bFJ2e/2YeyN0OKsyTixUR0pwvsv+sG5h9oHk6F4dbZ0w82mZaHpB94QubHSTw0QXrJWSxWO4PdKxI+hGqF6EGO0VH1Y/M8qwM452nEFfitgKchQD/eA1nIcBZKE36nHqAcO7NcV4IAY5AOPffjK+bFYwPEqU0w25Ib2tsBN7Mbo/obxnBt781Jo7m33s7niQopwJuxaVUcWkslwjStun3psZkNii7ON7dEe0tN48VgC2W20XrXIxIUnEm7M3csPfTdm+Xm/w54yfr3ISgc1OIXCSUbhrzr+A1FtTNNEu/VujfpT7rcebX7sx05sl3u4dIXOzTs8uK/ZngpqZvxHWSi25T66u8PuUNy5z2vL7Csh3rTf8M5ncIzG/h+KmXl5/XHW9a1J27PH0N6RzMzXn2oCITg8OBsdFwpp7u13vVB5vmYcO87zJ7r7yxS/9ey/T075vMiDOZYHNgiBmBueAFK5zUAzQVFOvHYWlGxJ0Vdf2qEfv8ai5E+tW77l13qEjidP9KS7hXfc5+m4Tp9zcT93RHHNSC4OuW7t5/MQ53nkPmnWfCntmG6sq0oFtZNvuRZW+UMh617VXoXIL2JePR2r6Ut7tXdnrCe5X0QcrMA6KJt/RuXs+7PFSaeEOnD+McL/earSybUAmOa/bzbGaIKtSz/skD4TB/MDzbH4+gcwXW34Af/sHO8A9+LRWFT8/YVCy+j2LXfnGzy59pVGh59nbIYrEcDFprI9puj0m6YSrcxlMibrGux7vMvBKYOLRp6AHvWDWPS1tx05ANxntX1mws2QeJJFYTr92JuJuJutsjeltjBu0w9bjNkY6g2gyoLQSsnK5z7v3L1FoB1VZArRVQqnkEFQ+/7OB6dtbmg4K94rEcXpQyXlvZ9PfJNPhwpm+cToEfF6bLF/omNpsWP56Z2hzN3BztY9rzrFftreCWC9N5C1N5K0u7TPlNBQWn6GlXsDdbvx+m3wthbmpvNbGM5d4hRLqfVoClg96aO8NsQqq5ZZdkV3tNd5+aFj8vDMr9IZ7cVzguOGks1wcBN30IdKsJqSzmodBg0wi5nUszIm/a7l4x1wZFnMCEUWichEc+amzWzuoPise01iYsyPaFQvzgzF6Ai9/YGb/X8c330DptkprNCsXNU4fi4dNWFPOtzoD/4tzRg94Ui8XyAKNjRdIep0nTConT0hJvj9MwBzO4YirRmJcmAZuIuoW6rHomzq18AM47DyhZnNw4UsRhQhwq4ii1k3ZWT6bHzY5Nl42HJlzDsLtTi3ADZyLmnnxiIRd2FzJbolzz7D7zEGJVFcvNkWWN7l4xXlHx2HiLFG0mtk76i+39jEmX34kprhnCSePnZZ6Ue0xhnsTgu9G054LnbHHZJMbkbFzGzGsvnVZ8PwiwFsvDjJQmbiaHIDmXxfIwoDVs/BAu/BFc+JpJFJaFR1BZeIQk9+CftPVMO1uu85kdU8tUGu96JjSI9Eyc3MYpOP3BVNA9lYq7J0y9svRgiLv7QYg8cdnJD8wfM+4WhOEZofiH/25nsjnpmoRuy4+bWNIrT5iy9Bh4pbv/mVJe3uqigJ+08X8tFsstorVGD+M9xN0Rao44J+s+bivAO1Gl9L5F3DTertPwU0HXRfiO9dI9hGilGQ0iRr2IYS9i1I0Y9kJG/Yhht9DfCxn2IqJRLujeCkIKXF/i+g6uZ6znSxxPUm0GHDnbyEXdVkB1wVi/fP8lk7PcG6wAbJlm1J7x8Jip967t/7WkZzxW3aBQSgVbMl4yU/1Z8pM5CVJumCRlNmFKIXGKFVstFovFYjlcxCFc+bYRfC9+3djBhllWWYKFc+YB7iRxpwPCy0MiFJcJOVPPls0blyYTbJyY9uCtHrEe+DdLUIej7zNlHpnjQHYtufk2rL0O116DH3wuj/UvJLTOpqJwQRxefty8xx3mi5tdmq7D83UbCsViseToRKGGMWoYo0fJpK6GsQnH0B6nIq9JoKbDGWHPlbgLAU4roPTEYhpX14RecFsBTvPOJVCz3B5aa6JRzKgXMuqOGXbHjLpGuB31QyPo9uO0HTPsJ4wHyfx8tIDrQbkiKVUE5YqgdVzgV3zcShW3Uk5FXCcXdGeEXdeXO5Y792FsZMvhxgrADxNKmczf84Td7YvmAn3cnl7H8Y3HS/M0vPffy6fwNU6kIQl2EXedwN5EWSwWi+XOk0Qm8dZo29jhlnl4iS7MtqjurLtle146aEZtuPjN3MP30it5ctHF98Djn4YzL8KZDxkvUeu9YlBqOunhbsniJvV5y25irMjijjtpWJpCqJpi3OLiuN1C2LgBLD1qyizRCDbfgrUfwNobxq6/YTyHi+G1GqdmROHUa7iyeEtfp9aaL212+ehCDXd2+qvWhbjwacLJrC3E/MSX9rhieRBQiQmLM1g3ceSzpJBznXD8u3t8VskuuVFukD8lGqBx0MEKyltBu0so0UKJBkpXUbqCij30SKNG8ZS4q9P2DkF3BlnzcFoB3kqF0uOLubCbFlm9xfi6k+N8IafJ7GyXucsK/ZPZMrNjk73Tyczd3F0+w26fLTtXTFk53S4+iN0xdn6/QhKPQqJ+j7jfJxoMiPsDouGIaDgiHo6JRhHRKCIex0TjhChMiCNNFEIcQxRJolgSJw5R4hIrj0j5xHr35G2ChJLsUpYdSqLDouxQkh3KlU7a3zZt2aUk25RkF0+kIaM00E9LhuPnsfvnWecolFZM3T/8SeVuG63zBM6TvAThTInmLB9Pj43D+ctf+FVYfuygP+WhxArADypv/D5c/pNpsbe9ujOWXdA0Am/rNJz98eksz63T1hvGYrFYLHeeJM4F3Cm7NadvZlnUv/Hr70YmCO8mEu8qHqdT0/cU3ebVC+sUxbapOiY528I5WDhrEvs9KLNW2pdysffC1+Daq4A2N3fH328u0M+8CKdfhPo9jMWqlEluNptjIAtBVbzp2LVvXk6CQt+seJiVfbWTacH3riSCvYvsSHDnzBEBZO61PVuWH09zLaTfZTQw+89bXwQK4oz0phPXemXTvyMxbCEZrFa84R/j8jP/C//l1/8O/L+/O50EVu8t/sxFyFQIdneKw7uFEZPOnLwMqbAyEVj2at/MWGYS4sbTMe6LCXCLce11YczcBLzp66ALn8UvfOa07vi756Vw/DycmpBme4sJD4WcDt+WjSt+D8XPPPe72WOsWzKJO0uNaRs07v/8E3FoZlQM1qG/bur99UJ7HfqF5cMtbupYI2cF4sLMy+w3y/qKyx3X/K+zRKXzkmPPJp9M0dol0UskLBurl0n0MrE4RqIfJ9GLKFUHZs+hGuilBQR9pDNCOiHSi3F9jSwL5KKDLPvIahlZryDqdWSziWwtImsVE2fXk+mDohDGvfQzbJttv9otfK6+CZEzaffS8bu0o8Et/MiHg1h7RLpEpEvEOiDWQdoOiHWJSAXEmL5YBZNxuU3HFaxZ5pOwlxgqgFJaDJIYV4zxZIgrIzwnwnMSAiekVlK4rsbzBK4Pni/xfEmppCmXYkolRbmkKJUUQQDCyWYNlUFUQJycM9topsz2j7tmBnXvGvSuG7t9AVa/af538/5zfn0XoXimr9SanxOpeF1SDL05e82y17IsZ9JuCdJ3nF/3mVy9eP6444j8mPT4p6wAvAv3+ZnNsivf+ufwvd8yB4fmaTj+HDz5mZ2Zm0vNg95Si8VisdzvhAPor5mL2f5aoRTag/XUY3cbwu7er+dVzIVtuWVs66w5jxX7yi2TBC2rIwoeQXO8g/aqDzZ3rntQopvjm3P0wlkjCrfOTtfLC4fTM1Yp48FZFHzbF8wyrwqnfxQ+/reN4HvyBQhq+3tdrU3OgbBv9pvsd5vceBdupm+0LLvZvp2HCLNId34oqon45xbEwTRPwJRY6O7SzgTCOe1MRBUFwWuHeLZLG24wlpmbvNkbvniPm74ZsXVeO4vZPPFinld2Wa7UzH+3b/aN7lWTuG+ffPHkRwD4+PUvpf/1W0Q4eR6IyW9VSPApCkKAVjsTBxc9s4sPj8zC/GFRNrbYp9MxxXWK60LhIVTm1Z2FQxEz+5Ccsy8IQKbCXYlckMXUi2KrVrlgnyVMjoYw7swX4ud5sB9GnOLsRj8Xsice7zL/vrLfY+KpGaffe/GhwExSWFHwpBdu4aFI5jmZ/Sdn/utg6tnDkbDoBds1gtOoC/FugqJIz5+Lxot+4RE49QJUVtKY3yvmgYrKEmQnMwm3Q6YTbc8k3Z5NyD3u7RSVvFKeL6XUgMZxtNskUYvEaoEkbpLENZJxhWQckAw9kqGDGu0894nAMd63zQCv4ePUfGTZRfoKIYdI+kjdRuptZLKJiNYRww0YbqYC+WZetvc4Hvh1871E6TXCfgUsIc26ftWc9/yqmUXbODXd9qvpPjbPM1bM6btJD9vs+D5DkijCMYRjTTjSjKcsxo414RjGo0J9Ms7sIjeD62pcV+FNrMJ1FBVX4boJnpPgOiM8p4/rxHiexgtc3JKLF/i45QCvHOBVyrjlEl61ilup4tWqOOX6DR/e6ChCDYeowQA9GiGrVWSjgQzusedtEpt9sCgOZ/X+dWOvfw/e/kI60+1ukImmc8JoOm6+D8lC3fVn+s3+poWDCiEZKZKhIhkmJKOEZJCQDGKSYUTSj0gGISr1tNc6fyg3OeVpAeh8mdaFZVlbz9Q1KD1pn/rJEtX33KWv7D5H6N2CmDxgvPDCC/qVV1456M24dww2zQ30PUyoYbFYLJYHhCRKvYXmCLmT9npe301Q86r5DWV1uSDYLkwLuVOCbtNcjB4kWpvQBJkYHI9mvNJmRLfd6nPXmRHe0EbA2n4Xts7D1rvT9eHm9LYFDSMIt1JReCISn4PWmZs/72fT8KY8UYsefnEuwGZiQ5R6aI3aJpbrte/B+uu5B5Nfh4Uz5ga3fsxss4oLCWAL4kA8muONEuaJY8Pe/r0yhZPeUNcLnqG1/OZ6ylZ25gvYy2ttXq4Bx7ezpA4DOv0PbZ3PBeZZ4bRQ/8XrNVZjyZePb6f9kxeaI8AW6tn+OPWQYY6n38SrL+2bnX33IDIRSwv/p0nIgLTfLeUhBKbqBfEhCyOXefuCOdaEw9RDdGCOR1F/5pg0NPWoUA8HTHmMW24JrQHho4UHMjAWDy09IO0XPlq4pl94gIsWHhrPiNu4aOGicUH7JKqeiryNSVFqZzxuIYe4XhfH7eJ4PRwvsz0cr4/j9ZFONH3uldmDGX/6uD0JaeHlx+/ZMBcTYX2Y/t8L4SXGXbNfeVUIsvNLI7dBvVCyds3s07s8tNVKE4WJCVswTkgihUo0KtEkSVZPbTynLxsb5/3JpF+h4nxsHCnCYcx4GE/Z+AYhLwC8wMEvuwQVF7/kmnrZwa94xpZdvMAxCcoy60vcwMEr9Lm+xPMdxGzonbn7nYY4NmLteIzqD1CDPnowQM2W/py+gRmvBgOzTmGMDucfk4XvIxsNnHod2ajj1Bs4jTqy3sCp14zN2o06sl7HaTQmVgTBvsN/aKXQw+FEiFbDodnGYbqNWf8gtb0OqrOJ7myZer+LDscIz0P4HtL3zfsHxko/QJTKiKCEKJWRpbJpl6uIUgVZqSLKNUSpggh8ZBCY9f0AGfgI30f1+yTb2yTb28SpnS7t6Xa7bWJu7IJsNnFaTZxWC1mpIGT2EANE9pByR1uYuhAgpdl3RGFc9uBMmuvrbL2FX/wPCR6dE3rqAUUI8cda6xf2NdYKwBaLxWJ5aNDaiFZTgt48T7obedOJXS/oDyVJbITETLTNpn5O6sUpoWvpVNA5SDcXc6srhbI8Xa8sG+tX7+3nPKxkIQeiUS5sRmkIgh2hCKLpKXnZ9MFsCu9wy4TEGHXmi6PZ1OvMCwgBOs7jAs56Vd4LMlFnL3Foqj8d61UKom06zT+rF0Vev2ZutO92XErLfc8wUTz1le/yyyeW+B8fO3Vv3jQO53iid6eF5OycNOuZOzWduJjscHbq8W7LZr0HZ6cpz0mkWPQe3PeyQ/i/07rgJdufsYP8weWs+OzOHosK9aJnYRwaL+dRO7WdaRv2C2E/it6/Ba/+rO0UPYvT7xeN1goS0IlGxxqdaIg1OlJoWUbLChofHSfoKC1hjI4UxMqMi7Oi85JodOq4rxPMe8QCrQQ6EWglQaXeefruPOSSzsAIuW4nFXi7eT21UoRMe77fyKYzBTJP5Yk3cpT33SM0Ao3x4FZINBKlzXertSRRAq3lpCgljNi1i7OuuJGnvMiXCzJv/bSdeu4r6aPTMvVA0w2QXoDwSkY4DEo4QQknSIVDx0NFEhVp1BiSUKHGCSpUJpbyKEZFETqKCyVK98ud/SqKd1lWXC8uPITbH6JSQd6oVPO6qFSQvo8aDEg6XVS3Q9LpknQ7qE6XpNtFdTokvR6q3UZH0d7v73m5gFyv49TrgM5F3ImoawTem/pspZLZ7nI53fYywvPM9zUO0eMxejxGhXl9N6H7dhG+j9Nq7b8stIxA7jwg4c0OITcjANsQEBaLxWJ5cIhGZipwe9WUzqU0BvqlvH07U35nmRKIsyfU7rQwVRSwpsSsPZYV1/MqO70Mi4JuJtpOYvmtFeL9rd0gtp8wU0AzwXblSXjkY0bILS/kgptXMTfAQqbeoLNx+wbQ+950DL/ZZC3xKL+Y3zVu5by+3doz4yc307tMn5+6EZ+96S70z5uWj5gWazPvoHiUirqz4u6M0Kv2vmnYH2LaUymoQ2Upv1PMpupn03Gz7Zp6CZnH28w+YxajM/O4m/KcKhXEkEKiV69skur5FbPP1I7sIZh4h1McsjyUfKPdZ6Q0H19s3Ls3dX1wF285aZ3lFhEiDTVQuivfvRYeiiaaKkofRekYncSoJEbFqRAb64IAm4qyEzG22D/dNgWYONMVwj9MSIAbhFMCcByE6yE8iXDT4plCWSK9Ql9mHQGOMN51jjBed44w/dLYybKsbzJGTsZM1p20zWs7Nd+8/11Eaz3xrA2HMeFgTLjZIdreItraRnXaxJ02qttF9broQQ+GffRwAOMBjEaIcIQIx4goRMQhMoknYrNIp52LqUSbOtVhp0OziGy6+n5xBMIt/jYO0je/jfSciZV+Zh1EoS69dB1PmmWuBKERwxFqMEb1xqjhmGTURY0i1DhGjRLUOEnFXW3C0IegYoGKb+K3EhrhaHPZKjVS6lTU1qakddOvzaWzrxGl2WXFdTTS00i3WJT5rOUyslJGlMuIoJw+OK7szPlQ7J/Uq+Z6xlkhj1svC+EOpuPYq0ih+gOS/gjV65P0ByS9gal3e6heLxWSjXicdNoIIZGVCs7yUirgVnIht1pBpILuZFm1IPKWy8hKFVku3ZJ4qpVKBeKnSyjuAAAgAElEQVRUHB6H6DAXh9V4bMTjsLB8PEaHY9R4jKxWcecIuqJc3t3TWSVzYhKvw9ql6T6V5DHhd8TPz6/RlXAJpUssXCIcIukQIYm0JlLaWK2JlSYs2OfrFZZ8K3XOw34rFovlzhOPTSzIq99Ny6vG2yWL95WddOfV/Vp+Yp5XnyeGWR4OVGI8IdupqFsUerMyWN+5XvUINE+aLPKPfsLUvQpMXbRn8Rdn4k9O9emdYyiMzfpUPJO5umfE2O13p6cI65sImjaZbu7kQuSuY/0ZobBmwivMiwUnyKf7d6+YKdTZdt+UaCl2Jk7LhOza0TyRWhbyAHbGq5zXV5yaPXd5cYq2YteEWvFolwRb2dhd2nO/27L5fr2SqXulXBStLKbiZzlf7gapYJqNm+2fmQ49m3E9q0v35oXUOPUgzrbxQUkuZ7HcIl/Y7OALwYstOzvhYUbr1It2lEw8GPUw9WQcJahhnC8bxuisfzIuQYf7OIdLgXDFRHglE2ALfaLi7eybjBXToq0jIRVoi0LulICbrZu19zHd/k6itTZTx9fXia+vE69vEK+vE2+sm77NLUjmf3caExZBKeOlrIr1RJmJLCoNd6BAJWoyXiUarTQ6ipDRCBmNcJKxKfEIR+88p+8mhCg3QPlltF+CUgUaTUS5giyVEJ6LdB1TvMy6SM/F8STScxGONNPbHWmEcumY307IuX2Z1XGMGg3RwxFqNEKPhqjhCD0eoYYjVNpWoxF6e2gEvGEHNRqlCRlvAcdB1mo41SqyVkMumrpXq+JUa6nHbAlZDnDKgUmSV/KQJRcZuDilVHAOPITrmM+WseOaZc6+OPe6ZqZPRXn4qVkv/sxGw7w+6piwQLOhq24z3ngakXsPAU2A48CiC0tOLmwWH65PPXAPIPFg4MPYg04hXElxrDunL4tJroux9rMY+6YudIKYJF8rJGGbSsim0FoRohl4goEnGWrBQEtCrQlHCeFlTbiqCJUi0ppQQUhqtSDC2BBJKCSh9ImESyg9QuERSnduXyxcIuEZUVd4RMIlki6RMMtC6aLErV23/t/HRvzkUy/e0roPOlYAtlgst0d/A66lIm8m+K6/nosnXgWOPm1EoHBgBLrtmYy/Nzslq/j0NvOSLDV3xhMttUz/bF9Qtx5ph4V4bKZPTsq2sYPNgsCb2u7lnaKcX4PmKVOOP2eSZzVPmnbjpCmHLRa6UkYQbl80MV7bF8xn7F6F/rXcY3e0nWfWSNKn6RMK04NnM83PS0ZU9HCd8o6dWe74hYcx1fThTPFhTHWn0OtVjJD5oP2ntJ5OhOUG95+A6vrgLh30Vlgsh4Yvbnb5sVaVqp2Kel+hE4UeJ6gwMXZsBFidTkPX4xg9VqhxjA73GmusDpMba0FSIMsOsuQiSi6y7OLVyoiya8SvkjPpN2OcSV2WHETgGq/X+wyttQn/UPRGHieEW13G19cIr10nWtsg3tgg2dxAbW2g2pvo7ja6uwW9bUS887peC4EKGsRBHS1k/vw9fc80n9O+yHIRZn7REnBIL0Oki/ZLiFrLxDetlKFahXoVt9nAW6jjrTQJFut4rTp+s45Tq6bhA6rGm/QuOZpordGjhKQfoYplEJH0zfWt64ppb+0dov7MQwHXeGJrbZL16SiEcGxE4uEQNRqhhkNQClmtmYRntSpOrYas1RCl0r7j1t7XZAlld4jIA/JEpWqPhKfx9DXhVLuQ6HKqnToeZOFIkrBQT0OTjLtzwpWEqCQiVJpQK0KtiVLR1NhMRPUYOCUGsszAKTF0SgxkaUd94JQZykqhnvebsQHJLQqtRVyt8IXCR+Oh8YXGF0yKJwS+FFSkpCnAR+Gi8bTCQ+GR4OkET4/xGODpBFcn+Do2Vo3x1IiAAa4a4Okhnh7iqhGOHuLoMZIRjh7zWPlv3IGd5sHECsAWi2V/KAVb7xS8er8L116dzrxdPw7HnoXHP2XssffD4iM3Fk2SePep41F/2ptyKgP4IE/M0F+HjbdyAXGv2JZC7i4Yl1s7l0l3Jm7mDTKYTzxL98pyPvM62dPZHcvn9E/Gzr7H7FidPjkuzUzNnpnWPYnDGUz3z1s2G2MzicyT9ux7L4q4xTKc0zdq7+3JKl1onDCi7pkXU6H3ZCrypgJvqXnvhcdJ0qww9zjNLuwy79/eNeNR201tsd27Nt+7ttSE2jHzuU7+iEmeVTsG9aPmv1U7aor1gr83CJF6bthLpbuB8dRKjGhTEGV2CDSZF5yTe85RvDF2zM0yxeVS3LEbWp1mls6mbJOkU7WTYn3OsqKQMRuuhP04PYld+smnW8vpKdnTtjB1O5uy7Yh0eiuH7oZfaw2JzsW6sCjcqXzfKIp+RVEvTNCRQvgOMnAQQWpL7qR93YMf9Ef8RW+B8HKvMM4F987sM1rpfLvGhc8xU58VJYlUPn3eyX4vOfEgnfpNncIU/cK0eiHT/0Zhun7x9Wb3i+K6k31qt8+U/VfH8WT7h5sj+mtDomGMeVmBFAIpUk+5TKBT+X+IJP2/JIV69t9J28X/FYk5PhDv33NP+IXfPzBT4526j1iSyMBF+HJ6edonPQd8cxyRrkALYXLIJWp6exNtQjmk20yiSbpj9Jbe8TmgkL0eneekK4QE0IU6U/XpZVopolgTxYowUiSxIlFMEoAlaQKwJNEkqUdsotLEYYq0T6HiEMa5x6SIRohogIiHyGiIjIc40QA37OCNO/hhBy/q4k49hM42URB5VUK/YUpwlrD2LGO/QeTXGWf9fgPlV3EcB0eA60g8R+A6Ai8trivxHWGWuWk7tZ4n8QrWcQUyTQKV7WhCGKtDRdINJ0X1wvx7j4DroK/DOHCIGy7jWoLTGOHUEpzGGFnzcRo+Tt1H1n1kxd312KBjtVPM7UembxDPtCNUPwa1y76c/i91PHP+uBVk5iGeicW1XED2EoTXR7hDhLeRe5GnoSWmPMr3XDbTlx4/duSX2uuz6F0asy+hjMe+ChOiKCEMTRlFCWGsCKOE8aSuCBNFGCfGJjq3SqXFhA8ItSDWVZQE7QhTpLEUrJKmHwkqPYfqtE+7ApXuh1qaBx1aZn1ml8tCFYSpHSs1p08TaZVulzaHj9vA/f/Ze5PXy7Yt3+szZrGKXfyKKE516zIzyZv5MhHFJ2LHh6B2HoImomBDbSkkwkNEsOMfIDbEhh0bIoJNO4ogD0QhESHTVLPy1vfcU0bEr9p7r2oWNuZcxd7xizgnzj23jhHMGGMWe//W3nsVc37nd4whsFKKlVbUSlhpzUorNlrzWOe6UtQLe6UVtZ5fUypFoYRCBKsUpZIJxE3tqX9sU4vrJEaPc3u83+HcDu/3J3qH9w3eH+YSlvUG7/fzmHAghHb+gPcsg3I4cwZAbV/P3V8kr5PAvZbX8lqel/4AH/01fPCXM9D7wf8zJ8wQDY9/B978TgZ6c1k/+uUe9yghpJATE+h4ne2FnkDJe9o+l3idn7McJXs5SfhympxslHGH2g8vdmk/kRAVXVzThS1t2NDGDV3Y0oX1ZLdhQxe3+GgRQioSZpt4VFci+RDluGS3N1Ea0RqlNejkWifaoq3C6IDRDqM8WnmM8nNdHEY5tBowymHUgBGHktEF6iXg+xgrNQxpA2Jph3GX/gV2cMQoBDQ+GgKaEA0RhccgRErZYaVNP0d9mYHcRTkFdrdvJRbtL1jGGHntTcf+SYNvHNpqjE0LrNlWaDtm3wVEMgNnQcHJ9ekUHMGEPB7Ir8+LtV+wW+rnIRO404cZdDoFpI7Aq7lt2R+6BFbFLiXtQSlUqWbgohiBiwxSjPH9JnvRPo7LoIYUeVH2KcCsEXSLI0Azgi8hzO0j4BEy2JHHTX0TaBueA3BncC4cA3X58//cRMisqFO36gV4rGQGcNwM2iQwKsfozH2/kfIS8HgC0Mdre7yuZb7+l4DLsl0WgMy9rwvHIO/yvOBVTgmzuGby9YBWGahcgK7d7Gr+P7xj+E//oOa/+9/3fGt38se0HAPHpTkCCVWpE373IlD3M5zXYhfXrFHzNZavuQl0DCOY+AuS5TQi3uu0/akkxEgg4V15a/yoAMRM5YyLvytLW4775mOUSc2nWEQhCJIB6BSPVWIefh/gGl4xNuuriJoPMMQZmBhCCu2bYlcm24VkD3G0YxoXI4OPOD8Q3YAKczGuxfgG4xqMa9GuOaqbqT7b2jWoT0j+GRFCuSLU54TVBXFzAZsLOHuAnF0ilw/Qlw/RDx5iHj3E1BZTGUypk640utTYUqONwliF0r+8TesYYmLY3vaEXdL+ricsQeKsY3/Pd6MFvbEJDK4NoXEJ3N0NLw4DIiQ2+NqmsrLpPVYWtZ7b9SppWRluVCQgWIEigvURGZP/jfGjl0n9jhL8BRjyM+yk/bmEgMOy+OfaP604gUFBr2AQodXQKaFb6Fbl9hf0vaie3gs6LXQKei0M+e/Fn8Pmpc73OYmgiJM9tU126lNH4xdjT/oEMDFio2CBIv++lgSaliJYlUqhEshaaEWphUIrrFaURmOtotSKwirKQlPYVEqjqJVKQC5CLcJKhJr0NwhM8zvCYq53osdx0Qd8aPHuFjc8wWtHMA1BWrw64KXBsyfQ4OM+gbkTwLtbAL57Qvh0Se5ENErVaL1alPp+W4319cmY09ekIp8Dq/nXRV4ngXstr+XXXWJMLvB37ye38Lv3km5vUr/kx8yr6qPXctwX3By39+l3ZwZteZaA3j/+NzPQ+x14/Hu/em71S1Ejw/f81V8bY2IWL0Hh4O8BYBfA60vbXzRGzaDtlLE7g7rBnTBnr1NIgOZZOi9Gu7nO9dzm2qOPcQiXtOGCNmYAN2zp4iYBuGGbAd0E5qa2DX1cvfTrKdSBSh8o1QGj3ZTZOEY1ZTxOGY0lFSSDpSotnsdxcRwri9dljRD57A9thUerHiMOLUMChpXDyIBWCTQGIZDBWwwh6gzkjkUt9FiEEHIW5/jJE1CloFxbKiylWCoMZbBUg6XsDGVjqfYmjbkZKNeRam0paoP6DOBo8IHu4Gj3A81Nz+FZQ/Oso73paG572t1Aux/oGkfXhcyWiK+EuYzxz7Scanlpu5LERrjQwgOdJrvTG0q6D8mpncHiCVBSCzApj50A6fH9lov6XJ82upf+pdmOL3jNUV9mgIY+LaJeRaRYAFQjWFtqzLaYkraI1c+BYqHzhJsuAc2L9k8NVAgzOKxkmujPAG/Mro6v9HE+ndwDzEmhUWuLzWy8CeReAt6FRvLrVKnT96JIrMGjxEgjMPt8MqUpkZJ/UWKlDKhl9p5Yhar0DBSP7MiRWWyWdZVYosuxC2by8nUpxmP+Pu75zY64F/cRMe77nZfjYl7ULcDBCaRf1GMIJ8D+qb4f6CeOrMUMjoWT+ml/1jHGNHXw978HkcQ+LjV6Y5Gymq+N5e9/tLExsziXGyCfdgNpYq+2nj//7rs83h/4p//k96ALx2zcziXdLuqHAX/VTuMQSef2YnNGrcp0Xpf6xZs3SyC50GDT8zA2LoNJQ4ot298DzGTWWxzCtPk09fX+GND5LMzBzBIOKv1sLkZ6D50PtC7QuZgAyoxBayMUNgERlVXUNjE5Qx4zgpkuZDZWiOm1ISXn8WNfrrvMXJ36fHwhQfJnEaVI7GQ1FlB5o2MJOE+IMiPGfM8m5zh+BKIkAUPKd5j+DtPeYfo7dLsjti2h66DvUGFA+2MQV4cB5XvK4FjFAT2WMCBhQLkBcf0IkX+yiMB6jaw3cLEhbjawfRO/2RLWG7r1GrdeM6zX9Ks1/XpNV69oV2va1YpDvaYpS5TSnFvNhdFcWM25MVyY1HZuNPpXzIPgZSIqJZ3Tm+ITx4bOH4PDt4lB7G97/G4gNA61stjHK9TKoDKoq0egd21T+8pO96id83zQD3zQzeXDfuCDruHDjwc+eDfVu3tOfCNQKEUpI0AolCPrcmEXpVDUgkXQIgRinlNrHAoX4tEZNG3A5LlO2qBIrNPp2jxhqXaZmdrHSE/kFbJYPP+5IpRAhVAhR/YaeEQCR6vcXiCUKoGiEzCqhcIoCpOA0EKrBIrapK3JoOl97NXcVoigx83MT5AY8nzi9L57cr++t3258T9ufA4hJYqciAOvBsADaS68eEkgcqdbrs2BYBu8ORDMAW+TXto+jwnmAHLHurtm1e442w1sd46zxuOMcLcx3K01u43hbmM4rDQEi/J1LhU6rFCxpogXaFYoWSFxBayAmsAKH1e4WNPHmi5UDKHCxBotFoWa1hdzkQyuR0DyuSqEPLdI05bFJl+MqLiDcIdEuPgXv0bxpe2rfZ+/JfIaAH4tr+UXLd1dBnXfh9v3nwd5x/p9cXFtBuemZFSfoF9Vzr+cQN7f/1cS0PvWH8DFV+ZJ7m+DiKRQCeUmha4w1cLVf8gxmtpPYI7eExZg+frJdhlszgDuIQO7/e7Fx6dsSjRVXxKrBxzWv89N/Q7Xw5vcdA+43m+42ZXc3GjcC4jMSgnl2lCtLOXasFpbHmS7WlvKlaFc2WQvxpW1+YWxOKIPaWE4BFwfcIM/st0Q8H3AOY/rw/1942vG0qf6IU+wlJapGK2SrcY2tehf2Pf064UtSiCSgNjDQLcfaPeO7jCwv+l5+t6ebj/Qty+ZOgsUlaGqTfotKk1ZJ10Umv7gaHd9et/G0bWOrg8ML2GICTkGlxIKI6yt5sG6TH9jbam2lvqswJQGH7JrqcuLczfXJxfTI3t0O016GF1Ql+6oLiVpGeXirODxw5LHDyoePyhZVyZlzh6BpAxCTXaYAabJHgGlcez0YeW5xbzAMSP5tO+e1wAzyKRkZtkeAZeL+ikL93NOvjMlLbrPBf5et/m8oPDhU4cGEMWxS/hSa3WSzT0z+ZcAl9W/ljEvX8tvrogSpDT4QvO/HQ78g8dn1N968OpvNDSw//hoszYixAFC4wltJLQh245w0+KaQGjCzBgcwd7GfbopmhHE5gRLo8v1GKJgZe930S5OXLMX7W0f2N323Nx0XD9tuXrScP1hw+2TNt1Ps9Rby8UbKy7ezCXb549rtP35zwGCT8/zofe43qdQBi6HL8jPnJCfQcHHuW3qPxmbE4il9vy6/Ew73YCZajEiQ4s63KL3N+jmNtmHG9SJrZtb9OEW8S/3HosiRFsQi5JQFISyJKxKQlniyzWuKGiKgt4WdEVBbyytLWitpTEFjTEcjGVvLTtjuS0qbquKm2rFVVmzq2uasiJ+lhBRA3Dj4ObmUw0/M2oChS8yKHxhzAtB4wuTytboIzfxXzVRpUaVNTz6ZI+sxgc+6gfen0Ddjg9ud3z4xKV6N/BBP7D3z4N6G614q7S8WVj+yfM1bxaWN0uDFaHzgX0I3LnAnfPcec/eBw4+cAiB1gf2PtANIYcNyIBt/NlA2ZeJkMBoLZI28wUKlWK8VirFeVWiE3lDNCIqbbggyz37iZ0/rivjGCKF2TPARbglHnkKCCl+rBHBKjASsQJGBQqJmJDAbxME24EVRyEeS0+BwzJgxWFw2DhgZMDEAYND4xByGD3ipIUcVo/wnJaxftqnAhS55DZFREskfTsRJSHHrA4oSXSXTKWB6HOSQ582soMnek8IqT1t2npiTHaMA172BNnjZUdgD/JyENkOlrOd5sEusrnq2e721M1h6u/KLbvt13n21pfR7YHN7bt88b130TGRjDyWG/M1nsnXueIbXIevcuu/Sggl2kdMiBRxBvQroCSxks2RK0cA9i891iFvNHjS5mK3qKeSNihP2zzw8Efn/P3XAPC98joExGv51ZEYobtNyZGGZgGi9ceA2QiivRBUO+07AeliuCdh0n12kZMifZJt5wyfyiyYuwtw93YEdz9IoQlOpdgkV/DtW0mfvZ3rby/a30oxWF/09Y07kwtXHsadynEX0vnjHUm32LH0EdHmCBi4N87gC+pHgMJ9rz35qY+e+CzqOQB/HIPo+9Pg+2NmU0ecgvMPSOyQ0CCxhdAm2zfgG8S34A/I0BD7A77rCH1L6Dt83xP6ntAP+KEnDI4QYnbtN4RoMNJRyJ5K7SjVHk3/6pi4qHyuFMfnn6kmQJf6wcK+JNYPiOUF++Gcm9sV1zeGm6eBmycNN89abp91uMVusVLCZms521q2G8t2ZagKndg6RlFYoTAak/GtJYB2BLKNgFrIbK7RHsG2ECcXyiMG5qm77xFjM4NtS1fho9ce9yHMzLWJwRaeZzGOsfbuc19fMOJO+9IXdsI8VSe2LNuXn0mmAIey/GzjtQDHLvOnLvR5AdoPMcUoczkGWCAlegjQx+QemnRuz7YGCkViMAiURXIJK2tDtTZU64L6zFJdlKwuK+qHFeWDCrMpkEr/0mJ/Dp3nwx/e8sH3rnn/ezd88L2bCQhfnRe8/Y1z3vr6OW9945xHX9pMmw2nt4ijtgWKokU+F1ZSCJG7pw1XHxy4+uDA9YcHmrue7cOKizdWnL9Rc/HGis2D6jMxtX9dJOaYdG0Ik27Huk92FwJmigc3x4obY8KVSmWWUnZzlM8vNu+riB8CXePoGzfpIYcGELUIUZPvQy+2T/TCHlmCAQEVUZKYkeoo7E36OyrfQ9R4H/wlScxMmvF+Ptan41S/nN/r00jI52e3OD/7DIKE3J9uu2kx+Le7hn/0d+/yp195g3/mYos/GpfHhog6ONR+QB8c+jBg957VzXv84ff/XUr/0Wc61uw0nL1+Fh5AahHKyVSwfgybN+AshQiS7Vupvhn1m1CsiCHSt27aXOz2ecPxcE99nzw/bp60uEU4DG1VBnbrGejNYG+1tp/DL/S8+BjZOc+dz8DWwt75wO3gaK9v8E8/Jj55ijx9grm+Rsc43d9VBqDGulaCRnIMYoWe+hRGkfrGcSJowCg1AVlhv8dfXRGePSNeXSFXV6jra/TVFWq4P0HxUJYczi/Yb8/ZnZ1xuz3nZrvlenPGs80ZTzdbnqy3PFmtuTUFfQZzB2M+FaHCilBroVY5HmfWY320SyWZ1Zjs0/tuMd17FVbSdyECJrOY0/eZpza5Lx2dIJLuCR5wIXAIkRvnuR48184tbM/NSVv/EmxBAVuT4gDD8w4Q97FUk30C1N8zHxglTdUysxPJHkkj03M+J1Ruz0sYTHRUNNTSUMWGioZi1DSUsUHHhoP37JyjDymwiWSoUgBDoNaKSjExTq3EdM6SwpIAhBjwMeBiYtq6XB9CwAVPJKBySDU1hlOb7EgpOcGWSkColTgVQ8RITD5uWadwKAmUjDEQYgIRAxlMjCElkYshwWcxwgkAKhnw/LRsdE/yrItZB9H5E4z2oj/3xdO+EVQmIrFHxQEVHYoBHfusBzQOw4BmwPLJ4e5G0T5ih0Bbqs+N7BSOfrH5l0v20tNxLmHRNnlKTh6UMntZTvXU76PmEFe5rDmEFQfWHGLNIa6xQ+SLhyd8rXmfbx/e5feaH/KV/oPpWH9SvMlfrr7F/736Fn+5+hZ/uf42T4tLRifHkZihvecbzY/5g8N3+U7zPb7TfI/fb77Lpb/Ln1n4SfVFvrv6Jt/ffpsfb77Nu+e/S7d6RKUVtdHUJsUWXmvFShJgHyWHWWfxzB5B3uxR5GOOaZ61jzFBBTESvMcOd6y6K1bdNav+ivVww6q/5nf//r/OH337O5/Lb/rrIK8SAuI1APxaPndJMQUDcXdNvH1K3F8ne3dLPNzC4Y7Y7InNgdg2xK5LpR+I0RCjZY7sncAtkXEf8Pkikz2Oz7aAiJrd61UuSAa9wvPgVp4GxTg5OhMXzgj32vF4DPmmnRGhnECrzgm4xsRaJXFMyqVzZvklyhFnM63Kxo8XjwDepf5cosXHxLwYvUB9nvwlHRd1T4gdkY5AT2DAR4fHp0kN6UbtouDzA2o+uuVvFvNPlW3hpO1Y5ra4aMs/J+YoHmuIBp8B3BSr1U4TjZ9VlEQKHShMpNBQGLA6MSsLnRNVaJ1tg9WGQuuU6CIDCVMMuhAJg6ftPHetZ9d6dn1gNwT2LrDzHO3oC7BSsFHCWglrPdt1BhTulSVI+yLAc+lmf8/Y5/pkZGQyszWP3H0XoPGL+havj4v3IcYTpqE6SWQjEyNxyUZ8IXvxlPnI4m+Ox3PEKD0Bwo/A7/tfM9kxHifqOWVQniTkeenx3/M+qrbJ7XBtUbX53AGkIUT23k9sk0NmmxwW5bT/uG9kqvijehPCUX4bCZFHt54vPXGpfOy4OKR7fq/hpw8N7z4y/OSR4d2Hhq74ZFZTWvymBXCV9Wm9yIvmlYP1zcDqylFd9xTPBvRVjzzrj+6namUwG8Nw1R+554kWqocl9aOa1aOK9eOazeOa7eOa9UWB0QqTF6ET8DABGHlROrJg8sQ3bQDkjM/hOEHIqOf28Fx7f6TT+/QZJGtDpPFhAerOgG7rxzHHYC8xUg2Ruo9UudR9yDpSDpEo4LTgFTglOA1eCV6n+qRVGqe0oIygjJqKsYlVb41QKD0lGJH83eghotuA6gOm9+g+1XUfMH3WXbJNH5POddsH9M+LFvU5SZS5IJJ1Ygwu44gexdxezBnmKdJ8gS0Z9cS5Pj5m5VNOGSIQp+fAyTEdPR/mtinWd7bHDTRRAlYRSoWrFK5UDKWiLxRtITSlorFwsIqdhVY4AniXgO/LQKal6BC57NPYJ6XwDz5wvNMGHnSRB33kYR8n+6K/b4Yw8Kj4j7DqR/yd/rc5aEOrI60OOW5lpNOBTkV6HelVoNcRLwGjkptzIYmlVpDKlPU8RkxwFG6g6hvWwzWb4Rnb/hmb4Qp1T4yWRlZcyyU3i3LLA26zfccFO/WArniAKYsUL7LUVFvL+rxkdV5Qn5eUKzNNh5enTxihtrjsi8tTKY+dGXp9iBnE9Ym16DO46wI772maDn31jPr6GQ9urnl4e83lzTUPbm94eHvNg5trHtymevEi16WfozRFyfX2jOvNGTfbLVfbc242CdC93qay255zOD+nO7tArSoqpd0nbasAACAASURBVHIZny+KSsvUVilFuUiqlJIwzeDtaqmzrQQ6H9mHwPWQANWrwXPjXNYJcB37JvanT0xAYg+xy0BZB6FHxx6JPYaegiExIemxDBT0kz23JVuIdJS0VHRUOKlA1Si9wqgaY1ZYs6Y0K0q9ZmU3rOyatV1R6iIBnVHS2iHAENMc4NYFbpw/muGfzmCW9eWUVmJIACA9KvYJCIxDthMYmOwWCQdUOKDcHdodkGGHGXaY4YAeDtjhQDE0WNdifYt1LcalCbd4kEwrFC/gUhtuQa4cp5GytPNqZuFtFFHzvT27HKUYtot7ucj0QQWFeEF5STrMWnlBeZAg6Rj94hh9nOp4EBdz34ji5wt4SdxRCnKiydnDJ6+Vx3n3OEarPA9X2VtIH7dpPT8HVEzPjElDVJGo0oMn2SE/TwJRRQIBJ4G8ksTnf0ESSB2IhGAIXuODJniF97P2XvBe4UbtBOcEPXjqoaV2LSvXsgktW9+wjS1n/kAZB4gwKMOH+oL39EN+qh/zI/0GH+pLerE4pRnE4JQhKA2mAGvBFIixYC3KlkRrMbZAFwXaWlRhMVajjM7r1JDP+wgS8v0z5CVQrudE4iGGHMYjEsd6WLRnQDRtYybvrcv+hm8cfsg3Dj/g64cf8PX993mjf8K4vv6gfosfbr7J97ff5Ifbb/LDs2+xL87zRq+aNrW1UsS8UT1ubovEdH5HcOPGhfectx/zleu/46u33+Wru+/x9Zvv8Xb3IePHfGIv+Jv11/jr1df529VX+ev113m3epMoCu0D1g0UbsA6hx16Lro7HrQ3XHR3XHS3nHd3nPU7tt2ezXBg3Tes+oZq6KiGntL10z5F9EIMkvOhCzf//p/yh3/yp5/2MfBrL68B4HvkNQD8vES/SMpykjDjuSQXnSd0A3G3JxwOxKab2aP5YRO9ygCuYQZwP6PIuIj5fIGNVzsGTliM6biet9MDTcYVlUqJrETbzO6QxfstbFJdTurH/em/sTkoCCJ4nYDVoEgAq2SQNmsX4qwDOB9STCcXk8v84PCDS+51Q8ANcSohfLbvXDFgpMdIl1xrlMfogNYRrWNmyi2KjOw+lT9nBudlCaCPX0IOyT/VT8elB5YohVIKpTRKaURplDLJFQk5guhV/ulUXjyPWkLMcYTSZErybmMCVXIm15D0lEXW53af2j5JrBaKXCLCrve4BeAkApuVYbuxnG0Lzs4Lzi5Kzi4rNhcFenQvHzPvGpUTG8lRmxh1zK79lBLjnJF2ueA+1UBa/OgEstV5wbME3n6VXf1+EyXEyM6nBdbtooz1m8Fz6xftJ/U7l0DFV5FVZiit9FzWo63GuqZS9zN0j26RdwP63Qb10wb17gH5qJ0eB/FxSfziivjFFeELNXJu8z00vYGL8XmwyHvCrUM96yiuBsqrntWVS8DvYQZXgsDVRvFkq3l6prNWPN1qmjI/z2Jk00Ye3nke3Hke7ELSd4HLvccuQMZBw9VG82yjeLbVPM362Vazq5aLvcQ88gtg/POWAthGOHPC2QCbIbIeYNXPwG7ZB8oRNO1CAltbD1146VNYtMwbH5+ThAwgBy1IiNg+fuJMwGvBFYIrFa5Q+CLrMtvlaAu+0PhSEWwG4eP8bFBxTgajYmZsLeoqzuNkYR8lhMnPkhgTcyX4mBduib0SQ6r7nHQlxLEtg2pT21xntJcbUwug+MieQIa57xisOAYepp9OTn7GSIq9N/7N5QZdrssiVEt6dqYxEhbf0fiMzW3WLTYVhpefON4IvlL4UhMrBZVGaoNUGr3S6CplNd/6yLYLbDvPxkfK1mMPDnNwmCZdmP/OP1XTKeG/+bPk6hqsIq4NYW2JawNrCxtLXNkEUBcabxRv/cV/wqMf/vf87R/957z34J/nMAT2ztG4wGHwDM2B4bAjHPbQ7KDZI+0B1e4x7QHTHbDdgaJrqLo9VddQdQ11d2DVHqi7FnXfPVciVAIbkBXoVUTXAVMFbOUoSkdROErbU5jndzhCFA6hYhdq7uKKJlY0lHORij1V0lKz0zUHqdirFXtVMeiCoBReabxSeKXmulYEUXitCUpRDAMPbq95++6GN+9ueHR3w4Oba85vrtleX1Hv7vF8A8LFBTx8iHr0GPv4EdUbb1A9fox9/Bjz+DHm8SP05SVicsTC5+iic92PDHCg94E+JJAiscJD3iiDwfuJKd6HgNQ15Xo9zWGqPJ9ZAryVVi/1LgkxcnAdzXBHM+xohjtad0c77NkPLQfXsXctrWtpfEfvOrrQMfiOwfe40ONDh2SXdMuAyWDtWLcMlDgKcdjFGB375JX2M96EoxQgBagyaYQYGggNKrYng4EBVA/SgXSSNagOfGfwnSH0htgZQqugU0gvqE7QPagQUDGgQkiJtWJI94qwsMeS5+WEcSPruMgyw2DI9QnI/Q2bg4ogRoMxiLFIUSDGTAWb262d261J45VOnpM5tMCknZ9DC0w693sHLiUgxDuiT56Z0ftMpIoL/cv+cl7Lb4tEFUFlBrESghK8pOeUk1Qe/6P/kN/91/7kl32ovzB5DQDfI79tAPDuz96n/8ndnNSiD7OdQd9Pn9k6INKh4h6RBqFBSYvQIeJSjDIzxiYz6WFUlim5R10j9TqV9RZWW2S1TWOXANZCo49dDo+y9Z7Y8d72l/VlY+niPTEbZQJ8XxUwe1WJMeL6QLsfUmKm3UCz72l3Obbnrqe9a2jvupTQae9oD/GFMV1fJloGjHRY6TB0GGmwE1Db5r6x3s0grgqY0mDKAlMVmKrC1BVmtUKvNpj1BrM+w2zPMdsL1CqFLaA6TyEOfkYJeeI+MthGtluX7bF9ZLv5mONf5UX3qT26hY5xslLCkvteE6dEKKktnRI2uxvazNwzmcU3FZXcCRVgM1tNOo9qPdIFJIMpNDnJTOsIjUeA4kGFfVRiHpboByXqvMDnhCzL4z89TpfrS3v6rJE5cUNcALf+uN6HOLlyj99tG06d7T67jC6KpTplyxyzZu5jbC6vwNPjOX12Pdf/0teSd9QT2ynE2f0okkGbRd+RO3FmQvmxb/ke+byKxMndUJ+4WursbqgyI1SdtM9J02a3xdP2vU+A7t0S2F0AuJ/026214jzH4js3mrOF3izBW61nMPcE4B1LYi39/O6Vfety2Igb3v/uNR/84JYhh41YX5QpbMQ3znn7G+coLVPIhhS+Yc/1hwfcIqt3URsu31px+eaKi7dWXL655uKtFNtSacFFJmbscsOjDaNXw3wdetJ1F2Jk8IHuZqB/2tI/aRmedvhnHf5pR7g+ZhRHq4iXlnBZEC4L/DYt6DQKHcCEiPLJNVEFUD6icjZwCVmPGZnG8CJ+ToYWfCS4SHApzqXrw1H85VMZY4KXqzn+d7laxgM/jg0+xQVfGUyR+JJjfM0pXvSwiBs9xZBO7eG0zQX8cF9bQGlFuTIUVTqOok6xyItV1rn+i4hL+ouQ4ANDHxhaz9ClMBXPldYz5Hjm4/fkXCBkfdQ+nPwe4xiX4qvHl5wXALbS1BtLtSmyTqXeWOpNcVSvNpYqJz6K+V44hVaIs0unAFVm4hMifeNzvPQUvuDYdimMwW6gve1o73JYg87jX3DsAqysYl1pVitDXRv81vBv/Z7wr+40/8bO0rhI13u6xqdwIPuGcHNDuLtB9nfYYY8Z9nzz8v/gD7/2v/KDH/0uP/n/voZxB4xrcmkxvslu1S+WqDSxXBGrNcP6Ae32TdrVG3TVA9rinFZvaalxaGrrWNuBTdGzKTrWqqFmTxX24HrCMBD7nugcoe+Jw0AcBhgO6LhHyQEjB7RqMbpF2x5je4wd0NajbECbwKdJjB4GwQ9CGFS2kw6DmtpnDSEoXBCCLeHiIXL5EHl0iXp4jlxuUZcb5HyNOlsjZzWyLoniCaEnxD7p0BNDd9QWgwMxgElEE68hGKJThCDEQRGDIjgheMApghf8EIleCC4S3SKKmAvEYbw/RoJ3hNgRwkCIPTH2xDgQYw9xSIxaBmRkntKjs6u5iT2GFE9UywKEHzdYIjMQecTWzPUAeCF6hQQFXiFeIUFQQR0zQPP4+X3Imzk5QaWoibGZ2Jk61xMZQnQCAKe6MrnNIFrPr1OJCRp9IBwOhOZA2B8Ih30qTUM8tClc26eUYIVYKkIlhAJiEYlaEqNQKaIkxmHSuZ7tICpdQ6IISuc2TVQ69YkmqDlsQHqtBVWBKhGpUFIiYpGoE8M2aog6nR9R473CO8E5GAaFRxHETO8dxWSdSr6ygQxM5/oLbSJr9ZRH+oc8ND/kofkRD8yPsdIA4GPBs+ELPHNfIoil1DsqvacyOyp9y0rfYU07/tzH3y0aZy7x9gJfPSRWDwjVJb44w5s1g6lpKbjtFbs2oEKD9g3KH9DugPYHjDtg3Y7C7ynCnjLsqMKeKu7QL4kq3MWSXdywDxvauKJgoOZALXsq9pjoc4ghIEr2npMpTY0Llt7X9KGetAslQ6xwscRR4GNJwKKVp5QdldxSyQ2V3FDLdbruFqSsPtYc4iX7cMkhPGQfHrCLD9iHR+zCQ7q4nc4vkKxBYkCiR8WBC/VTHtsf89D8mHN5lzP5KSo4CDCEir16mz1vs4+P2HNJO5RE3xH6Zi7dgTB0qOjIPhRZ5/8lTq0QiTJaKa5xZQZq7aiMo9YDtZmLkTjfY4jshoKbvuZmqLjtS+6GEhfV0ql25pUt1k5z/7zJfvya5VpwMc9fbBaLCMpYtDVJG4M2Fm2TrWyyjVZUcqAOd5T+hqJ/ho4dsawJRU0oVsRija/WxGKDrza4YouvzvDlOb5Yg7VEbYg5fkw6tyKujwydMPTgOhh6hevhn/iX/pAvfPvLLzx/f9PkNQB8j/y2AcDv/rd/zfDDG6rKoCszZ1DWDmGP+FuUu0KGJ6j2Q6R9Dzm8i4o7hAOKBpEW2ZwhF28hD76SkoFdfBkuvwLnX0qxysrtTN/6GSX4wOG2Z3/d03cuT8xy0oYwTtTmhA5T8oepnpM+jK/LiSGCC3NfjhuaXFBVSt5kFkmcjEIv9ek4k8YlD5iAloBSEa0iSgWUePp9Q3uzp71rp0RNzcHTNtC2Qttq2t7iw4tn4KXsKNUdtbqlUndUckel7ijVHiNtAnMXgK21grGCKRS2TItyU1lMWaCKGopVSiBnV1Css10v7FUaU13k+LMXRFPRx+Qy3PhA23W0TUPbdHRdR9+0dF3L0HapdB2u6/CLErqe0HeEvgfn0u+Sg9iHXKL3KUZrDmgfEi0q/U4xTiyBiZUbA2pi6SZ78SgCRler0c1qtuNRv8xjMtA2MrIlu2OpkS0VsxtOnsnERUnP4Xj8UM3t4yRQGJlUsy2jf+VSxuNeHtvi001JE5afa/H5xmOXPDbtZ8gUc1KUQolKicyyK7rKAN6sU+w8PY7R6qiulcqx9BRRa7zWOK0ZtGZQGmcMvUr1Xik6pem1odOaVlK9U4pGaVqlaJSiEc1BZ41in9sHY3DGMGhDUOq5TRnhtH7ydcpL+iZgdQZZl3qMFTfaU98ExM7x9KYxuW/8XUZA2McZNPYxeV8o16N6h7gBNfSYYUANDuUG1DCghwEz2s5hXI8eHNoN1ETqka0kkmwRakmM7EqESpF1qpfZLmNECdO5PPn95hl5Yn/ka9AHCD7HWk5x4ibGyNgWQmZ/+OPXLcZPbTEiVYmqalRdIVWNqipkVS/aKlS9mvvrClXXk01ZcXXl+eBHDR98/4b3v3fD7qp77jo6e1hx8eYM8F6+teLyrTX11n7um3sxRmLT4G9v8Te3hNsb/N3dZLvrG9qPr+k+fkb/7AZ/c0Pc3UGzQ3d7dEg7e0EUQRUEZQjK4pUlaEvUlqALorZEUxBtCcYSbZFcEYsSbIEUJRRZlxWqTJuxurRYKxRWsAUYI1gLmRSEVpnB41JM9fT7ueQl5N3MAvIhs3788VglC3fQE61HIOKedjVqnQCMpTapn0hmILnkdfQi27lcf4HtPXEY2Usu2fcCGHFanI6M23FDeY6T+yJ7dJ3P7N0QCC4ncsnf3ZTYxY/XVzhmXuVnHNMzIkcNjCPYsOgDlq7Doy2LevJSUvOm9jgmuyiPMcxnN8/UH2NikMaYw/KPemQqh/n7kuyyOj7XVF6IKwl5Pz1HPYw5cY4AyhCNSVqPxRJ1AXaN0ivErNF6lUuFMinPgijLoBRNVOzQ3IjhNhjuoqWNBh06VBiQ4KY18g/eEP6Xv1fwD//shi9/eE3Z31B1V1TdM6rmCWV7RdHfYsK8y25WjvOvNPQ7y93HF4gtEsGhKFBlgSpLpCxnXVXEosRJSY+l85reRbp+oGt7+q7DBwc6gPaIDqgyUKyEogZlI66JDIeAawLRSXJN8IIEwRqNtYbSGmyhKayhKA2FVRijExvbx+Nr1/mJsYc1qKJEqgoxQpQB6IgyILRAB7TZbpHYouhSfoXYoelyrM0ei8eIz/Gvx/sgRCcELwmMdYLzgosKF+biQ3LRnsb5BN7GQYgOGBSxF+gF6UEGkKXr/W+ARMnA5ggyZpAz5YfQRG2SJ6HJzM0jhqdF2WwLx/eREPMze75oYwzjxZtDWOV7yPhsz3ViQELI89qQQDJbEYuKaEtiWROLGqoKijqdR9UK6tGuoVpBVSNlnXRVI3WVgeY5BjqQ1m3DnKx33AhMm1j+uQ2sF9lpU7FnJdes9VPW6hkATTjnEC44hEuGWDHOApUSitpQ1DrpymS9rOu5/aTPlvreZe8STpHdB6gP/hz14V/k8n8hzdM0TlnC498nvPn3CG/+Ef7NPyI+/B1QiTgzdJ7u4OgPjmbXsb/ep3J1xXDzERyeYrorrL+jDLdUsqOWXV4v3lLnUqmXJJM+kT5UdHFLG7a0YUMXNrRxQ5frbdymtrCli5tpjIua7AJMmuH2EHtiSKFINAcKuaVUd2ldK3tKtaeQA6Vqculy6Sl1T6kcpXZU2qHviVO0c5bboeJuKLkdKm6Hktuh5Gao6cwlUp9R1GvK1Zqi3lJUa0y1wZY1tlxhihXGVhhboWyFsSWgae4OHG4PNLsD7a6lO/T07cDQOkI/sOV9Hqkf80bxLm8UP+GRfRcj6XnRhRUfD1/no+GbfOy+wUfDN7j1b/H8yiOJkZYz/SFn+iO2+qPJPtMfstUfUarD0fgurtnFN9nzFnt5i716m4N6i0a/Q6Pfwks1bzgdseHSvGQGcuN0osaFPbZPQX3G9a6ANgpbpuvBVoaiKjJJoKTaVJR1gS01ptTYQid70s+v214mIcS08TsS43bDTJS7Rze7lGj7RVDmv/zv/SFf/YNHn/rv/7rLawD4HvltA4D/p//sH/O9v0uZJmt7YK2vWMUPWctTVvoZa3XFWl2xWgfWlxvqx49QD76UQd6vZJD3iwkkXEgMgbDbEXa7e5gjJ/U433z6xtPcdhxuew63Pc1dP9tZt/t+3nXKCwWJfrEr51M9nLYFFA4dPUpSm8bl2FAOhZ+DxufkYXO8zngUy1NGUG9ya4zHx0LMxxSnYyMmgHIMkJ8mcyYv4k1e5IKoiOiISmsezJgDrFSYSmErjV0ZinWZAI96jVRr1HpLrDe4as1gV/RB0wdF74UuCH0fccOA6zrcMOD7fiqhHwhDn+IrDz2MbJF+QNwAQwKY1DCgXAadptJTDAOFc59rTLYwLjBPdvzJdloxjjGbl/bIbpAptrOoxHyQDNLmTeC0kM2LchHy75hOLsnn5qjTSSfzgzDGIzsSE9AopyWBiHH6POndo6St0RTzS3LbiZ3HRZiAWvLfkfzQHYHj8ZiXx3+6k/v8zu587R0BfHGc/B+3TQ/+cE9bhOybvGjPr3cuASzOvRIb5DOJSHJpu68UNi3OF3VeNDaPA46Ay3sBzBNwcxpzCtqcjnE+MbP6ntj3i2swteE+fYKKX7gotWAOjfHdcuK4iSV03LaMEzcziOaYcCPoBxC7ntg2hENDaFti0xCahhfO4F4kIkidAGTKCq8KMAZTWkxpEaNn8FGrtJhWKrtB5uPXC1DSZFaUWQCS2kyAJDHi724JN7cJ3L29SfZtqjO8/B6ptlv0dos6P0efnaHPzlBnW9T2DGdW6TwaunRf7rv0fkM3xcgPXZu/u5S8MrZje0ds21f//j6r6OX3mkHa0+shu4b+0kRrospASmbAJeaWWiShSUla4HQN9Dl+j+OmY36uTddUvmYkA+FJJ1uZVFdGo8zcpnIcwdlW03NjUuP9fQTwF+Bf9Mf2sYvvEvj3M0ieAXScy69Pba/y+45PqMS4EqLKyaVIz08ByC7fv9Rz5iUSx3BKVi8Atzg/F6dcEnzquMo/0/FIBJ3mGDl9fIqzqbMe43BqmWJ5ohW4AL1HcjZRGTK4+hnDfkE+7fK5KO4Vfz+JKDMXMQGlT9siooWgRkamyfNrixdNUJYgBq8sPs+5vTI4bQja4owhWEuwBm8NvigIRuNLg7caLHhv8Z3FNQX9oSC4ijiUBJdKHApAkcizOWna6EEYSXOGSArd4j3Bx6P78cgaDYv70HM0zteCKEFnoo2xKoFINlLbHRv9jLV6Ri3PWPGUOj6hCk8o/RMK/4TCPXvpewdd4evHuFUqQ/WIrnpIWz6iLR5xKB9ysA/Y24e0UtH7wOADgwsptJsPOJ88fYacywDS86Lur3j78De8vfsr3t79v7zT/C3bfDwBxcfmC7xnvsx76ku8L+/wkX+UiC6+R1wPbkjaJx27Bro9uk9eBi8Sj6LRFa2qaHWFM2vEnmHKM0yxoSoqLmzgwgycqZYzOVCKYzBnBHOGs1tieUYstlhjMSZS2HSb02pM+OaJeARHjJ4YXWbHJ0p98APeObxzBOdQWifW58gEtSMj1KCMwRi7YImmfjXaxuaSxmqt0eLR/oAe9oQodPaCrg90hx3d4UB/2NMdDnSH/VT6sb7PfU3W+90LNn3vF1OUrM4vWJ2fJ32W7PX5BfX5BavNmrPwhNX+B9hnfwPv/QXy8V8hPiWODMUZ/cV3aM++Q4gRc/gpdv8utnkXMxyfr15VdMU7dMUX6OzbNPYdGvM2jX6Hg36bgc0cSioT2sZQUsGP6z2AeWN6PD8Zm3P/cqk74zTH45eb4H4IKVxk9kB6pSmSkK7jQk3AsCkU3ir2Bg7e0zSOQ+No2+zZw5wELkj2wCSFBlOFQhWJ0Dh6jmOEnBWUqFMoiCjpWfgf/Avf5jtfuHiFA/71llcBgH92P+3X8ispf7D+H3ln++O0S6S/yCE+5s7/Dh+0FcOdz+5ryZXNugPGN6x0T6W/R8VfUcQG61vMcED1B6TZEfd3xP3+Z15oCrDK5RcmeQ12lJBkSkySEivNbTme6jh5zoDGbCfXo6gsUVI8tCganyd20z7byGjNbrhxcMTBE4ee0PS4oZ8AIR8C3cs/wb1S5PIi8SIMJk2CnbF4Y1KxlmBsmhgbQyxL4maDLwp8UdCVZQLKygJVJKaLrkp0UaaQEGWJrSpsVWKLkrKuKMqSqiqpVjU6v2YKB1Jk0G3JTnotv1ESQ0hgQd5kiAtwOPY5fthzbe64fRjSdeLyRsXUtigjkLoEVU9KaFri7d29fRMICwvgUs+g4CnweQpuvmCMKJ2YOSPDsUjXzpI1lsDpRb2wU5t60RhbzAD32K/V8WbE+FmO2kb236JtDKvx3GbGL/e6jDEmsLxJoHBommO7bTNg3BCbNrcfsp3bmib9tlM8uwxuOZfi2IeQzqcws1snYGwJhB0BZIvXQAZwz9BnCcS177wz2fr8DJWB3QTunqPPz9JrttsElv4cvz+GIYHBXUdoO2KfgOHQdWnDYQSzJ60z+KifB3Wn68FMwGQUlXHFiOsG3KHFNz2+7fD9kDYb+8SUiYObNyC7Ph1L3xO7IbmwDwP02Z3dpQ3J6fp3Kd5gAiAT4Bgm756QAJbsuk1I6aoS6BZyOH6fgZm8SUycmKhaAiJTnnEMMSe00Sf3gFSfrm2TN3LN/J2Jyf3GJNDW5O/KaJRJLtUJLMoM3uUm0cimPj3vQnj+/PMDsfcpdFD2mHHjeZvB/9D3kx0/YSPiE8Xa9MxfrVDrdSpLe1FkVcPGMNSBwfQ43TJIwxB3DHKLizcMXOPjNU5dE/T9cWAnGeN2OiZwEgcySGrL7YyM0NzOON6BOCHqSEwRA4i5YDhu15yMiVM7KvJHf33Lph34P//4Ifu1Ycw3EL0luILoC4JPWqTC6BpjV1hbU5RrqnJFuUpaqwpNiUiBpkRJiaJAZy0UaEnJj6NEog5E8amoQMClUAnaEUnFDS2Huz2H3Z52d6DdN7TNgb5p6LsG73tEOZQaEO1Q2hOcwbuKMFQEN5aS0BXQWRQWoQCxyYUek9zxVfpRAo7IgI8DIQ5E3xPdgHQdQwg8NQVXxtKUJW1R0pQVbVHSliVqVbPebNhuNpxv11xutzxc17xlFW/T8EZoeOj3nLs90t4Sm1vc3RXu7gq/vyG0e2K3g+4A7oAMB5RvUGGfXNpji4kppNlLJabzh3yZhKiSq3kscbHA6QKnSnxR4iWVICVBVURVEXSVbF0SdU3UFdHURJsSPItZQVFnD7sasSuiXYNZgUreV0hioS4ZsSKS2dTH7Sq5GCUgpg9zGJg+MHQubaKoDEyrBFJL1iqHclBa0DnxrNIKncdESOHUfKBzkdYFOu/pfKB1gT6HiInjGiaHG4oua5/awuDT/TiHHmLsc/N4fMz3rxyyyAUKd8s6Pk2EJP2MtUrs3bW+Yq2eseIZa3+FOgHtYhR2nHMdH/BefMCz+GWehTOehDM+8hs+dit8dJypGy7khku54VLd8WC/41I940J+wqXe8bZq7j1F2mC48SvuQsWdz8VV7HzJ3heEqPiifcqXymd8obzmwrb5uOBZX/PjZsuH7df5sN3yUbvOLFmAnwI/pVycik5ZnKrxqiKomqBKnNniVxfwsMasNhTrDdVmS709Y3t+ztnFOReX51yeNBzg9AAAIABJREFUbzlfFZzXlrPKUpjf7E0FRQKt1p/x9TFGXNdloPgYNHZdR7XZZrD3ktX5OUVVf/Kbnorr4aO/gvf/AvXen1O99xdU3/+vU9/5F+HRV+DijxPJbkG40+vHrER+sbjIZ5AYkxe26xIoPHQe18/hqe72PR/ddXx42/Fk3/HxoedpM/C0HbjqO657z3Xj70/gmp/Hnyj5/l1oIaW/EawCoyJGwKqAFo8Rx+FZDb9FAPCryGsG8G+oPPuv/gsOf/lX+H1DuL3D390RRqaSf3k6bG9KnKkZ9Cppk7TLmkKjTKSPdXarWYgICkepRleP2eUjhTXYUxUDhXFoq0GXRFMQdIFTlkEV9MridUEoCoIt8aYk2hJfVPiiwpkSX9Z4W+NtxVDUuKLGFyuGcsVQ1AzlGm8qvEmu4zFPdmJM7thjaINlQqs2HGdHP8063Z5o/xkvHQVUOXZmrZMb9zpGNsGn4gfW3rPybiqVc9RuoCRiyxJTWGxRYsuCsiopipKisJRVRVla6qqiKksqa7CvQdfX8lpey2v5RIkhJKB5vyPs95O3i9/tiE3DFIBP5s1DJq8FOQLhZ/v+8ZIB+QmEjzGDf2FmY4Ylc/O0fe53ncO1Dt8NCZztku17j8vA7HLDhLz5mBK7OGTowc/Aq3iH+CHp4CadvGjcHH7gVb5bItFCrCGsINaRUENYxbmtioQVhDr359WQtIL0grSC6hXSaaRXSK9Qg0E5jRoM2huUMyhv0bFAh8Q2klNgO7O9Uep+4HXcFHDP9wWfUsMH8QQ1ECUQVAbolCcYwRlNMELMcS8xgBWwECdNYm+abJsRnIxEHVMmumxHHWDSIWVPF5BgkGAgWAgWiQUsSowl5BKnUhFjQQwlIVTEUOB9SfAl3hWEweA6DbIDfYWYW5S5QdlbpLhFl7eo8hZd3iVb3+/N4LsVrjvDd1tcu8V3Z5MOQ0UcKTqoyZ51prRGmezIsu90fH6vaZwc20gaM/XJUV8C0TLzWoR/bvVf8jv2f+Yf9/8xP47/bNqgyuEvREBbhTYKbRXGqJkNOm26ZSBvcteRxV6bzG1j/luRqS8CQXKcccBlJpSLKbmZJyUyc8SpbYiRgRSPvI8ZIvYB6SPSB0wfsC7iNLSFoimEQynsK8WuUtzWwq5WdFbRWcFppo3FUU7j84/1Isf432jNm4XlcWF4s7S8URjeKJJ+XFiKyOTS2+x62rvn7XbX57bk4vtJ8amVEYrSYCtNUWlsaShKoSoHqmKgsj2F7SlNT6F7Ct1hVYeVNuXDoMXQoEKHhBblW8Q1MLTgGhiyPRzAtbnepL5XFVFQbFLYvFGXm2yfJfuob7ZjsaHTa3ZU3IWaW1+w6z13rWPfOQ6Dp+kGuq7BN3uGbk/o9v8/e28Sq1uy5Xf9VjR7f825N2++Jl9jv1IVr8CUDVUlJFtCFhJVAxCNGCLhEVg0Mki2jBgwQ0gMPUI08tASAyMxQYCNClsgIQtLpZIRpmyQKdxAFVUv82Xee0/zfXtHxFoMVuz97XNuk3nzZdZ7lXXiKu6K7mvP/nZE/OO//gudb7H5DpsdMJd6R6iu/5rqicEm9ng+yMSemT1n9jJzYGKguNcj1sMw92MQedjmZR6MW3wsLmMu9Ugjv0bT40b3vNSnXLen3OpTbtt73Ol73Nb3Oen7nOrXOevXMPYIGWR0j8BPSWYKFFjYq1YInNnJJxzCcw7pOYfwgkNyvd1juOYQbzjEG/bhjn14lYn70p7wQ/sWP5Tv8LF8j0/ke7T4FHC9Yb8HZ8+aME1oi7TqWtq1QHvLeV0eA/snid1VZPcksr8K7HrePwmMR9hdCbsryLslCp5Lfpg1jO7RtimDEMJAiDti2BHCjhDGXh8JYYdI+tL3jKqV1u5o7Xa18/mWm+cnbp7fcfeicPeycnqpnK+F802kFXEP2misailJ3NEsOXs8JL8nL5KNMUVijqS17GzjlD3HnEg5k/JAjHtiPBBCv55WfsUlEPsqkwSv3PO9bdPXvUTRQoiRkBMh9UOgz/WlNWy6hrsX2N0n2O0L7O45nG9x9xP/bXX3VriICdLdVPp7XurL0EV2UX2ZWRdJTaM1gR5A86NJ+HASPjwFPpwiP5gTH86ZH5TEh/PAh3XkpeZX3vZI5YNwxwfhjm9yywdyyze54Zt2w3t2R7aZLIXMzGAzySZvox/q2USUE6SCjYqNig5Q98I8CmUXmMees9A2ByG/+I0/zdd//s98vu/792B6ZAA/JqZf+6tMv/4bxAxxaAy5Ej8ohO/OxEEJ2YiDErMSButWidmcKSsRHZ5yit/hNmQXVOd9btvXuKvvcW4H3tsrx6NxfCIcn0T2TxP2JDPvR67DyHMZeC47/j6Zj2zgQxn5qAWeV+XjWnleGs9r5eW7uo29KW1O9eG257enhwGplsi/yyL3GzmvAarGB2Pe9Jh99L7DWna775GEh0dA9jE9psf0mL7Q1G5uac+fvxa81Ztev31Qv7mh3Xq9Xd9gdz+6h8tPUhIg49uAmnaUdPCD07SnJj9AbemA5q/R9js0jWgcaWlA44jGAY0ZjQEdDBsUcoVcsVQgzZBm4nAi5BNxuCPkEyHfEfOJMHh5aZPw9sNn04TVA9qOWD1g7eBAWjwT0hmJJwieRd7+XJfvYE+QIyEciOFIjEdivCLGHTHuaHWmtYnWiruz6oSZB6EymzEmzGaQGaMgYf7R/zCAqWDagYGWVoBgqatm0Ihqwkp+pR8EiYUQZyQWJM6EUJE4I/G0tq82XZCGZb+6bJNe3bK95v22BPNTbH6KlPfg5U8h+oygzxCeEXmfGN4n5m+Q8vukcUd8mghjvLAPg8dQWD0T3pA+dXX0tgHG6ha7uMj+Tx++4L/+7U/493/62zwLsbvq28alVte2Dz76r/iHf/tX+Hvv/6vo+/8Sf2AzZq5KVaNpDxarcLZL3eMaLEFEe5BQvZRtadd+INL7u4oAi+a0wEXeaZVFW9ov9dBlo7LByObv+srYLodVDd4S0Gn7/eYFUO3g6rBLDLtA3gWGMZJ394FXoIO5t5xuC+frmb93U/jbN16ez294XYHdoQcSfJJ59sGBb/9DPcjgk0uQQX/9uNGijMQvifFoZqjOtHZDa7fUeuu23dDqLa3e0Obn6PScNr9Ezy9ody9p52v0dItOdzCfnJU/F6gBaR7MM85KOj8n6cdkbWRrjFYYqOwoxNccrgmw6/kbuDb3yTInG4mijBRGKa/VS31jilAJFBJVIoVEk0ANqUtrdI1icx326tplmMlFMnjJ+qpVtfWa1rZxMac/B8JdzdzUgds6rHZhy0oQUtcVTcOJNMyk8SP24//Nk+HiSh6GREwDIgMSdiADZgOqYROY1Gg9AKDbQKuhs/gP3LZnXNfR6wsjXu/DI4HKPrxgH56T5czH9aeY7Mlrv1q/B8+ENBHiTEjXyFIeZnKcvC/NSHQb4oSkmZBmtIz94OwpbXrKzd0TXnzy1OvzVT84e/iilbTzQ7k325fE4dbni1Av9pX7aXDN9QUcDuO9euyAcQgLiDwSoo9TnRzQrRdwd54mzjcw3SSm24Hpdke5O1JPz6jnZ9TTe9TzM3ReuL0bHmyo5N1L0v4lIc/YOWIa0RaxFjfzYtzMo6+b0Qzo7iI/xtToh3U0KkqVRkGpKGXNPmYWo4hRELokOpMIJQQmkR5jJVDlyXqwApv7/iazyC2tbbKWt7UNlr3akxin11xyweDKhCsVrhR+tpePKpd2E0YD4cFvxZSPMT4xdXLBkheSgZZ7dW+7Xw9aEbtfjlTEQzgSgzL/me/Dz/+If7SvaHoEgL+i6fqf/0Psf+Elcz5yykfO+ciUjsz5yDkdmfKh2yvO6cApHTnnA+d48LFhh0o/JzLXY1nkRD0SOrzoIO4ntfG8VK6bvhF3Dcw8y41nKfF+jnwzZ/6Rw45nOfIsJZ7lyPsp8n5OPEuRXQzrzSfI5aYUZOFrsMiw9rIHX7q097osry/r+CjOWHgEYh/TY3pMj+nLTdo8YEudPdiLswv09XYJ6Fn1snmbC/XFDeXFNeX6hnp9R725o96daHcT9TTTprnLh1pfKLb7C0drHsF5Zd4mjK9h8g2UQDsG9EnukcQzGlO3Ay0M1DQiOfvG1myzwL5ESF60u/G34eW1E98BvzLfXB6wjUjtUkKdHbxoxYZwkSpKSghAUCRYR3wuIeJNOqOjB2dR+mY0OZAa8qacJkL++FJOZ1IfE/N53bh+pmQj6BHs6Fa/4dTecoTpCO2I6RFrR0wPXm9HrPWyDmwDr2kPpNb6tbEG/akNbRPKCeMO5A7CiZCXz3cmdhu2Np0J+Tkh/bZ/B3HurKzcN4/ZXfw19ff1DDN3i5fuwh/CQJABWTfCvjmOaSQltznviHlHjCNC9iwZERdtErpUTL8E1q3Z9vqpis4NK+oSEEWxWdHS1rpMihRFSkOm5vquUyOo0RWvVjlY8MBjlgscFfaKHBT2Dds1GCuMFRsqNih5fI/x8E3Gq2+xe/IB6fgeIf7edDH+j/63O3749af89C9+h+vaeFmVm9Z4WT1fV+W6Nd7//36Vf+vX/xz/67f+OP/hH/tTPG/wsvfdVOVCVdhuk9+e9kEuRIAQ2HWvr5UY0AkD3mYcY+AYU7eRY4xcpcgxBg4xrOXj5yATmBplasznRpmq2/MDOzXme211tXcvz729USZdtSe3KUTYXQXGozAe4P3vGMPPKsO+MewL+VDI+5lhN5H2Z+JwBplR9Wzdqrm9axMvbwr2UheimssILOB5owcR7pLMDVSVUgNzDcwlMhcvlyKUGigtUGqg9iB1rRpaFrmZ5lrJzVybuhmiIOoBiaVpDz6sRFWPPXLv0HARZvs8bsdGEiWHxhgaQ2gMsbq9l3tbbKgJRSPFAlUjRQNFI9XcFg0Ui9TeXnp7VddBf9f3t8QwCYke08RW3WaJruEsWQlRkTU3QuptfbxEJWQl5jsO+Yar3AlJS36rYlKHsFbq5VK/9IWQifGKlK7cxiMxHUnxqtsjMWVSPBDjsY87ruODHFwLuo3U2VwDdVbq1GhViUPYBLwKm6BXkRAE1YrZjOrUr+2tfX259TqASPRdrIS1LNIwu2G+i8x3gfNtZL4NTLdenm7eZ7r9GudbOL8wbn4T9DPgnavudtRuW//7VUJoSFzA4uJWHLhGJiTMmJyR8ByTCZ3fo01fp51+inp+Srl7Qp12r7ymBGO8auyfGM++K+zfixyeRsanO9JhJA5dWkmEaWqcbs+UReLqdItNXRJsuqZNJ9p0xmaXQ2rTjNZKK7UHGoTazINOKjQNqApqEbWAWaQRqRKoIVIl0kLwoNYSqCFQJVJDoPS+KoESQj806ePWsd1uykUiU0jU8PA3J7gr0KsXfDBjMHPPX4PB/M6yN3iKkE0YqvRg1F16UpYAsc4ItjXSgfY4NbZmYwkOZyA96NuDfsO4ssqzNvEes2eZeBYm9uKHBy5Z1J1r0I4d9ecUQ5fn67F/3PnGj6DNwuYQPGOaEfaY7dxzSfc0GyjWGfQW/XDHQreC2pvnwD84fPDpP4Dfp+lRAuIrmv7k3/y7/KWPXgDbTcASsf4+YLpErpcHY7YR7Zfy8jxB4L0UeZYd0H2/g7jPNiDu+73vWYo8SdG1rB7TY3pMj+ktycyoRSnnJcK4a9hJkPu6eY/3k8+VTP37rcU3NG1TdqD2En27LpueTX+b26XvlXFKLWfUTqjeYjhbcwUf48w7R0l6sLgTc6FQWYM1Wsda5bKwDODImq37Q1ncTaU/pluWBfOm/rB/rYsioflzibrtdZHmgOza15CwGXev3p8j9MeJIstjw+Wx6+OW5/wUBu27p7Bhxh58o5yP5NQ3wmnTHnt52USv5SMpPSWlJ4TwNkX6LzeZ+kFCq7aJKK8X4PgVENkBrDxE0hi69SjWvpkPpDES3xH0XDQzrSg2NfRc0VPFzhU9PaxX9Nwe1F2z+tNUNmSMhEMiHDJhny75kAj7vJZlbfc2eUtU7qLG81r5pDRmVZcaMKNolxvouWzairlcQTGjqtfXcZsxS92lDTojth+gLNsQj6VmbLehapdDlpWEsCEkLI/XPqqZcb0BeF+Uxvkz7HO+N3/EX/61f4NTOvCn/6m/QNg942mKPEnBbfR17DFuPLs6uOvAbrcbwHfXD5xau2Oafodp+gHT9DvM84den3+wafsBrd19yrtc/navA70e9i1zZGABy3y/p90dvm/KTXvbw75PT9qS6wgXB3jieE1IDmBZE9oc0BJoc6SVgM5hYyNtDsxTpkyZVjJtTrQSsCI9G9QFwPjyU5NAlYRKpIW4BnLWmDD3N8fSgMQMaUCSa/SHlJE0EHIm5sHz4DbnzH5MHIbMYYi9nDiOicOYOYyRIUWWQMPyQJNfXmmTPp+FT2XSvy7JO3ybEgJpGNYc4ueXBrhcX23NnwbiPux/XPN9ttTUg9VNtXG6q7x8MXHzYuL6eub2tvg6rXaPhtrXbf2gvtS+3qut9zVaMy/3QHitSwU0dS+I1iFHA6oYEhoWCiYVM+e6VmtUU6opxYwZYZbEJJFJMlNIzDGjP6HBEQPKgJJFyWLk4BImOSop+KFNCo0UlRQrMVSiVGIoxFAZYmFM8yXHmTFODOnMGM8M4Y4h3jHILWM6M8aZJK9jZ3/5ySVAYrcBkbw5+M6EkDdtubdt+te2TLPI2YRJcVlNg6kpJ20upSmRMb3HmJ8y5mcM6QkpJGKIRInEEElyqaeQXmkPBIJGVzhpAWkCTUADX/v6E/aH8VM/81clvYsExCMA/BVNaotW0+OE+Zge02P68tMSLXY6Vcq5s4hOlfm0MIoe1pvXz71tKZ/bp2r/AT2Y4yWYygoOr+W39XlQlJC6lmOSi67jtq3rPG7bwnZM3ozb5BClu0Daai9ukffbX9evat110lZ2UyuNWqyDrR4EZinXoito25ZyD9yygF6LrpdpZ3T04EASKmHrEhjnDTP0vGGOThdWZTzf65N1zIzELxqk/ElKztSQxcrFymL7whm5tIewWVCHSLhne3mp31t8xwf54cL84dg3tIfcQVsHcVNyGYQQxq/0GsFaZ83Ozpq1ya3Ozqq1WR2sXXJRD8pWljZb+1hA3bYBeJs6M3fzHBua6FuT7CJh5+CsdBt28UE9EfbR65sxskvOBH9DUjOuq3tnfVwc0H1e6r36J8U9uD6ul/pN+4LkuDYpi5CkB2np5bghFzz02FrcUxePL5a6LDDn5TEXD7BLPQpcdbD2aQq8rI3/5sMX/Ilvf40/9ux4D8xdAV4q41/4F+HD/wP+9b8CH/zcZ/psrZ2ZNyCuA7q/w7zWHeit5aZLfiwZhB05fYMcvkGMXyOl94lyteB7/b/u0iudrdXbrLd5uug9iG0ZYL0sHSkXn2Na6S761QN2aQMt3dYl2KK7zddizLNRC5TlsG85YFkOUbq3hpaKzh4EljKvEhZvS4owh8wsAyVk5jB4lku5hEyRjIZASpmUIrlreOaUGHIi58Q4ZI+DkRO7ITOMmV1O7MeB3ZjZjZnDOLAfM4fdwGHn9rgbOOw8uHF4O+30Mf0+SrZQyhdN+K65r7UyT4XpPDOdJ6bzxHwuTNPMPFfmaWaeC9NcKXNhKo1SKlNpzD2XLiezWjXm5gdks0JBujyHUBBat4VARSgSvL+zTktnrxZx+5MAoiat5FYYtDBYIWshU8g2k6hkCkkcHE3igGmIjRgbIVRCaoTYkKSQFssawNYD1iYP0BrTWqcHY/e1mWDSRVVWvRIA9ybYtonALkR2MbGPmX0aOMaBQx44ppFDGhnDjjEMjGnHLozsYm+LI7s0Msh40YNfJ7Plhu7plfXWttr7jIZppdnM3M40K8ztRLWZohNV3RYtVJ1orWIqSAtYE6wJ0vpcUw00QAPrMig0PGBjF5q3ewEetQdwdKtNmWTmFCZOcer2zEkmTuHMXZg4d3uSs/fLec31M0p1fVnpP/7Df45f+qP/7I/1PfxupkcN4Mf0yLZ9TI/pMb0xLSzQNaL0Esn13NbIrm9rn+4czC3n6u293z4DfhDiA7A1B2IUhkNi9yQ7MBtDD5CzcbK3DS/JV3QXudaFDLpsfFdyqC1DfUHf3UapzkKwRd9xAV7bw6xvkITVrqvpWm4X0NRd7SWUzvTsDFPRDZO0l5d2bDNWN22vf5yIOli7ALZDRfbunjeEi6teWNz1Ql2BXknVWaifJ80Q3OsPmQS56fWz19e+c0QmCGdgDoSWkZYJOhIYCU+fIV/7GunrXyd9/RukD77J8ME3GL71DYZvfhMZtizSdzmgdt0FkdW3ZWUPrW2ySAuFte0SQGYZv2XSPWx7TF9UMo/IihVF50qdbijna9r5hjpd06Y76nTX5Q4CVHERvCJeL3Jpq163bV8JiL7738xCl0oIDYsNYsVC9YBvoWJhRsOMxRlNM7o/02RijpVzNKZoqy2pUtNETTM1TrSsHq8tBYgjhB2EHSYjhBFkxMLgVkZMBtABO2XsPGAvMiYDRmIm8klVnlfjeTVeVOF5C7xokWtNtDcw/QTjKGeecMcTueWKW36Ga/5xe8lRXnA0z5mZSCO5cywBJVHpzrJrX+h1H3fpi12Hb8Up2+X9+OFEZw3dYxMNvZzvsY0uzKKl7SHzKCOrTV3+xDBr/Kc//C6Rb/Mnx7/E4VygB0TS1pimmZvTjPyNX2H8rb/F3/r+L/M7//N/RjkX6uQyCfVcqVPzqOdTo5VCq56tLbIE8iBHUEF1wPR7n3Ibu+v5/33na/V3IylCk+4WLa4T28QlcoZ4ZBcPjPFACCN1jMy7SIsRjRnLzoyVYSCMI2Ecyfsdabdjd9gz7EcOQ2bcRfZDYtcZsvtdXNmxh73bcYiX4EyP6Z2TA5q+5nnFdg1s1Ki1cjPd8HJ+wbmcCRZIFokEQoPUAkGFqIHYAlGF0GUyrPVDseYSGh5A0/rvZGnbvn4D7X3aH7vWL32mjdoK1QrVKsUKVSvFZqpVqlVmq9yYcmuLMJAxGUyrFWZgMpx9Slhz6Xnud6/S73RVEpVElUzrsGWTz6KYvqTFtf/NnjFi6vfLoMTQiC5KRUTXe+jSFmRe6ztRDqjX+7ox9rqIEsQIogjqdqmLBxFVMQz1eU4U7dn7mpe79YCnSpMe/FQaGioVRaWiodJoNKnUMGFhXg+oFDj3/HmSmJBJJBLRwspgX+eVis/3XQ99fdxr5j+xbf/9kmHMoTBLYQ5vicz3Ke91sMSoA4Pl1Q6WEROaNJoojUZdytLL6NpflyCz7+ot93lT4p3RwEziIHv27NizZy87rrjiA77Z23bsbcdh6bcdB9uxt3Et72xHtogGo/XrrIn598Byvam34d+NsnxvevnOvPX+4/D+n/nm97+Ur+yrkB4B4Mf0mB7TY/qSUqvaQVTtrM3mm8lZV0B1cUW2h0Dkprz0qb4KWt6rvwbQrA8A3dJ1zN4p9UPsDcb6uZMDq43yhmA0IXjAIOkvaB28Xexnfn2pPbjGvOqYSg+2EdJMyBOyn4hxJqfpEqTjHqg7berTCvCG9MUEgvpMyYAFyOrC7NJACkgFmQ0KyNzrPc6F94vXl7EFREbComUaRkLaeQTovCekPTHtO1P0SEwHUn5CSleEcU8YR+TpiAwjMvqmXsYRhgHJARsCMgQsg6XgmwsrrnNnBdPCAr468LqUIxAwUczmzqaVDcNW1jGXx746xkxX/Ui7p7t30ZRcNSZ1prUZbTPWCtZmtBZUK9pKb6tom1GtvqnVhFh0UFsTWEQ0eVmDl1u41FtENHYGRkA09HJ0cLKFPk4gGWTFskJSyA3LBrn1rFhq3p8bpIqtth8UdOCr01v671VBAmEF3IYVLFvqIQwgA0ETQUekZWgJqdk/T0tIjQ601gAVrBhWukZtaehcaPOElhmdZ6xU16stC3sWZ57UgLTgz/9Wd+Sx5wc/B6lonNZscULT2evDhO4nzqlwSo0pF6aknGPjnJRzVOZoTBGmaExBmEJkluhMxLCjyEiVHUV2FHbMDMyMzOyZyT0nZvM8EZktYG/9LA+S8pmZwm9Lo5244pYrrrnihm9zzc9ywxXXPJE7nsqZJzLxXph5GivvxcqTYOQ49Ijvm7wG+XnPr5HN53n1lnu/xZoy3xWm25npdma+nZluZqbbwnw7c+rl6WZmvitobatHhgRxbe4IsgoX0w/RZte3XqKahX6dBz8ss55dBxsQsCDoHNAiaAn89//kv8N3yt/nL//F/66DBf1e2PVrf+HZb/Hz3/kN/vpH3+Ov/e0C/N17n62FQIuJGhM1Dmg4oBIxSWjoNkVUUs8dhpHQ4XHXiWxIh8dlba+d6dcIVJN7oL3YJYL7Yh+2AyvbV3ofmzoYKXT2dRBCTMS8SBVkUs6kwWUKdnnkaRx4GjJPJPGExJHAsQn7aoxFGWclT0o6N2L5jBewAVPPa1I+a6DmU8/rk22leV4n17MKtF8kfx7K+awHsEs59GsvdZ31JNC9fSQHJEdIgTBEZEjeNiRkSIQxIWNCUkZyQmJ0VmLKSIpIjB38bCvQ6TreFZtq90Ro6KTeNrt3gRb3LnBr7o1QOkuvdO3jzuSjexB1XRVUjYnKTbzjOpy4jnfcLDbecR1ve5uXve2Om3jLbThjnwN4ShaJFogWiRZJXOpBA8EysQ2IDYhm0IFqQqHrEhOplqgWad2qJZRMkwRhwHQAGzAyMGB27G3Z88MkD+wrSUFKv9c8sGFCpCBSCVKQ0BilEnpGKoQKNCzUzQKrYVJhkUDofS71VHFJp9oXcXXD5L/3rlA2Mc3fMYkt3hGBy5F3WNsc0Pd/CQf3k0VCr6d7fcu/TLLdpU3631n6WItECWQyWZPbDtwOa9nt0GuDeD33nrzWM1m8PcpFHgUBWX6jMUAPLsorbcF/w0s5CsTlt3153Do+hYu7SQ/mObeJc52YdOLo+8QiAAAgAElEQVRczm7bmXM9M7WJU/O2qU1M7cx5sToxtZmzXvrP6vB3Ev/2kvjnStJlDSRt+i5tUfrfYy0/eByJJJEgAUnRiTM9h/45Q4r+nYX+XSzSMl1S5V74t3seN5f2XdpxTEcO+cAxHzmkAzm+y0HIY/pJTI8A8GN6TI/p92RSrdT6kjI/p5RrWtuAoD0wyAKEtraAo75obltwdWlXt6qGVi5u+Y1LEKtF53Sy7o4PrRi1CG3GbRHaLB5l+HMw0F6XxMmLPmF3XcFVDk4MCT2L9k20IngbsEZu9gWBEo0ewEWgR2R2rVXp+0dh2Cd2h8x4ldgdI+MhMOxh2EPeK8NOiYMRwvLeDInNg34seqehcdEzXbRMnYVqNFb9U3G/JJPmIJZ17TA909odOt1Ryy1a72jlhNYz2s4XgI+5x86tqFQsNAcJ3umCAikBKdJtQGpAzpcyJSNlRGpESs81ICVBb3MLYZ6RMiPThMwzcp7hPCOLm/iyH73IMbKQf9H+ZxgC7AK2E2zEY2wNiu0FGwPsFhv7uOjlQ4Rdgl3C9hHZZdhHZMjuKtclBZCArTyThJDABG1nTF86AGqlA6AFNQdH0YbeVfS6YloxK51dsVxD3am7X0teF7CwAqaiueeEWF5BVbF0aX+NDWv5wXN0cBYLiAUHZy34a2/rBH8NuwQmufB9v/jkLJvOIpXq2nhrbpg4s1Q0E9pIaDtCHQntSLDPvkTTsAFC44SlMxpnNJ0xaYQmHole3UoLhA4+h+ZsWcGocuYcz5yicIpwF4XzUk5uz1G4i3COjTnNaPBAHyqgItio2N51i7XrGKtYvzdJz31jFqJvxEIiLG6cMRFiRmKm9YjXZ4xZcA05Nc49Txs7qbO9fpS0F3H91h6caxcCYxCOIjyTHtJNhEwnzpgLgqSOSwY1v/Wo0Y8sNjEWLvUoF5mDuJEvWPrWoLYoaCFYBZvdqrNzc8iIvI/IB0jIiCSCZJDUD0T6NdjtS+CFX5TuGsoDKLdXtFXON9dM1y+Ybq4pNy+pd9e0uxv0dA2nW5huCNMtcbolltMbMZZzGDnFHaew5xSfcYo76pgIpkTrAbVqI5TOYLMeWKuXgy3t7fKY143bfBID5jDw/PCMHzz7Lr/4a/8L/8/0BylhwIY97HYQd3x/+B1+6dlf43+ff46/OPzbpJ/aMcSBIWaGODCGxFUI7BFGhB2QkB6M+H48jUsQ4u3fjnXsKmux6bsnYWEd4Fh/H/TfhYMVYQNmhOgyQyEKHi6yEcX6d9H699EIruuAVT/Mstk2+roBmwW7i1gNoHHz7RUu8JNBqIiUDnDNXh5msI7s2oTVCSsFmwp1nqilMNeJ0mZmLZRWKFooVqkRSpRuoT7IJZrbYLQINZgfYhEIFv0Q0ALBAkH8vi5EgrgepM9vgYAHzwqLFI84yLXMf0tdLVBxffsijSqV2pl5D8tLf+PBWCpVCoVKk0qh+jhR/J34a3n2f9GWzyTdPmz3TyAq/b5ibpcyyinP3KQzN2niOru9yTMlvhmgDypclcyx7DmUA7vTgT9Qvs3Y9uS2I+mOqCNmacOWlZUt6zZ20DZcGLOWmEhUS90/INN6+fPMromZLBOjzAwyMXQ7yg2jTOxizzJxkIk9E3vOHKSwl8I+KPuoHIKxi8Yh+n39ECP7FNmFgZh2RBkJsiPGHSIjMewJMiJxBzK4J4YMmGRYcnSQ37WgM3RdaLoeNClD3kFKINIZtaxBsUyss3AN6/Onc3KbA3ghumRZ9Pg5S1tYgsKKEEO8B+QFefRU+qLSyBVPftxv4ktK2hplOjOfT5TzRDmfKOdzb3Nbzifm85k6nbmRwCn5+iymTEyJkNJ9G92ubfHSt+1/+DgM6jxRpulip4kyP7Db/nminL29ToU2z+hUqKXQpkKbC1oqbS7803/q3+R7v/DzP+6v/CcyPQLAj+n3VTJzUPBheu2U+ZqJ9PXjHj7sxzMBL+zILVvSdFPXS7/qg7Fdc3QbKEc35SX4U5lfEyxq3ozZBt0pzmxtVWmtR4zevCbraytq2t+D9vdtfdz9ACXrDrWzOwRYXeVD8wBNoXbQsfZ6631vaV+Byjc9ZhPMCUVGhZ27VkVRBtGVTXIJArUwTfRBm3+Oh22v9r1JOuDBY77Ui+p+VXEA5gzO5luoOctO9stM6/7TQdpQwgrCxhpJdUDK0YHEmpE2EKwzTmwk6A5hR7AdwQ5Iy0hNSImEFqBJJw/1620JOY6u5fvtnXFpinTL0i+GJYFRsGfORLDsJ/IkwVYbkBghuZbZomcmMbu+WQdlV41ZYgc55UIT6eC+OPoGk/jfRTuor90VvofpXVmotgCywZ/zC0yGYvECdK7u81IRTR3E7bkNDsi+7gIKBnHJQFRsqSeDqN4W3DqTKyAhOMDYN0uIg4wSIiFGBx17WYKztkLMEKIHugnhAsJIZygG/5s5u+TCHLnHKklhbVtYKUvk5VOrnFrjrIVTa9zViXO54VRvmcodzbRj/4LfTQKt+UGNVai1H1BVo1U2MiXQmtFa9qBMevSo9q0HaOn31zLMlDjROkDcwg3WNTxMZoKcCcwkJgYmRs6MzL285DNfZ177Eq8PMd7hpwWaWp1ZL4cNcZM9Gn2TXm8BbVtH2ESTAWVcrS6WkcaAMXiIFnHbbKDqgLZM1UStHoSqzsJcAswNKxXmGZtnbC7YPMNcsOqHHFor2hq0SrBGtNZ/542GH1Q1a1RrxBWM3JRNmbv7/JLrpry401dJbxmztL06BoRk1bMWBqscrHFlxsGMI8bejAPGAWEPHcgM7ETYERgkMBIZZMmJLIkk2WUSrNGsodZQds7M4xlVhDoIdecRzltMtJRoOWF5wIYBG0dktyOkSIyQgpJESSjBnH3pwJcg5kCmk3s7e00dNA3qrr2b6fRSNrvfroqo+a2gGb/yvoNOf1Z/nj/83X9sJYUCBD7iW+N/jtq3eV//A/694erSuegk9rtZp653yuWFZXt/gnxDWR72vaW/r4voU8n6Ussh7Qohd6BHoud+P1veqefmuozhzF3XbJzDzMREaTdM7YaiN8ztllnvmO1EsROznSlMTDJRKJTQXFElCjXBnNyWCGWx94Bco37FlBqcyRpIixxCL0cLJPW2ZJGk3jdacrakOtjbHZTdLVka6nCzuzx3IFnFD8VVFP/XpTcsoCHSQsZwMLVaQi2jZFIb2bUr0nkg3w481cx7NiDqjFm1gaojxUZmGzmb371/ix32jqBspjBSGSkMVEZxe5TKQGNgYhBlkEru6+KE2yzmQbMCZDGSwD4HjmPi2LWYrw4jTw57nlzteXJ1ZLx6xrB/QtodPPCe+EHh/fygTaK3/YQm39cUzCqqpXtILdYP00FWaRwJ5tI2ssQS8IO+z7LPrPPMdHfL+faG6faW6e6WOk33B22fZsP6fNj2oHjvgdv3oqpYa6g2tPWsrevJNrTV3qZrvy1jX9fWdH0uq86i16ad9W5dOoQuH7LE0+gkCzXfZ6pt6pe98FJfiAoxJ9I4EIdM2o2e9yN559I1+bBn2O/Jxz3D4cBwPDBeHRm7TfvdjyRTY6a0dqbMN8zna8p0zTxdU+YbynxDLbfUcue53tHqidZOtDqhrdJKpbVKq5VWyqWtVrRWat2sa+DVaektXj9bMn0Iy8GaH66F7okX+iGdyNLXy5u2tU/pB3fWPYH6/jngE3oEQvfeWNr8ZJ0UjLyzlWRgfS9tuGzJskgwUa4//nXgEQB+XXoEgB/T72p6CP5hdK02VnAQu+86v7jNr+Dj3O73Lf1FN+MaZdL7AZO6nunvStxDWQJQ9clRlknyEshjvaOuK32/gV1ogL7ZuLi997ag90DLC1Cp9wDMBQxFetAnud8uoV5AU7nYS3T7V4FL79+Clw68SFLYe11EycGjpd4HMu+Dm2/UQF3q78rg/CKTxo2Lt4NuznBc2IVhZTTSWYXOcnTO14Xr5Rt1Vvf1ixv7EiSK0BkrHbRiYfcG3MUVBSug3YW+uns6tWDVLa1gpUCtUGq3DaqCOoNEbAEC8TYzBwmXYAir7Rln3RC7b254NYtEBxRt+Y4iWOplZ3NCQrq24yUPCJcyDITu1ickAu7WF9oBaQeC7givc/H7LCmKu2yOF3dOyf49sy4W+0Jx0cnr9dW1cvlejEt9eyax7t8VzXe0dIe7Al4WJIvWGqE5YNmzdd01gq6MUMJ8Gbt5jHU25Xo/6eDkgg0s9xrWqOFwoaFt6stjt4/pz2N0VmpnVavMGDNG2TCtnXVttrT5GO31DXrymVOQrTu62xh2LlEQd/fc1b19vMhYLP09+No2ANsiNVE7oNjs4npdTTqDKVDM62VxS1VhRtw91YRJldJO1Haine/QdofqCW13mJ4QPSF6RvREtPOas53InBmZ2HU7Ok9q/eyfQ4LtwZfX84/olecqrztURlR2KDtMdhhHVL4ONmLs/BO0TKxGqBVrs2ed+32qghYw/6bdNsQaWdxCRWR2uFs8jvgyf0h32w59U2B9M0A0JHZvh/gp84Nw+VIfSDBqE6wKWgXT4PUmq/XyJaCKqo83DaAJLIFlxDKQCYwEc43awIDDqiNi4lqXpi7LYo2gFVGH8xZwM0ggLhsjZGUyBnG+sEgg9rljYTWKJEx3/tqMJLm6zE1bu85Z95nwuhy8djDKaO55IQ04E4K/ZpTc3Yf7RdYPnS6gZJ8Di0uFXMQeja3z/o+SbHHFUY9kY2vZrdmlbtqgX49//Y//LM9OX+P7v/o/MLd5bUdP/IGf+ytIuuY3f+2PMF//eW9f+tuMqXuqSApI7u78yYMP+bpVOl7b5wlbDgQv88dyKGhmb7TrobcYTeB2FG5H4W4U7ka4HeE0wGkQzqPb02BMg7dPGaZsbge3czJq+nzrJzGITVzbVYWo2c/Z2lK/5HwSdoseLNKB0djLi2t56O7kYXU3z72UiURJJCJZvJwlkcJyEOE2SuigxkwtZ7ScaWWitQmt/jdr/e+2SD4EWTygjBCcfSnBaOIHThpcmkNDlxPqvxcRIVjAFnaxJCwkVIJLfIR+gNWtayL3cg/GtRx4tT7v1D6/lL4+LJb7MVv2bG5nLvbzpkxjlJ435avQ2KEMcmKQG0aUQRrZj8wYUC+L9nLDlW+VbIumN/16xa9fHl7PrIDb0ne5zq3/lntdG/PpxEd3d/x2ebukloTAeLxidzgyHA7sjkfGwxXj8ch46HkpH68YDwdSHtbX83T5Pag21CZMz6hNqJ3XbDpt7KXPetnt5Os7a257hC2jYX2+M+rqyaYd8PX8eYUdHqTu7WQWQAWzZf5agjkunoz39ckx+rrvArZJl9hZ2tzTsKsirNb3rtux6+nbAtSJQYvQ4z7QiRjSuq1+MCF1ILQRaQNRR/d8Uvd8iurl2HYEfeK2jcS2v+wBbAFZfU9tsfiaNRc0bL2s6gO7ISO8bgznlXCzWNuWz3A+K+dPYDlNtFfGdxku0fWxJgZrHIF5JUdomL0u/v6hIQuxY+H+KNA25WUr3fdu0mEB0VUpzPsbl+dqspalbZ6nbZ5vKTd5bV930uxWHtQ/Y79u6hs95rde5oCJoCFQU7/vRs8WIi32e3m3GuNqWxjQf+ZvwC/9K5/5Z/X7KT0CwF/R9A9+/Ye8+PC06otq084KUneVv1e+MDXvj33d47SXOxtOLwDuEq2eDV55kSTrs847J3VgMpYOXJZ7AOYSzT6kHs0+VUIPdhSGSjhUdrGxX6PdO0C63h373UhWYMX5V0v5AnpurW76Fjd33TxH12hbwM/lLr3VHFvZmz9eoNM0YOYalbYsJriwBQFWbcP1hn0Br2VBvzbHg+tfuWNMi3UXvNEz47pRvpQHhME30vgCwrU0WSOaSp/MnOLSN6Muw+XBf2Zx93xLHbh1y1r3tpAHQh6JPThJHEfiuCPsRs9DQEaQ7tdrtWLnGZ1q12mrPZr8ooGpHg2+9cjxXZvN+mRqKwNzQWo+H+Pysrkt9zerbXYQeN28Fvza0u6ONnowljhAd60muBubrKBZ8ve1ALxbdsiWWvSuSXjAmAwbJqVc6mnRr7qwJ2Xo+lXZtWUlxQ7iPswP23u9a1993mTWKOUT5vljSvmYuXxMmbf2h8zzD71v/phanvtm4PdwMoRmA00yrW8NW2dhNjJVBhojTZ5QyT1AyuBlhh445VIv4lvJQqYRe5iVmWSFxNTt7Nk8x+pt2eY+9uX9MZvHZ2YWHcwvIi1hW3afNvA1qTBQGCnsO09qR2VHta9zZyMv2VF1R7WRqiNVM1r9/ltb1wHt4Nw2GI41Z5xizqQR7VIpqgStmDoLnebgqiyu9bhrvKjRakBLQKtnq6DF9Xy1BHItPJEzT8KZp+HEVThzFa+5Ch9xjFPPM4dYOMTCLhZe99Py/fZ9R3frdbP1ZMvb7snPOJCoy8Ea/l2IJYwMmlAbMMsYGdVIiwmLDrq0ELDoVqP4hiAGWgSNgkZDI1g0LCoaFYv9YCV40DcNDcsNGxvWg795X+2bzMk3i/H1zOfPk36UW+sXkrYbzteU1zYLri25OQhdwGlW7wTrLFxFWkVqB7ulH0DGHZKPSMjQFKmV0Bq0gtRNbn49S3Nvi9C9h9all2SQwQ8Sw+i2u2uLDBCgSuVXv/fv8k9c/yrP/+ivcJbKROVM5Y/MH7Evt/zVw/v8nX/u/2IKylmMSRZdaDiJMIlwEuHMUg5sOcCe5cFZoNzrd5hAFiLvPe7w6/fAmxPFN6SRwI7IXgJ7AlcifBNhL3AA9tiaDyh7tIN/QpZIlkCWSJLQgVYhd5A2dHa5If3cU1ATmipNxT0OzCXRq5r3N2gmNPXfbFPxe5n6PU0t9HLw/t62rc8G1Xqwn2ZUU5pVB1XND+8KO0o8UmOi7BLFPPyg68i6DEGxRCFRLNEs3ut7V8brZ0oP/lwuzdKI0kiiRGkMoTHERo7KEJQhKjkqh6TkODPEMzmZ56gMoZJjJYVGDoUUKkNweDjJRO45MnFIyjEHjjlyzJkx74jxQAqHruN/JMUjMV2R4hNiOhLzU1J+SkzvEdLo8gUh+ZowRF7n/fi2pFpQPdPaudvTpn661970hLYJ1TNmzSGz5rIhrc7UMtHK7GB/nXvQxdnZjvWF6/S3SmuFU6vclYp+0pDn9P2H70dCNEIyQlZCMiQpIbVu9VM/0yt/5pqgplUfn0Xbf7VhUx/B9g/aNuU+r/UJ6T55gujsV+s6wcHX8cR+81vJA+Z7WQEP9OZrAsGD5wnVvdPcRcjXD/3wkQ0hxD3C/NDDwT+57zHWul28zjrIf2+Dv4k9YKuU2yJSfdsPwrbZHysrE9fzwsXYApzLfX97Q10dH5c/430M9pX8+vF+Mw7bsWwsb2hjeT5565j7N/r7n+Myp644MpeV5483WWff2rJNDetZAwRBg9BCZE5dF18SNSRqiNSc0BypMaIhdhA2dlD2Um4p0WKkdqsh9L4O4oYF1PW+d70fbdMvh6df1FfzlUuPAPBXNP3q//hfMs//YAUn77mhh0WTU/sE0tt2DmAu7Uku9XsAaNDNXWsBO7dA4EPX9ctd+GEwhntu7Ss4ahu26rtP1G9LDlT7pGudFWMLi3NbZtt+YXnayvzM3tYD+mDu7ipL7i7DIYT7OUZiXGxac4hpjWotkpCQiT3i9arXiawu4MISeCi6TuTGOjAqSPNFhzTpp7LBo6a32NsC1M5WqdqZSlwYPg8m3XsqDEpnvSxtdmFLLlF+uxvOwpDhc/8p+yy9njLreo2sR4rWgNIZaDO0M9YmqC+xesLmO2y6xeZbt6VQ55lS3PXXHtgvPOWMDNkDhQxdN2zYIbs95D1hf4XsD4TRswwHwrBH8ojkHcRhBW0lZGB00Nb6pmY53W94kJBqHkykttVlfQVSUwdY1/rG9sxal8tCIAJBsOCaZSaLYlmjtcKklblVJi2UNjNpY64zcy3MtVJqYS6FUitzbWtbqzNzqbSpUFulaqVpRbVd7jMGdMf4yzYbZzEvq7suvbAu9sS8v1+0W+cmwYhDYxgLw1jI48yQJ8ZhYkhnhnxmjCeGeHrj2mPSPSe74mxPONkVd/aPcscT7njKiaM7yItvTmcSRSKz+OZ0lsQkkVk8oNTCHlrc47du86+LB/0uAadCd7mOG/3MaEraaGou5WR1dcVegg0J1ss9GwQzssLQYDDITbqF3IxdVcZmjMV4osZQfWw2Q82j82p3oTdTGhU1b5u00FS7i2Tr8jDOngmqPZvbpgR19/woxVlfdBEF0fUgbp1bUERYmRnLZyI4v5EgBOm6muLnIFE8onbCSDPkWUhVSLOQi5BKIBXINTpTDjpHs9+26Kx+k/7ezsAM3ECXSVi9AhYPgCA4FafTb5ayDP00LWDLeHp52y79eeWSAxetQNcQ97lsCYSyuh0sj3to1YHZUwucuLye70AXz4UvAWBZLvVP2xv1TdVyq0pd/xStnZH8uvIypnm79bwwTa33m7v/my3tG+ZQnJ3NEx00JlY0FixqPwzS/jiXVFg2w2oN9+5wrySTPsdiflXe218uAOLlqEPESFnJSUmpkVJjSK0fWgKd7VjEo9sXAkXc6iJI3B1UfIljLk0TpIPkAh089x99nws6K9vXloXLQbqte/Ym4qxIke7K3jUwuUHlxmOx2RqTjYKXF0Z+7Sz9YlBtafdy6eOaQbFGtZNnXni/+eNmE8IP/ix/E/jXvnW5TP7ll9f8C7e3/PlnT/lP3r+v8pjFGASGrQ0wCuzF+EDMfyrrX4SLQ8Xmcr2UBe1rTdPUyxHThOFBrkwjahHVCKSVORs7WzZY16+1flcxH98s0tRt1Ui1yHOL/LCXl77tuKahPzbQLHZg1uva27x8adMvWB7o01IQB0+jKDEs5UYKjRSq10MjrbYSw8zwYEwKjSiVGJQkDqYus2ymErtK7Wqll7uNm/eR+vgV1F3KbMYus/NyT7Tgt9TuGSb3DlGsSzZZX84aMgMnlzARdYRdVFcrnVUutmHzmflvTMTVn4IfWHjoic0N5AEYJZu6/5SN0OjzascZO+twIY1auKy+VnxwvU+94bV49fXuWbHLj2d7ZthZqIP4664eS4HLvLN6MfkcaSzzZ+igaOwkkkxoCZpLT6GJ0HqsgU4yCS3CNpZAS4S+v/I219pVFDVb79trUBHdHNAuIOfGQ2Hpk76OES1gU59r6gUsXR+z8SRY9lK2IKQPnvf3QLLFjd+32evfcfnbLryjbb9bWeen5dqw0Ffz6/lyJyrdu44WhlKfz5byerPelmHxjuuKzKzs3Q1WYSthi7VdFlmCh8vx19W3/J+w+UzR59718z8c82C8BVwuK4RVEkpD9OCjEtY+907oe4eWXB6sZ2uZpn3u0R5sUeN6vzfc+ko6oEEuHhOrG+G7XADW9xVLfIS+teuxQS6HyUIUIXccJbTgsSpWbCX6QcUqhdfjeeiCUsf1UMXn2QA/M33au/t9mx4B4K9oOnz3v+XZs//zlXZTv5Ms4KZ1VuJ9sHPjWsL9NrcD7t5+CWtxqYX1Bx1MVncqkdB/uLIZvbgo9tPF1U1R2EZXv5ctupvhMim3bjV7xPVeR7u+5zKmbYIEfcWSPrCvJoPV3fgCsj9Ac7mnbbowzNaFjF7cLhdG2rJpbg1rfUPdtgueS7Z++vx69mqXMGjThsV6YbM6uPvm1ESYh4GaB0oeqDlRU6bmREuZmhIl+WljjZG6P1KfBErM1BC8LQRKjJTOJqsx3LM+8bEutBVfdJsILbg1ubQ9tLZSoS+LlzWW9zrWF7WXx4CJgwsxerC1GJSYlNRZASkoIbRudd38BFFiL/cpnMXVOnRwbGkLmzFBLlbMI31v27papz//Uu59y3JhgSoDSoiNEJU4ev9x85j0E8SUVYQbnnDNUz7kGdc85SVPecl7vOQp16t9yq1dcacHzAJRO9NSHYjc2tQqURupNZJWYmtkrWQtjDpxpYXRZkad2fXyzmZ27cxRJ3b1zKF53uuZQ5vYtzP7NjHoTG6NrIWkDWlK1OjudToglnHt44wx9rzDGDBGkN4mS95hMkLwgCfSA0kRPOCJhM4QkuUQ4sdzH3X3SnenXCQG1rJ218quiYnE/j67hIls2lbdzE9ZAm03tPhTsf9yPtsrL23LffTBCdxWa3pTv7Bs7MG91/pGdXuv9w+myxxgywaHvvFhBRzXvf2yixfbbJ6sb5wckFzYV9DdRfvYVR+9P345CA597NY7JqwUnw7Qr944nScbGtKtsXj0VM+xgThw627fl82b4JpwwsU1E5QQ8fur0O9x1u+NrmAsaGdVO7NarIIpsmzcW/FyD5T4afMVOIh5FwJ3ItwF4U4Cd0E4hcCtCHchcHrQd7uO977zdi4ioZJoHZZssszscgFl39Knr5xyvaa+sJa2KM2XmMSMbJBNuoWkkLvEQNLA3uJGYkC6/EAg2cBvxu/yG/Gn+eXT3+FgkGTg2dz4Q9e/xX+RnvHD9n3+xEej3+sso5ZoGpgtdtmXQLHIrF0iRgOntZ1VGmaxtdt5DYwVutP8l5OiuXt+QknWLdbL9+2ul5dDwKhGsskPALWRtBHVta6XuSqaz19RnaUdrZG0eFn7uD7fJa2r9nVSXwPk/v6C+VyfzMHUrOog6+b9xy41ENEHMkYbu5Fl2ubFE3EhGVzk+deL+3Lre1fg4jOnjuS89pRqu/7+op7zdy991ivYQbb+DW+/5ocN8vBBdplnt3Pt61+By57li0/bt/AjrU6XeS+wkVVwsHA5z2XTvtYX8vUS1Hn7eD9NXttXZuYaH+FStwSW+kFeEsy3zC6lFP2TOp7+/7d33vGyZFW9/67qPufeO8MwM8AAA8PMADOACAI6KkEUUEAUEBQEDBhAghh5gGQFFFAQUAQVkIwEH0gQUETJOUhOQ3YeOQ5MuKe7ar0/1tpVu6q7T+juuvd03/X73HOrakNqJUwAACAASURBVNeuX63etePaa6/t43FJY/N8FJ9qel+/k4wAtDEISH7xBdt8UjSZJ1SZu7FGHzsPVG1UYSrElH2adRbNRJzWv2tRWJViKwjGbDDSTVvdpQcYscFYN+3IBiPdYCQbturAV8SNZMiYofvwtlUKycCjzEZIaeTlvYzsz9tnt4jWMk3E6IxVI3v9gZjyNOlg6k2b08oeqc/BlLADb2ul3lw5uc1pH6eFU+uK5ketCxcoxBXKom6g4WNan7QrZMyguJhiOOa4cjluqNYRoQBeU1zrW7+Hvm/ohXhQF/alw2fpJM3SFlDvYpwsmbzUNpvpYHEHTVia8U07hEvt19L9Vg7Ecqu071kjm8XN7yXOzMelZPdqbpnNZ41XUtiBbaA2phqNqEZblFuHqUYjytEWo9EWW6PD6GiMbB1GDm8hWyOktix1v62jEbrlflrH7rd1XDa+W8sSGY99jZ0t32lVnbUVU/KHN64Vs7VVk2ZWTcnKacrAVH0WtvaZMxiaUnNQoEVBWbj1TpEseWywOAbGIijq95M/NVNcloXNFKajFgVbgwFbhw6wtbHB4Y0DbG0e4vDmSRze2GRrxt9oY5Ot4QajzU22hnY9Gm7Yn5+XwwUdX84J0ZID9YZIh1vHg9mmSc1f7gO0OW6y5Qvk7W/ImA217sSQMRuyJJ9hGaqsU+U2oagm69LmqK4OUb+uLRa1QBkCm2b1p6kTac10Id6NdMtD84EMiC0DV2y5p/dpzQql8ka9UopakVWrgXxWWjL5LbzS2o7TZ7Cpw81wwtxymEsO+6uqCt0SuLhgcNEGGxcNGJRwylg5dawMKv8rz2eg5zMoz3M/h0Vdp6YZadHkb9aW74n4jtedMU+3q4rLj5hStl4qLAXmN6yo0wyoJwUqES4YFJTDAeMDVlbHw4KxlIzqHcvHE9cT9xgx4gJGfMfPtxgzppSyTvs0QDM9WjY6axk9pKkMId+U0KrZRgGYFIID8V3PtRlspF3QbYxkVlKF+NE7ona/2S1d1HdU93sDhlSi9S7sY/8bif2mfDf3sijN82mhjAullIpxUTFGKAv35FcoY1HGaK00OygDNhlwUIYclCGHiiEHiw2OG2xycLDBJQabHBpucIgBh0Q4VAw4DuG4ouAQwvEiFq7KAYVBOYaxT4LVfnPdUqgq8d3e0GpMWZWU1ZhxZRtzjcuSUseMq4pxNWasyrgcU2rllpFjykoptaJUbazJ07LrSry8SDNlU4kvz/ZBirrNnNqGRKoDxjSW6KUvza6kUSyWtd5Fvc3Q+n6V7ovdz+OWIrVXn/wZFWnKnGYjXx+8aDkA3QAGMOrUU7j1JYN2faaDup6r65Fm6JrVKU09k5SmtjS+uZ+pqlvnpGdT38Gtdxtla0dLolPCrOD7gMzLGLTOtRs/u98toRPcM++3B9r5CgA616br8JSatmqg3vDNn/c4ilmrp3RXvK9A4ZZMwmEZ+KSr35vDwvzlnDMZOGKme+JhOfaJujRhN2bo58M6rOS4aszQw/LwYSfesDLl50Zp8Te07DzTcKS4+fmgFV65stXcatTalfw807pIsupPSrh6IkxsAixbIdC656sLNLO2VCnqyWp1/nSuslFvdok0E0y1kUHSwCYlbrYMHJo6Kl9SjqYVPGmCKrWN1p9UKdyC0OUqGvksCZTktzRZrYskxZra0nox/8CmOGrGA0YhTfJOnDeKJmvjpCn1AlZTpGSX2m2SuUbaZCwH2JJNxthxSw5QUqBe77X+0OaIeetWMUVQpRXZav06br2ATzTpwOt00eaHeDUhnbCUj+z+YGPIYNBsnloMbNNUW5FW2Ga1Hq5iqxubSdjC9rZIG7OJoOITspgVvwJlpVSq5mZQrX9WlrYxdFVWVG4UUu9/UZVoOUJ8szB1N0h27q6TsD5UU+emCa+irsur/KjNden9y9L7kmXqT6b2gcIVcql+n3IkO0q3ndiu3XDkynCvY9th2uSxug42pBVcaReSQoVipAxG1pYMNK1Q8r6TZuEqtvKAdJ6FqbTDEQaaFMnixrCZ8rh7XYfn2oislfXVxoXXI+KrDG2jL/tqmjb4Ih2VtBFYPrGrkvJAbW6acWRHf05bcbR+z5SmcW408xzeT5Hklsb7JpIZLKQ+jLtYUt9ArVnZ5f4ZZIDiPenCVxhgK9lsZVm6hnolGNJ2o1zXF7TqBUtf8F639blVvD1v8l46TwbR1keoAPOFDbYBNIxQsZVTFGOQLbQYUxVjKtmikjHjYkTJ2EYkMmIkW2xh7psOUzJG6/qtlJR7mjqvNmsTC7/rBZeb1gMIEArgtcVnvv1Fvv3N/7XG19espR3RrT5J/jbNXUExLLxRFxgMKIbWkBdD97s5GFAMBxTDod3bsKwjSbFbdzYzpWrlTVqZOnNpOZN18MT9HNb3q8qUnZWaf9VyTFVWjMqKkVZsldZJ3KqUUVWZ21eFLVVKTcsDhTHKiMK8HeBhUtjO1WLnFubnImYJKua7ZuRWoWVhFqOjZDk6SNduVToYMh4O2docMj50EC2Oa30D0cp2zdWLOaAXc7C6mIN62K8Ps6mHOYgdbbf1i90LrmLbYo3ZYItN2WJDRmywxVBKauVR3TCl89R4NJ23ukPXRK2fT1CP33RFatapx8TYvW7iWJcJ0qyd8R5opGpxds8Td1I7Sn1suCS71wwUGilkyrl0r7NBdPMnjYFb+lNQKUm7Nlfim+bIXm0EhIINCt/wrMD8FRZsIAyBA6TN5sSVYFRFveQv+eCS1p8pTKV0xWmpmQ/GioEvkZeqZFCO3Dp1xKAqKXRsf9WIQi+qrwfVqN7Rfi8ogZEkX37C4UoYUXC4LNhCGFdw2K2kDqtZWh3Wgi0xi6vDMmBL05JlO44Ks84uJZVLYVxYeR0VMB6IHes/24F8VKgp9Opj5cq/ilFRUg0qs+Q8BJy8x8+4JrD9G135WmGz/FVyjTNEdeiTBH5uZiVUmMLNjkNXpm3Y0Z9Dh7bMWYcotpSyPk+9TNKatlpllN0T2uv+psUpsh5r85zOeJbus0cVqZsKmaadydGGzDiHXn7DkUiW/Of2gnFWQZptTX1N49LKKlP36FpbHJNdu2IoH57XA+3ucN7a+0KaOAWm9ByquW8cKG55qQwrP6/s3lDNunVYTd4r0kBf2y23ub/xa+9z1TZSHqlWSEn6tFIXhYL0jG3+WohtFDtghEjpdpmblHqAfJuo1oRcqyV2lw9q/cGkLOkq0t0xi6vpfQVFUkhgx2TUZhOE+RC5CbM4yYFKc28AiCivPG2TH/heyfW/NWZTSi536X/juOHXOf8bt4fxpdlUYUNgiLCJ7Z84TAPmWqHqyqLvfIny6x9l/LVPwPgioIDB0FZF5H9J8TUY2rEo0GKIFgNXoNpyXR0MqTY20cKW7VaDol4xVKlSFZYNbYs+ZVSILQmvB7+upCBtOaS+NL0Jw++k8AplXAhbA2E0sH5yldSK7pKkqtt8X7Lu+Sz1g+o8hfeVBFvlR1Iaavrn0O68Ie27zqiDGfeac6kzen3ROspEuNTXtSFIuld/Y+OsqpLxeERVlnuqnwYbmwwPHGC4ecCPmww2D5p7r80DsHkIHQwZlcpWWTEula1xxaiqGJewVVaMSmVcKaNSzbK8NN/KtfuTytyflDRLvtN5lSZQ0oSU7HysaMpnUpCa8ikpppp4ilBtpYmxgipN5M+FZLW7135zgXnk38Yrv5f7ocKGVGyqKROrQqnE1eaibinoZg/pPK36kCwMbawK6zrGveYI7lLLflNT/6fxQmNFKWp9qmE1ZFgN2aiGDDVd272BFnaupogdaGcMotloJgvvXufls5joK0xLskzR6QrTRiGalK6+ibHfr9KmxVKZS59a8dqcp7Y2KVVrRW3jt4R6IENV/xgFxsWAsihsrF0U5lt2YP5hx/5XJv+w7vffjIw27DmxuGaMNMjOLe9WKX62AWRZGzplnZ98DO1pmo+Mp51Ou6/SPKtAucB+JIH58LlPfepoi7BvEQrgNcX5V3wPoyt+KfPtVdR+v9KGCra8YeAbJZiXqzFDX74w8OUMQ0ayYeG6wVa5wbjaYDQaumGAN5qFN5RFOs/C66MimzassIa3rJeVi2+WkOwREaiK1LR1lYbMCGuHTwszL2u2McZQx/XfIC1Rw/1JJt9eyWdmvqydioGkeWDvTJSm6G5+18ic8ifh9qBzMIusDcY69GOT/pUvB0tpkAabaTYYXCnYSgfNBo+azRZn8fJeeuJpkm46snsTzVrnOcE6TcnP6MCXHg4qWx44qNLywZIiyTJFPzLVl9jEAKOxuqrDJBvey2TciXBpFONgfZVipBTj7lEoRmK+ikaFXxcU4yHiu6IX44JiNDRlrvg6LDELtOTHt57xra/dis1nf82SzTvsOoDU4VcfgCcFmZuCKKYsTtYNzUBL6iTbKiouHI65aDj2Y9mcb4y5cOBHj9O6Nxxz0XDE4UFF6QrWaql9mzSXO0YUNqqCYWXLfoelNOeV1H8bY+FACcdXthJ8WLpSpRSGZcGwLEyxUtr9okqD6PTdvUusTe7Auq8dX7zeqfQlYlXysyW+iFUG2ILbunYgzfirFO1waVtZV9LErS0SszjGnQ1J1Gq1Zkok55eaLx3L+lrcP5jUneVlQbRisxqz4ZZ0m+WIjapk091VDKqqrpPML1imKmpZFlat+qttZTjdhmag5h94oJkVd6UM3aq8aPkia7jTeaqjknqr8IFkPdmU/KBKfrSMXxXCeACjoStY/M/OC0aFXxfirmXwiQyb1KhV4pq8yatbyvjkl2bW8tmxyO4ltXetUNMmzNowdVctnsPcv3Gy6W3C05Bf3b1LM1Cu1w6ILw2VkoG6Ak29jdWKQmHDv4mp/o3bzhsu00mOpwwM7br2iK1ja6PVlrybL8+SIoVR+soBaW1GW6rV7aZEEf9rXCIU4guMRBgOzFJmKMLQffhL2gq9LndpgiG77pw3qe51SeHHQbfhyvsx7bD8WlrX/vHTefKDrlM4pJry/LTGM5/8TTL5vhFHAeZ/MP0N62Optvx2rJu+8aQpqMdsUlZp08oh7z/xLL589VvzK594LVfZ+BqX5lxO4v9xnvwoxeUOU/J1DhdDLio2qGSIFhuobFAOChBbUbTxxc+z+ZmPc+DrX2FQllQibJ16FuWJJyLus1NUofJl0FXpE68WXtXWiSU6rqAqqUrcop965VSlmdsnUr+jqJWYmikz0/S4gPcNmjh5mFl/mTHAIOPYQDjoVl2l2KovHQ4ohwOq4RAdDqmGAxgUVMOhregqfCUXthps7JZVpWbWmsmyV5J/8VpkfHFxvZKukAJkSFEMKHx/i8k/W9MhRbOqqHJ3D1rZCg3Vyr1AaO0ZArQJy1uI3FrZw8isMiuKem/hSsQ9d/vqN2+dqvw8/Wl7YqPaEmTLlc5M9otndacnwou8Z2J+6IfS1M1NvW31cJq0sgkfL++1j3vv73uHPsUBTOFXCLjlsRbN2Eu9Dyxp740iWWmqzUwBaV8OTRbRye1OGjxItmQ9KfAl9UMLNkploxI2xsqwFDZKGI6FjbJgYywMxwM2RtbnG5RD27S6GtifDqjqzat3138RlIFoWnRqdX999Mkn8SNSx0tKYRvfWXqbz3JbyTZWdb/mVR1WiinxS6S27HabDs+PbtldVFRFSeHOUSvSPjtZOvpOZbU1u+e42mo1U9iirpzFlN/q14hxV1JZXq+/s+ffepVF8indTEolF3Xd+9aPHNredmIrRMfFwPo77lpvXAxsw6+kwB0MGBdD2/SrGFL6X7WTO66d4H6WSRvipn1nkqlo2sxupNk9NX/MbCGMaGarcs1uk4GlbSLbyllgynptXbfPB5qabs2aY39nlY7NON3mTLSZO6mf06YL0Fqtl/G1mvMsrM5W0+L5Sc6Xo67UpPn59bE9vp4ab9azOXZdSWaB2zwzLmbdDIQCeE3x5RO/weUOfdkHT82GB/sZtgLMOwcqSNdtVqbktGs7SOtamwquGye/nyrCKjtXV56mcahqfT+dt57Jr5OWTaEYKzK2FQ7FGGSs2bndL8bASMxYqRQ/978SYETFCNWL/WckhZ+f+yA3P9bKPdfEmX7Ll7MqbtlnFbR2w8CfV0CoKgVpltyrCFqJt0lWk1ubVNQWPVWSy5VL5WBA6bO35WDAaGAzreNh4T53C9uHrigYD00JUhauMHGlSFXg5zZ7avvYiZ/7cm1Jm8xklkaS2wrbdW6N1LIhlilhWde5Spr7qQrOrHFJfrgOTInWzZDTIuS38lbU87N6Z6IZXkzG67as6gOXJr0alx7p9yXFMOk311aS1qGRUijG4svxbYdg8fw2uTS50ylqyQxJ1WGdqUbVkMsrnkoCtXKuQn2HcGWkjRIwV9wlhaEtR6pqBWOt6GvFr9xiwHevlQEj38l2VAxb1+NFO6Y7IG3ENvtPXfFlyrQNP5oViivvVN1qe9y+V8fxc7Jw2vdT+FDNgmZDSzb9fZtVyYYqB9SOm/WxYgOLv+nPDdDM4ipbEYIfJzYOy7UFRSuOtOKnP19a2grzOIPJZc1SNOeKZEub7Tn1iUYb2Hhdl/nX1bT5ChUwrCdlxCdxbOMzc/uR3H9I+m0kVyheViSVBsv/lFa+RMQt/NxyJrPmI7s2S73mnnrZqKjcV17b6k81PZvKmvsEJmlMlNpPsC/TrhUP2TLt5n4jT70BjVbN92lVks3Sc5VG6boF/r3I4qe8kuohas5UrVXibVamuLGl0PlUANnkn2Qp2ChUbMyUqVdSlZdqnuydzWBF6jiV52d7V4qbvzsp46T9LTW939+dvks9hrHrSm1lw1hgVJgrhDRJMC58NVNhchSl1XeDsbr/cUEqZVBqvWl8M+mX1fFZfduENd+huZejXbdrHp4q7QlMNpqpbk9LhpujlY18MqOYcr0rfBvu+fnz+T434j27e2IKToXTb4CeUbK18V22Nr/D1uZ3qQZj8D4F3h/L875P19T5om5b67yRq+WwsqA0daRaYhZuCQi44sEnhOowvA0mswSUzKhOvL0T30s1y6N5/vXy0pw3yr/Z91LfglZZwH+zahbu+SNv2/Py1JR1E64VLlk+y7pI+WaIzQT+ZNw2V91Fr+VJcSux/mXlfaPa7ZnQvi6kVpyl+Om6StdJGeb9V3Nh46UsjTM65+l7tu5h/Z8mD2SWptmqgErydzcyWzjZb3HZsvM6z60ApFJ3gVIxLCs2KnVXKcqgKtko3Rd22Uwym/sLy1PJnVDym66pTanb/cnwvJw0kzQy9boOy651hdJ3mZBqjOjIVhfWf2OK6mKKcsxwtMVmNaYoRwyqsa9OHDEo7dzC/LwT1mwEXDLwDRKLqmzcT7TGJl4ve1jJJof1ECMOsqUH2ZJDbHGALQ4yYjNJ32m2ZPq5ZBXSRPuZrq216zaNE82l5gedaHvT+BwaXXB6R6N6KKZwNfHyFcMTL67brunPWB2ks2K17ue9jQLlWnKAn5BD/HhxHCfKgIu14v3VBbyn+j4f0wup6l/dHifWEmZlqGlDpBVLO+dk9eqVD3yFwHSEAnhNceA5Q77y/Ws0jZSmjkGzo6MOyJZESB1uHQcL14KWf9eWPzaf/aYqXMloysZSm3v1zDjt69ZRktKuuU4dTOh29trnQFPdpGecpzlSW0Y0ncrOO1rvajql7fd24nbj5R1ess5qLQOwAboxOcBqFGHd8LxhoT7vVsETA+9jETrjfCaSdVS21FeanJnf2xv22unLuwP50UcBU+/RjPo8l2gnvqkfaCweS5t4GKr73tVk8eiWglVjAVmoLUM2K8N2jq8VqnXnIFcpNIPP/H/VTNGHD1Sph6yt8Nx9R7NE0TvYJKtWqycQcatW+2K1lU7qzHtYKu91GMmuKFeOmsXi8YBQegfTfqdZjjYuSJrzpMxowmvldB63HqBDmlIwS9MmNVJXcbJrk6VmGgGizaCSynVzKe8mxUE9Mq6/XauGcaXeWIxy7JwFyoVaIKIMWl8qfZ/0m5vvlX/JonVdeL1YZEtu7d1pgF46oX2nyicn6j57PXDTgnqgVg/kxH5nmQwz06/0Ot94PL8UzQ7GyaKlru+LtrVL6/7EYC4ttG9SpXWdlDna5O1Wrtc8r6ecjrt+GVi6Vo1lb1IMFAhpF+VGQcCEsmAy3N5Revo1SoxM8ZHfmxrPwrVWKORKk+yd9bt1phz1/Rmyznq29ds1pU0Tt1BLN8HdJmgn/dI783DS79gmXaakQ5Wnw4zwWhE0wCc3oRz4JGY2odmEpTTea/uxPUwZrLYqwo9mGU+tKE4rI4raaj6dWxrbdWojmmOKV7iriiZOwyHu/iKPB43bnnLglmMD6kndlA/TJHA7PCm2kuKtybfq16PBABU4pBdxueJrXCDH8RVO8X2Gs4keaVs71uGFNopOEVQuTVUco/2qYxSFr0YrqirrF9n1IDuvw7ViqMrmOE3AmqJKMoVOS/Ge2imatqV93/JzPlapxyzZWMP6ZGnliylGbWKomip763oXcRpf3t7fqK+7Yale123CAO9vAb6MPy3792Naup+dJ0vS+jpzC5DuX7zpbvuKAzZ2FZmQh1ze/Hf55KZZ8lvfjSm/l6zNwcPJfmdjpNS8g5QGGSd1/HTdbseSWxf1iWHqGNnEpSpJCZk4qOWi/a783ep9z8p+b+F/khSrKd96XpCqrPOXHVO5sBUPA0oOHNri0CUv5OAlDtsKXxXKqvA9BrI/D1MKu4+H4eGanw+odIPaT7/6ZP0GZiE/kHpf+jLtI+R9FPPTQW3mrWLHdD0o8D0avI4vDiNyGM+eNdI3qpElM97nbt1L6Z6IvO/d5JuqKa+1kUp+rOpVcc2xuV+vTstWzaWwfK1y8q2fXMQk9y31Nt5pJWCK04lvqwV9taEIWtn+EFVVoKVQVf49Sqndz9SdWYTNwXEcGp7AoeEJlDLgDVrxmvICLiy/w+HyAk9GBQ5YDZaGKl63NZPwTf8a7+unCbUUVX0FQ73NTBoLiBmffPXTHycwHaEAXlP89TVvwfcuPm1JbJmpa3aUuqbzv/x8yj2ZqCFnPUszWmwpQFo1cyZfXitXWVh6sBs3v99c1+9ovTvJ1312Miz9PnMin5QD0Myyt4b7WVDXZ+1kGEhrsl5bv3mi5bEYCiLdeN3f0O441P6AU2WbKnbJZS78d3qYV9h15YzQWPKlcFfAJ8f1FJj7A2+1fRMy8UXK9q6BuzuwsLQwy57XpvHNG+HkhyBvnLvnVboWfMewLDnUDP+S5YVf74TGgmzijiXZ1HvT49Lpc0xk4WmRsmDpXLfKwl51C9o8JjRTC7nT/1y5Y0qqJjx/betPu2FdZVjmc01tOd7Az4d1eBNmxtdiSoduWDrXbJmfNou082TJLalSWGYQXXdEkjKzmiAoXMlgCqBayVMfG4VP2bFsnxa/mnEvKULxvlDbqovMcov24HEivHk2/dYURn6kHacJmxYvhcnUeGZhA60KLbC/oeorX7TuAtTWaVVev+Sd9ZRH22Epz05dMrhqeSK1H6k+Tm1Gdt5qR5JSoML8tmf3RM1fsGTXtNIZd++E76Pgyst8MJwmSnwz3cYa0PyzWyXux6HYhHRqp+vNb/G2Oz+y/75Nns7d9Ac2dMxZo29xvg44d3g5xhRZd6dpP0WVA+MRx5WHOb48zHHjwwx8lcnFxQYXyAEuGBzgguJA3UsE6ucRzTJxR8RWxIQZ/QTNb0k72o7hNN9Hs8nZVp+ZWiHVEkuzgHb09r3sMO1erfTwQ1v55WFkeT6lZkuB1shsbXFVv0/rSiR7lsnUrNPcFYATkfJ0lkbuumy5Yq0576RJRpJP/eVfu0Tblnp5+1f3qbVul8lcJVh51KbOrOtLrZ+tCnuviqWXVra6olC3ka8UoWh/A4V6/Z532CRzE4FPcifFZvpOTTsu7b5C1t9vWYprknnSkMfC0/iBetTUTNba/ZovjS/qtG+Ux+KTS42StmSgY1/ZlKdbk+b+ZCaL5zDxcPIxTCNf3bbl36+l1PZ8m+rthq0uC02Wy5Tjdb2V/S4PT8r9OhdJkwrdyfy8HJFkko5srbLVlqd1j3bZbb2vw5HLizZtWqNQp50Gkr2/cJkH3bqikacJp1bKA7afedXkrbwKTr85ry5SrVGnJU0cSc/TjG+a9G2X+VZ6ZvfS6sNBti62UK33BBjUtUH6WoU/l+el9Jp2mitNPZavaEq/K6978rAizzs5/0R4CWTLrbXz22hcoA3S76rVxPUW4giNK7HGCV0Tp9nTJ20/nuqedn3eTl/dIYzOs9pKDwE+WpxKYDpWWgEsIj8L/A02vn+Gqj72KIu0b3DC8GscOuFL5NZG9dHLT4HgPQjSzpG11ZJiHQgvbsn3jfjWkbV1l6bKTEgb79RLLzT5zPElbnU8accju5e32gmtESITxb/bLWvF0+lxc7vDlpP9/J7WUraum3id+1Oe60oo+Z9ucy/j7MbbC3TnKBOYJnd+U/BskxpdkSaM+vN6/KJFlH+Ouh8uUp9PjKMmskPq9Ep9Pim4NM+m6/T+FMeFbSsfvJM67Ga5vIPbPpKHTYTnM5tMnNcNeSPujpBtrqbemcadpVF9qu1IkhHkadx0qLMw2emezPmcWdCNBA43VUpmqdVYhLaW92XhVRa3id/5nlk+aV0fTYWHK9ySBZ1UaudK46ZGs7h5ZeedwLYiyr9C97n6sdRJTxSaovix6UU3FM0GP1rH1Zy+Pk/vSXINupE0+02qyc1dW3mg7d/fDC4ay1hzV5AEbZbaJxlFtfWbmt+fZKvqNlJorEaR9D7vuvuDrQXdWec7rz6SQaeQvSw7FxpnD1U2sWD509cgSHOe6ilFmvmufFWL0JwjdXzbHNJ/o6djUkjaPb+ukvWSh6XNXF3mRonUhLW66ZLfycOyOGR1c/rsWV3TTDZk7YcUzcSB9qXIqAAAIABJREFUNL+rrt+lmPjNtQITO2/apuy6XkOpzXnljVuu5M6PtbJqCUiD3iw1mmN+b1ocO2+uOhV563pyaSmdmDnyPFwPusTyc1UUuTcWVx5LneEbyxzMh3JSMNfLzl3hkfJaleW77Y6eR82ysi1n/ks2GfHk4ZM4Q77CvUb3o+Ki7HdVnCCHOUku4uTiYk6UixmI1Qvf002+o4f4TnWQ7+pBNig4CThp2xSadd0v9v62Jv9IXX8lro5CiPZ3z/NcN/8J0xXOk0qU7a7z90y5lm7aLxft2mq6DCmsez39mZRWrjyRFKbehiRFUTd+dsyUs81zU+JN1KyT3yHJOFm/pN89+S2m/Z76fEqbNq1emn4++x3T7+/EN/28LftknSpT4+jEb+4qqXLZ+kJ6hzYBdt1OxPZx4jzV2dZHSf3s7u9GaBTG/jvdxKZW0jUyeV5W9fhMpFuRKQlry1aS1Wu+x0K2z0KuUEyKdXdtlpSIQqMk7+anFDaZDNPC2mmcx6u3RNTmN9WKStXmfvabB/SfHwLz4/PVjY+2CPsWK6sAFpEB8BTg5sB5wHtE5JWq+rGjK9n+wMkn/CQXnzh919RWRagzwvP429Rv2ymHWsowIPfnta1SaYIjHximgXF2vZs49XVHaQjTq+9d9q4nnt0Nd35/h/gT13V8mXh+Ih2nXE+L37xH6vhdC8F9Z/0T2D1qBaGhVgTW1x4nXZvWrLmv+bndk1YUbXNop3NVuzrI5dBWvPodOT/US9Mk+f3Nj6UvmfKll+LLLYsqj6ceR1vXtrzNO7TadPDSMr4is0bKlws291IY2buor1EYVuavbFCaO4miso0PLcx9mFXuaqLKr6usozul3GWJL1ma1pu/5Okq7TSfVpTr1J541YwyL9vcY8oLdvWuzjuTFULGlfxgpngiU/Ix+ORUGkBpPejJhGhNcNj/2vpdtfWFNO9Mt6dZIKRzJbfaac6b13UGLt3rLmT6RW3sN/XpzluFJj0z2YraGme6LNK9jw+QsvTUllSaEiGzVppUonR/Q7uFklbY5Ni2O8CXZhDbeSb/pu0B7/ZyNVLNGllPhnXb3G4+aike6vKZymNWl+TlmiastqjqcKWXd5USLcm0SbtpUnfrh3YaTP/NyRozLwlVfZX18zLGqhPWLUc6EVYL3pK/I0rnLXZ+BudxGb7Npzidu/HqifftVjGQ5FKoXZ81mdziautbuMWq5lx5L7irsKNVNqf3F7vpmretzVPdHNAuSbRiNfeaPKWt8KZ8TZNmuhJMsz5A1u7U7SR1XtU8fepw5+48167j899uh6J+d/tG7rCjPYbpKPJa36pbPrK8VZfRyft1n6nb1rRFbeWG+lracXIpvZhNPjPlHbgcE20deX7cJn7n2ZT2U790Z+AyPc70+zNrmabi7gg55TwTekelKO30b8mQpf1k+rfPZ6X5tId2FXd7isnwKf2qCZln/e4pmdK6uN7K1HJLNnHv+a+ORx23KaIZsQdW2bMT41VAOyWocWfSxLU4g/ZvSBxZpdAu8jo5vs1Y22WpnXINj3Q48/Zu8gFtBGoT1fGlVbdNEbq2Pp7aHarDJuvCVp25zXUet7twOuesi05e33YLwaweU7d+SUJk4a26fTaFnc/Ix/Pc/+r1NglMx8oqgIEfAz6tqp8FEJEXAb8AhAIYuPkXnsLx539tSsHsdBMna6Xp4TM6EF10Ox+T9ycDZ3F2Zag7MZ0OWzsuWcWnUyu47hKHPE22q4RlohVgSqW8TQ03paMnOhmWkc3m8gavW+Fnr2k9P1mRT8qQR5iebtOfq5v2GfHzQc5usVM+m5U0U9/diT87H0x//7S0k2m/1+9LN1733pTzWbJNvH9bmbKAWcm9Q8M5LY9OXE/pv89Kr5nn057NlnvNgx3zTI4ZskzwdPP8lHvbdtymPDgrzbv3Zqwq3vFVO71/Z8zI22zTOdzhela+z893vcFTIBAIbIOL2eA8LssBLuayXHy0xQnMhWntwf5vI3bqBuz/X9DGqskbWDVsO9roCbvN1TvLUnlHVqFldJaOSW/a7ttno7W8/98af0n2XDOzNHEvDxcbvQtT3iv1yL5ZrQvkhnktTs3uTVHk0w5qTlpKifbvtFXDk2kvbaL21ayxSCdRJ1h9fHHBN0+ZeF/AsMoK4CsC/5tdnwf8+FGSZd/hqp/6MGd9endxa19VHeXPxCzLDOXQstGaLdurTDvF34FnGtd2z20nw26xS73RZPxp32MbWVphuv1vnvs68W2TvrtB3phmr9nxmb3K0LUemDmz2GlkJ5/v7Co/45lZ59PeNStsu288jXuWgrKttNUpoe1JjwnlZ92ge9BEusjk783uT6RXfn4k6ppOOgvZb8gqoWluSbow41Sdck+ayQKZoiSdQTkr3sQ92TmNpJPRZsZP+aVbN2xTJnZVL3Q7xdPi+4vb3JqdT3+ndjrGe61nuvK0wvfINW3iYvs2oQkU1blk3wtylwvT72XwH7OdxXbf8u4J08Ye28Tb6+08fKd2adanntpOT0neqRZtZIO2zn37zXsQakpULSaj7ZhWUyuSrL2Y8nxXjDq2ToZNza6dZkqmJeoseXOaHX7b9NawHhNvSy4z0nrq/Z2eZ0Z+lsnL7ueYmn57ybszBt7duOm9yTVOXQ97f6perSDNfTpheXjeBtfWflPamvzd3fI0TVDNLnZq0y3Nd0iAzr287unyt10m1D8Z6x9k95ykYDJ+V5TkcaUem3Tkb7WLmUz1Mcvkmj2vneek+xtbv0Vb37ebdyfyskwmp3R+QNfQJylymHptwjfuozrPZoLPKpbC7PTt3t/ut03c3zFgel9MuytxsvNiygMy5Wrq5Hv20olvljJSagekfbREkHadkiVMzTErTZbUkc+dGNXH9G07xXXmsVMW03ly9VVzdn/TxAM7ZICW3MvGdoy9jpoWwnTJpq98WdavuPx7drGJzzGKVVYATyt97e6gyD2AewCcfvrpR0KmfYMv3PbyfP2g+z2baHFT090J3uM7phbQXbR6uynYe25HpnSILf7uftWOmWmbeN2GYLu+peyh0QjsDZGy82C+VMs7mIs01Ef6m81637Q+3l6e7wdNLTYxuJsSa1bIXr+Pdh7aYax81Mrd0S7vs98/z50MPfXft2+ljn567hV7kXfVftskjvQv2FaNvq+hCN8dnIwWmwy0YFCZi6BhZX/peuB/tgt5mqyc1A7UEyc7KXy69yfK8ZLSdD9/lt120OdCfz98lvON3SGXawbPruhlb3X/NM3v0UbrE+0jweYRZW7x93MBdSyl/77rEfKSsWNFOxV9FZfpv3iK3mMfFYdZmCViRekunnTHuLtj7GK+fLMb9s9zwVzcxwJWWQF8HnCl7Po04Et5BFV9GvA0gHPOOWcFit/y8Hv3eMPRFiEQCAQCgUAgEAgEAoFAIBAIHGUUO0fZt3gPcLaIXFlENoE7A688yjIFAoFAIBAIBAKBQCAQCAQCgcC+wcpaAKvqWER+D/gPbLvIZ6rqR4+yWIFAIBAIBAKBQCAQCAQCgUAgsG+wsgpgAFV9DfCaoy1HIBAIBAKBQCAQCAQCgUAgEAjsR6yyC4hAIBAIBAKBQCAQCAQCgUAgEAhsg1AABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrClHVoy3DEYGIfB34wtGW4wjjMsA3VpC7b/6Q/ejwryp33/wh+5Hn7ps/ZD/y3H3zh+xHh39VufvmD9mPPHff/CH70eFfVe6++UP2I8/dN3/IfuS5++YP2Y8e/37DGap6ym4iHjMK4GMRIvJeVT1n1bj75g/Zjw7/qnL3zR+yH3nuvvlD9iPP3Td/yH50+FeVu2/+kP3Ic/fNH7IfHf5V5e6bP2Q/8tx984fsR567b/6Q/ejxrzLCBUQgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAArzeetqLcffOH7EeHf1W5++YP2Y88d9/8IfuR5+6bP2Q/Ovyryt03f8h+5Ln75g/Zjw7/qnL3zR+yH3nuvvlD9iPP3Td/yH70+FcW4QM4EAgEAoFAIBAIBAKBQCAQCATWFGEBHAgEAoFAIBAIBAKBQCAQCAQCa4pQAAeOeYiIHG0Z9goR2eiR+4S+uAOBeRHldII7ymlg32FFy2lvMovIob64A4F5saLltLf21PmjTQ0E9jlSPbCKdVggsF8QCuBjBCIyEJGlf28RuZSIXFZELrtsbuc/VUTO6oNfRK4HoKoqjiVy32JZXDNwHxG5Rh/fFHiciPwiQE955toicgsRuVoP3KeIyMkicnoP3JcVkUv3wZ29I8rpJHeU0+mIcjqb/5L5sQf+oo/Bh4gcLyLDvhQdInKS/y2dX0TOhn7KqfP/qB/7GPT9uohcQUQGPXA/VESuDf3ILiJnisgPicgpPXCf4Me+ylGvbWpf7alz99amrmp76vx9tql9tqfQY5u64u3pwT54M/6l58OMu89J+OP64nb+K2Tnyy6n11omX4f71t6X6auc/r6InKQ9+DD1Ov1yIjJcNrfzH+iD17lXst/r3L31ffvs964yQgG85hCRG4vItVS1VNXKO8RLKcAicnvgucDzgLvLki1dROSXgWcDjwd+Y8nctwXeKyLPEJFrqmNJ3L8BPLwTtrSBpYj8DnAnVf2EqlYedvKSuH8V+DXgXiJy7cS/LIjIXYCnA3cC7uxhS2kQveP+NOCxwMNE5OEicqUlcd8ReAHwDOBPReRxInLlZXA7f5TT6dxRTqdzRzmdzX874Jki8nrggSLy+yJy6pK4zxGRs1W1cgXKMvPLbbB0eQNw12XxZvy3x+qvf8W+6zK57wi8XkQeKSJXWWY5df7fBJ4AprhaFq9z3x24j6p+SVVLD1vKwF5Efg14EPD3InJWD7L/Mla3PwK4vYctpV/v+fHJIvIi4AEi8pvLVEj22ab22Z46f29t6qq2p87fW5vaZ3vqXL21qSvenv4c8Lci8kYR+UMRue0S+zHXFJErpXy4bIWhiNwSeKKIvENEbr1k7ltj9eO7ReTmy+R2/rsALxaRe4vIFZZcTn8NeOSy+DrcdwP+TFUvyMrp0pSpIvLrWN34MhE5bVm8zn0HrE5/EfDzy+R2/p8FHisi/+r90pvJkpS1q9rvdf7e+r599ntXHbEJ3BrDO7wXAAexjva9VfX7fm+QBjsLcH8E+G1gCDwA+JiqPkhEZNHGyvnfB/wuUAJ/Avw7UAEXAi9ZpIMmIjfCBmafAn4aeAXwKuA6qvoMESnm4Xe53wHcV1XfLiI/AVwHOAH4HPAvi3YsReQ1wONV9b9F5K7ANYEfAT4IPERVD8/JK8CbgN8DboJVlr+vqu9fNL9k/B/DBjVfAp4KvAu4EnAu8LeqOlqA+1zgl4HvYoPhOwFfBP5JVV8zb7507i8AdwDOB04Gbg1cC/hnVX3xInk+yum2/FFOp8se5XQ2/5ec9yBwBeC6wCEsL75lwXrgS8Bh4CXYIOdCvzdXPuxwfxS4J3AKVo5eqqp/NS/nFP73YXnmspgS4iVYvXORqr55Qf7bAH+ElanrYmX07cDZqvqyRdIny+8PUNV3ilnTXhfYAr6kqm9ZUPY3AQ9X1Te5MuUHgTOwMvDkBfP6G4H7ALcFrgH8iap+edH8kvF/HPh1YADcH/hv4BJYeXrJvHWBc38GK6cbwK9iddc7gOeq6geWUE57aVP7bE8z/l7a1FVtTzPZe2tT+2pPM9l7aVPXoD39inNeFrgacCngy8C/quqnFyynH3f+lwP/oKoX+71l1Y8fBu4HXBlrnx6jqs9ehDfj/h/gD4BrAz+KTdp8G7hgkXTJ3vFbWB3zeuDywKuBTwJXVNU3Ltj3fQPWFr1LzGr8esDXga+q6mcW/KbvBO7nfa2fwdLneODTWB2waFl6I/ZNfwEYA49S1XJJde8nMAXkacAvYnUjwJe9f7BoWfo01l5fGrgHcEngZcCLVPWrC8q+cv3ejL+Xvm/f/d5VR1gArzd+AXgOcBzWUT1PRB4M4BXmT4rIVefkvg/wSVV9l6q+Dbg3cA3xZRliSxIXmX36P8BHVfWdWOfpJsBVgJOwmbkfWoAbl/ntwPuxSuGKwH9hnWIWqNTuAZwI/I/YLPwTgTP93q2wweVc8MoM4G3+DoD7Yp3JB2GV/q/Oyw88ChtQfwjrpP4XboGy6KDJcVXsm74b+Crww8D3sQ7O9YBFZtGvAnxAVd+vqp8B/g7r/P07cAvvxM/bOTgRGxx8RFU/gXVwngg8C7iZiJy6oCJ11cvpx1awnN7TZVzVcvrlnsvpx3ospx/sqZwCnAq8TVXfqapvBF4MPB9TeNxRRA4swH9X7BveDLgc8DYRuQdYPvSydLk5ue+L1Y1vUdWXAb8F/Ij40lsRubIsZinycOBcVX07ll9uCdwU+FngrrKgJY2qvgobnH4J+6bXAf7T37FIOQUbEJzmyt/jMUuRmwI/CfzavPVXVk7fjg3cAR4GfAPLj9fB65k58UisPf0I8M+YEu+PYeH0SPgRrG5/j9e/N8QUBSVwC0z+efHDwIdU9b2q+g4sXb4AfAe3olmwnJ6IDeT7aFP7bE+h3zZ1Vfu90FPf9wi0p9Bv33dV+70AVwfeqapvVNWXAH8F/AfW/v0OLFQP/D5WnzwMyxsvEJFfcs5KzLXN8QvI/kDgw6r676r691j+vLG4lbGY65l5LRn/FOsjvRmbZPoFzHr8ocAficjxC6Y7wL9g+eUC4ANYGf0PrN1bpKw+Griaqr7Lr5+HKSX/BPgDETm0gKKwwMrlhzyd/xJTcl4IJGXwIngE8L+q+h7gtVhaPAiWsjLo5jT1+kuxNvTGwI2AXxGR0xZ8x89g7d3bvb/0u9ikzQ9i45FF0He/95300++Ffvu+vfZ7Vx6qGn9r+gdcBrh+dv3DwHuwGeNfBT4EnDkn9zWwCnIAHPCwV2AdvQHWub/CArKfAZzq57+FzToBbGKNykMW4B748SrA3/v5rbHZv9cBbwGOm5P7ytgA9eVYR/shmdyPBx60hO96a6xCflTO59/j+cDmnLzXBU7Krk/DKs1XYbPOi8p9CeDfsAH2qzFLonTvXp5uwzm5j3fOlwI/BzwEm1UFeCVw8wVlf4qXnRtlYQc8/MH4aoo5uU8GbphdL7OcnoU1dn2V09NS3lh2Oc3eceUeyumVgH/quZzetqdyem3gUp1vsMxyehB4TU/l9CA2OO2rnB7AOr+vBq6bhZ+MLQG7+wLcl++U/1thSs7/wAaA7503/bFBxk2y37Dh3/QH/fx1wCkLyH7NVM4xS6gn+vmJmLLsngtwF378QeDRfn534LP+LZ4DHFyA/+r++9+OKYEenMn+gkW+qfP8LvBubGD8gCz87sDfL5DXbwmcnF2fhVlIPtFln7vNcL6TvJx+ysvUMzz8IPDnmLKmWID7tcBfA9fHLK6e43nzv4AfXlD2Ams73wv8RBa+cJuKWSj20p4639Vo2tSDHraUNhU4naY9/W2W2+9NKz6vgllbwpLaU+c6A2tTX+H5fKltKtaevsvz9tLaU+e4Dj21qdhExGuAb/pxme3pcV72X4ZNECy7PT3eZf5HbDVHnj5vBG69APdp2ATHAc87v4EpPf8eU3a+A7jsvHkduA1w4ywPngi8GesLHML6CCfPyf+TWTn9E+Bv/PxU/x6/uGC6p7J6feD/+PlDgPM8ff503vyOrbL4AGY5/06a9vTyXg/8woKyP87T4DGYJTBYm/QID5u3TRpiyshTsrDrYX2C+2BtylzcznUZrO56rf891cNPAp4J3H/BdLmM1ye/i/Vp/gibbLq01zVXXoB7g/76vZelp36v892Anvq+mJ4q6ZGW2u9dh7+wAF5TiMgVVfUbalYz4jPB71fVH8XM4Z8HvElVPz8H9xXUrDb+S212fMtvvQlrsP4Ssx750gKyf0FVvwygqs/C/RWp6hZWSczlU8gtS0pPj88C3xORx2D+BX9XVW+BNYgXzin351T1HthM/IewhiPJvYF1ROZCsipR1X8D/gbrvP+xiCRLn9tgVgxbMyh2kv0DqvodcUfvqnoecDtsgLmQPyTPM99X1VsDv4L5KxtkM3BXA76uquM5uS8A7oJ1Bh6JdQbu71G+gTW488h9AwBVvQ+2xOuhIvIEETlDbcnhEFOszjW7KiI3UtVvqy2ZHCy5nN5IVT+tZgHRRzm9kaqep6r/D+py+gg/X7Sc3iCdq+rngPNF5NGYQmLRcnojVf1fVb0bpmz4EDZwXVY5TXnmlcDfYuX0D0UkWW8tUk5vpKofVtVveX5Zdjm9oaperKo/hylLHmPBckWPskg5vaHaEs/bYMq85IPufn6cu5w6v6jqYVW9E/BWLM3v63Xbt7EljnNtlOXl8itqFnQAqOprsWWC/4R1st+dysIccifLPIAttSXBH8GsFR6NWaZ8fQHZP5bKuao+CbO6QFW/i1mhzOXT0WVPlkifBU4XkXtj3/QPMIvG5/l3n1f2T3p5fwLwLZo29buY5e6l55XdeZ6KKWF+HPhtEUl58NrAt+bM66Kq/6Gq3xbb2KRQ1U9jSuUTgJ+at81w/kJVv4PVLQ/FLGcHInKKp/Vx2BLHeZYIJ+4/wiwV/w5T1jzc27zzsIH33FDzJXgf4B+AB4nIk0TkzGW0qar6LTWLn/QdltKeZvyfSm1qlq8XblNd1i9m7ekzscnDhdtT51A/fhb4tog8liX0ezPZv+Bt6hOw5fHPymRfqE11nldiyqVbsaR+b8b9QVX9Vna9tDZVVS/09vQOmPJ6sIz2NHFjSpg3YErBpfR7M/4LMIv/rwG/KSJ3FJHLevp8FpvUmpf7PDXL4sOq+gVsafajMOv0l2Pl6GtzcqualeX7/XrL24uvYsrlRwCf9X7BPPxvztr6J2N1JWpj1s9iBgZzI6v7zgVuIiK3wsZN98Umz983b35X1Y+o6nWxSZkBTd/3Ky77GQvKfn9s0uDqwO1E5HSvJy8JHJ6nTXLesao+V1W/nvV9/wf4C6yfdP15uZ3/G1h/5f9iSsexiFzS28LvYfXv3HD+p2ArAp6GuQ15nKp+E1s5df0FuEfe730TZsX9x8vo9zr31/ro92Z4N6ZEhqbv+2GW0PdV8xef9EhL6/euDXQfaKHjb7l/2Iz4+4FLzLh/GayiP7QA9/FT7l0eW7b2PtzasAfZb+r3lyI7VgE8D/OXtYw0P3HG/ZvMK3eH/5JZ2EmYlc8XMaui1y77m/r9X8SUZBvLTBtsidb/YLP+H1hQ9hNm3P9JbKZ7Hu6fxpbtPjYLO8fT/HOY1cm7mN8KNfH/RSd86MdLL1BOE/efT7l3KuZzaZFyOlX27P7c+X2a7JhV1/9dQjmd+Kad+z+1YDlN/I+hseI4CRskfBEbHM9bTqd+0+w9t1+wnNZpkzg9/M+8fL54gXKauB894/6N5y2n/vx1vQ58rufvk4Ff8u/wQZf9g/OU1Yz72bg1Qef+NYHPz5kuifufutyY9cJHvI6Zt5wm/mfNkP2GC5TTCW7MuvAVwLPnkXcG//OYYlHpsr9vQdmfS2MZfT1ss5BzMcuctywrXTr37+n5ZV6rv6n5EVNqvMzz0ocWlP2ZwOU9bJPGyvum83L782dhrgf+HHNhcSo2EH40C7apGfcjMKvfUzr3L8Wc7WmH/8+6/CzYpk7hvnzn/k0WKKdd7oOeFi8CnjlPWuzwTaVzf+42NeN+lHMPsLr9CSzYns5Im8t07s/dpk5Jl0t6+ENZvD1N3I90uY/r3F+0PT0TU7Q/BBvX/RimHHs8phx7PtY2zVNOE/eDvdxsdu7/FDbJtKjs93f+YXbvhtiY413MsSol436gc2907p/DnG1Sh/9BNG3q9TEF//Pn4ZzC/TCmt0tzy55xP9TT5TQvOy/GrIyfhin65h0rtdJlSro/GPMnvec2NeN+AE2bt4FN5j0eMzpZRlm6H+ZC4cpYHXZClt/nba+75f40rN/7OJf5Rczf7+1yF53rH2DOfu80/s69hfq+U2RPY+o0Vpq737tOf7EJ3BpCRN6MLZl+ofviOhNQ4Buq+gkRuRnW+L1midzfVtWPishLMV80T1i27NimJA8AvqaqT18C91Uxf3lnYBsaXCBzbvjQ4T4dGwiPadL8/sD5qvqPe+WewX9lzCn7B7FO8Yn+rj1vhLFNmn9TVT/ucQ7q/FZcs2SvgBHWkLxbzUJqUdmv6pzf9HS/CzBW1X+Zg/uVWOflLOCVqvpyn3VWETkF64h8XlXP3yv3dvxgFgAiclOsgZrq37dgAAAQBUlEQVSnnM7iHmDp/hLg7QuU0+3S5hDm6/Lrc5bTnPtVqvqvYv7Eks/L8xcopxPcHi7YssH7At9boJxO5fd7J2JLKr85Zzmd9U1rK8wFy+mstDkRs1Q6C3ivqp67APfZwCtU9eUenvLMnYFynnLqPO/FFG7Xx6w1HuO3LoFZMV4N8we4Z4uiDvf3MaXD94FKVb8q5rdwQ1VftERuwayV3ohtnPK3e+Xegb8ELsIGVF9U1X9YkPsCTHF4Eabsf7ma9esim0p1+f8Gs/itMEvghwFfUfPvuCj34/z4fczS5wpY3f69BbnzNFc1KytE5IR5uGfI/iQsXX4AG1heAXiHqr5/Ae4bYJuzPQmzlFFV/ZqI3Ae4WFX/aU7Z34ctvTwT8yn4PmxJ/JvE/AheHvjcPG1qxn0Glgc/ADzLucXfd2Ce9nSG7B/A0uotmOXlS4C3ztOm7iD78ZiF4bz93i73h7FJgu8Bn1Fb9TX3Rmcd/p9x/qe77EOsTf3uPG3qFO4PYe4r3iYiJ2OW7nP1e6fwt9I9izNXm9rJLz+dZPfjNbH29N1ztqfdvPgR4Gmq+mbvK90ZGC3Qnn4Ic9d2NuaW5J+xZd+HMUvOszAr1M8uwH0WNhZ4OfDCxCUid8Pc9D1tCbKfmfN7WXo38Hdzthtd2V+BbVr5WRG5DKYA/eQ83FP4r+Ky/yu2HP7NqvqVedvUKdyvwurez3m6/BlW9z51Ae6zsbL0Epf9i1idfibwcZ1/FdO2ecbjXE7n2Egt476ay/4qbILj8lg7eBDTabxxQdmvjilok+yf9/rxAZhu4O/m4H4K5sLnP9VWZeOcaaxxNuZ3eJ50SdyvU9VPZuGpz34HTLG6537vLNkz+cEmPebq+86S3e9dEpvAmavfu1bYTjscf6v3h1n3vji7fh1W+TwLGxTP5fNoF9x/yQyr3SXwP9tlv3QP3M/ArAv6SpfHkPnVXTL/c7EZyqnWr0uSfW6/k7vgf/QieWYX+WWqNfYuue8N/Juf/w62ROVmi6TFLvhvst+5j5LsN93vch9t2TGF4SL+z1bymzrnbbCOXrr+BDZYfSWZT9clcX8c8332ahb3CTeL+9+wHbqhY5G2RNnvh1m5zGuRM437ddhg9Q97+KatdMcUbvP6iJ2WX17n3A/sWe5BT/yvWjTdZ6TLUvK6890a+PfO9dswZcFte+B+K7a66Od6kv2tLvvcflD7ln0b7hcCt/CwRfYvOBqyvxT3U9qj7D/vYXOV1x3yy632a35xvpsDr8+ufwgbJ72OxX0Kd7mvjVmHviHlxx75b+Vhc/kv343sLOZbfBr/0zEL95/ysHnbvN3Ifvklcj8d8+P6sz1/01v2xP2fZL7pe+B/46L5HfMffiGmv3gsNukzYdm9JO47AZdbBvdu+ZlTb7ITNzZWmmtF3br9hQ/gNYOan5mhiDxKRP4Q86N0a0xReA1seUAf3FfDd4fugf9xLvvteuD+G8wp/u174E5pfgdo7Wa8LP6/xCxef7lH2W8zL/cO/H+NWSzduQfulF/uCHtPd7eguAo2S4ia1c2zgEeIyE96nLl98W3D/6iMf2O/ce+Bf16/v7O4HykiN/E4c+3afBTT5ZE9pkstO6b8ndfScjv+n/I4y86Pj1xGujv+F/MRfS8ReRq26+/NMVctvywid1wi96dV9ZbY5NWdRGTuuncb7sdgOzf/otdxfch+Z+A2OqfPzxncyU/vr7tV9CLYNt2B26v35pfAfa7L/hjgDm7Z0pfcc/dhduD/Kyzdl5nXz11iXgdb1n2hiPy4X1fYCqbnAw8Qkbl8OW/D/SHMfciD3TpvEczifz7wwJ5l74P7xcDDReRSC5Sj7fiXke6zuJ8D3L9n2R/k/HNZRW/D/QLgIT2ly7Ly+hcBFZGbi1k/f0hV745ZAT9aRK68RO4Pq+2Z8mzgL0TkKkuWPed/pJhf1D2vjNil7KfpAr7FZ/D/DjZp8HixfUfmze87yX4l9dUpS5T7eVgfcpH8spPsfy4iZ/bA/c/Ak3qU/Vksnt/Px/bpeAHm5/cGwD1E5KYisiHmV/+4JXHfELiXiNxkCdy74f9rbLXBsrnThqRzjSPXDaEAXhN0lFz3xDYaOScFqGryT3ZGj9xzVZZ74D+zB+4PM6fse03zvTbeRzld+v6mH6H//LjndBepNzV6rKp+REQO+q2nYlZWd/WGfK5NO/bAP9pP3Hvkn3fTpO24f82553H7sM7pctd502WX/L++X/Njgqp+AHg95r/0kpj1Bqr6VmwzkkU2qpnF/TbnvmqP3NeYl3uX/HNvELQN91uc+2o9yz43/y7yy9n7Ue4d+FO678u87viw/91VRF6CuR95vtrmXh8DrrPdwwty/9B2Dy+Bv0/Z++B+uXNfdwHu7fiXke47cfct+yL8s7hfQf/pslBeV1sy/WLMsvh6InKSmNuBZ2MuMs7Z7vk5uZ/j3D/Sk+yJ/0Y9ct+wJ9mf5fw/1qPsN9iWYD7uZ7Ngftml7D/aA/ezMF/Rfcu+5/yejX9fjLtPUNW/xvz/F5if/jcC19U9TvDvgvtm83Lvkf8cVb2oB+43OPe8hg/rBd0HZsjxt/gftlHHEPhBv74mZgn5HuAfgftgm5tceT9xr7LskS7rJzvm/7EArpaFpQ1wTsQUV69n/k2ZeuMP2SNd9hP/EZB9E3NjcGYWdja20/LtsNULH5uzHlhJ7pB9/bjXSPbT/fpGmE/UH/brUzEfplfaT9yrLHuky/rJfgTS5YD/XdWv74W5gHkwcFdsJeMXmL9f3Qt3yL5+3CH7jtybZP3qzv17YnsCnL6fuFdd9nX8i03g1gQi8o+YyfzlsMH1H6vqx0XkxzCrkCtiG4O8dT9xr7LskS7rJ7tzbwGnYD6GH6DZkjGxjUd+SLNNQvYLf8h+5LlD9n0h++WxeuAhqvoeEbk3Zo2zAbxFVZ9yrHCH7OvHvWayHwQepLYCKLmIeTw2MfRH+4l7lWWPdFk/2Y9AujwTK+vJ5cgfYgqTuwMnefhbVPW5+4k7ZF8/7pB9V9wnY6tf/0RV35ndT3s93Ws/ca+67GuJo6l9jr/l/NFsAnAZbOne6zAn2H8LHNqv3Ksse6TL+sk+hfvfsV3W/xE4vod0WRp/yB7psp/4j6LsT8L8ey2yedpKcofs68e9hrK/zvmfjm9AyJyb+/bJvcqyR7qsn+xHIF1+FltBdwqmoLof8A3gySy4YVKf3CH7+nGH7Hvi/mPga5i/5RM8zlz96z65V132df0LH8DrgasAr1TVb6jq+ZiPxYdiJvG/tY+5++ZfVe6++UP23XH/A/AwbJON31iQu2/+kP3Ic/fNH7Lvnf844B662OZpq8odsq8f97rJ/lTnH+P1gKp+cx9yr7LskS7rJ3vf6XIitony14HzVfXxwGnA8cBfyWIbtfbJHbKvH3fIvnvuJwKnAxdhm8oNVfWCfci96rKvJ3QfaKHjb7E/4McxH213wTYZeQdwK+AHgBdiZu/7jnuVZY90WT/ZI13WT/ZIl2NS9hf1KPu+5Q7Z1497zWV/IXCp/ci9yrJHuqyf7EcgXS7jPL/VCT/Jw6+1H7lD9vXjDtkX4r72fuReddnX9e+oCxB/C37AZlOdXwI+ii2xfXh2/13M78i8N+5Vlj3SZf1kj3RZP9kjXUL2Y4U7ZF8/7pA9ZN9P3CH7+nF33vMTwCcwVxPX9rCDwMeB6+1X7pB9/bhD9vXjXnXZ1/EvNoFbYYjIQFXLTthBVb3Yz/8SOEtVf2k/ca+y7JEu6yd7pMv6yR7pErIfK9wh+/pxh+wh+37iDtnXj9ufvxHwI8BHVfW/POxPMbcSb8U2q/p/qnqP/cQdsq8fd8i+ftyrLvvaQ/eBFjr+9v4HXA/4H+BunfChHy8DPJA5Ngbok3uVZY90WT/ZI13WT/ZIl5D9WOEO2dePO2QP2fcTd8i+ftz+/DnA+7GN5F4DPCa7dwngpsAVgYP7iTtkXz/ukH39uFdd9mPhLyyAVxQi8jKgxEzcDwJ/rqpvyu5vAJV2Zo+PNvcqyx7psn6yR7qsn+yRLiH7scIdsq8fd8gesu8n7pB9/bj9+ZcCr1LVZ4vI2cBzgHur6gf9/lBVxyIiukdFQZ/cIfv6cYfs68e96rIfE9B9oIWOv739ATcHngacje3W/HvA+4DnAgeAawD322/cqyx7pMv6yR7psn6yR7qE7McKd8i+ftwhe8i+n7hD9vXjdv6fB14LnJqFPRF4nJ/fELjLfuMO2dePO2RfP+5Vl/1Y+SsIrCJuALxeVc9V1QtV9e+A2wFfBd4JfAj40j7kXmXZI13WT/ZIl/WTPdIlZD9WuEP29eMO2UP2/cQdsq8fN5h7iVer6pezsKcCV/XzxwJb+5C7b/6Q/chz980fsh957r75+5b92IDuAy10/O3+DxDgLsAHgLM9rMjuPxn47/3GvcqyR7qsn+yRLusne6RLyH6scIfs68cdsofs+4k7ZF8/7oz/zpgS+aoedsCPTwf+GXjBfuMO2dePO2RfP+5Vl/1Y+hsSWCmo5fIXishVgWsC56pqBSAim8C1gPvuN+5Vlj3SZf1kj3RZP9kjXUL2Y4U7ZF8/7pA9ZN9P3CH7+nFn/C9y/msDn1HVw377m8Dd/B37ijtkXz/ukH39uFdd9mMKug+00PG3uz8sU/8m8BPAi4DPAbck2+UQuPp+415l2SNd1k/2SJf1kz3SJWQ/VrhD9vXjDtlD9v3EHbKvH/du+IFLA7+637hD9vXjDtnXj3vVZT/W/sQTLbDPISKnA88HzsVM4D+PzX58Epv1eKuqvme/ca+y7JEu6yd7pMv6yR7pErIfK9wh+/pxh+wh+37iDtnXj3uX/G9X1XftN+6Qff24Q/b141512Y9FhAJ4hSAix6nqhSKyoaojEbkkcAvgHGzm40mq+tH9xr3Kske6rJ/skS7rJ3ukS8h+rHCH7OvHHbKH7PuJO2RfP+5d8F8GeIKqfmy/cYfs68cdsq8f96rLfsxB94EZcvzt/o9GaZ9vCnAmcKf9zL3Kske6rJ/skS7rJ3ukS8h+rHCH7OvHHbKH7PuJO2RfP+6QPWTfT9wh+/pxr7rsx9JfWACvMEREtKcP2Cd33/yryt03f8h+5Ln75g/Zjzx33/wh+9HhX1XuvvlD9iPP3Td/yH50+FeVu2/+kP3Ic/fNH7IfHf5V5e6bP2Q/8tx98/ct+7ojFMCBQCAQCAQCgUAgEAgEAoFAILCmKI62AIFAIBAIBAKBQCAQCAQCgUAgEOgHoQAOBAKBQCAQCAQCgUAgEAgEAoE1RSiAA4FAIBAIBAKBQCAQCAQCgUBgTREK4EAgEAgEAoFAIBAIBAKBQCAQWFOEAjgQCAQCgUAgEAgEAoFAIBAIBNYUoQAOBAKBQCAQCAQCgUAgEAgEAoE1RSiAA4FAIBAIBAKBQCAQCAQCgUBgTREK4EAgEAgEAoFAIBAIBAKBQCAQWFP8f7wRytf7SWmFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "area_list = list(df['Area'].unique())\n", + "year_list = list(df.iloc[:,10:].columns)\n", + "\n", + "plt.figure(figsize=(24,12))\n", + "for ar in area_list:\n", + " yearly_produce = []\n", + " for yr in year_list:\n", + " yearly_produce.append(df[yr][df['Area'] == ar].sum())\n", + " plt.plot(yearly_produce, label=ar)\n", + "plt.xticks(np.arange(53), tuple(year_list), rotation=60)\n", + "plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=8, mode=\"expand\", borderaxespad=0.)\n", + "plt.savefig('p.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(24,12))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "2ebe07e3-739b-4f39-8736-a512426c05bf", + "_uuid": "70900ec0ff5e248cd382ee53b5927cb671efa80e", + "collapsed": true + }, + "source": [ + "Clearly, China, India and US stand out here. So, these are the countries with most food and feed production.\n", + "\n", + "Now, let's have a close look at their food and feed data\n", + "\n", + "# Food and feed plot for the whole dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "_cell_guid": "ec0c911d-e154-4f8a-a79f-ced4896d5115", + "_uuid": "683dc56125b3a4c66b1e140098ec91490cbbe96f", + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", + " warnings.warn(msg)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFgCAYAAACbqJP/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFudJREFUeJzt3X+wZ3V93/Hny0UIRikQFossDsQutkjoKlsktTpGIqxOImDVwMSwKjOrDGTq2GbEplOsltZGrRMcgsW4AhkFiYS6zSCwMon0B0YuuOWHSrggwpUtXMQoCZbMknf/+H5u/bLce/cC+/1+7+fu8zFz5nvO+3zO+X7Ozp3XnP2c8z0nVYUkqR/Pm3QHJEnPjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6sxek+7AuG3YsKGuvfbaSXdDkuaTpTTa4864H3nkkUl3QZKekz0uuCWpdwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1ZmTBnWRzkoeT3DFU+1KSbW26L8m2Vj88yU+H1n1maJtjk9yeZDrJBUnS6gcm2Zrk7vZ5wKiORZKWk1GecV8CbBguVNVvVNW6qloHXAX8ydDqe+bWVdX7huoXAZuAtW2a2+e5wA1VtRa4oS1L0oo3sqcDVtWNSQ6fb107a34H8IbF9pHkEGC/qrqpLV8GnAJ8FTgZeH1reinw58AHn3vPF3bs71w2yt1rQm75+BmT7oL0jExqjPu1wENVdfdQ7Ygk30ry9SSvbbVDgZmhNjOtBvDiqtoO0D4PXujLkmxKMpVkanZ2dvcdhSRNwKSC+3Tg8qHl7cBLq+qVwAeALybZj/mfTVvP9Muq6uKqWl9V61evXv2sOixJy8XYX6SQZC/grcCxc7WqegJ4os3fkuQe4EgGZ9hrhjZfAzzY5h9KckhVbW9DKg+Po/+SNGmTOOP+VeC7VfX/h0CSrE6yqs3/IoOLkPe2IZDHkhzfxsXPAL7SNtsCbGzzG4fqkrSijfJ2wMuBm4CXJ5lJcmZbdRpPHSYBeB1wW5L/DXwZeF9VPdrWnQX8ITAN3MPgwiTAx4A3JrkbeGNblqQVb5R3lZy+QP1d89SuYnB74Hztp4Cj56n/EDjhufVSkvrjLyclqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnRlZcCfZnOThJHcM1T6c5AdJtrXpzUPrPpRkOsldSU4aqm9otekk5w7Vj0jyF0nuTvKlJHuP6lgkaTkZ5Rn3JcCGeeqfqqp1bboGIMlRwGnAK9o2f5BkVZJVwIXAm4CjgNNbW4D/1Pa1FvgRcOYIj0WSlo2RBXdV3Qg8usTmJwNXVNUTVfU9YBo4rk3TVXVvVf0tcAVwcpIAbwC+3La/FDhltx6AJC1TkxjjPifJbW0o5YBWOxR4YKjNTKstVP8F4K+qasdO9Xkl2ZRkKsnU7Ozs7joOSZqIcQf3RcDLgHXAduCTrZ552tazqM+rqi6uqvVVtX716tXPrMeStMzsNc4vq6qH5uaTfBb407Y4Axw21HQN8GCbn6/+CLB/kr3aWfdwe0la0cZ6xp3kkKHFU4G5O062AKcl2SfJEcBa4JvAzcDadgfJ3gwuYG6pqgL+DHhb234j8JVxHIMkTdrIzriTXA68HjgoyQxwHvD6JOsYDGvcB7wXoKruTHIl8G1gB3B2VT3Z9nMOcB2wCthcVXe2r/ggcEWSfw98C/jcqI5FkpaTkQV3VZ0+T3nBcK2q84Hz56lfA1wzT/1eBnedSNIexV9OSlJnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjozsuBOsjnJw0nuGKp9PMl3k9yW5Ook+7f64Ul+mmRbmz4ztM2xSW5PMp3kgiRp9QOTbE1yd/s8YFTHIknLySjPuC8BNuxU2wocXVXHAH8JfGho3T1Vta5N7xuqXwRsAta2aW6f5wI3VNVa4Ia2LEkr3siCu6puBB7dqXZ9Ve1oi98A1iy2jySHAPtV1U1VVcBlwClt9cnApW3+0qG6JK1okxzjfg/w1aHlI5J8K8nXk7y21Q4FZobazLQawIurajtA+zx4oS9KsinJVJKp2dnZ3XcEkjQBEwnuJL8L7AC+0ErbgZdW1SuBDwBfTLIfkHk2r2f6fVV1cVWtr6r1q1evfrbdlqRlYa9xf2GSjcCvASe04Q+q6gngiTZ/S5J7gCMZnGEPD6esAR5s8w8lOaSqtrchlYfHdQySNEljPeNOsgH4IPCWqnp8qL46yao2/4sMLkLe24ZAHktyfLub5AzgK22zLcDGNr9xqC5JK9rIzriTXA68HjgoyQxwHoO7SPYBtra7+r7R7iB5HfCRJDuAJ4H3VdXchc2zGNyhsi+DMfG5cfGPAVcmORO4H3j7qI5FkpaTkQV3VZ0+T/lzC7S9CrhqgXVTwNHz1H8InPBc+ihJPfKXk5LUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOjDS4k2xO8nCSO4ZqBybZmuTu9nlAqyfJBUmmk9yW5FVD22xs7e9OsnGofmyS29s2FyTJKI9HkpaDUZ9xXwJs2Kl2LnBDVa0FbmjLAG8C1rZpE3ARDIIeOA94NXAccN5c2Lc2m4a22/m7JGnFGWlwV9WNwKM7lU8GLm3zlwKnDNUvq4FvAPsnOQQ4CdhaVY9W1Y+ArcCGtm6/qrqpqgq4bGhfkrRiTWKM+8VVtR2gfR7c6ocCDwy1m2m1xeoz89QlaUVbThcn5xufrmdRf/qOk01JppJMzc7OPocuStLkTSK4H2rDHLTPh1t9BjhsqN0a4MFd1NfMU3+aqrq4qtZX1frVq1fvloOQpElZUnAnuWEptSXaAszdGbIR+MpQ/Yx2d8nxwI/bUMp1wIlJDmgXJU8ErmvrHktyfLub5IyhfUnSirXXYiuT/BzwAuCgFppzwxP7AS/Z1c6TXA68vm0/w+DukI8BVyY5E7gfeHtrfg3wZmAaeBx4N0BVPZrko8DNrd1HqmrugudZDO5c2Rf4apskaUVbNLiB9wLvZxDSt/Cz4P4JcOGudl5Vpy+w6oR52hZw9gL72Qxsnqc+BRy9q35I0kqyaHBX1e8Dv5/kt6vq02PqkyRpEbs64wagqj6d5J8Chw9vU1WXjahfkqQFLCm4k/wR8DJgG/BkK8/96EWSNEZLCm5gPXBUG4eWJE3QUu/jvgP4+6PsiCRpaZZ6xn0Q8O0k3wSemCtW1VtG0itJ0oKWGtwfHmUnJElLt9S7Sr4+6o5IkpZmqXeVPMbPHuC0N/B84G+qar9RdUySNL+lnnG/aHg5ySkMXmogSRqzZ/V0wKr6r8AbdnNfJElLsNShkrcOLT6PwX3d3tMtSROw1LtKfn1ofgdwH4NXjUmSxmypY9zvHnVHJElLs9QXKaxJcnWSh5M8lOSqJGt2vaUkaXdb6sXJzzN4Q81LGLyQ97+1miRpzJYa3Kur6vNVtaNNlwC+vFGSJmCpwf1IkncmWdWmdwI/HGXHJEnzW2pwvwd4B/B/gO3A22jvhJQkjddSbwf8KLCxqn4EkORA4BMMAl2SNEZLPeM+Zi60YfDmdeCVo+mSJGkxSw3u5yU5YG6hnXEv9WxdkrQbLTV8Pwn8ryRfZvBT93cA54+sV5KkBS31l5OXJZli8GCpAG+tqm+PtGeSpHktebijBbVhLUkT9qwe6ypJmhyDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4Jakzow9uJO8PMm2oeknSd6f5MNJfjBUf/PQNh9KMp3kriQnDdU3tNp0knPHfSySNAljf1BUVd0FrANIsgr4AXA1g+d7f6qqPjHcPslRwGnAKxi8Ou1rSY5sqy8E3gjMADcn2eJP8SWtdJN+wt8JwD1V9f0kC7U5Gbiiqp4AvpdkGjiurZuuqnsBklzR2hrckla0SY9xnwZcPrR8TpLbkmweeozsocADQ21mWm2h+tMk2ZRkKsnU7Ozs7uu9JE3AxII7yd7AW4A/bqWLgJcxGEbZzuBRsjB4GuHOapH604tVF1fV+qpav3q17ziW1LdJDpW8Cbi1qh4CmPsESPJZ4E/b4gxw2NB2a4AH2/xCdUlasSY5VHI6Q8MkSQ4ZWncqcEeb3wKclmSfJEcAa4FvAjcDa5Mc0c7eT2ttJWlFm8gZd5IXMLgb5L1D5d9Lso7BcMd9c+uq6s4kVzK46LgDOLuqnmz7OQe4DlgFbK6qO8d2EJI0IRMJ7qp6HPiFnWq/tUj785nnVWlVdQ1wzW7voCQtY5O+q0SS9AwZ3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdWZiwZ3kviS3J9mWZKrVDkyyNcnd7fOAVk+SC5JMJ7ktyauG9rOxtb87ycZJHY8kjcukz7h/parWVdX6tnwucENVrQVuaMsAbwLWtmkTcBEMgh44D3g1cBxw3lzYS9JKNeng3tnJwKVt/lLglKH6ZTXwDWD/JIcAJwFbq+rRqvoRsBXYMO5OS9I4TTK4C7g+yS1JNrXai6tqO0D7PLjVDwUeGNp2ptUWqj9Fkk1JppJMzc7O7ubDkKTx2muC3/2aqnowycHA1iTfXaRt5qnVIvWnFqouBi4GWL9+/dPWS1JPJnbGXVUPts+HgasZjFE/1IZAaJ8Pt+YzwGFDm68BHlykLkkr1kSCO8nPJ3nR3DxwInAHsAWYuzNkI/CVNr8FOKPdXXI88OM2lHIdcGKSA9pFyRNbTZJWrEkNlbwYuDrJXB++WFXXJrkZuDLJmcD9wNtb+2uANwPTwOPAuwGq6tEkHwVubu0+UlWPju8wJGn8JhLcVXUv8I/nqf8QOGGeegFnL7CvzcDm3d1HSVqultvtgJKkXTC4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzkzyRQrSHu3+j/zSpLugEXjpv7195N/hGbckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUmbEHd5LDkvxZku8kuTPJv2j1Dyf5QZJtbXrz0DYfSjKd5K4kJw3VN7TadJJzx30skjQJk3hZ8A7gX1bVrUleBNySZGtb96mq+sRw4yRHAacBrwBeAnwtyZFt9YXAG4EZ4OYkW6rq22M5CkmakLEHd1VtB7a3+ceSfAc4dJFNTgauqKongO8lmQaOa+umq+pegCRXtLYGt6QVbaJj3EkOB14J/EUrnZPktiSbkxzQaocCDwxtNtNqC9UlaUWbWHAneSFwFfD+qvoJcBHwMmAdgzPyT841nWfzWqQ+33dtSjKVZGp2dvY5912SJmkiwZ3k+QxC+wtV9ScAVfVQVT1ZVX8HfJafDYfMAIcNbb4GeHCR+tNU1cVVtb6q1q9evXr3Howkjdkk7ioJ8DngO1X1n4fqhww1OxW4o81vAU5Lsk+SI4C1wDeBm4G1SY5IsjeDC5hbxnEMkjRJk7ir5DXAbwG3J9nWav8aOD3JOgbDHfcB7wWoqjuTXMngouMO4OyqehIgyTnAdcAqYHNV3TnOA5GkSZjEXSX/g/nHp69ZZJvzgfPnqV+z2HaStBL5y0lJ6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSepM98GdZEOSu5JMJzl30v2RpFHrOriTrAIuBN4EHAWcnuSoyfZKkkar6+AGjgOmq+reqvpb4Arg5An3SZJGaq9Jd+A5OhR4YGh5Bnj1zo2SbAI2tcW/TnLXGPrWu4OARybdiXHIJzZOugt7gj3m74nz8ly2vraqNuyqUe/BPd+/UD2tUHUxcPHou7NyJJmqqvWT7odWBv+edq/eh0pmgMOGltcAD06oL5I0Fr0H983A2iRHJNkbOA3YMuE+SdJIdT1UUlU7kpwDXAesAjZX1Z0T7tZK4dCSdif/nnajVD1tSFiStIz1PlQiSXscg1uSOmNw70GSPJlk29B0+G7Y558n8TavPdCI/p4+nORfPfferWxdX5zUM/bTqlo36U5oxfDvaUI8497DJfm5JJ9PcnuSbyX5lV3U901yRZLbknwJ2HeiB6BlJcmqJB9PcnP7G3nv0LrfGar/u6H677YHxX0NePlEOt4Zz7j3LPsm2dbmv1dVpwJnA1TVLyX5h8D1SY5cpH4W8HhVHZPkGODW8R+Glon5/p7OBH5cVf8kyT7A/0xyPbC2Tccx+MXzliSvA/6Gwe8vXskgj24FbhnzcXTH4N6zzPdf238GfBqgqr6b5PvAkYvUXwdc0Oq3JbltXJ3XsjPf39OJwDFJ3taW/x6DwD6xTd9q9Re2+ouAq6vqcYAk/oBuCQxuLfREnMWelOPN/1pIgN+uquueUkxOAv5jVf2Xnervx7+nZ8wxbt0I/CZAGwp5KXDXEutHA8eMv8taxq4DzkryfBj87ST5+VZ/T5IXtvqhSQ5m8Pd0art28iLg1yfV8Z54xq0/AD6T5HZgB/CuqnoiyUL1i4DPtyGSbcA3J9ZzLUd/CBwO3JokwCxwSlVdn+QfATcNyvw18M6qurVd5N4GfB/475Ppdl/8ybskdcahEknqjMEtSZ0xuCWpMwa3JHXG4Jakzhjc2qPM80S7c1t9Yk85TPKuJC+ZxHerT97HrT3Ncnyi3buAO/BF11oiz7ilnSQ5MclNSW5N8sdDv/a7L8l/aOumkrwqyXVJ7knyvqHtn/YUvCSHJ/lOks8muTPJ9e3Xgm8D1gNfaP8D8GmL2iWDW3uafXcaKvmN4ZVJDgL+DfCrVfUqYAr4wFCTB6rqlxn8wu8S4G3A8cBH2vYn8rOn4K0Djm1PwaPVL6yqVwB/Bfzzqvpy+47frKp1VfXTkRy1VhSHSrSn2dVQyfHAUQweRwqwN3DT0Pq5p9fdDrywqh4DHkvyf5Psz8JPwbufwaNP5x6DeguDn4ZLz5jBLT1VgK1VdfoC659on383ND+3vFfbfr6n4B2+U/sn8SUUepYcKpGe6hvAa5L8A4AkL2hPR1yqhZ6Ct5jHGDyXWloSz7i1pxl+awvAtVV17txCVc0meRdweXuDCwzGvP9yKTtf6Cl4DM6wF3IJgycx/hT4Zce5tSs+HVCSOuNQiSR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1Jnfl/+L4Y6b2CQ0EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.factorplot(\"Element\", data=df, kind=\"count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "189c74af-e6e4-4ddd-a73c-3725f3aa8124", + "_uuid": "bfd404fb5dbb48c3e3bd1dcd45fb27a5fb475a00" + }, + "source": [ + "So, there is a huge difference in food and feed production. Now, we have obvious assumptions about the following plots after looking at this huge difference.\n", + "\n", + "# Food and feed plot for the largest producers(India, USA, China)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "_cell_guid": "0bf44e4e-d4c4-4f74-ae9f-82f52139d182", + "_uuid": "be1bc3d49c8cee62f48a09ada0db3170adcedc17" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", + " warnings.warn(msg)\n", + "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3672: UserWarning: The `size` paramter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAI4CAYAAAA7/9DSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHzNJREFUeJzt3Xm4ZHdd5/HPlwRIICAEGoQETJwJS4TI0jBsg0GQCTqYoEFBkERxoj4qiAKi8CjgOIriILtGliSIECQsEX0gGIgge2chGzuBEMhAI2sUUOA3f9TpUOnc213fTt9btzuv1/PUc6tOnarzu/dWV7/vOafOqTFGAAA6rrPsAQAAex4BAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACAtn2XPYBr4qijjhpvfvOblz0MAK49atkD2Cj26DUQX/ziF5c9BAC4VtqjAwIAWA4BAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANr2XfYAgPV36TPvvOwhrJnb/v4Fyx4CXCtYAwEAtAkIAKBNQAAAbfaB2MvYtg3AerAGAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQ4kBcCKHJiOHbEGAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2tYsIKrqZVX1haq6cG7agVX11qr62PT1ptP0qqrnVdXHq+r8qrrbWo0LALjm1nINxElJjtpu2lOSnDnGOCzJmdPtJHlIksOmywlJXryG4wIArqE1C4gxxjuSfGm7yUcnOXm6fnKSY+amnzJm3pvkJlV1q7UaGwBwzaz3PhC3HGNcniTT11tM0w9K8pm5+S6bpl1NVZ1QVVuqasvWrVvXdLAAwMo2yk6UtcK0sdKMY4wTxxibxxibN23atMbDAgBWst4B8fltmyamr1+Ypl+W5DZz8x2c5HPrPDYAYEHrHRCnJzluun5ckjfOTX/M9GmMeyX56rZNHQDAxrPvWj1xVb0qyZFJbl5VlyX5gyR/kuQ1VfXYJJcmefg0+z8m+fEkH0/y70l+Ya3GBQBcc2sWEGOMR65y1wNXmHck+bW1GgsAsHttlJ0oAYA9iIAAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANC2lICoqidU1UVVdWFVvaqq9quqQ6vqfVX1sao6taqut4yxAQA7t+4BUVUHJXlcks1jjDsl2SfJI5I8K8lzxhiHJflykseu99gAgMUsaxPGvkn2r6p9k9wgyeVJfjTJa6f7T05yzJLGBgDsxLoHxBjjs0meneTSzMLhq0nOTvKVMca3p9kuS3LQSo+vqhOqaktVbdm6det6DBkA2M4yNmHcNMnRSQ5NcuskN0zykBVmHSs9foxx4hhj8xhj86ZNm9ZuoADAqpaxCeNBSS4ZY2wdY/xnktcluU+Sm0ybNJLk4CSfW8LYAIAFLCMgLk1yr6q6QVVVkgcmuTjJ25McO81zXJI3LmFsAMAClrEPxPsy21nynCQXTGM4McnvJPmtqvp4kpsleel6jw0AWMy+O59l9xtj/EGSP9hu8ieT3HMJwwEAmhyJEgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANqWEhBVdZOqem1VfbiqPlRV966qA6vqrVX1senrTZcxNgBg55a1BuK5Sd48xrhDkh9O8qEkT0ly5hjjsCRnTrcBgA1o3QOiqm6c5P5JXpokY4z/GGN8JcnRSU6eZjs5yTHrPTYAYDHLWAPxg0m2Jnl5VZ1bVS+pqhsmueUY4/Ikmb7eYqUHV9UJVbWlqrZs3bp1/UYNAFxpGQGxb5K7JXnxGOOuSf4tjc0VY4wTxxibxxibN23atFZjBAB2YBkBcVmSy8YY75tuvzazoPh8Vd0qSaavX1jC2ACABax7QIwx/l+Sz1TV7adJD0xycZLTkxw3TTsuyRvXe2wAwGL2XWSmqjpzjPHAnU1r+I0kr6yq6yX5ZJJfyCxmXlNVj01yaZKH7+JzAwBrbIcBUVX7JblBkptPx2Wo6a4bJ7n1ri50jHFeks0r3LWrQQIArKOdrYH45SS/mVksnJ3vBcTXkrxwDccFAGxgOwyIMcZzkzy3qn5jjPH8dRoTALDBLbQPxBjj+VV1nySHzD9mjHHKGo0LANjAFvoURlW9Ismzk9wvyT2my0r7MAAAc6rqO1V13tzlKdP0s6pqKf+XVtXxVbXL+zImC66ByCwWDh9jjGuyMAC4FvrGGOMuyx7Edo5PcmGSz+3qEyx6HIgLk3z/ri4EAFhdVT24qt5TVedU1d9V1QHT9E9V1f+Z7ttSVXerqrdU1Seq6lfmHv+kqvpAVZ1fVc+Yph0ynfH6r6vqoqo6o6r2r6pjM1sx8Mppjcj+uzLmRQPi5kkungZ9+rbLriwQAK5l9t9uE8bPzt9ZVTdP8rQkDxpj3C3JliS/NTfLZ8YY907yziQnJTk2yb2SPHN6/IOTHJbknknukuTuVXX/6bGHJXnhGOOHknwlyU+PMV47LeNRY4y7jDG+sSvf1KKbMJ6+K08OAOx0E8a9khye5F1VlSTXS/Keufu3/cF+QZIDxhhfT/L1qvpmVd0kyYOny7nTfAdkFg6XJrlkOvZSMjscwyHX/NuZWfRTGP+8uxYIAFxFJXnrGOORq9z/renrd+eub7u97/T4Px5j/NVVnrTqkO3m/06SXdpcsZJFP4Xx9ar62nT55rRH6dd21yAA4FrsvUnuW1X/NUmq6gZVdbvG49+S5Bfn9ps4qKpusZPHfD3JjXZptJNF10BcZSFVdUxm21oAgB3bv6rOm7v95jHGU7bdGGNsrarjk7yqqq4/TX5ako8u8uRjjDOq6o5J3jNtArkiyaMzW+OwmpOS/GVVfSPJvXdlP4hF94G4ijHGG7Z9jhUAWN0YY59Vph85d/1tmR1jaft5Dpm7flJm//GvdN9zkzx3hcXcaW6eZ89dPy3JaYuMfzWLno3zp+ZuXiezj384JgQAXEstugbioXPXv53kU0mO3u2jAQD2CIvuA/ELaz0QAGDPseinMA6uqtdX1Req6vNVdVpVHbzWgwMANqZFj0T58swOZHHrJAcl+ftpGgBwLbRoQGwaY7x8jPHt6XJSkk1rOC4AYANbNCC+WFWPrqp9psujk/zrWg4MANixFU4VfshueM6nV9UTdzbfop/C+MUkL0jynMw+vvnuJHasBIDJ3Z90ym49vMHZf/aYWmC2pZ0qfNE1EH+Y5LgxxqYxxi0yC4qnr9moAIBdMm0p+LO503v/8tx9Vzvt9zT9qVX1kar6pyS3X2Q5i66BOGKM8eVtN8YYX6qquy76zQAAa2L+MNmXjDEeluSxSb46xrjHdGjsd1XVGZmdoXPbab8ryenTab//Lckjktw1sy44J7Mzd+7QogFxnaq66baIqKoDG48FANbGSpswHpzkiKo6drr9fZmFw2qn/b5RktePMf49Sarq9Cxg0Qj48yTvrqrXZrYPxM8k+aMFHwsArJ9K8htjjLdcZWLV/8jKp/3+zezC6SkW2gdijHFKkp9O8vkkW5P81BjjFd2FAQBr7i1JfrWqrpskVXW7qrphVj/t9zuSPKyq9q+qG+Wqp69Y1cKbIcYYFye5uPlNAADr6yVJDklyTs3O7701yTGrnfZ7jHFOVZ2a5Lwkn07yzkUWYj8GANgNFvzY5W41xjhghWnfTfJ702X7+1Y87fcY44/S3DVh0Y9xAgBcSUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAGAPtUan8z6rqjbvbD7HgQCA3eDSZ955t57O+7a/f8FecTpvAGAPUFX7VdXLq+qCqjq3qh6wk+n7V9Wrp1N8n5pk/0WWYw0EAOy5Vjqd968lyRjjzlV1hyRnVNXtdjD9V5P8+xjjiKo6IrPTee+UgACAPddKmzDul+T5STLG+HBVfTrJ7XYw/f5JnjdNP7+qzl9kwTZhAMDeZbV9J3a0T8XanM4bANhjvCPJo5LZqbyT3DbJRxacfqckRyyyEAEBAHuXFyXZp6ouSHJqkuPHGN/awfQXJzlg2nTx5CTvX2Qh9oEAgN1gwY9d7larnM77m0mOb0z/RpJHdJdtDQQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2pYWEFW1T1WdW1Vvmm4fWlXvq6qPVdWpVXW9ZY0NANixZa6BeHySD83dflaS54wxDkvy5SSPXcqoAICdWkpAVNXBSX4iyUum25XkR5O8dprl5CTHLGNsAMDOLWsNxF8keXKS7063b5bkK2OMb0+3L0ty0EoPrKoTqmpLVW3ZunXr2o8UALiadQ+IqvqfSb4wxjh7fvIKs46VHj/GOHGMsXmMsXnTpk1rMkYAYMf2XcIy75vkJ6vqx5Psl+TGma2RuElV7TuthTg4yeeWMDYAYAHrvgZijPG7Y4yDxxiHJHlEkreNMR6V5O1Jjp1mOy7JG9d7bADAYjbScSB+J8lvVdXHM9sn4qVLHg8AsIplbMK40hjjrCRnTdc/meSe67Hcuz/plPVYzFK8/kbLHgEA1wYbaQ0EALCHEBAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgLalno0TYE/n7L5cW1kDAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABA277LHgBsVHd/0inLHsKaef2Nlj0CYE9nDQQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQNu6B0RV3aaq3l5VH6qqi6rq8dP0A6vqrVX1senrTdd7bADAYpaxBuLbSX57jHHHJPdK8mtVdXiSpyQ5c4xxWJIzp9sAwAa07gExxrh8jHHOdP3rST6U5KAkRyc5eZrt5CTHrPfYAIDFLHUfiKo6JMldk7wvyS3HGJcns8hIcotVHnNCVW2pqi1bt25dr6ECAHOWFhBVdUCS05L85hjja4s+boxx4hhj8xhj86ZNm9ZugADAqpYSEFV13czi4ZVjjNdNkz9fVbea7r9Vki8sY2wAwM4t41MYleSlST40xvi/c3ednuS46fpxSd643mMDABaz7xKWed8kP5/kgqo6b5r2e0n+JMlrquqxSS5N8vAljA0AWMC6B8QY41+S1Cp3P3A9xwIA7BpHogQA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIC2DRUQVXVUVX2kqj5eVU9Z9ngAgJVtmICoqn2SvDDJQ5IcnuSRVXX4ckcFAKxkwwREknsm+fgY45NjjP9I8uokRy95TADACmqMsewxJEmq6tgkR40xfmm6/fNJ/tsY49e3m++EJCdMN2+f5CPrOtCN7+ZJvrjsQbDheZ2wCK+Tq/viGOOoZQ9iI9h32QOYUytMu1rdjDFOTHLi2g9nz1RVW8YYm5c9DjY2rxMW4XXCjmykTRiXJbnN3O2Dk3xuSWMBAHZgIwXEB5IcVlWHVtX1kjwiyelLHhMAsIINswljjPHtqvr1JG9Jsk+Sl40xLlrysPZENu+wCK8TFuF1wqo2zE6UAMCeYyNtwgAA9hACAgBoExBNVfX9VfXqqvpEVV1cVf9YVberqiOr6k2rPOYlG+2omlX1kzs7XHhVHVJVF+6m5a3682H3qKormvNf+TtZ5PVwbbbSv4WqenpVPXEnj9tcVc+brh9ZVffZhWV/qqpuvsL0X6yqC6rq/Kq6sKqOnqYfX1W3XuB5F5rvmqiqV03je8Iq93+wql61xmPYcO+/e4sNsxPlnqCqKsnrk5w8xnjENO0uSW65o8dtOzjWRjLGOD0+5cLE62FtjDG2JNky3TwyyRVJ3n1Nn7eqDk7y1CR3G2N8taoOSLJpuvv4JBdm5x+DX3S+XR3j9ye5zxjjB1a5/46Z/RF7/6q64Rjj39ZgDPtsxPffvYU1ED0PSPKfY4y/3DZhjHHeGOOd080Dquq1VfXhqnrlFBypqrOqavN0/Yqq+qOpvN9bVbecpj+0qt5XVedW1T9tm76a6a+Zf66q11TVR6vqT6rqUVX1/umvkv+yo+ed/vp4wXT9pKp6XlW9u6o+OR0VdPvlHVJV76yqc6bLfebGcdYq3/dR07R/SfJT1+gnz8J25Xey3euh9Vrkyn/jz5r+/X20qv77NP3IqnpTVR2S5FeSPKGqzquq/15Vm6rqtKr6wHS57/SYm1XVGdPP/6+y8kH2bpHk65kFScYYV4wxLpn+7W5O8sppOftX1e9Pz39hVZ1YMyvNd/fpPeXsqnpLVd1qGs/jara29fyqevUK3/t+VfXy6X3n3Kp6wHTXGUluse37XeF7+Lkkr5jm+8ntfpbPqap3VNWHquoeVfW6qvpYVf3vufkePf28z6uqv6rZ+ZS2vcc+s6rel+TeddX336Om968PVtWZ07R7Tu99505fb7/Ar5wkGWO4LHhJ8rgkz1nlviOTfDWzA2BdJ8l7ktxvuu+sJJun6yPJQ6frf5rkadP1m+Z7n4r5pSR/vpOxHJnkK0luleT6ST6b5BnTfY9P8hc7et7M/vp4wXT9pCR/N4378MzOSZIkhyS5cLp+gyT7TdcPS7JlR993kv2SfGaat5K8Jsmblv073JsvSa7Y1d/Jdq+H1mvx2nCZ/7cwN+3pSZ44XT9r7t/Wjyf5p7nfxZu2n3+6/bdz7xG3TfKh6frzkvz+dP0npveMm2+37H0y+8j7pUlenuk9ZW4sm+duHzh3/RX53vvPlfMluW5ma0Y2Tbd/NrOP0iezNRTXn67fZIWfzW8nefl0/Q7TmPZb6We23eM+muQHkjw4yenbjf9Z0/XHT8vf9j53WZKbJbljkr9Pct1pvhclecx0fST5me1/HpmtoflMkkPnfy5Jbpxk3+n6g5KctuzX255ysQlj93r/GOOyJKmq8zL7B/Qv283zH0m27QtwdpIfm64fnOTUqfqvl+SSBZb3gTHG5dPyPpFZySfJBZmtLek87xvGGN9NcvEqf3FeN8kLarbJ5jtJbjd330rf9xVJLhljfGya/jf53jlMWHvX5HeyK6/Fvd1qn3efn/666evZmf28d+ZBSQ6fVg4lyY2r6kZJ7p9p7dAY4x+q6stXW+gY36mqo5LcI8kDkzynqu4+xnj6Cst5QFU9ObM/Ag5MclFm//nOu32SOyV56zSefZJcPt13fmZrKt6Q5A0rPP/9kjx/GteHq+rTmb0/fG21b7yq7pFk6xjj01V1WZKXVdVNxxjbvtdtm9MuSHLR3PvcJzM7YvH9ktw9yQem8e6f5AvTY76T5LQVFnuvJO8YY1wyjfVL0/TvS3JyVR2W2e/zuquNm6uyCaPnosxetKv51tz172TlfUz+c0ypu908z8/sL8A7J/nlzAp+Z+aX992529/dheedf66VVpk+Icnnk/xwZjV/vVUeO/89OcjI8lyT38muvBb3dv+a2ZqZeQfmqiea2vYzX+3f/vauk+TeY4y7TJeDxhhfn+7b6e9pzLx/jPHHmR2596e3n6eq9svsr/Njp9/nX2fl32dl9h/1trHceYzx4Om+n0jywsze+86uqu2/t5XeL3bmkUnuUFWfSvKJzNYCzI9//r1s+/e5fadlnjw33tvPxdM3xxjfWeV7XOnn+odJ3j7GuFOSh8brfWECoudtSa5fVf9r24Rp+9yP7Ibn/r7MNkMkyXFzz3/Pqjpldz/vLj7P5dNaip/P7C+UHflwkkNr2hcjszcMlmvR38nues3sNcYYVyS5vKoemCRVdWCSo3L1NYw78vUkN5q7fUaSK882PK3dS5J3JHnUNO0huXq4pKpuXVV3m5t0lySfXmE52/4z/GLNdrSc379pfr6PJNlUVfeenv+6VfVDVXWdJLcZY7w9yZOT3CTJAdsNZ368t8tsc8yqZ0menvPhSY4YYxwyxjgkydHpvUecmeTYqrrF9JwHVtWKO2vOeU+SH6mqQ7c9Zpo+/3o/vjGGaz0B0TCtOXhYkh+r2cc4L8psu+bu2Iv56Un+rqremav+VXPbJN9Yg+ftelGS46rqvZmtntzhHtNjjG9mtnr8H2q2w96ndzQ/a6/xO3l6ds9rZm/zmCRPmzYJvS2zfY4+0Xj83yd52NxOhY9LsnnaOfHizHayTJJnZPbJhHMy2z/g0hWe67pJnl2zHWLPy2yfhcdP952U5C+n6d/KbK3DBZltfvjA3HPMz7dPZnHxrKr6YJLzktxnmv43VXVBknMz2wfsK9uN5UVJ9pnmOTXJ8WOMb2V190/y2THGZ+emvSOzzTm32sHjrjTGuDjJ05KcUVXnJ3lrZvtJ7OgxWzN7/b9u+h5Pne760yR/XFXvys7/MGKOQ1lvcFX1Z0leMcY4f9ljAYBtBAQA0GYTBgDQJiAAgDYBAQC0CQgAoE1AwF6mqh5WVaOq7rDssQB7LwEBe59HZnaAo0dsf8e2Ew4BXFMCAvYi09EG75vksZkComZnhHx7Vf1tZgcU2tGZDF9cVVuq6qKqesayvg9g4xMQsHc5JsmbxxgfTfKlucMd3zPJU8cYh1fVHTM7cuF9xxjbTo72qGm+p44xNic5IrPD/h6xzuMH9hACAvYuj0zy6un6q/O98wu8f9tZCDM7e+O2MxmeN93+wem+n5kOoXxukh/K7PTuAFfjdN6wl6iqmyX50SR3qqqR2XH9R5J/zFXPXbLtTIa/u93jD03yxCT3GGN8uapOijMTAquwBgL2HscmOWWM8QPTWQ5vk+SSJPfbbr7VzmR448xC46tVdcskD1nHsQN7GAEBe49HJnn9dtNOS/Jz8xNWO5PhGOODmW26uCjJy5K8a81HDOyxnEwLAGizBgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACg7f8DZCwYK+UFz1AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.factorplot(\"Area\", data=df[(df['Area'] == \"India\") | (df['Area'] == \"China, mainland\") | (df['Area'] == \"United States of America\")], kind=\"count\", hue=\"Element\", size=8, aspect=.8)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "94c19dc8-b1e7-4b61-b81f-422c27184c4e", + "_uuid": "0d1cfc7acc74847dbc5813b9b3bd0eb9db450985" + }, + "source": [ + "Though, there is a huge difference between feed and food production, these countries' total production and their ranks depend on feed production." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "9dba87b4-fa51-43ef-95ae-f31396c20146", + "_uuid": "43e0f00abf706ab1782ebb78cefc38aca17316e6" + }, + "source": [ + "Now, we create a dataframe with countries as index and their annual produce as columns from 1961 to 2013." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "_cell_guid": "c4a5f859-0384-4c8e-b894-3f747aec8cf9", + "_uuid": "84dd7a2b601479728dd172d3100951553c2daff5", + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AfghanistanAlbaniaAlgeriaAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijan...United Republic of TanzaniaUnited States of AmericaUruguayUzbekistanVanuatuVenezuela (Bolivarian Republic of)Viet NamYemenZambiaZimbabwe
09481.01706.07488.04834.092.043402.00.025795.022542.00.0...12367.0559347.04631.00.097.09523.023856.02982.02976.03260.0
19414.01749.07235.04775.094.040784.00.027618.022627.00.0...12810.0556319.04448.00.0101.09369.025220.03038.03057.03503.0
29194.01767.06861.05240.0105.040219.00.028902.023637.00.0...13109.0552630.04682.00.0103.09788.026053.03147.03069.03479.0
310170.01889.07255.05286.095.041638.00.029107.024099.00.0...12965.0555677.04723.00.0102.010539.026377.03224.03121.03738.0
410473.01884.07509.05527.084.044936.00.028961.022664.00.0...13742.0589288.04581.00.0107.010641.026961.03328.03236.03940.0
\n", + "

5 rows × 174 columns

\n", + "
" + ], + "text/plain": [ + " Afghanistan Albania Algeria Angola Antigua and Barbuda Argentina \\\n", + "0 9481.0 1706.0 7488.0 4834.0 92.0 43402.0 \n", + "1 9414.0 1749.0 7235.0 4775.0 94.0 40784.0 \n", + "2 9194.0 1767.0 6861.0 5240.0 105.0 40219.0 \n", + "3 10170.0 1889.0 7255.0 5286.0 95.0 41638.0 \n", + "4 10473.0 1884.0 7509.0 5527.0 84.0 44936.0 \n", + "\n", + " Armenia Australia Austria Azerbaijan ... \\\n", + "0 0.0 25795.0 22542.0 0.0 ... \n", + "1 0.0 27618.0 22627.0 0.0 ... \n", + "2 0.0 28902.0 23637.0 0.0 ... \n", + "3 0.0 29107.0 24099.0 0.0 ... \n", + "4 0.0 28961.0 22664.0 0.0 ... \n", + "\n", + " United Republic of Tanzania United States of America Uruguay Uzbekistan \\\n", + "0 12367.0 559347.0 4631.0 0.0 \n", + "1 12810.0 556319.0 4448.0 0.0 \n", + "2 13109.0 552630.0 4682.0 0.0 \n", + "3 12965.0 555677.0 4723.0 0.0 \n", + "4 13742.0 589288.0 4581.0 0.0 \n", + "\n", + " Vanuatu Venezuela (Bolivarian Republic of) Viet Nam Yemen Zambia \\\n", + "0 97.0 9523.0 23856.0 2982.0 2976.0 \n", + "1 101.0 9369.0 25220.0 3038.0 3057.0 \n", + "2 103.0 9788.0 26053.0 3147.0 3069.0 \n", + "3 102.0 10539.0 26377.0 3224.0 3121.0 \n", + "4 107.0 10641.0 26961.0 3328.0 3236.0 \n", + "\n", + " Zimbabwe \n", + "0 3260.0 \n", + "1 3503.0 \n", + "2 3479.0 \n", + "3 3738.0 \n", + "4 3940.0 \n", + "\n", + "[5 rows x 174 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_df_dict = {}\n", + "for ar in area_list:\n", + " yearly_produce = []\n", + " for yr in year_list:\n", + " yearly_produce.append(df[yr][df['Area']==ar].sum())\n", + " new_df_dict[ar] = yearly_produce\n", + "new_df = pd.DataFrame(new_df_dict)\n", + "\n", + "new_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "15fbe29c-5cea-4ac3-9b95-f92acd89b336", + "_uuid": "ea48f75e9824a0c4c1a5f19cbd63e59a6cb44fe1" + }, + "source": [ + "Now, this is not perfect so we transpose this dataframe and add column names." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "_cell_guid": "145f751e-4f5b-4811-a68c-9d20b3c36e10", + "_uuid": "28e765d82bb4ebec3be49200a30fc4e0eabb24d7" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...16542.017658.018317.019248.019381.020661.021030.021100.022706.023007.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6637.06719.06911.06744.07168.07316.07907.08114.08221.08271.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...48619.049562.051067.049933.050916.057505.060071.065852.069365.072161.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...25541.026696.028247.029877.032053.036985.038400.040573.038064.048639.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...92.0115.0110.0122.0115.0114.0115.0118.0113.0119.0
\n", + "

5 rows × 53 columns

\n", + "
" + ], + "text/plain": [ + " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", + "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", + "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", + "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", + "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", + "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", + "\n", + " Y1967 Y1968 Y1969 Y1970 ... Y2004 \\\n", + "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 16542.0 \n", + "Albania 2046.0 2169.0 2230.0 2395.0 ... 6637.0 \n", + "Algeria 7986.0 8839.0 9003.0 9355.0 ... 48619.0 \n", + "Angola 5833.0 5685.0 6219.0 6460.0 ... 25541.0 \n", + "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 92.0 \n", + "\n", + " Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 \\\n", + "Afghanistan 17658.0 18317.0 19248.0 19381.0 20661.0 21030.0 \n", + "Albania 6719.0 6911.0 6744.0 7168.0 7316.0 7907.0 \n", + "Algeria 49562.0 51067.0 49933.0 50916.0 57505.0 60071.0 \n", + "Angola 26696.0 28247.0 29877.0 32053.0 36985.0 38400.0 \n", + "Antigua and Barbuda 115.0 110.0 122.0 115.0 114.0 115.0 \n", + "\n", + " Y2011 Y2012 Y2013 \n", + "Afghanistan 21100.0 22706.0 23007.0 \n", + "Albania 8114.0 8221.0 8271.0 \n", + "Algeria 65852.0 69365.0 72161.0 \n", + "Angola 40573.0 38064.0 48639.0 \n", + "Antigua and Barbuda 118.0 113.0 119.0 \n", + "\n", + "[5 rows x 53 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_df = pd.DataFrame.transpose(new_df)\n", + "new_df.columns = year_list\n", + "\n", + "new_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "57929d23-e3d7-4955-92d1-6fa388eb774d", + "_uuid": "605f908af9ff88120fce2a2b59160816fcdcfa67" + }, + "source": [ + "Perfect! Now, we will do some feature engineering.\n", + "\n", + "# First, a new column which indicates mean produce of each state over the given years. Second, a ranking column which ranks countries on the basis of mean produce." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "_cell_guid": "ab91a322-0cb9-4edf-b5a2-cde82a237824", + "_uuid": "979f875019abef3ed85af75e000fe59d1de5a381" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013Mean_ProduceRank
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...18317.019248.019381.020661.021030.021100.022706.023007.013003.05660469.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6911.06744.07168.07316.07907.08114.08221.08271.04475.509434104.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...51067.049933.050916.057505.060071.065852.069365.072161.028879.49056638.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...28247.029877.032053.036985.038400.040573.038064.048639.013321.05660468.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...110.0122.0115.0114.0115.0118.0113.0119.083.886792172.0
\n", + "

5 rows × 55 columns

\n", + "
" + ], + "text/plain": [ + " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", + "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", + "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", + "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", + "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", + "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", + "\n", + " Y1967 Y1968 Y1969 Y1970 ... Y2006 \\\n", + "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 18317.0 \n", + "Albania 2046.0 2169.0 2230.0 2395.0 ... 6911.0 \n", + "Algeria 7986.0 8839.0 9003.0 9355.0 ... 51067.0 \n", + "Angola 5833.0 5685.0 6219.0 6460.0 ... 28247.0 \n", + "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 110.0 \n", + "\n", + " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 \\\n", + "Afghanistan 19248.0 19381.0 20661.0 21030.0 21100.0 22706.0 \n", + "Albania 6744.0 7168.0 7316.0 7907.0 8114.0 8221.0 \n", + "Algeria 49933.0 50916.0 57505.0 60071.0 65852.0 69365.0 \n", + "Angola 29877.0 32053.0 36985.0 38400.0 40573.0 38064.0 \n", + "Antigua and Barbuda 122.0 115.0 114.0 115.0 118.0 113.0 \n", + "\n", + " Y2013 Mean_Produce Rank \n", + "Afghanistan 23007.0 13003.056604 69.0 \n", + "Albania 8271.0 4475.509434 104.0 \n", + "Algeria 72161.0 28879.490566 38.0 \n", + "Angola 48639.0 13321.056604 68.0 \n", + "Antigua and Barbuda 119.0 83.886792 172.0 \n", + "\n", + "[5 rows x 55 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_produce = []\n", + "for i in range(174):\n", + " mean_produce.append(new_df.iloc[i,:].values.mean())\n", + "new_df['Mean_Produce'] = mean_produce\n", + "\n", + "new_df['Rank'] = new_df['Mean_Produce'].rank(ascending=False)\n", + "\n", + "new_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "6f7c4fb7-1475-439f-9929-4cf4b29d8de7", + "_uuid": "da6c9c98eaff45edba1179103ae539bbfbe9753b" + }, + "source": [ + "Now, we create another dataframe with items and their total production each year from 1961 to 2013" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "_cell_guid": "bfd692bc-dce4-4870-9ab9-9775cf69a87f", + "_uuid": "9e11017d381f175eee714643bc5fa763600aaa0b" + }, + "outputs": [], + "source": [ + "item_list = list(df['Item'].unique())\n", + "\n", + "item_df = pd.DataFrame()\n", + "item_df['Item_Name'] = item_list\n", + "\n", + "for yr in year_list:\n", + " item_produce = []\n", + " for it in item_list:\n", + " item_produce.append(df[yr][df['Item']==it].sum())\n", + " item_df[yr] = item_produce\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "_cell_guid": "3b7ed0c2-6140-4285-861c-d0cd2324a1f5", + "_uuid": "cb4641df5ce90f516f88c536e8a6c6870c5b4f65" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Item_NameY1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0Wheat and products138829.0144643.0147325.0156273.0168822.0169832.0171469.0179530.0189658.0...527394.0532263.0537279.0529271.0562239.0557245.0549926.0578179.0576597587492
1Rice (Milled Equivalent)122700.0131842.0139507.0148304.0150056.0155583.0158587.0164614.0167922.0...361107.0366025.0372629.0378698.0389708.0394221.0398559.0404152.0406787410880
2Barley and products46180.048915.051642.054184.054945.055463.056424.060455.065501.0...102055.097185.0100981.093310.098209.099135.092563.092570.08876699452
3Maize and products168039.0168305.0172905.0175468.0190304.0200860.0213050.0215613.0221953.0...545024.0549036.0543280.0573892.0592231.0557940.0584337.0603297.0608730671300
4Millet and products19075.019019.019740.020353.018377.020860.022997.021785.023966.0...25789.025496.025997.026750.026373.024575.027039.025740.02610526346
\n", + "

5 rows × 54 columns

\n", + "
" + ], + "text/plain": [ + " Item_Name Y1961 Y1962 Y1963 Y1964 Y1965 \\\n", + "0 Wheat and products 138829.0 144643.0 147325.0 156273.0 168822.0 \n", + "1 Rice (Milled Equivalent) 122700.0 131842.0 139507.0 148304.0 150056.0 \n", + "2 Barley and products 46180.0 48915.0 51642.0 54184.0 54945.0 \n", + "3 Maize and products 168039.0 168305.0 172905.0 175468.0 190304.0 \n", + "4 Millet and products 19075.0 19019.0 19740.0 20353.0 18377.0 \n", + "\n", + " Y1966 Y1967 Y1968 Y1969 ... Y2004 Y2005 \\\n", + "0 169832.0 171469.0 179530.0 189658.0 ... 527394.0 532263.0 \n", + "1 155583.0 158587.0 164614.0 167922.0 ... 361107.0 366025.0 \n", + "2 55463.0 56424.0 60455.0 65501.0 ... 102055.0 97185.0 \n", + "3 200860.0 213050.0 215613.0 221953.0 ... 545024.0 549036.0 \n", + "4 20860.0 22997.0 21785.0 23966.0 ... 25789.0 25496.0 \n", + "\n", + " Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 \n", + "0 537279.0 529271.0 562239.0 557245.0 549926.0 578179.0 576597 587492 \n", + "1 372629.0 378698.0 389708.0 394221.0 398559.0 404152.0 406787 410880 \n", + "2 100981.0 93310.0 98209.0 99135.0 92563.0 92570.0 88766 99452 \n", + "3 543280.0 573892.0 592231.0 557940.0 584337.0 603297.0 608730 671300 \n", + "4 25997.0 26750.0 26373.0 24575.0 27039.0 25740.0 26105 26346 \n", + "\n", + "[5 rows x 54 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "item_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "3fa01e1f-bedd-431b-90c3-8d7d70545f34", + "_uuid": "56a647293f1c1aba7c184f249021e008a4d5a8f2" + }, + "source": [ + "# Some more feature engineering\n", + "\n", + "This time, we will use the new features to get some good conclusions.\n", + "\n", + "# 1. Total amount of item produced from 1961 to 2013\n", + "# 2. Providing a rank to the items to know the most produced item" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "_cell_guid": "3a6bb102-6749-4818-860d-59aaad6de07f", + "_uuid": "9e816786e7a161227ae72d164b25c0029e01e5b4", + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Item_NameY1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013SumProduction_Rank
0Wheat and products138829.0144643.0147325.0156273.0168822.0169832.0171469.0179530.0189658.0...537279.0529271.0562239.0557245.0549926.0578179.057659758749219194671.06.0
1Rice (Milled Equivalent)122700.0131842.0139507.0148304.0150056.0155583.0158587.0164614.0167922.0...372629.0378698.0389708.0394221.0398559.0404152.040678741088014475448.08.0
2Barley and products46180.048915.051642.054184.054945.055463.056424.060455.065501.0...100981.093310.098209.099135.092563.092570.088766994524442742.020.0
3Maize and products168039.0168305.0172905.0175468.0190304.0200860.0213050.0215613.0221953.0...543280.0573892.0592231.0557940.0584337.0603297.060873067130019960640.05.0
4Millet and products19075.019019.019740.020353.018377.020860.022997.021785.023966.0...25997.026750.026373.024575.027039.025740.026105263461225400.038.0
\n", + "

5 rows × 56 columns

\n", + "
" + ], + "text/plain": [ + " Item_Name Y1961 Y1962 Y1963 Y1964 Y1965 \\\n", + "0 Wheat and products 138829.0 144643.0 147325.0 156273.0 168822.0 \n", + "1 Rice (Milled Equivalent) 122700.0 131842.0 139507.0 148304.0 150056.0 \n", + "2 Barley and products 46180.0 48915.0 51642.0 54184.0 54945.0 \n", + "3 Maize and products 168039.0 168305.0 172905.0 175468.0 190304.0 \n", + "4 Millet and products 19075.0 19019.0 19740.0 20353.0 18377.0 \n", + "\n", + " Y1966 Y1967 Y1968 Y1969 ... Y2006 \\\n", + "0 169832.0 171469.0 179530.0 189658.0 ... 537279.0 \n", + "1 155583.0 158587.0 164614.0 167922.0 ... 372629.0 \n", + "2 55463.0 56424.0 60455.0 65501.0 ... 100981.0 \n", + "3 200860.0 213050.0 215613.0 221953.0 ... 543280.0 \n", + "4 20860.0 22997.0 21785.0 23966.0 ... 25997.0 \n", + "\n", + " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 \\\n", + "0 529271.0 562239.0 557245.0 549926.0 578179.0 576597 587492 \n", + "1 378698.0 389708.0 394221.0 398559.0 404152.0 406787 410880 \n", + "2 93310.0 98209.0 99135.0 92563.0 92570.0 88766 99452 \n", + "3 573892.0 592231.0 557940.0 584337.0 603297.0 608730 671300 \n", + "4 26750.0 26373.0 24575.0 27039.0 25740.0 26105 26346 \n", + "\n", + " Sum Production_Rank \n", + "0 19194671.0 6.0 \n", + "1 14475448.0 8.0 \n", + "2 4442742.0 20.0 \n", + "3 19960640.0 5.0 \n", + "4 1225400.0 38.0 \n", + "\n", + "[5 rows x 56 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum_col = []\n", + "for i in range(115):\n", + " sum_col.append(item_df.iloc[i,1:].values.sum())\n", + "item_df['Sum'] = sum_col\n", + "item_df['Production_Rank'] = item_df['Sum'].rank(ascending=False)\n", + "\n", + "item_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "7e20740c-565b-4969-a52e-d986e462b750", + "_uuid": "f483c9add5f6af9af9162b5425f6d65eb1c5f4aa" + }, + "source": [ + "# Now, we find the most produced food items in the last half-century" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "_cell_guid": "3130fe83-404c-4b3c-addc-560b2e2f32bf", + "_uuid": "0403e9ab2e13587588e3a30d64b8b6638571d3d5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "56 Cereals - Excluding Beer\n", + "65 Fruits - Excluding Wine\n", + "3 Maize and products\n", + "53 Milk - Excluding Butter\n", + "6 Potatoes and products\n", + "1 Rice (Milled Equivalent)\n", + "57 Starchy Roots\n", + "64 Vegetables\n", + "27 Vegetables, Other\n", + "0 Wheat and products\n", + "Name: Item_Name, dtype: object" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "item_df['Item_Name'][item_df['Production_Rank'] < 11.0].sort_values()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "b6212fed-588b-426e-9271-6d857cd6aacb", + "_uuid": "e2c83f4c851b755ea6cf19f1bca168e705bd4edd" + }, + "source": [ + "So, cereals, fruits and maize are the most produced items in the last 50 years\n", + "\n", + "# Food and feed plot for most produced items " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "_cell_guid": "493f9940-1762-4718-acb4-fba5c4c73f4b", + "_uuid": "f8454c5200bdeb3995b9a0ada3deb5ca1c31f181" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", + " warnings.warn(msg)\n", + "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3672: UserWarning: The `size` paramter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAWYCAYAAACyPKHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X/M7ndd3/HXmxahBrbCOGzQltTMEkFlBY6sDmMyJIgkS1Fxw4j8kARd2CKZaYbGGHBjP4JKhDkchgElZMhAY2cYwhC2MfmxAxxbSnXWwaCjgcPkRwnQpPWzP+5v4+3htL17eq5zevp6PJIr93V9vt/vdb3vf5/5/pi1VgAAAACg0X3O9AAAAAAAcKaIYwAAAADUEscAAAAAqCWOAQAAAFBLHAMAAACgljgGAAAAQC1xDAAAAIBa4hgAAAAAtcQxAAAAAGqde6YHuDue+tSnrne84x1negwAAACAe5o50wOcLc7qM8c+//nPn+kRAAAAADiLndVxDAAAAADuDnEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANTaWRybmfvPzIdm5g9n5tqZeem2/vqZ+cTMHN1el27rMzOvnJnrZ+bqmXncrmYDAAAAgCQ5d4fffXOSJ621vjIz903yvpn5z9u2K9Zabz1u/x9Icsn2+ttJXr39BQAAAICd2NmZY2vPV7aP991e6w4OuTzJldtxH0hy/sw8bFfzAQAAAMBO7zk2M+fMzNEkn0vyrrXWB7dNL9sunXzFzNxvW7sgyaf3HX7Dtnb8d75gZo7MzJFjx47tcnwAAAAA7uV2GsfWWreutS5NcmGSJ8zMdyT52STfluS7kjw4yT/ddp8TfcUJvvM1a63Da63Dhw4d2tHkAAAAADQ4LU+rXGt9Mcl7kzx1rXXjdunkzUlel+QJ2243JLlo32EXJvnM6ZgPAAAAgE67fFrloZk5f3t/XpInJ/mj2+4jNjOT5OlJPrYdclWSZ29PrbwsyZfWWjfuaj4AAAAA2OXTKh+W5A0zc072Itxb1lq/OzO/PzOHsncZ5dEkP7Xt//YkT0tyfZKvJnneDmcDAAAAgN3FsbXW1Ukee4L1J93O/ivJC3c1DwAAAAAc77TccwwAAAAA7onEMQAAAABq7fKeYwAA3I7HX3HlmR7hLvnwy599pkcAANgJZ44BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUGtncWxm7j8zH5qZP5yZa2fmpdv6t8zMB2fmT2bmN2fmm7b1+22fr9+2X7yr2QAAAAAg2e2ZYzcnedJa628luTTJU2fmsiT/Oskr1lqXJPlCkudv+z8/yRfWWt+a5BXbfgAAAACwMzuLY2vPV7aP991eK8mTkrx1W39Dkqdv7y/fPmfb/n0zM7uaDwAAAAB2es+xmTlnZo4m+VySdyX50yRfXGvdsu1yQ5ILtvcXJPl0kmzbv5Tkr+1yPgAAAAC67TSOrbVuXWtdmuTCJE9I8qgT7bb9PdFZYuv4hZl5wcwcmZkjx44dO3XDAgAAAFDntDytcq31xSTvTXJZkvNn5txt04VJPrO9vyHJRUmybf+rSf7sBN/1mrXW4bXW4UOHDu16dAAAAADuxXb5tMpDM3P+9v68JE9Ocl2S9yR5xrbbc5L8zvb+qu1ztu2/v9b6hjPHAAAAAOBUOffOdzlpD0vyhpk5J3sR7i1rrd+dmY8nefPM/PMkH03y2m3/1yZ548xcn70zxp65w9kAAAAAYHdxbK11dZLHnmD9f2fv/mPHr389yY/sah4AAAAAON5puecYAAAAANwTiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoNbO4tjMXDQz75mZ62bm2pn56W39JTPzf2fm6PZ62r5jfnZmrp+ZP56Z79/VbAAAAACQJOfu8LtvSfIza62PzMwDk3x4Zt61bXvFWuuX9u88M49O8swk357k4Un+y8w8cq116w5nBAAAAKDYzs4cW2vduNb6yPb+piTXJbngDg65PMmb11o3r7U+keT6JE/Y1XwAAAAAcFruOTYzFyd5bJIPbkv/aGaunpl/PzMP2tYuSPLpfYfdkBPEtJl5wcwcmZkjx44d2+HUAAAAANzb7TyOzcwDkrwtyYvWWl9O8uokfzPJpUluTPLLt+16gsPXNyys9Zq11uG11uFDhw7taGoAAAAAGuw0js3MfbMXxt601vqtJFlrfXatdeta68+T/Eb+4tLJG5JctO/wC5N8ZpfzAQAAANBtl0+rnCSvTXLdWutX9q0/bN9uP5jkY9v7q5I8c2buNzPfkuSSJB/a1XwAAAAAsMunVT4xyY8nuWZmjm5rP5fkR2fm0uxdMvnJJD+ZJGuta2fmLUk+nr0nXb7QkyoBAAAA2KWdxbG11vty4vuIvf0OjnlZkpftaiYAAAAA2O+0PK0SAAAAAO6JxDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1zj3TAwAAcM/3qV/8zjM9wl3yiF+45kyPAACcJZw5BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWjuLYzNz0cy8Z2aum5lrZ+ant/UHz8y7ZuZPtr8P2tZnZl45M9fPzNUz87hdzQYAAAAAyW7PHLslyc+stR6V5LIkL5yZRyd5cZJ3r7UuSfLu7XOS/ECSS7bXC5K8eoezAQAAAMDu4tha68a11ke29zcluS7JBUkuT/KGbbc3JHn69v7yJFeuPR9Icv7MPGxX8wEAAADAabnn2MxcnOSxST6Y5K+vtW5M9gJakoduu12Q5NP7DrthWzv+u14wM0dm5sixY8d2OTYAAAAA93I7j2Mz84Akb0vyorXWl+9o1xOsrW9YWOs1a63Da63Dhw4dOlVjAgAAAFBop3FsZu6bvTD2prXWb23Ln73tcsnt7+e29RuSXLTv8AuTfGaX8wEAAADQbZdPq5wkr01y3VrrV/ZtuirJc7b3z0nyO/vWn709tfKyJF+67fJLAAAAANiFc3f43U9M8uNJrpmZo9vazyX5V0neMjPPT/KpJD+ybXt7kqcluT7JV5M8b4ezAQAAAMDu4tha63058X3EkuT7TrD/SvLCXc0DAAAAAMc7LU+rBAAAAIB7InEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABArQPFsZl590HWAAAAAOBscu4dbZyZ+yf55iQPmZkHJZlt019J8vAdzwYAAAAAO3WHcSzJTyZ5UfZC2IfzF3Hsy0l+bYdzAQAAAMDO3WEcW2v9apJfnZl/vNZ61WmaCQAAAABOizs7cyxJstZ61cz8nSQX7z9mrXXljuYCAAAAgJ076A3535jkl5J8T5Lv2l6HdzgXAAAAAPcQM3PrzBzd93rxtv7emTkjjWhmnjszd/ue+Ac6cyx7IezRa611d38QAAAAgLPO19Zal57pIY7z3CQfS/KZu/MlBzpzbPuhv3F3fggAAACAe6+ZecrMvH9mPjIz/3FmHrCtf3Jm/sW27cjMPG5mfm9m/nRmfmrf8VfMzP+cmatn5qXb2sUzc93M/MbMXDsz75yZ82bmGdk7metN25ls553s3AeNYw9J8vFt8Ktue53sjwIAAABwVjnvuMsq/8H+jTPzkCQ/n+TJa63HJTmS5J/s2+XTa63vTvLfk7w+yTOSXJbkF7fjn5LkkiRPSHJpksfPzPdux16S5NfWWt+e5ItJfnit9dbtN35srXXpWutrJ/uPHfSyypec7A8AAAAAcNa7s8sqL0vy6CT/Y2aS5JuSvH/f9ttOsromyQPWWjcluWlmvj4z5yd5yvb66LbfA7IXxT6V5BNrraPb+oez98DIU+agT6v8r6fyRwEAAAC4V5kk71pr/ejtbL95+/vn+97f9vnc7fh/udb6d3/pS2cuPm7/W5Oc9CWUJ3LQp1XeNDNf3l5f355Q8OVTOQgAAAAAZ60PJHnizHxrkszMN8/MI+/C8b+X5Cf23afsgpl56J0cc1OSB57UtPsc9Myxv/RDM/P07F0DCgAAAMC933kzc3Tf53estV5824e11rGZeW6S/zAz99uWfz7J/zrIl6+13jkzj0ry/u2yzK8keVb2zhS7Pa9P8usz87Uk332y9x2btdbJHJeZ+cBa67KTOvgUOXz48Dpy5MiZHAEA4KQ8/oorz/QId8lvP/DlZ3qEu+QRv3DNmR4BAM60OdMDnC0OdObYzPzQvo/3yd6jMk+uqgEAAADAPcRBn1b59/a9vyXJJ5NcfsqnAQAAAIDT6KD3HHvergcBAAAAgNPtoE+rvHBmfntmPjczn52Zt83MhbseDgAAAAB26UBxLMnrklyV5OFJLkjyn7Y1AAAAADhrHTSOHVprvW6tdcv2en2SQzucCwAAAAB27qBx7PMz86yZOWd7PSvJ/9vlYAAAAADc+83MrTNzdN/r4lPwne+dmcMH2fegT6v8iST/Jskrkqwkf5DETfoBAAAA7kUef8WV61R+34df/uw5wG5fW2tdeip/96446Jlj/yzJc9Zah9ZaD81eLHvJzqYCAAAAoNbM3H9mXjcz18zMR2fm797J+nkz8+aZuXpmfjPJeQf9rYOeOfaYtdYXbvuw1vqzmXnsXfmnAAAAAOAEzpuZo9v7T6y1fjDJC5NkrfWdM/NtSd45M4+8g/V/mOSra63HzMxjknzkoD9+0Dh2n5l50G2BbGYefBeOBQAAAIDbc6LLKr8nyauSZK31RzPzf5I88g7WvzfJK7f1q2fm6oP++EED1y8n+YOZeWv27jn295O87KA/AgAAAAB3we3dq+yO7mF2UvdLO9A9x9ZaVyb54SSfTXIsyQ+ttd54Mj8IAAAAAHfivyX5sSTZLpt8RJI/PuD6dyR5zEF/6MCXRq61Pp7k4wfdHwAAAABO0r9N8uszc02SW5I8d61188zc3vqrk7xuu5zyaJIPHfSH3DcMAACA/8/e/QdJftd1Hn+9ySoGEgElxPAjFSoGTjC6J2s88bwKghA5lHAHZyg5EgWDHqBomSqUuiVEI2jgFOTgiBgDlgY4zkhEjl8pYoDgkd/ZwMmRgxBiKAhiUfLjsIif+6O/s9s7mdnM7O5M7+z78aiamu7vfPv7/XR/u7/d8+xvzwAkSa694Nn7+tjihhhjHLXCtP+X5Kx1TP96kjP2Z/1r+lglAAAAAByOxDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADa2rboAQAAAADQV1XdlWTX3KTTxxi3HuAyz03ylTHGK+9pXnEMAAAAgCTJbeedPA7m8o7fuavWMNvXxxjbD+Z618PHKgEAAADUQO3WAAAgAElEQVQ4pFTVEVV1QVVdXVU3VdXz5n52ztz0l81Nf0lVfaKq3p/kkWtdlyPHAAAAAFikI6vqhun0p8cYT0vynCRfHmP8YFXdO8mHq+q9SU6avk5JUkkuq6p/k+SrSc5I8i8z613XJbl2LSsXxwAAAABYpJU+VvnEJN9XVU+fzt8vsyj2xOnr+mn6UdP0o5NcOsb4WpJU1WVrXbk4BgAAAMChppK8cIzxnr0mVj0pycvHGG9YNv1FSfbr76X5m2MAAAAAHGrek+QXq+pbkqSqHlFV952m/1xVHTVNf0hVPSjJlUmeVlVHVtXRSX5yrSty5BgAAAAAh5o3JjkhyXVVVUnuTHL6GOO9VfU9ST4ym5yvJHnWGOO6qnprkhuSfCbJB9e6InEMAAAAgCTJ8Tt31Wavc4xx1ArT/jnJb0xfy3/26iSvXmH6+UnOX+/628Sxx5zz5kUPYV2uveDZix7CIcF2g83lMbc12W6weTzetibbbWuy3bYm242tyN8cAwAAAKAtcQwAAACAtsQxAAAAANpq8zfHAACgm9vOO3nRQ1iX43fuWvQQAGjIkWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQ1rZFDwA4/DzmnDcvegjrcu0Fz170EAAAAFgQR44BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0Na2RQ8AYNFuO+/kRQ9h3Y7fuWvRQwAAADgsOHIMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2NiyOVdVFVfWFqrp5btq5VfV3VXXD9PXkuZ/9elXdUlWfqKonbdS4AAAAAGDJRh45dnGS01aY/ntjjO3T17uSpKoeleSMJI+eLvO6qjpiA8cGAAAAABsXx8YYVyb50hpnf2qSt4wxvjHG+HSSW5KcslFjAwAAAIBkMX9z7AVVddP0scsHTNMekuSzc/PcPk0DAAAAgA2z2XHs9UlOTLI9yeeSvGqaXivMO1ZaQFWdXVXXVNU1d95558aMEgAAAIAWNjWOjTE+P8a4a4zxz0n+MHs+Onl7kofNzfrQJHessowLxxg7xhg7jjnmmI0dMAAAAACHtU2NY1V13NzZpyVZ+k+WlyU5o6ruXVUPT3JSko9u5tgAAAAA6GfbRi24qi5JcmqSB1bV7UlemuTUqtqe2Ucmb03yvCQZY3ysqt6W5ONJvpnk+WOMuzZqbAAAAACQbGAcG2M8c4XJf7SP+c9Pcv5GjQcAAAAAllvEf6sEAAAAgEOCOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0tW3RAwAAAGCP2847edFDWJfjd+5a9BAADogjxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADa2rA4VlUXVdUXqurmuWnfUVXvq6pPTt8fME2vqnpNVd1SVTdV1Q9s1LgAAAAAYMlGHjl2cZLTlk17cZLLxxgnJbl8Op8kP5HkpOnr7CSv38BxAQAAAECSDYxjY4wrk3xp2eSnJnnTdPpNSU6fm/7mMfM3Se5fVcdt1NgAAAAAINn8vzl27Bjjc0kyfX/QNP0hST47N9/t07S7qaqzq+qaqrrmzjvv3NDBAgAAAHB4O1T+IH+tMG2sNOMY48Ixxo4xxo5jjjlmg4cFAAAAwOFss+PY55c+Ljl9/8I0/fYkD5ub76FJ7tjksQEAAADQzGbHscuSnDmdPjPJO+amP3v6r5X/KsmXlz5+CQAAAAAbZdtGLbiqLklyapIHVtXtSV6a5BVJ3lZVz0lyW5JnTLO/K8mTk9yS5GtJfnajxrVV3HbeyYsewrocv3PXoocAAAAAsG4bFsfGGM9c5UePX2HekeT5GzUWAAAAAFjJofIH+QEAAABg04ljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANDWtkUPAADo5bbzTl70ENbl+J27Fj0EALYAz2+wdTlyDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANratugBwOHktvNOXvQQ1uX4nbsWPQQAAABYKEeOAQAAANCWOAYAAABAW+IYAAAAAG35m2MAbFn+zh8AAHCgHDkGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbW1b9AAAAAAAFuG2805e9BDW5fiduxY9hMOSI8cAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKCtbYtYaVXdmuQfk9yV5JtjjB1V9R1J3prkhCS3JvkPY4x/WMT4AAAAAOhhkUeOPW6MsX2MsWM6/+Ikl48xTkpy+XQeAAAAADbMofSxyqcmedN0+k1JTl/gWAAAAABoYFFxbCR5b1VdW1VnT9OOHWN8Lkmm7w9a6YJVdXZVXVNV19x5552bNFwAAAAADkcL+ZtjSX5kjHFHVT0oyfuq6m/XesExxoVJLkySHTt2jI0aIAAAAACHv4UcOTbGuGP6/oUklyY5Jcnnq+q4JJm+f2ERYwMAAACgj02PY1V136o6eul0kicmuTnJZUnOnGY7M8k7NntsAAAAAPSyiI9VHpvk0qpaWv+fjTHeXVVXJ3lbVT0nyW1JnrGAsQEAAADQyKbHsTHGp5J8/wrT/z7J4zd7PAAAAAD0taj/VgkAAAAACyeOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtHXIxbGqOq2qPlFVt1TVixc9HgAAAAAOX4dUHKuqI5L81yQ/keRRSZ5ZVY9a7KgAAAAAOFwdUnEsySlJbhljfGqM8U9J3pLkqQseEwAAAACHqRpjLHoMu1XV05OcNsZ47nT+Pyb5oTHGC+bmOTvJ2dPZRyb5xKYPdHM8MMkXFz0I1s1225pst63LttuabLetyXbbmmy3rcl225pst63pcN5uXxxjnLboQWwF2xY9gGVqhWl71bsxxoVJLtyc4SxOVV0zxtix6HGwPrbb1mS7bV223dZku21NttvWZLttTbbb1mS7bU22G8mh97HK25M8bO78Q5PcsaCxAAAAAHCYO9Ti2NVJTqqqh1fVtyY5I8llCx4TAAAAAIepQ+pjlWOMb1bVC5K8J8kRSS4aY3xswcNalMP+o6OHKdtta7Ldti7bbmuy3bYm221rst22Jttta7LdtibbjUPrD/IDAAAAwGY61D5WCQAAAACbRhwDAAAAoK3DLo5V1e9V1Yvmzr+nqt44d/5VVfWrVXVqVb3zIK3z9Kp61MFY1grLPreqfm0jlr1sPRdX1dP387K/sYZ57qqqG6rq5qr6y6q6/zT9wVX19v1Z7wrreFFVPXs6fXFVfa2qjp77+auralTVA6fzV03fT6iqm6fT675fVNUVVXW3f/07Tf/EdL1vOJDrWVVv3N/7WFXdunSd9+Oye923q+qVVfVjq8w7qupP5s5vq6o77+n2rKodVfWa/RnfwVRVX9mEdey+r+3HZU+tqsfu52XnH3//varus495719V/2kNy1zTfIt0IPu1da5nxX3AGi53wLfhtO4nLZv2oqp63YEsd4X1rOl5brXb/GA+584t81ur6ver6v9W1Ser6h1V9dDpZ3vdthux/lXGtM/9YFX9VFW9eDq9+/l9f+9Dc+tZeowvfb14P5ZxVlW9dp2X2b29D+R5aoXlLl2fG6vqurXs+6b7/X3mzq/62qSqvquq3jLddz5eVe+qqkccjLHvY50HZX80LefTc9v6qv1czrqe8+YfQ/P34wO17Pr8bVW99GAs9wDH9JKq+lhV3TSN64em6Xvdxw5wHQe0T5p7jXljVV1dVdsPYFn3+Dp+K9uM58lD8TnyYFvheeaEdV5+93PEwbzP1ez3nF1z41r37xT7c/svew4/r6qesN71rrDMX66q3587/4aqev/c+RcuXb/93fezb4ddHEtyVZLHJklV3SvJA5M8eu7nj03y4YO8ztOTbEgcOxBVtVn/cGEtO7ivjzG2jzG+N8mXkjw/ScYYd4wxDsaLxW1Jfi7Jn81NviXJU6ef3yvJ45L83dIPxxj7FRrW6Wem6739QK7nGOO5Y4yPH8yBrdHy+/YfJFntBfFXk3xvVR05nf/xzN3eqxljXDPG+KUDGuWCVdURm7CaUzPt2/bD/OPvn5L8wj7mvX+StQSbtc63JW3S/vNg3IaXZPafneedMU0/mA7F57nfTnJ0kkeMMU5K8hdJ/ryqKgf5/rmO+8M+94NjjMvGGK84WOOa8/W555rtG7SOfTrIz1NL1+f7k/x6kpev4TIvSjIfLlZ8bTLdPy5NcsUY48QxxqOmeY9dy768Zhb9+vmcuW29Ga9l9rIB9+Nzxhjbk2xPcmZVPfxAF7i/+/Cq+uEkT0nyA2OM70vyhCSfnX68/D62luVt5OuDn5keI69LcsEBLOewjmPZnOfJQ/E58mBb/jxz6/wP7+kxt+w54mDf5x43N65N/51ijLFzjPH+e57zHu3uGJPtSe43tx/Z3TEWse/vYNFP7hvhw9lzp3p0kpuT/GNVPaCq7p3ke5JcP/38qKp6+/RO1Z9OL5hSVY+pqr+uqmtrduTZcdP0n5/enbmxqv5HVd1nejfzp5JcMNXqE+cHU1U/WVX/q6qur6r3V9Wx0/Rzq+qi6d2MT1XVL81d5iXTu0HvT/LIla7k9M7Df6uqD1bV/6mqp0zTz6rZkSF/meS904u4C2p2xMiuqvrpab6qqtfW7B3Tv0ryoLll7z7SqGZH9VwxnT6qqv54Ws5NVfXvq+oVSY6crvufVtV9q+qvptvo5qX1LfORJA+Zljl/1NYRNTsyaWn5L9zX9ljmx5JcN8b45ty0S5Isrf/UzO4bu39e9/Cu6XRdLpq2+fVVtRTajqzZO843VdVbkxy5r+WssNyHV9VHpuX+5tI4atm7FtP2OWs6fcW0LX6xqn53bp6zquoPptN/Md1GH6uqs1dZ97Oq6qPT9nrD0s62qr5SVedP2+1vqurYle7bY4zPJPnOqvquVa7e/0zyb6fTz8zcC4+qOqWqrppuy6uq6pHLr3fN3r1feufny1V15nS/uGC6vW6qquetct1WvP4rXbeVtsMqyzyhZvuHN03rfntN7xpPj5OdVfWhJM+oqu3T8m+qqkur6gHTfI+Z1v2RTFF4btu9du78O6vq1On0aTU7WuLGqrq8Zu/O/UKSX5lumx+tqmdMj7Ebq+rKVbbHSj6Y5Lun9fzqtIyba88Rt69IcuK0ngtq9ri/fBrPrqXHwQrzVa2wr5nWc87c9nvZNO0e9xW1wj53mn5xVb1muh99qvYcuVK1yn5t2XKvqNkRR1dN6z5lmn5uVV1YVe9N8uaq+rbas8+7vqoeN8236j6g5vYrVfX0qrp4On3sdL+4cfp67Aq34XFVdWXtOcrvR9ewPd+e5Ck1e37LdF95cJIPrXbbT9P/83Tffl9VXVJ73v08sareXbPH0ger6l/UCvuC1bbN5Am17Llp2e2/2r710bVn/3RTVZ202jhpgCIAABc1SURBVJWe1vezSX5ljHFXkowx/jjJNzJ7Ptjrtp0utt7n/Cuq6rer6q+T/PIatsWSfe0H93rcr3C97lWz/c1vrWN9qy3rfjV7LbG0r72kqn5+Or3XPmaFy+51dEPteZ5a9TFWc0e/1er73ROn81fX7J32tRy99O1J/mG6/IrPkzV7DfXgJB+oqg/Ustcm07zPqqqPJvlkkhOS/OHcdft3SV6Z5IdXeszU7Lngf9fsSJPrkjysqp5Ys+eQ62r2uuuoad6d0+Vvrtn+pFa4fV8x3YY3VdUr13Ab3KOa7RN3TqefVLN9yb1q5X3P/OX29drjtOnx8qHpNlqaZ/f9uFbfH9+rql5Xs+fkd9bs+f2e3iT8tun7V6dlrPbYvNt+am4s/6WqPpDkd/bzpjwuyRfHGN9IkjHGF8cYdyy/j03re31VXTNdx/n96/LXB99ds98Blo6EXPpd4W77pKp6fFVdOresH6+qP7+HMe9+XT1d5pk1e966uap+Z1/Tlz9Wam2v47eaVZ8nV3q8T/Ns6efIzVJ3/71zLb/LbPh9rmZHbV9de15Xv7yqzp9O/+C0v7pxuj2PXnbZc2vuU1vTmE6YTq/4O3rtfRT1rVX1strzunlp/3TMdH+6rma/g32m7v7JnuuTPKJmrzPvl+RrSW5IcvL088dmFtDmn5dPnW7bNb++YR/GGIfdV5Jbkxyf5HmZ/UL5m0menORHklw5zXNqki8neWhmkfAjSf51km/J7E53zDTfTye5aDr9nXPr+K0kL5xOX5zk6auM5QHJ7v8K+twkr5pOnzut596ZHd3299O6H5NkV2bvTH17Zkc//doKy704ybunsZ+U5PbMXlScNZ3+/+2debhV1XXAf0sQQSaLklStUWNj1CgxqHEiAlVJ0sbEWZFUrVqrTZ2J0c8kJZoaGhpbhzjhgFMdiKiIUeRTEcV5gIezUVH8NBEVUeqMq3+sdd7d77xzzr0Xkcd7b/2+733v3H3P2WePa++99trrDvL79gJmAD2ALwOvYAP/nkn4OsA7WR68/Nby662x3VWwicb/pHnz/0uSsL2Aicnngek9/r7JwPf88wbAE359JHA90NM/D6qqj1x5/Cqrj7ROgAe8DiYCw3N5W1KQhhHANL8+HfixX68BPAf0BY5P2sQQTOG2dUGaZgLPYkJtDjDBw6cCB/r1T5J0tL7bP58DHJzEtTUwGPhTcs+twLCsvPx/H0wpvGZan5hi+GZgVQ8/N0mHArv59W+Bn5e1bS/LvQryu8TL4w9YW5yTK88BSd3uAlxflG8P2wpoAQYChyfpWQ14BNiw4P1l+S/LW2E95OLcwJ/f0T9fgvdHL9cTk3tbgOF+fSreV3LhE6i1tYOBc5Lnp3lZDMZ2qTfM5WsciSzA5MS6WfusIxOzNtYTuAnra5ms6Qv0A54EvkXSH5JnBvj1WphMkoL7ymTNKOznsQWTV9OAnSiRFbl0V8ncyR7fZnifoEKuFfTNiX69U1In44BHgT7++QTgUr/exPPUmwoZQFt5uDcwya+vBY5N5ODAgjI8ATgluad/Vb0mz90C/MivT6Ima8rKfmusf/bBLK+ep9au7wC+5tfbAncWyYI6dVM0No2gvmw9G7OEAOiV1UNJnocAjxeE/zdwdEHZjqD5MX8mcG4jddCEHDwY7/ckfdrftR2mSDulmXf680upjTVzgP08fFfP6/7AbR5WJmPStOXrO5MhVXOHmdT6QZncnQaM9usjKJC7ufw84/W2VVKPZePkfHx8L+iLreOft4+5tB3/9q3TZzYAPgO2S2ThLKCvf/4Z8Mu0PP36iqQcJmEyYRA2N8jmhpXyu6BsJgEvJXV9lYevjsnxkR7/RmWyJ1enhWWKtd8FWD8W4DqK2/EkiuXx3sAfPfyvMQVnkTxO87MEON3Dq/pmlZyaBvRotg8l6ennaXkOmycNT76bT9s2lvWdHlj7H5Lcl84PHgT28OveXlcjKJZJgrX7LN//m7WhXDpnUutvxybltg42Vg3Gxu87MaumwvCCvlJ3bO6MfxSMk3ThMfILKsN0nLnBww6m7bqzNR/+ud1aZnm3Oay/zUvSdpyHfwN4GhsHH/cy6wW8CGzj9wzw/pCW/zjazrefwMaA0jV6Wv+enqy+/xW4KCmLk/36e9jYs1ZBfmZi7fC72EbfoR7POsAryX2pDG9qfhN/5X8r6tjdiiazHtsBOAPbTdkBazjp+dyHVPVVABGZgzX8d4DNgRmudO0BvO73by62m7sGNnhObyAtfwNc65raXtgEIOMWtZ2pj0TkDWxB+R1M4Lzv6ZpaEfd1qvoZ8LyIvIgt3gBmqOrbfj0MuFptZ/0vYjvg22CdLgt/TUTubCAvu5CYJavqooJ75gH/5TtS01T1Hg/vk5Txo9jkuij+89Wtv1T1bRHZnPL6SFkbE4B5pniat8WUpc0wCvhhsnvQG1O67gSc5WlsEZGWijjGqOojubAdsYEAbOLc8O6mqi4U25ndDhusv07tmPDRIrKHX6+HDbpvJY/vjAn2h70s+wBv+HcfY5MCsPrZtSIZb2ACuih9Lb67MhqbFKcMBC7znS7FhHY7fBflCmyxslhERgFDpLbjPNDz9lLu0bL8l+Wt0XpYoKpZGV+JLayynf5rPc0DsQXO3R5+GTC5IPwK4Psl78nYDlPivwTWD0rumw1MEpHrsHZeRdb/wCzHLsYUZDeoarZDPwWTP3mZI8DpIrITtjhcF5NVeapkzSgSi12sbu6hWFakVMncG13+PSVulUJzcu1qAFWdJSIDxP0gAlNV9YMkT2f7fc+IyMvAxjQnAzL+DjjQn1kKLBa3Lkx4GLhERFb1/M2hMbIjIzf5/0M8fBTFZd8fuCnLp+/4Imb5sgPWdrO4Vyt5Z1XdlI1NGWWy9X7gFDG/YVNU9fmKPAsmRxoNh+bHfPA+3gx15GAVF2Bl9x/NvhM/7lKQlhkisg/we+CbHtyojCmi0T5WJne3xxbqYIv+Mqup1vyIHXO73OcDy0rr+IcptlYHvurfLcU25qC8z7wCvKyqD3j4dpgiaLa3m15Y+wUYKSIn+jsGYQqrm5O0vAt8CFwkZn23LH6GfqqqbfyYqur7YpaBs7DF4Qv+VTvZ0+A7NgFeyvqhiFyJbVYVUSSPhwGTPfzP4tZWVflxGXSHmCXOuxT0zQbk1GTP5zKhqktEZCtsPByJzeFPUtVJBbfvK2ap3hObh26GbYhBbX7QH9vIusHj/9DDoUAmqeq9Yn4Lfywil2J95sCS5F4lIn2xshnqYdtgm9oLPd6rsH6rJeE35uIsm8d3dorGyQPoumPkF0HhOEPbdeeysDza3EhVfTMNUNUnvS/dDGyvqh+LyBbA66r6sN/zLrT2x3o0s0bP5uWPUrO6HQbs4e+9TUSK1tFQ02P0wer8eewY6kLa6jFSlmV+ExTQVZVj2XndLTBt7wJsR/5dzPIj46PkeilWHgI8qarbF8Q7CdtlmStmIjqigbScDZyhqlPFTDvH1Xk/lE/s8+Tvyz7/XxJW1dvL3vMptSO3vZPwqkWHRaj6nE8q/h74jYjcrqqn4gLVlQXTMEudvMPEovir6iPlg1xaM67BjkBcpqqfNSj80nfvparPtgm0OBqtozKKnk/LHYrzAzbh2hfbWbxBVdXb1i6Y8H9f7Chs/nnByuHkgjg/UdUsTWlbLKI3Vt5lTMUWPCOANZPw04C7VHUPXzjOzD8odszzGuBUVc0c1wu2A1OqjK6T/6q8NVKPZf0M2va1wqRVvKOsvuv2MwBVPULMSfA/AHNEZEtVfavk9nYTGmm8M4zBdpq3UtVPRGQ+xW2zLD4BfqOqF7T7olhWpEyiXOam8jN9d0fLzzS8rA8XP2iKup2wOr1CRCao6uUNPHojcIaIDMV2kh/z8MKyF5HjSuJZBXinZPKbZxLldVPVZ7J0tZOtwNMi8iCW/+kicpiqlilf/gSsLyL9VfW9JHwobRURKc2O+VC/j5dRJgeruA9TrPwuW0BneF/P6vGXqlo1KU+fWwWzmvoAU9S8SmMyplU+uazolXzXSB9rZkypRFXv902TwTQ+TuZpHf9EZGfg31V1nH/3YaJMKeszG9BeNsxQ1dG5+3pj1kZbq+oCERmXT6Oqfip2lHtnbJH+b5gCK41nOrYJ8YiqHtZgHsHmvW9RsoFVQlWZNipPi+RxUxMuaFVMzcQWkbdS0DdFZADVcmpZ+2yajqXYHGWmiMwDDsJkXpqODYGxmAXKIrEj9GnZZemoKoeydcClmBz7EFP2fZp/0BmDWUGOxxTge1a8r6H6qJjHd3bajZMiMoauO0auSNI+17SMrtfmRGQ9auP6+ap6fhNp2wJTEmVK+6bGP+fzyMS0XzcqE+/DDDp6Y/16IaZ4X0i53/Rlmd8EBXRFn2NgDecHwNuqutS12Wtguy/3Vz5ppuiDfacSEVlVRDKH/v2xXatVsQEp4z3/roiB1JzxHtRA2mcBe4idNe4P7FZx7z5iPh02wnZA80I0i28/Mb9Ng7Fdooc8fH8PXxvbHcuYj+2wQs2yBuB2bBIHQGL18ImXCSKyDvC+ql6JLQyGJs+jqosxy5ux2TO5+I8Qd+goItnRg7L6SHka96OUe98rwCnYZLVZpgNHZUoEEfmWh8/C6993soc0Ge9sahZ4aTt6GdhMRFZzJeLOJc9PwXbeR1OzahgILHLF0CbYrnaeO4C9ReRLnvZBIrJ+nbQWte2NMaVzGZdgyq15ufC0Lxxc8ux4oEVVr0nCpgNHJm1sY98pzcddL/95yuohz1ey9oeV+b35G7xdL5Kaj6h/BO5W1XcwC6FhBe+ZD2zpfXg94Nsefj8w3CfeWT+AXF2I+YB7UFV/CbyJWcs1wyxgdzHfiX2x3ax78u/ByvYNV4yNBLI2k7+vTNZMBw6Rmj+edUXkS/VkhVMmc6vyVCbX8mT+F4cBi70Oi+LL+vrG2M7ts1TLgL+IyKaulNgjCb8Ds9bD0zeA9nW6PlbWEzHrvqIyaYeqLsEWcpfQ1sFwYdljbXg3MZ9q/XD/WL6D+pKYpVHmXyqzNsrXd1Xd1BubCmWriHwVeFFVz8KUS0M8/A4RWTeNQM3i8TJssZP5TjwQs9a5syC9ZTQ6xjRLmRys4mLM0myy5Bwbe1/PnA03pBhzjsPGx9HUrBLLZEzKfGrzgB9Rs/Rtpo8V8QC1eUXeQXYhLtN7YEqfqnEyX+etcxPajn93AquLyM+Sd2wjIsMp7zNF+dhRRDL/jau7jMgWUW96HEW/StcPOzb0R+w4XJHF33e9rhtWjLn8OAE7Hv998V9YpFj2pJSV6TPAhlLzjzWa5rgX2MtlwZdpYEPZ2/22wAuU9M06cupzIyJfl7a+nLbEygjatrEBmFJgseev0Crc0/uqiOzu8a8mdX7xUlVfA14Dfk5OKVdw7yd+33Yisil2hHO4iKzlsnE0cHdFODQxj++slIyTXWKMXMlodC3TzNpxQTL+NawYE5E9sc2pnYCzxE4IPAOsIyLb+D398+MtNv4N9e+HAtkPhDSzRi/iXsy4AbFTMfnTAxn3YeuYwar6hm80LcTG4mZ+ofKLmt90abqqcmweZjb/QC5scd7kMo+qfoxNZv5TROZiZ5cz56W/wAaXGVjnyrgG+KmY08Q2DvkxS7HJInIPtoCtxHf8r/X3Xo8tVst4FhvYbgWOyO80OzdgJt5zsQnhiar6Zw9/HiuX86gNkGD+u870NKem6b8G/krcCTi1SfGFQIuYifYWwENiJp2n+DP5PD7u6clPjC/Cji60ePwH1KmPlFsx4dcOVb1Aa8cLmuE0bEHQIvajAZnT9vMwJ6otwImYAqCMq6TmYD77FZNjgJ+IyMOY4iFL5wLMp0cLcBU1M+98fhYBTwHrq2r27tuAnp6m02jb9rPnnsImULf7fTOwYwBVtGnbPpD9Leb3qxBVfVVVzyz46rfYjtBsbKFTxFhgVFJmP8TaxVPAY14PF9DeCqFu/gsorIcCnsZ+PasFs7w4r+S+gzBnrC3YZDrb9fon4PdiDvlTi7vZ2NHQedhk4DGwo7PY0ZUp3uYzBejN2KA8R0wJN0HcsS42YM9tIM+tuKyZhLXfBzGfCI+79dls7+cTsLa4tYg8gk3wnvHn8/cVyhpVvR07PnW/2A78H7BJY11ZQbnMLaNKruVZJPYz2Odj/hyKOBfo4em+FvOb8RHVMuAkzDr2Ttqarx+DWQXNw8zsv1FQhiMwK8DHMQVCUT8q42rs2FyrYrms7NWOE0zF6moK1p8z5eAY4FBve0/iv/hL+3Guqm7qjU1lsnU/4AlvE5tgR+lWwWRO0ZGNkzHLiudE5HlgH8yvjxaUbSFNjDFNUSEH6z13BiYLrpDmfhExc26c/Y0XU9YcBpygdkxlFub7q0zGpEzEFtIPYcqKzDKgmT5WxLHA8R7v2pQf8WvNj6fvIN/srBonLwRuldrxvda5STr+Ye2+F7CriLyAHV0ZB7xWIa/a4GV4MHC1y4EHgE18Q2Sil8+N2DHOPP2Baf7c3ZgCs1km5Op7NUy5OtYVK4dixzZ7UyB7cnkpLFPvt4cDt4g5ln+Z5rges1TMxu0HKa/vCV7XLVjZTanTN8vk1PKgH+YC4imvo82onfpobWOqOhcrqycxhUuZRQfYhtnRHt99mA+2elyFuXWo+wuwasf/fofV/+uYbLwLa+uPqepNZeFJvhqex3di2oyTXWGM/Bxl8YXQ6FqG5d/m7krk4eVi1sbjgUNV9TnM39eZLlf2A872OpxBe+u264FBnp4jMZ9vza7Ri/gVtsZ5DFOmv44pVdvg67yFWPvKuB/7AZyG5/pf1Pymq5M5Aw06GWLm29M053OiOyP26z4n6oo/g/+5EJElqtqvo9PRCGI+vYaq6i86Oi0rArGjNNNU9fP4uglWMsSO7YzV9v4Auw0i0k/tCNPqmNLkcK0dx1xpELPMO0RVj+/otASfH29vH6iqisj+mHP+5anYCFYiEjmzJraJsKNv0AZ1EPs10MdV9eKOTkt3pLOMkUHnwTcxlqodrd8eOE8bO6IbrEC6qs+xoHtyErYT3amUY52MntjuZBAEnZsLRWQzbMf0spV10q/mezAUY12HrYBzREQwPzCH1Lk/6NxMEzvK1As4LRRjjSEij2LWmid0dFq6MZ1ijAw6FV8BrnOr8I+Bf+7g9AQFhOVYEARBEARBEARBEARB0G3pqj7HgiAIgiAIgiAIgiAIgqAuoRwLgiAIgiAIgiAIgiAIui2hHAuCIAiCIAiCIAiCIAi6LaEcC4IgCIIgqIOILPH/G4jIAR2dniAIgiAIgmD5EcqxIAiCIAiCxtkACOVYEARBEARBFyKUY0EQBEEQBI0zHviOiMwRkeNEpIeITBCRh0WkRUT+BUBERojI3SJynYg8JyLjRWSMiDwkIvNEZKMOzkcQBEEQBEHg9OzoBARBEARBEHQiTgLGquoPAETkcGCxqm4jIqsBs0Xkdr/3m8CmwNvAi8BFqvptETkGOAo4dsUnPwiCIAiCIMgTyrEgCIIgCIJlZxQwRET29s8Dga8BHwMPq+rrACLyApApzeYBI1d0QoMgCIIgCIJiQjkWBEEQBEGw7AhwlKpObxMoMgL4KAn6LPn8GTEHC4IgCIIgWGkIn2NBEARBEASN8x7QP/k8HThSRFYFEJGNRaRvh6QsCIIgCIIgWCZi1zIIgiAIgqBxWoBPRWQuMAk4E/sFy8dERICFwO4dlrogCIIgCIKgaURVOzoNQRAEQRAEQRAEQRAEQdAhxLHKIAiCIAiCIAiCIAiCoNsSyrEgCIIgCIIgCIIgCIKg2xLKsSAIgiAIgiAIgiAIgqDbEsqxIAiCIAiCIAiCIAiCoNsSyrEgCIIgCIIgCIIgCIKg2xLKsSAIgiAIgiAIgiAIgqDbEsqxIAiCIAiCIAiCIAiCoNvy/yCow6RV+SGaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.factorplot(\"Item\", data=df[(df['Item']=='Wheat and products') | (df['Item']=='Rice (Milled Equivalent)') | (df['Item']=='Maize and products') | (df['Item']=='Potatoes and products') | (df['Item']=='Vegetables, Other') | (df['Item']=='Milk - Excluding Butter') | (df['Item']=='Cereals - Excluding Beer') | (df['Item']=='Starchy Roots') | (df['Item']=='Vegetables') | (df['Item']=='Fruits - Excluding Wine')], kind=\"count\", hue=\"Element\", size=20, aspect=.8)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "45dda825-49a0-41ab-9ebd-eaa609aac986", + "_uuid": "ce5b2d38ff24ea08da632c4e2773dbd0bd026b9d", + "collapsed": true + }, + "source": [ + "# Now, we plot a heatmap of correlation of produce in difference years" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "_cell_guid": "b1bab0ec-6615-452c-8d06-a81d4f2ae252", + "_uuid": "a2ed2aae2364810ce640648cf50880adcf2cdcc4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJYCAYAAAANJyWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+QXOV95/v3p+eHhMaSk9goldjcJa615LKNpGDWcCsOZkOFQNjF67gQTCjuboktXXnlW3XvJgRSgQ0kUTZFvCorlZQpRRYs4BVyvCaghUireA0yjlKLUIQYsCxbFInHSiyDsQ36wcx0f+8f5wg37Z7pPl8PTc/o86rqmp7znO95nnP6nNPzzDnn+ygiMDMzMzMzs96rvdkNMDMzMzMzO1O5Q2ZmZmZmZvYmcYfMzMzMzMzsTeIOmZmZmZmZ2ZvEHTIzMzMzM7M3iTtkZmZmZmZmbxJ3yMzMzMzMzN4k7pCZmZmZmZm9SdwhMzMzMzMze5O4Q2ZmZmZmZvYmGXyzG5A1+cJzUTmoPlk5JCYnKscAxInvV47R4HCurqlcG1PUmz58vPxCT+opKmvk4iZfrV7Vi/+Yq2swcahOTeXqymyPRnIbnjpROSRe/E6qKg0NVa/r5KlUXfGd76biUnVNVj+vZbZFUVn1z3nqH15MVaXhgeoxIwuqVzSRO05isl45ZuqF6ueMrFe+mft6b0xVP8dPTeS+F+qN6nEnT+b23RdPnVU55hVV3wcBjg1WX6/sN+tA9b+EeCVZ2T8MJPZ5Eg0EvhPV/645Tu5Yfql+snLMK43qx/IrU7nvk+Fa7lh+6p/+RqnAN1Hqb/ukobe/q6+2z4yHpQqPS7qiadpqSTslbZV0TNJYS8xKSXslPS1ph6QlTWUryrJnyvKF5fQNkr4p6ZXZXkEzMzMzM7N+NWOHLCICWAdslLRQ0giwAVgP3A1c3iZsC3BzRJwHPADcCCBpELgPWBcR7wMuAU7/a3cH8MEfd2XMzMzMzGwOatR79+ozHa+DRsSYpB3ATcAIcE9EHAGOSDq3TchyYE/5fjewC7gVuAw4GBFPlct97T6WiPhbAKmvrh6amZmZmZm9obq9MfV2YD8wAVzQYd4x4CrgQeBq4Jxy+jIgJO0Czgbuj4g7KrfYzMzMzMzml+wz/fNAV492RsRxYDtwb0R0epJxDbBe0pPAYopOHBSdvw8B15U/Pyrp0iqNlbRW0j5J+7bcs61KqJmZmZmZWd+pkrqlUb5mFBGHKG5PRNIy4MqyaBx4LCJeKMseAc4HvthtAyJiM7AZepuJxczMzMzM7I0w6znMJS0tf9aAW4A7y6JdwApJi8oEHx8Gnp3t+s3MzMzMbI5pNHr36jPpDpmkbcBeYLmkcUk3lEWjkg4Dh4CjwF0AEfESsBF4AjgA7I+Ih8tl3SFpHFhULuu2bLvMzMzMzMzmChWZ7eeeyW9/rXrDBxIDSiYGkwaIU8erB9Vyg1Cm0ndmH5zs0cDQAPHKSz2ri3r1ASWjkRho/HvHKscAaKj6gLcxUX2wy7QeDgzN93IDDacG1z6V24bxYqKNjeS5uJ44/mu9y2hb/2Zyn88MDH1WYmBoIE4ljuVXc98N9RcT+/xU9X3j5LeqVwMw9Wr1c/zkqdx3V6NefT88cWI4Vde3Ty6qHHM8OTD0Pw1V34ZKHv6Zb+T0wNC16t+Tk+mBoasPvHwicgNDf7de/Zh8pZ4b5DkzOPRQ8m/DQ8eemHOpyyeOPtOzTsnwz76vr7ZP7/66Nqug3ztjZjY/ZDpjWanOmJnNC5nOmJ05ZuyQqfC4pCuapq2WtFPSVknHJI21xKyUtFfS05J2SFrSVLaiLHumLF9YPlP2sKRD5fQ/mv3VNDMzMzOzvuVnyNqL4n7GdcDGsvM0AmwA1gN3A5e3CdsC3BwR5wEPADcClIk87gPWRcT7gEuA0/+a/GREvAf4eeAXmjuAZmZmZmZm81XHhyoiYkzSDuAmYAS4JyKOAEckndsmZDmwp3y/myK74q0UqfAPRsRT5XJPP2RxAvhSOW1C0n7gndkVMjMzMzOzOcYDQ3d0O/DrwBXAHR3mHQOuKt9fDZxTvl8GhKRdkvZL+q3WQEk/AfxrKoxNZmZmZmZmNld11SGLiOPAduDeiI6pb9YA6yU9CSwGJsrpg8CHgOvKnx+VdOnpoPKWxm3An0TEc+0WLGmtpH2S9m25d3s3TTczMzMzs37XqPfu1Weq5IFulK8ZRcQhitsTkbQMuLIsGgcei4gXyrJHgPP54dWwzcDXI+JTMyx7czlfLu29mZmZmZlZH5n1tPeSlpY/a8AtwJ1l0S5gRZlVcRD4MPBsOe8fAG8F/t/Zbo+ZmZmZmfW5aPTu1WfSHTJJ24C9wHJJ45JuKItGJR0GDgFHgbsAIuIlYCPwBHAA2B8RD0t6J/A7wHuB/ZIOSPr36TUyMzMzMzObI7q+ZTEibmv5fXSa+TYBm6Ypu48i9X3ztHGgr0bLNjMzMzOzHurD8cF6pcozZH0lJic6z9Qi1esbGMpEobMWVw+qT6Xqih5eei3uRK0mMus1fFb1mKzk9tNkp/w2bYy8NVVXZj/UwpFcXZn1ykp8zumHRwcTp7tTJ1JVpc412S+iTFxyn49G9a1fO5ncnwYGKodowXD1ehZW/y4B0KlT1YMmkuf4evXPa+gHue1eG+zd49mNevUjZWgy9zB+7WQqLCVzdNWS/5ZOHJJk0xlk1quRPGPXE7VlYiDXxuhRDEAjnDLhTDDjX9cqPN48ULOk1ZJ2Stoq6ZiksZaYlZL2Snpa0g5JS5rKVpRlz5TlC8vpOyU9VU6/U1L1b2IzMzMzM5uTIho9e/WbGTtkERHAOmCjpIWSRoANwHrgbuDyNmFbgJsj4jzgAeBGeC2t/X3Auoh4H3AJMFnGrI6IlcD7gbMpxi8zMzMzMzOb1zrewxMRY5J2ADcBI8A9EXEEOCLp3DYhy4E95fvdFNkVb6VIhX8wIp4ql/tiUx0/aGrPMD/GXUlmZmZmZmZzRbcPVdwO7KcY5PmCDvOOAVcBD1Jc6TqnnL4MCEm7KK6C3R8Rd5wOKqd/EPgr4PPdroCZmZmZmc1xZ3BSj64yNETEcWA7cG9EdHpSeA2wXtKTwGKKThwUnb8PAdeVPz8q6dKmOn4F+BlgAfBL7RYsaa2kfZL2bfms+2xmZmZmZja3VUk71qCLJDsRcYji9kQkLQOuLIvGgcci4oWy7BHgfOCLTbGnJD0EfITidsfWZW8GNgNMjD/t2xrNzMzMzOaDPky20SvpgaGnI2lp+bMG3ALcWRbtAlZIWlQm+Pgw8Kykt0j6mTJmEPhVikGlzczMzMzM5rV0h0zSNmAvsFzSuKQbyqJRSYcpOlVHgbsAIuIlYCPwBHAA2B8RD1MkCnlI0kHgKeAYP+zEmZmZmZnZfNeo9+7VZ7q+ZTEibmv5fXSa+TYBm6Ypu48i9X3ztG8D/6LbdpiZmZmZmc0XVZ4h6ytx4vvVgxYsqhyisxZXrweglhjbuj6Vq6uHWWkic021Ptl5nla1Wb+bdnrZzZdp48BQqioNLqgcE5H8D5AS65W973sgcQqa6pRXqL3UNhwcTtWVOiaz2zBTV/KcoXpinzp5MlUXg4l9Y6j68aV0+6qf43UqcS4EmKz+3TCwaKLzTG1Vfzx7cCq3PzXqqhwzcDK57/ZwNJ1ePgVTq74JaSRiACKxDevJ7Z7ZhsXQudXVE+feRqKuevI7eSDznTxX+RkyMzMzMzMz67UZO2QqPC7piqZpqyXtlLRV0jFJYy0xKyXtlfS0pB2SljSVrSjLninLF7bEPtS6PDMzMzMzm+cajd69+syMHbIorv+uAzZKWihpBNgArAfuBi5vE7YFuDkizgMeAG6E1zIo3gesi4j3AZcAr92/IenXgFd+zPUxMzMzMzObMzrepB8RY5J2ADdRZES8JyKOAEckndsmZDmwp3y/myLd/a0UY5MdjIinyuW+eDpA0luA/wisBT6XXRkzMzMzM5uDzuBnyLp9avp2YD8wAVzQYd4x4CrgQeBq4Jxy+jIgJO0Czgbuj4g7yrLfB/4LcKL7ppuZmZmZmc1tXSX1iIjjwHbg3ojolOJsDbBe0pPAYopOHBSdvw8B15U/PyrpUkmrgH8eEQ90aoektZL2Sdq3ZftD3TTdzMzMzMz63Rn8DFmVvMINushEGhGHKG5PRNIy4MqyaBx4LCJeKMseAc6neG7sA5KeL9uzVNKjEXFJm2VvBjYDvHr48d7lsDUzMzMzM3sDzHrae0lLy5814BbgzrJoF7BC0qIywceHgWcj4tMR8bMRcS7FlbPD7TpjZmZmZmY2P0XUe/bqN+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQAR8RKwEXgCOADsj4iHf5zGm5mZmZmZzWVd37IYEbe1/D46zXybgE3TlN1Hkfp+ujqeB97fTXs0ONzNbK9XG6geU5+qHpONG1qQqkoDVe48LfUyk02mfZNDubpqif8xZO8lri/sPM+PxCT3p8Q2VHa9BpLbPiGmOj2S+qM0mDtOUvtGZt/ttXriP33pfb76/hsnTqaq0lBiP6ypeszwEJw8VTkspqpv95hMHv8T1eMaE7m7+hsTnedpVZ9MbHegUa8eV5/K/R95IvH/50nl1iuzObL/Ha8lPuZJcvvGyc5PrfyIiUQMwMnGZOeZWhzP7LzAqUTciXr1764BDfDyZPXcdVO1/ruaY7NvDvy1YWZm9gZJdMbMzKrKdMbOOGdw2vsZ/ymjwuOSrmiatlrSTklbJR2TNNYSs1LSXklPS9ohaUlT2Yqy7JmyfGE5/VFJX5N0oHwtne0VNTMzMzMz6zczXiGLiJC0DvgLSV8CBoANwOXAO4A/Be5pCdsC/GZEPCZpDXAjcGuZyOM+4PqIeErS24Dma9LXRcS+WVkrMzMzMzObO/owHX2vdLxlMSLGJO0AbgJGgHsi4ghwRNK5bUKWA3vK97spsiveSpEK/2BEPFUu98Ufu/VmZmZmZmZzWLfPkN0O7KcY5PmCDvOOAVcBDwJXA+eU05cBIWkXcDZwf0Tc0RR3l6Q68N+BP4gIjzNmZmZmZnYm8DNkM4uI48B24N6I6JRaZg2wXtKTwGKKThwUnb8PAdeVPz8q6dKy7LqIOA/4xfJ1fbsFS1oraZ+kfVu2PdBN083MzMzMzPpWlSyLjfI1o4g4RHF7IpKWAVeWRePAYxHxQln2CHA+8MWI+FYZ+7Kk/wZ8kB99No2I2AxsBph47n/7CpqZmZmZ2XzQOHNT/KcHhp7O6QyJkmrALcCdZdEuYIWkRWWCjw8Dz0oalPT2MmYI+FcUtz2amZmZmZnNa+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQAR8RKwEXgCOADsj4iHgQXALkkHy+nfAv482y4zMzMzM5tjotG7V5/RXM2d8erhxys3XAsWVa9oaEH1GEil7tTwwlxdtYHqMXPhsnB9qnJIZA+yHqZajZMvV47RQG4M90hsQ+qTneeZLVMTnedpEa989w1oyDR1TZzMBX7vheoxmc8K4FSijdm6EsdJ41tHU1VpMHFeW5Q4x0NqcOg4kds3Gi98v3pdr+aOycnx6us1dVypuk79oPo5Khq5ul7+fvXvyn848ZbKMS8NJPZB4OhQKiyllvgT7geZIODvqb4/nYrc3xov1KsPonwicsfJ9yaPV445PpU7/l+ZrL4Nh5Pf///0va/mDrA30an//Rc965Qs/ODVfbV9cp+y2Rst+wdjRp93xtJ19XIbms1Vic5YVqYzlpXpjGVlOmNZmc6YWT/IdMbOOGfwOGQz3rKowuOSrmiatlrSTklbJR2TNNYSs1LSXklPS9ohaUlT2Yqy7JmyfGE5fVjSZkmHJR2S9LHZXlEzMzMzM7N+M+O/tSIiJK0D/kLSl4ABYANwOfAO4E/50WyIW4DfjIjHJK0BbgRuLRN53AdcHxFPSXobcPr68u8AxyJiWZkM5Kdmaf3MzMzMzKzf9eGzXb3S8T6DiBiTtAO4CRgB7omII8ARSee2CVkO7Cnf76bIrngrRSr8gxHxVLncF5ti1gDvKac3gMQDGGZmZmZmZnNLtzd+3w7spxjk+YIO844BVwEPAlcD55TTlwEhaRdwNnB/RNwh6SfK8t+XdAlwBPhERHy767UwMzMzM7O5y8+QzSwijgPbgXsj4tUOs68B1kt6ElhM0YmDovP3IeC68udHJV1aTn8n8JWIOJ8ilf4n2y1Y0lpJ+yTt27L9oW6abmZmZmZm1jVJl0v6mqRvSLq5Tfk/k/RFSQclPSrpnU1l/4ek/ynpq5KeneaOwtepkhqpUb5mFBGHKG5PRNIy4MqyaBx4LCJeKMseAc4H/hdwAnignO8vgBtoIyI2A5shl/bezMzMzMxsOpIGgD8Dfpmi//KEpIci4tmm2T5J8RjXf5X0S8B/Bq4vy+4BNkTEbklvoYv+U3pg6OlIWlr+rAG3AHeWRbuAFZIWlQk+Pgw8G8VAaDuAS8r5LgWexczMzMzMzgyNRu9eM/sg8I2IeC4iJoD7gY+0zPNe4Ivl+y+dLpf0XmAwInYDRMQrEdFxYL10h0zSNorbC5dLGpd0+qrWqKTDwCHgKHBX2aCXgI3AE8ABYH9EPFzG3ATcJukgRe/yN7LtMjMzMzMzS3oH8M2m38fLac2eAk4P0/VRYHGZQX4Z8D1JX5D0d5L+uLziNqOub1mMiNtafh+dZr5NwKZpyu6jSH3fOv3vgYu7bYuZmZmZmc0fEfWe1SVpLbC2adLm8tEoALUJaX1U6jeBP5X07yiyy38LmKLoW/0i8PPAP1Dk4Ph3wGdmak+VZ8jmvn4f3yDbvkxYrWNnfZq6enSw1HIXb5XYFjHrN+7OILleqbj0ig0l4xIy+/xA705bGlqQiouh4epB2X2jPtW7uhIZsLQgsS0ABhLnqKHEvpvM6qV69XOhFiSPrVq7vw06hCzslH+rvYFG9cezhyZy3wuNevX1Gl6Q2N+B4RPVP+cFyXPogqi+Xlm1xNP0C5JP4A8rsT2Sm2K48wWFH1FP/TEEw7Xq3ykTterH8vBAct9NtM86a85L0cY4P8wSD0XywaMt8UeBXwMonxP7WER8X9I48HcR8VxZ9pfARXTokM14dKnwuKQrmqatlrRT0lZJxySNtcSslLRX0tOSdkha0lS2oix7pixfKGmxpANNrxckfWqmdpmZmZmZ2TzSP8+QPQG8W9LPSRoGrgVel95d0tvLfBkAvw1sbYr9SUlnl7//El3kxpixQ1Ym3FgHbCw7TyPABmA9cDdweZuwLcDNEXEeRebEG8uGD1LcrrguIt5HkcRjMiJejohVp1/A3wNf6NRwMzMzMzOz2RQRU8AnKBISfhX4XEQ8I+n3JF1VznYJ8LUyb8ZPU/SPiOK+y98EvijpaYrrxH/eqc6O10EjYkzSDorEGyMUKR6PAEemyau/nOJeSoDd5crcSpEK/2BEPFUu98XWQEnvBpYCX+7ULjMzMzMzmyf66NGiiHgEeKRl2n9qev954PPTxO4GVlSpr9sbU28H9lMM8nxBh3nHgKuAB4Gr+eE9mMuAkLQLOBu4PyLuaIkdBbaXV+bMzMzMzMzmta6e0IyI4xRZQu6NiE5PCq8B1kt6ElhM0YmDovP3IeC68udHJV3aEnstsG26BUtaK2mfpH1btj803WxmZmZmZjaX9M8zZD1XJXVLgy7y+UXEIYrbE5G0DLiyLBoHHouIF8qyR4DzKQdVk7SSYiC1J2dY9msZUV49/LivopmZmZmZ2Zw26wm/JS0tf9aAW4A7y6JdwApJi8oEHx/m9VlHRpnh6piZmZmZmc1T0ejdq8+kO2SStgF7geWSxiXdUBaNlhlHDlHk7L8LICJeAjZSpIM8AOyPiIebFrkad8jMzMzMzOwM0vUtixFxW8vvo9PMtwnYNE3ZfRSp79uVvavbtpiZmZmZ2TzSh8929crcHf47NWJ89Rhl6gFi1m8GnWWNei6uNtCbupIHZfTyMnR9qnrMZKecOO2lHpjMtA+gPlk9JnmcpNo4NdF5nnYSbYzk58Vkoo3ZzytzrGS/9DJx9ey5JrFP9XBbRCYue35qVD8DRCIGIBK7YYRydTWqx2ViAIJcXEYv/6TMnHnP3D9524vcN2zPNPq8fTY75m6HzMzMzMzM5oc+fLarV2b854oKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJU1lK8qyZ8ryheX00fL3g+Wy3z7bK2pmZmZmZtZvZuyQlQM0rwM2SlooaQTYAKwH7gYubxO2Bbg5Is4DHgBuBCgzK94HrIuI9wGXAJPl9E3Av4yIFcBB4BM//qqZmZmZmZn1t463LEbEmKQdwE3ACHBPRBwBjkg6t03IcmBP+X43Rbr7WynGJjsYEU+Vy30RQNIQIGBE0ovAEuAbP8Y6mZmZmZnZXOKkHh3dDuwHJoALOsw7BlwFPAhcDZxTTl8GhKRdwNnA/RFxR0RMSvo48DRwHPg6xRU4MzMzMzOzea2rBD0RcRzYDtwbEZ3Sjq0B1kt6ElhM0YmDovP3IeC68udHJV1aXiH7OPDzwM9S3LL42+0WLGmtpH2S9m25/8Fumm5mZmZmZv2u0ejdq89UybLYoItsqRFxiOL2RCQtA64si8aBxyLihbLsEeB84Adl3JFy+ueAm6dZ9mZgM8CrX/8b5wE1MzMzM7M5bdZHy5K0tPxZA24B7iyLdgErJC0qE3l8GHgW+BbwXklnl/P9MvDV2W6XmZmZmZn1qWj07tVn0h0ySduAvcBySeOSbiiLRiUdBg4BR4G7ACLiJWAj8ARwANgfEQ9HxFGKZ9T2SDoIrAL+MNsuMzMzMzOzuaLrWxYj4raW30enmW8TRRr7dmX3UaS+b51+Jz+8ktZXoj6VC6xPVo8ZmAPjdDfq1WNqA7mYxDZU5n8MyXuJo98/r8xnBaBZv3DeH3r5H7FMXdn21ROfc/b++UQbYyq3HyqzH2a24fAQnDxVPa5R/a75mEpu98TnFcmvrl7uupF48CATA108bzFLMdm47Fm3oWRgQp3qG7+R/MAy27CerKue2IEbUf28dtbAMC9PnqwcJ3r4Ib/Z+vDZrl6Zp3952ZyX6dCamVWV6YyZmVWU6YzZmWPGDpkKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJU1lK8qyZ8ryheX0ayQdLKffMdsraWZmZmZmfczPkLUXEQGsAzZKWihpBNhAMU7Y3cDlbcK2ADdHxHnAA8CNAGUij/uAdRHxPuASYFLS24A/Bi4tp/+0pEtnYd3MzMzMzMz6WseHYCJiTNIO4CZgBLinTFF/RNK5bUKWA3vK97spsiveSpEK/2BEPFUu90UASe8CDkfEd8qYvwY+BnwxuU5mZmZmZjaXnMHPkHWbleB2YD/FIM8XdJh3DLgKeBC4GjinnL4MCEm7gLOB+yPiDuAbwHvKzt048G+A4e5XwczMzMzMbG7qKqlHRBwHtgP3RsSrHWZfA6yX9CSwmKITB0Xn70PAdeXPj0q6tEyH//Fy+V8Gngfa5oeStFbSPkn7ttz/YDdNNzMzMzOzfncGP0NWJW93gy4ykUbEIYrbE5G0DLiyLBoHHouIF8qyR4DzgS9GxA5gRzl9LdA2n2hEbAY2A7z69b9JJr81MzMzMzPrD7Oe9l7S0vJnDbiFH44vtgtYIWlRmeDjw8CzLTE/CfwHisQgZmZmZmZ2Jmg0evfqM+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQDlrYkbgSeAA8D+iHi4jNkk6VngK8AfRcThbLvMzMzMzMzmiq5vWYyI21p+H51mvk3ApmnK7qNIfd86ve2yzMzMzMzM5rMqz5D1lXj5hepBC0aqxwyfVT0GoJa4+Dg5lKpKA4mPMdM+yF3mzTw8OZDbFtQnc3EJGkwkAz1rca6y2kD1mMx+AaDEvpF8QDYmEuuVOY4h1UZltgUQZ72letDkROd52skck5PJ4yRRlQYTnzFATbm4yvUkz4U9fCg8Xm2b52rmmOohADQmq2/3yVO5zzga1es69Wruu+H7iXPoS4O5ffC7tcS5JlVTzsuZAxn4TuNU5ZiJaJsSoKMXp16pHHO83innXHvfm6he14mp6nUdn6i+/QAGM9//c1Uf3krYKzN+E6nwuKQrmqatlrRT0lZJxySNtcSslLRX0tOSdkhaUk6/TtKBpldD0qqy7APl/N+Q9CeSenluMjMzMzMze1PM2CGLiADWARslLZQ0AmwA1gN3A5e3CdsC3BwR5wEPADeWy/psRKyKiFXA9cDzEXGgjPk0sBZ4d/lqt1wzMzMzM5uPInr36jMd79WIiDGKlPQ3Ab8L3BMRRyJiD/DdNiHLgT3l+93Ax9rMMwpsA5D0M8CSiNhbdgDvoRgc2szMzMzMbF7r9iGT24H9FIM8X9Bh3jHgKuBB4GrgnDbzXAN8pHz/Dooxyk4bL6eZmZmZmdmZwM+QzSwijgPbgXsjotOTjGuA9ZKeBBZTdOJeI+lC4ER55Q3aP8va9lqipLWS9kna95kv7Oqm6WZmZmZmZn2rShq2Bl3k2IqIQ8BlAJKWAVe2zHIt5e2KpXHgnU2/v5Ni/LJ2y94MbAY4tf+h/rsB1MzMzMzMqvMVstkjaWn5swbcAtzZVFajuI3x/tPTIuIfgZclXVRmV/y/KG53NDMzMzMzm9fSHTJJ24C9wHJJ45JuKItGJR0GDlFc6bqrKexiYDwinmtZ3McpsjN+AzgC/FW2XWZmZmZmNsdEo3evPtP1LYsRcVvL76PTzLcJ2DRN2aPARW2m7wPe321bzMzMzMzM5oMqz5DZG62Wu2AZiZ6+kv8cSNWVuRBbn6weAzAwVD1G9VxdiW0RUxOdZ2pDAz08VHv5n6PEemlwQaqqiMTnnN3uJ1+uHpM8/lOf19BUrq56Im54OFfXYGLfWDRSOSaU2+7tslF1jDl+MlfXYPU2Dnwvea6pVX88Oxq5/alRr74VF03m1mvxS9WP/0Z9IFXXDxLHcmKzA7n9sFbLRMFPqPqxPJH8Y2NioPo+VUsey1OJ74aactswY7iX3/9vNj9D1p4Kj0u6omnaakk7JW1Y6dHeAAAgAElEQVSVdEzSWEvMSkl7JT0taYekJeX06yQdaHo1JK0qyzZI+qakV96IlTQzMzMzM+tHM3bIyoGa1wEbJS2UNAJsANYDdwOXtwnbAtwcEecBDwA3lsv6bESsiohVwPXA8xFxoIzZAXxwFtbHzMzMzMzmmojevfpMx+ugETEmaQdwEzAC3BMRR4Ajks5tE7Ic2FO+3w3sAm5tmWeUptT3EfG3AOrhJWAzMzMzM7M3W7c3pt4O7KcY5PmCDvOOAVdRpK6/GjinzTzXAB/psm4zMzMzM5vP/AzZzCLiOLAduDciXu0w+xpgvaQngcUUnbjXSLoQOBERY+2CZyJpraR9kvZ95gu7qoabmZmZmZn1lSqpWxrla0YRcQi4DEDSMuDKllmupel2xSoiYjOwGeDU/of67wZQMzMzMzOr7gy+QjbruTQlLY2IY5JqwC3AnU1lNYrbGC+e7XrNzMzMzMzmmuTANyBpG7AXWC5pXNINZdGopMPAIeAocFdT2MXAeEQ817KsOySNA4vKZd2WbZeZmZmZmdlc0fUVsoi4reX30Wnm2wRsmqbsUeCiNtN/C/itbttiZmZmZmbzSPiWxbkn86HVq4/8nt45MmE9vHc20tdGE3p5T7Dq1WNqA7m66j3aBwFU/QOLHp7YlGhfVjQmc4GZNmb33cznnN03Mm3Mrlcmrp44JgFqic9rKrPdk+2bSsRN5j7jmKheV+NU7jHr+qnqMZOncsd/Y6p63Kuncn+2nEic51+p5YbieUWJbZ8c9WcwUdUr5Pb541TffyciV9crjU75437UiXr1GIBXJk9Wjjk+Wf1AOTGZa9+r2b9RbE6Zux0yMzMzMzObF6Jx5ubrm/HfUyo8LumKpmmrJe2UtFXSMUljLTErJe2V9LSkHZKWlNOvk3Sg6dWQtErSIkkPSzok6RlJf/TGrKqZmZmZmVl/mbFDFhEBrAM2SlooaQTYAKwH7gYubxO2Bbg5Is4DHgBuLJf12YhYFRGrgOuB5yPiQBnzyYh4D/DzwC80dwDNzMzMzGyeazR69+ozHW9ZjIgxSTuAm4AR4J6IOAIckXRum5DlwJ7y/W5gF3BryzyjlGORRcQJ4Evl+wlJ+4F3Vl4TMzMzMzOzOabbZ8huB/YDE8AFHeYdA64CHqQYc+ycNvNcA3ykdaKknwD+NdNkaTQzMzMzs3noDM6y2FWKo4g4DmwH7o2ITmli1gDrJT0JLKboxL1G0oXAiYhoffZskOKq2Z+0jlPWNM9aSfsk7fvMF/5nN003MzMzMzPrW1WyLDboIpl7RBwCLgOQtAy4smWWaylvV2yxGfh6RHxqhmVvLufj1JN/eeamYjEzMzMzm0/O4CyLs572XtLSiDimYmCiW4A7m8pqFLcxXtwS8wfAW4F/P9vtMTMzMzMz61fp0VwlbQP2AssljUu6oSwalXQYOAQcBe5qCrsYGG++JVHSO4HfAd4L7C9T4rtjZmZmZmZ2pnCWxc4i4raW30enmW8T0yTliIhHgYtapo2TGaM+MeJ5DFS/IKjkyOrUEn3d+sJcXQNDubiM+lTlkMx2B9DgcPWgzAOh9eSBmdjuWvTWXF2J/UmJz6oITP+fpnpVU4nja+isXGWZfbeW3DeGE8fy5ETneWYrrp6rKnVeG0qenwYHqsdkjpNFi4hXE/thrfrXlhYkzmkAjertG1iUPY6r7/ODJ7PHSfW4Bady57VFJ6vv9K8q9921KKrvG1mZT/ms5P/iF5I4JpOb4ixVP29ELXe726LB5N9eFY0MLeT45KnKccPJv6FsbvGnbH0p1RkzM6so1RkzM6so0xk74/ThlatemfHfJCo83jxQs6TVknZK2irpmKTWbIkrJe2V9LSkHZKWlNOvK29HPP1qSFpVlu2U9JSkZyTdKSnxbxgzMzMzM7O5ZcYOWUQEsA7YKGmhpBFgA7AeuBu4vE3YFuDmiDgPeAC4sVzWZyNiVUSsAq4Hno+IA2XM6ohYCbwfOJsi8YeZmZmZmZ0JInr36jMdb1mMiDFJO4CbgBHgnog4AhyRdG6bkOXAnvL9bmAXcGvLPKM0pb6PiB80tWcY6L8tZWZmZmZmNsu6fYbsdmA/xSDPF3SYdwy4CniQ4krXOW3muQb4SPMESbuADwJ/BXy+y3aZmZmZmZnNWV2l2omI48B24N6I6PQE9BpgvaQngcUUnbjXSLoQOBERr3v2LCJ+BfgZYAHwS+0WLGmtpH2S9n3mL/+6m6abmZmZmVm/c9r7rjToIh9uRBwCLgOQtAy4smWWa2m6XbEl9pSkhyiunu1uU74Z2Axw6m+3+7ZGMzMzMzOb02Y97b2kpRFxTFINuAW4s6msRnEb48VN094CLI6If5Q0CPwq8OXZbpeZmZmZmfWpxpl7rSU9AqykbcBeYLmkcUk3lEWjkg4Dh4CjwF1NYRcD4xHxXNO0EeAhSQeBp4BjNHXizMzMzMzM5quur5BFxG0tv49OM98mYNM0ZY8CF7VM+zbwL7pth5mZmZmZzTPRf8929cqs37LYK/HiP1YPGlmSiHlr9RiAgaHqMfWpXF0LRqrH1JIXRyc75XSZJWctToXF1ETnmVolt7sWVd83tDDxWQE06tVjBnp3eEd2380YPisXV5+sHKLE7gTAW36qeszEyVRVqRs8dCJVV6qqn3pbz+piwYLKIRrq3XZXPXEcA9RUOWTgZ3K3/ujFxL7R6N3xX5/MHZRv/V6ijcmP61St+rm3h2dQasnv/+/XhivHnMpuxMTX18lG9fYBDCU+r1eHFlWOeWXoVOUYgKHaQCrO5pYZj0oVHpd0RdO01ZJ2Stoq6ZiksZaYlZL2Snpa0g5JS8rp10k60PRqSFrVEvtQ6/LMzMzMzGyea0TvXn1mxg5ZRASwDtgoaaGkEWADsB64G7i8TdgW4OaIOA94ALixXNZnI2JVRKwCrgeej4gDp4Mk/Rrwyo+/SmZmZmZmZnNDx+u0ETEmaQdwE0UCjnsi4ghwRNK5bUKWA3vK97uBXcCtLfOM0pT6vsy0+B+BtcDnqq2CmZmZmZnNZdGH44P1Src3zt4O7KcY5PmCDvOOAVcBD1KkuD+nzTzXUIw1dtrvA/8F6N2DDWZmZmZmZm+yrp7sjIjjwHbg3ojolNVhDbBe0pPAYopO3GskXQiciIix8vdVwD+PiAc6tUPSWkn7JO37zM6/6abpZmZmZmbW787gZ8iqpJZplK8ZRcQh4DIAScuAK1tmuZam2xWB/xP4gKTny/YslfRoRFzSZtmbgc0AJx/+VP9tTTMzMzMzswpmPS+2pKURcUxSDbiFpkGey2lXUwwQDUBEfBr4dFl+LvA/2nXGzMzMzMxsnjqDxyFLDkYFkrYBe4HlksYl3VAWjUo6DBwCjgJ3NYVdDIxHxHPZes3MzMzMzOaLrq+QRcRtLb+PTjPfJmDTNGWPAhfNUMfzwPu7bZOZmZmZmc0DffhsV6/M+i2LPTNYvekaWlC9noGh6jGABjN15T4OZeJquYujPTtUkiPTp7aFkheKM9uwUU/WldgePbzyn9ruQCSOE6VqInV8Zfd3JfaNdF2TE51nmqW6UhYkh5fMHF/DC3tTD6BEeuaYnEzVxVT184YmplJVaVH146R2KnleS5yjhs7K1TU8UD1uwVTue2gocYDlaso5lYwbTpx9G8kbsRYk4iaV/LwSddUTdQ0l/64ZTK6XzS0z7oUqPC7piqZpqyXtlLRV0jFJYy0xKyXtlfS0pB2SlpTTr5N0oOnVKDMsIulRSV9rKlv6RqysmZmZmZlZP5mxQxYRAawDNkpaKGkE2ACsB+4GLm8TtgW4OSLOAx4AbiyX9dmIWBURq4Drgecj4kBT3HWnyyPi2I+7YmZmZmZmNkc0Gr179ZmO9yZExJikHcBNwAhwT0QcAY6UWRFbLQf2lO93A7uAW1vmGeX1qe/NzMzMzMzOON3eOHs78OvAFcAdHeYdA64q318NnNNmnmv40Q7ZXeXtirdKSj8mYmZmZmZmc0wfDQwt6fLycapvSLq5Tfk/k/RFSQfLR6/e2VT2byV9vXz9225WvasOWUQcB7YD90bEqx1mXwOsl/QksBh43RPnki4ETkRE87Nn15W3OP5i+bq+3YIlrZW0T9K+zzzylW6abmZmZmZm1hVJA8CfUVyIei/FkF7vbZntkxR3Da4Afg/4z2XsTwG/C1wIfBD4XUk/2anOKqllGnSREykiDkXEZRHxAYqrYEdaZrmWlqtjEfGt8ufLwH+jWIF2y94cERdExAU3/OovVGi6mZmZmZn1rWj07jWzDwLfiIjnImICuB/4SMs87wW+WL7/UlP5rwC7I+K7EfESxeNb7XJuvE56YOjpnM6QKKkG3ALc2VRWo7iN8f6maYOS3l6+HwL+FcVtj2ZmZmZmZr30DuCbTb+Pl9OaPQV8rHz/UWCxpLd1Gfsj0h0ySduAvcBySeOSbiiLRiUdBg4BR4G7msIuBsYj4rmmaQuAXZIOAgeAbwF/nm2XmZmZmZnNMT18hqz5MajytbapJe1yWbQ+ePabwIcl/R3wYYr+y1SXsT+i6xEgI+K2lt9Hp5lvE7BpmrJHgYtaph0HPtBtO8zMzMzMzLIiYjOweZricV6flPCdFBeZmuOPAr8GIOktwMci4vuSxoFLWmIf7dSerjtkfWdqqnJITJysHKOFI5VjACLq1etKjosQ9erbgkheHM3U1ai+LRjo3a4Zne8lbkuZbZFdr0wTawPJuhKfV5IS2yP7eZHYHNl0r5k2anBBrq4FC6vXlaopd15juHr70jJ1ZcejGRpOxAylqtKCRF3DuXONFlRvY21h4lwIxFT1bV8byn1egwPV44bqubqGonMGt1aN5FFZvSYYygQBQ4k2RvJGrMFE3ALl6hquVT9W6l1k6Ws1qNx38lAybi6K/hkf7Ang3ZJ+juLK17UU2eZfUz5u9d0ovvB/G9haFu0C/rApkcdlZfmMZv0ZMjMzMzMzs7koIqaAT1B0rr4KfC4inpH0e5JOD+11CfC18jGtnwY2lLHfBX6folP3BPB75bQZzfhvgXI8sC8DGyLir8ppqylS2x+lSMBxLCLe3xSzkiKRx1uA5ylS2v9A0nXAjU2LXwGcHxEHJA0Df1quXAP4nYj4750ab2ZmZmZm80DiyuMbJSIeAR5pmfafmt5/Hvj8NLFb+eEVs67MeIUsIgJYB2yUtFDSCEUPcD1wN+3TOG4Bbi7HFXuAshMWEZ+NiFURsYpinLHnI+JAGfM7FB27ZRRpJB+rshJmZmZmZmZzUccbZyNiTNIO4CZghGIQtCPAEUnntglZDuwp3++muNx3a8s8o7x+LLI1wHvK+hrAC92vgpmZmZmZzWl9dIWs17p9kvF2YD8wAVzQYd4x4CrgQYoxx85pM881lAOoSfqJctrvS7qEYiDpT0TEt7tsm5mZmZmZ2ZzUVVKPMjX9duDeiHi1w+xrgPWSngQWU3TiXiPpQuBERJwe/HmQIiXkVyLifIqxzT7ZbsHNYwZ8ZuffdNN0MzMzMzPrd9Ho3avPVMn12aCL5NsRcYgixSOSlgFXtsxyLa+/XfFF4ATF82YAfwHcQBvNYwacfPhTZ+51TTMzMzMzmxdmPe29pKXlzxpwC0XGRZqmXQ3cf3pamThkBz8cRO1S4NnZbpeZmZmZmVm/SXfIJG2juL1wuaRxSaevao2WOfkPUaTGv6sp7GJgPCKea1ncTcBtkg5SZGD8jWy7zMzMzMxsjmlE7159putbFiPitpbfR6eZbxOwaZqyR4GL2kz/e4rOWvd6df/nZKdH5qaRGTF+YChXV30yEdTDuhLbIk4dR2ctrl5XL+8LznzGvdSo5+JqA4m6clWlArPbvZf7RuZYrk/l6spsj1puGyrxP7xI1tWz42vhIpic6Dxfq4Hqx4kGE8cWEIm6Mu0D0GBiuw8qV1di36gN5o7jgVr1uAFyf7TVEmG1ZF2NxKYfiNznNUj1uMnsNlT1upRcr1pivTIxSwbO4pX6qcpxSmwLm3uqPENm1jOpzpiZWVWZzpiZWUWZztiZJvrwylWvzPjvKRUel3RF07TVknZK2irpmKSxlpiVkvZKelrSDklLyunXSTrQ9GpIWiVpccv0FyR96o1ZXTMzMzMzs/4xY4esTLixDtgoaaGkEWADsB64G7i8TdgW4OaIOI8ic+KN5bI+GxGrImIVxXNiz0fEgYh4+fT0suzvgS/M0vqZmZmZmVm/8zNk04uIMUk7KBJvjAD3RMQR4Iikc9uELAf2lO93A7uAW1vmGeX1qe8BkPRuYCnw5S7bb2ZmZmZmNmd1+wzZ7cB+ikGeL+gw7xhwFfAgRYr7c9rMcw3wkTbTR4Ht5ZU5MzMzMzM7EzT6b8DmXukqxVFEHAe2A/dGRKe0g2uA9ZKeBBZTdOJeI+lC4EREjLWJbR00+nUkrZW0T9K+z+zc203TzczMzMzM+laVLIsNushRHRGHgMsAJC0DrmyZpW2nS9JKYDAinpxh2ZuBzQAn/8dGX0UzMzMzM5sP+vDZrl6Z9bT3kpZGxDFJNeAW4M6mshrFbYztxhxr+1yZmZmZmZnZfJUeeVPSNmAvsFzSuKQbyqJRSYeBQ8BR4K6msIuB8Yh4rs0iV+MOmZmZmZnZmcdZFjuLiNtafh+dZr5NwKZpyh4FLpqm7F3dtsXMzMzMzGw+mPVbFnsmk4mll9lbYp5milH6omo1Pdx+6tU6AVGfSsVpoIeHambT1wZmvRnTyu4bmbDsds98ztm6Boaqxwxlt2Eirpf77tBw9Zjs/pSpK7sthhOf8WDymByq3kYNJ+tK/Jdaw7lz6OBA9c95sJbbN4Z6+N/3BqocM5xs3kCirsFEzFyoa0CZmNzfGgP5m9nmnDM5yfqMn7IKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJeX06yQdaHo1JK0qy0bL+Q+Wy377G7GyZmZmZmZm/WTGDlk5Htg6YKOkhZJGgA3AeuBu4PI2YVuAmyPiPOAB4MZyWZ+NiFURsQq4Hng+Ig5IGqS4xfFfRsQK4CDwiVlZOzMzMzMz639n8DNkHa+DluOF7QBuAn4XuCcijkTEHuC7bUKWA3vK97uBj7WZpzmjosrXiCQBSyiSgZiZmZmZmc1r3d4sfjuwn2KQ5ws6zDsGXAU8SJHi/pw281wDfAQgIiYlfRx4GjgOfJ3iCpyZmZmZmdm81tWTghFxHNgO3BsRr3aYfQ2wXtKTwGKKTtxrJF0InCivvCFpCPg48PPAz1Lcsvjb7RYsaa2kfZL2fWbX33bTdDMzMzMz63dn8C2LVdIpNegiT1lEHAIuA5C0DLiyZZZref14Y6vKuCNlzOeAm6dZ9mZgM8DJhz7Zf1vTzMzMzMysglnPRyxpaUQcU5FL/BbgzqayGsVtjBc3hXwLeK+ksyPiO8AvA1+d7XaZmZmZmVl/ij68ctUr6cENJG0D9gLLJY1LuqEsGpV0GDhEkZzjrqawi4HxiHju9ISIOErxjNoeSQcprpj9YbZdZmZmZmZmc0XXV8gi4raW30enmW8TRRr7dmWPAhe1mX4nTVfSzMzMzMzsDHIGXyGb9VsWe+bUieoxA4nVHT6rekyyrpjqlC+lvdTY9NHxccD26lO5uIpiYiAXmPmMk5T8vDJicEHlGKW3RXLfyKhV/5zT65XZpbJ1JY6TqOVuWFCj+ucV2fXKnDcWLsrVperbQwuqn6/T2yJjInmOH0jsvMdPpurK/EFUm8x9L8RU9f1p4C2TqboWnFW9jRNTue+hhad6dw6NqP4XwGTi2AJYlKhrMHkj1gkltn3qjyE4pXousKJ6LdfZGM5sC5tzZjxSVHhc0hVN01ZL2ilpq6RjksZaYlZK2ivpaUk7JC0pp18n6UDTqyFpVVl2jaSDkp6RdMcbsaJmZmZmZtanGj189ZkZO2QREcA6YKOkhZJGgA0U44TdDVzeJmwLcHNEnAc8ANxYLuuzEbEqIlYB1wPPR8QBSW8D/hi4NCLeB/y0pEtnZ/XMzMzMzMz6V8d7NSJiTNIO4CZgBLinTFF/RNK5bUKWA3vK97uBXcCtLfOM8sPU9+8CDpcZFgH+GvgY8MXuV8PMzMzMzOaqMznLYrc3z98O7KcY5PmCDvOOAVcBD1KkuD+nzTzXAB8p338DeE/ZuRsH/g0w3GW7zMzMzMzM5qyunraMiOPAduDeiOj0VPIaYL2kJ4HFFJ2410i6EDgREWPlsl8CPl4u/8vA80Dbp28lrZW0T9K+z/z1vm6abmZmZmZm/a4RvXv1mSrppbp6DC4iDgGXAUhaBlzZMsu1/PB2xdMxO4AdZcxaoG3Km4jYDGwGOPm53+u/rWlmZmZmZlbBrOf7lbQ0Io5JqgG30DS+WDntaooBotvF/CTwH4DVs90uMzMzMzPrU32Y/bBXcgNEAJK2AXuB5ZLGJd1QFo1KOgwcAo4CdzWFXQyMR8RzLYvbJOlZ4CvAH0XE4Wy7zMzMzMzM5oqur5BFxG0tv49OM98mYNM0ZY8CF7WZ3nZZZmZmZmY2/znL4hwUL36n80wtNDlZvZ7KEaWpTrlPfpQGF6SqiqFEUsqB5Ec/NdF5ntmwYCQVltmG0ai+XwAwdFb1mOFEDKBETETy2r8SF86TdSmzHw4Mpeqi0fbR1Jll7yFIfM6q5/bDGGqbA2nmurL7RsbC3LGcMlj9XJg5tgCiXn27M5w7x9NIfF4jyXNNvfpxEgtyx6QGqq+XFg6k6hoYrF7XYKJ9AAsSfzlkj8jM3yhDyT9sFiTiQrkjbDhxZNaTJ+yzVP17SIn1qif/ohzMfCfbnONP2czMzMzM7E0yY4dMhcclXdE0bbWknZK2SjomaawlZqWkvZKelrRD0pJy+pCk/1pO/6qk326KuVzS1yR9Q9LNs72SZmZmZmbWxxo9fPWZGTtkERHAOmCjpIWSRoANwHrgbuDyNmFbgJsj4jzgAeDGcvrVwIJy+geA/1vSuZIGgD8DrgDeS5EU5L0/9pqZmZmZmZn1uY43zkbEmKQdwE3ACHBPRBwBjkg6t03IcmBP+X43sAu4leJW5xFJg8BZFANG/wD4IPCN05kXJd0PfAR4Nr9aZmZmZmY2VzipR2e3A/spOlEXdJh3DLgKeJDiqtg55fTPU3S0/hFYBPx/EfFdSe8AvtkUPw5c2GW7zMzMzMzM5qyuknpExHFgO3BvRHRKH7gGWC/pSWAxRScOiithdeBngZ8DfkPSu2if5KptF1nSWkn7JO3b+vhYu1nMzMzMzGyuOYOfIauS67OrVYiIQ8BlAJKWAVeWRb8O7IyISeCYpK9QXG37Jj+8igbwTooBpdstezOwGeDEp/+fM/e6ppmZmZmZzQuznvZe0tLyZw24BbizLPoH4JfKzI0jFANEHwKeAN4t6eckDQPXAg/NdrvMzOz/Z+/+4+yq7/vOv97zWxKSTeIoDzumBadBDmtV2NKybLNJqb1QFFJI6kWbofE2KxZMonQTSgnyo1BEW/rosjZB6XrDQ8UaDG1kEmIetraOCPU6VQElZlAtNCBFWC7GMmwmCSFYQtL8uJ/943wVpuM7c+/5IN/emXk/9bgP3fu953O+33PuOefe75xzPl8zM7PuFI3OPbpNukMmaRewD1gj6Zik68tbw5KOUHW2XgFGSvmngXOo7jF7BhiJiOciYgr4JarkH4eA34qI57PtMjMzMzMzWyjavmQxIrbNej08x3Tbge1Nyo9TJfloFvMl4EvttgVA/f11Jq/01R+NPRUDqG+wflDPAhinOzNifOZPEadPwMCy+lXFdP26MssEMD2ViJnM1dWb2A57c1WlPq/sX5sybWwkPmOAnkRlyeVS4vOK5P7f7CbclnVltieARmKFTLW67fjsSR13gUjsl0ocN2JyovVEzfQP1A5Rsq7MvQDZb66Yqr8v90wmjrvAsnPfSMVlnJpI7l8JEfWPAH1Tid9PwKmp+tvh6eTGkTmGHlfugN2v+uvwTepvu9/XO8CJqL/99p39i9m6VxeeueqUJfQp24KS6IyZmdWV6YyZmdWV6YzZ0jFvh6zc7/WkpI0zyjZJ2iNpp6RxSWOzYtZJ2ifpoKTdklaV8n5Jny3lhyR9YkZM03mZmZmZmdni53vI5hARAdwE3CtpqCTjuBvYAjwIXNkk7AFga0SsBR4Dbi3l1wKDpXw98PEZA0vPNS8zMzMzM7NFq+VFuhExJmk3cBuwAngoIo4CR2d0qGZaA+wtz5+gStZxB9Wl6Ssk9QHLqMYne6PUsXeOeZmZmZmZ2WLXhWeuOqXduybvAvZTdaI2tJh2DLga+ALVWbEzY4w9ClwDvAosB26OiNfqNtjMzMzMzGyxaCupR0ScAB4BHo6IVimzNgNbJD0LrKTqxAFcAkwD7wEuAG6R9L46jZV0o6RRSaOf2ftcnVAzMzMzM+tSS/kesjp5RRu0cTIxIg4DVwBIuhC4qrx1HbAnIiaBcUlPUZ1t+0a7DYiIHcAOgJMP/MNMdl4zMzMzM7OucdbT3ktaXf7vAW4H7i9vvQx8uGRuXAFcSjV4tJmZmZmZ2ZKU7pBJ2gXsA9ZIOibp+vLWsKQjVJ2tV4CRUv5p4Byqe8yeAUYi4rkW8zIzMzMzs0XOlyy2ISK2zXo9PMd024HtTcqPUyX5aBbTdF5mZmZmZmaLWZ17yLpKnDxVO0b9A/UrOvVm/Rgg+hJ19SY/junJ2iHqH0xVFZOtcrqcHdUVrwmZddjI/akkeurHaaL1NE3rSsQoV1VOdtvNxGXP62c+5p7eXF3TU7VDstt8JNqo5OcV1F+utMz6yCxX4viZrqsnufFm1kW2rsxy9Sb3k8SxV3255Uqtwr7cd0NvT/0jdmTvilf9wL5EDEBv4puoJ3LfRJlPuS9Zl1Q/Th38hu1JtG+h6sYzV50y7zZf7vd6UtLGGWWbJO2RtFPSuKSxWTHrJO2TdFDSbkmrSnm/pHafqDkAACAASURBVM+W8kOSPlHKz5P0lVL2vKRf/l4sqJmZmZmZWbeZt0MWEQHcBNwraagk47gb2AI8CFzZJOwBYGtErAUeA24t5dcCg6V8PfDxMhj0FHBLRPwoVaKPLZIuepvLZWZmZmZmC0Woc48u0/LahIgYk7QbuA1YATwUEUeBo6VDNdsaYG95/gTwOHAH1VVXKyT1Acuoxid7owwO/Wqp6zuSDgE/BLzwNpbLzMzMzMys67V7sfhdwH6qTtSGFtOOAVcDX6A6K3ZeKX8UuIaq87UcuLl0xv5S6eB9EPjDNttlZmZmZmYLnO8hayEiTgCPAA9HRKusDpupLjt8FlhJ1YkDuASYBt4DXADcIul9Z4IknQP8DvArEfFGsxlLulHSqKTRnU/5BJqZmZmZmS1sddIpNWgjT1lEHAauAJB0IXBVees6YE9ETALjkp6iOtv2DUn9VJ2xfxsRn59n3juAHQBv/qtfzOYkMjMzMzOzLhKN7ru3q1PSA0PPRdLq8n8PcDtwf3nrZeDDJXPjCqoEHodV5Rv9DHAoIu492+0xMzMzMzPrVukOmaRdwD5gjaRjkq4vbw1LOgIcBl4BRkr5p4FzqO4xewYYiYjngB8DPkbVWftaefxktl1mZmZmZrawRKNzj27T9iWLEbFt1uvhOabbDmxvUn6cKsnH7PIn6fAYtmZmZmZmZt2gzj1kXSX+5LXWE802OVk7JN1TbHSw+91b/2OM/oFcXZMTraf5rsrqr4tYdk79egBOfqd+zPRUrq6Bofox53xfqir11D+ZHdk/AfX214/JrsNM3MCyVFVK7Cfp5eofrB/TmM7Vlfmck3Wl1uHyd6bqSlH9/USJGKjGcald1znn5urqTRzXkvu/Mt8NPclvyqnEdtjI3T4+sLpprrB59fTl9v+p0ydrx0RyXKTp6fpxfSdz28bpk/X3lVPJ/auX3toxbya3w+U99Y9rpxLtO67cT+7eJXTOIrsfLAbz7inlfq8nJW2cUbZJ0h5JOyWNSxqbFbNO0j5JByXtlrSqlPdL+mwpPyTpE6V8SNJXJR2Q9Lyku74XC2pmZmZmZtZt5u2QRUQANwH3lo7TCuBuYAvwIHBlk7AHgK0RsRZ4DLi1lF8LDJby9cDHy7hjp4EPR8Q64GLgSkmXvs3lMjMzMzOzBcL3kM0jIsYk7QZuA1YAD0XEUeBo6VDNtgbYW54/ATwO3EF1hccKSX3AMqrxyd4onb7jZfr+8nBKezMzMzMzW/Tavbj3LqpxxDYC97SYdgy4ujy/FjivPH8UOAG8SpUC/5MR8RqApF5JXwPGgSci4g/bXgIzMzMzM7MFqq0OWUScAB4BHo6I0y0m3wxskfQssJLqTBjAJcA08B7gAuAWSe8r85+OiIuB9wKXSPpAsxlLulHSqKTRnfuPttN0MzMzMzPrctFQxx7dpk76m0Z5zCsiDkfEFRGxHtgFnOk5XQfsiYjJiBgHngI2zIp9Hfh9mt+bRkTsiIgNEbFh84d+uEbTzczMzMzMuk96YOi5SFpd/u8BbgfuL2+9TDX4s0pykEuBw5J+QNI7S8wy4H+kGlTazMzMzMyWgIjOPbpNukMmaRewD1gj6Zik68tbw5KOUHWqXgFGSvmngXOo7jF7BhiJiOeAdwNfkfRcKX8iIv6fbLvMzMzMzMwWirZHqYuIbbNeD88x3XZge5Py41RJPmaXPwd8sN12mJmZmZnZ4tKN93Z1Sm7Y8IWqkThH2UgOVtDJQQ6mp+rH9CRPjmbqyqyLyYnW0zSTWa7MMkGujRMnU1Vlzq6rbzBVV2p99OYOJZH4vDQ92bm6lNxPGtP1Y3p6U1Upse7TV2skjofKHkMzMutiKvcZK3Fci+SxJvMTJVtXSvIzVqaNk7n9v/fcoUTUqVRdy0/W/27I/hBtTNeP6+vLfV4TU/WPUaenct8NPYlNY1nyd01/b/11eFL1YwaSx/i+Lry8zs6+pdUhMzMzMzOzrrOUz5DN++eEkoDjSUkbZ5RtkrRH0k5J45LGZsWsk7RP0kFJuyWtKuX9kj5byg9J+sSsuF5J/0mS7x8zMzMzM7MlYd4OWUQEcBNwr6Shkh3xbmAL8CDN09M/AGyNiLXAY8CtpfxaYLCUrwc+Lun8GXG/DBxKL4mZmZmZmS1I3ZRlUdKVkv5I0tclbW3y/l+R9JVyMuk5ST/Z5P3jkv5RO8ve8oLbiBgDdgO3AXcCD0XE0YjYC7zWJGQNsLc8fwL46JlZASsk9QHLqAaMfqM0+r3AVVSdOTMzMzMzs46T1EuVHX4jcBFVBvmLZk12O/BbEfFB4GeB/3vW+78G/G67dbZ7D9ldwH6qTtSGFtOOAVcDX6A6K3ZeKX8UuAZ4FVgO3BwRZzp09wG/Cqxst+FmZmZmZrY4dNE9ZJcAX4+IbwBI+hxVH+aFGdMEsKo8fwfVUF+U6X8a+AZwot0K20pJExEngEeAhyPidIvJNwNbJD1L1cE6k27oEmAaeA9wAXCLpPdJ+ilgPCKebdUOSTdKGpU0unP/0XaabmZmZmZm1q4fAr414/WxUjbTNuDnJB0DvgT8A4Bye9dtVCez2lYnR2ijPOYVEYcj4oqIWA/sAs70nK4D9kTEZESMA09RnW37MeBqSS8BnwM+LOnfzDHvHRGxISI2bP7QD9doupmZmZmZdasIdewx8yRPedw4oynNTtXNvvNsGHgwIt4L/CTwsKqxcu4Cfq2Mv9y2s572XtLqiBgvjboduL+89TJvdbaWA5cC90XEbwGfKLGXAf8oIn7ubLfLzMzMzMwsInYAO+Z4+xhv3XIF8F5mXJJYXE9JbhgR+yQNAe8C/jvgf5J0D/BOoCHpVET8X/O1JznqKUjaBewD1kg6Jun68tawpCPA4dL4kVL+aeAcqnvMngFGIuK5bP1mZmZmZrY4RKNzjxaeAX5E0gWSBqiSdnxx1jQvAx8BkPSjwBDwJxHx4xFxfkScT5Uj41+06oxBjTNkEbFt1uvhOabbDmxvUn6cKsnHfHX8PvD7bbVncrKdyf4Lmp6uHUMjN6J9Ki7TvnRdUx2sK7Fcp09Df3/9uDb2su+S/YwnJ1pPM0sbmVabUqauwaFkZYm/0/QmPitAiXUf/bltN3OrcPT0purKbIfqTV6wkFj3ynzGkFqu7Daf0lN/udQ/CBMna8dF32D9uvrq78cAkTmu9Q2k6mIgUddQbrky30NaVv+zAtCK+sfDnuncd0P/G6dqx0Qjt6dE4nAo5eo653T9z3lgIve7plF/FdLfyF70Vf84399T/xtlVQPeSBx6z/qlbNZSRExJ+iXgcaoNZGdEPC/pnwKjEfFF4BbgX0u6meqr7ufLcGEp/pytO2U6Y2ZmdSU6Y2ZmdWU6Y/ZfT0R8iSpZx8yyfzLj+QtUeTDmm8e2duubd/NQ5UlJG2eUbZK0R9JOSeOSxmbFrJO0T9JBSbslrSrl/ZI+W8oPSfrEjJiXSvnXJI2223gzMzMzM1v4GqGOPbrNvB2ycurtJuBeSUMllePdwBbgQcrNbLM8AGyNiLXAY8CtpfxaYLCUrwc+Lun8GXF/KyIujohW45yZmZmZmZktCi0vWYyIMUm7qXLqrwAeioijwNFZHaoz1gB7y/MnqK6/vIPq+soVkvqAZVTjk73xdhfAzMzMzMwWtujCM1ed0u4VrXdRjSO2EbinxbRjwNXl+bW8lTbyUaoRq1+lykzyyYh4rbwXwO9JenbWOABmZmZmZmaLVlsdsog4ATwCPBwRp1tMvhnYIulZYCXVmTCAS4Bp4D3ABcAtkt5X3vuxiPgQVYdvi6SfaDbjmYO47fzaf26n6WZmZmZm1uWioY49uk2dnC+N8phXRByOiCsiYj2wCzha3roO2BMRkxExDjwFbCgxr5T/x6nuO7tkjnnviIgNEbFh88UX1Gi6mZmZmZlZ9znrSTglrS7/9wC3A/eXt14GPlwyN64ALgUOS1ohaWWJWQFcQXXZo5mZmZmZLQERnXt0m3SHTNIuYB+wRtIxSdeXt4YlHQEOA68AI6X808A5VJ2tZ4CRiHgO+EHgSUkHgK8C/y4i9mTbZWZmZmZmtlC0PTD07MHNImJ4jum2A9ublB+nSvIxu/wbwLp222FmZmZmZotLN97b1Sltd8i6jfr76wf1JD7oaHnbXHONRFwmBmB6qn5MT/LkaKeWa3KyfgxAf2JdpNd7IkZvpqrKnF1PH9Yy20Z/bh1Gb/1DkJL7ZKquRAwAjfobR/YKiurq8Jp6epO1JeImJ1pP00xiO8ysi+gbrB2Trms6d1xLbYfJuuivvz4i+32S+e5KHq97Vp9bO0ZDid8ZAI3E3pyJASIR1/dGYr0D6jlZO2bqdG7b6H+9/jH09ETueL3s9EDtmJNT9es6J3OsBvrT3w62kMy7dZT7vZ6UtHFG2SZJeyTtlDQuaWxWzDpJ+yQdlLRb0qpS3i/ps6X8kKRPzIh5p6RHJR0u7/33Z3tBzczMzMysOzVCHXt0m3k7ZBERwE3AvZKGStKNu4EtwIPAlU3CHgC2RsRaqoyJt5bya4HBUr4e+PiMgaW3U2VgfD/V5YuH3sYymZmZmZmZLQgtz7lGxJik3cBtwArgoYg4Chyd0aGaaQ2wtzx/AngcuIPqipwVkvqAZVTjk71RzqD9BPDzpb4J3hq7zMzMzMzMFrnowjNXndLuBa13UY0jthG4p8W0Y8DV5fm1wHnl+aPACeBVqhT4n4yI14D3AX8CjEj6T5IeKGfizMzMzMzMFrW2OmQRcQJ4BHg4Ik63mHwzsEXSs8BK3jrbdQlVGoT3ABcAt0h6H9VZug8BvxERH6TqtG1tNmNJN0oalTS6c//RZpOYmZmZmdkC43HI2tMoj3lFxOGIuCIi1gO7gDM9p+uo7hObjIhx4ClgA3AMOBYRf1ime5Sqg9Zs3jsiYkNEbNj8oR+u0XQzMzMzM7Pukx4Yei6SVpf/e4DbgfvLWy8DHy6ZG1cAlwKHI+L/A74laU2Z7iPAC2e7XWZmZmZmZt0m3SGTtAvYB6yRdEzS9eWtYUlHgMPAK8BIKf80cA7VPWbPACMR8Vx57x8A/1bSc8DFwL/ItsvMzMzMzBaWpZz2vu2R7SJi26zXw3NMt50qjf3s8uNUST6axXyN6vJFMzMzMzOzJSM3rHk3iJa3s52lanJ3/mm6/ijzTE+l6qKRWBeZmGxc5rPKfryZdZhdFz1n/YrfsyoisQ0Cypw4z67DDu3HQKqNQW6fVG/i0NrRddibqyshtS6gc/tXJOuJxDrsH8zVldHXwbomB3JxSqz7waFcXQOJNg7mlkuDmf0/+VsjE7c8V1ffsvrHQ/Xk6ho4mfv+ypicqr8vx3T9MyxTyUQSC/eHen1Oez+Hcr/Xk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdpdxxpDUL+mzpfyQpE+U8jWSvjbj8YakX/leLKyZmZmZmVk3mbdDFhEB3ATcK2moJOO4G9gCPAhc2STsAWBrRKwFHgNuLeXXAoOlfD3wcUnnR8QfRcTFEXFxKX+zxJmZmZmZ2RKwlNPetzwTGhFjknYDtwErgIci4ihwVNL5TULWAHvL8yeAx4E7gABWSOoDllGNT/bGrNiPAEcj4pv1F8XMzMzMzGxhaffS1LuA/VSdqFbJN8aAq4EvUJ0VO6+UPwpcA7wKLAdujojXZsX+LNXYZWZmZmZmtkR0Y/bDTmnrjtqIOAE8AjwcEadbTL4Z2CLpWWAlVScO4BJgGngPcAFwi6T3nQmSNEDVkfvtuWYs6UZJo5JGd+7/RjtNNzMzMzMz61p1krc0aCP3XUQcBq4AkHQhcFV56zpgT0RMAuOSnqI623amZ7UR2B8RfzzPvHcAOwBO3LGpC68ANTMzMzOzupxl8SyStLr83wPcDtxf3noZ+HDJ3LgCuJRq8OgzhvHlimZmZmZmtoSkO2SSdgH7gDWSjkm6vrw1LOkIVWfrFWCklH8aOIfqHrNngJGIeK7MazlwOfD5bHvMzMzMzGxhaoQ69ug2bV+yGBHbZr0enmO67cD2JuXHqZJ8NIt5E/j+dttiZmZmZma2GCzYAcCnXv6z2jE973izfszJVjlM5nDyZO2QeLN+TJYGB3KB09O1Q2Kqfoz6emvHADCQWK7EMgHQ3187RN+X/LvD4PH6MQNDqaqiJ3HivDd5KBlanohZkatrKrkvZyx/Z+0QNVreottU6mbayYnW0zShzOfcP5iqi0Ziv4z667C6uj5RVSJOA8tydSW2DS1/R66u0yfq15WqCUgsVyQ+YwC9s/4+SV/uuNbTSOyVyf0/8/2l5adSVQ301f8NFady3699y+q3cepkbktcfrz+8XDyVP3fKCdP5n53SUsnZcLSWdLvdtbvITMzMzMzM7P2zNshKwk4npS0cUbZJkl7JO2UNC5pbFbMOkn7JB2UtFvSqlLeL+mzpfyQpE/MiLlZ0vOSxiTtkpT7076ZmZmZmS04S/kesnk7ZBERwE3AvZKGSnbEu4EtwIPAlU3CHgC2RsRa4DHg1lJ+LTBYytcDH5d0vqQfAv53YENEfADopRog2szMzMzMbFFreYF0RIxJ2g3cBqwAHoqIo8BRSec3CVkD7C3PnwAeB+6gujR0haQ+YBnVgNFvlOd9wDJJk8ByquyMZmZmZma2BCzlccjavWP1LmA/VSdqQ4tpx4CrgS9QnRU7r5Q/ClwDvErV6bo5Il4DkPRJqnHKTgK/FxG/V2MZzMzMzMzMFqS2knpExAngEeDhiGiVqmwzsEXSs8BKqk4cwCXANPAe4ALgFknvk3QuVUftgvLeCkk/12zGkm6UNCpp9MEj326n6WZmZmZmZl2rTk7XRnnMKyIOA1cASLoQuKq8dR2wJyImgXFJT1GdbQvgP0fEn5SYzwN/A/g3Tea9A9gB8Bd//yNLOTummZmZmdmikRz8YVE462nvJa0u//cAtwP3l7deBj5cMjeuAC4FDpfySyUtlyTgI8Chs90uMzMzMzOzbpPukEnaBewD1kg6Jun68tawpCNUna1XgJFS/mngHKp7zJ4BRiLiuYj4Q6r7y/YDB0ubdmTbZWZmZmZmC0ugjj26TduXLEbEtlmvh+eYbjuwvUn5caokH81i7gTubLctABqoP0p6JobeRAxAX52rQSvq78/VFYmTvNnl6qnfh69OlmbqSuwwifWeWaaqruQ6zMi2MSP7eXV7XRnd3r6s7PaUiWtMJ+tK7F/TiWNhdl1EIi7TPsi1cSpXl1R/vUd6P0m0cSHsk43EcjWSd2Fk4zpVV3KTb0zVj4lG7kd2Y7p+3HSj/nY4MDjFm28O1I7r7VnKF/ItHYlfr2YdkOmMmZmZmXWhTGdsqenk3xe6zbxd/HK/15OSNs4o2yRpj6SdksYljc2KWSdpn6SDknZLWlXK+yV9tpQfkvSJGTG/LGlM0vOSfuVsL6SZmZmZmVk3mrdDFhEB3ATcK2moJOO4G9gCPAhc2STsAWBrRKwFHgNuLeXXAoOlfD3wcUnnS/oAcANVWvx1wE9J+pG3vWRmZmZmZrYgNFDHHt2m5UWwETEG7AZuo7rP66GIOBoRe4HXmoSsAfaW508AHz0zK6oxxvqAZVTjk70B/CjwBxHxZkRMAf8B+Jn8IpmZmZmZmS0M7d5DdhdVFsQJqrHD5jMGXA18geqs2Hml/FGqAaBfBZYDN0fEa+WSx7slfT9wEvhJYLTOQpiZmZmZ2cLVjdkPO6WtNDERcQJ4BHg4Ik63mHwzsEXSs8BKqk4cVJckTgPvAS4AbpH0vog4BPwfVGfT9gAHgKb5dSTdKGlU0ujI4WPtNN3MzMzMzKxr1cnb2aCNBKYRcTgiroiI9cAu4Gh56zpgT0RMRsQ48BTlbFtEfCYiPhQRP0F1GeSLc8x7R0RsiIgN/+v731uj6WZmZmZm1q0aHXx0m7M+oIek1eX/HuB24P7y1svAh0vmxhXApVSDR8+M+SvA36XqyJmZmZmZmS1q6Q6ZpF3APmCNpGOSri9vDUs6QtXZegUYKeWfBs6husfsGWAkIp4r7/2OpBeokodsiYg/z7bLzMzMzMwWlkAde3SbtgeGjohts14PzzHddmB7k/LjVEk+msX8eLvtMDMzMzMzWyza7pB1G60YrB+zLBEzmBxZvb+/fkxPsseeGdo80z6ARuLK2+jc1bpavqJ+0FTTHDKt9SROMA/W3wYBGBjqTExWf24/0eCy+kF9ybr6Euu+N3mIVGLbyNaV2A6VaV9Wdv+fTsT1Jo5rjen6MeTWYeJI3fG6InLro2M6+H2yIGR/NyxC2U0jGl6H3WIp793zHuXL/V5PSto4o2yTpD2SdkoaL2nrZ8ask7RP0kFJuyWtKuUDkkZK+QFJl82IWV/Kvy7p1yV57zAzMzMzs0Vv3g5ZRARwE3CvpKGSjONuYAvwIHBlk7AHgK0RsRZ4DLi1lN9Q5rkWuBz4lN76s99vADcCP1IezeZrZmZmZma2qLS8DiIixqiSbdwG3Ak8FBFHI2IvVYr62dYAe8vzJ4CPlucXAV8u8xwHXgc2SHo3sCoi9pUO4EPAT+cXyczMzMzMFpKlnPa+3ZsW7gL2Uw3yvKHFtGPA1cAXqJJ4nFfKDwDXSPpcKVtf/m8AM0d5Pgb8UJvtMjMzMzMzW7DaulM4Ik4AjwAPR8TpFpNvBrZIehZYSdWJA9hJ1dkaBe4DngamoGnuyab3I0u6UdKopNGRg99sp+lmZmZmZtblnPa+PW2d5YuIw8AVAJIuBK4q5VPAzWemk/Q08CLw58B7Z8zivVTjlzWb9w5gB8B3fuXvZJNImZmZmZmZdYWznvtY0uryfw9wO3B/eb28JAVB0uXAVES8EBGvAt+RdGnJrvi/UF3uaGZmZmZmS0BDnXt0m3SHTNIuYB+wRtIxSdeXt4YlHQEOU53pGinlq4H9kg5RJQj52IzZ/QJVdsavA0eB3822y8zMzMzMbKFo+5LFiNg26/XwHNNtB7Y3KX+JKgNjs5hR4APttsXMzMzMzBaPRhfe29Upde4h6y4TU7VD4tRk/XqGJlpP04ROnqwfND2dqotG4na6RjLpZyYus1w9uZO3oURcdr339tYOUX9iu4Dc+sh+xr2Jw0Lk6opEXdnDdUwn9v9MDKDEdhhTuW1eiXUffYOpuoj6bcysCyC5zWeONfX347TkftLJujL7V/qG7un63+MazH0nx0D9bV5D9dsHwLKh2iGR/k6uv/azx9CeN+uv++jLfb/2TdSvq6cv+T0U9T/n3tOd25d7e7oxSbudbQu3Q2ZmZmZmZovCUs7WN++fIFV5UtLGGWWbJO2RtFPSuKSxWTHrJO2TdFDSbkmrSvmApJFSfkDSZTNi7pb0LUnHz/LymZmZmZmZda15O2QREcBNwL2ShkqWxLuBLcCDwJVNwh4AtkbEWuAx4NZSfkOZ51rgcuBTeutalt3AJW9vUczMzMzMbCFqdPDRbVpepB8RY1QdptuAO4GHIuJoROwFXmsSsgbYW54/AXy0PL8I+HKZ5zjwOrChvP6Dkv7ezMzMzMxsyWj3HrK7gP3ABKUTNY8x4GqqscSuBc4r5QeAayR9rpStL/9/tWabzczMzMxsEWlo6WZZbCuNVUScAB4BHo6I0y0m3wxskfQssJKqEwewEzgGjAL3AU8DtVLbSLpR0qik0ZEXvlUn1MzMzMzMrOvUybLY1mWXEXEYuAJA0oXAVaV8Crj5zHSSngZerNPYiNgB7AD4zi9uXMrJWMzMzMzMFo2l/MM+OUDM3CStLv/3ALcD95fXy0tSECRdDkxFxAtnu34zMzMzM7OFIt0hk7QL2AeskXRM0vXlrWFJR4DDwCvASClfDeyXdIgqQcjHZszrHknHgOVlXtuy7TIzMzMzM1so2r5kMSK2zXo9PMd024HtTcpfosrA2CzmV4FfbbctADGZGP399GTtEJ06Vb8egL7e2iExlRvRnun6cUrEAEQjkSy0kTgJHbmkpKnbQbPrvad+bdnT8cqs9/6BXGW99bfddF0JMV3r1tO/9NYoGzX01rmq+y2Zz1nJbT76BuvXlVkXAJE4rqXrqh+XXq6MnvrrItu+aCSOUZOtbveeK26i9TSzJbddJk7WryoRk9aX2/8z3w3K/n28L/E9dDpbVyJuOrdt9Czv3G8oqf4Ru6e3fkymHoDe/m5M0v69sXSW9Lt18NvLzMzMzMzMZpq3Q6bKk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdktaVcoHJI2U8gOSLivlyyX9O0mHJT0v6V9+D5bTzMzMzMy6VEOde3SbeTtkERHATcC9koZKUo67gS3Ag8CVTcIeALZGxFrgMeDWUn5Dmeda4HLgU3rr+o1PRsT7gQ8CPzazA2hmZmZmZrZYtbxAOiLGJO2mSsSxAngoIo4CRyWd3yRkDbC3PH8CeBy4A7gI+HKZ57ik14ENEfFV4CulfELSfuC9b2ehzMzMzMxs4WjkMgEsCu3eQ3YXcB2wEbinxbRjwNXl+bXAeeX5AeAaSX2SLgDWz3gPAEnvBP4OpeNmZmZmZma2mLXVIYuIE8AjwMMR0Sp102Zgi6RngZXAmZRNO4FjwChwH/A08Jfp0iT1AbuAX4+IbzSbsaQbJY1KGh05fKydppuZmZmZWZeLDj66TZ2crg3ayEgZEYeBKwAkXQhcVcqngJvPTCfpaeDFGaE7gBcj4r555r2jTMcbN1zRjevTzMzMzMysbclBNuYmaXW5R6wHuB24v5QvBxQRJyRdDkxFxAvlvX8OvAP43852e8zMzMzMrLt1Y/bDTkmPQyZpF7APWCPpmKTry1vDko4Ah4FXgJFSvhrYL+kQVYKQj5X5vBf4x1RJP/ZL+pokd8zMzMzMzGzRa/sMWURsm/V6eI7ptgPbm5S/RJWBcXb5MaifVmXqT1vdyvbdepZPtZ5otolEDKBTk7VjYjJXF43EiPGD/bm6ov446jHVubHXM/N/bgAAIABJREFUdeJk/aDketfgQP2Y6elUXTFZf3uiP/cZq6+3flBv8mT7RP39mIHBVFUxOdF6otl6cn+z0jnn1o6J6eR22Fd/uWI6sT0B9Ndf9xpYlqtrOnGsydQzNZHaft8ataWGxPoDUGY7TNbFZP19UsltN5Yn9sllK3N1ZY5Rp99M1aWhxDbf6OD35JsncnHf9536QacTnzEQJ0/Vjuk7mfg+AQb+ov7nHJP1v8vfwTSN44l9pW/pnDbq3F7QfdJnyMzMzBa87B8TzMxqSHXG7L8aSVdK+iNJX5e0tcn7v1au6vuapCNlOK8z790j6XlJhyT9uqSWvep5O2SqPDlzoGZJmyTtkbRT0riksVkx6yTtk3RQ0m5Jq0r5gKSRUn5A0mUzYvaUsucl3S8p8Sd6MzMzMzNbiLoly2Lph3yaarivi6hux7rov2hrxM0RcXFEXAz8K+DzJfZvAD8G/HXgA8B/C/zNVss+b4csIgK4CbhX0pCkFcDdwBbgQeDKJmEPAFsjYi3wGHBrKb+hzHMtcDnwKb11zcemiFhXGv4DVOOXmZmZmZmZddIlwNcj4hsRMQF8DrhmnumHqYbugqq/NwQMAINAP/DHrSpsecliRIwBu6kScdwJPBQRRyNiL/Bak5A1wN7y/Ango+X5RZQBnyNiHHgd2FBev1Gm6SsL4JT2ZmZmZmZLREOde7TwQ8C3Zrw+Vsq+i6S/ClwA/L8AEbEP+Arwank8HhGHWlXY7j1kdwHXUZ26u6fFtGPA1eX5tcB55fkB4BpJfZIuANbPeA9JjwPjwHeAR9tsl5mZmZmZWdsk3ShpdMbjxplvNwmZ62TRzwKPRsR0me9fA34UeC9VJ+7Dkn6iVXva6pBFxAngEeDhiGiVxmYzsEXSs8BK4EyKnZ1UPcxR4D7gaeAv73CMiL8NvJvq9N6Hm8145sr77EuvttN0MzMzMzOzvxQROyJiw4zHjhlvH2PGSSOqztUrc8zqZ3nrckWAnwH+ICKOR8Rx4HeBS1u1p06WxQZtZKSMiMMRcUVErC8NPFrKp2bcAHcN8E7gxVmxp4AvMsd1mjNX3t8//901mm5mZmZmZt2q0cFHC88APyLpAkkDVJ2uL86eSNIa4FyqcZnPeBn4m+WKwH6qhB5n7ZLFtklaXf7vAW4H7i+vl5ekIEi6HJiKiBcknSPp3aW8D/hJqkGlzczMzMzMOiYipoBfAh6n6kz9VkQ8L+mfSrp6xqTDwOdKEsQzHqU6GXWQ6natAxGxu1Wd6QFYJO0CLgPeJekYcGdEfIYqNeSWMtnngZHyfDXwuKQG8G3gY6V8BfBFSYNAL9VNcfdn22VmZmZmZgtLNw0MHRFfAr40q+yfzHq9rUncNPDxuvW13SGbXWlEDM8x3XZge5Pyl6gyMM4u/2OqHP1mZmZmZmZLSvoM2YI0VT+bfkwn++uTiRHZJ3KjuKfa2NM652dTjcSIBI367YvTuXWhvvpX4cbEdKouGq3y2zSRXe9T9duowYFUVdGbGJd9oD9VlzJ1JbYnAPoT60O5q7qj9zv1q0rVBBH114d6O3foj+zn1VN/3Sv5eWVEI7FPJpYJgN76+5ey631gWe2QmE4er7PrI+P0ifoxifUOEFOJ9ZHYj4Hc8bA/ebxOfF5xOvE9Cag/cYxKfudlvpeV+I2n/ty6YGDp/FSP7BfhIjDv3qXKk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdktaVcoHJI2U8gOSLmtS3xdnz8/MzMzMzGyxmrdDVm5Suwm4V9JQScpxN7AFeBC4sknYA8DWiFgLPAbcWspvKPNcC1wOfEoz/pwp6e8Cx9/W0piZmZmZ2YLTRVkWO67l+eeIGAN2A7cBdwIPRcTRiNgLvNYkZA2wtzx/AvhoeX4R8OUyz3HgdWADgKRzgH8I/PP0kpiZmZmZmS0w7V6Yehewn2qQ5w0tph0Drga+AFzLWwOrHQCukfS5Ura+/P9V4J8BnwLerNN4MzMzMzNb+LrxzFWntHWHZkScAB4BHo6IVnclbga2SHoWWEnViQPYSTXy9ShwH/A0MCXpYuCvRcRjrdoh6UZJo5JGP/vSq+003czMzMzMrGvVSd3S1mWXEXEYuAJA0oXAVaV8Crj5zHSSngZepBrBer2kl0p7Vkv6/Yi4rMm8dwA7AF77mb+ZSPdnZmZmZmbdZin/sD/rOWclrS7/9wC3UwZ5lrS8JAVB0uXAVES8EBG/ERHviYjzgf8BONKsM2ZmZmZmZrbYpDtkknYB+4A1ko5Jur68NSzpCHAYeAUYKeWrgf2SDlElCPlYvtlmZmZmZrZYNNS5R7dp+5LFiNg26/XwHNNtB7Y3KX+JKgPjfHW8BHyg3TaZmZmZmZktZAt2+O/j36rf9P6h+vlb+t/Ijazeu3yi9USzNCaSV88m0tL0DOWWKxr12xj1B7RPxQD0vp5Y76dy6713ef0TzL3vztWlicQKGUju3r299WP6EjEAJ07Wj1mxLFWVJutvG/QkLyKI+jtlTCc3+r6B+jHTk8m6BmuHaPk7cnVNJdZhpp7EZwXAZOIY2l9//QGokWhjsq7MtqHkT4lI7F/pP2wPraodEr39ubpiun5M5jOG3PY7cSpXV+bzmkwea5bVP86njvFALE98p0zX/4zjZO53Fz1deDrne8RZFs3MzMzMzKzj5u2QqfKkpI0zyjZJ2iNpp6RxSWOzYtZJ2ifpoKTdklaV8gFJI6X8gKTLZsT8vqQ/kvS18lh9lpfTzMzMzMys68zbIYuIAG4C7pU0VLIk3g1sAR4ErmwS9gCwNSLWAo8Bt5byG8o81wKXA58qmRjP+HsRcXF5jL+NZTIzMzMzswWk0cFHt2l5yWJEjAG7qTIj3gk8FBFHI2Iv8FqTkDXA3vL8CeCj5flFwJfLPMeB14ENb6v1ZmZmZmZmC1i795DdBVwHbATuaTHtGHB1eX4tcF55fgC4RlKfpAuA9TPeAxgplyveIWnp3MFoZmZmZrbERQcf3aatDllEnAAeAR6OiFZpYjYDWyQ9C6wEzqS92QkcA0aB+4CngTNpxf5euZTxx8uj6Rhlkm6UNCpp9Df/5NvtNN3MzMzMzKxr1clV29ZllxFxGLgCQNKFwFWlfAq4+cx0kp4GXizvfbv8/x1JvwlcAjzUZN47gB0AL2/4SDd2cM3MzMzMrKZuHLC5U8562vszGRJLwo7bgfvL6+UlKQiSLgemIuKFcgnju0p5P/BTVJc9mpmZmZmZLWrpgaEl7QIuA94l6RhwZ0R8BhiWtKVM9nlgpDxfDTwuqQF8m7cuSxws5f1AL/DvgX+dbZeZmZmZmS0s3Zj9sFPa7pBFxLZZr4fnmG47sL1J+UtUGRhnl5+gSvBRS2Oq/sm9qcQg6T192Ssj68c1coPME9P1z/H2NnLLFVOtp/mumMQe1pjMnbdWT/3lmj6VqorMoUN/9maqJi2v/7cTDfbn6upLnDjvT/5tJ7Edano6VVVqi+/NLZf6B1JxKQOJHax/8Oy3Yw5x+kQqTuqtX1ckto2Jk2hgWf24ycQBezLxJQSQad/0ZK6u3sRxQ7l9Uokvh8isC4ChFbVD1JO8iKiRWB+ZL0qARmIdJo9rmboYSPxoAMjkdutLfuclYmKq/mes5cvhVOIHR2/9Y6EtPOkzZGZmZgtdqjNmZlZXpjO2xCzl5BDz/vlHlSclbZxRtknSHkk7JY1LGpsVs07SPkkHJe2WtKqUD0gaKeUHJF02I2ZA0g5JRyQdlvRRzMzMzMzMFrl5O2QREcBNwL2ShkpSjruBLcCDwJVNwh4AtpY09o8Bt5byG8o81wKXA58qiT8A/jEwHhEXUg0g/R/ezkKZmZmZmdnC0SA69ug2LS9ZjIgxSbuB24AVwEMRcRQ4Kun8JiFrgL3l+RPA48AdVB2tL5d5jkt6HdgAfJVq7LL3l/cawJ/mF8nMzMzMzGxhaPeO1buA64CNwD0tph0Dri7PrwXOK88PANeUNPcXUCXyOE/SO8v7/0zSfkm/LekH214CMzMzMzNb0BodfHSbtjpkJRPiI8DDEdEqTdRmYIukZ4GVwJlUVDuBY8AocB/wNDBFdZbuvcBTEfEhYB/wyWYzlnSjpFFJo7/5Z8faabqZmZmZmVnXqpNlsa1OZUQcBq4AkHQhcFUpnwJuPjOdpKeBF4E/A96kut8M4LeB6+eY9w5gB8BLF1/efReAmpmZmZlZbUv5h31ykI25SVpd/u8BbgfuL6+Xl6QgSLocmIqIF0rikN1Ug0wDfAR44Wy3y8zMzMzMrNukO2SSdlFdXrhG0jFJZ85qDUs6AhwGXgFGSvlqYL+kQ1QJQj42Y3a3AdskPVfKb8m2y8zMzMzMbKFo+5LFiNg26/XwHNNtB7Y3KX+JKgNjs5hvAj/RblsApibq9yUb05nx2HP6purfMjg9mWvf9GT9ddE/UX+UeYCI+m2M5N2Tk6fqj04fjalEPbm/S/SdTCxYon0APafqf149Q7m66Kv/GWug/mcF0DNZv40x2J+rKxPUm1suehL7ciO5owxNtJ5mluhJ/i1ucqB2SPaoGzrrF3A0r2fiJGQGh04c2DSd2ycjEadadyTMDEx8N/Qk95PEJq/e5HINDNUOyW6DqW0+uf9H1P+81D+YqgslvpOnJ3N19dc/1jBZ/1hY1VX/O0XTif3kHcCpk/Xjst9DC1A3JtvolM5845nVlOmMmZnVlumMmZnVlemM2ZIxb4dMlSclbZxRtknSHkk7JY1LGpsVs07SPkkHJe2WtKqUD0gaKeUHJF1WyldK+tqMx59Kuu97sKxmZmZmZtaFGurco9vM2yErCTduAu6VNFSSctwNbAEeBK5sEvYAsDUi1lJlTry1lN9Q5rkWuBz4lKSeiPhORFx85gF8E/j82180MzMzMzOz7tbyYuyIGJO0myrxxgrgoYg4ChyVdH6TkDXA3vL8CeBx4A7gIuDLZZ7jkl4HNgBfPRMo6Ueokn/8x+TymJmZmZnZAtNYwonv272H7C7gOmAjcE+LaceAq8vza4HzyvMDwDWS+iRdAKyf8d4Zw8Aj5cycmZmZmZnZotZWhywiTgCPAA9HxOkWk28Gtkh6FlgJnEl7sxM4BowC9wFPA7NTR/0ssGuuGUu6UdKopNHP/fmxdppuZmZmZmZdLjr46DZ18sc2aCMjZUQcBq4AkHQhcFUpnwJuPjOdpKeBF2e8Xgf0RcSz88x7B7AD4OsX/e1uXJ9mZmZmZmZtSw7oMTdJq8s9Yj3A7cD9pXw5oIg4IelyYCoiXpgROsw8Z8fMzMzMzGxx8jhkCZJ2AfuANZKOSbq+vDUs6QhwGHgFGCnlq4H9kg5RJQj52KxZbsIdMjMzMzMzW0LaPkMWEdtmvR6eY7rtwPYm5S9RZWCca/7va7ctZmZmZma2eCzlLItn/ZLFTpluZE7u1T8Z2pjOjR6XicvWFYkR7jpZVyZnZqYeSK73qeSJ4oEOnlxPVBVTufapJ7E+GrmDaKaN6s0tV0xN1w9qJD/jRF2anp3jqE2ZuGxdymwb2f2kQ/tXdl1MnKwdEssnWk/URGafjMx+DCgS6z37UfX0dq6uzLabXIe5upJVZb4bMu2D3PqIDq7D7HL1D9SPaZnfronexPYO0Ltgf6pbDfNuvao8KWnjjLJNkvZI2ilpXNLYrJh1kvZJOihpt6RVpXxA0kgpPyDpshkxw6X8uTLvd53l5TQzMzMzsy61lLMsztshK+OB3QTcK2lI0grgbmAL8CBwZZOwB4CtEbEWeAy4tZTfUOa5Frgc+JSkHkl9VJc4/q2I+OvAc8Avvd0FMzMzMzMz63Ytz+9GxBiwmyoRx53AQxFxNCL2Aq81CVkD7C3PnwA+Wp5fBHy5zHMceB3YAKg8VkgSsIoqGYiZmZmZmS0BjQ4+uk27F9zeBVwHbATuaTHtGHB1eX4tcF55fgC4RlKfpAuA9cB5ETEJ/AJwkKojdhHwmbaXwMzMzMzMbIFqq0MWESeAR4CHI1reybgZ2CLpWWAlcOYu5p3AMWAUuA94GpiS1E/VIfsg8B6qSxY/0WzGkm6UNCpp9JHXv9VO083MzMzMzLpWndQtbZ3li4jDwBUAki4ErirlU8DNZ6aT9DTwInBxef9oKf8tYOsc894B7AD4o/dv7MZ78szMzMzMrKalnPY+PTD0XCStLv/3ALcD95fXy0tSECRdDkxFxAvAt4GLJP1AmcXlwKGz3S4zMzMzM7Nukx7cQNIu4DLgXZKOAXdGxGeAYUlbymSfB0bK89XA45IaVJ2wjwFExCuS7gL2SpoEvgn8fLZdZmZmZma2sCzd82M1OmQRsW3W6+E5pttOlcZ+dvlLVBkYm8XcTzmTZmZmZmZmtlQs2OG/T57srx3To/p97/7J6doxAL0n6yfVnJ7KXUE6NVV/9PeBwalUXdFQ/ZjEnzxOna7/+QIsn5xoPdEsp0/ldoPBU/XX4XSifQD9y+pvhz39ucSuPX314zSQ2556z5msX9dQ/e0doGeyfhvVl7yqu5HY6CfrrwsALTtZP6iRTPo7OFQ7JCJZlxLrPlGXBnP7ZEwk1vuylam6MuofqSsxsKx+Xb3JnxKZTaMnt/8rsVzZujr6V/7EvqypgVRV0VN/n9R07ruB3vq/AWI6dwxl4lT9mMx3eaYegOz+tQB1Yzr6Tjnr95CZmZmZmZlZe+btkKnypKSNM8o2SdojaaekcUljs2LWSdon6aCk3ZJWlfIBSSOl/ICky2bE/M+SnpP0vKRW45yZmZmZmdkiEh38123m7ZBFRAA3AfdKGipZEu8GtgAPAlc2CXsA2BoRa4HHgFtL+Q1lnmupMil+SlKPpO8H/k/gIxHx3wA/KOkjb3vJzMzMzMzMulzLC1MjYkzSbuA2YAXwUBkz7Kik85uErAH2ludPAI8DdwAXAV8u8xyX9Dqwgepy6yMR8Scl5t8DHz0zrZmZmZmZLW6+h6y1u4DrgI1Aq0sKx4Cry/NrgfPK8wPANZL6JF0ArC/vfR14v6TzJfUBPz0jxszMzMzMbNFqq0MWESeAR4CHI+J0i8k3A1skPQusBM6kotkJHANGgfuAp6kGh/5z4BfK/P8j8BLQNC2PpBsljUoa/Z3j32yn6WZmZmZm1uUaRMce3aZOLs0GbZxNjIjDwBUAki4ErirlU8DNZ6aT9DTwYnlvN7C7lN8INM3xHRE7gB0AX/urV3ff2jQzMzMzM6vhrKe9l7S6/N8D3E4Z8FnS8pIUBEmXU50de2FWzLnAL1IlBjEzMzMzsyUgOvjoNukOmaRdwD5gjaRjkq4vbw1LOgIcBl4BRkr5amC/pENUCUI+NmN22yW9ADwF/MuIOJJtl5mZmZmZ2ULR9iWLEbFt1uvhOabbDmxvUv4SVQbGZjFN5zWfPzu1rG5IKntLz8lEEKBE/3si2T+eRrVjBt7M5bKJRF2Zmv6ipzcRBSv/vOnVrvN6M1nX8pP163rH601vj2xpoLd+XX29uc+4t6d+XLauwWX110dvX66uZee+UTtGyT9ZDayuX1fvuUOpurSiflzP6nNTdTEwUDtE73xnrq4OCYCBwc7U1VvnLoEZTp+oHzO0KlfX0Ir6MQO5bTezg2mg/nc/AP31P2MlYgCUXR8ZjfrHw5jOfQ9p2cqO1cVkq3QF302R/F0zkfihNzXReppmMnVljxsLUDfe29UpZ/2SRTMzswWjQ50xM1viMp0xWzLm7ZCp8qSkjTPKNkn6sqSvSDok6XlJvzzj/e+T9ISkF8v/586Y169L+vr/3969x9tV1ffe/3z3JeQGEhRiDChWY4W2CDRiTvGCUiyhl9g+h6g9hcjDaQ6VVqjYQw72QWgfeuJpm9PS9tjG4qtAsYKVSrCxkEawBoESQ4SErSbeIBKJBbnkurP3/p0/5tgw2azbHNlZe62d7zuv+craY87f+o0511xzrbHmnGNIekjSqaWYJWn5LZKWHIwVNTMzMzMz6zQNG2QREcBFwApJU1OnHNcAVwKXRcQJwAKKbu5PTGHLgLURMY9icOdlqXwhMC9NS4FPQNGAAz4GvAU4DfjYaCPOzMzMzMwmv5E2Tp2m6SWLEbGJokv6yykaTjdExD0RsSHNfw4YAOamkEXA9enx9RQDPY+W3xCF+4AjJc0BfgFYExFPpTHJ1gBnj8vamZmZmZmZdbBW7xS8GthAMcjz/PIMSccDpwD3p6LZEbEdICK2j3ZpT9Fge6wUui2V1Ss3MzMzM7NDQLhTj8YiYhdwM3BjRDzf9Y2kmcDngEsjolm3YrW654sG5S99AmmppPWS1n9hz7dbqbqZmZmZmVnHqtLL4osuu5TUT9EYuykibi0t90S6FJH0/45Uvg04rrTcsRTjlNUrf4mIWBkR8yNi/i9Ne12FqpuZmZmZWafyPWQVSRJwHTAQESvGzF4FjPaUuAS4rVR+fuptcQHwTLq08Q7g3ZJmpc483p3KzMzMzMzMJrXc0eZOB84DHpa0MZVdERGrgeXALZIuBB4Fzk3zVwPnAFuB3cAFABHxlKQ/BB5Iy/1BRDyVWS8zMzMzM+syh/I9ZC03yCLiqtLjddS+94uIeBI4s0Z5ABfXifkU8KlW6wKwU71VFi/yVI5or/2quUmb2pcRd1i0b0zw3FPDP+6rvl4jw9X3C4CdPdVz7VP13zN+TB+zhocqxx02VH29+ofztnxvxjulrycv12DGevX1tu9ig56+vFw9fdVfY9iblyvjddbU/qxcHDalekxf7u9+7bITTZ1aPSxnvb7/LXjlsdXjequ/XrFvL0w/vHKceqp/NoQyP08yctGTd4xXfxsHAM/dHjkyUinzt/iIjGNN7rbIiIuMz1YAjWQc5zO+g9I/jdifMTh0b6cfQ208+FW2jpTTGMuV0xjLldMYM7ODJ6sxliunMZYrozFmZgdPVmPsENOJ93a1S8OfINL9XuskLSyVLZa0VtJdkgYkbZZ0SWn+UZLWSNqS/p9Veq5rJW2V9JCkU0sx/yLpaUlfOBgraWZmZmZm1okaNsjSZYYXASskTZU0A7gGuBK4LCJOABYAF0s6MYUtA9ZGxDxgbfobYCEwL01LgU+UUv0xxT1pZmZmZmZ2iBmJaNvUaZpepBsRm4DbgcuBjwE3RMQ9EbEhzX8OGOCFwZwXAdenx9cD7ymV3xCF+4AjR7vHj4i1wHPjs0pmZmZmZmbdodV7yK4GNgCDwPzyDEnHA6cA96ei2ak7eyJiu6RjUvlc4LFS6LZUtj2n4mZmZmZmNjl03nmr9mmpG5uI2AXcDNwYEftGyyXNpBgc+tKIeLbJ09TqOaHStpe0VNJ6Sevv2L21SqiZmZmZmVnHqdKv6IsGt5bUT9EYuykibi0t98TopYjp/x2pfBtwXGm5Y4HHq1Q2IlZGxPyImP8L019fJdTMzMzMzDrUCNG2qdNkDRAhScB1wEBErBgzexWwJD1eAtxWKj8/9ba4AHhm9NJGMzMzMzOzQ1HuOGSnU/SK+LCkjansiohYDSwHbpF0IfAocG6avxo4B9gK7AYuGH0ySV8B3gjMlLQNuDAi7sism5mZmZmZWVdouUEWEVeVHq+j9j1hRMSTwJk1ygO4uE7M21qth5mZmZmZTS7RQZcSSjob+HOgF/jbiFg+Zv7/Bt6Z/pwOHBMRR0o6mWJoryOAYeCaiLi5Wb7cM2QTbkdf9asth2s2IRvLHTU8J25/Rv1y4w6LvGQ565UT81RP3pZ/tqf6frFTeQeA6RnbcG9P3luuP6OK/ZnjbPTk5BrJyzV1b/XX+bDMA/bewerbvjdnYwBD+/ZUjpm+ZzArV/+ze6sHZb5eOqz6NuzJzMVI7tG3omlT8+J6qr//NXVaVqoYGsoIGs7KxUj1uMyPLlD143Xu1zVNyXidM+oHQE9vXlyOnLdJb9565bzOEZnv44xtqN68z9fI+N7AcPX3ZG79rP0k9QJ/BZxF0QfGA5JWRcQjo8tExO+Wlv8dih7nobgK8PyI2CLpVcDXJN0REU83ytlwL0z3e62TtLBUtljSWkl3SRqQtFnSJaX5R0laI2lL+n9W6bmulbRV0kOSTk3lJ0u6Nz3PQ5Le29rmMjMzMzOzyWCkjVMTpwFbI+I7ETEIfIZiPOV63g/8A0BEfCsitqTHj1N0bnh0s4QNG2TpMsOLgBWSpkqaAVwDXAlcFhEnAAuAiyWdmMKWAWsjYh6wNv0NsBCYl6alFKfz4IWW5E8BZwN/JunIZhU3MzMzMzMbZ/XGTn4JSa8BXgt8qca804ApwLebJWx6/jQiNkm6HbgcmAHcEBH3lOY/J2kgVfQRihbkGWn29cDdKXZRig3gPklHSpoTEd8qPdfjkkZbkg1P7ZmZmZmZ2eTQzu7oJS2lOEE0amVErBydXSOkXuXeB/xjxIuvE09Df90ILIkWrt1t9YLWq4ENwCAwf0zC4ymum7w/Fc0e7c4+IrZLOiaV12ttPt/1fZWWpJmZmZmZWVWp8bWyzuwqYye/jzGdFko6Avhn4Pcj4r5W6tPSnYwRsQu4GbgxIvaVEs6kGBz60oh4tsnTNGxtllqSF9RrSUpaKmm9pPX/tmtLK1U3MzMzM7MOF23818QDwDxJr5U0haLRtWrsQpJ+EpgF3FsqmwL8E8VVgZ9tdd2rdC3zovvgJPVTNMZuiohbS8s9kRpXo42sHam8bmuz1ZZkRKyMiPkRMf/tM+ZVqLqZmZmZmVljETEE/DZwBzAA3BIRmyX9gaRfKS36fuAz6XasUYuBtwMfkLQxTSc3y5nVB6ckAdcBAxGxYszsVcASigGilwC3lcp/W9JngLcAz6RLGrNakmZmZmZmNjm0abCTlkTEamD1mLIrx/x9VY24vwf+vmq+zEE2OB04D3hXqfV3Tpq3HDhL0haK/vtHB1JbDXwH2Ap8EvhgKs9qSZqZmZmZmXW7ls+QlVuBEbGOOmMERsSTwJk1yoMxN72l8qyWpJlk2BYWAAAgAElEQVSZmZmZTQ4vvvLv0NK1w4bnnNobyXide3KGps+Ue7qy0+WsV+5m78l5L7fxNR7KjOvNiBnJXLGeNnY7m6OdlzTkfjZEVN/2MZL3ekXOgS0nJjduJPMVy61jRZFZP+Uc2XK3RfMek7sz12T90GunnoxPh5Hh5svUzFX9BVPubpgTlLMtAKn6euXVzzu81de1DTIzMzMzM5sc2jkOWadp2FxXYZ2khaWyxZLWSrpL0oCkzZIuKc0/StIaSVvS/7NKz3WtpK2SHpJ0aip/jaSvpXvHNku66GCtrJmZmZmZWSdp2CBL931dBKyQNFXSDOAa4Ergsog4AVgAXCzpxBS2DFgbEfOAtelvgIXAvDQtBT6RyrcDPxcRJ1P0vrhM0qvGawXNzMzMzKyzjbRx6jRNL1mMiE2SbgcuB2ZQdE9/T2n+c5IGgLnAI8Ai4Iw0+3rg7hS7KMUGcJ+kIyXNiYjtpXSH4avKzczMzMzsENHqPWRXAxuAQWB+eYak44FTgPtT0ezRRlYaZ+yYVD4XeKwUui2VbZd0HMXA0K8Hfi8iHq+8JmZmZmZmZl2mpbNREbELuBm4MSL2jZZLmgl8Drg0Ip5t8jS1uhCL9PyPRcRJFA2yJZJm13wCaamk9ZLWf3nXllaqbmZmZmZmHS7a+K/TVLk88EWXXUrqp2iM3RQRt5aWe0LSnLTMHGBHKt8GHFda7ljgRWfC0pmxzcDbalUgIlZGxPyImP+OGfMqVN3MzMzMzKzzZN2vJUnAdcBARKwYM3sVsCQ9XgLcVio/P/W2uAB4Jl3SeKykael5ZwGnA9/MqZeZmZmZmXWfEaJtU6fJHYfsdOA84GFJG1PZFRGxGlgO3CLpQuBR4Nw0fzVwDrAV2A1ckMpPAP5UUlBc1vgnEfFwZr3MzMzMzMy6RssNsoi4qvR4HbXvCSMingTOrFEewMU1ytcAJ7Vaj1G9GY3bkZo1bhKT2YjuycjVk5srJ6aNuXK2e66cVH1t3BbtlPv7T9b7JGvLQ0T1uNz1ysmF8rIND1fPNZIRAxBDGTGZBzblxA0PZ+XKOvjmHHh374GpU6vH9bXxwDaS0UlzZHbsnJErIu81Vk4Vc7ZFblzuQT6nij29mcnamGu4jZ2FK2PjZ+7zkfteqaq3H/bva77cWD2d/m1j/BRNhUPTofMqm5mZjZXTGDMzqyqnMWaHjIYNsnS/1zpJC0tliyWtlXSXpAFJmyVdUpp/lKQ1krak/2eVnutaSVslPSTp1DG5jpD0A0l/Od4raWZmZmZmnetQHhi6YYMsXWZ4EbBC0lRJM4BrgCuByyLiBGABcLGkE1PYMmBtRMwD1qa/ARYC89K0FPjEmHR/CHz5wFfJzMzMzMysOzS9hywiNkm6HbgcmAHcEBH3lOY/J2mAYpDnR4BFwBlp9vXA3Sl2UYoN4D5JR0qak3pa/FlgNvAvjBl42szMzMzMJrdOHB+sXVrt1ONqYAMwyJgGk6TjgVOA+1PR7IjYDpAaW8ek8rnAY6XQbcBcSU8Af0rRa+NLOgMxMzMzMzObrFrq1CMidgE3AzdGxPN3JUqaSTE49KUR8WyTp6nVJVUAHwRWR8RjNea/+AmkpZLWS1p/964trVTdzMzMzMw6nMcha82L7oOT1E/RGLspIm4tLfdE6VLEOcCOVL4NOK603LHA48B/At4m6YPATGCKpJ0RsYwxImIlsBLg7+b+RudtTTMzMzMzswqyur2XJOA6YCAiVoyZvQpYkh4vAW4rlZ+feltcADwTEdsj4r9ExKsj4njgIxT3mb2kMWZmZmZmZpNTRLRt6jRVzpCVnU5xz9fDkjamsisiYjWwHLhF0oXAo8C5af5q4BxgK7AbuCC71mZmZmZmZpOAOrGV2Iq/PK76JYv7a93F1oLhjJiRzFz7M65r3ZeZ67CMl76dYzf8h6pv+ZfRm5VrZ8arPC1zXPVZI9Xj+rMyQX/Ga9ybeUiYkhE3NfP4k7NeR43sz8rVp+rJjpy6NyvXzMOrDxw69fC89Zo2p/p69UzPe3/1Hj0jK65dNCNjcGjlvf97XnNs9aCXHZmVi8Mz4qbNzEqlGRm5Mrehph1ePebwV+Tl6s343TonJldP3nsyy0jOtyEgqn9ziOGhvFwjGd9ShvOOoTE0mJErc70yHPaGt2Z+O5w47zz2rLY1Su7atqajtk/e0fAQknn4yZLTGMuV0xhrp5zGWK6cxliunMZYrpxGS66cxliudq5XTmMsV05jLFdOYyzXpGyMZcpqjOXKaYxlymqM5ebKaIxl52pnw2qyymiMZctpjGXq9MaYdZ+G3w7T/V7rJC0slS2WtFbSXZIGJG2WdElp/lGS1kjakv6fVXquayVtlfSQpFNLMcOSNqZp1cFYUTMzMzMz60zRxn+dpmGDLA3ifBGwQtJUSTOAa4Argcsi4gRgAXCxpBNT2DJgbUTMA9amvwEWAvPStBT4RCnVnog4OU2/Mk7rZmZmZmZm1tGano+PiE2SbgcuB2ZQ9IJ4T2n+c5IGKAZ+fgRYBJyRZl8P3J1iF6XYAO6TdORo9/jjuD5mZmZmZmZdo9ULpK8GNgCDwPzyDEnHA6cA96ei2aONrDQW2TGpfC5QHvx5WyrbDkyVtB4YApZHxOcrr4mZmZmZmXWlkS7taHA8tNQgi4hdkm4GdkbE83eeS5pJMTj0pRHxbJOnqdWbyeiWf3VEPC7pJ4AvSXo4Ir79kieQllJc7sj7jjyN02fOa6X6ZmZmZmZmHalKl28jlHo9l9RP0Ri7KSJuLS33hKQ5aZk5wI5Uvg04rrTcscDjABEx+v93KC5xPKVWBSJiZUTMj4j5boyZmZmZmU0O0cap02T1wS1JwHXAQESsGDN7FbAkPV4C3FYqPz/1trgAeCZd0jhL0mHpeV9BMej0Izn1MjMzMzMz6ya5g2ycDpwHPCxpYyq7IiJWA8uBWyRdCDwKnJvmrwbOAbYCu4ELUvkJwN9IGqFoIC6PCDfIzMzMzMwOESMdee6qPVpukEXEVaXH66h9TxgR8SRwZo3yAC6uUf5V4GdarYeZmZmZmdlk0bXD0D/aO1w5Zn9Gyzt33PecQef2ZGYbzIiboqyrVbMMZ2yLH43szcp1pKZUjtnFUFauqfRWjnmmp3r9AKbU/v2jof6MGIC+jLjezFzTo3rcYZk/oO0dqr7tezN/rdu3p/r7a3Co+v4EMHPfYOUY9ezJytU3rfp7ZUrf7qxcjLTnl9Ke3dW3HwB91V9jHfVcVir1ZByvc2IARjI+h5S37+bUMTLXS9MOr54r8j6Ts46Gua/XcM7rlZmrJ+d1zts3lFPHzNeL3oyvwr391WOG9jVf5hB3KJ8ha7jHp/u91klaWCpbLGmtpLskDUjaLOmS0vyjJK2RtCX9P6v0XNdK2irpIUmnlmJeLenO9HyPpK70zczMzMzMJrWGDbJ0meFFwApJUyXNAK4BrgQui4gTgAXAxZJOTGHLgLURMQ9Ym/4GWAjMS9NS4BOlVDcAf5ye7zRe6JnRzMzMzMwmuYho29Rpmp6njYhNkm4HLgdmADdExD2l+c9JGqAY5PkRYBFwRpp9PUU39pen8htSI+8+SUembvFnAX0RsSY9385xWjczMzMzM7OO1uqFs1cDG4BBYH55Rrq88BTg/lQ0OyK2A6Ru7Y9J5XOBx0qh21LZscDTkm4FXgv8K7AsIqrfJGZmZmZmZl3H95A1ERG7gJuBGyPi+bsSJc2kGBz60oh4tsnT1LrPNSgahW8DPgK8GfgJ4AM1n0BaKmm9pPVff25rK1U3MzMzMzPrWFW6sRmh1OmgpH6KxthNEXFrabkn0qWIpP9H7wfbBhxXWu5Y4PFU/mBEfCcihoDPA6dSQ0SsjIj5ETH/TYe/vkLVzczMzMysU0Ub/3WarL5PJQm4DhiIiBVjZq8ClqTHS4DbSuXnp94WFwDPpEsbHwBmSTo6LfcuinvRzMzMzMzMJrXccchOB84DHpa0MZVdERGrgeXALZIuBB4Fzk3zVwPnAFuB3cAFABExLOkjwNrU0Psa8MnMepmZmZmZWZfpxN4P26XlBllEXFV6vI46Yx9GxJPAmTXKA7i4Tswa4KRW62JmZmZmZjYZ5J4hm3BDGdd/7s+Iye3xZTgjbpC8Ueb35nRIWbM5fXCMZPziMZjZyeagqm/D3Fw523AveblGMq4ujrwrkrPeJ32ZO1RfznopL9e+jM3RE3m59qp6sn1DeYfjKYPV96mhnI0BqKf6vhF7M99feYfDyqIvs37DGRXcN5iVKvbta77QGNq/PysXU4Yqh8RwZq6ovh9quHr9ACIjThnvY4CI6vtGxkdXvrzVAnrHsxbjL/P1atvBJrt+dijo2gaZmZmZmZlNDu72vo7UAcc6SQtLZYslrZV0l6QBSZslXVKaf5SkNZK2pP9nlZ7rWklbJT0k6dRU/k5JG0vTXknvOVgrbGZmZmZm1ikaniGLiJB0EfBZSXdRnK++hmKcsD0RsUHS4cDXJK2JiEeAZcDaiFguaVn6+3JgITAvTW8BPgG8JSLuAk6GojFH0enHneO/qmZmZmZm1oncqUcDEbFJ0u0UjaoZwA0RcU9p/nOSBoC5FN3VLwLOSLOvB+5OsYtSbAD3STpS0pzU9f2o/wx8MSJ2H/CamZmZmZmZdbhW7yG7GtgADALzyzMkHQ+cAtyfimaPNrIiYrukY1L5XOCxUui2VFZukL0PGDuumZmZmZmZTWK+h6yJiNgF3AzcGBHPd/ckaSbwOeDSiHi2ydPU6q7s+S0vaQ7wM8AddZ9AWippvaT1Dz337VaqbmZmZmZm1rGq9ME5QqlvUEn9FI2xmyLi1tJyT6TG1Wgja0cq3wYcV1ruWODx0t+LgX+KiLr950bEyoiYHxHzTzr8dRWqbmZmZmZmnSra+K/TZA2KIEnAdcBARIy9xHAVsCQ9XgLcVio/P/W2uAB4Zsz9Y+8H/iGnPmZmZmZmZt0odxyy04HzgIclbUxlV0TEamA5cIukC4FHgXPT/NXAORS9KO4GLhh9snQf2nHAlzPrY2ZmZmZmXWrEvSw2FxFXlR6vo/Y9YUTEk8CZNcoDuLhOzPcoOvho2Y9isMriAAxmjMY+nDmCe07UnpG6V2s2NBjDlWOmqDcrV468LQhPDu2sHDPYO1Q5ZufIvuYL1TBN/dWDMn8COSzjZHZf3glwelTzrd1Qb+3DQVO7M/bDKZm51Ft94+dtQeil+nr1VN91ARjZWz2m/+nqxwyAKXuqx/VNy6ggMJK5PSr7j0H6jqge1jO9+msce/K2hfozDhzTpmXlIuP9T/+UzFwZ77DejOMuwP6M43xO/QB6MvaNvEx5dYy89VLu9siRsQ2zRfVvKcr5MO/tI4YzDmw9bdzuNmFyz5CZHVQ5jTEzs6pyGmNmZlVlNcYOMZ14b1e7NGx2p/u91klaWCpbLGmtpLskDUjaLOmS0vyjJK2RtCX9P6v0XNdK2irpIUmnlmL+V3qegbRM3k/gZmZmZmZmXaRhgyxdZngRsELSVEkzgGuAK4HLIuIEYAFwsaQTU9gyYG1EzAPWpr8BFgLz0rQU+ASApJ+juCftJOCngTcD7xi3NTQzMzMzs442EtG2qdM0vWQxIjZJuh24HJgB3BAR95TmPydpgOIesEeARcAZafb1wN0pdlGKDeA+SUembvEDmApMobgvrR94YlzWzszMzMzMrIO1eg/Z1cAGYBCYX56Rekg8Bbg/Fc0e7c4+IrZLOiaVzwUeK4VuA+ZGxL2S7gK2UzTI/jIiBqqvipmZmZmZdSPfQ9ZEROwCbgZujIjnuyqSNJNicOhLI+LZJk9T676wkPR64ASKgaLnAu+S9PaaTyAtlbRe0votO7/bStXNzMzMzMw6VpW+NEco9WAuqZ+iMXZTRNxaWu6JdCki6f8dqXwbxVhjo44FHgd+FbgvInZGxE7gixT3pb1ERKyMiPkRMX/ezNdWqLqZmZmZmVnnyRrcIPWCeB0wEBErxsxeBSxJj5cAt5XKz0+9LS4AnkmXNj4KvENSX2rkvQPwJYtmZmZmZoeIQ7lTj9zR5k4HzqO4vHBjms5J85YDZ0naApyV/gZYDXwH2Ap8EvhgKv9H4NvAw8DXga9HxO2Z9TIzMzMzM+saLQ8MHRFXlR6vo/Y9YUTEk8CZNcoDuLhG+TDw31qth5mZmZmZTS6HcqceLTfIOs0uqo94vj9Gmi80xjDVYwAi43TorpHBrFz7M+qYu145hnO2xfC+5gvV0KPqJ313Z+aKnurrtWdkSlau/eqtHHNYxrYAUFQfl72v9u8zLSSrHjKceWJ/p6rv830Z2wJgd0/1uGk9eevVP1L9ML5vsH2H/qE9edswRqrHZRzi6enLPMYPDVeO6duTd6zhsOrHDe3P+zyhr796TG6ujGNUDO/PS5Wxc8Rw9e8ZAOrNeH/1VD/GA3k7fe7Hf06uzM+hturN2Oepvh+qe79yWxs0fKek+73WSVpYKlssaa2kuyQNSNos6ZLS/KMkrZG0Jf0/q/Rc10raKukhSaeWYj4uaVOa3nswVtTMzMzMzDqT7yGrI11meBGwQtJUSTOAa4Argcsi4gSKHhEvlnRiClsGrI2IecDa9DfAQmBempYCnwCQ9IvAqcDJwFuA35N0xPitopmZmZmZWWdqev40IjZJuh24HJgB3BAR95TmPydpgGIMsUeARcAZafb1wN0pdlGKDeA+SUembvFPBL4cEUPAkKSvA2cDt4zPKpqZmZmZWSfzPWTNXQ1sAAaB+eUZko4HTgHuT0WzU3f2RMR2Scek8rnAY6XQbans68DHJK0ApgPvpGjYmZmZmZmZTWotNcgiYpekm4GdEfH8XcmSZlIMDn1pRDzb5Glq3aEdEXGnpDcDXwV+BNwLtXvskLSU4nJHTj7qJF478zWtVN/MzMzMzDpY5HQcM0lU6f5mhFLfPGkQ588BN0XEraXlnkiXIpL+35HKtwHHlZY7FngcICKuiYiTI+IsiobblloViIiVETE/Iua7MWZmZmZmZt0uqz9SSQKuAwYiYsWY2auAJenxEuC2Uvn5qbfFBcAz6ZLGXkkvT897EnAScGdOvczMzMzMrPuMEG2bOk3uoAinA+cBD0vamMquiIjVwHLgFkkXAo8C56b5q4FzgK3AbuCCVN4PfKVo4/Es8Bupgw8zMzMzM7NJreUGWURcVXq8jjpDukbEk8CZNcoDuLhG+V6KnhbNzMzMzOwQFB04Pli7dO2w4T8e3lM5ZjCGK8fkntYczrgxce/IYFau/SPV12tKT95Ln9Mlac62eHpwZ+UYgKGM13jn/ur7EsD0vqmVY/ozt3t/xtXFua9xT+3fWhrqzYgB2Kvqr9c0ZW5DVa+jMmIApmds+/7evFzQWzli2r4pWZn2D1XPNX1n3nFtZLj69oiRjJjMCzKk6sfCKc/szspFT8Z6TZ+WlSprL+zvz8pFf8Z+OLg3K1UMVj/OaySvg4HoqX68lrLuIMnqBEF9ee9/enOOvZmdNOR07tCbuR/myMmV8XkH5G0L6zoNjwDpfq91khaWyhZLWivpLkkDkjZLuqQ0/yhJayRtSf/PSuVvlHSvpH2SPjImz9mSvilpq6RlmJmZmZnZIeNQvoesYYMsXWZ4EbBC0lRJM4BrgCuByyLiBGABcLGk0csOlwFrI2IesDb9DfAU8CHgT8o5JPUCfwUspLh08f2l5zIzMzMzM5u0mp4jj4hNwO3A5cDHgBsi4p6I2JDmPwcMUAzyDLAIuD49vh54T1puR0Q8AOwfk+I0YGtEfCciBoHPpOcwMzMzMzOb1Fq9IPhqYAMwCMwvz5B0PHAKcH8qmh0R2wFSt/bHNHnuucBjpb+3AW9psV5mZmZmZtblDuVOPVq6izQidgE3AzdGxL7RckkzKQaHvjQins2sQ617iGu+IpKWSlovaf3ju7ZlpjMzMzMzM+sMVbr1GaHUXY6kforG2E0RcWtpuSckzUnLzAF2NHnebcBxpb+PBR6vtWBErIyI+REx/1Uzjq1QdTMzMzMz61QjEW2bOk1WP6sq+oK+DhiIiBVjZq8ClqTHS4DbmjzdA8A8Sa+VNAV4X3oOMzMzMzOzSS1v4As4HTgPeJekjWk6J81bDpwlaQtwVvobSa+UtA34MPD7krZJOiKKQWB+G7iDonOQWyJi8wGsk5mZmZmZdZFo479mWhmSKw0F9kgaAuzTpfJXS7ozDQ/2SOpvo6GWR/mLiKtKj9dRZ/zIiHgSOLNG+Q8pLkesFbMaWN1qXczMzMzMzMZbaUiusyhurXpA0qqIeKS0zDzgfwCnR8SPx3RieANwTUSsSf1tNB3dO2fY9Y6wc2Rf84XGGBwZqhzTSiu6lpzrU3cPV18ngKGM9Rrsad+I9iNRfXT63UN526JHNX8naGjX/r1ZuXLs65+eFTes3uoxI3n7bk/t31oa6s3Y7rmUmWs31fdDZWwLgL1Uf732ZK5Xf0/1uD1DeYf+GK6ea//e6tsCYHgk9wKOanr3Nf2crKmnt/r7K/ZX3wcBtL/6MZ7hvFwxlPE+ycxFZBzn9w/m5RrKiMs47gIwnPNdo32yc/W273uDsr6ejh1VqUXtWq+ezP0p7xDVlTqol8Xnh+QCkDQ6JNcjpWV+E/iriPgxFMN7pWVPBPoiYk0q39lKwvZ84pmZmZmZmXW+WkNyzR2zzBuAN0i6R9J9ks4ulT8t6VZJD0r643TGraGGDTIV1klaWCpbLGmtpLvStZGbJV1Smn+UpDWStqT/Z6XyN0q6V9I+SR8Zk+dTknZI2tSswmZmZmZmNrmMEG2bykNppWlpqSqtDMnVB8wDzgDeD/ytpCNT+duAjwBvBn4C+ECzdW/YIIvi3OFFwApJUyXNAK4BrgQui4gTgAXAxekUHcAyYG1EzAPWpr8BngI+BPxJjVR/B5xdo9zMzMzMzGzclIfSStPK0uxWhuTaBtwWEfsj4rvANykaaNuAByPiO6njws8DpzarT9NLFiNiE3A7cDnwMeCGiLgnIjak+c9R9I44eipvEXB9enw98J603I6IeIAaF/lGxL9RNNjMzMzMzOwQExFtm5poZUiuzwPvBJD0CopLFb+TYmdJOjot9y5efO9ZTa3eNXk1sAEYBOaXZ6SuHE8B7k9FsyNiO0BEbB/T64iZmZmZmVlHioghSaNDcvUCn4qIzZL+AFgfEavSvHdLegQYBn4v9TRPujVrbRq3+WvAJ5vlbKlBFhG7JN0M7Ix4oVuk1JXj54BLI+LZKiubI13fuRTgNS97PUdPn3OwU5qZmZmZ2UGW00P5wVJrSK6IuLL0OCjGVv5wjdg1wElV8lXpZXGEUuebkvopGmM3RcStpeWekDQnLTMH2FGlQo2Ur/d0Y8zMzMzMzLpdVrf36RTcdcBARKwYM3sVsCQ9XgLcll89MzMzMzOb7DroHrK2yx2H7HTgPOBdkjam6Zw0bzlwlqQtFCNcLweQ9EpJ2yhO7f2+pG2Sjkjz/gG4F/jJVH7hAayTmZmZmZlZV2h5KPSIuKr0eB21++gn3dB2Zo3yH1J0G1kr5v2t1mPUzqG9VUMYHBmqHBOZY9oPx3DlmN1D+5ovVCvXSPVh3Kf0Vt8WuYZGqm+L/p5ent676yDU5qV278/b7jl29lffb6HYHlX1NR+HsKae2m/thnqV99vOcE/199dw5nvysJ7c35+q26mWD63Pm5LxGueamfl6DWVs+j17puTlGm7P67V79xSmTx+sHCdV3xiH78w71qi/elzsycyV8z45bE9WLnoz9vnBvGMog9XrmPsbunqrv//JPT5lfP5ny/mOknmsydn2av0r7ZjA6t9RaOPxuq25bMJk7r1mB1e7GmNmdmjLaYyZmdn4G8n+GaT7NfzpQoV1khaWyhZLWivpLkkDkjZLuqQ0/yhJayRtSf/PSuVvlHSvpH2pO8jR5Y+r91xmZmZmZmaTWcMzZBERki4CPivpLoq++K8BPgDsiYgNkg4HviZpTUQ8AiwD1kbEcknL0t+XUwz8/CHSQNElQ8BldZ7LzMzMzMwmuU7sbKNdml7cGxGbgNspGlUfA26IiHsiYkOa/xwwAMxNIYuA69Pj60kNsIjYEREPAPvHPP/2Bs9lZmZmZmY2abV6D9nVwAZgEJhfniHpeOAU4P5UNDsitkPR2JJ0TKuVqfFcZmZmZmY2yXXSwNDt1lKDLCJ2SboZ2BkRz3ezI2kmxeDQl0bEswdSkVaeS9JSYCnAK2e+hiOntdzWMzMzMzMz6zhV+iMdSRMAkvopGlA3RcStpeWekDQnLTMH2NHsiRs814tExMqImB8R890YMzMzMzObHKKN/zpN1gARkgRcBwxExIoxs1cBS9LjJcBtB/BcZmZmZmZmk1buOGSnA+cBD0vamMquiIjVwHLgFkkXAo8C5wJIeiWwHjgCGJF0KXAicFKD5zIzMzMzs0nO95C1ICKuKj1eB6jOck8CZ9Yo/yFwbI2Qus9lZmZmZmY2meWeIZtwU3qqVz3nmtHc1nqvql8NOtQznJVrWCPNFxojZ/tB3ijqymhv9/X0Vo4BmNJbfb32tTFXf2auPlWP68+IASiuIq6mN+/qZ6Zk1LEv470F0JdRx56MbQHQm7PPZ/4wmPNO7s+8fj4nl5R5DO2pflxrZ57e/oy4vszfHqdkbPmezFy9GceNnBiAjGNoVky7c7VTT97xsOO1c70i472cc9jI/Pw/lHgcsjpUWCdpYalssaS1ku6SNCBps6RLSvOPkrRG0pb0/6xU/kZJ90raJ+kjpeWnSvp3SV9Pz3X1wVhRMzMzMzOzTtOwQRZFU/UiYEVqOM0ArgGuBC6LiBOABcDFkk5MYcuAtRExD1ib/gZ4CvgQ8Cdj0uwD3hURbwJOBs6WtODAV83MzMzMzLrBodzLYtPz8RGxSdLtwOXADOCGiLinNP85SQPAXOARYBFwRpp9PXA3cHlE7CtyVn0AABZASURBVAB2SPrFMc8fwM70Z3+aOm9LmZmZmZmZjbNWL5C+GtgADALzyzMkHQ+cAtyfimZHxHaAiNguqemAYZJ6ga8Brwf+KiLubxJiZmZmZmaThO8hayIidgE3AzdGxL7RckkzKQZ0vjQins2tREQMR8TJFL0wnibpp2stJ2mppPWS1j+5+4ncdGZmZmZmZh2hSjc2I5T6lZHUT9EYuykibi0t94SkOWmZOcCOVhNExNMUlzieXWf+yoiYHxHzXz59doWqm5mZmZmZdZ6sfkVV9It9HTAQESvGzF4FLEmPlwC3NXmuoyUdmR5PA34e+EZOvczMzMzMrPtERNumTpM7yMbpwHnAw5I2prIrImI1sBy4RdKFwKPAuQCSXgmsB44ARiRdCpwIzAGuT/eR9QC3RMQXclfIzMzMzMysW7TcIIuIq0qP10HtkU8j4kngzBrlP6S4R2yshyg6BTEzMzMzs0NQ5523aqN2nh5s0ynIpe2Kcy7ncq7OytXp9XMu53KuyZGr0+vnXM7lqbumCa/AuK8QrG9XnHM5l3N1Vq5Or59zOZdzTY5cnV4/53IuT901ZXXqYWZmZmZmZgfODTIzMzMzM7MJMhkbZCvbGOdczuVcnZWr0+vnXM7lXJMjV6fXz7mcy7qI0jWoZmZmZmZm1maT8QyZmZmZmZlZV3CDzMzMzMzMbIK0PDC0mZmZWTeT9DLgbGAuxTi0jwN3RMTTE1qxRNIrASLih5KOBt4GfDMiNld8nj+KiCsORh3bSdLbgSci4puS3gosAAYi4p8nuGpm42pSniGTdGWT+b8g6UJJx48p/3/rLC9JiyWdmx6fKelaSR+UVGkbSvpSk/mvGPP3b6RcSyWpQdyvSjoqPT5a0g2SHpZ0s6Rj68SskHR6lfqnuKMkXSnpv6bt8VFJX5D0x5JmNYh7p6S/lHSbpM9JWi7p9S3k+wVJn5C0KsV+QtLZVeudnsv7xkHaN3L3ixRbed+Q9EZJl6dt8Ofp8QlV6jzm+S5okutMSTPHlDfcDyWdJunN6fGJkj4s6ZyK9bqhyvIp5q0p17sbLPMWSUekx9MkXS3pdkkfV/GltV7chyQdV7E+UySdL+nn09+/nl7viyX1N4l9naSPpNf4TyVd1Kh+KWbcjhnp+eoeN6oeM9K8cTluNDtmpGUqHzdyjhlp2bYdNzKPGecDG4AzgOnADOCdwNfSvEokndVk/hGSXlej/KQ6y/834F7gPkm/BXwB+CXgVkkXNshz7ZjpL4APjv7d4rq8VtKvSXpjk+VeLWlqeixJF0j6C0m/Janmj/ySfmU0pgpJfwYsB26U9IfA/wKmAb8r6Y8bxM2U9J8l/a6k35F0divvK43jZ4oafJ6UclX6TNE4fJ5Y55qUnXpIejQiXl1n3h8Bb6U4KP8y8GcR8Rdp3oaIOLVGzP8BjgGmAM8ChwG3A+dQ/HJzSZ1cD40tAt4AfBMgIl5yUC7XQdLvU/w69mmKg/K2iPjdOrkeiYgT0+ObgfuAzwI/D/yXiHjJB4ekHwHfB44Gbgb+ISIerPX8Y+JWAw8DRwAnpMe3AGcBb4qIRTVilgOzgbXAe4DvAt8CPgj8UUR8tk6uP6PYZjcA21LxscD5wJZ6275B3b1vHKR9I2e/SHGV9w1JlwPvBz7Di/eL9wGfiYjljepapx419w1JHwIuBgaAk4FLIuK2NK/mfpHmfQxYSHElwhrgLcDdFNv9joi4pkbMqrFFFF8YvwQQEb9SJ9e/R8Rp6fFvpvr+E/Bu4PZa20PSZorXZUjSSmA38I/Aman81+rkegbYBXwb+AfgsxHxo1rLlmJuotgO04GngZnArSmXImJJnbgPUbwXv0zxntoI/Bj4VeCDEXF3jZhxPWak56y3b1Q+ZqR5lY8bOceMsfVo9biRc8xIy7bluHEAnyffBN4y9mxYavjdHxFvaFTXGs/X6PNkMfBnwA6gH/hARDyQ5tX7PHmY4jgxjWI7vj6dKZsF3BURJ9fJtY3i2HInxX4B8CfARwAi4voaMZ+PiPekx4tSXe8Gfg74nxHxd3VybQJOi4jdkj4OvA74PPCulOslP0RI2kNxzPgixTHjjogYrvX8Y+I2Az9NsT1+AMxNefuBByPip2vELAZ+D/g6xbHzqxQnH36GYt99uE6ucf1MabJvVP5Myfk8sS4z0SNT504UH2K1pueAoQZxDwN96fGRwGrgf6e/H6wXk/7vB54EpqS/+0bn1YlbBfw98EbgNcDxwGPp8WvqxDxYerwBmFHK3SjXN0uPvzZm3sZGuYB5wP8HbAa+AXwMeEODXBvT/wJ+0GKuh0uP+4B70uNZwKYGub5Vp1wUX668b3TIvpGzX+TuGxRfvvprlE+pt1+k+Q/VmR4G9jXYL2amx8cD6yk+QOvuF6W4XopGyLPAEal8GvBQnZgNab84A3hH+n97evyOBrnK+8YDwNHp8Yx6+wbFZT/P563wej1I8QXn3cB1wI+AfwGWAIfX2+6l1/cJoLe0r9TcFuVtmB5PB+5Oj19db9uTccxI8ysfN8g4ZpT3eSocN8g4ZtTYN1o6bpBxzCjn4iAfNziAzxPgZTXKX1Zv30jbvdZ0O7CrQa6NwJz0+LS0HX6t0b5B6X0IfL3e61gj7nCKBtWnKRotAN+pt3yN/eKrwGvT41eMzT0m7pHyvgH01KtzOVd6bX6TohH9BPDXNDimpbhN6f+pFD/ETEt/95brMSbmIWB6aV3uSI9PAr7aZN+o9JlCxufJ6P5Lxc8UMj5PPHXX1M2XLD4NzIuII8ZMh1N8gamnLyKGAKL4leyXgSMkfZbijVfL6PL7gQciYjD9PQTU/ZUnil+zP0cxTsSbIuJ7wP6I+H5EfL9O2DRJp0j6WYovIrtKuRv9onS3pD+QNC09Hv3l653AM/WqmJ57S0T8YUT8FLCY4uC3ukGunvSL3XHATKVLdSS9nPrbcETpEhjgVRQHFiLix7zwi14teyWdVqP8zcDeOjHeN16sXftGzn4BefvGSFp2rDlpXj2zKc6U/HKN6ck6Mb0RsTPV6XsUjaSFklY0qB8UX+KHI2I38O2IeDY9x54GdZxP8SXno8AzUZwB2hMRX46ILzfI1SNpVtrWinTGKu0jQ3ViNpUuq/m6pPkAkt4A7G+QKyJiJCLujIgLKV6H/0NxX853GtRvCsUXx+kUX4ChODPU8JJFXrjX+bAUT0Q82iAu55gBeceNnGMGZBw3Mo8ZkHfcyDlmQPuOG7mfJ9cAG1RcwnpFmv6aoqFa7wzD24C/Af60xrSzQa7eiNie6vXvFGdrPprOjkSD9Rrdr39xtFDF5X51v69FxHMRcWmq099L+kij5UfDSo/7IuK76bn+g8bH0MckvSs9/h7F6zb6ejWoYvw4Ij4ZEWcCbwIeAZZLeqxB3D9L+grwFeBvgVskfZTiTNu/1YkRsCc93kVxJpqIeIjiLGw9OZ8pOZ8nkPeZkvN5Yt1koluEuRPw/1OcNq817+MN4r5AjV9l0vON1In5IunXjDHlrwT+vYW6zgBWUPyqtq3JsneNmUZ/YXs5sL5BXD9wFfBomkYoftn9NPDqOjF1f3FrUsf3U/zC9QTw/wD/mqYfAEvrxLyX4hKMO1P9fjGVHw18ukGunwXupzh435mmgVT2s4fYvnF3J+8bdfaLNY32i9x9g+LL/9a0/Vem6V9S2dkNcl0HvLXOvHq5vgScPKasj+KSuOEGue7nhV9qy78iv4wxZ6RqxB5LcYnYXwKPtrDtv0fRGPpu+v+VqXwm9c8yvAz4O4pLD++naIR9h+LywDc1yNXol/ppdcp/Nz3394EPUfxK/kmKX30/1uD5LqH4xXklxRmGC0r7xr/ViTmViseMFFf5uEHGMSPNzz5uUOGYkZav/JlCxjGj2b7RIKbycYPMz5O0zCyKy9Auo7ik733ArCav1TvrzKu5D6Z5XwVeN6bs8LTv1zsb/2pqn6WZC/x8i9tTFJfD/X2T5YZ54QzwIC8cM6bQ+Kz1cWk/+jeKs4Q/pjhGPgicWXW/oMHZ3TT/PwEL0uPXpddsMaVj6pjlPw7cAVxB0ZC7IpUfBWxukKfyZwoZnydpXuXPFA7g88RTd0yT8h6yRtIvfkTxq8LYeXMj4gcVnmsGxeUfO1pc/k3Af4qIv241Rym2B5gaxa8jzZZ9GcUvXo1+oUHSzEi/0mTUp5fil/ghFTfynkxxuUndM1DpF82fALZGxR6tVPQ8NZfiw2ZbRPwwp95NcnTrvtELHNYJ+0bOfpHiKu8b6T1xGqX9guJsQ9N7E6pQ0YnBUK19TtLpEXFPnbjDImJfjfJXUHwprnkvw5hlfxE4PTJ7S5M0HZgd6dfvOsscTrHt+yjeW080ec43RMS3MuryKoCIeFzSkRT3PjwaxdmDRnE/RXFv0aaI+EaFfF11zEgxLR83DuSYkeJbOm60esxIy7btuHGAnyezKfWy2Gyfz5Fen90RsWVMeT+wOCJuGu/6jcd6pffmCRFxb5PlTqC4h7GPF469Nc/USDojatzvWaFOldZLRUcXJ1JcQrkmlfVQNHZfckwuxXXsZ8p4fJ5YZ+vaBlm6/GV/pBVIl1KcSnFd8RfHM865JjTXSVFcatCynBjnmpiYA4x7NfBsRDydLnOaT3FfVMPuoevEfSMiNo1njHNNXK4UN5/i1/whintAWmrM5cQ518Tkqhoj6WSKe5deRvFlWxRno5+m6CRmQ4PYg95IGlO/0cb8aP1+K+p0kNIkbsLXKzdmItarznNV/qHhAH6caFsu6zDRAafpciaKHnRmpce/R3F5wO9TXOqwPDPuf45XzEHKdSiu1zDFJQN/CJzY4r5ROca5uq5+yyguz/sG8F/T/9dRdCLw4fGMc66uy/UOipvk/5XicqovAPdQXPJ7XINcleOca2JyHUD9NlL0sji2fAH1O6Q4haKXyQFeuDz/G6ns1Aa5Tm4Qd8p41e8grVfN+rWwXjW3R07MAaxXVq5GEy1cNj4eMe3O5amzpgmvQHbFSz0ppQPzaO87fTS+/rlynHNNaK4HKbq9vYbiS/vXKb6kHT+eMc7VdfXbTNG71Msp7oEo9yrYqJe1ynHO1XW5Hiwt91rgn9Ljs4A7m+yHleKca2JyHUD9GvWyubVOeTsbSZXr1yXrlZurnev14TrTZcBT4xXT7lyeumfq5l4Wn5U0OgbFf1D04gTFF/xG65UT51wTlysiYlNEfDQiXk/Rbe4xwFckfXUcY5yru+o3HMV9O09T9Kj1ZHqiXQ3y5MY5V3fl6o0XxkV7lKJbeKK4l2TuOMc518Tkyq3fFyX9s6T3Svq5NL1X0j9TdOBQy4yIuH9sYUTcR/HDQD05cTn164b1ys3VzvX6I4oOXw4fM82k/neUnJh257Iu0c33kJ0E3EjxazrA6RS9g50ErIiIT49XnHNNaK4HI+KUGuUC3h41ugLPiXGurqvf31H0BjaDYkDjIYoP6HdRjIW1uE6uynHO1XW5PkVx38haYBFF5xAfVtHByYaIeGOdXJXjnGticuXWL8UuTDHljhtWRUTNbvklXUvRu98NFOO+QXHf2vnAdyPit8c5rlL9umG9cnO1eb2+CvxORHytxrzHIuK48Yhpdy7rHl3bIANQ0TPTu3lxTz93RJMel3LinGtickn69XqNtfGMca6JiTmAXH3AuRRfyv4ReAtF99mPAn8Vdc6g5MQ5V9fl6qc4y3oixQ9An4qIYRU9Ih4TdcbsyolzronJlVu/XO1qJLVbO9erndsis34/SXHp349qzJsdNToFyYlpdy7rHl3dIDMzMzNrhYou/P8HxZf1Y1LxDuA2is6lKnWfP95y69fp65Vrsq6XWS1de92ppJmS/kDSZknPSPqRpPskfWC845zLuZyra+q3JDNX3Tjn6tpcmzL3w5bjnGticuXWD7iFolfGd0bEyyPi5cA7Ke5R/GydXC+TtFzSgKQn0zSQyo5sUMecuMr164b1ys01Qev1jYz1ajmm3bmse3TtGTJJtwH/RNGl6WKKeww+Q9GV+g+izkCqOXHO5VzO1f31cy7ncq7JkesA6vfNiPjJKvMk3QF8Cbg+0kC+KgYd/wBwZkScVef5Ksfl1K9L1is3Vyes1xLg5yuuV92YdueyLhId0NVjzsSY7kspRlOH4qzfN8Yzzrmcy7m6v37O5VzONTlyHUD97gT+OzC7VDYbuBz41zox32zwfOM6L6d+XbJeuc83Wderbbk8dc/UtZcsArskvRVA0i8DTwFExAigcY5zLudyru6vn3M5l3NNjly59XsvxZh2X5b0lKSnKAaTPoriTFst35f03yXNHi2QNFvS5bzQi994xeXUrxvWKzfXZF2vduaybjHRLcLciaK79H+nuJZ4HfCGVH408KHxjHMu53Ku7q+fczmXc02OXLn1y5koxn76OPANiobfU8BAKjtqvOPaNbVzvdq5LbphvTp9G3qamKlr7yEzMzMzq0LSGym6Q78vSsMmSDo7IhoNvtwWufXr9PXKNVnXy2ysbr5ksS5JF7Qrzrmcy7kOToxzOZdzOdd4xkj6EEWX6b8DbJa0qDT7jxrEvVHSmZJmjCk/u0ldKsUdQP06er0OIGZSrle7c1mXmOhTdAdjAh5tV5xzOZdzdX/9nMu5nGty5GoUAzwMzEyPjwfWA5ekvx+sE/Mh4JvA54HvAYtK8zY0yFU5Lqd+XbJeubkm63q1LZen7pn66FKSHqo3i6IXnnGLcy7ncq7ur59zOZdzTY5cufUDeiNiJ0BEfE/SGcA/SnpNiq3lN4GfjYidko5Pyx8fEX/eICY3Lqd+3bBeubkm63q1M5d1ia5tkFEcdH+BYtDAMgFfHec453Iu5+r++jmXcznX5MiVW78fSjo5IjYCpC+3vwR8CviZOjHtbCTl1K8b1is312Rdr3bmsi7RzQ2yL1Ccyt44doaku8c5zrmcy7m6v37O5VzONTly5dZvBJhaLoiIIeB8SX9TJ6adjaSc+nXDeuXmmqzr1c5c1iW6uVOPVwE/qDUjIn59nOOcy7mcq/vr51zO5VyTI1du/VYCN0j6qKT+MXH31Imp2SiIiPOBtzfIlROXU7/cuHauV26uybpe7cxl3SI64Ea2nIliUMBvAR8F+g9mnHM5l3N1f/2cy7mca3Lkyq1fip1BMXbT14GPAB8enSZ6W+TUrxvWa7K+Xt2Qy1P3TF09DpmKrj+vBM4GbqT4BQGAiFgxnnHO5VzO1f31cy7ncq7JkesA6jcFWAb8OnDzmLirxzlXznpVrl+XrNdkfb06Ppd1h26+hwxgP7ALOAw4nNLOeRDinMu5nKv76+dczuVckyNX5RgV4zWtAFYBp0bE7hby5Navclxu/Tp9vXJjJut6TUAu6wYTfYoud6L4heARYDkw/WDGOZdzOVf318+5nMu5JkeuA6jfV4CfanX5CdgWlevXJes1WV+vjs/lqXumCa9AdsXbe+ByLudyri6vn3M5l3NNjly59cuZ2rkt2jl1+ms8mder07ehp4mZuvoeMjMzMzMzs27Wzd3em5mZmZmZdTU3yMzMzMzMzCaIG2RmZmZmZmYTxA0yMzMzMzOzCeIGmZmZmZmZ2QRxg8zMzMzMzGyC/F91IG84yAlWbAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "year_df = df.iloc[:,10:]\n", + "fig, ax = plt.subplots(figsize=(16,10))\n", + "sns.heatmap(year_df.corr(), ax=ax)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "43e1af94-ba07-4b95-8da3-1d774db940cd", + "_uuid": "70d2b0a7db9b8a5535b3c5b3c2eb927b904bf6d3" + }, + "source": [ + "So, we gather that a given year's production is more similar to its immediate previous and immediate following years." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "_cell_guid": "58cde27d-5ddc-4ebe-a8e1-80a8257f44c1", + "_uuid": "6f48b52c09ea6a207644044cace5a88c983bf316" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAJQCAYAAAANJJX4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8XHW9//HXd/bJvrRJuqS0oRtdwmIpKFoRFAHZpBWK/q5clwtevRcUBQpIwSIioCJcrwgKF9wo0IItm+ylgrIUaNOmewNt0mZr1klmn/P9/XFO0snapM3MZPk8H488kvnOmZkzLN95z/kuH6W1RgghhBBCiA62VJ+AEEIIIYQYXiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILhypPoHhYty4cXrq1KmpPg0hRBK9//77B7XW41N9HkdL+i8hxp5E918SEC1Tp05lw4YNqT4NIUQSKaX2pvochoL0X0KMPYnuv2SIWQghhBBCdCEBUQghhBBCdCEBUQghhBBCdJGwgKiUelgpVaeU2hLXdrdSartSqkwp9bRSKifuvhuUUruVUjuUUl+Maz/batutlFoW1z5NKfWOUmqXUupxpZTLandbt3db909N1HsUQgghhBiNEnkF8RHg7G5tLwPztNalwE7gBgCl1BxgKTDXesxvlVJ2pZQd+F/gHGAOcJl1LMCdwD1a6xlAE/Atq/1bQJPWejpwj3WcEEIIIYQYoIQFRK31eqCxW9tLWuuodfNtYLL194XASq11SGv9EbAbWGj97NZaV2itw8BK4EKllALOAFZZj38UuCjuuR61/l4FnGkdL4QQQgghBiCVcxC/Cbxg/T0JqIy7r8pq66s9H2iOC5sd7V2ey7q/xTq+B6XUFUqpDUqpDfX19Uf9hoQQIlmk/xJCJFJKAqJS6iYgCvylo6mXw/QRtPf3XD0btX5Qa71Aa71g/PgRv1euEGIMkf5LCJFISd8oWyl1OXAecKbWuiO4VQHFcYdNBg5Yf/fWfhDIUUo5rKuE8cd3PFeVUsoBZNNtqFsIIYQQQvQtqVcQlVJnA9cDF2it/XF3rQWWWiuQpwEzgHeB94AZ1oplF+ZClrVWsHwdWGI9/nJgTdxzXW79vQR4LS6ICiFGqUjMQP5XF0KIoZHIbW4eA/4FzFJKVSmlvgX8BsgEXlZKbVRK/Q5Aa10OPAFsBf4OfE9rHbOuDv4X8CKwDXjCOhbMoHmNUmo35hzDh6z2h4B8q/0aoHNrHCHE6BSOGlQ3B5F8KIQQQyNhQ8xa68t6aX6ol7aO428Hbu+l/Xng+V7aKzBXOXdvDwJfGdTJCiFGrHDUoKYlSNQwUn0qQghxxMJRA5dj+NQvGT5nIoQQgxSKxqhuCUg4FEKMWFpr6lqDBCKxVJ9KFxIQhRAjUigao6YlSMyQcWUhxMiktabOF6ItFD38wUmW9FXMQghxtIIRMxwaMulQCDFCaa2pbQ3hDw+/cAgSEIUQI4yEQyHESGcYmlpfkEB4eA0rx5OAKIQYMSQcCiFGOsPQ1LQGCQ6zOYfdyRxEIcSIEAjHqJZwKIQYwWKGprqXcNjYHmbFM+XDarhZriAKIYatddvreGB9BXsb2ynI9LB0QTELS/JSfVpCCDFoMUNT3RIgHO2660JNS5BrV5WxvzlASyDC77++AKV6qxqcXHIFUQgxLK3bXsfyteXUtAZId9lpaAtx72u7eLei98qZ/9rTwCP//Di5JymEEAMQjRkcaO4ZDvc2tHPVyg/Z3xzA7bDx1VOmDItwCHIFUQgxTD2wvgK7DZx2G2jwOu0EIjFWvlfZ4yriS+U13PXiDgwNBVluziudmKKzFkKIrqIxg+qWIJFY13C4o8bH9avLaA1GSXfZ+Z+vnsgZswtTdJY9SUAUQgxLexvbSXfZIW7Kocdpo6Y10OW4Ve9X8dt1ewCYMyGLU6blJ/M0hRCiT5GYWempezjcWNnMj/+2BX84Ro7Xyc8Xz+cTxwyv6TMSEIUQw44vGKEgw0NDewiv097ZHowYFGV5AXMPsYff+pi/vLMPgNLJ2fzxmwvJSXOl5JyFECJeX2VA39p9kBXPbiUS0xRkurlrSSlT8tJSdJZ9kzmIQohhpTUYod4XYunJxUQNTSASQ2P+jhqapScXEzM0v351V2c4/NSx+dx58XyyPM4Un70QQvRdBvTlrbXcsracSEwzOdfLvUtPYEpeGkop3MOoDjPIFUQhxDDSEojQ0BYCYGFJHlczg5XvVVLTGqAoy8vSk4s58Zgcfvb8Nl7fUQ/AWXMKufaLs7DbhsfEbiHE2NZXGdCnP9zP/7y2G4DpBRncuXg+uWkubEpRmOXBEzdaMhxIQBRCDAst/ggN7aEubQtL8rosSAlEYtz09BY27G0CYPFJk/jP04/FNkxW/QkhxrbeNvPXWvPnt/fxf9YuC6WTs/npRfPIcDuw2xRF2R7cjuEVDkECohBiGGj2h2lsD/d7TGsgwo1Pb2ZrtQ+Ab316Kl9dOHy2hBBCjG29hUNDa+5ft4fVH+wH4NSSPG45bw5upx2n3UZRtsfcqWEYkoAohEippvYwTf7+w2G9L8T1q8v4uMGPAr7/+Rmcf7xsZSOEGB4C4Rg1rUF0XDiMGZpfvLSDF8trAThzdgHXnz0Lh92Gy2GjKMuDY5iGQ5CAKIRIocb2MM2HCYdVTX6uXVVGbWsIh01x47nHcfqs8Uk6QyGE6J8/HKW2NdQlHIajBtc8sYmt1a0A5Ke7OHN2AQ67DY/TTlGWB9swnzctAVEIkRINbSFaApF+j9lV62PZU5tp8kfwOG2suGAuC6YOr73ChBBjV3soSp2vazj0h6NcvXIje+rbAchNc+J12vif13fjddm56MRJI2JqzPC9timEGLUODiAcbqpq5ponNtHkj5DlcfDLrxwv4VAIMWy0haLUdhtWbglE+NGTZZ3hcFyGi/EZbtJcDlwOG09sqBoR4RDkCqIQIsnqfSF8wf7D4T/3HGTFs9sIRw3GZbi4a0kpU/PTk3SGQgjRP5+1X2u8g20hrltlzpUGKMh0keM1N+632xSZDgdVTf6kn+uRkoAohEiagYTD+LrKk3O93LWklKIsT5LOUAgh+he/X2uH/c0Brn2yjJrWIA6bYnKOl5h1ZdFht2G3KfzhKJNzh1/FlL5IQBRCJEWdL0hbMNrvMU++X8X9Vl3l+I1khRBiOOhtv9aK+jauW72ZxvYwHoeNn1w4F23Ava/tIhIzcDls+MNRIjHNlYtKUnTmgycBUQiRUFpr6n0h2kJ9h8PudZWPtzaSTXdLFyWEGB56269164FWbnh6M75glAy3g599eR7zJmVjU4rcdCeP/HMvVU1+JuemceWiEk6fXZCisx886X2FEAmjtabOF6K9n3AYMzT3vbqLZ8qqATjt2HxuPm8OrkHWJVVKMULmfgshRpjetuR6f28TN6/ZQjBikJvm5K4lpRw7PgO7zSydN3VcOl+cNyFFZ3z0JCAKIRJCa01tawh/uO9wGIkZ3PH8dtbtNOsqf3FuIT86a/B1lTs65JGyOlAIMXL0tiXX+l313P7cNiIxTVGWh7uXlDIp14vTbqMwyzPoL7jDkQREIcSQG0g4DIRj3LK2vLOu8lc+MZkrP1sy6LrKw71clRBi5DrYFqK1Wzh8YXM1v3x5J4aGY/LTuGtxKeMz3SOiOspgSEAUQgwprTU1rUEC4Vifx7RYdZW3WXWVv/3paVy2sHjQVwC9LjuFmcO/IoEQYuTpbdeFJzdUcv8bFQDMKsrk5xfPJ9vrHDHVUQYjYTFXKfWwUqpOKbUlri1PKfWyUmqX9TvXaldKqfuUUruVUmVKqZPiHnO5dfwupdTlce2fUEptth5zn7I+Wfp6DSFE4hmGprql/3BY7wvx/cc3sq3ahwKu+cIMvnrKlEGHw0yPc9R1yEKI1NNaU9ca7BIOtdY89OZHneHwhOIcfvmVUrK9TtLdDiZkj76+KJHXQR8Bzu7Wtgx4VWs9A3jVug1wDjDD+rkCuB/MsAfcApwCLARuiQt891vHdjzu7MO8hhAigQxDU90aJBjpOxxWNvq5auWH7G3w47Aplp8/h/NKJw76tfLT3YzPdMucQyHEkOpYWBe/64KhNfe9urtzl4XTjs3n5xfPJ83lIMPjGLXznxMWELXW64HGbs0XAo9afz8KXBTX/kdtehvIUUpNAL4IvKy1btRaNwEvA2db92Vprf+lzRo3f+z2XL29hhAiQWJWOAz1Ew531fq4euVGaltDeJw2fvbleXx25vhBvY5S5mKU7DTn0Z6yEEJ00TF3On7Xhai1kG7NpgMAnDWnkFsvmIvLYSMnzUVB5ujdxD/ZcxALtdbVAFrraqVUx4ZAk4DKuOOqrLb+2qt6ae/vNYQQCRAzNNUtAcJRo89jNlU2c9PftuAPx8jyOLjj4vkcNyFrUK/jsNkoyHLjcdqP9pSFEKKL3uZOhyIxfvLsVt6uMK91XXziJL77uWOxKUV+unvUf1EdLotUers2q4+gfXAvqtQVmMPUTJkyZbAPF2LMG0g4fGv3QVY8u5VITDMuw8XdS0o5ZpB1lUfb6sChIP2XEEPDMMxwGD89pj0U5cd/28KmqhYAvv7JY7j8k8dgs9kYl+Ei0zO6wyEkdg5ib2qt4WGs33VWexVQHHfcZODAYdon99Le32v0oLV+UGu9QGu9YPz4wQ11CTHWRWMGB5r7D4cvltdwy9pyIjHN5Fwv91124qDDYZrLwcRsr4TDbqT/EuLo9TZ3utkf5ponNnWGw+997lj+/VNTsdtsFGa5x0Q4hOQHxLVAx0rky4E1ce1ft1Yznwq0WMPELwJnKaVyrcUpZwEvWvf5lFKnWquXv97tuXp7DSHEEInGDKpbgkRifYfDJzdUcuffd2BomFGQwb1LT6Aoa3DzdbK8TopG4epAIUTqxQzNgZZAl7nTda1Brl65kV11bdgULDt7FotPmozdpijK9pDmGi4Dr4mXsHeqlHoMOB0Yp5SqwlyN/HPgCaXUt4B9wFesw58HzgV2A37gGwBa60al1G3Ae9ZxK7TWHQtf/hNzpbQXeMH6oZ/XEEIMgUjMoKafcNixHcRf3zWnD59QnM1tFw6+rvJYmOMjhEiN3qbHVDb6uXZVGXW+EE67Yvl5czht+jgcNnMz/tFQHWUwEhYQtdaX9XHXmb0cq4Hv9fE8DwMP99K+AZjXS3tDb68hhDh6kZhBdXOQqNF7OIwZmntf3cWzR1FX2aYU4zPdgw6UQggxEL2NgOyq9XH96s00ByJ4nXZ+etFcTpySi9NuY0L22Jz/LD2wEGJAwlHzymFf4TAcNfjZC9tYv/MgAGfPLeKHZ80cVF1lh81GYbYbt0NWKgshhl5vIyCbq1q48enNtFu7LPx88XxmF2XhtqqjDLY2/GghAVEIcVjhqEF1S4CY0ftmAYFwjOVry3nfqqt8yYLJXLmoZFCbx8pKZSFEIvU2AvJ2RQM/eWYroahBfoaLuxaXMm1cOmkuB4VZY3szfgmIQoh+haIxalqCfYbDlkCEG57azPaaQ3WVv3rK4LZdSXM5KMh0y2IUIURC9DYC8vr2On72wnZihmZijodfLDmeomwPGR4H4zPGdjgECYhCiH4EIzFqW/sOh/W+ENetLmNvgx+bgu9/fibnlU4Y1GtkeZ2My3APxekKIUQPvX3JfWbTAX79yi40UDI+nbsWl5KX7iLb6yRf+iNAAqIQog/BiNmpGrr3cFjZ6Oe61WXUtpor/m469zgWDbJ0Xn6Gm2yvrFQWQiRGb19yH3t3H7//x0cAzJmQxR0XzyPT45SdE7qRgCiE6OFw4XBnrY9l1oo/j9PGbRfO4xPH5A74+W1KUZDlHlN7igkhkqt7P6a15vf/+IiV75lbcC04JpefXDiXNJdjzFRHGQzpnYUQXQTC5jfuvsJh97rKHSv+BkpWKgshEq17PxYzNL9+ZRfPbTa34Fo0cxw3nnMcbqedQvmy2iv5JyKE6BQIx6hpDaL7CIfxdZXHZ7i5a8n8QZXOczvtFGa6ZaWyECJh/OEota2hzn4sHDW444XtvLGzHoBz5xfxg8/PxOWwUZjlweOUL6u9kYAohAB6dqrd/X1LDb94ySydV5zr5a4lpRQOonReuttcqTzWVwYKIRKnPRSlzneoHwtEYty6tpz3Pja34Lp0wWSuWFSC024fk9VRBkMCohCiR6fa3ZMbKrn/jQoAZhZm8POL55OT5hrw88vKQCFEorWFotTH9WO+YIQbn95C+YFW4NAWXE67WTrPKSMZ/ZKAKMQY171TjdezrnIOt104d8Bl8JRS5Ge4yJLJ30KIBPIFI9T7Qp23G9vDXLe6jIr6dhRw1ZkzuPCEiWO+OspgSEAUYgxrC0Wpaw32el/3Sd2nTc/n5i8NvK6yTSkKszx4XTK/RwiROK3BCAfjwmFNS5BrV5WxvzmA3aZYdvZszjyuAK/LTmGmRzbkHyAJiEKMUd2/ccfrXlf5nHlFXPOFgddVdtrNyd8yv0cIkUgtgQgNbYf6sb0N7Vy7qoyDbWFcDhu3nj+HU0vyyXA7GC9zoAdFAqIQY1D3b9zxAuEYy9ds4f19zcDg6yrLEI4QIhma/WEa28Odt7fXtLJs9WZag1HSXXZu//I8SifnyBzoIyQBUYgxpvs37u73xddVvuIz01i6cOB1leVbuhAiGZrawzT5D4XDjZXN3PT0FgKRGDleJ3cuns+Mwkzy0l2DWlAnDpGAKMQY0uKP0NDeezis94W4blUZexvNusrXfGEm584feF3lnDQXeenSEQshEquxPUxzXDiM35+1INPNXUtKmZKXxrhMtyyQOwoSEIUYI7oPx8Tb1+jnulVl1PkGX1dZVioLIZLlYFuI1kCk8/bLW2u58+/bMTRMzvVy95JSirK9FGS6B7zbguid/NMTYgzoPhwTL76ustdp57aL5nLSlIHVVZaVykKIZKn3hfAFD4XDpz7Yz29e3w3A9IIM7lw8n/x0N0XZUh1lKEhAFGKU6z4cE29jZTM/PsK6yrJSWQiRLHW+IG3BKGDuz/qnt/fyyD/3AjB/Uha3f3k+OV6X1HkfQhIQhRjFGtpCtMQNx8R7c9dBbnvuUF3lu5eUMiU/bUDPKyuVhRDJoLWm3heiLWSGQ0NrfrtuD099sB+AU6blccv5c8j0OKU6yhCTgCjEKNV9rk68F7bU8MsjrKssK5WFEMmgtabOF6LdCocxQ/OLl3bwYnktAGfMLmDZ2bNI9zjlC2sCSEAUYhTqPlcn3hMbKvmdVVd5VmEmd1w8b8DbQMhKZSFEMmitqW0N4Q+b4TAcNbjtua28tbsBgAuOn8hVZ04n3e2Q6igJIgFRiFEmfq5OPK01f3jzIx6z6iqfOMWsq5zmOnw3oJRiXIaLTFmpLIRIMMPQ1PqCBMIxAPzhKMvXlPOBtXn/106ZwjdPm0qmxymjGQkkAVGIUaSvcNi9rvJnZozjpnOPG9ACE7vNXKksqwKFEIlmGJqa1iDBiBkOu2/e/53PlnDJgmKyvE7GSXWUhJKAKMQo0H0id7xw1OBnz29j/S6zrvK584r4wQDrKstKZSFEssSscBiywuHBNnPz/o8bum7en5vmIlemuiScBEQhRph12+t4YH0FlU1+inPTuOIz05gzKbtzIne87kMzS08u5j8+M21AQzIep51CmfgthEiCmKGpbgkQjhoA7G8OcN2qMqpbgjhsipu+dByfnTleqqMkkVwWEGIEWbe9juVry6nzBcnxOqltDXDTmi28vq2ux7Et/gg/fKKsMxxe8ZlpXLGoZEDhMMPjYEK2hEMhROJFYwYHmg+Fw4r6Nq5euZHqliAeh43bvzyP02cVUJjlkXCYRCkJiEqpHyilypVSW5RSjymlPEqpaUqpd5RSu5RSjyulXNaxbuv2buv+qXHPc4PVvkMp9cW49rOttt1KqWXJf4dCJMYD6ytw2lXnwhKXw45dKVa+V9nluLrWIFc/vpEdtT5sCn501kyWLpwyoNfITXNRkOmRid9CiISLxgyqW4JEYmY43HqglR88sYnG9jAZbgd3f6WUU6blU5TlkdJ5SZb0gKiUmgRcBSzQWs8D7MBS4E7gHq31DKAJ+Jb1kG8BTVrr6cA91nEopeZYj5sLnA38VillV0rZgf8FzgHmAJdZxwox4lU2+fE67WitiRoaw9B4nDZqWgOdx+xr9HPVyo3sa/TjtCtuOX8u586fcNjnVkpRkOWRuT1CiKSIdAuHGz5u5EdPbsIXjJKb5uSeS4+ndHIOE3KknGcqpGqI2QF4lVIOIA2oBs4AVln3PwpcZP19oXUb6/4zlXlp40JgpdY6pLX+CNgNLLR+dmutK7TWYWCldawQI15xbhr+cJRIzAyHAMGIQVGWFzDrKl+9ciN1vhBep507Lp7PZ2aMO+zz2m2KCdkeMuQbuhAiCcJRg+rmQ+Fw/c56bnx6C8GoQVGWh/uWnsjsoiwm5nildF6KJD0gaq33A78A9mEGwxbgfaBZa90xy74KmGT9PQmotB4btY7Pj2/v9pi+2oUY8f7jM9MIRgz84SgaTSASI2polp5czIf7mvjB45toCUTI9jr51SXHc9KU3MM+p9NuY2KOV7axEUIkRThqUNMSJGqY4fCFzdWseHYrUUNzTH4a9y49gWnj05mY45XSeSmUiiHmXMwretOAiUA65nBwd7rjIX3cN9j23s7lCqXUBqXUhvr6+sOduhApFTM0syZkcdUZM8hPd+MLRslPd3P1GTMIxQyWPbWZQCRGQaabey89gVlFmYd9Tq/LLp3wCCX9lxiJQtEY1S2BznD45IZK7n5pJ4aG2UWZ/PrSE5iSn8bEbK8skkuxVIwnfR74SGtdD6CUegr4FJCjlHJYVwknAwes46uAYqDKGpLOBhrj2jvEP6av9i601g8CDwIsWLCg1xApxHAQvwXEwpI8Fpbkdd4XX1d5Sl4ady2eT8EA6ipneByMz5AqBCOV9F9ipAlGYtS0BDG0RmvNw299zF/e2Qccquw0PtNDgVRHGRZScdlgH3CqUirNmkt4JrAVeB1YYh1zObDG+nutdRvr/te01tpqX2qtcp4GzADeBd4DZlirol2YC1nWJuF9CZEQMUN32QIi3sr3Krn7RTMczirM5N5LTxhQOMxLl5XKQojkiQ+Hhtbc9+ruznB42rH53PHl+RRmeSnMkn5puEj6FUSt9TtKqVXAB0AU+BDzW/BzwEql1E+ttoeshzwE/EkptRvzyuFS63nKlVJPYIbLKPA9rXUMQCn1X8CLmCukH9Zalyfr/QkxlLpvAdFBa83v//FR5/Y2J03JYcUA6iorpRif6ZbFKEKIpAmEY9S0BtFa86/dDfzipR00BSKA2XfdesFcxmW4ZQeFYSYlnxJa61uAW7o1V2CuQO5+bBD4Sh/Pcztwey/tzwPPH/2ZCpE6fYXDmKG55+WdPL+lBhh4XWWpqSyESDZ/OEptawitNW/uPMjtL2wjZI2GZLjtHGgOsLPGx4zjDz9nWiSXzEwXYhjqvj9Yh3DUYMWzWzvD4bnzi1h+3pzDhkNZqSyESLb20KFw2BaKcueL2zvDYX66iwnZHrxOO3+2hprF8CLjTEIMM5GYuT9Yxyq/Dv5wlJvXlPPhIOsqe112CjM92GRFoBAiSdpCUep9Zjhs9oe5fvVm2sMxAMZnuMhNd+G02XA7oKrJn+KzFb2RgCjEMNJ9f7AOLf4Iy57azI5aHwBXLCph6cnFvT1FF5keJ+MyXDLpWwiRNL5ghHpfCDDLfl63ejP7Gs0QmJfmNMOh3YZNKfzhKJNz01J5uqIPEhCFSIF12+t4YH0FlU1+inPTuHJRCZ+cnk9NS5CY0XXHkrrWINeuKqOyKYBNwQ+/MJNzBlA6Lz/dTXaaFLYXQiRPazDCQSscVjb6uXZVGXW+EE67YumCKby6vZZozMBlt3GwLUhje4Rmf5jLHnybKxeVcPrsghS/A9FB5iAKkWTrttexfG05db4gOV4ndb4gN6/ZwpoP9vcIh/sazLrKlU2BzrrKhwuHSpmLUSQcCiGSqcV/KBzu6lb28+cXz+fK00u47cJ5FGZ5qWk1w2FumpMJ2V7qfEGWry1n3fa6FL8L0UECohBJ9sD6Cpx2RZrLgVIKj9OOUvDXdyu7HLejxsfVj5sdbJrL7GAPV1fZYbMxIdtDumxjI4RIomZ/mIZ2MxyWVTVzzRObaA5EyPI4+OUlpXzy2HFMzPZy5pxCHrviVGYUZDI518t4az/WNJcDp13xwPqKFL8T0UE+RYRIssomPzle8+qeoTWRmIHbYaOmNdB5zAf7mrj5b+UEIjGyvU7uXDyfmYX9bwPhctgoyvLgkLJ5QogkamwP0+wPA/B2RQO3PrOVcNRgXIaLu5aUMndido/qKPH9YAev0y4LVoYRCYhCJFlxbhp1viAep93cxkZDMGJQlOUFYP2uem5/bhuRmKYg081dS0qZktf/JO40l4OCTLesVBZCJFVDW4gWa9Pr17bXcccL24kZmkk5Xu5eUsqMwkzGZ7p7PK6jH4zf3D8QicmClWFELjUIkWRXLiohFDXwBSNorQlEYkQNzdKTi3l+czUrntlKJKaZkpfGfUtPOGw4zPI6KcqWbWyEEMl1MC4crt10gNuf20bM0JSMT+fepScwe0JWr+EQzH4wEtP4w1G0Nn9HYporF5Uk8y2IfkhAFCLJTinJ578+N528NDe+YJT8dDdXnzGDioNt/OKlnWZd5aKB1VXOT3czLqP3DlgIIRKl3heiNWB+yf3rO/v49Su70MCcCVncc8nxzCjIJK+f0nmnzy5gxQVzKcj00BKIUJDpYcUFc2UV8zAiQ8xCJFFH2amF0/JYOC0PMOsqP7i+gsc3VAEDq6tss2oqy2IUIUSy1fmCtAWjPfquk6fm8pML5jElP21A9d5Pn10ggXAYk08XIZKkPRSlzqos0CFmaH718k5esErnLZoxjhsPU1fZYbNRmO3G7ZCyeUKI5NFaU+cL0R6KmjXhX9nJ85utvmvmOG7+0hwm5Xr7/XIrRg75tyhEEsSXneoQjhozQO4uAAAgAElEQVT89LltvLn7IABfmj+B739+BvZ+5hLKSmUhRCporaltDeEPRwlHDe54YTtv7KwHzJrwPzprltR7H2UkIAqRYPFlpzq0h8y6yhsrzbrKly0s5tuf7r+usqxUFkKkgtaamtYggXCMQCTGLWvK2bC3CYBLF0zmu6dPZ0KOt9+RDzHySEAUIoF6C4fN/jDLntrMzto2AL7z2RIuWdB/XeUsr1MWowghks4wzHAYjMTwBSPc8NQWtla3AvDtT0/j8k9NZUK2jGqMRhIQhUiQ+JqkHWqtuspVHXWVz5rFOfOK+n2e/Aw32V4pmyeESC7D0FS3BglFYjS2h7ludRkV9e0o4OrPz+CSBcUUZnn6nRYjRi4JiEIkQEsgQkNb13C4t6Gd61Ztpr7NLFx/85fm8Ol+SufZlKIgyy0TvoUQSRczNNUtAcJRg5oW84vt/uYAdpvihnNmc17pRAqz3P1OixEjm3zyCDHEWvyRzpqkHbbXtLJs9WZag1HSXHZuu3AuJ07J7fM5ZKWyECJVXttay29e383+lgC5XhcHWgK0BqO4HDZuPX8On59TSHlVCz94/CMqm/wU56Zx5aIS2bJmlJGAKMQQavaHaWwPd2n7YG8TP16zhWDEGFBdZbfTTmGmW+b0CCGS7tWttdy8Zgt2m8JlV+ys82FocDts3Ll4Pp+ZMZ7NVS3c8sxWnHZFjtdJnS/I8rXlrAAJiaOIfAIJMUSa2nuGw/W76rnh6c0EIwYFmW7uXXpCv+Ew3e1gokz4FkKkQDRm8JvXd2O3KbTWVDUHMTTYFByTl8bnZhWSn+HmgfUVOO2KNJcDpczfTrvigfUVqX4LYgjJFUQhBmnd9joeWF/RZWiltDiHZn/XcPhcWTX3vGKWzjsmL407F8/vt3RettdJvqxUFkKkQCRmUN0c5ECLuYCupiWEBhw2xaQcD+3hKNlp5mK5yiY/Od0Wznmddqqa/Ck4c5EocplCiEFYt72O5WvLqfMFO4dWbvrbFl6yKqF0eOzdffzy5UN1lX/dT11lpRT5GW4Jh0KIlAhHzXAYNQzcdjvVVjh02hXFeV5sNsWUvPTO44tz0whEYl2eIxCJMTk3LclnLhJJAqIQg9B9aMVlt2FTsPK9SsDcUPZ3b+zh9//4CACXXeGy2dhR4+v1+WxKUZgl29gIIVIjFI1R3RIgahg89UEV+6yrgE676gx8MQOuXFTS+ZgrF5UQiWn8YbMesz8cJRLTXY4RI58ERCEGobLJj9cqJRWJGcQMjcdpo6Y1QMzQ3P3iTp6wCtd7nTaK87w0B8Lc+9ou3q1o7PJcDpuNCTke2cZGCJESwUiMmpYg0ZjBo//8mN+8vgeAafnpHFeURSQaoyjLy4oL5nZZfHL67AJWXDCXgkwPLYEIBZmeHseIke+IPpmUUsu11iuG+mSEGO6Kc9Oo8wVx2m0YhllX2VyA4uHWZ8p5a3cDAOkuOxOzPSil8DrN4ZeV71WysCQPMFcqF8kGsyKOMjeU+wqggVXAGcCFwHbgd1prI4WnJ0aZznBoGPx23R6e+mA/AKeW5PHTC+cxdVx6v4vlTp9dIIFwlDvSK4jfHtKzEGKEuHJRCcGIQXsoikYTiMQIxwzaQtHOcJjmsjMhu+sGsh1XGeHQSmUJh6Kb/wUuAf4N+BPwHWADsAi4J4XnJUaZQNgMh5GYwd0v7ugMh2fOLuDOxaVMG58hOymIvq8gKqVa+7oL8CbmdIQYvrTWzJmYxX9/bjor36ukpjVAfrqb5kCYioPtgFlX+e09jTS0h4ifVhiMGBRleclJc5GX7krROxDD3Ge01vOVUk6gBpigtQ4rpf4KfJjicxOjRCAco8Yqn3fbc1s7v9heePxErj9nNkVZHmzy5VXQ/xBzM3Cy1rq2+x1KqcrEnZIQw4/WmjpfiPZQlIUleSwsyaOmNch1q8rY3xzEpuBHZ83i7HlFTM1L597XdhGIxPA4bQQjBlFDc8WiaRIORX+iAFrriFLqPa112LodVUrF+n+oEIfXHopa/ViEm9eU8+G+ZgC+dsoUrjpzOgWZHimdJzr1dw35j8Axfdz316N5UaVUjlJqlVJqu1Jqm1Lqk0qpPKXUy0qpXdbvXOtYpZS6Tym1WylVppQ6Ke55LreO36WUujyu/RNKqc3WY+5T8l+8OApaa2pbzXDYYW9DO1c/tpGqpgBOu+InF8zl7HlFACwsyePqM2aQn+7GF4ySn+Hm1vPncG7pxFS9BTEy1CilMgC01md3NCqlioBwn48SYgDarHDY7A/zoyfLOsPhdz5bwjVfmElhllfCoeiizyuIWusf93Pf9Uf5uvcCf9daL1FKuYA04EbgVa31z5VSy4BlwPXAOcAM6+cU4H7gFKVUHnALsABzUvf7Sqm1Wusm65grgLeB54GzgReO8pzFGKS1pqY1SCB86ALOtupWbnjqUF3ln140jxOKc7o8ruMqo9NuozDLg8uRmPk8vW3aLRPHRyat9Tl93OUDzkvmuYjRxReMUO8LcbAtxHWryvi4wY9NwQ+/MJOvnXoMOWkysiF66vNTSynlir/yppT6nFLqh0qpvjqxAVFKZWFOun4IQGsd1lo3Y67We9Q67FHgIuvvC4E/atPbQI5SagLwReBlrXWjFQpfBs627svSWv9La60xr4R2PJcQA2YYPcPhB3ub+OGTm2gNRsnxOvnVJcf3CIcd3E47E3O8CQ2H3TftXr62nHXb6xLyeiKx+upzgUVaa/mXKo5IqxUO9zcHuOqxjXzc4MdhU9x83hz+7VNTJRyKPvX3yfUekAOglLoWuB1zcco1SqmfH8VrlgD1wP8ppT5USv1BKZUOFGqtqwGs3x2XQSYB8XMeq6y2/tqremnvQSl1hVJqg1JqQ319/VG8JTHa9BYO39h5qK5yYVb/dZUzkrBSWeqhjjr99bl3dD9Y+i9xOC2BCAd9ISrq27h65UZqWoN4HDbuuHg+l55cTJZHNugXfesvINqtK3MAlwJnaq1/ijnke+5RvKYDOAm4X2t9ItCOOZzcl94+YfURtPds1PpBrfUCrfWC8ePH93/WYswwDE11a5BgXCmpZ8uqWfHMViIxzTH5ady39ESK83ovK5WT5qIgK/GTveM37e4g9VBHtP763C91P1j6L9GfFn+EhrYQ5Qda+P7jm2hsD5PhdvDN06by5IYqzrpnPZc9+LaMOIg+9RcQW5VS86y/DwIdhWQdh3nc4VQBVVrrd6zbqzADY601PIz1uy7u+OK4x08GDhymfXIv7UIcVszQHGgJELLCodaav76zj1+9vBMNHDfBrKs8PrNn3WSlFOMz3UlbqSz1UEedRPW5Yoxpag/T0B7ivY8bufbJMtpCUfLSXfzHZ6bxTFk1De0hmZYiDqu/Tuc7wF+UUn/EDGsblFIPA28CPzvSF9Ra1wCVSqlZVtOZwFZgLdCxEvlyYI3191rg69Zq5lOBFmsI+kXgLKVUrrXi+SzgRes+n1LqVGs+z9fjnkuIPsUMTXVLgHDULFhh1lWu4A9vmnWVP3FMLr9YcnyvdZPtNkVRlofMJA7ZSD3UUSchfa4YWxrbwzT5w7yxs56bnt5CMGowIdvDb796Ev/c04DLYZNpKWJA+lvF3LGlzFnATGAT5tW5a6xFJUfjvzE7QhdQAXwDM6w+oZT6FrAPs+QUmKuQzwV2A37rWLTWjUqp2zDn7QCs0Fp3FLv9T+ARzPk7LyArmMVhRGMG1VZlATDD4i9e2sGL5eY2oJ+dOZ4bzpnd64KTRK9U7svpswtYgTkXsarJz2RZxTyiJbjPFWNAQ1uIlkCE5zdX86uXd2JoOCY/jXuXnsj8Sdnsbw6Q0+0LrkxLEX3ptxaz1jpGAgKW1noj5vY03Z3Zy7Ea+F4fz/Mw8HAv7RuAeT0fIURP3cNhOGpw27NbeWuPWWHgvNIJXH3mjF4XnHicdgpTWFNZ6qGOLonqc8XoV+8L4QtGeGJDJb97w7wiOKsok3svNRfT2Wyqs5Z8muvQR79MSxF96W+bmwyl1AqlVLlSqkUpVa+Uelsp9e9JPD8hEqp7OGwPRbl+dVlnOPzaKVP4wed7D4cZHgcTpKayGCLS54ojVecL0hoI89CbH3WGwxOn5PC7r53ErKLMztJ5Mi1FDEZ/VxD/AjyNud/gJUA6sBL4sVJqptb6xiScnxAJE4kZnQXrAZr8YZat3syuujYA/vOzJXxlQXGvj81Nc5ErZfPE0JI+VwyK1pp6X4jWYIT/eXU3azaZ6zFPm57PXUtKmZTT9cqgTEsRg6HMEdxe7lBqk9b6+Ljb72mtT1ZK2YCtWuvZyTrJZFiwYIHesGFDqk9DJEk4aobDqGGGw466ylVNAWwKrvviLM6aW9TjcUopxmW4kroYRSSOUup9rXVv012S7mj6XOm/xp6O+vAt/jB3/n0Hr1orkb84t5DbvzyPcRmewzyDGOkS3X/1N6u+XSn1aeskzgcaAbTWBr3vNSjEiNA9HH7c0M5Vj33Ypa5yb+HQblNMyE7uSmUxpkifKwakoz58Y1uI5WvLO8Ph4pMmcefiUgmHYkj0N8T8HeAPSqmZwBbgmwBKqfHA/ybh3MQolqoawqFojJqWIDHDvHIeX1c53aqrfHwvpfOcdhtF2R6cdtmOTiSM9LnisAxDU+sLUu8L8eO/baGsqgWAb5w2lR9+YSYZ8gVWDJF+t7kBFvbSXg/cl8iTEqNbRw1hp1112ax1BSQ0JHYPhxs+bmT52nKCEYPcNCc/v3g+M3opnZfqlcpibJA+VxxORwnQ6pYA16/ezG5rvvRVZ0znu5+bjqdbZSUhjsYRXQ5RSn1jqE9EjB2pqCEcjHQNh2/srOfGp7d0qavcWziUlcpiOJA+V8SsEqD7Gtq5euVGdte1YVNw07nH8b0zJByKoXek42U/GdKzEGNKsmsIdw+Hz5YdYMUzW4kamqlWXeXe9gHLS3dRkJn4mspCDID0uWNYR5WnXbU+rlq5sXO+9E8vmse/nzYVt0PCoRh6fQ4xK6XK+roLKEzM6YixIJmbtXaEQ0NrtNY89m5lZ+m84yZk8rMvz+9ROq+jpnKGu9995IUYUtLnit507NW69UAL16/eTHMggtdp587F8/lS6UQZ3RAJ098nYCHmflxN3doV8M+EnZEY9a5cVMLyteX4w1G8TjuBSKzfzVrve2Unf3jzI9rDMdJddr796Wlc9fmZh32dQDhGTWsQrTWG1jzwRgVPvl8FwIJjcvnJBXPxurp+87bbFIVZHhmuEakgfe4odaR9WEc4fH9vIzc9vYX2cIwsj4N7Lj2Bz80q6NwAW4hE6C8gPgtkWGXxulBKrUvYGYlRbzCbtd73yk7ufW03NgUOm3ml8d7XdgP028H6w1FqW0NorXvUVT595nhuOHd2jxXJslJZpJj0uaPQkfZhHRv5/2NXPbc+s5Vw1GBchovfXHYip5Tky9QXkXD9BcSJwP7e7tBafzUxpyPGioHWEP7Dmx9ZHasZ2mwKoobBH978qM/ONT4chiIxbntuG/+0Suedf/wErjqjZ+k8r8tOYaZHvpGLVJI+dxQ6kj6sY6/Wl7bWcMcL24kZmkk5Xu7/fydROrnnNlxCJEJ/l0r+D3hRKXWTUko2VhIp0R6O0T2z2ZTZ3uvxoUPhsC0U5fqnNneGw6+dMoXvn9kzHGZ6nBRlSTgUKSd97ig02D6sIxyu/qCK25/bRszQlIxP55FvnCzhUCRVf/sgPqGUeg5YDmxQSv0JMOLu/1USzk+Mcekuc45ifAdraLO9u7ZQlHqfGQ6b/OEu+4R99/RjWfKJyT0ek5fuIidNaiqL1JM+d3QaTB8Wisaobg7wp7f38tCbHwMwZ0IWD/zbJyjOG/pFfEL053CTrSJAO+AGMrv9CJFw3/70NAxtDskY2rB+m+3xfMEIddaClJrWYJd9wpadPatHOFRKUZDlkXAohhvpc0eZgfZhwYgZDu9ft6czHJ48NZdHvnmyhEOREv1tc3M28CtgLXCS1joxm9QJ0Y+OOTr9rQBsDUY46AsB8NHBdq5fXcbBtjAuh43l5x3Hp44d1+U5ZaWyGI6kzx2dBtKHBSMx9jcF+OVLO3h+Sw1gLqa7d+mJZKfJbAORGkpr3fsdSv0D+I7Wujy5p5QaCxYs0Bs2bEj1aYhBaglEaGgzw2GPuspfnsfx3ebsyEplEU8p9b7WekGqzwOOrs+V/mvkCoRj7Gv0c/vzW1m/8yAA55VO4M7FpaTLXqyiH4nuv/qbg/iZRL2oEEOhxR+hod0Mh93rKt+5uJTpBRldjpeVymI4kz537PGHo3x80M/yNVvYsNfc/vKyhcXcev5c3DLCIVJMvp6IEanZH6axPQzAuh31/Oz5bUQNTVGWh7uWzO9RlSXT42Rchkv2DhNCDAvtoSh76ttYtnozW6tbAbjysyVce9YsHDLCIYYBCYhiSKzbXscD6yuobPJT3M/G10MhPhw+W3aAe17ehQam5qdx15JSxmW4uxyfn+6WeTxCiGGjLRRlR00r164qo6K+HQVc+8VZfOezx8oIhxg2JCCKo7Zuex3L15bjtCtyvE7qfEGWry1nBQx5SGxqD9PkD6O15q/v7ovbCsKsq5wVV1dZKUVBplvm8Qghhg1fMMLmqhauXVXG/uYAdpviJxfM5WunTJERDjGsyCenOGoPrK/AaVekucz/nNJcDvzhKA+srxjSgNjYHqbZH8bQmt+9sYdV75tFJ06emsutF8zFGzdnx2GzUZDllpXKQoghd6QjJq3BCBs+buTaVWU0tIVxO2zcubiUi06clISzFmJwJCCKo1bZ5CfH23UI1+u0U9U0dLt0NLSFaAlEiMYMfvHSTl7aatZV/tys8Sw7p2tdZZfDRlGWR+bxCCGG3JGOmLT4I7y1p55lqw/ttHDfZSdy5nGFyTt5IQZBPkHFUSvOTSMQ6Vo2KhCJ9VgocqQOWuEwFIlxy9qtneHw/OMncOO5x3UJh2kuBxOzvRIOhRAJET9iopT522lXPLC+os/HNPvDvLKthh8+UUZrMEqO18lDl58s4VAMa/IpKo7alYtKiMQ0/nAUrc3fkZjmykUlR/3c9b4QrYEIbaEo163ezL8qzLrK/3Zqz7rKWV4nRdmyjY0QInEqm/xdprNA/yMmje1hntl0gGVPbSYQiVGY6ebP3z6FU4/NT8bpCnHEZIhZHLXTZxewAvObdVWTn8lDtIq5zhekLRilsT3MstWb2V3fd13l/Aw32V5ZqSyESKzi3DTqfMHOOdfQ94hJQ1uIJzdUcteLOzA0FOd5eeQbJ3PseKmcKIY/CYhiSJw+u2DIFqRoran3hWgLRalpCXau9rMpuO7s2Zw159CwjE0pCrLcXTprIYRIlCsXlbB8bTn+cBSv004gEut1xORgW4hH3vqI37y+B4CZhRk88o2FTMzxpuK0hRi0lA0xK6XsSqkPlVLPWrenKaXeUUrtUko9rpRyWe1u6/Zu6/6pcc9xg9W+Qyn1xbj2s6223UqpZcl+b+LIaa2ps8LhRwfb+e+VH7K/OYDLYWPFhXO7hEOHzcaEHI+EQyFE0pw+u4AVF8ylINNDSyBCQaaHFRfM7fIFua41yP+8uqszHB4/OZvH/uNUCYdiREnlJ+vVwDYgy7p9J3CP1nqlUup3wLeA+63fTVrr6UqppdZxlyql5gBLgbnAROAVpVRH9fP/Bb4AVAHvKaXWaq23JuuNiSPTEQ7bQ1G2Hmjlhqc347NW+93+5XmUxtVVlpXKQohU6W/EpKY1wF0v7OCpD81tuD51bD4P/tsnyPDIFBgxsqTk01UpNRn4EvAH67YCzgBWWYc8Clxk/X2hdRvr/jOt4y8EVmqtQ1rrj4DdwELrZ7fWukJrHQZWWseKYUxrTW2rGQ7f+7iRHz25CV8wSm6ak3suPaFLOEx3y0plIcTworXmQLOfW9aUd4bDs+YU8vC/nyzhUIxIqfqE/TVwHWBYt/OBZq111LpdBXTsHDoJqASw7m+xju9s7/aYvtp7UEpdoZTaoJTaUF9ff7TvSRwhrTU1rUH84SjrdtRx09NbCEYNirI83Lf0RKYXZHQem+11UpglK5WFkP5r+NBas6/Rz7VPlvFiubkN1+KTJnH/106SzfrFiJX0gKiUOg+o01q/H9/cy6H6MPcNtr1no9YPaq0XaK0XjB8/vp+zFoliGJrqliCBcIw1Gw9w27PbiBqaaePSue+yE5iUe2jOTn6Gm/xudZaFGKuk/xoetNbsqW/j6pUbeWuPuQ3XN0+byt1LSrHLKIcYwVIxB/E04AKl1LmAB3MO4q+BHKWUw7pKOBk4YB1fBRQDVUopB5ANNMa1d4h/TF/tYhgxDE11a5BgOMpf3tnHw299DMCcCVnccfE8Mq1hGVmpLIQYjgxDs6PWx/cf38iOGh8A13xhJledOSPFZybE0Uv61xut9Q1a68la66mYi0xe01p/DXgdWGIddjmwxvp7rXUb6/7XtNbaal9qrXKeBswA3gXeA2ZYq6Jd1musTcJbE4MQs8JhIBzlt+v2dIbDk6fmcvdXSjvDoaxUFkIMR4ahKdvfwnf+/D47anzYFNx6/lxKJ2Vz2YNv8+k7X+OyB99m3fa6VJ+qEEdkOH3qXg+sVEr9FPgQeMhqfwj4k1JqN+aVw6UAWutypdQTwFYgCnxPax0DUEr9F/AiYAce1lqXJ/WdiH7FDE11SwB/KMrdL+3k5T7qKruddgoz3bIYRQiRcOu21/HA+goqm/wUH2az/5ih2bC3kasf20hNaxCnXXHX4lJy01xHVKdZiOFImRfjxIIFC/SGDRtSfRqjXkc49AUi/OTZrbxd0QjABcdP5L/PmN5ZOi/d7aAg0425YF2IxFBKva+1XpDq8zha0n8dnXXb6zqDXfzm1933NwSzD3tzdz0/eHwTje1hPE4bv7nsRD4/p4jLHny7R5UVfzhKQaaHx644NdlvS4xyie6/5NKMSJpozOBAc4DG9jDXrd7cGQ6/fuoxXH3moXDYsVJZwqEQIhkeWF+B065IczlQyvzttCseWF/R5bhozOCl8hq+95cPaWwPk+F28Mg3FvL5OUXA4Os0CzGcDachZjGKRWMG1S1BaluDXL+6jD317QD81+eO5eKTzLrKSinyM1xkyZ5hQogkqmzyk9Otlnv3YBeNGazZeICbnt5MMGqQl+7i0W8sZP7k7M5jBlOnWYjhTq4gioSLWOGwstHP1Ss3sqe+HZuCG86Z3RkObUpRlOWRcCiESLri3DQCkViXtvhgF4kZ/PXdfVy/uoxg1GBCtocnrzy1SzgEs05zJKbxh6Nobf7urU6zECOBBESRUJGYQXVzkJ21vi51lX960Ty+YNVVdtptTMzx4nXJhrJCiOTrL9iFowa/X1/BrWvLO/doXf2fn+LYgswezzOQOs1CjBQyxCwSJhw1qGkJsqmqiRuf3mLWVXbb+dlF8zu/ebuddoqyPJ3zD4UQItlOn13ACsy5iFVNfiZbq5g/OT2fe17ewf1vmHMR50zI4s/fWkhePxv291enWYiRRAKiSIiOcPivioPcsqacYNQgN83JXYtLOdYqnZfhdjBeVioLIYaB7sEuEI6y4pmt/OWdfYC5R+v/SV1lMYZIQBRDLhSNUdMS5JWttdzxwnaihmZCtoe7Fpd2ls7LSXORl+5K8ZkKIUTPPRAv/+QxvLClhjWbzCJcp88az+/+3yekrrIYUyQgiiHVEQ6f+mA/9726Cw2UjEvnzsXzyc8wrxaOy3B1VkoRQohUit8DMcfrpLrFz/ef2EgwYgBw/vETuOeSE2TDfjHmSEAUQ2Ld9jruX7eHjxvaUMpGTWsQ6FpX2W5TFGR6ZDGKEGLYiN8DMRozqPeFO8Ph/ztlCisunIdN5kiLMUgCojhq67bX8eM1W1BoQlGD5kAYgJmFGdz9lVK8TjtOu43CLA8uh3wLF0IMHx17IEaiBnsb2wlY4TDT4+C2i+bJHGkxZklAFEftt+v2oNA0+6P4QlEA0px2PA47Xqcdj9NOoaxUFkIMQ8W5aexv8lPrCxGKmuEwL93JrMIsCYdiTJPLOeKoBMIxPm5oo7E90hkOs71OJua4qfMFyXA7mJAt4VAIMTydN38C+1uCneFwfIaLDLdTNrcWY55cQRRHzB+OsqeujfZQjPawWYUgL81JfrqLYNRgcm4aBVmeFJ+lEEL0blNVM/e+touYoVGYVw6nF2Ry5aIS2ctQjHkSEMURaQ9F2V7TynWryjrDYY7XSX6Gi2DEQAP/9bnpqT1JIYTow9sVDVz5p/dpCURIc9n5/dcXcNr0cak+LSGGDQmIYtDaQlHKKpv50apNHGgOYrcplpw0iR01bdS2BijOS+e7px8r38CFEMPSa9tq+e/HPqQ9HCPb6+TRb5zMCVNyU31aQgwrEhDFoLSForxT0cB1q8poaA/jdti45fw5nFqSP2QrlbtvWivDPUKIobJ2435+tKqMcNSgINPNX759CjMKe9ZVFmKsk0UqYsB8wQivbavl6pUbaWgPk+62c9fiUk4tycfjtDMxxzsk4XD52nLqfEFyvE7qfEGWry1n3fa6IXoXQoix6q/v7OUHT2wiHDUozvXy1Hc/JeFQiD5IQBQD0hqM8FxZNdeuKqMtFCUv3cWvLzmB+ZOzyfAM3Url+E1rlTJ/O+2KB9ZXDMG7EEKMVb97Yw83Pb2FmKGZWZjBU989jcm5aak+LSGGLRliFofVEojw5IZK7nhhO7GOuspLSpmU4yU3zUXuENZU7ti0Np7XaaeqyT9kryGEGDu01tz94g5+u24PACcU5/DoNxeS7ZVyn0L0RwKi6FeLP8LDb1Vw36u7u9RVHpfpYXymmwz30P4nVJybRp0vSJrr0PMGIjH5pi+EGDStNTev2cKf394HwGnT8/n91xd06V+EEL2TIWbRp6b2EPe8soN7rXA4b2IW91x6PAVZHiZke4Y8HAJcuVfJpCMAACAASURBVKiESEzjD0fR2vwdiWnZtFYIMSjRmMHVKzd2hsOz5xbxf/++UMKhEAMk/6eIHu57ZScPrN9De9jobFs4LY9bz59DpsdJUbYHpz0x3y1On13ACsy5iFVNfibLKmYhxCDc98pOHly/h7a4/uuSBZO54+JSqegkxCBIQBRd3PfKTu55ZVeP9uMKMshNd1GQmfiyeafPLpBAKIQYtL76r0lS7lOIQZMhZtHFA+vNidzaum1TYFeweuN+irKkkxVCDF8Prt+D5lD/5bApnHbFQ299nMKzEmJkkoAoOn10sI32sNHZudptCodNYbdBIGKglIRDIcTwVNsS7DKsbIZDG+j/z96dx9dV33f+f33u1dVmybtlGy/YBoMNNGxmN8TFJHG6AJ1mgaSBsBSaSSd0Op1C5pdJprTJI2nnkQy0nQwECJCmcUiaTtyUhMF2HGPAYEOAYGxsYxvkBUu2ZGu9++f3xz0SukKWtdyru+j95KGH7v2ec8/5ythHn/M93+/n47RFkyz/xnpufHCzcqqKDJECRAFg+6E2bntsa+/7iiA4DJnhGBMqwwXsnYjIie070sl/+PZzve8jQXCYSjuJdOZJiBLviwyPAkTh1++0cttjW9jT3IkZZMYJHfc0KXfSDrcvX1jgXoqIvN/2Q2187P88x4Fj3cFNLWCQ9jTxVGZEcdqESiXeFxmmMQ8QzWyemf3SzLab2TYzuyton2pmT5vZruD7lKDdzOx+M9ttZq+Z2QV9jnVzsP8uM7u5T/uFZvab4DP3m56NntBzbx3htse2cvBYlKqKEF+9/hxuvWIBNZEwKTdqImHuuvp0vnDNGYXuqohIlpf2tfDJB57nSEecuqoKfnDHpfzZysXURMIk02AGM+oizJpU0/sZJd4XGZpCrGJOAv/F3V82s3rgJTN7GvgssM7dv25m9wD3AHcDHwUWB1+XAN8GLjGzqcBXgGVk5iS/ZGZr3L012OcOYDPwJLAK+PkY/oxFz91Zt/0wf/bDV+mIJamrquBrf3AOFy2cyg0Xzee///7Zhe6iiMgJPbOzmTu+9xLdiRRTaiN877ZLOGfOJC5aMLX3hvbGBzfT1B7N+pwS74sMzZiPILr7IXd/OXjdDmwH5gDXAY8Fuz0GXB+8vg543DM2A5PNbDbwEeBpd28JgsKngVXBtonu/ry7O/B4n2MJmeDwX399gM//86976yp/65Pnctlp05k1sZqQViqLSIFs2NHEjQ9uHnRRyZO/OcStj22hO5Fi9qRq/uVzl3POnEnv20+J90VGrqBzEM1sAXA+8AIw090PQSaIBHoS4c0BGvt8bH/QNlj7/gHahUxw+L3n3+a//vg1Ysk0sydVc/8N53HxgmnMqK/SSmURKZgNO5r48pptNLVHT7io5IdbGvlP//xrEiln0fQJ/OQ/Xs6iGXUDHm/FkgbuvfZsGuqrOd6doKG+mnuvPVt5VkWGoGCJss2sDvgX4M/cvW2QwGSgDT6C9oH6cAeZR9HMnz//ZF0uee7OP6zfzTef3pmpqzxjAn/3sQ+wZNZEJpygbN6GHU08sHEPja1dzFNVE5GiUU7Xr57rzMvvtGLArEnVmBmptHPoWBe3PLaFiuB3RCKduZzPn1rLj/7kMqbVVQ16bCXeFxmZggSIZhYhExx+391/EjQfNrPZ7n4oeEzcc8u4H5jX5+NzgYNB+4p+7RuC9rkD7P8+7v4g8CDAsmXLBgwiS839a3fy0Ka9dMZTTKgMc/vyhXxg7mS+vWE32w610xFLApm6yt/4ww9wWkMd1ZGBU9j03M1HwpZ1N38v6IIrUmDlcv3qe51Ju2PAwWNRptSmONIRIxX8ZAl/70cMG3TGEnz6O5vpiKd08yqSB4VYxWzAw8B2d/9mn01rgJ6VyDcDP+3TflOwmvlS4HjwCPop4MNmNiVY8fxh4KlgW7uZXRqc66Y+xypr96/dyX3rd9OdSFERykzG/tbaXfzJ97awZV9rb3AIsGz+ZM6cVX/C4BAy9ZAj4UxqCKWIEJF86Hud8bQTTznxVJrD7e8Fh/2lHFo7E+xr6VJ+Q5E8KcQcxCuAzwBXm9krwdfvAF8HPmRmu4APBe8hswp5D7Ab+A7wHwHcvQX4a2BL8HVv0AbwOeCh4DNvMQ5WMG/Y0cR963eTSjuptJNOQ0UohAPRFKT77f+9F95h064jgx6zsbWLmn4BpFJEiEguNbZ2kUyl2fFuG8lhjIM6kEq7bl5F8mTMHzG7+yYGnicIsHKA/R34/AmO9QjwyADtW4FzRtHNktLziCYVzM1JO6TdSaRTJ/xM2jN37oM9kpk3pZam9ii1le/9NVGKCBHJpbrKMLubO0mmh/eU3IHK8HtjHLp5FcktVVIpAz2PaIaSnabvLie7mCpFhIjkS086m7eODD847DG9zwIV3byK5FbBVjHL6PWs/HtxXwtVYcOME6zXfk/P5kjYTnoxXbGkgXvJBKD7W7uYq4ngIpIDfRemAFSEINl/HswQxJIp3CvoTqR08yqSYwoQS1TPBTaeTGVG9xJDvwMPG0ysiQzpYqoUESKSa30XplSGQyRTjoe8d5rMYEKWqa1cETY6YymOdyd08yqSBwoQS9CGHU18YfWv6YgmT5j4sb++g4tmUF0R4us/386Xfvq6UkSIyJi5f+1ONu85ipMJ9qorQsRT6RM+/Oi5doUNIuEQ7nCsO8Epk6qpqAnxzN1Xj13nRcYRBYhFrn+i6ssWTeXhZ/fSFn0vZc3J7rkrw4YDiZRTGTZmT6rmwLEoEGPO5GrlNxSRMXH/2p18c+2u3vdph67E+58tV0eM8+dN5c6rFvHAxj38+p3WzM2wBVNp0nC4Pcb586aMXedFxhktUiliA5Wd+tbaXRzvTp78w4FwKLOiOZlywgazJ9VwpCNOOGSEzTjSEVeKCBHJu/+8+uWs4HAwnqb3xnXn4TZmTqzCg+wMPf9pzqFIfmkEsYj1nafTHk3wTkvXSUcLe4Qt8/gmFApRX11BezTJrIlVTKyJcPB4N+FgyXM8lbl7V4oIEcm1nicgr+4/Rlf8xGm3+ounnNrKit7MCRXhEKdMrqa5PUY8lSZsxmkzJuiJh0geKUAsYo2tmSoBPcHhcDJBpDzzZek0NZEwixvqaWqPApncYcm0g7+XR0wpIkQkl/quVB5OcAjvTZupiYSprAiRSDmRsLFw+oTeFct3r1qS+06LSC89Yi5i86bU0p1I0dweG1Zw2KNncndjazezJlb25jScXleZqbjizvS6SuU3FJGc6llId+BYF+8ejw778z0L77oTKRY31HPvtWfTUF/N8e4EDfXV3Hvt2Ro9FMkzjSAWofvX7uTv1+9igLnbgzID7xtIBhGiAet2NHP/Def35jRc3FCHu9MZT9FQX61VzCKSEz0jh13xFBUhI5Yc3ughZK5ZfW9clW5LZOwpQCwy/Vf5DYf7wO/DIeiMp3SRFZG8e2DjHjqiCZJpH1Hya4BIRUg3riIFpgCxyDy0aW9OjmNkRhTDZmBQGwnn5LgiIoPZdvB4Vhqu4ZpYFeb+Gy9QYChSYAoQi8xoLqyQWbmcdqgIajOnPfN1+/KFOeqhiMjANuxoGtU1bO7kav7m+t9ScChSBBQgFokNO5r4+s+3j/o4FSEjlXZqImE64ykmVIa5fflCPjB3Mjc+uLk34bYe3YhILm3Y0cR//fGrw/7crIlVVFaEtfBEpMgoQCwCPZO6Dx7rHvWx0g6LG+r4xX/+4PuOHwlbb8JtVU4RkZHqX+Gpp+LJkY74sI5TXQELp9fphlWkCClALJD71+7koU17aQ/qKeeCAZNrI9zz0aVZ7X0TbgO9CWgf2LhHF2URGZa+N5yxRJLn9xzl+T1Hh32cPzhvNt+64YI89FBEckEBYgHcv3Yn963fjac9Z8EhwJJZ9dy9asn7gr6ehNt9qXKKiIxEzw1nc1uUttjwU9gAXLZomoJDkSKnRNkF8NCmveDOCDNAZDGDabUVLJ1VT3ssMyq4YUdT1j49Cbf7UuUUERmJxtYukqn0iIPD+qqwkvKLlAAFiAXQEUuSGsXQoZHJbfjoZy/iuzdfxITqSuKpdNb8wr5B4p1XLeqtouLuqpwiIiNWX1XB2y0jmy9dGTL+XilsREqCAsQxdv/anSMqm9dXJGwsnlHHiiUNWfMLzTLfI2HjgY17evdfsaRBpapEZFQ27Gjio/9rI9vfbR/xMR68aZmuOyIlQnMQx8hIy+f1Vxk2Zk2q6V2IMtT5haqiIiIj0ZOCa2dTx6hubv/8msW6BomUEAWIY+DGB57j+b2toz5OOASLpk/gno8u7b3QzptSS1N7tHeFMmh+oYjkRs+K5QOtXaMKDpfOqucL15yRu46JSN7pEXOe3b92Z06Cw3lTanj4pov4xX/+YNZduOYXiki+PLBxD23d8VHNma4KGx2x0VWIEpGxpxHEPMtFbeV5U2p45u6rB9y2YkkD95K5kO9v7WKuqqSISI7sPNzGse6RB3cGpBw90RApQQoQ82y0tZUB/vq6cwbdrvmFIpIP7aMIDiGThiscMj3REClBesScRzc+8Nyoj1FbGVbwJyJj7v61O4mPMuVCJBzi8ytO0zVMpARpBDFPcrUw5U905y0iY+z+tTv55tpdI/58fVWYc+ZM1nQXkRJWtgGima0C7gPCwEPu/vWxOveGHU2jDg5DBhMqQ1r5JyJjbqTBYSQE37npIgWFImWgLANEMwsD/wh8CNgPbDGzNe7+xlic/7OPbhnxZ0MGZ58yia54kob66hz2SkTk5Bbd8+8j/qyCQ5HyUa5zEC8Gdrv7HnePA6uB6wrcpyGprggpVY2IFMxIc/kvnVWv4FCkjJTlCCIwB2js834/cEmB+jIkBlRWhKitqqChvlpzd0SkZETCxt2rlhS6GyKSQ+UaINoAbe9bjmdmdwB3AMyfPz/ffTohA86cWZdVIUVEZDDFcv0C+E+/fbquXSJlplwDxP3AvD7v5wIH++/k7g8CDwIsW7ZsdPkcMsfjW0/vHNZnls6q5+5VS3RxFZFhyfX1C+CVxmPD2t+A6ogW04mUo3INELcAi81sIXAAuAH4VD5PmEo7X1nzOv+0+Z2T7hsC5k6t5d5rz1ZgKCJF4dndR/jjx7cOad8QEA4baYfPffC0/HZMRAqiLBepuHsS+FPgKWA78IS7b8vX+eLJNHet/nVvcPgfzp9zwn3rq8JcsmiagkMRKRpPbXuXW767ha54ijmTa0643x+cN5uJ1RVYyKiJhLnr6tM1eihSpsp1BBF3fxJ4Mt/n6Yon+dw/vcyvdjYDcOsVC/nS7y7lm588L9+nFhEZtR+/tJ+//PGrpB0WzZjAP912CacMEiSKyPhQtgHiWDjWFefWR7fw8juZeTv/9SNn8h9XnIbZQGtkRESKyyOb9nLvzzLpYX9rziQeveUiptVVFbhXIlIMFCCO0OG2KJ95+AV2Hu7ADP76unP4o0tPLXS3REROyt25b90u/ldQMeWShVN56OZl1FdHCtwzESkWChBHYN+RTv7ooRfYf6ybSNj41ifP4/c+cEqhuyUiclLptHPvz97g0ef2AXDN0gb+4VMXUB0JF7ZjIlJUFCAO07aDx7n5kRc50hGnJhLmgc9cyFVnzCh0t0RETiqZSvOX//IaP3n5AADXn3cKf/fxc4mEy3K9ooiMggLEYUim0vzpP/+aIx1xJtdEeOSWi7hg/pRCd0tEZEj+4Ze7e4PDmy47lf/x+2cTCmnOtIi8n24bh6EiHOLvbzyf0xvqeOJPLlNwKCIl5bblC/nA3El84erT+atrFRyKyIlpBHGYzpkziaf+7CrCurCKSImpr47wxJ2Xab6hiJyURhBHQMGhiJQqBYciMhQKEEVEREQkiwJEEREREcmiAFFEREREsihAFBEREZEsChBFREREJIsCRBERERHJogBRRERERLIoQBQRERGRLObuhe5DUTCzZuDtPBx6OnAkD8dVH0qvD4U+v/rw/j6c6u4zCtyXUdP1S31QH8ZVH8bk+qUAMc/MbKu7L1Mf1IdCn199KK4+lIJi+HNSH9QH9aEw59cjZhERERHJogBRRERERLIoQMy/BwvdAdSHHoXuQ6HPD+pDj2LoQykohj8n9SFDfchQH8bo/JqDKCXPzAx4Bviqu/88aPsEcCtwEPg9oMndz+nzmXOB/wPUAfuAT7t7W7DtA8ADwEQgDVzk7lEzuxH4b4AHx/0jdy/0ZGkRKWG6fkmxUoAoZcHMzgF+BJwPhIFXgFXAHKADeLzfBXYL8Bfu/iszuxVY6O7/3cwqgJeBz7j7q2Y2DTgGGJmL6lnufsTM/hbocvf/MXY/pYiUI12/pBjpEbOUBXd/Hfg34G7gK2QuqG+5+0agZYCPnAlsDF4/Dfxh8PrDwGvu/mpw3KPuniJzgTVgQnDHP5HMBVdEZFR0/ZJiVFHoDojk0F+RuXuOAydLAfA6cC3wU+DjwLyg/QzAzewpYAaw2t3/1t0TZvY54DdAJ7AL+HzufwQRGad0/ZKiohFEKRvu3gn8EPieu8dOsvutwOfN7CWgnsxFGTI3TcuBTwff/8DMVppZBPgcmUdApwCvAV/M/U8hIuORrl9SbDSCKOUmHXwNyt13kHkcg5mdAfxusGk/8Kueydtm9iRwAdAWfO6toP0J4J5cd15ExjVdv6RoaARRxiUzawi+h4AvkVkRCPAU8AEzqw0mfH8QeAM4AJxlZj1ljT4EbB/bXouI6PolY0MBopQ1M/sB8DxwppntN7Pbgk03mtlOYAeZydrfBXD3VuCbwBYyKwlfdvd/d/eDZOYIbTSz14DzgK+N7U8jIuOJrl9SSEpzIyIiIiJZNIIoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkUYAoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkUYAoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkqSh0B4rF9OnTfcGCBYXuhoiMoZdeeumIu88odD9GS9cvkfEn39cvBYiBBQsWsHXr1kJ3Q0TGkJm9Xeg+5IKuXyLjT76vX3rELCIiIiJZFCCKiIiISJa8Bohmts/MfmNmr5jZ1qBtqpk9bWa7gu9TgnYzs/vNbLeZvWZmF/Q5zs3B/rvM7OY+7RcGx98dfNYGO4eIiIiInNxYjCD+truf5+7Lgvf3AOvcfTGwLngP8FFgcfB1B/BtyAR7wFeAS4CLga/0Cfi+Hezb87lVJzmHiIiIiJxEIR4xXwc8Frx+DLi+T/vjnrEZmGxms4GPAE+7e4u7twJPA6uCbRPd/Xl3d+Dxfsca6BwiIiIichL5DhAd+H9m9pKZ3RG0zXT3QwDB94agfQ7Q2Oez+4O2wdr3D9A+2DlERERE5CTynebmCnc/aGYNwNNmtmOQfW2ANh9B+5AFQesdAPPnzx/OR0VECkrXLxHJp7yOILr7weB7E/CvZOYQHg4eDxN8bwp23w/M6/PxucDBk7TPHaCdQc7Rv38Puvsyd182Y0bJ58oVkXFE16/C2bCjiRsf3Mzyb6znxgc3s2HHgL9iREpa3gJEM5tgZvU9r4EPA68Da4Celcg3Az8NXq8BbgpWM18KHA8eDz8FfNjMpgSLUz4MPBVsazezS4PVyzf1O9ZA5xARERmxDTua+PKabTS1R5lcE6GpPcqX12xTkChlJ5+PmGcC/xpknqkA/tndf2FmW4AnzOw24B3g48H+TwK/A+wGuoBbANy9xcz+GtgS7Hevu7cErz8HPArUAD8PvgC+foJziIiIjNgDG/cQCRu1lZlfn7WVFXTFkzywcQ8rlmi6u5SPvAWI7r4HOHeA9qPAygHaHfj8CY71CPDIAO1bgXOGeg4REZHRaGztYnJNJKutJhJmf2tXgXokkh+qpCIiIjJE86bU0p1IZbV1J1LMnVJboB6J5IcCRBERkSG686pFJFJOVzyJe+Z7IuXcedWiQndNJKcUIIqIiAzRiiUN3Hvt2TTUV3O8O0FDfTX3Xnu25h9K2cl3HkQREZGysmJJgwJCKXsaQRQRERGRLAoQRURERCSLAkQRERERyaIAUURERESyKEAUERERkSwKEEVEREQkiwJEEREREcmiAFFEREREsihAFBEREZEsChBFREREJIsCRBERERHJogBRRERERLIoQBQRERGRLAoQRURERCSLAkQRERERyaIAUURERESyKEAUERERkSwKEEVEREQkiwJEEREREclSUegOiIiIFNqGHU08sHEPja1dzJtSy51XLWLFkoZCd0ukYDSCKCIi49qGHU18ec02mtqjTK6J0NQe5ctrtrFhR1OhuyZSMAoQRURkXHtg4x4iYaO2sgKzzPdI2Hhg455Cd02kYBQgiojIuNbY2kVNJJzVVhMJs7+1q0A9Eik8BYgiIjKuzZtSS3cildXWnUgxd0ptgXokMjh3z/s5FCCKiMi4dudVi0iknK54EvfM90TKufOqRYXumsj7xJNpDh6P5v08ChBFRGRcW7GkgXuvPZuG+mqOdydoqK/m3mvP1ipmKTodsSQHj3WTSKbzfi6luRERkXFvxZIGBYRStNydo51x2roTAITM8n5OBYgiIiIiRSqRStPUHiPWb55svilAFBERESlCXfEkze0xUun8L0rpL+9zEM0sbGa/NrOfBe8XmtkLZrbLzH5oZpVBe1XwfnewfUGfY3wxaH/TzD7Sp31V0LbbzO7p0z7gOURERERKQWtnnHePRwsSHMLYLFK5C9je5/03gG+5+2KgFbgtaL8NaHX304FvBfthZmcBNwBnA6uA/x0EnWHgH4GPAmcBNwb7DnYOERERkaKVSjuHjnfT2hUvaD/yGiCa2Vzgd4GHgvcGXA38ONjlMeD64PV1wXuC7SuD/a8DVrt7zN33AruBi4Ov3e6+x93jwGrgupOcQ0RERKQoRRMpDrR20x0f2/mGA8n3COL/Av4S6FmPPQ045u7J4P1+YE7weg7QCBBsPx7s39ve7zMnah/sHCIiIiJF53hXgkPHoyTT+U9hMxR5CxDN7PeAJnd/qW/zALv6Sbblqn2gPt5hZlvNbGtzc/NAu4iIFCVdv0TKQzrtNLVFOdoZG5MKKUOVzxHEK4BrzWwfmce/V5MZUZxsZj2rp+cCB4PX+4F5AMH2SUBL3/Z+nzlR+5FBzpHF3R9092XuvmzGjBkj/0lFRMaYrl8ipS+WTHHgWDcdseTJdx5jeQsQ3f2L7j7X3ReQWWSy3t0/DfwS+Fiw283AT4PXa4L3BNvXeyaUXgPcEKxyXggsBl4EtgCLgxXLlcE51gSfOdE5RERERAquPZrg4LEoiVRxPFLurxCl9u4G/tzMdpOZL/hw0P4wMC1o/3PgHgB33wY8AbwB/AL4vLungjmGfwo8RWaV9BPBvoOdQ0RERKRg3J3m9hjN7cX1SLm/MUmU7e4bgA3B6z1kViD33ycKfPwEn/8q8NUB2p8EnhygfcBziIiIiBRKoaqijIQqqYiIiIjkWSGrooyEAkQRERGRPGrpjHOswImvh0sBooiIiEgepNJOU3u0KBJfD5cCRBEREZEciyZSNLXFiibx9XApQBQRERHJoeNdCVq64kW9SvlkFCCKiIiI5EA67TR3xOgswsTXw6UAUURERGSUYsnMI+ViTXw9XAoQRUREREahPZrgSEdpP1LuTwGiiIiIyAi4Zx4pd0RL/5FyfwoQRURERIYpkUpzuC1KPFkej5T7U4AoIiIiMgydsUxVlHQZPVLuTwGiiIiIyBC4Oy2dcY53JwrdlbxTgCgiIiJyEslUmqb2GNFE6VVFGQkFiCIiIiKD6I6naGqPkkqX7yPl/hQgioiIiJzAsa44LZ3xQndjzClAFBEREeknlXaa22N0xcsvhc1QKEAUERER6SOaSNHcXj5VUUZCAaKIiIhIoC2a4GiZVUUZCQWIIiIiMu6Vc1WUkVCAKCIiIuNaPJmmqb18q6KMhAJEERERGbfGQ1WUkVCAKCIiIuPOeKqKMhIKEEVERGRcGW9VUUZCAaKIiIiMG+OxKspIKEAUERGRcaG1M05r1/irijISChBFRESkrI33qigjoQBRREREypaqooyMAkQREREpS8e7E7R0qirKSChAFBERkbKSTjtHOmJ0xPRIeaQUIIqIiEjZiCfTHG6L6pHyKClAFBERkbLQEUtyRFVRckIBooiIiJQ0d+doZ5w2VUXJGQWIIiIiUrKSqTSH22PEVBUlpxQgioiISEnqiidpbo+pKkoehPJ1YDOrNrMXzexVM9tmZn8VtC80sxfMbJeZ/dDMKoP2quD97mD7gj7H+mLQ/qaZfaRP+6qgbbeZ3dOnfcBziIiISHlo7Yzz7nGVzMuXvAWIQAy42t3PBc4DVpnZpcA3gG+5+2KgFbgt2P82oNXdTwe+FeyHmZ0F3ACcDawC/reZhc0sDPwj8FHgLODGYF8GOYeIiIiUsFTaOXS8WyXz8ixvAaJndARvI8GXA1cDPw7aHwOuD15fF7wn2L7SzCxoX+3uMXffC+wGLg6+drv7HnePA6uB64LPnOgcIiIiUqKiiRQHWrvpjmu+Yb7lcwSRYKTvFaAJeBp4Czjm7j2ZK/cDc4LXc4BGgGD7cWBa3/Z+nzlR+7RBztG/f3eY2VYz29rc3DyaH1VEZEzp+iXjzfHuBIeOR0mmld9wLOQ1QHT3lLufB8wlM+K3dKDdgu92gm25w9llqwAAIABJREFUah+ofw+6+zJ3XzZjxoyBdhERKUq6fsl4kU47TW1RjnbEVDJvDI3JKmZ3P2ZmG4BLgclmVhGM8M0FDga77QfmAfvNrAKYBLT0ae/R9zMDtR8Z5BwiIiJSIlQVZWAHjnXn/Rz5XMU8w8wmB69rgGuA7cAvgY8Fu90M/DR4vSZ4T7B9vWduFdYANwSrnBcCi4EXgS3A4mDFciWZhSxrgs+c6BwiIiJSAtqjCQ4e61Zw2MeRjhjfWruTmx55Me/nyucI4mzgsWC1cQh4wt1/ZmZvAKvN7G+AXwMPB/s/DHzPzHaTGTm8AcDdt5nZE8AbQBL4vLunAMzsT4GngDDwiLtvC4519wnOISIiIkXM3TnSEac9qqooPdqjCVZvaeQnLx8glhybgDlvAaK7vwacP0D7HjLzEfu3R4GPn+BYXwW+OkD7k8CTQz2HiIiIFK9EKk2TqqL0iiZS/OTlA6ze0khHLLP2dnJNhM9cdip/8Y38nluVVERERKTgVBXlPclUmn//zbv80+a3OdqZyfdYWxnmk8vm8YcXzqGuKsJf5LkPChBFRESkoFo64xxT4mvS7vxyRxOPPLuPQ8ejAETCxvXnzeFTF89nUm1kzPqiAFFEREQKIpV2mtqj4z7xtbvzwt4WHtq0lz3NnQCEDFadM4ubLj2VhonVY94nBYgiIiIy5qKJFE1tsXGf+Po3+4/z0KY9/OZAW2/bB8+YwS1XLGD+1NqC9UsBooiIiIyp410JWrri4zrx9VtNHTz87F4272npbbvw1CncvnwhZ86qL2DPMhQgioiIyJhIp53mjhidseTJdy5TB4518+iz+1i/o6m3zNuSWfXcfuVCLpg/paB960sBooiIiORdLJl5pDxeE18f7YjxT5vf4We/OdS7UvvUqbXcunwhy0+fhtlAlYILRwGiiIiI5FV7NMGRjvH5SHmgJNcN9VV89vIFfOismYRDxRUY9lCAKCIiInkxnquiRBMp/vXXB/jBi+8luZ5UE+HTl8zn2nNPobIib9WOc0IBooiIiORcIpXmcFuU+BiVhisWyVSaJ19/l+89n53k+hPL5vKxC+dSW1kaoVdp9FJERERKRmcsUxUlPY4eKWeSXDfz3ef2cvBYYZNc58IJA0QzuwTY7u5tZlYD3ANcALwBfM3dj49RH0VExgUzuxhwd99iZmcBq4AdQd15kZIw3qqi9CS5fnjTXt7qm+T67FncdFlhklznwmAjiI8A5wav7wO6gG8AK4HvAv8hv10TERk/zOwrwEeBCjN7GrgE2ADcY2bnu/tXC9k/kZNJptI0tceIJsZPVZTXDxznO8/s5TcH3hszu2rxdG69YiHzpxUuyXUuDBYghty9J1HRMne/IHi9ycxeyXO/RETGm48B5wFVwLvA3OAJzt8BLwAKEKVojbeqKG81d/Dwpn5JrudP5rYrF7Jk1sQC9ix3BgsQXzezW9z9u8CrZrbM3bea2RnA+FuOJCKSX0l3TwFdZvaWu7cBuHu3mY2P37pSko51xWnpHB+PlA8e6+bR5/axbvt7Sa7PnFXPHy9fyAWnFk+S61wYLEC8HbjPzL4EHAGeN7NGoDHYJiIiuRM3s1p37wIu7Gk0s0mAAkQpOuOpKkpLZ5zvPf/2+5Jc37J8AVeePr3oklznwgkDxGARymfNrB5YFOy7390Pj1XnRETGkavcPQbg7n0Dwghwc2G6JDKw8VIVpSOaZPWWd/jJyweI9klyffNlp/Lhs2cVbZLrXBg0zY2ZzQfa3P1VM1sAXGlmO9z99bHonIjIeNETHA7QfsTMomPdH5ETaYsmOFrmVVGiiRT/99cH+MGWRtqjpZfkOhcGS3NzD3AnEDOz/wn8BfAs8Fdm9rC7f3OM+igiMt69AcwvdCdkfHPPPFLuiJbvI+VkKs3PX3+Xxze/zdGOzLzKmkgmyfXHl5VOkutcGOwn/QxwFlAL7AMWuXuzmU0gs6JOAaKISI6Y2Z+faBNQN5Z9Eemv3KuipN3Z8GYz3312HweOdQOZJNfXnnsKn75kPpNrKwvcw7E3WICYClbPxYFu4CiAu3eW42RMEZEC+xrwd8BAwzPl/zxLilY5V0Vxd17c18LDz+xjd3MHkEly/eGzZnHz5acys0STXOfCYAHiy2b2z8AEYB3wmJn9AriazOMOERHJnZeB/+vuL/XfYGbKHCFjzt1p6YxzvLs8M9u9fuA4D23ay2v7s5Nc33LFAk6dNqGAPSsOJ0tz83HAgR+Tyep/I/Am8I/575qIyLhyC9Bygm3LxrIjIuVcFWVPcwcPb9rH83uO9rZdMH8yt5dRkutcGCzNTRL4QZ+mZ4MvERHJMXd/c5BtSi8mY6Y7nqKpPdqb769cDJjkemY9t1+5kAvLLMl1Lgy2irkO+EvgD4G5QBx4C/i2uz82Nt0TERkfgoTYXwSuB2YEzU3AT4Gvu/uxQvVNxo9yrIrS0hnne5vf5t9fO0QyCHrnTanhtisXlm2S61wY7BHz94F/BT4CfILMXMTVwJfM7Ex3/29j0D8RkfHiCWA9sMLd3wUws1lkkmT/CPhQAfsmZS6VdprbY3TFyyeFTUc0yQ+3NvIvL+0fd0muc2GwAHGBuz8avP6mmW1x9782s1vILFJRgCgiJSeRStMeTVKEvxoWuPs3+jYEgeI3zOzWAvVJxoFoIkVze/lURTlRkutPXTKf68ZJkutcGCxA7DSz5e6+ycx+n2DytLunTeOxIlJiuuJJ2rqTvSMkE2siBe7R+7xtZn8JPNYz59DMZgKfBRoL2TEpX+VUFeVESa4/fmEmyfWEqvGT5DoXBvvT+hPgITM7A3gduBXAzGagVcwiUgJSaac9mqA9miyF0ZFPAvcAvzKzhqDtMLCGzDQfkZwpp6ooaXd+9WYzj/RLcv37557CH43TJNe5MNgq5teAiwdobwbuz2enRERGozueoj2aoDOeKpmREXdvBe4OvkTyJp5M09Re+lVR3J0t+1p5aNNedjdlJ7m+6fJTmVWmSa7NjNrKcN7PM6LxVjO7xd2/m+vOiIiMVDrttMeStHUnSmG0cEBmtgSYA2x2984+7avc/ReF65mUi45YkiNFUhXlxT0trN7SyKG2bmZPrOGGi+Zx8aKpQ/rstoPHeeiZvbzaJ8n1lYunc2sZJ7mOhEPUV1dQXx0ZkwU2I30g/1eAAkQRKbhoIkV7NElHLFkyo4UDMbMvAJ8HtgMPm9ld7v7TYPPXAAWIMmLFVhXlxT0t3Ld+FxUhY2J1BUc7Y9y3fhd3sXjQIHHvkU4e3rSX5956L8n1+fMnc/vyhSydXX5Jrs2MCVVhJlZHqI7kf9Swr8HyIL52ok3AzPx0R0Tk5Nwzo4Xt0SSx8qn08MfAhe7eYWYLgB+b2QJ3vw+KcdG1lIpkKs3h9lhR/VtZvaWRipBREwQ9NZEw3YkUq7c0DhggHjrezaPPvc3aNw6PiyTXlRUh6qsj1FVVFCwdz2AjiDPJ5EBs7dduwHMnO7CZzQMeB2YBaeBBd7/PzKYCPwQWAPuAT7h7a7Ay+j7gd4Au4LPu/nJwrJuBLwWH/pueRN1mdiHwKFADPAnc5e5+onOcrM8iUtziyTRt0QQd0WRRPCLLsbC7dwC4+z4zW0EmSDwVBYgyQsVaFeVQWzcTq7NDkOpIiHfburPaWjrj/NPmt/lZ/yTXyxdy5eLySnIdMmNCVQX11RVjPlo4kMECxJ8Bde7+Sv8NZrZhCMdOAv/F3V82s3rgJTN7mkzKhnXu/nUzu4fMqr27gY8Ci4OvS4BvA5cEwd5XyNQi9eA4a4KA79vAHcBmMgHiKuDnwTEHOoeIlBh3pzOeoq07UZZ1Yft418zO67nmBiOJvwc8AvxWYbsmpai1M05rV3FWRZk9sYajnbHeEUSAaCLNrIk1QGau5A+3NPIvL+8nmsjMKZ5RV8VNl53KqnPKK8l1VSRMfXUFdZUVhIro5xosQDwFODDQBnf/1MkO7O6HgEPB63Yz205m8vV1wIpgt8eADWSCt+uAxz0ziWizmU02s9nBvk+7ewtAEGSuCoLUie7+fND+OJkSVT8f5BwiUiJ6Elq3RxNFN/qRJ2kga9mluyeBm8zsgcJ0SUpRKVRFueGiedy3fhfdiRTVkRDRRJpk2vnDC+aweksjq198h7YgBc/E6go+dcl8rj9vTtkkuQ6H3hstrKoo/GjhQAYLEL8LPGVmjwF/6+4jntkazKc5H3gBmBkEj7j7oT75vuaQnQx2f9A2WPv+AdoZ5Bz9+3UHmRFI5s+fP8KfTkRyqTOYW1jMv9zy5EHg8YGuue7+bP+ddf0amg07mnhg4x4aW7uYN6WWO69axIolA/5KKAvRRIqmthjJdHGv5L940VTuYjGrtzTybls3M+urOW1GHfet38WRIMl1dSTEJy6cV1ZJrqt7RgurKor+8fhgeRCfMLN/B74MbDWz75G5w+3Z/s2hnMDM6oB/Af7M3dsG+QMZaIOPoH3I3P1BMhdlli1bNi6GKESKUbJ3tDCZ919s8WSaF/a2sHFXc17PM1zDvebq+nVyG3Y08eU124iEjck1EZrao3x5zTbuhbIMEo93J2jpLJ2qKBcvmsqyhVPYuDOT5PrVVzIPLXuSXH/6kvlMKYMk1+GQ9S44KaUR0JOF5AmgE6gC6ulzsRoKM4uQCQ6/7+4/CZoPm9nsYGRvNtAUtO8H5vX5+FzgYNC+ol/7hqB97gD7D3YOkbJS6qMj3fEUbdEEXXlOaJ1257X9x1m7/TAbdx6hI1a0o5OjuuZKtgc27iESNmorM7/qaisr6IoneWDjnpL6d3Iy6bRzpCNWzH+v38fd2fp2K995JjvJ9YfOmsnNly1g1qTST3JdW5l5hFxbGS760cKBDJbmZhXwTTJlni5w967hHDhYlfwwsL3fne8a4Gbg68H3n/Zp/1MzW01mkcrxIMB7CviamfWsY/8w8EV3bzGzdjO7lMyj65uAvz/JOUTKRqmOjqTSTkc0SVs0vwmt3Z09zZ2s3X6YdTuaeh9bQeYX0SULp/F23s4+fKO95sr7NbZ2Mblfze2aSJj9reXzRxtPpjncFs3pv6XRJLAeijcOtvHQpj280vhekusrTp/GrVcsZOH00k5yXRHKJLOuq64gEi6d0cKBDDaC+P8BH3f3bSM89hXAZ4DfmFnPSuj/RiZoe8LMbgPeAT4ebHuSTIqb3WTS3NwCEASCfw1sCfa7t2fBCvA53ktz8/Pgi0HOIVI2Sm10JJrIjBZ2xvI7Wvju8Sjrdhxm7fYm3j6aHQgsmVXPNUsbWHFmAwumT2D1nXnrxkiM9por/cybUktTe7T33whAdyLF3Cm1BexV7uSjKspIE1gPxd4jnTyyaS/P9klyfd68yfzxlaWd5Lqn9F1mtLA85krC4HMQrxzNgd19EyfO3bVygP2dTBWBgY71CJlUD/3btwLnDNB+dKBziJSTUhgdSaedjnim/F0+674e70qwYWcTa7c3se1gW9a2uVNqWLmkgZVLG4o6MBjtNVfe786rFvHlNdvoiid7EzEnUs6dVy0qdNdGxd052hmnLQ9VUYabwHoo3j0e5dHn9vF0nyTXZ8ys4/blmSTXpfj4Fd4rfVdXVUFFiY8WDqR8Ql2RcaaYR0diyaD8XR4TWncnUjy3+wjrdjSxZV9rViqcqRMq+e0zZ3DN0pmcMbOuZH8ByeisWNLAvWRG2/e3djG3BOfp9pfvqihDTWA9FC2dcb7/wjv826sHe5Ncz51Sw61XLOSDZ5RmkmszY0JlmPrqCDWVxZmeJlcUIIqUqGIbHXF3OoIUNflKaJ1MpXnpnVbWbW9i0+4jvQl0AWorw1y5eDorlzRw/vwpZZVIV0ZuxZKGkg4I++qKJ2luj+U1L+jJElgPRUcsyRNbG/nxS9lJrm++/FQ+cnZpJrmOhENMrI5QV1240ndjTQGiSIkqltGRRCpNW3eCjlgyL7+43J3th9pZu/0wG95s5lifx2oVIeOShVNZuXQmly2aSlURlKcSyYeWzjjHxqAqyokSWN9w0byTfjaWSPF/XznID/oluf70JfO5rgSTXBdb6buxpgBRpIQVcnSkM5ZZidwdz89o4dtHO1m3o4l125s4dDyate3cuZNYubSBqxbPYGK/eZgi5SSVdprao3n7d9Zf/wTWs4awijmVdn7++rs8/vy+skhyXayl78Zaaf1fE5GCyndC6+b2GL98M7PYpCc3Wo9FMyZwzZIGrl7SQMPE0s+RJnIyhaqKcvGiqUNakJJ2Z+POIzzy7F72t2bmKFaEMkmu/+jS0kpyHTKjrrq4S9+NNQWIInJS+Uxo3RFL8szOZtbuaOKVd45llUOaObEqWIE8s+Tzo4kMx/GuBC1dxVkVpSfJ9cOb9rLzcOZGzsgkuf7s5aWV5LqUSt+NNQWIIjKgfCa0jifTbN57lHXbm9i85yiJ1Hu/BCdWV/DBM2dwzZKZnD1nIiFdtGUcKfaqKJkk13t5pfFYb9sVp03j1uWlk+Q6HDLqqiqor46U3LzIsaQAUUSy5CuhdSrtvLb/GOu2N/GrXc10xt6bU1VVEeLy06ZxzdKZLFswpeQrEIiMRCyZeaSczwpDI7X3SCePPLuXZ3f3TXI9iduWL+TsUyYVsGdDVxOkp5lQoqXvxpoCRBEhnXbaY0nao7lNaO3u7G7qYO32Jta/2cTRfuXulp06hauXzmT56dPGrAJBKKh6UFdiE+elvLVHExzpKL5Hyu+2RXnsuX38v23vJble3FDH7VcuZFkJJLmuCIV65xbqxnN4dIUUGcdiyRRt3Uk6Y7lNaH3wWHfvCuR3WrIru5w1u56rl8xkxZkzmDphbCaxR8IhairDTKisoDoSKvpfajJ+uDtHOuK0R3NfFWU0WrvifH/zO/zbawd7p4D0JLm+6ozpRT31o1xL3401/cmJjDM9Ca3bosmcVmM41hXnl282s257E28cyi53N29KDdcsncnVSxuYM3noCXdf3NPC6i2NHGrrZvYQ0m30VRUJM6EyTE1lWKsSpSglUmma8lgVZSQ6Ykl+tLWRH/VJcj29rpKbL1vAqnOKO8l1uZe+G2sKEEXGiXgyTXs0twmtu+Mpnn3rCGu3N7F1Xwt9DzttQiW/vSRT7m5xw/DL3b24p4X71u+iImRMrK7gaGeM+9bv4i4WDxgk9owa1FSGqY2E9QtCitpYVEUZjlgixU9fPcg/v5Cd5PrGi+dz/XmnFG0S+vFU+m6sKUAUKWPuTmc8RXsOE1onU2m2vp0pd/fs7iNE+8xZnFAZ5srFM1i5tIHz5k0e1WjD6i2NVISst+RXTznB1VsaewPEilDw6LgqTE1EE8/L2YYdTTywcQ+NrV3MK/GaymNVFWUoUmnnF6+/y+PPv01zRwzIJLn+2IVz+cSyeUU7V3c8lr4ba8X5f15ERiWZStMWTdKRo4TW7s62g22s297Ehp3NHO9T7i4SNi5eOJVrls7k0oW5K3d3qK2bidXZl6jqSIjDbd1Mrq2ktjI8LstfjUcbdjTx5TXbiISNyTURmtqjfHnNNu6FkgoSx7oqymDcnY27jvDIpr009kty/elL5o/Z/ODhMDMmVIWZWB3Rv/0xoABRpIx0xZO0dSfpiucmh9rbRzszK5B3ZJe7M+DceZNYuWQmV50xnfrq3Je7mz2xhqOdMWoqw4TMCJkRTSRZML2uKH95Sf48sHEPkbD1LjioraygK57kgY17SiZALFRVlP5KMcl1ZUWI+uoI9VXju/TdWFOAKFLiUmmnPZqgPZrMSf605vYY64MVyLubs8vdnT6jjpVLM+XuZtRXjfpcJxIOGZ+9fAH/8+k3SabS1FZW0J1IkUzDnVctytt5pTg1tnYxuV/N7ZpImP2tXSf4RHEplqoo2w+18Z1nspNcX37aNG4rwiTXITMmVFUwsUal7wpFAaJIiYomUrR1J+jMQfm7jmiSjbuaWbu9iVcbs8vdzZpYzcqlDaxc2sCCafn7JRIJh6itDFMbpKI5ddoEJtdGeGDjHva3djG3xOedycjNm1JLU3s0K2VJdyLF3Cm1BezVyaXTTnNHjM4CV0UZKMn1uXMncfuVxZfkWqXviocCRJES0pPQuq179OXv4sk0m/ccZe32Jl7Ym13ublJNhBVnZBabnH3KxLxdqKsj4d6gcKCSVyuWNCggFO68ahFfXrONrniyd7FSIuVFPZpcDFVRepJcP/3G4d4MA6c31PHHRZbkulxL35X6wioFiCIlIJpI0R5N0hFLjmq0MJV2Xm08xtrtTTyzq5nOPpPlqytCXHH6dFYubWDZqVPykiYmZJZJQxMEhVp9KEOxYkkD90LJjCYXuipKa1ec77/wDv/2anaS61suX8AHz5xRNEmuy7n0XTksrFKAKFKk3HvK340uobW7s6upg3UnKne3YCrXLG3gitOm5yWPWEUoRG1VJihUKhoZqVIYTS50VZTOWJIfbd3Pj17aT3dwzZhWV8nNl53KqrNnFUVu0PFS+q4cFlYpQBQpMvFkmrZogo7o6MrfHTjWzfrtTazdfrg3jUWPs2ZPZOXSBlacOYMptblfEVwVySSrrq1SFRMZHxKpNIfbojmtZT5U8WS6N8l1Twqq+iDJ9R8USZLr2sqKoPTd+LhJLPWFVaAAUaQo9CS0butOEB3FaGFrV5wNbzazbvth3jjUnrVt/tTa3hXIwyl3NxRmmYTWtVWqYlLOSn1OVb50xjJVUXJZz3woUmnnqW2ZJNdN7UGS64oQf3jhXD65bB511YX9FR8Jh4K5heOv9F2pLqzqSwGiSAElUmnao0nao4kRl9zqjqfYtPsI67YfZuvbrdnl7uoqufrMBq5Z2sDpIyh3N5hwKDOfcEJlBTWRsPKTlblymFOVa+5OS2c8K3H8WJ13oCTXv/eB2fzRpacWNE/oyUrfjZebjFJcWNWfAkSRAhhtQutkKs2Wfa2s3X6Y5946SqxfuburghXI584dXbm7/iLhEBOqKlTFZBwqhzlVuZRMpWlqj41qxH8kXnq7lYee2cubhzNPCAxYubSBW65YwOxJuX0yMBxDKX03nm4ySm1h1UAUIIqMkWQqTUcsExiOpJpC2p1tB9pYu+Mwv3qzmbboe8FlJGxcumgaK5c2cOnCaTlLFWFmVEdC1EYqqK0Kl/WkchlcOcypypVCVEXZfqiNhzft5eV33ktyfdmiady2fAGLZtSNWT/6Gm7pu/F2k1EKC6sGowBRJA/6PkY5ZVINn7p4HufOnzKitBd7j3Sybvth1u1o4nBbrLc9U+5uMh9a2sCVi2fkbL5RyCyThqaqglo9OpZAOcypyoVjXXFaOuMn3zFH9h3t5JFN+9i0+0hv2wfmTuL25Qs5Z05hklyPtPSdbjJKiwJEkRzbsKOJ//7T1wmHjNpImEPHu/nGU29y19WLuXjR1CEdo6ktyvpgsclbzZ1Z204JaqXGU2lwmDahatTBYSQc6p1PWB0JjYtVhjI85TCnajTSaaepPZazOucnM2CS6xl13HblAi5eMHXM/432lL6rr64Y8fQS3WSUFgWIIjkUTaT4+/W7AagMHsf2/DJdvaVx0ACxPZrgVzszi01e2388q9zd7EnVXL2kgZl1VfxgayMVIWNKVYSjnTHuW7+Luxh68NmjKhJmQmWYmkqlopGTK4c5VSM1llVRjgVJrtf0SXI9Z3INt1yxgBUFSHJd1VP6rnJ4o4UDGe83GaVGAaLIKKXTTkc8U/4unkyz/1gXE/uN6FVHQrzb1v2+z8aTaZ7fc5S12w/z4t6W95e7O3MG1yxt4KzZmXJ3f/7DV6kIZVLKwNCDT8jMF6oNAkKlopGRKPU5VSPRFk1wdAyqonTGkvzopf38aGvhk1yHQ++NFuby5nE832SUIgWIIiMUSwbl7/oltJ49sYajnbHeIA4gmkgza2JmhWEq7bzSeIy12w+zadeR7HJ3kRDLg3J3F85/f7m7Q23dQw4+IVO1oKYyzIQqVTGR0jbW6VHcneaOGB3R/D5SLqYk12NR+m483mSUKgWIIsPg7nQE5e9OlN7ihovmcd/6XXQnUlRHQkQTaRKpNMtPn8Y//nI3v3yzOWuSezhkXLRgCiuXNHD56dOzAsv+ThZ8QmYCeW2lUtFI+Rjr9CjxZJqm9pFVRXlxTwurtzRyqK2b2RNruOGieQOO7qfSzv974zCPPbevoEmux0vpOxk+BYgiQ5BIpWnrTtARS540ofXFi6ZyF4tZvaWR/ce6qAiFSKadf9jwVtZ+55wSlLs7o4FJtZETHC3bQMFnMu3cdNmpTKurorZSqWikdN2/dicPbdpLZzzFhMowty9fyBeuOWNM06OMpirKi3tauG/9LipCxsTqigHnCLs7z+w+wiOb9vFOS2b1bkXI+N0PzOYzY5jkeryVvpPhU4AoMojOYLRwOCsXWzrj7D/WRTSZ4khHdjqMU4NydyuXNowoqW1P8PnDrY0cbosyd0otf/LBRVy9dOawjyVSTO5fu5P71u8mZFARyqxuvS9Y8DUW6VFyURVl9ZbGQecIv/x2K9/ZtJc3381Ocv3ZyxdwSo7LXw6kIhSivnp8lr6T4ctbgGhmjwC/BzS5+zlB21Tgh8ACYB/wCXdvtczty33A7wBdwGfd/eXgMzcDXwoO+zfu/ljQfiHwKFADPAnc5e5+onPk6+eU8pPsLX839ITWXfEkm3YfZd32w7zUr9zd9LpKrl7SwDVLZ3LajAkjvluPhEPUVoa5/oI53HDJ/BEdQ6RYPbRpbxAcZgKXkEEyneahTXs5+5RJeU2PkquqKCeaI9zY2slf/OjVgiS57lmclhkt1JiQDF0+/7Y8CvwD8HiftnuAde7+dTO7J3h/N/BRYHHwdQnwbeCSINj7CrAMcOAlM1sTBHzfBu4ANpMJEFcBPx/kHFJEirEeZ3c8RVs0QVc8NaQVi4lUmi37Wli3ven95e6qwnzwjBlcs3QmH5iUqPkRAAAgAElEQVQ7acSpKaojQa3jynDOqqOIFKPOeIr+f8VDlmnPZ3qU7niKpvboiGuh99V/jnA8meZwe5TuRJqjnZng8LfmTOKPr8x/kutIuGe0MJLTcpsyfuQtQHT3jWa2oF/zdcCK4PVjwAYywdt1wOOe+a282cwmm9nsYN+n3b0FwMyeBlaZ2QZgors/H7Q/DlxPJkA80TmkSBRTPc5U2umIJmmLJoaU4yztzusHjrNuR9OA5e4uO20a1yyZycULp44ooAuZZdLQVIaprTxxTVORcjOhMhP49f0rn/ZMe77So+S6KkrPHOH2WILOWCrr+nDajAncfuXCvCa5Hm7pO5HBjPV480x3PwTg7ofMrOdf9xygsc9++4O2wdr3D9A+2Dnex8zuIDMKyfz5emQ3VoqhHmc0kRkt7IwNbbRwT3MHa7c3sX5HU++KQ8jMITp//mRWLp3JlYunU1c1/H9SFaEQtVWZoFCpaGSoyu36dfvyhdy3fjfJdJqQZYLDtGfaIbfpUVJppzkPVVHOmFXHadMn8OxbR3sT3U+bUMnnVpyW1yTXPaXv6qrG7qayGJ8CSW4Vy4SEgf5G+wjah8XdHwQeBFi2bFl+s6BKr5NNOM/XhSeddtpjSdqjiSGlrzjcFmX9jibWbW9iz5HscndnzKxj5ZIGfntJA9Prqobdl6pIJll1bZWqmMjIlNv16wvXnAEw4CrmXIomUjS357YqSlc8yY+27ueJvkmuJ1Ry02Wn8tFz8pPkOhel70aqmJ4CSf6MdYB42MxmByN7s4GmoH0/MK/PfnOBg0H7in7tG4L2uQPsP9g5JI+GE9QNVo8zHxeeWDJFW3eSzljypKkr2roTbNzVzNrtTby2/3jWtlMmV7NySQMrl8xk/rThTY43y6xsrK1SFRORE/nCNWfkPCDs63h3gpbO3FVFiSfTrHn1IN/vl+T6hovm8Qfnz8lL4JbL0ncjVQxPgST/xjpAXAPcDHw9+P7TPu1/amarySxSOR4EeE8BXzOzKcF+Hwa+6O4tZtZuZpfy/7d359FxlWeex79v7Vq9SvKGseWAF3ZjNschBDsbZMiQpHugMyQQOOmhcyZJ98mZJJ30TJbunGwni3uYgbRDQmgawjBpshImNmExO8ZgDJaNLRkj2ZZsWbtU+zt/3FulKlkllZZSlaTf55w6Lt17de+tK+nxc+/7vs8LzwOfAP55lGNIgYw1qRupw/lkBZ5UQevucJzIKCMTI7GEO91dGy80nSKe0Vl9Xrmfq1bXsmVtLWsWVY2p+dfrcfoTVgR8lPm9RQvmIjPRWG5Kk0nLyd4IvZHhm5TzLW6dkqvI9UfWL+WGS5ZPepHrQk19N15TUXZIiq+QZW7ux3n6t9AY04wzGvnbwIPGmFuBI8BfuJv/AafEzUGcMje3ALiJ4DeBF93tvpEasALczmCZm0fcFyMcQwpkrEndSB3Ov/rrvRMKPNF4kp7w6AWtE0nLy0c62LGvjafePJluFkodb9NZC9m8ppaLz5w3pj49fq+HiqBmMZHZZar7o43lpjQaT9LaHc7ZpJxPceuUVJHrn+08zFtukWuvx/Ch8xbzny9fzoJxdDcZSSj1tDDoK6m+ySO1AsnMUchRzDfmWLV5mG0t8Jkc+7kbuHuY5S8B5w6zvH24Y0i2yQzo47mbzNXhfDyBx1pLv1uiZiCa+2mhtZb9rT1s39fGnxva6OgfLIibmu5uy9o6Nq5akHdyZ4wh5PdQ7vdRHtQsJjL7FKM/Wr43pb2ROCdHmRVltOLWKS+/1cG2nU00DCly/cmNK1g6SpHre585zIO7nP6JZX4vf3nxMm7auGLYbb0eQ2XQKU9TqqWtCll2SEpHqQxSkSk02QF9Mu8mxxJ48i1o3dzRnx6B3NwxkLXuvKXVXL2mjqvOrsl7ujuPW3i2POijXE3HMssVoz/aaDel1lra+6J05zErSq7i1se7nVix/3gP255qZFdGkevL6+dz66aVrMqjyPW9zxzmnufewmPA63H6RN/z3FsAWUnidJr6rlBlh6S0KEGchSY7oE/m3WQ+gac/6iSFfTn6E4Ez3d1jDW3saGhLT2uVsmJBOVvW1nH1mloWzQnldV6pWUzKAz5Cfk/JB3CRqVKo/miZrRxVQZ/Trzia4Ix55VS6NROHuymNJ5K09kRG7XucMrS4NUA4lmRuWYCv/eZ1nnzzZHr5eIpcP7ir2U0O3aeBBkgmeXBXM7dsqneakEO+adf6MJllh6Q0KUGchSY7oE/23eRwgSeRtPSEY/SE4zn7EvVF4uw8eJLt+9rYfSR7uruaymB6DuT6hflNdxf0e6kIeCkLqBSNSC6T2YKQSgoPtHbTG0kwv8JPwOvhzbZeAJbODdHWE6Z7IJaua5Z5U3rzxjNp6RwY06woqeLWA7EEIb+H3kiczv44zbEBGlqdm8uJFLkeiCUYmvt5jLN8rNUQRKaSEsRZqBAdjAt1NxmOJegeiNGXY/q7WCLJC02n2L6vjWcb27PqG1aFfFx5Vg1b1tZyXh7T3aXmLE2NPNYsJiKjm6wWhMyuL+FYkqS1tPfG3KdvBiyc7I2m5y4OeD3MLQ+kb0o/fulyzqqrGvOUeZfWz+dznMW/PvcWje19DEQT6eRzydwQt2xcwXvW1I67yHWZ30skngAzWMA3iaEyqJtOKW1KEGehUu9gnCpo3T0w/PR3SWt5raWLHfvaeOLACXoyprMK+DxcXj+f966t45IVo0935/N4nIQwqFlMRMZjrC0IuQbIZXZ9iSaSeI3BApF4kqDf+TuOuvGgzO+layDGI5+/csKzovRH4zS0dtPY3ke/O8htfkWAmy4/k2vPm1iRa2MMH79sOdt2NmGsHXaGGJFSpQRxFirVDsajFbQ+dKKXHcNMd+cxcNHyeWxeU8u7zlpIxSjT3QV8Hqc2YRFL0WiaKplJ8m1BGGmAXGbXl4DXQzxhMW5uZi1gneUw2OIRjiVo646MOEgtl2g8yW/3HOW+547Q6Q5mqQw6Ra4/sn5iRa79Xg/VIT+VIR9/f+06KoO+gs8QIzLZzGRVlJ/uNmzYYF966aVin8asM1pB6+PdYR7b5ww2aRoy3d3quio2r63lPatrRqw/li5FE/BRESj+LCaZ/0lmPsH9xnXnKEmcYsaYXdbaDcU+j4maLvHrxp88d1r3lv5onNoqZ7BYal33QIyjXc4oYg+QcP+bWjo3hM/rIZawfPH9q1m3dM6YZ0VJJC1/eqOVn2cUuQ6mi1yfQVUov2oGQxVz6juZnQodv/QEUYoiVdC6J3z608KugRhPHDjBjn2tvNbSnbXOABcsm8Pn33s2y+fn7jOZmsWkPFB6pWg0TZVMF5P9pHukAXLf/PC56a4vVSEfC+IBOvpjVIV81FQGsdbSF01QUxnkhkvOYO2S6jElh9Zanj7Yzk+fbuKt9sEi19eet5ibJlDkuhSmvhMpBCWIMqLJ/A8iFeB7hiloHY4leOZQO9v3tfLi4Y7TOpobwOMBLOxp6eKJhrbTCs2mStFUBEv7Dl7TVMl0UIgC2CMNkBva9WXlwkq+PSTejDYrSi67jzhFrvcdGyxyffWaWm5+5+hFrofjMYbKUOlMfSdSCEoQJafJ+g8ili5oHctK/FLT3W3f18bOYaa7e9dZC3niwAniiWRWs3DCrSF208YVhPzedH/CUp11YChNUyXTwXifdI90UznaALmR+jL2hGO090ZHnBVlqP3He9i2s4ldb3Wkl122cj63bVrJqtrRi1wPVapT34kUghJEyWmiTaH90TjdA/Gs0YXWWhqOO9PdPb4/e7o7n8dw6cr5bFlby+X1znR32/e15qwhduaCiqKUopnoU9VSH0UuAuN70j3aTeV4BsiNZVaUlCOn+rn76SaePJBZ5Lqa2zbVc96y/Itcw/SY+k6kEJQgSk5j+Q8ilTQdOdXH4jll/KcNZ3Dxinnp9UdO9fPYvja2N7RytDOc9b3nLa1my9o6rjy7hjnDHC8ST5B5s56qIVas5HCiT1VLdRS5SKZ8nnQPvVnq6IuMelM5lpqpsUSStjHMinKiJ8I9zx7mj3uPpwvl19dUcNumlVy2cmxFrssCXqpCfiqmwdR3IoWgBFFyyrcp9PGGNr766714DZQHvLR2h/nB9gPcsnEFHQMxduxr5UBrb9b31C+scEYgr6llUfXp090F/V7K/V5u3bSCOx5vJFEiNcQma4CJpqmSUvZ4QxsdfREOt/fh93ioqw6mRw+nnnQPd7N0uL2PZUP69I23f21/NM6Jnkheha+7+mP82wtHePiVFmLukOfFc0Lc8s4VXD2GItc+jyfdt3C6TX0nMtmUIM4S42kWHa0pNJG09Ibj/HjHmxgg6POSSFqi8SSdAzG+9UhD1v5qq4JcvaaWLWtr07MhpBjjlHwpDzqJYarP4d+9bw0+j6dkaohpgInMdJmJ37K5ZbT2RHi7Y4CQz0tZwMNdTzYCw98s+T0eWnsiVJcF0vtL3VSOJQad6ovS2R8d9Vz7o3Ee2tXMgy81n1bk+przFuWd5KXK02TeDIvMdvprmAVSAT+WSNDVH+NY1wAvH+ngM1etGjHRytUUevmqBbT1hOmLONPftXT24/UYjnZFnWUZ+6gO+Xj32TVsXlvLuUuzp7vzepz/XMoDXspHaMb57JazS6aorAaYyEw3NPEzxtDcMUASS2XQx+63O7j1Fy/hMbBkTvbT/7rqIM2d4dNuKq+on59X14xE0tLWEz6tysFQ0XiS3+05yr8OU+T6+vVLKcujioHf60kPOCl2bVSRUqQEcRa468lGYokE7b0xjHECYyJpuePxQ5y/bO6ITxJTTaHJpKU36kx/d7RzgKS17GnuYvu+Vtp7YyQyRhYanNF+i6pD3HnT+qy7eL/XQ0XQSQpLuRRNLhpgIjPd0Kfkzaf6iVuIJy1vnRpIL08AzR0DLMNQ7W7fHY5hreXQiT6MgaVzQvzjfzwvr64Z+cyKkkhatu9zily3dg8Wub7+oqXceOnoRa6NMVS4fQvLAtMv/ohMJSWIM8xwzThvd/TT3hMh5k5XZQx4jTM7wWh956LxJN3hGL3hOIlkksYTfWzf18pjDSc40RvJ2jbk8zCnzLkbT1onmQr4vM4sJn4f5UHvtO/XowEmMtNlPiU/3jVAfIQugAkLx7oGqAr5aOnsp6M/jtdA0GdIWjjWHWFPc+eoXTO6+mOc6o/mLHydq8j1Nect4hOXnzlqkevMqe+KMbhNZDpSgjgDpJLCA63ddPTFcPNAjnYOsLelkzkhH9GMm3LrDvQIehm271yqoHX3QIxwLMHxrjA7GlrZsa+Nw+3Z269ZVMWWtbXMCfn5/WvHOd49QE1ViJuvOJMt5ywquVlMJoMGmMhMlvmUvL0vdz9Aj3FaC2IJS9dAjO5wIj2QLJKRVd75RCMXnDF32K4ZS+eW0dodpi8SH+YIjlfe7mTbU4284Ra5BqfI9S0bV7B0Xu4i18YYKoJeqkP+adlaIVJsShCnucwO5V39MTIbZ5IWeiIJeiKD/XlSqVoqiczsO5dZ0PpUb5THD7SxfV8brx/Nnu5u2bwyNq+pZfPa2vT3+70ePnLxMsoDPkJ+j8pCiExTmU/JD53oy7mdz53ayGcMT33xauq//HuGG3DcH0twRf18Hnq5JatrRjSe5KPrl+VMDg+09vDTnU28eHiwyLXB6ff4vrV1OZPDgM9DVchPVVBT34lMhBLEaS6zb89ITUGpO3vrvvfgNA/99ZX19EXi9ITjtPdFeOZgOzsaTp/ubn5FgPesrmHL2jrOrqvEGEPQ76XCne9YBWRFZo7UU/LVX32ESHz4PoEGJ4a8Y6Fzk2iMcZonhrFtZxO3bVrJs42naO7oZ9GcEB9dvyxdK/WFxlM88OLbHOseYF5ZAL/Pw2stXVn78Bondh3vDvOdRxv44vvXcGn9fMCZ+q4i6KO6TFPfjWay59eWmUsJ4jQ3XN+e4fg9HpJYEkmL12PwAMsXVLB8QTm/ebWFHfva2HnwJOHY4H8G5QFnurvNa2q5aPk8fO5cx2UBZ3o79eURmbm2bj+QMzn0GDAe8Fk40jHAqr//w4j1CvsicR56uYWv/4d1nLtsLj3hwVlRvvX7N9jecCL9dWrwCUDI7yHuzrvs9bg3oUlLXzTOAy++zZWrazT13RgUYn5tmbmUIE5zlQEvB0/0jhicDZDEYtz3i6uD9EWTLKwM8pH/9Uy6TAQ4091dtnI+m9fWcUX9fCqCzmi/iqCXMr9mFBCZLe58ojHnOo+BWCyJ03ll9FlOEhZauwb4pz/s4yef2JBefu8zh7OSwxRjnMEy4Vic9t4oXq/JWpdMWk72hlkyN3cfRDndZBX6l9lBCeI0MrRp4Ir6+bT3RYnGkozQukzQC+HE4BYtnWESFp5tbE8vO3/ZHLasreXKs2pYWBWkIuCjbJqWohGRiXm8oY3+Eae3MyRGjDqniyctjSf7eKHxFJfWz2cgmuAXz7817LbWQjSeoDLop60nSiJuMVh8HoMBfF4PZ8yvGNPxRYX+ZWyUIE4TwzUN3PH4IcoDHjweM+ITxPCQOJ/KFVfVVLB5bR2b19SyfEE55QEfFQGvisaKzHLf+WPDiOvjeUx/N1TCgt8Ddz1xkO89Gqe9Pzbi9uUBHx39UTxAEqf/dCxp8RqoDvpVe3QcVOhfxkIJYoka+rSwsz+abhroCcc41jlAJGHTfYR8HkPS2vQowjkhH33RxLCB3ODULLz/05c7M5nMwFI0IjJ+jSdzj16eiHgSmjKKbY/EZ2BeuZ/qkJ/j3WGibqwL+Dx8/2MXqEl0HFToX8ZCCWKJyEwIKwNe2vuiVJf5008LD7f3s2xuiJ5wjLdP9ZMYkvcNTQS7wrnrivm9EE1aaqtCObcRkdlrpBaJich3rwsrA/THk8wt82PM4Ewt1jo1F5Ucjo8K/ctYKEEsAanm455wlM7+eDqInuh1itQanMB6rCuMhdOSw1xSs6WkGHdHFme6qVy2bj/Atp1N9EUTVAS83LZpZcnMhSwihWfG2L9w8o4L1WU+vv+xC7jryUY1hxaACv1LvpQgFlHqqeHLRzqIJ5I5E7/U4miemaHHgMeteVhTGUgnmqkSZUkLt21aOez3bt1+gB8/dhCPAZ/HCcg/fuwggJJEkdkidTc5hfwew4YV87OeaKk5VKR4NBqhSB5vaOMLD73K7rc7iMRzJ4djZXACrTVOx26vx1BT6SfVxbA84OVzV78jZ7K3bWeTmxx68BiP+6+zXERmh1xzIhdSXVWA+z99eTo5vGpNLd+47hxqq0J0DcSorQrxjevO0dMvkSmiJ4gFltm3EGs51RcbpXzExKRH+nkM1UEvHf0xqoJeLlu5IK++Jn3RBEMnRfEYZ7mIzA456mMXVHNXhK3bD2TdvKo5VKR4lCAW0NbtB9j62JtTHmyTFhaW+ambU0Z/NE5tVYj7P315Xt9bEXCacjIHNSctI/ZZFJGZ48a7ninase94/BDnL5urpFCkBChBLJCt2w/ww+1vFqmrN3QOxCkPxqgM+sZUBPW2TSv58WMHiSeT6fmbR+qzKCIzy7NNHUU7diJpuevJRvY0d2qgnEiRKUEsgMcb2oqaHAJEE0kOt/djgGXz8p+OKhWEFZxFZKoFfR72tnTywuFTGignUmQzNkE0xnwA+DHgBbZZa789Vcf+7AO7i5ocZrJAc8fAaX17RvLZLWcrEIvIlPN7DT2RRHqgHDh9oOPJJNt2NuUVl1SmS2RyzMhRzMYYL3AH8EFgHXCjMWbdVB2/e4Qi1YU03GQofo/B5zUahSwiJa9zIE4iaYknLOFYgkg8QTyRzHugXKpM10AskfX0cev2A1Nw9iIzy4xMEIFLgYPW2kZrbRR4APhwkc9p0hnj1jw0UBX0snJh9uT1TnLo0ShkESl5Bqe4PzgtHxan/3MsaYklbF4D5VSmS2TyzNQEcSnwdsbXze6yggrHEjzy2rGC7NsAi6qDLJ9fzvUXLqY65MNjDJVBH5/ffBb/fON6aqtCGAZrIfq8zo9Xo5BFpNgyWzjK/F6GNniE/F6GzvCX2ibfgXJ90cRpLSm6QRYZn5naB3GYxtbTuwUaYz4NfBpg+fLl4zpQIml5vrGdh19p4ZG9x+kpQPNy0OdxnxBWjljL8Ko1tekmFgwkbVKjkEVmqMmIX5maTvbxg/+3f8L7yaWmMkhbTyT9tTGDszulWFKtIoZ40mJxgnlVyJdXP0KV6RKZPDM1QWwGzsj4ehlwdOhG1tqfAD8B2LBhQ97jSqy1vH60m4d3t/DbV4/SmhH0vB4z4Ynuy/webn/3qnF1rNYoZJHZYbzxa6jjXWF++KcDPLSrmUSBZlCprQxQGfIRjifoHohnldECpykrmbQY973XYwj6PNTXVKZrueZDZbpEJs9MTRBfBM4yxqwEWoAbgL+a6E6PtPfz8Cst/PvuFppO9mWtW798Lh++cCnXnr+YDf+4Pe99Br1w102XTGphWI1CFpHRdPRF2LrjIPe9cISoW81/yZwQR7vCE9pvdciXvilNzSTV3NFPbVWIf7h2XVaNwzK/oSLoo6M/hvE4Bf47+p2BKouqg/RH42Oaf1k3yCKTxxRjzs2pYIy5BvgRTpmbu621/zTS9hs2bLAvvfTSactP9kb47atHeXh3C682d2Wtq6+p4PoLl/LhC5eyfEF51roVX/r9qOd4/YWL+eEN60fdTkQKwxizy1q7odjnMVG54tdwOvoj/MuTTdzz7GH6Ik7fvHnlfv7Lu1dx8ztXEPR584pfa+oq+OPfXjWBsx6UmUhWBLwYY+iNxFk2rzyvKUJFZqNCx68ZmyCOVWaA7YvE+ePe4/xqdzPPHTqV1exSUxXkuguWcP1FSzlnSTXGDNfdUUSmg9mSICaTlo7+KPc9f4SfPd1ER38McPrm/dVly7n9qlXMrwhO1emKyCQodPyaqU3MY2aBR18/zsO7W/jz/jbCscEJlCuDPj5wziI+sn4pl9UvwDtcwUERkRITjiXo7I/xm1db+NnThznmNh8HfB6uv3AJt26q5x21lXgU00RkCCWIrn1Hu/nre3elv/Z7DVeeXcPH1i/jPWtqCfk1Ck5ESl8iaemNxOkeiPLkgZP8dGcTjW6faY+Ba85bzCeuWMHquirmlPuLfLYiUqqUILoS1hlBd/GKeVx/4VI+dMES5pQpeIrI9DAQTdATidEXSfDq2x38y1NNvH60O73+PatruHnjClYurKS2OqibXhEZkRJEV111iKe/eDVL5pUV+1RERMYknrQc6xrgYFsv23Y28ULTqfS6S1bM47ZNKzmrroqygJfaqpC6yYjIqJQgumqrgkoORWRaisQTfPN3b/Dn/SfSy9YtruK2d9Vz4RlzAZhXHmBeRaBYpygi04wSRBGRaa7xRB8DbnJ45oJybtu0ko2rFmCMwesx1FQFKQ8o3ItI/hQxRERmgEXVIW7eeCab19alm5CDfi91VcH0vOwiIvlSgigiMs3VVYf4+S2XEPANJoLVZX4WVARUq1VExkUJoojINDevPJBODj3GsLAqSGVQ4V1Exk8RRERkhvB7PdRVh7KeJIqIjIcSRBGRGaAy6GNhZVCzoojIpFCCKCIyzfk8htrqULFPQ0RmELVDiIhMcxqHIiKTTQmiiIiIiGRRgigiIiIiWZQgioiIiEgWJYgiIiIikkUJooiIiIhkUYIoIiIiIlmUIIqIiIhIFiWIIiIiIpJFCaKIiIiIZFGCKCIiIiJZjLW22OdQEowxJ4C3CrDrhcDJAuxX5zD9zqHYx9c5nH4OZ1pra4p8LhOm+KVz0DnMqnOYkvilBLHAjDEvWWs36Bx0DsU+vs6htM5hOiiF66Rz0DnoHIpzfDUxi4iIiEgWJYgiIiIikkUJYuH9pNgngM4hpdjnUOzjg84hpRTOYTooheukc3DoHBw6hyk6vvogioiIiEgWPUEUERERkWzWWr0K8AI+AOwHDgJfmoT9nQH8GdgHvA58zl0+H/gT8Kb77zx3uQG2usffA6zP2Ncn3e3fBD6Zsfxi4DX3e7biPmEe5ly8wG7gd+7XK4Hn3f39Egi4y4Pu1wfd9Ssy9vFld/l+4P1juW7AXOAhoMG9HldM5XUA/tb9GewF7gdCU3ENgLuBNmBvxrKCf+6MY3QBUeCNjO/5nvtz2AP8OzB3Ap8vn2vYhlPeYW/mz8Td7guABRYW8BpkXeeZ/Mr1cxrnvhS/Brcpavxyt5nyGEbx49ebQAtwYsg5KIbl+rstdhCaiS+cAHQIqAcCwKvAugnuc3HqlwOoAg4A64DvZvwBfgn4jvv+GuAR9xfscuD5jF+SRvffee771B/lCzjByrjf+8Ec5/J3wL8xGGAfBG5w398J3O6+/xvgTvf9DcAv3ffr3GsSdP+gDrnXLK/rBtwD3Oa+D+AE3Cm5DsBSoAkoy/jsN0/FNQCuBNaTHdwK/rlTx3CPvxU4kXH89wE+9/13Mo4/ns+XzzX8GvAoQ4IrTgLyKE4twIWFugZDr/NMfY30c1L8mr7xq5gxjCLHr4zP9fMh56AYluvvttiBaCa+3B/Ooxlffxn48iQf49fAe3HuYha7yxYD+933dwE3Zmy/311/I3BXxvK73GWLgYaM5VnbZSxfBuwArgZ+5/4Snsz4A0t/dveX/Qr3vc/dzgy9Hqnt8rluQDVOcBv6VG9KrgNOcH3b/cP0udfg/VN1DYAVZAe3gn/uIce4BIjk+J28Hrgvx3mP+PnG+Ht0itOD60PABcBhBoNroa5B+jrP1Ndov4eTsH/Fr+zlU3YdKGIMo/jxazFOcnfa0zt3vWJYxkt9EAsj9QeY0uwumxTGmBXARTiPsuustccA3H9rRzmHkZY353HOPwL+G5B0v14AdFpr48N8X/pY7voud/uxnlumepwmgp8ZY3YbY7YZYyqm6jpYa1uA7wNHgGPuZ9o1xdcg01R87vQxcK69L5lyKPIAAAWzSURBVMe5fArnjnU8xx/L71EPzl08AMaY64AWa+2rQ86nINdgyHWeqQoWwxS/ihe/3P2XUgyb0vjl/rswx7mAYlgWJYiFYYZZZidlx8ZUAv8X+Ly1tnsc5zDW5ZnH/hDQZq3dlcdxCnIOOMnJeuB/W2svAvpwHpfnMqnnYIyZB3wYp8lhCVABfHCE7ynENcjHlB7XGPMVIA7cV4DjD7cuddxy4CvAfx9u9SSew2xTkGuh+FXc+AXTJoZN+TEVw06nBLEwmnH6E6QsA45OdKfGGD9OcL3PWvsrd3GrMWaxu34xTgfYkc5hpOXLRjnndwLXGWMOAw/gNNP8CJhrjPEN833pY7nr5+A8Wh/ruWVqBpqttc+7Xz+EE3Cn6jpsAZqstSestTHgV8DGKb4Gmabic6ePAdTgBNE0Y8wngQ8BH7du+8U4jn+S/K9hFZBw163C+Y/uVff3chnwsjFmUaGuwZDrPFNNegxT/Ervs5jxC0orhk1p/HL/PW0OZcWwHEZrg9ZrXP1rfDidRlcy2In1nAnu0wC/AH40ZPn3yO54+l33/bVkd259wV0+H6cPzDz31QTMd9e96G6b6tx6zQjncxWDnbz/D9kdc//Gff8Zsjs3P+i+P4fszr+NOI/b87puwFPAavf919xrMCXXAbgMZ/Rfubv+HuC/TtU14PQ+PAX/3EOO8R2yB6l8AHgDqBnyMxrz5xvDNfwdufsQHWaw/06hrkH6Os/U12i/h+PYn+LX4LGLFr/c9UWLYRQ/fn3J/WyZ56AYluvvpNiBaKa+cEYfHcDpEPuVSdjfJpxHxXuAV9zXNTj9HnbgDF3fkfFLYoA73OO/BmzI2NencIbAHwRuyVi+AafswSHgf8LwZSLcba9iMMDW44ycOuj+gQTd5SH364Pu+vqM7/+Ke5z9ZI8SHvW6ARcCL7nX4mH3D2TKrgPwdZyyCHuBe3ECSMGvAU45imNADOdO8dap+NwZx+gBIkOOfxCnL0zqd/LOCXy+fK5hO86db/ochvxsDpNdImKyr0HWdZ7Jr1w/p3HuS/FrcJuixi93mymPYRQ/fr0JHHdfimF5xDDNpCIiIiIiWdQHUURERESyKEEUERERkSxKEEVEREQkixJEEREREcmiBFFEREREsihBlGnPOHYaYz6YsewvjTF/NMbcbYxpM8bsHfI9FxhjnjXGvGaM+a0xpjpj3fnuutfd9SF3+Y3u13vcfY80ZZOIyKgUv6RUqcyNzAjGmHNx6kxdhFPM9BWcAqhLgV7gF9baczO2fxH4grX2CWPMp4CV1tp/cKvcvwzcZK191RizAOjEqUd1FFhnrT1pjPku0G+t/drUfUoRmYkUv6QU6QmizAjW2r3Ab4EvAv8DJ6AestY+iTMt1FCrgSfd938CPuq+fx+wx7qTpltr2621CZwAa4AKY4wBqpmE6RNFRBS/pBT5Rt9EZNr4Os7dcxSnmvxI9gLXAb8G/oLBeS3PBqwx5lGceYcfsNZ+11obM8bcjlPNvg+nGv1nJv8jiMgspfglJUVPEGXGsNb2Ab8E7rXWRkbZ/FPAZ4wxu3AmTo+6y30404J93P33emPMZmOMH7gdpwloCc40WV+e/E8hIrOR4peUGj1BlJkm6b5GZK1twGmOwRhzNs6k6ODMjfmEtfaku+4PwHqg2/2+Q+7yB3EmPBcRmSyKX1Iy9ARRZiVjTK37rwf4KnCnu+pR4HxjTLnb4fvdwBtAC7DOGFPjbvdeYN/UnrWIiOKXTA0liDKjGWPuB54FVhtjmo0xt7qrbjTGHAAacDpr/wzAWtsB/AB4EWck4cvW2t9ba4/i9BF60hizB7gQ+NbUfhoRmU0Uv6SYVOZGRERERLLoCaKIiIiIZFGCKCIiIiJZlCCKiIiISBYliCIiIiKSRQmiiIiIiGRRgigiIiIiWZQgioiIiEgWJYgiIiIikuX/A9xa8uDiN6tfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10,10))\n", + "ax1.set(xlabel='Y1968', ylabel='Y1961')\n", + "ax2.set(xlabel='Y1968', ylabel='Y1963')\n", + "ax3.set(xlabel='Y1968', ylabel='Y1986')\n", + "ax4.set(xlabel='Y1968', ylabel='Y2013')\n", + "sns.jointplot(x=\"Y1968\", y=\"Y1961\", data=df, kind=\"reg\", ax=ax1)\n", + "sns.jointplot(x=\"Y1968\", y=\"Y1963\", data=df, kind=\"reg\", ax=ax2)\n", + "sns.jointplot(x=\"Y1968\", y=\"Y1986\", data=df, kind=\"reg\", ax=ax3)\n", + "sns.jointplot(x=\"Y1968\", y=\"Y2013\", data=df, kind=\"reg\", ax=ax4)\n", + "plt.close(2)\n", + "plt.close(3)\n", + "plt.close(4)\n", + "plt.close(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "8a297a06-977f-4ff7-a9ad-c7e8804930a8", + "_uuid": "6b738ce8b15a764fab90fac96f9534f94c14342e" + }, + "source": [ + "# Heatmap of production of food items over years\n", + "\n", + "This will detect the items whose production has drastically increased over the years" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "_cell_guid": "588cebd9-e97c-460d-8ed5-e663ac293711", + "_uuid": "16ce47d43a3038874a74d8bbb9a2e26f6ee54437" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAVRCAYAAAAATSHSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcXEW99/HPdyYrQYKAImIgElkuCWQgAWUxEkS8oheIgGFxyQXNgwsoz0XkuiDLVdZHBXkAcxUhiIAs8UbgQnggCWGTJGSZBFkEoiJuXHbIQmZ+zx+nmjRDd+ZM0p3evu/Xa15zuk6dqjp1zvR0ddWpUkRgZmZmZmZmtdFW6wKYmZmZmZm1MjfKzMzMzMzMasiNMjMzMzMzsxpyo8zMzMzMzKyG3CgzMzMzMzOrITfKzMzMzMzMasiNMjMzMzMzsxpyo8zMzMzMzKyG3CgzMzMzMzOrITfKzMzMzMzMaqhfrQtgtr7es9mo6C1OG6ponu3K/32G+hA3V3o5z6VN+eI1S3rVkLeM7Tm/38p736jCdZM337x/J/37cE/nrZu855y3jJW+byr9DWY/teeKt0XbwArnXLu/qbx12F7xa5f377jy9fI63bni9c9ZO3nrMO81Dnr99wnAgJw5d+dML18sGFCFa9IvZ5rfW/bL2v3zKfL6s0/mra6m1X+L7eriWlRb0/SUSQpJVxW97ifpH5JuXsf0hks6ug/xJ6Qy7LQu+eVIv0PSQUWvD5Z0ah+OXyZpTo+whZKWVLKc60rSLElja10OMzMzM7MNrWkaZcCrwChJg9PrjwB/Xo/0hgO5G2XAUcA9wJHrkefadABvNMoiYnpEnNPHNN4maRiApH+qZOHMzMzMzGzdNFOjDOC/gY+n7aOAawo7JA2RdLmkuZIWSDokhQ+XNEfSQ+ln73TIOcAHU2/SSWvLVNLGwD7AcRQ1ypS5WNLDkm6RdKukw9O+ZZK2SNtjJc1K23tKui+V8T5JO0oaAJwJTEzlmShpkqSL0zFbSpomaVH62ZvSfgVMLFM/JetB0n6SZkv6laTHJJ0j6RhJD0rqlDQixbtC0qWSZkp6UtKHUn3/TtIVRflcKmmepKWSzihRl+0prSUp/bXWvZmZmZlZo2u2Rtm1wJGSBgG7Ar8t2vct4K6I2AMYD5wvaQjwd+AjEbE7WYPlohT/VGBORHRExA97yfdQ4LaIeAx4TtLuKXwCsCOwC/AFoFxjqdgjwLiI2A04Dfh+RKxK29el8lzX45iLgNkRMRrYHVhaJu0bgE+m7X8BflO0r1w9AIwGvprO4zPADhGxJ/BT4ISieG8H9gdOSmn/EBgJ7CKpI8X5VkSMJbs+H5K0a48ydgBbR8SoiNgF+HmZczEzMzMzawpNNdFHRCyWNJysF+jWHrsPBA6WdHJ6PQjYBngGuDg1GrqAHdYh66OAH6Xta9Prh4BxwDUR0QU8I+muHGkNBa6UtD3Zs7D9cxyzP/BZgJTXi2XiPQc8L+lI4HfAa0X7+lO+HuZGxF8AJD0BzEjhnWQN3ILfRERI6gT+FhGd6ZilZMNBFwKfkjSZ7N7bCtgZWFyUxpPAdpJ+DNxSlNebpDQmA2y60VYMGbhZmVM2MzMza1DdXbUugW0gTdUoS6YDFwD7AZsXhQs4LCIeLY4s6XTgb2S9QW3Air5kJmlzskbRKEkBtAMh6ZQUpdysOatZ01M5qCj8LGBmRExIDcxZfSlPDtcB/xeY1CP8JMrXw8qi7e6i1928+R5aWSLOG/EkvRc4GdgjIp5PwxqLz50UPhr4KPBl4FPAsT1PIiKmAFMg3+yLZmZmZmb1qtmGLwJcDpxZ6KUpcjtwgtK8y5J2S+FDgb9ERDfZ0LzCPMUvA28rHCxpa0l3lsjvcGBqRGwbEcMjYhjwFLAvcDfZcMp2SVvx5l6lZcCYtH1YUfhQ1kxQMqko/E3l6eFO4IupnO2SNikTD2AacB5ZfRQrVw+VtAnZhCwvStoS+FjPCOk5u7aIuBH4DtlwTDMzMzOzptV0jbKIeDoiLiyx6yyyIXqL0zTwZ6XwS4DPSXqAbMjeqyl8MbA6TZxxEtlQu9Ul0j2KrKFT7EaymRunAY+TDfO7FJhdFOcM4MI0TX1x3/R5wNmS7uXNDaOZwM6FiT565PdVYHwaNjif7DmukiLi5Yg4Nz2nVqxcPVRMRCwCFpA983Y5cG+JaFsDsyQtBK4A/r3S5TAzMzMzqyeK8MivPCR9BfhjRExfjzSuAG6OiBsqVjDz4tFl1Ptiz148ujx58eiyvHj0+vPi0RsmX/Di0eXzzceLR8Prf3+85T+o93/n9nVxLaqtGZ8pq4qIuLjWZTAzMzOzFhL5GvbW+Nwo24AiYlKty9CMurp7f8OKvD0POeP15U1Sub8TzCfvt75R4e/28/Z45KWo8Lfhea8d+b9F7sp56bqU737Ie859OZdc+Va4R21VhXt/oRo9W5X9m8+bXt54eXsUXuhanisekLsGK97rXeFrV++9ptWQuweswnWTV95exFrdC33RdM/tWNPwvWlmZmZmZlZDbpQ1KEldadKPJZJ+I2nTFP5uSev0zJqkWZLGVrakJfORpG9LelzSY5JmShpZtP/WovN5pdrlMTMzMzOrJTfKGtfyiOiIiFFki0J/GSAinomIw6uVqaRKDHn9MrA3MDoidgDOBqZLGgQQEQdFxAsVyMfMzMzMrO65UdYc7iebSh5Jw9OU/4U1yy6Q1ClpsaQTUvgYSbMlzZd0e1pDreDTku5LPXB7pvinS5oiaQYwNeUxR9JD6WfvFG+/1Nt2g6RHJF1dWBeuh28AJ0TEawARMQO4DzgmpbMsrVdmZmZm1rq6u/3TIjzRR4OT1A58GPhZid2TgfcCu0XEakmbSeoP/Bg4JCL+kdY8+x5wbDpmSETsLWkc2Vpio1L4GGDfiFguaSPgIxGxQtL2wDVAYdjjbmTrpD1Dtg7ZPsA9ReXdJOXxRI+yzmMt66uZmZmZmTUrN8oa1+C0wPJwsgWj7ygR5wDgsohYDRARz0kaRdbQuiN1YrUDfyk65poU925JmxSe7QKmR0RhGrD+wMWSOsgWvt6h6PgHI+JpgKLy3UPvRP6lS5A0mazRySaD38VGA96e91AzMzMzs7ri4YuNa3lEdADbAgNIz5T1UKqhI2Bpeh6tIyJ2iYgDi/b3jF94/WpR2EnA34DRZD1kA4r2rSza7qJHwz8iXgJelbRdj3x2Bx4ucQ4lRcSUiBgbEWPdIDMzMzOzRuZGWYOLiBeBE4GT09DEYjOA4wuTc0jaDHgUeIekvVJY/+KZD4GJKXxf4MWUfk9Dgb9ERDfwGbLetr44H7hI0uCU1wHAvsAv+5iOmZmZmVnD8/DFJhARCyQtAo4E5hTt+inZ0MLFkl4H/jMiLpZ0OFmjaCjZPfAjYGk65nlJ9wGbsOY5s54uAW6UdAQwkzf3ouXxY+DtQKekLuCvZM+45V8l1czMzMysSSgi92M8ZnVpq0137vUmbis5CeRblZ4sskR65IvXlzTzypu3VNmO8PYKp6c+1GEeea9xLfPOm29fzqWS+ea9xpW+F6AK1yT330ll/+bzxuvO+Qhtn95rcsar+P1a4WtX6WtS6XurGvL+RVXjf1Qe7XV+L/RF3rq+4Q/T6+LGWfXM0pb/oD7g3SPr4lpUm3vKrOG9tOq1DZ5nQ/yTr8I/szyq8U+00ir9wbnS+VZaI1yTelerLzAH9us5Kn395X3/ipz3f966qfTfUyN8qZz3C4xK101eeeuw0u8h1bh23TnTbG/zkztWn3xnmpmZmZmZ1VDLNsokfUvS0rSo8kJJ7691meqJpA5JB61l/1hJF6XtgZL+X6rHiRUuhxeSNjMzM7Om1pLDF9PMg58Ado+IlelD/4BeDlvfPNsjoquaeVRYB9l097f23CGpX0TMI1vwGbIFo/unKfrNzMzMzKwPWrWnbCvg2YhYCRARz0bEM/DmnpnUGzQrbb9D0h2SHpL0E0l/KIr3a0nzU8/b5EImkl6RdKak3wJ7FRdA0ixJ50p6UNJjkj6YwgdJ+rmkTkkLJI1P4ZMk3STpNkmPSzqv1IlJapd0QTp+saQTUvgYSbNTOW+XtFW5ckgaAJwJTCz0fkk6XdIUSTOAqZL2k3SzpHcCvwA6UtwRlaxDMzMzs5bV3e2fFtGqjbIZwLDUCLlE0odyHPNd4K6I2B2YBmxTtO/YiBhD1rN0oqTNU/gQYElEvD8i7imRZr+I2BP4Wkof0iLQEbELcBRwpaRBaV8H2Tpiu5A1mIaVSHMy8F5gt4jYFbg6rV/2Y+DwVM7Lge+VK0dErAJOA65LC0xfl+KNIZu6/ujCgRHxd+DzwJwU94ky9QfrVodmZmZmZk2tJRtlEfEKWQNjMvAP4DpJk3o5bF/g2nT8bcDzRftOTOuEPQAMA7ZP4V3AjWtJ86b0ez4wvCifq1I+jwB/IFtrDODOiHgxIlYADwPblkjzAOCyiFid0ngO2BEYBdwhaSHwbeA9vZSjlOnruZbYutRhSZImS5onad7q1S+vR5HMzMzMzGqrJZ8pA0jPd80CZknqBD4HXAGsZk1jdVDRISXng5W0H1lDaK+IeC0N1Ssct6KX58hWpt9drLkWa5t3dmXRdhfQT9IE1vSyfT4d33NeWAFLI2IvSitVjlLyLhJdyTosKSKmAFMAhmw0vP7nRTYzMzMzK6Mle8ok7SipuCemg6xHCmAZWS8awGFFce4BPpWOPxB4ewofCjyfGhM7AR9Yz+LdDRyT8tmBbIjfo+UiR8S0NGywI02+MQM4XlK/lMZm6fh3pAlOkNRf0sheyvEy8LZ1PIdl1LYOzczMzMwaRks2yoCNyZ7VeljSYmBn4PS07wzgQklzyHqOKAo/UNJDwMeAv5A1XG4j67FaDJxFNvxufVwCtKfeu+uASYUJSXL6KfBHYHEaDnh0ekbscODcFLYQ2LuXdGYCO6/jNPe1rkMzMzOzxhfd/mkRqsaq6s1I0kCgKyJWpx6nSz0FfN9Uqw5rMXxRax1lWh/aVJsyqkb59kVbzuvX/ZaRwBsm30prhGtS72r1v3Jgv/4VTzPv+1fkvP/z1k2l/54a4fNLu/J9913puskrbx1W+j2kGteuO2ea7W35rsk/Xny0Lt44V/1pUf3f6FU2YNjourgW1dayz5Stg22AX0lqA1YBX6hxeRpRVepwy43e3nuknKrR2Mr7TzlvvLyNrUqfS95823N2wOf9J5+3XlZ3518GsF9be654eeswb2Orv/Ll2y/vvVDhxmU1Gqt5r19Xzm9D89Zh3mvXRb58897XeYef5K2Xwar8v+n+FR4k0z/3/VpZ7Tmvcd541fjSJG/e/Wv0hc2AnPn2yxlvZc73hrznW416GdrdEp/vrQG5UZZTRDxOtkiyrSPXoZmZmZnZW7XqM2VNR9K7JF0r6Yn0rNytaaKQUnGHSzq66HWHpIM2XGnzkfRKrctgZmZmZlZt7ilrAsrGgU0DroyII1NYB7Al8FiJQ4YDRwO/TK87yBZtvrXqhTUzMzOzfPowNN8am3vKmsN44PWIuKwQEBELgXsknS9piaTOolkUzwE+mGZW/AZwJjCxMNOipM0k/VrSYkkPSNoVQNLpki6XNEvSk5JOTOFDJN0iaVHKa2IKHyNptqT5km6XtFUKHyHpthQ+J02Dj6T3Srpf0lxJZ22oyjMzMzMzqyX3lDWHUcD8EuGfJOsFGw1sAcyVdDdwKnByRHwCQNLfgLER8ZX0+sfAgog4VNL+wNSUDsBOZI3AtwGPSroU+GfgmYj4eDp+qKT+wI+BQyLiH6mh9j3gWLJFn4+PiMclvZ9sGYD9gQvJZmScKunLlawgMzMzM7N65UZZc9sXuCYiuoC/SZoN7AG8lOO4wwAi4i5Jm0samvbdktZNWynp72RDJDuBCySdC9wcEXMkjSJrLN6RZtlrB/4iaWOyNdKuL5p9b2D6vQ9rFpu+Cji3XAElTQYmA2w+5D1sMmiL3mvDzMzMzKwOuVHWHJaSLQ7d07rO+1rquMI8t8ULWXcB/SLiMUljgIOAsyXNIHvGbWlE7PWmhKVNgBfWsj5Zrvl0I2IKWY8b222xW8uv4WFmZmZmjcvPlDWHu4CBkt5Y90vSHsDzZM+KtUt6BzAOeBB4mWz4YUHP13cDx6R09gOejYiyvWuS3g28FhG/AC4AdgceBd6RFolGUn9JI1M6T0k6IoVL0uiU1L3AkWn7mL5Xg5mZmVkTiW7/tAg3yppARAQwAfhImhJ/KXA62eyKi4FFZA23UyLirylsdZqY4yRgJrBzYaKPdOxYSYvJJgX5XC9F2AV4UNJC4FvAf0TEKrLeu3MlLQIWkg1bhKzBdVwKXwocksK/CnxZ0lxgKGZmZmZmLUDZ53mzxlXJ4Yta5xGf5bUr33cfeeO1KV8ZK30uefNtz/ldj/Kml7NeVvdh2uB+be254uWtw7ac8forX7798t4LOfPtzjcquOLpQf7r15Xz29C8dZj32nWRL9+893Xebzrz1stgVf4pg/4V/j62f+77tbLac17jvPHy3v99kTfv/lXIO48BOfPtlzPeypzvDXnPtxr1MrQ7X5r/9sdf1Oai9LBq2byW/6A+YPjYurgW1eaeMjMzMzMzsxryRB/W8J5++R+1LsIGlbeHKW8veN70Kq3S5etLr3810mwl1bhnalXXzXL/m1ll/VutC2Atx40yMzMzM7N61N06E120Og9frBFJ35K0VNLiNMHG+9cjrRMl/U7S1ZImSbq4kmWtJUmv1LoMZmZmZmbV5J6yGkjTxH8C2D0iVkraAhiwHkl+CfhYRDwlaVIlytgbSf0iYvWGyMvMzMzMrJm5p6w2tiJb+2slQEQ8GxHPAEhalhppSBoraVbaPl3S5ZJmSXpS0okp/DJgO2B6mt7+DZK2lXRn6o27U9I2ac2yJ9P6YJtK6pY0LsWfI+l9koakvOZKWiDpkLR/kqTrJf0GmNEjryGSbknT7C9JU+sjaYyk2ZLmS7pd0lYpfISk21L4HEk7pfD3Sro/5X1WVWrfzMzMzKyOuFFWGzOAYZIek3SJpA/lPG4n4KPAnsB3JfWPiOOBZ4DxEfHDHvEvBqZGxK7A1cBFEdEFPAbsDOwLzAc+KGkg8J6I+D3ZWmN3RcQewHjgfElDUpp7AZ+LiP175PXPwDMRMToiRgG3SeoP/Bg4PCLGAJcD30vxpwAnpPCTgUtS+IXApSnvv+asFzMzMzOzhuXhizUQEa9IGgN8kKzRc52kUyPiil4OvSX1rq2U9HdgS+DptcTfC/hk2r4KOC9tzwHGAe8Fzga+AMwG5qb9BwIHSzo5vR4EbJO274iI50rk1QlcIOlc4OaImCNpFDAKuCPNINYO/EXSxmQLSV9fNLPYwPR7H+CwojKfW+rEJE0GJgO0t29KW/uQUtHMzMzMGlbkXMPRGp8bZTWSeqxmAbMkdQKfA64AVrOmB3NQj8NWFm130ffrV5iDeQ5wPPBu4DTg68B+wN1pv4DDIuLR4oPTZCSvljmfx1JD8yDgbEkzgGnA0ojYq0c6mwAvRERHL+UsfyIRU8h62xgw8D2et9zMzMzMGpaHL9aApB0lbV8U1AH8IW0vA8ak7cNYP/cBR6btY4B70vZvyXqquiNiBbAQ+F9kjTWA24ETlLqxJO3WW0aS3g28FhG/AC4AdgceBd6RJjZBUn9JIyPiJeApSUekcEkanZK6t0eZzczMzMyamhtltbExcKWkhyUtJnu+6/S07wzgQklzyHrD1seJwL+mPD4DfBUgDYH8E/BAijcHeBvZEESAs4D+wGJJS9Lr3uwCPChpIdkzaf8REauAw4FzJS0ia/ztneIfAxyXwpcCh6TwrwJfljQXGLpOZ21mZmZm1kAU4ZFf1thabfhi0XN4a5X3bztvepVW6fL15b2sGmm2kmrcM7Wq62a5/82sslau+FNd/PGtfOKBlv9HNHDEB+riWlSbnymzhted48NNM/01V/rDa703PKpRvno/53rXTPVX7+dSjS8brP5U+trVe6O/3stXV7o90Uer8PBFMzMzMzOzGnKjzNZZmqDjHkkfKwr7lKTbalkuMzMzM7NG4uGLts4iIiQdT7be2Eyydci+R7aQtJmZmZmZ5eCeMlsvEbEE+A3wDeC7wNSIeELSbyTNl7RU0ucBJPWT9IKk8yU9JOl2Se+XNFvSk5IOSvF2kTRX0kJJiyVtV7szNDMzMzOrLs++aOtN0hDgIWAVMDYiVkraLCKek7QRMA/YB3gZeB04MCLukPQbst7afwFGAz+JiLGSLgVmRcR1kgaS3acryuXfb8DWvd7EflTYzJqdJ0VoXJ7oo7Ra3tN1M/viY/e0/Af1gTvsWxfXoto8fNHWW0S8Kuk64JW0BhrASZIOTtvvAUaQrVO2PCLuSOGdwIsRsVpSJzA8hd8HfFvStsBNEfH7nnlKmgxMBlD7UNrahlTj1MzMzMzMqs7DF61SutMPkg4AxgEfiIjRwGJgUIq3qscxK4u2+wFExFXAhLTvDknjemYWEVMiYmxEjHWDzMzMzMwamRtlVg1DgeciYrmkkcAefTlY0nYR8fuIuBC4Bdi1GoU0MzMzM6sHbpRZNdwCbCRpEXAa8Ns+Hn90miBkIbAd8ItKF9DMzMzMrF54og9reJ7ow8zME300Mk/0UZon+oCVj8xu+Q/qA3f6UF1ci2rzRB/W8LYcsmmvcbpz/gNoq+E/gEr/82nL2RTtprLv95X+Z1ur86iGvOeS1+vdXbnitbflGxRRjS/p2lXZARl5r3Ol67rS8p7HRu2Deo+U9G9rzxWvK7pzxVPOOsx7jWv1/tpP+eqlll9S563DvPdN3mtc6b/PvPLm296HAV3+UsIanYcvmpmZmZmZ1ZAbZXVCUldaLHmJpOvT+l5ri79M0hZ9SP90SSevf0nzK1dGSUMlTZX0RPqZKmlo2vduSTek7f0k3bwhy2xmZmZmtqG5UVY/lkdER0SMIps2/vhaF6hAUqWHuf4MeDIiRkTECOAp4KcAEfFMRBxe4fzMzMzMzOqWG2X1aQ7wPgBJv5Y0P81GOLlnREnDJT0i6aepl+1qSQdIulfS45L2LHHMFyT9t6TBkkZIui3lMUfSTinOFZJ+IGkmcG7qabtc0ixJT0o6sSi9T0t6MPX0/UQqP4Bf0vuAMcBZRcFnAmNTWYZLWrKuFWdmZmZm1mjcKKszqVfqY0BnCjo2IsYAY4ETJW1e4rD3AReSree1E3A0sC9wMvDNHul/BfgX4NCIWA5MAU5IeZwMXFIUfQfggIj4t/R6J+CjwJ7AdyX1l/RPwERgn4joALqAY9ZyijsDCyPijRkK0vZCYORajjMzMzNrLdHtnxbh2Rfrx+C0LhdkPWU/S9snSpqQtocB2wP/0+PYpyKiE0DSUuDOiAhJncDwonifAZ4ma5C9LmljYG/g+qJZiwYWxb++uPEE3BIRK4GVkv4ObAl8mKzna25KYzDw97Wcp6Dk9FHlwksnkvUaTgYYOngrhgx8e95DzczMzMzqihtl9WN56ml6g6T9gAOAvSLiNUmzgFLzI68s2u4uet3Nm6/xEqADeA/Zc1xtwAs98y3y6lry6UppC7gyIv69TBo9LQV2k9QWkX39IakNGA38LmcaRMQUsl4+tn77yPqfC93MzMzMrAwPX6xvQ4HnU4NsJ+AD65neAuB/AdMlvTsiXgKeknQEgDKj+5jmncDhkt6Z0thM0rblIkfE71M5vl0U/G3gobTPzMzMzKyluFFW324D+klaTDYxxgPrm2BE3EP27Ngtabr6Y4DjJC0i68U6pI/pPUzWqJqRynkHsFUvhx0H7CDp95KeIHt27bi+nYmZmZmZWXNQLVewN6uEPMMXu3Pe521rnq3b4FThvNvIl153/kf5csn7npL3fGt1HtWQ91zyer27q/dIQHtbvu/fqvH/oF2V/e4v73WudF1XWt7z2Ki91Ij10vq3lZ349k26cj44r5x1mPca1+r9tV/5CYHfpJafh/LWYd77Ju81rvTfZ155823vQ99Bpf+H3v/nmXXxJrJy6Z31/8+tygaO/HBdXItqc0+ZmZmZmZlZDXmiD2t4zy5/qdc4eb/xrYbI+c1m3jJWOr1Ky1u+SqvlNW41fbnGtbouFe95rlEvzwtvmW+pvFq9N1Q630rXdd6REtV478qbd6XlrcN6vyZ9ybcRRsSYrY17yszMzMzMzGrIjTLLRdK7JF0r6QlJD0u6VdIOkpbUumxmZmZmZo3MwxetV8rGAU0jW4/syBTWQbZ4tJmZmZlVQ85JW6zxuafM8hgPvB4RlxUCImIh8KfCa0mDJP1cUqekBZLGp/DfShpZFG+WpDGShki6XNLcFP+QtH+kpAclLZS0WNL2G+40zczMzMw2PDfKLI9RwPxe4nwZICJ2AY4CrpQ0CLgW+BSApK2Ad0fEfOBbwF0RsQdZo+98SUOA44ELI6IDGAs8XYXzMTMzMzOrG26UWaXsC1wFEBGPAH8gWxT6V8ARKc6ngOvT9oHAqZIWArOAQcA2wP3ANyV9A9g2IpaXykzSZEnzJM3r6nqlOmdkZmZmZrYBuFFmeSwFxvQSp+QcsxHxZ+B/JO0KTCTrOSvEPywiOtLPNhHxu4j4JXAwsBy4XdL+ZdKdEhFjI2Jse/vG63JOZmZmZmZ1wY0yy+MuYKCkLxQCJO0BbFsU527gmLRvB7Jer0fTvmuBU4ChEdGZwm4HTkiTiCBpt/R7O+DJiLgImA7sWq2TMjMzM6tr3d3+aRFulFmvIiKACcBH0pT4S4HTgWeKol0CtEvqBK4DJkXEyrTvBuBIsqGMBWcB/YHFaVr9s1L4RGBJGta4EzC1OmdlZmZmZlYfFDVabd6sUgYOGtbrTazSoys3iCDf31jeMlY6vUrLW75Kq+U1bjV9uca1ui6pE75i2iqcXl59qb9avTdUOt9K13V3zs851Xjvypt3peWtw3q/Jn3Jt9JpvvTqk3XxT2Xl4ttb/oP6wF0/WhfXotq8Tpk1vK4W6to2M6s3eT8tVfqTZb3n25e8m+UTZ6XPt9JfrgC4M8LqlYcvmpmZmZmZ1ZAbZU1A0rskXZue93pY0q1pso1alumba9lXtS4QAAAgAElEQVQ3VNLUVN4n0vbQtO/dkm5I2/tJunlDldnMzMysnkR0tfxPq3CjrMGl2QunAbMiYkRE7Ax8E9iytiWjbKMM+BnZDIsjImIE8BTwU4CIeCYiDt8QBTQzMzMzqwdulDW+8cDrEXFZISAiFkbEHGXOl7REUqekiYU4kk5JYYsknZPCOiQ9IGmxpGmS3p7CZ0k6V9KDkh6T9MEUPknSxUVp3px6t84BBktaKOnq4sJKeh/ZmmdnFQWfCYyVNELS8DQbo5mZmZlZS3CjrPGNAuaX2fdJoAMYDRwAnC9pK0kfAw4F3h8Ro4HzUvypwDciYlegE/huUVr9ImJP4Gs9wt8iIk4FlqdFoY/psXtnYGEU9Uen7YXAyF7P1szMzMysybhR1tz2Ba6JiK6I+BswG9iDrIH284h4DSAinkvPdG0aEbPTsVcC44rSuin9ng8MX48yidITNJULL52INFnSPEnzurtfXY/imJmZmZnVlqfEb3xLgXLPYJWbS7ZPDaCksBB0F2vum9W8uWE/KEc6S4HdJLVFRDeApDay3rzf5S1MREwBpgD0G7C157c1MzOz5hNe9qdVuKes8d0FDJT0hUKApD0kfQi4G5goqV3SO8h6vh4EZgDHStooxd8sIl4Eni88LwZ8hqxnbW2WAR2S2iQNA/Ys2ve6pP49D4iI3wMLgG8XBX8beCjtMzMzMzNrKe4pa3AREZImAD+SdCqwgqyx9DWyRtlewCKynrFTIuKvwG2SOoB5klYBt5LNlvg54LLUWHsS+Ndesr+XbObETmAJ8FDRvinAYkkPlXiu7Djgx5J+T9Zrd38KMzMzMzNrOfLK5tboPHzRzKx2yo2T76nSb9T1nm9f8u5LmvWs0uebrfpTWXk/976+6s91cVlWLLy55T/jDOr4RF1ci2pzT5k1vP7t9X0bt1Xhn0olqc4/DtR7/fVFNT5gVFJbnd8LfVH3dZ2zfLU8j7z3Q73XdV7VeC9spvevWqjGvdVM73PWXOr706yZmZmZWavq9kQfrcITfTQISV1pMeYlkq4vTNKxlvjLJG2xjnm9aVHoDSEtUD12Q+ZpZmZmZlYP3ChrHIXFmEcBq4Dja12gUiS599XMzMzMrA/cKGtMc4D3AUj6taT5kpZKmtwzoqThkh6R9NPUy3a1pAMk3SvpcUl7viX1Nx//cUn3S9pC0jsk3ShpbvrZJ8U5XdIUSTOAqamn7SZJt6U8zitK78CU3kOpx2/jHvm1S7oilbVT0kmVqDAzMzMzs3rlXo0Gk3qiPgbcloKOjYjnJA0G5kq6MSL+p8dh7wOOACYDc4GjgX2Bg8mmwj+0TF4TgP8NHBQRz0v6JfDDiLhH0jbA7cA/pehjgH0jYrmkSUAHsBvZotOPSvoxsJxsTbIDIuJVSd9I6Z9ZlG0HsHXqEUTSpn2vJTMzMzOzxuFGWeMYLGlh2p4D/Cxtn5gaTwDDgO2Bno2ypyKiE0DSUuDOtL5ZJzC8TH7jgbHAgRHxUgo7ANi5aDakTSS9LW1Pj4jlRcffmRakRtLDwLbApsDOwL0pjQFka5QVexLYLjXibiFb6PotUq/gZIB+/TajX7+NS0UzMzMza1zhiT5ahRtljWN5RHQUB0jaj6yhtFdEvCZpFjCoxLEri7a7i153U/4eeBLYDtgBmJfC2lJexY2vwpS1r64lz66Uj4A7IuKoMnmSeuRGAx8Fvgx8Cji2RLwpZAtUM3jwti2/hoeZmZmZNS4/U9bYhgLPpwbZTsAHKpj2H4BPkj0jNjKFzQC+UoggqaPUgWvxALCPpMLzcBtJ2qE4Qpoxsi0ibgS+A+y+juU3MzMzM2sIbpQ1ttuAfpIWA2eRNXoqJiIeBY4Brpc0AjgRGCtpcRqS2KcZICPiH8Ak4JpU5geAnXpE2xqYlYZqXgH8+3qdhJmZmZlZnVOER35ZY6v34Ytta57Bq0uivstX7/XXF6rzc2mr83uhL+q+rnOWr5bnkfd+qPe6zqsa74XN9P5VC9W4t/Le1398rrMuLt6K+b+u6884G8KgMYfWxbWoNj9TZmZmZmZWj7q7al0C20DcKLOG93rX6loXwawptMRXkVZxzdJTZmZWS36mzMzMzMzMrIaarlEmaYKkSLMRViP9DkkHFb0+WNKpfTh+maROSYskzZD0rvUoy36Sbl7HYw+VtPN65D1S0l2SHpP0uKTvKH1dmsq1d1HcKyQdvq55mZmZmZk1s6ZrlAFHAfcAR1Yp/Q7gjUZZREyPiHP6mMb4iBhNtv7XN3vulNS+fkXM5VCyhZz7TNJgYDpwTkTsAIwG9ga+lKLsl16vN2Wa8T41MzMzMwOarFEmaWNgH+A4ihpl6YP9xZIelnSLpFsLPTep52qLtD02LcCMpD0l3SdpQfq9o6QBwJnAREkLJU2UNEnSxemYLSVNS71gi4p7i8q4Gyis2fWKpDMl/RbYS9KHU96dki6XNDDF+2dJj0i6h2wdscI5ni7p5KLXSyQNT9ufTdPYL5J0VSrXwcD56TxGSDox1c9iSdf2Uu6jgXsjYgZARLxGtn7ZqSnP44GTUtofTMeMS/X4ZHGvmaSvS5qb8j0jhQ2X9DtJlwAPAcN6KY+ZmZlZ84lu/7SIZpvo41Dgtoh4TNJzknaPiIeACcCOwC7AlsDDwOW9pPUIMC4iVks6APh+RBwm6TRgbER8BUDSpKJjLgJmR8SE1Nu1cS95fALoTNtDgCURcZqkQcDjwIfTuUwFvijpMuA/gf2B3wPX9VYhyhZ+/hawT0Q8K2mziHhO0nTg5oi4IcU7FXhvRKyUtGkvyY4E5hcHRMQTqVH8HHAZ8EpEXJDSPg7YCtiXbF2y6cANkg4Etgf2JJtjYLqkccAfya7Xv0bElzAzMzMza2JN1VNGNnSx0MtzbXoNMA64JiK6IuIZ4K4caQ0lWzR5CfBDsoZIb/YHLgVIeb1YJt7MtDjyJsDZKawLuDFt7wg8FRGPpddXpnPYKYU/HtkCc7/IWaYbIuLZVK7nysRbDFwt6dNAb9MZCii3bka58F9HRHdEPEzWMAY4MP0sIOsR24mskQbwh4gouxi2pMmS5kma1939ai/FNTMzMzOrX03TUyZpc7IGyChJAbQDIemUFKVcY2E1axqng4rCzwJmpl6v4cCsChZ3fKGRVGRFRBQWo1jb/MJ5zgPWnMvaGlDFPk7W8DsY+I6kkRFRrnG2NMV9g6TtyHrHXlbp6ZFXFkcv+n12RPykR1rDgbW2tCJiCjAFoN+ArVt+YUUzMzMza1zN1FN2ODA1IraNiOERMQx4imzI3N3AkZLaJW0FjC86bhkwJm0fVhQ+FPhz2p5UFP4y8LYyZbgT+CJkk3VI2mQdz+URYLik96XXnwFmp/D3ShqRwo8qOmYZsHvKe3fgvUVl+lRqtCJps57nkSbSGBYRM4FTgE2BjdNzdVNLlO9qYN80rLMw8cdFwHk90+7F7cCxadgjkraW9M4cx5mZmZmZNY1mapQdBUzrEXYj2aQU08ie0eokG144uyjOGcCFkuaQDSEsOA84W9K9ZL1uBTOBnQsTffTI76vAeEmdZM9c5Rny+BYRsQL4V7Lhk51AN3BZCp8M3JIm+vhDj3PdLA2L/CLwWEprKfA9YLakRcAPUvxrga9LWkA2ZPAXKa8FwA8j4gVgG2B5ifItBw4Bvi3pUbJ6nQtcnKL8BpjQY6KPUuc5A/glcH/K+wbyNebMzMzMml93t39ahLJHk1qLpCsomuTCSpN0PnBVRCyudVnWxsMXzSpjbeOmzcopM2TdrKGtWvl0XdzYKx64ruU/4wz6wMS6uBbV1jTPlFnlRcTXa10GM9twWv4/v62TVvxy18ys0lqyURYRk2pdBjMzMzMzM2iuZ8qagqQJkkLSTlVKv0PSQUWvD05rlOU9flla0HqRpBmS3lUUvsU6lulQSTuvy7FmZmZmZo3OjbL6cxRwD3BkldLvAN5olEXE9Ig4p49pjI+I0cA84JsVKNOhgBtlZmZmZtaS3CirI2lq+H2A4yhqlClzsaSHJd0i6VZJh6d9b/RQSRoraVba3lPSfZIWpN87ShoAnAlMLMweKWmSpIvTMVtKmpZ6wRZJ2ruXIt8NvK9noKRfS5ovaamkyUXhr0j6Xkr7gZTf3mRro52fyjRC0onpXBdLurZn+mZmZmYtIbr90yLcKKsvhwK3RcRjwHNpvTGACcCOwC7AF4DeGkuQrWk2LiJ2A04Dvh8Rq9L2dRHRERHX9TjmImB26gXbnWyR6LX5BNl0+D0dGxFjgLHAiYU10oAhwAMp/buBL0TEfcB04OupTE8ApwK7RcSuwPE5ztXMzMzMrGG5UVZfjiJbP4z0u7A49DjgmojoiohngLtypDWUbJ2zJcAPybdm2v5k67iR8nqxTLyZaT20TYCzS+w/Ma2J9gAwjGwdNIBVwM1pez4wvEz6i4GrJX0aWF0qgqTJkuZJmtfd/eraz8rMzMzMrI615OyL9Sj1Ju0PjJIUZAtWh6RTUpRycw6vZk3jelBR+FnAzIiYIGk4MKuCxR0fEc+W2iFpP+AAYK+IeC0NpyyU6/VYM3dyF+Xvv4+TNUQPBr4jaWREvKlxFhFTgCngdcrMzMzMrLG5p6x+HA5MjYhtI2J4RAwDngL2JRvqd6SkdklbAeOLjlsGjEnbhxWFDwX+nLYnFYW/DLytTBnuBL4IkPLaZB3OYyjwfGqQ7QR8IMcxb5RJUhswLCJmAqcAmwIbr0M5zMzMzMwaghtl9eMoYFqPsBuBo1P442TPb10KzC6KcwZwoaQ5ZL1PBecBZ0u6l6zXrWAmsHNhoo8e+X0VGC+pk2x4YZ4hjz3dBvSTtJist+6BHMdcC3xd0gKyoY6/SGVYAPwwIl5Yh3KYmZmZNbbubv+0CK0ZTWaNQtIVwM0RcUOty1IPPHzRzMzMKmn1qj+r1mUAWHHv1S3/GWfQPsfUxbWoNj9TZg2vTc3xt1rpL0jUYvXSLOfbF64bqybfN1YtwveWWU9ulDWgiJhU6zKYmZmZmVll+JkyMzMzMzOzGmqqRpmkCZIizfpXjfQ7JB1U9PpgSaf2MY3dUhk/mjP+mZIO6GtZy6T1yjoeJ0nflvS4pMckzZQ0smj/N4u2h6e10czMzMxsfdR6ko16+GkRTdUoI5vB8B7gyCql3wG80SiLiOkRcU4f0yiU8ajeIqY8TouI/9fHPCrty8DewOiI2IFswejpkgrrj32z7JF9JMlDas3MzMyspTRNo0zSxsA+wHEUNcpSL8/Fkh6WdIukWyUdnvYtk7RF2h6bFjpG0p6S7pO0IP3eUdIA4ExgYmE6eUmTJF2cjtlS0jRJi9LP3iXKKLL1yCYBBxYaNal36XeS/lPSUkkzJA1O+67oUd7vS7pf0jxJu0u6XdITko4v1IOkOyU9JKlT0iElyrGVpLvTeSyR9MFeqvcbwAkR8RpARMwA7gOOkXQOMDildXWK317mXEZIuk3SfElzCj2a6Rx/IGkmcK6kD6X0FqZrUG5dNTMzMzOzhtc0jTLgUOC2iHgMeE7S7il8ArAjsAvwBbIen948AoyLiN2A04DvR8SqtH1dRHRExHU9jrkImB0Ro4HdgaUl0t0HeCoingBmUdTrRrY+1/+NiJHAC7x5Iehif4qIvYA5wBVkjbwPkDUYAVYAEyJid7JFpv+P3jqF1tHA7RHRAYwGFpariLSA9JBU5mLzgJERcSqwPNXJMb2cyxSyxt0Y4GTgkqL0dgAOiIh/S/u+nMr3QWB5iXJNTg3Ted1dr5YrvpmZmZlZ3WumoWJHAT9K29em1w8B44BrIqILeEbSXTnSGgpcKWl7IID+OY7ZH/gsQMrrxTJlvLaojJ8Bbkqvn4qIQuNoPjC8TD7T0+9OYOOIeBl4WdIKSZsCrwLflzQO6Aa2BrYE/lqUxlzgckn9gV8X5dsXIqubUt5yLqknc2/g+qI24sCiY65P9QZwL/CD1PN2U0Q83TODiJhC1shjwMD3tPwaHmZmZmbWuJqiUSZpc7JG0ShJAbQDIemUFKXch/bVrOktHFQUfhYwMyImSBpO1qu1vmVsJ+sxOljSt8gaNZsXDc1bWRS9CxhcJqlCvO4ex3STXc9jgHcAYyLidUnLePO5ERF3p0bbx4GrJJ0fEVNLZRYRL0l6VdJ2EfFk0a7dgdm9lLH4XNqAF1LvVylvdHdFxDmSbiHrSXxA0gER8UiZ48zMzMya0prvq63ZNcvwxcOBqRGxbUQMj4hhwFPAvsDdwJGS2iVtRTakr2AZMCZtFw8XHAr8OW1PKgp/GSj3fNOdwBcha4ClYX/FDgAWRcSwVMZtgRvJhl1W0lDg76lBNh7YtmcESdumOP8J/IysgYWkqZL2LJHm+cBFRc+GHUBWt79M+19PvW5lRcRLwFOSjkhpSNLoUnEljYiIzog4l2yYZFVm0zQzMzMzqwfN0ig7CpjWI+xGsmenpgGPkw33u5Q39+6cAVwoaQ5Zj07BecDZku4l63UrmAnsXJjoo0d+XwXGS+okG7I3ssf+tZWxkq4GxkqaR9ZrVqqHaT9goaQFZI3RC1P4rsBfSsT/MdmQx05JjwLfAQ6JiMKzXlOAxUUTfZRzDHCcpEVkz9y9ZRKS5GtpApJFZM+T/Xcv6ZqZmZmZNSxFtNbjOJKuAG6OiBtqXZZ6knr2fhYRR9S6LH3VLM+UVfpv8a3zuzSmvPXSLOfbF64bqybfN1Ytov7vrRUr/lgXhVx+9xVN8RlnfQweN6kurkW1NcUzZbb+0vDChmuQAXS32BcLebXaFy6tdr594bqxdVLpL4oqmpo1Mjf4zd6q5RplETGp1mUwMzMzM+tVd3etS2AbSLM8U9ZQJIWkq4pe95P0D0k393Jc8WLVp0s6udplXUtZ3iPpvyQ9nhavvlDZAttI6pB0UFHcmpbVzMzMzKyeuVFWG6+STd9fmPb+I6yZ7bHupcWobyJb42x7soWfNwa+l6J08OaFsdc3v/beY5mZmZmZNSY3ymrnv8nWCYNsZsZrCjskbSbp15IWS3pA0q5rS0jSLElj0/YWaW0yJI2U9GCaLXJxWgwbSZ9NrxcVeuwkHVGY8VDS3b2UfX9gRUT8HN5YLPsk4Ng0YciZwMQes1TunMr5pKQTi8r+6aIy/qTQAJP0iqQzJf0W2Ku3yjQzMzMza1RulNXOtWTrpw0im4r+t0X7zgAWRMSuwDeBkgs753A8cGFasHks8LSkkcC3gP0jYjTZVP4ApwEfTWEH95LuSLJp/9+QJgr5IzA8pXVdRHRExHUpyk7AR4E9ge9K6i/pn4CJwD6pjF1k0+YDDAGWRMT7I+KedTt9MzMzM7P613ITfdSLiFgsaThZL9mtPXbvS1rMOiLukrS5pKHrkM39wLckvQe4KSIel7Q/cENEPJvSfy7FvRe4QtKvyIYmro2AUtNylQsHuCUiVgIrJf0d2BL4MNni3XPTTEyDgb+n+F1k67iVLoA0GZgMoPahtLUN6aXIZmZmZg0mPNFHq3BPWW1NBy6gaOhiUmqu2LXNTbyaNddy0BsHRPySrNdrOXB7apCVbDhFxPHAt4FhZAtLb76W/JaS9bytKXA2bHEY8ESZY1YWbXeRfSEg4MrUo9YRETtGxOkpzoo0LLKkiJgSEWMjYqwbZGZmZmbWyNwoq63LgTMjorNH+N2kYXyS9gOeTcMDy1lG1uMEcHghUNJ2wJMRcRFZA3BX4E7gU4VGl6TN0u8REfHbiDgNeBYYJmlrSXeWyO9OYCNJn03HtgP/B7giIl4DXgbeluP87wQOl/TOQlkkbZvjODMzMzOzpuFGWQ1FxNMRcWGJXacDYyUtBs4BPtdLUhcAX5R0H7BFUfhEYImkhWTPdE2NiKVksyTOlrQI+EGKe76kTklLyBqFi4CtyHrhepY7gAnAEZIeBx4DVpA9/wYwk2xij+KJPkqd/8NkvXMz0rnekfI0MzMzM2sZyj5fm72VpK8Af4yI6bUuy9r0G7C1b2IzszpXaly+tab0HHldW7Xy6boo5PKZP235zziDx3++Lq5FtXmiDysrIi6udRkqpSX+mq3i8v4n9P1l1dIIH17NrIq6PdFHq/DwRTMzMzMzsxpyo6yBSHqXpGslPSHpYUm3StphHdJZJmmL3mO+EX8/STf3NZ8+lukKSYf3HtPMzMzMrLm4UdYglI1hmQbMiogREbEz2cQaW9a2ZGZmZmZmtj7cKGsc44HXI+KyQkBELIyIOZK+LmmupMWSzgCQNFzSI5KuTOE3SNqoKL0TJD2UZlzcKR2zp6T7JC1Iv3fsWYg0bf2vU5oPSNo1hZ8u6SpJd0l6XNIXUrgknS9pScprYlH4xanH7xbgnUV5nJPCF0u6oAp1aWZmZmZWNzzRR+MYBczvGSjpQGB7YE+y+QamSxoH/BHYETguIu6VdDnwJbLp8yFb+2x3SV8CTgY+DzwCjIuI1ZIOAL4PHNYjyzOABRFxaFqMeirQkfbtCnwAGAIsSI2tvdL+0WTT9c+VdHcK3xHYhay372Hg8rRu2gRgp4gISZuue5WZmZmZNbDwRB+twj1lje/A9LMAeIhsPbLt074/RcS9afsXwL5Fx92Ufs8HhqftocD1aa2yHwIjS+S3L3AVQETcBWwuaWja918RsTwiniVbq2zPFP+aiOiKiL8Bs4E9gHFF4c8Ad6U0XiJb8+ynkj4JvFbqpCVNljRP0rzu7lfXWkFmZmZmZvXMjbLGsRQYUyJcwNkR0ZF+3hcRP0v7es7oXfx6ZfrdxZoe07OAmRExCvgXYFCZ/HqKHr+Lw9c2n/NbZhyPiNVkjbkbgUOB20oeGDElIsZGxNi2tiFrycLMzMzMrL65UdY47gIGFp7VApC0B1nP0rGSNk5hW0sqPJ+1jaS90vZRwD295DEU+HPanlQmzt3AMSmv/ciGQb6U9h0iaZCkzYH9gLkp/kRJ7ZLeQdZD9mAKPzKFb0X2zBzpPIZGxK3A11gzNNLMzMzMrCn5mbIGkZ6vmgD8SNKpZEP8lpE1XF4A7k+LjL4CfJqsB+x3wOck/QR4HLi0l2zOA66U9L9ZM5ywp9OBn0taTDa08HNF+x4EbgG2Ac6KiGckTSN7fmwRWc/YKRHx1xS+P9AJPEY2rBHgbcB/SRpE1st2Ui9lNjMzMzNraIp4ywgyawKShgM3p6GIGyK/04FXImKDz5bYb8DWvd7EaxtDaVZO3ndH319WLenLNjPbwFatfLou/viWz7ik5T+oDz7wS3VxLarNPWXWElr+Hc2qyveXVYu/ODUzaw1ulDWpiFhGNo3+hsrv9A2Vl5mZmZlZM/FEH2ZmZmZmZjXkRlkDkvQuSddKekLSw5JulbTDeqa5n6S9K1VGMzMzMzPLx8MXG4yyp76nAVdGxJEprAPYkmwWQyS1R0RXH5P+/+zdebxVVf3/8df7XkQmhXKq1CIVJUHCQL45o/G1X+Y3Iy01LaciR77ml8y+WTmUOfTVnA2HUEMtTc0pwZxFlNnL4JSKJVppmgkiCPfz+2Ovo9vjOeeeC/dy7r3n/Xw8zuPuu/aa9j4HOB/W2muNJFu58ZG2662ZmZmZrbJornUPbA3xSFnnsxvwTkRcWkiIiDlAo6T7JF0LzJXUX9K8Qh5J49IKiUgam0bYmtKIW3/gCOC7kuZI2lnSf0l6TNJsSX+StFEq20fSryXNTeX3Sel7SJoqaZakG3L7pv1Y0nRJ8ySNT0Elku6XdKakaZKelrRzSh+U0uak+ge0/y01MzMzM6sdj5R1PoOBmWXOjQAGR8TzKdAq50TgkxGxTFK/iPiXpEvJLWkv6UPAZ9P+aN8CTgD+B/gR8EZEbFPIJ2l94CRgVEQskfR94HjgVODCiDg15b0G2Au4LfWjW0SMkLQn8BNgFFlweF5ETJTUHWhs/S0yMzMzM+s8HJR1LdMi4vkq8jUBEyXdAtxSJs8mwG8lfRToDhTqHQXsX8gUEa9L2gvYGpiSBsK6A1NTlt0knQD0Aj4MzOe9oOym9HMm0D8dTwV+KGkT4KaIeKZU5ySNAcYAqLEvDQ29q7hsMzMzM7OOx9MXO5/5wLAy55bkjlfw/ve3R+74i8BFqZ6ZkkoF5xeQjXJtA3wnV158cFsmAXdHxND02joiDpfUA7gY2DfVc1lRP5alnytJ/0EQEdcCXwKWApMk7V7qQiNifEQMj4jhDsjMzMzMrDNzUNb53AusLenbhQRJ2wG7FuX7O7ChpPUkrU02bRBJDcCmEXEf2ZTEfkAf4E1gnVz5vsCidHxwLn0ycEyu7Q8BjwI7StoipfVKq0EWArBX0zNm+7Z0cZI2A56LiPOBW4EhLZUxMzMzM+vMPH2xk0nPeI0GfinpROBtYCFF0xAj4h1JpwKPkU09fDKdagR+I6kv2QjXuemZstuAGyXtDRwLnAzcIGkRWdD1yVT+p8BFaRGRlcApEXGTpEOA61IACHBSRDwt6TJgburj9CoucT/gIEnvAH8jey7NzMzMrP40e/XFeqGI4ploZp1Lt+4b+0NsZmZmbWbF8kWqdR8Alv7x/Lr/jtPzC2M7xHvR3jx90czMzMzMrIYclJmZmZmZmdWQg7JVJCnSvluF37tJekXS7a2s52OSbmyjPk2Q9HzaeHmOpLEp/U5J/SqUW5j2GmtNW4Mk3Zs2fn5G0o9yG0OPlLRDUb9aXOTDzMzMzKweeaGPVbcEGCypZ0QsBf6T91YrrIqkbhHxElWsStgK34uI9wV5EbFnG9aPpJ5kKyMeGRGTJfUCfg8cRbbU/khgMfBIG7Qlsmcf/aSrmZmZ1Rcv9FE3PFK2ev5ItucXwAHAdYUTkkZIekTS7PRzq5R+iKQb0mqHkyX1TysZFs7dJOmuNPp0Vq6+PSRNlTQrle9TbScLI2GSeku6Q9LjkuZJ2i+X7dhU91xJA1uo8uvAlIiYDBARb5Etk3+ipP7AEcB302jdzqnMLuk+PJcfNZP0PUN1164AACAASURBVEnTJTVJOiWl9Zf0hKSLgVnAptVeq5mZmZlZZ+OgbPVcD+yfNkkeQrb8fMGTwC4RsS3wY+D03LntgYMjotTGyEPJloXfBthP0qZpauFJwKiI+AwwAzi+TJ/Ozk1f3Kbo3P8DXoqIT0fEYOCu3LlXU92XAONauO5BwMx8QkQ8S7bf2WvApWRL7Q+NiIdSlo8CO5Htl3YGZIEmMAAYka57mKRdUv6tgKsjYtuIeKGF/piZmZmZdVqevrgaIqIpjQwdANxZdLovcJWkAUAAa+XO3R0Rr5Wp9p6IeANA0gLgE2QbPG8NTEmPbXUHppYp/4HpizlzgV9IOhO4PRcwAdyUfs4EvlKmfIHIrqmUcum3pCmICyRtlNL2SK/Z6fc+ZEHaX4AXIuLRsh2QxgBjANTYl4aG3i102czMzMysY3JQtvpuBX5B9hzVern004D7ImJ0Ctzuz51bUqG+ZbnjlWTvkcgCuQNWp6NpM+dhwJ7AzyVNjojC5syFdgttVjIf2CWfIGkzYHFEvJkCx2L561Lu588j4ldFdfWn8j0iIsYD48H7lJmZmZlZ5+bpi6vvSuDUiJhblN6X9xb+OGQ123gU2FHSFgCSeknasrWVSPoY8FZE/IYskPxMC/lHSLq6xKmJwE6SRqV8PYHzgcIzcG8C61TRpUnAYYXn4yRtLGnDqi7GzMzMrKuLZr/qhIOy1RQRL0bEeSVOnUU2GjUFaFzNNl4hC+yuk9REFqS1tBhHKdsA0yTNAX4I/LSF/B8Hlpboz1Jgb+AkSU+RTYucDlyYstwGjC5a6OMD0kIh1wJTJc0FbqS6YM7MzMzMrMtQhGd+WWmSzgauiYimWvelEk9fNDMzs7a0Yvmiks9irGlLbz+n7r/j9Nzr+A7xXrQ3P1NmZUXE92rdB7Naqot/BaxDK/OMrtUpfx7Mui5PXzQzMzMzM6shj5R1YpJWkj3P1Q14gmzvs7cq5F8IDI+IV1ehrSPIFgkptfBHpb4VfBlYH/hmRIwtU2YkMC4i9mpt/8zMzMy6nOb6Weii3jko69yWRsRQAEkTgSOAc9qjoYi4tJVF3u1bzkKyja/NzMzMzCzx9MWu4yGgsGT+QZKmpdUPfyXpA6s/SrpF0kxJ89NGzIX0wyU9Lel+SZdJujClnyxpXDreQtKfJD0uaZakzavpoKSRkm5Px7um/s2RNFtSYdXFPpJulPSkpInyBHozMzMz6+IclHUBkroBXwDmSvoUsB+wYxqpWgkcWKLYYRExDBgOjJW0XtrH7EfAZ4H/pPyy+xOBiyLi08AOwMsl8vTMBV03lzg/Djg69XFn3lt6f1vgOGBrYDNgxxYu38zMzMysU/P0xc6tZ9pzDLKRsiuAMcAwYHoaZOoJ/KNE2bGSRqfjTYEBwEeAByLiNQBJNwDv26Q6jWhtHBE3A0TE22X6Vmr6Yt4U4Jw07fKmiHgx9XdaRLyY2poD9AceLi6cRvfGAKixLw0NvSs0ZWZmZmbWcTko69w+EPik6X5XRcQPyhVKC2qMAraPiLck3Q/0oLoVwNtkOmFEnCHpDmBP4FFJo9KpZblsKynzGY2I8cB48D5lZmZm1kWFF/qoF56+2PXcA+wraUMASR+W9ImiPH2B11NANpBsuiLANGBXSR9KUyL3Ka48Iv4NvCjpy6n+tSX1am0nJW0eEXMj4kyyxT/KTZU0MzMzM+vSHJR1MRGxADgJmCypCbgb+GhRtruAbun8acCjqewi4HTgMeBPwALgjRLNfINs+mMT8AjZtMfWOk7SPEmPkz1P9sdVqMPMzMzMrNNThGd+2Xsk9YmIxWmk7GbgysLzYx2Vpy9ae/HSn1ZrXoDW8vx5WHOWvf3XDnGzl/7hrLr/jtNz7xM6xHvR3vxMmRU7OT3f1QOYDNxS4/6Y1Uzd/0toNef/OLX38efB7AMkXQnsBfwjIgbn0o8FjgFWAHdExAkp/QfA4WRrF4yNiEkp/f8B5wGNwOURcUZK/yRwPfBhYBbwjYhYLmlt4GqyBfb+CewXEQsrtVGJgzJ7n4gYV+s+mJmZmRnQ7IU+qjABuJAsQAJA0m7A3sCQiFiWW2tha2B/YBDwMeBPkgorjV9EtiXUi2SrmN+aHgs6Ezg3Iq6XdClZsHVJ+vl6RGwhaf+Ub79ybUTEykoX4WfKzMzMzMysU4qIB4HXipKPBM6IiGUpT2F7qL2B6yNiWUQ8D/wZGJFef46I5yJiOdnI2N5pVfPdgRtT+auAL+fquiod3wh8LuUv10ZFDso6EEkr02bL8yU9Lul4SR36PZK0UNL6ZdLn5jaQ3kHSxyTdWKqeVKa/pHnt22MzMzMz6+K2BHaW9JikByRtl9I3Bv6ay/diSiuXvh7wr4hYUZT+vrrS+TdS/nJ1VeTpix3Lu/uOpWHWa8mWr//JmmhcUrfch64t7BYRrxal7duG9ZuZmZlZFyZpDDAmlzQ+7VdbSTfgQ2TbPm0H/E7SZpRewysoPVAVFfJT4VylMmV16FGYepaGWccAxyjTKOlsSdMlNUn6DmQbQaf/AfidpKclnSHpQEnT0kjV5infBpJ+n8pPl7RjSj9Z0nhJk4GrJQ1KZeekdgakfLdImplG8caU6XZF+ZGwcu0AjZIuS+1MltRz9e6kmZmZmXVWETE+IobnXi0FZJCNTt0UmWlAM7B+St80l28T4KUK6a8C/dKq5Pl08mXS+b5k0yjL1VWRg7IOLCKeI3uPNiR7mPCNiNiOLOL/dloNBuDTwH8D25DtIbZlRIwALgeOTXnOI3tIcTuyTaEvzzU1DNg7Ir4OHAGcl0bshpN9sAAOi4hhKW2spPWquIT7UtD1WIlz5doZAFwUEYOAf1FiA2szMzOzuhDNfq2aW8ieBSMt5NGdLMC6Fdhf0trpe/QAYBowHRgg6ZOSupMt1HFrZEvg3sd7M70OBv6Qjm9Nv5PO35vyl2ujIk9f7PgKQ6B7AEMkFT4Ufcne5OXA9Ih4GUDSs2RL2QPMBXZLx6OArXN7nKwraZ10fGtELE3HU4EfStqE7H8YnknpYyWNTsebprb/2ULfS01fLPhAO6lvz0fEnJRnJtC/VOH8ULYa+9LQ0LuFrpiZmZlZVyPpOmAksL6kF8ke+7kSuDLN0FoOHJwCpvmSfgcsIFsq/+jCqoiSjgEmkS2Jf2VEzE9NfB+4XtJPgdnAFSn9CuAaSX8mGyHbHyAiyrZRiYOyDizNfV0J/IMsODu2eJ8DSSOBZbmk5tzvzbz3HjcA2+eCr0J5gCWF3yPi2jSy9UVgkqRvpXpGpfJvSbqfbB+zVVamneeKrmUlUHL6Yhq6Hg/ePNrMzMysXkXEAWVOHVQm/8+An5VIvxO4s0T6c5RYPTEi3ga+2po2KvH0xQ5K0gbApcCFKbKfBBwpaa10fktJrRkemky2gV6h/qFl2t0MeC4izicbfh1CNir3egrIBpI9NLlayrRjZmZmZlZ3PFLWsfSUNAdYi2y48xrgnHTucrKpfLPSHgiv8N4+CdUYC1wkqYnsfX+Q7LmuYvsBB0l6B/gbcCrZSNoRqexTwKOtvK5SSrWzbhvUa2ZmZmbWqSgbhDHrvDx90czMzNrSiuWLSi1rvsYtvfGndf8dp+e+J3WI96K9eaTMzMzMVllX+bbUHt98q7031bbdVe61mX2QnykzMzMzMzOrIQdlHZiklWmfr8Krv6Thks6vUGakpNtb2c7JksaVSH9kVfpdRXt9JV0t6dn0ulpS33TuY5JuTMetvhYzMzMzs87G0xc7tqVpc+W8hcCMNdF4ROywunVIaiyxN8MVwLyI+GbKcwrZQiZfjYiXeG+DPjMzMzOzLs8jZZ1MfvRI0q65UbTZuc2g+0i6UdKTkiYqt2N0K9tanH7+VtKeufQJkvaR1CjpbEnTJTVJ+k6uj/dJupZsA+t8nVsAw4DTcsmnAsMlbZ5GA+etSn/NzMzMupTmZr/qhEfKOrbCEvkAz0fE6KLz48h2CZ8iqQ/wdkrfFhgEvARMAXYEHl6NflxPtoT9nZK6A58DjgQOB96IiO0krQ1MkTQ5lRkBDI6I54vq2hqYkx89i4iV6ToHAU2r0U8zMzMzs07HQVnHVmr6Yt4U4BxJE4GbIuLFNCg2LSJeBEjBTn9WLyj7I3B+Crz+H/BgRCyVtAcwRFJhumFfYACwPPWhOCCDbPGoUgtNlUsvSdIYYAyAGvvS0NCafbTNzMzMzDoOT1/sxCLiDOBbQE/gUUkD06lluWwrWc3gOyLeBu4HPk82YnZ9OiXg2IgYml6fjIjCSNmSMtXNB7aV9O5nLx1/GniiFX0aHxHDI2K4AzIzMzMz68wclHVikjaPiLkRcSbZ4h8DW8j/c0nFUyCrdT1wKLAzMCmlTQKOlLRWqn9LSRUjpIj4MzAbOCmXfBIwK50zMzMzM6srDso6t+MkzZP0OLCUbJphJdsAfytz7iRJLxZeJc5PBnYB/hQRy1Pa5cACYFZanONXVDcqdziwpaQ/S3oW2DKlmZmZmVlBhF91QlFHF1vvJE2KiM/Xuh9trVv3jf0hNjOrkVVa3rcDao9/SKq9N9W23VXudWfwzvJFHeJ2L/3tKXX/Hafnfj/pEO9Fe/NCH3WkKwZkZmaWqYtvLe2olvfP752ZefqimZmZmZlZDTko66AkrcxtDD0nbao8XNL5Fcq8u7F0K9o5WdKi1MaTki7Jr4xYRflWb/YsaSdJ01J7T6bl7QvnjpD0zXQ8IbfcvpmZmZlZl+Tpix1XqT3KFpKtstjWzo2IX6Rg7EFgV+C+dmgHSR8BrgW+HBGzJK0PTJK0KCLuiIhL26NdMzMzs06nubnWPbA1xCNlnUh+JEzSrrlRtNmS1knZ+ki6MY1ATVTaTbpK3YEewOupjaGSHpXUJOlmSR9K6cMkPS5pKnB0rn8PSRqa+32KpCFFbRwNTIiIWQAR8SpwAnBiKnOypHGt6LOZmZmZWafmoKzj6pkLum4ucX4ccHQaTduZbEl8gG2B44Ctgc2AHato67uS5gAvA09HxJyUfjXw/YgYAswFfpLSfw2MjYjti+q5HDgEsj3LgLUjoqkozyBgZlHajJRuZmZmZlZ3HJR1XEsjYmh6ldrweQpwjqSxQL+IWJHSp0XEixHRDMwB+lfR1rkpuNsQ6C1pf0l9U70PpDxXAbuUSL8mV88NwF5pM+nDgAkl2hKlV/9t1ZKvksZImiFpRnPzktYUNTMzMzPrUByUdVIRcQbwLaAn8KikgenUsly2lbTiucGIeAe4i2yT6HLKBVVExFvA3cDewNfInh0rNh8YXpQ2jGwT6qpFxPiIGB4RwxsaeremqJmZmZlZh+KgrJOStHlEzI2IM8mm/w1sIf/PJZUaccvnEbAD8GxEvAG8LmnndPobwAMR8S/gDUk7pfQDi6q5HDgfmB4Rr5Vo5iLgkMKzZ5LWA84EzqrUNzMzMzOzrsqrL3Zex0najWw0bAHwR6D4Ga+8bYBby5z7rqSDgLWAJuDilH4wcKmkXsBzwKEp/VDgSklvAZPyFUXETEn/Jnvu7AMi4uXU1mVpcRIBv4yI2yperZmZmVm98eqLdUMRrXqUxzopSZMi4vNroJ2PAfcDA9Nzbe2uW/eN/SE2s7rXmqV2zayyd5Yv6hB/pJZO/FHdf8fpeeBpHeK9aG8eKasTaygg+ybwM+D4NRWQmZlZpu6/uZmZdWIOyqzNRMTVZMvom5mZmZlZlbzQh5mZmZmZWQ15pMwAkLSSbIPobsATwMER8ZakRyJihxr16X8j4vRatG1mZmZWc34apG54pMwKCptVDwaWA0cA1CogS/63hm2bmZmZma0RDsqslIeALQAkLU4/GyRdLGm+pNsl3Slp33RuoaTTJU2VNEPSZyRNkvSspCMKlUr6nqTpkpoknZJLv0XSzFT3mJR2BtBT0hxJE9fkxZuZmZmZrUkOyux9JHUDvkA2lTHvK0B/sv3OvsUH90T7a0RsTxbQTQD2BT4LnJrq3QMYAIwAhgLDJO2Syh4WEcOA4cBYSetFxIm8N3pXvEG1mZmZmVmX4WfKrKCnpDnp+CHgiqLzOwE3pKXu/ybpvqLzhY2p5wJ9IuJN4E1Jb0vqB+yRXrNTvj5kQdqDZIHY6JS+aUr/Z6XOphG1bFStsS8NDb2rv1IzMzMzsw7EQZkVLI2IoRXOt7Rx37L0szl3XPi9Wyr/84j41fsqlUYCo4Dt08Ii9wM9WupsRIwHxoM3jzYzM7MuqtkLfdQLT1+0aj0M7JOeLdsIGNnK8pOAwyT1AZC0saQNgb7A6ykgG0g25bHgHUlrtUHfzczMzMw6LI+UWbV+D3wOmAc8DTwGvFFt4YiYLOlTwFRJAIuBg4C7gCMkNQFPAY/mio0HmiTN8nNlZmZmZtZVKcIzv6w6kvpExGJJ6wHTgB0j4m+17penL5qZmVlbWrF8UUuPbawRS6/+Qd1/x+n5zZ93iPeivXmkzFrj9rRoR3fgtI4QkJmZWfuoi29BVnfSbB2zDsdBmVUtIkbWug9mZmZmdcMz2upGXSz0IWll2oT4cUmzJO1Q6z61F0n3S3oqXe+cwgbPtSbpEEkfa2WZ/pLmtVefzMzMzMw6gnoZKXt3uXdJnwd+DuzaHg0pGxdX2s+rVg6MiBmtLSSpMSJWtkeHgEPIFgl5qZ3qNzMzMzPrlOpipKzIusDrhV8kfU/SdElNkk5JaWdKOiqX52RJ/1Mhf39JT0i6GJgFbCrpEkkzJM0v5Et595T0pKSHJZ0v6faU3lvSlanu2ZL2TumDJE1Lo15NkgasykVLOihXz68kNab0xZJOlfQYsL2khZJOlzQ19f8zkiZJelbSES3ct8J9uCxd92RJPdNo3XBgYmq/p6Rhkh6QNDPV/9FUx7A0ojkVOHpVrtXMzMzMrDOpl6CsZwoGngQuB04DkLQHMAAYAQwFhknaBbge2C9X/mvADRXyA2wFXB0R20bEC8API2I4MATYVdIQST2AXwFfiIidgA1ybfwQuDcitgN2A86W1Bs4AjgvjfQNB16s4noLwc8cSeulpej3I1stcSiwEigsMd8bmBcR/xERD6e0v0bE9sBDwARgX7L9w05t4b6R0i+KiEHAv4B9IuJGYAbZCN5QYAVwAbBvRAwDrgR+lsr/Ghib2jczMzMz6/Lqcfri9sDVkgYDe6TX7JSvDzAgIq6QtGF6BmoDss2N/yJpbKn8wF+AFyIiv8fW1ySNIbvHHwW2JguCn4uI51Oe64Ax6XgP4EuSxqXfewAfB6YCP5S0CXBTRDxTxfW+b/qipAOAYcD0tOpQT+Af6fRKsj3I8m5NP+cCfSLiTeBNSW+n1RdL3rd0H56PiDkpfSbQv0T/tgIGA3en/jQCL0vqC/SLiAdSvmuAL5S6wHRvxwCosS8NDb3L3gwzMzOzTqm5lk/D2JpUL0HZuyJiqqT1yYItAT+PiF+VyHoj2QjRR8hGziiXX1J/YEnu908C44DtIuJ1SRPIgqxK67CKbFTpqaL0J9LUwi8CkyR9KyLureZai+q+KiJ+UOLc2yWeI1uWfjbnjgu/d6PyfcjnX0kWAJbqz/zi0bAU8FW1zFBEjCfbXNr7lJmZmZlZp1Yv0xffJWkg2cjMP4FJwGGS+qRzG0vaMGW9HtifLDC7MaVVyp+3LlmQ9oakjXhvtOdJYLMUvMD7p0hOAo5NC4Ugadv0czOy0bXzyUawhqT0eyRtXOVl3wPsW+irpA9L+kSVZUup9j7kvQmsk46fAjZIo5ZIWkvSoIj4F9k92ynlO7BEPWZmZmZmXUq9jJT1lFSYUifg4DQ6NDk9bzU1xUKLgYOAf0TEfEnrAIsi4mWAiCiX/30jTRHxuKTZwHzgOWBKSl+qbAGRuyS9CkzLFTsN+CXQlAKzhcBeZIHbQZLeAf4GnCqpAdgCeK2ai4+IBZJOStfbALxDtojGC9WUL1FfVfehyATgUklLge3Jgt3z05TFbmTXPh84FLhS0ltkwZ+ZmZmZWZem8KZ0a5SkPhGxOAVeFwHPRMS5raxjMHBYRBzfLp3sZDx90cys7VWab2/WWaX/TG7R8mUvdog/Akt/fULdf8fpeehZHeK9aG/1MlLWkXxb0sFAd7KFMko9z1ZRRMwDHJCZmVm7qftvgtYldbrBCC/0UTcclK1haVSsVSNjZmZmZmbWddXdQh9WmqSVaV+zeZJukNQrpT/Szu32U26jbjMzMzOzeuOgzAqWRsTQiBgMLCfbtJqI2KGd2+0HOCgzMzMzs7rloMxKeYhsdUckLU4/R0p6QNLvJD0t6QxJB0qaJmmupM1Tvg0k/V7S9PTaMaWfLOlKSfdLei5txA1wBrB5GqU7W5mz04jdXEn7leifmZmZmVmX4WfK7H0kdSPbV+2uEqc/DXyKbCn+54DLI2KEpP8GjgWOA84Dzo2IhyV9nGxZ+0+l8gOB3cj2K3tK0iXAicDgiBia2t8HGJraWh+YLunBwrYEZmZmZnUjvNBHvXBQZgX5vdweAq4okWd6ITiS9CwwOaXPJQu2AEYBW+eWnF037fcGcEdELAOWSfoHsFGJNnYCrkv7yP1d0gPAdmQbZ79L0hhgDIAa+9LQ0LtVF2tmZmZm1lE4KLOCpYXRqgqW5Y6bc783895nqQHYPiKW5gumIC1ffiWlP39V7UUREeOB8eB9yszMzMysc/MzZdbWJgPHFH6R1FKg9ybZdMaCB4H9JDVK2gDYBZjW5r00MzMzM+sgHJRZWxsLDJfUJGkBaRXHciLin8CUtLDH2cDNQBPwOHAvcEJE/K29O21mZmZmVivqdDubmxXx9EUzMzNrSyuWL6rqcYr29tb479b9d5xeY87tEO9Fe/NImZmZmZmZWQ05KDMzMzMzM6shB2VmZmZmZmY15KCsDklaKWlOWlzjBkm9Uvri1ajzEEkfqyLfqZJGrWo7ZmZmZmZdjfcpq0/v7kkmaSLZConnrGadhwDzgJcqZYqIH69mO2ZmZmb1obm51j2wNcQjZfYQsEU+QVIfSfdImiVprqS9U3p/SU9IukzSfEmTJfWUtC8wHJiYRuB6SvqxpOlpNG680u7Rkiak/EhaKOmUXDsDU/quqZ45kmZLWgczMzMzsy7KQVkdk9QN+AIwt+jU28DoiPgMsBvwf4WgChgAXBQRg4B/AftExI3ADODAiBgaEUuBCyNiu4gYDPQE9irTjVdTO5cA41LaOODoNJq3M7C0La7XzMzMzKwjclBWn3pKmkMWSP0FuKLovIDTJTUBfwI2BjZK556PiDnpeCbQv0wbu0l6TNJcYHdgUJl8N5WoawpwjqSxQL+IWFFcSNIYSTMkzWhuXlL+Ss3MzMzMOjg/U1af3n2mrIwDgQ2AYRHxjqSFQI90blku30qyUbD3kdQDuBgYHhF/lXRyrnyxQn0rSZ/HiDhD0h3AnsCjkkZFxJP5QhExHhgP3jzazMzMzDo3B2VWSl/gHykg2w34RBVl3gQKz34VArBXJfUB9gVurLZxSZtHxFxgrqTtgYHAky0UMzMzM+tawgt91AsHZVbKROA2STOAOVQXEE0ALpW0FNgeuIzsWbWFwPRWtn9cCgZXAguAP7ayvJmZmZlZp6EIz/yyzs3TF83MzKwtrVi+SC3nan9vXXJs3X/H6XXkBR3ivWhvXujDzMzMzMyshhyUmZmZmZmZ1VCXCcokbSTpWknPSZopaaqk0Wug3YG5TY43b0W5IyR9Mx0fIulj7dS/dzdrbk+S7pc0fBXK9ZN0VHv0yczMzMysM+gSC32kjY1vAa6KiK+ntE8AXyqRt1upfa9Ww5eBP0TET0r0SRGll82JiEtzvx4CzANeasN+rbZ2uFel9AOOIltC38zMzMwKmuv+kbK60VVGynYHlucDnYh4ISIugHdHom6QdBswWVIfSfdImiVprqS9U77+kp6UdJWkJkk3SuqVzg2T9EAahZsk6aOS9gSOA74l6b5U/glJFwOzgE0lLS70SdK+kiak45MljUujWMOBiWnE7X37fkn6tqTpkh6X9PtcfyZIOl/SI2l0cN+ULkkXSlqQ9vrasNQNSyNbv0zl50kakevXeEmTgasl9ZD063SfZqdVEZHUU9L16T79ltx+ZRWueSNJN6dreVzSDsAZwObp2s9O9/XB9Ps8STu36pNgZmZmZtbJdImRMmAQWRBUyfbAkIh4TVI3YHRE/FvS+mQbFN+a8m0FHB4RUyRdCRwl6TzgAmDviHhF0n7AzyLiMEmXAosj4heS+qfyh0bEUQDZgFl5EXGjpGOAcRExo0SWmyLislTXT4HDU18APgrsRLaP161ke4GNTn3YBtiIbEn5K8s03zsidpC0S8ozOKUPA3aKiKWS/if1cxtJA8mC2i2BI4G3ImKIpCG0fP8BzgceiIjRkhqBPsCJwODCZtapvUkR8bOUp1cV9ZqZmZmZdVpdJSh7H0kXkQUryyNiu5R8d0S8VsgCnJ6CkWZgY7IABuCvETElHf8GGAvcRRaw3J2CrEbg5TLNvxARj7bh5QxOwVg/siBmUu7cLWl65AJJhf7vAlwXESuBlyTdW6Hu6wAi4kFJ60rql9JvjYil6XgnUhAYEU9KegHYMrVzfkpvktRUxbXsDnwzlVkJvCHpQ0V5pgNXSlorXd+cUhVJGgOMAVBjXxoaelfRvJmZmZlZx9NVpi/OBz5T+CUijgY+B2yQy7Mkd3xgOjcsjdD8HehRKF5Ud5AFcfMjYmh6bRMRe5Tpy5Ki3/P19aD1JgDHRMQ2wClFdSzLHeeH5KqdgFzqWuH911BpqK9cO6t8zRHxIFnAtwi4RmkxlBL5xkfE8IgY7oDMzMzMzDqzrhKU3Qv0kHRkLq3StLe+wD8i4p30jNQncuc+Lmn7dHwA8DDwFLBBIV3SWpIGVdm3v0v6lKQGsqmFpbwJrFPm3DrAy2nk6MAq2nsQ2F9So6SPArtVyLsfgKSdgDci4o0y9R2Y8m0JfJzsfuTTfYHRbgAAIABJREFUBwNDcmXKXfM9ZNMeSf1bl6JrV7ZAyz/SlM0ryAXbZmZmZnWludmvOtElgrKICLJVEHeV9LykacBVwPfLFJkIDJc0gyyweDJ37gng4DQd78PAJRGxHNgXOFPS48AcYIcqu3cicDtZ4FhuyuME4NJSC30APwIeA+4u6mc5NwPPAHOBS4AHKuR9XdIjwKVkz6qVcjHQKGku8FvgkIhYluruk+7TCcC0XJly1/zfwG6prpnAoIj4JzAlLepxNjASmCNpNrAPcF4V12xmZmZm1mkpi2cMstUXgdsjYnALWTs9SfdTfnGRTqVb9439ITYzM7M2s2L5osorta0hb11wVN1/x+l17MUd4r1ob11yoQ+rLw0trHBZay2twGmVqeJjjZ1LV/ksdPQ/c63R1p+vtr43tfzMNFR5b6rtY7X/CVxtfdXe61r1D9r+Hra1tv78NzbUbgJWtffarKNyUJYTEQt5b1n4Li0iRta6D2ZmZmZmtoafKctvKtxZSFqY9jLLp31J0om16lNrKNs4+8I10M7JksatYtnjlDbFNjMzM7Ok1otsdIRXnegSC32saRFxa0ScUet+tLe0efOacBzeJNrMzMzM6lTNgzJJG0j6vaTp6bVjSj9Z0lWSJqfRqq9IOkvSXEl3pSXikfQ5SbNT+pWS1k7pCyWdImlWOjcwpe+aVjmck8qVW4q+Up/fHX2SNEHSJZLuk/Rcqv9KSU9ImpArs4ekqak/N0jqk9LPkLRAUpOkX5Roa4SkR1JfH5G0Va4PN6V78Yyks3JlDpX0tKQHgB3LXMPJkq6RdG8q/+2UPjJdy7VkKzgi6fi0OuI8Scfl6vihpKck/QnYKpd+v6Th6Xh9SQvTcaOkX6T3o0nSsZLGAh8D7kvtNqZ7Oi/l+25r3x8zMzMzs86kIzxTdh5wbkQ8LOnjwCTgU+nc5mT7bG0NTAX2iYgTJN0MfFHSXWTLyX8uIp6WdDXZPli/TOVfjYjPSDoKGAd8K/08OiKmpMDo7Ta4hg8BuwNfAm4jC4S+BUyXNBR4ETgJGBURSyR9Hzg+BXajgYEREZL6laj7SWCXiFghaRRwOtlS8QBDgW3JNpF+StIFwAqyTaaHAW8A9wGzy/R7CPBZoDcwW9IdKX0EMDginpc0DDgU+A+yjaQfS8FeA7B/ar8bMItsmftKxgCfBLZN1/PhiHhN0vHAbhHxampv48IKmGXuiZmZmZlZl9ERgrJRwNa5lYfWzY1e/TFt8DwXaATuSulzgf5kozPPR8TTKf0q4GjeC8puSj9nAl9Jx1OAcyRNBG6KiBfb4BpuS0HVXODvEVEYYZqf+rkJWWA5JV1nd7Ig899kQeHlKSC6vUTdfYGrJA0AAlgrd+6ewobPkhaQbYK9PnB/RLyS0n8LbFmm33+IiKXAUkn3kQVj/wKmRcTzKc9OwM0RsSTVdxOwM1lQdnNEvJXSb63iPo0CLo2IFQAR8VqJPM8Bm6UA8w5gcqmKJI0hC/JobOxHQ2PvKpo3MzMzM+t4OkJQ1gBsn4KDd6XgZRlARDRLeifeW6+2mazvLa1/uiz9XJnyExFnpABoT+BRSaMioppNmatppzl3nO/nSuDuiDiguKCkEcDnyEadjiEbccs7DbgvIkYr20ft/hLtQu4ayYK3ahTnK/y+JN/FVpQvWMF7U2N7FNVVsW8R8bqkTwOfJwuwvwYcViLfeGA8QPe1N6n7PTzMzMysC/J+wnWj5s+UkY2EHFP4JU33q9aTQH9JW6TfvwE8UKmApM0jYm5EnAnMAArPmq1uYFbJo8COhX5K6iVpyzR9sm9E3Em22EWpa+8LLErHh1TR1mPASEnrKXvu7qsV8u4tqYek9YCRwPQSeR4Evpz63JtsuuVDKX20pJ5pZPO/cmUWkk2fBNg3lz4ZOEJSNwBJH07pbwLrpLT1gYaI+D3wI+AzVVyzmZmZmVmntaZHynpJyk8XPAcYC1wkqSn150HgiGoqi4i3JR0K3JC+6E8HLm2h2HGSdiMbWVoA/DEFApVGhJokFdbk/B3QVE3/cv18RdIhwHVKC5GQPWP2JvAHST1S+6UWtTiLbPri8cC9VbT1sqSTyaZHvkz2rFe5VRSnkU0R/DhwWkS8JOl9Ux0jYpayBUumpaTLI2I2vDs1cg7wAlmgVvAL4HeSvlHU58vJplI2SXoHuAy4kGzE64+SXiYLTn8tqfAfBj9o6ZrNzMzMzDozVbuDfVcmaS9gs4g4v9Z9WVNS4LY4Ij6w4mNn09GnL+ael7RVoBZnKXceXeWz0NBFrgPa/vPV1vemlp+ZhirvTbV9rPb7RrX1VXuva9U/aPt72Nba+vPf2FC7CVjV3utq/eW1uR3iL7q3fvmdDv0dZ03oddyvOsR70d46wjNlNRcRpRbYsE7iI70/VOsutIm2/ke5rf+BqtZ7g5yVRVS3IWS19UH1XzDa/ItzjdqtVmOV97A1X9CqvZbGKmfJV9vHhmrztfGX4Wrra48/d2s3VPdP9VptfK+rra97lVtaNlZ5b6rN16PKdvtW+VVn7Va8d9X2ca0qv05X+617rTZut9rNSNeusr5q/7ZeuxX7AVd7LWtVGVRXm89sTXNQVqci4uRa98GsLXWlEbWOriuNlHV01QZktuZUG5DZ6qs2IOvSmlsRwVqn1hEW+jAzMzMzM6tbDsqsIkmbSPqDpGckPSvpPEndWyhzpzd9NjMzMzOrjoMyK0vZwxY3AbdExACylRP7AD+rVC4i9oyIf62BLpqZmZmZdXoOyqyS3YG3I+LXABGxkmzZ/sMkHSXpJkl3pVG0swqFJC1M2wwg6XhJ89LruJTWX9ITki6TNF/SZEk907mxkhZIapJ0/Rq/YjMzMzOzNcxPEFslg4CZ+YSI+Lekv5B9doYC2wLLgKckXRARfy3klTQMOBT4D7J92B6T9ADwOjAAOCAivi3pd8A+wG+AE4FPRsQyT4E0MzOzutbs1U7qhUfKrBJReqXeQvo9EfFGRLxNthH3J4ry7QTcHBFLImIx2VTIndO55yNiTjqeCfRPx03AREkHASvKdkwaI2mGpBmLl722CpdmZmZmZtYxOCizSuYDw/MJktYFNgVWko2QFazkgyOvldYNLlf2i8BFwDBgpqSSo7kRMT4ihkfE8D5rf7il6zAzMzMz67AclFkl9wC9JH0TQFIj8H/ABOCtKso/CHxZUi9JvYHRwEPlMivbJXjTiLgPOAHoR7awiJmZmZlZl+WgzMqKiCALpL4q6RngaeBt4H+rLD+LLICbBjwGXB4RsysUaQR+I2kuMBs416s4mpmZmVlX54U+rKK0cMd/lTg1Ib0K+fbKHffPHZ8DnFNU50JgcO73X+RO77R6PTYzMzPrIqK51j2wNcRBmXV6f1vyeq270CaybeHqhyo+cmjVqLfPTGs0tPG9qfbzGiXXRmr/dttDm9/DKuvLJmm0XX3VqlW7AA119vdhtfewNZ/B5irfv2p9pU1rM2uZpy+amZmZmZnVkIOyGpEUkq7J/d5N0iuSbm+h3HBJ57dB+xtJulbSc5JmSpoqafTq1ltl2ztJmibpyfQakzt3RG5hkQmS9l0TfTIzMzMzqxVPX6ydJcBgST0jYinwn8CilgpFxAxgxuo0rGzewC3AVRHx9ZT2CeBLraijMSJWrkLbHwGuBb4cEbMkrQ9MkrQoIu6IiEtbW6eZmZmZWWfmkbLa+iPZvlwABwDXFU5IGiHpEUmz08+tUvrIwmiapDslzUmvNyQdLKlR0tmSpktqkvSdEu3uDizPB0AR8UJEXJDqLVlHavs+SdcCcyX1TyNdl0uaJ2mipFGSpkh6RtKIEm0fDUxIKzMSEa+SLX9/YmrjZEnjVuemmpmZmXUJzeFXnXBQVlvXA/tL6gEMIVs2vuBJYJeI2Bb4MXB6ceGI2DMihgKHAy+QjX4dDrwREdsB2wHflvTJoqKDgFkV+lWpjhHADyNi6/T7FsB5qf8Dga+TraA4jtJL5w8CZhalzUjpZmZmZmZ1x9MXaygimiT1Jxslu7PodF/gKkkDgADWKlVHmv53DfC1iHhD0h7AkNyzWH2BAcDz5foh6SKyQGp5CsTK1bEcmBYR+bqej4i5qZ75wD0REWmvsf6lmkvXU6xV/xWSnkMbA9DY2I+Gxt6tKW5mZmZm1mE4KKu9W4FfACOB9XLppwH3RcToFLjdX1xQUiPZaNupETGvkAwcGxGTKrQ5H9in8EtEHJ2Cu8KzaiXrkDSS7Fm4vGW54+bc782U/nzNB4aTXXfBMGBBhf5+QESMB8YDdF97k/oZ2zYzMzOzLsfTF2vvSrKgam5Rel/eW/jjkDJlzwCaIuL6XNok4EhJawFI2lJS8TDSvUAPSUfm0nq1so5VdRFwiKShqe71gDOBs9qofjMzMzOzTsUjZTUWES+SPZNV7Cyy6YvHkwVRpYwD5kuak37/MXA52bTBWWmVxVeALxe1GZK+DJwr6YSUZwnw/ZSlxTpWVUS8LOkg4DJJ65CNyv0yIm5ri/rNzMzMuopobq51F2wNUbU72Jt1VF1l+mIW/9YPUV/X2x7q7TPTGg1tfG+q/bxG6x6PbbN220Ob38Mq66v2e0lbf/5r1S5AQ539fVjtPWzNZ7C5jb/PvvbmMx3iTVny84O7xHec1dH7B1d1iPeivXmkzDq9tv6LuGa6ynWYmVm7qPababX/mtTFN12zTsLPlJmZmZmZmdWQg7IakrSJpD+kjZaflXSepO7p3HBJ56fjQyRdWNvevp+kQZLulfR06v+P0vNnhU2md8jlnZBbXt/MzMzMzHIclNVICmBuAm6JiAHAlkAf4GcAETEjIsauSr2S2vV9ldSTbEn7MyJiS+DTwA7AUSnLyPR7W7TV7tdjZmZm1iE1h191wl92a2d34O2I+DVARKwEvgscJqlXGm26vbiQpI0k3Szp8fTaQVJ/SU9IuhiYBWwq6QBJcyXNk3RmrvxiSf8naZakeyRtkNLHSlogqUnS9cXtFvk6MCUiJqe+vwUcA5yY9lQ7AviupDmSdk5ldpH0iKTn8qNmkr4naXpq95SU9oHrae3NNTMzMzPrLByU1c4gYGY+ISL+DfwF2KJCufOBByLi08BnyDZjBtgKuDoitgXeIdv7a3dgKLBdWgIfoDcwKyI+AzwA/CSlnwhsGxFDyIKq1vb9WbKRvteAS4FzI2JoRDyUsnwU2AnYi2x/NSTtAQwARqR+DpO0S/H1RMQLLfTHzMzMzKzTclBWO6L0Aknl0gt2By6BbHQtIt5I6S9ExKPpeDvg/oh4JSJWABOBQrDTDPw2Hf+GLFACaAImpj3EVqxi36mQfktENEfEAmCjlLZHes0mGxEbSBakFV/PBzsgjZE0Q9KM5uYlLXTXzMzMzKzjclBWO/OB4fkESeuSTdV7dhXqy0cmrVnlthBEfRG4CBgGzJRUabuEUn3fDFgcEW+WKbOsRP8E/DyNqA2NiC0i4op0rmKkFRHjI2J4RAxvaOhdKauZmZmZWYfmoKx27gF6SfomgKRG4P+ACekZrUrljiyUSYFcsceAXSWtn+o9gGyqImTveeGZrq8DD6eFNDaNiPuAE4B+QB9JIyRdXaL+icBOkkalfvQkm1Z5Vjr/JrBOi3cAJpE9Q9cn1bOxpA2rKGdmZmZm1mV48+gaiYiQNBq4WNKPyIKlO4H/baHofwPjJR0OrCQL0F4uqvtlST8A7iMbjbozIv6QTi8BBkmaCbwB7Ac0Ar+R1DflPzci/iXp48DSEn1fKmlv4AJJF6Xy1wCFZftvA25MeY6tcA8mS/oUMDWtpr8YOChdl5mZmVl9i+Za98DWEEXUz1KTlq2+GBF9qsx7NnBNRDS1c7dWS7fuG/tDbGZmXV61zyZU+49ia551qDfvLF/UIW7Pkp8eVPffcXqf9JsO8V60N4+UWVkR8b1a98HMzMzMrKtzUFZnqh0l60waVBf/gfIu1dn11iP5/69XWz3+OekqfxfW4+e/rd+7aj//DTW61/X459OsJV7ow8zMzMzMrIa6dFAmaaWkOZLmSbpNUr9a96kSSSdLGlcmPSRtkUv7bkobXpy/inaGStqzDfo7QdK+Ledc5frvX5XrMzMzM+sSmsOvOtGlgzJgadr/ajDwGnB0rTu0GuYC++d+3xdYsIp1DQVaFZS1sG+ZmZmZmZmtoq4elOVNBTYGkNRH0j2SZkmam5ZuR1J/SU9KukpSk6QbJfVK54ZJekDSTEmTJH20uAFJ/yXpMUmzJf1J0kYp/WRJV6aRn+ckjc2V+aGkpyT9CdiqQv9vAQr93IxsOftXcvUszh3vK2lCOv5qGil8XNKDkroDpwL7pVHE/dJ+ZI+kfj8iaatU9hBJN0i6DZiszIWSFki6A9gw1+YZKb1J0i9S2gaSfi9penrtmNJ7p/sxPbVZuK6ekq5PdfwW6FnNG2tmZmZm1pnVxehH2kD5c8AVKeltYHRE/FvS+sCjkm5N57YCDo+IKZKuBI6SdB5wAbB3RLwiaT/gZ8BhRU09DHw27UH2LbKNmP8nnRsI7Ea2qfJTki4BhpCNfm1L9l7MAmaWuYx/A3+VNJgsOPstcGgVl/9j4PMRsUhSv4hYLunHwPCIOCbdn3WBXSJihbINoU8H9knltweGRMRrkr6S7s82wEZkI3VXSvowMBoYmK69ME30PLI9zx5Oe55NAj4F/BC4NyIOS3mnpaD0O8BbETFE0pB0P8zMzMzMurSuHpT1lDQH6E8W7Nyd0gWcLmkXoJlsBG2jdO6vETElHf8GGAvcBQwG7k4rBjVStGFzsgnw2zSK1h14PnfujohYBiyT9I/U3s7AzRHxFkAuMCznerIg7vNkQWY1QdkUYIKk3wE3lcnTF7hK0gCy7U3Wyp27OyJeS8e7ANdFxErgJUn3pvR/kwW6l6cRtNtT+ihg69wqS+tKWgfYA/hS7vm5HsDHU/3nA0REk6Sy+6NJGgOMAWhs7EdDY+8WboOZmZmZWcfU1YOypRExVFJfskDhaLIv/QcCGwDDIuIdSQvJAgP44J6LQRbEzY+I7Vto7wLgnIi4VdJI4OTcuWW545W8d+9b8wTjbcDZwIw0ylfcz4Ie7yZGHCHpP4AvAnMkDS1R72nAfRExWlJ/4P7cuSVFeT/Q3zTCNoIsUNwfOAbYnWx67PYRsTSf//+zd+dhchX1/sffn5kQEpIQZJGLYQlCAAHDAAENa9jhgiAKBkQEQSLIco2iotyLID8ULlwRiCxBIYAIEdn3sIUAko3sYReCBpBd1iQkme/vj1NNmranp5P0THdPf17P08+cqVOnqs7pnp7+dtWpUtbwr0fEMwXpRcsvJiJGAiMBuq+4duPcBWpmZmaNo7W12i2wTtIQ95RFxLtkPV4nS1qBrGfo9RSQ7QKsl5d9XUm54OtQsiGJzwBr5NIlrSBpsyJV9QVeTttHlNG0ccCB6V6qPsBX2jmPecBPyYZOFnpN0hckNZENJSS1dYOImBARpwFvAusA75MNoyzW7iPbae8hkppTb+AuqY7eQN+IuAv4AdlEIgBjyAK0XFty6fcCJ6bgDElb5pV/WErbnGx4p5mZmZlZl9YQQRlAREwFppP15FwLDJI0mSwIeDov61PAEWno3KrAJRHxMdlsh+dImg5MA7YrUs3pwA2SHiELgNpr0xSye8OmATcCj5RxzPXpuEKnkPUGPsinh1aeq2wyk1lkQc904CGyYYXT0v1x/wv8WtJjZEMz23Iz8BzZTJCXAA+n9D7AHemaPQwMT+knkV3nGZKeBI5N6WeSDZGckdp1Zkq/BOidyvkJMLG962FmZmZmVu8U4ZFfOWno3h1pCn2rE402fLFg2Kp1QcLP8fJqxL+Tpi5yzo34+q/0c1fu67+pSte6Hv4+337/uZpo5IenH9pQn3GK6XX6dTXxXHS0rn5PmTUAf7FgXU6F//2U+zdSDx+UylbjbwtRZgObVP6AltYqvRdWOqAo99p0JRVfH7fM10JU62++A57iLvX+ZQ3JQVmeiJhDNsuimZmZmVl1VTxit1pV9/eUSVpT0p+ULcr8hKTHJR3Y/pEVb8ectObZshzbIuk/l/KYnsoWs26W1CTpQmWLRM9MizKvn/J90F5ZBeUeKWlE2j49b9r6co8vWp+kxekettzjlHbK2U/SGUtTt5mZmZlZParrnrI0e98twFUR8c2Uth6wf5G83SJiUSc3sVwtwCDgrqU45ijgpohYLOlQ4HNkizy3Slqbf5/KvtrmRUSx6fjbcidwpqRzcuu4mZmZmZl1RfXeU7Yr8HFEXJpLiIiXIuIi+KTX5wZJtwNjlDk3r0dpaMo3RFJuwWMkjZB0ZNqeI+kMSVPSMZuk9NUkjZE0VdJlpLtAJPWX9JSkyyXNTnl6pn1jJQ1K26unsrsDvwSG5mZDlLRzXo/S1DRdfqHDgFvT9lrAqxHRmq7B3Ih4J+98zpI0XdJ4SWumtDUk3Zh61SZJ2r7UhZa0gaR7Um/kI3nXYf3UOzlJ0pmlymij3L0lPS3p0dTbd0c6hyBbL22/pS3TzMzMzKye1HtQthlQbHr4fIOBIyJiV+BrZL1SWwC7k00Xv1YZ9bwZEVuRTdmeG873C+DRiNgSuA1YNy//AOB3EbEZ8C/g620VnKbbPw0YHREtETE61XF86lnaEShcfLk78Pl0DxzAn4GvpCDu/7Rk3S+AXsD4iNiCbEr8Y1L6BcD5EbFNat/v27kGI4ETI2Lr1L6L88q5JJXzzxLH9ywYvjhUUg/gcrL12XYE/qPgmMkp3czMzMysy6rr4YuFJP0O2IGs92yblHxfRLydtncArouIxWSLLT8MbAO8107RN6WfT5AFdgA75bYj4k5J7+TlfzEipuUd038pT+Ux4DeSriUboji3YP/qZMEeqf65kjYm6zncFXhA0sER8QDwMdn6Zbm27JG2dydbqyxXzMpt9MjlFofejmwNtlzyiunn9iwJOq8BzmnjnP5t+KKyxaRfjIjn0u9/BIblZXmdbFhmsTYNy+Vtau5LU1OvNqo1MzMzq1PZIChrAPUelM0mrxcqIo5Pk21MzsuTf29VW/OlLuLTvYY9CvYvSD8X8+lr1taUOAvythcDPYvUU1jHkkIjzpZ0J/CfwHhJu0dE/gLX8wqPj4gFwN3A3ZJeA74KPAAsjCXzYee3vwkYHBGFvXDFmtQE/KvEPWHLMzVQqWN7UNBL+MlBESPJeu9YoXs/T01kZmZmZnWr3ocvPgj0kHRcXtpKJfKPI7t3q1nSGmS9XROBl8h6jVaU1BfYrYy6x5Hd14WkfYDPlHHMHGDrtH1QXvr7wCe9VJI2iIiZEXEOWYC5SX4h6X6x5jT8D0lbSfpc2m4CBqZzKmUMcEJenW1OwhER7wEvSjo45ZWkLdLux4BD0vZh7dRZ6GlgfUkbpN8PLdi/ETBrKcs0MzMzM6srdR2UpR6grwI7S3pR0kTgKuCnbRxyMzADmE4W0P0kIv4ZEf8guy9rBnAtMLWM6s8AdpI0BdgT+HsZx5wHHCfpr2RDEHMeIgsKp6XJR36QJiOZTtZTdHeRssaQDccE+Cxwu6RZ6RwWASPaactJwCBJMyQ9CRzbTv7DgKNTm2YDB6T0/wKOlzQJ6Fvi+MJ7ys6OiPlkQxDvlPQo/x5I7kI2C6OZmZmZWZelKHPVd6staTKPH0bE4dVuS6VIGgKcHBH7pVki/xQR7fZaNtrwxTaGmFoXUunnuNz3+a702lKbo9VrQ5Q56rtJtf/daVMXet1US7Ver13puav0+9e7H/ytJi7Oh//zjYb6jFNMrzP/XBPPRUer93vKGlZETJX0kKTmNHFJV7Mu8KNyMjbau5W/SOn6VKXn2K+t2tOKb/K3JbrSFydWpla/LzcKB2V1LCKuqHYbKikixpKtTUZETKpqY8zMzMzMOkntj4uwpSbp1LRw9Yx0/9aXKlj2nDTDpZmZmZmZVYB7yroYSYOB/YCtImJBCqC6V7lZZmZmZmbWBveUdT1rAW+mdcuIiDcj4hVJu0maKmmmpCvS9P+7Sbo5d6CkPSTdlLYvkTQ59bidUVDHjyVNTI8NU/41JN0oaVJ6bJ/St5X011T3X9Mi10g6UtJNku6R9Jyk/03pzZJGpdknZ0oa3vGXzMzMzMysetxT1vWMAU6T9CxwPzAamACMAnaLiGclXQ0cB1wA/E7SGhHxBvAd4MpUzqkR8bakZuABSQMjYkba915EbCvp28BvyXrmLgDOj4hHJa0L3At8gWwtsp0iYpGk3YFfsWTB7xZgS7LFtp+RdBHZ9P79ImJzAEmrdMhVMjMzM6tx0erJfhqFe8q6mIj4gGyB6mHAG2RB2feAFyPi2ZTtKrJAKYBrgG+l4GcwS9ZE+0Zag20qsBmwaV411+X9HJy2dwdGSJoG3AasLKkP2dplN6Q11M5PZeU8EBHvpvXKngTWA14APi/pIkl7A+8VO09Jw1JP3uTW1g+X8iqZmZmZmdUO95R1QWmK/LHAWEkzgSNKZL8SuB2YD9yQerTWB04GtomIdySNAnrkV1FkuwkYHBHz8gtPvV8PRcSBkvqnduUsyNteDHRL9W0B7AUcD3wDOKrIOY4ERgJ0a7B1yszMzMysa3FPWRcjaWNJA/KSWoDXgP65+7+Aw4GHASLiFeAV4L/JhjgCrAx8CLybFnHep6CaoXk/H0/bY4AT8trRkjb7Ai+n7SPLaP/qQFNE3Aj8D7BVe8eYmZmZmdUz95R1Pb2Bi9JwxEXA82RDGa8jG0bYDZgEXJp3zLXAGhHxJEBETJc0FZhNNpzwsYI6VpQ0gSyoPzSlnUR2f9oMstfVOOBY4H+BqyT9EHiwjPb3A66UlPvC4Gdln7mZmZmZWR1SdluRNTJJI4CpEfGHardlWXj4onU1qnYDzKwmSX536CwfL5hbExf7g59+reE/4/Q+56aaeC46mnvKGpykJ8iGKv6o2m0xMzMzM2tEDsqq7OcnAAAgAElEQVQaXERsXe02mNmnNfzXomZWlEc3mXVdnujDzMzMzMysitxTZhUjaTEwk+x19RRwRER8VN1WmZmZmZnVNgdlVknzIqIFQNK1ZLMv/qa6TTIzMzOrU60estooPHzROsojwIYAkr4laaKkaZIuk9Sc0i+RNFnSbEln5A6UdLakJyXNkHReldpvZmZmZtYp3FNmFZfWQtsHuEfSF8gWmd4+IhZKuhg4DLgaODUi3k5B2gOSBgJzgQOBTSIi0nprZmZmZmZdloMyq6Sekqal7UeAP5AtXL01MCmtr9ITeD3l+YakYWSvw7WATYEngfnA7yXdCdxRrKJ03DAANfelqalXh5yQmZmZmVlHc1BmlfTJPWU5yiKxqyLiZwXp6wMnA9tExDuSRgE9ImKRpG2B3YBDgBOAXQsrioiRwEjw4tFmZmZmVt8clFlHewC4VdL5EfG6pFWBPsDKZItWvytpTbLhjmMl9QZWioi7JI0Hnq9ay83MzMyqKVqr3QLrJA7KrENFxJOS/hsYI6kJWAgcHxHjJU0FZgMvAI+lQ/qQBXE9AAHDq9FuMzMzM7PO4qDMKiYiereRPhoYXST9yDaK2raCzTIzMzMzq2kOyqzuqdoNMDPrIGmCJDPAr4dS5E8DVue8TpmZmZmZmVkVuafMloqkxcBMsg6qxcAJEfHX6rbKzMzMrAtq9QTTjcJBmS2tT6a9l7QX8Gtg5+o2yczMzMysfnn4oi2PlYF3cr9I+rGkSZJmSDojL/0WSU9Imp0Wfc6lfyDpLEnTJY1PU+Mj6WBJs1L6uE49IzMzMzOzTuagzJZWT0nTJD0N/B44E0DSnsAAspkTW4CtJe2UjjkqIrYGBgEnSVotpfcCxkfEFsA44JiUfhqwV0rfvzNOyszMzMysWhyU2dKaFxEtEbEJsDdwtbLpoPZMj6nAFGATsiANskBsOjAeWCcv/WPgjrT9BNA/bT8GjJJ0DNBcrBGShkmaLGlya+uHlTw/MzMzM7NO5XvKbJlFxOOSVgfWIJv449cRcVl+HklDgN2BwRHxkaSxQI+0e2FE5O5gXUx6PUbEsZK+BOwLTJPUEhFvFdQ9EhgJsEL3fr4L1szMzMzqloMyW2aSNiHryXoLuBc4U9K1EfGBpH7AQqAv8E4KyDYBvlxGuRtExARggqSvkPWuvdXOYWZmZmZdSnj2xYbhoMyWVk9J09K2gCMiYjEwRtIXgMfT4pYfAN8C7gGOlTQDeIZsCGN7zpU0IJX/ADC9wudgZmZmZlYztGT0mFl98vBFM+uq0pdcZoBfD6WIyl6b+fP/XhMX+/0ffKXhP+P0+e3tNfFcdDT3lFnd69bsl3ExTf7nXbcq/eGimir9Omy0D6XNqvx8XF3lOWkq8++k0u1bmr/Pcq91uW0s95zLVa16y6WleP2X+7z4f6PVKs++aGZmZmZmVkUOyuqMpMVpnbBZkm6XtMoyltNf0jeXox3dJf1W0t8kPSfpVklrp32rSPp+Xt4hku5ouzQzMzMz+zet4UeDcFBWf3LrhG0OvA0cv4zl9AeWOSgDfgX0ATaKiAHALcBNac2yVYDvlzp4aUjy+EQzMzMz67IclNW3x4F+AMqcm3rQZkoaWiodOBvYMfW6DZe0maSJ6fcZafbDoiStBHwHGJ5mXiQirgQWALumsjdIZZ2bDust6S+SnpZ0bQrekLS1pIclPSHpXklrpfSxkn4l6WHgvyp83czMzMzMaoZ7IOqUpGZgN+APKelrQAuwBbA6MEnSOGC7NtJPAU6OiP1SeRcBF0TEtZK6k60/1pYNgb9HxHsF6ZOBzVLZm0dESyp7CLBl2vcK8BiwvaQJwEXAARHxRgoYzwKOSuWtEhE7L/XFMTMzMzOrIw7K6k9unbD+wBPAfSl9B+C61HP1Wuph2qZEemFA9Thwarov7KaIeK5EGwQUG+TbVjrAxIiYC5DX/n8BmwP3pY6zZuDVvGNGt9kAaRgwDKBbt1Xp1q13ieaamZmZmdUuB2X1Z15EtEjqC9xBdk/ZhdDmXLBlzf0aEX9KPVf7AvdK+m5EPNhG9ueB9ST1iYj389K3Am5v45gFeduLyV57AmZHxOA2jvmwRHtHAiMBevZcr3HuAjUzM7PG0dpa7RZYJ/E9ZXUqIt4FTgJOlrQCMA4YKqlZ0hrATsDEEunvk03UAYCkzwMvRMSFwG3AwJT+gKR+BXV/CFwF/CYNo0TSt4GVgAcLyy7hGWANSYNTGStI2myZLoiZmZmZWZ1yT1kdi4ipkqYDhwB/BAYD08mGEP4kIv4p6eY20t8CFqXjRwE9gG9JWgj8E/ilslUbNySb5bHQz4DzgGcltQJPAwdGRABvSXpM0izgbuDONtr/saSDgAtTz1834LfA7OW+OGZmZmZmdULZZ2izfydpc+CoiPhhtdtSiocvFtekskauWg1SeaOO60KlX4dqsNd1syo/oKWrPCdNZf6dVLp9S/P3We61LreN5Z5zuapVb7m0FK//cp+Xcp+T5954oibebN4/4T8b/jNOnxF31cRz0dHcU2ZtiohZQE0HZGZmZmZm9c5BmdW9hYsXVbsJZmZmdafS3Q/lduk0RLdHpbQ2fEdZw/BEH2ZmZmZmZlXkoKwKJJ0qabakGZKmSfpSB9UzRNJ2FSqrv6RvViqfmZmZmZllHJR1sjT9+37AVhExENgd+EcHVTcEqEhQRrbYcznBVrn5zMzMzMwMB2XVsBbwZkQsAIiINyPiFUnbSroJQNIBkuZJ6i6ph6QXUvoGku6R9ISkRyRtktLXkHSjpEnpsb2k/sCxwPDUG7djfiMknS7pGkkPSnpO0jEpXZLOlTRL0kxJQ9MhZwM7prKGpx6xRyRNSY/t2sjXQ9KVqaypknZJ9TSneialHsPvpfS1JI1Lx88qbLeZmZmZWVfjiT463xjgNEnPAvcDoyPiYWAKsGXKsyMwC9iG7DmakNJHAsdGxHNpyOPFwK7ABcD5EfGopHWBeyPiC5IuBT6IiPPaaMtA4MtAL2CqpDvJ1jRrAbYAVgcmSRoHnAKcHBH7AUhaCdgjIuZLGgBcBwwqku9HABHxxRREjpG0EfBt4N2I2EbSisBjksYAX0vtPystTL3SMl5nMzMzs/rmiT4ahoOyThYRH0jamizw2gUYLemUiBgl6XlJXwC2BX4D7AQ0A49I6k02FPGGvHVFVkw/dwc2zUtfWVKfMppza0TMA+ZJeijVuwNwXUQsBl6T9DBZcPhewbErACMktQCLgY3aqGMH4KJ07k9Leinl3RMYmBaPBugLDAAmAVdIWgG4JSKmFStU0jBgGICa+9LU1KuM0zUzMzMzqz0OyqogBTxjgbGSZgJHAKOAR4B9gIVkvWijyIKyk8mGmv4rIlqKFNkEDE4B1ifKWBSy8OuXoPyZaocDr5H1qDUB89vI11Z5Ak6MiHv/bYe0E7AvcI2kcyPi6n9reMRIsp5DunXv56+RzMzMzKxu+Z6yTiZp4zTcL6cFeCltjwN+ADweEW8AqwGbALMj4j3gRUkHp3IkaYt03BjghLw6coHb+0CpHrMD0j1fq5FNCjIptWFouudrDbLeuolFyuoLvBoRrcDhZMFjsTrHAYeldm0ErAs8A9wLHJd6xJC0kaRektYDXo+Iy4E/AFuVaL+ZmZmZWd1zUNb5egNXSXpS0gxgU+D0tG8CsCZZIAMwA5gREbmeoMOAoyVNB2YDB6T0k4BBacKMJ8km+AC4HTiw2EQfyUTgTmA8cGZEvALcnOqdDjwI/CQi/pnSFkmaLmk42f1sR0gaTzYc8cO8Nhfma049gqOBI9MkJ78HngSmSJoFXEbWczsEmCZpKvB1svvlzMzMzMy6LC35vG+NRNLplJ4EpG54+KKZmdnSK/d+hXKV+8+40vV2hIUfv1wTzXzve3s1/GeclS+7tyaei47me8rMzMzMGlC1Pu03fJRhVoSDsgYVEadXuw1mZmZmZtaA95RJ+g9J10v6W7qv6640AUWXJGmIpDs6oZ4jJY1YjmM/V+k2mZmZmZnVg4YKypTNEX8zMDYiNoiITYGfk02uYQXSDI+d8Ro5EnBQZmZmZmYNqaGCMrLFmhdGxKW5hIiYFhGPSOot6QFJUyTNlHQAQJqm/c40m+AsSUNT+tm5GRQlnZfSviJpgqSpku6XtKakJklzJK2SqzMtEr1msfyFDZbUX9IjqV1TJG2X0odIGivpL5KelnRtCjqRtHdKexT4WrELkXqnbpV0j6RnJP0ir76nJF0MTAHWkXRouiazJJ2TV8Z3JD2bFpjePi99VN6i0Ej6IG/7J6ms6ekaHgQMAq5Ns0T2LHZtzczMzBpOa/jRIBrtnrLNgSfa2DcfODAi3pO0OjBe0m3A3sArEbEvgKS+klYFDgQ2iYjIC7geBb6c0r5LNp38jyTdmvJfKelLwJyIeC0FTZ/KD/yooF2vA3tExHxl65tdRxbEAGwJbAa8AjwGbC9pMnA5sCvwPNk09G3ZNl2Tj4BJku4E3gQ2Br4TEd9PwwrPAbYG3gHGSPoq2fT9Z6T0d4GHgKkl6kLSPsBXgS9FxEeSVo2ItyWdAJwcEZNLXFszMzMzsy6p0XrKShHwq7R22P1AP7JhjTOB3SWdI2nHiHgXeI8siPu9pK+RBTUAawP3pjW5fkwWMEEWGA1N24ewJFBqK3++FYDLU54byNY1y5kYEXPTAs7TgP5ki02/GBHPpfXN/ljinO+LiLciYh5wE7BDSn8pIsan7W3Ihnu+ERGLgGvJFpT+Ul76x5QO/nJ2B66MiI8AIuLtInnaurafImmYpMmSJre2flgsi5mZmZlZXWi0oGw2Wc9OMYcBawBbR0QL8BrQIyKeTcfMBH4t6bQUnGwL3EjW83NPKuMiYEREfBH4HtAjpT8ObChpjZT/pnby5xue2rIFWQ9Z97x9C/K2F7Ok57Pcvt7CfLnf86OcUmtDtFXPItJrKw2pzLVZ7bWtxLUtzDcyIgZFxKCmpl6lijQzMzMzq2mNFpQ9CKwo6ZhcgqRtJO0M9AVej4iFknYB1kv7Pwd8FBF/BM4DtpLUG+gbEXcBPwBaUnF9gZfT9hG5OlKP1c3Ab4CnIuKtUvkL9AVeTb1hhwPN7Zzj08D6kjZIvx9aIu8eklaV1JMsAHqsSJ4JwM6SVpfUnMp7OKUPkbSapBWAg/OOmcOS4PcAst4+gDHAUZJWAkhDFQHeB/qktLaurZmZmZlZl9RQ95Sle5QOBH4r6RSyYXJzyD78zwZuT/dkTSMLbgC+CJwrqRVYCBxHFkDcKqkHWe/P8JT3dOAGSS8D44H186ofDUwim2mQMvLnXAzcKOlgsvu2So7VS/eeDQPulPQm2X1um7eR/VHgGmBD4E/pnq7+BeW9KulnqW4Bd0XErQCSTifrBXyVbFKQXMB4Odn1mQg8kGtzRNwjqQWYLOlj4C6y2S9HAZdKmgfsQ/Fra2ZmZtZYGmiii0anrBPHGo2kI4FBEXFCtduyvLp17+cXsZmZmVXMoo9fLnX7Rqd57+g9Gv4zzsp/uK8mnouO1mjDF83MzMzMzGpKQw1ftCUiYhTZsEEzMzMzM6uihugpk3SqpNlpMeJpaa2wSpR7pKQRlSirI6VFpge1n3O565mT1nhb2uP6S/pmR7TJzMzMzKzWdfmeMkmDgf2ArSJiQQoaurdzWP7xzRGxuMMaWOMkdUvT1Hek/sA3gT91cD1mZmZmdSM80UfDaISesrWANyNiAUBEvBkRrwBI2k3SVEkzJV0hacWUPkfSaZIeBQ5O0+bPkPS4pHMlzcor/3OS7pH0nKT/zSVK+iBv+yBJo9L2KEmXSHpI0guSdk51P5XLUyi1ZZKkWZJGprW/cj1g50iaKOlZSTum9J6Srk9tHg30bKPcOXnHT5S0YV4bfyPpIeCcNG3+Lam88ZIGpnyrSRqTruFlpDXNUs/XrLx6Tk4zNSJpQ0n3S5ouaUqauv9sYMfUizlc0mapPdNSnQPKeqbNzMzMzOpQIwRlY4B1UtBysbI1yUhTro8ChqbFm7uRTXefMz8idoiI64ErgWMjYjDZIs35WoChZFPnD5W0Thlt+gywK9l077cD5wObAV9MU8YXGhER20TE5mQB1n55+7pFxLZk0/r/IqUdR7a22kDgLNpeMBvgvXT8COC3eekbAbtHxI+AM4CpqbyfA1enPL8AHo2ILYHbgHXLOPdrgd9FxBbAdmTT6Z8CPBIRLRFxPnAscEFaxHsQMLeMcs3MzMzM6lKXD8oi4gOyoGQY8AYwOk0HvzHwYkQ8m7JeBeyUd+hoAEmrAH0i4q8pvXCI3QMR8W5EzAeeJC063Y7b04LSM4HXImJmWhx6NtlQvkK7SJogaSZZMLdZ3r6b0s8n8o7dCfhjOv8ZwIwSbbku7+fgvPQb8oZt7kC2nhkR8SCwmqS+BfXcCbxToh4k9QH6RcTN6Zj5EfFRkayPAz+X9FNgvYiYV6SsYZImS5rc2lpy6TYzMzMzs5rW5YMygIhYHBFjI+IXwAnA10lD7UrIfdJvL9+CvO3FLLlPL38QcI82jmktOL6Vgvv8Uo/excBBqUfv8oLycscvLji23EHI0cZ2fqRT7BpEwc98i/j0ayvX3rLWmYiIPwH7A/OAeyXtWiTPyIgYFBGDmpp6lVOsmZmZmVlN6vJBmaSNC+5JagFeAp4G+ufuowIOBx4uPD4i3gHel/TllHRImVW/JukLkpqAA5et9cCSgOZNSb2Bg8o4ZhxwGICkzYGBJfIOzfv5eBnlDSG7R++9gvR9yIZlArwGfDbdc7YiabhlOmaupK+mY1aUtBLwPtAnV5mkzwMvRMSFZMMiS7XfzMzMrGtqDT8aRJeffRHoDVyUhiEuAp4HhkXEfEnfAW6Q1A2YBFzaRhlHA5dL+hAYC7xbRr2nAHcA/wBmpXYstYj4l6TLyYY6zkntbM8lwJWSZgDTgIkl8q4oaQJZgH5oG3lOzyvvI+CIlH4GcJ2kKWQB7d9TmxdK+iUwAXiRLADOORy4LO1fCBxMNrxykaTpZPf59QC+JWkh8E/gl2Wcs5mZmZlZXVJ2a5OVIql3ujcNSacAa0XEf1W5WctN0hxgUES8We22LI9u3fv5RWxmZmYVs+jjl8u65aKjvXvEbg3/GafvVQ/UxHPR0Rqhp6wS9pX0M7Lr9RJwZHWbY2ZmZmZmXYWDsjJExGjSbIxdSUT0r3YbzMzMzMwaXZef6MPMzMzMzKyWOSizipK0tqRbJT0n6W+SLpDUvUT+/pK+2ZltNDMzM6sLrX40CgdlVjGSRLaY9S0RMQDYiGzWybNKHNYfcFBmZmZmZg3LQZlV0q7A/Ii4ErJFu4HhwFGSNpX0iKQp6bFdOuZsYEdJ0yQNl7SZpInp9xkFa8yZmZmZmXU5nujDKmkz4In8hIh4T9LfyV5re6T14QYA1wGDyNZzOzki9gOQdBFwQURcm4Y9NnfqGZiZmZmZdTIHZVZJAoqtp6H0uFxSC7CYbGhjMY8Dp0paG7gpIp4rWpE0DBgGoOa+NDX1Wt62m5mZmZlVhYMyq6TZwNfzEyStDKwDHAa8BmxBNmx2frECIuJPkiYA+wL3SvpuRDxYJN9IYCR48WgzMzPrmqLVH3Eahe8ps0p6AFhJ0rcBJDUD/weMAlYAXo2IVuBwlgxLfB/okytA0ueBFyLiQuA2YGCntd7MzMzMrAoclFnFREQABwIHS3oOeJasR+znwMXAEZLGkw1d/DAdNgNYJGm6pOHAUGCWpGnAJsDVnXwaZmZmZmadStnnaLP65eGLZmZmVkmLPn5Z1W4DwL8O27XhP+Oscu2DNfFcdDT3lJmZmZmZmVWRJ/owMzMzM6tFnuijYbinrIIkLU6LHs+SdLukVardJgBJH3RCHf0lzVrGY4fkLSZtZmZmZtZQHJRV1ryIaImIzYG3geOr3aDllWZQ7GhDAAdlZmZmZtaQHJR1nMeBfgCSrpF0QG6HpGsl7S+pWdK5kiZJmiHpe8UKknSLpCckzU6LJufSP5B0Vpq5cLykNVP6+pIeT+We2UaZ/SU9LemqVPdfJK2U9s2RdJqkR8lmUmxJ5c+QdLOkz6R8W6e6HycvAJV0pKQReb/fIWlI2t5b0pR03AOS+gPHAsNTL+OOkg5OvY3TJY1blotvZmZmZlYvHJR1gNS7tBvZOlsAvwe+k/b1JesVugs4Gng3IrYBtgGOkbR+kSKPioitgUHASZJWS+m9gPERsQUwDjgmpV8AXJLK/WeJpm4MjIyIgcB7wPfz9s2PiB0i4nqyael/mvLNBH6R8lwJnBQRg9u9KNm5rwFcDnw9tfngiJgDXAqcn3oZHwFOA/ZKefYvp2wzMzMzs3rloKyyeqb1td4CVgXuA4iIh4ENJX0WOBS4MSIWAXsC307HTABWAwYUKfckSdOB8cA6eXk+Bu5I208A/dP29sB1afuaEu39R0Q8lrb/COyQt280fBJErpLOAeAqYKci6aXqyfkyMC4iXgSIiLfbyPcYMErSMSxZZPpTJA2TNFnS5NbWD4tlMTMzM6tvrX40CgdllTUvIlqA9YDufPqesmuAw8h6zK5MaQJOTD1ELRGxfkSMyS8wDfvbHRiceo6mAj3S7oWxZKG5xXx6Ns1ypuspzJP/e3uRjkrUsYhPv7Zy7S11zJJGRBwL/DdZADotr2cwP8/IiBgUEYOamnq1V6SZmZmZWc1yUNYBIuJd4CTgZEkrpORRwA/S/tkp7V7guFweSRtJKoww+gLvRMRHkjYh621qz2PAIWn7sBL51pWUG3p4KPBoG+fyjqQdU9LhwMMR8S/gXUm53rX8euYALZKaJK0DbJvSHwd2zg3RlLRqSn8f6JM7WNIGETEhIk4D3iQLzszMzMzMuiQHZR0kIqYC00nBUUS8BjzFkl4yyO41exKYkqaTv4x/XzvuHqCbpBnAmWRDGNvzX8DxkiaRBXVteQo4IpW9KnBJG/mOAM5N+VqAX6b07wC/SxN9zMvL/xjwItn9Z+cBUwAi4g1gGHBTGo45OuW/HTgwN9FHqmtmuibjyK6jmZmZmVmXpCWj36wjpZkNZwJbpd6narenP3BHmr6/rnXr3s8vYjMzM6uYRR+/rGq3AeBfQ3dp+M84q4x+qCaei45W2CtjHUDS7sAVwG9qISDraprUEH+rHUa+flYD/AWhdUVd5f210n+fXeW6dIZo9Xtjo3BQ1gki4n5g3Wq3I1+air7ue8nMzMzMzOqd7ykzMzMzMzOrIgdlNUZSSLom7/dukt6QdEf6fX9Jp1SwvlGSDkrbYyUNqlTZZmZmZmbWPg9frD0fAptL6hkR84A9gJdzOyPiNuC2ajXOzMzMzMwqyz1lteluYN+0fShwXW6HpCMljUjbB0uaJWm6pHEprVnSeWlK+RmSTkzpW0t6WNITku6VtFapBki6RNJkSbMlnZGXPkfSGZKmpDo2Sem9JF0haZKkqZIOSOk9JF2Z8k6VtEvheaTf75A0JLV/VDqvmZKGV+B6mpmZmdWfVj8ahXvKatP1wGlpyOJAspkbdyyS7zRgr4h4WdIqKW0YsD6wZUQskrRqWpz6IuCAiHhD0lDgLOCoEm04NSLeltQMPCBpYETMSPvejIitJH0fOBn4LnAq8GBEHJXaMlHS/cCxABHxxRTAjZG0UYl6W4B+uan6887rUyQNS+dKc/MqNDUXrrltZmZmZlYf3FNWg1Lw05+sl+yuElkfA0ZJOgZoTmm7A5dGxKJU1tvAxmQzLd4naRrw38Da7TTjG5KmAFOBzYBN8/bdlH4+kdoJsCdwSip/LNCDbMbJHYBrUlueBl4CSgVlLwCfl3SRpL2B94plioiRETEoIgY5IDMzMzOzeuaestp1G3AeMARYrViGiDhW0pfIhjpOk9QCCChc1ELA7IgYXE7FktYn6wHbJiLekTSKLMjKWZB+LmbJa0jA1yPimYKy2lqMZBGf/lKgRzqndyRtAewFHA98g9I9emZmZmZmdc09ZbXrCuCXETGzrQySNoiICRFxGvAmsA4wBjhWUreUZ1XgGWANSYNT2gqSNitR98pkE468K2lNYJ8y2nsvcGIuCJO0ZUofBxyW0jYi6z17BpgDtEhqkrQOsG3KszrQFBE3Av8DbFVG3WZmZmZmdcs9ZTUqIuYCF7ST7VxJA8h6qR4ApgOzyIYHzpC0ELg8Ikakae8vlNSX7Hn/LTC7jbqnS5qa9r9ANkyyPWemMmekwGwOsB9wMXCppJlkvWNHRsQCSY8BLwIzU5unpHL6AVdKyn1h8LMy6jYzMzPrcqK1cPCTdVWK8JNt9a37imv7Rbwc2h5hatZ5/L/IuqKu8v5a6b/PerguC+b/oyYa+faBOzf8m+OqNz9cE89FR3NPmdW95qbm9jNVUVON//MR1WlfNa9LtT4QNFXpWperHj4olavSr696eM3U+vNX6feacp/jWr8uAM2q7N0k5b5umtR4/z+r9T/PrD2+p8zMzMzMzOpSWif3dUmz8tLOlfR0WrP35vwlliT9TNLzkp6RtFde+t4p7XlJp+Slry9pgqTnJI2W1D2lr5h+fz7t799eHaU4KKtxkhZLmpb36C9pkKQLSxwzJK1xtjT1bCxpbKrjKUkjl6PNJ6Uyrl3WMvLKmpMm/zAzMzMzKzQK2Lsg7T5g84gYCDxLmqNA0qbAIWTLPe0NXCypOa3L+zuyye02BQ5NeQHOAc6PiAHAO8DRKf1o4J2I2BA4P+Vrs472TsLDF2vfvIhoKUibA0yucD0Xkr3gbgWQ9MXlKOv7wD4R8WJFWmZmZmbWiFqr3YDaFxHj8nupUtqYvF/HAwel7QOA6yNiAfCipOdJM4ADz0fECwCSrgcOkPQUsCvwzZTnKuB04JJU1ukp/S/AiDTZXVt1PF7qPNxTVofye8Ik7ZzXizZVUp+Urbekv6Su22tLrBeWsxYwN/dLbir+9O3BuZImpS7g76X03pIekDRF0skXpcQAACAASURBVExJB6T0S4HPA7dJGi5pVUm3pGPHSxqY8rWVvpqkMelcLgMP/jYzMzOzZXYUcHfa7gf8I2/f3JTWVvpqwL8iYlFB+qfKSvvfTfnbKqskB2W1r2de0HVzkf0nA8en3rQdgXkpfUvgB2RdsJ8Htm+nnvOBByXdnYKp3Njbo4F3I2IbYBvgGGWLS88HDoyIrYBdgP+TpIg4FngF2CUizgfOAKam7uOfA1encttK/wXwaERsSbaA9rplXSUzMzMz63IkDZM0Oe8xbCmOPZVsSabcLTXFvuyPZUhflrJK8vDF2lds+GK+x4DfpPu3boqIualTbGJa6wxJ04D+wKNtFRIRV0q6l2zs6wHA9yRtAewJDFS2zhlAX2AAWdT/K0k7kXWu9wPWBP5ZUPQOwNdTHQ+mnrC+JdJ3Ar6W0u+U9E6x9qY/yGEA3bqtSrduvUtcIjMzMzOrRxExEljquQ4kHUG2Zu5usWRdh7nAOnnZ1ibrTKCN9DeBVSR1S71h+flzZc2V1I3sM/Lb7dTRJveU1bmIOBv4LtATGC9pk7RrQV62xZQRgEfEKxFxRUQcQPatwuZk0f6JEdGSHuuncbqHAWsAW6eg8TWgR5Fil+VbhHa/TYiIkRExKCIGOSAzMzMzsxxJewM/BfaPiI/ydt0GHJJmTlyfrKNhIjAJGJBmWuxONlHHbSmYe4gl96QdAdyaV9YRafsg4MGUv606SnJQVuckbRARMyPiHLLJPzZpJ/+vJR1YJH1vSSuk7f8gGxP7MnAvcFzevo0k9SL7NuD1iFgoaRdgvTaqHEcWwCFpCPBmRLxXZvo+wGfKvRZmZmZmXUm0+tEeSdeRTaKxsaS5ko4GRgB9gPvSLUCXAkTEbODPwJPAPWS3AC1OvWAnkH3ufQr4c8oLWXD3wzRhx2rAH1L6H4DVUvoPgVNK1dHeeXj4Yv37QQqKFpM9+XcDg0vk/yJZBF9oT+ACSfPT7z+OiH9K+j3Z0McpabKQN4Cvko3NvV3SZGAa8HQb9Z0OXClpBvARS75RaCv9DOA6SVOAh4G/lzgXMzMzM2tgEXFokeQ/FEnL5T8LOKtI+l3AXUXSX2DJDI356fOBg5emjlK0ZIilNQJJ90ZEWYvY1YuePder6RdxU7sTX1aXqjTBZTWvS/uTkXaMphqfTLRa16UjVPr1VQ+vmVp//ir9XlPuc1zr1wWgWZUduFTu66ap/aWTqqoj/k+U+zp89o3JNfHCeesrO9f0Z5zOsNrtD9fEc9HR3FPWYLpaQAawcPGi9jNZl9cQ79hWtnr4IG5mZpbje8rMzMzMzMyqyEFZFyLpQEmRNwNje/l/L2nTCtTbX9KsNvadK2m2pHNLHD9E0nbL2w4zMzOzLqXVj0bh4Ytdy6Fka5EdQjaRRkkR8d2ObhDwPWCNiFhQIs8Q4APgr53QHjMzMzOzmuKesi5CUm9ge+BosqAslz5E0lhJf5H0tKRr0yyKpPRBafsDSedIekLS/ZK2TftfkLR/ytNf0iOSpqRHyd4tSbcBvYAJkoZK+oqkCZKmpjrWlNQfOBYYnqYs3VHSwZJmSZouaVwHXC4zMzMzs5rhnrKu46vAPRHxrKS3JW0VEVPSvi2BzchWE3+MLHh7tOD4XsDYiPippJuB/wfsAWwKXEU2jf7rwB4RMV/SAOA6YFBbDYqI/SV9kBaXRtJngC9HREj6LvCTiPhRWjvig4g4L+WbCewVES9LWmX5L42ZmZmZWe1yUNZ1HAr8Nm1fn37PBWUTI2IugKRpZOuOFQZlH5MtcAcwE1iQFoaemfIDrACMkNRCti7aRkvZxrWB0ZLWAroDL7aR7zFglKQ/AzcVyyBpGDAMQM19aWrqtZRNMTMzMzOrDQ7KugBJqwG7AptLCqAZCEk/SVny7+daTPHnfWEsWbSuNXdMRLRKyuUfDrwGbEE29HX+v5VS2kXAbyLiNklDaOO+t4g4VtKXgH2BaZJaIuKtgjwjgZEA3br3a/g1PMzMzKzriQaa6KLR+Z6yruEg4OqIWC8i+kfEOmS9UDtUuJ6+wKsR0QocThb8Le3xL6ftI/LS3wf65H6RtEFETIiI04A3gXWWvclmZmZmZrXNQVnXcChwc0HajcA3K1zPxcARksaTDV38cCmPPx24QdIjZMFWzu3AgbmJPoBzJc1M0+yPA6Yvf9PNzMzMzGqTloxYM6tPHr5oAKp2A6ympElmzcyWyccL5tbEm8ib++zc8J9xVr/74Zp4Ljqa7ymzutfc1FgdvnL40Wn8wd6qrVmN9f5mpTX5Pcmsy/K7vZmZmZmZWRW5p8zMzMzMrBZ59sWG4Z4yWyaS1pZ0q6TnJP1N0gWSuqd910maIWm4pE3SBB5TJW1Qorw5klbvvDMwMzMzM6sNDspsqSm70eYm4JaIGEA2E2Nv4CxJ/wFsFxEDI+J84KvArRGxZUT8rXqtNjMzMzOrTR6+aMtiV2B+RFwJEBGLJQ0nWxvtAOCzkqaRTdN/HLBY0k4RsYukW8jWHesBXJAWgf6EpF7An4G1ydZBOzMiRnfWiZmZmZmZdTYHZbYsNgOeyE+IiPck/Z1sUeg/RUQLfNKr9kFEnJeyHhURb0vqCUySdGNEvJVX1N7AKxGxbzq+b7EGSBoGDANo7rYKzc29K3h6ZmZmZmadx0GZLQsBxdbNaCs930mSDkzb6wADgPygbCZwnqRzgDsi4pFihaQetpEAK/ZYp+HX8DAzM7OuJzzRR8PwPWW2LGYDg/ITJK1MFmQtbusgSUOA3YHBEbEFMJVsGOMnIuJZYGuy4OzXkk6raMvNzMzMzGqMgzJbFg8AK0n6NoCkZuD/gFHARyWO6wu8ExEfSdoE+HJhBkmfAz6KiD8C5wFbVbjtZmZmZmY1xUGZLbWICOBA4GBJzwHPAvOBn7dz6D1AN0kzgDOB8UXyfBGYmCYKORX4fxVruJmZmZlZDVL2+dqsfjXaPWVC1W5Cw8jmqTGrnmb5u1NbosnvSZ3mvQ9fqImL/cYeOzfUZ5xi1rjv4Zp4LjqaJ/qwure41XfBmlltqPQnh0UVLs/M6osn+mgc/grOzMzMzMysihyUWUVICknX5P3eTdIbku5YxvL6S/pm5VpoZmZmZlabHJRZpXwIbJ4WhQbYA3h5OcrrDzgoMzMzM7Muz0GZVdLdwL5p+1DgutwOSb0kXSFpkqSpkg5I6f0lPSJpSnpslw45G9hR0jRJwzv1LMzMzMzMOpEn+rBKuh44LQ1ZHAhcAeyY9p0KPBgRR0lahWza+/uB14E9ImK+pAFkgdwg4BTg5IjYr9PPwszMzKwGeKKPxuGgzComImZI6k/WS3ZXwe49gf0lnZx+7wGsC7wCjJDUAiwGNiqnLknDgGEAau5LU1Ov5W6/mZmZmVk1OCizSrsNOA8YAqyWly7g6xHxTH5mSacDrwFbkA2nnV9OJRExEhgJ0K17v4Zfw8PMzMzM6pfvKbNKuwL4ZUTMLEi/FzhRaTVeSVum9L7AqxHRChwONKf094E+ndBeMzMzM7OqclBmFRURcyPigiK7zgRWAGZImpV+B7gYOELSeLKhix+m9BnAIknTPdGHmZmZmXVlivDIL6tvHr5oZrVC1W6AmVXEwo9frok/59eGDGn4zzhrjh1bE89FR/M9ZVb3GuIvtYGlEa9WhK9N21Tj7wwd8dw1VbjMal3DSp9Huar599RUpWtd7jl3peekWtfarD0evmhmZmZmZlZFDspKkHSgpJC0SV5a/3RP1LKUN0fS6kuR/0hJI9L2sZK+vRTHLk4LL08vWJTZzMzMzMxqiIcvlnYo8ChwCHB6NRsSEZcu5SHzIqIFQNJewK+BnSvesKx8kd2f6CUOzczMzMyWknvK2iCpN7A9cDRZUFYsT7Ok8yTNlDRD0okpfTdJU1P6FZJWzDvsxNRzNTPXAydpVUm3pDLGSxpYpK7TcwsvS9pQ0v15vWAbtHM6KwPv5JX1Y0mTUn1npLRzJH2/oL4flcjfX9JTki4GpgDrSLpE0mRJs3P5Ut7/lPS0pEclXSjpjpTeK12fSel6HZDSN5M0MfX0zZA0oJ3zMzMzM+tyotWPRuGgrG1fBe6JiGeBtyVtVSTPMGB9YMuIGAhcK6kHMAoYGhFfJOuNPC7vmDcjYivgEuDklHYGMDWV8XPg6nbadi3wu4jYAtgOeLVInp4pqHka+D1pCnpJewIDgG2BFmBrSTsB1wND847/BnBDifwAGwNXR8SWEfEScGpEDAIGAjtLGpiux2XAPhGxA7BGXh2nAg9GxDbALsC5knoBxwIXpJ6+QcDcdq6HmZmZmVndclDWtkPJAhXSz0OL5NkduDQiFgFExNtkgcqLKZgDuArYKe+Ym9LPJ4D+aXsH4JpUxoPAapL6FmuUpD5Av4i4OeWfHxEfFck6LyJaImITYG/g6jTMcM/0mErWw7UJMCAipgKflfQ5SVsA70TE39vKn+p4KSLG59X5DUlTUt7NgE1T/hci4sWU57q8/HsCp0iaBowFegDrAo8DP5f0U2C9iJhX5DoMS71yk1tbPyzcbWZmZmZWN3xPWRGSVgN2BTaXFEAzEJJ+UpgVKFw/or25Vhekn4tZcv2LHdPWuhRLPZdrRDyeJhhZIx3/64i4rEjWvwAH8f/Zu/MwuYp6/+Pvz0z2haCCCLlo2BEQQhLAIFsE4wIiCAgIIhchoiIXFbxcUARcCBfcAFECelGJ7IsIQoJA2AnZN1ZZ8pNFZc2+znx/f5xq0un0zJxJejLd05/X8/Qzp6vrVNU5faanv1N1quADrApIy+aXNIhVCz0jaQuynr/dIuJtSVeTBVmttVfAYRHxTEn6U5ImAgcC4ySdmILV4mMaA4wB6O51yszMzMyshrmnrLzDyYblfSgiBkXE5sCLZD1axcYDJ0vqBtm9YcDTwCBJW6c8XwIeaKO+B4FjUhn7kQ1xnF8uY0p/WdIhKX9PSX1aKzzdu9YIvAmMA05I98whaaCk96es15HdP3c4WYBGG/mLbUAWpM2TtAnw6ZT+NLBlCuJg9SGS48jusVMqe9f0c0uy3rVLgNvJhkOamZmZmXVJ7ikr72hgdEnazcAXgQuL0q4CtgVmSloBXBkRl0n6T7L7sboBk4C2Zk48F/g/STOBxcCX28j/JeAKSecDK4AjgBdK8vROwwIh65H6ckQ0AeMlfRh4LMVCC4FjgX9HxJw0PPKViHgNICJayt9UXFlEzJA0DZiT2vJISl+SJhC5W9IbwBNFu/0Q+AXZ+RPwEnAQWeB2bDqn/wTOb+N8mJmZmXU50ezFruuFIjzyyzqWpH4RsTAFXr8CnouIn1eqfA9f7NrSPwOsDJ+blqn9I73Xq4547xoqXGZnncNKH0denfn71NBJ5zrvMXel9yTvuf7XvKer4kPktb1G1P13nE0fvr8q3ouO5p4yWx9OkvRloAfZJCDl7mdba3X/adXF+R9HrfC5MTMz6xIclFmHS71iFesZMzMzMzPrSjzRh5mZmZmZWSdyT5nlJulssslOmoBm4KsRMbGFvCcDiyOirYWwzczMzKyMaO7sFtj64qDMcpE0nGxmxCERsSyte9ajpfwR0daMk2ZmZmZmhocvWn6bkq2ftgwgIt6IiFclvSTpQklPpMfWAJLOlXR62t5a0t8kzZA0VdJWKf0MSZMkzZR0XkrrK+nOlHe2pCNbaI+ZmZmZWZfgoMzyGg9sLulZSZdL2rfotfkRsTtwGdm6Y6XGAr+KiF2APYHXJI0EtgF2BwYDQyXtA3wKeDUidomInYC7O/CYzMzMzMw6nYMyyyUiFgJDgVHA68D1ko5PL19b9HN48X5pMeqBEXFrKmdpRCwGRqbHNGAqsD1ZkDYLOCD1vu0dEfPKtUfSKEmTJU1ubl5UwSM1MzMzM1u/fE+Z5RYRTcAEYIKkWcCXCy8VZyvZraUF/wRcEBFrrFkmaSjwGeACSeMj4vwybRkDjAHo5sWjzczMrAuKqIt1kw33lFlOkraTtE1R0mBgbto+sujnY8X7RcR84GVJh6RyekrqA4wDTpDUL6UPlPR+SZuRzdp4DXAxMKTDDsrMzMzMrAq4p8zy6gdcKmlDYCXwd7KhjAcBPSVNJAvyjy6z75eAKySdD6wAjoiI8ZI+DDwmCWAhcCywNXCRpOaU92sde1hmZmZmZp1LER75ZWtP0kvAsIh4o7Pa4OGLZmZmVkkrl79SFeMGXxn+8br/jjPwsfuq4r3oaO4pMzOrUXXxV8rM2i2NQDGzGuKgzNZJRAzq7DaYmZmZdUXR3NktsPXFE310UZLOljQnLcw8XdIekk5Lk2wU8vw13SNWifoWrsO+x6cJPszMzMzM6o57yrogScPJJuAYEhHLJG0E9ACuB64BFgNExGc6r5WrOR6YDbzaye0wMzMzM1vv3FPWNW0KvBERywDSJByHA5sB90u6H7JJOiRtJGmQpKclXSVptqSxkg6Q9Iik5yTtnvKfK+n0QiUp76DiiiX1k3SvpKmSZkn6XEofJOkpSVemHrzxknpLOhwYBoxNPXq9JY2W9GTq5bu440+XmZmZmVnncVDWNY0HNpf0rKTLJe0bEZeQ9USNiIgRZfbZGvglsDOwPfBFYC/gdOCsdtS9FDg0IoYAI4CfatUdx9sAv4qIHYF3gMMi4iZgMnBMRAwGegOHAjtGxM7Aj9p15GZmZmZmNcZBWRcUEQuBoWTriL0OXC/p+DZ2ezEiZkVEMzAHuDey9RJmAYPaUb2An0iaCfwNGAhsUlTH9LQ9pYVy55MFdldJ+jxpqOUalUijJE2WNLm5eVE7mmdmZmZmVl18T1kXFRFNwARggqRZwJfb2GVZ0XZz0fNmVl0nK1k9kO9VppxjgI2BoRGxIq1jVshXXEcTWa9YabtXpuGS+wNHAacAHy+TbwwwBrxOmZmZmXVN0ezlDeqFg7IuSNJ2QHNEPJeSBgNzyXqm+gNru9DzS2QTiCBpCLBFmTwDgH+ngGwE8KEc5S5I7UJSP6BPRPxV0uPA39eyrWZmZmZmNcFBWdfUD7g0TXe/kiywGQUcDdwl6bUW7itry83AcZKmA5OAZ8vkGQv8RdJkYDrwdI5yrwZ+I2kJ8Gngz5J6kQ2F/NZatNPMzMzMrGYou23IrHZ5+KLVKw9qMbNyVs2vZWtr+bKXq+Ik/mO3/ev+O87mk+6tiveio7mnzMysRtX9X2qzTlAL3w79D3ez2uOgzMzMzMysCjm+rh9dekp8SU1pQeLCY1A7979K0g5puz1rdbVV7ktpYeVCuy5ZizL2k3RHO/d5d/FnSedLOqC99ZYp878k/aLo+RWS/lb0/JuF45P06LrWZ2ZmZmbW1XT1nrIlaUHisiR1i4iVLb0eEScWPT0L+EkF2zYiItZ2FsR1FhHnVKioR8mmwS8YDDRIakzT8u8J3Jbq3LNCdZqZmZmZdRlduqesHEnHS7pR0l+A8aU9TpIuKyy0LGmCpGGSRgO9U6/WWEl9Jd0paYak2ZKOrEC7ukmaJGm/9PwCST9O27tJejTV94Sk/iX7vtsDlp7PLvQKSjpb0jOp92q7ojxXSzo8bb8k6TxJU1MP3vYpfWNJ96T0KyTNlbRRSdOnAdtK6i1pANliz9OBj6TX9yQL3JC0MP3cL53bmyQ9nc6p0mtDJT0gaYqkcZI2Xddza2ZmZmZWzbp6T1nvNH07wIsRcWjaHg7sHBFvFYKg1kTEmZJOKfS6SToMeDUiDkzPB6xF2+6X1JS2fx8RP0/B4E2STgU+BewhqQdwPXBkREyStAGwJE8FkoaSLcC8K9l7PRWY0kL2NyJiiKSvA6cDJwI/AO6LiAskfYpsWv3VpMWepwO7kS0GPRF4DthT0r/JZvj8R5n6dgV2BF4FHgE+JmkicCnwuYh4PQW7PwZOyHO8ZmZmZma1qKsHZS0NX7wnIt5ah3JnARdLuhC4IyIeWosy1hi+GBFzJP0R+AswPCKWS/oI8FpETEp55kPu6W73Bm6NiMVpn9tbyXtL+jkF+Hza3gs4NNV7t6S3W9j3EbIesd7AY2RB2VnA66ResjKeiIiXU7umky1s/Q6wE3BPOr5G4LVyO0saRQoS1TiAhoa+rRyamZmZWe2J5lqY79Mqoe6GLyaLirZXsvp56NXWzhHxLDCULDi7QNJq92dJ2rxoEo+T29m2j5AFJ5sUiqPtma9bO4a88/YsSz+bWBWs5/0keJQsKBtOFpQ9BeyQ0h5po77iOgXMiYjB6fGRiBhZbueIGBMRwyJimAMyMzMzM6tl9RqUFZsL7CCpZxqGuH8L+VZI6g4gaTNgcURcA1wMDCnOGBH/KAosfpO3IZI+D7wP2Ae4RNKGwNPAZpJ2S3n6Syrt4Xyp0AZJQ4AtUvqDwKHpfq/+wGfztiV5GPhCKnck8J4W8j0KfBTYOCL+HdkCKa8Dn6PlnrJyngE2ljQ81dld0o7tbLOZmZmZWU3p6sMX2xQR/5B0AzCTbNjdtBayjgFmSpoK/AG4SFIzsAL42lpUXXxP2Uzg28BoYP/UpsuAX0bEl9O9VZdK6k12P1npVPY3A8elYYCTgGfTsU2VdD3ZxBtzgfYOszwPuDbV/wDZUMIFpZki4m1JrwNzipIfAz4GzMhbWRqueThZQDqA7Pr8RUm5ZmZmZmZdirzqu7VEUk+gKU3mMRz4dWtLDHSWbj0G+iI2M7P1wnf41IcVy1+pird67pAD6v47zoem/q0q3ouOVvc9ZdaqDwI3SGoAlgMndXJ7zMzMOlXdf0O29coTfdQPB2XWooh4jmzqejMzMzMz6yCe6MPMzMzMzKwTOSjrIiRNkPTJkrTTJF1ewToOkbRDjnxXpwk7StP3k3RHpdpjZmZmZtYVOCjrOq4FjipJOyqlV8ohZOuPmZmZmZlZhTgo6zpuAg5KMyYiaRCwGfCwpDMkTZI0U9J5hR0kfV/S05LukXStpNNT+laS7pY0RdJDkraXtCdwMNlSANNTnpNSuTMk3SypT1F7Dkj7PivpoNLGSuor6Xdp/2mSPpfSd5T0RKpjpqRtOuqEmZmZmVWzCD/qhSf66CIi4k1JTwCfAv5M1kt2PfAJYBtgd7KZfG+XtA+wGDiMbCKPbsBUYEoqbgxwckQ8J2kP4PKI+Lik24E7IuImAEnvRMSVaftHwFeAS1MZg4B9ga3I1mTbuqTJZwP3RcQJaZHsJyT9DTiZbH22sZJ6AI2VO0tmZmZmZtXHQVnXUhjCWAjKTgC+CIxk1aLY/ciCtP7AnyNiCYCkv6Sf/YA9gRuld6dh7dlCfTulYGzDVO64otduiIhm4DlJLwDbl+w7Eji40DsH9CKbgv8x4GxJ/wHckmaAXIOkUcAoADUOoKGhb0vnxMzMzMysqjko61puA34maQjQOyKmSjoGuCAirijOKOlbLZTRALyTc5Hoq4FDImKGpOOB/YpeK+1wLn0u4LCIeKYk/SlJE4EDgXGSToyI+0orjogxZD16XjzazMzMzGqa7ynrQiJiITAB+B2rJvgYB5yQesCQNFDS+4GHgc9K6pVeOzCVMR94UdIRKb8k7ZLKWkDWw1bQH3hNUnfgmJLmHCGpQdJWwJZAafA1DvimUnecpF3Tzy2BFyLiEuB2YOe1PiFmZmZmZjXAPWVdz7XALaSZGCNivKQPA4+l+GchcGxETEr3iM0A5gKTgXmpjGOAX0v6HtAduC7luw64UtKpwOHA94GJaf9ZrB6wPQM8AGxCdn/a0qLhkAA/BH4BzEyB2UvAQcCRwLGSVgD/BM6vzGkxMzMzqy3RrLYzWZegqKdpTWw1kvpFxMI0a+KDwKiImNrZ7WovD180MzOzSlq5/JWqiIZe+MjIuv+Os+Ws8VXxXnQ095TVtzFpMehewO9rMSAzs/WvLv46mpmZrUcOyupYRHyxs9tgZmZmZlbvPNFHFZA0QdInS9JOk3R5hes5JPWMtZXvakmHl0nfT9Id7axzR0n3pUWkn0sLVhcm9zhY0plp+9yi6fHNzMzMzOqGg7LqUFhfrNhRrJpBsVIOAdoMyipFUm+yGRRHR8S2wC5ka6B9HSAibo+I0eurPWZmZma1JEJ1/6gXDsqqw03AQZJ6AkgaBGxGNm09ks6QNEnSTEnnFXZKvU5PS7pH0rWFniZJW0m6W9IUSQ9J2l7SnsDBwEWSpqc8J6VyZ0i6OU34UXBA2vdZSQeVNlhSX0m/S/tPk/S5Msf1ReCRiBgPEBGLgVOAQu/Y8ZIuK1P2qZKeTMd7XftPp5mZmZlZ7fA9ZVUgIt6U9ATwKeDPZL1k10dESBoJbAPsTnZ//e2S9gEWA4cBu5K9j1OBKanIMWTT0D8naQ/g8oj4eJoC/46IuAlA0jsRcWXa/hHwFeDSVMYgYF9gK+B+SVuXNPts4L6IOEHShsATkv4WEYuK8uxY1KbCsT4vqZ+kDVo5JWcCW0TEslS2mZmZmVmX5aCsehSGMBaCshNS+sj0mJae9yML0voDf46IJQCS/pJ+9iMbInhj0bpgPVuoc6cUjG2Yyh1X9NoNEdEMPCfpBWD7kn1HAgcX3QfWC/gg8FRRHgEtTeXa2hSvM4Gxkm4DbiuXQdIoYBSAGgfQ0NC3leLMzMzMzKqXg7LqcRvwM0lDgN5F09MLuCAirijOLOlbLZTTALwTEYNz1Hk1cEhEzJB0PLBf0WulQVPpcwGHRcQzrZQ/B9hntZ2kLYGFEbGgZDHpYgem/Q4Gvi9px4hYuVpjIsaQ9Qh6nTIzMzMzq2m+p6xKRMRCYALwO1af4GMccELqAUPSQEnvJ7vf7LOSeqXXDkzlzAdelHREyi9Ju6SyFpD1sBX0B16T1B04pqRJR0hqkLQVsCVQGnyNA75ZNJPirmUOayywl6QDUp7ewCXA/7Z0HiQ1AJtHxP3Ad1nVi2dmZmZWV6LZj3rhoKy6XEs2Q+G7k1ukSTL+BDwmaRbZpCD9I2IS2cyGM4BbgMnAvLTbMcBXJM0g660q9zlYHwAAIABJREFUTMJxHXBGmphjK+D7wETgHuDpkrY8AzwA3EV2f9rSktd/CHQHZkqanZ6vJg2t/BzwPUnPALOAScAak3sUaQSuScc6Dfh5RLzTSn4zMzMzs5qmCI/8qlWS+kXEwjRr4oPAqKJhj3XDwxfN1q/6maDYzOrViuWvVMVH3d93+GTdf8fZ+slxVfFedDTfU1bbxqTFoHsBv6/HgAygscEdvutC/oq93rRyH2WX1VDlx9xZ13/e89IR10xDzmPurOu10tdMLfze5X1PKq2zzk1n/t2p9s8kq18OympYRHyxs9tgZmZmZmbrxkGZASDpP4BfATuQ3Wt4B3AGsDNwXEScmmZoHBYRp3RaQ83MzMzqRHO4Z69eeNyXkWZQvAW4LSK2AbYlm/HwxxExOSJOXZsy00yKZmZmZmbWCn9pNoCPA0sj4v8AIqIJ+BbZVPyfkXRH6Q6SNpF0q6QZ6bGnpEGSnpJ0OTAV2FzS0ZJmSZot6cKi/RdK+qmkqZLulbRxSj9V0pOSZkq6rrReMzMzM7OuxkGZAewITClOSOud/T9g6xb2uQR4ICJ2AYaQTb0PsB3wh4jYFVgBXEgW9A0GdpN0SMrXF5gaEUPIpt7/QUo/E9g1InYGTq7AsZmZmZmZVTUHZQbZDNflplxtKR2yQOvXkPWsRURhjbS5EfF42t4NmBARr0fESrLFpPdJrzUD16fta4C90vZMYKykY4GVLTZYGiVpsqTJTU0L2zxAMzMzM7Nq5Yk+DLJersOKEyRtAGwOPN/OshYVF9OO/QrB34FkgdvBwPcl7ZgCutUzR4wBxgD07LV53a/hYWZmZl1PeKKPuuGeMgO4F+gj6TgASY3AT4GrgcWt7PO1Qv4UxJWaCOwraaNU5tFkQxUhu/YOT9tfBB5OE4NsHhH3A98FNiSbcMTMzMzMrMtyUGZERACHAkdIeg54FlgKnNXKbv8FjJA0i+x+tB3LlPsa8D/A/cAMsnvI/pxeXgTsKGkK2VDI84FG4JpU5jTg5xHxTgUO0czMzMysain7Pm62fklaGBEV6QXz8MV1o3aNMrV1ka0+UV8aqvyYO+v6z3teOuKaach5zJ11vVb6mqmF37u870mldda56cy/O3mvr1fenlMVF84z23+67r/jbPf0XVXxXnQ031NmNe/4D3y0YmXl/rLSAWU2VviPVGPOfN1y1tu89k0pK2/72vNlpdJd/91zjuXPeyzdcx5Lt5x/giv9VyrvH4Tu7fiKkDdv3mPOK+97kldDJ70nO3RbkDuvlK+RDXnz5TzovOUpb3mN+fJ165bvU6mhMV++xu75P+W69chZZo+cx5zzF6WhV65sNPbJ92moXjnz9cj3G6XuOfP16p4vX++eufIB0Kd3vnwNdfH93mqQhy9ap6hUL5lZgT/MzGx9yBuQmZm1h3vKzMzMzMyqUDS7Z69e+J/LdUjS+yRNT49/Snql6HmP9dyWBklnrs86zczMzMyqiYOyOhQRb0bE4IgYDPyGbJbDwemxHECZ9XF9NAAOyszMzMysbjkos3dJ2lrSbEm/AaYCm0r6tKTHJE2VdL2kvinvbpIekDRF0l2SNknpD0saLekJSc9I2jOlnyjpF0V13S1pL2A00D/10v1BUv9U3ozUlsPXbKmZmZmZWdfhoMxK7QD8NiJ2BVaQ9WLtHxFDgJnAf0nqCfwSOCwihgLXAD8sKkMRsTtwBnBOG/WdCSxIvXTHAZ8BXoqIXSJiJ+CeSh6cmZmZmVm18UQfVur5iJiUtvckC9IeTWuZ9AAeBj5Mtlj031J6I/ByURm3pJ9TgEHtrH8mMFrSaOAvEfFIuUySRgGjAPZ+7xA+3H/LdlZjZmZmVt28nHD9cFBmpRYVbQu4OyK+VJxB0q7AzIjYu4UylqWfTay6xlayes9s2dVWIuIpScPIeswuknRHRPykTL4xwBiArw46wh9ZZmZmZlazPHzRWvMosK+kLQEk9ZW0DfAkMFDS7im9h6Qd2yjrJWDXNIHIIGAoQESsTGV0Sz8HAgsj4o/Az4AhlT4oMzMzM7Nq4p4ya1FE/EvSV4Dri6bKPysinksTcFwiqT/ZdfRTYE4rxT0AvALMAmYD04te+y0wU9Jk4Dqy4YvNwHLg5IoelJmZmZlZlXFQVuci4tyi7b8Dg0tev4cyk21ExFRgrzLpexVt/xPYOm0HcFQLbfgO8J2ipL+25xjMzMzMzGqZgzKreb999dHOboJZl6DOboCtIU2mVNVqoY3VTp3029dZ711DDVwzi/6ns1uQiebqP1dWGb6nzMzMzMzMrBM5KLPcJDWlRZ5nS7pRUp828l/txZ/NzMzMzFrnoMzaY0la5HknPAmHmZmZmVlFOCiztfUQsLWkQZJmFxIlnS7p3NLMkkZLelLSTEkXp7SNJd0saVJ6fCyl75t65KZLmpZmeDQzMzMz65I80Ye1W1pT7NPA3Tnzvxc4FNg+IkLShumlXwI/j4iHJX0QGAd8GDgd+EZEPCKpH7C04gdhZmZmVuWawxN91AsHZdYevSUV1hd7iGx9sc1y7DefLLC6StKdwB0p/QBgh6LZnzZIvWKPAD+TNBa4JSJeLi1Q0ihgFIAaB9DQ0HctD8nMzMzMrHM5KLP2WBIRq61jJmklqw+D7VW6U0SslLQ7sD/ZWmWnAB9P+w2PiCUlu4xOwdtngMclHRART5eUOQYYA9Ctx8BYt8MyMzMzM+s8vqfM1tW/gPdLep+knsBBpRnSEMQBEfFX4DRWLVA9nixAK+QbnH5uFRGzIuJCYDKwfQcfg5mZmZlZp3FPma2TiFgh6XxgIvAi8HSZbP2BP0vqRbY+7bdS+qnAryTNJLsWHySb0fE0SSOAJuBJ4K6OPQozMzMzs86jCI/8strm4YtmleHbyatP0T23VasW2ljt1Em/fZ313jXUwDWzaPFLVdHIWVt8tu6/43zkxb9UxXvR0dxTZmZmANT9X/4qVBP/OK2FNpqZVTnfU2ZmZmZmZtaJHJSVIelsSXPSQsfTJe3RCW04V9LTkmZLOrSVfB+VNDG186lyCzdXqD0bSvp6R5RtZmZmZlbPPHyxhKThZDMIDomIZZI2Anp0cJ2NEdFU9Hxz4BhgB7IRRR9oZfffA1+IiBmSGoHtOqiZGwJfBy7voPKBbGHqiFjZkXWYmZmZmVUT95StaVPgjYhYBhARb0TEqwCSXkpBGpKGSZqQtjeWdI+kqZKukDS3KN9tkqaknrdRhUokLZR0vqSJwPCSNqwENgD6RcTKcosnF3k/8Fpqa1NEPJnKn5V6tyTpTUnHpfQ/SjpAUqOkiyRNSj2CXy1q2xlF6eel5NHAVqlH7qKW8kkalHrsrkzHPF5S7/TaVpLuTufjIUnbp/SrJf1M0v3AhZL2TfVMlzQtLShtZmZmVlci/KgXDsrWNB7YXNKzki6XtG+OfX4A3BcRQ4BbgQ8WvXZCRAwFhgGnSnpfSu8LzI6IPSLi4ZLylpGt/3VLWvurNT8HnpF0q6SvpmnnAR4BPgbsCLwA7J3SPwo8DnwFmBcRuwG7ASdJ2kLSSGAbYHey9cSGStoHOBN4PiIGR8QZreQjpf8qInYE3gEOS+ljgG+m83E6q/e6bQscEBHfSa99Iy1UvTdQuri0mZmZmVmX4aCsREQsBIYCo4DXgeslHd/GbnsB16X97wbeLnrtVEkzyAKhzckCFsjW4Lq5hfJ+S7aW133AnyQ1SPqupG+Uae/5ZAHfeOCLwN3ppYeAfdLj18BHJA0E3krHOBI4TtJ0sjXG3pfaNjI9pgFTyRZu3oY1tZbvxYiYnranAIPSAtJ7AjemOq8g65UsuLFoCOcjwM8knQpsWG44o6RRkiZLmtzcvKjsSTQzMzMzqwW+p6yMFBxMACZImgV8GbiabFhhIZDtVbRL2fUTJO0HHAAMj4jFabhjYb+lxfeRlTgAODwi7pV0KVmP0nbAcS2093ng15KuBF5PvXEPAt8g67U7GzgUOJwsWCu0+ZsRMa6kzZ8ELoiIK0rSB5UeXiv5lhUlNQG9yc7bO6n3q5x3I6uIGC3pTuAzwOOSDoiI1RaljogxZD1vXqfMzMzMzGqae8pKSNpOUnHP0GBgbtp+iawXDVYNyQN4GPhC2n8k8J6UPgB4OwVk25MNHcxjJnBs2v4uWZC2LCL+Uaa9B0rvrsK4DVkQ9E7KuxGwTUS8kNp4OquCsnHA1yR1T+VsK6lvSj8h9WwhaaCk9wMLgOJ7u1rKV1ZEzAdelHREyi9Ju5TLK2mriJgVERcCk8l64czMzMzMuiT3lK2pH3CppA3Jesb+TjaUEeA84LeSziIb8kdR+rWSjgQeIJt4YwHZUMKTJc0EniEbwpjHccAVkr4DLAUuBg6T9O2I+FlJ3i8BP5e0OLX3mKIeuIlAY9p+CLiALDgDuAoYBExNQd3rwCERMV7Sh4HHUqy3EDg2Ip6X9Iik2cBd6b6yNfKRBYUtOYasR+97QHeyIZ8zyuQ7TdKIVNaTwF2tnSwzMzOzrqg5yg7Gsi5IUU/TmnSQNBlHU0SsVDal/q9bGaZnFebhi2ZmZlZJK5e/UhXR0PQPHVz333EGz729Kt6Ljuaessr4IHCDpAZgOXBSJ7enrvz3Zm1PkNk953+aGtvOsqrM8rcSrqFnzo/TvPkac+brUeF8PXP+A6dnNOfK15i3PPL/PVqR8z3p1WqHbvv1asxXXt+eK3Ll69YtX3kNOS+Gbt3yvSfde+VfIrCxe866e1X2XDf2ajsPgHL+dcu7KmJjn5zfCXLeFKBu+b9j9Bi6Vb6M3XJ+gvXMufRmc773WH365CuvIefJacx5HMpZXs+2JjFOeuS8uAByfs7RmPNC7N0vX7685zAn9eidL9+AFu9OWE0smZ+v4sbu+fIB6jMgX8aGfNdNw3s3y1232frkoKwCIuI5YNfOboetP3kDMlt/8gZktu7yBmS27nIHZLb+5A3IbJ3lDsjMugBP9GFmZmZmZtaJ3FNWoySdTbYuWRPQDHw1Iia2vlfF23A6cCLZBCNNwE8j4g/rsw1mZmZmXVV4oo+64aCsBqXJRA4ChkTEMkkbATlvEljrOhuL11WTdDLwCWD3iJgvaQBwSFv7mZmZmZnZ6jx8sTZtCrwREcsAIuKNiHgVQNJLKUhD0rC0YDWSNpZ0j6Spkq6QNLco322SpkiaI6kw/T+SFko6X9JEYHhJG84Cvp7WHyMi5kXE74vacI6kh4EjJA2W9LikmZJulfSelG+CpF9IelTSbEm7p/R9JU1Pj2mS+mNmZmZm1kU5KKtN44HNJT0r6XJJbU8/CD8A7ouIIcCtZDNGFpwQEUOBYcCpkt6X0vsCsyNij4gorG9GCpL6R8TzrdS3NCL2iojrgD8A/x0ROwOzUlsK+kbEnsDXgd+ltNOBb6RlBfYGluQ4PjMzMzOzmuSgrAZFxEJgKNmi1q8D10s6vo3d9iJbrJmIuBt4u+i1UyXNIFvcenNgm5TeBNxcpixBm/OUXw+QhjVuGBEPpPTfA/sU5bs2telBYIO0aPcjwM8knZr2XWPSakmjJE2WNHnagr+30RQzMzMzs+rloKxGRURTREyIiB8ApwCHpZdWsup9LV50peydopL2Aw4AhkfELsC0ov2WlrsfLA1ZXCRpy1aauCjvoaxZfIwmm0CkN/C4pO3LtGFMRAyLiGG79t86Z1VmZmZmtSPCj3rhoKwGSdpO0jZFSYOBuWn7JbJeNFgVqAE8DHwh7T8SeE9KHwC8HRGLU/Dz0ZzNuAD4laQNUpkbFN+PVhAR84C3Je2dkr4EPFCU5ci0/17AvIiYJ2mriJgVERcCk4E1gjIzMzMzs67Csy/Wpn7ApWmo30rg72RDGQHOA34r6SygeIr884BrJR1JFhS9BiwA7gZOljQTeIZsCGMev07tmCRpBbAC+GkLeb8M/EZSH+AF4D+LXntb0qPABsAJKe00SSPIhk8+CdyVs01mZmZmZjXHQVkNiogpwJ4tvPYQsG2Zl+YBn4yIlWlK/RGF2RuBT7dQVr9W2hDA/6ZH6WuDSp5Pp+UeuJsj4n9K8n+zpXrNzMzMzLoaB2X144PADZIagOXASZ3cnoq5b8VrFSurofytd+ukMWeZjco3mjhvG9VQ2WPpnnO08wqaK1pvDzVWtLz2aMo5mL17zveusSnfe9KUN1/uwfb52qf5PXPli3YM8s97XefV3OYcQ6neThqd3y3n72fe4+j/6Fu56+6V81yvyH0Oc3525cwXFa4372dS3vI6Qt6rsHvu6yafppznOq9Kn8G8vye92vF73JDzkPOWeM7csbnrNqsEB2V1IiKeA3bt7HYUi4j9OrsNZmZmZtWqOTrvnwq2fnmijyok6ey0kPPMtIDyHin9tHRfViXq2E/SHeuw/wRJz0iaIWmSpMHrUNZZa7uvmZmZmVmtc1BWZdL9XgcBQ9JiywcA/0gvnwa0KyiTOnTs1zFpGv3LgYvWoRwHZWZmZmZWtxyUVZ9NgTcKk3BExBsR8WpaSHkz4H5J9wNI+nVaQHmOpPMKBUh6SdI5kh4GjpC0taS/pV6tqZK2Sln7SbpJ0tOSxiqzv6Rbi8r6hKRb2mjzY8DAon2OljRL0mxJF7aWLmk00Dv1CI6V1FfSnamts9NskWZmZmZmXZbvKas+44FzJD0L/A24PiIeiIhLJH2bbNbEN1LesyPirdQbdq+knSNiZnptaUTsBSBpIjA6Im6V1IssGN+c7B6zHYFXgUeAjwH3ka0/tnFEvE42ff3/tdHmTwG3pbo2Ay4kWyvtbWC8pEOAJ8qlR8SZkk6JiMFp/8OAVyPiwPR8wFqeRzMzMzOzmuCesioTEQvJApdRwOvA9ZKObyH7FyRNBaaRBVc7FL12PYCk/sDAiLg1lb80IhanPE9ExMsR0QxMBwalqe7/CByb1kEbTsvrhI2V9DLw38ClKW03YEJEvB4RK4GxwD6tpJeaBRwg6UJJe6fFp9cgaVTqJZz8r0WvttA8MzMzs9oVobp/1AsHZVUoIpoiYkJE/AA4BTisNI+kLYDTgf3TvWd3Ar2KsiwqZG2lqmVF202s6jn9P+BY4GjgxhRElXMMsAXwJ+BXbdSX67cqIp4lC0pnARdIOqeFfGMiYlhEDNuk72Z5ijYzMzMzq0oOyqqMpO0kbVOUNBiYm7YXAP3T9gZkgdc8SZvQ8gLQ84GX0xBCJPVsawbHiHiVbEjj94Cr28i7IuX7qKQPAxOBfSVtlIZVHg080Eo6wApJ3VP7NgMWR8Q1wMXAkNbqNzMzMzOrdb6nrPr0Ay5NQwdXAn8nG8oIMAa4S9JrETFC0jRgDvAC2T1hLfkScIWk84EVwBE52jEW2DginmwrY0QskfRT4PSI+Iqk/wHuJ+sd+2tE/BmgpfR0XDPTUMw/ABdJak5t/VqOtpqZmZmZ1SxltxCZrU7SZcC0iPhtZ7elLcMHjqjYRdyQb5RluzTmLLNR+Tqu87ZRquyxdM/Zsb6C5orW26NDV3VoXVPOz8fuOd+7vNdCE/nqbYrKnuu810x7/m7kva7zas55bho7aSBIt5zvcd7j6K8euevulfNcr8h9DnN+duXMFxWuN+9nUt7yOkLeq7B77usmn7yfIXlV+gzm/T3p1Y7f44ach5y3xHPmjq2Km5kmDTy07r+o7/bKrVXxXnQ095TZGiRNIRsa+Z3ObkseU9/8e5t51Il/lPN+EcnbxrzlNeT8gtZZ/5ip9Hlpj44IPqy65H2PGyr8z4u88l7X7Wlfc4Wv17x15603b3mV/odS3t/jSp8/yP85V2mVvr466zOz0v/Ugfz/ECl7Q7tZB3JQZmuIiKGd3QYzMzOzetdcR7MP1ruan+hD0gckXSfpeUlPSvqrpG07uM6rJR1eoXJeTAsnT5f06FqWs7Cd+feTdEfaPljSmWtTb5lyi4/naUk/qES5ZmZmZmZdWU33lCnrT78V+H1EHJXSBgObAM/m3F9pna7OckZE3NRZlUfE7cDtFSzyjIi4KS1S/aSkP0TEi+tSoKRurUzLb2ZmZmZW02q9p2wEsCIiflNIiIjpEfEQgKQzJE2SNFPSeSltkKSnJF0OTAU2lzRS0mOSpkq6UVK/lPectP9sSWNUZlC1pNGph26mpIsrcVCSLimszyXpk5IelNQgaRNJt0qakR57luz3bg9Yen5ZYeFpSZ9KvVcPA58vynN8mtSj0NN1iaRHJb1Q6A1MdV8uaY6kO1JvZFs9hYU10xalMoZKekDSFEnjJG2a0reSdHdKf0jS9kVt+Zmk+4EL1/pkmpmZmZlVuVoPynYCppR7QdJIYBtgd7K1voZK2ie9vB3wh4jYlSxo+B5wQEQMASYD3075LouI3SJiJ6A3cFBJHe8FDgV2TAs4/2gtjuGiouGLY1PamcCRkkYAlwD/mXrzLgEeiIhdyNbvmpOngtRrdSXwWWBv4AOtZN8U2IvsWEentM8Dg4CPACcCw9s6HuBl4LqI+Hdag+xS4PB0v9rvgB+n/GOAb6b004HLi8ralux9qYkJR8zMzMzM1kZND19sw8j0mJae9yML0v4fMDciHk/pHwV2AB5JHWE9gMfSayMkfRfoA7yXLAj6S1Ed84GlwFWS7gTuoP3WGL4YEYslnQQ8CHwrIp5PL30cOC7laQLm5axje+DFiHgOQNI1rFr7rNRtKQB8Utmi1JAFaTem9H+m3qtWjyf1Nt6bevPmkwXQ96Rz3Ai8lvLsCdxY1AnZs6isG9NxrkHSqMIxNHbbkMbGfq00yczMzKz2eA7g+lHrQdkcoKVhdAIuiIgrVkuUBpGG1BXluyciji7J14us12ZYRPxD0rmsGpIHQESslLQ7sD9wFHAKWeBUXM44snvcJkfEie04to8AbwKbtWOflaze+1nc3ry/18uKtlXyM7eIWChpAllAdxcwJyJW62GTtAHwTkQMbqGYRS2kExFjyHrZ6Nlrc39mmZmZmVnNqvXhi/cBPVOvEgCSdpO0LzAOOKHo/rCBkt5fpozHgY9J2jrl66Ns9sZCQPNGKmON4C+lD4iIvwKnkQ2TXE1EfDIiBrcnIJP0IbI1wnYFPi1pj/TSvcDXUp7GFNQUmwvsIKmnpAFkwSLA08AWkrZKz4+mfR4GDivc1wbsl+MYugF7AM8DzwAbSxqeXusuaceImA+8KOmIlC5Ju7SzbWZmZmZmNa2mg7LIVik8FPiEsinx5wDnAq9GxHjgT8BjkmYBNwH9y5TxOnA8cK2kmWRB2vYR8Q7ZfVizgNuASWWa0B+4I+33APCttTiM4nvKpkvqCfwWOD0iXgW+QjY8shfwX2RDKmeR3Uu3Y8mx/AO4AZgJjCUN3YyIpWRD/e5ME33MbWcbbya7R2w2cAUwkZaHThbuKZtJdu5uiYjlZEHthZJmANPJhi0CHAN8JaXPAT7XzraZmZmZmdU0VXr1deuaJPVLQxLfBzwBfCwi/tnZ7YJ8wxfV/hGYFRM5R47mbWPe8hqU738unfUZUOnz0h5acyLVsvz5WLvyvscNOfNVWt7ruj3ta67w9Zq37rz15i0v73uXV97f40qfP8j/OVdplb6+OuszszHn37H2aM75nsxb+HxVrNr8+Gafr/s/RB999ZaqeC86Wq3fU2brzx2SNiSbCOWH1RKQAXRvaPsyXtncRLeGxvWeD2BF80p6NnZvM9/yppX0aGz7WJY1rchV3ormJrrnaOPyppX07NZ2ectWrqhovqUrl9OrW49c5fXOkW/JyuW58gEsbVpBrxznMG+ZS1Yup0/3nm3mW7xiWe58/Xr0ajPfwuVLOy1f/56928wHsGDZklx525NvQM8+beabv3wJG/Rou7yFK5bSr3uOY25Hvv556s15rhevWJarPIB5yxbnyrtgeb5zuGD5klzlzVu2mA179W0z3/xli9mwZ9v55i1fzIAebbdv3vJ8x5u33reWLuR9vdcYULOGN5csyJUP4I0l89mod+mdBh2fL28b3166kPf1ajvfW8sW8t6ebU+o9ebSBbnKy5vvnWWLeE+OfABvL12QK++bS+ezUa8BucqsBs1RF/GI4Z4y6wL69dmiqi/izvpPfF6V/q90pTV0Yi9nXpU+h75mWlbt10Olz017egoq3WOVV+5eyQq/d3l7PPLWW+2fhR2h+n+fKt9TlrcX8fk3plbFyXl008Oq+jvO+rDnazdXxXvR0Wr6njIzMzMzM7Na56Csi5G0MEeevSXNSROL5BsXs/r+x0sqO1W/pO1TudOKZntcK5LOlXT6upRhZmZmZlbtHJTVp2OAi9NU/UvWYv/jaXn9tEOAP0fErkWLXpuZmZmZWQsclHVRkvaTNEHSTZKeljQ2rQN2IvAF4JyU1k/SvZKmSpol6XNp/0GSnpJ0ZepVGy+pt6TDgWHA2NKeNkmfIVuv7URJ96e0b0uanR6nFeVtKf1sSc9I+huw3Xo5WWZmZmZVKEJ1/6gXnn2xa9uVbC2zV4FHyKaxv0rSXsAdEXFTWuT50IiYL2kj4HFJt6f9twGOjoiTJN0AHBYR10g6hWwdtcnFlUXEXyX9BlgYERdLGgr8J9ki0gImSnqA7J8BLaUfldrdDZhKth6bmZmZmVmX5aCsa3siIl4GSAs6DwIeLskj4CeS9gGagYHAJum1FyNietqekvZvj72AWyNiUWrDLcDeqc5y6Q0pfXFKv71sqdlro8gWxKZH9/fRvVu+KXPNzMzMzKqNhy92bcuKtpsoH4QfA2wMDI2IwcC/gMLiOXn2b01Lfc6t9UXnmvo1IsZExLCIGOaAzMzMzMxqmYMyGwD8OyJWSBoBfCjHPguAPJHQg8AhkvpI6gscCjzURvqh6d61/sBn1+J4zMzMzMxqiocv2ljgL5ImA9OBp3PsczXwG0lLgOEtzeAYEVMlXQ08kZKuiohpAK2kX5/aMZcsUDMzMzOrS82d3QBbbxRR9wuFW43r12eLqr6IG1TdMwepytvX0Oo64A4mAAAgAElEQVRo1+pQ6XPoa6Zl1X49VPrcNCr/gJbmnH/PK3195T3mSr93zflGu+eut9o/CztC9f8+VX5Al3Ie8/NvTK2Kk/PQBw6v6u8468Pe/7ypKt6LjuaeMqt5K5ubOrsJFRE5v2DklfcPT95685ZXaZU+L+3RWcecV7W/d52pLr9g1+Ex15t6+132NW31xPeUmZmZmZmZdSIHZeuRpKa04HLhMagCZb6U1heriLRo9BcrUM5LaTHqwrHuKWkzSTe1Uffsda3bzMzMzKyWePji+rUkTTtflqRuEbFyfTaojEHAF4E/5d1BUmNElBtDOCIi3ihJO3wd2mZmZmZWN6LOhqzWM/eUdTJJx0u6UdJfgPEp7QxJkyTNlHReSusr6U5JMyTNlnRkUTHflDQ19Uxtn/LPkrShMm9KOi6l/1HSAalX6qG031RJe6ayRgN7p96tb0lqlHRRUXu+msrZT9L9kv4EzMp5rO/2hEnaUdITqZ6ZkrZJ2RolXSlpjqTxknqv2xk2MzMzM6tu7ilbv3pLmp62X4yIQ9P2cGDniHhL0khgG2B3skWWb5e0D9kCz69GxIEAkgYUlftGRAyR9HXgdOBE4BHgY2RTy78A7A38Afgo8DWyWVY/ERFLU0B0LTAMOBM4PSIOSvWMAuZFxG6SegKPSBqf6t0d2CkiXmzheO+X1AQsi4g9Sl47GfhlRIyV1ANoBDZJx350RJwk6QbgMOCatk+tmZmZmVltclC2frU0fPGeiHgrbY9Mj2npeT+yQOUh4GJJFwJ3RETxGl63pJ9TgM+n7YeAfciCsl8DoyQNBN6KiIUpqLtM0mCgCdi2hTaPBHaWVBh2OCC1ZznwRCsBGZQfvljwGHC2pP8AbomI59JsaS9GRCFwnUI2nHINKVgcBdCt23tobOzXSjPMzMzMzKqXhy9Wh0VF2wIuiIjB6bF1RPw2Ip4FhpINFbxA0jlF+yxLP5tYFWg/SNY7tjcwAXid7H6uQjD3LeBfwC5kPWQ9WmibgG8WtWeLiCj0lC1qYZ82RcSfgIOBJcA4SR8vOZbS4yndf0xEDIuIYQ7IzMzMzKyWuaes+owDfihpbOrRGgisIHuv3oqIayQtBI5vrZCI+EealbFHRLwg6WGyoY2npCwDgJcjolnSl8mGDwIsAPqXtOdrku6LiBWStgVeWdeDlLQl8EJEXJK2dyYbZmlmZmZmQHPdLx1dPxyUVZmIGC/pw8BjaTjfQuBYYGvgIknNZEHa13IUN5FVwdZDwAXAw+n55cDNko4A7mdVr9dMYKWkGcDVwC/JhhBOVdag14FD1uEQC44EjpW0AvgncD6wQQXKNTMzMzOrKYpwCG61rVevD3aJizio7GEo5zS6eevNW16lVfq8tEdnHXNe1f7edab0T6260lCHx1xv6u13uTOv6fmLXqiKkz1hkyO6xHecdbHfv26siveio7mnzGreyuZyS6SZmVk1qYtvVZZLPf7TxKwtnujDzMzMzMysE9VFUCYpJP2x6Hk3Sa9LuiM9P1jSmWn7XEmnp+0JkoatQ71NaXHkwuPMtSjjeEmXtXOfqwtT2Eu6StIO7a23hXILxzOjZMHp1vY5TVKfoudnVaItZmZmZl1dM6r7R72ol+GLi4CdJPWOiCXAJyiaQTAibgdu74B6W1qXbL2JiBMrWNy7xyPpk2QTh+zbxj6nkS3+vDg9Pwv4SXsqldQYER6jaGZmZmZdUl30lCV3AQem7aOBawsvtNUbJalB0u8l/WhdGyFpgKRnJG2Xnl8r6aS0/anUAzVD0r1l9n23Byw9X5h+StJlkp6UdCfw/qI87/b2SVoo6cep/MclbZLSt0rPJ0k6v1BuGzYA3k7771fodUzPL0vn9FRgM+B+SfdLGg30Tr1tY1PeYyU9kdKukNRY1NbzJU0EhrfjFJuZmZmZ1ZR6CsquA46S1ItsTayJOffrBowFno2I77WzzkIAUngcGRHzyNYKu1rSUcB7IuJKSRsDVwKHRcQuwBHtqOdQYDvgI8BJQEvDCvsCj6fyH0x5IZv2/pcRsRvwao7jeRq4Cvhha42KiEtSeSMiYkREnEnqbYuIY9LU/0cCH0s9cE3AMUVtnR0Re0TEw2UrMDMzMzPrAupl+CIRMVPSILJesr+2Y9crgBsi4sdrUW3Z4YsRcU9aH+xXwC4p+aPAgxHxYsrzVjvq2Qe4Ng3xe1XSfS3kWw4UerSmkA3jhKwnqrD22J+Ai9s6HknDgT9I2qkd7Sy1PzAUmJRmYuoN/Du91gTc3NKOkkYBowDUOICGhr7r0AwzMzMzs85TTz1lkN03djFFQxdzeBQYkXrYViNpj6JesIPzFiipAfgwsAR4byEZ2lx0aCXpPUsLOfcoei3POhYrYtXCdE2sQ1AeEY8BGwEbF7crWeNctUDA71PP2eCI2C4izk2vLW3tPrKIGBMRwyJimAMyMzMz64oC1f2jXtRbUPY74PyImNWOfX5L1rN2o6TVgpiImFgUULRnopBvAU+R9dr9TlJ34DFgX0lbAEh6b5n9XiLrWQL4HNA9bT9INjSzUdKmwIh2tAXgceCwtH1Unh0kbQ80Am8Cc4EdJPWUNICsB6xgAdC/6PmKdLwA9wKHS3p/KvO9kj7UzrabmZmZmdW0uhm+CBARL5PdP9Xe/X6Wgo0/SjomIppz7tpb0vSi53eTBYYnArtHxAJJDwLfi4gfpCF5t6SetH+zanhhwZXAnyU9QRbQLErptwIfB2YBzwIPtPMQTwOukfQd4E5gXo7jEfDl1Jv1D0k3ADOB54BpRfuMAe6S9FpEjEjPZ0qamu4r+x4wPh3zCuAbZEGemZmZmVld0KrRbFav0jpiSyIi0uQjR0fE5zq7XXl16zHQF7GZWZWrn0FI1pZ0H3lVW77s5apo5L2bHFn333H+P3t3HiZXVed//P3pTkJCAkFWISxBAcOaSAIaNkER3GYQQQOSEcQhoig/UHRYXFh0QGEGYYCBjLIJArKKoiQaQYICScjSSZBFMSiLLIKRkJCl+/v7454yl6K6+nZS3VXV/Xk9Tz1dde655567VFd965x7zvuev6khzkVP61ctZdapscAl6T61vwPH1rk+ZmZmZmb9hoMyIyKms3oUyKbT0gS/uPUnRX8BLdpKX89fVJuhjo1ODd4+0pfOXX/7X9jo1xYUPyd96TosolXFhjToTm+uosew2d4nRe+XsebX3wb6MDMzMzMzayhuKbOakNRONtBIyY0RcV696mNmZmZm1iwclFmtVJwo28zMzMzMqnP3RetRkj4k6VFJ90u6WNLPUvomkn4pabakKyQ9JWljSUMl3SVpnqQFkibUex/MzMzMzHqSgzKrlSGS5uYeEyQNBq4APhgR+wCb5PJ/E/h1ROxONs/a1in9A8CzETE6InYhm9vNzMzMzKzPcvdFq5U3dV+UNAZ4MiL+lJJuACal5/sAhwJExN2SXknp84ELJH0H+FkaGfJN0kTbkwBaWzegpXVoTXfGzMzMrN6iCUYZtdpwS5n1pGr/SSoui4jHyeZNmw+cK+kbneSbHBHjImKcAzIzMzMza2YOyqwnPQq8TdLI9Dp/f9j9wCcAJB0EvCU93wJYGhHXARcAu/dWZc3MzMzM6sHdF61Whkiam3t9d0ScKunzwN2SXgJm5JafBdyQBvL4DfAc8CqwP3C+pA5gJfC5Xqm9mZmZmVmdOCizmoiI1k4W3RMRoyQJuBSYldIXAwdHxCpJ44EDImI5MCU9zMzMzMz6BQdl1tOOk3Q0MAiYQzYaI2SjLf5YUguwAjhuTTcQEWtdye7KYkyrpNbno2h5PXFOGv08qx/eAN7o56SlwevXHX3l+upL56ReWmp8LfTE53bRMtvr8J1hbXTUuwLWaxyUWY+KiAuBCyukPwG8s/drZGZmZmbWWDzQRzdJai+bj2tklbwjJX1yLbe3iaSVkj5bMP/xkj61NtvMlbVI0sZrsN6Zkp5Jx+cRSUfWoj5mZmZmZn2Rg7LuWxYRY3KPRVXyjgTWKigDPg48CBQKbCLi8oi4di23WQsXpnnLDgGukDSw3hUyMzMzM2tEDspqILWITZc0Oz32SovOA/ZNLUYnS9pZ0oz0uk3S9gWKPxL4MrClpBG5bS6R9G1J8yQ9KGmzlH6mpFPS83slXSjpPkm/l7SHpNskPSHpW7my7pD0sKSFaVLm8v0bKumutK0FacTEQlI3xaWsHvL+OEkzU1m3SlpXUqukJ5XZQFKHpP1S/umStiu6PTMzMzOzZuOgrPuG5Lou3p7SXgDeHxG7k83FdXFKPxWYnlrULgSOBy5KLUjjgKerbUjSVsBbI2IG8GPeOM/XUODBiBgN3EfnA2WsiIj9gMuBnwAnALsAx0jaKOU5NiLGpjqdmEsv+QDwbESMjohdgLur1btsH3YHnoiIF1LSbRGxR6r374HPREQ78DiwE7AP8DBZMLsOsGVE/KHo9szMzMz6ig4/+g0HZd2X7754aEobCPyfpPnAzWTBRSUPAKdL+g9gm4hY1sW2jiALxgBu5I1dGFcAP0vPHybrKlnJnenvfGBhRDyXhp5/EtgqLTtR0jyybpJbAeUtePOBAyV9R9K+EbG4i3oDnCzpMeAh4Mxc+i6p9Ws+cBSwc0qfDuyXHueSBWd7ADMrFS5pkqRZkmZ1dLxWoDpmZmZmZo3JQVltnAw8D4wma20aVClTRPwI+FdgGTBF0nu7KPdIshatRWTB1ehcl8eVsXr813Y6H0lzefrbkXteej1A0v7AgcD41Ho1BxhcVu/HgbFkwdm5kr7RRb0hu6fsHWSte9dKKpV5NfCFiNiVbALpUvp0YF9gT+DnwAZkE0nfV6nwiJgcEeMiYlxLy9AC1TEzMzMza0wOympjOPBcRHQA/waUJlJ+FVivlEnS24AnI+JisiBrt5Q+LX+/WEp7BzA0IkZExMiIGEnWgnRED9T9lYhYKmkU8O7yDJK2AJZGxHXABcDuKf1cSYeW58+LiNvIJow+OiWtBzyXBv44Kpf1IWAvoCMiXgfmAp8lC9bMzMzMzPosB2W1cRlwtKQHgR2AUn+6NmBVGtTiZLJWowWS5gKjyFqQWoDtgJfLyjwSuL0s7VYKjsLYDXeTtZi1AeeQdWEstyswI9X7DOBbufS/FtjG2cCX0r5+nSwA+yXwaClD6lL5l9z2p5MFcPO7u0NmZmZmZs1EPTGruhUnaReygTa+VO+6dJekKRFxcL3rMXDQiF6/iCX19iatC/3xnIh+uM8Nfp5bGrx+3dFXrq9mOCcNf133kWuhO15Z8oeG2Om7Njuy339R//DzNzTEuehpnd2HZL0kIhYATReQATRCQAYwcvhbe32bHd34MaPoF4JafwGq9XaDYvvcqmIN8EWPYU8cv1p/SWst2Omg6BevWn8Bail4Toqeu+4YWPDYFN32QLV2nYni10PRPS5av1q/j4ep+Mf0oILHZmDBOhY9d4OLXv+FcsE6BcsbFsVKHN5RLN86Bf+tD+zGV+R1iv6fK7ztYhmLbndgwf/rg2gvlq+l2Fh5AwvmW2fgqkL5AAYOLFbH1gH9aTw/aybuvmhmZmZmZlZHDsqsEElvlXSjpD9KekTSzyXtUO96mZmZmZk1Owdl1iVlfa5uB+6NiLdHxE7A6cBmuTzF+s2YmZmZmdkbOCizIg4gmxft8lJCRMwFWiXdI+lHpFESJU2UNEPSXElXlII1Sf+bJnteKOmsUjmSFkn6T0kPpOW7S5qSWuSO7+X9NDMzM2sYHfKjv3BQZkXsAjzcybI9gTMiYidJO5IN+793RIwhm9S6NBfZGRExjmxutvdI2i1Xxl8iYjzZMPhXA4eTzZd2ds33xMzMzMyswXj0RVtbMyLiT+n5+4CxwMw0ytwQ4IW07BOSJpFdc5sDO5HN4wbZRNqQtbYNi4hXgVclvS5pg4j4e/lGU1mTADYZtjXDB29c+z0zMzMzM+sFDsqsiIVkrVeVvJZ7LuCaiDgtn0HStsApwB4R8Yqkq4HBuSzL09+O3PPS64rXaERMBiYDbL/J2H4/h4eZmZmZNS93X7Qifg2sI+m4UoKkPYD3lOWbBhwuadOUZ0NJ2wDrkwVviyVtBnywd6ptZmZmZtb43FJmXYqIkHQo8D1JpwKvA4uAO8ryPSLpa8BUSS3ASuCEiHhQ0hyyFrcngd/26g6YmZmZNaGOGk9Ib43LQZkVEhHPAp+osOj/yvLdBNxUYf1jOil3ZO751WQDfbxpmZmZmZlZX+Xui2ZmZmZmZnXkljJrev9Y8VqXedJokDWjHuhO0FKwjkX3paXGdaz1MSyq6H5kPWZrq9bnufA5LrjdouUVVdfrusb7XLi8wtdXfa7/dVoGFs5bdF+K5mstuM+tBX/fbS34Hu2g2NhNAwtut/C5K5it6Hah+LEeUPDYFC2vaB2Ln+MaX1sFv362Uvz6H7Cy4LYL5ruw8JbNasMtZWZmZmZmZnXkoKyJSGqXNFfSPEmzJe1VYJ2TJK2be316D9RroqQ2SQtT3b4vaYO0bJEkTyJmZmZm1k3hR7/hoKy5LIuIMRExGjgNOLfAOicB6+Zedzsok9RaZdkHgJOBD0bEzsDuwO+Azbq7HTMzMzOz/shBWfNaH3gFQNL+kn5WWiDpEknHSDoR2AK4R9I9ks4DhqTWtutT3omSZqS0K0oBmKQlks6W9BAwvko9zgBOiYhnACKiPSKujIjHcnm+mFr25ksalcofKulKSTMlzZF0SEpvlXR+Sm+T9NlaHTAzMzMzs0bkoKy5lAKqR4HvA+dUyxwRFwPPAgdExAERcSqrW9uOkrQjMAHYOyLGAO3AUWn1ocCCiHhXRNxfZTM7A7O7qPdLEbE78L/AKSntDODXEbEHcABwvqShwGeAxSl9D+A4Sdt2Ub6ZmZmZWdNyUNZcSgHVKOADwLVauyHB3geMBWZKmptevy0tawdu7U5hknZNQeMfJU3ILbot/X0YGJmeHwScmrZ7LzAY2DqlfyqlPwRsBGxfYVuTJM2SNGvZir93p5pmZmZmZg3FQ+I3qYh4IA2gsQmwijcG2IMLFiPgmog4rcKy1yOivUAZC8nuI7snIuYDYyRdAgzJ5Vme/raz+poTcFhZN0dSkPnFiJhSbaMRMRmYDLDZ8FH96T5QMzMz6yc66l0B6zVuKWtS6d6sVuBvwFPATpLWkTScrMWr5FVgvdzrlZJKE39MAw6XtGkqc0NJ23SyvXMlHVph0bnABZK2zKUNqZCv3BSye82Uyn9nLv1zpTpK2iF1azQzMzMz65PcUtZchqRufZC1NB2dWrP+IunHQBvwBDAnt85k4BeSnouIA9LrNkmz031lXwOmKpt5dyVwAlmQV25X4M7yxIj4uaRN0jZagb8DC8iCq2rOAb6X6iJgEfARsnvlRgKzU/qLwEe7KMvMzMzMrGkpwj2/rGuSpkTEwfWuRyVFui+u3a13FcqjtuUBtBSsY9F9aalxHWt9DIsquh/Z7wq1VevzXPgcF9xu0fKKqut1XeN9Llxe4eurPtf/Oi0Du86UFN2XovlaC+5za8FON60F36MdBWcmGlhwu7U+d0W3C8WP9YCCx6ZoeUXrWPwcF722iilaXtF8AANqXOaFi26sz5u+zG1v/WS//6L+sb/+qCHORU9zS5kV0qgBGcDflr1a7yqY1VS/+PQxs26r148D/dGF9a6A9TsOyszMzMzMGlCHA/F+wwN9NDhJW0r6iaQn0lDzF0kalFt+Q5pk+WRJo9KQ9HMkvb1KmYvSyI3drcuZkp5J2yg9NqiQ715J49Lzn0vaQNJISQs6Kfef+c3MzMzM+hsHZQ0sDXRxG3BHRGwP7AAMA76dlr8V2CsidouIC8kGxPhJRLwzIv7YQ9W6MM2VVnpUnSQsIj7UVR4zMzMzs/7MQVljey/ZfGFXAaSRFk8GjpW0LjAV2DS1WH0TOAn4d0n3AEi6Q9LDkhZKmlReuKShku6SNE/SgrIJnwuTNETSjanF7iZyQ+KXtcoNkHRNyndL2ofysg6S9ICk2ZJuljRsTepkZmZmZv1D6jG2MH2fvUHSYEnbSnoo9Ta7qdTTLE0hdZOkP6TlI3PlnJbSH5N0cC79AyntD5JOzaVX3MaacFDW2HYGHs4nRMQ/gD8D2wH/CvwxtVidBVxO1pJ1QMp+bESMBcYBJ0raqKz8DwDPRsToiNgFuLtAnU7OdV28J6V9DlgaEbuRteKN7WTddwCTU75/AJ/PL0zB29eAAyNid2AW8KUCdTIzMzOzfkjSCOBEYFz6PtsKHAF8h+x78fbAK8Bn0iqfAV6JiO3IxnT5Tipnp7TezmTfkS+T1JqmfLoU+CCwE3BkykuVbXSbg7LGJqg4NnBn6eVOlDQPeBDYCti+bPl84EBJ35G0b0QsLlBmvvtiKfjbD7gOICLayOZLq+QvEfHb9Pw6YJ+y5e8mu9h/m+ZjOxrobDLrSZJmSZrV0fFagWqbmZmZNZfwo6gBZPP5DgDWBZ4j63F2S1p+DavnvT0kvSYtf1+6ZegQ4MaIWB4RfwL+AOyZHn+IiCcjYgVwI3BIWqezbXSbg7LGtpCsleufJK1PFmBVvWdM0v7AgcD4iBhNNqH04HyeiHicrFVrPnCupG+sRV2LvG/K85S/FvDLXNC3U0RU/MUhIiZHxLiIGNfSMnRN6mtmZmZmTS4ingEuIOtJ9hywmKyn2d8jYlXK9jQwIj0fAfwlrbsq5d8on162TmfpG1XZRrc5KGts04B1JX0KIDWf/hdwdUQs7WLd4WRNs0sljSJrhXoDSVuQdTu8juxi3j2lnyvp0G7U8z7gqLTuLsBuneTbWtL49PxI4P6y5Q8Ce0vaLpW1rqQdulEPMzMzM+tD8r2j0mNS2fK3kLVybQtsAQwl62pYrtQYUGmegahh+hpxUNbAIiKAQ4GPS3oCeBx4HTi9wOp3kw2s0QacQxbwlNsVmJG6Cp4BfCuX/tdOys3fUzY33Rz5v8CwtK2vAjM6Wff3wNEp34Zpvfz+vggcA9yQ8jwIjCqwr2ZmZmbWB+V7R6XH5LIsBwJ/iogXI2Il2cjlewEbpO6MAFsCz6bnT5P1OiMtHw68nE8vW6ez9JeqbKPblH3vN1tN0pSIOLjrnI1hwKARvoitT/FUoWZWiTyRcK9ZsfzphjjYN29+VL//jvPx566vei4kvQu4EtgDWAZcTTZY3H7ArRFxo6TLgbaIuEzSCcCuEXG8pCOAj0XEJyTtDPyI7B6yLch6rG1P9rH8OPA+4BlgJvDJiFgo6eZK21iT/RzQdRbrb5opIDPri/r9J7CZVdRXfkhviGinSXTUuwJNICIeknQLMBtYRTaOwmTgLuBGSd9KaT9Iq/wA+KGkP5C1kB2Rylko6cfAI6mcE9J0VEj6AjCFbGTHKyNiYSrrPzrZRre5pcyanlvKzMzMmkczBGUrVzzTENW8yS1lTOiipayv8D1lTUxSSPph7vUASS9K+tkaljdS0icL5t1S0k/SZHl/lHRRblK+MZI+lMt7pqRT1qROZmZmZmZ9nYOy5vYasIukIen1+8n6uq6pkUCXQVmal+E24I40Wd4OwDCyiaMBxgAf6mT1bkujTpqZmZmZ9UkOyprfL4APp+dHAjeUFkgaKulKSTMlzZF0SEofKWm6pNnpsVda5Txg3zSq4slVtvle4PWIuAog9bc9GTg2zaN2NjAhlTMhrbOTpHslPSnpxFwdJ0qakfJeUQrAJC2RdLakh4DxmJmZmZn1UQ7Kmt+NwBGSBpPND/ZQbtkZwK8jYg/gAOB8SUOBF4D3R8TuwATg4pT/VGB6mrj5wirb3JlsUr5/ioh/kE3aNxL4BnBTKuemlGUUcDDZiDbflDRQ0o5p+3tHxBignTTfGdkcEwsi4l0RUT6fmZmZmZlZn+HRF5tcRLSlucKOBH5etvgg4F9z93MNBrYmm0PhEkmlQKi7EzSLygPEdZYOcFdELAeWS3oB2IxsaNGxwMw0zO8QsoCRVK9bO61ANnHgJAC1DqelZWg3d8HMzMyssXX0iyEuDByU9RV3AhcA+wMb5dIFHBYRj+UzSzoTeB4YTdZa+no3t7cQOKyszPXJJtb7I1mgVW557nk72bUn4JqIOK1C/tdLw5BWkiYOnAwefdHMzMzMmpu7L/YNVwJnR8T8svQpwBfTwBxIemdKHw48FxEdwL+RzbkA8CqwXmllSSMkTauwvWnAupI+lfK1Av8FXB0RS8vLqWIacLikTVM5G0rapsB6ZmZmZmZ9hoOyPiAino6IiyosOgcYCLRJWpBeA1wGHC3pQbKui6+l9DZglaR5aaCPzckmzyvfXgCHAh+X9ATZLOevA6enLPeQDeyRH+ijUr0fAb4GTJXUBvwybdPMzMzMrN/w5NHWqTR7+Z8j4s5616Uad180MzNrHs1wm1SjTB59wxaePPrIZ/vH5NG+p8w6FRGX1LsOZmZmZv1VR1OEsFYLDsqs6Q0dNLhmZbXU8Z9fuvWv17UU3G7d6lfwnPRE/VSn66HoOam1ep3j7qj1e7TR97lVrV1nSmp9vdbtOqzTftTr/Q7QqtreTVK0vHp95hV93/VE/Rr9PW/9l+8pMzMzMzMzqyMHZU1GUnsaQGOBpJslrbuG5Vwt6fD0/KQ1LSdX3r2S/qzcT1CS7pC0ZC3KPL3rXGZmZmZmzc1BWfNZFhFjImIXYAVwfA3KPAmoGJSl4e6L+juwd1pvA9Z+JEUHZWZmZmbW5zkoa27Tge0AJH0ptZ4tkHRSShuZhsInvT4lTRxNLu1EYAvgHkn3pLQlks6W9BDwNUm35/K/X9JtndTnRuCI9PxjwBvySfqKpJmS2iSdlUu/Q9LDkhZKmpTSzgOGpFbB67t/aMzMzMyaW/jRbzgoa1KSBgAfBOZLGgt8GngX8G7guNxE0VVFxMXAs8ABEXFASh4KLIiIdwFnAztK2iQt+zRwVSfFTQP2S61rRwA35b/DprkAACAASURBVOp7ELA9sCcwBhgrab+0+NiIGAuMA06UtFFEnMrqVsGjiuyLmZmZmVkzclDWfIZImgvMAv4M/ADYB7g9Il6LiCVkLVT7rsU22oFb4Z8TRf8QmJi6JI4HflFlvfuBCcCQiFiUW3ZQeswBZgOjyII0yAKxecCDwFa59E5JmiRplqRZK1b+o3t7Z2ZmZmbWQDwkfvNZFhFj8gn5wTXKrOKNgXfRseNfj4j23OurgJ8CrwM3R8SqKuveCNwOnFmWLuDciLjiDYnS/sCBwPiIWCrp3iL1jIjJwGSA4cPe3p9at83MzMysj3FLWd9wH/BRSetKGgocSna/2fPAppI2krQO8JFO1n8VWK+zwiPiWbIujl8Dru6iLtOBc4EbytKnAMdKGgYgaYSkTYHhwCspIBtF1v2yZKWkgV1sz8zMzMysqbmlrA+IiNmSrgZmpKTvR8QcAElnAw8BfwIe7aSIycAvJD2Xu6+s3PXAJhHxSBd1CeCCCulTJe0IPJAa9pYAE4G7geMltQGPkXVhzNerTdJs31dmZmZm/U2H57ruN5R9hzarTtIlwJyI+EG961Kult0XW6jff7/Oe6H2rJaC261b/Qqek56on+p0PRQ9J7VWr3PcHbV+jzb6Prd2Y1aSWl+vdbsO67Qf9Xq/A7Sqth2XipZXr8+8ou+7nqhf0W3PfPa+hvjncO2Iif3+i/qnnrmuIc5FT3NLmXVJ0sPAa8CX612XSto7OrrMU/RDub3g4Ks98kWu4A8ktf6Qai+43Xp9eY2i2+2Bj61a73PRc9dRcF9qfk6KbrcHvijV6z3aUuPrptbnpDvHutbBR62Dslpvt9H3oztq/eNTrcsrfKzr+CNa0W3X88dXs2oclFmX0nD1ZmZmZmbWAzzQRyckhaQf5l4PkPSipJ91sd4Gkj6fez1S0idrWC9JmizpEUnzJY2vkneApP+U9ESahHmupDPWYtunV1m2SNL0srS5+cmru7mtNxxHMzMzM7O+ykFZ514DdpE0JL1+P/BMgfU2APLBxEigZkEZ2Zxk2wM7k00W/WSVvN8CtgB2TcPo7wuszWiGnQZlyXqStgJIg3qsjfLjaGZmZtavdPjRbzgoq+4XwIfT8yPJDfMu6UxJp+ReL5A0EjgPeHtqJTo/vd43vT5Z0mBJV6VWrjmSDkjrHyPpNkl3p5at73ZSpxXAZsDAiFgaEc9XyiRpXeA44IsR8TpARLwaEWfm8nwp1XuBpJNy6XdIeljSQkmTUtp5pImrJV3fSd1+TDZxdKXj1SrpfEkzJbVJ+mxKHyZpmqTZ6ZgcklYpP45mZmZmZn2Sg7LqbgSOkDQY2I1saPmunAr8MSLGRMRX0uvp6fWFwAkAEbErWeByTSofYAxZULMrMKHU6lTmeWB94Ooqk0YDbAf8OSJerbRQ0ljg02Stbe8GjpP0zrT42HQf2TjgREkbRcSppImrqwxPfwvwsfT8X8gmnC75DLA4IvYA9kjb25ZsQupDI2J34ADgv9J+lR9HMzMzM7M+yUFZFRHRRtb98Ejg5zUqdh/gh6n8R4GngB3SsmkRsTi1bD0CbFNh/VuA9wFLgQsBJF0m6cMV8v6TpE+nVqe/pGBvH+D2iHgtIpYAt5F1b4QsEJtHNmfYVmTdJYt4GXhF0hHA71MdSw4CPiVpLllwu1EqV8B/pnnKfgWMIGsJrErSJEmzJM1auapi3GlmZmZm1hQclHXtTrLJkG8oS1/FG4/fYIqp1rq1PPe8nbLRMSVtCmwcEY8BnwVGSvomWYvWvWVl/QHYWtJ6ABFxVbqvbDHQ2lk9JO0PHAiMj4jRwByK7xvATcClvPl4iawr5Zj02DYipgJHAZsAY1P9ni+yvYiYHBHjImLcwAHrdaN6ZmZmZmaNxUFZ164Ezo6I+WXpi4DdASTtDmyb0l8F8lFC+ev7yAIRJO0AbA08VrAuL2ar6YCIaAcmAf8PmB0Rr+UzRsRS4AfAJaXukZJagUG5enxU0rqShgKHAtOB4cArEbFU0iiyro0lKyV1NVDI7cB3gSll6VOAz5XWl7RD2u5w4IWIWJnuryu1DpYfNzMzM7N+JfzoNxyUdSEino6IiyosuhXYMHXH+xzweMr/N+C3afCM84E2YJWkeZJOBi4DWiXNJ2tVOiYillcov1JdAjgM+Hba7h3AF4B3Szq8wipnAM8BCyTNIQu6rgGejYjZwNXADLLuhN+PiDnA3cCA1J3wHLIujCWTgbYqA32UBhP5TkSsKFv0fbIumbPTMPlXkLUEXg+MkzSLLFh9NJVTfhzNzMzMzPokZd/zzZrXsHW37fIibqk6Jkr3VR9jpWe1VO0B23Pqtc+1PnfdUet9rvW5q9c5UQ9cg/V6jzb6ORmgAV1nSooew6Lnr+bnpMbbbfT96I6i12Gtr+ui5RU+1jXebncU3XbRfNOfmVa/D5+cq0ZM7Pdf1D/9zHUNcS56WvH/9mYN6vVV5Y1yZv1Dv/iUMrNuq+cPh2a2Ztx90czMzMzMrI7cUmZmZmZm1oA63OjZb7ilrAlJak9zjs2TNFvSXmtYzjhJF9eoTvdK+nN+QmtJd0hashZlnl6LupmZmZmZNTIHZc1pWZrrazRwGnDumhQSEbMi4sQa1uvvwN4AkjYANl/L8hyUmZmZmVmf56Cs+a0PvALZBGaSzk/DyM+XNCGl3yTpQ6UVJF0t6TBJ+0v6WUo7U9KVqcXrSUkn5vJPlDQjtc5dkeY7q+RG4Ij0/GPAbfmFkr4iaaakNkln5dLvkPSwpIWSJqW084AhaZudDsFvZmZmZtbsHJQ1p1Kw8ijZ/F/npPSPAWOA0cCBwPmSNicLlkoB2iDgfcDPK5Q7CjgY2BP4pqSBknZM6+4dEWOAdtLk1xVMA/ZLQdsRZPOwkbZ7ELB9KnsMMFbSfmnxsRExFhgHnChpo4g4ldUtgm/anqRJkmZJmtXR8Vr5YjMzMzOzpuGBPprTshQgIWk8cK2kXYB9gBsioh14XtJvgD2AXwAXS1oH+ABwX0QsqzBk7l1pIuvlkl4ANiML4MYCM1P+IcALndSrHbifLIgbEhGLcts4KD3mpNfDyIK0+8gCsUNT+lYp/W/VDkBETCabzJoBg0b0+zk8zMzMrO/pqHcFrNc4KGtyEfGApI2BTehk2qKIeF3SvWStYBOAGzopbnnueTvZ9SHgmog4rWCVbgRuB84sSxdwbkRc8YZEaX+yVr3xEbE01XNwwW2ZmZmZmTU9d19scpJGAa1kLUv3ARMktUraBNgPmJGy3gh8GtgXmNKNTUwDDpe0adrehpK2qZJ/OtnAI+WB3xTgWEnDUjkjUpnDgVdSQDYKeHdunZWSBnajrmZmZmZmTcctZc1piKS56bmAoyOiXdLtwHhgHhDAVyPirynfVOBa4M6IWFF0QxHxiKSvAVMltQArgROApzrJH8AFFdKnpvvTHkhdGpcAE4G7geMltQGPAQ/mVpsMtEmaXem+MjMzMzOzvkDZd2iz5uV7yqy/8pyiZlZJhXvGrZtWLH+6IQ7i/205sd9/xznu6esa4lz0NLeUWdPrF+9UswbiL3zWn/n6t97kgT76D99TZmZmZmZmVkcOyhJJ7Wnur3mSZkvaq9516kmSNpG0UtJny9IXpdEcu1ve1ZIO70b+kZIWpOfjJF3c3W2amZmZmfUFDspWK01UPBo4jWwEwR6hTL2P/cfJBtU4ss71ICJmRcSJ9a6HmZmZmVk91DswaFTrA6+UXkj6iqSZktoknZXSviPp87k8Z0r6cpX8IyX9XtJlwGxgK0n/K2mWpIWlfCnvhyQ9Kul+SRdL+llKHyrpylT2HEmHpPSdJc1ILX1tkrYvsI9HAl8GtpQ0olIGSZ9K5c2T9MOUto2kaSl9mqStc6vsJ+l3kp4stZqlAPR8SQskzZc0ocJ29s/t4zBJV6W8bZIOK7AvZmZmZmZNywN9rFYaZn4wsDnwXgBJBwHbA3uSjSlxp6T9yOb9+h5wWVr/E8AHquT/M/AO4NMR8flU9hkR8bKkVmCapN2Ax4ErgP0i4k+S8vN9nQH8OiKOlbQBMEPSr4DjgYsi4npJg8jmLeuUpK2At0bEDEk/JptQ+r/L8uyctrd3RLwkacO06BLg2oi4RtKxwMXAR9OyzYF9gFHAncAtwMeAMcBoYGNgpqT7qlTv68DiiNg11eMt1fbFzMzMrK8KjyvTb7ilbLVS98VRwAeAa5UNsXRQeswha+EaBWwfEXOATSVtIWk02QTIf+4sf9rGUxGRn4frE5Jmp7w7Azul/E9GxJ9SnnxQdhBwagoe7yULILcGHgBOl/QfwDYRsayLfT0C+HF6fiOVuzC+F7glIl4CiIiXU/p44Efp+Q/JgrCSOyKiIyIeATZLafsAN0REe0Q8D/wG2KNK3Q4ELi29iIhXKmWSNCm1Ms7q6HitSnFmZmZmZo3NLWUVRMQDabCLTchau86NiCsqZL0FOBx4K1lwQ2f5JY0EXsu93hY4BdgjIl6RdDVZkFXtNxEBh0XEY2Xpv5f0EPBhYIqkf4+IX1cp50hgM0mlCZm3kLR9RDxRtq0ic2Pk8ywvWz//t6hC242IyWSTSzPQ85SZmZmZWRNzS1kFkkaRdQH8GzAFOFbSsLRshKRNU9YbyVqdDicL0Ogif976ZEHaYkmbAR9M6Y8Cb0tBHGRdC0umAF9MLXhIemf6+zay1rWLyboN7pbSp5XfLybpHcDQiBgRESMjYiTZoCZHlNVvGllL3kZpvVL3xd/l8h4F3F9h3/LuAyZIapW0CbAfMKNK/qnAF3L1dfdFMzMzM+vT3FK2WumeMshaa46OiHZgqqQdgQdSLLQEmAi8EBELJa0HPBMRzwFERGf52/Mbi4h5kuYAC4Engd+m9GVpAJG7Jb3EGwOYc8juY2tLgdki4CNkgdtESSuBvwJnKxvdcTvgZd7oSOD2srRbyQLMc3L1Wyjp28BvJLWTdbE8BjgRuFLSV4AXgU9XP6zcTtblcR5ZC9hXI+KvuaCz3LeAS5UNl98OnAXc1sU2zMzMzMyaliLc86vRSBoWEUtS4HUp8EREXNjNMnYBjo2IL/VIJRuIuy+a9a70g5NZv+Trv39Y/vpfGuJEX77VxH7/Hef4v1zXEOeip7mlrDEdJ+loYBBZC1Wl+9mqiogFQJ8PyABaW6oONtkj6vmh3NJHvhCo4O2GUejWxp7Zdr0UPccdBX9Uq+c1U+v3SkvBc9dXvjh359wV3ef+dgwb/f0Oxc9zvc5J0WumqJ7Yj6J17OiBz5Se1FHvClivcVDWgFKrWLdaxszMzMzMrDl5oA+rGUntaQLreZJmS9qr3nUyMzMzM2t0bimzWloWEWMAJB1MNqrje9a2UEmtadAVMzMzM7M+xy1l1lPWB/458bOkr0iaKalN0lm59ImSZqQWtisktab0JZLOTvOvje/96puZmZmZ9Q63lFktlaYVGAxsDrwXQNJBwPbAnmTTDdwpaT+yIfUnAHtHxEpJl5HNfXYtMBRYEBHf6P3dMDMzM6s/D/TRfzgos1rKd18cD1ybhuY/KD3mpHzDyIK03YCxwMw0EtMQ4IWUp51s/rSKJE0CJgEMGPAWWluH1XxnzMzMzMx6g4My6xER8YCkjYFNyFrHzo2INwztL+mLwDURcVqFIl6vdh9ZREwGJgMMHrx1c41va2ZmZmaW43vKrEdIGgW0An8DpgDHShqWlo2QtCkwDTg8PUfShpK2qVedzczMzMzqwS1lVkule8ogax07OrV2TZW0I/BA6qa4BJgYEY9I+lpa3gKsBE4AnqpD3c3MzMzM6sJBmdVMRLRWWXYRcFGF9JuAmyqk+yYxMzMz69d8f0b/4aDMmt6qDk9hZmZmZmbNy/eUmZmZmZmZ1ZGDMjMzMzMzszpyUGZrTdKFkk7KvZ4i6fu51/8l6XRJt9SnhmZmZmZmjctBmdXC74C9ANIoihsDO+eW7wVMi4jD61A3MzMzs6bUIT/6CwdlVgu/JQVlZMHYAuBVSW+RtA6wI/CKpAUAko6RdJukuyU9Iem7pYIkHSTpAUmzJd1cmtvMzMzMzKyvclBmay0ingVWSdqaLDh7AHgIGA+MA9qAFWWrjQEmALsCEyRtJWlj4GvAgRGxOzAL+FKlbUqaJGmWpFkdHa/1xG6ZmZmZmfUKD4lvtVJqLdsL+G9gRHq+mKx7Y7lpEbEYQNIjwDbABsBOwG/TJNODyAK8N4mIycBkgAGDRngaDzMzMzNrWg7KrFZK95XtStZ98S/Al4F/AFdWyL8897yd7FoU8MuIOLJnq2pmZmZm1jjcfdFq5bfAR4CXI6I9Il4ma/kaTyetXRU8COwtaTsASetK2qFHamtmZmbW4Dr86DcclFmtzCcbdfHBsrTFEfFSkQIi4kXgGOAGSW2prFE1rqeZmZmZWUNRhG/Hsebme8rMzMysllateKYhBmO/cOuJ/f47zsl/vq4hzkVP8z1l1vRa1C/eq3VX9AccNcH58I9Rvafo9eBzUllLS+07tPhY9x4fazMryt0XzczMzMzM6shBWYOTdIakhZLaJM2V9K4u8h8v6VO9VLdJkh5NjxmS9sktO0nSurnXS3qjTmZmZmZ9Rb0H2WiER3/h7osNTNJ4shENd4+I5Wly5UHV1omIy3upbh8BPgvsExEvSdoduEPSnhHxV+Ak4DpgaQ22NSAiVq1tOWZmZmZmjcgtZY1tc+CliFgOEBEvRcSzAJIWSfpOaqGakRtG/kxJp6Tn20n6laR5kmZLentK/4qkman17ayUNlTSXSnvAkkTuqjbfwBfKY2sGBGzgWuAEySdCGwB3CPpntIKkr6dyn9Q0mYpbRNJt6b6zJS0d24/JkuaClxbm8NpZmZmZtZ4HJQ1tqnAVpIel3SZpPeULf9HROwJXAJ8r8L61wOXRsRosomdn5N0ELA9sCcwBhgraT/gA8CzETE6InYB7u6ibjsDD5elzQJ2joiLgWeBAyLigLRsKPBgqst9wHEp/SLgwojYAzgM+H6uvLHAIRHxyS7qYmZmZmbWtByUNbCIWEIWmEwCXgRuknRMLssNub/j8+tKWg8YERG3p7Jej4ilwEHpMQeYTTYP2PZkc4odmFrf9o2IxWtQZQGdDTW1AvhZev4wMDI9PxC4RNJc4E5g/VR3gDsjYlnFDWX3s82SNKuj/bU1qKqZmZmZWWPwPWUNLiLagXuBeyXNB44Gri4tzmctW7WzcagFnBsRV7xpgTQW+BBwrqSpEXF2lao9QhYw/jqXtntKr2RlrB4buJ3V114LML48+ErDaHcabUXEZGAywKB1tvSYw2ZmZtbn+AtO/+GWsgYm6R2Sts8ljQGeyr2ekPv7QH7diPgH8LSkj6ay1kmjIU4BjpU0LKWPkLSppC2ApRFxHXABWYCFpHMlHVqhet8FviNpo5RvDHAMcFla/iqwXoX1yk0FvpDb5zEF1jEzMzMz6zPcUtbYhgH/I2kDYBXwB7KujCXrSHqILLg+ssL6/wZcIelsYCXw8YiYKmlH4IHUGrUEmAhsB5wvqSPl/VwqY1eyboVvEBF3ShoB/E5SkAVhEyPiuZRlMvALSc/l7iur5ETgUkltZNfjfcDxVY+KmZmZmVkfIs8235wkLQLGlUY/7MHtTImIg3tyG2vL3Rd7R9H/FSnYb2j+v9d7il4PPieVtbTUvkOLj3Xv8bFuXitXPNMQH2YXbD2x319Ep/z5uoY4Fz3NLWVWVaMHZAAt6vpLi78Y1kAf+pcY8nluNLUO5v1e7lyj/3BSr3PXE58TRYNqX69m5qCsSUXEyHrXwczMzMx6Tkdj/4ZiNeSgzKqS1E42XP4A4PfA0WlofTMzMzMzqwGPvmhdWRYRY9KE0iuowyAckvzjgZmZmZn1WQ7KrDumk43SiKSJkmZImivpCkmtKX2JpP+SNFvSNEmbpPR7JX1P0u8kLZC0Z0ofKulKSTMlzZF0SEo/RtLNkn5KNmy+mZmZmVmf5KDMCkmtVR8E5qch9ScAe0fEGLLJoI9KWYcCsyNid+A3wDdzxQyNiL2AzwNXprQzgF9HxB7AAWTD8g9Ny8aTdZd8bw/umpmZmZlZXblbmHVliKS56fl04Adkc6WNBWam0aqGAC+kPB3ATen5dcBtubJuAIiI+yStn+ZfOwj4V0mnpDyDga3T819GxMuVKiVpUqoHAwa8hdbWYWu1k2ZmZmaNpqPeFbBe46DMurIstYb9k7JI7JqIOK3A+tHJ89JrAYdFxGNl23gX8FqnhUZMJpugmsGDt/ZYwmZmZmbWtNx90dbENOBwSZsCSNpQ0jZpWQtweHr+SeD+3HoTUv59gMURsRiYAnwxBXpIemcv1N/MzMzMrGG4pcy6LSIekfQ1YKqkFmAlcALwFFnr1s6SHgYWkwKx5BVJvwPWB45NaecA3wPaUmC2CPhIr+yImZmZmVkDkGeRt1qStCQi3nSDl6R7gVMiYlatt1mk+2JqiOuS3w/9Q7ypJ631NX3lvVz0f1dfUq9z1xOfE/7saV4rlj/dEG++87aZ2O8vjlOfuq4hzkVPc0uZWU49vwC19JEvX6Lgl5CCgVHR8npCo9ex0evXHUWv/44+8uW1Gc5d0Tq2qtidEO3hIQvMuqtv/MezIhyUWU1VaiVL6fv3clXMzMzMzJqCB/owMzMzMzOrIwdlgKSNJM1Nj79Keib3etBaln2JpL3S86skvWMNyhgg6e/dXOdASXek54dK+kp3t1trkloknVow7zRJw3u6TmZmZmZm9eagDIiIv0XEmDQf1+XAhaXXEbFiTcuVtAnwzoj4XdrOp8vn4+oNEXF7RJzf29utoAUoFJQBPwKO78G6mJmZmZk1BAdlXZB0tKQZqdXssjQEPJImS5olaaGkb3Sy+seBX+TKul/SmFLLl6TzJM2T9EBuzq+3SvqJpLa07F1l9flnC1h6fbmkien5hyU9Jul+4JBcnn+X9L30/DpJF0n6naQnJR2a0ltTWQsl/VTS3ZI+WuF43C/pvyVNl/SIpHGSbpf0hKQzc/l+KunhVN6/p+TzgPXSsby22vEFfkI2z5mZmZmZWZ/moKwKSbsAhwJ7pVa0AcARafGpETEOGA28X9JOFYrYG3i4k+KHA7+JiNHAA6yet+tS4JcRsRswFvh9wbquC1wBfAjYF9iiSvZNU90+Cpyb0j4OjAB2BT4LjK+y/rKI2Bf4AXAHWYvWrsAkSRukPEdHxFhgD+BLkt5C1kr2amqB/FS14xsRL5EFcBtgZmZm1g91EP3+0V949MXqDiQLKmalodKHAH9Jy46U9BmyY7gFsBPwSNn6mwMvdlL2sogotaI9TBZIAezP6sBkFfAPSUXO007A4xHxRwBJ1wOf6iTvHZFNitImaURK2wf4cUR0AM9K+k2Vbd2Z/s4H5kfE82mbi4Atgb8DJ0v615RvS+DtwNyycqodX8iO3eapvDeQNAmYBDBgwFtoba046KOZmZmZWcNzUFadgCsj4utvSJS2B/4fsGdE/F3SdcDgCusv6yQdIH+vWjtvPBfVfhZYxRtbOPPlF/05YXnuucr+dmf9jrKyOoABkg4E9gPeHRHLUnfKSseh4vHNGUx2DN8kIiYDk6HY5NFmZmZmZo3K3Rer+xXwCUkbwz9HadwaWB94lawVa3Pg4E7W/z2wXTe3eQ9pgIt0n9f6ZcufAnaWNCh1CXxvSn8E2EHStsqanY7s5nbvBw5XZnOyoGpNDQdeTgHZzmStYaWWP3Itf50dX9K9ZRvzxpYzMzMzM7M+x0FZFRExHzgL+JWkNmAqsBkwmywIWgD8H/DbToq4i6w7Ynd8AThY0nxgFjCqrE5/IruPaz5wbaoLEbGULJj7BTAdeLKb2/0x8ALZPl0KPAQs7mYZJXcB60qaB3wjlVXyA7Juk9dWOb4AewL3R0T7GtbBzMzMzKwpKLu1yHpCarG6H/hgRPyj3vXpiqRhEbEkDeX/EPCuiOjsnriersulZPe4Vbu3DSjWfTHds9bQWpqgjkWoYE/YKNjbtmh5PaHR69jo9euOotd/Rx/5zGqGc1e0jq0q9vtue3SsTXXMetVrSxc1xD/Oc7Y5qm/801sLX3/q+oY4Fz3N95T1oIgISacAW5O1QDW6X6TukgOBb9YrIEvmFAnIAAa0tPZ0Xd6kngFUvQLMlib4Yl9UrY9hnwmoC+5Hd37Ma/QfRGp9XRfd32YIlIsGZfVS9BgWfX/2xLVa9Pqq9bZbVdvPxahxQK2CgXx33ieFz3MTvPesf3JQ1sMi4oF616GoNMx9Q4iI79e7DmZmZmZmvaEh7ylLEyjfKOmPaYLin0vaoZfrcIykF9Okxgsl3ZLmAmsqks5MrXU9vZ2rJR2+huueXuv6mJmZmZk1i4YLytJ9WLcD90bE2yNiJ+B0Vg8A0ZtuShMd70w2hP2EOtShbgrOj1YLDsrMzMzMrN9quKAMOABYGRGXlxIiYm5ETE/DtZ8vaYGk+ZL+GSRJ+mpKmyfpvJQ2RtKDktok3Z6GkEfScZJmpry3dtUCloKTocAr6fUmab2Z6bF3St9T0u8kzUl/35HSj5F0m6S7JT0h6bspvTW1MJX25+QK2/4XSQ+lMn8labOUfqakKyXdK+lJSSfm1jlD0mOSfgW8o5N9ulrS5ZKmS3pc0kdydb1Z0k+BqZ0d85R+SWrJvAvYNFf2otww9+Mk3ZueD5N0VSqnTdJh6VwNSS2S10saKumudG4W5M+xmZmZWX8SfvQbjXhP2S7Aw50s+xgwBhhNNofVTEn3pbSPko0WuFTShin/tcAXI+I3ks4GvgmcBNwWEf8HIOlbwGeA/6mwvQmS9gE2Bx4HfprSLwIujIj7lc2rNQXYEXgU2C8iVimbQPk/gcPSOmOAd5JNtvyYpP8hC2RGRMQuqS4bVKjD/WSTMIekfwe+Cnw5LRtFFsSul8r8X2A34Ii0rQFkQ+Z3djxHAu8B3g7cI6k0m1s/sAAAIABJREFUp9p4YLeIeFnSYVQ+5uPJAr5dyVoxHwGu7GQ7JV8HFkfErml/3xIRt0r6QkSMSWmHAc9GxIfT6+FdlGlmZmZm1tQaMSirZh/ghjR31fOSfkM2MfF7gKvSXF2kYGI4sEFuBL9rgJvT811SMLYBMIwsqKrkpoj4QupSeSnwFeA84EBgJ60e6Wd9SeuRTZp8jaTtyYL7gbmypkXEYgBJjwDbAAuBt6UA7S6yebrKbQncpGxC50HAn3LL7oqI5cBySS+QBUf7AreXjoWkOzvZN8iGnO8AnpD0JKvnRPtlRLycnnd2zPfLpT8r6ddVtlNyIFnACEBEvFIhz3zgAknfAX4WEdMrFSRpEjAJYNDAjRg4YL0CmzczMzMzazyN2H1xITC2k2WdjWMqutfCeTXwhdRicxYwuFrmyMZ//ilZIALZcRuf7jcbExEjIuJV4BzgntTy9S9l5S7PPW8HBqSgZDRwL3ACUGnEwf8BLkl1/WxXZZaqXG1/8rvWyevXcmnVxo7tbDurWH1t5evb5XmKiMfJzv984FxJ3+gk3+SIGBcR4xyQmZmZmVkza8Sg7NfAOpKOKyVI2kPSe4D7yLoUtiqb4Hg/YAZZC9OxpXvDJG2YWqVekVQa5v3fgFKr2XrAc5IGAkcVrNc+wB/T86nAF3L1G5OeDgeeSc+P6arAdN9VS0TcSta1b/cK2fJlHl2gnvcBh0oaklrv/qVK3o9LapH0duBtwGOdlFfpmN8HHJHSNyfrRlmyiNWB9WG59PLj9pb0dGU6F0jaAlgaEdcBF1D5mJiZmZmZ9RkN130x3Tt1KPA9SacCr5N9yT+JLBAYD8wja3H5akT8Fbg7BUazJK0Afk42ot/RwOUpWHsS+HTazNeBh4CnyFpkOmtqKd1T1gI8zepA60TgUkltZMfwPuB44Ltk3Re/RBZcdmUEcJVWz6J4WoU8ZwI3S3oGeBDYtlqBETFb0k3A3LR/Fbv/JY+RBaqbAcdHxOt68+SLt1PhmEu6HXgv2fF7nNUBL2Stjz9QNtT9Q7n0b5EdtwVkLXtnAbcBk4E2SbPJ7gM8X1IHsBL4XLX9NTMzM+urajtttzUyZT3zrL+RdDXZPVu31Lsua2vYutv2+kXc8ubgtddUCJx7RUvVnqzNpdbHsJ7XQy0VPS7d+dyo1/VaVK2v66L7qyZ4P0WDj3tW9BgWfX/2xLVa9Pqq9bZb1VrT8rLbz2tn9W/RXeTrxvuk8HkuWObjL85qiDfpmdsc1dhvxF5w5lPXN8S56GkN11Jm1l2DBwzsMk+tv2x2dONLaWtLsQ+fegU9tf4SWesvcgNain256IkfmIqe51p/6av1vrQX/EJV+EtuS/FrtegxrPV1U6/rtaie2G6t97nWQU+tr8Oi/1uLvp/aO2rfJtFe4/KKnrv2WN51Jnrm/6aZrRkHZf1URBxT7zqYmZmZmdn/Z+/O462u6v2Pv94HcQLESvKqmRiiJKgIaKHmlEOlCaT+nLpFekMrsuyqaV3Nbpl5tWuamaEpzpIzagmkIs4yxOyYYjnc1BxxYDqf3x9rbfmy2Xufw2E4w34/e5zH2Xt91/T9fre0P2et71ptc6GPVifp3yRdL+lveXPkP0nauoky50iak3/30NINnz9Xq9zqprTJ9IlroJ3Rkg5pYdkfrer+mJmZmZm1Fx4pK5P3JLsFuCIiDs9p/UmLYTxVo+ixQI+IWCDpcOCJiGjOaoltlqS1ImLxGmjqR6SNts3MzMwsa6yLp6kMPFJWyV7Aooi4uJQQEdMj4n4l50iaLWmWpMPgww2auwCPSvohaRXGL0manpem30/Sw5KmSbpBUtdcbqCk+yRNlTQuLy2/DElfLoy6/UXSxjn9DEmXSZoo6VlJxxfK/FjSk5L+AmxT6STzyNbFku6X9JSkA3P68NzH24HxNc5Zki7MI4l3Ah8v1D0vL/ePpEGSJubXXSVdnuuZKelgSb8E1svX6hpJXSTdKWlGbvOwlt5IMzMzM7P2wCNly+sHTK1y7CtAf9KGzxsBkyVNioiDJM2PiP4Akv4JDIqIkTk4+S9gn4h4NwdtP5B0Fmlj6CER8WoOPs4Eji5r8wHgs3mrgP8ATgb+Mx/rQwoiuwFPSvodsD1wOLAj6f5Oq3E+PYE9gF7AvZK2yumDge0j4nVJB1c655xnG2A70ijiXOCyKu2UnAa8lTfCRtJHIuImSSML1+5g4KWIOCC/795EnWZmZmZm7ZqDshWzG3BdRCwB/inpPmAnYGyNMp8FtgUezCuvrQ08TApo+gETcnon4OUK5T8BjMmjaGsDzxWO3RkRC4AFkl4hBUefA26JiPfgw1G8av4YaZ3bpyU9SwryACZExOtNnPPuhfSXJDVnX7Z9SAEjABHxRoU8s4BzJZ1NWrK/4j5rkkYAIwC6rPNx1l3bsZuZmZmZtU+evri8OcDAKsdaMrNXpCCnf/7ZNiKOyelzCunbRcR+Fcr/Brgwjy4dC6xbOFZc83YJS4Ps5q5xW56v9P7dsv43t3zJYpZ+tor9VVN9i4inSNd/FnCWpNOr5BsVEYMiYpADMjMzMzNrzxyULe8eYB1J3ywlSNpJ0h7AJOAwSZ0k9SCNFj3WRH2PALuWpgZKWl9pJccngR6SBuf0zpL6VijfHXgxv27OwiGTgGH5WbZuwJdr5D1UUoOkXsCncp8q1VfpnCcBh+f0TUjTKEvmsTSwPbiQPh4YWXoj6SP55SJJnXPapsB7EXE1cC4woBnnbGZmZtbhNBJ1/1MvHJSVibST4jBgX6Ul8ecAZwAvkVZlnAnMIAVvJ0fE/zVR36vAcOA6STNJQVqfiFgIHAKcLWkGMB3YpUIVZwA3SLofeK0Z/Z8GjMn13QRUnP6XPQncB/wZOC4iPqiQp9o53wI8TRrR+l2up+SnwPm5z8W9M38OfCQv4DGDpYHcKGCmpGtIz6g9Jmk68ONcxszMzMysw5J3c69PkkaTntm6sbX7srI22mDrJj/E+bm9JjX3v4fGFfjvplND8/720dCi2bErr7nXRs3sX6ziv2qt1dCpee2uhn/LmnufG5p7DVfx57C5lkRjs/I19x4393yh+ddwVX9uWuvz2ppW9Tmv6s/Dqv4cNvff1tXx73prae69a+619nfA6l57+6k2sRj9f/U8su5v0s/nXdsm7sXq5oU+rN1784N3m85kZtbB1cW3FjOzDspBWZ2KiOGt3QczMzMzM3NQZmZmZmbWJtX93MU64oU+2hlJSyRNL/z0XMHyl0raNr/+0Ur2ZYSkJ/LPY5J2Kxz7vqT1C+/nr0xbZmZmZmYdlYOy9uf9wt5m/SNiXvGgpJqjnxHxHxExN79tcVAm6UDSvmm7RUQf4DjgWkn/lrN8H1i/WvkVbMsjumZmZmbWYTko6wAkDZd0g6TbgfGS9pR0R+H4hZKG59cTJQ2S9EtgvTzado2kLpLulDQjL1l/WBPN/hA4KSJegw+X4r8C+I6k44FNgXsl3Vvox5m5/kckbZzTeki6SdLk/LNrTj9D0ihJ44ErV9W1MjMzMzNraxyUtT+lQGq6pFsK6YOBr0fE3s2pJCJOYemo21HAF4CXImKHiOgH3NVEFX2BqWVpU4C+EXEBaV+3vSKitBdZF+CRiNiBtPF0aXPu84HzImIn0kbTlxbqGwgMiYgjm3NOZmZmZmbtkaeFtT/vR0T/CukTIuL1lah3FnCupLNJ+5fV2nS6GlH9mdSFQGn0biqwb369D7BtYf+mDSR1y6/HRsT7FRuSRgAjANSpOw0NXVrQXTMzM7O2q3k7zllH4JGyjqO4Wddilr236zZVOCKeIo1MzQLOknR6E0Xm5vxFA3J6JYti6S6VS1j6B4EGYHDhGbnNIuKdfKzqBmQRMSoiBkXEIAdkZmZmZtaeOSjrmJ4njT6tI6k78Pkq+RZJ6gwgaVPgvYi4GjiXFGAh6SxJwyqU/R/gbEkfy/n6A8OBi/Lxd4BuFcqVGw+MLL3J9ZiZmZmZ1Q1PX+yAIuIfkv4IzASeBv5aJesoYKakaaTFNM6R1AgsAr6V82wHjK3QxlhJmwEPSQpSEPbViHi5UPefJb1ceK6skuOB30qaSfo8TiKt5GhmZmZmVhe0dEaZ2fIkjYuI/Vu7H7WstfZm/hCbWd1T01nMrJkWLXyxTfwndWrPI+v+O85Z865tE/didfNImdXU1gMy8BcRMzOrrrCQlFm701h1/TTraPxMmZmZmZmZWStqMiiTtLGkayU9K2mqpIerLPzQrpRvsLwa2xku6cKVKLvpCpYZ2oyVE1e0H/NbWO5PkjZsYdmRkr7RkrJmZmZmZu1JzaBMacz/VmBSRHwqIgYChwOfqJC3bqZCKlkTo4zDgRUKyoCTWboCYquKiC9FxJstLH4ZaREQMzMzM7MOranAYm9gYURcXEqIiOcj4jfw4UjODZJuB8ZL6irpbknTJM2SNCTn6ynpCUlXSJop6UZJ6+djAyXdl0fhxknaJKcfL2luzn99ecdynffntqZJ2iWn7ylpYm7jCUnX5OASSV/IaQ8AX6l0wvmcbpN0l6QnJf2k0N7jki4CpgGbSzoin+fsvOlyqY5vSHpK0n3AroX00ZIOKbyfX3h9cq5rhqRf5nyDgGskTZe0Xk4vXZNzK/R9a2BBRLyW3/eQdJOkyfln15x+QWk0TdL+kiZJasijorfkPswoXdMq1+lkScfn1+dJuie//rykq/PreZI2Kly7SyTNkTRe0no5T698rafm+9kHICLeA+ZJ2rlaH8zMzMzMOoKmRrf6kgKQWgYD20fE63m0bFhEvC1pI+ARSaXl1LcBjomIByVdBnxb0vnAb4AhEfGqpMOAM4GjgVOALSNiQZUpcK8A+0bEB5J6A9eRghiAHXPfXwIeBHaVNAW4hBRoPgOMqXFOOwP9gPeAyZLuBF7L5/CNiPi20rTCs0kbKL9BCkqHAo8CP83pbwH3Un1JegAkfREYCnwmIt6T9NF8PUcCJ0bEFEkfBYYBfSIiqlyTXVn2fp0PnBcRD0j6JDAO+DTp2k6WdD9wAfCliGiUdAFwX0QMk9QJ6Fqj25OA/8zlBwHrKO15thtwf4X8vYEjIuKbSsv1HwxcTVo6/7iIeFrSZ0ijfHvnMlOAzwGP1eiHmZmZWYfkZT7qxwpNOZT0W9KX7oURsVNOnhARr5eyAL+QtDvQCGwGbJyP/SMiHsyvryZNTbuLFPxMyINZnYDSPlczSaNEt5KmUJbrDFyotNnwEmDrwrHHIuKF3OfpQE9gPvBcRDyd068GRlQ51QkR8a+c7+Z8zrcCz0fEIznPTsDEiHg157sG2D0fK6aPKetbJfsAl+fRIQrXs+ht4APg0hwkVnoebhPg1bJ6t9XSlac2kNQtIt6R9E1SYHVCRPwtH98b+FruwxJSUFnNVGCgpG7AAlIwOIgURFWadvhcREwvlO0pqSuwC3BDoY/rFMq8AvSp1LikEeT719CpOw0NXWp01czMzMys7WoqKJtDGtEAICK+k0fAphTyvFt4fRTQAxgYEYskzQPWLRUvqztIQdyciBhcoe0DSEHOQcBpkvpGxOLC8ROAfwI7kKZhflA4tqDweglLz7O5f3Co1FdY9lxrrbFbrZ3F5CmjeUrl2oW6avYtIhbnqXyfJz3XN5KlI0ol7wPdC+8bgMER8X6FKrcD/sWKP7NW6k/p/n4DeIgURO8F9AIer1Ck/J6sl/v3ZkT0r9LMuqRzqtT+KNIoG529T5mZmZmZtWNNPVN2D7CupG8V0tavkb878Er+wr4XsEXh2CcllYKvI4AHgCeBHqV0SZ0l9VVaRGPziLiXtHDFhiw/la478HJENAL/Thplq+UJYEtJvQp9qGZfSR/Nzz0NJU2BLPcosEd+ZqpTru++nL6npI/l6XyHFsrMI01rBBhCGu0DGA8craXP2X00p78DdMtpXYHuEfEn4PtApUDmcWCrwvvxpOCNXEf//HsL0tTDHYEv5mmDAHcD38p5OknaoPLl+dAk4MT8+37gOGB6NHNH8oh4G3hO0qG5TUnaoZBla2B2c+oyMzMzM2uvagZl+cv1UFLw8Zykx4ArgB9WKXINMCg/v3UUKRAqeRz4uqSZwEeB30XEQuAQ4GxJM4DppOlsnYCrJc0iPY91XoVV/C7K9T1C+vL+LjVExAek6W53Ki308XyN7A8AV+X+3BQRU8ozRMTLwKmkZ8ZmANMi4racfgbwMPAXln3G6xLStXwM+EypzxFxFzAWmJKnW56Y848GLs5p3YA78vW7jzRSWG4SsKOWzgU8nnQ/ZkqaCxyXj/2B9KzaS8AxpCmR6wLfA/bK130q6bm8Wu4nTZl8OCL+SRqtrPQ8WS1HAcfk+z+HFKyW7Eq6hmZmZmZmHZaaOaixco1IPYE7IqLfam9sJUkaDgyKiJFN5W2L8uIpt0dEuw5mJO0I/CAi/r2pvJ6+aGZm1RSeWTZrtoULXmgTH5wTex5R999xzp13XZu4F6tb3ewtVkd+QRqFa+82Ak5rTsa6/9fKzNqM5n5zaO6/W3XxTWQ1WxN/fDYzW1lrJCiLiHmkVRbbvIgYTZo22C7laYRjm8zYxkXEhNbug5mZmZnZmtDUQh9my5G0RGlD6zlKm0z/IC/OUqtMT0lHrqk+mpmZmZm1Fw7KrCXej4j+EdEX2Bf4EvCTJsr0BByUmZmZmZmVcVBmKyUiXiGtajkyL2nfU9L9kqbln11y1l8Cn8sjbCfkJffPkTQ5rw55LICkTSRNyvlmS/pca52bmZmZmdma4IU+bKVFxLN5+uLHgVeAfSPiA0m9geuAQcAppGX4DwSQNAJ4KyJ2krQO8KCk8cBXgHERcWbe/63WvnhmZmZmHVajlzOrGw7KbFUpLRLWGbgwb1S9hLSHXCX7AdtLOiS/7w70BiYDl+WNt2+NiOkVG0tB3QgAdepOQ0OXVXMWZmZmZmZrmIMyW2mSPkUKwF4hPVv2T2AH0vTYD6oVA74bEeMq1Lc7cABwlaRzIuLK8jwRMQoYBbCW9ykzMzMzs3bMz5TZSpHUA7gYuDDSZjDdgZcjohH4d6BTzvoO0K1QdBzwrTwihqStJXWRtAXwSkRcAvwBGLCGTsXMzMzMrFV4pMxaYj1J00lTFRcDVwH/m49dBNwk6VDgXuDdnD4TWCxpBmkfuPNJKzJOkyTgVWAosCdwkqRFwHzga2vgfMzMzMzMWo280721d56+aGZthZrOAtDsR/ebW5+ZrVqLFr7YJv7zO6Hn4XX/Hee8ede3iXuxunmkzMysnaqL/5fqoHzv6kOaCGLlfF3MludnyszMzMzMzFqRgzIzMzMzM7NW1K6DMklLJE2XNFvSDZLWz+kPtXbfACTNbwN9GF3YC2x1tjNR0qAWlNtQ0rdXR5/MzMzMzNqDdh2UAe9HRP+I6AcsBI4DiIhdWrdbHYOkNfHM4YaAgzIzMzOzMo3+qRvtPSgruh/YCpaOUEnaM4/g3CjpCUnX5OXXkTRQ0n2SpkoaJ2mTnP5NSZMlzZB0U2H0bbSkiyXdL+kpSQfm9OGSbpN0l6QnJf2kUucknZTrnSnppzmti6Q7c1uzJR1WoVyt/lwg6SFJz5ZGw5RcKGmupDuBj1fpz0RJv87lZ0vaOaefIWmUpPHAlZLWlXS5pFmS/ippr5xvPUnX5/MZA6xXqHt+4fUhkkbn1xtLuiWfywxJuwC/BHrlEc9zJG0iaVJhBPRzzbr7ZmZmZmbtVIdYfTGP6HwRuKvC4R2BvsBLwIPArpIeBX4DDImIV3MwdCZwNHBz3rgYST8Hjsl5Ie2rtQfQC7hX0lY5fWegH/AeMFnSnRExpdC//YDeOZ+AsZJ2B3oAL0XEATlf9wr9r9WfTYDdgD7AWOBGYBiwDbAdsDEwF7isyqXrEhG75L5cls8BYCCwW0S8L+k/ASJiO0l9gPGStga+BbwXEdtL2h6YVqWNoguA+yJimKROQFfgFKBfRPTP5/ifwLiIODPnWb8Z9ZqZmZmZtVvtPSgrbWIMaaTsDxXyPBYRLwDkvD2BN0kByIQ8cNYJeDnn75eDnw1JQcO4Ql1/jIhG4GlJz5KCIYAJEfGv3MbNpEBpSqHcfvnnr/l9V1KQdj9wrqSzgTsi4v4K/a/Vn1tzf+ZK2jin7Q5cFxFLgJck3VOhzpLrACJikqQNJG2Y08dGxPv59W7kIDAinpD0PLB1bueCnD5T0swa7ZTsTd4MOvfvLUkfKcszGbhMUud8ftOpQNIIYASAOnWnoaFLM5o3MzMzM2t72ntQ9n5phKWGBYXXS0jnLGBORAyukH80MDQiZkgaDuxZOFa+gV80kV4i4KyI+H15Y5IGAl8CzpI0PiL+ewX6Uzy34qYfzd1osFq/361Sb1PlK6Wv28y+pIIpQNwdOAC4StI5EXFlhXyjgFHgzaPNzMzMrH3rSM+UrYgngR6SBgNI6iypbz7WDXg5j9QcVVbuUEkNknoBn8r1AOwr6aOS1gOGkqZJFo0DjpbUNbe3maSPS9qUNAXwauBcYECFvtbqTyWTgMMldVJ6Tm6vGnkPy/3ZDXgrIt6qUt9ROd/WwCdJ511M7wdsXyjzT0mfltRAmk5Zcjdp2iO5fxsA7+RzJKdvAbySp2z+gcrXxMzMzKzDC/+vtW/BGtPeR8paJCIW5oUxLsjPca0F/BqYA5wGPAo8D8yiEDCQgpH7SM9qHRcRH+Tpjw8AV5EWGrm2+DxZbm+8pE8DD+f884Gv5vznSGoEFpEDljK1+lPJLaRpgrOAp3J/q3lDafuADUjP01VyEXCxpFnAYmB4RCyQ9Dvg8jxtcTrwWKHMKcAdwD+A2aRplwDfA0ZJOoY0avmtiHhY0oOSZgN/zvlPkrSIdJ2+1sT5mpmZmZm1a4qonwh0ZeQVBO+IiBvL0ocDgyJiZGv0q6UkTQROLA8g2yNPX7R6VWtusZm1vvyHWCvTHq7Lgg/+0SY6eXzPw+r+O84F88a0iXuxutXlSJmZWUdQ9/9PbR1SR/r25T98V+brYrY8B2XNFBHDq6SPJi3G0a5ExJ6t3QczMzMzM6vfhT5qkjRMUuR9uVamntGlTZ1bi9IG2nesgXaGS7pwJcpuuqr7ZGZmZtaeNfqnbjgoq+wI0uIdh7d2R1qTkjXxGRkOOCgzMzMzs7rkoKxMXrZ+V+AYCkFZHnGaJOkWSXMlXVwKWCTNl/QrSdMk3S2pR4V6B0q6T9JUSePycvVIOj7XN1PS9RXK9ZR0f657mqRdCv2ZKOlGSU9Iukb5yVlJX8hpDwBfqXKewyXdJukuSU9K+kmhvcclXQRMAzaXdISkWZJm542uS3V8Q9JTku7L16yUvswIoaT5hdcn57pmSPplzjcIuEbSdEnr5fTSNTm3GbfNzMzMzKzd8jNlyxsK3BURT0l6XdKAiJiWj+0MbEtanv4uUsBzI9AFmBYR/ynpdOAnwIerMeY9xn4DDImIVyUdBpxJWob+FGDLvMz8hhX68wqwb15+vzdwHSmIAdgR6Au8RNobbVdJU4BLSMviPwOMqXGuOwP9gPeAyZLuBF4DtgG+ERHfztMKzwYGAm8A4yUNJS3T/9Oc/hZwL/DXWhdW0hfz9f1MRLwn6aMR8bqkkeSVICV9lLS3WZ+IiCrXxMzMzMysw/BI2fKOAEojVtfn9yWPRcSzEbGEFBztltMbWRr8XF1IL9mGFPxMkDQd+C/gE/nYTNIo0VdJ+4CV6wxckvcJu4EUFBb780JENJL2CusJ9AGei4inIy1vdHWNc50QEf+KiPeBmwv9fj4iHsmvdwImRsSrEbEYuAbYHfhMIX0htYO/kn2AyyPiPYCIeL1CnreBD4BLJX2FFDAuR9IISVMkTWlsfLcZTZuZmZmZtU0eKSuQ9DHSCFM/SQF0AkLSyTlL+Rqu1dZ0LU8XMCciBlfIewApyDkIOE1S3xz8lJwA/BPYgRREf1A4tqDweglL72dz15qtdj7FKKfW6sTV2llMDvjzlMq1C3XV7FtELJa0M/B50vTRkaR7Up5vFDAKvE+ZmZmZdUyN3vykbnikbFmHAFdGxBYR0TMiNgeeY+kI0s6StszPkh1GWgwE0nUsPUN1ZCG95Emgh6TBkKYzSuqb69k8Iu4FTgY2BLqWle0OvJxHw/6dFCjW8gSwpaRe+f0RNfLuK+mjktYjTSt8sEKeR4E9JG0kqVOu776cvqekj+XpmYcWyswjTWsEGEIa7QMYDxwtaX2APFUR4B2gW07rCnSPiD8B3wf6N3G+ZmZmZmbtmkfKlnUE8MuytJtIgdYY4OF8fDtgEnBLzvMu0FfSVNLzVYcVK4iIhXlBiwskdSdd918DTwFX5zQB50XEm2XtXwTcJOlQ0nNbNefq5WfPRgB3SnqNFCD2q5L9AeAqYCvg2vxMV8+y+l6WdGpuW8CfIuI2AEln5GvyMmlRkFLAeAlwm6THgLtLfY6IuyT1B6ZIWgj8CfgRaZ+3iyW9D3wxl103t3dCrfM1MzMzM2vv5F3Vm0fSnqTFKA6scGx+RJSPcLVpkoYDgyJiZFN52zpPXzQz6zhqzZk3W1MWLXyxTXwUv93z/9X9d5yL5v2xTdyL1c0jZWZmZtZm1P03UDOrSw7KmikiJgITqxxrV6NkABExmjRt0MzMzMzaIP+Ron54oY86JmlJ3rB5RnFjajMzMzMzW3M8Ulbf3o+I/gCS9gfOAvZo3S6ZmZmZmdUXj5RZyQbAG5CWpZd0dx49myVpSE7vKelxSZdImiNpfF5OH0nflDQ5j7rdVFj2frSkCyQ9JOnZvAplrTa6SLoz1zNb0mEVe2tmZmZm1kE4KKtv6+Xpi08AlwI/y+kfAMMiYgCwF/CrvAk0QG/gtxHRF3gTODin3xwRO0XEDsDjwDGFdjYh7fV2IEu3HKjWxheAlyJih4joB9y16k/bzMzMzKzt8PTF+lacvjgYuFJSP9KKxL+QtDvQCGwGbJzLPBcR0/PrqUBE6+DCAAAgAElEQVTP/LqfpJ+zdAPscYV2bs2bX8+VVKqnWhuzgHMlnQ3cERH3V+p43ottBIA6daehoctKXAYzMzOztqfRS33UDY+UGQAR8TCwEdADOCr/HpiDtn8C6+asCwrFlrA0sB8NjIyI7YCfFvKXlymNuFVsIyKeAgaSgrOzJJ1epb+jImJQRAxyQGZmZmZm7ZlHygwASX2ATsC/gO7AKxGxSNJewBbNqKIb8LKkzqSA68Um8ldsQ9KmwOsRcbWk+cDwFp2QmZmZmVk74aCsvq0nqTQVUcDXI2KJpGuA2yVNAaYDTzSjrtOAR4HnSaNc3ZrIX62N7YBzJDUCi4BvrcgJmZmZmZm1N4rwXFVr39ZaezN/iM3MzGyVWbzwRTWda/U7tuehdf8d5/fzbmgT92J180iZmZmZmVkb1NjaHbA1xgt9mJmZmZmZtSIHZWZmZmZmZq3IQVk7IunfJF0v6W+S5kr6k6StJW0q6cacp7+kL62h/gyVNFPSE5JmSRpaODY8r6RYej9P0kZrol9mZmZmZu2Jg7J2QpKAW4CJEdErIrYFfgRsHBEvRcQhOWt/oGJQJmmVPUMoaQfgXGBIRPQBDiJt+rx9zjIc2LRK8RVty88+mpmZmVmH5S+77cdewKKIuLiUEBHTAST1BO4ABgD/TVrqfjfgLODTpOCoJ/CapPHAoIgYmcveQQqu7gf+AAwCArgsIs6r0Z8TgV9ExHO5L89JOgs4SdJtuZ5rJL0PDM5lvivpy0Bn4NCIeEJSF+A3pKXw1wLOiIjbJA0HDiBtQt0F2LslF83MzMysvQrqfvHFuuGRsvajHzC1VoaIWAicDoyJiP4RMSYfGkga0TqyRvH+wGYR0S8itgMub6I/fSv0ZwrQNyJuzK+Pyv14Px9/LSIGAL8jBXUAPwbuiYidSIHnOTlQgxTMfT0iHJCZmZmZWYfloKw+jC0ERtU8C3xK0m8kfQF4u4n8guX+fFMprejm/HsqaeQOYD/glLyJ9UTSyNgn87EJEfF6xcalEZKmSJrS2PhuE101MzMzM2u7HJS1H3NII14tUYxaFrPsfV8XICLeAHYgBUbfAS5tRn8GlaUNAObWKLMg/17C0qmzAg7OI2r9I+KTEfF4hX4vIyJGRcSgiBjU0NClWjYzMzMzszbPQVn7cQ+wjqRvlhIk7SRpj7J87wDdatQzD+gvqUHS5sDOua6NgIaIuAk4jRRgIWmkpJEV6jkXODU/z1Z6ru1HwK+a2Y+ScaRnzZTr2bEZZczMzMzMOgwHZe1ERAQwDNg3L4k/BzgDeKks673AtpKmSzqsQlUPAs8Bs0iB1bScvhkwMU8jHA2cmtP7AP+q0J/pwA+B2yU9AdwOnFxafCTXcXHux3o1Tu1npIU/Zkqand+bmZmZmdUNpe/6ZpXl1Rm/khcRaZPWWnszf4jNzMxslVm88EW1dh8Aju55SN1/x7ls3o1t4l6sbl4S32qKiANbuw9mZmZmZh2Zpy+amZmZmZm1oroPyiR9QtJtkp7Oz2qdL2nt1u5Xc0kaLek9Sd0KaedLirx4x6poY34LyvxJ0oaron0zMzMzs46sroOyvOLfzcCtEdEb2BroCpxZIW9bnur5DDAEQFIDaRPmF1ujI0oaIuJLEfFma/TBzMzMzKw9qeugDNgb+CAiLgeIiCXACcDRktaXNFzSDZJuB8ZL6irpbknTJM2SVAqEekp6XNIlkuZIGl9acTAvWz9T0sOSzskrDCKpU34/OR8/NqdvImlSXrVwtqTPNeM8rgNKKy3uSVphcXHpoKRbJU3NfRtRSJ8v6UxJMyQ9ImnjnL5l7u9kST8r5G/q/C8irea4uaR5kjZq4tr0knRX7tv9kvrk9EPzuc+QNGnFbqmZmZlZxxD+X2vfgjWm3oOyvsDUYkJEvA38HdgqJw0Gvh4RewMfAMMiYgBpNOpXpf21gN7AbyOiL/AmcHBOvxw4LiIGkzZNLjkGeCsidgJ2Ar4paUvgSGBcRPQnbeY8naY9DfSQ9BHgCOD6suNHR8RA0mbPx0v6WE7vAjwSETsAk4DSHmjnA7/Lffu/Qj21zn8b4MqI2DEini9rv9q1GQV8N/ftROCinH46sH/u10HNOH8zMzMzs3arLU/JWxMEFUPwYvqEiHi9kP4LSbsDjaS9vTbOx54r7NE1FeiZn6nqFhEP5fRrgdJqhvsB20s6JL/vTgpeJgOXSepMmlbZnKAM0jTMw4HPAMeWHTte0rD8evPczr+AhcAdhT7vm1/vytLA6Srg7Gac//MR8UiVvlW6Nl2BXYAblsZ1rJN/PwiMlvTHfF7LySN+IwDUqTsNDV2qNG1mZmZm1rbVe1A2h6XBBwCSNiAFLn8DBgLvFg4fBfQABkbEIknzgHXzsQWFfEuA9UhBTDUijRKNW+5ACnoOAK6SdE5EXNmMc7meNHXwiohoLAU6kvYE9gEGR8R7kiYW+rwolm5Ut4RlPw+VgtVa5/9uhfwlla5NA/BmHhFcRkQcJ+kzpGswXVL/iPhXWZ5RpJE271NmZmZmZu1avU9fvBtYX9LXID3nBfwKGB0R71XI3x14JQckewFb1Ko8It4A3pH02Zx0eOHwOOBbeUQMSVtL6iJpi9zGJcAfgAH5+JWSdq7R1t+BH7N0CmCxz2/kgKwP8NnlCi/vwUJfjyqrq9nnX0ueJvqcpEPhwwVCdsive0XEoxFxOvAaKUg2MzMzM+uQ6jooy6NEw4BDJT0NPEV6bupHVYpcAwySNIUUrDzRjGaOAUZJepg0OvZWTr8UmAtMy4t//J40UrUnaXTor6RRvPNz/u2Bl5s4n99HxN/Kku8C1pI0E/gZUG2KYdH3gO9ImkwKxEpacv61HAUcI2kGadRySE4/Jy8kMpv0rNuMlWzHzMzMrN1p9E/d0NLZa7Y6SOoaEfPz61OATSLieytYxwbAHyLi0NXRx/bO0xfNzMxsVVq88MVaj6CsMV/veXDdf8e5Yt5NbeJerG71/kzZmnCApFNJ1/p5YPiKVpCn+jkgq6Iu/ku1JhUWjDHrMJ8H1eG/cKv63jW0g8/Cqr7Pbf2cm3uPG+rw82/1y0HZahYRY4Axrd0PMzMzMzNrm+r6mbKVJWmipP3L0r6fN1Fele0MlbRtM/KNLiyxX0zfU9IdlcqsRJ/WlvRrSX+T9LSk2yR9Ih/bUNK3V2f7ZmZmZmYdhYOylXMdy66oSH5/3SpuZyjQZFC2hv0C6AZsHRG9gVuBm/Nm0hsC365VeEVI8oiumZmZ1Z3GiLr/qRcOylbOjcCBktYBkNQT2BR4IL8/SdJkSTMl/bRUSNJpkp6QNEHSdZJOzOm9JN0laaqk+yX1kbQLcBBpRcLpOc83c70zJN0kaf1Cn/bJZZ+SdCBl8rL7l+Xyf5U0JKf3lfRYbmOmpN7VTjq39w3ghIhYAhARl5P2I9sb+CXQK9d1Ti7WVdKN+byvycEbkgZKui+f8zhJm+T0iZJ+Iek+0mqQZmZmZmYdkkcgVkJE/EvSY8AXgNtIo2RjIiIk7Qf0BnYmrUUxNm8K/R5pqfsdSdd/GjA1VzkKOC4ins6bJ18UEXtLGgvcERE3Akh6M+9jhqSfk5bd/02uoyewB9ALuFfSVmXd/jFwT0QcLWlD4DFJfwGOA86PiGskrQ10qnHqWwF/zwuQFE0B+gKnAP1KG0MrbWC9Yz72EmkftF0lPZr7PSQiXpV0GHAmcHSub8OI2KNGP8zMzMzM2j0HZSuvNIWxFJSVAor98s9f8/uupCCtG3BbRLwPIOn2/LsrsAtwQ2FVonWqtNkvB2Mb5nrHFY79MSIagaclPQv0KSu7H3BQaXQOWBf4JPAw8OP8XNjNEfF0jXMWUGk8uVo6wGMR8QKApOmk4PFNoB8wIZ9zJ5bdi63qAimSRgAjABo6daehoUuN7pqZmZmZtV0OylbercD/ShoArBcR03K6gLMi4vfFzJJOqFJPA/BmaXSpCaOBoRExQ9Jw0obTJeVBUfl7AQdHxJNl6Y/nkasDgHGS/iMi7qnS/jPAFpK6RcQ7hfQBwO1VyiwovF5C+uwJmBMRg6uUebdKOhExijSySGfvU2ZmZmZm7ZifKVtJeWPoicBlLLvAxzjg6DwChqTNJH2c9LzZlyWtm48dkOt5G3hO0qE5vyTtkOt6hzTCVtINeFlSZ+Cosi4dKqlBUi/gU0B58DUO+G7hma4d8+9PAc9GxAXAWGD7nH63pM3Kzvld4ApSMNop5/sasD5wT4X+VvMk0EPS4FxHZ0l9m1HOzMzMrMML/9QNB2WrxnXADsD1pYSIGA9cCzwsaRZpUZBuETGZFPTMAG4mPYf1Vi52FHCMpBnAHGBITr8eOCkvzNELOA14FJgAPFHWlyeB+4A/k55P+6Ds+M+AzsBMSbPze4DDgNl5amEf4EpJDaTnx16vcM6nAh8AT0l6mrS59bBI/gU8KGl2YaGP5UTEQuAQ4Ox8ztNJUzjNzMzMzOqGoo6WmmwrJHWNiPl5FcNJwIjCtMc2Q1I/4OiI+EFr96UWT180gMKzmGYd5vMgOsZ5rIhVfe8a2sFnYVXf57Z+zs29xw2t+Pl/Y/4zbeIifnWLr9T9d5yrn7+5TdyL1c3PlLWOUUqbQa8LXNEWAzKAiJgNtOmADOpraNuq8x+YbBl1+Hmoi28t1uY1N+Dyv9lmy3JQ1goi4sjW7oOZmZnZquSAzKzlHJSZmZmZmbVBjZ4PVDc63EIfkj4maXr++T9JLxber70a2hsg6Qurut5VSdILeaPo1dnGWpLebGHZNn8NzczMzMxWlw43UpZX/usPIOkMYH5EnLsamxxA2gD5rtXYRquRtFZELF7NzXToa2hmZmZmVkuHGymrRdLJeZn22ZK+m9O2yu8vkzRH0pWS9pf0kKSnJA3K+T4r6eG8LP2DknpLWg84HTgqj8QdImkjSWMlzcx19Mvlu0oaLemxXMeXc/p2kibn8jPzfmHl/R4laUru3+mF9BcknZHrmylp65zeQ9IESdMk/Y4Kz3+XRrYknZfzTZD0sXzsAUlnSpoEjJS0paR7cxsTJH0i5+sl6VFJk4EzCnXvI+nWwvuLJX01v/5Mvo4zctkuFa7h3vn49Ny3Litz383MzMzM2rK6Ccok7UzaB2xnYDDwbUnb58PbAOcC25E2TT4kInYh7cV1Ss7zOLBbROxI2tvr5xHxPvDfwDUR0T8ibszHHo2I7UmByuhc/nTgrojYGdgb+JWkdYFvA+dGRH9gJ+ClCt0/JSIGkfZC2zev3Fjyz9ynS1m6UuJPgXsjYgBp9GnTKpelO/BIzvcwaf+zkg0iYveI+DVwEXBpPqcbgF/nPL8Bzo+InYBXq7TxoXy+1wPfiYgdgP1Ie52VX8OTSNsE9Ad2z3nMzMzMzDqkugnKgM8BN0XEexHxDnArsFs+9kxEzI2IRmAu8JecPgvomV9vCNycN1w+F+hbpZ3dgKvgww2kN80jPfsBP86bM99LWg7/k8BDwH9JOhnYvMJmzwBHSJoGTAM+DRSDspvz76mFvu4OXJ37cBvwTpW+LiYFWeT8uxWOXV94/ZnC+ytJ1xJScDsmv76qShtFnwb+XtoCICLeioglFfI9CPw6j2ZuUCmPpBF59HBKY+O7zWjazMzMrH0J/6+1b8EaU09BWa11WhcUXjcW3jey9Lm7M4FxEdEPGEoKqprTjgq/h+bRoP4R8cmIeCoirgKG5TYnSNp9mcJSb+B7wN55pOqusrZLfV3Css8INudTXJ6n+L45kU5UaWcxy362Sv1Vc/oVET8HjgW6ApPzNSjPMyoiBkXEoIYGz240MzMzs/arnoKyScAwSetJ6goMAe5fgfLdgRfz6+GF9HeAbmXtHAXp2SrghYh4FxgHHF/KJGnH/PtTEfFMRJwP3EmaPlm0QW7jbUmbAPs3o6/FPny5rH9FnYGv5NdHAg9UyfcI8P/y66/m+svTjyrkfx7oK2ltSR8hTdcEmANsIWlA7tsGkjpRdg0l9YqImRFxFvBX0vRSMzMzM7MOqW6Csoh4DLgOmEwKJn4XEbNWoIqzgXMkPViWfg+wQ15s4xDSs2O7SJpJelbqGznfT4H1Jc2SNIelC2McmRfwmA58ijztsGAaaUrlbOAS0tS+pvwE2CdPedyTpcFkubeAATnfbsDPq+QbCYzI53QYcEJOPx44QdJjpFEtACLiOdL00Fmk6Y6l6YoLgCOA30maAYwH1mH5a3hiXnxlJvBmzmdmZmZm1iHJu6rXJ0lrAa9FxGrdv2xNWGvtzfwhNrO6V2uOvtmaIDXvU9gevnsuWvhim/hP6ogthrb9i7WaXff8rW3iXqxuHW6fMjMzs3pU99/crNW1ZrDVUb+1N7Z2B2yNcVBWp/KG0O1+lMzMzMzMrL2rm2fKVgdJn5B0m6SnJf1N0vmS1s7HBkm6IL8eLunC1u0tSNotb179RP4ZUTh2nKSv5dej87NdTdU3olDXY5J2Kxz7vqT1C+/nr+rzMTMzMzPrCByUtZDSxOmbgVsjojewNWmxizMBImJKRBxfo4qq9Upa5fdF0r8B1wLHRUQf0sIex0o6ACAiLo6IK1egvgNJy9bvlus7Drg2twPwfWD9auVXsO8e0TUzMzOzDstBWcvtDXwQEZcD5A2OTwCOlrS+pD0l3VFeSNLGkm6RNCP/7CKpp6THJV1EWqlwc0lH5JUaZ0s6u1B+vqRfSZom6W5JPXL68ZLmSpop6frydoHvAKMLGze/BpwMnJLLnyHpxBU4/x8CJ+V6yPVeAXxH0vHApsC9ku4t9P3MfM6PSNo4p/WQdJOkyfln10J/RkkaT1rB0czMzMysQ3JQ1nJ9ganFhIh4G/g7sFWNchcA90XEDsAA0t5dkPbiujIidgQWkZbg3xvoD+wkaWjO1wWYFhEDgPtIy99DCq52zBtMH9ec/gJTcnpLVK0vIi4AXgL2ioi9Cv1+JJ/3JOCbOf184LyI2Ak4GLi0UN9AYEhEHNnCPpqZmZm1W41E3f/UCwdlLScqL3ZVLb1kb+B3kEbXIuKtnP58RDySX+8ETIyIV/OCHNcAu+djjcCY/Ppq0jREgJnANZK+CixegX6tyk97rXNfCJRGDqcCPfPrfYAL8z5tY4ENJJU2kh4bEe9XbCg9zzZF0pTGxndXSefNzMzMzFqDg7KWmwMMKiZI2gDYHPhbC+orRhYrsrJrKQg6APgtaXRpaoXnsJbrb847d0U6WTA3ly8aUKO+RbF0rdwlLF35swEYHBH9889mEfFOPlY12oqIURExKCIGNTR0aeEpmJmZmZm1PgdlLXc3sH5hxcJOwK9Iz22910S5b5XK5ECu3KPAHpI2yvUeQZqqCOmelVZGPBJ4IC8MsnlE3Et6TmxD0qIjRb8Fhkvqn9v+GGmK5P/UOklJZ0kaVuHQ/wBn53rI9Q4HLsrH3wG6VShXbjwwstBe/2aUMTMzMzPrMLyqXQtFRORg5SJJp5GCpT8BP2qi6PeAUZKOIY0YfQt4uazulyWdCtxLGjX7U0Tclg+/C/SVNBV4CzgM6ARcLal7zn9eRLxZoc6vApfk6YECfh0RtzfR3+1I0wrLz3+spM2AhyQFKQj7akSUzmUU8GdJLxeeK6vkeOC3kmaSPo+TqPxMnJmZmZlZh6TW3H3dVpyk+RFRPgq2OtsbFxH7r6n2WmKttTfzh9jMzKyOrchzH82xaOGLq7rKFjlki4Pq/jvOjc+PbRP3YnXzSJnV1NYDMlj1/xCb2ZqXtn40a/vq8bPaWn/Ar8drbfXLz5S1M2tylMzMzMzMzFY/B2V1TtInJN0m6WlJf5N0vqS187EPN8CWdJCkU1ZRm0PzJtdP5A2yhxaO/bekffLriZLKV4w0MzMzM+tQHJTVMaV5ATcDt0ZEb2Br0qqNZ5bnjYixEfHLVdDmDsC5pE2h+wAHAedK2j63c3pE/GVl2zEzMzMzay8clNW3vYEPIuJySJtZAycAR0tav5hR0nBJF0rqLmleXoYfSetL+oekzpJ6SbpL0lRJ90vqU6HNE4FfRMRzuc3ngLOAk3J9oyUdUqGcmZmZmVmH5KCsvvUFphYTIuJt4O/AVpUKRMRbwAxgj5z0ZWBcRCwiLYP/3YgYSAq+LqpQxXJtAlNyupmZmZlljf6pGw7K6puASksqVUsvGUPaHw3gcGCMpK7ALsANkqYDvwc2aWbdTbW3fCXSCElTJE1pbHx3RYqamZmZWQciqZOkvxbWQthS0qN5zYQxhfUS1snvn8nHexbqODWnPylp/0L6F3LaM8X1Faq10VIOyurbHGCZhTQkbQBsDvytRrmxwBclfRQYCNxD+iy9GRH9Cz+fbk6bwABg7op0PCJGRcSgiBjU0NBlRYqamZmZWcfyPeDxwvuzgfPymglvAMfk9GOANyJiK+C8nA9J25IGGvoCXwAuyoFeJ+C3wBeBbYEjct5abbSIg7L6djewvqSvQforA/ArYHREvFetUETMBx4DzgfuiIgledrjc5IOzXUpL+pR7lzg1NJfJvLvH+V2zczMzMyaTdIngAOAS/N7kdZNuDFnuQIorfQ9JL8nH/98zj8EuD4iFuT1Dp4Bds4/z0TEsxGxELgeGNJEGy3ioKyORdoNchhwqKSngaeAD0hBUlPGAF/Nv0uOAo6RNIM0IjakQpvTgR8Ct0t6ArgdODmnm5mZmZmtiF8DJ7P0EbSPkWZvLc7vXwA2y683A/4BkI+/lfN/mF5Wplp6rTZaZK2VKWztX0T8g7RYR6VjE4GJ+fVoYHTh2I2kZ8GK+Z8jDfk21ebNpKX4Kx0bXni9Z1N1mZmZmXVU6e/n9U3SCGBEIWlURIzKxw4EXomIqZL2LBWpUE00caxaeqUBrFr5W8xBmZmZmZmZtUk5ABtV5fCuwEGSvgSsC2xAGjnbUNJaeSTrE8BLOf8LpLUTXpC0FtAdeL2QXlIsUyn9tRpttIiDMmv3/Dcks/bPfw22dsOf1TXH19qaEBGnAqcC5JGyEyPiKEk3AIeQngH7OnBbLjI2v384H78nIkLSWOBaSf8LbAr0Jq2fIKC3pC2BF0mLgRyZy9xbpY0W8TNlZmZmZmbWkfwQ+IGkZ0jPf/0hp/8B+FhO/wFwCkBEzAH+SFoN/C7gO3khu8XASGAcaXXHP+a8tdpoEfmvk2uOpB8DRwJLSA8jHhsRj7Zur1YfSWcA8yPi3ArHRpD+YwB4G/hBRDyQj10K/G9EzJU0DxgUEa9Va2ettTfzh9jMzMxWmcULX6z0zNAaN+yTX6777zi3/P32NnEvVjdPX1xDJA0GDgQGRMQCSRsBK7XJXHuVH8o8FtgtIl6TNAC4VdLOEfF/EfEfrdxFMzMzs1bX6Ic06oanL645mwCvRcQCgIh4LSJeApA0UNJ9kqZKGidpk5x+vKS5kmZKuj6n7Szpobxr+UOStsnpwyXdKul2Sc9JGinpBznfI3mjZyT1knRXbut+SX1y+qGSZkuaIWlSTusk6RxJk3Mfji2djKSTCuk/LaT/OO96/hdgmyrX4ofASaXRr4iYRtrf4Tu5jomSyjeYNjMzMzPrkDxStuaMB06X9BTwF2BMRNwnqTPwG2BIRLwq6TDgTOBo0jzXLfPI2oa5nieA3SNisaR9gF8AB+dj/YAdSavPPAP8MCJ2lHQe8DXSajSjgOMi4mlJnwEuIm1+dzqwf0S8WGjrGOCtiNhJ0jrAg5LGkx5+7E3aUE/AWEm7A++SHoDckfTZmgZMrXAt+lZIn0J6SNLMzMzMrK44KFtDImK+pIHA54C9gDGSTiEFI/2ACWlzcDoBL+diM4FrJN0K3JrTugNXSOpNWniwc6GZeyPiHeAdSW+RNmYGmAVsL6krsAtwQ24LYJ38+0FgtKQ/snQPsf1yuUMKbffO6fsBf83pXXN6N+CWiHgPIK9k01xiBRZSLO5ZoU7daWjosgJNmZmZmZm1HQ7K1qCIWELajHmipFmkkaGpwJyIGFyhyAHA7sBBwGmS+gI/IwVfwyT1zPWVLCi8biy8byTd6wbS7uP9K/TtuDxydgAwXVJ/UqD03YgYV8wraX/grIj4fVn692leYDUXGAjcU0gbkNObpbhnhRf6MDMzM7P2zM+UrSGStsmjWyX9geeBJ4EeeSEQJHWW1Pf/s3fn8VZV9f/HX++LIAiKOWRoKuUsClcZipyHr6VZampYmqJ9I/talP38mt/0a2rfcizniUrRnMhSUzHBiUFFmefEETM1lRxRBIHP74+1jm6v514ul3u5597zfvq4j7vP2muvvfY+Bzwf1trrI6kG2DQiHgJOBtYljUh1J+VJABi8Mn2IiLeB5yQdns8lSX3y9hYR8XhEnE5KiLcpafnPH+QplkjaWlLXXH5cHnlD0iaSPg2MAw6R1EXS2sDX6unKecC5ktbPx9fma7liZa7HzMzMrD1b7p+q4ZGy1acbcGl+Xmsp6ZmvIRGxJE8PvERSd9J7chHwJHBDLhNwYUS8Kek80vTFn/LxkabGOhK4UtJppKmPtwAzgPNz0CjggVw2E+gJTFWa7/gacHBEjJa0HTAhT4NcCBwVEVMljQCmkwLO8eU6EBF3StoEeFRSAO/k418uV9/MzMzMrD1znjJr8zx90czMzJpTpeQp+9pmB1b9d5y7/nF3RbwXLc0jZdbmVcWfVFuhwuI1ZtaG+c+ymVUjP1NmZmZmZmbWihyUGZKWSZqek0ffKmmtFdSfL2mDVTjfrpImSnoi/wwp7Dte0tF5e3hhOX4zMzOzqhL+r7XfgtXGQZkBLIqI2ojYAVgCHN9SJ5L0GeAmUgLrbYFdge9L+ipARFwVEde31PnNzMzMzCqNgzKrazywJYCkOyRNkTSnOJpVIqlnHun6fR5lu1HSvpIekfSUpAFl2j8BGB4RUwEiYgFpyf9TcptnSDqpxa7OzMzMzKzCOCizD0laA9gfmJWLjouIvkA/YGgpr1gdWwIXA72BbYFvk0a/TjGW1tYAACAASURBVAJ+XqZ+L1LC7KLJudzMzMzMrOp49UUD6CJpet4eD/whbw+VdEje3hTYCvh3nWOfi4hZAJLmAA9EREiaRcpxVpeg7AThlZo0nEfuhgDUdOhOTU3XlTnczMzMzKxiOCgzyM+UFQsk7QnsCwyMiPckjQE6lzl2cWF7eeH1csp/vuaQRt7uLJT1BeauTIcjYhgwDKCj85SZmZlZO7S8iha6qHaevmj16Q68kQOybYEvNlO7lwODJdUC5CmR5wLnNVP7ZmZmZmZtikfKrD73AsdLmgnMAx5rjkYj4mVJRwG/k7Q2aTrjRRFxV3O0b2ZmZmbW1ijCw6LWtnn6ogFIau0umFkz8J9lqwSL33+hIj6IB2x2QNV/x7nnH/dUxHvR0jxSZm1ec/4P3F8GVp3wPaxPa32+aqrwc13pn8PGviet+XdSTYXfw7bw93Wl/9lrtb+TWvGz1RY+N1adHJSZmZmZmVUgz2irHl7oowJI+oykWyQ9I2mupHskbd1A/Z6Svl14XSvpgNXT28aTtLCe8s9K+mtOMP2MpIsldcr7+km6JG8PlnTZ6uyzmZmZmdnq5qCslSmNo98OjImILSJie1LS5Y0aOKwnKUlzSS1QcUFZOfl6bwPuiIitgK2BbsCvACJickQMbcUumpmZmZmtVg7KWt9ewAcRcVWpICKmR8R4JedLmi1plqRBuco5wG6Spkv6GXAWMCi/HiRpPUl3SJop6TFJvQEknSHpGkljJD0raWgu7ypppKQZ+VyDcnlfSWMlTZE0SlKPXL6FpHtz+fi8ZD6SPidpgqRJkn5Zz/XuDbwfEdfma10GnAgcJ2ktSXtKuruZ77GZmZmZWcXyM2WtbwdgSj37vkEaBesDbABMkjQOOAU4KSIOBJD0CtAvIn6YX18KTIuIgyXtDVyf2wHYlhQIrg3Mk3Ql8BXgpYj4aj6+u6SOwKXAQRHxWg7UfgUcR0rafHxEPCXpC8AVpGDrYuDKiLhe0gn1XFOvutcbEW9L+gewZSPvmZmZmZlZu+GgrLLtCtycR5NekTQW6A+83YjjDgWIiAclrS+pe943MiIWA4slvUqaJjkLuEDSucDdeZRuB1LAeF9eqagD8LKkbsCXgFsLKxitmX/vUjov8EdSUui6BGXT09dXXpakIcAQgA4d1qWmQ9fGHmpmZmbWJixv7Q7YauOgrPXNAQ6rZ19T120td1wp4FlcKFsGrBERT0rqS3ou7WxJo0nPuc2JiIEfa1haB3gzImopb0WB1Rw+CtyKbW4KPAOsv4Lj00kihpFG7Oi05me9NJGZmZmZtVl+pqz1PQisKel7pQJJ/SXtAYwjPSvWQdKGwO7AROAd0vTDkrqvxwFH5rb2BBZERL2ja5I2Bt6LiBuAC4CdgXnAhpIG5jodJfXK7Twn6fBcLkl9clOPAEfk7SPrOd0DwFqSjs7HdwB+AwyPiPfq66OZmZmZWXvloKyVRUpAcQjwH3l5+DnAGcBLpNGqmcAMUvB2ckT8K5ctzQtznAg8BGxfWugjH99P0kzSoiDHrKAbOwITJU0HTgX+LyKWkEbwzpU0A5hOmrYIKeD6bi6fAxyUy38MnCBpEtCdMgrXe7ikp4AngfdJK06amZmZmVUdOSmdtXXNOX2x8JycNZGaPOu2/Wutz1dNFX6uK/1z2Nj3pDX/Tqqp8HvYFv6+rvQ/e632d1IrfrYae83/evPvFfHmfXnT/av+i/qoF/5WEe9FS/MzZWZmZmZmFSgavwaatXEOyqzNW96co70eOTYzMzOz1czPlJmZmZmZmbWiqg7KJC3Li2PMlnSXpHVbu08NkXSGpJPqKQ9JWxbKTsxl/ZpwnlpJBzRDf4dL+sRy/3nFxtMkPSXpSUkPSepV2H9P6b2QtHBV+2FmZmZmVsmqOigDFkVEbUTsALwOnNDaHVoFs/hoOXpIKyfObWJbtaScZY0maWWmwp5AWsmxT0RsDZwN3CmpM0BEHBARb67M+c3MzMzM2qpqD8qKJgCbAEjqJukBSVMlzZJ0UC7vKekJSddJminpz5LWyvv6ShoraYqkUZJ61D2BpK9JelzSNEn3S9ool58h6RpJYyQ9K2lo4ZhTJc2TdD+wTQP9v4O8NL2kzwNvAa8V2llY2D5M0vC8fXgeKZwhaZykTsBZpPxo0yUNkjRA0qO5349K2iYfO1jSrZLuAkbnEbDLJM2VNBL4dD19/Rnwo1JesogYDTzKR7nV5kvaoIFrNTMzM2v3lhNV/1MtHJTxYQLjfYA7c9H7wCERsTOwF/AbfbSG6jbAsIjoDbwN/JekjsClwGER0Re4BvhVmVM9DHwxInYCbgFOLuzbFvgyMAD4RU7W3Jc0+rUT8A2gfwOX8TbwgqQdgG8BIxp5+acDX46IPsDXc36y04EReRRxBPAEsHvu9+nArwvHDwSOiYi9SfnHtiHlPfseH+U1+5CkdYCuEfFMnV2TgV5165uZmZmZtXfVvvpil5wwuScwBbgvlwv4taTdgeWkEbSN8r4XIuKRvH0DMBS4F9gBuC/Hbh2Al8uc77PAiDyK1gl4rrBvZEQsBhZLejWfbzfg9tKIkqQ76zZYxy2kIO7LpCDz2BXdAOARYLikPwG31VOnO3CdpK2AADoW9t0XEa/n7d2BmyNiGfCSpAcbcf4S5bYbV1kaAgwBUIfu1NR0XYlTmZmZmZlVjmofKVsUEbXA5qQgqfRM2ZHAhkDfvP8VoHPeVzdwCFJAMSePLNVGxI4RsV+Z810KXBYROwLfL7QJsLiwvYyPAuaVGbe9C/gO8I+IeLtMP0s+PG9EHA+cBmwKTJe0fpl2fwk8lJ+9+1qdfr/bwHk+Iffr3TzFsmhnVuIZuIgYFhH9IqKfAzIzMzMza8uqPSgDICLeIo14nZSnInYHXo2IDyTtRQraSjaTNDBvf4s0JXEesGGpPE89LDcVrzvwYt4+phFdGwccIqmLpLVJAVFD17GI9LxWuamTr0jaTlINaZohua9bRMTjEXE6sIAUnL0DrF1PvwevoL9HSOqQRwP3qqfe+cAlkrrkPuwL7Arc1ND1mZmZmZm1R9U+ffFDETFN0gzS9L8bgbskTQamk56pKvk7cIykq4GngCsjYkle+v0SSd1J9/UiYE6d05wB3CrpReAx4HMr6NNUSSNyH54HxjfiOm6pZ9cpwN3AC8BsoFsuPz9PSxTwADAD+AdwSp7aeTZwHmn64k+BhqYk3g7sTVoJ8klgbD31LgU+BcyStAz4F3BQDirNzMzMDIionoUuqp38ZjeepJ7A3Xkan1WINTpt4g+xmZmZNZulS17Uimu1vH0+u1/Vf8d54J+jK+K9aGmevmhmZmZmZtaKPH1xJUTEfNIqi2ZmZmZmZs3CI2WrKCd3npOTSU+X9IVVaGuopL9LujEnZr6sOfu6OuVE27Pr2ddL0oOSnpT0lKT/LeWBk/R1Safk7TMknbQ6+21mZmZmtro5KFsFebXFA4GdczLpfUkLaTTVfwEHRMSRzdG/xpC0WkdL84qLdwLnRMTWQB9Skun/AoiIOyPinNXZJzMzMzOz1uSgbNX0ABbkpM9ExIKIeAlA0nxJG+TtfpLG5O0zJF0jaYykZyUNzeVXAZ8H7pR0YvEkkjaX9EAejXtA0mZ52flnlawraXlOdo2k8ZK2lNQ1n2uSpGmSDsr7B0u6VdJdwGhJPSSNyyN9syXtluvtJ2mCpKm5frdc3lfSWElTJI3Ky9+XymdImsBHOd/q+jbwSESMzvfsPeCHpNUhS31rsyOEZmZmZs1lOVH1P9XCQdmqGQ1smqfhXSFpj0Yety3wZWAA8AtJHXMS55eAvSLiwjr1LwOuz6NxNwKXRMQy0rLz25NyfE0BdpO0JvDZiHgaOBV4MCL6k3KGnS+plGl5IHBMROxNCpRG5UTZfUhJpDcgJZXeNyJ2BiYDP8153C4FDouIvsA1fJQX7VpgaESU8riV0yv39UMR8QzQTdI6jbt9ZmZmZmbthxf6WAURsVBSX2A3UtAzQtIpETF8BYeOzKNriyW9CmwE/LOB+gOBb+TtP5LyhkHKW7Y7Kd/Z2cD3SLnBJuX9+wFfLzyX1RnYLG/fFxGv5+1JwDU54LojIqbnAHN74JH8uFcnYAKwDWmxk/tyeQfg5Zyfbd2IKOUm+yOwf5lrEdT7zx6N/ucQSUOAIQDq0J2amq4rOMLMzMzMrDI5KFtFecRqDDBG0izgGGA4sJSPRiI71zlscWF7GSv/PpSCl/HA8cDGwOnAfwN7AuPyfgGHRsS84sF5MZJ3C9cwLk99/CrwR0nnA2+QArdv1Tl2R2BO3dEwSevSuKBqDimQLB77eWBhRLyTA70ViohhwDBwnjIzMzMza9s8fXEVSNpG0laFolrg+bw9H+ibtw9dxVM9ChyRt48EHs7bj5MWyVgeEe8D04Hvk4I1gFHAjworG+5Uz3VsDrwaEb8D/gDsDDwG7CJpy1xnLUlbA/OADfMiJ0jqKKlXRLwJvCVp10I/y7kR2FXSvvn4LsAlfDT6Z2ZmZmZWVRyUrZpuwHWS5kqaSZrud0bedyZwsaTxpNGwVTEUODaf4zvAjwHyFMgXSAEUpGBsbWBWfv1LoCMwMy9P/8t62t+T9BzZNFIAeXFEvAYMBm7O530M2DYilgCHAedKmkEKBL+U2zkWuDwv9LGo3IkiYhFwEHCapHm5r5NIz82ZmZmZWRb+r7XfgtVGEdVzsdY+efqimZmZNaelS15s3PMULWzPz+5b9d9xxvzz/op4L1qanymzNq8q/qSaWatq7POuZmZmTeHpi2ZmZmZmZq3IQVmFkbSRpJtyYugpOXnzIa3Qjw+TXzfh2FpJBzSwf1dJEyU9kX+GFPYdL+novD1c0mFN6YOZmZmZWVvh6YsVJK+SeAdwXUR8O5dtDny9TN01ImLpau5iY9UC/YB76u6Q9BngJuDgiJiaA79Rkl6MiJERcdVq7quZmZlZRVrutR+qhkfKKsvewJJiYBIRz0fEpQCSBku6VdJdwGgl50uaLWmWpEG53p6S7i61IekySYPz9nxJZ0qamo/ZNpevL2m0pGmSriY/qiWpp6S/S/qdpDm5Tpe8b4ykfnl7g9x2J+AsYJCk6aU+FZwADI+Iqfn6FgAnA6fkds4oJLs2MzMzM2v3HJRVll7A1BXUGQgcExF7A98gjUr1AfYFzpfUoxHnWRAROwNXAqUA6BfAwxGxE3AnsFmh/lbA5RHRC3iTBvKu5SXzTwdGRERtRIwoc41T6pRNzuVmZmZmZlXHQVkFk3S5pBmSJhWK74uI1/P2rsDNEbEsIl4BxgL9G9H0bfn3FKBn3t4duAEgIkYCbxTqPxcR08sc0xSCskknVmp8XtIQSZMlTV6+/N1V6I6ZmZmZWetyUFZZ5gA7l15ExAnAPsCGhTrFCKS+NZqX8vH3tnOd/Yvz72V8/LnC+gKjxYXt4jHF89Q9R33mkJ43K+oLzG3k8QBExLCI6BcR/Wpquq7MoWZmZmZmFcVBWWV5EOgs6QeFsrUaqD+O9OxWB0kbkka7JgLPA9tLWlNSd1JgtyLjgCMBJO0PfKoRx8wnBVQAxVUS3wHWrueYy4HBkmrzudYHzgXOa8T5zMzMzKpG+KdqOCirIBERwMHAHpKekzQRuA74WT2H3A7MBGaQArqTI+JfEfEC8Ke870ZgWiNOfyawu6SpwH7APxpxzAXADyQ9ChSXz3+IFBR+YqGPiHgZOAr4naQngEeBayLirkacz8zMzMys3VF4qU1r4zp22sQfYjNrUSljiZlViyWL/1kRf+h322Sfqv+OM/7FByrivWhpHikzMzMzMzNrRU4ebVWhGv+Vu7mvubGj6q113pZQjZ+b5qZ61yOy1lLpn+vW+rvGzKw1OSgzMzMzM6tAy6tqqYvq5umLbYCkUyXNkTQzL57xhWZuf76kDVZcs9nO10nSRZKekfSUpL9K+mxh/6P5d09Js1dXv8zMzMzMWoNHyiqcpIHAgcDOEbE4B0+dWrlbq+rXpCXzt46IZZKOBW6T9IVIvtTK/TMzMzMzW208Ulb5egALImIxQEQsiIiXACTtI2mapFmSrsl5yfaRdHvpYEn/Iem2vH2lpMl51O3MOuf5b0kT88+Wuf6Gkv4iaVL+2SWXD5D0aD73o5K2yeWDJd0m6d48AvaJ3GOS1gKOBU6MiGX5mq4lJajeO9dZ2Jw30MzMzMyskjkoq3yjgU0lPSnpCkl7AEjqDAwHBkXEjqRRzx+Q8pVtl5NJQwqArs3bp0ZEP6A3KRda78J53o6IAcBlwEW57GLgwojoDxwK/D6XPwHsHhE7AaeTRr5KaoFBwI6kxNab1rmeLYF/RMTbdconA70ae1PMzMzMzNoLT1+scBGxUFJfYDdgL2CEpFNICaGfi4gnc9XrgBMi4iJJfwSOknQtMBA4Otf5pqQhpPe9B7A9KcE0wM2F3xfm7X1JSaBL3VlH0tpAd+A6SVuRkq13LHT5gYh4C0DSXGBz4IXCflE+QXt95WXl6xgCUNOhOzU1XRt7qJmZmVmb4IU+qoeDsjYgT/MbA4yRNAs4BpjewCHXAncB7wO3RsRSSZ8DTgL6R8QbkoYDnYunKbNdAwyMiEXFxiVdCjwUEYdI6pn7VrK4sL2MT37GngY2l7R2RLxTKN8597lRImIYMAycPNrMzMzM2jZPX6xwkrbJI1IltcDzpCmEPUvPfwHfAcYC5GfOXgJOI01xBFgHeBd4S9JGwP51TjWo8HtC3h4N/LDQl9q82R14MW8PXpnriYh3SaN6v5XUIbd7NLAWaeqlmZmZmVlV8UhZ5esGXCppXWApaaRpSES8n1ctvFXSGsAk4KrCcTcCG0bEXICImCFpGjAHeBZ4pM551pT0OClQ/1YuGwpcLmkm6bMyDjgeOI80ffGnNC2Q+h/gAuBJSctJAeYh0ZpZgs3MzMzMWon8Pbh9knQZMC0i/tDafWlpjZm+WHgurmo09zU39u+K1jpvS6jGz01zE76HlabSP9et9XeNWdGiRc9XxAds4CZ7Vf0X9QkvPlQR70VL80hZOyRpCmmq4v9r7b6sDo3526oq//Ghta65Pd3r9nQt7URV/J/ZzCyryu8vVcpBWTsUEX1buw9mZmZmZtY4rbLQh6TPSvprTjD8jKSLJXXK+/aUdHfe/npe/r2l+tGjcK5+ki5pYjtnSDppJY8ZI6lf3r4nPzNW1SQNl3RY3r6lzgInZmZmZmbt0moPypQmgd8G3BERWwFbkxaz+FXduhFxZ0Sc04Ld+Snwu3yuyRExtAXPVa+IOCAi3lxd5yutetjMbTb3qOuVwMnN3KaZmZmZWcVpjZGyvYH3I+Ja+DAH14nAcZLWKlaUNFjSZZK6S5ovqSaXryXpBUkdJW0h6V5JUySNl7RtrnO4pNmSZkgaV09fDgXuzfWLI3RnSLomj2Y9K+nDYE3S0ZJm5nb/WLfBOiNgG0ian7e75NGfmZJGAF0Kx8zPdXtK+ruk30maI2m0pC65Tv987ARJ50uaXebce0oaJ+l2SXMlXVW4ZwslnZVXWBwoqa+ksfm+jZLUI9cbmo+dKemWXNY1349JkqZJOqjw/twq6S5gtKQRkg4o9Ge4pEMldch9npTb/X7er/z+zpU0Evh04XLGA/u2QLBnZmZmZlZRWuMLby9gSrEgIt6W9A9gy3IHRMRbkmYAewAPAV8DRkXEB5KGAcdHxFOSvgBcQQr8Tge+HBEvlpsaqJRM+Y2IWFx3X7YtsBewNjBP0pWkUb1TgV0iYoGk9Vbiun8AvBcRvSX1BqbWU28r4FsR8T1JfyIFjjeQEkIPiYhHJTU0ejgA2J6Uy+xe4BvAn4GuwOyIOF1SR1JOs4Mi4jVJg0gjlccBpwCfi4jFhft2KvBgRByXyyZKuj/vGwj0jojXJR1CynN2j9J01H3ydX8XeCsi+ktaE3hE0mhgJ2AbYEdgI2AucA1ARCyX9DTQhzqfFzMzM7NqsLxRy5lZe9AaI2Wi/IJ59ZWXjOCjBMdHACMkdQO+RMrVNR24GuiR6zwCDJf0PaDcdL0ewGsNnG9kRCyOiAXAq6SgYW/gz7mMiHi9gePr2p0UXBERM4GZ9dR7LiKm5+0ppATR6wJrR8SjufymBs4zMSKezSOQNwO75vJlwF/y9jbADsB9+b6dBnw275sJ3CjpKFJeNID9gFNy3TFAZ2CzvO++wn34G7B3Drz2B8ZFxKJ8/NH5+MeB9UnB5+7AzRGxLCe8rpvz7FVg43IXKWmIpMmSJi9f/m4Dt8PMzMzMrLK1xkjZHNLoz4ckrQNsCjxD+sJezp3A2Xl0qi/pC3xX4M2IqK1bOSKOzyNnXwWmS6qNiH8XqiwiBRf1KY6gLSPdqxUFjpACmVKwW7f9xvxzR93zdmHlVoGue47S6/dzoEZub05EDCxz/FdJwdLXgf+V1CvXPzQi5hUr5vv7YUSUE1qPAb5MCqBvLpzvRxExqs7xB5Tpb1Fn0vv0yYuMGAYMA1ijEXnKzMzMzMwqVWuMlD0ArCXpaPhw0YnfAMMj4r36DoqIhcBE4GLg7jy68jbwnKTDc1uS1CdvbxERj0fE6cACUtBX9CTQswl9/6ak9fM5yk1fnE8KGgEOK5SPA47Mx+0A9G7sSSPiDeAdSV/MRUc0UH2ApM/lZ8kGAQ+XqTMP2FDSwNyfjpJ65WM2jYiHSItsrEtahGUU8CMpZeqUtFMD578FOBbYLR9H/v2DPG0SSVtL6kq6J0fkZ856kKaLFm1NCuLNzMzMzNqt1R6URcqCdwhwuKSnSMHR+8DPG3H4COCo/LvkSOC7+ZmzOcBBufx8SbPyghjjgBl1+vEu8Iykss+x1dP3OaRnr8bm8/22TLULSAHIo8AGhfIrgW6SZpICnomNPW/2XWCYpAmkkae36qk3ATgHmA08B9xe5jqWkALGc/N1TCdNA+0A3CBpFjANuDCvCvlLoCMwM9/PXzbQz9Gkkbb783kAfk96XmxqPv5q0sjj7cBTwCzS/RlbakTSRsCiiHi5oZtiZmZmZtbWqZozheeFKfpGxGmt3ZcVkdQtjxailLutR0T8uE6dPYGTIuLAVuhis5J0IvB2RPxhRXU9fdGseqzMXG4zs6b6YMmLFfHXTf+Nd6/67ziTXhpXEe9FS6vq5cYj4vbSVMQ24KuS/of0nj0PDG7d7rS4N4FPpBwws+pW9d9OqkBVfPsyM6ujqkfKrH3wSJmZWfvhoMwqgUfKKke1jJS1xkIfthIknaqUSHqmpOl5xcOqkJNTX9ba/TAzMzMza0lVPX2x0uXVEQ8Eds7JnDcAOrVyt8zMzMzMrBl5pKyy9QAWRMRigIhYkJMsI6mvpLGSpkgalZeUR9JQSXPzyNotuWyApEclTcu/t8nlgyXdIekuSc9J+qGkn+Z6j5WW/Je0haR787nGS9q2bkcl7ZFH8qbn49fO5f8taVLuz5mF+kdJmpjrX51TIyDpWElPShoL7NKSN9fMzMyskkVE1f9UCwdllW00sGkOUq6QtAekvGLApcBhEdEXuIa0VD/AKcBOEdEbOD6XPQHsHhE7AacDvy6cYwfg28CA3MZ7ud4E4OhcZxgp+XNf4CTgijJ9PQk4ISfy3g1YJGk/YKvcdi3QV9LukrYj5VDbJddfBhyZA8szScHYfwDbN+mumZmZmZm1IZ6+WMEiYqGkvqQgZy9gRF4OfzIpmLov53PuAJTyec0EbpR0B3BHLusOXCdpK9LiZR0Lp3koIt4hJad+C7grl88CekvqRsphdms+F8CaZbr7CPBbSTcCt0XEP3NQth8p5xmkRNRbkRJn9wUm5Ta7AK8CXwDGRMRrAJJGkBJIf4KkIcAQAHXoTk1N1/I30czMzMyswjkoq3ARsQwYA4zJSZ2PAaYAcyJiYJlDvkpK3vx14H8l9SIle34oIg6R1DO3V7K4sL288Ho56fNRA7yZR7Qa6uc5kkYCBwCPSdqXtIjW2RFxdbGupB8B10XE/9QpP5hGrngdEcNII3hefdHMzMzM2jRPX6xgkrbJo1sltaQcZfOADfNCIEjqKKmXpBpg04h4CDgZWJc0OtUdeDG3MXhl+hARbwPPSTo8n0uS+pTp6xYRMSsiziWN5G0LjAKOy6NtSNpE0qeBB4DD8jaS1pO0OfA4sKek9fMUzcNXpq9mZmZmZm2RR8oqWzfgUknrAkuBp4EhEbFE0mHAJZK6k97Hi4AngRtymYALI+JNSeeRpi/+FHiwCf04ErhS0mmkqY+3ADPq1PmJpL1Iz4fNBf6WV4zcDpiQpykuBI6KiLm5rdE5kPyA9DzaY5LOID3P9jIwlTQ108zMzMys3XLyaGvzPH3RzKz9qIossVbxKiV59M49dq367zhTX364It6Llubpi2ZmZmZmZq3I0xfNzMysYlT9sICZVSWPlJmZmZmZmbWiqg/KJH1G0i2SnpE0V9I9ksrmxlqNffp5M7Y1X9IGTTiup6TZ9ezbOt+npyX9XdKfJG206r01MzMzM6s+VT19UWlJwNtJObOOyGW1wEaklQxby8+BX7fi+eslqTMwEvhpRNyVy/YCNgReWYV2RVp4ZnmzdNTMzMysjfOCfNWj2kfK9gI+iIirSgURMT0ixud8XOdLmi1plqRBpTqSTs5lMySdk8tqJT0maaak2yV9KpePkXSupImSnpS0Wy4fLOmyQpt3S9ozt9dF0nRJN0rqKmlkPtfsYj9WRh75+ruk30maI2m0pC5535aS7s/nmCppiwaa+jYwoRSQ5Xv2UETMltRZ0rX53kzLwVrpWv8q6V5J8yT9ok6friAtf7+ppCslTc59PLMp12pmZmZm1pZUe1C2AzClnn3fICVr7gPsC5wvqYek/YGDgS9ERB/gvFz/euBnEdEbmAX8otDWGhExAPhJnfJPiIhTgEURURsRRwJfAV6KiD4RsQNwb1MuNNsKuDwiegFvAofm8htzeR/gS6Qc9CQG8QAAIABJREFUYfVp6J6dkK9hR+BbpNxonfO+AaR8Z7XA4ZL65fJtgOsjYqeIeB44NSL6Ab2BPST1bsJ1mpmZmZm1GdUelDVkV+DmiFgWEa8AY4H+pADt2oh4DyAiXs/JmteNiLH52OuA3Qtt3ZZ/TwF6rmQ/ZgH75tG23SLiraZdDgDPRcT0Yl8krQ1sEhG3A0TE+6Vra4JdgT/mdp4AngdKz+fdFxH/johFpPuxay5/PiIeK7TxTUlTgWlAL2D7cieSNCSPqE1evvzdJnbXzMzMzKz1VXtQNgfoW8+++hLViZVfsXdx/r2Mj57jW8rH739nyoiIJ3MfZwFnSzr9Y52RNs1THadLOr6R/Sj2ZWUT8jXlnsEn71np9YcRlaTPAScB++QRx5HUf1+GRUS/iOhXU9O1UR03MzMzM6tE1R6UPQisKel7pQJJ/SXtAYwDBknqIGlD0sjXRGA0cJyktXL99fLo1Rul58WA75BG1hoyH6iVVCNpU9L0vpIPJHXM7W8MvBcRNwAXADsXG4mIF/JUx9ris3GNFRFvA/+UdHA+35qla6vHTcCXJH21VCDpK5J2JN2zI3PZ1sBmwLxc7T8krZefYzsYeKRM2+uQgrS38mqO+6/s9ZiZmZm1F8uJqv+pFlW9+mJEhKRDgIsknQK8TwqWfkIKMAYCM0ijOidHxL+Ae/MKjZMlLQHuIa2WeAxwVQ5ongWOXcHpHwGeI42AzSYtdFEyDJiZp/FdT3qebTnwAfCDVb7wT/oOcLWks/I5DgfKroIYEYskHUi6Zxfl+jOBHwNXkO7BLNJI4OCIWJwWVuRh0tTGLYGbImKypJ512p4haRppNO5ZygduZmZmZmbtirzUprU0SYOBfhHxw5Zof41Om/hDbGZmZs1m6ZIXV/bxjhbR5zNfqvrvODP+9WhFvBctrapHyszMzCpZVXwTsXYjz4wxsyZwUGYtLiKGA8NbuRtmZmZmZhWp2hf6WCWSQtJvCq9PknTGCo7pKenbLd65j59zvqQNVsN5FjbxuFpJBzR3f8zMzMzasvB/rf0WrDYOylbNYuAbKxnw9ARWa1C2KiStjtHUWsBBmZmZmZlVJQdlq2YpaaXEE+vukDRc0mGF16VRpHOA3XJesRMl9ZI0Mb+eKWmrMm1dmRMlz5F0ZqF8vqQzJU2VNEvStrl8fUmjJU2TdDX1PJYgaaGk3+TjH8hL/yNpjKRfSxoL/FjS5nn/zPx7s1zvc5ImSJok6ZeFdveUdHfh9WV5sY9SyoFHJc3I190dOIuUfmC6pEGS9ijkXpuWE1ybmZmZmbVLDspW3eXAkTm4aIxTgPE5r9iFwPHAxRFRC/QD/lnmmFMjoh/QG9hDUu/CvgURsTNwJSnxMsAvgIcjYifgTlK+sHK6AlPz8WPzcSXrRsQeEfEb4DLg+pzQ+UbgklznYuDKiOgP/GtFFy6pEzAC+HFE9AH2JeUlOx0Yke/JiHwdJ+R7shuwaEVtm5mZmZm1VQ7KVlFOvnw9MLSJTUwAfi7pZ8DmEVEuAPlmzlk2DegFbF/Yd1v+PYU0NRJSousbcv9GAm/Uc+7lpCCJXH/Xwr4Rhe2BpKTRkHKNlertAtxcKF+RbYCXI2JS7tvbEbG0TL1HgN9KGkoKDj9RR9KQPHo4efnydxtxajMzMzOzyuSgrHlcBHyXNPJUspR8f5XWiO1U7sCIuAn4Omk0aJSkvYv7JX2ONHK0Tx6pGgl0LlRZnH8v4+OraTblycjiMQ1FOlHPdsmH156V+qvG9CsizgH+E+gCPFaallmnzrCI6BcR/Wpqun6iDTMzM7O2bnlE1f9UCwdlzSAiXgf+RArMSuYDffP2QUDHvP0O8OEzUpI+DzwbEZeQphoWpyYCrEMKkN6StBGwfyO6NA44Mre/P/CpeurVAKXn3r4NPFxPvUeBI/L2kYV6j9QpL3ke2F7Smnla5z65/AlgY0n9c9/WzguJ1L0nW0TErIg4F5gMfCIoMzMzMzNrL5ynrPn8Bvhh4fXvgL9Kmgg8wEcjTzOBpZJmkHJ3dQaOkvQB6bmss4qNRsQMSdOAOcCzpEBoRc4Ebs5THscC/6in3rtAL0lTgLeAQfXUGwpcI+m/gdeAY3P5j4GbJP0Y+Euhzy9I+lO+1qdI0y6JiCWSBgGXSupCGh3cF3gIOEXSdOBsYFdJe5FG/+YCf2vENZuZmZmZtUmKKhoWtI+TtDAiurV2P1bVGp028YfYzNqlskvnmlWo9LRG+7Bk8T8r4mJ22OiLVf8dZ/Yrj1XEe9HSPFJmZmZWoar+25i1Kf6HfrOmc1BWxdrDKJmZmZlZexX+p5mq4YU+zMzMzMzMWlFFBWWSlkmaLmm2pFslrbWC+sMlHdZQnWbqV3dJ10t6Jv9cX0oWLamnpG8X6g6WdFlL96mxJJ0h6aQV11zl8zT5vZD08+buj5mZmZlZW1FRQRmwKCJqI2IHYAlwfGt3KPsDadn6LSJiC+A54Pd5X0/ScvLNQlKH5mprVeXl6lcHB2VmZmZmVrUqLSgrGg9smUeiZpcKJZ0k6Yy6lSWdI2mupJmSLshlG0r6i6RJ+WeXXL5HHpGbLmmapLXrtldod0tSvrFfForPAvpJ2gI4B9gtt3Vi3r+xpHslPSXpvEJb+0maIGlqHgnslsvnSzpd0sPA4XXO/zVJj+d+3p9zlZVGwK6RNEbSs5KGFo45VdI8SfcD29RzXcMlXSVpvKQnJR2Yywfnvt0FjFZyfh69nJWXtCeXX5bv+Ujg04W250vaIG/3kzQmb3eTdG1uZ6akQyWdA3TJ9+9GSV0ljZQ0I5+zvmX6zczMzMzahYpc6COP0OwP3NvI+usBhwDbRkRIWjfvuhi4MCIelrQZMArYDjgJOCEiHsmB0fsNNL89MD0ilpUKImJZzqnVCzgFOCkiPgxqgFpgJ2AxME/SpaScXKcB+0bEu5J+BvyUj/KSvR8Ru5Y5/8PAF/N1/SdwMvD/8r5tgb1IiZfnSbqSlHz6iHz+NYCpwJR6rq0nsAewBfBQDkABBgK9I+J1SYfm6+kDbABMkjQu19kG2BHYiJRP7JoG7iPA/wJvRcSO+V59KiL+IumHEVGbyw4FXoqIr+bX3cs1JGkIMARAHbpTU9N1Bac2MzMza1uWe0XLqlFpQVmXHOxAGin7A7BxI457mxRY/T6P2tydy/cFttdHeTPWyaNijwC/lXQjcFtE/LOBtkX5VYnrKwd4ICLeApA0F9gcWJcU4D2S+9MJmFA4ZkQ9bX0WGCGpRz7mucK+kRGxGFgs6VVScLQbcHtEvJfPf2cD1/aniFgOPCXpWVKQB3BfRLyet3cFbs5B6SuSxgL9gd0L5S9JerCB85TsSwoYAYiIN8rUmQVcIOlc4O6IGF+uoYgYBgwD5ykzMzMzs7at0qYvlp4pq42IH0XEEmApH+9n57oHRcRSYADwF+BgPhphqwEGFtrcJCLeiYhzgP8EugCPSdq2bpsFc4CdJH3Yh7zdB/h7PccsLmwvIwW/IgU7pb5sHxHfLdR7t562LgUuy6NL369z/eXOA41PbVO3Xul1sS8NJeyr7zzF96zY34YC2dRgxJOk6aKzgLMlnd5QfTMzMzOztq7SgrJyXgE+LWl9SWsCB9atkKcgdo+Ie4CfkKbbAYwGflioV5oit0VEzIqIc4HJ5BEiSU/UbTsingamkaYelpwGTM373iFNH1yRx4BdSlMEJa0laetGHNcdeDFvH9OI+uOAQyR1yaOCX2ug7uGSavKzcZ8H5tXT3iBJHSRtSBohm5jLj8jlPUjTKEvmkwIrgEML5XXfj0/lzQ8kdcxlGwPvRcQNwAXAzo24ZjMzMzOzNqvig7KI+ID03NXjpGmJnwicSEHR3ZJmAmOB0oIbQ0kLcszM0whLqzn+JC8iMYP0rNff8sIU9Y0KfRfYWtLTkp4Bts5lADOBpXlhihPrOZ6IeA0YDNyc+/kYH00XbMgZwK2SxgMLVlQ5IqaSpkJOJ40clp3+l80j3a+/AcdHRLln624nXeMM4EHg5Ij4Vy5/ijSidWVup+RM4OLc52WF8v8DPlW496VAbhgwM08n3RGYmKexnpqPMTMzMzNrtxR+gBCAvPrg5yPiktbuy+ogaTjpma0/t3ZfVpWfKTMzM7PmtHTJiw09vrHabPvp/lX/HeeJVydVxHvR0iptoY9WExF3r7iWmZmZVYKq+JZmZlXDQVmViojBrd0HMzMzMzNrA8+UWeWQtLDO68GSLmut/piZmZmZtQcOyszMzMzMzFqRpy9as5C0OXANsCHwGnBsRPwjLyjyNtAP+Axp9cY/52P+G/gmsCYp4fUvJP0SWBARF+c6vwJeqZYFWMzMzMxKlntBvqrhkTJbGV0kTS/9kFIVlFwGXB8RvYEbgWIQ1QPYlZRj7hwASfsBW5GSftcCfSXtDvyBnI8tJ+k+IrdnZmZmZtYueaTMVsaiiCgl5kbSYNIIGMBA4Bt5+4/AeYXj7oiI5cBcSRvlsv3yz7T8uhuwVUSMk/RvSTsBGwHTIuLfdTsiaQgwBEAdulNT07U5rs/MzMzMbLVzUGYtpTjevriwrcLvsyPi6jLH/p6UaPszpCmRn2w8Yhgp6bTzlJmZmZlZm+bpi9ZcHiVNNQQ4Enh4BfVHAcdJ6gYgaRNJn877bge+AvTP9czMzMzM2i2PlFlzGQpckxfveA04tqHKETFa0nbABEkAC4GjgFcjYomkh4A3I2JZC/fbzMzMrCIFngxULRRe1cUqTF7gYypweEQ8taL6nr5oZlZ9tOIqZk32wZIXK+IjttWGfav+O85Tr02piPeipXmkzCqKpO2Bu0lL5K8wIDMzs/alKr59WbPLs27M2iwHZVZRImIu8PnW7oeZmZmZ2erihT6aSNKpkuZImpnzdn2hhc6zp6QvtUTbq0rSrpImSnoi/wwp7Ds4j3qVXo+R1K98S2ZmZmZm1csjZU0gaSApEfLOEbFY0gZApxY63Z6kRTAebaH2AZDUYWUW1ZD0GeAm4OCImJrvwShJL0bESOBg0jTEuau7b2ZmZmbtwXKv/VA1PFLWND2ABRGxGCAiFkTES5IGSLoNQNJBkhZJ6iSps6Rnc/kWku6VNEXSeEnb5vINJf1F0qT8s4uknsDxwIl5NG63cvXy8WdIuiaPSD0raWips5KOyiNa0yVdLalDLl8o6SxJjwMDJZ0jaW4e/btgBffgBGB4REwt3QPgZOCUPLL3deD8fM4t8jGH5348KWm33IcOks7P1zJT0vdz+Z6SHpJ0EzBrVd4sMzMzM7NK5pGyphkNnC7pSeB+YEREjCWtGLhTrrMbMJuUa2sN4PFcPgw4PiKeylMerwD2Bi4GLoyIhyVtBoyKiO0kXQUsjIgLAHKQ8rF6wHa57W2BvYC1gXmSrgS2BAYBu0TEB5KuIOURux7oCsyOiNMlrQf8Adg2IkLSuiu4B72A6+qUTQZ6RcSjku4E7o6IP+d+A6wREQMkHQD8AtgX+C7wVkT0l7Qm8Iik0bm9AcAOEfHcCvpiZmZmZtZmOShrgohYKKkvKfDaCxgh6ZSIGC7p6Zx/awDwW2B3oAMwPidK/hJwa2GVoDXz732B7Qvl60hau8zpG6o3Mo/eLZb0KrARsA/QF5iUj+kCvJrrLwP+krffBt4Hfi9pJGnqYUMEZZNnNDTOflv+PQXombf3A3pLOiy/7g5sBSwBJtYXkOXn14YAqEN3amq6rqC7ZmZmZmaVyUFZE+VnnMYAYyTNAo4BhgPjgf2BD0ijaMNJQdlJpOmib0ZEbZkma4CBEbGoWFhmideG6i0uFC0jvb8CrouI/ylzzvdLz2pFxFJJA0hB3BHAD0kjePWZA/QD7iyU9aXhZ8hK/Sv1jdy/H0XEqDrXsyfwbn0NRcQw0qij85SZmZmZWZvmZ8qaQNI2krYqFNUCz+ftccBPgAkR8RqwPmla4ZyIeBt4TtLhuR1J6pOPG00KhErnKAVu75CmI7KCevV5ADhM0qdz/fUkbV7mmroB3SPintz/2lx+iKSzy7R7OTC4dH5J6wPnAufV0+/6jAJ+IKljbmdrSR72MjMzM7Oq4ZGypukGXJqfu1oKPE2eSkd6dmwjUnAGMBN4NeLD5XOOBK6UdBrQEbgFmAEMBS6XNJP0vowjLfJxF/BnSQcBP2qgXlkRMTefa7SkGtII3gl8FESWrA38VVJn0ujVibl8C9LUxrrtvizpKOB3efqkgIsi4q5c5Za8byhwWN3jC35Pmso4VWm47zXSyo1mZmZmVS0afCrE2hOFl9q0Bki6ATgxj/pVJE9fNDNrPz4xad+sEco87rFKliz+Z0V8FD+/wU5V/x3n2QXTKuK9aGkeKbMGRcRRrd0HMzOrHlX/DdSaxIMM1tb5mTIzMzMzM7NW5KDMzMzMzMysFbXLoEzSqZLmSJopaXpO0ry6+3CRpN3z9hhJ8yTNkDSpESsmruy5zpD0Yr7W0s+Kkj/X19bxko5u4rHDC/nGVvbY2pxUuvT6QElnNqUtMzMzs/YgYnnV/1SLdheUSRoIHAjsHBG9ScmWX2jhc3ao83o94IsRMa5QfGRE9AGuAM5vgW5cGBG1hZ83m9JIRFwVEdc3d+caoRY4oPB6JPB1SWu1Ql/MzMzMzFabdheUAT2ABRGxGCAiFkTESwCS5kvaIG/3kzQmb28o6T5JUyVdLen5Qr07JE3JI2+lZe+RtFDSWZIeBwbW6cNhwL319G8CsEmhnSslTc7tn5nLBki6LW8fJGmRpE6SOkt6trE3QlIXSbfkEcMRkh6X1K/U/0K9wyQNz9tnSDpJ0naSJhbq9MzL8CPp9DziN1vSMJVZ8khSX0lj870bJalHLh8j6VxJEyU9KWk3SZ2As4BBeZRvUE4hMIYUYJuZmZmZtVvtMSgbDWyav/BfIWmPRhzzC+DBiNgZuB3YrLDvuIjoC/QDhuYkyQBdgdkR8YWIeLhOe7sAU+o511eAOwqvT42IfkBvYA9JvYGpwE55/27AbKA/8AVSHrRyTixMXXwol/0AeC+PGP4K6FvPsZ8QEX8HOkn6fC4aBPwpb18WEf0jYgegC3UCp5wI+lLgsHzvrsnnL1kjIgaQklT/IiKWAKcDI/Io34hcb3K+fjMzMzOzdqvdLYkfEQsl9SV9md8LGCHplIgY3sBhuwKH5OPvlfRGYd9QSYfk7U2BrYB/A8uAv9TTXg9SEuSiGyV1BToAOxfKv5lH4NbIx20fETMlPS1pO2AA8Ftg93zs+HrOeWFEXFCnbHfgknxdM0sjXSvhT8A3gXNIQdmgXL6XpJOBtYD1gDmkJNcl2wA7APflQbQOwMuF/bfl31NIiaPr8yqwcbkd+Z4NAVCH7tTUdG3sNZmZmZmZVZR2F5QBRMQy0tS3MZJmAccAw4GlfDQ62LlwSNmkdJL2JD2TNjAi3svTHUvHvZ/PU86iOu0DHAnMIAU4lwPfkPQ54CSgf0S8kacQlo4bD+wPfADcn/vfIddfGfUl7iiW1+1ryQj+f3t3HidXUa9//PNkgYQkhEWMiED4IXsIgYR9MQhycWO5ICh4BeESxQVcwIviAiIKFzcWRQJi2EEUuAhCQDAECEtClklYAi4JqwoCkbCFJN/fH1VtTpqemZ5kenq6+3nndV5z+pzvqapzzvSkq6tOFVybu1JGRDwhaQDpubgxEfGUpFMqHC/g4Ygo79ZZ8mb+uYSOfwcHkK7l2wsfMR4YD5482szMzJrTUs/c1zKarvuipM0kbVLYNAqYn9fnsawL30GFmHtILUJI2gdYM28fCryUK2SbAztVWYxHgfeWb4yIt4BvAjvlVrDVgVeBBZKGkSphJZNJ3fvui4jngbWBzUmtUtWaTKoMImkEqYtkyd/zc2N9yK2EFcr7Z1LF6VukChosq4C9IGkw6fm5cnOBdfKgK0jqL2mrTsr6CjCkbNumpK6bZmZmZmZNq+kqZcBg4BJJj+TuelsCp+R9pwJnS7qbVNmgsH0fSdNJFaPnSJWEW4F+OZ3TgPurLMPNwNhKOyLideBHwAkRMQuYQapoXQzcWwh9ABhGqlgBtAFt0f6U9cVnymZKGg6cDwzO5f8a8GAh/iTgJuBOlu9aWO4a4JPk58nyqI4XArNJz8ZNrXCOi0iVtTMlzQJmArt0kAfAH4EtSwN95G17kq6lmZmZmVnTUvuf8VuHpFWBJRGxOLfunB8RKzWXmKR7gI+s6ND0tZC7X54QEdPqXZbO5JbDKyNir85i3X3RzMzMutPiRc9UfLSlp2249siW/4wz/59tveJe1FpTPlO2AjYAfp278i0CjumGNL+a0+01lbIGswHpGpqZmZmZNTW3lFnDc0uZmZmZdafe0lK2wVpbt/xnnCdfnN0r7kWtNeMzZS1N0sl5Iuq2/HzWjj2c/6TSBNUrmc5wSYd1R5nMzMzMzHozd19sIvl5uI8A20XEm5LeAaxS4zz7djA1wMoYDhwGXFmDtM3MzMzMeg23lDWXdYEXIuJNgIh4ISKeBZA0L1fSkDQmD/qBpHUk3S5puqQLJM0vxN0g6aHc8jaulImkhZK+K+kBoNJcZJ+UNEXSHEk75GMGSbpY0lRJMyTtn7f3lXRW3t4m6TM5jTOA3XNr35drcbHMzMzMzHoDV8qay23A+pIel/RzSe+r4pjvAHdGxHbA9aQBNkqOiojRwBjgOElr5+2DgDkRsWNE3FMhzUERsQvwOdJQ/wAn53y2Jw11f5akQcDRwIK8fXvgmDyp9knA3RExKiJ+0oVrYGZmZmbWUNx9sYlExEJJo4HdSRWfaySdFBETOjhsN/Lk0RFxq6SXCvuOk1SaWHp9YBPgn6Q53n7bQZpX5fQmS1pd0hrAPsB+kk7IMQNIFcB9gJGSSpNQD835LOroXHPL3TgA9R1Knz6DOgo3MzMzazhLaflxPlqGK2VNJj/fNQmYJGk2cAQwAVjMspbRAYVDKo5oI2kssDewc0S8lrs7lo57o5PnyMr/gkTO56CImFuWj4AvRsTECvm3n0HEeGA8ePRFMzMzM2ts7r7YRCRtJmmTwqZRwPy8Pg8YndcPKsTcAxySj98HWDNvHwq8lCtkmwM7daEoh+b0diN1TVwATAS+mCthSNo2x04EjpXUP2/fNHdrfAUY0oU8zczMzMwakitlzWUwcImkRyS1AVsCp+R9pwJnS7qb1P2QwvZ9JE0HPgg8R6oQ3Qr0y+mcBtzfhXK8JGkK8AvSM2PkNPoDbZLm5NcAFwGPANPz9gtILbhtwGJJszzQh5mZmZk1M08e3eIkrQosiYjFeUj98yNiVL3L1RXuvmhmZmbdqbdMHv2etUa0/Gecp1+c0yvuRa35mTLbAPi1pD6kwTWOqXN5zMzMzAxw40nrcKWsxUXEE8C2nQaamZmZmVlN+JmyJiHp5DzJc1uecHnHepfJzMzMzMw655ayJpCfBfsIsF1EvCnpHcAqNc6zbyfD4puZmZmZWRXcUtYc1gVeiIg3ASLihYh4FkDSvFxJQ9KYPN8YktaRdLuk6ZIukDS/EHeDpIdyy9u4UiaSFkr6rqQHgJ2LBZD0Xkl/yKMlTpe0saTBku7Ir2dL2j/HDpf0qKQLcx63SRqY920s6dac/915OH4zMzMzs6blSllzuA1YX9Ljkn4u6X1VHPMd4M6I2A64njTgR8lRETEaGAMcJ2ntvH0QMCcidoyIe8rSuwL4WURsA+xCGlr/DeDAnMeewI9K85QBm+T4rYCXWTZ32njSZNKjgROAn1d7EczMzMyaydKIll9ahbsvNoGIWChpNLA7qfJzjaSTImJCB4ftBhyYj79V0kuFfcdJOjCvr0+qQP2TNL/Zb8sTkjQEWC8irs/pvZG39we+L2kPYCmwHjAsH/bXiJiZ1x8ChksaTKrQXbus7saqlQqfW/DGAajvUPr0GdTBqZqZmZmZ9V6ulDWJ/HzXJGCSpNnAEcAEYDHLWkQHFA6pOOeDpLHA3sDOEfFa7u5YOu6Ndp4ja2/+iMOBdYDREfGWpHmFtN4sxC0BBuZyvlzNPGkRMZ7UquZ5yszMzMysobn7YhOQtJmkTQqbRgHz8/o8YHReP6gQcw9wSD5+H2DNvH0o8FKukG0O7NRZ/hHxL+BpSQfk9FaVtFpO6x+5QrYnsGEV6fxV0sdyOpK0TWf5m5mZmZk1MlfKmsNg4BJJj0hqA7YETsn7TgXOlnQ3qUWKwvZ9JE0HPkh6BuwV4FagX07nNOD+KsvwX6Ruj23AFOBdpOfMxkiaRmo1e6yKdA4HjpY0C3gY2L/K/M3MzMzMGpI8U3hrkrQqsCQiFuch9c+vpttgb+Tui2ZmZtadFi96pr1HM3rUu9bYouU/4/zt5Ud7xb2oNT9T1ro2AH4tqQ+wCDimzuUxMzMzM2tJrpS1qIh4Ati23uUwMzMzM2t1fqbMzMzMzMysjlqmUiZpiaSZkuZIujaPDthe7BqSPldFmlXF1ZOkCZIO7oF8JkkaswLH9fpraGZmZmZWSy1TKQNej4hRETGC9AzVZzuIXQOopqJQbVxDktQT3Vub+hqamZmZraiIaPmlVbRSpazobuC9AJK+klvP5kj6Ut5/BrBxblk7S9JgSXdImi5ptqT924lT/jknxx1aylDSiZKmSmqTdGreNkjSzZJm5WMOpYykY/JxsyT9ttTCl1vAzpE0RdJfSq1huQzn5eHxbwbeWekC5Jatn+bj50jaIW8/RdJ4SbcBl0oaIOlX+Xxm5PnGkDRQ0tX5fK4hTf5cSnthYf1gSRPy+jBJ1+dzmSVplwrXcF1Jkwutmrt38d6amZmZmTWUlhvoI7f+fBC4VdJo4NPAjoCAByTdBZwEjCgNEZ+POTAi/iXpHcD9km6sEHcQaeLmbYB3AFMlTQa2BjYBdsj53ChpD2Ad4NmI+HA+fmiFIl8XERfm/d8DjgbOzfvWBXYDNgduBH4DHAhslvMcBjwCXNzO5RgUEbvkslwMjMioJmovAAAgAElEQVTbRwO7RcTrkr4KEBFbK00mfZukTYFjgdciYqSkkcD0jq88AOcAd0XEgZL6kuZXK7+GXwUmRsTpOabdbqZmZmZmZs2glVrKBkqaCUwDngR+SarQXB8Rr0bEQuA6oFLLjIDv54mR/wCsR6rwlNsNuCoilkTE34G7gO2BffIyg1R52ZxUSZsN7C3pTEm7R8SCCmmOkHS3pNmkiZW3Kuy7ISKWRsQjhfLsUSjDs8CdHVyTqwAiYjKwuqQ18vYbI+L1wjldluMeA+YDm+Z8Ls/b24C2DvIpeT9wfj5mSTvnOxX4tKRTgK0j4pVKCUkaJ2mapGlLl75aRdZmZmZmZr1TK7WUvV4+ObKkaiejO5zUqjU6It6SNA8YUCGuvfQE/CAiLnjbjtRa9yHgB5Jui4jvloVMAA6IiFmSjgTGFva92U7e1XbALY8rvS7Wcjq6Ru3lU9xe6Tq1n2DE5Nxy92HgMklnRcSlFeLGA+PBk0ebmZmZWWNrpZaySiYDB0haTdIgUte/u4FXgCGFuKHAP3KFbE9gw7y9PG4ycKikvpLWIbUmPQhMBI6SNBhA0nqS3inp3aQugJcDPwS2q1DGIcBzkvqTKofVnNPHcxnWBfbsIPbQXJ7dgAXttFxNLuWbuy1uAMwt2z4CGFk45u+StlCamPrAwvY7SN0eyeVbnbJrKGlD0rW+kNSaWemamJmZmTW9pUTLL62ilVrK3iYipudBKB7Mmy6KiBkAku6VNAe4BTgT+J2kacBM4LF8/D/L4r4G7AzMIrUWfS0i/gb8TdIWwH25cW4h8EnSYCNnSVoKvEWusJT5FvAAqdvgbJavBFZyPamb4GzgcVIXyva8JGkKsDpwVDsxPwd+kbtPLgaOjIg3JZ0P/Cp36ZzJsmsI6Tmxm4CngDmkZ8cAjgfGSzoaWAIcGxH3lV3DOcCJkt4iXadPdXK+ZmZmZmYNTa001KQtI2kScEJETKt3WVaWuy+amZlZd1q86JlqH3GpqXWGbtbyn3GeXzC3V9yLWmvpljKzRtQsf5mq/V+mnufb8v8TdoNq718j/D50p+ofabb2+Bq2T03yTunKPa62kcG/N9ZbuVLWoiJibL3LYGZmZmZmHuijV5H0rjwh85/z5M+/z4Nr1DLPCaWJp1fg2N0kPSjpsbyMK+w7QNKWhdeTJI3pjjKbmZmZmTUTt5T1Enl4/uuBSyLi43nbKNL8Y49XebwiYmlNC7osv3cBV5KG65+eJ9WeKOmZiLgZOIA02Mcj3ZBX34hYsrLpmJmZmTUSj/3QOtxS1nvsCbwVEb8obYiImRFxN4CkEyVNldQm6dS8bbikRyX9nDQp9fqS9pF0n6Tpkq4tDMP/7Xz8HEnjK83RJumM3ELXJumHnZT388CEiJiey/oCafTJkyTtAuxHGllypqSN8zEfyy1rj0vaPefZV9JZhXP7TN4+VtIfJV1JGknSzMzMzKwpuVLWe4wAHqq0Q9I+wCbADsAoYHSeYBlgM+DSiNiWNOnzN4G9I2I7YBrwlRx3XkRsHxEjgIHAR8ryWIs0p9hWETES+F4n5d2qQnmn5eOnADcCJ0bEqIj4c97fLyJ2AL4EfCdvO5o0R9r2wPbAMZI2yvt2AE6OiC0xMzMzM2tS7r7YGPbJy4z8ejCpkvYkMD8i7s/bdwK2BO7NDWGrAPflfXtK+hqwGrAW8DDwu0Ie/wLeAC6SdDOp62FHROUB0zpqZ78u/3wIGF44t5GF59qG5nNbBDwYEX+tmHl6fm0cgPoOpU+fQZ0U18zMzMysd3KlrPd4GGhvwA0BP4iIC5bbKA0ntY4V426PiE+UxQ0gTQI9JiKeknQKMKAYExGLJe0A7AV8HPgCaRLqjso7htQiVjKajp8hezP/XMKy3z0BX4yIiWVlHlt2bsuJiPHAePA8ZWZmZmbW2Nx9sfe4E1hV0jGlDZK2l/Q+YCJwVOH5sPUkvbNCGvcDu0p6b45bLY/eWKqAvZDTeFvlL28fGhG/J3UvHJW3HyjpBxXy+hlwZB6MBElrA2cC/5v3vwIMqeK8JwLHSuqf09lUkpu9zMzMrOUtjWj5pVW4payXiIiQdCDwU0knkboSzgO+FBFPSNoCuC93S1wIfJLU4lRM43lJRwJXSVo1b/5mRDwu6ULSgBnzgKkVijAE+L/cqibgy3n7xqSujeXlfU7SJ4ELJQ3Jx/w0IkpdIq/O+46j/RZAgItIXRmn58FHnieN3GhmZmZm1hLkoTatI5IuB74cEc/XuyztabXui28bNrNBVXvT6nm+LfWLVSPV3r9G+H3oThUGwLUu8jVsn5rkndKVe1zt59lq03z99fm94iKuNWSTlv+v6MVXnugV96LW3FJmHYqIT9a7DLa8Vvvr3Grn22y6+/41y++DvxDtBr6GZtZE/EyZmZmZmZlZHblSViVJIemywut+kp6XdFN+vV9+FgxJp0g6Ia9PKAz33l7aR0p6d43K3Wn+3ZTPJEljVuC4NSR9rhZlMjMzM2tkEdHyS6twpax6rwIjJA3Mrz8APFPaGRE3RsQZK5j2kUBNKmUrQ1JPdG9dA3ClzMzMzMxalitlXXML8OG8/gngqtKO3Np1XkcHSxot6S5JD0maKGnd3Io1BrhC0sxCpa90zDGSpkqaJem3klbL2ydIOkfSFEl/KbWGKTlP0iN5EuhKQ+eXWrZ+mo+fk+coK7XyjZd0G3CppAGSfiVptqQZkvbMcQMlXS2pTdI1wMBC2gsL6wdLmpDXh0m6Pp/LLEm7AGcAG+dzPytfk8n59RxJu3d6V8zMzMzMGpgrZV1zNfDxPGz8SOCBag/M83CdCxwcEaOBi4HTI+I3wDTg8IgYFRGvlx16XURsHxHbAI8CRxf2rQvsBnyEVLkBOBDYDNgaOAbYpYNiDYqIXUgtVRcXto8G9o+Iw4DPA0TE1qSK6CX5/I8FXouIkcDp+ZjOnAPclc9lO9IE1CcBf87nfiJwGDAxIkYB2wAzq0jXzMzMzKxhefTFLoiINknDSZWT33fx8M2AEcDteTjWvsBzVRw3QtL3SN38BpMmWy65ISKWAo9IGpa37QFcFRFLgGcl3dlB2lcBRMRkSatLWiNvv7FQOdyNVJkkIh6TNB/YNOdzTt7eJqmtinN5P/CpfMwSYIGkNctipgIX50rsDRFRsVImaRwwDkB9h9Knj+ebNjMzM7PG5EpZ190I/BAYC6zdheMEPBwRO3cxvwnAARExK08MPbaw782y9EuqfSqyPK70+tV20u3s+ErbB1RZlnRgqiDuQeomepmksyLi0gpx44Hx0HrzlJmZmVlrWNo0E4FYZ9x9sesuBr4bEbO7eNxcYB1JO0Pqzihpq7zvFWBIO8cNAZ7LLUeHV5HPZFIXy76S1gX27CD20FyW3YAFEbGgnfQOz3GbAhvkcyluH0Hqzlnyd0lbSOpD6k5Zcgep2yO5fKtTdu6SNgT+EREXAr8kdXM0MzMzM2tabinrooh4Gjh7BY5blAfjOEfSUNK1/ynpuaoJwC8kvQ7sXPZc2bdIz67NB2bTfuWt5HpSN8HZwOPAXR3EviRpCrA6cFQ7MT/PZZsNLAaOjIg3JZ0P/Cp3W5wJPFg45iTgJuApYA6p2yXA8cB4SUcDS4BjI+I+SfdKmkMaSGUOcKKkt4CF5O6OZmZmZmbNSq00/r8tI2kScEJETKt3WVaWuy+amZlZd1q86JmOHt/oMUMHb9zyn3EWLPxzr7gXteaWMjMzM2t5XfnU192fkpvlE2e116VZztesO7lS1qIiYmy9y2BmZtZoWr7ZwnqUe7S1Dg/0YWZmZmZmVkeulFVBUki6rPC6n6TnJd3UyXFjJJ1T+xJ2TNLCHshjeB6sY0WOHSupo0muzczMzMyalrsvVudV0iTOA/PIiB8AnunsoDyIRkMPpCGpb57ouZbGkkZanFLjfMzMzMzMeh23lFXvFtKExgCfAK4q7ZC0g6Qpkmbkn5vl7WNLrWmSfi9pZl4WSDoiz9V1lqSpktokfaZSxpJukPSQpIcljStsXyjpdEmzJN0vaVjevpGk+3K6p7WT5nBJj0m6JOf9G0mr5X3zJH1b0j3AxySNyum3Sbpe0po5bnTO+z7g84W0j5R0XuH1TZLG5vV9JU3Px90haTjwWeDL+drsLuljkubkmMlduUlmZmZmZo3GlbLqXU2alHkAaaLkBwr7HgP2iIhtgW8D3y8/OCI+FBGjgKNJc47dkNcXRMT2wPbAMZI2qpD3URExGhgDHCdp7bx9EHB/RGxDmsz5mLz9bOD8nO7fOjinzYDxETES+BfwucK+NyJit4i4GrgU+J8cNxv4To75FXBcROzcQR7/Jmkd4ELgoFzmj0XEPOAXwE8iYlRE3E26hv+RY/arJm0zMzOzZrM0ouWXVuFKWZUiog0YTmol+33Z7qHAtfmZqp8AW1VKQ9I7gMuAwyJiAbAP8ClJM0mVvLWBTSocepykWcD9wPqFmEWkSZoBHsrlA9iVZS15/34WroKnIuLevH45sFth3zW5zEOBNSKiNAn1JcAeFbZ3lE/JTsDkiPgrQES82E7cvcAESccAfSsFSBonaZqkaUuXvlpF1mZmZmZmvZOfKeuaG4Efkp6BWruw/TTgjxFxYO6ON6n8QEl9Sa1t342I0oAYAr4YERPbyzB3+9sb2DkiXsuTPg/Iu9+KZWOlLmH5+1nNVwvlMcXXndV01EEei1m+wl8qb0fHLCtExGcl7UjqLjpT0qiI+GdZzHhgPHjyaDMzMzNrbG4p65qLSZWq2WXbh7Js4I8j2zn2DKAtdwcsmQgcK6k/gKRNJQ2qkPZLuUK2Oam1qTP3Ah/P64d3ELeBpFLXw08A95QH5Ba9lyTtnjf9F3BXRLwMLJBUal0r5jMPGCWpj6T1gR3y9vuA95W6aEpaK29/BRhSOljSxhHxQER8G3iB1DpoZmZmZtaUXCnrgoh4OiLOrrDrf4EfSLqXdrrbAScA+xQG+9gPuAh4BJieuz5ewNtbL28F+klqI7XI3V9FUY8HPi9pKqlS155HgSNy2msB57cTdwRwVo4bBXw3b/808LM80Mfrhfh7gb+Snj/7ITAdICKeB8YB1+XumNfk+N8BB5YG+sh5zc7XZDIwq4pzNjMzMzNrSPJM4a0pd7O8KSJG1LkoK83dF83MbGWpyrha/IdTbd69XbXXphHO961Fz/SKYg5abXjLf8Z59bV5veJe1JqfKbOG1xLvVDOzTjTTB+LerBbXr7vvXb0+xXf3tWn52oi1FFfKWlQeir7hW8nMzMzMzBqdnylrh6Ql+RmnWXmy411WII15eRj8uuqpckhauILHjZL0oe4uj5mZmZlZI3ClrH2v58mMtwG+Dvyg2gOVNMW1ldQTramjAFfKzMzMzKwlNUXFoQesDrwEIGmwpDty69lsSfvn7cMlPSrp56TRBpcbxl3SJyU9mFvfLpDUV9LRkn5SiDlG0o/LM5d0fp4o+WFJpxa2z5N0aqEsm+fta0u6TdIMSRfQTjdvSQsl/Sgff4ekdfL2SZK+L+ku4HhJG+b9bfnnBjluI0n3SZoq6bRCumMl3VR4fZ6kI/P69pKm5BbIB/Mk1N8FDs3X5lBJ7yuMUjlD0hDMzMzMWszSiJZfWoUrZe0bmCsFj5GGri9VOt4ADoyI7YA9gR9JKlV6NgMujYhtI2J+KSFJWwCHArtGxCjSRM+HkyaT3q80TxlpiPlfVSjLyRExBhhJmudrZGHfC7ks55OG3Qf4DnBPRGxLmvB6g3bOcRAwPR9/Vz6uZI2IeF9E/Ag4L5/XSOAK4JwcczZwfkRsD/ytnTz+TdIqpGHwj88tkHuTJqn+NnBNbpm8Jp/H5/O12p3lh9s3MzMzM2sqrpS1r9R9cXNgX+DSXPkS8P08Z9cfgPWAYfmY+RFRaR6xvYDRwFRJM/Pr/xcRrwJ3Ah/JrVz9K0xMDXCIpOnADGArYMvCvuvyz4eA4Xl9D+BygIi4mdzKV8FSls0VdjmwW2HfNYX1nYEr8/plhbhdgasK2zuzGfBcREzNZftXRCyuEHcv8GNJx5Eqh2+LkTQutx5OW7r01SqyNjMzMzPrnTz6YhUi4r48UMY6pGef1gFGR8RbkuYBA3Joe7UDAZdExNcr7LsI+AbwGBVaySRtRGo52j4iXpI0oZAfwJv55xKWv58r0t5bPKajmk60s16ymOUr/KXyqppyRcQZkm4mXev7Je0dEY+VxYwHxgP09zxlZmZmZtbA3FJWhdyK1Rf4JzAU+EeukO0JbFhFEncAB0t6Z05vLUkbAkTEA6Tnzw5jWatT0eqkCtICScOAD1aR32RS90gkfRBYs524PsDBef0w4J524qYAH8/rhxfi7i3bXjIf2FLSqvmZsb3y9seAd0vaPpdtSB5I5BXg38+NSdo4ImZHxJnANGDzjk/XzMzMzKxxuaWsfQNzV0NILTxHRMQSSVcAv5M0DZhJqmh0KCIekfRN4LY8KuNbwOdJlReAXwOjIuJt3QwjYpakGcDDwF9IFaHOnApclbs83gU82U7cq8BWkh4CFpCee6vkOOBiSScCz5OefQM4HrhS0vHAbwtlfkrSr4E24AlSt0siYpGkQ4FzJQ0kPSu2N/BH4KR8vX8A7JYrvEuAR4BbqjhnMzMzs6YSLTTQRauTb3b95ZEKfxIRd/RwvgsjYnBP5lkL7r5oZlZ9n/WKw/FaXXX3vavXf4rd/btVz//cFy96ple8VQYM2KDlP+O88caTveJe1JpbyupI0hrAg8Csnq6QNZOW/2tlZtYF/pvZuHr7vevt5TPrzVwpq6OIeBnYtI75N3wrmZmZmZlZo2u6gT4kLcnzi82R9LvcGoWkd0v6TTfl8SVJn8rrEyS9VpzgWNLZkiKP2IikKfnncElz8vpyEyxXme8kSWPa2T63MOHyCp+npIskbdl5ZMVj55XOeQWOPaCYr6QfSnr/iqRlZmZmZtZImq5SxrL5xUYAL5IG1CAino2Igzs+tHN5tMCjWDZvF8CfgP3z/j6kSaWfKe2MiF1WNt8qHJ7Pe9TKnGdE/HdEPNKdBavSASw//9q5wEl1KIeZmZlZrxD+V+9b0GOasVJWdB9pcufyVqq+uSVmtqQ2SV/M20dLukvSQ5ImSlq3QprvB6aXTWh8FctGLhxLGiHx3/slLeyokJIGSbpY0lRJMySVKngDJV2dy3gNMLArJy9pI0n35XRPK5WjvJVO0nmSjszrkySNkXSspP8txBwp6dy8fkO+Rg9LGtdO3p+U9GBuubtAUt/StZB0uqRZku6XNEzSLsB+wFk5fuOImA+sLeldXTlnMzMzM7NG07SVslwJ2Au4scLuccBGwLYRMRK4QlJ/UuvMwRExGrgYOL3CsbsCD5VtewJYR9KawCeAq7tY3JOBOyNie1Ir21mSBgHHAq/lMp4OjO4gjSsK3RfPytvOBs7P6f6ti2X6DfCfhdeHAtfk9aPyNRoDHCdp7eKBkrbI8btGxCjS0PalecwGAfdHxDak+dSOiYgppPt0Ym7p+3OOnU663mZmZmZmTasZB/oozS82nFR5ur1CzN7AL0qtXRHxoqQRwAjgdkmQJot+rsKx6wKPVth+HWki5R2Bz3SxzPsA+0k6Ib8eAGwA7AGck8vYJqmtgzQOj4hpZdt2BQ7K65cBZ1ZboIh4XtJfJO1EqnRuxrI50o6TdGBeXx/YhDSxdslepArk1HwtBwL/yPsWAaVWuoeAD3RQjH8A7660I7fQjQNQ36H06TOo2lMzMzMzM+tVmrFS9npEjJI0lPTh//Pkik2BePvIrQIejoidO0ufVGkqdzWpZeeSiFiaKyPVEnBQRMxdbmNKY2U701Y6fjHLt5JWOh9ILWOHkCbIvj4iQtJYUqV254h4TdKkCseLdB2+XiHNt2LZ5HhL6Ph3cADper9NRIwHxgP08zxlZmZmZtbAmrb7YkQsAI4DTshdE4tuAz6bB+1A0lrAXFIXxJ3ztv6StqqQ9KPAeyvk9ySpG+LPV6C4E4EvKtfCJG2bt08md/vLLXkju5juvaTWO1jWfRBgPrClpFVz5XWvdo6/jjQAxydY1nVxKPBSrpBtDuxU4bg7gIMlvTOXfS1JG3ZS1leAIWXbNgXmdHKcmZmZmVlDa9pKGUBEzABmsaxiUnIR8CTQJmkWcFhELAIOBs7M22YClUZNvIXUrbBSfhcUnofqitOA/rk8c/JrgPOBwbnb4tdIE023p/hM2R/ytuOBz0uaSqpMlcr5FPBroA24ApjRzvm8BDwCbBgRpbxvBfrlMp0G3F/huEeAbwK35bjbSd0+O3I1cGIe6GTjXJF+L1DeJdPMzMysJUREyy+tQq10st1F0vXA1yLiiXqXpSskLWyUCaPzM2vbRcS3Oot190UzMzPrTosXPdOl51BqZZVV39Pyn3EWvfl0r7gXtdbULWU1dBKdt/zYyukH/KjehTAzMzMzqzW3lFnDc0uZmZmZdSe3lPUebikzMzMzMzOzmnOlrIykn0j6UuH1REkXFV7/SNJXJI2VdFPlVLqc5wGStuyOtCqkfUph/rOakTRB0sEreOw3urs8ZmZmZo2u3oNs9IalVbhS9nZTyKMuSuoDvAMoDo2/C8smUe4uBwA1qZStjNKUAT3AlTIzMzMza1mulL3dvSwbCn8r0jxZr0haU9KqwBYsG0J+sKTfSHpM0hWFecZGS7pL0kO5pW3dvP0YSVMlzZL0W0mrSdoF2A84Kw9nv3GxMJI+KumBPFT8HyQNy9tPkXSxpEmS/iLpuMIxJ0uam4fG36zSSeaWrV9IulvS45I+krcfKelaSb8jDWkvSWdJmiNptqRDc5wknSfpEUk3A+8spD1P0jvy+pg8wTSSBkv6VU6nTdJBks4ABuZzv0LSIEk352s0p5SfmZmZmVmz6qmWkIYREc9KWixpA1Ll7D5gPWBnYAHQFhGLcv1rW1LF7VlSZW5XSQ8A5wL7R8TzuVJxOnAUcF1EXAgg6XvA0RFxrqQbgZsi4jcVinQPsFNEhKT/Js1X9tW8b3NgT9Kky3MlnU+aYPrjuWz9gOnAQ+2c7nDgfcDGwB8llSbF3hkYGREvSjoIGAVsQ2o1nCppco7ZDNgaGEaaz+ziTi7vt4AFEbF1vgZrRsRvJX0hIkblbQcBz0bEh/Proe0nZ2ZmZmbW+Fwpq6zUWrYL8GNSpWwXUqVsSiHuwYh4GkDSTFIl52VgBHB7rrj1BZ7L8SNyZWwNYDAwsYqyvAe4Jre2rQL8tbDv5oh4E3hT0j9IlaPdgesj4rVcrhs7SPvXEbEUeELSX0iVPIDbI+LFvL4bcFVELAH+LukuYHvSBNql7c9KurOKc9mbwkTekSanLjcb+KGkM0kV1bsrJSRpHDAOQH2H0qfPoCqyNzMzMzPrfdx9sbLSc2Vbk7ov3k9qGSp/nuzNwvoSUiVXwMMRMSovW0fEPjlmAvCF3FJ0KjCgirKcC5yXj/lM2TGV8geo9qnI8rjS61cL2zoahrS9fBaz7HerWF51VraIeBwYTaqc/UDSt9uJGx8RYyJijCtkZmZm1ozCS1Uk7Zsf3fmTpJOqPKxXcaWssnuBjwAvRsSS3Gq0Bqlidl8nx84F1pG0M4Ck/pJKA4UMAZ6T1B84vHDMK3lfJUOBZ/L6EVWUfTJwoKSBkoYAH+0g9mOS+uTn2P5fLnul9A6V1FfSOqQWsgfz9o/n7euSulGWzCNVrAAOKmy/DfhC6YWkNfPqW/maIOndwGsRcTnwQ2C7Ks7ZzMzMzFqQpL7Az4APkgbO+4RqNKp5LblSVtls0vNT95dtWxARL3R0YEQsAg4GzpQ0C5jJsoFDvgU8ANwOPFY47GrgxDyYx3IDfQCnANdKuhvoMO+c/3Tgmpzvb4GK3f+yucBdwC3AZyPijQox1wNtwCzgTuBrEfG3vP0J0nU5P6dTcipwdi7zksL27wFr5gE8ZrGsIjceaJN0Bal18sHcHfTkfIyZmZmZWSU7AH+KiL/kz+FXA/vXuUxdplYa/9+WkTSB9gcXaSj9VlnPv8RmZmbWbRYveqajxzd6jD/jdH4vlObJ3Tci/ju//i9gx4j4QkfH9Tr1nhDOS90m4psAHFzvctTw/MY5rvZxjVDGZolrhDI2S1wjlLHV4hqhjM0S1whlrOe18dLzC2lgt2mFZVzZ/o8BFxVe/xdwbr3L3eXzrHcBvHipxQJMc1zt4xqhjM0S1whlbJa4Rihjq8U1QhmbJa4RyljPa+Ol9y2kMR8mFl5/Hfh6vcvV1cXPlJmZmZmZWaOaCmwiaSNJq5CmX+poSqheyfOUmZmZmZlZQ4qIxZK+QJr/ty9wcUQ8XOdidZkrZdasxjuuR+LqmXerxdUz71aLq2fejut9ebdaXD3z7u1x1ktFxO+B39e7HCvDoy+amZmZmZnVkZ8pMzMzMzMzqyNXyszMzMzMzOrIz5SZmZlZU5M0FNgXWA8I4FnSENov1zjfdwFExN8krQPsDsztbBACSd+PiG/UsmxdJWkP4O8RMVfSbsBOwKMRcXOdi2bWFNxSZk1L0rfLXv+HpKMlDS/bflRhXZIOkfSxvL6XpHMkfU5Sh+8XSXdW2PaOstefzOmNk6TC9gMlrZXX15F0qaTZkq6R9J5C3I8l7VrFua8l6duS/jufx8mSbpJ0lqQ1y2L3lHSepP+T9FtJZ0h6bzvp/oek8yXdmOPPl7RvZ+UpHO970v33ZHNJ/5PP4ey8vkVn5Skc/+kK6e0laXDZ9n3LXu8gafu8vqWkr0j6UBX5XVpFzG45vX3Ktu8oafW8PlDSqZJ+J+lMpQ/dpbjjJK1fRT6rSPqUpL3z68Pydf+8pP4V4jeWdEK+zj+S9NlivoU4v09W8H2SY7v1vSLpU8B0YCywGjAI2BN4KO+rpkwfKHu9uqSNK8SNLKx/BrgPuF/SscBNwEeA6yQdXYg7p2w5F/hc6XUHZdpI0n9K2rxs+8ZgIBYAABENSURBVAaSBuR1Sfq0pHMlHSupXyFuv1JcFef/U+AM4DJJpwH/CwwEvizprLLYwZIOlvRlSV+UtG+l30E12N8us1rzQB/WtCQ9GREb5PXvA7uR/mP+KPDTiDg375seEdvl9Z8D7wRWAf4FrAr8DvgQ6RvC43NcW3l2wKbAXICIGFkh7W+SviW9kvQf89MR8eW875GI2DKvXwPcD1wL7A0cHhEfyPueB+YD6wDXAFdFxIwK5/57YDawOrBFXv818AFgm4jYP8edAQwD7gAOAP4KPA58Dvh+RFxbSPOn+RwvBZ7Om98DfAp4onRtOuJ70u335H+ATwBXs/w9+ThwdUSc0f7d+HcaxXtyHPB54FFgFHB8RPxfhev2HeCDpN4WtwM7ApPytZkYEafnuPJ5YkT6MHwnQETsl+MejIgd8voxuQzXA/sAvyudh6SH87VaLGk88BrwG2CvvP0/c9wC4FXgz8BVwLUR8XyFc78in8NqwMvAYOC6nJ4i4ohC7HGk39O7SL97M4GXgAOBz0XEpBzn98lKvE9ybLe+VyTNBXYsbxXLFbwHImLT9u5FIbZ4Tw4Bfgr8A+gPHBkRUytct9mk98bAfO7vzS1mawJ/jIhROe5p0vvntnw/AH4InAAQEZfkuBsi4oC8vn8uwyRgF+AHETEh75sD7BARr0k6E9gYuAF4f07vqBz3Oul9cgvpfTIxIpa0c/4PAyPyuTwDrJfT7w/MiIgRhWtzIjCL9F6fQmoA2Jr0+zA7x/Xqv11mdVHv2au9eFmZhfTho9LyCrC4EDcb6JfX1yANm/qT/HpGMS7/7A/8E1glv+5X2pdf3whcDmwObAgMB57K6xsW4oppTwcGFdIvpje3sP5Q2TnOLE8P2AT4FvAw8BjwHWDT8mNI/8E/00F6xTL0A+7N62sCc8qOe7ydeyDSh03fkzrcE6B/hXuyStk9aWtnmQ28WXZPBuf14cA00oebt90T0lwwq+V7u3rePhBoK7u+l5NaKN6Xfz6X19/Xzj2ZCqyT1weVXY9Hi2l3dE9IHwT3AX4JPA/cChwBDClel8J1/jvQt3CP2srSn13YvxowKa9vUFZ+v09W4n1Si/cK6X0ytMI9GVp2T25sZ/kd8GqxDMC6eX2HfB7/Wem6FdZnleVdjBtCqmBdSarsAPylQnmLx0wBNsrr7yimDzxSvCdAn0rlIL1P1gSOIVVs/w78gsJ7sxA7J/8cQPoyYmB+3bcsvzZgtUK5Jub1kcCUsnvSa/92efFSj8XdF63RvQxsEhGrly1DSB/+SvpFxGKASN+WfhRYXdK1pP8ESkoxbwFTI2JRfr0Y+Pc3iJG+4f8taW6TbSJiHvBWRMyPiPmF9AZK2lbSaNIHulcL6Re/kZwk6buSBub10rehewILCnGRj38iIk6LiK2AQ0j/URbn5+iTv41dHxis3O1J0tpl57tUuesR8G7Sf1ZExEss+8a25A1JO/B22wNvFF77nvTcPVmaY8qtm/eVDCO11Hy0wvLPQlzfiFiY85tHqkR9UNKPy/JeHBFLIuI14M8R8a98zOtl+Y4hfSg8GVgQqTXp9Yi4KyLuKr82+VoocqtWvjeLC3FzCl2WZkkaAyBpU+CtQlxExNKIuC0ijs7X6OekZ4r+UpbvKqQPxauRPqRDamV6W/dFlj2HvWo+hoh4sizW7xNW6n0C3f9eOR2YrtSN9Bt5+QWpsllsGdkduAD4UYVlYSGub0Q8l/N6kNQidHJurYmy8pV+Nz5c2qjUZfDfn78i4pWI+FLO53JJJ1D58ZJi2v0i4q/5+BdY/n33lKT35/V5pOtYun7LpRcRL0XEhRGxF7AN8AhwhqSnymJvlnQ3cDdwEfBrSSeTWtkmF+IEvJ7XXyW13hIRbaSWz5Le/rfLrOfVu1boxcvKLMD3SN00Ku07s7B+E5W//fsesLTw+hbyt21lce8CHqywfRDwY9K3qU9X2P/HsqX07erawLRCXH/gFODJvCwlfWN+JbBBIW5GpXOtkO8nSN96/h04CPhDXp4BxhXiDiV1q7kt5/vhvH0d4MqyNEcDD5D+074tL4/mbaMb6J5M6kX35PaVvCf7An/K12h8Xm7N2/YtxP0S2K2dcl1ZWL8TGFW2vx+pK96SwrYHWPZtePFb+KGUtWDl7e8hdWk7D3iywv55pMrSX/PPd+Xtg1m+ZWQoMIHULfEBUkXsL6QuhdtUc0/I3/Dn9S/n4+cDx5FaCy4kfZv+nbLjjid9Qz+e1DLy6cJ9mVyI247meJ/U5W9XDd8ra5K6xn2V1C3w48CaZTG3AHu2U6biPZ4CbFy2f0j+/Sm23mxA5dag9YC928lHpG54l1fYt4RlramLWPY+WYXlW6jXz/dsMqmV7yXSe3sGsFeV75MNK2zbGdgpr2+cr+MhLP834ExgIvANUgXuG3n7WsDDhbiG+NvlxUtPLn6mzFpC/haXSN+Gle9bLyKe6eT4QaTuO/9oZ/82wM4R8Ysqy9MHGBDp27ryfUNJ34L+s8K+wZG/Dawij76kVofFSg93jyJ1BXquLG4t4P8Bf4oqRiJTGk1sPdKHh6cj4m/VlKdCOr3tnvQFVm20e5J/l3agcE9ILSUVnw3pJK33kL5Jfts9lbRrRNyb11eNiDcrxLyD9OF9djvpfxjYNaocVU7SasCwyC0Che1DSNenH+l38O9l+zeNiMerzOPdABHxrKQ1SM+WPBmpBaQ8divSM05zIuKxTtL1+2T5fVW/Twr5dPd7ZRiF0RfLf2+6ULZtgNci4omy7f2BQyLiihXJd0XLl39vt4iI+8q2b0F6XrAfy/4uLC3sHxv5WchqVVNGpUEztiR1lbw9b+tDqqC+WYhrmL9dZj3BlTJraLnr0VuRf5Fzl5ntSH3cb3Fc98TlfSMjdUHpkON6Jq4QvwHwr4h4OXfzGkN69urhKuIei4g5jus8bgVix5BaLBaTnpGpWIlzXPuV2+5KU9Io0rNSQ0kf/EVqvX2ZNEjL9LL4bqlEleVbqjyX8j028kAnncTVrHxdiatVGdspT1UV+HrFmdVM9ILmOi9eVnQhjfC0Zl4/kdSt5Jukri5nVBn3gzrFNUz58v4lpK4lpwFbdnBPHNcDcTn2JFKXv8eA/84/f0kaROErjuueuC6m+T7SIAN/IHUbuwm4l9Rtdn3HdRxXo7xnkkZfLH//7MTyA19sSxo98lGWdfl+LG/brhA3qoO4bVcg3+4o37ZVlq/a89iurCzVlrHqNDv4u/a2Ls69Kc6Ll1otdS+AFy8rs7D8CFvTWDYiVD+W72PvuJWIy9tmkIZEPp1UaZhF+qA63HE9H5djHyaNGrY26TmT4qiFcxzXPXFdTHNGYd9GwPV5/QPAbY7rOK5GeT9RTL8srz8V1ru7ElVtvvUqX1VxNSrjV9pZvgq8WO84L17qsXj0RWt0/5I0Iq+/QBrJC1Kloo/jui0O0khdcyLi5Ih4L2kY5XcCd0ua4rgej4P0APvrpC5Er5NHI4s8Up7jui2uK7F9Y9mcaE+Shpon0rM16zmu07hapHmLpJslHSppl7wcKulm0uASJYMi4oGyshAR95Mq312NqzbfepWv2rhalPH7pMFXhpQtg1n+/556xZn1OD9TZg1N0kjgMlJrAsCupJHYRgI/jogrHbfycTl2RkRsW+EeCNgj8hDnjuuZuLxtAmnktUGkiZQXkz4gvZ80H9chjlv5uC6meTHpOZo7gP1Jg1N8RWnQkukRsbnj2o+rYZofzDHFQSVujIjfF2LOIY0qeClp7jZIz6p9CvhrRHyhK3HV5luv8nXlPGpQxinAFyPiIcpIeioi1q9nnFk9uFJmDU9plK59WH6UqYlRNhKX41Y67rBiJa09juuZuBzbD/gY6YPpb4AdScOJPwn8LHIrjuNWLq6LafYntW5uSfqy4+KIWKI0iuI7I88F5rjKcbVKs1rdWYmqhe4uXy3Oo8rK22ak7oLPVzh+WOSBQeoVZ1YPrpSZmZlZ01Iaqv/rpIrCO/PmfwD/RxrQqNOpQGqZb73K1xWNUEazRuf+s9bQJA2W9F1JD0taIOl5SfdLOtJx3RfXCGVstbhOYo9wXPfFrWCac6q8z45r/1p3V5q/Jo3OuGdErB0RawN7kp4PvLaQ3lBJZ0h6VNI/8/Jo3rZGV+Oqzbde5evCedSyjI/1xjizenBLmTU0Sf8HXE8advcQ0vMeV5OGdX8m8iS1jlu5uEYoY6vFNUIZmyWuEcrYLHE1yntuRGxGBcV9kiYCdwKXRJ6EWGkS8COBvSLiA12MqzbfepWvqrgeLuMRwN71jjOri+gFQ0B68bKiC28ftndq/tmHNKmr47ohrhHK2GpxjVDGZolrhDI2S1yN8r4N+BowrLBtGPA/wB8K2+YW0ytLe+4KxFWbb73KV1VcI5SxFufsxUtPL+6+aI3uVUm7AUj6KPAiQEQsBeS4botrhDK2WlwjlLFZ4hqhjM0SV4s0DyXNL3eXpBclvUiaYHotUgtbyXxJX5M0rLRB0jBJ/8OykQS7EldtvvUqX7VxjVDGWpyzWc+qd63Qi5eVWUhDtz9I6td+D7Bp3r4OcJzjuieuEcrYanGNUMZmiWuEMjZLXK3SrGYhzV91JvAYqYL3IvBo3rZWV+O6e+nu8tXiPOpVxt5+77x4qWbxM2VmZmbW1CRtThqi/f5YfqqDfSPi1vaP7Jl861W+rmiEMpo1MndftKYl6dOOq31cPfN2XO/Lu9Xi6pl3q8WtaJqSjiMN3f5F4GFJ+xdCv1923OaS9pI0qGz7vl2NqzbfepWvi3GNUMZujTPrcfVuqvPipVYL8KTjah/XCGVstbhGKGOzxDVCGZslbkXTBGYDg/P6cGAacHx+PaMQdxwwF7gBmAfsX9g3fQXiqs23XuWrKq4RyliLc/bipaeXfpg1MElt7e0ijQzluG6Ia4QytlpcI5SxWeIaoYzNElejNPtGxEKAiJgnaSzwG0kb5tiSY4DREbFQ0vAcMzwizl7BuGrzrVf5qo1rhDLW4pzNepQrZdbohgH/QZrUskjAFMd1W1wjlLHV4hqhjM0S1whlbJa4WqT5N0mjImImQP5A/hHgYmDrQlx3V6Kqzbde5as2rhHKWItzNutRrpRZo7uJ1KViZvkOSZMc121xjVDGVotrhDI2S1wjlLFZ4mqR5lJgQHF/RCwGPiXpgsLm7q5EVZtvvcpXbVwjlLEW52zWozzQhzW6dwPPVNoREYc5rtviGqGMrRbXCGVslrhGKGOzxNUizfHApZJOltS/LO7ewsuKFY+I+BSwxwrEVZtvvcpXbVwjlLEW52zWs6IXPNjmxcuKLqRJKx8HTgb6O642cY1QxlaLa4QyNktcI5SxWeJqmOYg0lxUs4ATgK+UlnrnW6/ydeU8ensZa3XOXrz05OJ5yqzhKQ1r+21gX+Ay0jdhAETEjx3XPXGNUMZWi2uEMjZLXCOUsVniapT3KsBJwGHANWVxp/aCfOtVvq7ck15dxlqcs1lP8jNl1gzeAl4FVgWGUPgD67hujWuEMrZaXCOUsVniGqGMzRLXrWkqzT/1Y+BGYLuIeK035Vuv8nUlrhHKWIM4s55V76Y6L15WZiF90/UIcAawmuNqE9cIZWy1uEYoY7PENUIZmyWuRnnfDWzVUZ51zrde5evKPenVZazFOXvx0tNL3QvgxcvKLDX4T89xvSxvx/W+vFstrhHK2CxxtUqzN+dbr/LV4jx6++9Xve6dFy/VLH6mzMzMzMzMrI48JL6ZmZmZmVkduVJmZmZmZmZWR66UmZmZmZmZ1ZErZWZmZmZmZnXkSpmZmZmZmVkduVJmZmZmZmZWR/8fWZ+pNy/cxB4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_item_df = item_df.drop([\"Item_Name\",\"Sum\",\"Production_Rank\"], axis = 1)\n", + "fig, ax = plt.subplots(figsize=(12,24))\n", + "sns.heatmap(new_item_df,ax=ax)\n", + "ax.set_yticklabels(item_df.Item_Name.values[::-1])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "825620f9-7ab5-4fe2-9529-c4f1a300138e", + "_uuid": "5c42595537332ea71089d8c3dc041d3bf7d41b55" + }, + "source": [ + "There is considerable growth in production of Palmkernel oil, Meat/Aquatic animals, ricebran oil, cottonseed, seafood, offals, roots, poultry meat, mutton, bear, cocoa, coffee and soyabean oil.\n", + "There has been exceptional growth in production of onions, cream, sugar crops, treenuts, butter/ghee and to some extent starchy roots." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "80428f51-2fd4-468d-9530-9279215b4218", + "_uuid": "4c9bb27cd76099c5348243a99448c509ef0c5ded" + }, + "source": [ + "Now, we look at clustering." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "a3f1db3a-1b82-4e42-8e7d-f1a26915693b", + "_uuid": "da167de5a5b92e164fc6993b32ebbfab4ef9a6e3", + "collapsed": true + }, + "source": [ + "# What is clustering?\n", + "Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "136315a0-b37d-4d89-bd0d-037727062c34", + "_uuid": "04ab802ec92eaf6a27706f2008933dcf3865855a" + }, + "source": [ + "# Today, we will form clusters to classify countries based on productivity scale" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "27ba0b5d-c57e-485d-9588-017e16fe1904", + "_uuid": "659afdada04e8854765b5e7208394915b30f859a" + }, + "source": [ + "For this, we will use k-means clustering algorithm.\n", + "# K-means clustering\n", + "(Source [Wikipedia](https://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm) )\n", + "![http://gdurl.com/5BbP](http://gdurl.com/5BbP)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "7aeb3175-33bd-4f49-903a-57d43380e90e", + "_uuid": "6b0b4881e623ed3c133b68b98e6fb6755e18fd78" + }, + "source": [ + "This is the data we will use." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "_cell_guid": "a5b99ea8-975f-4467-9895-bffe1db876eb", + "_uuid": "57aba4000bfc422e848b14ad24b02a570d6c0554" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013Mean_ProduceRank
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...18317.019248.019381.020661.021030.021100.022706.023007.013003.05660469.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6911.06744.07168.07316.07907.08114.08221.08271.04475.509434104.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...51067.049933.050916.057505.060071.065852.069365.072161.028879.49056638.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...28247.029877.032053.036985.038400.040573.038064.048639.013321.05660468.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...110.0122.0115.0114.0115.0118.0113.0119.083.886792172.0
\n", + "

5 rows × 55 columns

\n", + "
" + ], + "text/plain": [ + " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", + "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", + "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", + "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", + "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", + "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", + "\n", + " Y1967 Y1968 Y1969 Y1970 ... Y2006 \\\n", + "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 18317.0 \n", + "Albania 2046.0 2169.0 2230.0 2395.0 ... 6911.0 \n", + "Algeria 7986.0 8839.0 9003.0 9355.0 ... 51067.0 \n", + "Angola 5833.0 5685.0 6219.0 6460.0 ... 28247.0 \n", + "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 110.0 \n", + "\n", + " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 \\\n", + "Afghanistan 19248.0 19381.0 20661.0 21030.0 21100.0 22706.0 \n", + "Albania 6744.0 7168.0 7316.0 7907.0 8114.0 8221.0 \n", + "Algeria 49933.0 50916.0 57505.0 60071.0 65852.0 69365.0 \n", + "Angola 29877.0 32053.0 36985.0 38400.0 40573.0 38064.0 \n", + "Antigua and Barbuda 122.0 115.0 114.0 115.0 118.0 113.0 \n", + "\n", + " Y2013 Mean_Produce Rank \n", + "Afghanistan 23007.0 13003.056604 69.0 \n", + "Albania 8271.0 4475.509434 104.0 \n", + "Algeria 72161.0 28879.490566 38.0 \n", + "Angola 48639.0 13321.056604 68.0 \n", + "Antigua and Barbuda 119.0 83.886792 172.0 \n", + "\n", + "[5 rows x 55 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "_cell_guid": "66964df2-892d-4e55-a4b1-f94d10e4c7dd", + "_uuid": "19bdd89a3ad9df962959ad6b996946f6f3916d58" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: convert_objects is deprecated. To re-infer data dtypes for object columns, use DataFrame.infer_objects()\n", + "For all other conversions use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n", + " after removing the cwd from sys.path.\n" + ] + } + ], + "source": [ + "X = new_df.iloc[:,:-2].values\n", + "\n", + "X = pd.DataFrame(X)\n", + "X = X.convert_objects(convert_numeric=True)\n", + "X.columns = year_list" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "461e5bcc-0101-4ea1-ae13-20600f883929", + "_uuid": "0d3e50235c9505ebc255053d4a5aae547fc17d8d" + }, + "source": [ + "# Elbow method to select number of clusters\n", + "This method looks at the percentage of variance explained as a function of the number of clusters: One should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. More precisely, if one plots the percentage of variance explained by the clusters against the number of clusters, the first clusters will add much information (explain a lot of variance), but at some point the marginal gain will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the \"elbow criterion\". This \"elbow\" cannot always be unambiguously identified. Percentage of variance explained is the ratio of the between-group variance to the total variance, also known as an F-test. A slight variation of this method plots the curvature of the within group variance.\n", + "# Basically, number of clusters = the x-axis value of the point that is the corner of the \"elbow\"(the plot looks often looks like an elbow)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "_cell_guid": "06271223-bd32-48ac-a373-6c1e6bbf7c7b", + "_uuid": "c57d7277510a8c11fdc3d311e4d8a22539617ed9" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcXHWd7vHPU72ks3fHNDEk3R02WWRLpWEQVNzuDLiAe0AZ98EFRL06zoz3jnq9M1edcZxxxA1REeWCERgBxX1BREU6CyGIQAxLdwhkIXsnvdV3/jinO5Wm090JXV3b83696tXnnDp1zvcUoZ4651e/31FEYGZmBpApdgFmZlY6HApmZjbEoWBmZkMcCmZmNsShYGZmQxwKZmY2xKFgJUXSxyV9exL2s0hSSKpN538l6R2F3u9kmMhjkXSVpH+aiG1ZeXAo2KSStCvvkZO0J2/+jRO8r6sk9Q7b590TuY9DlRdKK4Ytn5vW/PA4tzMpIWrVw6FgkyoiZgw+gEeBV+Qtu6YAu/yX/H1GxCkF2MfTMV3SiXnzbwAeKlYxZg4FK0X1kq6WtFPSvZLaB5+QdLikGyRtkvSQpMsmcL9HSfqDpO2SbpI0J2+/56W1bEsvzxyfLn+rpFvy1lsraVnefKekU0fZ57eAN+fNvwm4On+FAx2zpHOAjwBLRzgLapN0R/oe/kTS3LGOJX1usaQV6eu+AzSM762zSuFQsFJ0HnAd0AjcDFwOICkD3ALcDSwAXgy8X9JfTdB+3wS8DTgc6Af+M93vs4BrgfcDzcCtwC2S6oHbgOdJykiaD9QBZ6WvOxKYAaweZZ/fBi6QVJN+OM8E7hx8crRjjogfAf8P+M4IZ0FvAN4KHAbUAx8a61jS4/keSVDNAb4LvOag3kEre2UZCpK+LmmjpDXjWPf56TeffkmvHeH5WZLWS7q8MNXaIfhNRNwaEQMkH1CDH3anAc0R8YmI6I2IdcBXgQtG2daH0m/Eg49vjrLutyJiTUTsBv4ReL2kGmAp8IOI+GlE9AGfAaYCZ6Y17AROBc4Gfgysl3RcOn97RORG2WcXcD/wEpIzhquHPX8oxwzwjYh4ICL2AMvS+hjtWIAzSELtPyKiLyKuB+4aYz9WYWqLXcAhuork2+Pw/4FG8ijwFtJvSiP4vyTf9qx0PJ433Q00pL8SagMOl7Qt7/ka4PZRtvWZiPjf49xvZ970IyQfkHNJzhweGXwiInKSOkm+uUPy7+cFwNHp9DaSQHgO4/u3dTXJv9EzgecDx+Q9dyjHDE99D2ek06MdywCwPvYfJfMRrKqU5ZlCRPwaeDJ/maSjJP1I0nJJt6ff1IiIhyNiNfCUb2uSlgDzgJ9MRt32tHUCD0VEY95jZkS8dIK235I33Qr0AZuBx0g+nAGQpHTd9emiwVB4Xjp9G0konM34QuEG4GXAuogY/iE81jEf7DDHox3LBmBBumxQ60Fu38pcWYbCAVwBvDcilpCcFXxxtJXTa7X/BvztJNRmE+MPwA5Jfydpanod/kRJp03Q9i+SdIKkacAngOvTS1jLgJdJerGkOuCDQA/w2/R1twEvBKZGRBfJt/hzgGcAK8faaXq56kXASH0LxjrmJ4BF6b/n8RjtWH5H0pZymaRaSa8GTh/ndq1CVEQoSJpBcur9XUmrgK8A88d42XuAWyOic4z1rESkH9CvILk+/hDJt/grgdmjvOzDw/opbB5l3W+RXJp8nORXN5el+70fuAj4fLrPV5D8lLY3ff4BYBfpJZ2I2AGsA+5Iax7PsXVExJ8P4Zi/m/7dMrzPwwH2c8BjSY/n1SSXsraStD/cOJ76rXKoXG+yI2kR8P2IOFHSLOD+iDhgEEi6Kl3/+nT+GpLT/RzJ9dZ64IsR8fcFLt3MrGRVxJlC+s3sIUmvg+Q6qaRROylFxBsjojUiFpFcbrragWBm1a4sQ0HStSTXP4+V1CXp7cAbgbenHXjuBc5P1z1NUhfwOuArku4tVt1mZqWubC8fmZnZxCvLMwUzMyuMsuu8Nnfu3Fi0aFGxyzAzKyvLly/fHBHNY61XdqGwaNEiOjo6il2GmVlZkTSu3um+fGRmZkMcCmZmNsShYGZmQxwKZmY2xKFgZmZDHApmZjbEoWBmZkOqJhTuf3wn//yDP9Ld21/sUszMSlbVhELX1m6+evtDrO7aXuxSzMxKVtWEwuLWJgBWPLq1yJWYmZWuqgmFOdPrOXLudFY8sm3slc3MqlTVhAIkZwsrH92Khws3MxtZVYVCtq2RLbt7efTJ7mKXYmZWkqorFNJ2heWPuF3BzGwkVRUKz5o3kxlTat3YbGZ2AFUVCjUZcUrLbDc2m5kdQFWFAsCS1ib+9PgOdve4E5uZ2XBVFwqL25rIBdzd5bMFM7Phqi4Usi1JY/PKRx0KZmbDVV0ozJ5Wx1HN0/0LJDOzEVRdKEDy01R3YjMze6qChYKkFkm/lHSfpHslvW+EdSTpPyWtlbRaUrZQ9eTLtjWxtbuPhzbvnozdmZmVjUKeKfQDH4yI44EzgEsknTBsnXOBY9LHxcCXCljPkCVtg4PjuV3BzCxfwUIhIjZExIp0eidwH7Bg2GrnA1dH4vdAo6T5happ0NHNM5jZ4E5sZmbDTUqbgqRFwGLgzmFPLQA68+a7eGpwIOliSR2SOjZt2vS068lkxKktjaxwY7OZ2X4KHgqSZgA3AO+PiB3Dnx7hJU9p/Y2IKyKiPSLam5ubJ6SubGsT9z+xk517+yZke2ZmlaCgoSCpjiQQromIG0dYpQtoyZtfCDxWyJoGZduaiIC7O30nNjOzQYX89ZGArwH3RcRnD7DazcCb0l8hnQFsj4gNhaop36ktjYDvxGZmlq+2gNs+C/hr4B5Jq9JlHwFaASLiy8CtwEuBtUA38NYC1rOf2VPreNa8GQ4FM7M8BQuFiPgNI7cZ5K8TwCWFqmEs2dYmfrjmcXK5IJMZtVQzs6pQlT2aB2Vbm9i+p4917sRmZgZUeyi0pe0K/mmqmRlQ5aFw5NwZzHInNjOzIVUdCpmMWNza5FAwM0tVdShAMg7Sgxt3scOd2MzMHArZ1qQT2yoPjmdm5lA4pWU2kjuxmZmBQ4GZDXUcO2+m78RmZoZDAYDFrU2s6txGLuc7sZlZdXMoANnWRnbu7Wftpl3FLsXMrKgcCuTdic2XkMysyjkUgCPmTqdpWp0bm82s6jkUAGmwE5t/lmpm1c2hkMq2NrJ24y62dfcWuxQzs6JxKKSyrUm7wspOny2YWfVyKKROaWkkI1jpxmYzq2IOhdT0KbUc98xZblcws6rmUMiTbWtkVec2BtyJzcyqlEMhT7a1iV09/Ty4cWexSzEzKwqHQp7BxmaPg2Rm1cqhkKftGdOYM72eFY+4XcHMqpNDIY8ksq2NrHTPZjOrUg6FYbJtTazbvJutu92Jzcyqj0NhmH2d2Hy2YGbVx6EwzMkLZ1OTkdsVzKwqORSGmVZfy/HzZ3rEVDOrSg6FEWTTO7H1D+SKXYqZ2aRyKIwg29pEd+8A9z/hTmxmVl0cCiMYuhObx0EysyrjUBjBwqapzJ0xxSOmmlnVcSiMYLATmxubzazaOBQOINvWxMNbutmyq6fYpZiZTRqHwgEMdmJzu4KZVROHwgGcvHA2tRn5EpKZVRWHwgE01NXw7MNnscKNzWZWRRwKo1jc2sTqru3uxGZmVaNgoSDp65I2SlpzgOdfIGm7pFXp46OFquVQZdua2NM3wJ8edyc2M6sOhTxTuAo4Z4x1bo+IU9PHJwpYyyHJtjYCuF3BzKpGwUIhIn4NPFmo7U+GBY1TOWzmFN+e08yqRrHbFJ4j6W5JP5T07CLX8hRJJ7YmnymYWdUoZiisANoi4hTg88D3DrSipIsldUjq2LRp06QVCMk4SJ1P7mHTTndiM7PKV7RQiIgdEbErnb4VqJM09wDrXhER7RHR3tzcPKl1ZtvcrmBm1aNooSDpmZKUTp+e1rKlWPUcyLMPn01djTuxmVl1qC3UhiVdC7wAmCupC/gYUAcQEV8GXgu8W1I/sAe4ICKiUPUcqqQT22xW+vacZlYFChYKEXHhGM9fDlxeqP1PpGxrE9fc+Qi9/Tnqa4vdNm9mVjj+hBuHbFsjPf057tuwo9ilmJkVlENhHPbdic3tCmZW2RwK4zB/9lTmz27wMNpmVvEcCuOUbW3yiKlmVvEcCuO0uLWR9dv28MSOvcUuxcysYBwK45QdbFfw2YKZVTCHwjg9+/BZ1Ndk3NhsZhXNoTBOU2prOGnhbDc2m1lFcygchGxrI/es305vv+/EZmaVyaFwELKtTfT257j3se3FLsXMrCAcCgdhqLHZl5DMrEI5FA7CvFkNLGic6l8gmVnFcigcpMWtjf4FkplVLIfCQVrS1sSG7XvZsH1PsUsxM5twDoWDlG0d7MTmdgUzqzwOhYN0/PxZTKl1JzYzq0wOhYNUX5vh5IWzHQpmVpEcCocg29rEmvXb2ds3UOxSzMwmlEPhECxubaJvINyJzcwqjkPhEGTbGgE3NptZ5XEoHILDZjbQMmeq2xXMrOKMGgqSTpP0zLz5N0m6SdJ/SppT+PJKV7a1iRWPbiUiil2KmdmEGetM4StAL4Ck5wOfAq4GtgNXFLa00pZtbeKJHT08tt13YjOzyjFWKNRExJPp9FLgioi4ISL+ETi6sKWVtsFObMs9DpKZVZAxQ0FSbTr9YuAXec/VjrB+1Thu/kwa6jIeHM/MKspYH+zXArdJ2gzsAW4HkHQ0ySWkqlVXk+GUhY2sdGOzmVWQUc8UIuKfgQ8CVwHPjX2tqhngvYUtrfRl25q497Ed7sRmZhVj1DMFSdOA5RHRl84fC7wUeCQibpyE+kpatrWJ/lxwz/rtnLaoqn+MZWYVYqw2hR8Bi2DoktHvgCOBSyR9srCllb7FrYOd2HwJycwqw1ih0BQRD6bTbwaujYj3AucCLy9oZWVg7owptD1jmn+BZGYVY6xQyO+Z9SLgpwAR0QvkClVUOUk6sW1zJzYzqwhjhcJqSZ+R9AGSfgk/AZDUWPDKykS2rYnNu3ro2uo7sZlZ+RsrFP4G2EzSrvCXEdGdLj8B+EwB6yob2cF2Bf801cwqwFihMAO4JSLeFxF35y3fQdIIXfWOnTeTafU1bmw2s4owVih8Hpg7wvIFwOcmvpzyU5t2YlvxqIfRNrPyN1YonBQRtw1fGBE/Bk4uTEnlJ9vWyB837KC7t7/YpZiZPS1jhULdIT5XVbKtTQzkgtVdVT3yh5lVgLFC4UFJLx2+UNK5wLrRXijp65I2SlpzgOeV3pdhraTVkrLjL7u0LE5HTHVjs5mVu7EGxHs/8ANJrweWp8vagecwdue1q4DLSe6/MJJzgWPSx18AX0r/lp050+s5cu50357TzMreWGcKLwPeDtwBtKWP24CTI+KB0V4YEb8GnhxllfOBqyPxe6BR0vxxV15iFrc2sdJ3YjOzMjdWKCwEPg38C8kZQi/wBDBtAva9AOjMm+9Klz2FpIsldUjq2LRp0wTseuJl2xrZsruXR5/sHntlM7MSNdbQ2R+KiDOBecBHSL75vw1YI+mPT3PfGmmXB6jjiohoj4j25ubmp7nbwsi6XcHMKsBYZwqDpgKzgNnp4zHgzqe57y6gJW9+YbrdsvSseTOZMaXWg+OZWVkb634KVwDPBnaShMBvgc9GxER88t0MXCrpOpIG5u0RsWECtlsUNRlxakujG5vNrKyNdabQCkwBHgfWk3y7H9ennqRrSe6/cKykLklvl/QuSe9KV7mV5Geta4GvAu85hPpLSra1kT89voPdPe7EZmbladQzhYg4R5JIzhbOJLk154mSngR+FxEfG+W1F46x7QAuOfiSS9fitiZyAXd3bePMo0YaHcTMrLSN2aaQ/mR0Dck3+x+S/Dz1KOB9Ba6t7GRbksbmlR4HyczK1FhtCpeRnCGcBfSRBMLvgK8D9xS8ujIze1odRzVP94ipZla2xurRvAi4HvhAOTcCT6ZsaxM/u+8JIoLkypuZWfkYq5/C/4yI6x0I47ekrYmt3X08tHl3sUsxMzto4+2nYOOUbRvsxOZ2BTMrPw6FCXZ08wxmNtS6Z7OZlSWHwgTLDHVicyiYWflxKBRAtrWJB57Yyc69fcUuxczsoDgUCiA72Imt03diM7Py4lAogFNbGpE8YqqZlR+HQgHMnlrHMYfNcCiYWdlxKBRItrWJlY9uI5fzndjMrHw4FAok29rE9j19rHMnNjMrIw6FAsm2NQJuVzCz8uJQKJAj585gVkOt+yuYWVlxKBRIJiOybU0+UzCzsuJQKKBsaxMPbtzFDndiM7My4VAooGxrExGwyoPjmVmZcCgU0Ckts92JzczKikOhgGY21HHsvJkeRtvMyoZDocAWtzax8tGt7sRmZmXBoVBgS9qa2Lm3n7WbdhW7FDOzMTkUCizbmnZic38FMysDDoUCO2LudJqm1bmx2czKgkOhwCSxuLXJjc1mVhYcCpMg29rI2o272N7tTmxmVtocCpMg29oEwIpOX0Iys9LmUJgEp7Q0khGsdGOzmZU4h8IkmD6lluOeOcvtCmZW8hwKkyTb1siqzm0MuBObmZUwh8IkybY2saunnwc37ix2KWZmB+RQmCRDjc2P+BKSmZUuh8IkaXvGNOZMr2e5G5vNrIQ5FCaJJLLp4HhmZqXKoTCJsm2NrNu8m627e4tdipnZiBwKk2iwXWGlO7GZWYlyKEyikxfOpiYjNzabWckqaChIOkfS/ZLWSvr7EZ5/i6RNklalj3cUsp5im1Zfy/HzZ3rEVDMrWQULBUk1wBeAc4ETgAslnTDCqt+JiFPTx5WFqqdUtLfNoeORrdz2wKZil2Jm9hSFPFM4HVgbEesiohe4Dji/gPsrC+88+0iOnDudt37jD3zltj8T4R7OZlY6ChkKC4DOvPmudNlwr5G0WtL1klpG2pCkiyV1SOrYtKm8v2HPnz2VG99zJueeOJ9P/vBPvO+6VezpHSh2WWZmQGFDQSMsG/61+BZgUUScDPwM+OZIG4qIKyKiPSLam5ubJ7jMyTetvpbL37CYv/2rY7ll9WO89su/pWtrd7HLMjMraCh0Afnf/BcCj+WvEBFbIqInnf0qsKSA9ZQUSVzywqP52pvbeXRLN+ddfge/X7el2GWZWZUrZCjcBRwj6QhJ9cAFwM35K0ianzd7HnBfAespSS86bh7fu/QsGqfVcdGVd3L17x52O4OZFU3BQiEi+oFLgR+TfNgvi4h7JX1C0nnpapdJulfS3cBlwFsKVU8pO6p5Bt+75CxecGwzH73pXv7uhtX09Ludwcwmn8rtW2l7e3t0dHQUu4yCyOWCf//ZA3z+F2tZ3NrIly9awrxZDcUuy8wqgKTlEdE+1nru0VxCMhnxwb88li+9Mcv9j+/kFZ//jTu6mdmkciiUoHNPms+N7zmThroaLvjK71l2V+fYLzIzmwAOhRJ13DNncfOlZ3H6EXP48A2r+dhNa+gbyBW7LDOrcA6FEtY4rZ6r3noaf/O8I/jm7x7hoivvZMuunrFfaGZ2iBwKJa62JsP/etkJ/PvSU1jVuY3zLr+DNeu3F7ssM6tQDoUy8arFC7n+XWeSi+C1X/4tN61aX+ySzKwCORTKyEkLZ3Pzpc/lpAWzed91q/jkrfcxkCuvnxSbWWlzKJSZ5plTuOYdZ3DRGa185dfreMs3/sD27r5il2VmFcKhUIbqazP80ytP4pOvPonfr9vCeV/4DQ88sbPYZZlZBXAolLELT2/l2r85g909A7zqC3fw43sfL3ZJZlbmHAplrn3RHL7/3udy9GEzeOe3lvPvP32AnNsZzOwQORQqwDNnN/Cddz6H12QX8rmfP8g7v72cnXvdzmBmB8+hUCEa6mr4zOtO5qMvP4Ff/Gkjr/rib3lo8+5il2VmZcahUEEk8bbnHsG33nY6W3b1cN7lv+FX928sdllmVkYcChXozKPncvOlz2VB41TeetVdfOlXf/aNe8xsXBwKFaplzjRufM+ZvPSk+Xz6R3/isutWsafXN+4xs9E5FCrYtPpaLr9wMX93znF8f/VjvOZLv6Xzye5il2VmJcyhUOEk8e4XHMXX33IanVu7Of8Ld/C7P28pdllmVqIcClXihccexk2XnMWc6fVc9LU7ueqOh9zOYGZP4VCoIkc2z+C/3nMmLzz2MD5+yx+5+FvLuWPtZnd2M7MhtcUuwCbXzIY6rvjrJXzxV2v56u0P8dM/PkHLnKm8bkkLr12ykMMbpxa7RDMrIpXbJYT29vbo6OgodhkVYW/fAD++93GWdXRyx9otZATPO6aZpae18JLj51Ff6xNJs0ohaXlEtI+5nkPBADqf7Oa7HZ18d3kXG7bvZc70el61eAFLT2vhWfNmFrs8M3uaHAp2SAZywa8f3MSyuzr52X1P0DcQLG5tZGl7Cy8/5XBmTPEVR7Ny5FCwp23Lrh7+a+V6vnNXJw9u3MW0+hpedtJ8lp7WwpK2JiQVu0QzGyeHgk2YiGBl5zaW3dXJLXc/xu7eAY5qns7r21t4dXYhzTOnFLtEMxuDQ8EKYndPPz+4ZwPL7uqk45Gt1GbEi447jKWntXD2s5qprXHjtFkpcihYwa3duItlHZ3cuKKLzbt6mTdrCq/JLuT17S0smju92OWZWR6Hgk2avoEcP79vI8s6OvnV/RvJBZxx5ByWntbCuSfOp6GuptglmlU9h4IVxePb93LDii6WdXTyyJZuZjbUcv6ph7O0vZUTF8xy47RZkTgUrKhyueDOh55kWUcnt96zgZ7+HMfPn8XS9oW8cvECGqfVF7tEs6riULCSsX1PHzevWs93OjpZs34H9bUZ/urZz2RpewtnHvUMMhmfPZgVmkPBStK9j21n2V2dfG/VY2zf08fCpqksaWtiZkMtMxvqmDGlllnpdP6ymQ21zGqoY0ZDLTUOEbOD5lCwkjY47tINK9bz8Obd7Nzbx869/fSPY8TW6fU1SVg01A4FRxIatWmA1O23fGZDLTOn5E031HlcJ6s64w0Fj1lgRdFQV8P5py7g/FMXDC2LCHr6c+xIAyJ59LErnc5fvqtn3/T27l66nuxmZ0+y/t6+3Jj7n1KbeUpwTK2rYUptDVNqM0ypy+ybrs0wpS5vurYmfX7fOvUHWD64HZ/dWLlwKFjJkERDXQ0NdTUc9jTG4Ovtz7ErDYj8cMn/u6unnx3Dlm/r7qOnP0dP/wA9fbl90/05nu4JdW1G4wqXKXUZGoaW1wzNN6Svy//bkK6T/3fw+fz9+BdfdjAcClZx6mszzKmtZ870ifmFU0TQNxBDAdHTn6On7wDTIwRKMj8w6vPdvf1s7c6xN29bg9O9/WOf+RyIxFDojBQe+SHSkBdCU+oy1NUkoVJXI+pqkvn6mgx1tcPma5J16mvTZbV5ywafH9xOJuMfFpS4goaCpHOAzwE1wJUR8alhz08BrgaWAFuApRHxcCFrMjtYkqivTT70ijGIeC4XQyGyt2/f38HQyP87fFlP3wB7B//mvzYNp109/WzZtW8+fx99A4Vpb8wPmSRYlIZG3nxemNQIajIZajOiJn3UZkQm/VtzwOUZaiRqa9Lnla5TIzIa6bUZajL79jV8+xnt204mQ970vm1n8p6vTfc/uO7+ry/dYCxYKEiqAb4A/A+gC7hL0s0R8ce81d4ObI2IoyVdAHwaWFqomszKUSYjptbXMLV+cnuGD54h9Q3k6BvI0TuQS+b7k/me9O/gOr0DufS5vPl02eBre4dek84PvWbffP463XsGyOWCgfTRn8uRC+jP5RgYCAZicHn+OkEu/VvK9guYwXDJC5j9giQjMoILT2/lHc87sqB1FfJM4XRgbUSsA5B0HXA+kB8K5wMfT6evBy6XpCi3n0SZVaD8M6RyFBHkgv0DJZcGSi4JlP6BGJoeyCXzuRgMmRwDOegfyA09n4tgIEfe9L6/+z0fwcBAjoFIzvSGXp9O71vGCK9PaxjIXzfZztwZhR+RuJChsADozJvvAv7iQOtERL+k7cAzgM35K0m6GLgYoLW1tVD1mlkFkZReehq8VOMxuMajkF8BRrpoNvwMYDzrEBFXRER7RLQ3NzdPSHFmZvZUhQyFLqAlb34h8NiB1pFUC8wGnixgTWZmNopChsJdwDGSjpBUD1wA3DxsnZuBN6fTrwV+4fYEM7PiKVibQtpGcCnwY5KLeV+PiHslfQLoiIibga8B35K0luQM4YJC1WNmZmMraD+FiLgVuHXYso/mTe8FXlfIGszMbPzK87dmZmZWEA4FMzMb4lAwM7MhZXc/BUmbgEeKXcfTNJdhHfSqnN+P/fn92Mfvxf6ezvvRFhFjdvQqu1CoBJI6xnOzi2rh92N/fj/28Xuxv8l4P3z5yMzMhjgUzMxsiEOhOK4odgElxu/H/vx+7OP3Yn8Ffz/cpmBmZkN8pmBmZkMcCmZmNsShMIkktUj6paT7JN0r6X3FrqnYJNVIWinp+8WupdgkNUq6XtKf0n8jzyl2TcUk6QPp/ydrJF0rqaHYNU0mSV+XtFHSmrxlcyT9VNKD6d+mid6vQ2Fy9QMfjIjjgTOASySdUOSaiu19wH3FLqJEfA74UUQcB5xCFb8vkhYAlwHtEXEiyUjL1TaK8lXAOcOW/T3w84g4Bvh5Oj+hHAqTKCI2RMSKdHonyf/0C4pbVfFIWgi8DLiy2LUUm6RZwPNJhpMnInojYltxqyq6WmBqegOuaTz1Jl0VLSJ+zVNvOnY+8M10+pvAKyd6vw6FIpG0CFgM3FncSorqP4APA7liF1ICjgQ2Ad9IL6ddKWl6sYsqlohYD3wGeBTYAGyPiJ8Ut6qSMC8iNkDyJRM4bKJ34FAoAkkzgBuA90fEjmLXUwySXg5sjIjlxa6lRNQCWeBLEbEY2E0BLg2Ui/Ra+fnAEcDhwHRJFxW3qurgUJhkkupIAuGaiLix2PUU0VnAeZIeBq4DXiTp28Utqai6gK6IGDxzvJ4kJKrVS4CHImJTRPQBNwJnFrmmUvCEpPkA6d+NE70Dh8IkkiSSa8b3RcRni11PMUXEP0TEwohYRNKA+IuIqNpvghHxONAp6dh00YuBPxaxpGJ7FDhD0rT0/5ts6mneAAAD8klEQVQXU8UN73ny72v/ZuCmid5BQW/HaU9xFvDXwD2SVqXLPpLettTsvcA1kuqBdcBbi1xP0UTEnZKuB1aQ/GpvJVU25IWka4EXAHMldQEfAz4FLJP0dpLgnPDbGXuYCzMzG+LLR2ZmNsShYGZmQxwKZmY2xKFgZmZDHApmZjbEoWAlR1JI+re8+Q9J+vgEbfsqSa+diG2NsZ/XpSOd/rKQdUlaJOkNB1+h2cgcClaKeoBXS5pb7ELySao5iNXfDrwnIl5YqHpSi4CDCoWDPA6rMg4FK0X9JB2VPjD8ieHfqCXtSv++QNJtkpZJekDSpyS9UdIfJN0j6ai8zbxE0u3pei9PX18j6V8l3SVptaR35m33l5L+P3DPCPVcmG5/jaRPp8s+CjwX+LKkfx3hNR9OX3O3pE+N8PzDg4EoqV3Sr9LpsyWtSh8rJc0k6cz0vHTZB8Z7HJKmS/pBWsMaSUvH8x/GKp97NFup+gKwWtK/HMRrTgGOJxlueB1wZUScnt7M6L3A+9P1FgFnA0cBv5R0NPAmkpE4T5M0BbhD0uConKcDJ0bEQ/k7k3Q48GlgCbAV+ImkV0bEJyS9CPhQRHQMe825JMMd/0VEdEuacxDH9yHgkoi4Ix1UcS/JoHkfiojBcLt4PMch6TXAYxHxsvR1sw+iDqtgPlOwkpSOHns1yY1Wxuuu9J4VPcCfgcEPw3tIgmDQsojIRcSDJOFxHPCXwJvS4UfuBJ4BHJOu/4fhgZA6DfhVOmhbP3ANyT0RRvMS4BsR0Z0e5/Dx8kdzB/BZSZcBjek+hxvvcdxDcsb0aUnPi4jtB1GHVTCHgpWy/yC5Np9/X4F+0n+36UBp9XnP9eRN5/Lmc+x/Vjx8bJcABLw3Ik5NH0fkjd+/+wD1abwHMuw1Y40tM3SMwNAtKCPiU8A7gKnA7yUdd4Dtj3kcEfEAyRnOPcAn00teZg4FK13pt+hlJMEw6GGSDzNIxtuvO4RNv05SJm1nOBK4H/gx8O50aHMkPWscN7m5Ezhb0ty08fZC4LYxXvMT4G2SpqX7Geny0cPsO8bXDC6UdFRE3BMRnwY6SM5wdgIz8147ruNIL311R8S3SW5mU83DdFsetylYqfs34NK8+a8CN0n6A8k9ag/0LX4095N8eM8D3hUReyVdSXKJaUV6BrKJMW51GBEbJP0D8EuSb+i3RsSoQxlHxI8knQp0SOoFbgU+Mmy1/wN8TdJH2P/OfO+X9EJggGRY7R+SnAX1S7qb5J6+nxvncZwE/KukHNAHvHu0uq16eJRUMzMb4stHZmY2xKFgZmZDHApmZjbEoWBmZkMcCmZmNsShYGZmQxwKZmY25L8B64WpsvFo3LcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "for i in range(1,11):\n", + " kmeans = KMeans(n_clusters=i,init='k-means++',max_iter=300,n_init=10,random_state=0)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)\n", + "plt.plot(range(1,11),wcss)\n", + "plt.title('The Elbow Method')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "ad4bc40a-9540-497d-95e3-3fee6088ea95", + "_uuid": "6450dd1c3d7a8114931dc358d2f09a0424b52fd7" + }, + "source": [ + "As the elbow corner coincides with x=2, we will have to form **2 clusters**. Personally, I would have liked to select 3 to 4 clusters. But trust me, only selecting 2 clusters can lead to best results.\n", + "Now, we apply k-means algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "_cell_guid": "eed3f672-e089-4dbb-aad8-b9618967abf3", + "_uuid": "d92d758ee7213ddcd84e9b8b2f61c9e260ed6ba2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n", + " after removing the cwd from sys.path.\n" + ] + } + ], + "source": [ + "kmeans = KMeans(n_clusters=2,init='k-means++',max_iter=300,n_init=10,random_state=0) \n", + "y_kmeans = kmeans.fit_predict(X)\n", + "\n", + "X = X.as_matrix(columns=None)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "ef07bd6d-679d-4375-b7b3-abeca3421e37", + "_uuid": "6f93a4bd3f17427f4b2dbe08af8e015a1e4a2f89" + }, + "source": [ + "Now, let's visualize the results." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "_cell_guid": "5a7fe139-13df-453b-8c16-891929bc595e", + "_uuid": "a57e0a38f4c0f0385be75fd9f71d4a2d8213aea3" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEICAYAAACj2qi6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW9///XhxANiDgg+kOxZZBeCRIBg+B1whnUXhzoo1gHqAMV9Npa+7V49Spa52rha/U64YCgglLnn1ylzrVWCDUGQZREsUQQUARBoAb6+f6x14knycnJTjjJyfB+Ph7ncfZZe+211t45OZ+99rTM3REREYmjXbYbICIiLYeChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEpqDRipnZJDObke12ZIpFHjKzr81sXrbbUx9mdo+Z/XeGy3zYzK7PZJmNwczGmtlfGqHcH5jZRjPLiZE349u/rVLQaOHM7GdmVhT+eVaa2RwzOyyD5fcwMzez9pkqczscBhwHdHf3g7PdGIj/g+juF7r775qiTQ0R/sbfhu/R52b2hzg/xk3JzJaZ2bGJz+7+D3fv5O7b6lo2efub2TAzK2/MtrZmChotmJn9GpgC3AjsBfwA+B9gZDbblSzDweaHwDJ3/zaDZTa65vbjm8aB7t4JOAb4GXBB9QzNZOdBskhBo4Uys12A64CL3P0pd//W3Svc/Xl3/z8p8tfYu0reczOzg0OP5RszW2VmfwjZ3gzv68Je6CEh/7lm9mE4VPSSmf0wqVw3s4vMbCmwNBxWmmxmq81svZmVmNkBtazX3mb2nJmtNbNSM7sgpJ8HTAUOCe24tpblLwjt2mBmi81sUEjva2avm9k6M1tkZv+RtMzrZnZ+0ucqvYewPhea2dKwvneFdeoL3JPUpnUh/8NmdreZvWhm3wJHVT+UZGYnm1lxaM9fzawgad5vw97+BjP7yMyOSbWuwR5mNjfkfSPxdwhtvL3atnnezH6VpiwA3H0J8BZwQFhuWWhTCfCtmbWvY3t2CX/Dbyw6jNg7aV6NnmuK7V/jb2hm04l2ip4P2/ry5LLMbLSZFVVb30vN7Lmkv8n1ZrYTMAfYO5SzMXznNplZl6RlDzKzNWaWW9f2anPcXa8W+AKGA1uB9mnyTAJmhOlhQHm1+cuAY8P0O8DZYboTMDRM9wA8uR7gFKAU6Au0B64C/po034G5wO5AB+AEYAGwK2BhuW61tPkNot5SHjAAWAMcE+aNBf6SZn1/AnwODA717EfUO8kN7f0vYAfgaGAD8G9hudeB85PKqVJPWJ8XQvt/ENo0vLY2AQ8D64FDiXbM8kLa9WH+IGA1MATIAcaEv8WOwL8By4G9k7Z/71rW9+GwHkeEZf9voi3AwcAKoF34vAewCdirlrIc2C9M5wNfAOclfU+KgX3D37Ou7TkTeALYiSjwfJ7Urh7U/D5Vbv/a/obVv6/VywI6hjb0SZo/HxidtK0S238YNf8XXgTGJ32eDPwx2//nzfGlnkbL1QX40t23Zqi8CmA/M9vD3Te6+9/S5P0FcJO7fxjqvxEYkNzbCPPXuvvmUPbOwP6AheVWVi/UzPYlOm/xW3ff4u7FRL2Ls2Ouw/nAre4+3yOl7v4ZMJQoEN7s7t+5+6tEQeCMmOUSll3n7v8AXiMKaOk86+5vu/u/3H1LtXkXAPe6+7vuvs3dpwH/DO3cRhQA8s0s192XuXtZmnr+f3d/093/CVxJ1OvZ193nEQWuRC9lNPC6u69KU9bfzexr4Hmi7f5Q0rw73H15+HvWuj0tOhR3OnC1R73fD4BpdWyrZLX9DdNy903As4S/qZn1Ifq+PRez3mnAWWHZnFDO9Hq0u81Q0Gi5viI6NJGpY8znAT8ClpjZfDM7OU3eHwL/NxyaWAesJdor3Ccpz/LERPhRuRO4C1hlZveZWecU5e4NrHX3DUlpn1UrN519gVQ/sHsDy939Xw0sF6I974RNRD+a6SxPM++HwGWJ7Re24b5EvYtS4FdEvcTVZjbTzPaOU4+7byT6WyTyV/4Qhve6fgQHuftu7t7b3a+qtr2S1yfd9uxKtOe/vNq8uGr7G8bxGN/vCPwMeCYEkzieJQrUvYgutlgfAq9Uo6DRcr0DbCE6VBTHt0RdeKByb6pr4rO7L3X3M4A9gVuA2eH4b6rHIC8HfuHuuya9Orj7X5PyVFnO3e9w94OAfkTBqcZ5F6LDKbub2c5JaT8gOlwRx3KSjp9XK3dfM0v+vieXW2XbAP9fzPog9fZJlw5RO2+otv06uvvjAO7+mLsfRhRcnOjvUZt9ExNm1onokOCKkDQDGGlmBxIdEnwm1hqllrw+6bbnGqLDpvtWm5eQuIihtu1d29+wehtSeZloR2oAUfB4LG45oTf4BHAmUc9WvYxaKGi0UO6+HrgauMvMTjGzjmaWa2YjzOzWFIt8DOSZ2Unh5N5VRIdBADCzs8ysa9h7XBeStxH9CPwL6JVU1j3AFWbWLyy7i5n9pLa2mtlgMxsS6v2WKNjVuEzS3ZcDfwVuMrO8cHL4PODReFuFqcBvwklMM7P9wiGzd0O9l4dtNAz4MdGxd4iO158WtuF+oc64VgHdzWyHeixzP3Bh2CZmZjuFv8vOZvZvZna0me1ItJ02k2JbJTnRzA4L9f8OeDdsR9y9nOi4/nTgT+HQUibUuj09uvz1KWBS2J75ROdsCG1aQxRczjKzHDM7l6pBora/IUTbOvl7WEU4VDob+D1R8JxbS9ZVQBeLLiZJ9gjROar/IAq4koKCRgvm7n8Afk0UANYQ7aVdTIo9yhBkJhD9U35O9E+ffDXVcGCRmW0kOqE6OpxX2ATcALwdDqUMdfenifZ+Z5rZN8AHwIg0Te1M9EP5NdGhiq+A22rJewbRCc4VwNPANe5e2z9/9XV8MrT1MaKTos8Au7v7d0Q/BCOAL4lOtJ/j0VVCEJ30/I7ox2Qa8YMUwKvAIuALM/syZjuLiM5r3Em0TUqJfqwgCuQ3h3Z+QdTz+680xT0GXEN0WOogoj3lZNOA/mRwzznG9ryY6PDdF0QnoB+qVsQFRD3Nr4h6npU91Nr+hmH2TcBV4Xv4m1qa9xhwLPBkbef7QjsfBz4JZe0d0t8m2kH6u7svq3NDtFHmrkGYRForMzuCaK+5R7VzEJKCmb0KPObuU7PdluZKN+qItFLhcOAvgakKGHUzs8FEl0M3m5tjmyMdnhJphSy68XAd0I3oqQGShplNA/4M/Kra1XtSjQ5PiYhIbOppiIhIbK3unMYee+zhPXr0yHYzRERalAULFnzp7l3rytfqgkaPHj0oKiqqO6OIiFQys1h37uvwlIiIxKagISIisSloiIhIbK3unEYqFRUVlJeXs2VL9SdUizQPeXl5dO/endxcjfkjzVubCBrl5eXsvPPO9OjRAzPLdnNEqnB3vvrqK8rLy+nZs2e2myOSVps4PLVlyxa6dOmigCHNkpnRpUsX9YSlXsrKYMIE6NwZ2rWL3idMiNIbU5sIGoAChjRr+n5KfcyZAwUFMHUqbNgA7tH71KlR+pw5jVd3mwkaIiKtQVkZjBoFmzZBRUXVeRUVUfqoUY3X41DQqK6R+nzl5eWMHDmSPn360Lt3b375y1/y3XffUVxczIsvvliZb9KkSdx2W21DTYhIW3f77TWDRXUVFTB5cuPUr6CRrJH6fO7OaaedximnnMLSpUv5+OOP2bhxI1deeWWNoLG9tm1LN8ibiLR0M2bECxrTG2nAWgWNhEbs87366qvk5eXx85//HICcnBwmT57M1KlTufzyy5k1axYDBgxg1qxZACxevJhhw4bRq1cv7rjjjspyZsyYwcEHH8yAAQP4xS9+URkgOnXqxNVXX82QIUN45513mDhxIvn5+RQUFPCb39Q2wJmItEQbN2Y2X30paCQ0Yp9v0aJFHHTQQVXSOnfuTI8ePbjqqqv46U9/SnFxMT/96U8BWLJkCS+99BLz5s3j2muvpaKigg8//JBZs2bx9ttvU1xcTE5ODo8+Go1K+u2333LAAQfw7rvvkp+fz9NPP82iRYsoKSnhqquuqnd7RaT56tQps/nqS0EjoRH7fO6e8uqY2tJPOukkdtxxR/bYYw/23HNPVq1axSuvvMKCBQsYPHgwAwYM4JVXXuGTTz4Bop7L6aefDkTBKC8vj/PPP5+nnnqKjh071ru9ItJ8nXUW1HUPaG4unH1249SvoJHQiH2+fv361Xjy7jfffMPy5cvJycmpkX/HHXesnM7JyWHr1q24O2PGjKG4uJji4mI++ugjJk2aBER3EyfKad++PfPmzeP000/nmWeeYfjw4fVur4g0X5ddFi9oXHpp49SvoJHQiH2+Y445hk2bNvHII48A0cnqyy67jLFjx7LXXnuxYUPdo0sec8wxzJ49m9WrVwOwdu1aPvus5pOMN27cyPr16znxxBOZMmUKxcXF9W6viDRfvXvD7NnQsWPN4JGbG6XPnh3lawwKGgmN2OczM55++mmefPJJ+vTpw49+9CPy8vK48cYbOeqoo1i8eHGVE+Gp5Ofnc/3113P88cdTUFDAcccdx8qVK2vk27BhAyeffDIFBQUceeSRTG6s6+5EJGtGjICSEhg3rurdAePGRekjRjRe3a1ujPDCwkKvfijoww8/pG/fvukXLCuLLqvdtKn2PB07Rn+Rxgrh0qbF+p6KNBIzW+DuhXXlU08jIdt9PhGRFkBBI1k2+3wiIi1Am3g0er307g133hm9RESkCvU0REQkNgUNERGJTUFDRERiU9CoJlujYYmItAQKGkkaczSsL774gtGjR9O7d2/y8/M58cQTue+++zj55JNT5j///PNZvHhxg+t75plnuO666xq8fH3bkslxQMaOHcvs2bMBGD16NEuXLk2Zr0ePHnz55ZeVn19//fXK7blq1SpOPvlkDjzwwMrtnWzy5Mnk5eWxfv36lGUvW7aMAw44oF7tfvjhh7n44osBuOeeeyqfACDSmihoBI05Gpa7c+qppzJs2DDKyspYvHgxN954I6tWrap1malTp5Kfn1//yoJbb72VCRMmNHj5TLZle4wfP55bb7213stdffXVHHfccbz//vssXryYm2++ucr8xx9/nMGDB/P0009nqqlVXHjhhZxzzjmNUrZkno4wxBcraJjZMjNbaGbFZlYU0nY3s7lmtjS87xbSzczuMLNSMysxs0FJ5YwJ+Zea2Zik9INC+aVhWUtXR2NozNGwXnvtNXJzc7nwwgsr0wYMGMDhhx/Oxo0bGTVqFPvvvz9nnnkmiTv0hw0bVvmQw06dOnHllVdy4IEHMnTo0Mpg8/zzzzNkyBAGDhzIscceW5n+8ccfVz4lF6I99/Hjx3PUUUfRq1cv3njjDc4991z69u3L2LFjK9s0fvx4CgsL6devH9dcc01lepy2JLv//vsZPHgwBx54IKeffjqbwl32Y8eO5ZJLLuHf//3f6dWrV2Vvwt25+OKLyc/P56STTqp8vhbA4Ycfzp///Ge2bt1ar22+cuVKunfvXvm5oKCgcrqsrIyNGzdy/fXX8/jjj9dZ1sMPP8xpp53G8OHD6dOnD5dffnnlvIceeogf/ehHHHnkkbz99tuV6ck9r9q2hzQP2RxvuyWqT0/jKHcfkHSb+UTgFXfvA7wSPgOMAPqE1zjgbogCAHANMAQ4GLgmKQjcHfImlhteRx0Z15ijYX3wwQc1xtNIeO+995gyZQqLFy/mk08+qfLDk/Dtt98ydOhQ3n//fY444gjuv/9+AA477DD+9re/8d577zF69OjKPfK3336bQYMGVSnj66+/5tVXX2Xy5Mn8+Mc/5tJLL2XRokUsXLiw8qGGN9xwA0VFRZSUlPDGG29QUlISuy3JTjvtNObPn8/7779P3759eeCBByrnrVy5kr/85S+88MILTJwY/TmffvppPvroIxYuXMj999/PX//618r87dq1Y7/99uP9999Pu42ru+iiizjvvPM46qijuOGGG1ixYkXlvMcff5wzzjiDww8/nI8++qhKkKpNcXExs2bNYuHChcyaNYvly5ezcuVKrrnmGt5++23mzp1b6yG8dNtDsivb4223RNtzeGokMC1MTwNOSUp/xCN/A3Y1s27ACcBcd1/r7l8Dc4HhYV5nd3/Ho93sR6qVlaqOjMvWaFgHH3ww3bt3p127dgwYMIBly5bVyLPDDjtUHqs/6KCDKvOUl5dzwgkn0L9/f37/+9+zaNEiIPph7tq1a5UyfvzjH2Nm9O/fn7322ov+/fvTrl07+vXrV1neE088waBBgxg4cCCLFi1K+SNYW1uSffDBBxx++OH079+fRx99tLJdAKeccgrt2rUjPz+/spfy5ptvcsYZZ5CTk8Pee+/N0UcfXaW8Pffcs8qPfkKqsUgSaSeccAKffPIJF1xwAUuWLGHgwIGsWbMGgJkzZzJ69GjatWvHaaedxpNPPlmjnOqOOeYYdtllF/Ly8sjPz+ezzz7j3XffZdiwYXTt2pUddtihchCt+mwPya5sj7fdEsUNGg68bGYLzGxcSNvL3VcChPc9Q/o+wPKkZctDWrr08hTp6erIuMYcDatfv34sWLAg5bxUY2dUl5ubW/ljmJznP//zP7n44otZuHAh9957L1u2bAGgQ4cOldPV62nXrl2VOtu1a8fWrVv59NNPue2223jllVcoKSnhpJNOqlFGurYkGzt2LHfeeScLFy7kmmuuqVJOct3JD8tMFQAStmzZQocOHWqkd+nSha+//rry89q1aysPyQHsvvvu/OxnP2P69OkMHjyYN998k5KSEpYuXcpxxx1Hjx49mDlzZqxDVLX9ndK1OyHd9pDsyvZ42y1R3KBxqLsPIjr0dJGZHZEmb6r/Im9AemxmNs7MisysKLE3WV+NORrW0UcfzT//+c8qh3Lmz5/PG2+8Uf/Ckqxfv5599oni67Rp0yrT+/btS2lpab3K+uabb9hpp53YZZddWLVqFXO240Duhg0b6NatGxUVFZVD0qZzxBFHMHPmTLZt28bKlSt57bXXqsz/+OOP6devHwDnnHMO8+bNA6JzLdPDf/O2bduYMWMGRx11FBCNy544d7BhwwbKysr4wQ9+wOOPP86kSZNYtmwZy5YtY8WKFXz++ed89tlnfP755xxzzDGx13PIkCG8/vrrfPXVV1RUVNTaY6nv9pCmk+3xtluiWEHD3VeE99XA00TnJFaFQ0uE98SB4XJg36TFuwMr6kjvniKdNHVUb9997l7o7oXVD8vE1ZijYSXG05g7dy69e/emX79+TJo0ib333rtBbU2YNGkSP/nJTzj88MOr7GEfccQRvPfee9TnsfcHHnggAwcOpF+/fpx77rkceuihDW7X7373O4YMGcJxxx3H/vvvX2f+U089lT59+tC/f3/Gjx/PkUceWTlv1apVdOjQgW7dugFQUlJSOf3f//3flJaWVrZ9v/3246yzzgJgwYIFFBYWUlBQwCGHHML555/P4MGDmTlzJqeeemqN+mfOnMnKlStp3z7+49i6devGpEmTOOSQQzj22GNrnEdq6PaQppPt8bZbJHdP+wJ2AnZOmv4r0Ynq3wMTQ/pE4NYwfRIwh6gHMRSYF9J3Bz4FdguvT4Hdw7z5Ia+FZU8M6SnrSPc66KCDvLrFixfXSEvlxRfdO3Z0z811j66hiF65uVH6iy/GKqZZuOSSS3zu3LnZbsZ2+8Mf/uBTp051d/f169f7qFGjGq2uP/7xj/7ss882Wvl1ifs9lcwZP77m/3v1V26u+0UXZbuljQ8o8jp+Xz3aJHUGjV7A++G1CLgypHchuqJpaXhPBAAD7gLKgIVAYVJZ5wKl4fXzpPRC4IOwzJ18PzhUyjrSvbYnaLi7l5ZGX5DOnd3btYveL7ooSm9Jvvjii6z+AGbKgw8+6BUVFdluRpNQ0Gh6paXRDmG6oNGxY8v7/2+IuEFDI/fVsBp4GCgB1gO7AAXAz4GGHfoSiUMj92XHnDnRZbUVFVVPiufmRq/Zs9vGUDpxR+7TeBqV5gM3ER0dA0i+wuUpoltMRgBXAIObtmkiEkPDdvgSY69NnhxdJbVxY3QO4+yzo3OYGqyzKgUNILq38DfAZlJfuLU5vD8DvATcBoxvmqaJSB22f4dPY6/Fp2dPVQaMTdR9pa+HfL8Jy4lIdt0NDCPaodtC1YAB0Q7fljB/GPq/3X5tPGjM5/uAUR+JwFFUV8ZKqZ5y+/HHH9ez3ug5SKnujq7L1VdfzZ///Oca6clPhhVpWbTDlw1tPGjcxPeHnuprc1i+bt6Ap9zWJl3Q2LZtW63LXXfddRx77LH1rk+keWq6HT6pqg0HjdVEx0AbevWYAy8Cdd+Bnu4pt7///e8ZPHgwBQUFlU+WXbZsGX379uWCCy6gX79+HH/88WzevJnZs2dTVFTEmWeeyYABA9i8eTM9evTguuuu47DDDuPJJ5+kuLiYoUOHUlBQwKmnnlr5mI3kMSr+93//l/3335/DDjuMp556qrJNb7zxBgMGDGDAgAEMHDiQDRs2NHDbiDS2ptnhk5racNB4OANlWKxyanvK7csvv8zSpUuZN28excXFLFiwgDfffBOApUuXctFFF7Fo0SJ23XVX/vSnPzFq1CgKCwt59NFHKS4urnweU15eHn/5y18YPXo055xzDrfccgslJSX079+fa6+9tkqdW7Zs4YILLuD555/nrbfe4osvvqicd9ttt3HXXXdRXFzMW2+9lfJ5TyLZ13Q7fFJTGw4aJdQ8aVZfm4nuX2yYl19+mZdffpmBAwcyaNAglixZUjlKXc+ePRkwYABQ+9NkExJPV12/fj3r1q2rfAzHmDFjKoNQwpIlS+jZsyd9+vTBzCofuwFw6KGH8utf/5o77riDdevW1euRGiJN5+EMlBFvh09qasNBI/Uwn/X3dZ05anvKrbtzxRVXUFxcTHFxMaWlpZx33nlAvKffJuy00071anFtT2adOHEiU6dOZfPmzQwdOpQlS5bUq1yRppH9Hb62rA0HjV0yVE7dgwnW9pTbzp078+CDD7IxPELz888/r3NAoJ133rnWcw277LILu+22G2+99RYA06dPr/LwP4D999+fTz/9lLIwqkzyY8HLysro378/v/3tbyksLFTQkGaq6Xb4pKY2fPyhAPgT27fH0gHoX2euxFNuf/WrX3HzzTeTl5dHjx49mDJlCrvuuiuHHHIIEA2lOmPGDHJycmota+zYsVx44YV06NCBd955p8b8adOmceGFF7Jp0yZ69erFQw89VGV+Xl4e9913HyeddBJ77LEHhx12GB988AEAU6ZM4bXXXiMnJ4f8/HxGtIVnJ0gL1HQ7fFJTG3721Grgh2xf0MgD/oGeSSWZoGdPxXUr0V3e27vDdy3wfzLSotYg7rOn2vDhqT2JHi1Q98hrqRlwIgoYIk1tbAbK8AyV0/a04aAB0bNoGnpZaYewvIg0Le3wZVObCRqpD8MNJnr4YMd6ltYxLFdnT04kltZ2mLjxaYcvW9pE0MjLy+Orr76q5R9zPN8Hjrr2XIzvA4aeciuZ4e589dVX5OXlZbspLYh2+LKlTVw91b17d8rLy1mzprY7QIeRl/cwXbrcR6dObwJGu3b/rJz7r3/tCDgbNx7BV1+NY8uWA4APm6Dl0lbk5eXRvXv3bDejhUnsuKUb1iDBiHoY2uHbXm0iaOTm5tKzZ886cvUFfkL0aIGHiW78+RrYjXbt+gNj6dy5K507N2pTRaRexhP1Om4iejSIUfWZVB2IgsmJRIek1MPYXm0iaNRPV3QZnkhLUkh0z1XNHb7oPqqx6KR35ihoiEgroR2+ptAmToSLiEhmKGiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGyxg4aZ5ZjZe2b2Qvjc08zeNbOlZjbLzHYI6TuGz6Vhfo+kMq4I6R+Z2QlJ6cNDWqmZTUxKT1mHiIhkR316Gr+k6rMzbgEmu3sfojtpzgvp5wFfu/t+wOSQDzPLB0YD/YDhwP+EQJQD3EX02Mp84IyQN10dIiKSBbGChpl1B04CpobPBhwNzA5ZpgGnhOmR4TNh/jEh/0hgprv/090/BUqBg8Or1N0/cffvgJnAyDrqEBGRLIjb05gCXA78K3zuAqxz963hczmwT5jeB1gOEOavD/kr06stU1t6ujqqMLNxZlZkZkW1P5RQRES2V51Bw8xOBla7+4Lk5BRZvY55mUqvmeh+n7sXunth1656xoyISGOJ8+ypQ4H/MLMTiQbF7kzU89jVzNqHnkB3YEXIXw7sC5SbWXuiUeDXJqUnJC+TKv3LNHWIiEgW1NnTcPcr3L27u/cgOpH9qrufCbwGjArZxgDPhunnwmfC/Fc9Gv3oOWB0uLqqJ9AHmAfMB/qEK6V2CHU8F5aprQ4REcmC7blP47fAr82slOj8wwMh/QGgS0j/NTARwN0XAU8Ai4H/BS5y922hF3Ex8BLR1VlPhLzp6hARkSyw1jY2cWFhoRcVFWW7GSIiLYqZLXD3Okep0h3hIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGwKGiIiEpuChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoZIM1ZWBhMmQOfO0K5d9D5hQpQukg0KGiLN1Jw5UFAAU6fChg3gHr1PnRqlz5mT7RZKW6SgIdIMlZXBqFGwaRNUVFSdV1ERpY8apR6HND0FDZFm6PbbawaL6ioqYPLkpmmPSIKChkgzNGNGvKAxfXrTtEckQUFDpBnauDGz+UQyRUFDpBnq1Cmz+UQyRUFDpBk66yzIzU2fJzcXzj67adojklBn0DCzPDObZ2bvm9kiM7s2pPc0s3fNbKmZzTKzHUL6juFzaZjfI6msK0L6R2Z2QlL68JBWamYTk9JT1iHS2l12WbygcemlTdMekYQ4PY1/Ake7+4HAAGC4mQ0FbgEmu3sf4GvgvJD/POBrd98PmBzyYWb5wGigHzAc+B8zyzGzHOAuYASQD5wR8pKmDpFWrXdvmD0bOnasGTxyc6P02bOjfCJNqc6g4ZHE6bbc8HLgaGB2SJ8GnBKmR4Z/aGP9AAARWUlEQVTPhPnHmJmF9Jnu/k93/xQoBQ4Or1J3/8TdvwNmAiPDMrXVIdLqjRgBJSUwblzVO8LHjYvSR4zIdgulLWofJ1PoDSwA9iPqFZQB69x9a8hSDuwTpvcBlgO4+1YzWw90Cel/Syo2eZnl1dKHhGVqq0OkTejdG+68M3qJNAexToS7+zZ3HwB0J+oZ9E2VLbxbLfMylV6DmY0zsyIzK1qzZk2qLCIikgH1unrK3dcBrwNDgV3NLNFT6Q6sCNPlwL4AYf4uwNrk9GrL1Jb+ZZo6qrfrPncvdPfCrl271meVRESkHuJcPdXVzHYN0x2AY4EPgdeAUSHbGODZMP1c+EyY/6q7e0gfHa6u6gn0AeYB84E+4UqpHYhOlj8XlqmtDhERyYI45zS6AdPCeY12wBPu/oKZLQZmmtn1wHvAAyH/A8B0Mysl6mGMBnD3RWb2BLAY2Apc5O7bAMzsYuAlIAd40N0XhbJ+W0sdIiKSBRbt0LcehYWFXlRUlO1miIi0KGa2wN0L68qnO8JFRCQ2BQ0REYlNQUNERGJT0BARkdgUNEREJDYFDRERiU1BQ0REYlPQEBGR2BQ0REQkNgUNERGJTUFDRERiU9AQEZHYFDRERCQ2BQ0REYlNQUNal7IymDABOneGdu2i9wkTonQR2W4KGtJ6zJkDBQUwdSps2ADu0fvUqVH6nDnZbqFIi6egIa1DWRmMGgWbNkFFRdV5FRVR+qhR6nGIbCcFDWkdbr+9ZrCorqICJk9umvaItFIKGtI6zJgRL2hMn9407RFppRQ0pHXYuDGz+UQkJQUNaR06dcpsPhFJSUFDWoezzoLc3PR5cnPh7LObpj0irZSChrQOl10WL2hcemnTtEeklVLQkNahd2+YPRs6dqwZPHJzo/TZs6N8ItJgChrSeowYASUlMG5c1TvCx42L0keMyHYLRVo8c/dstyGjCgsLvaioKNvNEBFpUcxsgbsX1pWvzp6Gme1rZq+Z2YdmtsjMfhnSdzezuWa2NLzvFtLNzO4ws1IzKzGzQUlljQn5l5rZmKT0g8xsYVjmDjOzdHWIiEh2xDk8tRW4zN37AkOBi8wsH5gIvOLufYBXwmeAEUCf8BoH3A1RAACuAYYABwPXJAWBu0PexHLDQ3ptdYiISBbUGTTcfaW7/z1MbwA+BPYBRgLTQrZpwClheiTwiEf+BuxqZt2AE4C57r7W3b8G5gLDw7zO7v6OR8fKHqlWVqo6REQkC+p1ItzMegADgXeBvdx9JUSBBdgzZNsHWJ60WHlIS5deniKdNHVUb9c4Mysys6I1a9bUZ5VERKQeYgcNM+sE/An4lbt/ky5rijRvQHps7n6fuxe6e2HXrl3rs6iIiNRDrKBhZrlEAeNRd38qJK8Kh5YI76tDejmwb9Li3YEVdaR3T5Gerg4REcmCOFdPGfAA8KG7/yFp1nNA4gqoMcCzSennhKuohgLrw6Gll4DjzWy3cAL8eOClMG+DmQ0NdZ1TraxUdYiISBa0j5HnUOBsYKGZFYe0/wJuBp4ws/OAfwA/CfNeBE4ESoFNwM8B3H2tmf0OmB/yXefua8P0eOBhoAMwJ7xIU4eIiGSBbu4TEZHM3dwnIiKSoKAhIiKxKWiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGwKGiIiEpuChtRPWRlMmFB1ONUJE6J0EWn1FDQktVTB4aSToH9/mDoVNmwA9+h96lQoKIA5c+ouV0RatDjPnpK2Zs4cGDUKKiqiF0TB4cUXU+dP5Bs1CkpKoHfvpmuriDQp9TSkqrKy6Md/06bvA0ZcFRUweXLjtEtEmgUFDanq9tvrHywSKipg+vTMtkdEmhUFDalqxoyGBw2AjRsz1xYRaXYUNKSq7f3R79QpM+0QkWZJQUOqXim1PeOr5ObC2Wdnrl0i0uzo6qm2LtWVUg2VmwuXXpqZdolIs6SeRltVVgZnngknntiwK6WS5eZCx44we7YutxVp5dTTaIsSvYvNmxu2vFl0GMsMdt45OiR16aUKGCJtgIJGW5N8H0ZDJc57dOgAf/+7goVIG6LDU23N9tyHUZ1u5hNpcxQ02pKysug5UZkMGrqZT6RNUdBoK+bMiR4qmKmAkaCb+UTaFAWNtiAT5zFqo5v5RNoUBY22IJPnMZLpZj6RNqfOoGFmD5rZajP7ICltdzOba2ZLw/tuId3M7A4zKzWzEjMblLTMmJB/qZmNSUo/yMwWhmXuMDNLV4c0QEOeJzVyJOTlpc+jm/lE2pw4PY2HgeHV0iYCr7h7H+CV8BlgBNAnvMYBd0MUAIBrgCHAwcA1SUHg7pA3sdzwOuqQ+qrPeYeOHaNxM555Bp56Kvqcm1s1j27mE2mz6gwa7v4msLZa8khgWpieBpySlP6IR/4G7Gpm3YATgLnuvtbdvwbmAsPDvM7u/o67O/BItbJS1SH1Ffe8Q25uNIjSiBHR5xEjos/jxlUdwW/cuKr5RKTNaOg5jb3cfSVAeN8zpO8DLE/KVx7S0qWXp0hPV0cNZjbOzIrMrGjNmjUNXKVW7KyzavYWqsvNjYJB9Z5D795w552wfj1s2xa933mnehgibVSmT4RbijRvQHq9uPt97l7o7oVdu3at7+Kt32WXxQsaOj8hInVoaNBYFQ4tEd5Xh/RyYN+kfN2BFXWkd0+Rnq4Oqa/evaPzDzo/ISLbqaFB4zkgcQXUGODZpPRzwlVUQ4H14dDSS8DxZrZbOAF+PPBSmLfBzIaGq6bOqVZWqjqkIXR+QkQywLyOQXfM7HFgGLAHsIroKqhngCeAHwD/AH7i7mvDD/+dRFdAbQJ+7u5FoZxzgf8Kxd7g7g+F9EKiK7Q6AHOA/3R3N7Muqeqoa4UKCwu9qKgo7vqLiAhgZgvcvbDOfHUFjZZGQUNEpP7iBg3dES4iIrEpaIiISGwKGs1JWRlMmFD1RPWECVG6iEgzoKCRTclBwgz22w/uuQc2bIhGx9uwIRr/oqAgerS5iEiWabjXbEmM0/3dd7B16/fp1S9MqKiIXqNGRZfG6l4KEcki9TSyIXl8i+SAkY6GVhWRZkBBIxuuvrr+AyJpaFURaQYUNJranDnw2GMNW1ZDq4pIliloNKXEYamG0tCqIpJlChpNaXuGXdXQqiLSDChoNIXEpbV33719QUOPLheRLNMlt43h1Vfhkktg0aLMlJeTo0eXi0izoKCRaZdeClOmZK68nBx4+WU4+ujMlSki0kA6PJVJN9+c2YCx447w/PMKGCLSbChobK9XX4UDDogeA3LFFZkps337aFzvRYs0OJKINCs6PBXLaqJxokqA9cAuQAFc8h78cWZmqsjNjV6zZytQiEizpaCR1nzgJqIBBQG2fD9r86NwC9GYhjcB2zvu07hx0fkQnewWkWZMQaNWdwO/ATYDKUY37BDeRwInAJcB9zagmtzcKGDceWfDmiki0oQUNFJKBIwYz4fKAXYCbg+f6xs4dP+FiLQgOhFew3xiB4xkicBxUMz8ubnQsaPuvxCRFkVBo4abiA5JNUAeEOcCqk6dokNSJSU66S0iLYoOT1Wxmuikd4pzGHHkACcCewBfppifmwvPPqtAISItlnoaVTwM3zXw2VAJDoxJkT5yJHz4oQKGiLRoChrJpv8Wdti2fWV0BAqSPu+wA7z4IjzzjM5diEiLp6CRYAa7ZqisRDkHHwyLF6t3ISKths5pQBQwANZlqLxv28MrL+mZUSLS6jT7noaZDTezj8ys1MwmNkIF30+XUO8rbWuoaA9n3KiAISKtUrMOGmaWA9wFjADygTPMLL/RKpwGWJ250sttD4zd/raIiDRDzTpoAAcDpe7+ibt/B8wkenBH41hDdMVtg8+FG9E1t10z1SIRkWaluQeNfYDlSZ/LQ1oVZjbOzIrMrGjNmjXbV+NNVHkuYf10IN7dfSIiLVNzDxqpDhbVuPPO3e9z90J3L+zadTv38ouIHj74bX0X7AjcBhRuX/0iIs1Yc796qhzYN+lzd2BFo9eaeOjg7USPBslJl9mIehi3AeMbt10iIlnW3Hsa84E+ZtbTzHYARgPPNUnN9wJHAs8QPYqqxlVVHYgiyqnAGyhgiEhb0Kx7Gu6+1cwuBl4i2t9/0N0XZbiSqpfdJlsAjCJ6ltQt+8O5g4Gvgd2A/kRXSemkt4i0Hc06aAC4+4vAi41cSe2BA2BNAx9gKCLSyjT7oNFkXIFBRKQuzf2choiINCMKGiIiEpuChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEZt7K7k8wszXAZ9tZzB7AlxloTnPTGterNa4TaL1amtawXj909zofcdHqgkYmmFmRu7e6x9W2xvVqjesEWq+WprWuVyo6PCUiIrEpaIiISGwKGqndl+0GNJLWuF6tcZ1A69XStNb1qkHnNEREJDb1NEREJDYFDRERiU1BI4mZDTezj8ys1MwmZrs9CWb2oJmtNrMPktJ2N7O5ZrY0vO8W0s3M7gjrUGJmg5KWGRPyLzWzMUnpB5nZwrDMHWbRiFS11ZGhddrXzF4zsw/NbJGZ/bKVrFeemc0zs/fDel0b0nua2buhzllh+GLMbMfwuTTM75FU1hUh/SMzOyEpPeX3tLY6MsnMcszsPTN7obWsl5ktC9+TYjMrCmkt+nvYqNxdr+i8Tg5QBvQCdgDeB/Kz3a7QtiOAQcAHSWm3AhPD9ETgljB9IjAHMGAo8G5I3x34JLzvFqZ3C/PmAYeEZeYAI9LVkaF16gYMCtM7Ax8D+a1gvQzoFKZzgXdDe58ARof0e4DxYXoCcE+YHg3MCtP54Tu4I9AzfDdz0n1Pa6sjw9/FXwOPAS+kq7MlrRewDNijWlqL/h425ivrDWgur/BHfSnp8xXAFdluV1J7elA1aHwEdAvT3YCPwvS9wBnV8wFnAPcmpd8b0roBS5LSK/PVVkcjrd+zwHGtab2AjsDfgSFEdwu3r/5dA14CDgnT7UM+q/79S+Sr7XsalklZRwbXpzvwCnA08EK6OlvYei2jZtBoNd/DTL90eOp7+wDLkz6Xh7Tmai93XwkQ3vcM6bWtR7r08hTp6erIqHDoYiDRXnmLX69wCKcYWA3MJdqDXufuW1O0pbL9Yf56oEsd65UqvUuaOjJlCnA58K/wOV2dLWm9HHjZzBaY2biQ1uK/h41FY4R/z1KktcTrkWtbj/qmNwkz6wT8CfiVu38TDvemzJoirVmul7tvAwaY2a7A00DfNG2pb/tT7eg1+vqa2cnAandfYGbDEslp6mwR6xUc6u4rzGxPYK6ZLUmTt8V8DxuLehrfKwf2TfrcHViRpbbEscrMugGE99Uhvbb1SJfePUV6ujoywsxyiQLGo+7+VB11tpj1SnD3dcDrRMe+dzWzxE5aclsq2x/m7wKspf7r+2WaOjLhUOA/zGwZMJPoENWUVrBeuPuK8L6aKMgfTCv6Hmaagsb35gN9wpUaOxCdvHsuy21K5zkgcYXGGKJzAon0c8JVHkOB9aHr+xJwvJntFq7SOJ7o2PBKYIOZDQ1XdZxTraxUdWy3UNcDwIfu/odWtF5dQw8DM+sAHAt8CLwGjKplvRJtGQW86tFB7ueA0eEqpJ5AH6ITqim/p2GZ2urYbu5+hbt3d/ceoc5X3f3Mlr5eZraTme2cmCb6/nxAC/8eNqpsn1RpTi+iKyM+JjoGfWW225PUrseBlUAF0Z7LeUTHel8Blob33UNeA+4K67AQKEwq51ygNLx+npReSPSPUgbcyfdPCkhZR4bW6TCibnoJUBxeJ7aC9SoA3gvr9QFwdUjvRfTjWAo8CewY0vPC59Iwv1dSWVeGtn9EuOIm3fe0tjoa4fs4jO+vnmrR6xXKfj+8FiXqbenfw8Z86TEiIiISmw5PiYhIbAoaIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoaIiMT2/wBBp3I+W+RSDQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0,1],s=100,c='red',label='Others')\n", + "plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1,1],s=100,c='blue',label='China(mainland),USA,India')\n", + "plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=300,c='yellow',label='Centroids')\n", + "plt.title('Clusters of countries by Productivity')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "923d4536-2bce-4b99-b98a-33b801a56a8b", + "_uuid": "fe531e8c41eec0eb5dc52a9890871841f5d27211" + }, + "source": [ + "So, the blue cluster represents China(Mainland), USA and India while the red cluster represents all the other countries.\n", + "This result was highly probable. Just take a look at the plot of cell 3 above. See how China, USA and India stand out. That has been observed here in clustering too.\n", + "\n", + "You should try this algorithm for 3 or 4 clusters. Looking at the distribution, you will realise why 2 clusters is the best choice for the given data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "_cell_guid": "6dee7acb-0f08-4ae1-85b4-f4704026694a", + "_uuid": "179a1ede21ae330664a0b7c63e36574acdc0428c" + }, + "source": [ + "This is not the end! More is yet to come." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Now, lets try to predict the production using regression for 2020. We will predict the production for USA,India and Pakistan.**\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl81NW9//HXJwsQUAy4QgABZRFFReJWrcUVoW7VWrWtxeWW9l77025WaG+r1SpUrbbW1tZb9WoXl6rXoqiICFp3QVRkE2RNQEHDToAsn98f3+/AkMwkM8msyfv5eOSRmTPf+c45JvLJOZ+zmLsjIiKSCgXZroCIiLQdCioiIpIyCioiIpIyCioiIpIyCioiIpIyCioiIpIyCioiOcLMbjCzv4WP+5jZZjMrzHa9RJKhoCKSYma2zMxOa8093H2Fu+/h7nWpqpdIJiioiIhIyiioiKSJmV1mZq+a2e1mts7MlprZqKjX+5nZy2a2ycymAvtEvdbXzNzMisLnl5vZ/PDaJWb2nSw0SaRZCioi6XUssJAgYNwK3GdmFr72D2BW+NpNwJgm7rMGOAvoClwO3GlmR6Wr0iItpaAikl7L3f1/wtzIg0APYH8z6wMcDfzc3be7+yvA0/Fu4u6T3f1jD7wMvAB8MRMNEEmGgopIen0SeeDuW8OHewA9gXXuviXq2uXxbmJmo8zsTTOrMrP1wGiihstEcoWCikh2rAa6mVmXqLI+sS40s47AE8DtwP7uXgo8C1is60WySUFFJAvcfTkwE/ilmXUwsxOBs+Nc3gHoCKwFasNk/xmZqalIcoqyXQGRduzrBHmWKuAN4CGgtOFF7r7JzK4GHiMILk8DkzJYT5GEmQ7pEhGRVNHwl4iIpIyCioiIpIyCioiIpIyCioiIpEy7m/21zz77eN++fbNdDRGRvDFr1qzP3H3fRK5td0Glb9++zJw5M9vVEBHJG2YWd7eHhjT8JSIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKdPuZn+JiLQnT82u5LYpC1m1vpqepSVcO3IQ5w0rS9vnKaiIiLRRT82uZPyTc6iuqQOgcn0145+cA5C2wKLhLxGRNuq2KQt3BpSI6po6bpuyMG2fqaAiItJGrVpfnVR5KiioiIi0UT1LS5IqTwUFFRGRNurakYMoKS7craykuJBrRw5K22cqUS8i0kZFkvGa/SUiIkmJN3U48pUpCioiInkuG1OH41FORUQkz2Vj6nA8CioiInkuG1OH41FQERHJc9mYOhyPcioiInkkVkL+2pGDdsupQPqnDsejnoqISJ6IJOQr11fj7J6Qn3D+UMpKSzCgrLSECecPzXiSHtRTERHJG00l5F8bd0pWgkhD6qmIiOSJXErIx6OgIiKSJ3IpIR+PgoqISJ7Ixl5eyVJORUQkT2RjL69kKaiIiOSopvbzylUKKiIiOSiX9vNKhnIqIiI5KJf280qGgoqISA7Kh+nDsSioiIjkoHyYPhyLgoqISA7Kh+nDsShRLyKSg1I9fbi2rp6iwvT3IxRURERyVCqmD6/ZtI3bpyxk9YZtPHTFMZhZimoXm4KKiEgbtK2mjvtfW8ofXlrMjrp6LvtCX2rrneJCBRURkTYt3iLHlnB3nv/wE255bj4rq6o57ZD9+dmXD6HfPl1SXOvYFFRERDIkVvAAUrbI8cPKDdz4zDzeXlrFoP335G9XHsuJA/ZJbSOakbasjZndb2ZrzOzDqLLuZjbVzBaF37uF5WZmd5nZYjP7wMyOinrPmPD6RWY2Jqp8uJnNCd9zl6V7oFBEpBXiHbD1y6fntnqR45pN27ju8Q84++5XWbxmM7867zAmX31ixgMKpHdK8f8CZzYoGwdMc/cBwLTwOcAoYED4NRa4B4IgBFwPHAscA1wfCUThNWOj3tfws0REcka8FfLrttbEvD6RRY7bauq4Z8bHnHL7yzzxbgVXntCP6T8ewTePOzAjM71iSdvwl7u/YmZ9GxSfC4wIHz8IzACuC8sfcncH3jSzUjPrEV471d2rAMxsKnCmmc0Aurr7G2H5Q8B5wHPpao+ISGskuxK+qUWO7s6UuZ9w87O78iY/HT2Y/vvu0dpqtlqmcyr7u/tqAHdfbWb7heVlwMqo6yrCsqbKK2KUx2RmYwl6NfTp06eVTRARSV7P0hIqYwSW0pJittfW79aLaWqR44eVG7jpmXm8FeZN/nrlMXxxwL5pq3eyciVRHysf4i0oj8nd7wXuBSgvL497nYhIulw7ctBuCXkIgscN5xwKNL/Ice2m7fzmhYU8OnMl3Tp34KbzDuOSo3tnbZgrnkwHlU/NrEfYS+kBrAnLK4DeUdf1AlaF5SMalM8Iy3vFuF5EJCc1t0I+3kyv7bV1PPDaMu5+aTHbauq48oR+/L9TB7BXSXHG6p6MTAeVScAYYGL4/V9R5d8zs0cIkvIbwsAzBbglKjl/BjDe3avMbJOZHQe8BXwL+H0mGyIikqxkVshH8ia3PLuAFVVbOe2Q/fjp6ENyIm/SlLQFFTN7mKCXsY+ZVRDM4poIPGZmVwIrgAvDy58FRgOLga3A5QBh8LgJeCe87sZI0h74T4IZZiUECXol6UUkJ7R2MePcVUHe5M0lVQzcf4+cy5s0xYIJV+1HeXm5z5w5M9vVEJE2quGJjRDkTiacP7TZwLJ203bumLqQR95ZSWlJMT88Y1BO5E3MbJa7lydyba4k6kVE2oSmTmxsKm/yv68t4/dh3uSKE/px9SkD2KtzbuZNmqKgIiKSQsmc2BjkTT7llmfns6JqK6cO3o+ffTn38yZNUVAREUmheOtRGi5mnLdqIzc9M483lnzOwP334KErjuGkgfmRN2mKgoqISArFW48SWcz42eZgvUkkb3LTuYdyyTF9sp43SRUFFRGRFIq3HmXU0AP488sfc/dLi6muqePyL/TjmlPzM2/SFAUVEZEUi16P4u68MO9TzrjzFZZ/HuRNfvrlQzgoj/MmTVFQERFJk/mrg7zJ6x9/zoD92k7epCkKKiIiKfbZ5u3cMfUjHnl7BV1Lirnx3EP5ehvKmzRFQUVEJEV21Nbz4OvLuGvaIqpr6hjzhb58/9SBbS5v0hQFFRGRFopsx1K5vpruXTpQYPDZ5h2cMjjYp+vg/dpm3qQpCioiIi3QcDuWqi07MOA7J/Vn/OhDslu5LGr7A3wiImkw8bkFjbZjceCZD1Znp0I5Qj0VEZEkRPImn2zcFvP1ZI8NbmsUVEREEuDuvDh/DTdPnseyz7fSsaiA7bX1ja5r6mz59kBBRUSkGQs+CdabvLb4cw7atwsPXH40G7bWNLkdS3uloCIiEsfn4XqTh99ewZ6dirn+7CF887gDKY5ab9Kaw7jaIgUVEZEGdtTW89Aby/jdtEVs3VHHt47vy/dPG0Bp5w67XZfM8cDthYKKiEjI3Zk2fw03PzufpZ9t4UsD9+XnZx3Cwfvtme2q5Q0FFRERYOEnm/jV5Hn8e9Fn9A/zJicP2i/b1co7Cioi0q5VbdnBHVMX8o+34udNJHEKKiLSLjXMm1x63IF8/7SBdOvSodn3SnwKKiLSrjTMm5w0cF9+/uVDGLB//LxJZI8vzfJqnoKKiLQbjfImlx3NiEH7YmZx39Nwj6/K9dWMf3IOgAJLDAoqItLmVW3ZwZ1TP+Lvby1nj45F/OKsIVx6fGJ5k9umLGy0x1d1TR23TVmooBKDgoqItFmRvMld0xaxpYV5k3h7ebX3Pb7iUVARkZzUmjyGu/PSgjXcPHk+S+LkTRK9f8/SEipjBJD2vsdXPAoqIpJzWpLHiD4wK7LZY7y8Sbz7z1xexfQFa3cLNNeOHKQ9vpKgidgiknOaymPE8tTsSsY98cHOHsX22nqKC4yrRhzMyYP3a5SIj3f/v7+5gsr11Ti7B7IJ5w+lrLQEA8pKS5hw/lDlU+JQT0VEck4yeYyaunqunzSXbQ22oa+pd+6Y+hEXDO+V8P29wfNIIHtt3CkKIglSUBGRnNNUHiN6mGvvLh0oLDA2VNfEvE+84BHv/sncQ2LT8JeI5JxrRw6ipLhwt7KS4kJOHrwv45+cszMgfL5lB2s3bWePjoWxbrMzCJ0w8SX6jZvMCRNf4qnZlTHvH2+lihLyyVFQEZGcc96wsph5jBfnrYl5LnxRQUGzQai5PMk3jusT8x5KyCcnK8NfZvYD4D8Ifh/mAJcDPYBHgO7Au8Cl7r7DzDoCDwHDgc+Bi9x9WXif8cCVQB1wtbtPyXBTRCRNos8qqamr569vLI97LvyG6hruvOjIRlOEm0r4x8qTlB/YXduxtFLGg4qZlQFXA0PcvdrMHgMuBkYDd7r7I2b2J4JgcU/4fZ27H2xmFwO/Bi4ysyHh+w4FegIvmtlAd6+L8bEikqOaWi/i7sxYuJabJs9jydotTZ4LH+vArB88+l7Mz4yXJ9GhW62XreGvIqDEzIqAzsBq4BTg8fD1B4Hzwsfnhs8JXz/VgvmB5wKPuPt2d18KLAaOyVD9RSQFIutFGg5PPTW7kkWfbmLMA+9w+f++Aw73jSln4vlDkxqiipcPUZ4kfTLeU3H3SjO7HVgBVAMvALOA9e5eG15WAUT+XCgDVobvrTWzDcDeYfmbUbeOfs9uzGwsMBagT58+KW2PiLRcvOGpn/3fHLbV1tO5QyH//eVD+NbxfelQFPwNbGYJD1Fp4WLmZWP4qxtBL6MfsB74JzAqxqWRKeOxJmV4E+WNC93vBe4FKC8vj3mNiGRevGGoyD5dPzh9IN27tPxc+Mh1ypNkTjYS9acBS919LYCZPQl8ASg1s6Kwt9ILWBVeXwH0BirC4bK9gKqo8ojo94hIHoi3XmS/PTty03mHpeQzlCfJrGzkVFYAx5lZ5zA3ciowD5gOfDW8Zgzwr/DxpPA54esvubuH5RebWUcz6wcMAN7OUBtEJAUuPf5AChqMOXQqKuCnow/JToWk1bKRU3nLzB4nmDZcC8wmGJqaDDxiZr8Ky+4L33If8FczW0zQQ7k4vM/ccObYvPA+V2nml0h+WL91B799cRF/fXM5HYoK6FBYwMZttZRpeCrvWfBHfzMXme0LfBvoS1Qgcvcr0lazNCkvL/eZM2dmuxoi7VJNXT3/eGsFd774ERura7jkmD788PSB7L1Hx2xXTZpgZrPcvTyRaxPtqfwL+DfwIsFCQxGRpMxYuIZfTZ7P4jWbOeHgvfn5WUMYfEDXbFdLUizRoNLZ3a9La01EpE1avGYzv5o8jxkL11IYJlCWrt3CgtWbFFTaoESDyjNmNtrdn01rbUSkzYjOmxQXGkUFRm19MNy+asO2Zg/dkvyU6OyvawgCyzYz2xR+bUxnxUQkP9XU1fPg68sYcfsMHnpjGRcd3ZvSkg47A0pEU4duSf5KqKfi7ns2f5WItHcvf7SWm56Zx+I1mzm+f5A3GdKzK/3emhzzep1V0vYkPKXYzM4BTgqfznD3Z9JTJRHJN4vXbObmyfOYvnAtB+7dmXsvHc7pQ/bfeYxvU4duSduSUFAxs4nA0cDfw6JrzOxEdx+XtpqJSM5bv3UHv5u2iL++sZyS4kJ+OnowY77Ql45Fu2/6qD242o9E16l8ABzp7vXh80Jgtrsfnub6pZzWqYi0Xm1dPf94ewV3TA3Wm1x0dB9+dMZA9gnXm8Tazh60B1e+Ssc6FYBSghXtEOy/JSLt0Cth3mRRmDf5xdlDOKTHrqnBke3sI72SyHb2E84fymvjTslWtSVDEg0qE4DZZjadYHfgk4DxaauViOScJWs3c/Pk+UxbsIYD9+7Mny8dzhlReZOIpk5bVM+k7Ut09tfDZjaDIK9iwHXu/kk6KyYiuWHD1hruemkRD76+rFHeJNYwV7wZXZrp1T40GVTMbLC7LzCzo8KiivB7TzPr6e7vprd6IpIttXX1PBzmTdZX13Dx0cE+XfvuuStvEmuYq7RzMeu21jS6n2Z6tQ/N9VR+SHBi4m9ivOYERwCLSBsTnTc5rn93fnHWoQzpufuWKvGGuToWFVBSXKiZXu1Uk0HF3ceGD0e5+7bo18ysU9pqJSJZ8fHazdySQN4E4g9nbaiu4c6LjtRMr3Yq0UT968BRCZSJSB6Kzpt0Ki5k/KjBXHbCrvUmsXInTS1o1GmL7VdzOZUDgDKgxMyGsetc+K5A5zTXTUTSrHHepDc/PH3QzrwJxM+dXDC8jCdmVWqYS3bTXE9lJHAZwfnvv2FXUNkI/DR91RKRdPv3oiBv8tGnQd7k52cN4dCejZegxcudTF+wlgnnD9Uwl+ymuZzKg8CDZnaBuz+RoTqJSBotWbuZW56dz4vz19Cne2f+9M3hjDw0dt4E4udOVq2v1jCXNJJoTmW4mU1z9/UAZtYN+JG7/3f6qiYiqbShuoa7pu3Km4wbNZjLT9h9n65kcyciDSW699dsdx/WoOxdd8+7RL32/pL2praunoffWckdLyxkfXUNF5X35tCeXfnTy0sa7c0Va9PHeLmTCecPVS+lnUjH3l+FZtbR3beHH1ACdGzmPSKSZa8u+oybnpnHwk83cWy/7vzi7CEs+nRzzMR7p+IC5U6k1RINKn8DppnZAwSLHq8AHkxbrUSkVZZ+toWbJ8/jxflr6N29hHu+cRRnHnYAZsbYh2bFDB4NyyKUO5FkJLr3161mNgc4lWAG2E3uPiWtNRORpG2oruH30xbx4BvL6FBYwHVnBnmTTsW78ibJ7sGl3IkkI+Gt7939OeC5NNZFRFqotq6eR2eu5DcvfMS6rTv42vDe/GjkQPbbs/HGF/ES76UlxWyvrde6E2mVRE9+3EQw7AXQASgGtrh71/jvEpFMeG1xkDdZ8MkmjunXnV+cNYTDyuIfeRTvFMYbzjkU0EFa0jqJDn/tGf3czM4DjklLjUQkIUs/28Itz85n6rxP6dVt97xJRKwpwpEgEa9cQURaI5mTH3dy96fMTOfTi2TBxm013P3SYh54bSkdCgv4yZmDuOKEfrvlTSD+9iqAEu+SNokOf50f9bQAKGfXcJiIZEBdvfPoOyv5zQsLqdq6gwuH9+LHIwfFzJuATmCU7Ei0p3J21ONaYBlwbsprIyIxvb74M24M8yb99+1CgRn/nFnBa4s/j5v30AmMkg2J5lQuT3dFRKSxZWHe5IUwb3LZF/ryyNsr2FZbDzQe0oqm7VUkG5rb+v73NDHM5e5Xp7xGIhI3b3Lqb17eGVAi4g1pxZvlpSnCkk7N9VQim2SdAAwBHg2fXwjMSlelRNqrmHmTMwaxX9cgb9LUkFasmV7aXkUyLdENJacDZ7h7Tfi8GHjB3U9u0YealQJ/AQ5j17YvCwmCVl+CnM3X3H2dBfMjfweMBrYCl7n7u+F9xgCRnZJ/FW7V3yRtKCm5Kjpvckzf4HyTob12X29ywsSXklq4qE0fJRWS2VCyIMF79gSi16rsEZa11O+A5919MHAEMB8YB0xz9wHAtPA5wChgQPg1FrgHwMy6A9cDxxKsmbk+3JJfJK8s+2wLYx+aydf/8habttXyh68fxaPfOa5RQIFgSKukwdThkuJCzIg700skkxKd/TURmB32WAC+BNzQkg80s67ASQQnSuLuO4AdZnYuMCK87EFgBnAdwSyzhzzoUr1pZqVm1iO8dqq7V4X3nQqcCTzcknqJZNrGbTX84aXF3P/aUooLC7h25CCuPLHxepNo8RYu/uDR92Jer5lekmmJzv56wMyeI+gVODDO3T9p4Wf2B9YCD5jZEQS5mWuA/d19dfh5q81sv/D6MmBl1PsrwrJ45Y2Y2ViCXg59+vRpYbVFUqNh3uSrR/Xi2pG78iYR8VbDx1q4eNuUhZrpJTkh0eEvCIaYvkjQyzi6FZ9ZBBwF3BMe/LWFXUNdscQ649SbKG9c6H6vu5e7e/m+++6bbH1FUuaNjz/nrN+/yk//bw799+3CpKtO5LYLj4gZUMY/OYfK9dU4u6YOPzW7MuZ94w2LaaaXZFpCQcXMJhL0JuaFX1eb2YQWfmYFUOHub4XPHycIMp+Gw1qE39dEXd876v29gFVNlIvknOWfb+E7f53JJf/zJhura7j768N47DvHx8ybQNOr4WM5b1gZE84fSllpCQaUlZYoSS9ZkWhOZTRwpLvXA5jZg8BsYHyyH+jun5jZSjMb5O4LCc5oiQSrMQT5mzHAv8K3TAK+Z2aPEAy/bQiHx6YAt0Ql589oSX1E0mnTthrunr6YB15dRlGhJZQ3gZathtd+XpILktlQshSoCh/H31c7Mf8P+LuZdQCWAJcT9JoeM7MrgRUEa2EAniUIaosJphRfDuDuVWZ2E/BOeN2NkaS9SLbV1Tv/nLmS219YyGebd/DV4UHeZP+usffpakir4SVfJRpUJrBr9pcR5FVa3Ctw9/cINqVs6NQY1zpwVZz73A/c39J6iKTDGx9/zk3PzGPe6o2UH9iN+y87msN7lca9PlZCXqvhJV81u/gxXHzYi2AjyaMJgspbrZj9lVVa/CjpsuLzrdzy7Hyen/sJZaUljBs1mLMO77Hb+SYNNdyeHnYtWgQdmCW5IZnFj4muqJ/l7sNbXbMcoKAiqbZpWw1/mP4x97+6lKJC479GHMR/fLF/s3kTiL9Cvqy0hNfGnZKO6ookLZmgkujw15tmdrS7v9P8pSLtQ1298/isldw25SM+27ydC47qxU/OTDxvAtqeXtqeRIPKycB3zWwZwboSI0h3HJ6uionksjeXBHmTuas2MvzAbtx/WXmTeROInTtRQl7amkSDyqi01kIkT6z4fCsTnpvPcx8GeZPfXzKs2bwJxD/a94LhZTwxq1IJeWkzmjtPpRPwXeBgYA5wn7vXZqJiIrlk8/Za/jB9Mff9eymFBcaPTh/It0+KnTeJ1SOJt5hx+oK12p5e2pQmE/Vm9ihQA/yboLey3N2vyVDd0kKJeklGXb3zxKwKbp2ykM82b+f8o8r4ycjBHLBXp5jBA4g5m6thQIkwYOnEL2eiKSItlspE/RB3Hxre9D7g7dZWTiRfvLXkc26MypvcN6acI3oHeZN4w1mdigti9kgKzaiL8QeccifS1jQXVGoiD9y9trlxY5G2YGVVkDd5ds4n9NyrE3ddMoyzG+RN4g1nxeuR1Lk36rEodyJtUXNB5Qgz2xg+NqAkfB6Z/dU1rbUTyaCGeZMfnj6Qb3+xPyUdGudNkp3yWxaVW1HuRNqyJoOKuze/ekskz9XXO49H502GlXHtmYPosdeuoamG+ZPSzsWs21rT6F7xjvWNPgtFpC1LZkNJkTbn7aVV/PLpucxdtZGj+pTylzHlHNl79/UmsfInxQVGcaFRU7crT1JSXMgN5xwKaHsVab8UVKRdWlm1lYnPLWDynNX03KsTv7v4SM45omfM9Sax8ic19U5pSTFdOhbFDB4KItJeKahIu7J5ey1/nL6Yv7y6lEIzfnDaQMaeFDtvEhEvf7Khuob3rj8jXVUVyUsKKtIu1Nc7j79bwW1TFrJ203a+MqyMnzTIm8SjrVREEqegIm3e20uruPGZuXxYuZFhfUq599LhDOvTrfk3hnS2iUjiFFSkzYrOm/RoJm/SlEh+RMl3keYpqEibs2V7LX+csZj/+fdSCgy+f9oAvnPSQU3mTZqj6cAiiVFQkTajvt554t1gvUmyeRMRSQ0FFWkT3llWxY1Pz2NO5QaO7F3Kny8dzlFJ5E0iYm0SqR6KSOIUVCSvVazbyoTnFjD5g9Uc0LUTv70oyJsUFDR/vklzOwxHNokErTsRSZSCiuSlLdtruWfGx9z77yU78yZjT+pP5w7N/0onu8PwbVMWKqiIJEhBRfJKfb3z5OxKbn1+AWs2bee8I3vykzMHJ7VmJNkdhnVevEjiFFQkb8xcVsWNz8zjg4oNHNG7lD+1MG+SbJDQIkeRxCmoSM6rWBesN3kmybxJPPFWyDe1w7CIJEZBRXLWlu21/Onlj7n3lSWYwTWnDqBnaSdum7KQHzz6XotnZ8VbIa8dhkVaT0FFck59vfN/syu5dcoCPt24nXOP7Ml1Zw7m7aVVcWdnQexg0NQU4XjlCiIiLWce49zstqy8vNxnzpyZ7WpIHLOWB+tN3g/zJr846xCGH9gdgBMmvpTUsNUFw8t4YlZlo/IJ5w9V4BBJgpnNcvfyRK5VT0VyQuX6aiY+t4Cn31/F/l078o1j+zB9wRq+es8bO3sS8RLs66sbn8BYXVPHw2+tpK7BH02aIiySXgoqklVbd9Typxkf8+dXlgBw9akDKCvtxA2T5jUa5op3hG88DQNKhKYIi6SPgopkRX2989R7lfz6+SBvcvYRPRk3ajBlpSWcMPGlmOtIOhYVUFJc2Gg4q1NxQcxgU2gWM7BoirBI+hRk64PNrNDMZpvZM+Hzfmb2lpktMrNHzaxDWN4xfL44fL1v1D3Gh+ULzWxkdloiyZq1vIqv/PE1fvjY+xzQtRNP/Ofx/P6SYZSF/9g3ddLihPOHUlZaggFlpSVMOH8o1599KCXFu+9AXFJcyCXH9o5ZrinCIumTzZ7KNcB8oGv4/NfAne7+iJn9CbgSuCf8vs7dDzazi8PrLjKzIcDFwKFAT+BFMxvo7rGXRUvWVa6v5tfPLWBSmDe542tHcN6RZY3WmzR10mJTW9DHms1VfmB3TREWyaCszP4ys17Ag8DNwA+Bs4G1wAHuXmtmxwM3uPtIM5sSPn7DzIqAT4B9gXEA7j4hvOfO65r6bM3+yryGeZOxJ/Xnu186iC4dY/9N03BvLtCsLZFsyofZX78FfgLsGT7fG1jv7rXh8wog8q9HGbASIAw4G8Lry4A3o+4Z/R7JAQ3zJsP6lLJqfTV3v7SYJ9+tjNtr0EmLIvkr40HFzM4C1rj7LDMbESmOcak381pT72n4mWOBsQB9+vRJqr7SMrOWr+PGZ+bx/sr1HN5rLy4+ug/3vrIkqYWLCiIi+ScbPZUTgHPMbDTQiSCn8lug1MyKwt5KL2BVeH0F0BuoCIe/9gKqosojot+zG3e/F7gXguGvlLdIdloVrjeZ9P4q9tuzI7+58Ai+MqyML946PeaMrhsmzd1t4aLOMBHJbxmf/eXu4929l7v3JUi0v+Tu3wCmA18NLxsD/Ct8PCl8Tvj6Sx4kgiYBF4ezw/oBA4AbYNt1AAAOsklEQVS3M9QMaWDrjlrumPoRp/xmBlPmfsL/O+Vgpv94BBcM70VBgTW5cDHeGSYikn9yaZ3KdcAjZvYrYDZwX1h+H/BXM1tM0EO5GMDd55rZY8A8oBa4SjO/Muup8FyTVRu2UWBQ73DW4T0YN2owvbp13u3aeDO64tECRZH8pL2/pEWeml3JdY9/wPa6+p1lHQoLuPWrhwONcyRAzBld8RYulpWW8Nq4U9LcChFJRDKzv7K2+FHy16ow7xEdUAB21NVzw6S5jH9yDpXrq3F2z5Eks3BRCxRF8lMuDX9JjopsH1+5vpo9OxaxrbaOmrrYPdx4mzveNmUhr407JamFiyKSfxRU2qmmzhlpeN24Jz5gW23QK9m0vZZCM7p2KmLjttpG18fTVI5E04dF2g4FlXao4Yr1yBDVzOVVTF+wdrdAc/Pk+TsDSkSdOwVmSW3uqE0cRdoH5VTaodumLIw5jffvb67YLRfyo8feZ+3m7THvkezmjsqRiLQP6qm0cbGGueINRTXMktS5YzHKoWWbO4pI26cpxW1YvI0Z4w1RxRNrmEubO4q0H5pSLED8YS53Gg1RxRMZ1mo4zKWAIiKxaPirjUhmmGtDdQ13XnQkE59bwCcbtwHQqbiAunrfbapwJBei2Vkikij1VNqAyDBXwwWHpZ2LY15/wF6dWP75VjZU19ChqID/GnEQM//7dG776hHqkYhIqyinkmdi9UgiCxMbKi0p3m0HYIDiQqNLxyLWb61h9NADGD/qEHp379zovSIiEflwSJe0QLz1JQ3zJhGRYa5I0OlQWMCOunrKSkv48zeHc2z/vTNZfRFpBxRUclS8HkmsxHuhGXUxepw9S0s4rv/eHNuvO0/OrmSvzsVcO3IQFxzVi8KCWGeciYi0joJKDkq2R1Ln3mjab6eiAob22ouTb59BnTv/OeIgrjr5YPaIcy68iEgq6F+YLEtFj6SsQW6lW+diHHj+w0+UNxGRjFJQyZBYwQNodY8ketpvv326cOMz85i1fB2H9uyqvImIZJyCSisks9NvrODRqbigxT2S6M88/qC9+eFj7/Hku5Xss0dHbr3gcC4YrryJiGSegkoLxQsUEdH/8G/dURszeLS0RxIJXNtq6vifV5Yw/sk51NUHeZP/GnEQe3aKvT5FRCTdFFQSkEze44ZJc3dbG5LMuewR8XokkWDi7jzzwWomPreAyvXVjDosyJv02Vt5ExHJLi1+bEa8TRnj9TKSEWtxYnObNb6/cv3OvMmQHl35xdlDOE55ExFJIy1+TKFkZ2IlqqS4kBvOOXTnZzSXl/l04zZ+/fyCMG/SgYnnD+XC8t7Km4hITlFQaUa8TRnj5T3ibStfWlJMl45FMYNHU/trbaup4y//XsIfZ3xMbZ3z3S8dxFUnK28iIrlJQaUZPUtLYuZF4uU9gJjDZTecc2hSmzM2zJuceegBjB89mAP37tL6RomIpImCSjOuHTkoZpBobkv41px8+EHFem58eh4zl6/jkB5duf3CIzj+IOVNRCT3Kag0IxIMkgkSLT1/5NON27htykIen1WhvImI5CUFlQSk+5CqhnmT73ypP987+WDlTUQk7yioZJG7M3nOaiY8q7yJiLQNCipZMqdiAzc+M5d3lgV5k9suPJwvHLRPtqslItIqCioZtiaSN3m3gu6dOzDh/KF8TXkTEWkjFFQyZFtNHfe9upQ/Tl9MTZ0z9qT+XHXywXRV3kRE2hAFlTRzd56d8wm3PDufyvXVnDFkf3725UOUNxGRNklBJY0+rNzAjU/P4+1lVQw+YE/+8e1jlTcRkTatINMfaGa9zWy6mc03s7lmdk1Y3t3MpprZovB7t7DczOwuM1tsZh+Y2VFR9xoTXr/IzMZkui3xrNm4jWv/+T5n3/0qH6/dzC1fGcrkq7+ogCIibV42eiq1wI/c/V0z2xOYZWZTgcuAae4+0czGAeOA64BRwIDw61jgHuBYM+sOXA+UAx7eZ5K7r8t4i0LReZMddfV8+4v9+d4pypuISPuR8aDi7quB1eHjTWY2HygDzgVGhJc9CMwgCCrnAg95sEf/m2ZWamY9wmununsVQBiYzgQezlhjQpG8yYTn5lOxrprTh+zPz0YfQt99lDcRkfYlqzkVM+sLDAPeAvYPAw7uvtrM9gsvKwNWRr2tIiyLVx7rc8YCYwH69OmTugbQOG/y9/84lhMO1jCXiLRPWQsqZrYH8ATwfXffaBZ3nUasF7yJ8saF7vcC90JwSFfytW1szaZt3D5lIf+cVUG3zh24+SuHcVF5b4oKM56mEhHJGVkJKmZWTBBQ/u7uT4bFn5pZj7CX0gNYE5ZXAL2j3t4LWBWWj2hQPiOd9YbGeZP/OLEf3ztlAHuVKG8iIpLxoGJBl+Q+YL673xH10iRgDDAx/P6vqPLvmdkjBIn6DWHgmQLcEpklBpwBjE9Xvd2d5z4M1ptUrKvmtEOC9Sb9lDcREdkpGz2VE4BLgTlm9l5Y9lOCYPKYmV0JrAAuDF97FhgNLAa2ApcDuHuVmd0EvBNed2MkaZ9q1TvqGPPA27y9tIpB++/J3648lhMHKG8iItJQNmZ/vUrsfAjAqTGud+CqOPe6H7g/dbWLraRDIf327sI5R/Tk4qOVNxERiUcr6hP0668enu0qiIjkPP3JLSIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKWPBgvX2w8zWAsubuWwf4LMMVCcXtJe2tpd2Qvtpa3tpJ2S/rQe6+76JXNjugkoizGymu5dnux6Z0F7a2l7aCe2nre2lnZBfbdXwl4iIpIyCioiIpIyCSmz3ZrsCGdRe2tpe2gntp63tpZ2QR21VTkVERFJGPRUREUkZBRUREUmZdhFUzOx+M1tjZh9GlR1hZm+Y2Rwze9rMuka9dnj42tzw9U5h+fDw+WIzu8vM4p1gmTXJtNXMvmFm70V91ZvZkeFrba2txWb2YFg+38zGR73nTDNbGLZ1XDba0pQk29nBzB4Iy983sxFR78npn6mZ9Taz6eHPZ66ZXROWdzezqWa2KPzeLSy3sB2LzewDMzsq6l5jwusXmdmYbLUpnha0dXD4895uZj9ucK/c+v119zb/BZwEHAV8GFX2DvCl8PEVwE3h4yLgA+CI8PneQGH4+G3geILjkJ8DRmW7ba1pa4P3DQWWRD1vU20Fvg48Ej7uDCwD+gKFwMdAf6AD8D4wJNtta0U7rwIeCB/vB8wCCvLhZwr0AI4KH+8JfAQMAW4FxoXl44Bfh49Hh+0w4DjgrbC8O7Ak/N4tfNwt2+1rZVv3A44GbgZ+HHWfnPv9bRc9FXd/BahqUDwIeCV8PBW4IHx8BvCBu78fvvdzd68zsx5AV3d/w4Of5kPAeemvfXKSbGu0S4CHAdpoWx3oYmZFQAmwA9gIHAMsdvcl7r4DeAQ4N911T0aS7RwCTAvftwZYD5Tnw8/U3Ve7+7vh403AfKCM4OfxYHjZg+yq97nAQx54EygN2zkSmOruVe6+juC/z5kZbEqzkm2ru69x93eAmga3yrnf33YRVOL4EDgnfHwh0Dt8PBBwM5tiZu+a2U/C8jKgIur9FWFZPojX1mgXEQYV2mZbHwe2AKuBFcDt7l5F0K6VUe/Pl7bGa+f7wLlmVmRm/YDh4Wt59TM1s77AMOAtYH93Xw3BP8YEf7VD/J9dXv1ME2xrPDnX1vYcVK4ArjKzWQTdzx1heRFwIvCN8PtXzOxUgi52Q/kyHzteWwEws2OBre4eGbNvi209BqgDegL9gB+ZWX/yt63x2nk/wT8sM4HfAq8DteRRO81sD+AJ4PvuvrGpS2OUeRPlOSeJtsa9RYyyrLa1KJsfnk3uvoBgqAszGwh8OXypAnjZ3T8LX3uWYDz7b0CvqFv0AlZlrMKt0ERbIy5mVy8Fgv8Gba2tXweed/caYI2ZvQaUE/yVF91zy4u2xmunu9cCP4hcZ2avA4uAdeTBz9TMign+kf27uz8ZFn9qZj3cfXU4vLUmLK8g9s+uAhjRoHxGOuvdEkm2NZ54/w2ypt32VMxsv/B7AfDfwJ/Cl6YAh5tZ53D8/UvAvLArusnMjgtnzXwL+FcWqp60JtoaKbuQYCwW2NntbmttXQGcEs4Y6kKQ2F1AkPAeYGb9zKwDQYCdlPmaJydeO8Pf2y7h49OBWnfPi9/fsF73AfPd/Y6olyYBkRlcY9hV70nAt8Kf6XHAhrCdU4AzzKxbOHvqjLAsZ7SgrfHk3u9vNmcJZOqL4K/w1QRJrgrgSuAaghkXHwETCXcXCK//JjCXYNz61qjy8rDsY+Du6PfkylcL2joCeDPGfdpUW4E9gH+GP9d5wLVR9xkdXv8x8LNst6uV7ewLLCRI/L5IsGV5XvxMCYabnWD25Xvh12iCGZjTCHpc04Du4fUG/CFszxygPOpeVwCLw6/Ls922FLT1gPBnv5Fg8kUFwcSLnPv91TYtIiKSMu12+EtERFJPQUVERFJGQUVERFJGQUVERFJGQUVERFJGQUUkjcI1FK+a2aiosq+Z2fPZrJdIumhKsUiamdlhBGtkhhHsKvsecKa7f9yKexZ5sHpeJKcoqIhkgJndSrChZRdgk7vfFJ7zcRXBluWvA99z93ozu5dga6AS4FF3vzG8RwXwZ4Idd3/r7v/MQlNEmtRu9/4SybBfAu8SbPxYHvZevgJ8wd1rw0ByMfAPgvM0qsJtgqab2ePuPi+8zxZ3PyEbDRBJhIKKSAa4+xYzexTY7O7bzew0gkOXZgbbQFHCri3MLzGzKwn+/+xJcEZKJKg8mtmaiyRHQUUkc+rDLwj2rbrf3X8efYGZDSDY1+sYd19vZn8DOkVdsiUjNRVpIc3+EsmOF4Gvmdk+AGa2t5n1AboCm4CNUacYiuQN9VREssDd55jZL4EXw+3ra4DvEhyuNY9gN+ElwGvZq6VI8jT7S0REUkbDXyIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjL/H2HG3kny6adeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "ename": "ValueError", + "evalue": "Expected 2D array, got scalar array instead:\narray=2020.\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreset\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 29\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2020\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mArea\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;34m'India'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mElement\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;34m'Food'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Y1961'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mReturns\u001b[0m \u001b[0mpredicted\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 212\u001b[0m \"\"\"\n\u001b[0;32m--> 213\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_decision_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[0m_preprocess_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstaticmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_preprocess_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36m_decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[0mcheck_is_fitted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"coef_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccept_sparse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'csr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'csc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'coo'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 197\u001b[0m return safe_sparse_dot(X, self.coef_.T,\n\u001b[1;32m 198\u001b[0m dense_output=True) + self.intercept_\n", + "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\"Reshape your data either using array.reshape(-1, 1) if \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;34m\"your data has a single feature or array.reshape(1, -1) \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \"if it contains a single sample.\".format(array))\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0;31m# If input is 1D raise error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Expected 2D array, got scalar array instead:\narray=2020.\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." + ] + } + ], + "source": [ + "india_list=[]\n", + "year_list = list(df.iloc[:,10:].columns)\n", + "for i in year_list:\n", + " x=df[(df.Area=='India') & (df.Element=='Food')][i].mean()\n", + " india_list.append(x) \n", + "\n", + "reset=[]\n", + "for i in year_list:\n", + " reset.append(int(i[1:]))\n", + "\n", + "\n", + "reset=np.array(reset)\n", + "reset=reset.reshape(-1,1)\n", + "\n", + "\n", + "india_list=np.array(india_list)\n", + "india_list=india_list.reshape(-1,1)\n", + "\n", + "\n", + "reg = LinearRegression()\n", + "reg.fit(reset,india_list)\n", + "predictions = reg.predict(reset)\n", + "plt.title(\"India\")\n", + "plt.xlabel(\"Year\")\n", + "plt.ylabel(\"Production\")\n", + "plt.scatter(reset,india_list)\n", + "plt.plot(reset,predictions)\n", + "plt.show()\n", + "print(reg.predict(2020))\n", + "\n", + "df[(df.Area=='India') & (df.Element=='Food')]['Y1961'].mean()\n", + "\n", + "df[(df.Area=='Pakistan') & (df.Element=='Food')]\n", + "\n", + "Pak_list=[]\n", + "year_list = list(df.iloc[:,10:].columns)\n", + "for i in year_list:\n", + " yx=df[(df.Area=='Pakistan') & (df.Element=='Food')][i].mean()\n", + " Pak_list.append(yx) \n", + "\n", + "Pak_list=np.array(Pak_list)\n", + "Pak_list=Pak_list.reshape(-1,1)\n", + "Pak_list\n", + "reg = LinearRegression()\n", + "reg.fit(reset,Pak_list)\n", + "predictions = reg.predict(reset)\n", + "plt.title(\"Pakistan\")\n", + "plt.xlabel(\"Year\")\n", + "plt.ylabel(\"Production\")\n", + "plt.scatter(reset,Pak_list)\n", + "plt.plot(reset,predictions)\n", + "plt.show()\n", + "print(reg.predict(2020))\n", + "\n", + "\n", + "\n", + "usa_list=[]\n", + "year_list = list(df.iloc[:,10:].columns)\n", + "for i in year_list:\n", + " xu=df[(df.Area=='United States of America') & (df.Element=='Food')][i].mean()\n", + " usa_list.append(xu)\n", + "\n", + "usa_list=np.array(usa_list)\n", + "usa_list=india_list.reshape(-1,1)\n", + "\n", + "\n", + "reg = LinearRegression()\n", + "reg.fit(reset,usa_list)\n", + "predictions = reg.predict(reset)\n", + "plt.title(\"USA\")\n", + "plt.xlabel(\"Year\")\n", + "plt.ylabel(\"Production\")\n", + "plt.scatter(reset,usa_list)\n", + "plt.plot(reset,predictions)\n", + "plt.show()\n", + "print(reg.predict(2020))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 628794d89de355e87ae51ed022cf242dac30ea47 Mon Sep 17 00:00:00 2001 From: obelisk0114 Date: Sat, 13 Jul 2019 22:45:54 -0700 Subject: [PATCH 197/594] Add combinations (#1015) * Update Bucket Sort time complexity analysis * Add combinations * Adding doctest * Fix doctest problem --- backtracking/all_combinations.py | 41 ++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 backtracking/all_combinations.py diff --git a/backtracking/all_combinations.py b/backtracking/all_combinations.py new file mode 100644 index 000000000000..63425aeabbd1 --- /dev/null +++ b/backtracking/all_combinations.py @@ -0,0 +1,41 @@ +# -*- coding: utf-8 -*- + +""" + In this problem, we want to determine all possible combinations of k + numbers out of 1 ... n. We use backtracking to solve this problem. + Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))) +""" + + +def generate_all_combinations(n: int, k: int) -> [[int]]: + """ + >>> generate_all_combinations(n=4, k=2) + [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] + """ + + result = [] + create_all_state(1, n, k, [], result) + return result + + +def create_all_state(increment, total_number, level, current_list, total_list): + if level == 0: + total_list.append(current_list[:]) + return + + for i in range(increment, total_number - level + 2): + current_list.append(i) + create_all_state(i + 1, total_number, level - 1, current_list, total_list) + current_list.pop() + + +def print_all_state(total_list): + for i in total_list: + print(*i) + + +if __name__ == '__main__': + n = 4 + k = 2 + total_list = generate_all_combinations(n, k) + print_all_state(total_list) From 3b2738ed89a4ecb1cfb6f16aa96bb90701914796 Mon Sep 17 00:00:00 2001 From: obelisk0114 Date: Sun, 14 Jul 2019 23:48:35 -0700 Subject: [PATCH 198/594] Add rotate matrix problem (#1021) * Add rotate matrix problem * Fix doctest * Adding return matrix to enable doctest --- matrix/rotate_matrix.py | 99 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 matrix/rotate_matrix.py diff --git a/matrix/rotate_matrix.py b/matrix/rotate_matrix.py new file mode 100644 index 000000000000..e3495e647954 --- /dev/null +++ b/matrix/rotate_matrix.py @@ -0,0 +1,99 @@ +# -*- coding: utf-8 -*- + +""" + In this problem, we want to rotate the matrix elements by 90, 180, 270 (counterclockwise) + Discussion in stackoverflow: + https://stackoverflow.com/questions/42519/how-do-you-rotate-a-two-dimensional-array +""" + + +def rotate_90(matrix: [[]]): + """ + >>> rotate_90([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) + [[4, 8, 12, 16], [3, 7, 11, 15], [2, 6, 10, 14], [1, 5, 9, 13]] + """ + + transpose(matrix) + reverse_row(matrix) + return matrix + + +def rotate_180(matrix: [[]]): + """ + >>> rotate_180([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) + [[16, 15, 14, 13], [12, 11, 10, 9], [8, 7, 6, 5], [4, 3, 2, 1]] + """ + + reverse_column(matrix) + reverse_row(matrix) + + """ + OR + + reverse_row(matrix) + reverse_column(matrix) + """ + + return matrix + + +def rotate_270(matrix: [[]]): + """ + >>> rotate_270([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) + [[13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3], [16, 12, 8, 4]] + """ + + transpose(matrix) + reverse_column(matrix) + + """ + OR + + reverse_row(matrix) + transpose(matrix) + """ + + return matrix + + +def transpose(matrix: [[]]): + matrix[:] = [list(x) for x in zip(*matrix)] + return matrix + + +def reverse_row(matrix: [[]]): + matrix[:] = matrix[::-1] + return matrix + + +def reverse_column(matrix: [[]]): + matrix[:] = [x[::-1] for x in matrix] + return matrix + + +def print_matrix(matrix: [[]]): + for i in matrix: + print(*i) + + +if __name__ == '__main__': + matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + print("\norigin:\n") + print_matrix(matrix) + rotate_90(matrix) + print("\nrotate 90 counterclockwise:\n") + print_matrix(matrix) + + matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + print("\norigin:\n") + print_matrix(matrix) + rotate_180(matrix) + print("\nrotate 180:\n") + print_matrix(matrix) + + matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + print("\norigin:\n") + print_matrix(matrix) + rotate_270(matrix) + print("\nrotate 270 counterclockwise:\n") + print_matrix(matrix) From 1e55bfd4da5a15d8e8536a1a87ad148c69b16a1e Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Tue, 16 Jul 2019 00:17:41 +0800 Subject: [PATCH 199/594] Create climbing_stairs.py (#1002) a simple dp problem seen on LeetCode: https://leetcode.com/problems/climbing-stairs/ --- dynamic_programming/climbing_stairs.py | 27 ++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 dynamic_programming/climbing_stairs.py diff --git a/dynamic_programming/climbing_stairs.py b/dynamic_programming/climbing_stairs.py new file mode 100644 index 000000000000..8a6213b22323 --- /dev/null +++ b/dynamic_programming/climbing_stairs.py @@ -0,0 +1,27 @@ +def climb_stairs(n: int) -> int: + """ + LeetCdoe No.70: Climbing Stairs + Distinct ways to climb a n step staircase where + each time you can either climb 1 or 2 steps. + + Args: + n: number of steps of staircase + + Returns: + Distinct ways to climb a n step staircase + + Raises: + AssertionError: n not positive integer + + >>> climb_stairs(3) + 3 + >>> climb_stairs(1) + 1 + """ + assert isinstance(n,int) and n > 0, "n needs to be positive integer, your input {0}".format(0) + if n == 1: return 1 + dp = [0]*(n+1) + dp[0], dp[1] = (1, 1) + for i in range(2,n+1): + dp[i] = dp[i-1] + dp[i-2] + return dp[n] From 2fb3beeaf1215a1be4a7bc97097ef6a33fd65aeb Mon Sep 17 00:00:00 2001 From: cclauss Date: Tue, 16 Jul 2019 07:26:28 +0200 Subject: [PATCH 200/594] Fix error message and format with python/black (#1025) @SandersLin Your review please? --- dynamic_programming/climbing_stairs.py | 67 ++++++++++++++++---------- 1 file changed, 41 insertions(+), 26 deletions(-) diff --git a/dynamic_programming/climbing_stairs.py b/dynamic_programming/climbing_stairs.py index 8a6213b22323..79605261f981 100644 --- a/dynamic_programming/climbing_stairs.py +++ b/dynamic_programming/climbing_stairs.py @@ -1,27 +1,42 @@ +#!/usr/bin/env python3 + + def climb_stairs(n: int) -> int: - """ - LeetCdoe No.70: Climbing Stairs - Distinct ways to climb a n step staircase where - each time you can either climb 1 or 2 steps. - - Args: - n: number of steps of staircase - - Returns: - Distinct ways to climb a n step staircase - - Raises: - AssertionError: n not positive integer - - >>> climb_stairs(3) - 3 - >>> climb_stairs(1) - 1 - """ - assert isinstance(n,int) and n > 0, "n needs to be positive integer, your input {0}".format(0) - if n == 1: return 1 - dp = [0]*(n+1) - dp[0], dp[1] = (1, 1) - for i in range(2,n+1): - dp[i] = dp[i-1] + dp[i-2] - return dp[n] + """ + LeetCdoe No.70: Climbing Stairs + Distinct ways to climb a n step staircase where + each time you can either climb 1 or 2 steps. + + Args: + n: number of steps of staircase + + Returns: + Distinct ways to climb a n step staircase + + Raises: + AssertionError: n not positive integer + + >>> climb_stairs(3) + 3 + >>> climb_stairs(1) + 1 + >>> climb_stairs(-7) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + AssertionError: n needs to be positive integer, your input -7 + """ + fmt = "n needs to be positive integer, your input {}" + assert isinstance(n, int) and n > 0, fmt.format(n) + if n == 1: + return 1 + dp = [0] * (n + 1) + dp[0], dp[1] = (1, 1) + for i in range(2, n + 1): + dp[i] = dp[i - 1] + dp[i - 2] + return dp[n] + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 267b5eff40409034322d046b3b0054ac3462cf9e Mon Sep 17 00:00:00 2001 From: Bruno Simas Hadlich Date: Tue, 16 Jul 2019 20:09:53 -0300 Subject: [PATCH 201/594] Added doctest and more explanation about Dijkstra execution. (#1014) * Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()' --- .travis.yml | 1 + data_structures/hashing/double_hash.py | 2 +- .../hashing/hash_table_with_linked_list.py | 2 +- .../hashing/number_theory/__init__.py | 0 data_structures/hashing/quadratic_probing.py | 2 +- .../stacks/infix_to_postfix_conversion.py | 2 +- graphs/dijkstra.py | 117 +++- project_euler/problem_01/__init__.py | 0 project_euler/problem_01/sol1.py | 31 +- project_euler/problem_01/sol2.py | 43 +- project_euler/problem_01/sol3.py | 98 +-- project_euler/problem_01/sol4.py | 47 +- project_euler/problem_01/sol5.py | 30 +- project_euler/problem_01/sol6.py | 49 +- project_euler/problem_02/__init__.py | 0 project_euler/problem_02/sol1.py | 57 +- project_euler/problem_02/sol2.py | 46 +- project_euler/problem_02/sol3.py | 63 +- project_euler/problem_02/sol4.py | 48 +- project_euler/problem_03/__init__.py | 0 project_euler/problem_03/sol1.py | 76 ++- project_euler/problem_03/sol2.py | 52 +- project_euler/problem_04/__init__.py | 0 project_euler/problem_04/sol1.py | 61 +- project_euler/problem_04/sol2.py | 47 +- project_euler/problem_05/__init__.py | 0 project_euler/problem_05/sol1.py | 59 +- project_euler/problem_05/sol2.py | 60 +- project_euler/problem_06/__init__.py | 0 project_euler/problem_06/sol1.py | 52 +- project_euler/problem_06/sol2.py | 47 +- project_euler/problem_06/sol3.py | 47 +- project_euler/problem_07/__init__.py | 0 project_euler/problem_07/sol1.py | 73 ++- project_euler/problem_07/sol2.py | 67 +- project_euler/problem_07/sol3.py | 47 +- project_euler/problem_08/__init__.py | 0 project_euler/problem_08/sol1.py | 75 ++- project_euler/problem_08/sol2.py | 77 ++- project_euler/problem_09/__init__.py | 0 project_euler/problem_09/sol1.py | 49 +- project_euler/problem_09/sol2.py | 60 +- project_euler/problem_09/sol3.py | 43 +- project_euler/problem_10/__init__.py | 0 project_euler/problem_10/sol1.py | 78 ++- project_euler/problem_10/sol2.py | 49 +- project_euler/problem_11/__init__.py | 0 project_euler/problem_11/sol1.py | 97 ++- project_euler/problem_11/sol2.py | 129 ++-- project_euler/problem_12/__init__.py | 0 project_euler/problem_12/sol1.py | 73 ++- project_euler/problem_12/sol2.py | 59 +- project_euler/problem_13/__init__.py | 0 project_euler/problem_13/sol1.py | 38 +- project_euler/problem_13/sol2.py | 5 - project_euler/problem_14/__init__.py | 0 project_euler/problem_14/sol1.py | 92 ++- project_euler/problem_14/sol2.py | 83 ++- project_euler/problem_15/__init__.py | 0 project_euler/problem_15/sol1.py | 71 ++- project_euler/problem_16/__init__.py | 0 project_euler/problem_16/sol1.py | 37 +- project_euler/problem_16/sol2.py | 34 +- project_euler/problem_17/__init__.py | 0 project_euler/problem_17/sol1.py | 92 ++- project_euler/problem_19/__init__.py | 0 project_euler/problem_19/sol1.py | 75 ++- project_euler/problem_20/__init__.py | 0 project_euler/problem_20/sol1.py | 50 +- project_euler/problem_20/sol2.py | 36 +- project_euler/problem_21/__init__.py | 0 project_euler/problem_21/sol1.py | 69 ++- project_euler/problem_22/__init__.py | 0 project_euler/problem_22/sol1.py | 59 +- project_euler/problem_22/sol2.py | 572 ++---------------- project_euler/problem_234/__init__.py | 0 project_euler/problem_234/sol1.py | 52 +- project_euler/problem_24/__init__.py | 0 project_euler/problem_24/sol1.py | 30 +- project_euler/problem_25/__init__.py | 0 project_euler/problem_25/sol1.py | 84 ++- project_euler/problem_25/sol2.py | 67 +- project_euler/problem_28/__init__.py | 0 project_euler/problem_28/sol1.py | 77 ++- project_euler/problem_29/__init__.py | 0 project_euler/problem_29/solution.py | 64 +- project_euler/problem_31/__init__.py | 0 project_euler/problem_31/sol1.py | 34 +- project_euler/problem_36/__init__.py | 0 project_euler/problem_36/sol1.py | 61 +- project_euler/problem_40/__init__.py | 0 project_euler/problem_40/sol1.py | 47 +- project_euler/problem_48/__init__.py | 0 project_euler/problem_48/sol1.py | 26 +- project_euler/problem_52/__init__.py | 0 project_euler/problem_52/sol1.py | 46 +- project_euler/problem_53/__init__.py | 0 project_euler/problem_53/sol1.py | 46 +- project_euler/problem_76/__init__.py | 0 project_euler/problem_76/sol1.py | 57 +- 100 files changed, 2651 insertions(+), 1468 deletions(-) create mode 100644 data_structures/hashing/number_theory/__init__.py create mode 100644 project_euler/problem_01/__init__.py create mode 100644 project_euler/problem_02/__init__.py create mode 100644 project_euler/problem_03/__init__.py create mode 100644 project_euler/problem_04/__init__.py create mode 100644 project_euler/problem_05/__init__.py create mode 100644 project_euler/problem_06/__init__.py create mode 100644 project_euler/problem_07/__init__.py create mode 100644 project_euler/problem_08/__init__.py create mode 100644 project_euler/problem_09/__init__.py create mode 100644 project_euler/problem_10/__init__.py create mode 100644 project_euler/problem_11/__init__.py create mode 100644 project_euler/problem_12/__init__.py create mode 100644 project_euler/problem_13/__init__.py delete mode 100644 project_euler/problem_13/sol2.py create mode 100644 project_euler/problem_14/__init__.py create mode 100644 project_euler/problem_15/__init__.py create mode 100644 project_euler/problem_16/__init__.py create mode 100644 project_euler/problem_17/__init__.py create mode 100644 project_euler/problem_19/__init__.py create mode 100644 project_euler/problem_20/__init__.py create mode 100644 project_euler/problem_21/__init__.py create mode 100644 project_euler/problem_22/__init__.py create mode 100644 project_euler/problem_234/__init__.py create mode 100644 project_euler/problem_24/__init__.py create mode 100644 project_euler/problem_25/__init__.py create mode 100644 project_euler/problem_28/__init__.py create mode 100644 project_euler/problem_29/__init__.py create mode 100644 project_euler/problem_31/__init__.py create mode 100644 project_euler/problem_36/__init__.py create mode 100644 project_euler/problem_40/__init__.py create mode 100644 project_euler/problem_48/__init__.py create mode 100644 project_euler/problem_52/__init__.py create mode 100644 project_euler/problem_53/__init__.py create mode 100644 project_euler/problem_76/__init__.py diff --git a/.travis.yml b/.travis.yml index 9afc0c93a037..3b55045ac33f 100644 --- a/.travis.yml +++ b/.travis.yml @@ -26,6 +26,7 @@ script: matrix networking_flow other + project_euler searches sorts strings diff --git a/data_structures/hashing/double_hash.py b/data_structures/hashing/double_hash.py index 60098cda0ce1..7a0ce0b3a67b 100644 --- a/data_structures/hashing/double_hash.py +++ b/data_structures/hashing/double_hash.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 -from .hash_table import HashTable +from hash_table import HashTable from number_theory.prime_numbers import next_prime, check_prime diff --git a/data_structures/hashing/hash_table_with_linked_list.py b/data_structures/hashing/hash_table_with_linked_list.py index 9689e4fc9fcf..a45876df49bd 100644 --- a/data_structures/hashing/hash_table_with_linked_list.py +++ b/data_structures/hashing/hash_table_with_linked_list.py @@ -1,4 +1,4 @@ -from .hash_table import HashTable +from hash_table import HashTable from collections import deque diff --git a/data_structures/hashing/number_theory/__init__.py b/data_structures/hashing/number_theory/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/data_structures/hashing/quadratic_probing.py b/data_structures/hashing/quadratic_probing.py index f7a9ac1ae347..1e61100a81fa 100644 --- a/data_structures/hashing/quadratic_probing.py +++ b/data_structures/hashing/quadratic_probing.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 -from .hash_table import HashTable +from hash_table import HashTable class QuadraticProbing(HashTable): diff --git a/data_structures/stacks/infix_to_postfix_conversion.py b/data_structures/stacks/infix_to_postfix_conversion.py index 75211fed258d..e71dccf1f45c 100644 --- a/data_structures/stacks/infix_to_postfix_conversion.py +++ b/data_structures/stacks/infix_to_postfix_conversion.py @@ -2,7 +2,7 @@ from __future__ import absolute_import import string -from .Stack import Stack +from stack import Stack __author__ = 'Omkar Pathak' diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py index 4b6bc347b061..52354b5c916b 100644 --- a/graphs/dijkstra.py +++ b/graphs/dijkstra.py @@ -1,24 +1,50 @@ """pseudo-code""" """ -DIJKSTRA(graph G, start vertex s,destination vertex d): -// all nodes initially unexplored -let H = min heap data structure, initialized with 0 and s [here 0 indicates the distance from start vertex] -while H is non-empty: - remove the first node and cost of H, call it U and cost - if U is not explored - mark U as explored - if U is d: - return cost // total cost from start to destination vertex - for each edge(U, V): c=cost of edge(u,V) // for V in graph[U] - if V unexplored: - next=cost+c - add next,V to H (at the end) +DIJKSTRA(graph G, start vertex s, destination vertex d): + +//all nodes initially unexplored + +1 - let H = min heap data structure, initialized with 0 and s [here 0 indicates + the distance from start vertex s] +2 - while H is non-empty: +3 - remove the first node and cost of H, call it U and cost +4 - if U has been previously explored: +5 - go to the while loop, line 2 //Once a node is explored there is no need + to make it again +6 - mark U as explored +7 - if U is d: +8 - return cost // total cost from start to destination vertex +9 - for each edge(U, V): c=cost of edge(U,V) // for V in graph[U] +10 - if V explored: +11 - go to next V in line 9 +12 - total_cost = cost + c +13 - add (total_cost,V) to H + +You can think at cost as a distance where Dijkstra finds the shortest distance +between vertexes s and v in a graph G. The use of a min heap as H guarantees +that if a vertex has already been explored there will be no other path with +shortest distance, that happens because heapq.heappop will always return the +next vertex with the shortest distance, considering that the heap stores not +only the distance between previous vertex and current vertex but the entire +distance between each vertex that makes up the path from start vertex to target +vertex. """ + import heapq def dijkstra(graph, start, end): + """Return the cost of the shortest path between vertexes start and end. + + >>> dijkstra(G, "E", "C") + 6 + >>> dijkstra(G2, "E", "F") + 3 + >>> dijkstra(G3, "E", "F") + 3 + """ + heap = [(0, start)] # cost from start node,end node visited = set() while heap: @@ -28,20 +54,65 @@ def dijkstra(graph, start, end): visited.add(u) if u == end: return cost - for v, c in G[u]: + for v, c in graph[u]: if v in visited: continue next = cost + c heapq.heappush(heap, (next, v)) - return (-1, -1) + return -1 + + +G = { + "A": [["B", 2], ["C", 5]], + "B": [["A", 2], ["D", 3], ["E", 1], ["F", 1]], + "C": [["A", 5], ["F", 3]], + "D": [["B", 3]], + "E": [["B", 4], ["F", 3]], + "F": [["C", 3], ["E", 3]], +} + +""" +Layout of G2: + +E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F + \ /\ + \ || + ----------------- 3 -------------------- +""" +G2 = { + "B": [["C", 1]], + "C": [["D", 1]], + "D": [["F", 1]], + "E": [["B", 1], ["F", 3]], + "F": [], +} + +""" +Layout of G3: + +E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F + \ /\ + \ || + -------- 2 ---------> G ------- 1 ------ +""" +G3 = { + "B": [["C", 1]], + "C": [["D", 1]], + "D": [["F", 1]], + "E": [["B", 1], ["G", 2]], + "F": [], + "G": [["F", 1]], +} + +shortDistance = dijkstra(G, "E", "C") +print(shortDistance) # E -- 3 --> F -- 3 --> C == 6 +shortDistance = dijkstra(G2, "E", "F") +print(shortDistance) # E -- 3 --> F == 3 -G = {'A': [['B', 2], ['C', 5]], - 'B': [['A', 2], ['D', 3], ['E', 1]], - 'C': [['A', 5], ['F', 3]], - 'D': [['B', 3]], - 'E': [['B', 1], ['F', 3]], - 'F': [['C', 3], ['E', 3]]} +shortDistance = dijkstra(G3, "E", "F") +print(shortDistance) # E -- 2 --> G -- 1 --> F == 3 -shortDistance = dijkstra(G, 'E', 'C') -print(shortDistance) +if __name__ == "__main__": + import doctest + doctest.testmod() diff --git a/project_euler/problem_01/__init__.py b/project_euler/problem_01/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_01/sol1.py b/project_euler/problem_01/sol1.py index c9a8c0f1ebeb..1433129af303 100644 --- a/project_euler/problem_01/sol1.py +++ b/project_euler/problem_01/sol1.py @@ -1,13 +1,34 @@ -''' +""" Problem Statement: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. -''' +""" from __future__ import print_function + try: - raw_input # Python 2 + raw_input # Python 2 except NameError: raw_input = input # Python 3 -n = int(raw_input().strip()) -print(sum([e for e in range(3, n) if e % 3 == 0 or e % 5 == 0])) + + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + >>> solution(-7) + 0 + """ + + return sum([e for e in range(3, n) if e % 3 == 0 or e % 5 == 0]) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_01/sol2.py b/project_euler/problem_01/sol2.py index 2b7760e0bfff..e58fb03a8fb0 100644 --- a/project_euler/problem_01/sol2.py +++ b/project_euler/problem_01/sol2.py @@ -1,20 +1,39 @@ -''' +""" Problem Statement: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. -''' +""" from __future__ import print_function + try: - raw_input # Python 2 + raw_input # Python 2 except NameError: raw_input = input # Python 3 -n = int(raw_input().strip()) -sum = 0 -terms = (n-1)//3 -sum+= ((terms)*(6+(terms-1)*3))//2 #sum of an A.P. -terms = (n-1)//5 -sum+= ((terms)*(10+(terms-1)*5))//2 -terms = (n-1)//15 -sum-= ((terms)*(30+(terms-1)*15))//2 -print(sum) + + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + + sum = 0 + terms = (n - 1) // 3 + sum += ((terms) * (6 + (terms - 1) * 3)) // 2 # sum of an A.P. + terms = (n - 1) // 5 + sum += ((terms) * (10 + (terms - 1) * 5)) // 2 + terms = (n - 1) // 15 + sum -= ((terms) * (30 + (terms - 1) * 15)) // 2 + return sum + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_01/sol3.py b/project_euler/problem_01/sol3.py index f4f3aefcc5de..013ce5e54fdf 100644 --- a/project_euler/problem_01/sol3.py +++ b/project_euler/problem_01/sol3.py @@ -1,50 +1,66 @@ -from __future__ import print_function - -''' +""" Problem Statement: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. -''' -''' -This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3. -''' +""" +from __future__ import print_function try: - raw_input # Python 2 + raw_input # Python 2 except NameError: raw_input = input # Python 3 -n = int(raw_input().strip()) -sum=0 -num=0 -while(1): - num+=3 - if(num>=n): - break - sum+=num - num+=2 - if(num>=n): - break - sum+=num - num+=1 - if(num>=n): - break - sum+=num - num+=3 - if(num>=n): - break - sum+=num - num+=1 - if(num>=n): - break - sum+=num - num+=2 - if(num>=n): - break - sum+=num - num+=3 - if(num>=n): - break - sum+=num -print(sum); + +def solution(n): + """ + This solution is based on the pattern that the successive numbers in the + series follow: 0+3,+2,+1,+3,+1,+2,+3. + Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + + sum = 0 + num = 0 + while 1: + num += 3 + if num >= n: + break + sum += num + num += 2 + if num >= n: + break + sum += num + num += 1 + if num >= n: + break + sum += num + num += 3 + if num >= n: + break + sum += num + num += 1 + if num >= n: + break + sum += num + num += 2 + if num >= n: + break + sum += num + num += 3 + if num >= n: + break + sum += num + return sum + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_01/sol4.py b/project_euler/problem_01/sol4.py index 7941f5fcd3fe..90403c3bd6a3 100644 --- a/project_euler/problem_01/sol4.py +++ b/project_euler/problem_01/sol4.py @@ -1,4 +1,30 @@ -def mulitples(limit): +""" +Problem Statement: +If we list all the natural numbers below 10 that are multiples of 3 or 5, +we get 3,5,6 and 9. The sum of these multiples is 23. +Find the sum of all the multiples of 3 or 5 below N. +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + xmulti = [] zmulti = [] z = 3 @@ -6,7 +32,7 @@ def mulitples(limit): temp = 1 while True: result = z * temp - if (result < limit): + if result < n: zmulti.append(result) temp += 1 else: @@ -14,17 +40,14 @@ def mulitples(limit): break while True: result = x * temp - if (result < limit): + if result < n: xmulti.append(result) temp += 1 else: break - collection = list(set(xmulti+zmulti)) - return (sum(collection)) - - - - - - -print (mulitples(1000)) + collection = list(set(xmulti + zmulti)) + return sum(collection) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_01/sol5.py b/project_euler/problem_01/sol5.py index e261cc8fc729..302fe44f8bfa 100644 --- a/project_euler/problem_01/sol5.py +++ b/project_euler/problem_01/sol5.py @@ -1,16 +1,34 @@ -''' +""" Problem Statement: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. -''' +""" from __future__ import print_function + try: - input = raw_input #python3 + raw_input # Python 2 except NameError: - pass #python 2 + raw_input = input # Python 3 """A straightforward pythonic solution using list comprehension""" -n = int(input().strip()) -print(sum([i for i in range(n) if i%3==0 or i%5==0])) + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + + return sum([i for i in range(n) if i % 3 == 0 or i % 5 == 0]) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_01/sol6.py b/project_euler/problem_01/sol6.py index 54c3073f3897..cf6e751d4c05 100644 --- a/project_euler/problem_01/sol6.py +++ b/project_euler/problem_01/sol6.py @@ -1,9 +1,40 @@ -a = 3 -result = 0 -while a < 1000: - if(a % 3 == 0 or a % 5 == 0): - result += a - elif(a % 15 == 0): - result -= a - a += 1 -print(result) +""" +Problem Statement: +If we list all the natural numbers below 10 that are multiples of 3 or 5, +we get 3,5,6 and 9. The sum of these multiples is 23. +Find the sum of all the multiples of 3 or 5 below N. +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + + a = 3 + result = 0 + while a < n: + if a % 3 == 0 or a % 5 == 0: + result += a + elif a % 15 == 0: + result -= a + a += 1 + return result + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_02/__init__.py b/project_euler/problem_02/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_02/sol1.py b/project_euler/problem_02/sol1.py index 44ea980f2df0..f61d04e3dfce 100644 --- a/project_euler/problem_02/sol1.py +++ b/project_euler/problem_02/sol1.py @@ -1,24 +1,47 @@ -''' +""" Problem: -Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, -the first 10 terms will be: - 1,2,3,5,8,13,21,34,55,89,.. -By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms. -e.g. for n=10, we have {2,8}, sum is 10. -''' +Each new term in the Fibonacci sequence is generated by adding the previous two +terms. By starting with 1 and 2, the first 10 terms will be: + + 1,2,3,5,8,13,21,34,55,89,.. + +By considering the terms in the Fibonacci sequence whose values do not exceed +n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is +10. +""" from __future__ import print_function try: - raw_input # Python 2 + raw_input # Python 2 except NameError: raw_input = input # Python 3 -n = int(raw_input().strip()) -i=1 -j=2 -sum=0 -while(j<=n): - if j%2 == 0: - sum+=j - i , j = j, i+j -print(sum) + +def solution(n): + """Returns the sum of all fibonacci sequence even elements that are lower + or equals to n. + + >>> solution(10) + 10 + >>> solution(15) + 10 + >>> solution(2) + 2 + >>> solution(1) + 0 + >>> solution(34) + 44 + """ + i = 1 + j = 2 + sum = 0 + while j <= n: + if j % 2 == 0: + sum += j + i, j = j, i + j + + return sum + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_02/sol2.py b/project_euler/problem_02/sol2.py index a2772697bb79..3e103a6a4373 100644 --- a/project_euler/problem_02/sol2.py +++ b/project_euler/problem_02/sol2.py @@ -1,15 +1,45 @@ -def fib(n): - """ - Returns a list of all the even terms in the Fibonacci sequence that are less than n. +""" +Problem: +Each new term in the Fibonacci sequence is generated by adding the previous two +terms. By starting with 1 and 2, the first 10 terms will be: + + 1,2,3,5,8,13,21,34,55,89,.. + +By considering the terms in the Fibonacci sequence whose values do not exceed +n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is +10. +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the sum of all fibonacci sequence even elements that are lower + or equals to n. + + >>> solution(10) + [2, 8] + >>> solution(15) + [2, 8] + >>> solution(2) + [2] + >>> solution(1) + [] + >>> solution(34) + [2, 8, 34] """ ls = [] a, b = 0, 1 - while b < n: + while b <= n: if b % 2 == 0: ls.append(b) - a, b = b, a+b + a, b = b, a + b return ls -if __name__ == '__main__': - n = int(input("Enter max number: ").strip()) - print(sum(fib(n))) + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_02/sol3.py b/project_euler/problem_02/sol3.py index 0eb46d879704..abd9d6c753b8 100644 --- a/project_euler/problem_02/sol3.py +++ b/project_euler/problem_02/sol3.py @@ -1,18 +1,47 @@ -''' +""" Problem: -Each new term in the Fibonacci sequence is generated by adding the previous two terms. - 0,1,1,2,3,5,8,13,21,34,55,89,.. -Every third term from 0 is even So using this I have written a simple code -By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms. -e.g. for n=10, we have {2,8}, sum is 10. -''' -"""Python 3""" -n = int(input()) -a=0 -b=2 -count=0 -while 4*b+a>> solution(10) + 10 + >>> solution(15) + 10 + >>> solution(2) + 2 + >>> solution(1) + 0 + >>> solution(34) + 44 + """ + if n <= 1: + return 0 + a = 0 + b = 2 + count = 0 + while 4 * b + a <= n: + a, b = b, 4 * b + a + count += a + return count + b + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_02/sol4.py b/project_euler/problem_02/sol4.py index 64bae65f49b4..ba13b12a15e9 100644 --- a/project_euler/problem_02/sol4.py +++ b/project_euler/problem_02/sol4.py @@ -1,13 +1,47 @@ +""" +Problem: +Each new term in the Fibonacci sequence is generated by adding the previous two +terms. By starting with 1 and 2, the first 10 terms will be: + + 1,2,3,5,8,13,21,34,55,89,.. + +By considering the terms in the Fibonacci sequence whose values do not exceed +n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is +10. +""" +from __future__ import print_function import math from decimal import * -getcontext().prec = 100 -phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2) +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the sum of all fibonacci sequence even elements that are lower + or equals to n. + + >>> solution(10) + 10 + >>> solution(15) + 10 + >>> solution(2) + 2 + >>> solution(1) + 0 + >>> solution(34) + 44 + """ + getcontext().prec = 100 + phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2) -n = Decimal(int(input()) - 1) + index = (math.floor(math.log(n * (phi + 2), phi) - 1) // 3) * 3 + 2 + num = Decimal(round(phi ** Decimal(index + 1))) / (phi + 2) + sum = num // 2 + return int(sum) -index = (math.floor(math.log(n * (phi + 2), phi) - 1) // 3) * 3 + 2 -num = round(phi ** Decimal(index + 1)) / (phi + 2) -sum = num // 2 -print(int(sum)) +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_03/__init__.py b/project_euler/problem_03/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_03/sol1.py b/project_euler/problem_03/sol1.py index bb9f8ca9ad12..c2e601bd0040 100644 --- a/project_euler/problem_03/sol1.py +++ b/project_euler/problem_03/sol1.py @@ -1,39 +1,61 @@ -''' +""" Problem: -The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N? +The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor +of a given number N? + e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. -''' +""" from __future__ import print_function, division - import math +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + def isprime(no): - if(no==2): + if no == 2: return True - elif (no%2==0): + elif no % 2 == 0: return False - sq = int(math.sqrt(no))+1 - for i in range(3,sq,2): - if(no%i==0): + sq = int(math.sqrt(no)) + 1 + for i in range(3, sq, 2): + if no % i == 0: return False return True -maxNumber = 0 -n=int(input()) -if(isprime(n)): - print(n) -else: - while (n%2==0): - n=n/2 - if(isprime(n)): - print(n) + +def solution(n): + """Returns the largest prime factor of a given number n. + + >>> solution(13195) + 29 + >>> solution(10) + 5 + >>> solution(17) + 17 + """ + maxNumber = 0 + if isprime(n): + return n else: - n1 = int(math.sqrt(n))+1 - for i in range(3,n1,2): - if(n%i==0): - if(isprime(n/i)): - maxNumber = n/i - break - elif(isprime(i)): - maxNumber = i - print(maxNumber) + while n % 2 == 0: + n = n / 2 + if isprime(n): + return int(n) + else: + n1 = int(math.sqrt(n)) + 1 + for i in range(3, n1, 2): + if n % i == 0: + if isprime(n / i): + maxNumber = n / i + break + elif isprime(i): + maxNumber = i + return maxNumber + return int(sum) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_03/sol2.py b/project_euler/problem_03/sol2.py index 44f9c63dfb6a..497db3965cc3 100644 --- a/project_euler/problem_03/sol2.py +++ b/project_euler/problem_03/sol2.py @@ -1,18 +1,40 @@ -''' +""" Problem: -The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N? +The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor +of a given number N? + e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. -''' +""" +from __future__ import print_function, division +import math + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the largest prime factor of a given number n. + + >>> solution(13195) + 29 + >>> solution(10) + 5 + >>> solution(17) + 17 + """ + prime = 1 + i = 2 + while i * i <= n: + while n % i == 0: + prime = i + n //= i + i += 1 + if n > 1: + prime = n + return int(prime) + -from __future__ import print_function -n=int(input()) -prime=1 -i=2 -while(i*i<=n): - while(n%i==0): - prime=i - n//=i - i+=1 -if(n>1): - prime=n -print(prime) +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_04/__init__.py b/project_euler/problem_04/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_04/sol1.py b/project_euler/problem_04/sol1.py index 05fdd9ebab55..7a255f7308e6 100644 --- a/project_euler/problem_04/sol1.py +++ b/project_euler/problem_04/sol1.py @@ -1,29 +1,50 @@ -''' +""" Problem: -A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99. -Find the largest palindrome made from the product of two 3-digit numbers which is less than N. -''' +A palindromic number reads the same both ways. The largest palindrome made from +the product of two 2-digit numbers is 9009 = 91 x 99. + +Find the largest palindrome made from the product of two 3-digit numbers which +is less than N. +""" from __future__ import print_function -limit = int(input("limit? ")) -# fetchs the next number -for number in range(limit-1,10000,-1): +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the largest palindrome made from the product of two 3-digit + numbers which is less than n. + + >>> solution(20000) + 19591 + >>> solution(30000) + 29992 + >>> solution(40000) + 39893 + """ + # fetchs the next number + for number in range(n - 1, 10000, -1): - # converts number into string. - strNumber = str(number) + # converts number into string. + strNumber = str(number) - # checks whether 'strNumber' is a palindrome. - if(strNumber == strNumber[::-1]): + # checks whether 'strNumber' is a palindrome. + if strNumber == strNumber[::-1]: - divisor = 999 + divisor = 999 - # if 'number' is a product of two 3-digit numbers - # then number is the answer otherwise fetch next number. - while(divisor != 99): - - if((number % divisor == 0) and (len(str(number / divisor)) == 3)): + # if 'number' is a product of two 3-digit numbers + # then number is the answer otherwise fetch next number. + while divisor != 99: + if (number % divisor == 0) and ( + len(str(int(number / divisor))) == 3 + ): + return number + divisor -= 1 - print(number) - exit(0) - divisor -=1 +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_04/sol2.py b/project_euler/problem_04/sol2.py index 70810c38986f..45c6b256daf8 100644 --- a/project_euler/problem_04/sol2.py +++ b/project_euler/problem_04/sol2.py @@ -1,17 +1,38 @@ -''' +""" Problem: -A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99. -Find the largest palindrome made from the product of two 3-digit numbers which is less than N. -''' +A palindromic number reads the same both ways. The largest palindrome made from +the product of two 2-digit numbers is 9009 = 91 x 99. + +Find the largest palindrome made from the product of two 3-digit numbers which +is less than N. +""" from __future__ import print_function -n = int(input().strip()) -answer = 0 -for i in range(999,99,-1): #3 digit nimbers range from 999 down to 100 - for j in range(999,99,-1): - t = str(i*j) - if t == t[::-1] and i*j < n: - answer = max(answer,i*j) -print(answer) -exit(0) + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the largest palindrome made from the product of two 3-digit + numbers which is less than n. + + >>> solution(20000) + 19591 + >>> solution(30000) + 29992 + >>> solution(40000) + 39893 + """ + answer = 0 + for i in range(999, 99, -1): # 3 digit nimbers range from 999 down to 100 + for j in range(999, 99, -1): + t = str(i * j) + if t == t[::-1] and i * j < n: + answer = max(answer, i * j) + return answer +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_05/__init__.py b/project_euler/problem_05/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_05/sol1.py b/project_euler/problem_05/sol1.py index 7896d75e3456..609f02102a08 100644 --- a/project_euler/problem_05/sol1.py +++ b/project_euler/problem_05/sol1.py @@ -1,21 +1,46 @@ -''' +""" Problem: -2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. -What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? -''' +2520 is the smallest number that can be divided by each of the numbers from 1 +to 10 without any remainder. + +What is the smallest positive number that is evenly divisible(divisible with no +remainder) by all of the numbers from 1 to N? +""" from __future__ import print_function -n = int(input()) -i = 0 -while 1: - i+=n*(n-1) - nfound=0 - for j in range(2,n): - if (i%j != 0): - nfound=1 +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the smallest positive number that is evenly divisible(divisible + with no remainder) by all of the numbers from 1 to n. + + >>> solution(10) + 2520 + >>> solution(15) + 360360 + >>> solution(20) + 232792560 + >>> solution(22) + 232792560 + """ + i = 0 + while 1: + i += n * (n - 1) + nfound = 0 + for j in range(2, n): + if i % j != 0: + nfound = 1 + break + if nfound == 0: + if i == 0: + i = 1 + return i break - if(nfound==0): - if(i==0): - i=1 - print(i) - break + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_05/sol2.py b/project_euler/problem_05/sol2.py index cd11437f30db..293dd96f2294 100644 --- a/project_euler/problem_05/sol2.py +++ b/project_euler/problem_05/sol2.py @@ -1,20 +1,50 @@ -#!/bin/python3 -''' +""" Problem: -2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. -What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? -''' +2520 is the smallest number that can be divided by each of the numbers from 1 +to 10 without any remainder. + +What is the smallest positive number that is evenly divisible(divisible with no +remainder) by all of the numbers from 1 to N? +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 """ Euclidean GCD Algorithm """ -def gcd(x,y): - return x if y==0 else gcd(y,x%y) + + +def gcd(x, y): + return x if y == 0 else gcd(y, x % y) + """ Using the property lcm*gcd of two numbers = product of them """ -def lcm(x,y): - return (x*y)//gcd(x,y) - -n = int(input()) -g=1 -for i in range(1,n+1): - g=lcm(g,i) -print(g) + + +def lcm(x, y): + return (x * y) // gcd(x, y) + + +def solution(n): + """Returns the smallest positive number that is evenly divisible(divisible + with no remainder) by all of the numbers from 1 to n. + + >>> solution(10) + 2520 + >>> solution(15) + 360360 + >>> solution(20) + 232792560 + >>> solution(22) + 232792560 + """ + g = 1 + for i in range(1, n + 1): + g = lcm(g, i) + return g + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_06/__init__.py b/project_euler/problem_06/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_06/sol1.py b/project_euler/problem_06/sol1.py index 852d4e2f9fc4..728701e167c3 100644 --- a/project_euler/problem_06/sol1.py +++ b/project_euler/problem_06/sol1.py @@ -1,20 +1,48 @@ # -*- coding: utf-8 -*- -''' +""" Problem: + The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 + The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 -Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. -Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. -''' + +Hence the difference between the sum of the squares of the first ten natural +numbers and the square of the sum is 3025 − 385 = 2640. + +Find the difference between the sum of the squares of the first N natural +numbers and the square of the sum. +""" from __future__ import print_function -suma = 0 -sumb = 0 -n = int(input()) -for i in range(1,n+1): - suma += i**2 - sumb += i -sum = sumb**2 - suma -print(sum) +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the difference between the sum of the squares of the first n + natural numbers and the square of the sum. + + >>> solution(10) + 2640 + >>> solution(15) + 13160 + >>> solution(20) + 41230 + >>> solution(50) + 1582700 + """ + suma = 0 + sumb = 0 + for i in range(1, n + 1): + suma += i ** 2 + sumb += i + sum = sumb ** 2 - suma + return sum + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_06/sol2.py b/project_euler/problem_06/sol2.py index aa8aea58fd7b..2c64812d56f8 100644 --- a/project_euler/problem_06/sol2.py +++ b/project_euler/problem_06/sol2.py @@ -1,16 +1,45 @@ # -*- coding: utf-8 -*- -''' +""" Problem: + The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 + The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 -Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. -Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. -''' + +Hence the difference between the sum of the squares of the first ten natural +numbers and the square of the sum is 3025 − 385 = 2640. + +Find the difference between the sum of the squares of the first N natural +numbers and the square of the sum. +""" from __future__ import print_function -n = int(input()) -suma = n*(n+1)/2 -suma **= 2 -sumb = n*(n+1)*(2*n+1)/6 -print(suma-sumb) + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the difference between the sum of the squares of the first n + natural numbers and the square of the sum. + + >>> solution(10) + 2640 + >>> solution(15) + 13160 + >>> solution(20) + 41230 + >>> solution(50) + 1582700 + """ + suma = n * (n + 1) / 2 + suma **= 2 + sumb = n * (n + 1) * (2 * n + 1) / 6 + return int(suma - sumb) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_06/sol3.py b/project_euler/problem_06/sol3.py index b2d9f444d9a9..7d94b1e2254f 100644 --- a/project_euler/problem_06/sol3.py +++ b/project_euler/problem_06/sol3.py @@ -1,20 +1,45 @@ -''' +# -*- coding: utf-8 -*- +""" Problem: + The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 + The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 -Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. -Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. -''' + +Hence the difference between the sum of the squares of the first ten natural +numbers and the square of the sum is 3025 − 385 = 2640. + +Find the difference between the sum of the squares of the first N natural +numbers and the square of the sum. +""" from __future__ import print_function import math -def problem6(number=100): - sum_of_squares = sum([i*i for i in range(1,number+1)]) - square_of_sum = int(math.pow(sum(range(1,number+1)),2)) + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the difference between the sum of the squares of the first n + natural numbers and the square of the sum. + + >>> solution(10) + 2640 + >>> solution(15) + 13160 + >>> solution(20) + 41230 + >>> solution(50) + 1582700 + """ + sum_of_squares = sum([i * i for i in range(1, n + 1)]) + square_of_sum = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares -def main(): - print(problem6()) -if __name__ == '__main__': - main() \ No newline at end of file + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_07/__init__.py b/project_euler/problem_07/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_07/sol1.py b/project_euler/problem_07/sol1.py index ea31d0b2bb2c..403ded568dda 100644 --- a/project_euler/problem_07/sol1.py +++ b/project_euler/problem_07/sol1.py @@ -1,30 +1,61 @@ -''' +# -*- coding: utf-8 -*- +""" By listing the first six prime numbers: -2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. -What is the Nth prime number? -''' + + 2, 3, 5, 7, 11, and 13 + +We can see that the 6th prime is 13. What is the Nth prime number? +""" from __future__ import print_function from math import sqrt + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + def isprime(n): - if (n==2): + if n == 2: return True - elif (n%2==0): + elif n % 2 == 0: return False else: - sq = int(sqrt(n))+1 - for i in range(3,sq,2): - if(n%i==0): + sq = int(sqrt(n)) + 1 + for i in range(3, sq, 2): + if n % i == 0: return False return True -n = int(input()) -i=0 -j=1 -while(i!=n and j<3): - j+=1 - if (isprime(j)): - i+=1 -while(i!=n): - j+=2 - if(isprime(j)): - i+=1 -print(j) + + +def solution(n): + """Returns the n-th prime number. + + >>> solution(6) + 13 + >>> solution(1) + 2 + >>> solution(3) + 5 + >>> solution(20) + 71 + >>> solution(50) + 229 + >>> solution(100) + 541 + """ + i = 0 + j = 1 + while i != n and j < 3: + j += 1 + if isprime(j): + i += 1 + while i != n: + j += 2 + if isprime(j): + i += 1 + return j + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index fdf39cbc4d26..630e5196796d 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -1,16 +1,53 @@ -# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the Nth prime number? +# -*- coding: utf-8 -*- +""" +By listing the first six prime numbers: + + 2, 3, 5, 7, 11, and 13 + +We can see that the 6th prime is 13. What is the Nth prime number? +""" +from __future__ import print_function +from math import sqrt + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + def isprime(number): - for i in range(2,int(number**0.5)+1): - if number%i==0: - return False - return True -n = int(input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted -primes = [] -num = 2 -while len(primes) < n: - if isprime(num): - primes.append(num) - num += 1 - else: - num += 1 -print(primes[len(primes) - 1]) + for i in range(2, int(number ** 0.5) + 1): + if number % i == 0: + return False + return True + + +def solution(n): + """Returns the n-th prime number. + + >>> solution(6) + 13 + >>> solution(1) + 2 + >>> solution(3) + 5 + >>> solution(20) + 71 + >>> solution(50) + 229 + >>> solution(100) + 541 + """ + primes = [] + num = 2 + while len(primes) < n: + if isprime(num): + primes.append(num) + num += 1 + else: + num += 1 + return primes[len(primes) - 1] + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_07/sol3.py b/project_euler/problem_07/sol3.py index 0001e4318cc9..bc94762604b3 100644 --- a/project_euler/problem_07/sol3.py +++ b/project_euler/problem_07/sol3.py @@ -1,28 +1,53 @@ -''' +# -*- coding: utf-8 -*- +""" By listing the first six prime numbers: -2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. -What is the Nth prime number? -''' + + 2, 3, 5, 7, 11, and 13 + +We can see that the 6th prime is 13. What is the Nth prime number? +""" from __future__ import print_function -# from Python.Math import PrimeCheck import math import itertools + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + def primeCheck(number): if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) + def prime_generator(): num = 2 while True: if primeCheck(num): yield num - num+=1 + num += 1 + -def main(): - n = int(input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted - print(next(itertools.islice(prime_generator(),n-1,n))) +def solution(n): + """Returns the n-th prime number. + + >>> solution(6) + 13 + >>> solution(1) + 2 + >>> solution(3) + 5 + >>> solution(20) + 71 + >>> solution(50) + 229 + >>> solution(100) + 541 + """ + return next(itertools.islice(prime_generator(), n - 1, n)) -if __name__ == '__main__': - main() \ No newline at end of file +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_08/__init__.py b/project_euler/problem_08/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_08/sol1.py b/project_euler/problem_08/sol1.py index 817fd3f87507..6752fae3de60 100644 --- a/project_euler/problem_08/sol1.py +++ b/project_euler/problem_08/sol1.py @@ -1,15 +1,72 @@ +# -*- coding: utf-8 -*- +""" +The four adjacent digits in the 1000-digit number that have the greatest +product are 9 × 9 × 8 × 9 = 5832. + +73167176531330624919225119674426574742355349194934 +96983520312774506326239578318016984801869478851843 +85861560789112949495459501737958331952853208805511 +12540698747158523863050715693290963295227443043557 +66896648950445244523161731856403098711121722383113 +62229893423380308135336276614282806444486645238749 +30358907296290491560440772390713810515859307960866 +70172427121883998797908792274921901699720888093776 +65727333001053367881220235421809751254540594752243 +52584907711670556013604839586446706324415722155397 +53697817977846174064955149290862569321978468622482 +83972241375657056057490261407972968652414535100474 +82166370484403199890008895243450658541227588666881 +16427171479924442928230863465674813919123162824586 +17866458359124566529476545682848912883142607690042 +24219022671055626321111109370544217506941658960408 +07198403850962455444362981230987879927244284909188 +84580156166097919133875499200524063689912560717606 +05886116467109405077541002256983155200055935729725 +71636269561882670428252483600823257530420752963450 + +Find the thirteen adjacent digits in the 1000-digit number that have the +greatest product. What is the value of this product? +""" import sys -def main(): - LargestProduct = -sys.maxsize-1 - number=input().strip() - for i in range(len(number)-12): - product=1 + +N = """73167176531330624919225119674426574742355349194934\ +96983520312774506326239578318016984801869478851843\ +85861560789112949495459501737958331952853208805511\ +12540698747158523863050715693290963295227443043557\ +66896648950445244523161731856403098711121722383113\ +62229893423380308135336276614282806444486645238749\ +30358907296290491560440772390713810515859307960866\ +70172427121883998797908792274921901699720888093776\ +65727333001053367881220235421809751254540594752243\ +52584907711670556013604839586446706324415722155397\ +53697817977846174064955149290862569321978468622482\ +83972241375657056057490261407972968652414535100474\ +82166370484403199890008895243450658541227588666881\ +16427171479924442928230863465674813919123162824586\ +17866458359124566529476545682848912883142607690042\ +24219022671055626321111109370544217506941658960408\ +07198403850962455444362981230987879927244284909188\ +84580156166097919133875499200524063689912560717606\ +05886116467109405077541002256983155200055935729725\ +71636269561882670428252483600823257530420752963450""" + + +def solution(n): + """Find the thirteen adjacent digits in the 1000-digit number n that have + the greatest product and returns it. + + >>> solution(N) + 23514624000 + """ + LargestProduct = -sys.maxsize - 1 + for i in range(len(n) - 12): + product = 1 for j in range(13): - product *= int(number[i+j]) + product *= int(n[i + j]) if product > LargestProduct: LargestProduct = product - print(LargestProduct) + return LargestProduct -if __name__ == '__main__': - main() +if __name__ == "__main__": + print(solution(N)) diff --git a/project_euler/problem_08/sol2.py b/project_euler/problem_08/sol2.py index ae03f3ad0aa6..bae96e373d6c 100644 --- a/project_euler/problem_08/sol2.py +++ b/project_euler/problem_08/sol2.py @@ -1,8 +1,73 @@ +# -*- coding: utf-8 -*- +""" +The four adjacent digits in the 1000-digit number that have the greatest +product are 9 × 9 × 8 × 9 = 5832. + +73167176531330624919225119674426574742355349194934 +96983520312774506326239578318016984801869478851843 +85861560789112949495459501737958331952853208805511 +12540698747158523863050715693290963295227443043557 +66896648950445244523161731856403098711121722383113 +62229893423380308135336276614282806444486645238749 +30358907296290491560440772390713810515859307960866 +70172427121883998797908792274921901699720888093776 +65727333001053367881220235421809751254540594752243 +52584907711670556013604839586446706324415722155397 +53697817977846174064955149290862569321978468622482 +83972241375657056057490261407972968652414535100474 +82166370484403199890008895243450658541227588666881 +16427171479924442928230863465674813919123162824586 +17866458359124566529476545682848912883142607690042 +24219022671055626321111109370544217506941658960408 +07198403850962455444362981230987879927244284909188 +84580156166097919133875499200524063689912560717606 +05886116467109405077541002256983155200055935729725 +71636269561882670428252483600823257530420752963450 + +Find the thirteen adjacent digits in the 1000-digit number that have the +greatest product. What is the value of this product? +""" + from functools import reduce -def main(): - number=input().strip() - print(max([reduce(lambda x,y: int(x)*int(y),number[i:i+13]) for i in range(len(number)-12)])) - -if __name__ == '__main__': - main() +N = ( + "73167176531330624919225119674426574742355349194934" + "96983520312774506326239578318016984801869478851843" + "85861560789112949495459501737958331952853208805511" + "12540698747158523863050715693290963295227443043557" + "66896648950445244523161731856403098711121722383113" + "62229893423380308135336276614282806444486645238749" + "30358907296290491560440772390713810515859307960866" + "70172427121883998797908792274921901699720888093776" + "65727333001053367881220235421809751254540594752243" + "52584907711670556013604839586446706324415722155397" + "53697817977846174064955149290862569321978468622482" + "83972241375657056057490261407972968652414535100474" + "82166370484403199890008895243450658541227588666881" + "16427171479924442928230863465674813919123162824586" + "17866458359124566529476545682848912883142607690042" + "24219022671055626321111109370544217506941658960408" + "07198403850962455444362981230987879927244284909188" + "84580156166097919133875499200524063689912560717606" + "05886116467109405077541002256983155200055935729725" + "71636269561882670428252483600823257530420752963450" +) + + +def solution(n): + """Find the thirteen adjacent digits in the 1000-digit number n that have + the greatest product and returns it. + + >>> solution(N) + 23514624000 + """ + return max( + [ + reduce(lambda x, y: int(x) * int(y), n[i : i + 13]) + for i in range(len(n) - 12) + ] + ) + + +if __name__ == "__main__": + print(solution(str(N))) diff --git a/project_euler/problem_09/__init__.py b/project_euler/problem_09/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_09/sol1.py b/project_euler/problem_09/sol1.py index e54c543b4721..0f368e48d2e3 100644 --- a/project_euler/problem_09/sol1.py +++ b/project_euler/problem_09/sol1.py @@ -1,15 +1,36 @@ +""" +Problem Statement: +A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, + a^2 + b^2 = c^2 +For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. + +There exists exactly one Pythagorean triplet for which a + b + c = 1000. +Find the product abc. +""" from __future__ import print_function -# Program to find the product of a,b,c which are Pythagorean Triplet that satisfice the following: -# 1. a < b < c -# 2. a**2 + b**2 = c**2 -# 3. a + b + c = 1000 - -print("Please Wait...") -for a in range(300): - for b in range(400): - for c in range(500): - if(a < b < c): - if((a**2) + (b**2) == (c**2)): - if((a+b+c) == 1000): - print(("Product of",a,"*",b,"*",c,"=",(a*b*c))) - break + + +def solution(): + """ + Returns the product of a,b,c which are Pythagorean Triplet that satisfies + the following: + 1. a < b < c + 2. a**2 + b**2 = c**2 + 3. a + b + c = 1000 + + >>> solution() + 31875000 + """ + for a in range(300): + for b in range(400): + for c in range(500): + if a < b < c: + if (a ** 2) + (b ** 2) == (c ** 2): + if (a + b + c) == 1000: + return a * b * c + break + + +if __name__ == "__main__": + print("Please Wait...") + print(solution()) diff --git a/project_euler/problem_09/sol2.py b/project_euler/problem_09/sol2.py index 933f5c557d71..674daae9ec8e 100644 --- a/project_euler/problem_09/sol2.py +++ b/project_euler/problem_09/sol2.py @@ -1,18 +1,44 @@ -"""A Pythagorean triplet is a set of three natural numbers, for which, -a^2+b^2=c^2 -Given N, Check if there exists any Pythagorean triplet for which a+b+c=N -Find maximum possible value of product of a,b,c among all such Pythagorean triplets, If there is no such Pythagorean triplet print -1.""" -#!/bin/python3 +""" +Problem Statement: +A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, + a^2 + b^2 = c^2 +For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. -product=-1 -d=0 -N = int(input()) -for a in range(1,N//3): - """Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c """ - b=(N*N-2*a*N)//(2*N-2*a) - c=N-a-b - if c*c==(a*a+b*b): - d=(a*b*c) - if d>=product: - product=d -print(product) +There exists exactly one Pythagorean triplet for which a + b + c = 1000. +Find the product abc. +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """ + Return the product of a,b,c which are Pythagorean Triplet that satisfies + the following: + 1. a < b < c + 2. a**2 + b**2 = c**2 + 3. a + b + c = 1000 + + >>> solution(1000) + 31875000 + """ + product = -1 + d = 0 + for a in range(1, n // 3): + """Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c + """ + b = (n * n - 2 * a * n) // (2 * n - 2 * a) + c = n - a - b + if c * c == (a * a + b * b): + d = a * b * c + if d >= product: + product = d + return product + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py index 5ebf38e76e1a..f749b8a61f11 100644 --- a/project_euler/problem_09/sol3.py +++ b/project_euler/problem_09/sol3.py @@ -1,6 +1,37 @@ -def main(): - print([a*b*c for a in range(1,999) for b in range(a,999) for c in range(b,999) - if (a*a+b*b==c*c) and (a+b+c==1000 ) ][0]) - -if __name__ == '__main__': - main() +""" +Problem Statement: + +A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, + + a^2 + b^2 = c^2 + +For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. + +There exists exactly one Pythagorean triplet for which a + b + c = 1000. +Find the product abc. +""" +from __future__ import print_function + + +def solution(): + """ + Returns the product of a,b,c which are Pythagorean Triplet that satisfies + the following: + + 1. a**2 + b**2 = c**2 + 2. a + b + c = 1000 + + >>> solution() + 31875000 + """ + return [ + a * b * c + for a in range(1, 999) + for b in range(a, 999) + for c in range(b, 999) + if (a * a + b * b == c * c) and (a + b + c == 1000) + ][0] + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_10/__init__.py b/project_euler/problem_10/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_10/sol1.py b/project_euler/problem_10/sol1.py index 94e5b7362114..038da96e6352 100644 --- a/project_euler/problem_10/sol1.py +++ b/project_euler/problem_10/sol1.py @@ -1,38 +1,60 @@ +""" +Problem Statement: +The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. + +Find the sum of all the primes below two million. +""" from __future__ import print_function from math import sqrt try: - xrange #Python 2 + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + +try: + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def is_prime(n): - for i in xrange(2, int(sqrt(n))+1): - if n%i == 0: - return False + for i in xrange(2, int(sqrt(n)) + 1): + if n % i == 0: + return False + + return True - return True def sum_of_primes(n): - if n > 2: - sumOfPrimes = 2 - else: - return 0 - - for i in xrange(3, n, 2): - if is_prime(i): - sumOfPrimes += i - - return sumOfPrimes - -if __name__ == '__main__': - import sys - - if len(sys.argv) == 1: - print(sum_of_primes(2000000)) - else: - try: - n = int(sys.argv[1]) - print(sum_of_primes(n)) - except ValueError: - print('Invalid entry - please enter a number.') + if n > 2: + sumOfPrimes = 2 + else: + return 0 + + for i in xrange(3, n, 2): + if is_prime(i): + sumOfPrimes += i + + return sumOfPrimes + + +def solution(n): + """Returns the sum of all the primes below n. + + >>> solution(2000000) + 142913828922 + >>> solution(1000) + 76127 + >>> solution(5000) + 1548136 + >>> solution(10000) + 5736396 + >>> solution(7) + 10 + """ + return sum_of_primes(n) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_10/sol2.py b/project_euler/problem_10/sol2.py index 22df95c063e2..9e51d61b8749 100644 --- a/project_euler/problem_10/sol2.py +++ b/project_euler/problem_10/sol2.py @@ -1,22 +1,49 @@ -#from Python.Math import prime_generator -import math -from itertools import takewhile +""" +Problem Statement: +The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. + +Find the sum of all the primes below two million. +""" +from __future__ import print_function +import math +from itertools import takewhile + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + def primeCheck(number): if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) - + + def prime_generator(): num = 2 while True: if primeCheck(num): yield num - num+=1 - -def main(): - n = int(input('Enter The upper limit of prime numbers: ')) - print(sum(takewhile(lambda x: x < n,prime_generator()))) + num += 1 + + +def solution(n): + """Returns the sum of all the primes below n. -if __name__ == '__main__': - main() + >>> solution(2000000) + 142913828922 + >>> solution(1000) + 76127 + >>> solution(5000) + 1548136 + >>> solution(10000) + 5736396 + >>> solution(7) + 10 + """ + return sum(takewhile(lambda x: x < n, prime_generator())) + + +if __name__ == "__main__": + print(solution(int(raw_input().strip()))) diff --git a/project_euler/problem_11/__init__.py b/project_euler/problem_11/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_11/sol1.py b/project_euler/problem_11/sol1.py index b882dc449156..3bdddc89d917 100644 --- a/project_euler/problem_11/sol1.py +++ b/project_euler/problem_11/sol1.py @@ -1,6 +1,6 @@ -from __future__ import print_function -''' -What is the greatest product of four adjacent numbers (horizontally, vertically, or diagonally) in this 20x20 array? +""" +What is the greatest product of four adjacent numbers (horizontally, +vertically, or diagonally) in this 20x20 array? 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 @@ -22,47 +22,78 @@ 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 -''' +""" + +from __future__ import print_function +import os try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 2 + xrange = range # Python 2 + def largest_product(grid): - nColumns = len(grid[0]) - nRows = len(grid) + nColumns = len(grid[0]) + nRows = len(grid) + + largest = 0 + lrDiagProduct = 0 + rlDiagProduct = 0 + + # Check vertically, horizontally, diagonally at the same time (only works + # for nxn grid) + for i in xrange(nColumns): + for j in xrange(nRows - 3): + vertProduct = ( + grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] + ) + horzProduct = ( + grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] + ) + + # Left-to-right diagonal (\) product + if i < nColumns - 3: + lrDiagProduct = ( + grid[i][j] + * grid[i + 1][j + 1] + * grid[i + 2][j + 2] + * grid[i + 3][j + 3] + ) - largest = 0 - lrDiagProduct = 0 - rlDiagProduct = 0 + # Right-to-left diagonal(/) product + if i > 2: + rlDiagProduct = ( + grid[i][j] + * grid[i - 1][j + 1] + * grid[i - 2][j + 2] + * grid[i - 3][j + 3] + ) - #Check vertically, horizontally, diagonally at the same time (only works for nxn grid) - for i in xrange(nColumns): - for j in xrange(nRows-3): - vertProduct = grid[j][i]*grid[j+1][i]*grid[j+2][i]*grid[j+3][i] - horzProduct = grid[i][j]*grid[i][j+1]*grid[i][j+2]*grid[i][j+3] + maxProduct = max( + vertProduct, horzProduct, lrDiagProduct, rlDiagProduct + ) + if maxProduct > largest: + largest = maxProduct - #Left-to-right diagonal (\) product - if (i < nColumns-3): - lrDiagProduct = grid[i][j]*grid[i+1][j+1]*grid[i+2][j+2]*grid[i+3][j+3] + return largest - #Right-to-left diagonal(/) product - if (i > 2): - rlDiagProduct = grid[i][j]*grid[i-1][j+1]*grid[i-2][j+2]*grid[i-3][j+3] - maxProduct = max(vertProduct, horzProduct, lrDiagProduct, rlDiagProduct) - if maxProduct > largest: - largest = maxProduct +def solution(): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution() + 70600674 + """ + grid = [] + with open(os.path.dirname(__file__) + "/grid.txt") as file: + for line in file: + grid.append(line.strip("\n").split(" ")) - return largest + grid = [[int(i) for i in grid[j]] for j in xrange(len(grid))] -if __name__ == '__main__': - grid = [] - with open('grid.txt') as file: - for line in file: - grid.append(line.strip('\n').split(' ')) + return largest_product(grid) - grid = [[int(i) for i in grid[j]] for j in xrange(len(grid))] - print(largest_product(grid)) \ No newline at end of file +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_11/sol2.py b/project_euler/problem_11/sol2.py index b03395f01697..0a5785b42b2c 100644 --- a/project_euler/problem_11/sol2.py +++ b/project_euler/problem_11/sol2.py @@ -1,39 +1,90 @@ -def main(): - with open ("grid.txt", "r") as f: - l = [] - for i in range(20): - l.append([int(x) for x in f.readline().split()]) - - maximum = 0 - - # right - for i in range(20): - for j in range(17): - temp = l[i][j] * l[i][j+1] * l[i][j+2] * l[i][j+3] - if temp > maximum: - maximum = temp - - # down - for i in range(17): - for j in range(20): - temp = l[i][j] * l[i+1][j] * l[i+2][j] * l[i+3][j] - if temp > maximum: - maximum = temp - - #diagonal 1 - for i in range(17): - for j in range(17): - temp = l[i][j] * l[i+1][j+1] * l[i+2][j+2] * l[i+3][j+3] - if temp > maximum: - maximum = temp - - #diagonal 2 - for i in range(17): - for j in range(3, 20): - temp = l[i][j] * l[i+1][j-1] * l[i+2][j-2] * l[i+3][j-3] - if temp > maximum: - maximum = temp - print(maximum) - -if __name__ == '__main__': - main() \ No newline at end of file +""" +What is the greatest product of four adjacent numbers (horizontally, +vertically, or diagonally) in this 20x20 array? + +08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 +49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 +81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 +52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 +22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 +24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 +32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 +67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 +24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 +21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 +78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 +16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 +86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 +19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 +04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 +88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 +04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 +20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 +20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 +01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 +""" + +from __future__ import print_function +import os + +try: + xrange # Python 2 +except NameError: + xrange = range # Python 2 + + +def solution(): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution() + 70600674 + """ + with open(os.path.dirname(__file__) + "/grid.txt") as f: + l = [] + for i in xrange(20): + l.append([int(x) for x in f.readline().split()]) + + maximum = 0 + + # right + for i in xrange(20): + for j in xrange(17): + temp = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] + if temp > maximum: + maximum = temp + + # down + for i in xrange(17): + for j in xrange(20): + temp = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] + if temp > maximum: + maximum = temp + + # diagonal 1 + for i in xrange(17): + for j in xrange(17): + temp = ( + l[i][j] + * l[i + 1][j + 1] + * l[i + 2][j + 2] + * l[i + 3][j + 3] + ) + if temp > maximum: + maximum = temp + + # diagonal 2 + for i in xrange(17): + for j in xrange(3, 20): + temp = ( + l[i][j] + * l[i + 1][j - 1] + * l[i + 2][j - 2] + * l[i + 3][j - 3] + ) + if temp > maximum: + maximum = temp + return maximum + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_12/__init__.py b/project_euler/problem_12/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_12/sol1.py b/project_euler/problem_12/sol1.py index 73d48a2ec897..baf9babab686 100644 --- a/project_euler/problem_12/sol1.py +++ b/project_euler/problem_12/sol1.py @@ -1,9 +1,9 @@ -from __future__ import print_function -from math import sqrt -''' +""" Highly divisible triangular numbers Problem 12 -The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: +The sequence of triangle numbers is generated by adding the natural numbers. So +the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten +terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... @@ -18,31 +18,48 @@ 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. -What is the value of the first triangle number to have over five hundred divisors? -''' +What is the value of the first triangle number to have over five hundred +divisors? +""" +from __future__ import print_function +from math import sqrt + try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def count_divisors(n): - nDivisors = 0 - for i in xrange(1, int(sqrt(n))+1): - if n%i == 0: - nDivisors += 2 - #check if n is perfect square - if n**0.5 == int(n**0.5): - nDivisors -= 1 - return nDivisors - -tNum = 1 -i = 1 - -while True: - i += 1 - tNum += i - - if count_divisors(tNum) > 500: - break - -print(tNum) + nDivisors = 0 + for i in xrange(1, int(sqrt(n)) + 1): + if n % i == 0: + nDivisors += 2 + # check if n is perfect square + if n ** 0.5 == int(n ** 0.5): + nDivisors -= 1 + return nDivisors + + +def solution(): + """Returns the value of the first triangle number to have over five hundred + divisors. + + >>> solution() + 76576500 + """ + tNum = 1 + i = 1 + + while True: + i += 1 + tNum += i + + if count_divisors(tNum) > 500: + break + + return tNum + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_12/sol2.py b/project_euler/problem_12/sol2.py index 479ab2b900cb..071d7516ac0f 100644 --- a/project_euler/problem_12/sol2.py +++ b/project_euler/problem_12/sol2.py @@ -1,8 +1,51 @@ -def triangle_number_generator(): - for n in range(1,1000000): - yield n*(n+1)//2 - -def count_divisors(n): - return sum([2 for i in range(1,int(n**0.5)+1) if n%i==0 and i*i != n]) - -print(next(i for i in triangle_number_generator() if count_divisors(i) > 500)) +""" +Highly divisible triangular numbers +Problem 12 +The sequence of triangle numbers is generated by adding the natural numbers. So +the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten +terms would be: + +1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... + +Let us list the factors of the first seven triangle numbers: + + 1: 1 + 3: 1,3 + 6: 1,2,3,6 +10: 1,2,5,10 +15: 1,3,5,15 +21: 1,3,7,21 +28: 1,2,4,7,14,28 +We can see that 28 is the first triangle number to have over five divisors. + +What is the value of the first triangle number to have over five hundred +divisors? +""" +from __future__ import print_function + + +def triangle_number_generator(): + for n in range(1, 1000000): + yield n * (n + 1) // 2 + + +def count_divisors(n): + return sum( + [2 for i in range(1, int(n ** 0.5) + 1) if n % i == 0 and i * i != n] + ) + + +def solution(): + """Returns the value of the first triangle number to have over five hundred + divisors. + + >>> solution() + 76576500 + """ + return next( + i for i in triangle_number_generator() if count_divisors(i) > 500 + ) + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_13/__init__.py b/project_euler/problem_13/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_13/sol1.py b/project_euler/problem_13/sol1.py index faaaad5e88c1..983347675b3f 100644 --- a/project_euler/problem_13/sol1.py +++ b/project_euler/problem_13/sol1.py @@ -1,14 +1,36 @@ -''' +""" Problem Statement: -Work out the first ten digits of the sum of the N 50-digit numbers. -''' +Work out the first ten digits of the sum of the following one-hundred 50-digit +numbers. +""" from __future__ import print_function +import os -n = int(input().strip()) +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 -array = [] -for i in range(n): - array.append(int(input().strip())) -print(str(sum(array))[:10]) +def solution(array): + """Returns the first ten digits of the sum of the array elements. + + >>> sum = 0 + >>> array = [] + >>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: + ... for line in f: + ... array.append(int(line)) + ... + >>> solution(array) + '5537376230' + """ + return str(sum(array))[:10] + +if __name__ == "__main__": + n = int(input().strip()) + + array = [] + for i in range(n): + array.append(int(input().strip())) + print(solution(array)) diff --git a/project_euler/problem_13/sol2.py b/project_euler/problem_13/sol2.py deleted file mode 100644 index c1416bcd6e7d..000000000000 --- a/project_euler/problem_13/sol2.py +++ /dev/null @@ -1,5 +0,0 @@ -sum = 0 -with open("num.txt",'r') as f: - for line in f: - sum += int(line) -print(str(sum)[:10]) diff --git a/project_euler/problem_14/__init__.py b/project_euler/problem_14/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_14/sol1.py b/project_euler/problem_14/sol1.py index 9037f6eb8bd5..6b80cd7cb24b 100644 --- a/project_euler/problem_14/sol1.py +++ b/project_euler/problem_14/sol1.py @@ -1,21 +1,73 @@ +# -*- coding: utf-8 -*- +""" +Problem Statement: +The following iterative sequence is defined for the set of positive integers: + + n → n/2 (n is even) + n → 3n + 1 (n is odd) + +Using the rule above and starting with 13, we generate the following sequence: + + 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 + +It can be seen that this sequence (starting at 13 and finishing at 1) contains +10 terms. Although it has not been proved yet (Collatz Problem), it is thought +that all starting numbers finish at 1. + +Which starting number, under one million, produces the longest chain? +""" from __future__ import print_function -largest_number = 0 -pre_counter = 0 - -for input1 in range(750000,1000000): - counter = 1 - number = input1 - - while number > 1: - if number % 2 == 0: - number /=2 - counter += 1 - else: - number = (3*number)+1 - counter += 1 - - if counter > pre_counter: - largest_number = input1 - pre_counter = counter - -print(('Largest Number:',largest_number,'->',pre_counter,'digits')) + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + +def solution(n): + """Returns the number under n that generates the longest sequence using the + formula: + n → n/2 (n is even) + n → 3n + 1 (n is odd) + + >>> solution(1000000) + {'counter': 525, 'largest_number': 837799} + >>> solution(200) + {'counter': 125, 'largest_number': 171} + >>> solution(5000) + {'counter': 238, 'largest_number': 3711} + >>> solution(15000) + {'counter': 276, 'largest_number': 13255} + """ + largest_number = 0 + pre_counter = 0 + + for input1 in range(n): + counter = 1 + number = input1 + + while number > 1: + if number % 2 == 0: + number /= 2 + counter += 1 + else: + number = (3 * number) + 1 + counter += 1 + + if counter > pre_counter: + largest_number = input1 + pre_counter = counter + return {"counter": pre_counter, "largest_number": largest_number} + + +if __name__ == "__main__": + result = solution(int(raw_input().strip())) + print( + ( + "Largest Number:", + result["largest_number"], + "->", + result["counter"], + "digits", + ) + ) diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py index b9de42be1108..59fa79515148 100644 --- a/project_euler/problem_14/sol2.py +++ b/project_euler/problem_14/sol2.py @@ -1,16 +1,69 @@ +# -*- coding: utf-8 -*- +""" +Collatz conjecture: start with any positive integer n. Next term obtained from +the previous term as follows: + +If the previous term is even, the next term is one half the previous term. +If the previous term is odd, the next term is 3 times the previous term plus 1. +The conjecture states the sequence will always reach 1 regardless of starting +n. + +Problem Statement: +The following iterative sequence is defined for the set of positive integers: + + n → n/2 (n is even) + n → 3n + 1 (n is odd) + +Using the rule above and starting with 13, we generate the following sequence: + + 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 + +It can be seen that this sequence (starting at 13 and finishing at 1) contains +10 terms. Although it has not been proved yet (Collatz Problem), it is thought +that all starting numbers finish at 1. + +Which starting number, under one million, produces the longest chain? +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 + + def collatz_sequence(n): - """Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows: - if the previous term is even, the next term is one half the previous term. - If the previous term is odd, the next term is 3 times the previous term plus 1. - The conjecture states the sequence will always reach 1 regaardess of starting n.""" - sequence = [n] - while n != 1: - if n % 2 == 0:# even - n //= 2 - else: - n = 3*n +1 - sequence.append(n) - return sequence - -answer = max([(len(collatz_sequence(i)), i) for i in range(1,1000000)]) -print("Longest Collatz sequence under one million is %d with length %d" % (answer[1],answer[0])) \ No newline at end of file + """Returns the Collatz sequence for n.""" + sequence = [n] + while n != 1: + if n % 2 == 0: + n //= 2 + else: + n = 3 * n + 1 + sequence.append(n) + return sequence + + +def solution(n): + """Returns the number under n that generates the longest Collatz sequence. + + >>> solution(1000000) + {'counter': 525, 'largest_number': 837799} + >>> solution(200) + {'counter': 125, 'largest_number': 171} + >>> solution(5000) + {'counter': 238, 'largest_number': 3711} + >>> solution(15000) + {'counter': 276, 'largest_number': 13255} + """ + + result = max([(len(collatz_sequence(i)), i) for i in range(1, n)]) + return {"counter": result[0], "largest_number": result[1]} + + +if __name__ == "__main__": + result = solution(int(raw_input().strip())) + print( + "Longest Collatz sequence under one million is %d with length %d" + % (result["largest_number"], result["counter"]) + ) diff --git a/project_euler/problem_15/__init__.py b/project_euler/problem_15/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_15/sol1.py b/project_euler/problem_15/sol1.py index d24748011ef9..de58bb436d68 100644 --- a/project_euler/problem_15/sol1.py +++ b/project_euler/problem_15/sol1.py @@ -1,20 +1,57 @@ -from __future__ import print_function +""" +Starting in the top left corner of a 2×2 grid, and only being able to move to +the right and down, there are exactly 6 routes to the bottom right corner. +How many such routes are there through a 20×20 grid? +""" from math import factorial + def lattice_paths(n): - n = 2*n #middle entry of odd rows starting at row 3 is the solution for n = 1, 2, 3,... - k = n/2 - - return factorial(n)/(factorial(k)*factorial(n-k)) - -if __name__ == '__main__': - import sys - - if len(sys.argv) == 1: - print(lattice_paths(20)) - else: - try: - n = int(sys.argv[1]) - print(lattice_paths(n)) - except ValueError: - print('Invalid entry - please enter a number.') + """ + Returns the number of paths possible in a n x n grid starting at top left + corner going to bottom right corner and being able to move right and down + only. + +bruno@bruno-laptop:~/git/Python/project_euler/problem_15$ python3 sol1.py 50 +1.008913445455642e+29 +bruno@bruno-laptop:~/git/Python/project_euler/problem_15$ python3 sol1.py 25 +126410606437752.0 +bruno@bruno-laptop:~/git/Python/project_euler/problem_15$ python3 sol1.py 23 +8233430727600.0 +bruno@bruno-laptop:~/git/Python/project_euler/problem_15$ python3 sol1.py 15 +155117520.0 +bruno@bruno-laptop:~/git/Python/project_euler/problem_15$ python3 sol1.py 1 +2.0 + + >>> lattice_paths(25) + 126410606437752 + >>> lattice_paths(23) + 8233430727600 + >>> lattice_paths(20) + 137846528820 + >>> lattice_paths(15) + 155117520 + >>> lattice_paths(1) + 2 + + """ + n = ( + 2 * n + ) # middle entry of odd rows starting at row 3 is the solution for n = 1, + # 2, 3,... + k = n / 2 + + return int(factorial(n) / (factorial(k) * factorial(n - k))) + + +if __name__ == "__main__": + import sys + + if len(sys.argv) == 1: + print(lattice_paths(20)) + else: + try: + n = int(sys.argv[1]) + print(lattice_paths(n)) + except ValueError: + print("Invalid entry - please enter a number.") diff --git a/project_euler/problem_16/__init__.py b/project_euler/problem_16/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_16/sol1.py b/project_euler/problem_16/sol1.py index 05c7916bd10a..67c50ac87876 100644 --- a/project_euler/problem_16/sol1.py +++ b/project_euler/problem_16/sol1.py @@ -1,15 +1,34 @@ -power = int(input("Enter the power of 2: ")) -num = 2**power +""" +2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. -string_num = str(num) +What is the sum of the digits of the number 2^1000? +""" -list_num = list(string_num) -sum_of_num = 0 +def solution(power): + """Returns the sum of the digits of the number 2^power. + >>> solution(1000) + 1366 + >>> solution(50) + 76 + >>> solution(20) + 31 + >>> solution(15) + 26 + """ + num = 2 ** power + string_num = str(num) + list_num = list(string_num) + sum_of_num = 0 -print("2 ^",power,"=",num) + for i in list_num: + sum_of_num += int(i) -for i in list_num: - sum_of_num += int(i) + return sum_of_num -print("Sum of the digits are:",sum_of_num) + +if __name__ == "__main__": + power = int(input("Enter the power of 2: ").strip()) + print("2 ^ ", power, " = ", 2 ** power) + result = solution(power) + print("Sum of the digits is: ", result) diff --git a/project_euler/problem_16/sol2.py b/project_euler/problem_16/sol2.py index cce3d2354bb1..88672e9a9e54 100644 --- a/project_euler/problem_16/sol2.py +++ b/project_euler/problem_16/sol2.py @@ -1,6 +1,28 @@ -from __future__ import print_function -n = 2**1000 -r = 0 -while n: - r, n = r + n % 10, n // 10 -print(r) +""" +2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. + +What is the sum of the digits of the number 2^1000? +""" + + +def solution(power): + """Returns the sum of the digits of the number 2^power. + + >>> solution(1000) + 1366 + >>> solution(50) + 76 + >>> solution(20) + 31 + >>> solution(15) + 26 + """ + n = 2 ** power + r = 0 + while n: + r, n = r + n % 10, n // 10 + return r + + +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) diff --git a/project_euler/problem_17/__init__.py b/project_euler/problem_17/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_17/sol1.py b/project_euler/problem_17/sol1.py index 8dd6f1af2093..d585d81a0825 100644 --- a/project_euler/problem_17/sol1.py +++ b/project_euler/problem_17/sol1.py @@ -1,35 +1,63 @@ -from __future__ import print_function -''' +""" Number letter counts Problem 17 -If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. - -If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? - - -NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) -contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. -''' - -ones_counts = [0, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8] #number of letters in zero, one, two, ..., nineteen (0 for zero since it's never said aloud) -tens_counts = [0, 0, 6, 6, 5, 5, 5, 7, 6, 6] #number of letters in twenty, thirty, ..., ninety (0 for numbers less than 20 due to inconsistency in teens) - -count = 0 - -for i in range(1, 1001): - if i < 1000: - if i >= 100: - count += ones_counts[i/100] + 7 #add number of letters for "n hundred" - - if i%100 != 0: - count += 3 #add number of letters for "and" if number is not multiple of 100 - - if 0 < i%100 < 20: - count += ones_counts[i%100] #add number of letters for one, two, three, ..., nineteen (could be combined with below if not for inconsistency in teens) - else: - count += ones_counts[i%10] + tens_counts[(i%100-i%10)/10] #add number of letters for twenty, twenty one, ..., ninety nine - else: - count += ones_counts[i/1000] + 8 - -print(count) +If the numbers 1 to 5 are written out in words: one, two, three, four, five, +then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. + +If all the numbers from 1 to 1000 (one thousand) inclusive were written out in +words, how many letters would be used? + + +NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and +forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 +letters. The use of "and" when writing out numbers is in compliance withBritish +usage. +""" + + +def solution(n): + """Returns the number of letters used to write all numbers from 1 to n. + where n is lower or equals to 1000. + >>> solution(1000) + 21124 + >>> solution(5) + 19 + """ + # number of letters in zero, one, two, ..., nineteen (0 for zero since it's + # never said aloud) + ones_counts = [0, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8] + # number of letters in twenty, thirty, ..., ninety (0 for numbers less than + # 20 due to inconsistency in teens) + tens_counts = [0, 0, 6, 6, 5, 5, 5, 7, 6, 6] + + count = 0 + + for i in range(1, n + 1): + if i < 1000: + if i >= 100: + # add number of letters for "n hundred" + count += ones_counts[i // 100] + 7 + + if i % 100 != 0: + # add number of letters for "and" if number is not multiple + # of 100 + count += 3 + + if 0 < i % 100 < 20: + # add number of letters for one, two, three, ..., nineteen + # (could be combined with below if not for inconsistency in + # teens) + count += ones_counts[i % 100] + else: + # add number of letters for twenty, twenty one, ..., ninety + # nine + count += ones_counts[i % 10] + count += tens_counts[(i % 100 - i % 10) // 10] + else: + count += ones_counts[i // 1000] + 8 + return count + + +if __name__ == "__main__": + print(solution(int(input().strip()))) diff --git a/project_euler/problem_19/__init__.py b/project_euler/problem_19/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_19/sol1.py b/project_euler/problem_19/sol1.py index 13e520ca76e4..6e4e29ec19c6 100644 --- a/project_euler/problem_19/sol1.py +++ b/project_euler/problem_19/sol1.py @@ -1,9 +1,9 @@ -from __future__ import print_function -''' +""" Counting Sundays Problem 19 -You are given the following information, but you may prefer to do some research for yourself. +You are given the following information, but you may prefer to do some research +for yourself. 1 Jan 1900 was a Monday. Thirty days has September, @@ -13,39 +13,52 @@ Which has twenty-eight, rain or shine. And on leap years, twenty-nine. -A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. +A leap year occurs on any year evenly divisible by 4, but not on a century +unless it is divisible by 400. -How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? -''' +How many Sundays fell on the first of the month during the twentieth century +(1 Jan 1901 to 31 Dec 2000)? +""" -days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] -day = 6 -month = 1 -year = 1901 +def solution(): + """Returns the number of mondays that fall on the first of the month during + the twentieth century (1 Jan 1901 to 31 Dec 2000)? -sundays = 0 + >>> solution() + 171 + """ + days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] -while year < 2001: - day += 7 + day = 6 + month = 1 + year = 1901 - if (year%4 == 0 and not year%100 == 0) or (year%400 == 0): - if day > days_per_month[month-1] and month != 2: - month += 1 - day = day-days_per_month[month-2] - elif day > 29 and month == 2: - month += 1 - day = day-29 - else: - if day > days_per_month[month-1]: - month += 1 - day = day-days_per_month[month-2] - - if month > 12: - year += 1 - month = 1 + sundays = 0 - if year < 2001 and day == 1: - sundays += 1 + while year < 2001: + day += 7 -print(sundays) + if (year % 4 == 0 and not year % 100 == 0) or (year % 400 == 0): + if day > days_per_month[month - 1] and month != 2: + month += 1 + day = day - days_per_month[month - 2] + elif day > 29 and month == 2: + month += 1 + day = day - 29 + else: + if day > days_per_month[month - 1]: + month += 1 + day = day - days_per_month[month - 2] + + if month > 12: + year += 1 + month = 1 + + if year < 2001 and day == 1: + sundays += 1 + return sundays + + +if __name__ == "__main__": + print(solution(171)) diff --git a/project_euler/problem_20/__init__.py b/project_euler/problem_20/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_20/sol1.py b/project_euler/problem_20/sol1.py index 73e41d5cc8fa..13b3c987f046 100644 --- a/project_euler/problem_20/sol1.py +++ b/project_euler/problem_20/sol1.py @@ -1,27 +1,51 @@ -# Finding the factorial. +""" +n! means n × (n − 1) × ... × 3 × 2 × 1 + +For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, +and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. + +Find the sum of the digits in the number 100! +""" + + def factorial(n): fact = 1 - for i in range(1,n+1): + for i in range(1, n + 1): fact *= i return fact -# Spliting the digits and adding it. + def split_and_add(number): + """Split number digits and add them.""" sum_of_digits = 0 - while(number>0): + while number > 0: last_digit = number % 10 sum_of_digits += last_digit - number = int(number/10) # Removing the last_digit from the given number. + number = number // 10 # Removing the last_digit from the given number return sum_of_digits -# Taking the user input. -number = int(input("Enter the Number: ")) -# Assigning the factorial from the factorial function. -factorial = factorial(number) +def solution(n): + """Returns the sum of the digits in the number 100! + >>> solution(100) + 648 + >>> solution(50) + 216 + >>> solution(10) + 27 + >>> solution(5) + 3 + >>> solution(3) + 6 + >>> solution(2) + 2 + >>> solution(1) + 1 + """ + f = factorial(n) + result = split_and_add(f) + return result -# Spliting and adding the factorial into answer. -answer = split_and_add(factorial) -# Printing the answer. -print(answer) +if __name__ == "__main__": + print(solution(int(input("Enter the Number: ").strip()))) diff --git a/project_euler/problem_20/sol2.py b/project_euler/problem_20/sol2.py index bca9af9cb9ef..14e591795292 100644 --- a/project_euler/problem_20/sol2.py +++ b/project_euler/problem_20/sol2.py @@ -1,5 +1,33 @@ +""" +n! means n × (n − 1) × ... × 3 × 2 × 1 + +For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, +and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. + +Find the sum of the digits in the number 100! +""" from math import factorial -def main(): - print(sum([int(x) for x in str(factorial(100))])) -if __name__ == '__main__': - main() \ No newline at end of file + + +def solution(n): + """Returns the sum of the digits in the number 100! + >>> solution(100) + 648 + >>> solution(50) + 216 + >>> solution(10) + 27 + >>> solution(5) + 3 + >>> solution(3) + 6 + >>> solution(2) + 2 + >>> solution(1) + 1 + """ + return sum([int(x) for x in str(factorial(n))]) + + +if __name__ == "__main__": + print(solution(int(input("Enter the Number: ").strip()))) diff --git a/project_euler/problem_21/__init__.py b/project_euler/problem_21/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_21/sol1.py b/project_euler/problem_21/sol1.py index da29a5c7b631..9cf2a64cf2a9 100644 --- a/project_euler/problem_21/sol1.py +++ b/project_euler/problem_21/sol1.py @@ -1,30 +1,61 @@ -#-.- coding: latin-1 -.- -from __future__ import print_function +# -.- coding: latin-1 -.- from math import sqrt -''' + +""" Amicable Numbers Problem 21 -Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). -If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers. +Let d(n) be defined as the sum of proper divisors of n (numbers less than n +which divide evenly into n). +If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and +each of a and b are called amicable numbers. -For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. +For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 +and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and +142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000. -''' +""" try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def sum_of_divisors(n): - total = 0 - for i in xrange(1, int(sqrt(n)+1)): - if n%i == 0 and i != sqrt(n): - total += i + n//i - elif i == sqrt(n): - total += i - return total-n - -total = [i for i in range(1,10000) if sum_of_divisors(sum_of_divisors(i)) == i and sum_of_divisors(i) != i] -print(sum(total)) + total = 0 + for i in xrange(1, int(sqrt(n) + 1)): + if n % i == 0 and i != sqrt(n): + total += i + n // i + elif i == sqrt(n): + total += i + return total - n + + +def solution(n): + """Returns the sum of all the amicable numbers under n. + + >>> solution(10000) + 31626 + >>> solution(5000) + 8442 + >>> solution(1000) + 504 + >>> solution(100) + 0 + >>> solution(50) + 0 + """ + total = sum( + [ + i + for i in range(1, n) + if sum_of_divisors(sum_of_divisors(i)) == i + and sum_of_divisors(i) != i + ] + ) + return total + + +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) diff --git a/project_euler/problem_22/__init__.py b/project_euler/problem_22/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_22/sol1.py b/project_euler/problem_22/sol1.py index 7754306583dc..aa779f222eaa 100644 --- a/project_euler/problem_22/sol1.py +++ b/project_euler/problem_22/sol1.py @@ -1,37 +1,52 @@ # -*- coding: latin-1 -*- -from __future__ import print_function -''' +""" Name scores Problem 22 -Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it -into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list -to obtain a name score. +Using names.txt (right click and 'Save Link/Target As...'), a 46K text file +containing over five-thousand first names, begin by sorting it into +alphabetical order. Then working out the alphabetical value for each name, +multiply this value by its alphabetical position in the list to obtain a name +score. -For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. -So, COLIN would obtain a score of 938 × 53 = 49714. +For example, when the list is sorted into alphabetical order, COLIN, which is +worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would +obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the file? -''' +""" +import os + + try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + + +def solution(): + """Returns the total of all the name scores in the file. + + >>> solution() + 871198282 + """ + with open(os.path.dirname(__file__) + "/p022_names.txt") as file: + names = str(file.readlines()[0]) + names = names.replace('"', "").split(",") -with open('p022_names.txt') as file: - names = str(file.readlines()[0]) - names = names.replace('"', '').split(',') + names.sort() -names.sort() + name_score = 0 + total_score = 0 -name_score = 0 -total_score = 0 + for i, name in enumerate(names): + for letter in name: + name_score += ord(letter) - 64 -for i, name in enumerate(names): - for letter in name: - name_score += ord(letter) - 64 + total_score += (i + 1) * name_score + name_score = 0 + return total_score - total_score += (i+1)*name_score - name_score = 0 -print(total_score) \ No newline at end of file +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_22/sol2.py b/project_euler/problem_22/sol2.py index d7f9abf09d49..69acd2fb8ef3 100644 --- a/project_euler/problem_22/sol2.py +++ b/project_euler/problem_22/sol2.py @@ -1,533 +1,43 @@ -def main(): - name = [ - "MARY", "PATRICIA", "LINDA", "BARBARA", "ELIZABETH", "JENNIFER", "MARIA", "SUSAN", "MARGARET", "DOROTHY", - "LISA", "NANCY", "KAREN", "BETTY", "HELEN", "SANDRA", "DONNA", "CAROL", "RUTH", "SHARON", - "MICHELLE", "LAURA", "SARAH", "KIMBERLY", "DEBORAH", "JESSICA", "SHIRLEY", "CYNTHIA", "ANGELA", "MELISSA", - "BRENDA", "AMY", "ANNA", "REBECCA", "VIRGINIA", "KATHLEEN", "PAMELA", "MARTHA", "DEBRA", "AMANDA", - "STEPHANIE", "CAROLYN", "CHRISTINE", "MARIE", "JANET", "CATHERINE", "FRANCES", "ANN", "JOYCE", "DIANE", - "ALICE", "JULIE", "HEATHER", "TERESA", "DORIS", "GLORIA", "EVELYN", "JEAN", "CHERYL", "MILDRED", - "KATHERINE", "JOAN", "ASHLEY", "JUDITH", "ROSE", "JANICE", "KELLY", "NICOLE", "JUDY", "CHRISTINA", - "KATHY", "THERESA", "BEVERLY", "DENISE", "TAMMY", "IRENE", "JANE", "LORI", "RACHEL", "MARILYN", - "ANDREA", "KATHRYN", "LOUISE", "SARA", "ANNE", "JACQUELINE", "WANDA", "BONNIE", "JULIA", "RUBY", - "LOIS", "TINA", "PHYLLIS", "NORMA", "PAULA", "DIANA", "ANNIE", "LILLIAN", "EMILY", "ROBIN", - "PEGGY", "CRYSTAL", "GLADYS", "RITA", "DAWN", "CONNIE", "FLORENCE", "TRACY", "EDNA", "TIFFANY", - "CARMEN", "ROSA", "CINDY", "GRACE", "WENDY", "VICTORIA", "EDITH", "KIM", "SHERRY", "SYLVIA", - "JOSEPHINE", "THELMA", "SHANNON", "SHEILA", "ETHEL", "ELLEN", "ELAINE", "MARJORIE", "CARRIE", "CHARLOTTE", - "MONICA", "ESTHER", "PAULINE", "EMMA", "JUANITA", "ANITA", "RHONDA", "HAZEL", "AMBER", "EVA", - "DEBBIE", "APRIL", "LESLIE", "CLARA", "LUCILLE", "JAMIE", "JOANNE", "ELEANOR", "VALERIE", "DANIELLE", - "MEGAN", "ALICIA", "SUZANNE", "MICHELE", "GAIL", "BERTHA", "DARLENE", "VERONICA", "JILL", "ERIN", - "GERALDINE", "LAUREN", "CATHY", "JOANN", "LORRAINE", "LYNN", "SALLY", "REGINA", "ERICA", "BEATRICE", - "DOLORES", "BERNICE", "AUDREY", "YVONNE", "ANNETTE", "JUNE", "SAMANTHA", "MARION", "DANA", "STACY", - "ANA", "RENEE", "IDA", "VIVIAN", "ROBERTA", "HOLLY", "BRITTANY", "MELANIE", "LORETTA", "YOLANDA", - "JEANETTE", "LAURIE", "KATIE", "KRISTEN", "VANESSA", "ALMA", "SUE", "ELSIE", "BETH", "JEANNE", - "VICKI", "CARLA", "TARA", "ROSEMARY", "EILEEN", "TERRI", "GERTRUDE", "LUCY", "TONYA", "ELLA", - "STACEY", "WILMA", "GINA", "KRISTIN", "JESSIE", "NATALIE", "AGNES", "VERA", "WILLIE", "CHARLENE", - "BESSIE", "DELORES", "MELINDA", "PEARL", "ARLENE", "MAUREEN", "COLLEEN", "ALLISON", "TAMARA", "JOY", - "GEORGIA", "CONSTANCE", "LILLIE", "CLAUDIA", "JACKIE", "MARCIA", "TANYA", "NELLIE", "MINNIE", "MARLENE", - "HEIDI", "GLENDA", "LYDIA", "VIOLA", "COURTNEY", "MARIAN", "STELLA", "CAROLINE", "DORA", "JO", - "VICKIE", "MATTIE", "TERRY", "MAXINE", "IRMA", "MABEL", "MARSHA", "MYRTLE", "LENA", "CHRISTY", - "DEANNA", "PATSY", "HILDA", "GWENDOLYN", "JENNIE", "NORA", "MARGIE", "NINA", "CASSANDRA", "LEAH", - "PENNY", "KAY", "PRISCILLA", "NAOMI", "CAROLE", "BRANDY", "OLGA", "BILLIE", "DIANNE", "TRACEY", - "LEONA", "JENNY", "FELICIA", "SONIA", "MIRIAM", "VELMA", "BECKY", "BOBBIE", "VIOLET", "KRISTINA", - "TONI", "MISTY", "MAE", "SHELLY", "DAISY", "RAMONA", "SHERRI", "ERIKA", "KATRINA", "CLAIRE", - "LINDSEY", "LINDSAY", "GENEVA", "GUADALUPE", "BELINDA", "MARGARITA", "SHERYL", "CORA", "FAYE", "ADA", - "NATASHA", "SABRINA", "ISABEL", "MARGUERITE", "HATTIE", "HARRIET", "MOLLY", "CECILIA", "KRISTI", "BRANDI", - "BLANCHE", "SANDY", "ROSIE", "JOANNA", "IRIS", "EUNICE", "ANGIE", "INEZ", "LYNDA", "MADELINE", - "AMELIA", "ALBERTA", "GENEVIEVE", "MONIQUE", "JODI", "JANIE", "MAGGIE", "KAYLA", "SONYA", "JAN", - "LEE", "KRISTINE", "CANDACE", "FANNIE", "MARYANN", "OPAL", "ALISON", "YVETTE", "MELODY", "LUZ", - "SUSIE", "OLIVIA", "FLORA", "SHELLEY", "KRISTY", "MAMIE", "LULA", "LOLA", "VERNA", "BEULAH", - "ANTOINETTE", "CANDICE", "JUANA", "JEANNETTE", "PAM", "KELLI", "HANNAH", "WHITNEY", "BRIDGET", "KARLA", - "CELIA", "LATOYA", "PATTY", "SHELIA", "GAYLE", "DELLA", "VICKY", "LYNNE", "SHERI", "MARIANNE", - "KARA", "JACQUELYN", "ERMA", "BLANCA", "MYRA", "LETICIA", "PAT", "KRISTA", "ROXANNE", "ANGELICA", - "JOHNNIE", "ROBYN", "FRANCIS", "ADRIENNE", "ROSALIE", "ALEXANDRA", "BROOKE", "BETHANY", "SADIE", "BERNADETTE", - "TRACI", "JODY", "KENDRA", "JASMINE", "NICHOLE", "RACHAEL", "CHELSEA", "MABLE", "ERNESTINE", "MURIEL", - "MARCELLA", "ELENA", "KRYSTAL", "ANGELINA", "NADINE", "KARI", "ESTELLE", "DIANNA", "PAULETTE", "LORA", - "MONA", "DOREEN", "ROSEMARIE", "ANGEL", "DESIREE", "ANTONIA", "HOPE", "GINGER", "JANIS", "BETSY", - "CHRISTIE", "FREDA", "MERCEDES", "MEREDITH", "LYNETTE", "TERI", "CRISTINA", "EULA", "LEIGH", "MEGHAN", - "SOPHIA", "ELOISE", "ROCHELLE", "GRETCHEN", "CECELIA", "RAQUEL", "HENRIETTA", "ALYSSA", "JANA", "KELLEY", - "GWEN", "KERRY", "JENNA", "TRICIA", "LAVERNE", "OLIVE", "ALEXIS", "TASHA", "SILVIA", "ELVIRA", - "CASEY", "DELIA", "SOPHIE", "KATE", "PATTI", "LORENA", "KELLIE", "SONJA", "LILA", "LANA", - "DARLA", "MAY", "MINDY", "ESSIE", "MANDY", "LORENE", "ELSA", "JOSEFINA", "JEANNIE", "MIRANDA", - "DIXIE", "LUCIA", "MARTA", "FAITH", "LELA", "JOHANNA", "SHARI", "CAMILLE", "TAMI", "SHAWNA", - "ELISA", "EBONY", "MELBA", "ORA", "NETTIE", "TABITHA", "OLLIE", "JAIME", "WINIFRED", "KRISTIE", - "MARINA", "ALISHA", "AIMEE", "RENA", "MYRNA", "MARLA", "TAMMIE", "LATASHA", "BONITA", "PATRICE", - "RONDA", "SHERRIE", "ADDIE", "FRANCINE", "DELORIS", "STACIE", "ADRIANA", "CHERI", "SHELBY", "ABIGAIL", - "CELESTE", "JEWEL", "CARA", "ADELE", "REBEKAH", "LUCINDA", "DORTHY", "CHRIS", "EFFIE", "TRINA", - "REBA", "SHAWN", "SALLIE", "AURORA", "LENORA", "ETTA", "LOTTIE", "KERRI", "TRISHA", "NIKKI", - "ESTELLA", "FRANCISCA", "JOSIE", "TRACIE", "MARISSA", "KARIN", "BRITTNEY", "JANELLE", "LOURDES", "LAUREL", - "HELENE", "FERN", "ELVA", "CORINNE", "KELSEY", "INA", "BETTIE", "ELISABETH", "AIDA", "CAITLIN", - "INGRID", "IVA", "EUGENIA", "CHRISTA", "GOLDIE", "CASSIE", "MAUDE", "JENIFER", "THERESE", "FRANKIE", - "DENA", "LORNA", "JANETTE", "LATONYA", "CANDY", "MORGAN", "CONSUELO", "TAMIKA", "ROSETTA", "DEBORA", - "CHERIE", "POLLY", "DINA", "JEWELL", "FAY", "JILLIAN", "DOROTHEA", "NELL", "TRUDY", "ESPERANZA", - "PATRICA", "KIMBERLEY", "SHANNA", "HELENA", "CAROLINA", "CLEO", "STEFANIE", "ROSARIO", "OLA", "JANINE", - "MOLLIE", "LUPE", "ALISA", "LOU", "MARIBEL", "SUSANNE", "BETTE", "SUSANA", "ELISE", "CECILE", - "ISABELLE", "LESLEY", "JOCELYN", "PAIGE", "JONI", "RACHELLE", "LEOLA", "DAPHNE", "ALTA", "ESTER", - "PETRA", "GRACIELA", "IMOGENE", "JOLENE", "KEISHA", "LACEY", "GLENNA", "GABRIELA", "KERI", "URSULA", - "LIZZIE", "KIRSTEN", "SHANA", "ADELINE", "MAYRA", "JAYNE", "JACLYN", "GRACIE", "SONDRA", "CARMELA", - "MARISA", "ROSALIND", "CHARITY", "TONIA", "BEATRIZ", "MARISOL", "CLARICE", "JEANINE", "SHEENA", "ANGELINE", - "FRIEDA", "LILY", "ROBBIE", "SHAUNA", "MILLIE", "CLAUDETTE", "CATHLEEN", "ANGELIA", "GABRIELLE", "AUTUMN", - "KATHARINE", "SUMMER", "JODIE", "STACI", "LEA", "CHRISTI", "JIMMIE", "JUSTINE", "ELMA", "LUELLA", - "MARGRET", "DOMINIQUE", "SOCORRO", "RENE", "MARTINA", "MARGO", "MAVIS", "CALLIE", "BOBBI", "MARITZA", - "LUCILE", "LEANNE", "JEANNINE", "DEANA", "AILEEN", "LORIE", "LADONNA", "WILLA", "MANUELA", "GALE", - "SELMA", "DOLLY", "SYBIL", "ABBY", "LARA", "DALE", "IVY", "DEE", "WINNIE", "MARCY", - "LUISA", "JERI", "MAGDALENA", "OFELIA", "MEAGAN", "AUDRA", "MATILDA", "LEILA", "CORNELIA", "BIANCA", - "SIMONE", "BETTYE", "RANDI", "VIRGIE", "LATISHA", "BARBRA", "GEORGINA", "ELIZA", "LEANN", "BRIDGETTE", - "RHODA", "HALEY", "ADELA", "NOLA", "BERNADINE", "FLOSSIE", "ILA", "GRETA", "RUTHIE", "NELDA", - "MINERVA", "LILLY", "TERRIE", "LETHA", "HILARY", "ESTELA", "VALARIE", "BRIANNA", "ROSALYN", "EARLINE", - "CATALINA", "AVA", "MIA", "CLARISSA", "LIDIA", "CORRINE", "ALEXANDRIA", "CONCEPCION", "TIA", "SHARRON", - "RAE", "DONA", "ERICKA", "JAMI", "ELNORA", "CHANDRA", "LENORE", "NEVA", "MARYLOU", "MELISA", - "TABATHA", "SERENA", "AVIS", "ALLIE", "SOFIA", "JEANIE", "ODESSA", "NANNIE", "HARRIETT", "LORAINE", - "PENELOPE", "MILAGROS", "EMILIA", "BENITA", "ALLYSON", "ASHLEE", "TANIA", "TOMMIE", "ESMERALDA", "KARINA", - "EVE", "PEARLIE", "ZELMA", "MALINDA", "NOREEN", "TAMEKA", "SAUNDRA", "HILLARY", "AMIE", "ALTHEA", - "ROSALINDA", "JORDAN", "LILIA", "ALANA", "GAY", "CLARE", "ALEJANDRA", "ELINOR", "MICHAEL", "LORRIE", - "JERRI", "DARCY", "EARNESTINE", "CARMELLA", "TAYLOR", "NOEMI", "MARCIE", "LIZA", "ANNABELLE", "LOUISA", - "EARLENE", "MALLORY", "CARLENE", "NITA", "SELENA", "TANISHA", "KATY", "JULIANNE", "JOHN", "LAKISHA", - "EDWINA", "MARICELA", "MARGERY", "KENYA", "DOLLIE", "ROXIE", "ROSLYN", "KATHRINE", "NANETTE", "CHARMAINE", - "LAVONNE", "ILENE", "KRIS", "TAMMI", "SUZETTE", "CORINE", "KAYE", "JERRY", "MERLE", "CHRYSTAL", - "LINA", "DEANNE", "LILIAN", "JULIANA", "ALINE", "LUANN", "KASEY", "MARYANNE", "EVANGELINE", "COLETTE", - "MELVA", "LAWANDA", "YESENIA", "NADIA", "MADGE", "KATHIE", "EDDIE", "OPHELIA", "VALERIA", "NONA", - "MITZI", "MARI", "GEORGETTE", "CLAUDINE", "FRAN", "ALISSA", "ROSEANN", "LAKEISHA", "SUSANNA", "REVA", - "DEIDRE", "CHASITY", "SHEREE", "CARLY", "JAMES", "ELVIA", "ALYCE", "DEIRDRE", "GENA", "BRIANA", - "ARACELI", "KATELYN", "ROSANNE", "WENDI", "TESSA", "BERTA", "MARVA", "IMELDA", "MARIETTA", "MARCI", - "LEONOR", "ARLINE", "SASHA", "MADELYN", "JANNA", "JULIETTE", "DEENA", "AURELIA", "JOSEFA", "AUGUSTA", - "LILIANA", "YOUNG", "CHRISTIAN", "LESSIE", "AMALIA", "SAVANNAH", "ANASTASIA", "VILMA", "NATALIA", "ROSELLA", - "LYNNETTE", "CORINA", "ALFREDA", "LEANNA", "CAREY", "AMPARO", "COLEEN", "TAMRA", "AISHA", "WILDA", - "KARYN", "CHERRY", "QUEEN", "MAURA", "MAI", "EVANGELINA", "ROSANNA", "HALLIE", "ERNA", "ENID", - "MARIANA", "LACY", "JULIET", "JACKLYN", "FREIDA", "MADELEINE", "MARA", "HESTER", "CATHRYN", "LELIA", - "CASANDRA", "BRIDGETT", "ANGELITA", "JANNIE", "DIONNE", "ANNMARIE", "KATINA", "BERYL", "PHOEBE", "MILLICENT", - "KATHERYN", "DIANN", "CARISSA", "MARYELLEN", "LIZ", "LAURI", "HELGA", "GILDA", "ADRIAN", "RHEA", - "MARQUITA", "HOLLIE", "TISHA", "TAMERA", "ANGELIQUE", "FRANCESCA", "BRITNEY", "KAITLIN", "LOLITA", "FLORINE", - "ROWENA", "REYNA", "TWILA", "FANNY", "JANELL", "INES", "CONCETTA", "BERTIE", "ALBA", "BRIGITTE", - "ALYSON", "VONDA", "PANSY", "ELBA", "NOELLE", "LETITIA", "KITTY", "DEANN", "BRANDIE", "LOUELLA", - "LETA", "FELECIA", "SHARLENE", "LESA", "BEVERLEY", "ROBERT", "ISABELLA", "HERMINIA", "TERRA", "CELINA", - "TORI", "OCTAVIA", "JADE", "DENICE", "GERMAINE", "SIERRA", "MICHELL", "CORTNEY", "NELLY", "DORETHA", - "SYDNEY", "DEIDRA", "MONIKA", "LASHONDA", "JUDI", "CHELSEY", "ANTIONETTE", "MARGOT", "BOBBY", "ADELAIDE", - "NAN", "LEEANN", "ELISHA", "DESSIE", "LIBBY", "KATHI", "GAYLA", "LATANYA", "MINA", "MELLISA", - "KIMBERLEE", "JASMIN", "RENAE", "ZELDA", "ELDA", "MA", "JUSTINA", "GUSSIE", "EMILIE", "CAMILLA", - "ABBIE", "ROCIO", "KAITLYN", "JESSE", "EDYTHE", "ASHLEIGH", "SELINA", "LAKESHA", "GERI", "ALLENE", - "PAMALA", "MICHAELA", "DAYNA", "CARYN", "ROSALIA", "SUN", "JACQULINE", "REBECA", "MARYBETH", "KRYSTLE", - "IOLA", "DOTTIE", "BENNIE", "BELLE", "AUBREY", "GRISELDA", "ERNESTINA", "ELIDA", "ADRIANNE", "DEMETRIA", - "DELMA", "CHONG", "JAQUELINE", "DESTINY", "ARLEEN", "VIRGINA", "RETHA", "FATIMA", "TILLIE", "ELEANORE", - "CARI", "TREVA", "BIRDIE", "WILHELMINA", "ROSALEE", "MAURINE", "LATRICE", "YONG", "JENA", "TARYN", - "ELIA", "DEBBY", "MAUDIE", "JEANNA", "DELILAH", "CATRINA", "SHONDA", "HORTENCIA", "THEODORA", "TERESITA", - "ROBBIN", "DANETTE", "MARYJANE", "FREDDIE", "DELPHINE", "BRIANNE", "NILDA", "DANNA", "CINDI", "BESS", - "IONA", "HANNA", "ARIEL", "WINONA", "VIDA", "ROSITA", "MARIANNA", "WILLIAM", "RACHEAL", "GUILLERMINA", - "ELOISA", "CELESTINE", "CAREN", "MALISSA", "LONA", "CHANTEL", "SHELLIE", "MARISELA", "LEORA", "AGATHA", - "SOLEDAD", "MIGDALIA", "IVETTE", "CHRISTEN", "ATHENA", "JANEL", "CHLOE", "VEDA", "PATTIE", "TESSIE", - "TERA", "MARILYNN", "LUCRETIA", "KARRIE", "DINAH", "DANIELA", "ALECIA", "ADELINA", "VERNICE", "SHIELA", - "PORTIA", "MERRY", "LASHAWN", "DEVON", "DARA", "TAWANA", "OMA", "VERDA", "CHRISTIN", "ALENE", - "ZELLA", "SANDI", "RAFAELA", "MAYA", "KIRA", "CANDIDA", "ALVINA", "SUZAN", "SHAYLA", "LYN", - "LETTIE", "ALVA", "SAMATHA", "ORALIA", "MATILDE", "MADONNA", "LARISSA", "VESTA", "RENITA", "INDIA", - "DELOIS", "SHANDA", "PHILLIS", "LORRI", "ERLINDA", "CRUZ", "CATHRINE", "BARB", "ZOE", "ISABELL", - "IONE", "GISELA", "CHARLIE", "VALENCIA", "ROXANNA", "MAYME", "KISHA", "ELLIE", "MELLISSA", "DORRIS", - "DALIA", "BELLA", "ANNETTA", "ZOILA", "RETA", "REINA", "LAURETTA", "KYLIE", "CHRISTAL", "PILAR", - "CHARLA", "ELISSA", "TIFFANI", "TANA", "PAULINA", "LEOTA", "BREANNA", "JAYME", "CARMEL", "VERNELL", - "TOMASA", "MANDI", "DOMINGA", "SANTA", "MELODIE", "LURA", "ALEXA", "TAMELA", "RYAN", "MIRNA", - "KERRIE", "VENUS", "NOEL", "FELICITA", "CRISTY", "CARMELITA", "BERNIECE", "ANNEMARIE", "TIARA", "ROSEANNE", - "MISSY", "CORI", "ROXANA", "PRICILLA", "KRISTAL", "JUNG", "ELYSE", "HAYDEE", "ALETHA", "BETTINA", - "MARGE", "GILLIAN", "FILOMENA", "CHARLES", "ZENAIDA", "HARRIETTE", "CARIDAD", "VADA", "UNA", "ARETHA", - "PEARLINE", "MARJORY", "MARCELA", "FLOR", "EVETTE", "ELOUISE", "ALINA", "TRINIDAD", "DAVID", "DAMARIS", - "CATHARINE", "CARROLL", "BELVA", "NAKIA", "MARLENA", "LUANNE", "LORINE", "KARON", "DORENE", "DANITA", - "BRENNA", "TATIANA", "SAMMIE", "LOUANN", "LOREN", "JULIANNA", "ANDRIA", "PHILOMENA", "LUCILA", "LEONORA", - "DOVIE", "ROMONA", "MIMI", "JACQUELIN", "GAYE", "TONJA", "MISTI", "JOE", "GENE", "CHASTITY", - "STACIA", "ROXANN", "MICAELA", "NIKITA", "MEI", "VELDA", "MARLYS", "JOHNNA", "AURA", "LAVERN", - "IVONNE", "HAYLEY", "NICKI", "MAJORIE", "HERLINDA", "GEORGE", "ALPHA", "YADIRA", "PERLA", "GREGORIA", - "DANIEL", "ANTONETTE", "SHELLI", "MOZELLE", "MARIAH", "JOELLE", "CORDELIA", "JOSETTE", "CHIQUITA", "TRISTA", - "LOUIS", "LAQUITA", "GEORGIANA", "CANDI", "SHANON", "LONNIE", "HILDEGARD", "CECIL", "VALENTINA", "STEPHANY", - "MAGDA", "KAROL", "GERRY", "GABRIELLA", "TIANA", "ROMA", "RICHELLE", "RAY", "PRINCESS", "OLETA", - "JACQUE", "IDELLA", "ALAINA", "SUZANNA", "JOVITA", "BLAIR", "TOSHA", "RAVEN", "NEREIDA", "MARLYN", - "KYLA", "JOSEPH", "DELFINA", "TENA", "STEPHENIE", "SABINA", "NATHALIE", "MARCELLE", "GERTIE", "DARLEEN", - "THEA", "SHARONDA", "SHANTEL", "BELEN", "VENESSA", "ROSALINA", "ONA", "GENOVEVA", "COREY", "CLEMENTINE", - "ROSALBA", "RENATE", "RENATA", "MI", "IVORY", "GEORGIANNA", "FLOY", "DORCAS", "ARIANA", "TYRA", - "THEDA", "MARIAM", "JULI", "JESICA", "DONNIE", "VIKKI", "VERLA", "ROSELYN", "MELVINA", "JANNETTE", - "GINNY", "DEBRAH", "CORRIE", "ASIA", "VIOLETA", "MYRTIS", "LATRICIA", "COLLETTE", "CHARLEEN", "ANISSA", - "VIVIANA", "TWYLA", "PRECIOUS", "NEDRA", "LATONIA", "LAN", "HELLEN", "FABIOLA", "ANNAMARIE", "ADELL", - "SHARYN", "CHANTAL", "NIKI", "MAUD", "LIZETTE", "LINDY", "KIA", "KESHA", "JEANA", "DANELLE", - "CHARLINE", "CHANEL", "CARROL", "VALORIE", "LIA", "DORTHA", "CRISTAL", "SUNNY", "LEONE", "LEILANI", - "GERRI", "DEBI", "ANDRA", "KESHIA", "IMA", "EULALIA", "EASTER", "DULCE", "NATIVIDAD", "LINNIE", - "KAMI", "GEORGIE", "CATINA", "BROOK", "ALDA", "WINNIFRED", "SHARLA", "RUTHANN", "MEAGHAN", "MAGDALENE", - "LISSETTE", "ADELAIDA", "VENITA", "TRENA", "SHIRLENE", "SHAMEKA", "ELIZEBETH", "DIAN", "SHANTA", "MICKEY", - "LATOSHA", "CARLOTTA", "WINDY", "SOON", "ROSINA", "MARIANN", "LEISA", "JONNIE", "DAWNA", "CATHIE", - "BILLY", "ASTRID", "SIDNEY", "LAUREEN", "JANEEN", "HOLLI", "FAWN", "VICKEY", "TERESSA", "SHANTE", - "RUBYE", "MARCELINA", "CHANDA", "CARY", "TERESE", "SCARLETT", "MARTY", "MARNIE", "LULU", "LISETTE", - "JENIFFER", "ELENOR", "DORINDA", "DONITA", "CARMAN", "BERNITA", "ALTAGRACIA", "ALETA", "ADRIANNA", "ZORAIDA", - "RONNIE", "NICOLA", "LYNDSEY", "KENDALL", "JANINA", "CHRISSY", "AMI", "STARLA", "PHYLIS", "PHUONG", - "KYRA", "CHARISSE", "BLANCH", "SANJUANITA", "RONA", "NANCI", "MARILEE", "MARANDA", "CORY", "BRIGETTE", - "SANJUANA", "MARITA", "KASSANDRA", "JOYCELYN", "IRA", "FELIPA", "CHELSIE", "BONNY", "MIREYA", "LORENZA", - "KYONG", "ILEANA", "CANDELARIA", "TONY", "TOBY", "SHERIE", "OK", "MARK", "LUCIE", "LEATRICE", - "LAKESHIA", "GERDA", "EDIE", "BAMBI", "MARYLIN", "LAVON", "HORTENSE", "GARNET", "EVIE", "TRESSA", - "SHAYNA", "LAVINA", "KYUNG", "JEANETTA", "SHERRILL", "SHARA", "PHYLISS", "MITTIE", "ANABEL", "ALESIA", - "THUY", "TAWANDA", "RICHARD", "JOANIE", "TIFFANIE", "LASHANDA", "KARISSA", "ENRIQUETA", "DARIA", "DANIELLA", - "CORINNA", "ALANNA", "ABBEY", "ROXANE", "ROSEANNA", "MAGNOLIA", "LIDA", "KYLE", "JOELLEN", "ERA", - "CORAL", "CARLEEN", "TRESA", "PEGGIE", "NOVELLA", "NILA", "MAYBELLE", "JENELLE", "CARINA", "NOVA", - "MELINA", "MARQUERITE", "MARGARETTE", "JOSEPHINA", "EVONNE", "DEVIN", "CINTHIA", "ALBINA", "TOYA", "TAWNYA", - "SHERITA", "SANTOS", "MYRIAM", "LIZABETH", "LISE", "KEELY", "JENNI", "GISELLE", "CHERYLE", "ARDITH", - "ARDIS", "ALESHA", "ADRIANE", "SHAINA", "LINNEA", "KAROLYN", "HONG", "FLORIDA", "FELISHA", "DORI", - "DARCI", "ARTIE", "ARMIDA", "ZOLA", "XIOMARA", "VERGIE", "SHAMIKA", "NENA", "NANNETTE", "MAXIE", - "LOVIE", "JEANE", "JAIMIE", "INGE", "FARRAH", "ELAINA", "CAITLYN", "STARR", "FELICITAS", "CHERLY", - "CARYL", "YOLONDA", "YASMIN", "TEENA", "PRUDENCE", "PENNIE", "NYDIA", "MACKENZIE", "ORPHA", "MARVEL", - "LIZBETH", "LAURETTE", "JERRIE", "HERMELINDA", "CAROLEE", "TIERRA", "MIRIAN", "META", "MELONY", "KORI", - "JENNETTE", "JAMILA", "ENA", "ANH", "YOSHIKO", "SUSANNAH", "SALINA", "RHIANNON", "JOLEEN", "CRISTINE", - "ASHTON", "ARACELY", "TOMEKA", "SHALONDA", "MARTI", "LACIE", "KALA", "JADA", "ILSE", "HAILEY", - "BRITTANI", "ZONA", "SYBLE", "SHERRYL", "RANDY", "NIDIA", "MARLO", "KANDICE", "KANDI", "DEB", - "DEAN", "AMERICA", "ALYCIA", "TOMMY", "RONNA", "NORENE", "MERCY", "JOSE", "INGEBORG", "GIOVANNA", - "GEMMA", "CHRISTEL", "AUDRY", "ZORA", "VITA", "VAN", "TRISH", "STEPHAINE", "SHIRLEE", "SHANIKA", - "MELONIE", "MAZIE", "JAZMIN", "INGA", "HOA", "HETTIE", "GERALYN", "FONDA", "ESTRELLA", "ADELLA", - "SU", "SARITA", "RINA", "MILISSA", "MARIBETH", "GOLDA", "EVON", "ETHELYN", "ENEDINA", "CHERISE", - "CHANA", "VELVA", "TAWANNA", "SADE", "MIRTA", "LI", "KARIE", "JACINTA", "ELNA", "DAVINA", - "CIERRA", "ASHLIE", "ALBERTHA", "TANESHA", "STEPHANI", "NELLE", "MINDI", "LU", "LORINDA", "LARUE", - "FLORENE", "DEMETRA", "DEDRA", "CIARA", "CHANTELLE", "ASHLY", "SUZY", "ROSALVA", "NOELIA", "LYDA", - "LEATHA", "KRYSTYNA", "KRISTAN", "KARRI", "DARLINE", "DARCIE", "CINDA", "CHEYENNE", "CHERRIE", "AWILDA", - "ALMEDA", "ROLANDA", "LANETTE", "JERILYN", "GISELE", "EVALYN", "CYNDI", "CLETA", "CARIN", "ZINA", - "ZENA", "VELIA", "TANIKA", "PAUL", "CHARISSA", "THOMAS", "TALIA", "MARGARETE", "LAVONDA", "KAYLEE", - "KATHLENE", "JONNA", "IRENA", "ILONA", "IDALIA", "CANDIS", "CANDANCE", "BRANDEE", "ANITRA", "ALIDA", - "SIGRID", "NICOLETTE", "MARYJO", "LINETTE", "HEDWIG", "CHRISTIANA", "CASSIDY", "ALEXIA", "TRESSIE", "MODESTA", - "LUPITA", "LITA", "GLADIS", "EVELIA", "DAVIDA", "CHERRI", "CECILY", "ASHELY", "ANNABEL", "AGUSTINA", - "WANITA", "SHIRLY", "ROSAURA", "HULDA", "EUN", "BAILEY", "YETTA", "VERONA", "THOMASINA", "SIBYL", - "SHANNAN", "MECHELLE", "LUE", "LEANDRA", "LANI", "KYLEE", "KANDY", "JOLYNN", "FERNE", "EBONI", - "CORENE", "ALYSIA", "ZULA", "NADA", "MOIRA", "LYNDSAY", "LORRETTA", "JUAN", "JAMMIE", "HORTENSIA", - "GAYNELL", "CAMERON", "ADRIA", "VINA", "VICENTA", "TANGELA", "STEPHINE", "NORINE", "NELLA", "LIANA", - "LESLEE", "KIMBERELY", "ILIANA", "GLORY", "FELICA", "EMOGENE", "ELFRIEDE", "EDEN", "EARTHA", "CARMA", - "BEA", "OCIE", "MARRY", "LENNIE", "KIARA", "JACALYN", "CARLOTA", "ARIELLE", "YU", "STAR", - "OTILIA", "KIRSTIN", "KACEY", "JOHNETTA", "JOEY", "JOETTA", "JERALDINE", "JAUNITA", "ELANA", "DORTHEA", - "CAMI", "AMADA", "ADELIA", "VERNITA", "TAMAR", "SIOBHAN", "RENEA", "RASHIDA", "OUIDA", "ODELL", - "NILSA", "MERYL", "KRISTYN", "JULIETA", "DANICA", "BREANNE", "AUREA", "ANGLEA", "SHERRON", "ODETTE", - "MALIA", "LORELEI", "LIN", "LEESA", "KENNA", "KATHLYN", "FIONA", "CHARLETTE", "SUZIE", "SHANTELL", - "SABRA", "RACQUEL", "MYONG", "MIRA", "MARTINE", "LUCIENNE", "LAVADA", "JULIANN", "JOHNIE", "ELVERA", - "DELPHIA", "CLAIR", "CHRISTIANE", "CHAROLETTE", "CARRI", "AUGUSTINE", "ASHA", "ANGELLA", "PAOLA", "NINFA", - "LEDA", "LAI", "EDA", "SUNSHINE", "STEFANI", "SHANELL", "PALMA", "MACHELLE", "LISSA", "KECIA", - "KATHRYNE", "KARLENE", "JULISSA", "JETTIE", "JENNIFFER", "HUI", "CORRINA", "CHRISTOPHER", "CAROLANN", "ALENA", - "TESS", "ROSARIA", "MYRTICE", "MARYLEE", "LIANE", "KENYATTA", "JUDIE", "JANEY", "IN", "ELMIRA", - "ELDORA", "DENNA", "CRISTI", "CATHI", "ZAIDA", "VONNIE", "VIVA", "VERNIE", "ROSALINE", "MARIELA", - "LUCIANA", "LESLI", "KARAN", "FELICE", "DENEEN", "ADINA", "WYNONA", "TARSHA", "SHERON", "SHASTA", - "SHANITA", "SHANI", "SHANDRA", "RANDA", "PINKIE", "PARIS", "NELIDA", "MARILOU", "LYLA", "LAURENE", - "LACI", "JOI", "JANENE", "DOROTHA", "DANIELE", "DANI", "CAROLYNN", "CARLYN", "BERENICE", "AYESHA", - "ANNELIESE", "ALETHEA", "THERSA", "TAMIKO", "RUFINA", "OLIVA", "MOZELL", "MARYLYN", "MADISON", "KRISTIAN", - "KATHYRN", "KASANDRA", "KANDACE", "JANAE", "GABRIEL", "DOMENICA", "DEBBRA", "DANNIELLE", "CHUN", "BUFFY", - "BARBIE", "ARCELIA", "AJA", "ZENOBIA", "SHAREN", "SHAREE", "PATRICK", "PAGE", "MY", "LAVINIA", - "KUM", "KACIE", "JACKELINE", "HUONG", "FELISA", "EMELIA", "ELEANORA", "CYTHIA", "CRISTIN", "CLYDE", - "CLARIBEL", "CARON", "ANASTACIA", "ZULMA", "ZANDRA", "YOKO", "TENISHA", "SUSANN", "SHERILYN", "SHAY", - "SHAWANDA", "SABINE", "ROMANA", "MATHILDA", "LINSEY", "KEIKO", "JOANA", "ISELA", "GRETTA", "GEORGETTA", - "EUGENIE", "DUSTY", "DESIRAE", "DELORA", "CORAZON", "ANTONINA", "ANIKA", "WILLENE", "TRACEE", "TAMATHA", - "REGAN", "NICHELLE", "MICKIE", "MAEGAN", "LUANA", "LANITA", "KELSIE", "EDELMIRA", "BREE", "AFTON", - "TEODORA", "TAMIE", "SHENA", "MEG", "LINH", "KELI", "KACI", "DANYELLE", "BRITT", "ARLETTE", - "ALBERTINE", "ADELLE", "TIFFINY", "STORMY", "SIMONA", "NUMBERS", "NICOLASA", "NICHOL", "NIA", "NAKISHA", - "MEE", "MAIRA", "LOREEN", "KIZZY", "JOHNNY", "JAY", "FALLON", "CHRISTENE", "BOBBYE", "ANTHONY", - "YING", "VINCENZA", "TANJA", "RUBIE", "RONI", "QUEENIE", "MARGARETT", "KIMBERLI", "IRMGARD", "IDELL", - "HILMA", "EVELINA", "ESTA", "EMILEE", "DENNISE", "DANIA", "CARL", "CARIE", "ANTONIO", "WAI", - "SANG", "RISA", "RIKKI", "PARTICIA", "MUI", "MASAKO", "MARIO", "LUVENIA", "LOREE", "LONI", - "LIEN", "KEVIN", "GIGI", "FLORENCIA", "DORIAN", "DENITA", "DALLAS", "CHI", "BILLYE", "ALEXANDER", - "TOMIKA", "SHARITA", "RANA", "NIKOLE", "NEOMA", "MARGARITE", "MADALYN", "LUCINA", "LAILA", "KALI", - "JENETTE", "GABRIELE", "EVELYNE", "ELENORA", "CLEMENTINA", "ALEJANDRINA", "ZULEMA", "VIOLETTE", "VANNESSA", "THRESA", - "RETTA", "PIA", "PATIENCE", "NOELLA", "NICKIE", "JONELL", "DELTA", "CHUNG", "CHAYA", "CAMELIA", - "BETHEL", "ANYA", "ANDREW", "THANH", "SUZANN", "SPRING", "SHU", "MILA", "LILLA", "LAVERNA", - "KEESHA", "KATTIE", "GIA", "GEORGENE", "EVELINE", "ESTELL", "ELIZBETH", "VIVIENNE", "VALLIE", "TRUDIE", - "STEPHANE", "MICHEL", "MAGALY", "MADIE", "KENYETTA", "KARREN", "JANETTA", "HERMINE", "HARMONY", "DRUCILLA", - "DEBBI", "CELESTINA", "CANDIE", "BRITNI", "BECKIE", "AMINA", "ZITA", "YUN", "YOLANDE", "VIVIEN", - "VERNETTA", "TRUDI", "SOMMER", "PEARLE", "PATRINA", "OSSIE", "NICOLLE", "LOYCE", "LETTY", "LARISA", - "KATHARINA", "JOSELYN", "JONELLE", "JENELL", "IESHA", "HEIDE", "FLORINDA", "FLORENTINA", "FLO", "ELODIA", - "DORINE", "BRUNILDA", "BRIGID", "ASHLI", "ARDELLA", "TWANA", "THU", "TARAH", "SUNG", "SHEA", - "SHAVON", "SHANE", "SERINA", "RAYNA", "RAMONITA", "NGA", "MARGURITE", "LUCRECIA", "KOURTNEY", "KATI", - "JESUS", "JESENIA", "DIAMOND", "CRISTA", "AYANA", "ALICA", "ALIA", "VINNIE", "SUELLEN", "ROMELIA", - "RACHELL", "PIPER", "OLYMPIA", "MICHIKO", "KATHALEEN", "JOLIE", "JESSI", "JANESSA", "HANA", "HA", - "ELEASE", "CARLETTA", "BRITANY", "SHONA", "SALOME", "ROSAMOND", "REGENA", "RAINA", "NGOC", "NELIA", - "LOUVENIA", "LESIA", "LATRINA", "LATICIA", "LARHONDA", "JINA", "JACKI", "HOLLIS", "HOLLEY", "EMMY", - "DEEANN", "CORETTA", "ARNETTA", "VELVET", "THALIA", "SHANICE", "NETA", "MIKKI", "MICKI", "LONNA", - "LEANA", "LASHUNDA", "KILEY", "JOYE", "JACQULYN", "IGNACIA", "HYUN", "HIROKO", "HENRY", "HENRIETTE", - "ELAYNE", "DELINDA", "DARNELL", "DAHLIA", "COREEN", "CONSUELA", "CONCHITA", "CELINE", "BABETTE", "AYANNA", - "ANETTE", "ALBERTINA", "SKYE", "SHAWNEE", "SHANEKA", "QUIANA", "PAMELIA", "MIN", "MERRI", "MERLENE", - "MARGIT", "KIESHA", "KIERA", "KAYLENE", "JODEE", "JENISE", "ERLENE", "EMMIE", "ELSE", "DARYL", - "DALILA", "DAISEY", "CODY", "CASIE", "BELIA", "BABARA", "VERSIE", "VANESA", "SHELBA", "SHAWNDA", - "SAM", "NORMAN", "NIKIA", "NAOMA", "MARNA", "MARGERET", "MADALINE", "LAWANA", "KINDRA", "JUTTA", - "JAZMINE", "JANETT", "HANNELORE", "GLENDORA", "GERTRUD", "GARNETT", "FREEDA", "FREDERICA", "FLORANCE", "FLAVIA", - "DENNIS", "CARLINE", "BEVERLEE", "ANJANETTE", "VALDA", "TRINITY", "TAMALA", "STEVIE", "SHONNA", "SHA", - "SARINA", "ONEIDA", "MICAH", "MERILYN", "MARLEEN", "LURLINE", "LENNA", "KATHERIN", "JIN", "JENI", - "HAE", "GRACIA", "GLADY", "FARAH", "ERIC", "ENOLA", "EMA", "DOMINQUE", "DEVONA", "DELANA", - "CECILA", "CAPRICE", "ALYSHA", "ALI", "ALETHIA", "VENA", "THERESIA", "TAWNY", "SONG", "SHAKIRA", - "SAMARA", "SACHIKO", "RACHELE", "PAMELLA", "NICKY", "MARNI", "MARIEL", "MAREN", "MALISA", "LIGIA", - "LERA", "LATORIA", "LARAE", "KIMBER", "KATHERN", "KAREY", "JENNEFER", "JANETH", "HALINA", "FREDIA", - "DELISA", "DEBROAH", "CIERA", "CHIN", "ANGELIKA", "ANDREE", "ALTHA", "YEN", "VIVAN", "TERRESA", - "TANNA", "SUK", "SUDIE", "SOO", "SIGNE", "SALENA", "RONNI", "REBBECCA", "MYRTIE", "MCKENZIE", - "MALIKA", "MAIDA", "LOAN", "LEONARDA", "KAYLEIGH", "FRANCE", "ETHYL", "ELLYN", "DAYLE", "CAMMIE", - "BRITTNI", "BIRGIT", "AVELINA", "ASUNCION", "ARIANNA", "AKIKO", "VENICE", "TYESHA", "TONIE", "TIESHA", - "TAKISHA", "STEFFANIE", "SINDY", "SANTANA", "MEGHANN", "MANDA", "MACIE", "LADY", "KELLYE", "KELLEE", - "JOSLYN", "JASON", "INGER", "INDIRA", "GLINDA", "GLENNIS", "FERNANDA", "FAUSTINA", "ENEIDA", "ELICIA", - "DOT", "DIGNA", "DELL", "ARLETTA", "ANDRE", "WILLIA", "TAMMARA", "TABETHA", "SHERRELL", "SARI", - "REFUGIO", "REBBECA", "PAULETTA", "NIEVES", "NATOSHA", "NAKITA", "MAMMIE", "KENISHA", "KAZUKO", "KASSIE", - "GARY", "EARLEAN", "DAPHINE", "CORLISS", "CLOTILDE", "CAROLYNE", "BERNETTA", "AUGUSTINA", "AUDREA", "ANNIS", - "ANNABELL", "YAN", "TENNILLE", "TAMICA", "SELENE", "SEAN", "ROSANA", "REGENIA", "QIANA", "MARKITA", - "MACY", "LEEANNE", "LAURINE", "KYM", "JESSENIA", "JANITA", "GEORGINE", "GENIE", "EMIKO", "ELVIE", - "DEANDRA", "DAGMAR", "CORIE", "COLLEN", "CHERISH", "ROMAINE", "PORSHA", "PEARLENE", "MICHELINE", "MERNA", - "MARGORIE", "MARGARETTA", "LORE", "KENNETH", "JENINE", "HERMINA", "FREDERICKA", "ELKE", "DRUSILLA", "DORATHY", - "DIONE", "DESIRE", "CELENA", "BRIGIDA", "ANGELES", "ALLEGRA", "THEO", "TAMEKIA", "SYNTHIA", "STEPHEN", - "SOOK", "SLYVIA", "ROSANN", "REATHA", "RAYE", "MARQUETTA", "MARGART", "LING", "LAYLA", "KYMBERLY", - "KIANA", "KAYLEEN", "KATLYN", "KARMEN", "JOELLA", "IRINA", "EMELDA", "ELENI", "DETRA", "CLEMMIE", - "CHERYLL", "CHANTELL", "CATHEY", "ARNITA", "ARLA", "ANGLE", "ANGELIC", "ALYSE", "ZOFIA", "THOMASINE", - "TENNIE", "SON", "SHERLY", "SHERLEY", "SHARYL", "REMEDIOS", "PETRINA", "NICKOLE", "MYUNG", "MYRLE", - "MOZELLA", "LOUANNE", "LISHA", "LATIA", "LANE", "KRYSTA", "JULIENNE", "JOEL", "JEANENE", "JACQUALINE", - "ISAURA", "GWENDA", "EARLEEN", "DONALD", "CLEOPATRA", "CARLIE", "AUDIE", "ANTONIETTA", "ALISE", "ALEX", - "VERDELL", "VAL", "TYLER", "TOMOKO", "THAO", "TALISHA", "STEVEN", "SO", "SHEMIKA", "SHAUN", - "SCARLET", "SAVANNA", "SANTINA", "ROSIA", "RAEANN", "ODILIA", "NANA", "MINNA", "MAGAN", "LYNELLE", - "LE", "KARMA", "JOEANN", "IVANA", "INELL", "ILANA", "HYE", "HONEY", "HEE", "GUDRUN", - "FRANK", "DREAMA", "CRISSY", "CHANTE", "CARMELINA", "ARVILLA", "ARTHUR", "ANNAMAE", "ALVERA", "ALEIDA", - "AARON", "YEE", "YANIRA", "VANDA", "TIANNA", "TAM", "STEFANIA", "SHIRA", "PERRY", "NICOL", - "NANCIE", "MONSERRATE", "MINH", "MELYNDA", "MELANY", "MATTHEW", "LOVELLA", "LAURE", "KIRBY", "KACY", - "JACQUELYNN", "HYON", "GERTHA", "FRANCISCO", "ELIANA", "CHRISTENA", "CHRISTEEN", "CHARISE", "CATERINA", "CARLEY", - "CANDYCE", "ARLENA", "AMMIE", "YANG", "WILLETTE", "VANITA", "TUYET", "TINY", "SYREETA", "SILVA", - "SCOTT", "RONALD", "PENNEY", "NYLA", "MICHAL", "MAURICE", "MARYAM", "MARYA", "MAGEN", "LUDIE", - "LOMA", "LIVIA", "LANELL", "KIMBERLIE", "JULEE", "DONETTA", "DIEDRA", "DENISHA", "DEANE", "DAWNE", - "CLARINE", "CHERRYL", "BRONWYN", "BRANDON", "ALLA", "VALERY", "TONDA", "SUEANN", "SORAYA", "SHOSHANA", - "SHELA", "SHARLEEN", "SHANELLE", "NERISSA", "MICHEAL", "MERIDITH", "MELLIE", "MAYE", "MAPLE", "MAGARET", - "LUIS", "LILI", "LEONILA", "LEONIE", "LEEANNA", "LAVONIA", "LAVERA", "KRISTEL", "KATHEY", "KATHE", - "JUSTIN", "JULIAN", "JIMMY", "JANN", "ILDA", "HILDRED", "HILDEGARDE", "GENIA", "FUMIKO", "EVELIN", - "ERMELINDA", "ELLY", "DUNG", "DOLORIS", "DIONNA", "DANAE", "BERNEICE", "ANNICE", "ALIX", "VERENA", - "VERDIE", "TRISTAN", "SHAWNNA", "SHAWANA", "SHAUNNA", "ROZELLA", "RANDEE", "RANAE", "MILAGRO", "LYNELL", - "LUISE", "LOUIE", "LOIDA", "LISBETH", "KARLEEN", "JUNITA", "JONA", "ISIS", "HYACINTH", "HEDY", - "GWENN", "ETHELENE", "ERLINE", "EDWARD", "DONYA", "DOMONIQUE", "DELICIA", "DANNETTE", "CICELY", "BRANDA", - "BLYTHE", "BETHANN", "ASHLYN", "ANNALEE", "ALLINE", "YUKO", "VELLA", "TRANG", "TOWANDA", "TESHA", - "SHERLYN", "NARCISA", "MIGUELINA", "MERI", "MAYBELL", "MARLANA", "MARGUERITA", "MADLYN", "LUNA", "LORY", - "LORIANN", "LIBERTY", "LEONORE", "LEIGHANN", "LAURICE", "LATESHA", "LARONDA", "KATRICE", "KASIE", "KARL", - "KALEY", "JADWIGA", "GLENNIE", "GEARLDINE", "FRANCINA", "EPIFANIA", "DYAN", "DORIE", "DIEDRE", "DENESE", - "DEMETRICE", "DELENA", "DARBY", "CRISTIE", "CLEORA", "CATARINA", "CARISA", "BERNIE", "BARBERA", "ALMETA", - "TRULA", "TEREASA", "SOLANGE", "SHEILAH", "SHAVONNE", "SANORA", "ROCHELL", "MATHILDE", "MARGARETA", "MAIA", - "LYNSEY", "LAWANNA", "LAUNA", "KENA", "KEENA", "KATIA", "JAMEY", "GLYNDA", "GAYLENE", "ELVINA", - "ELANOR", "DANUTA", "DANIKA", "CRISTEN", "CORDIE", "COLETTA", "CLARITA", "CARMON", "BRYNN", "AZUCENA", - "AUNDREA", "ANGELE", "YI", "WALTER", "VERLIE", "VERLENE", "TAMESHA", "SILVANA", "SEBRINA", "SAMIRA", - "REDA", "RAYLENE", "PENNI", "PANDORA", "NORAH", "NOMA", "MIREILLE", "MELISSIA", "MARYALICE", "LARAINE", - "KIMBERY", "KARYL", "KARINE", "KAM", "JOLANDA", "JOHANA", "JESUSA", "JALEESA", "JAE", "JACQUELYNE", - "IRISH", "ILUMINADA", "HILARIA", "HANH", "GENNIE", "FRANCIE", "FLORETTA", "EXIE", "EDDA", "DREMA", - "DELPHA", "BEV", "BARBAR", "ASSUNTA", "ARDELL", "ANNALISA", "ALISIA", "YUKIKO", "YOLANDO", "WONDA", - "WEI", "WALTRAUD", "VETA", "TEQUILA", "TEMEKA", "TAMEIKA", "SHIRLEEN", "SHENITA", "PIEDAD", "OZELLA", - "MIRTHA", "MARILU", "KIMIKO", "JULIANE", "JENICE", "JEN", "JANAY", "JACQUILINE", "HILDE", "FE", - "FAE", "EVAN", "EUGENE", "ELOIS", "ECHO", "DEVORAH", "CHAU", "BRINDA", "BETSEY", "ARMINDA", - "ARACELIS", "APRYL", "ANNETT", "ALISHIA", "VEOLA", "USHA", "TOSHIKO", "THEOLA", "TASHIA", "TALITHA", - "SHERY", "RUDY", "RENETTA", "REIKO", "RASHEEDA", "OMEGA", "OBDULIA", "MIKA", "MELAINE", "MEGGAN", - "MARTIN", "MARLEN", "MARGET", "MARCELINE", "MANA", "MAGDALEN", "LIBRADA", "LEZLIE", "LEXIE", "LATASHIA", - "LASANDRA", "KELLE", "ISIDRA", "ISA", "INOCENCIA", "GWYN", "FRANCOISE", "ERMINIA", "ERINN", "DIMPLE", - "DEVORA", "CRISELDA", "ARMANDA", "ARIE", "ARIANE", "ANGELO", "ANGELENA", "ALLEN", "ALIZA", "ADRIENE", - "ADALINE", "XOCHITL", "TWANNA", "TRAN", "TOMIKO", "TAMISHA", "TAISHA", "SUSY", "SIU", "RUTHA", - "ROXY", "RHONA", "RAYMOND", "OTHA", "NORIKO", "NATASHIA", "MERRIE", "MELVIN", "MARINDA", "MARIKO", - "MARGERT", "LORIS", "LIZZETTE", "LEISHA", "KAILA", "KA", "JOANNIE", "JERRICA", "JENE", "JANNET", - "JANEE", "JACINDA", "HERTA", "ELENORE", "DORETTA", "DELAINE", "DANIELL", "CLAUDIE", "CHINA", "BRITTA", - "APOLONIA", "AMBERLY", "ALEASE", "YURI", "YUK", "WEN", "WANETA", "UTE", "TOMI", "SHARRI", - "SANDIE", "ROSELLE", "REYNALDA", "RAGUEL", "PHYLICIA", "PATRIA", "OLIMPIA", "ODELIA", "MITZIE", "MITCHELL", - "MISS", "MINDA", "MIGNON", "MICA", "MENDY", "MARIVEL", "MAILE", "LYNETTA", "LAVETTE", "LAURYN", - "LATRISHA", "LAKIESHA", "KIERSTEN", "KARY", "JOSPHINE", "JOLYN", "JETTA", "JANISE", "JACQUIE", "IVELISSE", - "GLYNIS", "GIANNA", "GAYNELLE", "EMERALD", "DEMETRIUS", "DANYELL", "DANILLE", "DACIA", "CORALEE", "CHER", - "CEOLA", "BRETT", "BELL", "ARIANNE", "ALESHIA", "YUNG", "WILLIEMAE", "TROY", "TRINH", "THORA", - "TAI", "SVETLANA", "SHERIKA", "SHEMEKA", "SHAUNDA", "ROSELINE", "RICKI", "MELDA", "MALLIE", "LAVONNA", - "LATINA", "LARRY", "LAQUANDA", "LALA", "LACHELLE", "KLARA", "KANDIS", "JOHNA", "JEANMARIE", "JAYE", - "HANG", "GRAYCE", "GERTUDE", "EMERITA", "EBONIE", "CLORINDA", "CHING", "CHERY", "CAROLA", "BREANN", - "BLOSSOM", "BERNARDINE", "BECKI", "ARLETHA", "ARGELIA", "ARA", "ALITA", "YULANDA", "YON", "YESSENIA", - "TOBI", "TASIA", "SYLVIE", "SHIRL", "SHIRELY", "SHERIDAN", "SHELLA", "SHANTELLE", "SACHA", "ROYCE", - "REBECKA", "REAGAN", "PROVIDENCIA", "PAULENE", "MISHA", "MIKI", "MARLINE", "MARICA", "LORITA", "LATOYIA", - "LASONYA", "KERSTIN", "KENDA", "KEITHA", "KATHRIN", "JAYMIE", "JACK", "GRICELDA", "GINETTE", "ERYN", - "ELINA", "ELFRIEDA", "DANYEL", "CHEREE", "CHANELLE", "BARRIE", "AVERY", "AURORE", "ANNAMARIA", "ALLEEN", - "AILENE", "AIDE", "YASMINE", "VASHTI", "VALENTINE", "TREASA", "TORY", "TIFFANEY", "SHERYLL", "SHARIE", - "SHANAE", "SAU", "RAISA", "PA", "NEDA", "MITSUKO", "MIRELLA", "MILDA", "MARYANNA", "MARAGRET", - "MABELLE", "LUETTA", "LORINA", "LETISHA", "LATARSHA", "LANELLE", "LAJUANA", "KRISSY", "KARLY", "KARENA", - "JON", "JESSIKA", "JERICA", "JEANELLE", "JANUARY", "JALISA", "JACELYN", "IZOLA", "IVEY", "GREGORY", - "EUNA", "ETHA", "DREW", "DOMITILA", "DOMINICA", "DAINA", "CREOLA", "CARLI", "CAMIE", "BUNNY", - "BRITTNY", "ASHANTI", "ANISHA", "ALEEN", "ADAH", "YASUKO", "WINTER", "VIKI", "VALRIE", "TONA", - "TINISHA", "THI", "TERISA", "TATUM", "TANEKA", "SIMONNE", "SHALANDA", "SERITA", "RESSIE", "REFUGIA", - "PAZ", "OLENE", "NA", "MERRILL", "MARGHERITA", "MANDIE", "MAN", "MAIRE", "LYNDIA", "LUCI", - "LORRIANE", "LORETA", "LEONIA", "LAVONA", "LASHAWNDA", "LAKIA", "KYOKO", "KRYSTINA", "KRYSTEN", "KENIA", - "KELSI", "JUDE", "JEANICE", "ISOBEL", "GEORGIANN", "GENNY", "FELICIDAD", "EILENE", "DEON", "DELOISE", - "DEEDEE", "DANNIE", "CONCEPTION", "CLORA", "CHERILYN", "CHANG", "CALANDRA", "BERRY", "ARMANDINA", "ANISA", - "ULA", "TIMOTHY", "TIERA", "THERESSA", "STEPHANIA", "SIMA", "SHYLA", "SHONTA", "SHERA", "SHAQUITA", - "SHALA", "SAMMY", "ROSSANA", "NOHEMI", "NERY", "MORIAH", "MELITA", "MELIDA", "MELANI", "MARYLYNN", - "MARISHA", "MARIETTE", "MALORIE", "MADELENE", "LUDIVINA", "LORIA", "LORETTE", "LORALEE", "LIANNE", "LEON", - "LAVENIA", "LAURINDA", "LASHON", "KIT", "KIMI", "KEILA", "KATELYNN", "KAI", "JONE", "JOANE", - "JI", "JAYNA", "JANELLA", "JA", "HUE", "HERTHA", "FRANCENE", "ELINORE", "DESPINA", "DELSIE", - "DEEDRA", "CLEMENCIA", "CARRY", "CAROLIN", "CARLOS", "BULAH", "BRITTANIE", "BOK", "BLONDELL", "BIBI", - "BEAULAH", "BEATA", "ANNITA", "AGRIPINA", "VIRGEN", "VALENE", "UN", "TWANDA", "TOMMYE", "TOI", - "TARRA", "TARI", "TAMMERA", "SHAKIA", "SADYE", "RUTHANNE", "ROCHEL", "RIVKA", "PURA", "NENITA", - "NATISHA", "MING", "MERRILEE", "MELODEE", "MARVIS", "LUCILLA", "LEENA", "LAVETA", "LARITA", "LANIE", - "KEREN", "ILEEN", "GEORGEANN", "GENNA", "GENESIS", "FRIDA", "EWA", "EUFEMIA", "EMELY", "ELA", - "EDYTH", "DEONNA", "DEADRA", "DARLENA", "CHANELL", "CHAN", "CATHERN", "CASSONDRA", "CASSAUNDRA", "BERNARDA", - "BERNA", "ARLINDA", "ANAMARIA", "ALBERT", "WESLEY", "VERTIE", "VALERI", "TORRI", "TATYANA", "STASIA", - "SHERISE", "SHERILL", "SEASON", "SCOTTIE", "SANDA", "RUTHE", "ROSY", "ROBERTO", "ROBBI", "RANEE", - "QUYEN", "PEARLY", "PALMIRA", "ONITA", "NISHA", "NIESHA", "NIDA", "NEVADA", "NAM", "MERLYN", - "MAYOLA", "MARYLOUISE", "MARYLAND", "MARX", "MARTH", "MARGENE", "MADELAINE", "LONDA", "LEONTINE", "LEOMA", - "LEIA", "LAWRENCE", "LAURALEE", "LANORA", "LAKITA", "KIYOKO", "KETURAH", "KATELIN", "KAREEN", "JONIE", - "JOHNETTE", "JENEE", "JEANETT", "IZETTA", "HIEDI", "HEIKE", "HASSIE", "HAROLD", "GIUSEPPINA", "GEORGANN", - "FIDELA", "FERNANDE", "ELWANDA", "ELLAMAE", "ELIZ", "DUSTI", "DOTTY", "CYNDY", "CORALIE", "CELESTA", - "ARGENTINA", "ALVERTA", "XENIA", "WAVA", "VANETTA", "TORRIE", "TASHINA", "TANDY", "TAMBRA", "TAMA", - "STEPANIE", "SHILA", "SHAUNTA", "SHARAN", "SHANIQUA", "SHAE", "SETSUKO", "SERAFINA", "SANDEE", "ROSAMARIA", - "PRISCILA", "OLINDA", "NADENE", "MUOI", "MICHELINA", "MERCEDEZ", "MARYROSE", "MARIN", "MARCENE", "MAO", - "MAGALI", "MAFALDA", "LOGAN", "LINN", "LANNIE", "KAYCE", "KAROLINE", "KAMILAH", "KAMALA", "JUSTA", - "JOLINE", "JENNINE", "JACQUETTA", "IRAIDA", "GERALD", "GEORGEANNA", "FRANCHESCA", "FAIRY", "EMELINE", "ELANE", - "EHTEL", "EARLIE", "DULCIE", "DALENE", "CRIS", "CLASSIE", "CHERE", "CHARIS", "CAROYLN", "CARMINA", - "CARITA", "BRIAN", "BETHANIE", "AYAKO", "ARICA", "AN", "ALYSA", "ALESSANDRA", "AKILAH", "ADRIEN", - "ZETTA", "YOULANDA", "YELENA", "YAHAIRA", "XUAN", "WENDOLYN", "VICTOR", "TIJUANA", "TERRELL", "TERINA", - "TERESIA", "SUZI", "SUNDAY", "SHERELL", "SHAVONDA", "SHAUNTE", "SHARDA", "SHAKITA", "SENA", "RYANN", - "RUBI", "RIVA", "REGINIA", "REA", "RACHAL", "PARTHENIA", "PAMULA", "MONNIE", "MONET", "MICHAELE", - "MELIA", "MARINE", "MALKA", "MAISHA", "LISANDRA", "LEO", "LEKISHA", "LEAN", "LAURENCE", "LAKENDRA", - "KRYSTIN", "KORTNEY", "KIZZIE", "KITTIE", "KERA", "KENDAL", "KEMBERLY", "KANISHA", "JULENE", "JULE", - "JOSHUA", "JOHANNE", "JEFFREY", "JAMEE", "HAN", "HALLEY", "GIDGET", "GALINA", "FREDRICKA", "FLETA", - "FATIMAH", "EUSEBIA", "ELZA", "ELEONORE", "DORTHEY", "DORIA", "DONELLA", "DINORAH", "DELORSE", "CLARETHA", - "CHRISTINIA", "CHARLYN", "BONG", "BELKIS", "AZZIE", "ANDERA", "AIKO", "ADENA", "YER", "YAJAIRA", - "WAN", "VANIA", "ULRIKE", "TOSHIA", "TIFANY", "STEFANY", "SHIZUE", "SHENIKA", "SHAWANNA", "SHAROLYN", - "SHARILYN", "SHAQUANA", "SHANTAY", "SEE", "ROZANNE", "ROSELEE", "RICKIE", "REMONA", "REANNA", "RAELENE", - "QUINN", "PHUNG", "PETRONILA", "NATACHA", "NANCEY", "MYRL", "MIYOKO", "MIESHA", "MERIDETH", "MARVELLA", - "MARQUITTA", "MARHTA", "MARCHELLE", "LIZETH", "LIBBIE", "LAHOMA", "LADAWN", "KINA", "KATHELEEN", "KATHARYN", - "KARISA", "KALEIGH", "JUNIE", "JULIEANN", "JOHNSIE", "JANEAN", "JAIMEE", "JACKQUELINE", "HISAKO", "HERMA", - "HELAINE", "GWYNETH", "GLENN", "GITA", "EUSTOLIA", "EMELINA", "ELIN", "EDRIS", "DONNETTE", "DONNETTA", - "DIERDRE", "DENAE", "DARCEL", "CLAUDE", "CLARISA", "CINDERELLA", "CHIA", "CHARLESETTA", "CHARITA", "CELSA", - "CASSY", "CASSI", "CARLEE", "BRUNA", "BRITTANEY", "BRANDE", "BILLI", "BAO", "ANTONETTA", "ANGLA", - "ANGELYN", "ANALISA", "ALANE", "WENONA", "WENDIE", "VERONIQUE", "VANNESA", "TOBIE", "TEMPIE", "SUMIKO", - "SULEMA", "SPARKLE", "SOMER", "SHEBA", "SHAYNE", "SHARICE", "SHANEL", "SHALON", "SAGE", "ROY", - "ROSIO", "ROSELIA", "RENAY", "REMA", "REENA", "PORSCHE", "PING", "PEG", "OZIE", "ORETHA", - "ORALEE", "ODA", "NU", "NGAN", "NAKESHA", "MILLY", "MARYBELLE", "MARLIN", "MARIS", "MARGRETT", - "MARAGARET", "MANIE", "LURLENE", "LILLIA", "LIESELOTTE", "LAVELLE", "LASHAUNDA", "LAKEESHA", "KEITH", "KAYCEE", - "KALYN", "JOYA", "JOETTE", "JENAE", "JANIECE", "ILLA", "GRISEL", "GLAYDS", "GENEVIE", "GALA", - "FREDDA", "FRED", "ELMER", "ELEONOR", "DEBERA", "DEANDREA", "DAN", "CORRINNE", "CORDIA", "CONTESSA", - "COLENE", "CLEOTILDE", "CHARLOTT", "CHANTAY", "CECILLE", "BEATRIS", "AZALEE", "ARLEAN", "ARDATH", "ANJELICA", - "ANJA", "ALFREDIA", "ALEISHA", "ADAM", "ZADA", "YUONNE", "XIAO", "WILLODEAN", "WHITLEY", "VENNIE", - "VANNA", "TYISHA", "TOVA", "TORIE", "TONISHA", "TILDA", "TIEN", "TEMPLE", "SIRENA", "SHERRIL", - "SHANTI", "SHAN", "SENAIDA", "SAMELLA", "ROBBYN", "RENDA", "REITA", "PHEBE", "PAULITA", "NOBUKO", - "NGUYET", "NEOMI", "MOON", "MIKAELA", "MELANIA", "MAXIMINA", "MARG", "MAISIE", "LYNNA", "LILLI", - "LAYNE", "LASHAUN", "LAKENYA", "LAEL", "KIRSTIE", "KATHLINE", "KASHA", "KARLYN", "KARIMA", "JOVAN", - "JOSEFINE", "JENNELL", "JACQUI", "JACKELYN", "HYO", "HIEN", "GRAZYNA", "FLORRIE", "FLORIA", "ELEONORA", - "DWANA", "DORLA", "DONG", "DELMY", "DEJA", "DEDE", "DANN", "CRYSTA", "CLELIA", "CLARIS", - "CLARENCE", "CHIEKO", "CHERLYN", "CHERELLE", "CHARMAIN", "CHARA", "CAMMY", "BEE", "ARNETTE", "ARDELLE", - "ANNIKA", "AMIEE", "AMEE", "ALLENA", "YVONE", "YUKI", "YOSHIE", "YEVETTE", "YAEL", "WILLETTA", - "VONCILE", "VENETTA", "TULA", "TONETTE", "TIMIKA", "TEMIKA", "TELMA", "TEISHA", "TAREN", "TA", - "STACEE", "SHIN", "SHAWNTA", "SATURNINA", "RICARDA", "POK", "PASTY", "ONIE", "NUBIA", "MORA", - "MIKE", "MARIELLE", "MARIELLA", "MARIANELA", "MARDELL", "MANY", "LUANNA", "LOISE", "LISABETH", "LINDSY", - "LILLIANA", "LILLIAM", "LELAH", "LEIGHA", "LEANORA", "LANG", "KRISTEEN", "KHALILAH", "KEELEY", "KANDRA", - "JUNKO", "JOAQUINA", "JERLENE", "JANI", "JAMIKA", "JAME", "HSIU", "HERMILA", "GOLDEN", "GENEVIVE", - "EVIA", "EUGENA", "EMMALINE", "ELFREDA", "ELENE", "DONETTE", "DELCIE", "DEEANNA", "DARCEY", "CUC", - "CLARINDA", "CIRA", "CHAE", "CELINDA", "CATHERYN", "CATHERIN", "CASIMIRA", "CARMELIA", "CAMELLIA", "BREANA", - "BOBETTE", "BERNARDINA", "BEBE", "BASILIA", "ARLYNE", "AMAL", "ALAYNA", "ZONIA", "ZENIA", "YURIKO", - "YAEKO", "WYNELL", "WILLOW", "WILLENA", "VERNIA", "TU", "TRAVIS", "TORA", "TERRILYN", "TERICA", - "TENESHA", "TAWNA", "TAJUANA", "TAINA", "STEPHNIE", "SONA", "SOL", "SINA", "SHONDRA", "SHIZUKO", - "SHERLENE", "SHERICE", "SHARIKA", "ROSSIE", "ROSENA", "RORY", "RIMA", "RIA", "RHEBA", "RENNA", - "PETER", "NATALYA", "NANCEE", "MELODI", "MEDA", "MAXIMA", "MATHA", "MARKETTA", "MARICRUZ", "MARCELENE", - "MALVINA", "LUBA", "LOUETTA", "LEIDA", "LECIA", "LAURAN", "LASHAWNA", "LAINE", "KHADIJAH", "KATERINE", - "KASI", "KALLIE", "JULIETTA", "JESUSITA", "JESTINE", "JESSIA", "JEREMY", "JEFFIE", "JANYCE", "ISADORA", - "GEORGIANNE", "FIDELIA", "EVITA", "EURA", "EULAH", "ESTEFANA", "ELSY", "ELIZABET", "ELADIA", "DODIE", - "DION", "DIA", "DENISSE", "DELORAS", "DELILA", "DAYSI", "DAKOTA", "CURTIS", "CRYSTLE", "CONCHA", - "COLBY", "CLARETTA", "CHU", "CHRISTIA", "CHARLSIE", "CHARLENA", "CARYLON", "BETTYANN", "ASLEY", "ASHLEA", - "AMIRA", "AI", "AGUEDA", "AGNUS", "YUETTE", "VINITA", "VICTORINA", "TYNISHA", "TREENA", "TOCCARA", - "TISH", "THOMASENA", "TEGAN", "SOILA", "SHILOH", "SHENNA", "SHARMAINE", "SHANTAE", "SHANDI", "SEPTEMBER", - "SARAN", "SARAI", "SANA", "SAMUEL", "SALLEY", "ROSETTE", "ROLANDE", "REGINE", "OTELIA", "OSCAR", - "OLEVIA", "NICHOLLE", "NECOLE", "NAIDA", "MYRTA", "MYESHA", "MITSUE", "MINTA", "MERTIE", "MARGY", - "MAHALIA", "MADALENE", "LOVE", "LOURA", "LOREAN", "LEWIS", "LESHA", "LEONIDA", "LENITA", "LAVONE", - "LASHELL", "LASHANDRA", "LAMONICA", "KIMBRA", "KATHERINA", "KARRY", "KANESHA", "JULIO", "JONG", "JENEVA", - "JAQUELYN", "HWA", "GILMA", "GHISLAINE", "GERTRUDIS", "FRANSISCA", "FERMINA", "ETTIE", "ETSUKO", "ELLIS", - "ELLAN", "ELIDIA", "EDRA", "DORETHEA", "DOREATHA", "DENYSE", "DENNY", "DEETTA", "DAINE", "CYRSTAL", - "CORRIN", "CAYLA", "CARLITA", "CAMILA", "BURMA", "BULA", "BUENA", "BLAKE", "BARABARA", "AVRIL", - "AUSTIN", "ALAINE", "ZANA", "WILHEMINA", "WANETTA", "VIRGIL", "VI", "VERONIKA", "VERNON", "VERLINE", - "VASILIKI", "TONITA", "TISA", "TEOFILA", "TAYNA", "TAUNYA", "TANDRA", "TAKAKO", "SUNNI", "SUANNE", - "SIXTA", "SHARELL", "SEEMA", "RUSSELL", "ROSENDA", "ROBENA", "RAYMONDE", "PEI", "PAMILA", "OZELL", - "NEIDA", "NEELY", "MISTIE", "MICHA", "MERISSA", "MAURITA", "MARYLN", "MARYETTA", "MARSHALL", "MARCELL", - "MALENA", "MAKEDA", "MADDIE", "LOVETTA", "LOURIE", "LORRINE", "LORILEE", "LESTER", "LAURENA", "LASHAY", - "LARRAINE", "LAREE", "LACRESHA", "KRISTLE", "KRISHNA", "KEVA", "KEIRA", "KAROLE", "JOIE", "JINNY", - "JEANNETTA", "JAMA", "HEIDY", "GILBERTE", "GEMA", "FAVIOLA", "EVELYNN", "ENDA", "ELLI", "ELLENA", - "DIVINA", "DAGNY", "COLLENE", "CODI", "CINDIE", "CHASSIDY", "CHASIDY", "CATRICE", "CATHERINA", "CASSEY", - "CAROLL", "CARLENA", "CANDRA", "CALISTA", "BRYANNA", "BRITTENY", "BEULA", "BARI", "AUDRIE", "AUDRIA", - "ARDELIA", "ANNELLE", "ANGILA", "ALONA", "ALLYN", "DOUGLAS", "ROGER", "JONATHAN", "RALPH", "NICHOLAS", - "BENJAMIN", "BRUCE", "HARRY", "WAYNE", "STEVE", "HOWARD", "ERNEST", "PHILLIP", "TODD", "CRAIG", - "ALAN", "PHILIP", "EARL", "DANNY", "BRYAN", "STANLEY", "LEONARD", "NATHAN", "MANUEL", "RODNEY", - "MARVIN", "VINCENT", "JEFFERY", "JEFF", "CHAD", "JACOB", "ALFRED", "BRADLEY", "HERBERT", "FREDERICK", - "EDWIN", "DON", "RICKY", "RANDALL", "BARRY", "BERNARD", "LEROY", "MARCUS", "THEODORE", "CLIFFORD", - "MIGUEL", "JIM", "TOM", "CALVIN", "BILL", "LLOYD", "DEREK", "WARREN", "DARRELL", "JEROME", - "FLOYD", "ALVIN", "TIM", "GORDON", "GREG", "JORGE", "DUSTIN", "PEDRO", "DERRICK", "ZACHARY", - "HERMAN", "GLEN", "HECTOR", "RICARDO", "RICK", "BRENT", "RAMON", "GILBERT", "MARC", "REGINALD", - "RUBEN", "NATHANIEL", "RAFAEL", "EDGAR", "MILTON", "RAUL", "BEN", "CHESTER", "DUANE", "FRANKLIN", - "BRAD", "RON", "ROLAND", "ARNOLD", "HARVEY", "JARED", "ERIK", "DARRYL", "NEIL", "JAVIER", - "FERNANDO", "CLINTON", "TED", "MATHEW", "TYRONE", "DARREN", "LANCE", "KURT", "ALLAN", "NELSON", - "GUY", "CLAYTON", "HUGH", "MAX", "DWAYNE", "DWIGHT", "ARMANDO", "FELIX", "EVERETT", "IAN", - "WALLACE", "KEN", "BOB", "ALFREDO", "ALBERTO", "DAVE", "IVAN", "BYRON", "ISAAC", "MORRIS", - "CLIFTON", "WILLARD", "ROSS", "ANDY", "SALVADOR", "KIRK", "SERGIO", "SETH", "KENT", "TERRANCE", - "EDUARDO", "TERRENCE", "ENRIQUE", "WADE", "STUART", "FREDRICK", "ARTURO", "ALEJANDRO", "NICK", "LUTHER", - "WENDELL", "JEREMIAH", "JULIUS", "OTIS", "TREVOR", "OLIVER", "LUKE", "HOMER", "GERARD", "DOUG", - "KENNY", "HUBERT", "LYLE", "MATT", "ALFONSO", "ORLANDO", "REX", "CARLTON", "ERNESTO", "NEAL", - "PABLO", "LORENZO", "OMAR", "WILBUR", "GRANT", "HORACE", "RODERICK", "ABRAHAM", "WILLIS", "RICKEY", - "ANDRES", "CESAR", "JOHNATHAN", "MALCOLM", "RUDOLPH", "DAMON", "KELVIN", "PRESTON", "ALTON", "ARCHIE", - "MARCO", "WM", "PETE", "RANDOLPH", "GARRY", "GEOFFREY", "JONATHON", "FELIPE", "GERARDO", "ED", - "DOMINIC", "DELBERT", "COLIN", "GUILLERMO", "EARNEST", "LUCAS", "BENNY", "SPENCER", "RODOLFO", "MYRON", - "EDMUND", "GARRETT", "SALVATORE", "CEDRIC", "LOWELL", "GREGG", "SHERMAN", "WILSON", "SYLVESTER", "ROOSEVELT", - "ISRAEL", "JERMAINE", "FORREST", "WILBERT", "LELAND", "SIMON", "CLARK", "IRVING", "BRYANT", "OWEN", - "RUFUS", "WOODROW", "KRISTOPHER", "MACK", "LEVI", "MARCOS", "GUSTAVO", "JAKE", "LIONEL", "GILBERTO", - "CLINT", "NICOLAS", "ISMAEL", "ORVILLE", "ERVIN", "DEWEY", "AL", "WILFRED", "JOSH", "HUGO", - "IGNACIO", "CALEB", "TOMAS", "SHELDON", "ERICK", "STEWART", "DOYLE", "DARREL", "ROGELIO", "TERENCE", - "SANTIAGO", "ALONZO", "ELIAS", "BERT", "ELBERT", "RAMIRO", "CONRAD", "NOAH", "GRADY", "PHIL", - "CORNELIUS", "LAMAR", "ROLANDO", "CLAY", "PERCY", "DEXTER", "BRADFORD", "DARIN", "AMOS", "MOSES", - "IRVIN", "SAUL", "ROMAN", "RANDAL", "TIMMY", "DARRIN", "WINSTON", "BRENDAN", "ABEL", "DOMINICK", - "BOYD", "EMILIO", "ELIJAH", "DOMINGO", "EMMETT", "MARLON", "EMANUEL", "JERALD", "EDMOND", "EMIL", - "DEWAYNE", "WILL", "OTTO", "TEDDY", "REYNALDO", "BRET", "JESS", "TRENT", "HUMBERTO", "EMMANUEL", - "STEPHAN", "VICENTE", "LAMONT", "GARLAND", "MILES", "EFRAIN", "HEATH", "RODGER", "HARLEY", "ETHAN", - "ELDON", "ROCKY", "PIERRE", "JUNIOR", "FREDDY", "ELI", "BRYCE", "ANTOINE", "STERLING", "CHASE", - "GROVER", "ELTON", "CLEVELAND", "DYLAN", "CHUCK", "DAMIAN", "REUBEN", "STAN", "AUGUST", "LEONARDO", - "JASPER", "RUSSEL", "ERWIN", "BENITO", "HANS", "MONTE", "BLAINE", "ERNIE", "CURT", "QUENTIN", - "AGUSTIN", "MURRAY", "JAMAL", "ADOLFO", "HARRISON", "TYSON", "BURTON", "BRADY", "ELLIOTT", "WILFREDO", - "BART", "JARROD", "VANCE", "DENIS", "DAMIEN", "JOAQUIN", "HARLAN", "DESMOND", "ELLIOT", "DARWIN", - "GREGORIO", "BUDDY", "XAVIER", "KERMIT", "ROSCOE", "ESTEBAN", "ANTON", "SOLOMON", "SCOTTY", "NORBERT", - "ELVIN", "WILLIAMS", "NOLAN", "ROD", "QUINTON", "HAL", "BRAIN", "ROB", "ELWOOD", "KENDRICK", - "DARIUS", "MOISES", "FIDEL", "THADDEUS", "CLIFF", "MARCEL", "JACKSON", "RAPHAEL", "BRYON", "ARMAND", - "ALVARO", "JEFFRY", "DANE", "JOESPH", "THURMAN", "NED", "RUSTY", "MONTY", "FABIAN", "REGGIE", - "MASON", "GRAHAM", "ISAIAH", "VAUGHN", "GUS", "LOYD", "DIEGO", "ADOLPH", "NORRIS", "MILLARD", - "ROCCO", "GONZALO", "DERICK", "RODRIGO", "WILEY", "RIGOBERTO", "ALPHONSO", "TY", "NOE", "VERN", - "REED", "JEFFERSON", "ELVIS", "BERNARDO", "MAURICIO", "HIRAM", "DONOVAN", "BASIL", "RILEY", "NICKOLAS", - "MAYNARD", "SCOT", "VINCE", "QUINCY", "EDDY", "SEBASTIAN", "FEDERICO", "ULYSSES", "HERIBERTO", "DONNELL", - "COLE", "DAVIS", "GAVIN", "EMERY", "WARD", "ROMEO", "JAYSON", "DANTE", "CLEMENT", "COY", - "MAXWELL", "JARVIS", "BRUNO", "ISSAC", "DUDLEY", "BROCK", "SANFORD", "CARMELO", "BARNEY", "NESTOR", - "STEFAN", "DONNY", "ART", "LINWOOD", "BEAU", "WELDON", "GALEN", "ISIDRO", "TRUMAN", "DELMAR", - "JOHNATHON", "SILAS", "FREDERIC", "DICK", "IRWIN", "MERLIN", "CHARLEY", "MARCELINO", "HARRIS", "CARLO", - "TRENTON", "KURTIS", "HUNTER", "AURELIO", "WINFRED", "VITO", "COLLIN", "DENVER", "CARTER", "LEONEL", - "EMORY", "PASQUALE", "MOHAMMAD", "MARIANO", "DANIAL", "LANDON", "DIRK", "BRANDEN", "ADAN", "BUFORD", - "GERMAN", "WILMER", "EMERSON", "ZACHERY", "FLETCHER", "JACQUES", "ERROL", "DALTON", "MONROE", "JOSUE", - "EDWARDO", "BOOKER", "WILFORD", "SONNY", "SHELTON", "CARSON", "THERON", "RAYMUNDO", "DAREN", "HOUSTON", - "ROBBY", "LINCOLN", "GENARO", "BENNETT", "OCTAVIO", "CORNELL", "HUNG", "ARRON", "ANTONY", "HERSCHEL", - "GIOVANNI", "GARTH", "CYRUS", "CYRIL", "RONNY", "LON", "FREEMAN", "DUNCAN", "KENNITH", "CARMINE", - "ERICH", "CHADWICK", "WILBURN", "RUSS", "REID", "MYLES", "ANDERSON", "MORTON", "JONAS", "FOREST", - "MITCHEL", "MERVIN", "ZANE", "RICH", "JAMEL", "LAZARO", "ALPHONSE", "RANDELL", "MAJOR", "JARRETT", - "BROOKS", "ABDUL", "LUCIANO", "SEYMOUR", "EUGENIO", "MOHAMMED", "VALENTIN", "CHANCE", "ARNULFO", "LUCIEN", - "FERDINAND", "THAD", "EZRA", "ALDO", "RUBIN", "ROYAL", "MITCH", "EARLE", "ABE", "WYATT", - "MARQUIS", "LANNY", "KAREEM", "JAMAR", "BORIS", "ISIAH", "EMILE", "ELMO", "ARON", "LEOPOLDO", - "EVERETTE", "JOSEF", "ELOY", "RODRICK", "REINALDO", "LUCIO", "JERROD", "WESTON", "HERSHEL", "BARTON", - "PARKER", "LEMUEL", "BURT", "JULES", "GIL", "ELISEO", "AHMAD", "NIGEL", "EFREN", "ANTWAN", - "ALDEN", "MARGARITO", "COLEMAN", "DINO", "OSVALDO", "LES", "DEANDRE", "NORMAND", "KIETH", "TREY", - "NORBERTO", "NAPOLEON", "JEROLD", "FRITZ", "ROSENDO", "MILFORD", "CHRISTOPER", "ALFONZO", "LYMAN", "JOSIAH", - "BRANT", "WILTON", "RICO", "JAMAAL", "DEWITT", "BRENTON", "OLIN", "FOSTER", "FAUSTINO", "CLAUDIO", - "JUDSON", "GINO", "EDGARDO", "ALEC", "TANNER", "JARRED", "DONN", "TAD", "PRINCE", "PORFIRIO", - "ODIS", "LENARD", "CHAUNCEY", "TOD", "MEL", "MARCELO", "KORY", "AUGUSTUS", "KEVEN", "HILARIO", - "BUD", "SAL", "ORVAL", "MAURO", "ZACHARIAH", "OLEN", "ANIBAL", "MILO", "JED", "DILLON", - "AMADO", "NEWTON", "LENNY", "RICHIE", "HORACIO", "BRICE", "MOHAMED", "DELMER", "DARIO", "REYES", - "MAC", "JONAH", "JERROLD", "ROBT", "HANK", "RUPERT", "ROLLAND", "KENTON", "DAMION", "ANTONE", - "WALDO", "FREDRIC", "BRADLY", "KIP", "BURL", "WALKER", "TYREE", "JEFFEREY", "AHMED", "WILLY", - "STANFORD", "OREN", "NOBLE", "MOSHE", "MIKEL", "ENOCH", "BRENDON", "QUINTIN", "JAMISON", "FLORENCIO", - "DARRICK", "TOBIAS", "HASSAN", "GIUSEPPE", "DEMARCUS", "CLETUS", "TYRELL", "LYNDON", "KEENAN", "WERNER", - "GERALDO", "COLUMBUS", "CHET", "BERTRAM", "MARKUS", "HUEY", "HILTON", "DWAIN", "DONTE", "TYRON", - "OMER", "ISAIAS", "HIPOLITO", "FERMIN", "ADALBERTO", "BO", "BARRETT", "TEODORO", "MCKINLEY", "MAXIMO", - "GARFIELD", "RALEIGH", "LAWERENCE", "ABRAM", "RASHAD", "KING", "EMMITT", "DARON", "SAMUAL", "MIQUEL", - "EUSEBIO", "DOMENIC", "DARRON", "BUSTER", "WILBER", "RENATO", "JC", "HOYT", "HAYWOOD", "EZEKIEL", - "CHAS", "FLORENTINO", "ELROY", "CLEMENTE", "ARDEN", "NEVILLE", "EDISON", "DESHAWN", "NATHANIAL", "JORDON", - "DANILO", "CLAUD", "SHERWOOD", "RAYMON", "RAYFORD", "CRISTOBAL", "AMBROSE", "TITUS", "HYMAN", "FELTON", - "EZEQUIEL", "ERASMO", "STANTON", "LONNY", "LEN", "IKE", "MILAN", "LINO", "JAROD", "HERB", - "ANDREAS", "WALTON", "RHETT", "PALMER", "DOUGLASS", "CORDELL", "OSWALDO", "ELLSWORTH", "VIRGILIO", "TONEY", - "NATHANAEL", "DEL", "BENEDICT", "MOSE", "JOHNSON", "ISREAL", "GARRET", "FAUSTO", "ASA", "ARLEN", - "ZACK", "WARNER", "MODESTO", "FRANCESCO", "MANUAL", "GAYLORD", "GASTON", "FILIBERTO", "DEANGELO", "MICHALE", - "GRANVILLE", "WES", "MALIK", "ZACKARY", "TUAN", "ELDRIDGE", "CRISTOPHER", "CORTEZ", "ANTIONE", "MALCOM", - "LONG", "KOREY", "JOSPEH", "COLTON", "WAYLON", "VON", "HOSEA", "SHAD", "SANTO", "RUDOLF", - "ROLF", "REY", "RENALDO", "MARCELLUS", "LUCIUS", "KRISTOFER", "BOYCE", "BENTON", "HAYDEN", "HARLAND", - "ARNOLDO", "RUEBEN", "LEANDRO", "KRAIG", "JERRELL", "JEROMY", "HOBERT", "CEDRICK", "ARLIE", "WINFORD", - "WALLY", "LUIGI", "KENETH", "JACINTO", "GRAIG", "FRANKLYN", "EDMUNDO", "SID", "PORTER", "LEIF", - "JERAMY", "BUCK", "WILLIAN", "VINCENZO", "SHON", "LYNWOOD", "JERE", "HAI", "ELDEN", "DORSEY", - "DARELL", "BRODERICK", "ALONSO" - ] - total_sum = 0 - temp_sum = 0 - name.sort() - for i in range(len(name)): - for j in name[i]: - temp_sum += ord(j) - ord('A') + 1 - total_sum += (i + 1) * temp_sum - temp_sum = 0 - print(total_sum) +# -*- coding: latin-1 -*- +""" +Name scores +Problem 22 +Using names.txt (right click and 'Save Link/Target As...'), a 46K text file +containing over five-thousand first names, begin by sorting it into +alphabetical order. Then working out the alphabetical value for each name, +multiply this value by its alphabetical position in the list to obtain a name +score. -if __name__ == '__main__': - main() +For example, when the list is sorted into alphabetical order, COLIN, which is +worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would +obtain a score of 938 × 53 = 49714. + +What is the total of all the name scores in the file? +""" +import os + + +def solution(): + """Returns the total of all the name scores in the file. + + >>> solution() + 871198282 + """ + total_sum = 0 + temp_sum = 0 + with open(os.path.dirname(__file__) + "/p022_names.txt") as file: + name = str(file.readlines()[0]) + name = name.replace('"', "").split(",") + + name.sort() + for i in range(len(name)): + for j in name[i]: + temp_sum += ord(j) - ord("A") + 1 + total_sum += (i + 1) * temp_sum + temp_sum = 0 + return total_sum + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_234/__init__.py b/project_euler/problem_234/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_234/sol1.py b/project_euler/problem_234/sol1.py index c7a6bd97d66b..8298a7f8cce3 100644 --- a/project_euler/problem_234/sol1.py +++ b/project_euler/problem_234/sol1.py @@ -1,4 +1,22 @@ -# https://projecteuler.net/problem=234 +""" +https://projecteuler.net/problem=234 + +For an integer n ≥ 4, we define the lower prime square root of n, denoted by +lps(n), as the largest prime ≤ √n and the upper prime square root of n, ups(n), +as the smallest prime ≥ √n. + +So, for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. Let us +call an integer n ≥ 4 semidivisible, if one of lps(n) and ups(n) divides n, +but not both. + +The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8, +10 and 12. 15 is not semidivisible because it is a multiple of both lps(15) = 3 +and ups(15) = 5. As a further example, the sum of the 92 semidivisible numbers +up to 1000 is 34825. + +What is the sum of all semidivisible numbers not exceeding 999966663333 ? +""" + def fib(a, b, n): if n==1: @@ -17,16 +35,22 @@ def fib(a, b, n): return c -q=int(input()) -for x in range(q): - l=[i for i in input().split()] - c1=0 - c2=1 - while(1): - - if len(fib(l[0],l[1],c2))>> solution() + '2783915460' + """ + result = list(map("".join, permutations("0123456789"))) + return result[999999] + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_25/__init__.py b/project_euler/problem_25/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_25/sol1.py b/project_euler/problem_25/sol1.py index f8cea3093dcf..be3b4d9b2d7d 100644 --- a/project_euler/problem_25/sol1.py +++ b/project_euler/problem_25/sol1.py @@ -1,31 +1,75 @@ -from __future__ import print_function +# -*- coding: utf-8 -*- +""" +The Fibonacci sequence is defined by the recurrence relation: + + Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. + +Hence the first 12 terms will be: + + F1 = 1 + F2 = 1 + F3 = 2 + F4 = 3 + F5 = 5 + F6 = 8 + F7 = 13 + F8 = 21 + F9 = 34 + F10 = 55 + F11 = 89 + F12 = 144 + +The 12th term, F12, is the first term to contain three digits. + +What is the index of the first term in the Fibonacci sequence to contain 1000 +digits? +""" try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def fibonacci(n): - if n == 1 or type(n) is not int: - return 0 - elif n == 2: - return 1 - else: - sequence = [0, 1] - for i in xrange(2, n+1): - sequence.append(sequence[i-1] + sequence[i-2]) + if n == 1 or type(n) is not int: + return 0 + elif n == 2: + return 1 + else: + sequence = [0, 1] + for i in xrange(2, n + 1): + sequence.append(sequence[i - 1] + sequence[i - 2]) + + return sequence[n] - return sequence[n] def fibonacci_digits_index(n): - digits = 0 - index = 2 + digits = 0 + index = 2 + + while digits < n: + index += 1 + digits = len(str(fibonacci(index))) + + return index + + +def solution(n): + """Returns the index of the first term in the Fibonacci sequence to contain + n digits. - while digits < n: - index += 1 - digits = len(str(fibonacci(index))) + >>> solution(1000) + 4782 + >>> solution(100) + 476 + >>> solution(50) + 237 + >>> solution(3) + 12 + """ + return fibonacci_digits_index(n) - return index -if __name__ == '__main__': - print(fibonacci_digits_index(1000)) \ No newline at end of file +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) diff --git a/project_euler/problem_25/sol2.py b/project_euler/problem_25/sol2.py index 35147a9bfb14..d754e2ddd722 100644 --- a/project_euler/problem_25/sol2.py +++ b/project_euler/problem_25/sol2.py @@ -1,10 +1,57 @@ -def fibonacci_genrator(): - a, b = 0,1 - while True: - a,b = b,a+b - yield b -answer = 1 -gen = fibonacci_genrator() -while len(str(next(gen))) < 1000: - answer += 1 -assert answer+1 == 4782 +# -*- coding: utf-8 -*- +""" +The Fibonacci sequence is defined by the recurrence relation: + + Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. + +Hence the first 12 terms will be: + + F1 = 1 + F2 = 1 + F3 = 2 + F4 = 3 + F5 = 5 + F6 = 8 + F7 = 13 + F8 = 21 + F9 = 34 + F10 = 55 + F11 = 89 + F12 = 144 + +The 12th term, F12, is the first term to contain three digits. + +What is the index of the first term in the Fibonacci sequence to contain 1000 +digits? +""" + + +def fibonacci_generator(): + a, b = 0, 1 + while True: + a, b = b, a + b + yield b + + +def solution(n): + """Returns the index of the first term in the Fibonacci sequence to contain + n digits. + + >>> solution(1000) + 4782 + >>> solution(100) + 476 + >>> solution(50) + 237 + >>> solution(3) + 12 + """ + answer = 1 + gen = fibonacci_generator() + while len(str(next(gen))) < n: + answer += 1 + return answer + 1 + + +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) diff --git a/project_euler/problem_28/__init__.py b/project_euler/problem_28/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_28/sol1.py b/project_euler/problem_28/sol1.py index 4942115ce537..63386ce3058c 100644 --- a/project_euler/problem_28/sol1.py +++ b/project_euler/problem_28/sol1.py @@ -1,29 +1,60 @@ -from __future__ import print_function +""" +Starting with the number 1 and moving to the right in a clockwise direction a 5 +by 5 spiral is formed as follows: + + 21 22 23 24 25 + 20 7 8 9 10 + 19 6 1 2 11 + 18 5 4 3 12 + 17 16 15 14 13 + +It can be verified that the sum of the numbers on the diagonals is 101. + +What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed +in the same way? +""" + from math import ceil try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def diagonal_sum(n): - total = 1 - - for i in xrange(1, int(ceil(n/2.0))): - odd = 2*i+1 - even = 2*i - total = total + 4*odd**2 - 6*even - - return total - -if __name__ == '__main__': - import sys - - if len(sys.argv) == 1: - print(diagonal_sum(1001)) - else: - try: - n = int(sys.argv[1]) - diagonal_sum(n) - except ValueError: - print('Invalid entry - please enter a number') \ No newline at end of file + """Returns the sum of the numbers on the diagonals in a n by n spiral + formed in the same way. + + >>> diagonal_sum(1001) + 669171001 + >>> diagonal_sum(500) + 82959497 + >>> diagonal_sum(100) + 651897 + >>> diagonal_sum(50) + 79697 + >>> diagonal_sum(10) + 537 + """ + total = 1 + + for i in xrange(1, int(ceil(n / 2.0))): + odd = 2 * i + 1 + even = 2 * i + total = total + 4 * odd ** 2 - 6 * even + + return total + + +if __name__ == "__main__": + import sys + + if len(sys.argv) == 1: + print(diagonal_sum(1001)) + else: + try: + n = int(sys.argv[1]) + print(diagonal_sum(n)) + except ValueError: + print("Invalid entry - please enter a number") diff --git a/project_euler/problem_29/__init__.py b/project_euler/problem_29/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_29/solution.py b/project_euler/problem_29/solution.py index 64d35c84d9ca..e67dafe4639d 100644 --- a/project_euler/problem_29/solution.py +++ b/project_euler/problem_29/solution.py @@ -1,33 +1,51 @@ -def main(): +""" +Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5: + +2^2=4, 2^3=8, 2^4=16, 2^5=32 +3^2=9, 3^3=27, 3^4=81, 3^5=243 +4^2=16, 4^3=64, 4^4=256, 4^5=1024 +5^2=25, 5^3=125, 5^4=625, 5^5=3125 + +If they are then placed in numerical order, with any repeats removed, we get +the following sequence of 15 distinct terms: + +4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 + +How many distinct terms are in the sequence generated by ab +for 2 <= a <= 100 and 2 <= b <= 100? +""" +from __future__ import print_function + + +def solution(n): + """Returns the number of distinct terms in the sequence generated by a^b + for 2 <= a <= 100 and 2 <= b <= 100. + + >>> solution(100) + 9183 + >>> solution(50) + 2184 + >>> solution(20) + 324 + >>> solution(5) + 15 + >>> solution(2) + 1 + >>> solution(1) + 0 """ - Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5: - - 22=4, 23=8, 24=16, 25=32 - 32=9, 33=27, 34=81, 35=243 - 42=16, 43=64, 44=256, 45=1024 - 52=25, 53=125, 54=625, 55=3125 - If they are then placed in numerical order, with any repeats removed, - we get the following sequence of 15 distinct terms: - - 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 - - How many distinct terms are in the sequence generated by ab - for 2 <= a <= 100 and 2 <= b <= 100? - """ - collectPowers = set() currentPow = 0 - N = 101 # maximum limit + N = n + 1 # maximum limit for a in range(2, N): for b in range(2, N): - currentPow = a**b # calculates the current power - collectPowers.add(currentPow) # adds the result to the set - - print("Number of terms ", len(collectPowers)) + currentPow = a ** b # calculates the current power + collectPowers.add(currentPow) # adds the result to the set + return len(collectPowers) -if __name__ == '__main__': - main() +if __name__ == "__main__": + print("Number of terms ", solution(int(str(input()).strip()))) diff --git a/project_euler/problem_31/__init__.py b/project_euler/problem_31/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_31/sol1.py b/project_euler/problem_31/sol1.py index 33653722f890..e2a209e5df5a 100644 --- a/project_euler/problem_31/sol1.py +++ b/project_euler/problem_31/sol1.py @@ -1,10 +1,5 @@ # -*- coding: utf-8 -*- -from __future__ import print_function -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 -''' +""" Coin sums Problem 31 In England the currency is made up of pound, £, and pence, p, and there are @@ -15,7 +10,13 @@ 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p How many different ways can £2 be made using any number of coins? -''' +""" +from __future__ import print_function + +try: + raw_input # Python 2 +except NameError: + raw_input = input # Python 3 def one_pence(): @@ -50,4 +51,21 @@ def two_pound(x): return 0 if x < 0 else two_pound(x - 200) + one_pound(x) -print(two_pound(200)) +def solution(n): + """Returns the number of different ways can £n be made using any number of + coins? + + >>> solution(500) + 6295434 + >>> solution(200) + 73682 + >>> solution(50) + 451 + >>> solution(10) + 11 + """ + return two_pound(n) + + +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) diff --git a/project_euler/problem_36/__init__.py b/project_euler/problem_36/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_36/sol1.py b/project_euler/problem_36/sol1.py index d78e7e59f210..38b60420992b 100644 --- a/project_euler/problem_36/sol1.py +++ b/project_euler/problem_36/sol1.py @@ -1,30 +1,57 @@ -from __future__ import print_function -''' +""" Double-base palindromes Problem 36 The decimal number, 585 = 10010010012 (binary), is palindromic in both bases. -Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. +Find the sum of all numbers, less than one million, which are palindromic in +base 10 and base 2. -(Please note that the palindromic number, in either base, may not include leading zeros.) -''' +(Please note that the palindromic number, in either base, may not include +leading zeros.) +""" try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def is_palindrome(n): - n = str(n) + n = str(n) + + if n == n[::-1]: + return True + else: + return False + + +def solution(n): + """Return the sum of all numbers, less than n , which are palindromic in + base 10 and base 2. - if n == n[::-1]: - return True - else: - return False + >>> solution(1000000) + 872187 + >>> solution(500000) + 286602 + >>> solution(100000) + 286602 + >>> solution(1000) + 1772 + >>> solution(100) + 157 + >>> solution(10) + 25 + >>> solution(2) + 1 + >>> solution(1) + 0 + """ + total = 0 -total = 0 + for i in xrange(1, n): + if is_palindrome(i) and is_palindrome(bin(i).split("b")[1]): + total += i + return total -for i in xrange(1, 1000000): - if is_palindrome(i) and is_palindrome(bin(i).split('b')[1]): - total += i -print(total) \ No newline at end of file +if __name__ == "__main__": + print(solution(int(str(input().strip())))) diff --git a/project_euler/problem_40/__init__.py b/project_euler/problem_40/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_40/sol1.py b/project_euler/problem_40/sol1.py index ab4017512a1a..accd7125354c 100644 --- a/project_euler/problem_40/sol1.py +++ b/project_euler/problem_40/sol1.py @@ -1,26 +1,47 @@ -#-.- coding: latin-1 -.- -from __future__ import print_function -''' +# -.- coding: latin-1 -.- +""" Champernowne's constant Problem 40 -An irrational decimal fraction is created by concatenating the positive integers: +An irrational decimal fraction is created by concatenating the positive +integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. -If dn represents the nth digit of the fractional part, find the value of the following expression. +If dn represents the nth digit of the fractional part, find the value of the +following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 -''' +""" +from __future__ import print_function + + +def solution(): + """Returns + + >>> solution() + 210 + """ + constant = [] + i = 1 + + while len(constant) < 1e6: + constant.append(str(i)) + i += 1 -constant = [] -i = 1 + constant = "".join(constant) -while len(constant) < 1e6: - constant.append(str(i)) - i += 1 + return ( + int(constant[0]) + * int(constant[9]) + * int(constant[99]) + * int(constant[999]) + * int(constant[9999]) + * int(constant[99999]) + * int(constant[999999]) + ) -constant = ''.join(constant) -print(int(constant[0])*int(constant[9])*int(constant[99])*int(constant[999])*int(constant[9999])*int(constant[99999])*int(constant[999999])) \ No newline at end of file +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_48/__init__.py b/project_euler/problem_48/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_48/sol1.py b/project_euler/problem_48/sol1.py index 5c4bdb0f6384..95af951c0e8a 100644 --- a/project_euler/problem_48/sol1.py +++ b/project_euler/problem_48/sol1.py @@ -1,21 +1,29 @@ -from __future__ import print_function -''' +""" Self Powers Problem 48 The series, 11 + 22 + 33 + ... + 1010 = 10405071317. Find the last ten digits of the series, 11 + 22 + 33 + ... + 10001000. -''' +""" try: - xrange + xrange except NameError: - xrange = range + xrange = range -total = 0 -for i in xrange(1, 1001): - total += i**i +def solution(): + """Returns the last 10 digits of the series, 11 + 22 + 33 + ... + 10001000. -print(str(total)[-10:]) \ No newline at end of file + >>> solution() + '9110846700' + """ + total = 0 + for i in xrange(1, 1001): + total += i ** i + return str(total)[-10:] + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_52/__init__.py b/project_euler/problem_52/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_52/sol1.py b/project_euler/problem_52/sol1.py index 376b4cfa1d63..df5c46ae05d1 100644 --- a/project_euler/problem_52/sol1.py +++ b/project_euler/problem_52/sol1.py @@ -1,23 +1,37 @@ -from __future__ import print_function -''' +""" Permuted multiples Problem 52 -It can be seen that the number, 125874, and its double, 251748, contain exactly the same digits, but in a different order. +It can be seen that the number, 125874, and its double, 251748, contain exactly +the same digits, but in a different order. -Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits. -''' -i = 1 +Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, +contain the same digits. +""" -while True: - if sorted(list(str(i))) == \ - sorted(list(str(2*i))) == \ - sorted(list(str(3*i))) == \ - sorted(list(str(4*i))) == \ - sorted(list(str(5*i))) == \ - sorted(list(str(6*i))): - break - i += 1 +def solution(): + """Returns the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and + 6x, contain the same digits. -print(i) \ No newline at end of file + >>> solution() + 142857 + """ + i = 1 + + while True: + if ( + sorted(list(str(i))) + == sorted(list(str(2 * i))) + == sorted(list(str(3 * i))) + == sorted(list(str(4 * i))) + == sorted(list(str(5 * i))) + == sorted(list(str(6 * i))) + ): + return i + + i += 1 + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_53/__init__.py b/project_euler/problem_53/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_53/sol1.py b/project_euler/problem_53/sol1.py index ed6d5329eb4e..c72e0b993a34 100644 --- a/project_euler/problem_53/sol1.py +++ b/project_euler/problem_53/sol1.py @@ -1,13 +1,11 @@ -#-.- coding: latin-1 -.- -from __future__ import print_function -from math import factorial -''' +# -.- coding: latin-1 -.- +""" Combinatoric selections Problem 53 There are exactly ten ways of selecting three from five, 12345: -123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 + 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, 5C3 = 10. @@ -16,21 +14,37 @@ nCr = n!/(r!(n−r)!),where r ≤ n, n! = n×(n−1)×...×3×2×1, and 0! = 1. It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066. -How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million? -''' +How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater +than one-million? +""" +from __future__ import print_function +from math import factorial + try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def combinations(n, r): - return factorial(n)/(factorial(r)*factorial(n-r)) + return factorial(n) / (factorial(r) * factorial(n - r)) + + +def solution(): + """Returns the number of values of nCr, for 1 ≤ n ≤ 100, are greater than + one-million + + >>> solution() + 4075 + """ + total = 0 -total = 0 + for i in xrange(1, 101): + for j in xrange(1, i + 1): + if combinations(i, j) > 1e6: + total += 1 + return total -for i in xrange(1, 101): - for j in xrange(1, i+1): - if combinations(i, j) > 1e6: - total += 1 -print(total) \ No newline at end of file +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_76/__init__.py b/project_euler/problem_76/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_76/sol1.py b/project_euler/problem_76/sol1.py index 2832f6d7afb6..c9e3c452fbc4 100644 --- a/project_euler/problem_76/sol1.py +++ b/project_euler/problem_76/sol1.py @@ -1,5 +1,4 @@ -from __future__ import print_function -''' +""" Counting Summations Problem 76 @@ -12,24 +11,50 @@ 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 -How many different ways can one hundred be written as a sum of at least two positive integers? -''' +How many different ways can one hundred be written as a sum of at least two +positive integers? +""" +from __future__ import print_function + try: - xrange #Python 2 + xrange # Python 2 except NameError: - xrange = range #Python 3 + xrange = range # Python 3 + def partition(m): - memo = [[0 for _ in xrange(m)] for _ in xrange(m+1)] - for i in xrange(m+1): - memo[i][0] = 1 + """Returns the number of different ways one hundred can be written as a sum + of at least two positive integers. + + >>> partition(100) + 190569291 + >>> partition(50) + 204225 + >>> partition(30) + 5603 + >>> partition(10) + 41 + >>> partition(5) + 6 + >>> partition(3) + 2 + >>> partition(2) + 1 + >>> partition(1) + 0 + """ + memo = [[0 for _ in xrange(m)] for _ in xrange(m + 1)] + for i in xrange(m + 1): + memo[i][0] = 1 + + for n in xrange(m + 1): + for k in xrange(1, m): + memo[n][k] += memo[n][k - 1] + if n > k: + memo[n][k] += memo[n - k - 1][k] - for n in xrange(m+1): - for k in xrange(1, m): - memo[n][k] += memo[n][k-1] - if n > k: - memo[n][k] += memo[n-k-1][k] + return memo[m][m - 1] - 1 - return (memo[m][m-1] - 1) -print(partition(100)) \ No newline at end of file +if __name__ == "__main__": + print(partition(int(str(input()).strip()))) From 7cdda931fd6e272529f25a4cd2dbd7c6785d467c Mon Sep 17 00:00:00 2001 From: cclauss Date: Wed, 17 Jul 2019 06:07:25 +0200 Subject: [PATCH 202/594] Travis CI: Add pytest --doctest-modules graphs (#1018) --- .travis.yml | 1 + graphs/basic_graphs.py | 75 ++++++++++--------- graphs/bellman_ford.py | 40 +++++----- graphs/dijkstra_2.py | 40 +++++----- ...d_warshall.py => graphs_floyd_warshall.py} | 0 graphs/minimum_spanning_tree_kruskal.py | 48 ++++++------ graphs/minimum_spanning_tree_prims.py | 19 ++--- graphs/multi_hueristic_astar.py | 25 ++++--- graphs/scc_kosaraju.py | 35 +++++---- 9 files changed, 148 insertions(+), 135 deletions(-) rename graphs/{floyd_warshall.py => graphs_floyd_warshall.py} (100%) diff --git a/.travis.yml b/.travis.yml index 3b55045ac33f..55ea2c7ddc24 100644 --- a/.travis.yml +++ b/.travis.yml @@ -21,6 +21,7 @@ script: digital_image_processing divide_and_conquer dynamic_programming + graphs hashes linear_algebra_python matrix diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index 3b3abeb1720d..ee63ca995de6 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -10,42 +10,44 @@ except NameError: xrange = range # Python 3 -# Accept No. of Nodes and edges -n, m = map(int, raw_input().split(" ")) -# Initialising Dictionary of edges -g = {} -for i in xrange(n): - g[i + 1] = [] - -""" --------------------------------------------------------------------------------- - Accepting edges of Unweighted Directed Graphs --------------------------------------------------------------------------------- -""" -for _ in xrange(m): - x, y = map(int, raw_input().split(" ")) - g[x].append(y) - -""" --------------------------------------------------------------------------------- - Accepting edges of Unweighted Undirected Graphs --------------------------------------------------------------------------------- -""" -for _ in xrange(m): - x, y = map(int, raw_input().split(" ")) - g[x].append(y) - g[y].append(x) +if __name__ == "__main__": + # Accept No. of Nodes and edges + n, m = map(int, raw_input().split(" ")) -""" --------------------------------------------------------------------------------- - Accepting edges of Weighted Undirected Graphs --------------------------------------------------------------------------------- -""" -for _ in xrange(m): - x, y, r = map(int, raw_input().split(" ")) - g[x].append([y, r]) - g[y].append([x, r]) + # Initialising Dictionary of edges + g = {} + for i in xrange(n): + g[i + 1] = [] + + """ + ---------------------------------------------------------------------------- + Accepting edges of Unweighted Directed Graphs + ---------------------------------------------------------------------------- + """ + for _ in xrange(m): + x, y = map(int, raw_input().strip().split(" ")) + g[x].append(y) + + """ + ---------------------------------------------------------------------------- + Accepting edges of Unweighted Undirected Graphs + ---------------------------------------------------------------------------- + """ + for _ in xrange(m): + x, y = map(int, raw_input().strip().split(" ")) + g[x].append(y) + g[y].append(x) + + """ + ---------------------------------------------------------------------------- + Accepting edges of Weighted Undirected Graphs + ---------------------------------------------------------------------------- + """ + for _ in xrange(m): + x, y, r = map(int, raw_input().strip().split(" ")) + g[x].append([y, r]) + g[y].append([x, r]) """ -------------------------------------------------------------------------------- @@ -168,9 +170,10 @@ def topo(G, ind=None, Q=[1]): def adjm(): - n, a = raw_input(), [] + n = raw_input().strip() + a = [] for i in xrange(n): - a.append(map(int, raw_input().split())) + a.append(map(int, raw_input().strip().split())) return a, n diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index 82db80546b94..f49157230054 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -12,7 +12,7 @@ def printDist(dist, V): def BellmanFord(graph, V, E, src): mdist=[float('inf') for i in range(V)] mdist[src] = 0.0 - + for i in range(V-1): for j in range(V): u = graph[j]["src"] @@ -20,7 +20,7 @@ def BellmanFord(graph, V, E, src): w = graph[j]["weight"] if mdist[u] != float('inf') and mdist[u] + w < mdist[v]: - mdist[v] = mdist[u] + w + mdist[v] = mdist[u] + w for j in range(V): u = graph[j]["src"] v = graph[j]["dst"] @@ -29,26 +29,26 @@ def BellmanFord(graph, V, E, src): if mdist[u] != float('inf') and mdist[u] + w < mdist[v]: print("Negative cycle found. Solution not possible.") return - - printDist(mdist, V) - + printDist(mdist, V) + + + +if __name__ == "__main__": + V = int(input("Enter number of vertices: ").strip()) + E = int(input("Enter number of edges: ").strip()) -#MAIN -V = int(input("Enter number of vertices: ")) -E = int(input("Enter number of edges: ")) + graph = [dict() for j in range(E)] -graph = [dict() for j in range(E)] + for i in range(V): + graph[i][i] = 0.0 -for i in range(V): - graph[i][i] = 0.0 + for i in range(E): + print("\nEdge ",i+1) + src = int(input("Enter source:").strip()) + dst = int(input("Enter destination:").strip()) + weight = float(input("Enter weight:").strip()) + graph[i] = {"src": src,"dst": dst, "weight": weight} -for i in range(E): - print("\nEdge ",i+1) - src = int(input("Enter source:")) - dst = int(input("Enter destination:")) - weight = float(input("Enter weight:")) - graph[i] = {"src": src,"dst": dst, "weight": weight} - -gsrc = int(input("\nEnter shortest path source:")) -BellmanFord(graph, V, E, gsrc) + gsrc = int(input("\nEnter shortest path source:").strip()) + BellmanFord(graph, V, E, gsrc) diff --git a/graphs/dijkstra_2.py b/graphs/dijkstra_2.py index a6c340e8a68d..8f39aec41906 100644 --- a/graphs/dijkstra_2.py +++ b/graphs/dijkstra_2.py @@ -22,36 +22,36 @@ def Dijkstra(graph, V, src): mdist=[float('inf') for i in range(V)] vset = [False for i in range(V)] mdist[src] = 0.0 - + for i in range(V-1): u = minDist(mdist, vset, V) vset[u] = True - + for v in range(V): if (not vset[v]) and graph[u][v]!=float('inf') and mdist[u] + graph[u][v] < mdist[v]: - mdist[v] = mdist[u] + graph[u][v] + mdist[v] = mdist[u] + graph[u][v] + + - + printDist(mdist, V) - printDist(mdist, V) - -#MAIN -V = int(input("Enter number of vertices: ")) -E = int(input("Enter number of edges: ")) +if __name__ == "__main__": + V = int(input("Enter number of vertices: ").strip()) + E = int(input("Enter number of edges: ").strip()) -graph = [[float('inf') for i in range(V)] for j in range(V)] + graph = [[float('inf') for i in range(V)] for j in range(V)] -for i in range(V): - graph[i][i] = 0.0 + for i in range(V): + graph[i][i] = 0.0 -for i in range(E): - print("\nEdge ",i+1) - src = int(input("Enter source:")) - dst = int(input("Enter destination:")) - weight = float(input("Enter weight:")) - graph[src][dst] = weight + for i in range(E): + print("\nEdge ",i+1) + src = int(input("Enter source:").strip()) + dst = int(input("Enter destination:").strip()) + weight = float(input("Enter weight:").strip()) + graph[src][dst] = weight -gsrc = int(input("\nEnter shortest path source:")) -Dijkstra(graph, V, gsrc) + gsrc = int(input("\nEnter shortest path source:").strip()) + Dijkstra(graph, V, gsrc) diff --git a/graphs/floyd_warshall.py b/graphs/graphs_floyd_warshall.py similarity index 100% rename from graphs/floyd_warshall.py rename to graphs/graphs_floyd_warshall.py diff --git a/graphs/minimum_spanning_tree_kruskal.py b/graphs/minimum_spanning_tree_kruskal.py index 81d64f421a31..975151c90ede 100644 --- a/graphs/minimum_spanning_tree_kruskal.py +++ b/graphs/minimum_spanning_tree_kruskal.py @@ -1,32 +1,34 @@ from __future__ import print_function -num_nodes, num_edges = list(map(int,input().split())) -edges = [] +if __name__ == "__main__": + num_nodes, num_edges = list(map(int, input().strip().split())) -for i in range(num_edges): - node1, node2, cost = list(map(int,input().split())) - edges.append((i,node1,node2,cost)) + edges = [] -edges = sorted(edges, key=lambda edge: edge[3]) + for i in range(num_edges): + node1, node2, cost = list(map(int, input().strip().split())) + edges.append((i,node1,node2,cost)) -parent = [i for i in range(num_nodes)] + edges = sorted(edges, key=lambda edge: edge[3]) -def find_parent(i): - if(i != parent[i]): - parent[i] = find_parent(parent[i]) - return parent[i] + parent = list(range(num_nodes)) -minimum_spanning_tree_cost = 0 -minimum_spanning_tree = [] + def find_parent(i): + if i != parent[i]: + parent[i] = find_parent(parent[i]) + return parent[i] -for edge in edges: - parent_a = find_parent(edge[1]) - parent_b = find_parent(edge[2]) - if(parent_a != parent_b): - minimum_spanning_tree_cost += edge[3] - minimum_spanning_tree.append(edge) - parent[parent_a] = parent_b + minimum_spanning_tree_cost = 0 + minimum_spanning_tree = [] -print(minimum_spanning_tree_cost) -for edge in minimum_spanning_tree: - print(edge) + for edge in edges: + parent_a = find_parent(edge[1]) + parent_b = find_parent(edge[2]) + if parent_a != parent_b: + minimum_spanning_tree_cost += edge[3] + minimum_spanning_tree.append(edge) + parent[parent_a] = parent_b + + print(minimum_spanning_tree_cost) + for edge in minimum_spanning_tree: + print(edge) diff --git a/graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py index 7b1ad0e743f7..0f21b8f494e4 100644 --- a/graphs/minimum_spanning_tree_prims.py +++ b/graphs/minimum_spanning_tree_prims.py @@ -100,12 +100,13 @@ def deleteMinimum(heap, positions): Nbr_TV[ v[0] ] = vertex return TreeEdges -# < --------- Prims Algorithm --------- > -n = int(input("Enter number of vertices: ")) -e = int(input("Enter number of edges: ")) -adjlist = defaultdict(list) -for x in range(e): - l = [int(x) for x in input().split()] - adjlist[l[0]].append([ l[1], l[2] ]) - adjlist[l[1]].append([ l[0], l[2] ]) -print(PrimsAlgorithm(adjlist)) +if __name__ == "__main__": + # < --------- Prims Algorithm --------- > + n = int(input("Enter number of vertices: ").strip()) + e = int(input("Enter number of edges: ").strip()) + adjlist = defaultdict(list) + for x in range(e): + l = [int(x) for x in input().strip().split()] + adjlist[l[0]].append([ l[1], l[2] ]) + adjlist[l[1]].append([ l[0], l[2] ]) + print(PrimsAlgorithm(adjlist)) diff --git a/graphs/multi_hueristic_astar.py b/graphs/multi_hueristic_astar.py index 1acd098f327d..1c01fe9aa6d3 100644 --- a/graphs/multi_hueristic_astar.py +++ b/graphs/multi_hueristic_astar.py @@ -18,7 +18,7 @@ def minkey(self): return self.elements[0][0] else: return float('inf') - + def empty(self): return len(self.elements) == 0 @@ -48,10 +48,10 @@ def remove_element(self, item): (pro, x) = heapq.heappop(self.elements) for (prito, yyy) in temp: heapq.heappush(self.elements, (prito, yyy)) - + def top_show(self): return self.elements[0][1] - + def get(self): (priority, item) = heapq.heappop(self.elements) self.set.remove(item) @@ -65,7 +65,7 @@ def consistent_hueristic(P, goal): def hueristic_2(P, goal): # integer division by time variable - return consistent_hueristic(P, goal) // t + return consistent_hueristic(P, goal) // t def hueristic_1(P, goal): # manhattan distance @@ -74,13 +74,13 @@ def hueristic_1(P, goal): def key(start, i, goal, g_function): ans = g_function[start] + W1 * hueristics[i](start, goal) return ans - + def do_something(back_pointer, goal, start): grid = np.chararray((n, n)) for i in range(n): for j in range(n): grid[i][j] = '*' - + for i in range(n): for j in range(n): if (j, (n-1)-i) in blocks: @@ -94,7 +94,7 @@ def do_something(back_pointer, goal, start): grid[(n-1)-y_c][x_c] = "-" x = back_pointer[x] grid[(n-1)][0] = "-" - + for i in xrange(n): for j in range(n): @@ -112,7 +112,7 @@ def do_something(back_pointer, goal, start): print("PATH TAKEN BY THE ALGORITHM IS:-") x = back_pointer[goal] while x != start: - print(x, end=' ') + print(x, end=' ') x = back_pointer[x] print(x) quit() @@ -153,7 +153,7 @@ def expand_state(s, j, visited, g_function, close_list_anchor, close_list_inad, if key(neighbours, var, goal, g_function) <= W2 * key(neighbours, 0, goal, g_function): # print("why not plssssssssss") open_list[j].put(neighbours, key(neighbours, var, goal, g_function)) - + # print @@ -212,7 +212,7 @@ def multi_a_star(start, goal, n_hueristic): for i in range(n_hueristic): open_list.append(PriorityQueue()) open_list[i].put(start, key(start, i, goal, g_function)) - + close_list_anchor = [] close_list_inad = [] while open_list[0].minkey() < float('inf'): @@ -263,4 +263,7 @@ def multi_a_star(start, goal, n_hueristic): print() print("# is an obstacle") print("- is the path taken by algorithm") -multi_a_star(start, goal, n_hueristic) + + +if __name__ == "__main__": + multi_a_star(start, goal, n_hueristic) diff --git a/graphs/scc_kosaraju.py b/graphs/scc_kosaraju.py index 1f13ebaba36b..0d0375203b6d 100644 --- a/graphs/scc_kosaraju.py +++ b/graphs/scc_kosaraju.py @@ -1,19 +1,5 @@ from __future__ import print_function -# n - no of nodes, m - no of edges -n, m = list(map(int,input().split())) - -g = [[] for i in range(n)] #graph -r = [[] for i in range(n)] #reversed graph -# input graph data (edges) -for i in range(m): - u, v = list(map(int,input().split())) - g[u].append(v) - r[v].append(u) - -stack = [] -visit = [False]*n -scc = [] -component = [] + def dfs(u): global g, r, scc, component, visit, stack @@ -43,4 +29,21 @@ def kosaraju(): scc.append(component) return scc -print(kosaraju()) + +if __name__ == "__main__": + # n - no of nodes, m - no of edges + n, m = list(map(int,input().strip().split())) + + g = [[] for i in range(n)] #graph + r = [[] for i in range(n)] #reversed graph + # input graph data (edges) + for i in range(m): + u, v = list(map(int,input().strip().split())) + g[u].append(v) + r[v].append(u) + + stack = [] + visit = [False]*n + scc = [] + component = [] + print(kosaraju()) From f195d9251cc64adb64549f79f4e774e220a668ab Mon Sep 17 00:00:00 2001 From: Jigyasa G <33327397+jpg-130@users.noreply.github.com> Date: Wed, 17 Jul 2019 11:52:09 +0530 Subject: [PATCH 203/594] adding factorial (#930) * adding factorial * adding doctest * Update factorial.py --- dynamic_programming/factorial.py | 34 ++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 dynamic_programming/factorial.py diff --git a/dynamic_programming/factorial.py b/dynamic_programming/factorial.py new file mode 100644 index 000000000000..7c6541ee2a74 --- /dev/null +++ b/dynamic_programming/factorial.py @@ -0,0 +1,34 @@ +#Factorial of a number using memoization +result=[-1]*10 +result[0]=result[1]=1 +def factorial(num): + """ + >>> factorial(7) + 5040 + >>> factorial(-1) + 'Number should not be negative.' + >>> [factorial(i) for i in range(5)] + [1, 1, 2, 6, 24] + """ + + if num<0: + return "Number should not be negative." + if result[num]!=-1: + return result[num] + else: + result[num]=num*factorial(num-1) + #uncomment the following to see how recalculations are avoided + #print(result) + return result[num] + +#factorial of num +#uncomment the following to see how recalculations are avoided +##result=[-1]*10 +##result[0]=result[1]=1 +##print(factorial(5)) +# print(factorial(3)) +# print(factorial(7)) + +if __name__ == "__main__": + import doctest + doctest.testmod() From f64b6029389019a2f2599b88078b940054e8be6c Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 18 Jul 2019 00:12:24 +0800 Subject: [PATCH 204/594] Update max_sub_array.py (#1000) * Update max_sub_array.py added another method of computing maximum sum subarray * Update max_sub_array.py * Update max_sub_array.py --- dynamic_programming/max_sub_array.py | 24 ++++++++++++++++++++++-- 1 file changed, 22 insertions(+), 2 deletions(-) diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index 5d48882427c0..56983b7d22c2 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -2,7 +2,7 @@ author : Mayank Kumar Jha (mk9440) """ from __future__ import print_function - +from typing import List import time import matplotlib.pyplot as plt from random import randint @@ -37,7 +37,27 @@ def find_max_cross_sum(A,low,mid,high): right_sum=summ max_right=i return max_left,max_right,(left_sum+right_sum) - + +def max_sub_array(nums: List[int]) -> int: + """ + Finds the contiguous subarray (can be empty array) + which has the largest sum and return its sum. + + >>> max_sub_array([-2,1,-3,4,-1,2,1,-5,4]) + 6 + >>> max_sub_array([]) + 0 + >>> max_sub_array([-1,-2,-3]) + 0 + """ + best = 0 + current = 0 + for i in nums: + current += i + if current < 0: + current = 0 + best = max(best, current) + return best if __name__=='__main__': inputs=[10,100,1000,10000,50000,100000,200000,300000,400000,500000] From e662a5aaefb6f236021c89e9d410519c2013efa0 Mon Sep 17 00:00:00 2001 From: Bruno Simas Hadlich Date: Wed, 17 Jul 2019 15:32:04 -0300 Subject: [PATCH 205/594] Added Burrows-Wheeler transform algorithm. (#1029) * Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()' * Added Burrows-Wheeler transform algorithm. * Added changes suggested by cclauss --- compression/burrows_wheeler.py | 176 +++++++++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 compression/burrows_wheeler.py diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py new file mode 100644 index 000000000000..fabeab39adf8 --- /dev/null +++ b/compression/burrows_wheeler.py @@ -0,0 +1,176 @@ +""" +https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform + +The Burrows–Wheeler transform (BWT, also called block-sorting compression) +rearranges a character string into runs of similar characters. This is useful +for compression, since it tends to be easy to compress a string that has runs +of repeated characters by techniques such as move-to-front transform and +run-length encoding. More importantly, the transformation is reversible, +without needing to store any additional data except the position of the first +original character. The BWT is thus a "free" method of improving the efficiency +of text compression algorithms, costing only some extra computation. +""" +from typing import List, Dict + + +def all_rotations(s: str) -> List[str]: + """ + :param s: The string that will be rotated len(s) times. + :return: A list with the rotations. + :raises TypeError: If s is not an instance of str. + Examples: + + >>> all_rotations("^BANANA|") # doctest: +NORMALIZE_WHITESPACE + ['^BANANA|', 'BANANA|^', 'ANANA|^B', 'NANA|^BA', 'ANA|^BAN', 'NA|^BANA', + 'A|^BANAN', '|^BANANA'] + >>> all_rotations("a_asa_da_casa") # doctest: +NORMALIZE_WHITESPACE + ['a_asa_da_casa', '_asa_da_casaa', 'asa_da_casaa_', 'sa_da_casaa_a', + 'a_da_casaa_as', '_da_casaa_asa', 'da_casaa_asa_', 'a_casaa_asa_d', + '_casaa_asa_da', 'casaa_asa_da_', 'asaa_asa_da_c', 'saa_asa_da_ca', + 'aa_asa_da_cas'] + >>> all_rotations("panamabanana") # doctest: +NORMALIZE_WHITESPACE + ['panamabanana', 'anamabananap', 'namabananapa', 'amabananapan', + 'mabananapana', 'abananapanam', 'bananapanama', 'ananapanamab', + 'nanapanamaba', 'anapanamaban', 'napanamabana', 'apanamabanan'] + >>> all_rotations(5) + Traceback (most recent call last): + ... + TypeError: The parameter s type must be str. + """ + if not isinstance(s, str): + raise TypeError("The parameter s type must be str.") + + return [s[i:] + s[:i] for i in range(len(s))] + + +def bwt_transform(s: str) -> Dict: + """ + :param s: The string that will be used at bwt algorithm + :return: the string composed of the last char of each row of the ordered + rotations and the index of the original string at ordered rotations list + :raises TypeError: If the s parameter type is not str + :raises ValueError: If the s parameter is empty + Examples: + + >>> bwt_transform("^BANANA") + {'bwt_string': 'BNN^AAA', 'idx_original_string': 6} + >>> bwt_transform("a_asa_da_casa") + {'bwt_string': 'aaaadss_c__aa', 'idx_original_string': 3} + >>> bwt_transform("panamabanana") + {'bwt_string': 'mnpbnnaaaaaa', 'idx_original_string': 11} + >>> bwt_transform(4) + Traceback (most recent call last): + ... + TypeError: The parameter s type must be str. + >>> bwt_transform('') + Traceback (most recent call last): + ... + ValueError: The parameter s must not be empty. + """ + if not isinstance(s, str): + raise TypeError("The parameter s type must be str.") + if not s: + raise ValueError("The parameter s must not be empty.") + + rotations = all_rotations(s) + rotations.sort() # sort the list of rotations in alphabetically order + # make a string composed of the last char of each rotation + return { + "bwt_string": "".join([word[-1] for word in rotations]), + "idx_original_string": rotations.index(s), + } + + +def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: + """ + :param bwt_string: The string returned from bwt algorithm execution + :param idx_original_string: A 0-based index of the string that was used to + generate bwt_string at ordered rotations list + :return: The string used to generate bwt_string when bwt was executed + :raises TypeError: If the bwt_string parameter type is not str + :raises ValueError: If the bwt_string parameter is empty + :raises TypeError: If the idx_original_string type is not int or if not + possible to cast it to int + :raises ValueError: If the idx_original_string value is lower than 0 or + greater than len(bwt_string) - 1 + + >>> reverse_bwt("BNN^AAA", 6) + '^BANANA' + >>> reverse_bwt("aaaadss_c__aa", 3) + 'a_asa_da_casa' + >>> reverse_bwt("mnpbnnaaaaaa", 11) + 'panamabanana' + >>> reverse_bwt(4, 11) + Traceback (most recent call last): + ... + TypeError: The parameter bwt_string type must be str. + >>> reverse_bwt("", 11) + Traceback (most recent call last): + ... + ValueError: The parameter bwt_string must not be empty. + >>> reverse_bwt("mnpbnnaaaaaa", "asd") # doctest: +NORMALIZE_WHITESPACE + Traceback (most recent call last): + ... + TypeError: The parameter idx_original_string type must be int or passive + of cast to int. + >>> reverse_bwt("mnpbnnaaaaaa", -1) + Traceback (most recent call last): + ... + ValueError: The parameter idx_original_string must not be lower than 0. + >>> reverse_bwt("mnpbnnaaaaaa", 12) # doctest: +NORMALIZE_WHITESPACE + Traceback (most recent call last): + ... + ValueError: The parameter idx_original_string must be lower than + len(bwt_string). + >>> reverse_bwt("mnpbnnaaaaaa", 11.0) + 'panamabanana' + >>> reverse_bwt("mnpbnnaaaaaa", 11.4) + 'panamabanana' + """ + if not isinstance(bwt_string, str): + raise TypeError("The parameter bwt_string type must be str.") + if not bwt_string: + raise ValueError("The parameter bwt_string must not be empty.") + try: + idx_original_string = int(idx_original_string) + except ValueError: + raise TypeError( + ( + "The parameter idx_original_string type must be int or passive" + " of cast to int." + ) + ) + if idx_original_string < 0: + raise ValueError( + "The parameter idx_original_string must not be lower than 0." + ) + if idx_original_string >= len(bwt_string): + raise ValueError( + ( + "The parameter idx_original_string must be lower than" + " len(bwt_string)." + ) + ) + + ordered_rotations = [""] * len(bwt_string) + for x in range(len(bwt_string)): + for i in range(len(bwt_string)): + ordered_rotations[i] = bwt_string[i] + ordered_rotations[i] + ordered_rotations.sort() + return ordered_rotations[idx_original_string] + + +if __name__ == "__main__": + entry_msg = "Provide a string that I will generate its BWT transform: " + s = input(entry_msg).strip() + result = bwt_transform(s) + bwt_output_msg = "Burrows Wheeler tranform for string '{}' results in '{}'" + print(bwt_output_msg.format(s, result["bwt_string"])) + original_string = reverse_bwt( + result["bwt_string"], result["idx_original_string"] + ) + fmt = ( + "Reversing Burrows Wheeler tranform for entry '{}' we get original" + " string '{}'" + ) + print(fmt.format(result["bwt_string"], original_string)) From 4658f4a49e2bf9b13d806bd7dfc3df522056ad1c Mon Sep 17 00:00:00 2001 From: Jigyasa G <33327397+jpg-130@users.noreply.github.com> Date: Thu, 18 Jul 2019 16:17:15 +0530 Subject: [PATCH 206/594] lgtm fixes (#1032) * adding sum of subsets * lgtm fixes --- project_euler/problem_07/sol2.py | 1 - 1 file changed, 1 deletion(-) diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index 630e5196796d..3dc0b1343eb7 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -7,7 +7,6 @@ We can see that the 6th prime is 13. What is the Nth prime number? """ from __future__ import print_function -from math import sqrt try: raw_input # Python 2 From c2e8582abdf64c837c61c08cecdd5cbea222e290 Mon Sep 17 00:00:00 2001 From: cclauss Date: Thu, 18 Jul 2019 13:10:52 +0200 Subject: [PATCH 207/594] Travis CI: Add pytest --doctest-modules neural_network (#1028) * neural_network/perceptron.py: Add if __name__ == '__main__': * Remove tab indentation * Add neural_network to the pytests --- .travis.yml | 1 + neural_network/perceptron.py | 27 ++++++++++++++------------- 2 files changed, 15 insertions(+), 13 deletions(-) diff --git a/.travis.yml b/.travis.yml index 55ea2c7ddc24..6ac3010c5396 100644 --- a/.travis.yml +++ b/.travis.yml @@ -26,6 +26,7 @@ script: linear_algebra_python matrix networking_flow + neural_network other project_euler searches diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index eb8b04e855d3..787ea8f73bf1 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -1,12 +1,12 @@ ''' - Perceptron - w = w + N * (d(k) - y) * x(k) + Perceptron + w = w + N * (d(k) - y) * x(k) - Using perceptron network for oil analysis, - with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 - p1 = -1 - p2 = 1 + Using perceptron network for oil analysis, + with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 + p1 = -1 + p2 = 1 ''' from __future__ import print_function @@ -113,12 +113,13 @@ def sign(self, u): exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] -network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) +if __name__ == '__main__': + network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) -network.training() + network.training() -while True: - sample = [] - for i in range(3): - sample.insert(i, float(input('value: '))) - network.sort(sample) + while True: + sample = [] + for i in range(3): + sample.insert(i, float(input('value: ').strip())) + network.sort(sample) From 9a55f2b36a569f27a0893a79f0ba9cee23819557 Mon Sep 17 00:00:00 2001 From: cclauss Date: Thu, 18 Jul 2019 18:15:54 +0200 Subject: [PATCH 208/594] Remove the space: lucas series.py --> lucas_series.py (#1036) --- maths/{lucas series.py => lucas_series.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename maths/{lucas series.py => lucas_series.py} (100%) diff --git a/maths/lucas series.py b/maths/lucas_series.py similarity index 100% rename from maths/lucas series.py rename to maths/lucas_series.py From f438440ac54bbaad1557d5d8d2caa3331231f99b Mon Sep 17 00:00:00 2001 From: Bruno Simas Hadlich Date: Thu, 18 Jul 2019 14:05:14 -0300 Subject: [PATCH 209/594] Fixes for issue "Fix the LGTM issues #1024" (#1034) * Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()' * Added Burrows-Wheeler transform algorithm. * Added changes suggested by cclauss * Fixes for issue 'Fix the LGTM issues #1024'. * Added doctest for different parameter types and negative values. * Fixed doctest issue added at last commit. --- project_euler/problem_02/sol4.py | 26 +++++++++++++++++++++++++- project_euler/problem_03/sol1.py | 27 +++++++++++++++++++++++++-- project_euler/problem_03/sol2.py | 27 +++++++++++++++++++++++++-- project_euler/problem_05/sol1.py | 27 +++++++++++++++++++++++++-- project_euler/problem_07/sol2.py | 24 ++++++++++++++++++++++++ project_euler/problem_09/sol1.py | 1 - project_euler/problem_19/sol1.py | 2 +- project_euler/problem_234/sol1.py | 1 - 8 files changed, 125 insertions(+), 10 deletions(-) diff --git a/project_euler/problem_02/sol4.py b/project_euler/problem_02/sol4.py index ba13b12a15e9..5e8c04899f3d 100644 --- a/project_euler/problem_02/sol4.py +++ b/project_euler/problem_02/sol4.py @@ -11,7 +11,7 @@ """ from __future__ import print_function import math -from decimal import * +from decimal import Decimal, getcontext try: raw_input # Python 2 @@ -33,7 +33,31 @@ def solution(n): 0 >>> solution(34) 44 + >>> solution(3.4) + 2 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. """ + try: + n = int(n) + except (TypeError, ValueError) as e: + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") getcontext().prec = 100 phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2) diff --git a/project_euler/problem_03/sol1.py b/project_euler/problem_03/sol1.py index c2e601bd0040..ab19d8b30457 100644 --- a/project_euler/problem_03/sol1.py +++ b/project_euler/problem_03/sol1.py @@ -28,14 +28,38 @@ def isprime(no): def solution(n): """Returns the largest prime factor of a given number n. - + >>> solution(13195) 29 >>> solution(10) 5 >>> solution(17) 17 + >>> solution(3.4) + 3 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. """ + try: + n = int(n) + except (TypeError, ValueError) as e: + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") maxNumber = 0 if isprime(n): return n @@ -54,7 +78,6 @@ def solution(n): elif isprime(i): maxNumber = i return maxNumber - return int(sum) if __name__ == "__main__": diff --git a/project_euler/problem_03/sol2.py b/project_euler/problem_03/sol2.py index 497db3965cc3..f93a0b75f4e0 100644 --- a/project_euler/problem_03/sol2.py +++ b/project_euler/problem_03/sol2.py @@ -6,7 +6,6 @@ e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. """ from __future__ import print_function, division -import math try: raw_input # Python 2 @@ -16,14 +15,38 @@ def solution(n): """Returns the largest prime factor of a given number n. - + >>> solution(13195) 29 >>> solution(10) 5 >>> solution(17) 17 + >>> solution(3.4) + 3 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. """ + try: + n = int(n) + except (TypeError, ValueError) as e: + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") prime = 1 i = 2 while i * i <= n: diff --git a/project_euler/problem_05/sol1.py b/project_euler/problem_05/sol1.py index 609f02102a08..e2deb91fb6aa 100644 --- a/project_euler/problem_05/sol1.py +++ b/project_euler/problem_05/sol1.py @@ -17,7 +17,7 @@ def solution(n): """Returns the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to n. - + >>> solution(10) 2520 >>> solution(15) @@ -26,7 +26,31 @@ def solution(n): 232792560 >>> solution(22) 232792560 + >>> solution(3.4) + 6 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. """ + try: + n = int(n) + except (TypeError, ValueError) as e: + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") i = 0 while 1: i += n * (n - 1) @@ -39,7 +63,6 @@ def solution(n): if i == 0: i = 1 return i - break if __name__ == "__main__": diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index 3dc0b1343eb7..67336f7c1c96 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -36,7 +36,31 @@ def solution(n): 229 >>> solution(100) 541 + >>> solution(3.4) + 5 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. """ + try: + n = int(n) + except (TypeError, ValueError) as e: + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") primes = [] num = 2 while len(primes) < n: diff --git a/project_euler/problem_09/sol1.py b/project_euler/problem_09/sol1.py index 0f368e48d2e3..20dedb84bc0e 100644 --- a/project_euler/problem_09/sol1.py +++ b/project_euler/problem_09/sol1.py @@ -28,7 +28,6 @@ def solution(): if (a ** 2) + (b ** 2) == (c ** 2): if (a + b + c) == 1000: return a * b * c - break if __name__ == "__main__": diff --git a/project_euler/problem_19/sol1.py b/project_euler/problem_19/sol1.py index 6e4e29ec19c6..ab59365843b2 100644 --- a/project_euler/problem_19/sol1.py +++ b/project_euler/problem_19/sol1.py @@ -61,4 +61,4 @@ def solution(): if __name__ == "__main__": - print(solution(171)) + print(solution()) diff --git a/project_euler/problem_234/sol1.py b/project_euler/problem_234/sol1.py index 8298a7f8cce3..c0d2949285e9 100644 --- a/project_euler/problem_234/sol1.py +++ b/project_euler/problem_234/sol1.py @@ -40,7 +40,6 @@ def solution(n): semidivisible = [] for x in range(n): l=[i for i in input().split()] - c1=0 c2=1 while(1): if len(fib(l[0],l[1],c2)) Date: Fri, 19 Jul 2019 03:10:51 +0530 Subject: [PATCH 210/594] Update find_lcm.py (#1019) * Update find_lcm.py Improved code quality and added comments. * Make the doctests work --- maths/find_lcm.py | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/maths/find_lcm.py b/maths/find_lcm.py index 9062d462b8b3..f7ac958070b5 100644 --- a/maths/find_lcm.py +++ b/maths/find_lcm.py @@ -4,8 +4,17 @@ def find_lcm(num_1, num_2): - """Find the LCM of two numbers.""" - max_num = num_1 if num_1 > num_2 else num_2 + """Find the least common multiple of two numbers. + >>> find_lcm(5,2) + 10 + >>> find_lcm(12,76) + 228 + """ + if num_1>=num_2: + max_num=num_1 + else: + max_num=num_2 + lcm = max_num while True: if ((lcm % num_1 == 0) and (lcm % num_2 == 0)): @@ -16,8 +25,8 @@ def find_lcm(num_1, num_2): def main(): """Use test numbers to run the find_lcm algorithm.""" - num_1 = 12 - num_2 = 76 + num_1 = int(input().strip()) + num_2 = int(input().strip()) print(find_lcm(num_1, num_2)) From f7ac8b5ed054198bdb254635e8f06c6f219c2f75 Mon Sep 17 00:00:00 2001 From: Bruno Simas Hadlich Date: Thu, 18 Jul 2019 19:34:29 -0300 Subject: [PATCH 211/594] Commented doctests that were causing slowness at Travis. (#1039) * Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()' * Added Burrows-Wheeler transform algorithm. * Added changes suggested by cclauss * Fixes for issue 'Fix the LGTM issues #1024'. * Added doctest for different parameter types and negative values. * Fixed doctest issue added at last commit. * Commented doctest that were causing slowness at Travis. * Added comment with the reason for some doctest commented. * pytest --ignore --- .travis.yml | 38 +++++++++++--------------------- project_euler/problem_09/sol1.py | 5 +++-- project_euler/problem_09/sol3.py | 4 ++-- project_euler/problem_10/sol1.py | 5 +++-- project_euler/problem_10/sol2.py | 5 +++-- project_euler/problem_12/sol1.py | 5 +++-- project_euler/problem_12/sol2.py | 5 +++-- project_euler/problem_14/sol1.py | 5 +++-- project_euler/problem_14/sol2.py | 5 +++-- 9 files changed, 36 insertions(+), 41 deletions(-) diff --git a/.travis.yml b/.travis.yml index 6ac3010c5396..a3ff22fb09b7 100644 --- a/.travis.yml +++ b/.travis.yml @@ -9,31 +9,19 @@ before_script: - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics script: - mypy --ignore-missing-imports . - #- IGNORE="data_structures,file_transfer_protocol,graphs,machine_learning,maths,neural_network,project_euler" - #- pytest . --doctest-modules --ignore=${IGNORE} - - pytest --doctest-modules - arithmetic_analysis - backtracking - boolean_algebra - ciphers - compression - conversions - digital_image_processing - divide_and_conquer - dynamic_programming - graphs - hashes - linear_algebra_python - matrix - networking_flow - neural_network - other - project_euler - searches - sorts - strings - traversals - + - pytest . --doctest-modules + --ignore=data_structures/stacks/balanced_parentheses.py + --ignore=data_structures/stacks/infix_to_postfix_conversion.py + --ignore=file_transfer_protocol/ftp_send_receive.py + --ignore=file_transfer_protocol/ftp_client_server.py + --ignore=machine_learning/linear_regression.py + --ignore=machine_learning/perceptron.py + --ignore=machine_learning/random_forest_classification/random_forest_classification.py + --ignore=machine_learning/random_forest_regression/random_forest_regression.py + --ignore=maths/abs_min.py + --ignore=maths/binary_exponentiation.py + --ignore=maths/lucas_series.py + --ignore=maths/sieve_of_eratosthenes.py after_success: - python scripts/build_directory_md.py - cat DIRECTORY.md diff --git a/project_euler/problem_09/sol1.py b/project_euler/problem_09/sol1.py index 20dedb84bc0e..d9ebe8760861 100644 --- a/project_euler/problem_09/sol1.py +++ b/project_euler/problem_09/sol1.py @@ -18,8 +18,9 @@ def solution(): 2. a**2 + b**2 = c**2 3. a + b + c = 1000 - >>> solution() - 31875000 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution() + # 31875000 """ for a in range(300): for b in range(400): diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py index f749b8a61f11..829ba84c4a77 100644 --- a/project_euler/problem_09/sol3.py +++ b/project_euler/problem_09/sol3.py @@ -21,8 +21,8 @@ def solution(): 1. a**2 + b**2 = c**2 2. a + b + c = 1000 - >>> solution() - 31875000 + #>>> solution() + #31875000 """ return [ a * b * c diff --git a/project_euler/problem_10/sol1.py b/project_euler/problem_10/sol1.py index 038da96e6352..49384d7c78f0 100644 --- a/project_euler/problem_10/sol1.py +++ b/project_euler/problem_10/sol1.py @@ -42,8 +42,9 @@ def sum_of_primes(n): def solution(n): """Returns the sum of all the primes below n. - >>> solution(2000000) - 142913828922 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution(2000000) + # 142913828922 >>> solution(1000) 76127 >>> solution(5000) diff --git a/project_euler/problem_10/sol2.py b/project_euler/problem_10/sol2.py index 9e51d61b8749..451a4ae5e8f3 100644 --- a/project_euler/problem_10/sol2.py +++ b/project_euler/problem_10/sol2.py @@ -31,8 +31,9 @@ def prime_generator(): def solution(n): """Returns the sum of all the primes below n. - >>> solution(2000000) - 142913828922 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution(2000000) + # 142913828922 >>> solution(1000) 76127 >>> solution(5000) diff --git a/project_euler/problem_12/sol1.py b/project_euler/problem_12/sol1.py index baf9babab686..54476110b503 100644 --- a/project_euler/problem_12/sol1.py +++ b/project_euler/problem_12/sol1.py @@ -45,8 +45,9 @@ def solution(): """Returns the value of the first triangle number to have over five hundred divisors. - >>> solution() - 76576500 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution() + # 76576500 """ tNum = 1 i = 1 diff --git a/project_euler/problem_12/sol2.py b/project_euler/problem_12/sol2.py index 071d7516ac0f..0d1502830bee 100644 --- a/project_euler/problem_12/sol2.py +++ b/project_euler/problem_12/sol2.py @@ -39,8 +39,9 @@ def solution(): """Returns the value of the first triangle number to have over five hundred divisors. - >>> solution() - 76576500 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution() + # 76576500 """ return next( i for i in triangle_number_generator() if count_divisors(i) > 500 diff --git a/project_euler/problem_14/sol1.py b/project_euler/problem_14/sol1.py index 6b80cd7cb24b..8d3efbc59eb5 100644 --- a/project_euler/problem_14/sol1.py +++ b/project_euler/problem_14/sol1.py @@ -30,8 +30,9 @@ def solution(n): n → n/2 (n is even) n → 3n + 1 (n is odd) - >>> solution(1000000) - {'counter': 525, 'largest_number': 837799} + # The code below has been commented due to slow execution affecting Travis. + # >>> solution(1000000) + # {'counter': 525, 'largest_number': 837799} >>> solution(200) {'counter': 125, 'largest_number': 171} >>> solution(5000) diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py index 59fa79515148..0ec80e221f09 100644 --- a/project_euler/problem_14/sol2.py +++ b/project_euler/problem_14/sol2.py @@ -47,8 +47,9 @@ def collatz_sequence(n): def solution(n): """Returns the number under n that generates the longest Collatz sequence. - >>> solution(1000000) - {'counter': 525, 'largest_number': 837799} + # The code below has been commented due to slow execution affecting Travis. + # >>> solution(1000000) + # {'counter': 525, 'largest_number': 837799} >>> solution(200) {'counter': 125, 'largest_number': 171} >>> solution(5000) From 9fcfe6a02bca94664189a656cf76bd425bbf3417 Mon Sep 17 00:00:00 2001 From: Bruno Simas Hadlich Date: Fri, 19 Jul 2019 01:33:28 -0300 Subject: [PATCH 212/594] Commented doctests that were causing slowness at Travis. #2 (#1041) * Added doctest and more explanation about Dijkstra execution. * tests were not passing with python2 due to missing __init__.py file at number_theory folder * Removed the dot at the beginning of the imported modules names because 'python3 -m doctest -v data_structures/hashing/*.py' and 'python3 -m doctest -v data_structures/stacks/*.py' were failing not finding hash_table.py and stack.py modules. * Moved global code to main scope and added doctest for project euler problems 1 to 14. * Added test case for negative input. * Changed N variable to do not use end of line scape because in case there is a space after it the script will break making it much more error prone. * Added problems description and doctests to the ones that were missing. Limited line length to 79 and executed python black over all scripts. * Changed the way files are loaded to support pytest call. * Added __init__.py to problems to make them modules and allow pytest execution. * Added project_euler folder to test units execution * Changed 'os.path.split(os.path.realpath(__file__))' to 'os.path.dirname()' * Added Burrows-Wheeler transform algorithm. * Added changes suggested by cclauss * Fixes for issue 'Fix the LGTM issues #1024'. * Added doctest for different parameter types and negative values. * Fixed doctest issue added at last commit. * Commented doctest that were causing slowness at Travis. * Added comment with the reason for some doctest commented. * pytest --ignore * Added tests execution again. * Had forgotten to add comment to file project_euler/problem_09/sol3.py --- project_euler/problem_09/sol3.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py index 829ba84c4a77..006029c8a30d 100644 --- a/project_euler/problem_09/sol3.py +++ b/project_euler/problem_09/sol3.py @@ -21,8 +21,9 @@ def solution(): 1. a**2 + b**2 = c**2 2. a + b + c = 1000 - #>>> solution() - #31875000 + # The code below has been commented due to slow execution affecting Travis. + # >>> solution() + # 31875000 """ return [ a * b * c From 60c608d85a41f85f795233b5ff913ca35f8a2f92 Mon Sep 17 00:00:00 2001 From: "Md. Mahbubur Rahman" Date: Fri, 19 Jul 2019 16:41:37 +0900 Subject: [PATCH 213/594] Added matrix exponentiation approach for finding fibonacci number. (#1042) * Added matrix exponentiation approach for finding fibonacci number. * Implemented the way of finding nth fibonacci. * Complexity is about O(log(n)*8) * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Tighten up main() and add comments on performance --- ...h_fibonacci_using_matrix_exponentiation.py | 88 +++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 matrix/nth_fibonacci_using_matrix_exponentiation.py diff --git a/matrix/nth_fibonacci_using_matrix_exponentiation.py b/matrix/nth_fibonacci_using_matrix_exponentiation.py new file mode 100644 index 000000000000..cee6b21c81eb --- /dev/null +++ b/matrix/nth_fibonacci_using_matrix_exponentiation.py @@ -0,0 +1,88 @@ +""" +Implementation of finding nth fibonacci number using matrix exponentiation. +Time Complexity is about O(log(n)*8), where 8 is the complexity of matrix multiplication of size 2 by 2. +And on the other hand complexity of bruteforce solution is O(n). +As we know + f[n] = f[n-1] + f[n-1] +Converting to matrix, + [f(n),f(n-1)] = [[1,1],[1,0]] * [f(n-1),f(n-2)] +-> [f(n),f(n-1)] = [[1,1],[1,0]]^2 * [f(n-2),f(n-3)] + ... + ... +-> [f(n),f(n-1)] = [[1,1],[1,0]]^(n-1) * [f(1),f(0)] +So we just need the n times multiplication of the matrix [1,1],[1,0]]. +We can decrease the n times multiplication by following the divide and conquer approach. +""" +from __future__ import print_function + + +def multiply(matrix_a, matrix_b): + matrix_c = [] + n = len(matrix_a) + for i in range(n): + list_1 = [] + for j in range(n): + val = 0 + for k in range(n): + val = val + matrix_a[i][k] * matrix_b[k][j] + list_1.append(val) + matrix_c.append(list_1) + return matrix_c + + +def identity(n): + return [[int(row == column) for column in range(n)] for row in range(n)] + + +def nth_fibonacci_matrix(n): + """ + >>> nth_fibonacci_matrix(100) + 354224848179261915075 + >>> nth_fibonacci_matrix(-100) + -100 + """ + if n <= 1: + return n + res_matrix = identity(2) + fibonacci_matrix = [[1, 1], [1, 0]] + n = n - 1 + while n > 0: + if n % 2 == 1: + res_matrix = multiply(res_matrix, fibonacci_matrix) + fibonacci_matrix = multiply(fibonacci_matrix, fibonacci_matrix) + n = int(n / 2) + return res_matrix[0][0] + + +def nth_fibonacci_bruteforce(n): + """ + >>> nth_fibonacci_bruteforce(100) + 354224848179261915075 + >>> nth_fibonacci_bruteforce(-100) + -100 + """ + if n <= 1: + return n + fib0 = 0 + fib1 = 1 + for i in range(2, n + 1): + fib0, fib1 = fib1, fib0 + fib1 + return fib1 + + +def main(): + fmt = "{} fibonacci number using matrix exponentiation is {} and using bruteforce is {}\n" + for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split(): + n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000 + print(fmt.format(ordinal, nth_fibonacci(n), nth_fibonacci_test(n))) + # from timeit import timeit + # print(timeit("nth_fibonacci_matrix(1000000)", + # "from main import nth_fibonacci_matrix", number=5)) + # print(timeit("nth_fibonacci_bruteforce(1000000)", + # "from main import nth_fibonacci_bruteforce", number=5)) + # 2.3342058970001744 + # 57.256506615000035 + + +if __name__ == "__main__": + main() From dc1de946eabe20053b811b50e0e1d50697bd46fa Mon Sep 17 00:00:00 2001 From: cclauss Date: Fri, 19 Jul 2019 10:55:45 +0200 Subject: [PATCH 214/594] Use correct function names in nth_fibonacci_using_matrix_exponentiation.py (#1045) @AnupKumarPanwar @ParthS007 @poyea Could I please get a quick review on this one because I made a mistake here that breaks the build for new pull requests. --- matrix/nth_fibonacci_using_matrix_exponentiation.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/matrix/nth_fibonacci_using_matrix_exponentiation.py b/matrix/nth_fibonacci_using_matrix_exponentiation.py index cee6b21c81eb..7491abcae031 100644 --- a/matrix/nth_fibonacci_using_matrix_exponentiation.py +++ b/matrix/nth_fibonacci_using_matrix_exponentiation.py @@ -74,7 +74,7 @@ def main(): fmt = "{} fibonacci number using matrix exponentiation is {} and using bruteforce is {}\n" for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split(): n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000 - print(fmt.format(ordinal, nth_fibonacci(n), nth_fibonacci_test(n))) + print(fmt.format(ordinal, nth_fibonacci_matrix(n), nth_fibonacci_bruteforce(n))) # from timeit import timeit # print(timeit("nth_fibonacci_matrix(1000000)", # "from main import nth_fibonacci_matrix", number=5)) From 4e0717c3cfb336aa86f6720f2f49adf58f0e95d7 Mon Sep 17 00:00:00 2001 From: Stephen Gemin <45926479+StephenGemin@users.noreply.github.com> Date: Fri, 19 Jul 2019 23:06:29 -0400 Subject: [PATCH 215/594] Add error & test checks for matrix_operations.py (#925) * Update matrix_operation.py 1. Adding error checks for integer inputs 2. Adding error checks for matrix operations where size requirements do not match up 3. Added matrix subtraction function 4. included error check so only integer is passed into identity function * Create test_matrix_operation.py * Update matrix_ops and Add Test Cases 1. Included error checks in matrix operation. There were some cases where the functions would not work correctly. 2. PEP8 changes to matrix_operations.py 3. added test cases for matrix operations using pytest. * Update pytest.ini Add carriage return to end of file --- matrix/matrix_operation.py | 136 +++++++++++++++++++------- matrix/tests/pytest.ini | 3 + matrix/tests/test_matrix_operation.py | 112 +++++++++++++++++++++ 3 files changed, 217 insertions(+), 34 deletions(-) create mode 100644 matrix/tests/pytest.ini create mode 100644 matrix/tests/test_matrix_operation.py diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py index dd7c01582681..b32a4dcf7af3 100644 --- a/matrix/matrix_operation.py +++ b/matrix/matrix_operation.py @@ -1,64 +1,131 @@ -from __future__ import print_function +""" +function based version of matrix operations, which are just 2D arrays +""" + def add(matrix_a, matrix_b): - rows = len(matrix_a) - columns = len(matrix_a[0]) - matrix_c = [] - for i in range(rows): - list_1 = [] - for j in range(columns): - val = matrix_a[i][j] + matrix_b[i][j] - list_1.append(val) - matrix_c.append(list_1) - return matrix_c - -def scalarMultiply(matrix , n): + if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): + rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) + matrix_c = [] + for i in range(rows[0]): + list_1 = [] + for j in range(cols[0]): + val = matrix_a[i][j] + matrix_b[i][j] + list_1.append(val) + matrix_c.append(list_1) + return matrix_c + + +def subtract(matrix_a, matrix_b): + if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): + rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) + matrix_c = [] + for i in range(rows[0]): + list_1 = [] + for j in range(cols[0]): + val = matrix_a[i][j] - matrix_b[i][j] + list_1.append(val) + matrix_c.append(list_1) + return matrix_c + + +def scalar_multiply(matrix, n): return [[x * n for x in row] for row in matrix] + def multiply(matrix_a, matrix_b): - matrix_c = [] - n = len(matrix_a) - for i in range(n): - list_1 = [] - for j in range(n): - val = 0 - for k in range(n): - val = val + matrix_a[i][k] * matrix_b[k][j] - list_1.append(val) - matrix_c.append(list_1) - return matrix_c + if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): + matrix_c = [] + rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) + + if cols[0] != rows[1]: + raise ValueError(f'Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) ' + f'and ({rows[1]},{cols[1]})') + for i in range(rows[0]): + list_1 = [] + for j in range(cols[1]): + val = 0 + for k in range(cols[1]): + val = val + matrix_a[i][k] * matrix_b[k][j] + list_1.append(val) + matrix_c.append(list_1) + return matrix_c + def identity(n): + """ + :param n: dimension for nxn matrix + :type n: int + :return: Identity matrix of shape [n, n] + """ + n = int(n) return [[int(row == column) for column in range(n)] for row in range(n)] -def transpose(matrix): - return map(list , zip(*matrix)) + +def transpose(matrix, return_map=True): + if _check_not_integer(matrix): + if return_map: + return map(list, zip(*matrix)) + else: + # mt = [] + # for i in range(len(matrix[0])): + # mt.append([row[i] for row in matrix]) + # return mt + return [[row[i] for row in matrix] for i in range(len(matrix[0]))] + def minor(matrix, row, column): minor = matrix[:row] + matrix[row + 1:] minor = [row[:column] + row[column + 1:] for row in minor] return minor + def determinant(matrix): - if len(matrix) == 1: return matrix[0][0] + if len(matrix) == 1: + return matrix[0][0] res = 0 for x in range(len(matrix)): - res += matrix[0][x] * determinant(minor(matrix , 0 , x)) * (-1) ** x + res += matrix[0][x] * determinant(minor(matrix, 0, x)) * (-1) ** x return res + def inverse(matrix): det = determinant(matrix) - if det == 0: return None + if det == 0: + return None - matrixMinor = [[] for _ in range(len(matrix))] + matrix_minor = [[] for _ in range(len(matrix))] for i in range(len(matrix)): for j in range(len(matrix)): - matrixMinor[i].append(determinant(minor(matrix , i , j))) + matrix_minor[i].append(determinant(minor(matrix, i, j))) - cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrixMinor[row])] for row in range(len(matrix))] + cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix))] adjugate = transpose(cofactors) - return scalarMultiply(adjugate , 1/det) + return scalar_multiply(adjugate, 1/det) + + +def _check_not_integer(matrix): + try: + rows = len(matrix) + cols = len(matrix[0]) + return True + except TypeError: + raise TypeError("Cannot input an integer value, it must be a matrix") + + +def _shape(matrix): + return list((len(matrix), len(matrix[0]))) + + +def _verify_matrix_sizes(matrix_a, matrix_b): + shape = _shape(matrix_a) + shape += _shape(matrix_b) + if shape[0] != shape[2] or shape[1] != shape[3]: + raise ValueError(f"operands could not be broadcast together with shape " + f"({shape[0], shape[1]}), ({shape[2], shape[3]})") + return [shape[0], shape[2]], [shape[1], shape[3]] + def main(): matrix_a = [[12, 10], [3, 9]] @@ -68,9 +135,10 @@ def main(): print('Add Operation, %s + %s = %s \n' %(matrix_a, matrix_b, (add(matrix_a, matrix_b)))) print('Multiply Operation, %s * %s = %s \n' %(matrix_a, matrix_b, multiply(matrix_a, matrix_b))) print('Identity: %s \n' %identity(5)) - print('Minor of %s = %s \n' %(matrix_c, minor(matrix_c , 1 , 2))) + print('Minor of %s = %s \n' %(matrix_c, minor(matrix_c, 1, 2))) print('Determinant of %s = %s \n' %(matrix_b, determinant(matrix_b))) print('Inverse of %s = %s\n'%(matrix_d, inverse(matrix_d))) + if __name__ == '__main__': main() diff --git a/matrix/tests/pytest.ini b/matrix/tests/pytest.ini new file mode 100644 index 000000000000..8a978b56ef8b --- /dev/null +++ b/matrix/tests/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + mat_ops: tests for matrix operations diff --git a/matrix/tests/test_matrix_operation.py b/matrix/tests/test_matrix_operation.py new file mode 100644 index 000000000000..8b81b65d0fc8 --- /dev/null +++ b/matrix/tests/test_matrix_operation.py @@ -0,0 +1,112 @@ +""" +Testing here assumes that numpy and linalg is ALWAYS correct!!!! + +If running from PyCharm you can place the following line in "Additional Arguments" for the pytest run configuration +-vv -m mat_ops -p no:cacheprovider +""" + +# standard libraries +import sys +import numpy as np +import pytest +import logging + +# Custom/local libraries +from matrix import matrix_operation as matop + +mat_a = [[12, 10], [3, 9]] +mat_b = [[3, 4], [7, 4]] +mat_c = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] +mat_d = [[3, 0, -2], [2, 0, 2], [0, 1, 1]] +mat_e = [[3, 0, 2], [2, 0, -2], [0, 1, 1], [2, 0, -2]] +mat_f = [1] +mat_h = [2] + +logger = logging.getLogger() +logger.level = logging.DEBUG +stream_handler = logging.StreamHandler(sys.stdout) +logger.addHandler(stream_handler) + + +@pytest.mark.mat_ops +@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), + (mat_f, mat_h)]) +def test_addition(mat1, mat2): + if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): + with pytest.raises(TypeError): + logger.info(f"\n\t{test_addition.__name__} returned integer") + matop.add(mat1, mat2) + elif (np.array(mat1)).shape == (np.array(mat2)).shape: + logger.info(f"\n\t{test_addition.__name__} with same matrix dims") + act = (np.array(mat1) + np.array(mat2)).tolist() + theo = matop.add(mat1, mat2) + assert theo == act + else: + with pytest.raises(ValueError): + logger.info(f"\n\t{test_addition.__name__} with different matrix dims") + matop.add(mat1, mat2) + + +@pytest.mark.mat_ops +@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), + (mat_f, mat_h)]) +def test_subtraction(mat1, mat2): + if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): + with pytest.raises(TypeError): + logger.info(f"\n\t{test_subtraction.__name__} returned integer") + matop.subtract(mat1, mat2) + elif (np.array(mat1)).shape == (np.array(mat2)).shape: + logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims") + act = (np.array(mat1) - np.array(mat2)).tolist() + theo = matop.subtract(mat1, mat2) + assert theo == act + else: + with pytest.raises(ValueError): + logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims") + assert matop.subtract(mat1, mat2) + + +@pytest.mark.mat_ops +@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), + (mat_f, mat_h)]) +def test_multiplication(mat1, mat2): + if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): + logger.info(f"\n\t{test_multiplication.__name__} returned integer") + with pytest.raises(TypeError): + matop.add(mat1, mat2) + elif (np.array(mat1)).shape == (np.array(mat2)).shape: + logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements") + act = (np.matmul(mat1, mat2)).tolist() + theo = matop.multiply(mat1, mat2) + assert theo == act + else: + with pytest.raises(ValueError): + logger.info(f"\n\t{test_multiplication.__name__} does not meet dim requirements") + assert matop.subtract(mat1, mat2) + + +@pytest.mark.mat_ops +def test_scalar_multiply(): + act = (3.5 * np.array(mat_a)).tolist() + theo = matop.scalar_multiply(mat_a, 3.5) + assert theo == act + + +@pytest.mark.mat_ops +def test_identity(): + act = (np.identity(5)).tolist() + theo = matop.identity(5) + assert theo == act + + +@pytest.mark.mat_ops +@pytest.mark.parametrize('mat', [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f]) +def test_transpose(mat): + if (np.array(mat)).shape < (2, 2): + with pytest.raises(TypeError): + logger.info(f"\n\t{test_transpose.__name__} returned integer") + matop.transpose(mat) + else: + act = (np.transpose(mat)).tolist() + theo = matop.transpose(mat, return_map=False) + assert theo == act From f5e6d4e8cddb920439ed9a94b79f2af9a4fa2ac6 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 20 Jul 2019 09:36:55 +0200 Subject: [PATCH 216/594] Update DIRECTORY.md (#1046) * Update DIRECTORY.md * Remove blank lines --- DIRECTORY.md | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index 66128228abc3..fc06a8cd1548 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -5,6 +5,7 @@ * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) ## Backtracking + * [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) @@ -27,7 +28,6 @@ * [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) - * [prehistoric men](https://github.com/TheAlgorithms/Python/blob/master/ciphers/prehistoric_men.txt) * [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) @@ -39,6 +39,7 @@ * [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression + * [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) * Image Data @@ -100,8 +101,10 @@ ## Dynamic Programming * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) + * [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) * [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) + * [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) @@ -142,9 +145,9 @@ * [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) - * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/floyd_warshall.py) * [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) + * [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) @@ -170,13 +173,17 @@ * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) + * [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py) + * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * Random Forest Classification * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) + * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) * [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/Social_Network_Ads.csv) * Random Forest Regression * [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/Position_Salaries.csv) + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) ## Maths * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) @@ -197,7 +204,7 @@ * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) - * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas%20series.py) + * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) @@ -208,6 +215,8 @@ * [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) ## Matrix * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) + * [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) + * [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) ## Networking Flow @@ -216,16 +225,17 @@ ## Neural Network * [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) - * [dictionary](https://github.com/TheAlgorithms/Python/blob/master/other/dictionary.txt) * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) * [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py) * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) + * [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb) * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) @@ -238,8 +248,6 @@ * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) * [words](https://github.com/TheAlgorithms/Python/blob/master/other/words) - * Pycache - * [password generator.cpython-37](https://github.com/TheAlgorithms/Python/blob/master/other/__pycache__/password_generator.cpython-37.pyc) ## Project Euler * Problem 01 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) @@ -281,16 +289,13 @@ * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) * Problem 11 - * [grid](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/grid.txt) * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) * Problem 12 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) * Problem 13 - * [num](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/num.txt) * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol2.py) * Problem 14 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) @@ -309,7 +314,6 @@ * Problem 21 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) * Problem 22 - * [p022 names](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/p022_names.txt) * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) * Problem 234 @@ -337,8 +341,6 @@ * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) * Problem 76 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) -## Scripts - * [build directory md](https://github.com/TheAlgorithms/Python/blob/master/scripts/build_directory_md.py) ## Searches * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) @@ -347,7 +349,6 @@ * [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) - * [tabu test data](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_test_data.txt) * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) From 61fec83242bb00766141ffa2571414bbba68ab6e Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Sat, 20 Jul 2019 17:32:40 +0500 Subject: [PATCH 217/594] Adds Gaussian Function in maths section (#1054) * Create gaussian.py * Update gaussian.py * Update gaussian.py * Create gaussian.png * Add files via upload * Create prime_factors.py * Update prime_factors.py * Update prime_factors.py --- maths/gaussian.py | 61 ++++++++++++++++++++++++++++++++++++++ maths/images/gaussian.png | Bin 0 -> 53511 bytes maths/prime_factors.py | 52 ++++++++++++++++++++++++++++++++ 3 files changed, 113 insertions(+) create mode 100644 maths/gaussian.py create mode 100644 maths/images/gaussian.png create mode 100644 maths/prime_factors.py diff --git a/maths/gaussian.py b/maths/gaussian.py new file mode 100644 index 000000000000..f3a47a3f6a1b --- /dev/null +++ b/maths/gaussian.py @@ -0,0 +1,61 @@ + +""" +Reference: https://en.wikipedia.org/wiki/Gaussian_function + +python/black : True +python : 3.7.3 + +""" +from numpy import pi, sqrt, exp + + + +def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: + """ + >>> gaussian(1) + 0.24197072451914337 + + >>> gaussian(24) + 3.342714441794458e-126 + + Supports NumPy Arrays + Use numpy.meshgrid with this to generate gaussian blur on images. + >>> import numpy as np + >>> x = np.arange(15) + >>> gaussian(x) + array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03, + 1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12, + 5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27, + 2.14638374e-32, 7.99882776e-38, 1.09660656e-43]) + + >>> gaussian(15) + 5.530709549844416e-50 + + >>> gaussian([1,2, 'string']) + Traceback (most recent call last): + ... + TypeError: unsupported operand type(s) for -: 'list' and 'float' + + >>> gaussian('hello world') + Traceback (most recent call last): + ... + TypeError: unsupported operand type(s) for -: 'str' and 'float' + + >>> gaussian(10**234) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + OverflowError: (34, 'Result too large') + + >>> gaussian(10**-326) + 0.3989422804014327 + + >>> gaussian(2523, mu=234234, sigma=3425) + 0.0 + """ + return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/maths/images/gaussian.png b/maths/images/gaussian.png new file mode 100644 index 0000000000000000000000000000000000000000..eb007c7e21b2296c17a11ebf4dee30cfa2e2f6b1 GIT binary patch literal 53511 zcmeFYgM-b?gVeyNaeEG4>Te{3aTEOyZ*P${h!X()yo2+!Dp&_t=xt9%?2Y2F~w1 zysh2d;y7A+xO{N-`0(C_%j>P1`+H}nM9F_7{0y73_VF;iBsQxuy8-7o5Pea?7H0%fQcz zemlZ`cUS1GN4ZyIw;hx>I4$QWRHT!W6LQIMe*Evm-0hT^M(Zg)--yj$0h>8=de9`#<9=3Wb4FCN@lT(>P@+TMt~#If|>lk`K& zEx}P6BqMQs9`YA_WWACKvKM?qk!u8qJFu&|HyRN>>!K}n8~Y@3n&bD5=w{zPJxJtK z1YNw%CTO9=?fY#?#7lX!ImY96y15eY84w8`+laW%B5g&nWwIMq`Dy&MNcU+cK95i+ zcHYaxx$AYlA#6MT_26_|TXc-oxm7vnx;RKH_wNmQ>wE6)E?o3k4KP6NbuNac>}V5j z60t_mhH$Xz-*HuMB()gua5?D9iZ2iKX>V^nnl|Rj2z^c4@fT~&yo>g~x2N&W0bv}9 zfjS3)7cKuZ_we>q_wOmTO_!&{D_N8(`)O)RJ1uIV(Fd=9VR)TaTr$D5hu1sR2T#10 z^H*pzmKX-UP_+*BO=+x7Y34^zbw!0tTlmLY1RVWzx9ojY<3OOtH6wI1Pc!S^&wF4W ziS`OwQRTWg@E5W15wu=&E_MKhgvR!EkCyz~m|Rr&R0Mi8a?#s;kU^~_HmwDHlhwI~ zJfXBjN{8~WqqbUlHL<&g)M|Pzn%G1)LlAx%F+(#uF9DZhw6{!gr&im){mw6lEK5?= z;R)3arBdn)>t%>pnkzgof1?|{a6CivLY`3&Da%a9Eifa5&59gs4XW21va>C`$&ILb zCt!H2fWie|wWp(gliIzQlF-mfY?@tO1%^An`Vg}2xWW=?wS88l$>l!XJR!O4@8t~0 zhbecaafw*{PyVD+>QsY}ZZDaZErAU%BF`qxXu+0Qd=s+!EGW<@9NdF8#OG7jb8*7v zXLGs+rOSs?T!Gq22+96*s@AjL7p9|X$fSt|N3c(-Jo~<)bswt1-ql_<;k>ADI618pZ$C0oEF&u^DO8?;v*n zmH9Y+Xy2Dd0j-5eZ%DsU14Bb4x%jF6cc1xPpHDh(ArUf0?bk;7$aLb4Enh*4t$*SrO~x% zZnVzI^mH@=8TYW0lx-Lc#9=Tn$M(iqB)O3v-onc*ll#j!a0EPRaP7^hLXplLVL;c# zH__=X6TLS292g!dPDLC2KT{$g&&pGtZo~P($E69#Q2zOFDdKfnCYE(dg7ULti;jN>w~ilt4KgQV{M*ZE($L1`Q;g4*U*SScQ^5>k(0ynk#g9$jsJU z{S*9xpvWUGj{)0$?8^8g!aW&Li-`w9A;iDf3O@+jOlQX^H9QKqnnFA^h_`aQEPI|94uC#uLb3_kVdeMRsBlIwzI>%Ugur8Su^gMDNVyV_o`u zkf4!^PPC6!w0DAeC(mok0232KC1o3UqaR-T1wh=Wz6ioR$!h)R*On6ZS&@wT>7Bpfk>EEv7`2w|55T;#? zbTMYhyE)pD6+hW{J#=!~#YbJ^GL4&`?6ahCN1P<}xxRtfu>sl2C`Kv)BG2&E$dOV# z1P}k$kTJz+>tl!P;)}sqmj8lYgne}K`R`*qbaNWt@ogmPikzHzTF7UxBx;aVeHVlV zkXCOnFz~tLV$)1XFH6q>Fv`DC>)M`Vc1q=^!Kg1qoaEaclaHE|rk!OxfNqQlPt+sS5J@ z=71IX!rJHT=4SNS4-{SA(?nCLT)F`9^*UCQk!=noP#ZAp zp9jO|SmKY^{?Pp^vi1Vn-Akd`WdR1n^DJ+iw{IrSuGZLWWuB9pHbX`fZ+s_`Wz6Lw z*hDk|Xr%XMfK&V{sfX${iOccAN($*_K9!4Ip@UJ_R8sJ3X=)NNcjn&Y+xYbQ8>~&{ zQ!B8?&WT2f2)_QQ?Pxk?-8K5^Yvkow#78uLL=iM9JPvc7!;>m+NY6&Y!2zKGvJ?ZV z#>`COfRy)a@TmV=D5p-D=3=--=&RfBWEBE$E|KZtBxW!FrimQXMYuRSIekomd;l#c z+gtv<5&QWeRwmHkg_-v6if7;h-TP8 z&SjwHu;@WZb=x^h+vRF38WHzhiFg^`Tmlyu7P3Q|FBCh(UtMDG zUEUWTq&?%1bSN%?LNr(Oemcc<8PC}cnfvCx=XDmSHT#1Um$FZlj|CN&eC0xoNTtne zpnA)o$Utp@kAI?VK5LNkd4s2&KNDMUlOP}A($V%O)V!T^7F?B5&+y)(I-nYtGTbmr z+1)tb;qjrNK#iRbrPDOG4e&r6&6*!%D)tV2(n3tghV6miXGJVw^%N_D?~>T4*|zaG z?1g6Q%uIgum^1tz|7^PV;nfun%eTAX(i>sw{hSuIK{hxPoZ69ZZ~6Y#u&5dlH?$EM z>|kwJe{=F-tLoB^^0r7ZUC4xmM=0I77Bf*21)=YIuVoFL&49;hIJf!y5C}=f1qM?x z`43-Y*&j1yp{00{aztCKDyxxEVQ8Q~M5RX(6NyHc<288@_o8lG|ALy8P;PyhVV9p0 zI;rbej{75$wR4{KhDSKa#-2t*q!Sa-#@`RsW=u@;3z?6k>LB_kTpnn~8|YAq9XbON zOQ)*953;j^N%h#LHMNmS$20K{93O+0Om?>bZ)WfPqx z^^`n+S1xd$2^sj-*tz+OJEwbJiNbWMcx*<%WOG!XY*g_iOE!unP(#GJV2@ha6_*sB z6yh}LJYX6Kj#)C4F!mp+g}A4*1#HT^HsgLTL-P{6+e_8N2mTqgIn!;Z^4&RRoqf|p z{@ruUY_QCFf&!|^K;>ulptlBsD+%ZzS+)$La(U0${w`Cf$;-r~hBKPfOBc z{$hgu9w5`75StBS%(8Cc#eFN-_v5E?Q%)?hOlVXXtfp=}__c9Ri{8@AMgPSv;W z?!JJ|YZJ$e+pmqT(}S)U{r2H#zYE1iJb|83D{}9HIr}B7yF%!&CETK(e#ZQLh2F!Z z?^@69$C*+}1^@7{1if=sTsr!-n7z|m5)Q>o2n0fdXosr-367lU#(?QP;Z`F_*k-G$ z%P3&Eio`1J?{)Rxf`jX-g96cj71Gl+#k;k(9Zn%!^UNDZab%0(YXs1KiHXQreo6iM zIzcL}=NX^h&74F&tJY#KRZs0Ek54oU9y4e42V&;usNUo*#P1_L3F%%0XEGwx_D9&i?cBGgnzztj+Kvsg9lMcEm4Fl7ABhLnJS7AM}{Hv$2OeMU{p?QAu}e>4#H5Lo^ao}n^67vk zTLL{|t0+q7Cit{52-A2<`S+0WA9xn_x?3<^3seE1fsU zpu0_yS492V-i^S$usX8;tg@6G?WQWKzH3jM!$S2tLyk?JcU@bx@cueZU7<6+%q~v^ z7~BC3ucg~(*COm&#}{E{;Ly5G8zN=Xm-chuh1o&5n{4p}fL7eshf#_;|9Idt%bQik z@9T-tn`2+qPdCR-otPjs9-q_2GrpJiA+G`*sM^KtE#;r|46vdvHn61@z4J%B8TE5} zO^cZ2jp*0pF{~V6@0{4m`RxW(+eK5mXmD7?et%hTj71mp;*gAo|)CI1- zLGG!s@YB`~ZOKRtisk3Ep8GA5-Ri;(umh>$PRNK$^;On=_xhE^tC-hYKJr^xD*u>P zSotA40T_lSK7Cjs)cXBg4`M`@z@CWAvOFRVRBR-I(k9x$7e`tg2GeW9;p39 zmuV4|QCGH#9cusSgJ3w^l<0^Ji+k#w_v^&9(_-Nh65^_ZRLU=K2tvuiFUdWRMZTUt zBiTa@KoEBpB{M&HQ|?3S-&CiqAC*}xGy_j0ncU+Hiv|TlR-|dv{4LnyKhY~yv$$c> z4dqqqC=9W8+PsLRmkET%7tD;auN|N9Q>jg>pTRDK$0*4-P5T} zo`+3jI$O9R|E|=znv^t%eeh5exXyy7EosN<9$32p`4d+n6W!Vu1y>gHfy<^m>R{v8 za%hv&$1W-Uhr3fH1nxMVGKTW<$gBj{{B^P2EK1zz$dBEg@0+ADs>NVrB)Ewrr1M8} zpl)zH5d2X?TY6@VCJso0$B@l#CJ{j9iAneg??QmlXtIm6smVxxj7oc4&a|n z38d6SPig2`jG7L`7^?S4|LFk6#rbZgzCR)YlA2JU?+%uUVOrkkbSleIEP1EiDw;ndqDVpc%b(c zhGEh}ln;~I^sB5aT{nf-2}V9qN)zad`L$5t`Mmp3`g5KI3mC{Qp1WR%1nNLz5sU?Ov)Ec*S5H zuK!`B1%fHb(2oOBr#?vT%Gn|;EuXc+yV|l#AzB&fgIjA8N;m!`bH@5tHW3dMIEw+_ z$}B87mNMkqYkyBLc&ZN%xqSpieu3-NQKWW0{(vq0e<-O@gF9aCb+6^K*j0rc=zf?~ zlKOT)7#<84=VUU1QIYu&-v+_Rtm37{^w(qD7+$(oK4M&XS`@{th~p(J zK(QqUbwoaJ@@OY9rK_#}TY`)RC*x{P>}~{R)khIN80r6LkKMiRHGr*?=XfDX%i0=A zadM|`!$i}bSRWrNc$9N7&gQQ4OUQQRb za2ycMhx!rD;=7H0%lPBQr%m1;gxiq_Nmb{HxpdMaw;rd8U&iH!u5Uz(w?9qD^ZGSW zs_*&~xykg$L&1l9fsa)o&fg_6>* zv8mIoA$lN&%4?V83!U&d_$!*JEgI=Gm8gWF;~2M1p6)N1Y&=X(q=L|NUiW`RwQxb z1%Pri-rV#3fVBphj6PF&XsLe5W@=NsnJlkbzm zhuMP!apXW`2D9!$m#c-U5gKLgwUY57pgv|z`<>!Zm15BMB%77S(|%3eMCr803*wU>XPI? zQe@F5s#UWzX?nvj5aF+Fy$0g$Kgc@Z4((&gWQ>kRrwcH(@%AtWyrRNu5^Gq#Tu5Gl zP)t@k2ihZ+%=Z_49;WX|z1$nzxV*Z;n}xVx+zLl&C7+TT3dT4@^LY8zrStf~9rvBx z*+kM4h^j})Rrwi339GMN;lWqXANn`4IbYgU0cPX-XI@%)y{$??^1NXTr6Ih-^pAJO z>mY>MJBW;lg$ruclglF(_ANkWR3vxZXzN0dza z^z!we!?7rRK|-g%eHUlPXYJWt#$N%w`HOSpk)5^>eU&8 zuWj5It9GPbgikBpyBf?Z1Q7Bj8K3}t14-cF(kKG`5{)qI1a4LoLgr>|?Vk|2`lTPP z=V~qzNr{W8lYp)unMwetYw~F(75jy*8MCJ9=*OL{?Byh+7oS2_qL=9^tjU=1TnVcw z#Y6thbWrV*72t@33$Nb}C!I8=tw8Jq)5Z6YH#0ZCECbBhVn4M@Pbcmm#V3%RpWH}P z+I5=J2lu+OLG8{Zo09AFN}wUuea1NIPkn|gI%<-MMi@gupO1YjKMLhlzN_VY>H)nS zzG68m)iIv$E%MqC0mRbjjMC~PpOG`L23OS+ zCdIzuUDj1JL1;@6RA+?>wJah%3g|KXWy}ccB z0y)0@Rc6&b5N2?WrDd{Hq>L+MUSgV%AYT94F58P*i1^W(+vQNRVTe$v&qvdDxv5RS z&ks;I5|QDW#Kf~9udF^*PsFf}K+p+Jm8&hKK6ONp=TNd~d`PNL__yyGZ^&@D6Sl3g zAK1a(&GU^|^(qgQhqk^d{HDNWfon@MP!1hK+&jj*^-Y>#|LVCm-#;l7addN7yMe8q zfFsKr|BSWuK+QpNWMb`Yhy%Tn6WKgGp5$Wchs)q+d9By7O;m?Sd(JdR!3eJxJF)a2 zBn2@SOrd?`flet2SWbm8(m&*PY3p26c!I&Hy-GVo1E_nxZ~f)P-NPgIH{{oUyFC3u zGk{S-!UMD^D$fNcOkY$`xluqW!4h^OKO;WU8@%Kve?%(|oYyiEn@MNhdBENs5h2{9 zcT`hT0~PY+QLn@^i3JfI(dmdso+_ty>?!}Bn&QzaO;@`%`erij?2}*2^y!`%1#U5b zb9(aL^fU@{#Ai7k&<;xJL#{093#QK@L58>XWNdbe83jO^3f=!|0nS~mk=b48D4cIX z9OZYVzA7C6m0${4BZ7N;VlVFYX^ZrB_+K%Wht+mHQKgRq_hgE3)?|e}=g$raAEp1X zvf@VaS=`!sZxI7htf}_0s*tv^;9>|xxe+)VAjcEG8wC(YX-#@V$+udrncvx7S zu={fb`4~CRzb?Y%MV3#h0a5cYj^~QV1p4z>hXxWz?XT{7HEXaZDD=h4x4tJ0&zrKcnN zi4YCcltkpvCrXVUh({(hWZ^g?!F?WNfu6cQ^){R}`wmiD+v~|Vi||GnG7cE`TPzTk z&(C5%DOBk?SGlW~(T$X!Z@6LfHcs5VhG<(rb++ix07bbGSSwBKnnw0Vx9+Cfr(y67 zc&pNIz>w^5iBCa^hlcNCN%kWimC2ekx`I;tfxMhGGG6nl7KXTgmejGqkmr`(n{-IK%LQJRJPY9OQB^BXS~;0^}#>DMtP!}lEw zas-SpV)!3omZ9%Jd;vYMj!PedU@fbDlD)ni@`^S9LnJ@!K~Srm#fmAEctWKmfhQut zL*{Fw_i=%&^kc)J^iP`XJyj3Hz5<@C8|hYs5532sX8TG=^Nf^qzMh!Z(tU!o;wKeE zqmss?3+zgG!2Z9eYgODo}q^=HZ5AU0g8Z}rQD_Z+ySL`Sy3C%sg4wj-`?>v5Fm#ryelFt#o))y2BPL~{BI zaB1TuNzPw^pKMC%T=XLg_&cf1AvJa6q`BNQL@PF{n!v3v(&B~VWXp8Ds|{(=eBcAo z&=ElIj^j z90grU+XQlKeTe-RO-nNp@pJ*>3HyVdRzs2ZqaP%-nM|(HcQ|o+rpI03ng{hc^)0&- zMk()<#{umA?%gaUDB)ShJ>xdz)GXJaH#E*;`Bo^d4j`dZ`Cdg5o%<>`ftoHD|zz&!3_K$H|zpc|>6bn1@~CVu4V{PCG^P z^fW_~h;_8Sz{oNbOuYQrRb-7Q3eMgxlWM5!^elI!yPyGK>9oieWDaC#~Fh zK)4O0`*yWy-0bp{1x6K8SZ(h+a`8?#shdwL+%G~h>Q&C6Nmwl#id~&5cFUuI@k(^;)c9&+@ud(I zK$vf{TNyAi@dfb5j;VKh>Iu=UjFOpMiLDWnRBk<{YP*y!>o!MU}Yk4 zYW9_I>W6Qv_z3dFlYr9*-@PRVG-g(v^;`izVY#j)ee`1I3+vjxqfmF-Gpadqqt2%b z27-;0M(vM_MTgM_9-NV0G0_vyyz`&Fz909qe=(MYAeo9e#DuJrHy$XL-rsF9BJ8#k zD<+IQFsn=mQL*dOFnc?SV9-?_mQx8_fl7I8B&?+>$x>r0tE)C4heTVt&d0{T%Q`BJ zI6mvSY8%osIMo|}>%LK{ewPKYGnT8VwSUtq{K0eNPZt)$1Xx%J68+|Ua6t9sd7|?D^1{!5=Y8(cf#}5Axq0e$G+#j{!k0)M6__H?aX19_rP^ZsNdu-^ajHA0--|c^4 zIh%0IiihpaLgBEgT=em+lOVsB#&$2POH*$vJwWArbCdXu64RvktLlY}QOeWzWV&I$ zt8*GLRwYeEwk?i31qjN1t|Z@Ev)d9m=gbG2-D8WwNH5;+V=of8BCJ=Yip1=gzB=jP zDxX%T+~$X=6;_%_tK(z3I#E7YqkiifkO_B)14>%}NE02IrM?xJlb{92d4A^iVT1Et z=S;Gwwp^gYV22B&D1jYJ&S_4uOhqPqpzn6oTV|=h$hWrdd3LL`7khHcLg0zng;>oU zCRnuZx!=g=e}^ou??t}`OMP&%1Usu?j;{hVIXJ20=|9Yi2B!`k;V0gQ^404O=RMsV zYD=P0x@pn4u4=O*h5!Z0mZmfJHFsK;rB&5s^-9j)%j#>7dYo9W|M=VMc;TCO)|sSS zPQ~h72d$n<7Fo<2leIk=C=FFcurzUyu{ zx}PL@WO`(R4dQ_BKnHjn;}TB$&w&s!pz2_1Bz0UERmUT%=V{>>4ac;a2lCu*Ub3W!U~;o0avP& z;}xr7y3kiWk$Uuk_Vq^hN?Sn0q~3{@`Z440s>%%r@;{Ij&wRp`TYL|Uc3ZVRI&8-S zvybeu#d~)DaB_33;-SR6<2&lLyQ6u0*#6Io>Lrd?`Vqu_Q_4cIkm~fe2uG1jcJBOP zk^}l3>iXn%2*Px(wlNx~yz_(@bG%}K38?Jq^WKkkxFSGN@FTJ7+6_Lgj!wC`SUCWe z2aWWSsUIB;@&TeQzClM#IpxAz5`_jDThbe~ zdlQ6oWLUe?*ESqMNb{F!g%{m?gZ?1f{$QOQ!FhhX(c)JqvZRl&T(iriB$euk@Q1A0 zYMRf%d8#&|P!wbrPZpx2QJ20FcHmB3!I3?Oi9cM$qa%{rW(!9?b!ar;jqU>fikZ3k zCw$oOg~6lnI1fKdhXfoNbq0gF;u4-n)dV*FLa|@K2`YwOcp9QoE|FR8_iI(c;cU{| z?F8bo2kKTg{&#fi#557s*1A@ISVHMM7;4vR$#u9FBMR?6#{9P{1R28{E{<1ZertOq2K2}dPzP#4z z)Db+R8QqwJldC~P(D&jt23t~_{qhDGPi_MQ<6xJwwUNRowiYj_?qVL|Hte z{Bz0Em--EAxU*|+7?p9xGU(G4f0_hfXP9I5MKCnkymLPM_Zf}SyVt_y9-Lx7JPr^Jh162_@Z@J7EG+b%nNWQXajg{+_jB89uNLCEqwZp+V;{; zo;m!cBhQ13I>{a{CHi%gJ=Y6${CeoYJmg0ROFulE)rWn^wZAmvu8-9g4{p;dT_-&( zK!dh)wKul}ZjPHc1!|N_w;;Zm$E8NX<*_Uuu6Diu18dE*>V~PM-_JSURqS30r*tLH z89xaKM`Oi_>7*BaG-%GG%g>(q+s50d5Md^~_?WL={}eB*iXPJ}OT3ncXrS0|c{N+n@^b{YcskRES^Wz3{U zXjHkPo|79k^`^AFR9t%9ZiG{f`YA=xZTqW=kD_5M7GKlu?#W2z@!6jX9>4Fy zOpL8-q>VSdH9*UBeFtn2IT$idhI)c8l)o%!SwN|*4u;YUsN1*O7G z2)gmQDL|1o@ZCa;=LI2ej7|b4>guYtCY987U#Xt*QyV|fUzgYjn0krSpY^-baE5xVJX15d=uS0B#Y zV}$I;IDxM^X(Y@8xyl05YGjJ21nAP@kG8Ed88aR*(t102j<=+pyd#A~ISq3el-`4Uz}l$twH zr0*?L@p;6XQCPbZLb;Cdfxoi^a9PSELRXTVc^BwkB)&>)b)I-C4H?tMf!C8!ulHLg z&~2YbIL&7&Io*@6<8a2lO)VvVLoa|-RUI(_N;lCeMZX&zPTo;J7d#!kNR6w%rk-t% z|H8$-K*`iDLSAlT!W6?*79s?6{rEvncK1;Qcf+(^R(N@vTI}X}phrORyhQ!R-!gE)SEb!R3lY~jL&2#`k*7t@3CA0KmxEVS!)kztCYZW7fxL$*4qbHD zhzbS06A?Zrm>{i&ewl>0vUcobM@W zzSskQqC_8hLg+ip3Q6`Bdui8HwFU&8T%q=PzNbJdGcD9_WV7Sr z=%yN>lCWC)qO%<1R^*I0^P@hpXLS4?q_4GiPu#WGnB+VHDBm+uJh^}Y&K;E?f2zWD zOvUDwaspzQL^x}zA^oY>!CUZct?rDg0E*>|Do(zMvQUWqJ-`%J=dhe|Uw1Pq=rU@{ zIB>&w6CHGiwpBPszE(s5j;643K-s{a5=q$M$%%B}?U8<+ZKvlYai3VD=wt65f-igK z`shTlD1b^wm4>_NQnlz(wdbYy^ z7%RKW=y~|jf0M-RGi>b480fzcWE{FU$&nk^7tvA}D1lldEWa-Dy2(W4;n+BFGLJK+ zR1@|E_k5!3@BuAKS)|OTgWroB?8g&b$|T^}7yDevJjeafLxL6-G>n2_0r^&U<^8~T z<6DYnB{)xpvELU2Rg7Rrb8{8`elz#TM2N(ckTeCAvf;hqql9&LlUwlsIFrMT-2nQs z=)$C266w28wH~BdqQYtYIMRh3{F^-PDp=YUz2|;k!Gd0A9#Iqt%chYodOSp+~j8Yhk7_d62E<>4Fb3I|uuPBbSB^nAmiKzuSBz^T4# zgQcH?`0-520WUv6nU!%|E!B6MJoBh*!pL~T-tDSpcInmHhs=aRb=5LxI4a?P%9R>@!8c;6Po&?Vkj-5n!nUiy@|}_}cnoMR5oslz zkqyM}Q(0w9R(Wivy5g*5**N#56BRJ+v{)gU?ok`GHdosg8gpFe?5Hj_CdQ{{*g>U& zL$v&_oijJAn`hIOmN(gap3Y8a(Sr5;9Q|Dx<2k;UclKHxCKJ+u!%wDHg+);2B8T#i zml7YG6r_4zJ^6L>Me4-lnC}C+_mlS)>4oVeb_DXAEc4ElGo~wAp7om4SNq=U8baZM zKWSXE3I0f-?!*d+=ES}2Qq9(m-oTjG(k7>FcSug=+Tr4c?MH)jus%e*=+g92=C81Pqk%u*`J0b*{u`e4M4;yP$ztJ&x6>2T;Z`jntXB+K5-r8RT z+Iy}ok?MSA!W>BQi`Iy;4bexP7yeEkTFLG-6!;su3?jXH>DFiWOylm_k6<2(T?li} zE5tvik7Ce?Y6>P=PRYID#Y%c-ZZEJ~X>u^h|JJt=6N2eFa4$F26}338`qhz3Smp0E zN@H1HE%(Yj{=q4d@w&dG^2&Hl%Ij*?E2BEa`vxT&VC5i%>1PIsEsZAn$`prSb7dN) zFo(62_R}`T^(xTrxWx71$#7QwFZHKqYeVdkD;6Wa$2v&6$^yxU%W!A}5}fQpuNm{y zNhV$}No5?oz|n>@KcnxOD(;an+RM{li=I*?$07zb>lLTA$n$^1?-xucg6p8U$Li^+iivI8Tl7K&&iA>TmN_sD5<*vME?YbB{I5oiU0b4oh_5`kZc3EBK|39%Z%c z^d$o=R0R{AH8#`D3~0xHCX3eRFJZa9qp!1#A)csb=JdAhZ)V;m|u?xP9&aw|K;o8djj6?Ii8fx32}93`=b--R&(Qm;RABKL3l|tETghC~`CB zAOOu=T@lCkx*aV3f@j%en%GCgKe5H6pjIFPf#7smqhB6AKz!8GP#7mf9Yf$bC<9W{%Rz+v89f z%T`__ugEJ0sAp?y<-IZ!AvY+al_vTIQyI9Bqx5=)^LH!vE++8!e$e=>V|PpYsdl?6 zRs|d6@vWRCO1x@mPEys^2$m%pPi;M8<1>)1pSYx-F4bvVc*C3?zQndn_$|rqHR*0e z?H+1ExO7U$ACYFI1DH>{?-etru3Aa)N8*R<^@XExuI?IiTcz_px3_4Q!n#Io{%chx z7UzzEouJg81YeIpUX;!Gf+JS+N%HQVPujX4gqV*mgXn*Aes6zFR<&b*r)_UZ0dcse z<+{0NHI09GKXCQF1{&c1AAPL69(LyaLh9go%k&ZSsrm;<>Sg)yHuT;`HR^@>V$|Rd9_T*02hKUtaa8)ja)>BrJP@#)gVi5WgmBzsl$Vr-HDhK z^{#jdM3zR;SD(*xniv}^GkexC1S^Yi+l-vWFZT>SX0QJsA<%oYQz1+AEsn)VuMr<$ zRB|)xD}{2q8J~XExE{~ZaQyKYkS_{!=dL>-D5rZ;v%vmDfbpJa$e_cYsY6e+0WFfW zD=Khp^>^W=_)yS?oY2h!@%_6(J5~p8oA{2}BJ0NxyfF`5S1qmQd)?#W=S;0#nZ|(b zb64+y%ipaXz@Pc)UC0GxeC(bn+YU*Eg2;E5{G}Z-Cx3gxV<9Cv_hF_kl7GifEcrN_ zWN4%3Uz(fDpl_`!73HGp?}jq|*1Y_XZ%cOc4QK^u4xACIhRPH4jGAlDja0r^V#z*W zoH~w0wr!`xmAgtM)eU1@4e%DW4tO88w4r|c?!_6hXqx)&4N(JOx*f79FSFUZK|3-*#+awz=m_oC%r98Qo`Ti6 zva$RX+qX0mVehL0RV%*JEcz9t52`Bl?^x zaQym2vGc4RrrFtP2-8i$sTz5TMds4_o2gxxp2N-!jG(8S>{9i6Y?6p^JKr_eIiCqo zOb~c-6OhL-1yevZA4>0!@+(RazFH#!9(oj1vyf-@mC-%1!VHZuiAuayK^P;N{>PF6iy;P2xY%swgq8}J5P#$#M zwAXdSN^Ytc-!G+~KCY;8^;>FW%((XV^%2fQchXSP`>ZZ0~^G2@3Za)9GPS#tH@rVzlAKrLx;v1WW-*$0}{hjJJ~5M zw1?veWI|mLoWOx0G(p+$Wpei*N;1c4Mu_wB zSRi!mO`9h*Cq-(xf7UGd*1%ebODw5q+rX?A>~QpQ>++|YXvPJ4La84UJHTOkX@$8e zlNvbN-E%}Uqh&lw7TJ%&=ElYD z>k-__r`eNe_dk9tFG>~9o6R#*ZHADGwwlMP>+rsv-a-ZPEzPBDhZVoS&Od)9a%D4( z>GRN`Rf|E#%gXeLGM*cG92kMfFs5}gSX@+pr{5h#iCu1NN$qMQhgB!9@aUbx=z0NM zB~jsMg3$iG?oy~Zv9#X3Jrg<vfx% z=`TbD@ocjXhUvkHIwl#>f{b6QX>G;EJoQDfN|pu6jAZe3RRkpZS&ChZ(iv%Yr|SB? z3^zBq78i@k5ajrLv$ty$r?PdB@KXo&S zkjO;EfA4+9>->MHI?J#q!>(NuGsMs(Esc~6Au@D#ND4}af`qh)bf*j;C7?7CN+_K} zcS=cjcMUKD?C0J4`;L9QfA~E-aXd0TC#%IvzR%Qf@77ziRc zuj5+YYQZ4Bd3N_Z0&aXLA%Lb#{pMqUm*y3K9txCWq)%pEFiaxf8nb#YusLE$?!bT0$ ziN#=rC^2F&g(z@pMEfX4w#JS^yQ#CR%e}yidmcsM8%qJcEGV&*$}1X=rFRWM08(Uw z!X_BO1{MLl5wswsg4*0Hx=rkLdwA~L&n8lPIdEgYm5P?Ur$zzZ_W^p;=5k94tUb!m$T_Pn7N2Otrs$;I%0AAvI%JD6*Pf82X=-HgWCAtm5l0EcOP$} z#rnelyUG^azZb*@LfgmA0P{D6)1^~Mr1eE2;(=bFU8Fl#D;xwdhqpE(fX43m7DVYq z1wKrLs2y91oUM-*h)xAtN7uUOyFZ|BZ~bIq>9$>(7X=E&Ts%s%88v`SUvJe+SBhUh zEP$IqxYS~9?Q`<+MXsqG$pMMe;M?nFnUNE@a=Vkv_sgZz&N)|Az;Y06ky*=Vp_??4idurSu=64i<@cd!B*e+fxC!Q=cxsM(q@oe|tSls~{=nC+~dGkh5b_ z;8bCOe0B27o)%cUR9cDq{Ub*#y+?%#trBMbC=1x3?Z1vDJpx*oSTByw5f;MlO}c;s zQ~8R!x#hPGBS$PTJ6~A)@BaX~w}i|ZQ}^_tPg4Q}+x*VM-~@NKBF(g2kpZ+qeaU`q zj-|jAkqQ`|jqVHgb-AN~1*|`E`TR+p=2oQFcTK*H=ITisL6=_Xi3-rfh%a%XRL_jwzKP^ib&-m03YugHJ@u=>VPcamjFUz-{tB=~lOULk95 zrkOS@bhuST?;Bll^&zY0b^!a$NhNSl`X+xM^&t;CL8=18GuAa!HCSlnnfokm_c?j0 z-@9V)Z=iCf4)J$JRK77)T^f5TS>xi2{wJxz_3_=s6liFeOwA~P4iB?gfbSnNt&^_M z0%n*X!%s~ZCcc!izhzA zdLa$fsjwY`6m8#jpqX zamTsVO~mHCoAz=&m1+NtV~^ibe9Z3$-&pCU-s&x;G;Gy9%J6__&5;R{MVji5`)=r4 z=ZdQv*UC|pM+AvZvw8%4i2)(sYEiMePV-ri-@>aqG6*}Z(vVK>l7Ld)*B_ixVUI<7 zst*Ic$!Azz1U9wT!jqVur7KcD^#jbZs8ywaK;K!ev1u=!BFCFitUEnZV&*a&_a0JT ztwVj*KHO(BH=H%U3{gKl?!bbVtkV&|S_wpj~1d#rbT5+ROFp_cqBrXrYNR4~A6Mu^19WS*`vN~`be-zI*~ z_QsY#y5#P7e9W4pqS*o!a#+ls@gJm<+-3AqSivm_@5ps4)~Ta&ViXX=^hX_ny>Jm- z#jxOE%%K$T1_-iy>}fR4eVbwFM_f!?~wTfX^-)LMio~24ZAW-zt7y0Way^SG)5nMr6e!;7q z?`65uW@++Xs}CX;e$14bFo#P2obY+z){44H^N`Tw!-!rF~+}tbcm1a5qSvlAD0a&fa4$buvmJ5_i1WK z`pp3(`Wu-U54O#AIn8hHJRPFy8FJnrE5cDs!}g@{POQ$5cA8Gwu}L|_$;T@~#P@o1 zI`;`^RpgdgtI>?mbcBZtU&A&l;Rm_DjZ6eG z=DoS2=wWcOuh9R=eT8TM_l`P5tTAvXyuqX;y!Wv=3VsOE8^2`Bg3?Im?EJA91@<3f z6+X>R2=C@pYPT$MPLyoAHZh7gEXGcPUxe|3hQnjNV2w)Un$`MgSoEiHb;XK+rl>ep zm$G=$H^7g%@iEsWCEn_OeW1qZ{9QFUU1URp^&wHy6xYh^Ic}v+9TfLHBQ;LE$Ng^( z3(sfM2_$zRqS zJ60hwo4`y;R+;BuA5g=Qx*Fq>&UfB8gueq;g~L@+6QNL5vGhwo6S5-Eg|^z-5)8Vi z@h9j#132!5wgsA*%lz6M;dUBwIl{Zfs^S?a_X~`wEhcdWU=JPeTe!nopjiZc| zM|jSQaT@VZ!DW(uX2JQd`(3Lnies0%HDBny3&YaZ$I7Qqj`4cnux0o#LD;hSd;eIU zU(%EZffv_0l?2E}CS~scljR0t7Il<)`}2$aBbm=gJ0vaX#d#So@#lshQ*TnFq^~>X z`hv_5!Noq@z=1?Gh47a2?9*G)_7DHrL0SGpd6#0^#@*x>5e`k(y0{%NaoX9;z{z8j zvO`I{-V?@1H#xI^jKdG(y^#-RKx}=MyAHmZt{2EieME+)!Z?k>%5%_0ByV1YI^rc-{`>~h2?=ZQ>j zJwv8Dl6WtAJlvWh>S5K#CDbAN#33A3Lm8Z0_%=Neb&>0Rk5hw7I701l`f263ghk() z#g+Wp1f9#_twad?K#8j0IYzA+VB<~S)6XMCCAUs$T~3Yp(S!FBP%{h5YrM{u0_|Pn zmFrDaregn}>(m`BIp~I}sCur=ifk`*UPo_nNc3Ffs!_!3>O#6}g@lVTk>`2hTyKUf zv*|E*P_Q}x;~2}~8Ta-&_D4nucE#FOX2v!JY-lp`SuXLE7Mj(UbEH2dkZZR zqKJfnh~Qxx8VGUk-dyLmFLj^bV2*H14jYi@!&Y=1!t+{{? zLX&=5DDWb;=(yt5w#UN(@VGI7Y}{kxagMl;p+NedHG+X>r&V7oU0+TqObHMlu8Eh8v_B13Ci!`}{g{O*p;#Z>U^-E} zBW#D&j%1Dq@rPh%eCt4p3C6(W@X{w4yS>h5*Ty{EeS+soBTGM@VGJLP9Wkd96m#F3 zav^c~<;D#yK`g)3SJBF(9tS>qC?X<~7eoYUd!W}0yRX&T6@ksN+t1Z|sUJ6?QTB0| z1(Ziby%{TRg!Sc2^~1n^DA1;T+j`ut(d(O3)Jm*i=}lyn19DR%t|_eqJL;RPz(VFh zYz_K=8n%I2WiUFgh?YkL_p?!4d0m345FVNsaDxw+)P3fbq}!Uzny^`=<@#eMPU?gV zA#TDrCev%!-1}k~ItI2`T)0i0vwz#8+M4WjhBjx)M?g47vWFYDh}0AI_P(+=crNHj zW6rzbUCo_j2a|>|gE(JN`7Z5Q{EEurf>h$*tD}A}gE0l^s*Fd6sjTn^uDC^gXWbpx zLQ^#@JEyzj#wp`YA}p9X0?_o>#~FfvTb+KnTPI?K{@VB8&NO#LRQJWaP4QX5eq>u} zb-rBAM|Pe*E#Lze-r&DVvGW`#1zPk4^F$SqaV|q&f=gJ;F@ap`njm`+?G%(VD(iPI zcaSM9P5i-UmY~8*r@$IQZrj0bN=gKCFZ}CKC`Cy{y5P0M2=3%l4zZxwL70Hwtf018 zkAFUrXA6R3Cg0dPeIH4dALZzZStb#97ms&~BKE*sKVmL`hXJo~Rb~!*oUb<3;cB&B zGG5Gv%$LeT6Rp4%tG5Yn+)*GBYIzJMj2>9fw*7;$Vgcer*WBpne%$V!i^;eCCf`pI zm7W^l=14;kg=K{C9yiy5Rfwg`0F&@r+dI730KqkVo>G5cVNQ}4h^_3kiDSvaXJ>(% z-aHxsk(UIhqNBvEft+;K+>iM2RukqR*xR=J!*j4SOO8X}2t3pR&Ft~S6AZmNuN|KnjM9n=e@wyvtN zKf$AS!l(u1|Ii_OxHl@=hrDrCA7Lfbco4WRx2}|J97{TO-v`|26bU7@C{cWr^>+)= zqP425IckeQh3404t2Ea9;IS=&MpN1PdmtBB65^@S|Kv}rh9Tm5(oH2%_DbM8Et(Zmn3-Y-;@8kS}y$YLz1ooth z@$ILrh?%EvH}W9k`Fe7?_NYFp@T(cR47nj`X((w^NV3jfs)Ag$dFqeq^+xhNBm}_y zr%_*Bsp`&)PW8g@(4qZpvcMvL$5${*3J_zV{?y|rCr&_M!n)C z3$e~4eKrE7Ji^UxlAv-NmcK2`-_47*F|&tk`IXGs^`0h9YMtGM0^f6O=9E&)9JFr4 zZ2Ku){H)o{rP|TsFQe43PhXp5fWxeCa1O!j2=G2XVuQ$GTdaI*rUL0KVxa>02_acjn~Q^)%tr`7DDoHaRX;H;1H8QqDWNj}=Q{jnQIOUkvGIGX$&2 zs2G#?#7XTRNtH`w$t?F%1%0>+GaP&r{y_$h;4YY6PtJ%GuviS24Pz1_xtoI1c!-3- z9w{ku$$+>jIh5=p9%dGqhzQ0H>zEj$SikwY-A#)K(&pJy6NiVlJ>tJb_vRT!^`8e` zd+Ao_GW#xV?)L&zu`4yHOsFZ%(9u4BkX5CWZH1lL#E4en6BZaXZ%kYXJI%T#bA9~0 z^lk4)J{^ddw|fCG&i=}wt^-LLIKqYd*~?k6&%Mg}ky22G5n8DPyq-Eh;lM6FdsHs< z+>aT*+c8>;o-R&Wm31A7CAevp9K!!j>iFq<#tKN$E(zr#+uI@flInnRdgS41v->-> zRbf}?Ctx0;u1$n1cM~@c(4foJNa_{0( zKLz3ZSEOt~V8jsANMa*D=)Y(6i;P_vXa)|TH}7tGU9~iL^sqg;v;WGE#o;S1>gl0K zY8zhL&t8U#cwb1C6zm97@Bn#6?jHx;rOf(g9C*k)a;jhYMwAhu>#jgl(R*V`ditcD zDm;Gaxzf4{VOi?G<~D4OQs(EMTuYh4erbpW#1LR2@wR8bP$McE1noX% z*K2d;Q2vhjW`^7Ap>Dm}GmxQ_cf{=Xj;3Dp*~a*u%f9yZv4qyBrwvk9*Pb=cQGM8y zu1DaZ9?7lLTSXTA{I3PT_4!WB1X_;$@6L6Nl?&Q?6C!8SjQdCH`GPMcp^m0+{RxJB z=h+R)%q~FH+64AzDR5**o}R3bIGAGgVE-IzoamrVu)C|as6R5& zF-Bp2^h8few!Jf)R2DP#R(||B{y*xlBi>s{Ty^K=B1R*-IOca}Fwrz|l4$oW5)@5c z>t2g8N-1XE-xiwmv=qo6?EOX1*c{<$G7EA$@$^{##rbkfogmK;J0;!I9fyJu>RhTZMmD*6RhW(yVICyp*u+I@r z8Gp(4R~R;c$?gUG2#oIfpkby~-l*)@QX(!Qsn8!ASViQn2RPp;j4!^TJU7nnCTxaW zHb|WSStyjoG2A6hK5)M7J_*VYksN$#A=`|a89FV^jxj?N9x=6xXCp=|C}wV$Sv{|+ ztm8!NZR2|*VrZ=st4(btJA;xL{tB{x`nift*%a307C~abt9uw5pEk4|v6pmE(c|XMvfS zW+Uvp^sDx*RRzQ}q4gDsNjsS*mRp$dH}tvZL!Z&n_X;;`WV_$vLjT~KnpSk|or%if zY9)iFmK35!Ac9N%UHbWd9GYHwu%bzgd*e5HQFnn=XaeaXuBO1hVoP`X6@tUaa}O{7 zK*vr8f1BWrUT(KUEE*?|f&{V08W0VeUVG^eCu=oAUHm$C*4B}^n(-HcE=;x47Mk|1 zQVfwqnBH&(ZgzIKz5E;b?R4rL^ZXE=sGC&n?ojIyKJKo-QLc(af^$d7V}$%zi%mK~ zUvk8$Qm#~odHd-CW8%>n=Al&CUrEQp*IR5sB-=$<(`lK%H!bUz5N{9b8D#H`*FRyx z!;3>mu>ab;{oliVYzSA71cJj8qr?!barv;-5bwtYV_1)A%EM;|>>3UAf7;iIhpB9@ zVio*eVdJM!_l3O&HmdB$6{J|i3~e*xH$r9__?2zH8YOg7EYtaro4;m`}&UcU{h` zLc{A%tQiOAYiY;Rcm`?jJ0{?Qq%wMl4UC{p~AWj%2ts-fTWp^F5T}p+ZIDmVBZNLI+1o4%E zg;poa{G2hE(F!%tPuj(2?#FD;fMu|prB&uc9&f&5)5BFHmv=TTw7nJa)_<{^7=_kp z7wc%aamTES5^0RW>j4hMU#k>JRyYJ|3N*O8Bx>ULuo<4HJ&%+ zuI&N?TgQKyc~?XrqoIG8De_IyMlKbK5ZcRFA_9-x4bA#GRWyu3H5hNNT0V;9!z}e| ze7mHsGNvR#hL$Hdd%mSy0A5&K$b8_u7%^vj0O6ewcfr zt?<7r01hD1q7JPxlg0U#UxDXYgyDIbZg~a**AF5RM9yxy|~{LEU-PrFv~Xo*S|*Y4gQ z##Cfeo>bP(E|$TqltuXJemPFljjDQ@#hAH&mo8ymJRx`&{5523Rm|@Rsm!Afp#EdW zuh-3q5e+(jDL&#oRu_fyHl{8hApfy&OBP*VY{|Ex#URehF({%3uym$Ey4ufdPZ5vZ;DFg^>(m>|^aSS|oavlusJ>(6F--0p;(LHf-YAK9;-_Z(Q63~z z%mVwOx@FdieU)4NoH@{m{u9yYvMlIwR0eU1{5-4=5=neUdy!cu?sqwOAe;NqmP@gg8-dAl8ryCmVq8EG! z_LW(9aKHG+JNgk6a~;Z7LMRzGJ&Y5&0kq!b;mYMNpz+7NowB$yyaj;BfZK1&H;kWl z3)6P~X5U}@M-U&}=Y=+IJ`w(QI_SmR&P(M#awiIs+fEu1OI6%us41d8`Y2MNw%hP0 zJu}P5`ZLnuC_sO&yiOP{TSFG~~`$ z1WH}MsN|<){B0&nDH3{y>9H&qbKzHRDF=Pa_GW(QFNxrnfjXS8R3A5_Ng`qn3rCB& zfAN7s1ZSUOqK_Z$UBtg>UtHC-NznwN=9jgX(OaVb{H1UDUrem`!WRSoW00gvO4YAs*yJC#+!11|C}<{T>;9$N1&D=OTg|L3#y$GYx~W$U>_+ZWhVX8s$74q314V-Xb4t6dWl{HmpZZzQ65EB`oqW zU9U(qqS~( zL|f%#E)--G1Cic=D$D0m%N|D>6oiPeF_+4UUmMGv8J^xwGiI_(r3ZnZK$zdPo=)Do z#X~L1_}>l7cuBzh-!F=5$d+3&#$95W{LodI&9Hxu5$pkgqsdc2mw%2VHjGnuYIlu= zM$m^nUOoYM)kP~UqPRT^6g9~2@pH|)bCgMmX0k(K1q4wmXy6C3v)-=Y%BV7-S8%DN zA`jK-fm>7SvYr6^RoO6=3a&W{_*UxNN>t}+$u{M|8+aL%)6**MgWgwpTEtZ zWw$k~`btV;G0pP=2CA=E{IF1`6&>_mD^rlw8b6iIqh{G|L7Y&jXZ~uO$Lq=uH(iBl z)Z7T!ce(Lqs*_?W%`O^`?#J3LMd3yq!E&DZjL>?+3roZrKAV(|~!uRQdw`+pw%V9O6q z`k%f3lcT)OVk9)o*WcW7RImy9qb7E6h5BiP&mkN2n!ah&Xp-m_LFO<4Ul>nl zv#cb}*0o5b*0>Dxr^g1-7IxB%)aO}HNbXuX9(l?zGoRo(-aI#l-9oEBCn*sMXI_jo za;0N;^2;%b9+S{;u=cD_4t zFPb@>h^;@~4%F3fSTWc>CLdTOPmpZeCB?dy9iKS-nY-{S*Oau8Uo~`D=FTy5$3?QD z<@0;XrGOjBa4%`iH~8iw>_Yfe>VL!Lx9DWYZ49yz3+>#2bX!jyxH z-`b9T2Mu-GLRBE#bg{h}Tn!&yb>fn@M;(Coo-kPSZV0wUz%J$$Apb}OG9;2Hbk2^W z9b6MD1&{NU0@FcW&&4Ks@9LXFZf3!z)VefRH;EQEV}@-a9X%m#|5aK9WCe7biDF|D zW`^}fe_QmCp43M>W#`+5?W=8$AIaE>!1IFn&)o)=Q!>46o>Qjq;^$ZVRWTt~mI?P- zt=S^q|8mB!Fqx)G)p0})p=1Gy`aQ(sg6TSfX~K`V!tJjSjxkr`$<@rm4QIp??(y}D7 zIP*uDy8@v(ztjpj!4VBrYHRIj{o_(ay%O?=ZTnseEL4}%v#)3CiHDg}3AtpbDZt<` z6_)m>Sn)a?%EsKFjfSe7?3awu)pw7pwj5^dH1TH5yjPvOw))&`22rx zNu&ZmJ}8*k?X9YfU|cNRZBCZI_0_5LYoP^tbArhUzOVqd_$R>&Ekldv=ZnQpJB#KW z-0O+QGszpNlDuhwIS0m{H(p(nRPMUSX#L0&vj6hOq)@G)z{!!YKltVZI>~pclYnb5NvY4&u(h&QfvQtk+4m(2z<9K!^#o4)JAz$)3v)WhV zP2aQDY`L%&r*?jo6>xDa#=?7hW_`pmBhFv2bW@#1d)t81ESuH!8h#6o8R+}0MqD@pw*zRlc`3Ss%3&G!-Z0>U&B-UY(ids6D( z?Fv2EziP<85V1AiH~$@JTQ2)J6e-VLJy;T_uv~`84KngOJ%>PA4U&;qAOWiU`_vl`l;moGiY_Jhd z&;3BTF8+D1;SseokGDBvP{>#`kE&CA;xCn=6eu2J*ze>D=a*ie6JQn;FZEm0V*}#| zl-Fr^qy4>h92B41WY6*zEw z8vy5!bqBPX*3XPswK7En9d}g8uG*a4-*&XL15g%&|BL9kUhcMZR5Z(y^){{YzkMR4 z9&DPV{AE#_i|I~XFDQu@YQcf9ktlVkNoR_r;~;4ezTavNR-C+3r01oyA!&>=G;l}TUUnc$sZ1M z7Jf%-3jd0wxk@(oiJ1Npl*3;YgnEs5cciQuZ}dmGZ}B?|$h8wTPQDK3MFO)$A{O+k%Klg2~okdlw|9h^_nAO57f959wy_qD|I? zHZHQTJwxKtcLO~3<3&LC<>@3vya!0~y&NO4i47|XA;R|jhX|IB9zf}$)nvBp7bW7lKlnW3&OmRPjK7%wwr z1rF%Lg9I0Vz}63pN1ZJ{k}2KG&8GXyR$s3!>vXo&&8PW{PPXE{!s%|s{W~4y_9={( zVDa+pLVWHio7cmw?{krWu*wMdyHyK~tJ{ILE@k)}UC`S@&nK?&lI3JL=Ak-E(QCA_ z|K%p+?RZ|%YCT!w+xVvUhouIG1*y4OHNsWXOwL}h0qRN}F-}zTjWFU8gF;untbp~m zU__Xg>N7^w23QG`$3RF3IVJzq{xGu~Y?kM748DsMzhyFRAIEszQ{DWIDu+(oEtDYm z`@D9sJ!P?qX1ypec-@#Z&cqS-*D z$RiTge;jk;;m%jF|Dc!#=UU>;&wI?CR~KIi4!BIz6bLQ9a6Dfk?6I7eqi_>>KtKEP zM8o`sV2DX4rvJc0_58zE!C&+*Ph$t$!t#p#IjAX^Tbk=Vrnujvls=4OoIk+&9p?Vg z0`~Tuc7ib9YzLI?6#?RMGskzfR^B{b}Ny_v{+XJKOXqrZ)vf{z+pN>K*OMNBO zuRhX(*~%BDWhBivRmJfO9^b-lCfDcJAl4BUeWF7-Cs|}sowY8CS0l%tgPJ%VnR>Q+ zI+nZ|#TcKvPQ5jZ$;~18Aq#D)qezFR8w7hfE-(+cUc4}|)!$okdS`oMjw)d!?g(1B zkDSs^62~cwm=aqSIjUJ>1tU#jw?8kLG)#h|7wA8a2a{t{lKH}~8QSs*&aIK~$;8p7 zAm>&liJ~8oK^|ThgCY+Dmk+63dW^CKTgyOi4PbwOfgVhcuNO^(ylHw}0?nDlLn9l5 zt6-ihvwtikOHCK10@bSfX)@#(#PnZ!!Q_uD(mHVqMm@n*7OzVhtqj{M55OB(FH507 zZ*h?vj85fZe{@v{sv(Is`$;1b6Vfcl3h~$wIELOzD=aB*5Upa8Rc9L%gXWxf+6$i5Bzna3^TlqPne3XY|FcIM zc55iE$7Kd!pG$$X2fBEx$AU8uZQO#frC1|;ZbGv=9$JDKWq3vjpKRk#G?D8=s?MMC z!X{akEQQZsk_7&5{}dzD^X%%^pEn@1H{Xj5G%nc-9J5#0T)3f|7V0aGSg*VJ+24tr zFkQS6j(TauD)s>jzcEZPmrJP^0d}&;Ot=6z#QG$Gm(lH&P}HU)evm&;OwtkaFIFVU zzZ`{hmJfnHgmEk!GLML^}*)Q*8YT*ZBtN@`KY`aDvX0X59j zz!bspQO}supM#JaGZeV5z18~zw&ke@&Qo%HJO7zbWFH5>9}d{5bDiAcItPUBcPU}P z!^Rr8<#7tg;n0SlQ{3i$jlG@_`LVG_@x^R`z+R939H_1D5;$U!lSy&>#HT?*ikRED zmznCFU&I$vb+!!1P#a*`=tVitF|g=Z?W6(7ij5wPvo{p$MLHyEN|tr4v*m-^`+L$~ z?F}{fmhidW#-OhYEvbW;l7cp>kaZoQBq_f*L-TLtYzE-OibITXY%LOkv z8A~dzvW-v&cepnJngp=&JNlx~6J6(Ql-=~HLDlG;W4!n1d(`EPg{}=FB5&uA{=Xb@ z3os{^Ar1n0kDf%m9q;&0L91?26OcRaXo}e|tqulR{)54q$iD^3GdRyiEX#;LdWVe? zTv)vwPM1a3SmueB23V!oXw6LSZAVA#7x{%px-U=*5F{-JW+@ z_6zriHB#4)F8>sIvzgwVZVTX!!QUl6;C2LVUC_&{2?hlCAYFE0S?XL$IZQZ!>y*&M z{y03cE__#FttEZ>N0#od`=b{SfoJVigXbARvHd zOgXpm-S0_)ujr2h>QwPtXHQIOkM9#l%&8aL;4s`ThxxA1nO#iY6-zvr`HzfbQt+yK z6A@Wi&}4V+tfuXtb{PX^+*ejg59KuXEMA%f`4E4$i_|i?F9Zr#T *fc}kRb z$SEXE_pdP5(#(1jfy4o4CsD4! z6IU+xo&>rxSmA~SS|h1!V0@lBoy!p?`ZLQ`=mo~Sk1!rGb1BdjMS|Ar5Z%J+;Uq1b z_vGutyl4mln)YPk&my?uF+T7_8-g!IcBg6NP3;H{E0#I_@fJO|q@TVO?hS|f0%W%b zM&d!Yhhp*;7S`*tyjY{;6oge59%=uLo_mj4=@8e!DMBG!Qi>FI z6_|#Y#ecVCklc*D8@j}O?oeRFF?1S#)M+XVB>6@Yry2V_6i<9)-pR zO{vTst~q|8ZOD1vTMm_~9X$lumAK9i3-VhMJ0oeAW?y8RE=p+#m7_0BCVERlh)&yJ zc`scd8spDaP2CUhswSwjc)vrrgH$nSYoNMdk*P>ujR+C}?`nY=<$bJPXk0ghS+s{c zhz`CzK}9TmL608uY0d1d+V1dDy?r)07d8PEcVEstbl;g_z@|ie*Ku{aUvapvnG~`m ziC*zM?6JbGhp#P!*Aq+j~az%7xEo;XCAL4;EXPulu|TmO zAQpyyn-CmAdRVJ!s8!h!9!}HAe45#Ge`stwrHgJ%tH7TD*0+UpFrD<6hYGtB0dRpQy_wNx9E>4!3SiP(l>;bLGBXk2S>xuVKJ{$r*$0}wr zLo}23`D`h3tyYI^K#=3-U2m%2__!Sypoy|kY4Mv12n9lBl7DCxV?fpf1v%CSJG$`; zt7=FiNdVfcoH;|A(i=R!GIux#)|5uq5t0~gL*f-|<9LFXsP<`CeV2A2$ z^*ydZngbKI0v0_2e^%rofd+Gyuie(-vA?6gV*^w%0~_|R#-3|=zA52#y2AxBO+5I6&Q zniFJMv8}HQq1@U+DcQn-D1%tgq`{h4D0bdXcnk$6Db&E}{#z=L9Cbr~iXbT>wk+YV z9PN}e`Pfibeq}Lx^;tN0Cvg7KKTynGorY9GL?cOxAL(K^%;Yb-&=w2m0D}|OagJgd zo7-H!Z=FsZ9?GB9FY`1=`k$K_PtkU5q#06$Kd*SFYu^&!5QvCq2>LW?ifKS$LMfg? zu(O<|QArSpn&}~34$n!!+s2zldSVuB;rg#8$B|R-ed~Ta;4|{K>jS=+t%r9pxjhj} zZCnq1D*7X5g6#0=>tUcp9n1 zi}q)B6nZoP;XlsqOA`igFZ$eha1*Ls*W*|otL5{r#sLG106ut>5IND@mP9J!u~kTI?f-g#jzB&Q~D;>h`-1&s8+(9@dh(Z2~NCy`1Tb>WzLn^8qR|mV99F zE_Pe1AUH`%8VUFPHIw}!Lk8A~J9F=>ij8Lo?yT{OS!JbEa(j3Q_(D}x#R5>C*xNbq zTGvU!BpXofm`w9CV>!O1JtnuAtf`{C6&P^AlQq9@c0){Ok}5Bousf_l7&j;E=5Vx;HI1;}&CT2)E!| z$TYaxBV=M9a;)f1Y?(L|w8_$=N%1?Sl(j?W3}nAzY6!yKcF~?8d5zWcB*bmL4hBh> zL8bvu%&7xdK=i^<)))O;?%PfN`|{z&)&%#57~y)U|6fS40xWvNW3>#LAC>Fd8VNOJ z%;X47uUTJWdqs6U@RkjBUyFTUX0gm5P<6z@3gFM--cFcjN(UH!LtKh0w_MBDm(Jy$xN{Dn`X6W**RG53JfJWJUA@N3u7oEuWr`n2IwHk%KlXm}_A z>d_lC{abt^k5TFOh8q}3SR+=%Icdi#3J5tERg|He_*)&#DEV}JC@?Y7W0l6p4<(sT z=`I!|{IS$hZBkbF(WCb-g{f2RQsna&++tY2V5=%1o>2~Qhg-SXa~an(UQ9~MER+p0 zj*mexoP2XFq`Wbcl(MTf!vludB#N-W0)LL7U?bEh+P6XvHTya+dZDfME}%?@>e1r? zGz(7BCNLvj&T#`6&k&e?;^pIWX76rc&!2N+wX;X8o!^Wg7p~yUd7Sx41oJXq*qt(* z04#b)oY!Xq2owyW-S26s!W%}PCc|KXtuD(lL|_%MAfPpBidWCK{dAo(43FoVqSRN3 zP@u`p@(M;vH9`vadL)3aBoV&@x*2*MUJOkhBSNYk;} z^z5K4_b{I0aAY!IZptH`LC4Ti`2}#=bN4GfA3u@(4p$(1|21BBg8CPm&9h@@DRnV_ zWf#dF!f%nKGJY9ITry?ko-u&JU6+kbtY3u zkwq$rJ_zw$El{)R-W3I7!E~Dvh3on3%%yX_dsrM~?e&s10l5&%#bU`SxZLQU246_} zm=NE&oA8#`9dlP6Uf=hOgasw>-eUg+kJv_0(jcB-Ks1mjB>)=G9~(j0yh*{b|ENR@ zH{3)iaoBQ2mkIiXfyVYv2Z5M*yoClxZPala&0#xAE@z#bktvl^YZ)tD#@&%O`uZ~o zMAFwxrZiR>NUBm!qNx()3+7wBhVO(O-L)9szsT5eQ>=`>VKZIsL9-k!cLQq+Vz$@Z z*}^hsj_@}Z8=lUKg9+b7k^!VwB^Sm=(pyxRrtlB)EEODR3TN6Y`s@C zm{cC$d5We<zL#nj<<2k8?68-ru_5ibm6&i$-4nfI*8Lqwj6E`er*Vb64vIbPsA zt~-4K0@!&%CB2Hg?o0UjYpj+qQw43j?Y80z*YpOEksMXfZp zLJlI#S5AwP$~K+=`TN(rP-n{N*or+ZN2f_DrgL?Tlrp>SC6rF&Tq0f0u&GP zIV>*n^~dEpS_%)DhGx(nCA2;w50<@@0MY+`Ns(@?>ZHLu&EmGOV(gd|2#@8*-Y6`z zUH<>JM+A^O7f~{^7qyeoS*9u|aR3ssm-~A2(@mf{Cwu2-#DC53&VtnYRH)wpYgE|HiG!P8^;WO)-@fj3z1USf?b zl_}+5{I;@kA2t67eDW8_TK3?eB65)Wj`N9&!0Fc*&sp(8_ zQ7&1p7UpRcxY8s*_O4t`UU`eamd;;otXcLoeP!0eKP|VVaQK#0IlfP}gE>PZC~3r! zo*a6`aQer`*q3XYX-jeVGYk8RSULs5ooxE;jZHPbOL1{yp@K02f~M=%7NZOj`zzy4 zTn^uW*F`E9^6skRCM@>dLxp{h*9jw7L2z8 zylnC-gGm06RcKMzxc4#}l{)d7H^Hhz+n1*dm&3Hi(x*puMC_C@x536^Bndypp0J)gH=N*hO|-vbiDCuAD>E>s_#$IK2- zl8&IH1E|8_=gFm=PR;6cSu{CW5&-DsxNr36rbz!bCqb!{vaM#srbZ=44{zHy z?{#PGRYskc)ekN+P)3D&o5lWlc>E+lRuV(Zd9{>~$*eKt!jM8hGGBu${hoPsvbC|& z)fDG#EPi1@Q)mIu1Pf>#ASn4E}0N0bk~lwHYX_5DV*UoE(u-og}O?+nE=k8t)R{JwZK3IgU1v0$l|`D;aA+*MmE)(Eu7^Uz6%I7Hu9{ENbkImwV;MVN z3lzNg(xULeyz@>^fw4^)7<1hgf58|wvoFeZqgU#Ta)CB&#ENbu%lJ#(#%8gEYkIQK zz^DIZi$0^w;`A>8PW@NEh+`rDhpx8_i!y5eMd=u7=JdgW*&))lguIqf`1J^T8taYzDesS+5S3I(rJaq$96TZL{ zWat?pMaa)Qu-i_6e{2h_CAvr-qj!ChGZ%%(gClVG_i0l9Lf&$GVkpt*?Si?{a4J)q z{<>c zV;gSvub>-F_a4T-^4p8vrKa>TqJDICPxyPo?~d1#mFLg8*~#=t6*4!bMo9HNBHI^v zJuYz5GksU3_duw;rEUE#z0=^Q?ZIKS;O*kG2Kuk(u~zLY0#^Ug>IfwY;|}H{oFLSr zzSIIX9_X1wH`q5A2Vfh@WVp`FP)2#7%pNNUHK035^0bOuMTpFWe+PM^dEzVtD3UXA z?Y)Ta(lhT1w}n84u!0ZRY^Le5k0gvS(z8|ji<$vHx3>52t>^bAK*WBv`(}}<$H?WgbTApx+xB{siO^V7CeqL*tu737Z7TOGV=*L_93n{3g6{a*zYGvburt zg}w$6e6dOj)WH&wb9I8j%GgEMDWg~Z-TPW%;TO(@u@|rYMumYh^2D1}HdP zTb(cD?B08yFazlxe^ zc#NH#8`sslH>O*+GycDB0?ig0&AeTg=Duz}%#7n_19=2SG6d%pw&*an#|EA1;MJj2 zD0;0p3lgKW(@kF`+SiHx2l>Y&eY$6faApFof@tm#fukYr7*pQSs84j*omfz>R( zdgqz|24r(u6TsbHJtD!a69L`+H-WE-_+vaQ3eh>C*!M=NsvQMveeqv5G7nVoqCojF_a|vd0lvRNpsj@DnOwU zjd$Q!7brp*dZYBH=a6P)B-vML&^wJi;?k!=`!fgR3hnX}S5w(FdjXn9$t4>~ zk1T@Um$*LD%KR4p>+9eLgffv3Xyr#Ue&U!P?yoBg7JJ%3T9qcaR)rk5B=8nx!gxpt zdwZr?Z19)+PPkOQOL8WqC=2${CuP{Ir}l)#VM6t62Jq11G&)>Mz|rdY2!bXg*p(6e zMY5br9J`Of0f9P$LHzvS{>AIYdiw%j3&z8lgq5WIW>-P6fF|TjB+2}`);MG5XKAaY zPSO3nIOc`J3_dUs82IR&?Cp^9ySnZXRfSU31!O|ry5X`Zp<`E!~^0O%*9pn`7Z zW=9Rg|4^tsCI%<|O65&Ed4F(t=n`xzJ+fk#VjZ+R@OYz~*RCYa;P6e+j;(wF-@U6) z7ZUrIUx*j%c_362@~sPuq2RF>5ityvQKP8jerk5>8|dW{$x9=TyXuYmDjYw&V?qa2 z80vdHl1ELv?T%KFtv20t%z#o;>1mJoV!QWG2UKa8x*GILPcSno_&xy8eIfnfGj;Vx zxyukZ7&$G62GMIaH7&*dDi=oy7#dohH)~LiDVZY@7r{rFPAgPdD~++{g4y3Hz!;Jk zm-WV`6m)jB*E<**i|#`f3HTg@O5fjOBU3YO*C*-R7`qndgA+2E_@b<>+l_r8=Yt=Z zZDR7ezjGCuJN8t>9OF5UEgLe3=cDOBGhCH!tG=>&kr9hS%`B{Fhy_4u6fYzjSpXBd z+cqHqU~8+S;!?9+66O6a5ejf#379b>5M>LdeFLYjVu6vOzd5~cniNPYK-zAz_59{q z(eA$qWHFcP3FsuF_UqGD7>G>NJCNMKtGKc~eb8u#a2#|Iea6svS&wCl@&5IhAm#1B z>vO3HUZl&yBH(J{ty|6>m4ZSLE2AN>oHTke#iS~&44Y}BN%{tocqw(@GMiT%@1kvz zR3!SvH9`8Ht@r7~z9A`=NnBTkLP7(r$0)I|UjQaWmB**(=wna}+e_KkOwSZb<5@2W z)SXN->OAo_+6-S4+MCb5u&~mdfL6yazSy?x=+DJ_8FM7F1qTak5%Ui*hp6w_N?eW*bUq(j8XCq!> zpyRV+oH<$Kr}y4Ti}Jm<5|(3dVSk>YDq?0tdZZg@W!eIw!Pp~S;;`5?rA`{0{YENG zOv!W2s(s+MA!Qo0olaCJQfCWpktmyZnS_`i6nW&oMa6G3?Q$)j* zPau;aw)yX;tqJlHP{TKq0ZbN|)U+kwH!g~Ol3%H%BY+*E2nUmmXubLJai4R5yI$nX ztSLhuwIh|^ipUfvJ6LQw709M=Ut69#R?6$}oAA80v$>v3l;_#>yTi$+nU)Idt*ezN z1^&x9j@|!|uwzrRO~Cy0GcnKl4?N^iWq1%aF}(xE?}dfl>c-_5nWHx7zA5Q{VbR>; zM(Axv9Vj%kM7c{77u!P{i3PkAee$~4wPO6+ePS{s+HL1=w*it4NsoCJWtDCKN>ToW zXlFG_uNOH$W8)s!q$31#)_9@4)y!P8l$?b1rQWw8vn-yvuwgUS?>8aeUKxY|olB)75d$%TAno!?H;`2|FWy&yYq1QX zE8-%wNHU5%xB==lPw*Q7%EN{tqnaFCFWxc68NhJI{iReduHge(VV{yV5C#oyM6QM@ z{eEy-PGfyG#9SJ*`P-iSlKI(E4rxQ8;0>UXRA)QDx|)Vx0wfAklP=Cbk(Fe^QZbg6 z<_fpU2~XxY{<;|Vz?sB9qW$PTJQVQqUa~CwW(!a7k&tzVqN5Ipe{tXnHA;GHUSq51 zBpK5uWh*v?{^ZIsZS~jUi@3qm=b&>1Y6QlFP4eb99=EC`gIp09Vv(7GPh6^4JwDPT zC$Ns(|Mpv3y`imetySudn4`6IE%HLcvR)(093N&MC&^7)K{Q&$@sV4JL*e7Fc?PAk zrB?>wVf18*((hJmLnNt57@u1aoe&@Z_dq8+7EUiOCO{os^R(l>u5R=UQ?x#e(<-hN zLH1RJ>11jT5VCbZdRf1@UIoeW(H$BFM3KlL>E+L9^#Q($UjN_2MF;~%jr(0>e|~dz zke{s5rC;SuhBD$4T*dP~X|Z!A7~F-^^!EW(?cT&qIKxy!3?@qCx_i1oF! zbbQtDNJh}Lrjnw6;km7=HJ-(Z(I!=X1>*}Y7hnHacic?!zEE9k9@_c|>y%ctVHUN0 zex)~y?VebZ?d3Guac-+a7NP^m^0&F{UT<8U9%EqG6_EWh#(COkbnvY|TkuEUL=tRy z$u#|lx)C}$e)VlD;Y)TS=I%LmFqvsG1|9`K7HRO|L!Z#rpMV)}?uUJ?~x;JdLLS{VF zh#(-8c(HxOZO~skB$5dbvS<4eT%mtppQr_{cOo`M-QpSTQ&Dy0+dnCi-*OG zEqveZoslp|24mtz3SRR6mlMD-8-vCq<&LG6z(9)FNKq$N}IVo zrh6T01`EZPwHGW!pl6!BP4z&|-EK@hpXYNEd}%>8kd%@Zo|QB*_<2EgWy64goUIsW z-;iaF5Qtu2G@Er}EaacsE-yINOib3fkjD91TSKU_+CJE9Bf$J4a@s^#0hCo%J?*MW zeKJoGMnI8oklAp? z9G3DpW5-GHV|V+9^tmI3TkPx^%(Sn9Rf)hF(sEtz!_Sq6(LH*Z+vOT;Y-wK?pQ&y+j@F?Tiu^qZTH#f1|l!7c`8i78U292sa|&mQZVf~8f_ znxVYPT{zPxn$MXzeZ5}Xuv&d4zFD(k!Mkb!yCk$4S3C|sSoB!x*bPviyZqdz4R`YI zgOB|-it9Vr+d?%bIzR06w9lSYQQ-FvL;{&RHJ$ve*WK*Q-RQyPPY+@muJeUUGh&$c zebS_h7!Z1wp>VnD(at+f)NNVdZW$Vyw!*!rbIYI7sY9qy+ZuOz+IpM&1PbYB%`irluk~ihTnBW9bAgNdS-#b#BILU)m+ENDsQ0PNoPN0<)IEgROk1oyM{|BKFL? zS(m&2;hOBt>i+Ln^PNok;=aW||ab{9_wD`{1>$VO_+4L*SM zji;RZVAe(cWP51n$JOFk|K1NBio@otoQd?9o&>FfJ1pFxOx9=_uP>SOqNU5rf9`Jj z*rPgF4S2?@Wo0)6{+lKQ*|)7sDR!6Yp+bFzXpt$(aC#ETG>;F$GGykCGT;zlVT zKMoeuad>w}x6%kI%Hvyprkhz0JrlV+fU50JBqO10(d|B8{;elQ_BY@&|BGd{PzpK< zz7n+3+&p}nNF5fIcA_-t88(Xm+PY6&U~1@_U#Se8iBW{M_VUbDd5 z+)I}KQj>CG;)&1&K`?LJ_hCgbDo7gjIGfq;wsk#B_+N|=nEdqx=5zxyKdTN&UcigQ zFq#7ttA26BvHE2hJ+>PJcfKpKe56CK5(=H>c=CNRsjgj6Pf&+4P|4vo-(xvVS31ZF z{+WxkJ#b+g=hoV~xNag{u>m3z14ONm#{D+NSmpkg=uhi4(>i4V$0mtq=!8h_@`G7db3*P`)`?#!I-}vvF{@Z z#8gdIv}>Uw1s2TS_uRTZBLz&*BJf301DD;%k`(=9ux-dbvjkwrF2aKP;E`wX7c%~7uM|rrE znNJJPFqe>;>Pom9NH$O`S2ii&Cp+jUqSAPAuk9B435W1;R?9tn>7u^j|f<08a zJ;?ria__l}swqug)AqO;RXB|2WXd+xnaL}UKBofq#As=~x^lL_mr*)!AvmSipdOjq zTv>1C?XqI7%-wg>8UVbC@N#{Og_O3%^+_$WE?9cx+Mwue%u{bSoG2;qcNx60?Vlgr zPUN(PfuW7lLaN=KZDN6P3Edd?5Nv_ z;`W8tV-psg4A6wC4N~67fl5-+=waKfgiNfT+^KbBqcq$~hV#BUedGl3cs z-t6T(@l$iOweKdd28cX&=b0Eg!=N&IsqxR9C z#!XGeNTY{auLsa6AYFoP_nNGf#G`^}sOULg)1n*?XI;EVlQ0iQpWUvxpfj!79#$m8 zi}?@Dx=grv77c9aaqWw^)|&b|-b5@6MO{)V;?e${tIft_zL*aLL8&N`r5@}bX5~4# z)`m(BUN;?3a`-qK2xSp%0$E@WyM^ti>eRD)M#{2?hL17leWK!vIDGImoXn|3QzPC3 zr--^Fu=@n7o%Z-PCKP=0HzCKPo?k+5LrV8KY+Do2v^BFEp-L?>jgR7&+UJL?Cq#m- z8fDjQXT^xFjM9DG`i^C@NL0E4q7s|>={>IoGzyiddvT-823?vSiG9>Ooz=QYJ$Cs= zvK5-=4uNfB>TL-~7&u-=oM}O^?n8gkIrVhod=J2^y~}dw^9=#ah3Jj?xQV4Y+Wx(nJJmIa?JDj7OiBX#~}Q}`1j$_BGj1@H+H3Ea>L{zJ@m zq|PUeU+Aphbn8;wm2CvaZXuu6!YYqNQVix3Sr((L#0U=feY4j*C`h zv30BmD+4^@Mv+zeC^H(w)@6u%6!T$(*jq>6kplT*Kr`B~%}EdrA9FjjU{{&)ayGb` z+S@z3M^o4zrS{1W;XB@sqnL?Ito#Hwi)}1TSTW#k8aWw7;4D@#h|pASsF8aZUYG0* z)&bD~$1e2DpGnVNyDBr>!M;pU3Lm8R31yWv&$I z#wo_$NPm;K-5J}IhP7U1?j!Ho&qQbQvuxasBsS2YG$I0-Z$pOx_Azzgaa=(OgxSIi zZ^Ji1fOE|PeN^;;X%$PvArn42hc)C@{@jyF4UO{ZDtG%t*uQGXVxo<$$XvWJF-czS z)GVO@|Bw4NvB2V9^wN(EWEnymV;vU_dqikOaA&&+fdV4IiPO^EsX#|_7~k<261C-h zy<>B|I$5@n@rk!DhZoD-`=#Ft<<2S)YcRXj&j$1iCHxY+VGCnh*TvTfaNIGrh(4N> zUCOa6#o!qDyN3fKRV)>6!Eu7~S!{td40&2Cp(AWZ>4Z#KWfRrpZCt7mjqtOm6rlO> zib3VpO9_f~vHVIA2i=NqgmU`LVH>QbVE+-NasHcB;QyL(@f6P53`;xL)sGsWG9BUkeEE~gSro1fr(9iZ zPrLpj{OR&HocnN>bQ|?Ycz&k%Ji5Sw8hJThM;#9&>>@SHIo{W+;0fqvRqTeuqYS}_ zxB3rg6*rA|c<5&2aprVfjl@>uwyw_bRUrd2pa_h8UQ**_g;!(2!Wo)Nw?jxb!RZ)H z|Cq^q?uj7wZ-*M)Ca?FRagOHwP>iY{`xj%>XIRK;-W`KZSQUuMNVjMJe8#@nriOE| zal>u!CB{kZ7=W*-EPL2_%WFR`$}4;7`tX)MNu@=C!F#9CmM^o@6oB&RpDkMC6ArAI z1uZ9cEKUlDdG1IVH~nUZ#Wk}7!=hANqO)CLpSR}wb9Yh)TccE-FIxg^nNCC?QWy8` z1hNuJKy#y1E-(i;+vpSq1a8<&{x4(Of8ZRB@513|ODf&XAnTWzjV~#`=%Jdvo%Qs% zEi;QnhC}_9J!@%3XnNu~6*^H4Gp%kuQFm?=aX1q~kT7!{qh zXB=*sdT&}LonP)WKKJqYS!Ai$(`gPIYvYr~PKtr%?ZD?H$BPn|3xmF3_v;8Vm7JnU zp{wE;rd+dvQh(-r0WE$e++Z0;PXBc##HlM{5;XAGEcj{g`#`I;s7;Vq{lAh^*FNS0 z=WEX9M^m#2n`mTD$_IZa4j0OMk5VQ7C;_8%&e}xfwg(QR&U8x0nfp5Uh|QB+T@){4 zLRo|68jIc#^SEd7J`i4qj~{$cX>=}>{<0S@d=qf)h;4ru4MlPPDQ1*8C;yckws{@V zaJSpj{yp;>C`Jl;Xu*gf-dRGU5=DTX5wm^WFR)_JQINkvFmR0lSD}}8H*FK6bx1wS z*dUwW^tZV)ApzF7Fn^2a3t(Hvu!tYfj-^Ncu_64a(6!XIoZ&+F$COC)Rp4#=jd#(E zJY>}sI=iSeEo)CEoS0hJ=o-RS0iycIJ;3=U#)d3O>Hct?p(`tcq#Oa~{{VgJ@@#0; zca%={^W=Vg2W1Ae`f$-!xMJoXVHgx%jcg*7xTTWzrYjOHxTv_ShZ z4HU<~(U_RhG54J`!@X!bA#J{lK(?1Tj6E>76%m(S`E;&3Y#a4+eWD^jVdXe^;%W~F zTm~IKB1tqTmP`VdEn`+M(yualK52H~wE$z8A(~1pGt1A`r&rrDVfq8$7OrYgsp-HL zt%{GQ>zcK7sed#;USMJ*72z~D(5-V`>q#lOk<Uv8B5p)ANj+D#!JB=#se;)YCKU3sX^|G;k-k2snwg0(o0E`+t#)XG0_Y$LBYxlP=!>$Dp>C1+)sX*_jW9eT*D_jHPvj z7D$`vVIsLglQM$NFU$FpR&DII;|wF7ZD59=#5Tu2p+P>_i?p8AisEchQ4VBBS!xFu zBJiM8t_K7ObD9Qn@sP}qLWV{lW98|hY#T_+O`b!D$DaI+o|C-%^in8>h z(>sMq7HKJY3p<|XejA+d-LnC{;9wQZ!$M&Vin7ZzR-k(Gr3H#xy_G?K_?e3&8)-XG zern6KVKdIzRKujThw>c1BGApioSQ!WX}r7we6Tp{JMcMRji4FI1t{bH^hV!d2rm%= zBJjdTH?26DN+5H*xuk4Nfiy>zAGoW^9k|<2k&i5N zJ`nu%L0YwaajwQh^T9j2Eqo^M15N2m^Oi<}-^F_>k7|hts2?m;hx6G1EI}>c&Dh(n z8-k?s79>JN3Rr3tW+Sc~vX9h~b1>)nkADKjW~nckVbuN;-QYD#{QFB>)?mIkR?S|I z_mqh5`a^7StcJvECG)oM)tPSjQ;a`Ne+*5n?1vL?l=G<=PNIRlm`f*uJy3D-b;2gD zdnF5JSTI+38erre+w*r`(BOG=#qbp$yWSA3I>iq;J-Z=`atc4>sx1GBh~+siM>LMS zZi&#FsovbD+dYq<6omK&*3QhF(4zX{{QaL&6GO>d{xi+6giBP3Acw!9y=7&lh#^YS zyVh4;AN7WxBiNeQD(EKg0htZ>l_(N1ufelbY2A=n zxrtRXQQ^oY-+10AS7++vNy+t!D7o;6-o1!So~ynSLD-Oj7xR6TX4Onc)AeIV4W_3GFgi-Rsjxy0zLt}f;Kx)3}f%GP!|>>tTbVkbpD9lL4!h8Tiaqkoxr z=Fhs{f%&MZ^6ePm^n7WxIJ;7oMBgDF%#>bhaDCw`zbY~8{&c(|_gEOBQ9)q@2{ptm z+R3;7oP-JJhAMgPAQp*>_f=zU3=?ZE2A<5wOHM}@k)D#H{8vK`&W&$W)9BL ztVj8@ZlY*6seDQyW_A)~)0)GP5jn`q8J?ig*QamyotXiHL0X_+-_ZS4IxOc$nu9%I z#Rv&u(CW)N%-4@}5}ni(MBjJs%+CjNFgOmr-ozFs!UbgdHLqFCRVk=yII`Y_oDQ4$ z+_V9AZajHV!x5)>GTgjp???@HL#*a2n?RK3kl5N|FDYT zSfH}ceBD?l_KMqhCu18oo9&m^5*koJ<9arS3THXI1cg+v2X_13`tD1Y7B0Owr>!sI zQsX4-=Ji{aRk@=vuJO0vnAK|YY<>ejaC2x{?C@DSt%R**D#*X+umpt8rTS`Jdes=E z_SuhWiK|wxDYxJNqgJfC={6!-Ql!59%i)S05E$=tc{sRD3K!DSH(&*ktSOh7b(4sXM>l&e{ohU zqzcl<(uQk)YLNf%h0FheDJWioN*1w4@l8NrOBr=uD(%gEYAX^xPn{^mHut?vGxa}f z8f*w!VIyQ7hf@t6aVgI_CVpUA>gDnGaMJsY3I6Ex6P^>{wbT(f zBOlc9DxrWDf!J7RZgvnQxY|Y5f2E%Ic|-Br)SzR9t*4`E{hIPZFtRBa`#-I>f19v| zC(;9_ED3_~DqOfEG4y9g)!Y|N!1;(4D4}$}Jz~I|fY`)=Hw&Czn)pP%`WjhCK#)rR zEkQp$ov%EeH8XLX`NK4_BD5$ZeDR4`>YOl~^F>3KFJ5b5j1kQ(CqO;M;mU1$Xs{7^ z0m|LAeR(lkacw5>rK(`ie|K8mJ8y1iZMF=GT9lSw%&FW$UW$`k-TLooG2Ozp8=ydh zM;M17RcYm$>g(MfIL=$!04M?YBP)e$q=-r46@>74a{Kgh4R)~5l`ejTum0@Ft1c*NP-^0Du=H0Au3x@kdV;#-e9jU8{de^6_hQCitZ zVGi4lTECDqyxEEnXLC=B!UgIokNo!~JshD{PU(7f9bf`Yin4vCJyEX5+W_ME%LYRq zmqHzz@uW_IkZqDYoHOF*SuohGHo%6OT=kSIl`C0Xod?jz_t~oT)8<4U8$uStHQ#-C z?#!HrK%V5uEVg`~x79KJ)t_hVbb5?DgQ9LZ0%0>(8+9)t6AfMOK)V1<-|F0)u9V0< zy^A%DRf;Q#YXB@w0$_IOuSYDt$@lmrl2l%b;ZqJ4SyLZwO&D#CrZ{0s;M!6Zxmqqx zh(5u8`3X^2WK+dN_NboKUF7RTQg@ve18gE$8KxjBylJrq^&$Hxl3fMTE18yOsb=|F zA|wo#^1L{+|B8Ffx^(^jbU1wM3wP<5NRWm(y$%VFlVQhrRz3WigP0?@*@oAwvY zHdD_0+LTz8=}IyK9z50vVF)RWSYpEW5!^9Gh&#;&Sg7_`%n-E${hRx)8RlF-&&M~d zc%SKV=z8YXgjmvdJUzZ@0@p3{CT@L)R_WpHrF9;A=8>{L;+HilLNa_eeBd~8VE{DT zo|Z##1V?CWl7Ixx_B@9=bKzOSACj>IDFdpsnhHjm!_UpZYn~Jn{!*cbuM-G=Np+Es zL^X$k+!{$E=Cr=hB`Kpis)krpHk!(vV)os_-MC##h|Ad`0D5I!3yv8Rb32#X<<6~- zBUQW`KzH(G{G*Tl+kxybew%_EV?xw-I)3X1wD`=U#;L?Iu4q!^ z46sEIms=S?5i0_Qi1;s+f+vWmc_ctk$du4J0lk z$zI5C2V(}*6#iBn9qGd%lm5sRarqis`<9CVeT?B7^!`>pWmVmLMpA;xOK3Yfp9#R5 zy4H*gtxZgf9ux!9AsX*Pp^aO=gBf{=*~Ht0%qG-~I2Vl5fd`9X{2+_@-{6j8phV zD8IPxF(q&5OB<1Qa88^Qp*M~bUU1saNs@6(()lzkH$HLfF%=goMKNfReKq!vjl%@* zvyCsCE{c-FYO39jOA-ArzpCvWlf35M>e|{FL{zJUnF?YnrJbwNQr}QW%&6T<>VMrH z@&8<(cqWm*gdl8XqLH681M^4JsFhga{# zCace&*v+1~Az0k6422e}3Z|TyBN}l5^Rpoy+YhpxZ*|bB+%YfmcU_%*-sv~M%?l*l z!{IrVfe+I1gM!2xKs+^y|9pD4=+Kdan@4hW@e`i0kn^n+e?TaJpPb`-0l+M&^*q_c z#JF#Ws{&z{ouZ>W@S^r^hX^*GTbq#!&8YTSQnyC@c`$&5y3|rWn8)gtU*31uA z6_laQBli|x-E5ie(B{rl*Ep>oR{Jw`Sm3T_wBjVSb$SAKmHe}jYz`Yjt8#wrY7guR zTa%^_rjl3)Q%SQ01IiNH7Z}S$_}1Bk?zVr#fbChyr1uq(Ns)5wR{jK|!+vL3u=eh! z!!>jYi%7Fqq{xFMaS`@;f+$_K>yh7LmibVApoRI52-B&w^Be!l-tSrziidI1scH$W z8I}?OP2Q9vZTu=xB$&DnEh_(8dV?O2?L<&GY4nP!zO=B)ajnZYZEx$UbQkuNiy&$V zkN89T(?lzZ6f>JIQ-D(>ejBBS{pWS1-xhE9r5vtrr041>rv8X|>Ng_EwD}(qU8Pz2ss_6aKd>;PsWVyd>_FoayJRV23bfkGnEc3#Vl5S6hU+cff`WbkN z+3bJ1ow~Lv`-_^a-PN4>>tO9D$=QJaR0&W?2r?eAFOD9WR|j-<)bmG@C@OctKIv4n zV1;r_bKV=2_gCUbfi7 z;NH_?eV{0pAC(Ih^0uf-a#xKu>GdQPt|T_Z9<{3OFp|b%$WdKfc2$rI3)Lq?;UUG* zy)7wn_5LM-=+Heqd*&qD&B=|W^!64nr@Q>`zh=c3N8=lGFZ2{Jjd)gS3Hpxf{pNq9>9wnX`XtlxS^m|kanObFNftZ+M@Hr*++hbS)DHxd;5OGIHbOST z4Jqq2@uCeb>otQW2?_qO>OYUL_B#`Latx$`jTPmWOmok2 z6^Th?kI|R{udUl|cdLH;Q&phReW?`gv!Wg8FWH`_Q|Iq4d6ozwhDWQllLvDV zYbMmn5+%EhJFZ8iwDOXUUop73lB6bbrNTx9S{?Tn{sUZMp<$q>#UMTz;j3MR7N8g& zj!FIsH9LEIQ@6GrHs%AEKw_8!>Bn)JUmOg%VMV*xksI%7-cu(pdKxxhj_=*x*khN+ zzVFLZS|L!d@btQ;Qz#+Y(Rl*q_I)ulcci1dR`n`3RE@G6@Yo;}5yapzBq=v0T__K5 zHgC_SuGu5Q@Pha@!=&~$ZVmw<>{&4Y%xHF1=R(e(bNeVVu^&>c+y%hV1P@z}IySSZ zEqu@s=H7WQ*y-l;fa5UcK3s)srMrI1J5}Tv^@q1lB55|k-3$=*!xpX!41H+D#V8q- z7i4B_`P161tNbIZvFg!R`VBRHPPbS3`P@duM|CbBE#)4D`YIVgMmDC%eYd^r6nWS) zvFBAXiJb#Bz3mkjTJC5|W(s}UyLSz}Tv5S@7_@w8Pf*#*JdK*>(-A(m<5eZJ>^nw< zKnCXPF5KfeNTT(V=W2aY*vC6Ri$MG%n$%a{@x+2OAQT8)E+Z-;@o}M^F-bRep4o5rH^CDjPmP=;L zfD`oWWA+mfpfDo_Kxg9J4z=x(fJ*HKAVS-3c|T)mE$y_-XhlelhszpD=M=rF!v zaZ_n2GNnF~Z}2K>caJ||-;lIjI@F{w=#`GzKA|2DnxQQ}z^(^(v`h*#3Pzo8#a$Gw zdwO1NkAK+3q{oFr z^{bL$8f;7Lx>mQo&S!*&vd)YSc=dC(GactlL7hSOCzRc3*@HzNdJyll3+xNzYn#`N z+e??`*v{^Dx1Zir4L;!p1lftvuR`A9qw9b1lbo{}@(XbucMp$P*u)d3bs%SQZfUf4 zim4M54&OY~vQA!GThtL$Wz==Fzbl_lZJ9_asnzbm{qnNO7%te6XKH%dH~|=~a$xa; z3FAt)Y<8zR1h#Azv$u4xp(v_G#!=OpO2oz3?YE65Pgt9XIWJt_l(@XDs~AyBR-sx* z={0*R*w9hkW87YIpQ%)^B%`;tx4jF@=f2$?EMn#0>!Qh6(NZdgy*0!Ld6)r&5o28m z=nX2~EOrP?tWBHce0?H?7%>FxP5kM-$$`EUaIZx?TdGnPaC6)M&2B6WTkL-6cy2l4 z!~Aloa<96j6;VjC-uS_K1vo7}lSltY%e6aFNg0r_d@B}-cF@zU*xrLsqb8MO&Jk~F z)^~bVN zGJFzcNvP1hY`(ciJp4({?-A5SQgO+so9QjjStK5@+T|}KA!NGz^}<_t5?7)YM__PL z=Ubo^Mbwq_w62N{Z!;qn{Z=0n{cn_)v&)*RK(0$MXnX&UG80sD=v)=FB+sNe?rTPy z--#5gz&?i=(?qle5#pu~43iGR2;9 z-&(%FX7b^4^0q*AYsQc&{ryP1M}mCWNxKx?Q?@ffe*{7S&JAtO`OLVW#(_g?V3wf* zYhV?&8@hMblU6`AcTB*#uvwqRB+hiMxYAWoh0IDO(y> z=S{<>jP(RR#TXVp?tA{0@c;Csd_8L`uUXr#;pP`wW>gbL#Mkq6Tz3hC3$Zl57tM&6;0sH+!{K z1$Mdf1qFx0^yl7S>)=`8e!)b?`j~@-(Hj{CMUXI3)#TK&%Q{`oE@|7lFqhQ*k#7I7 zLd*mM4|k07YMo+0Yvm|@W6no8MzO%|$FHalomxKHWc7Aby}Tm~M+3dKHpeUMPI@|N z^{O>m)Lfy2*F-`Ai*~HNHdmx&!rR;uHnHx9er5Pjn#G$5!T3`O+AgKknKWTlgaJo}mlqvnW+x~<%w7q_q^<#y*gA;G#u`vNODRxa@W#r(sF zEs}|%IX9H0v!fz&)|U}#kT)RSm5y!lobmkIbmOX3xqz2c!#9*CoW?t}q&d-2szFH%{Ga!vu+ z+>wSoI{B9ugwFoYd|vLx{zx!$M{bd&8*=$K+noj8a`?gW5o(#uonki}&!Y=SSOfO} z*;hf@rq$RUz3Lu?{<6w#j8eNuO&7>qmnWSb2Q4b1rbsggl}6tZMuW5Ow$ zAoJTJYFI`xZFac0ltRX)m|QDKgdj3EfYL=|M&1hW1W6x$geldJ4LbyR@0jFrY^Sd>tK*+CMii?ttDe^pWQcOH z{hmWUaG>##&>dunD5~|ZP@#8kBoW&vNoF5b|c0CS@}RLXz; zW9m-_lp!8;7ReiFXp1l}u8u(r%++(BQhjpy{B;~fqbJM|O0#>>E9KjIh-n1hWbJeL z2B=9-;#X}_iSMXTV$COa=fawI3oRBV6jNR=yo05>y6n<1xEr<@68|-_{t2Y42&b3p zA7jrSW3GuLxz<`G{|}0pqLQEqKmzPGv9>PsO|WVbv~?jD)2W3MpduZhmxPoP)dWjF zbh~ed4)*9(!gE^7^PLXM4*cy(xrqxF5QEEx1Xpy?r;mhy2iu{H1<>9mGj*;x?aj@h z&M=WsgqQYA$6`Aysc#YWiZaenur9IvAbQJ2edP&Q9+NdNwEo}2$WUcbv%OQJys0qzdx1L!pwMARP(_JxFaIYWA?W+m*&KhPC${(?1+0?E}0DhB(5K z3a|u1wE!EU?w)$P)adRfm7$6f8+hK&rtZzvi)4!12_&z+Nb`ryXT;7JV7HRy$m1=1 zO#xm~P^e+(KY_hMh3~Vfl%h16jD%N>a*rfUOx(pQaerAswr8p3Y}CDfVhd@^cQ1kYGgu{or#-CY)PNHp$lc80v_p>B|@db&(QV?Mnnur{%qKv#No2zK=}MJc#8#is5`9K z@c%JF1Q~%K4Ieiqy{+F9tAs~~*f*4F&(ypmrPE_w6y;Z5GoAK~G`i#dsB}+0qb)=Q z92rJ*drVZNG`vq=2)}8PM7}nh6aCu6tt@dV$Dgu~KB{z07=DdE@X!2l1VU@56vm3r zIvMnVmKd^iv$d=uK=qt0BcyA~=I0e}i8hM~G4O7_Fb?pul82&BUwNh{+0YJI3mAP! zyNIt}MscOeVY0$P-$wk;d!D6(Ai$e-<+(~>s=z{TuAKVH6HyiZR!@w&`jVEv_&={b z5V*7>)<+)x7xi{e?1ZRzHj`9r#N#;x$m=(RsD6upe?0u2i?Pe=uWUEB`zJDK!c!m9aOb-x0Q3Zu^Mkn9Qw>xWDjkb`% zijz1IdK&RCa>!~?6jRRy!ZLAGu#=&-{gN(luQ8AS?Rfti{9S?D<^C%M`2e4CQwo08 zkA{pdtR2(qv>ih~HGS!;CNc`yi~xUad?g9pCKPDiOsRK)P&o3V6Q1;uYp;GZb^b>r z`_b6=?Gi|}9KW#9mY6)U;ie&}Qa|MmKXwuq&qC86W(l4u)7~JkyvA^DT8rekSy)=? zKdeDndvA|rsV?SQJtqxxV|cbKNIV+Kyo&pCE+I)-3B#Z7SRnWdEm>*yK73P8+ z#&v}@3{>#<4ta99;Id&GxNUp9B^V^t{P2J}8iZXfH5Rs#f1#V*(0t3d90p{=n`{5N z0TSXVjYh1i{zvVN9}C-$dkC5iTlUbsp?r01}i0|Ee%#`UPZd&bx@ulnJ?CE6F>QlO?jYKN@!eR8`!e=mDJsd62r zaE*EQllh+XfAw=B>7BcZ6Xjz7+Rpc%ucrP`{HywY{18vkyaL_uqe21_?tvS8U@3U3 zkOZ$+aJ;o`Hj)bdZ}1ECb9CgB{BI)mFJS-gob3PS&#wIA|KG)3o!XhJi#goyI&Z`C`!D`|Cdi5AV$aPWpY2 zGAkcUotv>&9xfXPJF3(BdPx-G3a&pCba7^wg=z{kWBs$7dHDDL`wMi~%4q&QCmVw& z-hfBRHDDtX-}x8SImlPr7HWBuZb^&!VMM%gJKL!9k(0@HlQiHgXQfYtL@rzb^-ZC- zOyT}dy^9lPePd&ksY^Sh_p&c?uJP-W>xIsH(}2^|g8!$za|>$XjN*8>l>s$sDc1l& zv7+MzTPsA8W<^B?sRX2@Rj{E$5jt&wR4x%i0w|`Gn^Qa54wpPw#FmnXIzdbb2nj(b zP!!}MB_vRwat$Hmp6ywu5AAy&yH7jc?Dy^L`Of*Doils(CrzPhJXw}`y1d`I(62g1 zG;WEiBE7ZV(BR!yP3H2P-GxRezziS~iAE+S zd`;PLUjHmxB`LbQRgH4rjsV0EAy#)1VBqPL9Z`>)K&`qdC6_2nT85%vM$f*cNr*|J zx-X6p7Bi`q6XpAw#@}9V_=WN@$C4%1R4+>p_ERqNOwBw3+{O3ixol5g=A;d_;RI8h zn{y1#u?>sPqCl2S@OZ}MYpuQ+GrxK!WRE5%DXu2k-37aGEW;dGZ?IyaOu^FhGS^2_ z!XND^Xp=*w7r^?fPcBK~WMYNgW1u z5*mcDgQlJY@T8d`GJ$1G5W0QA>l6}+BVAnG!B)F-wl+=V?qN>_vy*-#)2R;(dmVbC z-zd_Z-R)ZDWS=z27cI31OVpdpK+Nd{=eehcNRAPM0x*}FXESE2b5x*{atxSMnis!8 zemB1QZ^`oQMCB|(1OGPy)=MY5KzOkrJKfvGi0tGmgbT7lvG#y zBwXk{gv+1ji|~Qs6>T-YSM5qM zjb&SbSV+YviVCn=~|^ANn30iY@sXr%02-T38tf#mF9 z>s8G3(2Td!o1DFIGga@0xhq)*dVNVsjz3jJV%XNvc%8*A0S793SDr=&+Ti%jGhW^y znW@vF_^5G6LJt>(FR%{UGY&>+vCFsIG28SOts7PsGZ`W15H-wF-s{=l0lDIY`2JA4 z9I-OYS~_}2vQ`_YRFwn@owdpiF5|I-dnsmZ8prrd{~MQj1zTkyQg6yK>ls<2$v^^k#NPoOI{iCC?(fv{uVHh*fR0_Mmzo zoakeE9*4&`V`=D@C{&K`8Zmg2cKSN4JTLy%k(cmZ^C~BN;jyFnoR c|G*9_Xra@hu!OYn0~{O?VNu8VM-vPG0{QMTvj6}9 literal 0 HcmV?d00001 diff --git a/maths/prime_factors.py b/maths/prime_factors.py new file mode 100644 index 000000000000..eb3de00de6a7 --- /dev/null +++ b/maths/prime_factors.py @@ -0,0 +1,52 @@ +""" +python/black : True +""" +from typing import List + + +def prime_factors(n: int) -> List[int]: + """ + Returns prime factors of n as a list. + + >>> prime_factors(0) + [] + >>> prime_factors(100) + [2, 2, 5, 5] + >>> prime_factors(2560) + [2, 2, 2, 2, 2, 2, 2, 2, 2, 5] + >>> prime_factors(10**-2) + [] + >>> prime_factors(0.02) + [] + >>> x = prime_factors(10**241) # doctest: +NORMALIZE_WHITESPACE + >>> x == [2]*241 + [5]*241 + True + >>> prime_factors(10**-354) + [] + >>> prime_factors('hello') + Traceback (most recent call last): + ... + TypeError: '<=' not supported between instances of 'int' and 'str' + >>> prime_factors([1,2,'hello']) + Traceback (most recent call last): + ... + TypeError: '<=' not supported between instances of 'int' and 'list' + + """ + i = 2 + factors = [] + while i * i <= n: + if n % i: + i += 1 + else: + n //= i + factors.append(i) + if n > 1: + factors.append(n) + return factors + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 5b5beb61d63b97562ba0b5d161b9a2e23fb8bcf5 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Sat, 20 Jul 2019 20:33:04 +0500 Subject: [PATCH 218/594] Update newton_raphson_method.py (#1057) --- arithmetic_analysis/newton_raphson_method.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/arithmetic_analysis/newton_raphson_method.py b/arithmetic_analysis/newton_raphson_method.py index 5e7e2f930abc..569f96476afc 100644 --- a/arithmetic_analysis/newton_raphson_method.py +++ b/arithmetic_analysis/newton_raphson_method.py @@ -1,5 +1,5 @@ # Implementing Newton Raphson method in Python -# Author: Haseeb +# Author: Syed Haseeb Shah (github.com/QuantumNovice) from sympy import diff from decimal import Decimal @@ -30,7 +30,3 @@ def NewtonRaphson(func, a): # Exponential Roots print ('exp(x) - 1 = 0', NewtonRaphson('exp(x) - 1', 0)) - - - - From 0f0953070750f9f9813ea599e74d04a9c34e5dd2 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 20 Jul 2019 18:31:08 +0200 Subject: [PATCH 219/594] dijkstra.py: Use r"strings" to fix two pylint warnings (#1052) ``` =============================== warnings summary =============================== graphs/dijkstra.py:81 /home/travis/build/TheAlgorithms/Python/graphs/dijkstra.py:81: DeprecationWarning: invalid escape sequence \ """ graphs/dijkstra.py:97 /home/travis/build/TheAlgorithms/Python/graphs/dijkstra.py:97: DeprecationWarning: invalid escape sequence \ """ -- Docs: https://docs.pytest.org/en/latest/warnings.html =================== 126 passed, 7 warnings in 19.35 seconds ==================== ``` --- graphs/dijkstra.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py index 52354b5c916b..5f09a45cf2c4 100644 --- a/graphs/dijkstra.py +++ b/graphs/dijkstra.py @@ -71,7 +71,7 @@ def dijkstra(graph, start, end): "F": [["C", 3], ["E", 3]], } -""" +r""" Layout of G2: E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F @@ -87,7 +87,7 @@ def dijkstra(graph, start, end): "F": [], } -""" +r""" Layout of G3: E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F From b35f5d971b45ed0740dc6f7a4a8b3a05f516a258 Mon Sep 17 00:00:00 2001 From: John Law Date: Sun, 21 Jul 2019 00:40:00 +0800 Subject: [PATCH 220/594] Update CONTRIBUTING.md (#1059) --- CONTRIBUTING.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 02235ee89973..3202b817f1c5 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -69,7 +69,7 @@ We want your work to be readable by others; therefore, we encourage you to note """ This function sums two integers a and b Return: a + b - """ + """ return a + b ``` From 93fdc9f2a1d64c08e6f1ef5ebbb1470e4ee5c4e2 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 21 Jul 2019 08:16:28 +0200 Subject: [PATCH 221/594] Travis CI: Add pytest --doctest-modules maths (#1020) * Travis CI: Add pytest --doctest-modules maths * Update lucas_series.py * Update lucas_series.py --- .travis.yml | 4 ---- maths/abs_min.py | 9 ++++++--- maths/binary_exponentiation.py | 17 +++++++++-------- maths/lucas_series.py | 28 ++++++++++++++++++---------- maths/sieve_of_eratosthenes.py | 6 ++---- 5 files changed, 35 insertions(+), 29 deletions(-) diff --git a/.travis.yml b/.travis.yml index a3ff22fb09b7..bea512264c19 100644 --- a/.travis.yml +++ b/.travis.yml @@ -18,10 +18,6 @@ script: --ignore=machine_learning/perceptron.py --ignore=machine_learning/random_forest_classification/random_forest_classification.py --ignore=machine_learning/random_forest_regression/random_forest_regression.py - --ignore=maths/abs_min.py - --ignore=maths/binary_exponentiation.py - --ignore=maths/lucas_series.py - --ignore=maths/sieve_of_eratosthenes.py after_success: - python scripts/build_directory_md.py - cat DIRECTORY.md diff --git a/maths/abs_min.py b/maths/abs_min.py index d546196aa1b5..abb0c9051b7d 100644 --- a/maths/abs_min.py +++ b/maths/abs_min.py @@ -1,10 +1,11 @@ -from abs import abs_val +from .abs import abs_val + def absMin(x): """ - # >>>absMin([0,5,1,11]) + >>> absMin([0,5,1,11]) 0 - # >>absMin([3,-10,-2]) + >>> absMin([3,-10,-2]) -2 """ j = x[0] @@ -13,9 +14,11 @@ def absMin(x): j = i return j + def main(): a = [-3,-1,2,-11] print(absMin(a)) # = -1 + if __name__ == '__main__': main() \ No newline at end of file diff --git a/maths/binary_exponentiation.py b/maths/binary_exponentiation.py index cf789afc6f22..a8d736adfea0 100644 --- a/maths/binary_exponentiation.py +++ b/maths/binary_exponentiation.py @@ -17,11 +17,12 @@ def binary_exponentiation(a, n): return b * b -try: - BASE = int(input('Enter Base : ')) - POWER = int(input("Enter Power : ")) -except ValueError: - print("Invalid literal for integer") - -RESULT = binary_exponentiation(BASE, POWER) -print("{}^({}) : {}".format(BASE, POWER, RESULT)) +if __name__ == "__main__": + try: + BASE = int(input("Enter Base : ").strip()) + POWER = int(input("Enter Power : ").strip()) + except ValueError: + print("Invalid literal for integer") + + RESULT = binary_exponentiation(BASE, POWER) + print("{}^({}) : {}".format(BASE, POWER, RESULT)) diff --git a/maths/lucas_series.py b/maths/lucas_series.py index 91ea1ba72a56..9ae437dc9f54 100644 --- a/maths/lucas_series.py +++ b/maths/lucas_series.py @@ -1,13 +1,21 @@ # Lucas Sequence Using Recursion def recur_luc(n): - if n == 1: - return n - if n == 0: - return 2 - return (recur_luc(n-1) + recur_luc(n-2)) - -limit = int(input("How many terms to include in Lucas series:")) -print("Lucas series:") -for i in range(limit): - print(recur_luc(i)) + """ + >>> recur_luc(1) + 1 + >>> recur_luc(0) + 2 + """ + if n == 1: + return n + if n == 0: + return 2 + return recur_luc(n - 1) + recur_luc(n - 2) + + +if __name__ == "__main__": + limit = int(input("How many terms to include in Lucas series:")) + print("Lucas series:") + for i in range(limit): + print(recur_luc(i)) diff --git a/maths/sieve_of_eratosthenes.py b/maths/sieve_of_eratosthenes.py index 11c123693694..cedd04f92aa0 100644 --- a/maths/sieve_of_eratosthenes.py +++ b/maths/sieve_of_eratosthenes.py @@ -2,9 +2,6 @@ import math -N = int(input("Enter n: ")) - - def sieve(n): """Sieve of Eratosthones.""" l = [True] * (n + 1) @@ -26,4 +23,5 @@ def sieve(n): return prime -print(sieve(N)) +if __name__ == "__main__": + print(sieve(int(input("Enter n: ").strip()))) From c964d743b6275e31548f605d5b2d583656960de0 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Sun, 21 Jul 2019 13:35:42 +0500 Subject: [PATCH 222/594] Added Mobius Function (#1058) * Add files via upload * Update mobius_function.py * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Update mobius_function.py * Delete mobius_function.py * Add files via upload --- maths/is_square_free.py | 39 ++++++++++++++++++++++++++++++++++++ maths/mobius_function.py | 43 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 82 insertions(+) create mode 100644 maths/is_square_free.py create mode 100644 maths/mobius_function.py diff --git a/maths/is_square_free.py b/maths/is_square_free.py new file mode 100644 index 000000000000..acc13fa5f833 --- /dev/null +++ b/maths/is_square_free.py @@ -0,0 +1,39 @@ +""" +References: wikipedia:square free number +python/black : True +flake8 : True +""" +from typing import List + + +def is_square_free(factors: List[int]) -> bool: + """ + # doctest: +NORMALIZE_WHITESPACE + This functions takes a list of prime factors as input. + returns True if the factors are square free. + >>> is_square_free([1, 1, 2, 3, 4]) + False + + These are wrong but should return some value + it simply checks for repition in the numbers. + >>> is_square_free([1, 3, 4, 'sd', 0.0]) + True + + >>> is_square_free([1, 0.5, 2, 0.0]) + True + >>> is_square_free([1, 2, 2, 5]) + False + >>> is_square_free('asd') + True + >>> is_square_free(24) + Traceback (most recent call last): + ... + TypeError: 'int' object is not iterable + """ + return len(set(factors)) == len(factors) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/maths/mobius_function.py b/maths/mobius_function.py new file mode 100644 index 000000000000..15fb3d4380f4 --- /dev/null +++ b/maths/mobius_function.py @@ -0,0 +1,43 @@ +""" +Refrences: https://en.wikipedia.org/wiki/M%C3%B6bius_function +References: wikipedia:square free number +python/black : True +flake8 : True +""" + +from maths.prime_factors import prime_factors +from maths.is_square_free import is_square_free + + +def mobius(n: int) -> int: + """ + Mobius function + >>> mobius(24) + 0 + >>> mobius(-1) + 1 + >>> mobius('asd') + Traceback (most recent call last): + ... + TypeError: '<=' not supported between instances of 'int' and 'str' + >>> mobius(10**400) + 0 + >>> mobius(10**-400) + 1 + >>> mobius(-1424) + 1 + >>> mobius([1, '2', 2.0]) + Traceback (most recent call last): + ... + TypeError: '<=' not supported between instances of 'int' and 'list' + """ + factors = prime_factors(n) + if is_square_free(factors): + return -1 if len(factors) % 2 else 1 + return 0 + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 05e567c2f92dc746969fe859cd806d5928067f52 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Sun, 21 Jul 2019 16:03:39 +0500 Subject: [PATCH 223/594] Code to change contrast (#1060) * Add files via upload * Update requirements.txt * Add files via upload * Add files via upload * Add files via upload * Add files via upload --- digital_image_processing/change_contrast.py | 35 +++++++++++++++++++++ requirements.txt | 1 + 2 files changed, 36 insertions(+) create mode 100644 digital_image_processing/change_contrast.py diff --git a/digital_image_processing/change_contrast.py b/digital_image_processing/change_contrast.py new file mode 100644 index 000000000000..76f1a3e1fcd8 --- /dev/null +++ b/digital_image_processing/change_contrast.py @@ -0,0 +1,35 @@ +""" +Changing contrast with PIL + +This algorithm is used in +https://noivce.pythonanywhere.com/ python web app. + +python/black: True +flake8 : True +""" + +from PIL import Image + + +def change_contrast(img: Image, level: float) -> Image: + """ + Function to change contrast + """ + factor = (259 * (level + 255)) / (255 * (259 - level)) + + def contrast(c: int) -> float: + """ + Fundamental Transformation/Operation that'll be performed on + every bit. + """ + return 128 + factor * (c - 128) + + return img.point(contrast) + + +if __name__ == "__main__": + # Load image + with Image.open("image_data/lena.jpg") as img: + # Change contrast to 170 + cont_img = change_contrast(img, 170) + cont_img.save("image_data/lena_high_contrast.png", format="png") diff --git a/requirements.txt b/requirements.txt index 91d3df33323d..a3e62cf968f7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,6 +5,7 @@ mypy numpy opencv-python pandas +pillow pytest sklearn sympy From b2ed8d443c03bd9fa8cc523bcefcca4eeff04c2e Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 23 Jul 2019 00:07:09 +0200 Subject: [PATCH 224/594] rotate_matrix.py: Add type hints for return values (#1023) * rotate_matrix.py: Add type hints for return values @obelisk0114 Your review please? * Fix typo * Run the code thru python/black https://github.com/python/black * Fix 270 comment * Simplify with get_data() and test the alternatives * ) * 3 * Update rotate_matrix.py * Update rotate_matrix.py --- matrix/rotate_matrix.py | 115 ++++++++++++++++++++-------------------- 1 file changed, 58 insertions(+), 57 deletions(-) diff --git a/matrix/rotate_matrix.py b/matrix/rotate_matrix.py index e3495e647954..822851826121 100644 --- a/matrix/rotate_matrix.py +++ b/matrix/rotate_matrix.py @@ -1,99 +1,100 @@ # -*- coding: utf-8 -*- """ - In this problem, we want to rotate the matrix elements by 90, 180, 270 (counterclockwise) - Discussion in stackoverflow: - https://stackoverflow.com/questions/42519/how-do-you-rotate-a-two-dimensional-array +In this problem, we want to rotate the matrix elements by 90, 180, 270 (counterclockwise) +Discussion in stackoverflow: +https://stackoverflow.com/questions/42519/how-do-you-rotate-a-two-dimensional-array """ -def rotate_90(matrix: [[]]): +def make_matrix(row_size: int = 4) -> [[int]]: """ - >>> rotate_90([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) - [[4, 8, 12, 16], [3, 7, 11, 15], [2, 6, 10, 14], [1, 5, 9, 13]] + >>> make_matrix() + [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + >>> make_matrix(1) + [[1]] + >>> make_matrix(-2) + [[1, 2], [3, 4]] + >>> make_matrix(3) + [[1, 2, 3], [4, 5, 6], [7, 8, 9]] + >>> make_matrix() == make_matrix(4) + True """ - - transpose(matrix) - reverse_row(matrix) - return matrix - + row_size = abs(row_size) or 4 + return [[1 + x + y * row_size for x in range(row_size)] for y in range(row_size)] + -def rotate_180(matrix: [[]]): +def rotate_90(matrix: [[]]) -> [[]]: """ - >>> rotate_180([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) - [[16, 15, 14, 13], [12, 11, 10, 9], [8, 7, 6, 5], [4, 3, 2, 1]] + >>> rotate_90(make_matrix()) + [[4, 8, 12, 16], [3, 7, 11, 15], [2, 6, 10, 14], [1, 5, 9, 13]] + >>> rotate_90(make_matrix()) == transpose(reverse_column(make_matrix())) + True """ - - reverse_column(matrix) - reverse_row(matrix) - + + return reverse_row(transpose(matrix)) + # OR.. transpose(reverse_column(matrix)) + + +def rotate_180(matrix: [[]]) -> [[]]: """ - OR - - reverse_row(matrix) - reverse_column(matrix) + >>> rotate_180(make_matrix()) + [[16, 15, 14, 13], [12, 11, 10, 9], [8, 7, 6, 5], [4, 3, 2, 1]] + >>> rotate_180(make_matrix()) == reverse_column(reverse_row(make_matrix())) + True """ - - return matrix - -def rotate_270(matrix: [[]]): + return reverse_row(reverse_column(matrix)) + # OR.. reverse_column(reverse_row(matrix)) + + +def rotate_270(matrix: [[]]) -> [[]]: """ - >>> rotate_270([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) + >>> rotate_270(make_matrix()) [[13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3], [16, 12, 8, 4]] + >>> rotate_270(make_matrix()) == transpose(reverse_row(make_matrix())) + True """ - - transpose(matrix) - reverse_column(matrix) - - """ - OR - - reverse_row(matrix) - transpose(matrix) - """ - - return matrix + return reverse_column(transpose(matrix)) + # OR.. transpose(reverse_row(matrix)) -def transpose(matrix: [[]]): + +def transpose(matrix: [[]]) -> [[]]: matrix[:] = [list(x) for x in zip(*matrix)] return matrix - - -def reverse_row(matrix: [[]]): + + +def reverse_row(matrix: [[]]) -> [[]]: matrix[:] = matrix[::-1] return matrix -def reverse_column(matrix: [[]]): +def reverse_column(matrix: [[]]) -> [[]]: matrix[:] = [x[::-1] for x in matrix] return matrix - - -def print_matrix(matrix: [[]]): + + +def print_matrix(matrix: [[]]) -> [[]]: for i in matrix: print(*i) -if __name__ == '__main__': - matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] +if __name__ == "__main__": + matrix = make_matrix() print("\norigin:\n") print_matrix(matrix) - rotate_90(matrix) print("\nrotate 90 counterclockwise:\n") - print_matrix(matrix) + print_matrix(rotate_90(matrix)) - matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + matrix = make_matrix() print("\norigin:\n") print_matrix(matrix) - rotate_180(matrix) print("\nrotate 180:\n") - print_matrix(matrix) + print_matrix(rotate_180(matrix)) - matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] + matrix = make_matrix() print("\norigin:\n") print_matrix(matrix) - rotate_270(matrix) print("\nrotate 270 counterclockwise:\n") - print_matrix(matrix) + print_matrix(rotate_270(matrix)) From 7c3ef9885393681c83c68e9733fa2a5fd9651203 Mon Sep 17 00:00:00 2001 From: "Md. Mahbubur Rahman" Date: Wed, 24 Jul 2019 18:32:05 +0900 Subject: [PATCH 225/594] Implement ruling hash to appropriate complexity of Rabin Karp (#1066) * Added matrix exponentiation approach for finding fibonacci number. * Implemented the way of finding nth fibonacci. * Complexity is about O(log(n)*8) * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Updated Rabin Karp algorithm. - Previous solution is based on the hash function of python. - Implemented ruling hash to get the appropriate complexity of rabin karp. * Updated Rabin Karp algorithm. - Previous solution is based on the hash function of python. - Implemented ruling hash to get the appropriate complexity of rabin karp. * Implemented ruling hash to appropriate complexity of Rabin Karp Added unit pattern testing --- strings/rabin_karp.py | 48 +++++++++++++++++++++++++++++++++++-------- 1 file changed, 39 insertions(+), 9 deletions(-) diff --git a/strings/rabin_karp.py b/strings/rabin_karp.py index 04a849266ead..7c36f7659e24 100644 --- a/strings/rabin_karp.py +++ b/strings/rabin_karp.py @@ -1,6 +1,11 @@ +# Numbers of alphabet which we call base +alphabet_size = 256 +# Modulus to hash a string +modulus = 1000003 + + def rabin_karp(pattern, text): """ - The Rabin-Karp Algorithm for finding a pattern within a piece of text with complexity O(nm), most efficient when it is used with multiple patterns as it is able to check if any of a set of patterns match a section of text in o(1) given the precomputed hashes. @@ -12,22 +17,42 @@ def rabin_karp(pattern, text): 2) Step through the text one character at a time passing a window with the same length as the pattern calculating the hash of the text within the window compare it with the hash of the pattern. Only testing equality if the hashes match - """ p_len = len(pattern) - p_hash = hash(pattern) + t_len = len(text) + if p_len > t_len: + return False + + p_hash = 0 + text_hash = 0 + modulus_power = 1 - for i in range(0, len(text) - (p_len - 1)): + # Calculating the hash of pattern and substring of text + for i in range(p_len): + p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus + text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus + if i == p_len - 1: + continue + modulus_power = (modulus_power * alphabet_size) % modulus - # written like this t - text_hash = hash(text[i:i + p_len]) - if text_hash == p_hash and \ - text[i:i + p_len] == pattern: + for i in range(0, t_len - p_len + 1): + if text_hash == p_hash and text[i : i + p_len] == pattern: return True + if i == t_len - p_len: + continue + # Calculating the ruling hash + text_hash = ( + (text_hash - ord(text[i]) * modulus_power) * alphabet_size + + ord(text[i + p_len]) + ) % modulus return False -if __name__ == '__main__': +def test_rabin_karp(): + """ + >>> test_rabin_karp() + Success. + """ # Test 1) pattern = "abc1abc12" text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc" @@ -48,3 +73,8 @@ def rabin_karp(pattern, text): pattern = "abcdabcy" text = "abcxabcdabxabcdabcdabcy" assert rabin_karp(pattern, text) + print("Success.") + + +if __name__ == "__main__": + test_rabin_karp() From 46bcee0978fe507891a8e3b8892437fafed28c08 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Wed, 24 Jul 2019 17:34:22 +0500 Subject: [PATCH 226/594] Add badges to the top of README.md (#1064) * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md --- README.md | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 30eccd361673..d4f4acbadb6d 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,11 @@ # The Algorithms - Python - -[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/TheAlgorithms/100)   -[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/TheAlgorithms)   -[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) - +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg?logo=paypal&style=flat-square)](https://www.paypal.me/TheAlgorithms/100)  +[![Build Status](https://img.shields.io/travis/TheAlgorithms/Python.svg?label=Travis%20CI&logo=travis&style=flat-square)](https://travis-ci.org/TheAlgorithms/Python)  +[![LGTM](https://img.shields.io/lgtm/alerts/github/TheAlgorithms/Python.svg?label=LGTM&logo=LGTM&style=flat-square)](https://lgtm.com/projects/g/TheAlgorithms/Python/alerts)  +[![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)  +[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md)  +![](https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square)  + ### All algorithms implemented in Python (for education) These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. @@ -24,6 +26,8 @@ Chetan Kaushik Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. +[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg?style=flat-square)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) + ## Community Channel We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. From 3c8e9314b6b36b3721d9df50ffd7dc20bfb2fc7d Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 25 Jul 2019 09:49:00 +0200 Subject: [PATCH 227/594] Travis CI: Add a flake8 test for unused imports (#1038) --- .travis.yml | 2 +- graphs/bfs.py | 21 +- maths/volume.py | 10 +- other/primelib.py | 390 +++++++++++++++---------------- project_euler/problem_13/sol1.py | 10 +- 5 files changed, 212 insertions(+), 221 deletions(-) diff --git a/.travis.yml b/.travis.yml index bea512264c19..6d432c660ddd 100644 --- a/.travis.yml +++ b/.travis.yml @@ -6,7 +6,7 @@ before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt before_script: - black --check . || true - - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics script: - mypy --ignore-missing-imports . - pytest . --doctest-modules diff --git a/graphs/bfs.py b/graphs/bfs.py index 6bbdd9e25435..ebbde0c82ce6 100644 --- a/graphs/bfs.py +++ b/graphs/bfs.py @@ -16,10 +16,19 @@ """ -import collections +G = {'A': ['B', 'C'], + 'B': ['A', 'D', 'E'], + 'C': ['A', 'F'], + 'D': ['B'], + 'E': ['B', 'F'], + 'F': ['C', 'E']} def bfs(graph, start): + """ + >>> ''.join(sorted(bfs(G, 'A'))) + 'ABCDEF' + """ explored, queue = set(), [start] # collections.deque([start]) explored.add(start) while queue: @@ -31,11 +40,5 @@ def bfs(graph, start): return explored -G = {'A': ['B', 'C'], - 'B': ['A', 'D', 'E'], - 'C': ['A', 'F'], - 'D': ['B'], - 'E': ['B', 'F'], - 'F': ['C', 'E']} - -print(bfs(G, 'A')) +if __name__ == '__main__': + print(bfs(G, 'A')) diff --git a/maths/volume.py b/maths/volume.py index 171bc538f5a4..38de7516d9b2 100644 --- a/maths/volume.py +++ b/maths/volume.py @@ -6,8 +6,6 @@ from math import pi -PI = pi - def vol_cube(side_length): """Calculate the Volume of a Cube.""" @@ -39,9 +37,7 @@ def vol_right_circ_cone(radius, height): volume = (1/3) * pi * radius^2 * height """ - import math - - return (float(1) / 3) * PI * (radius ** 2) * height + return (float(1) / 3) * pi * (radius ** 2) * height def vol_prism(area_of_base, height): @@ -71,7 +67,7 @@ def vol_sphere(radius): V = (4/3) * pi * r^3 Wikipedia reference: https://en.wikipedia.org/wiki/Sphere """ - return (float(4) / 3) * PI * radius ** 3 + return (float(4) / 3) * pi * radius ** 3 def vol_circular_cylinder(radius, height): @@ -80,7 +76,7 @@ def vol_circular_cylinder(radius, height): Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder volume = pi * radius^2 * height """ - return PI * radius ** 2 * height + return pi * radius ** 2 * height def main(): diff --git a/other/primelib.py b/other/primelib.py index c371bc1b9861..c000213a7a42 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -16,7 +16,7 @@ greatestPrimeFactor(number) smallestPrimeFactor(number) getPrime(n) -getPrimesBetween(pNumber1, pNumber2) +getPrimesBetween(pNumber1, pNumber2) ---- @@ -39,34 +39,36 @@ """ +from math import sqrt + + def isPrime(number): """ input: positive integer 'number' returns true if 'number' is prime otherwise false. """ - import math # for function sqrt - + # precondition assert isinstance(number,int) and (number >= 0) , \ "'number' must been an int and positive" - + status = True - - # 0 and 1 are none primes. + + # 0 and 1 are none primes. if number <= 1: status = False - - for divisor in range(2,int(round(math.sqrt(number)))+1): - + + for divisor in range(2,int(round(sqrt(number)))+1): + # if 'number' divisible by 'divisor' then sets 'status' - # of false and break up the loop. + # of false and break up the loop. if number % divisor == 0: status = False break - + # precondition - assert isinstance(status,bool), "'status' must been from type bool" - + assert isinstance(status,bool), "'status' must been from type bool" + return status # ------------------------------------------ @@ -75,37 +77,37 @@ def sieveEr(N): """ input: positive integer 'N' > 2 returns a list of prime numbers from 2 up to N. - + This function implements the algorithm called - sieve of erathostenes. - + sieve of erathostenes. + """ - + # precondition assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" - + # beginList: conatins all natural numbers from 2 upt to N beginList = [x for x in range(2,N+1)] - ans = [] # this list will be returns. - + ans = [] # this list will be returns. + # actual sieve of erathostenes for i in range(len(beginList)): - + for j in range(i+1,len(beginList)): - + if (beginList[i] != 0) and \ (beginList[j] % beginList[i] == 0): beginList[j] = 0 - - # filters actual prime numbers. + + # filters actual prime numbers. ans = [x for x in beginList if x != 0] - + # precondition - assert isinstance(ans,list), "'ans' must been from type list" - + assert isinstance(ans,list), "'ans' must been from type list" + return ans - + # -------------------------------- @@ -114,203 +116,201 @@ def getPrimeNumbers(N): input: positive integer 'N' > 2 returns a list of prime numbers from 2 up to N (inclusive) This function is more efficient as function 'sieveEr(...)' - """ - + """ + # precondition assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" - - ans = [] - - # iterates over all numbers between 2 up to N+1 + + ans = [] + + # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2,N+1): - + if isPrime(number): - + ans.append(number) - + # precondition assert isinstance(ans,list), "'ans' must been from type list" - + return ans # ----------------------------------------- - + def primeFactorization(number): """ - input: positive integer 'number' + input: positive integer 'number' returns a list of the prime number factors of 'number' """ - import math # for function sqrt - # precondition assert isinstance(number,int) and number >= 0, \ "'number' must been an int and >= 0" - + ans = [] # this list will be returns of the function. # potential prime number factors. - factor = 2 + factor = 2 quotient = number - - + + if number == 0 or number == 1: - + ans.append(number) - - # if 'number' not prime then builds the prime factorization of 'number' + + # if 'number' not prime then builds the prime factorization of 'number' elif not isPrime(number): - + while (quotient != 1): - + if isPrime(factor) and (quotient % factor == 0): ans.append(factor) quotient /= factor else: factor += 1 - + else: ans.append(number) - + # precondition - assert isinstance(ans,list), "'ans' must been from type list" - + assert isinstance(ans,list), "'ans' must been from type list" + return ans - + # ----------------------------------------- - + def greatestPrimeFactor(number): """ input: positive integer 'number' >= 0 returns the greatest prime number factor of 'number' """ - + # precondition assert isinstance(number,int) and (number >= 0), \ "'number' bust been an int and >= 0" - - ans = 0 - + + ans = 0 + # prime factorization of 'number' primeFactors = primeFactorization(number) - ans = max(primeFactors) - + ans = max(primeFactors) + # precondition - assert isinstance(ans,int), "'ans' must been from type int" - + assert isinstance(ans,int), "'ans' must been from type int" + return ans - + # ---------------------------------------------- - - + + def smallestPrimeFactor(number): """ input: integer 'number' >= 0 returns the smallest prime number factor of 'number' """ - + # precondition assert isinstance(number,int) and (number >= 0), \ "'number' bust been an int and >= 0" - - ans = 0 - + + ans = 0 + # prime factorization of 'number' primeFactors = primeFactorization(number) - + ans = min(primeFactors) # precondition - assert isinstance(ans,int), "'ans' must been from type int" - + assert isinstance(ans,int), "'ans' must been from type int" + return ans - - + + # ---------------------- - + def isEven(number): """ input: integer 'number' returns true if 'number' is even, otherwise false. - """ + """ # precondition - assert isinstance(number, int), "'number' must been an int" + assert isinstance(number, int), "'number' must been an int" assert isinstance(number % 2 == 0, bool), "compare bust been from type bool" - + return number % 2 == 0 - + # ------------------------ - + def isOdd(number): """ input: integer 'number' returns true if 'number' is odd, otherwise false. - """ + """ # precondition - assert isinstance(number, int), "'number' must been an int" + assert isinstance(number, int), "'number' must been an int" assert isinstance(number % 2 != 0, bool), "compare bust been from type bool" - + return number % 2 != 0 - + # ------------------------ - - + + def goldbach(number): """ Goldbach's assumption input: a even positive integer 'number' > 2 returns a list of two prime numbers whose sum is equal to 'number' """ - + # precondition assert isinstance(number,int) and (number > 2) and isEven(number), \ "'number' must been an int, even and > 2" - + ans = [] # this list will returned - + # creates a list of prime numbers between 2 up to 'number' primeNumbers = getPrimeNumbers(number) - lenPN = len(primeNumbers) + lenPN = len(primeNumbers) # run variable for while-loops. i = 0 j = None - + # exit variable. for break up the loops loop = True - + while (i < lenPN and loop): - + j = i+1 - - + + while (j < lenPN and loop): - + if primeNumbers[i] + primeNumbers[j] == number: loop = False ans.append(primeNumbers[i]) ans.append(primeNumbers[j]) - + j += 1 i += 1 - + # precondition assert isinstance(ans,list) and (len(ans) == 2) and \ (ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \ "'ans' must contains two primes. And sum of elements must been eq 'number'" - + return ans - + # ---------------------------------------------- def gcd(number1,number2): @@ -319,173 +319,173 @@ def gcd(number1,number2): input: two positive integer 'number1' and 'number2' returns the greatest common divisor of 'number1' and 'number2' """ - + # precondition assert isinstance(number1,int) and isinstance(number2,int) \ and (number1 >= 0) and (number2 >= 0), \ "'number1' and 'number2' must been positive integer." - rest = 0 - + rest = 0 + while number2 != 0: - + rest = number1 % number2 number1 = number2 number2 = rest # precondition assert isinstance(number1,int) and (number1 >= 0), \ - "'number' must been from type int and positive" - + "'number' must been from type int and positive" + return number1 - + # ---------------------------------------------------- - + def kgV(number1, number2): """ Least common multiple input: two positive integer 'number1' and 'number2' returns the least common multiple of 'number1' and 'number2' """ - + # precondition assert isinstance(number1,int) and isinstance(number2,int) \ and (number1 >= 1) and (number2 >= 1), \ "'number1' and 'number2' must been positive integer." - + ans = 1 # actual answer that will be return. - + # for kgV (x,1) if number1 > 1 and number2 > 1: - + # builds the prime factorization of 'number1' and 'number2' primeFac1 = primeFactorization(number1) primeFac2 = primeFactorization(number2) - + elif number1 == 1 or number2 == 1: - + primeFac1 = [] primeFac2 = [] ans = max(number1,number2) - + count1 = 0 count2 = 0 - + done = [] # captured numbers int both 'primeFac1' and 'primeFac2' - + # iterates through primeFac1 for n in primeFac1: - + if n not in done: - + if n in primeFac2: - + count1 = primeFac1.count(n) count2 = primeFac2.count(n) - + for i in range(max(count1,count2)): ans *= n - + else: - + count1 = primeFac1.count(n) - + for i in range(count1): ans *= n - + done.append(n) - + # iterates through primeFac2 for n in primeFac2: - + if n not in done: - + count2 = primeFac2.count(n) - + for i in range(count2): ans *= n - + done.append(n) - + # precondition assert isinstance(ans,int) and (ans >= 0), \ - "'ans' must been from type int and positive" - + "'ans' must been from type int and positive" + return ans - + # ---------------------------------- - + def getPrime(n): """ Gets the n-th prime number. input: positive integer 'n' >= 0 returns the n-th prime number, beginning at index 0 """ - + # precondition assert isinstance(n,int) and (n >= 0), "'number' must been a positive int" - + index = 0 ans = 2 # this variable holds the answer - + while index < n: - + index += 1 - - ans += 1 # counts to the next number - + + ans += 1 # counts to the next number + # if ans not prime then - # runs to the next prime number. + # runs to the next prime number. while not isPrime(ans): ans += 1 - + # precondition assert isinstance(ans,int) and isPrime(ans), \ - "'ans' must been a prime number and from type int" - + "'ans' must been a prime number and from type int" + return ans - + # --------------------------------------------------- - + def getPrimesBetween(pNumber1, pNumber2): """ input: prime numbers 'pNumber1' and 'pNumber2' pNumber1 < pNumber2 returns a list of all prime numbers between 'pNumber1' (exclusiv) - and 'pNumber2' (exclusiv) + and 'pNumber2' (exclusiv) """ - + # precondition assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \ "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" - + number = pNumber1 + 1 # jump to the next number - + ans = [] # this list will be returns. - + # if number is not prime then - # fetch the next prime number. + # fetch the next prime number. while not isPrime(number): number += 1 - + while number < pNumber2: - + ans.append(number) - + number += 1 - - # fetch the next prime number. + + # fetch the next prime number. while not isPrime(number): number += 1 - + # precondition assert isinstance(ans,list) and ans[0] != pNumber1 \ and ans[len(ans)-1] != pNumber2, \ "'ans' must been a list without the arguments" - + # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans - + # ---------------------------------------------------- def getDivisors(n): @@ -493,25 +493,23 @@ def getDivisors(n): input: positive integer 'n' >= 1 returns all divisors of n (inclusive 1 and 'n') """ - + # precondition assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1" - from math import sqrt - ans = [] # will be returned. - + for divisor in range(1,n+1): - + if n % divisor == 0: ans.append(divisor) - - + + #precondition assert ans[0] == 1 and ans[len(ans)-1] == n, \ "Error in function getDivisiors(...)" - - + + return ans @@ -523,18 +521,18 @@ def isPerfectNumber(number): input: positive integer 'number' > 1 returns true if 'number' is a perfect number otherwise false. """ - + # precondition assert isinstance(number,int) and (number > 1), \ "'number' must been an int and >= 1" - + divisors = getDivisors(number) - + # precondition assert isinstance(divisors,list) and(divisors[0] == 1) and \ (divisors[len(divisors)-1] == number), \ "Error in help-function getDivisiors(...)" - + # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number @@ -545,13 +543,13 @@ def simplifyFraction(numerator, denominator): input: two integer 'numerator' and 'denominator' assumes: 'denominator' != 0 returns: a tuple with simplify numerator and denominator. - """ - + """ + # precondition assert isinstance(numerator, int) and isinstance(denominator,int) \ and (denominator != 0), \ "The arguments must been from type int and 'denominator' != 0" - + # build the greatest common divisor of numerator and denominator. gcdOfFraction = gcd(abs(numerator), abs(denominator)) @@ -559,46 +557,46 @@ def simplifyFraction(numerator, denominator): assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \ and (denominator % gcdOfFraction == 0), \ "Error in function gcd(...,...)" - + return (numerator // gcdOfFraction, denominator // gcdOfFraction) - + # ----------------------------------------------------------------- - + def factorial(n): """ input: positive integer 'n' returns the factorial of 'n' (n!) """ - + # precondition assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0" - + ans = 1 # this will be return. - + for factor in range(1,n+1): ans *= factor - + return ans - + # ------------------------------------------------------------------- - + def fib(n): """ input: positive integer 'n' returns the n-th fibonacci term , indexing by 0 - """ - + """ + # precondition assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0" - + tmp = 0 fib1 = 1 ans = 1 # this will be return - + for i in range(n-1): - + tmp = ans ans += fib1 fib1 = tmp - + return ans diff --git a/project_euler/problem_13/sol1.py b/project_euler/problem_13/sol1.py index 983347675b3f..e36065ec8e11 100644 --- a/project_euler/problem_13/sol1.py +++ b/project_euler/problem_13/sol1.py @@ -3,18 +3,12 @@ Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. """ -from __future__ import print_function -import os - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 def solution(array): """Returns the first ten digits of the sum of the array elements. - + + >>> import os >>> sum = 0 >>> array = [] >>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: From c27bd5144fd48c1a30d10f0d230fabb4fd0b3925 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Thu, 25 Jul 2019 23:38:24 +0500 Subject: [PATCH 228/594] in_static_equilibrium checks if a 2D static system is in equilibrium (#1062) * Add files via upload * Add files via upload * Create .a * Add files via upload * Add files via upload * Rename static_solver.py to in_static_equilibrium.py * Delete .a * Update in_static_equilibrium.py * Add files via upload * Add files via upload * Update in_static_equilibrium.py * Add files via upload * Add files via upload * Add files via upload * Add files via upload * pyTests added * Add files via upload * Delete red_black_tree.py * Add files via upload --- .../image_data/2D_problems.JPG | Bin 0 -> 58752 bytes .../image_data/2D_problems_1.JPG | Bin 0 -> 41392 bytes arithmetic_analysis/in_static_equilibrium.py | 89 ++ data_structures/binary_tree/red_black_tree.py | 1376 +++++++++-------- 4 files changed, 800 insertions(+), 665 deletions(-) create mode 100644 arithmetic_analysis/image_data/2D_problems.JPG create mode 100644 arithmetic_analysis/image_data/2D_problems_1.JPG create mode 100644 arithmetic_analysis/in_static_equilibrium.py diff --git a/arithmetic_analysis/image_data/2D_problems.JPG b/arithmetic_analysis/image_data/2D_problems.JPG new file mode 100644 index 0000000000000000000000000000000000000000..8887cf6416856496c3bb725e0e8ca3b517370cc0 GIT binary patch literal 58752 zcmeFYbyQs2)-PBD2!!D7P6+PqA$X8Lf=h4;f)-LZgamg2B)Gc-LQ%L&2*E8B65OQ< zEeP`JoO}D;+pq5*-|hE}9^L)Ut}#c=+I#J_*8HuxcTHROKkrungzCy_$^bMpG{76w z2XMbiIH?2%+5rHXngC7!0Duj^K$8MIKyetVmLNa`5P*T=(NGuEv$FsAMzsJC_UzFD zuuv>6>bES40JM95yYdJB*YOtue`pcU5-%xA*68SF#{zBj{1pY$cF9iMt0YQEN2}yo2 zNkKtIL4HXAVMzfIz`r{O0H^{i0U*?!_p6V|9XvhVB>DJUK)jYVu2#0Z)~?QcU`sbX z0bYJSfV3Rg&C=S*)|1i7)*k30!+zY_$<7G0kzqFw(d5^3Q?zves``1@>iKECvi5Vb zmat)$lf}c421|mS-JESbEg8YiZ(Tr=U>W8=dzVDY(#jhEQM@%1O#j>c`R*&1bA$Oglxn_1jGgH1gx0< zKD>?fKSp=+@_75_*f!RDwr_2nZCyM;C^Q84nEC!T>Hn@VQ4sxO(0>a*N=8&0NktD^ zOHbS9D3bkSIeGZScmxGs{U1xrD<~u?&G$dGlji#ajDMNvfA7ryOK8bT+gM9l|1o!0 zkG~DCXY2mIw%TujvZzqo--JW)e`8R+qEznDqes$w|2p9R6@fp`pfnD3-#_#dbtmKh z1IJ&3{6`@F1=nA2{YMD=M~(l|uD{^=j}Z8e8vmtT{~v?vpEj>YrPAWtuEAF!`q*!vIR5s^{R$tfRG)6zeE&L}7> zDlRE4E3c^k+5l;UHZ`~O^!D`+41OE>J~=f#GduTl9=5u+zOlKry|cTAI5|B#zqmwR zUH>5$8UX!oV*Nw1|4A+)lw1!mFwilu{*Vjpfe(t%i7+sk1RfGAyu`9}Ct(&0#U_20 zlwa5Vh($;jPG;pXfkVzJyvm07L$p67`>zT1?*Eo#{}Ak-a=`$&=xC_LLni{r0j`y! zpXNRIe-Yu{>R&jCkM|I!jru$Yl-W<6zA>sWfuyIUeah5nYZ#>{V;956TY`W6H&+p<|?=+*<7lfCcl`ba8t<(2mS$QYVL+zqQ zrE8geMp~g_KkXV)F(1Q~`kUMO*q68UBea7vO3LwRK?u(O&qz?@1jB86di|_c3=v;l z>X7F576v(NuLyRUZ@G$BuvMGM?g)9H>8IRzS0b=Sb8QeG@CvR8jpb=*^e^Y()jgq6 zTIXs6J|KxlF6A00G+4~bQ1o916|RNXP3C>oNFZ2}Y|Iz5@YO;Dd$|c3%wgErxX;$# zh^+Eh^yZS(9y@bi>=-0++YFbrow%A>!mr*E3cOpiYrLTn=}0MEKlt=+D{~JhOxqU5;p;!OTrPePoS+FkQ^TJMH?qIRg938?; z0cl@B{7@l+{#S=O>^+Nal_gK6YA=z5UNOg@XQm_`x^Y;aBwa_jL$V6qz*-C=S_rN| zmi=VIqsP;0&DtOC0VkTC374$*fQdLWJ-E=#u730fBc->QbdQ=RV{;CfG|E^>zEKIg z(13DeoIW53`cx*Qm3)fk!64lkn+AwU^YTPtPdQAL}`Fig5H;gX)Aa~HGQ_1 zH;?S>79Xz|4>U{E@3+44U?o>&;8ccb^lF24q|V;5L^Hg3(zTj5KjepPR>`1gyz(QN zes34;0D@X|K)Ty`A#;J<6hVk7k^I65oP1WtP<`McC(5)OZ^sXIh8%z~W9aY&+ZaiXM zbiS(BenGNp_U5QG%WDLnnWUtgXDyxRN1*Q3bv=$=E{48b$kUA>7~fj1l25f>4Uj|0 z;5I7s(%#!|RZF&k%hrG^!FpN;qoOx&`G#8gKn)O7r1LOb>B(xAeMZcW#qzpP?nkDV6&{XhFCFWEIUX^) z%s_pCIfnt&n|^@9u_;LoCQU@Ohonzz$HKZ=n*^wE*+d)T;pUT1CG#Y1rm+lqX4*7e z%N`OevmtD_*x!U*=ppo=J(<0DXeDn^G~(fU)@Aj;rNb4=)=lNBEMf`sU`aqCKkLfbzOqWS@*{C8ei;r> z>;qq6z-@25-`O84HKO0-uohPmSQcH>N-`los-z>iS=B+~?9!tRHLCt<%Azds`B~cf zel*}GHb_wI&1@lp{sVq7Ue&CXd+YEgye|DO;^I`oXuL{Hj9w!2Za=B4d`IMN z)6V- z>uI8dkv6J_rYu*vr&HO(=NNCsv9u`Z!&81dlgAbGdo6Xf@ov5}eyPToZTXAR<>ECi z!ra#$VRv$OcQHELm9cROQ`H5}tp0G`y}bK~wns(Z@BsUp$S~4k;DY`sa1BaqVgYma zDIK}1M?a1yP#n)mop^|;_yC^(V;o~4^jLW{b~`$+r8q02dn#>HbFX*n6P8Z%!0~ML zHeJ2{Zyk)xh+1RQY4$Bjy)irCoduq-ME9$4jE^ss0Hi3gak}Xz_wxu&b<4OMxy_J7 zuLiEy-bxqy_@Vw(%Q{yqCYv-t$H3eR>ZyCcSuv;Vgwv{2oWH!LIrcIKUi$`vFiF`a zL1~i=cEvS)JNId0dPQECZb-mT4lBd5#Y;0ZvtF#py7NOc5hu@N4(XVEP{;BH{_6;N z_i6gIsxW)@+!wlYGWq-Unk>5+6~2-m<$Sf(urAZ54HR;+bRJB|OOWcIDg7^!sZT$e z$gj{^&wVb9*2>B-inO$gF?Kbwc=dN!IDT{1N=%i|vgUF)oMSM}v5vxG0((ux`nn%` z*O>pGHXef1T7VP)~6ypH>4AXkg+fz(6^~@kK~)7TUW$7qE-d*B(;1G z#y#sNTS)i*D~C$5VZg7Cv9!3c?it%1v|xtUaNZoxq4Q722hZaeExx{W{^1eyHsiD3Zt3?5_8v4ahj^NtYhb(S#Z}l_&;iEnt=PT5QUI3=w%#vx}s~i!Vka(My=7e`sfd|Y3cQ+7v5724bej^p2H(z zxTyzV$9?dT5+gy3cT#dZ^AsV)m!LsXwC)jv)wYqdlTJh0#j=^KbBkAzXuYI57S<0= ze&4ZD$MXbyWVoh5x4z`ec~x4yri&fe)G~$Y8w*r@^Pqzc8P=N-UbIY%pcVBCJh%gy zXxncK(!M!#?p-`PHiLxcUYOBw+oq{~@84`lp-rbd%>bNygZ!caLwjKnQPON6+Ipoj zNPBjktZ{?-FM$;I?XW@hx*BArxi+CpM;#bu8~HWCCXFiD(oKhaF(wU0<0F2y1@XKG zM6}#R&xuN6Me-a9J2fxcLqz?v(Q`j>XEv?p50b9JkBz5p%zUaG{HDqGeP~~PpA+o} z`1$;C$i_RNXuxV4a80U{EP!b8oTjG}_}kFHxrmE!13e*+?B}8rJu5stuEEgDOr7RX z%-AQc(C{Z^wt>%ZO4sgdtR6ajSM0$&b0_!^hM4jzn+BMARwKd4ocm}n&T>q*-}zB{ zsUtn}taI(dPqYgvbU9sg=`QO-V=gjf=wl7Ph=x|_T-UT}0Lc#2a;#!3?x&)6WQB#` z?N@h;<3S^VUS&gNk~R4lje-@*l=dDHH1f3gC5=^gB<5GkOm{OgE3MEuw9}W)-lQy2 zsuG7yvo-0f78E9nMhko9EbjsZ#~k}{$#YD^(E&m(yU~CR-ZuC0k}nshjwe7E6!x6U z351?$mBozdnV`wL zNr~rC!WRm~u`Z+NE##_&f7(upX}>Q zZ>H-ub*l0n6e{~$(m>(jR~}f+)%O5WWJKSr9I0?M#q(A@{91?6fMxx~qk#jP;FK5X ztFBSD@TK_J4%Yf`JXwb=r~oiuaCiI*-q>6_&>V^0=VLA~)g~XHb3Q|Hc*0Z4;XYXcFr^`l+_eR zXuCNd^D;TWz(b7oZd7lu*q3X;wO#3c(8z{kLI=O-U0C%e&dD}&EA{t84K*syK*ky5 zNfo;>ApbQUgWp<5&%62iH<>xNk4m(qPyENR*w+JtjV3ytAkAT8I`fw0rrdg63KCT4 zn`af&d{O8302<)+#n+N0IuYT_FtWHW5^C~PPvj-<0TiW!191;n zrH4*HK2>u!5dDs{g`66ubhFh<1-*8e>yn(7BdiI~fi1PwYq&5H-KLkI;ec}HZyeB5 z>ygz}yPf!LDn4btLVJGFTQCmM?D#=eVxb)lm_h#SE?57PTlV@?@&|++ z8+HKe5P>n{$*CYhbEOhwnD+E}Bp=UtxM0(7`YGDnp04dLPg;1ydOA47^bsii&@neO zc~_3vo||my%ylZdo`VN)O9n^u(~Bd6Yr(l%?a`wXZ9kn4iZCORDUyFmH$K{GSM282 z?!5;PtZ&L$h9PJ$-GT5-gD;a_bOb60R{a*T#Yy$F5nzkzB|u=yWw&dcYyqsNIxS3q zZwzdS+p~~quwu&)5BNfg`*a~?p&j66&WjK&2Ua-#a-3nEoSb8r|7E4eAN-MIo73ie z%v7HtPQ=Whp8@kms&WK;abl)HVyZ$gOq<&dunCkGnYah^)Xg41cwC(M`d;=rRW|O1 z!LE{PDOWG;s@QvO)wLr8z{baB(JGK6=xI+=&~f(B@z zYzt(2_S1sjvwJ-wdTQ-q?dli?GA)>p^0?-VX3F8KeDU*U7-^!Kj4^boJL4=!E}>6g zzi}5=ztiTo#Mfa;q;$uT)@s%|tPB<)(CM#DXzX3Dagl8dRWDc_}n{8?(>eL*zQ873D zUxaeP$bxBc?GK9Hmp8Xti!gaL1f(nuxkCL#_#C%VZ4x&mG5KaMH<&jd$G<^SS_iNFG*t-RK^U*&0EW|H}MOfE$>ULy!YmKA# zrI`N30Bp>*Nt=b8EkQbK`!o-qMQN_hs}gKr*dAlt5b7Bd5vB30KlcsZnDje*u9+K# z%0;JTyh$&Ut{8V;hvaX1p-r(_{suIKHv)5>3HbYxR^a%hh1W^Nf+F$WLT|(npp#ew zqm`ux$Gzqhkcsoh)19L3k?WtCPrBv#3#p_Ni~%bmfqMPN2y@i)4HK=z;1JE3Bh(Ni zcZhu4)qM|eESVM=Bi-pF44^6AGeD$NJk*$u!q)8#!Z{tp;j$u#xLyn-vcb?v=)lu2z#pnqQbZrkJQk#fP>U z&&DEPTc6i?4Ek95$dA0l+e#u1))5LezbDK{uctra` zfAO+z)8PAJ#p+;2Z6h$ZBhLaEo+C)>jh7d0Yy3Yg_=dkoNMXs7N}!*a2zb-pT!*v= zxnd-9UowloD04I5%}aLrJkEPAL(?z$x+AH|K@w7Y*rVW`p_$C`yeM#sb1*d4u3fIL zgSHVN7QrVRs1ls+R=BPBu82^9J}Xq75G<$E2pxQ(*cM>+_;>oJlWJ|4#>vCf4 zo)mtV8xvRtHQ+W`ZP2;b=E~8|r>L#^l7qoVFbKjBxIYe4qrK53L?%FV0re5Y)R!3$Nc^4(R z4;>}|)kz;z6D39HCi0)o-ZSbz`b!l}+CSNpk z2QK~+XMsp8eLi4mes{oKo;Kmbhuh0RSE5$OIh@9eow`R_>V+7ArBf+-d%uWyw-NZA zG{2S>REk=aZ1Jj#>K_%EdmQAw!rAG-;PlPzUSn;Z5%tj0C4)$#q1h{+S5@2`XI$wz1ej?vaw z5?IO$`mkmrmqb>sV`4JsjMM)%hE!vM%so2i&p5N7$UWfvWpGz#v76uO-~~|TA*3`p zP;OGUb>tt>?I!oz%#^{4+1z_TF^A3_^IVS~NR!r)YU!2dkZ`hTF9Y%SGHuNtnBc*I zU#4K;va0M9jT&ToaZf$r;@LJkyaYKq^#Va&>t6#YiK#Z;x%M!Nw9U>@ ziF^wBpck6u-t=ZB(J!dA$Yc-keAtcW96NsB;XA+6#1z-^%mjxWw@ruHU!`i}q*u(66;Rnukn+4X~N{t^FglPR9U~S6N4IrR00vZhP)?DfK%;^!f zX=xcO%iRH0jLF1e6gq0ON#k!ah9lPEp`NhRxZ3wF3$LcW0a@6*N#CXpj$|c1Mem$B zm*QdWKK9~@Jgi=$@?{mr;dHQ7TUUGYW&$cP_VUo&c}<(z#HsU9c)RR-mnx&^C79OF zr)1I4C7HS%@>c z#T45l@7Yh;>17~|IYTBczqYMN#xDvMYKx02NUVc-aN?ujUpcC$0$Fd@W!s_wXDx+Z zUgWv1JR=*G7(_MONn_s&_g^mU5z`TCjL7Kfp9DVPPR}eA6cn63(D==Gbe{{wX#J-@VZtz zd-;F1&ydL{6SJ-Rwkcn;Z-7j&wze;fc}`;Cq(D8pG%Bl)&b{2r$WRUN{x~G%cd<=2 z1a=zKr~-%SjJq<&(`jhyoKR*8e2ZWZyc{s0y{vIvv#YLAT-U~(2hI+$wN0shS0uDy z@=&^+e+Ess7oEBiAm?( z@Jru(ehN2oOe58Awv3mQ`zU8IPRZBt#yXWky`z1c*SR5Ev(Ig@nZZBD?`*Bn%ay@Y zVU6aNPooiIKV6e)X z6Bgej(eE1(eWU3Rps;c!B1aIFbG?e8E5USV!vWOw)VkyAkAx_7k@2=ao7&<_vVjIQ2NDeIpda zTqRT`kmf?>Yvqq~Iy@Fd(duPV&8{7N@kvyCr%y;mK< zUnlWP9mNAs+d)e98|zJh>8RHzX^x4s^TeR_RrJI&&^v$(!u<70E*bj`SD=ahcz|?T zim}9OZf9)WH_9)(oC zVBYr?{!7Y3b60nShx^->>YBvkqTAYoX2#F9_W);pcc?UI#{qpR^XP2E(gNJ7Fa>cC z9=_Fw(JX{NBIRBY5;%x5m8G^Ug=MJTZ!;(06>zqR*CAH@fZi45PU&QzZR zZ-{DlX9w*3zuBJX5Qq$MdgIR@&W6Zj>|HDm%pCDgW9>M_Aq{F^V3Y0~ zo*7=9D{@$?B?Ta>0w5`z&SWK_BS-r(#v`biSkOxK);f7P)&D3V^`=q)MIGFHCKRv`4=h)o=~ zZ-roxx%R57x9Qrpy|O2WYnd?;n*ndH18UA65m*OcH%l82?OwE>#d++S?+wpgPkJn ztGSrFe)jJVh3DTgCEX<23&xFY@ec5pwU35 zR5(L;5j;0scK}H4Yc#*CG%8^o-*(n->1aXXnxa38dg?f+dB`H0#dshk=*PYRD=VN8 zfS)GWcFS?!yyq|co$K@PPc8={6j3-~zx(V5uuSbU>I!ZYn_Cdp4t~o~?j_QRG%-M% zf%#X~Ebn}`LL}py%%+4ND}buadu?5`q~|joZuT_rw8mc7MPF)WyExlvBE}e=_U@Yl zt8SjjKAH4_PIx|<5zfQ}$8`ZdGq}DQ+7bFSKBozXbR+dv3pR*h0rrT65rD;Pfc%y79s9~B-p*eY3z7PMi>`YgHar7rR;`xJVARkqNLRs>?yb5fVD1aQpbQ9J zced__g~be;7>(rQ;)Zb$(k5dCx2cHy99xMAMjB@LL{`mW6VFmv=dfY=9GP+e+y{lx z=6bMsQnJ>HYqa}1L?G~`k@%dLi)_7DpOk>ucPv>hatHB3=T%KXPh>i>s~gKpROkF8 zUMHGxa7akGfAx{;6UtSTrw@I7%)?Wg|668*XpDq5H3^+>!zrR38CK37UG1r9@!|u6 zPE=7t^3np!5?Jxe5DPVAx^Lx94pWn+fYMeJcjUwa@1cgAtn;-HDSu4{%`etZ zvP)sGx|L5nGum624)LkmjSR%bzq_u@As1}W*6Ab7Dt`5#=P9hVk#atpl@{<^GvKUo z(e>R&%LJ`h{^rmyB@YdNDD8Ho&!9Ts&_*1c4rG)u7wK6`V02q++8N%n*f@TgSST`V zbn`q-M*9U6f!83)QBg?~SliV1+CyJUTSn47V@uj>-D!*j%+Pmizq*^N4vBa2Y)t_^ zdH($~mYgTic^-j&m|jEcl>P;5)fSTEQ{5A|=(knrV9qgqqr|;i;FxwKB0V9`K$(!xY!|ajx=+Z|Mh!(-Om4Zv5(maB#yg-B4mqQU##R%@6K?zEoB#+<|Oi zh7V*{&jWRbok5@rjpROpdW}>XlU)5ls_Ilk@j;Gw;{?+bZraHL_lX(DsvzllZ71p< z#IsBA&?Vv*7QD*Yz7NJ5k|^3-p;&q~Qis`#$s3625lrJ1r}qL*8&f<;!t*1Bwx0aW zM2*7t^$vN4IJ*G7rsnij+&RgboN{g-^4~hRi5O9%+Mvl08LQ=2Im;4O?#zk9JWFkAlT>EAH>+wg{az%7S*1cJPS1cG1)=a$yCN^AL?^(>xs0e6I6 zJ?ou!QWk^p*mN6O;hvKl6fdA)3lrKr@5_9fPx=O{`wF?9wO#BL2Axc+dY7GDC90of z4D0*SkMrTVLP&)qk7+?Ppl_~$b(YAOU3BgX-NhxxjCTGxR#TZLp4X9GpwKG?{6fIh z+}HRYGI5?FF||AHd&9Iz641`Dt;S~avOw90raZhvUvXi`n1kg0n9y!ZOJJ^UM8q?2 zVz6(Zk|)5L{!<=iLA3Jk(p~w-O0U{mp!HCvn4$G|tPDcm7UXY$mf7qd%&EvG!WB8N zgwY(MxH>Ootf9iTIm&^E$<+?W#5HJ&JIjv1&M^!AbaKE3!M9Y zkm}5)AMQg>@qa0p)<)YQWK;8R>rV~BrRFT1U7hXm&suz>T@0u&0NV7a1~1@6)USNh ztjLe`DXDWR`G3@Zf5pH}GLE?rI*$9gNBZQew@|sP>Jr!2vWXxjut^_DapUKz1({)z zMs!9af(}^EOtrMmJ%Hr!ys6<~>r~a-jO8WS1!D4~PiZL_h@=L;8;JIAdO8&q;(h(3 z<=xh+<@{J1THk1YLjUL;X|{@APs)Q=54H4Lle>wXG_p1pjfZ-K7>*wrSh(d~R#s~2 zrKU9J(0{Fb46%}X1oqL1>AS8)MVwxW;Az;nn<)QInh2R5~F~@4i;nCVvkgypi)QMS3_bXo?gGYC(x=p2vL6msqdX zoy&#iO4}4r64kPT zEm^X~jy2Fiv6EBGTDGDgJZ@T+q~%eu+V&z-ON?}(3bgiR)-Bge*5O7N@|8{M?~#;) zr|83MPnDqg&zT02aj8qBonO z|Bmd7r0_LM%FQv`?@|XxS9Q=MGu4A}OpE4D zP1PO*Rty{+h7LknNvJing7D zId0uJ>*6IIz(Non@G~F{b7t$)2JMlqytzQw7#VvXjf~NGEuLeGauRP@MquBFuz-49 zBfU&v+GWk=i8vPR1|k`#=xTaWxd#?T+n{HJhnM=VX$tjSmqySSTH+4LetM#G@-g&_ z4XOlUL=Y8JYl+Pz2v7j#gPDYz&sA?e9qQWrdMDxicI9mM*t|bCot5Zp4~XtEI1;+k zn*l&*lOdh@t~)~lM2d~UE=tKgUcPH$M4R%LW7Wn8g9yGGr5bZH$2&|xfe)CF^9DrK zx0U3FYKMc47q7On^vckC&vS8+Ek@Gpof@svn^U~{s~i5Gx?f|^MaZb`CYcPEAR~H% z_-7$BJY*0lXIt{uMBmG1PcR-gY@Ci~MW4-%8Zvd$7Yb)yvQyDTu~6m_5JYs{J(-jx z8!j0v%skY4JxzWDF8EAxuxez2krI~uX??auj<|bG(_}!FV)_ldVe2vBh@1JA+|p+N zhSx@o#Gv`i?swU@Sz@$=Pwz->*q1}3`OM)RU#qGQ`^VnfK@il7LPn0>=|tsTxB>Nx zIe>n@J(XamRp(mV^z@_!%#+^GEm4V$%WClG);BtF3A#OF0Kye($NcGd8~PfZ?0&Bh zP3HV&^3$|6xt2XrP?q~_ios-nK_EO=VLYX04$sS)`{B!rvXDMj&>XT7R+fj`s=CoU zzG{*g{B>lb?CGGa(ICVZ`k?>;eShWyUxn|Ra|I*y^04jJO?@{q4}@qw&0@bwNGu>}qP?CbMq2mJQ4_p>-6qHCL(N*r zUH3Th9sp+H3c>fwGJrP9ALiV6kw%4v=FlW1jq6}##_)j55!2>u&Eve>R#OM`*m?f% z?V6H4(HDkbv1DusTL6&J`(4XVCcN-iVZ(vmyeq!N2E;4*PrY+iHT^4Ym!G<}%F~M# zfh}wJoHrQoc+N6Ep#?V%b4pf43z9u+^kpIYc!x8?Tbthug@4STZ@ox&_qUYfcBz_Q z?n>4Y|8|^l`6kFk(vL_>yLG_tG7n#9AU%f-3ZM82KT6=u_Yr2o>-iB$)HKAHm2)fO zlr$Yg<#4z{a3+V2UO9qKEg<+PY0P8eQ0{|29Vyy+3RtBt~}a23br)2nYvjz~<{FLehnrpO35w``%lsmrG#DLJmE3up&oF zz+aFQy%`2KOi%()iJ8gB6W#&GN8zx!9|pccL)@E%e4cC+~k3kPdMSJ^|f2A7R3+cCp z$))00NlK-?OS=0S2>jeqm>JN|Y!Qd&pk~X6$QHj!{lgBP8x@1KxPm`i55%kuevLo6DxJn_73V=0JfcM((iKWF&c!|( zdA88g={&0;bGB){ogXdGD9Z4vJa) zuPbY+-RV;^k-rsC{j0_NFQ)MkssP~cvFMELuKFvvNC-TqKr*42hjCB# zBg6)i^rbu|B~~@c^yY2PSE}IDz|FPmjCiuVD$eP*aviq#iW&wkck1dk7e5N3; ze#;iR$b!di8c-EvI*v6E1Xm9XbIN$nc%l54? z+A>CZ6+#*sKR#4o@j!)y{5QK~w_03rzy@mLB6yC+>JHzgk9@u*C8T0wZPG8!%4SJ3 ztjp+c>%#A#oaV!n6dI+!gn7T?qj~A&+>n?xrWYIUQu`VGtmIZ3HHxy6ExHs&a|geK zrDd47PKlSKNhO#PI0BNRM_XsBs+>!knwsORp!WdN`LXn)KrTY$$>d?GusHk7^NN7X z81dL~p%$X64SdUmK^GT$2rJ?C{rbiyThm zB)88UGJ4G?JrBK4ji&8dnolg-8X4?VJ*pPy=Fpn-x>31!I=%i3(F6=3N8^v8Uq-zL zh3hd?T;&I&M^SEM$MreQZwke><}{)2-@{o`wUy)bd&E|psDJC!!CfPBwc*?Ecp*}s zljyhBdRS@en0!*sq%$Vk5NG<5!-gZprZG++Tpu6x9bK535CmtN=NmdF_Erct4IlZQ zkxAx4pdk6xI#>a?F1KWPNvXF6*DU-oxtDHWFvjVeBf-YuDmP1Xa+f;I8SB~43&_JA zc9zl{KSSVs$RhWi2xXRtyMx}sT+9X@hZ06H@I_N9sNs0XaZ!W7j zzKdNp3RY7Y!xv#lxz$&2pD@>k{cI(XhpkOO{2%X4%U;GU-5F0!yjlvdYB!-`HF0K8 zX`HJ0*!QfV*%yE}zG|j+5AbU~WYI-jM)8Tz$*G3VscT5cj=2ZByRmaHz4nMCP1KsB zy^uCATUo*x>-Ae2NU^Ja@~tmrQR7ECF_ecTr#R{+1RY|g^_ol3T2lH*th{-t#`{!5 z_2EMfC!sh0&L=5iCv6xakjH;Bqn?@bg+vxw+)iMsQmjmK#@)Qi1_xWmk{#+|Mc!tKM?)(8kq6$0P- z5VC|u0r^3>ANlhLd^_em4`shgEi8O#&UY10EyS4$9+0IpuUqDf-?&ilw7r=Slf}R|t zH~IBfPvJA9!rGGJ%Y}>9PrMm2qmQ4*tGybVLZ_cb+s&bz!`qHH`*p}wHgev_tZYt} zD?6jLy@vNuR@wq@U|fh>VH5NOhc+oTh-{;SX_6;E3jVuCGAD^^uq?Cea`XvnD(4_2 zJ7rDxfoCyt&dbXe!#}vrs>x?5w)4}xOUE?YUPth7avOa_T}6cH)Ij-d=0#b@Pf{Vp z)-BVsZ&ioZFMR{B0?T%Ohe1B3n9zFASaJqS8^q4vrgqv(W$XHvrWhI7Wogy^{v|DB zeZq>E43X-j1%G{QK?{_ngdY{UmJYeoX!A@Je3QQl(JYN`s>$pn-cRcwH$e0*RNnxu zPM`f^0SL9`J!q1ObgtsnU@FA+e1CQQWiE6jbahBKj8o6KTwnIX-U#G+rg;6lTpNTABU zvGwUnaH|mm*29ESu*X~9m!{cTd*b6_Qi|(mHSFr}yHvg&R5q#pq5sdL8n(FiKcwqf z-{6EeprZon&z5^ej*hqEu?sAgRS!Ry`{#a7o6~LVXpDD~DEv%^9}lqV|4U(mgv((|Sj-nA_o-u7%wb?l(GXg5yqw#G0&iUliq*=>w$-ed`UtkgW^St&!K-85yX zx}Lnb5zNo0EWVrg6m6Md?);N18#qj5*6USEeZ6W?R0dg$%h^)AjHF$wp;skMrmsD; zDQ+!tbpvaYAr71nvoVu97$lmY5)Ip%uUZjfDq@;{Zdzg8T$#fJowP%`t{x+w7sc_| zw(0v53HhemaM|&L<`{ESX?3tFgL`aOkH2<{U9{JxgV<9a`-TzA<(*5L-bOa+i7&G0YTa-!;%CcnX{?iN%;w-WDkZH#)2^{=o+!pD zkAzd5^#i=qf|#cG3eq&37JPLn=2=)axcmaadHa&V^L+y+L^O>vfmgbLT%noWvb578 z=b!eD*%ulRu5|BY32SC(y3Ijd8`pCjt4@YDFRoof&bic{-%+#y`OrMXO7N!=eK+S& zNlEe!rrASTk>wqqjKroX*{*cQa7+t6_aH&ZP-wLi*#6ZtBV_vMMx)Yj#F6*Yf;2aO zl8ZRT3MkefO=T$ih;FL%`UXWv%cem-Rr>BI(HA4QMv~_xJ&JE%JqM75BT!0wHT2oqqrfg>{@pw z@sFJpf6|cq*R9(1y%lC7BCX0@l098d853GO9+9>@sP|TyooUl6+W^8Ojc||Rw@zLYsdmKXT}214 z2zSC`9W%oCXT6{&tW-`WuLskX%Q>z-a3XQ|+5(i;WPaWQ@`_TS#k&mi-cM#+U3ov& zJ<(|XQ4d;h-+qv!^jQ1hP8#&(l1yG(dz2g0M{{c=!ACk{{`K>hn<0gb6QQPOIS-?a zGL+}e5zSvAUhFusVG!W1F%FRbTU2l`*mT?Lu={iRPm;+HK3f&ml(9L6TgO#d#y!W3 zxdLg%?&OjI`Xop zyvmf)fnQR;pY3L@F6Vnc8gp@=ykVG4`QGv`^%!9b0ln2eZ|g3`FOI&-(tq^{ZV+^EE-yGrMeuifI!9=-I(rK#R zLfGr04hFFKsYaM)+eEefSExiZF+SG5nRp~7Oq_n&*IwG1avc>7Y7g#OBcN)Zhs)13 zY&68f=6OmCZ&EcE=?;Wu8>Q*sTXVnp^dn3siRrj>QdwhEv!Pd*is;Gs_@ErfZjMFy z?qnEMH%xv#UOW%q*fk=Er0Hw;nJ8c-~I z8wh&bQ!}QvPl&kkJY<-K+u^Ye7#5X+G{iy zKk987R7LPP8tj+3Q~Ajt)gax|6S&7CTF*my+8@90Z`j?7O?D@DyyI*gH`gMtuzwDy z$e!mHAnn!Ro1YsexYr<&**{3>os4v1ZEjT@-A%JlO9ZKX>~O~f-kv#NYEI)j7yKfX zobnu=6SMklJ3@IXzdHmuVAo z9MBd3T}BT0%_+a4jc*M{ZH$#Dz?%w-)r+PjB*2mw0eHB=k9!2n%$6F%oVQF1dHRZo zZS?mDM7|*hSJQHxok|k$!1}PQQJP%It;vT!Cu=6fx!okA&-1b+c6T*TI$<)X=w2Jo z%1Mq$-K_92uEwf{|7%Nk^dI$sMPy7tyE2bP{DKNgjrUpt(){Aue8?wp)kwpbKA4<* z`(1rCNqL%;TMY0$s#|@zG9uyHK@GMW)ztZ3&g>!Qslbl$1*N?!*$Jak+s5KGsr9R-=;eE;g4f?*j9H=N>7yRMheiSf4-g6U{zPIX7{e@T~&ME z_wTxHazVWzn|jdExKeEU1gpq(22*`~5V^O-ioblERN{rp&MdztVicy*$5@ z&;|nq7)}V!aPyKE?KH#vv)4O%HiC3990sG=fs+AzHSI`nm$%cjt&==OY#g+M@m8J7 zx8mSNvyE~Z<(Z0F1s3#;wie+EdW}o|*~W7I&D~I51N(l3$a`h749U7Bznm^vP59WV zNtBbp>^ONkNG}Rjl>Ln8WOr^dDHo@jdOd^$R=F)t3!{C3BM(KY7PnlN1233vYp+7Ox%A)9@Z=jBtyBFD5%q;O$fTqUot&Np!E#pq=ewPgC3q6Jc ziG2f#r|*Org~MJ#0~2qXzr7EckNrrV3aXWI@h3jtiQK%k-<;S=9<8yfe&>W6@m}m; z`FGhhyf9llg7)m9zbHeRiBHHcR4F&z(w(z@EgxX%G(>*EKo{JTKSWeuel%T7wr(EZ zYM0wS;Of1%@UVUPTRXEaK!}-T6s=zcy=IP6hO&}2DerbD)x3NgR&j(aPI|&qZm|TO zJg&t+9C2_VPU8Exlt@D(xGzDpSM+cs`w}vEBBWlE_90%#TNP=qz(KT6upcb>Mic>7 zVTCBq6r}3y*5~M1)(XG|?jh(tb6*QyIkuhB@$3283YXuwU-*#~QgKeHQjy-$;-C{xG5KHQ z;yen{94}!?Dfp1ouJtk4E9o~z6JNiY1W{3ij1fFJ+tbn@Om3F+;MwlS4_}w+6D}#m zy`tO8_0EB{YSwcdx|1UI)K#fv+S)p=0Lr`~0epms30)w=VpqBUb9KI7sF!-+a?@&5 zEVO3tue3T6jnN;FCeZ`No%XW|zhmyFZZP!e>whVmrRo90Rn#bCCX>FnQOSd=5dY@9 zkqTeBbUhpqN_|9yf5qU=5(fpFyOrT9*s(Y}si#II44HTf5`ERuZaMhH9S)I~mErm=k_zV+Q& z{CZG4(T!ku9y<7T8hRN2*RmGnzk1sLtBBQq|DNrq5SS>yU6&4tF?uG*HqQ`sHHDU2 zLaZlv>boF4K6A*d#y~9Ced?<6-OQSX0hhy(n*H4TEus4>vAhV_!>bJ?i_s~yw4R$( zsi%A=rsOeD`!_hqep$>ARm?~pGyo?mR$%CA%zYmVUN~W{I5Z4iL`OHb5#5A|H#VxzW$-3ha?0+khyWZc)rZ0(MzzW##_A=Q@0=sO0e6jh7mYT zIY>z|4{ywlHp(0YU8y4qq!ZZh4Z14*1ESb>2Tw2BzA!i-Ql*9@4dHMPk14L-leTZ1 zzF73kk|ixjr^mJT1X8!(UM2pJ7X4f)erELf3X0jiiCZ>?XMJ3v45mjOd`gm$az=wrisN^|ut?0tyU@{!97*0h|{P>eDqwxCZ-snWPsRz8s6!vCM`67irkc zq8OWXg{6mlv&wBGOEkuhY2Ztvr`vg!33d_TJOkya70AuxKtEk39qp4qUT}AlXib-m zAJ?KFQ7$VpdNxKqu3yfq?5J7_XX5cyCD}Rs=O+@l7j(VTbFnVBtR~C!vtGbCs;L6r zGg?HahO2$U5oZg+crxQQD~;-30{SW2b>?BCDacV|qSe>MBD7TsXBZ0gb%BLRb`)msmE~AJVcxqa zcx|*3zB`-j@4l&m%z0!gNV$nFR{-e>mcTK!+3MqmXPZ7_A-i2dGb8yCi+Vjt$=<$| zZPM?)P*EF`gPabm5X&=W=7N9)^I8uj#)NJ8M=Lv}$7ZHPT56E&JZCzdSEcSM2~r{R zaNJd|SJ^7=xmF`;c)rbWVR!z1C1w>5S941_G4VZsVTL#|geh8G4Qz6in7-nE(H>4d zjuvXTpM2+DU*dV#%{lb@#ygGuJHE26MVR##%AV|?c!-A>;cQup0xb6Um@PL6qm*&r zd9d^P%OLOF%tV)tC#rMG1gDbTO~x9Soga(JQ^e64Hwax2=|@Q>4&06ZlZZ#TwU#;y zq<)})QRj;pG|dsIKoB2cPgvmg`I| z<7hNzNh2*%8*Dz{)g%KwOF3oeNjiV^hA^(qrzLO=|85 z#7FcLZ5RQ={c^3Jh|cViqRaBX#E&4WwN`Vk=EBpcU1nSE!E-#13Y!ImzN_pB@{zK2 zI&Aqd)E&)1bmTF;QXr3WUzxLqHi85_BKD+WmbViPOPpWv_)x|SvC(RU#y06w+$wY- zSZ2kG%d627k!hv@QIxkgm27coD%EF7$Hyh}dyo>5ImIEBZ})4q(Q~25^)SQw!hX{=tox@!~t;e?arvl`57FP=tsR^qr8##lwb|SG*cexCS`GKxo@C*60ryzsuU}7%{hL657vXr{rpxNm?CRoEvJY2Y^%LFPh=EatDr9@OKNkf#jN>J<_=)xpw= z&W)_jD&D6x?a$z`s%ZvdY)L~bc5esm*ve~eEcE<|IS~Smx-ZK7G&!gY;_LFH?~RFzU%%>hVFok~1%RGD)UuGT7yal&8uGDlB44@$k!hp;eL(EX8oS zPjI=7$-G8AT9OAPbIw<*;TKgz!E7uX^!@5ZaP3V_ zLwmcJ`GO#0dsoT{NYwMtfKEEgr%)M{S^nQT{8y*{t3Q_HAAdmcAw_>cbF@#I)7l&+ ze?W8?YJWf#at}pFMfj@!OLlB=q1vF$qzKTbr6BK&hE5}}8qsh~daRK*@LrVECEom& z`*rTHUB{Nw-Sk&gWPfcmr8ueoO1G)tnzSE|T(;Jo?E zw{7Ar+;Vj3&StJo84ZiigX_xFBnYCTl<0S3_y%^F1&ays^32E`x#vIBs3PK~awW9F5iF;ZaEd4Q~~T z0GY&2MMRhX=2Lhf38M&6kpgK3^|9zgx&O?wlB1JYk9Ss5+V)$%j5VAAI!lzW6x28- zT0&FUVQ#@Gtw0{HYCcoKh=^15UV1K?*nKECLg#pv^>c^*^&)6QNeaZN8HOChsodGi zh7VfF@UcjpK%=3BHQoGm_Wzafn#XXJUsT|jmhuB1t0!UnIjH|!y7Dol z;5fv0xHRZ>D0_2C3`k&$i2)@*SaOgUHUDh&ODbPdQuD(?IG4Vx_u#AhUw(%~QZnaM zpR>SC`ir{4QWm26L1i#<$7iY?U*1tB&h<5`wC95a7}2QJC;lUF{kH)2KX27JyAt$0 zqDAanHqu&|hq{KyO3USCbbehDZ>oM9)zwUchn-E@4;?}Hj$(!yZK!S;Nn=~&#>{#x zy8%s`3Q-zi!p5wM(Xs9y&@E*n21M-Dex^X{oc-y8xM+SCih=O426KNO0@l{``c3{A z<+ig@v(Am%eM|Zie(jFUIa<$-R20M;RgS`q>HZIBsnv}V{rp2F>qKE=V~w70sa~U< zWjO6>;Kb*lpP(<&IMi-A+);HV%r0R)Wv*YzRRAE^F-zOdK+0hvU`K0YtSIOnvWLRNX36Tvbr@=x?banZq|f1Ex2 z42N+|bPSRbwSJalX3eDC!n2yh1^bAgp}Q%yTD=Uh9hProCxaNF8t{nB&{TKhRO>z9 zhW_sF&X7#}#Yo65lhMQdG?|%Kpc-|1WOGU;7a*Oqa`?D0hkpb-0P>bat(F@`r2!is zFyja{HDC|IhMyKD0@$R9{`FE-mcj~@lRyLbkR1rY&H=PP!SOnO1ca}ujH>j?SSS?) zX5z;I^CL`;BTmT0jfo0P#2o_QKm9f=ZcN2n9}qvhGA5#3_Z~+V1>#g-#ysru@!-Ec zuyF|ZssS&M182W91;$G=B3Koq;4{&Mf(FIDHitU>TgynRQBiKdmqtZM97szNj{+b1 zw;uEDig*KGD64}I@5s3PtV6W=-(HYX%a0;P@Sk z)TVf{ck_Ytmo#uIQ72O6lIPH2Liu6?^tUAblyhg4`}jh5fs;EL-hS$@e(UQ^dbDZEFh0Pdp%u!=V$GTvM7;! z>V<{bCxJyS9auJ6@s;6j1gP&E!Qq8XarRpmTZH(ltH=2#%q!uiePo=(aI}cS4b?al zwGczlRRy%`PO(mle)E>-__yUq<6`eua^E5xG$a8Mg7LzY{a9;|+dt$7|1nqi*J}dy zYXh;a_c3>Oiwj%#kvt_KZ7Cv?%Lhq>{@P0%cI%fhuP;Ah?6~e{w#ul0FJmcn7p;W~ zYUvXxD)NiEjpNq3-Pj3-s0}`SZpPN%zT}aYbHH_=t~%>YgB&}ya|KoJ zNB~xQs^+nhfaa^)2WnHOE9c?E)r;j6$?eTJ|T z4qlERzA5V>rS5%2b1kxP1Y$&&1CV&M8JwtRG5R=SQD+1YX5{a`slV|Xsb=fxA0BY? zyLZQXgU#JJDjeWlcg@mS$p){3ZWf<8Ji0gj0gapGpRGlRXm3(@C`1S^5!88teXf-F zq^!`XSq;tPLPu4oshUp};lPzhqY~`rdzc>gbmW#{6qvU02NX%Akv-YIg})}>KO>%R z3o*KQ?vQVGkTu!x@hme#e3Lu#UtZ0PbilP81ywU}=mee|h=)cu#6Y5SyyQpwOG1+~ zn(?BXh$|f8zfHE7$WGGTdfCvvXCo^f>0kHrjvo4>PKwC+u#GmvuW(9|BaN679>%x_ zILZkMignkzN|;DgFl-VP{Ao@geZV#`-1GrAw-lb&S6 z=q9824vu$>eetUs>k*?Jtb7N$wqWe&&C3n1O7^Wx(K(lzN>&GY9A>?!yTqGp?6j^`?x}0QSf;Z=jz??h z7?!l*LH_m^!csh{9~bj+SR{{QrMBH$-Y1hYwi_Se&=Ee? zeQ_8pqonoHznckRY^={;BZ?CJR9DM8T3!O;d9)?eHiM!fXn9ignpWi`&codT2SwHSR(F z%!jU}xDuG}@h88G?$p_}7jn9E((}%2F4()tv6H?KHitGTEBk*Vsm!WaQ;NOOpCw#5 z)-o%Wm5eH~eXQJuRj%wG8z_zDTG{|-ruxvsMGx{DjHwDXr0q4+9reHr?xZeaxXi{e zoVfNA2Up!2CO9Ya9XV2P&z1Vq(o@Y7H~4BL z<5RlRa*QCsd_6{{6;jw#8_j-w`wNZ-_6SoO0hkeQrxBMH+eH!RJjx|=rxA+gxynY< zlgS&_n|jo4_G5Z>b$pf6g>>VB3s5GD%@k)ZcS6pmdL~ws$T^%WZMJC3@Y_ciR>q9F z8ne(w3I@x4_3l3;{fal>Tt3Q|U1AUvm3D$}28g;F_{i5!=1y<7g|OyHnJ34S<91Tq z->H4~jFg?5)tacxZN?>+s~6NbK}T%?V`Ik+k#Og_B7d8 zfn(lR99UpaQw}mi15fXZox8gO0)ChB?m@hw(dBsegh3#)gnd1Vf2K0o(2n~cIn^Q# zV`F&Rgyy#Hk)(x&8;}?D23wAXVE*LkMwWNipRF-ycoP6Y=vz_+*ph_PhiQ&g6;-A) z1+%eBHO>vga&L_mQ={DP=Nz>#dtx;LoKz3QxX+#vY%E2eijiL!aYb6PI?>AzcT@^Z zakzeKV}iF$^>|$F&k;${)uo)s)81?-Bl0-~C^$XM5d@#3VquSMtbHoyLH!09uI%3` zhsBS6v;DC$x~4deR=scdX56j$Fp`Z!BXsj**~0U~3sp-J!F~di!k7oaBBMw$3d3g= za>6vKYkWeNQQA}`gL##G0~@+_@g%Nz^%!L9ag9IIJ(hwGqfDzrIDK3;l%Ve??KqBn z6*le{QiT~*+pVUS1nI&IT4H?6Rs)1%QCEQ=lV^kvl%TE_w}o{=XdTj>uq9Qrxy7pq8?J3fS;yCx?`y#nPG-PK{n?bvefl$b>TZ?CSY`0bH4p&BH zrX)kFD-^A;mdmpMgUQ571Khxw$Ns#;D>@2cF+h~5ZT}FiEeN8p3o@&_m$REEhY717wo)lk;0Ei5s(pvm$IkuS*MC&k0kq zb(R!LSM!^y7%|u5d!lXzE7{JSt%RVRqW&D%!;Y+}d&fx!7O!OlmM2aGmomHCtnZBS zEBi~?6x17V_b#pc4YS-Yg3;2xvX{67D5K2*0o^)7w((O}-C7?zc@kD*v|q_tUt+Lb zMl@7DuM%YHSsBlk8!8lFpn5P5^uRzcf}P)lZ()5|c$KWCx~{r4-1j}q#x{ZIrqVd9 zZ=C(CqsMOO^Y3~07k$X|ns4ecAjt1YL@ti&p9@~yWaF65`YPpFu~FUBKDaNCg+648 zIwF*!=}$>VH8r-y-iuqN+ypGYfR4?!Y@gILi$@5JWQ99y|4cemsV7VzA*FTIG=_PA zGPR@Tgg0ja^Wv3PMUex*G4{Bk*qvj z8|m62`>CAlgjM_gQLw@TW_uI9E}OI|tEE;9=J_~OOx3O!m+5U8r~6xD-`Usm?C{rY z*@6}&zFN143^|+z107CF>A1JiNXKth4BU2R0QanjjWfHubuWV*Qnpw z*kScpBN5ghz^nG)vJqFp{>|;1)`6UFqJG>ZK-80)T~`XqofMq+N6snDvYlM}WPmU% z>zRXp-L}uf{r-74TMnnuIm`Y4JTN@ljwNiPQ?osOE-SvLD(b0%i}v` zE&qw@!R`HgTcrnz4*fV-!qq_p^ekFKB8h_t9=q|tci|V- ztJ@yB-S)BG=~8@n!Q=e87v#OM5FhQh9}Zj=Q%&v;1LECE|+0 zLCuGaMJ-~}^Mmkv1Z1S~3&DLuNU4l{R`pG!TcHfu`yV>IS4p2qqO2#9w_M_aRK{m- zl7UpDd+uiRORY(V6E`;5{yH4y?X2O?XT6;Qnv`J)^Q3@{5@1~QkB(la58Wz?HhgGe zS^G=|JOAlNa9H5<2gF$}o(|-63vmj~1Wp_Zc zlcmo~L-X|4;?*KNODDENUR^W} zlR|iD@2oe@=iF4bIoyTiXT3{3Yy|Qt0iO`*RuS&|qvrHOS`;>y6)qvE5G^2JU2Vy9 z{apH_=M7S7mO-Nmj;B8bw^We0Xh&Ujz46<4f6dW1Z|}Z1qbduO8(_%C%1mz7>XK^r z-O?qH<+)79gGfd|HXJJ?`FTc7+#_uN4$l5_-0?s5T~h0Vudu*RHmz?vYA%`kS^ByA zcNj;JkZBxAME$H<&O!r=29fmlyWMKuA~T*+4Tyg_Hfg|lm)W+{B=iR0wAc?7YT72# zlp5>B&EmzGa%7mBz0IhD1j@)N!%~U9RzvD+9H0&sc5L>vN!qymmnO2S{0NN=Vr?@E zrcpq2<&p!#6GwH@Et=U)<*4Bb{>z29mc(8P-WB-Op9YDfV{n%Q_U)fST!sY_NP&jB z=MGQOS*Sp~-zMu3RcNTPV+4Rhdt-}R|1;J#|DP*kCxs1BA!v`KNc#nD>;X$T97uyv z8`wN`6H(m}I4k@Cy&`_fX<7>gfJ&6v_9ISUAbr;~@uz3)UYGd}tS9#<-~6p&hN>43 zkVYd&bK7XezS}t?LXUObHtBOnt)Q>qIMgP zLTAQcf8=vh;Q}o6qm%nHiAaCBW0~FGzIwycJizRfzOGI(qozqa!@z5Lh^O`U+Y3<>-IVBdLvL&VdDXUrK`qQqE6{*JM2f6 zsi1tD@B8kr)l2|Gn(!aAFS?4TNDe@|#YOEKq!U^T$FRvVbrSS7(#3+ge#Iyku(Xs` zr$9-eW)*2Eq}}SB=a1WCbn!Qefz6aDuLGzPx|@Xam=~22%BT*$E)~%H0eQqQ5lK!; z!SvZvEUE=qXtOMoMsZA?62Lgj$jiIdFyUB`HqB-hmEN8|N&Otpy~?qV;Err}?;BNq za{E1J6p%e&UBLal3>9VKh>(!F#&m%%9u=XF8B!z4zB4HdxjK|H{%k6c7pSYThu%?Y z^#{Z;qKqvBIJ&&5sj8b=f1#__>wvybE{iL(&aAi_eD_@aK*G2?GqKAvcat(V_Ye_lG9`mJPbhN4S_ij$*mtVFR78*7|GD}sERG{c}dPQG6ZKTxqeZmM2-t2n|?## z6gL?_H!rxGpy}Y6hNWON&3b$iM4p{V=h&_oQQPWub6|zXL;{$tWVn5YXiw6t?$>#+ z20#B;FTE&=DkHB~PNmp#5r3&v*YM&Gs02@W!6v5Uanx{Lq3x*^) zDvXVhKQGK|3Dl+$_O$2hpUv7qn4>wAAYgN~BhS{Zk4I4 z3~>d^r;#7EwX4og@0ruu8p!8(A+XS_P0g`SbW>oGSG9WijW5l)@MIKyyyx`EDP8)@ zK`iydL5&m_+;JZ`ctjc0zsVIr+&#D$`)WUcc3MA0Zd>g;MF}r`y!ruC|?GC z$&ji&2u4lWvF>!Ny1Lh7k^kdB$gg}u@tFTb*|$4;Gy+$lYGX=2CM(3KJN7gei=<>i z!m1^i->*FJa~|=dp3Aw4vis^!!EULLD)8qr&i7fd{Yr3O~ zJfOdqzL%PE<0@2}I<{Xx#UDc)(B6;h#oKGLy@6PYMzcuj#3^~khGNcJyv5Q5h^b? z^AR2aS-{npzK>=EBVrX~HZC{M{XAzt?h7-BO4M0+=Ka}d7&)Fqs#HWT6Y6_CbA-?P zaWUSh(>VdmlKBgZ3uMB2RwlL7v9ARZHPDI{Q3X%c=J&h}Q&{8*AvZ};9jI?4ic~gH zjQ+hm*gs72{!uEg?NJF_=8;b*k1U_&#BNf6lvFwJ{FYb${vcKP>FNPzGKE_TnS(XV znsIsLh-p%+XBpM6)#lr|()903Ju4yC5v-a0CEAH}5nRBFKc+Ki7kSIRqgNLhOm0`< z8RX}_?!SX*T&1|}5+xG6MuHH^g(H7h$G&WA1{C7@5!5xyV)Gui_c^kZS^(%cuvhng zri=noGRO{1HbYPB#-62}jp7%JyMI8EF|BGb_;XngvS)qumHJjqVPR%9Nic;ZX)E^m zoPi2_$L_+FM{8yV#+qn|+}oT4wtXO^Z{0r)nAFl$`O4JRUC4yGzC6A84NTFCT?!s# z8V@%{kfBRJ`ZmP5NyF*q3Z@h<-$HyLX}ZBJxwgSs@RP*i8u1@ccyIqxh<@b*jW}-7 zp3-B;_wxZNJLp-(=|*ALH3tsdf1md!qT$NwunVo$kuJ@$Cn&SUv=m2K)#01Y(A7aN zWA#rU^;dTJ_HS%$T-*LwJ{!$r-<>L2(qU7^`?82$Mg#&>&XN%u3V7& z6VmxkH6g6$7^eqI`0eyH#_+IU*F5dysX6MKCDnw^L4gOBs&oE;zV^*%?jAyL`ki56 z!TX7BRwvfTpMl6PmOXg0OwK0l#0)HSL{$8%4l1f@3V2q?0;4;A-vO@YyF5l@OZ#m^ zbG16WN``v(WWFPL){{i>49M(f&?dRkq*RaS)37k!5pMNc`WMUAxQ0f8L9#0d#&O3T zG$Jm2D6UCsIO}Qp%`q8RY3c}^LfV@@6N&$@ft{sDcgtNYpTCgBt2DEu&E zp6X-hcFeK@XG5fY@6St@2uqub_hb~wH!Gc&_)G1 zI<89nkiS@X=|Ih}6?m`0XL3PS*%*KV~0gI5@y8Cx4A>>%S;@ zhg*X^B(dc&SW2o`zbbex{+ZCg{;qFMA?v7a_J;eL-YZG=Ew@q6JJQuz5i0iYFdM+r z&xTuPSx@gV<9iI9YYIP}41xa~aUh*8iAyK~Tw}}{ zRC-q5LzAqRxtE+q$GnP?8w_7dww%dnHzI#-9s zbOQUD(`LpxiU zO_nr0B@>ZGJIrUV`}mNBUDC}lfz@*&!S&{Y`DEGptbGN~{m5%MN*X4sg=Bkj?4I3n zmo}=I>xHYa@Y!6$HjX^Q7I*EJ?cdHyPS#!4C~T^m;VyWF5Pom^N~e4Sh*sZ%MGSB9 zNE9rHtdQoqOfL(icRdydKCF?T?^AhfwbhVfk4uB7jy^#1xXF1cK`cfMec|b|VV?}M z;lNv4wthj&t*E%ASfoR(!0M|!|h&f7&Wo1B7@87XMYn< zjPg7F!O%S!ayLLs(c@2ZRv7l6XW~;*_gyT-1KB+}8R?g~+&n^StU8i^qD}86P zJhQ->z`$cgBLpQONZsO1vs20bolS11g|Y0+0%x_CQELzyTJUOsU_qGftk|0aq4)lD z(?>^CN}=bb5%2EnOg%L+(FioUn~WaJGutr?*Q)jQ-^jIAJhL1FtlML}wVluccVhb| z;dwS1+)8*$X_APxxD~Sc*MLoZxCkl@JeWU{)lIjY-Tu2QyD=_HSy4mB;FjOSWB^XY z7q9l`zS4biG@Sbv1El<&1L{s!m7JL)#*e92a>&1NZUU``ciOH$Cy6_{Q_dWNZxS6U zJl*eQTWQ~U*`Eyt`5z+Uh}y(JL#E``^^BhLhqL?lTkmhRFT7qZX(`&jyUxbkKe<-H zdT<=)`8dmd3YaPDW^S@HVn)P#Ph-Sc-d_?+RPQ_NUFDg$R?=2z=KHPS#-jznx};S* z+Iat&DE*7v&FiKNg^h>1*ytJuypc+MvK4w7JnEn~RVT#GGPYZf+`a0N8&*@N*K)2@ zxN8tX?`p!vs-QQ64QILv&Y$i8IV&Vr$%j4M`tDma2d3Gmj`?cZeZV})L+Plm#=3z_ z*Uep4_ya-tD%e2!!e~WzjMI}{Vpu5a|hv|A)>#=e+J|jDW_FG;Mr~nV_gj zs|zliNFz-pO=Y@8+sChPXloFor(`s5*Tm`4?szUvf|&IE`GGj_5Im`i3~v!cj{AN@ zlE=zio)y6=LIHCiKd679uVl+mClfKm!MQMykZ$fxddy3OqBl|jS!_#mb-lkwSE?F{ zV>$U8+u-5temDI@a8@QpX7|>;(dY2^t&8Z)aL)I*W~|bVK9yYwN+>Lr6!OFg*I+L< zu`KFEsVlUg#E5i^=VPZ?$9&SC{T)ytzQLMmgxgUm--G4ye4Dqz`fGNkh84Sxv1^w8rT z9FrEyO$BYZmD^}fyT%e2NtRpldG90_q1)9QdPUHW+-tKu=&H-nOtzZ#$+@1Q_lo{b zW9#8F^-7Xn*6lhm$*Qm!Ec=+O8GqR$L>1+FPu5sr5ie{f4cI7`UwB6DYA{f|5xA<< zJS)2^{~c0p)bpb+xspWJx4oJAXkH|`8;#ryP;61Xovb}2hQFQa(RyNTtD3ei;P$d! z+Z*`)`Qn#XpCg)hzGa4xfzi#Exue;;&0+sALW^3zik3p@V*~7rv-*2xn@B(Lp1ZH4 zB6DIs``yG8LuFZBk~gIjo~W{7uU6r0Sk|sh&2{%230u-?X2cyNR{*0NAn1qjVb;MP z&pK{oQ@W<9sx@=&UVV?yIFbePE@^3MjQ}T<_fd-~Dtcp}@>=eyxs_Z$blQA%Q$m)5 zWbC=i)MEW6TqX9|%3jssZ$);Fkh@>6qKNbHyfTDvn}3!Pu3?>+oYz)Hd_3p5Ja_{p zd#hAt9ZTsFg#cJbMCx4cw@_^^O>K_osN}9GCfV(#qr@nh^q=oig}8dG(zMR*dAXqt9p#8FX;xpvOFkStws-4pjMuiZJ;*q59ljK)mbc4Qj~Yp026c{o z-&bjY+p}Liz9c=KX)DYDCEcYvl{8bYvoPMu!(zP0(Qusr7z$mxcg6V;sJ9TE92Rdk z=bU1GKhme725#~L%0)$Ubo;-a;-zBO%VOSD)r;J@7l{-47$j4VF&DU$@6dfVDSd9+ z^z^f0xOhx7dA=aR#%fZKW>6%A!s}3N-w2a-(ztdis~4E8(3P#)x?@WaQ@LTLtkjVE zHumF#4!=~MFRlp2x(9LX14&L@2I@JskDD1j@^BZRV=oDtr$3%!K;o8HhM=yW%w3j< zA8p#iUSvGDipV!@l}0*L_1oN7-Ow7xqdH}^$UQhsR++&yZ8$=%*UQPCjPs?6_6*GIB6Xzt^G)a&5H%&()6A z!7J50ugWcL)f@yqqQ}-YZu{Gsou3+L#jY;YOOkd!c8}G(%eWR z*>2p)+7L(6_q0@>VUMZiy#lB2Y|5I~zehMDqKbDO{OOY7JFz%Nz&Hrx>iyI-4Z z5Ou_Bf*3+KT}*;A|9~KhfU{P6l{e-0qF$4aw3l43b1uy7a>YK~+|3ewvfWN8oa4}J zn<(Nl#cr_LATR3IWC-dm@MFf(g#y*1k-m7Z}4z;>l4UQYakYs9$+KQc}K|ENDCcaD5A zBI17h14aZygcu>UpI)%?zi8UXed*q-LNy7j`NmNuOnGVaN63{b(pyGB#IMv8Ojg;b zw>IfO^`_0C*$cwZlU1for%*XnuB?t}05K+yX{`D^MBIDv;8^*j{{7mqj$B0k_$SPWL0H1jJ8VNW8B=INQNAeZFynQW0FS|aY z>Vl)YU6K(a#zH{~@5u=Xtc$r!q3itlmh-v4jxkW;7&yj~s110)||BtBcKMkwD4L5U}b>a<7Su{u3 zStS)b3+7{l)}8lQFzQom-V$_XYaCIE8F(I#!(iuw+Wu7W8XJ8jcCzKZ=SIup=1!k9 z4gDt$1vQbWMZQ8O{6a{l!4iVV zhRpM40^}d=jA9(NXKGm30N+~{8%`1$76FS-A#9=gmUY}8o|t=G{5Axxu!I$+ErM>W z;y23JhFRS=`oCd|YKv%cVD5XEZGIrSlTIrF?<-gjdhu0N@r=B>52F8C&3qR^?W6g{ zJLA7$?Eaa#`+s9!Rhbb4lpi4ouJEktmvaE@+#CDf^vMjL^w&CjWU|FS)+^XBGnhwQ zB3((?JlkaITxeC=2rK4wtr2AyQG|K#PVpREU<~ikDm*i(&s<$UB;-6LA`3?QhKPey zglyXCUy&iDE;11DbwyAYz{9{K|Hg>@(`mwY6K3L2LsrbScWKD7-l?TRJ0J=j8%mw` zA`K~@vbWeaO)&_#1=2S`rE?ze{&0zbmE(vGLW*P_NYxB z`s&Sx@YHY@tTe+x+OHC?^Hrq(*>kE*pjeN;xj(_KKSe663#jnBI+Pv6XF(poDxD5~CMaNM|KdcLMru8aj?u(&t8xnJ17($WsEWyzrF{!MgaN*|BO zsr%te#~02{;zRxXv8e0478c723>$(_T}9h0PL5&B7*8s8p@d9`TGxki0>&k6hZN7K zt{6)Dm#vdK6RxeX5;=`_(B8F$Cc^}$=VeBVQaZ!T$vUb5ave0Z_WR%_shQ(nQ;)^R zyLAg>OUp~e7>vTz%NK71&~9g)yGP&L#4kNzMVmzB3$+aiwTctC!F{9UgD&=M%MCYR z@$aJu9azl+Q002HC-bMbV_Zs?x{=C$y~gD`p15IHdszRlnEVh_@dtDm`3JN|pPMwb z?VWnrsO}PzS$f3?_DouQny@cB<|qifter%Z?CgA$GMuUfp(S)8~h|3UDX}2H9XLeqyi;0;BScxX;vVv!|Mt=)iZyEMc=onsQfDi1gQd{HB^V z8A>!!JJce_@E;l2VfHb2jLFxZSjAjW1bW4#JztB}(($<@+3xm> z0e#$SW@b4)hSLnLfjq?G#()!4!6R{IJb5ke=z2y&A)vT$Tt+TDqF*oGs=Q^df*N2} zJa2^VH}htBhuNO53OcL=#MR~GB$+y82G^SG@!ycfM!N|ICFmJ>Dd2UA_z?GTCfy~( zh=Pi*n^o|n$}%*h`CR(R#lTDQ*qhu*o!7M3u6_|c}>)}uQu(ZwELP1T@w zu?y>y;~@RX`$>G_yAYA9yu_7=gsMhSf|Q-Z_RHNu=(^q?(0Nn6#auL*UmGKh??Vm= zMvz#()Q9ZJ*11(n(h}uC@x~+;F$(KZn0}UgNXiKt3{NibqC!RS?t*DCWBE&&`>ZE_ zGHsbI3A%XrSk+S@Qmf0NXu1~Fi&M6ZLCvZ0B(o%U)@P96$OO>aiAMag$XJ@0Vu*CMHP>r(s21vU313s@$ z^ml*{Ae{*Zn%$V$WKUsp#|dpQ5)`<(=(RWGJKQ5cs)pWGu_zv%0QfE-wz13 z(g=NPd|TVr&zd#L_Xi~2vJc2|nJd}pZDhAD04n9T{6fF}R@C_y&Qowl5CR(Y74OKt zdmNA%tcgI(HBWV-g|>Xknx0-oZ;U_f^ma|a)1i?`*em;~Xm~)(PMHb1HI57i}*$rQf{kgN<4mZj!1|R6y$?Mz8yu1NS?> z#BqA2O2j&BoV)rhz$lNGECWXapdBss{d%Qs?N#J7sve<_hAGycET!bB@K(G$jEXr3 zgml7`3pkQ9q~rJkx{D6S43{+zhQ^<60K;0N3n*PV zc(>%MrMdg~*L)>GU~EWP*#0$*Lj5VCRHVPSA1W$l<7vMw5MAgF!rl$B_o67Zz2fcl zta9Ydd%KPj;)sErALBXpqwGLf<{emVC$(`T7ROo)JTymYxbW;%=859Z6J^t_-B!*T zQ3>dJy67G|$ z+wwBoke<5cCH*M_EvEW-LSM@6+18+zFilsB$+IDqo7Pw)s>>B5$$(#FL<=2 zPY8kG%?*~=LJ^p6BN`;RokJ=^C!lj+Q&=D+J!nyv&!jI^E>;5H&rG4;;U;k0z<4&08T zXx}@<<##I+mp0fltbPvI6K>bPe{n*^otY&~^{w(lPEBFdhe@@V2%!EPc!@-7m`=A* zxuAkP&1?1k#3>m`x#g@N+@!SQ*nzF8R58LsPxf;zLyT~6rl@C88Lx@ z2&f(MdmK9ebx@Lce8Vw+T$~kl=c2esaHbB?tvo zQK9L9fT3nl<;FHEZV1 zcfaqhd;ZAE-Ydz@yR)+2{d=F^BmHxAi%}(C?T=ox&St-hr?>2gSLo*S#up*myNNF| z9Mxk+uzT+^Vw03eWIy4YyyXzAfx_L|e^)bR9)U6SSBGivxga&AK8LF>SvpU37xWK^ zZy|N|rJsUk_j-xuH#*3rcei#cY&+c@9UF*v^>3YpjnHxy`kAlbnn?wW&!IaN49$k! znCW@!`sPtd3uuy(lq|uw=9yJfb{oYhVicYg?*37~js+~{@Gn2jfpfApf!StHY4QX2 z2FO!1S**KH^m<&+FODTo$BVBxIK7!$VQp`3TJB+kM7&ASNTHv-*W4?-AW#a+89|F} z=mVVT2TRG+r#ic*+4{DWOK7Eb?XSA2P3t4@W`mq)WMAXUhZ(T4LCqvnkmyaqJBjxL z^p>h|YG{-oxyW8cVIxFIVa%KR*_NWNyiLz{f#PD3schrXP-})n+Qx3rid92tWJ1m> zfX8_%yF%Cg&Hnj;`ux~Ucv1Kon^gbrTLWasd~Tg9Jy(QvQgZtlR^EGumXHMS@_t+L zNyYfU#8-I#^G|<=b}PZ!v>{>S;m-i_R$Nj^z2RB*oH^3+I%Vt627(Wkx$%G(R!Lg@ zzxx-3P7MtSHjPxXC5;a+m^>6lvupO}+FA}L{{qftxy58|z=GX2HpD~KFiZ-iSE5?7 zN5X3u?WH#LMzj+vv%WPlEJF(4MD=Tt57^#EX4_6`EsL%`Tyd;#EH#yHOlmbCP=~ak zJApa1n&#`uc9h4)c9w^`ML>4AhBg`&e#tU@(0gy1o@Y(Ewq# ziG2-iLmP6+!Ftn&t-KMXU$#hYeROQJo^bNkfQ_ZA%=~$S753mdvK!&@xadvvOBuZ5 zshj9BB>yUunO>q*R9jZk>L`W3ZO(4N^MS&(wWji(3)J84>r=n_)H}KQxg9o>=d0#I z)F8)F-%kWsz?Ebcw^{f)T*3y?#fXIY72vwXEY%{uUzahGe1u&7+rj z&+NdDJXoWhIL_M_%n~gNkC9A9f0+&R+Wjgfy!9lN>G!9E=#s{Y79q@@b*SUp*6XtL6El8|_tC@!FD8OSCHo-^ruDq&yDI!~2*D zGmVq6SsoUt^HHt(5A|<{PH(E~r3v6+k|%}!LH4qfk>R(SQX9R&GOxv__BY?_+Y;tF zIr0bJ`~`qyk@Yx!sp+PpXnrf*L~~bK8Rr{2@_jMd@m-JPY|Dk+(|#H_Q=!|r15u563}s)yH!f#v)8Sf(6B6dPg?J4tapn8LwENP zGEJKr7A#Wh!zrqPtJ7WW%cssmy@nbKecxhtXMALTf_UclFI6nQU}Ab$gqbIU0+8_8 zy?O4$xTG`tv)=7BoA+&gY)H-f>5&xKOlaabKy$&CI^ko;0H;!p`-O0(nOG8s-OTQl zh4TObXbld7l*j})r>}#6x z<`2;Hw+;!Xz^TDIWKl(mz^vB27uy8p|7`#I{|GG+_C39CdZf3;|G|@MEB#yg<{R6a zUxN<;2%{xbL_nhf-63Os#R_z!;OZ!jJrE+`MtZcD$=f^)? zl*@ECjKZX30%kkwr7La6)bg3NOs8@2k~QrrM0&WY5u-+#nA> zmY}!hRcSZv=5&)A^*h9ge8t}cD%Cv{iLS5ir6nq(=q!lHqmB4#!j0Bo>~)fa-iMc& z32C{Qsq9Yy5~{gcsSLd>(Pa~bnm;~V@go$O>*7+m>1-lh$M|Rt`K8HyoAXvsE8hlf zgzo!;@g0fe9i*{y*nWg`H2+I0T(NzS%tez;IqKeW(cL8Zd{cCGO;RGYqu58j^e@2l z&hO+|iVOb>(n-&nUm>K3nIENvN%JR}UD*VO8^~VG^IBPlGql7lVJl|kqk>_;HH{0^ zE`hBGG%L}P)AdydUIO4Heos~hj$);m()3)n9y_r}LFn3}K3a3TNfD2r8|e~(3k7Zw z|17x&C+8O!jlw|4hh-`3==kf7o%#|bzO5>^mfMCcXVsohFlsi026<}o`KEnn`10*O z6{0cIO}9TMx)pcYH>8=eikdg$qn>X)MT`UkyemEsvt8ALAX?V4JOyDIFd+q49%`bFW3BHS0vkX3Jc)7I|WF0Gcul+RF^ zs8aUl&*IQu0LKG&O3;5D@3C@OI65dQZ2%HNWO>H}|V1d^HKvh9|f=lK691!Z!& zq`TK=pY^936SC^WS#JICv@gB9me)4(wJ*_?ceh|pdzrSds4$9yiM`^_ zkf2rotqi{hZa#IGpw+THe?>ns)YNc*SU=JQMUH?*bc8Vry zD%H{KDi)Zpl-^z}>(3d>sGU44bPb-IGAZOpC(?@fUmr>;pKHaJ8A#_{M2jjv?{tUG4=m~YhbKQhA3-9m3HUhELt6vTU#%TQ38dQhut zf662kMDsqZQW0xkOPwtXk2X_#tFIz*Fmv6O+-_Cf;$EWvXP82*mTz)*IFgU^2u(e3 zap_z(D-Y~5nUA$%&hX0Am30qDPjfj|C1bD~Vc9e;CT+jL5O+)zhFfFs0f$uXxHDz$ zFQDQsDvR=M=>f43O|0y@Wx8$xr9Z4?%YOk23|B{QoAES!i76LNiFdSjM@yo?p}OWkuJ2I6&WdMoU$YG2qt8Bfi4k3fv3$j`X%hN zTj!i9iwdMzn8c6i;QdMmjT(5_$%hE$(1Cg@7g@E1npX33Uq(UKD<1PJstTL;>x-N{ z%k*@B1cEB8u#p<>U!q~+4j4ha+DJ<|(QDBc?{pd(9E|IOU2SNRN$uU~aW)5%>krA| zRh8R~VS5FtqiQq!QzyV{#57(b^5S1mc7*MKd#_3xI>+S3ED@(cRD_#3(qiyZAy33?zw;~LiP_1M0_d}P)rF?2LqTu}Id_}WltN!FI*8v9-JmxlWW zQLl{iiwt;D%5##?s4F)4UjQ<~H33g|^(&&@&JLG6UEBC!sNbNt*<<(~WozE)r1+QJ zbNF@v;4u1kigd;&@?6YT)Ca3hE^7d8h<0p#-S-91nL?W}{?IQTMF6s7Yg7iODt5?UQN`G%ahw~wWx51e}J-52ndB#IS=vMWV8aY_* zDax8D!9c%$^V=dbxw+<&Pd!p6waeN#$|?GoMedy(*kN&*aOSj5pEM3QFr0-6=y$L~Oq`;PQ7D}W5J=|{h)=*CCxfn}=5Pr(IQ z)Ry>|`3c*ZYyI%bv<6uCR((Iws5GdS z41@!>{kC0?ADHte{sLA_f2dG|AcE|+o^mJ>K&%ci%pQ5R4UoFD{R3xZg?6{(R{Ej; zXn7=*X$PN>V6qOaG=0IcrTfY;gi#0Jivz0Fh#uT!K}nNZ5{=EfpE_VGiD@lQC7mTabvIbX5!x2)O;Wz;6D(z{VMvbL)}M-`7FvVM&- zm$1y86b?K1n)}mB3M1H?U5@A*-xzd_Ctvh+p^L{cHPd7GOn^otTbv_ZK`bLmw{D;b zsB4k^bOYhhg-4_>{{G|v5%lt7F$SNfs9Qa*Ursdju9p8g<&^*KkM_Ga%!s%=-B~Z6 zsEyv1DfWe~4yj=WjPO}^I0bVt{2Y0*S*fo)gKW!f!e|*T|A`8t+~U~GTM%?ul<2ki zFkfJk|L2d&<tPU7wznokU2y2F$o%xZK0&WOClp6uGZ`g;lzLGg@ng@Q3XvKcVt+ zUTz^(#=cTaIRpgcO`LIM1Dkb>*xN^No|x(+Py3hSZ&@f^lh89yk(LoZY!`)G>0@G+ zrS^^o(y4W(VgWFJQEbNb7nM+w$l~a*V0mRY*?^3}*mRpG%Pq!mq_Jz;24{7H8>O4$ zZNIi=ioTc)Fv@OZw^DP$&B@ODNx>gOqw~X}_<%K>tN^6Xhg4h>RB#oZ!_Rp7{k_Ai zqMljRK{@Bon|C;Oht@we3&uu<;Md-N0c(;uS=6uhFP!`T0+8GqK+eW<>RhsOF3;9V zdj|g$Ns`b!o_C6Otf?MCsHPg&*|F!1r$a?lJ6+fQMy2q8(=u{) zyrR6v_ii{Ex4Tf(_nl!T3F)Ztbp?I6WAslj^_rO&gO!kGdnz<@X@ z>=CXM<9sbi0x(g>+v+|Xk2Po2yUOL0oT<&&S>+_^lks$DbqaB;e+z}Vn$ zT+tV$v%Z#xM?ZW*S%F}!mIy6Kdd=)mPk_r)rgKCqq=U#Z0T=Sc&Y(nd{Ur-U&pxofW&oAO+75_ zbv3Zaje5m}H$GCy^sd6X%f&}5nvvt-7`q1LLp z-g?OmypN-CWfQIU#7p73S!^KptPR;%mg(9S3KZm4$HPr~Tq9%5^uy=)j{c)F5_2JO zvA(WNiQr$iVs1Y)Co_eLey3l#J(Fh9CE3P!3p1p+tiqR~*~W-%X1%by^2>)QJL#4w zz7*_|_A}tzU)^rh)}0btzkPdArT3`T;;Qurx$ zNq{$rLK%_(nR=}9tJ-*`YNo9`8h9Zvq>p^ zv%|zIh*t_p0|kIIj^VH4lTqT*@ZDF%TUOvE zMKEg?`sfFF#ZZl~{I=4W@T#Rix|?MVtpszyB)9w7)k~61_R#IHs;0eO`|B;|R;w%F zNMx5xu!5)6+ambw_5I_!y7P<>?#2tgnN3y`Ma?$rXxU7_x1Ap!gYPyE4QE~=PpfL{ z!OHlyo3*YldAiok!qlRvVwO1R5EE19WiXIJWinfir>qkH`|$YKsN2v(XNbEl zb5u+@D!aKHu@G^k$WwX?p5JLYcJ6%etJ)nVd1Ra(u2(dZ(o)^0d#%|&mnB5kEb>l@ z>T5&uZ7@0U7pCf$(PGgi7F%J8pY-tkn`q6CC|oPM70wC6s_A7g`LrF2t)LlS?l=|fP_Tr&r z>ov}@#OdazDu(9so7Vj5U%DoZO+ogo)>bjtlNrV2Qt|X@PQ#aMF9fkFonwQ$5%sAF ztU4ar;vJ2>e$^9FIzkkZ2Y=Iw z3-?;~U&C5`QUSQQXbb-ZyjuB&aEG>QKSQ;LGsWF~x{|yT}$5WejOyHCts z)KAyV2;LZJ`yE7bU3B~}V7Fop4nW+f5nlcBvd-COnS1`1vxk2H0L#CCjeh`4r!s#5 zSq;W_$btw8q!cCPf6-V({%I^P+XQDS>$s2+DNjLcON;uV{V;r_e)ZUHL@GE;G+!26 zm{tIaT8jGV%CI%!aQCuWe2ybCZ<~|?BkjpPXONt}b(jt7^;gS(pk$!9s9rCkq*BA8 z(5ppX0ls+pWF5Xjb$Y76$YKEg`_RYU+Q0z@WcQ5^aWAaZI(7uf0%=oX^}oN{rlsD7PjCX$Wlv|w<#|FL!9S zHo|Zs#Xb-c_>e?6^a?C>UyctfzrfweggW=K}dTB?;Z65sB60?Bs72EO&+#NwOShJF$ zb(xq-bM{A1Dh1^+jt-dQQ@iBC%9r|=$PKroNlaJ0IC;nZQ4yIk z-Cm-R@-T<$k5GU$VQfo)1aDGu{HMK&hc3zR9>%Kr`I}Psht3yK2G|(kO z5Nt7H#CKErcYVL3?g}pYR)?_3pF_anp^gjg;rxQ<>{O)b8g2HxYTp&+zUOPd1vKE~ zITfpsUdXVJAd`+MKJkOf?h5s}UJrUhzod3;FMR{j>8jq82IMOVY-Oc;jFAAE)~Yb} zASvHq%lgujM#r3$bcw?aMgqS(aDsD?&w5>`|7rZJlt{fPkTa^P?iUDMQ^YX7^et6V($>;V-9PSc z?uft5{3ORNSynO@ercXEJ&~F~P`>k?lb4oDaUYKgz1|EX%VPS4C@W&lL>~FCp8NjO zj*mV<@EO?+!+`|Bex*2#gfXIpgF~uC77w`d*acAp+1Pyd@{KoRT1p5JJ9H5f+r0Lt+sROTY=@hF;v^cYHS}s#C@Zti+2CHaLxZdTU>`P##aRHchLg zV;L`)$A-nH_I7>K?!YfE9s-EG>~?Ak{!*|vx6>yotT|}?bSh{sDF76L)>^vxm6kzfC@>#=i0?Tk6Oil5?ZSBKg(XZQ;DXQ01ZC%ezmE{qt~W9G&DnRt>SY zrKBTe92Yrm6PFL+S8mcP4WzIQZWVw$7%6s^A?bFY_-FcK58%}^s~5rtJO@@sTwfz) zkxc#0?f!e)oUwy9Sym*V!yk1&L4~lpwcDtdJIx-eDc#|H>T+zlPPF%Ia(bcu-osZn z0ah)Nz=cgW&gTm#{_Pqikd@-*qn_B?XHTuV#d2wljw5pz?I)Mi9VCTLIus^#^ z)8Kk&nai4scU;vl>6Xt^01|Tqe=CoQyUMJKCqrZFuS@V|>c_5`o=8F3zK=z;I;<}g zRTI!?zdrGodqiG{9=mzw#E^)AS*svGgMKQd4&L$1N&h-n@U(RnarGqAqqJ6Y+r?9@ zy96c*d;_VA8F~9NnjetAsm?!9iuA!U!Yuy}v^C@fgBus^sGgj-Zp3!#L&j_j<^O4k zjw9J0+It(?qsI4jp_z002+I!Ju_5Jl(%9e?=Lzmz3)Jl)hP%)+-K+MeC*?0QpDm)F>seO{L8&$3;7w`Zg4K zka4(sHY?mT3&|2f?5-_6AhGK80|-;nL*ai#fBzl!ah!YG2*33Z4Kq*~kVUh0k*HB{BiZt8UKl>!($&{WeEnZX7)5T;g z&Kq}~;PgEK$L(oUdW~!4jg22BY?=!j(P3wT2nau~W>Bqn9$f^yz`dbc5bosY6Gd44 zu70eJog7*b^`IwF$o-7ST5~273^+d4P%gW7SF^+6h*t<6n22Ym@iv#;CfKQVQD|9j_bJ&3I*y^fKdW-{AU-F#nLt zL>UQFffLuO`5pRV1lyy{K)y}9$j<8-mpXuOYLaCk2dA3=TBprg9g@Fw(iO>4%JAP0 z>)&bn0vPT`(b#ZaP~Socp6B4^9!*GR6)^->Ylv&)+s@z za7r|-hY6~wdi7nj51B=hdyUE;Ns71vIsycq#}tN^KPRsl{}~i}v&cp(A71QgAxy5| z%Gz;56MH=!4C$JD65+TmagCANS~*aAPos;-B_+@u?J>xB;mOR9f%{QwjRax8{V#~b zzvX^>+p)QxM?%+WPYQ$qf$M{6r6w)VjoxP- zu=>t5UP+!FC2bfr+kw)p4?v2B0;ws}BFGyN{NwvTNYaEbHP3}4Foc(XqYa?T)Jq^x zRnU2XB$o99Y48b=#vAW82k+8aec;xr3ier30_Q{<)(&aQG}%h~bBbOWwUL`6a4cUa>4%@XF**Xx11(Q&GV!Fav0tkq>G zYUJwO9&abCO>04@Xri8jt)#iOMF8`Ck+!@ShP# z@c(uURJ-=F-k*E!f|qao*#YsfHKMPJ^A37&`x+T*6T6l34jLHATw(Udq(Oo0#~jeb zy&4jDc-GAL-KDd9j!fpS;R-1xi6Kfv-vxPM ze#x$>}WJV@sZW6bB z_L@*(<7F1+aO-( z4{@oGTJWgtw!{XSBq*HlB{iC5Z{Qcx_5lrcV;!8e`J4+qBITnx^xkx=_c$9fw%AN` zj%N&n8pfiF5-$o7mTV@LF8X|!+WIw7;YtAMT#q}(XIbhDuIF9C^0S(R!io5|AShS2 z_3!??f{I4a>WpemBh1#Y8*%zcDM876Dg4mK5sGwq{elI9Kl9Sq+lxjj6kp6UJ5c3L z<|(jdhFB`|xGUv*dr$aBUQ8sx^2BQEMTiteCms?JVh@A4=ymJ5Mpuu|Fvy3EqtfW) za4aRji5rp7^^2x+?j$AN5OZ;KCZ|mJwEu2`zNJr%WXs0f z_p+=XxZuwfo}PY(bw0GXy}FH zB%=NOj#Fr?yB#Z=L(sQ$`~-s+-Xsd=-_N2sM@?VPWKsd@HS6muoRP`Byzl~`F+5_N z+vD7=ewY-a%$+xe9^vZ&zg{XbMn{pA4wZj;GRt{pQ{c;E7=-vtRG(gH5Y4?aT zEO8}|2S^l}`mgbub+Ds_93MMEk1UcWrCTKV?1mq%pJXj;FBJUfKUVdCie$IXJAcPy zPh*UqspT5oeP;r|r`0@9z8*(BEAo$#3Toyq+j~yfi>G!TU3+KpKVV zZfAj+tc2&b2JXERq-8O6;&_?CaA-&~aF@Q3e^bC1UrZRQjm&eats%0{#EvXykpmYsV_Bdu=ZwM5S#Xz5sKPx6dz98HtJAFztCiI{4Ri?fp zFPKhuzcOQlqQsB8XbU3x{7)>Ezl+D*LKN1v$P#v*^eIj(6rrn*RaIdsf z{tF=TP&S_8&vbkII9-tz^COqdGIUd(d=O34e>+>NgHjQh!FtRw-xK6s#aSL>)dU;f ztDNtQ4-@?*wMkDCAFN=qiF}ls0L$93*uzv*z z8@uthzP%11!nd|DuF5}|@!6K~)kxv|l(Jdz)RSrQ)c%8Cktt2W`Xu_tH~DE|SjVFJ zh$%#?V{6UX&~SU2$Sq-MSt(u`BaJbB(Ka_QLGcJpZ)DQvUEyAWqId@T9MA6W#w@vH zEz(iJYGw+TeFOiVWm84SSoe)BQ?gU7GC&A_yS|&;9cnpb(yC`Fx){%F7IMZA$CJJAd`aee`V6a?!q0ddr;k3SZczP0(S&Tf1+3dEan}PY`rRpLu&)jk}<{G#0SmJCA?3QwSBL>wp*NaFYXG(Mc2#wCiT<7?+-i+W-KpY5yy*G=``J; zwDklZgv59@g(}^QvG1}qW{l>Jj3~c7ig*^N`cP@5*)b$YVaj=NZiZfyj(y4WUOzU% zCRU$tRn}*V0@IBz8H^MuZWBdnD^hR!!#0FSrB5(|$01oB2eX^i6nX~LBhLjdKmLw? zRY?tOc)o_1Nmyt4nG)Lw$1jd_c5OngR?&Ur8k<^0j3d=nMCVViGg63--be8G)Es!K z(p?mNcaFsdKZ(~w-*F0`aNMZ)GSnJ=*c3ADRl=LXKwWa_sCrvFp|x_VImK{EwhM%s z_&Y<3!d8qKZ>hF=z+1+0n!<(bK`szbzWucm+a@}R6=t+mJOB6{xvsBsH{Nrl)Li{nuw8in@58uMZ=NK_ zqppJ1Gl_V2cg7`U@t7XiFvpMMSBXXJ#6cbu@sN@dC5c1)8n2A{pQvTU)-}3yL^;B0 zKEq-3Vb}wU$9j6%u~w6H`<3=C^EnFBA+9j>hc4%^j#{N3hU7wYc1)+UK@ZT#|} zxe&UJseJ6j=5flf3e(^H()}GBEq+R9m#`~p4Ac4$1^T-|z&j{kbr5^O>N@~X31k2W zA0KKZvd}@#w(A=w*X}>RpCg)}JyHDe5}A4Y8CyuJ7|sV@7n1$zm32Kpx^;D1P`-?@ zs9rz$Ma5}HG=070ce0pCOuxPCX9bd%p`^lVT1l?2|DmA#w|ay+BWz484`&hPu-(lu z#X#;cFx^Y|Ije)D$fh5jq2~kka#@R|aPkJ9c(Tq+DuR4A!Tk_y6t?OHOHf>0AM1IW zpTr=da+)S!_VGAkz9k^9D*0%nW3*prbYWCaktcap9CR|5`2W8Qwf62Hk5HFD%J;+NKa)* z$7P&E%vgu*nZ%L!wkIN}n%K%ew+wWuY9yP@V_X>GoV#+pv0dSwHveK}hPi@298Vyv zYhqx2L5Hs-|13ZSZ8}HpIpm1i)6?j)IZ;)a2u@beS)ZZ4k<}I~*U)(^qV-L6#vY#^A{+JspRUm# z;)%|j-R>a&^dkK{UXSI9Ef8yrfS7ZVkGn3^11&em3)wI`xUS^NAA50e1<`!oO3OOL zj^7n#U!%xE5_)32Y2Zsz zjxTNXx*XhD>*X-a9Xc*!p>gGRQ9$J?V%hCg(F3pd(zf(dJB*7%Ny1%Ec?_-{4;u|W zyg!!*e=Z=}U-qCfjw3~9K7_>Hla!d5i3cc!CI$ekVL++U9L+Y4iLMSF>MqEuYDJcm z(y0Ws8Fg4WJ*DIe9D3EA?WSut99&G|Hs2M^fj_{Gu!(_)lD zswioD=o?D+1dOcpP?own^670D2V=o*-{DNuZ48C>Ep5N7W%3Hw*zH$Ik!wrULnF{x zBCrV*qpt(=*s@X5Lz61dorWdyAm;s~x$F~+Q`c6#Rk$w{Vs= zO~&O(VPpzLdN4lE&HPV%M)9Y5@eAK~etQKtRgDr|6S9OkLI1*#MihV2g%gh2#Y}I!X!m;64X{x>e z@}GxA`iiOhB3T)9H2ytZNO(TGC(#+3)D^aK^y_6Ypik#+dFvw}bwq}?o{Trho8c`* zY2`_n@C!iEj{zF2AYZo1e;WP2p3VRA{Ti6``Xe=-&8qn{Jp-G4q|WFcTE~fr7H%ssr6N=CRfpdEkzr z24ou37Hae-krb6Sk=RyN1B3D)opDhmpWpuF$@2I44vPJk#eYR|= zS{_+%KPwVMYEH)@Je5lJ%J6o1o)~MOU-yWsz@)+gbHAQT`8MwqEgY{_q>fOmt&Oqy zM%XmIX|!g69_RgMwm*FC@f_5dYs2B`jcawAR@>HYL`RWvwWpj`!8$MhHBewkV$MxZ zA~9dGSBUoGz!)1^!E}D|MD0yON=|&tM4E)AkQP~^6g4VXDYeO<_0k^`rc3*%u{-R@ zIazq8$Rqz3@X@WWTF&XyD>ZqcKG3ptvCGELj`f8%>iJ1hfxdOK){mRnn?1T%X$vA% zdD0a-bmpZZhQ!Dw&>FUxek-vNduxixdfsJ7q7v_|AZzJ|Z^&$9LC(Y4g{r_LSHc0X zN#w!|O%P)w%MUuavVa^Mg!GV~Kok9c1gIaI;}b{3jEg-ORTCuY8erG-B*OIjf3isT z*E_1f#=%@J^X&P_*Jcf_32*6JlPs{BI(h7tmVsCb;+J|FpHW1yS?4}^7BpztoS^dp g*-{cdVqsP9B4^+PGXpFu|J_P~|B3PX|NZmd04Pn0t^fc4 literal 0 HcmV?d00001 diff --git a/arithmetic_analysis/image_data/2D_problems_1.JPG b/arithmetic_analysis/image_data/2D_problems_1.JPG new file mode 100644 index 0000000000000000000000000000000000000000..aa9f4536201498e50d1d3d50f88143f700ed32b9 GIT binary patch literal 41392 zcmeFY2UJwewl2Dm&>*2fa%>b3BVfFd~v5+&y#8BuZ& zkk}v@x`{3E_W$qw_C9Z)bH_XTy*u6*ciewLjjmp+R#nZfW>w9eHNWd0*GmBTV;#DV|n9ssBS=71aa&Ff`i8e4aFXK4WeM>l?ROQ)As{1#3y z0l2xdfDpf+03a(5cQ&_huySX8X=P*QD95?q+|J2rXDP?2E2b`}?yP8KYp3GlYNg}z z^qGZ^gN2kOr#zJOrYu|<4s(WCxtp`XVXqwBq~UUR{;XXZoB!jsz#XWptEIKH_Cuw= zm%x6LyYu(HczJp8dx`Knx!MQ_Nl8fw2nq`b3-e)1@VR+Ax|_rK9NpOdUco~vHw#xg zXLma%N7g?oG=J&j;VyT_!^6%}+S=S&?4_lp7~e~C5lcQHAxm>Ub4w8+K1&f1O9?R{ zNnvZDmv{c&yrsoIT6gwvef4MCmKFk5udHBJj_z()G=v212>h+n|Et=>LiCSD|4aC> zGGfa}E4o^lyIVcPCg>l-$tNhmCoKHz{~BU`F;Nj&fqy9{EAR&x|DmJ*YkU6RLJKNu zX(4U#N8g=X|JJ;YmCOIP(SBtI#k$)5CLA{Zw+yyctjZA)5y=Yt#|Hm10)O7YY8>{x zf9NOnP1gS(uD=@jw?O_2uD{^=w-ETZ3jd{Df5G){A@FY%{!6?5H-qb+Hm;Q;*0A-$ zTCmr1fFc0G$0xwY0}a0_#C^Kk!B2@Z&m@FvksDq>wh=DQU%rkCc>ER3Ga+d;UUKPv5}8(#qP#*3RC|-NVxh?(GvC5*ijB5gC=3^foyq z_1*il+`RmPkA+2_imR$?YU}D78k;)1x_f&2`Uk#_jZaKYP5+pgU0y-1uKily*xW)N z93CB?oML{T{UH|)fcrPG{vp}F$VGvb>joYkE*|I)xo~cHVG}L|9{z11f?M~sK;|x# zcZ6RPQawn>sr*93CZdg^e(5@TlZIV%nFIZYXn#uf-xDn8|CMC_5bU3F%>pF2IM~6% zr2yoCGo>i5>>K~vChp9NPs(|=UbE?=YNDPm4vb`-%Z)qly`=KuWYWa{%G1k!`4J&S z0%KobK#SV8q&TQ_K;qv&45%3nzZ+{A-eqz(fzDERR_Xo);wy0C!xL>9#h^NUA(U5} zlAQ|WsHXL7&QrLp9a=YVXemx0i1VxYF~F4@^`BGeV8AWgX%n`_5x!$aZ!rgzkm{Kd z1Ujde2!i6c=qoC1zlk|jM|(D|F!MaEZ;FE5*xyOzlP=Qr8)|$a#BMDzK{kOiKKh6X z(E5+bsGCK0+!4xQgyG=Z3(Iq|7GQZ2|jOPh0K zpJdbfER-H2)V~ff0CsJQXB`V{O6}^-!rr?uPZoS7x|1f7>><~q|1XM4)G@I1!a8_G z9nwPs_FcYIB7HC`Wk8cc&`&0ma29;TIzo^^rKNyR{SCg}m*x~GI>$3_vaki;ccK{* zvM=tIxp80Soy$Sm<_3@(#RcS6i)G!iU0@auHkyF#sPA+V2S`=^lG>5)E3n%3mmPN( zVBE;0ZLV+fowpULPvp>HfNeLV;JNRR0`5mzj{vG?5~(R?ele%1w z1MFu2Hz`Da{NjH8mronhE(`ibH(qA4CBM1_UcC9=o8s1`v$j2D+4=!%}EP zzE$y-s^Ay`Fez3u%AhXEAqSqm^sDhjaP>6+9S_(L);fPcVuYdSBWpT>J0g>>0UQP9 z`fhL}gHs@EXUx|yR_)mYWUy+yj8=H)r@taQ**a&S198_PT|pE2c~ z^=ij|Cm2bbdclk&SS>(_AbNVFKaaAT&ABqh;KUDBLu_}1#4j%zQRY_Ux59g=k(#kZ zBqtI7cmtt@+S}LiyR+XLK$)pmT4B*peOStuJZPlYqci6I3xRhOA)TxCX#2 z(zA69d(X25g9rnKpRU^22k!{0F6pY7+(s{`xL*Si@?^Efc5XRy_TZCn^S80}O81?< zsGi-+CXEFnS?Y@%q&?ayQAmTaS7P*Igib$Gp7SecFXirn*xJX%_CW`vQ}kjEwk$;q`kj1lBn!d^DfruyOuhzWc#R z)Vjx#R^0Usi^Rj9x^jeUbkM6t>b}i(mWm6->{!LlcJQ&EelFihZJc`Lm*CFuS+6=l z&(|GyK3|b3p)imYOC9y~{?vN=v0dU{6pU7%CF!?c8=LMdV^vM(DOS0n<1guKalI5U zc^@$!mVYjAkGk(ZKTY8%x}xLG9-_wG2JMdFPOa4=m^*e%`|}pgO7c zAo&CBHtuWShx0YCF&8B(a1C(!A~nwO6t977!{?CD&ql`ZJfv7_~23!2->k@3Bj!x-ZU-p=eIWp#7 zIex`KVQROxa<42-;T6g)CisXQ9mF%#hG#e1Te9R;InolqAL(Z2#@aNNs$Q3XeChw2 zUxHjo3Og{hKD2=sIQg5jnS#|>-H|I&$GL^i!v|w!>jEUCo=Iw-e~2M_i!-5$^t%UT z%A(&N$~b}4;UqM~HWFQ(_#635u|sG?w*x{oG27iQv^QVW(;x78MRIue}9>tK4j$46k7_G7F>=M`AIxlGhgL_6*tgJek1 z{DZ*Q&nRc=Kv3{_D`4M)UfAnZGpwM6gLOyT)f%bUCe~nE&25_=Kg8oMRr?eiKA{)8 z=fF4YS(w637KiJm`4LI(cL`HAZsOivS_OXZjy0CKb)02IUC;|}2hfl%y!K*fNvzAT zO%M*Eg9s_~u`&hEHdaJQTfJ+>h!m9dPwe>5;5TH1(+XM7cu`!99b!g6F4+jfrl|`T zSkAywnPX?~rEzI3&%3X@#d#bv`bv|1=MN8B+)R=lQQ;i+MO-}R3<=Y~l9p7IiO((+VtzO;Io!PW!sZe>0a8KgxsOaE@X zf}bsJ4SKOh#+1;3CXMDp{yZkQn>O;-qeA`TXY0SLzw{~oKoLn&gM*(SKh!TFy@T4eHT>Jp6yK^ZR2U-Rqw4=AYOc9Z&% zMNFq%6~9F;y{=l0A(!|?xZY6Ng)J8Pc;gXS+>)&qLOH%O-5=P3>3>q!CEW!ESOGcv z@e4O&!^d%l9VQf$7f)W?=J*l&MAbfE{XML#vCoK0)*@{Tqkvr?0Qcu+H)~_EgBRC* zdM@8x1FP}z=Y;APDSntaG=+Ru+sL!xV71Rkj50gGNrIs3&w| z{D;jr7UPijL)3i~ilxa6FL-7)aQkgA>)zg__L>;wj2$wx=T9ib=EUXG%C7VylPXM zrfH()lO-7M9edjtnXs_G37sp>6$4Zlo-06q^&M*@vA!;wI@_WZ5*q5opA7Sj{p#!+ z1ugi4+^0QFce9ppR(uCBD`TWh zKg+&=NMdk|$nw);$QmWf9aa)c5TI!s;B`R|f!vLimaM)?4bGj`CDnQMRE_$y$^B&c z^~_$atXFTK`I;c>09#rIo#HR3YoI%E1NYa}IJvoJfG^!#yx))V;BE-*QLDuA_xf0O zH7T(&Zq=!K7oYH)oHB(wg8N_bORj}mq;12*<_R>2`$`NJXJV-o=pAv3LM?C$vjLa5 zd7hptq7Cs(Zd6t`F-K?~YO11WkU1#1SqUe}fESnYne5T;vVW(WH9l(IzpiHu0A#wUE0Q{+^e8>-u9 zJyvX=3~_fl+o=j}p_ys?Fe!moE9))9Q6J|h!7gpLt#!G~)Bq!t&*qnEG?|mutF5uO zyO;>g;$Ih}NjPvS zr_t&WK&fT8L{mj~gWzpGI9r6eSdR>kN=*+%!hcciyy}v)p2h6^#LpbcSdujOD}Lr ze_{d#b+fej$?v)}*V#^XXSbsdB2~f2wq{>ig~{b zp+*RyX)3K8XBSebsqK5kj5N{gb_3mnw<0ToX z9;BPO=5e=>OAec0HJ}<3&OF_tinujvnV>BrQd$#_esjir-htpnY$FaThWk{sicygL&r7N{`Rh%B!sECaUr?+5}Pa9~*NYTh=rgl`n@qAiMc_=RO_; zRl$Z)|LEXz+GWglA%hlHlktV)x&BZtm~EfYvvExvY%YJQq3O2J93Rp~Jub_<9KFl) zXgbL#)Psmc^$iz=ik5`(L84@b4nF#-W8So!rieWeAG#jxrc}b z42R6PGly3Y#OYeZ(&1jAQ-O;ia>`pk;7;=))Y!G`ycpi1ezuI^J=cxnIPWWDH#?Ec zCJR=?%oW>L+nq|7g2g@qINXZR4hEj#KcVbhbbZ|!`UTv=7OgadfQ-rbFmr{7*LZu zxw~JM|3*;iq0m=d=sRtEAB|m*pMCp{<3LBOs;P;0F0Mn`pa|H(*+q7y%ne(dHfeNt z_)z##tcD5dn@{!>f7xn{s*&}WDz%=t%b|tWQ%q?^MEiluH9!_H|KT@72PWYfxC810 zpZ%`921d1}u$z_XZ^>&QTz>ESMJ%9;4(N>yP{Y((Enm`h&L+>760s*564G-{KwoI~ z-%MoFCK{5O+mJfeAaY2}WJB#prxfJQ+os+UDbY7x|E53}_*7v#=4juLmF%aL|0FziDi(hV^xti-`kO*%Z`1qh9S}jUb+#2~+UR+M~6*7HV zA5D3s8W0t*L+W)6X=dZ(b(o_5)+>D zeKRmC3f>DJf|qA~slO-CB~KP@7!gvvDahBz3$-D~?JF02Di`bBzVqF?a1NvKe6-Li zyjyTfSnTLl`jejk(J=cBI$x%<1Dqci+Lfs!r1}d#8V8`Y8?ucJ?w3#Do04I z+|P#lb{b?wdWgMtysKtZ>YR6rmY2FwQm%4e7s`ZCuf_yZUqEK2rJt63RAFlw-)lR1 zxO#((z+0P4fi*5eM6ugnVq$LP0UYw>MasRBL5Gv(`3D!2OcW>r3TI0MMVtaX3uX;U zF=wKG;fZ-oQ0Om4T%#g8mvFP2-Ldh9B(qBtaLT}y8+h|yk_bXEdj_7>b($t#Tt4NM z@Y^+F&Vk|$T&_tQ6Y!u4H5|Tk1miP?@gfgaZi)ZGm0CUBHW1YW$$!G|s7$t46<{*a zccoL_#-x0!GFLFW|Mm2|H=Y{Kqk@jMD>P7jw^{#SYw>H6HIw^r(Mfqw6wr+}4X%-A zv|Yz;xKYM)VGH3LCgN8IpI0I43k~z26Mq!V>yoabE-Mc&x#q~*v|b!j;vm*gIuOh6 z3UzG%zfWJt6~Ob9K0Kb@$!o3pu>a^TTrPs`jdIbinxbql|0vet$hu+Mv{v^ChJTSb z`>py5Q@v%b^qa5F04E+<{`pjIH7dMwb~3nbQvG%x3XI zvDgVy+oW%4Q^YAM#??s&amsS9amT4QYq0oQEtRo!_4$NHmyMYhZwd0X>{x!K(hM~B zh0K?+Fr!|?FT+d?Cu-ilcN81Us#&0C|4F=O{ae{Q)qaC38!V01=)i6n^?Iq#+bT1s z4y@-zQ*`JqruH5$#bmAm8a^8>j7tJwI7lO9yh~i(TEE|J)ti1nTO_DEb4HegOx@jG zlYkW!_eRzkp??y9`M@Y&>HQvQy*tx)+H5l()m~yJ&ajv4^3ndJa(>3>*CLk9*CZE@BWaQa+f496j~f!`OOZOXlQ}Qs(SZj#(aVa58dJSC$%8 z(&>+rrWSkSOWO?hu5WWBNn-L59x88xz<1i}5#Yumit$>mfXqGuN4}Ch4Te5JH>$oI z)}-@=u6c7>h-?h@reS~F9ep#*uETWx!Mj0*L`w#EJw^pSPi+w-yeRwft|v#P3I?G zDC&~}j_H|-vN1c^0hn2fIaRpSDpOW}{43q(6$m-heguLM6k5K^z-P86|?(9X<= z4f?{NFgH*{EDQW&dx4>Gq!!=J$_<>rsysXA7r(5vc||)`a}5x6Ef>`3A2pO+eP1>5 zN6Er_8RZ;IqJV>N?7*@>vmNm>4!R9pY7Bc1+Oig~26f4}Xe)Q$!?C6Dnh$zqyt~tu zn%xc0A?xXuqP!H;gzQDh~v=z^n9}F zisf@sC*N|NzI^p;_YdmDLvIt))R?o~eS^1}1iE3eQiT}hF3&WUxGKKnY;*F2Q^B7- zaT@-5Q+Zrg+&&b+YFNE&yNMEyT_UA{33PoDHdJ?>=DnNbz3}|m;bsVRLB&RjKl_M) zsNWMA0~4i}Z`oik3r9}MZgSyv_;VQ;&N-M+VRZR(XhN6icO?b_+#`0rh1T`5`%{Na zt_PogIg&Er@vR8)l=j$v-Ns?G{lxLs?Hm)Mf|2*&)8`srC2<3#v97>N+;X^=GFmMB zNA0EfoM!#dQYuB*tl#}Da6>5!yzCW(kSgLkiCu2y@y(Y~je1WHE>7XJJEg(_$F$L7 z+*WSQ{KN!}**d`{2+Lsw2Wv4Na}CZ)e#%TpdNB=EjL_0NrNOuuO!_N)zh=rtb$0oE zfi)f9ZQ068ko~@GHkn@wbzXbCPA~r5t0^_7s<1<-dOFtMT_NX?jXkV7xU@KdV**O; z6HOV3Kio~OSEbJQqVglN{T|3^#7x&^IpC)40_mu(DrzlpW|oJRi>}gIa`2Wadph`Q z9rkpvkrc8V9wusvzktyuR<#}zD6q2$^M04|k_z(9EWV*tj;8`Ud4`oRI7`Ni2K5tp zbuG;fx{FTu^8<-oAEfa33A}e)dB(9bOiCTy36H^(yW5g-h%d>({J0Km5#*5Z zKb3&$GjC}`+MI6ZSFz}y_k|^r*Nznan8YOT{AZKuCRedfi|+Wwbb=i%G0cAi z>z#Wmod52(Dkw-KW(0fE`whx~&`i?9z>2s01w5jkp$@;L<%SR{efun<47|CCY}C=0 z$Mxs4_m^p(5?!SH?Xu8|zm`^NEr0lCy$qb=O(n2wqLTUjb7g^f4y0){RIxL)EF8=#rYc#+tf7wg-BY z2cI9wQGZrtV@puLIsi17w=#)RyVUZ#9JnSuL~F8kxxUwuNf`-#S#PsN+r%BK6R#|W zTnO2amgsHs+-~sJiixh5oK*y*y$BjBW+|_rvc%VbIrjYOUEYeoMS4J2)~WTCQlMN~ zBP8OAcT$#Z`P{BWE>FC=*mQv}xvVNFb|>!q15+{%nU9}BdDELB_FFittCsHBVEhJ5 zC0eAzAU1ip2SPHVoNMx!&2C49k4P5Dy(3KUbbJ~FiaL!bP+e9vcSiT;B)mm+9FW4N zcbSXIu)oEQ;_>bJ`Nc9EuS7_2i*pktAPRb~v(y*DT74f^GFZpkn3WpC%v2O1D>rl8 z&NT6h(arJ^3$p0KxQen1`~tg0RGb}c=hW5~D&uhZ^P0c;k6QrCd)bv%#qKu_5>V#m z=+4s@Cu!AO=c1=PO`mHG9xiMFS%`Ng+H;(qET`;SSdM!GMC_Z&Ht_^R{k z>Ny!3hjuqd;?Tz6A(PV6kssZ1ayA#qOD{M}Rgo|Uwf6B3kKP(SvLTyRKESZ=n24`> zV4Vlc64A$CW`tDLbS=DWrKutDxksJSGaO59K_brVgNCeN|QThPM+_fA>0T#0X`5jx6Ok^@b_Q)gAjx zK@6j-H+5{8#0Xoxc>OSvk5p zMY=6AZ_YS7ZCWkmCo?+pSqfLTr3FO7e*)(RLJPg{X{ltGxCg80+*@a9vl=HM*4!aQ zUzfwca)&0tCXDE^{Y-F}Q%N6_*KUd7hy3`x(gyVOt$C)>jDsr6 z&k`pY83VaX4$Hmqj+sgAFmo%M5g*aB81Qm!a#?T9=g560C!&K_BY{c^`(Zkn{wUxU z9609Y>8^z^BGfR(9(KNHYSHg*UDK3=g)QTnr78JGlAY`AbW**-L>2a7wtK8`woJ0F zT<#uHB!vBU0wF4;bXF>C?9P5X379`g)-k|)iPLlS(#O)T6EA{UMzVvT?Za* zN5>GbZQ_lB4zI}dg(KvPzE{{)!Cxx!w3hT5tiARcGAd+mmzp07l!1gT$V|$bugKHu z**nkn(S(1hEvT$ldSMB^vv$zONhod6>O+c{M;(9}OfiQmeDOj1yzWJdM#+1%JVh73 zVj`_(Bk7lt2G~(R`T25qEJEE4X-W=f?9(=!x1W_R9bK5~C0D0}trh|9?reYu>rpmX zC$~jHw;8jVM!Fx34Mk8MD}%lCt=Lh#(GonNic6RutbPeY%rLORvd$OOOl+{XZsrY8nqgS z3%_UOR_+?#Gb6+c)LXJVu8_c_BKd5(Ok`1Hsrf?*2HOVF_kGH4Rl0)-J2(r;=6PPD zYp1&%7H4@Lj~>mNs#m5PsCj%;K9r?Udhy7D_1>Y%0|`l1OPqy3Xn1ZVf&;d~s6p06 z8{-6Xsx=$_HEjFA!n|R(qhmv8wyp@sZ3{q2#6j;}D5HAwoU)BKPg3hrhu9|_moWiI@G{o}#{a)@`zT(SGKQ_1P(&({)X_&;#5K z>NyL1Y=Xk0lJ48KxKC-@yFBf$)TK74?$81=6ST&b}46e^wPYuRTQ zrzDBz8Bz{ybhmY7IF=?8&|ntZi?%5kWbz{Tx&Rz>k%Yi3T9_`ET$*JsopFx%s8`30 z5HBV!<}_<#?yez&0Ie9xALP%DL83Twdhq^5gwn*tz024D!q0VT@w@bF-M9AU4n7_K zZf7prG#2x&3q|r-pPz)G1w!_0l*U9arSI*oP;gm!>Jf1?WgW-H^H_2cq1)cpLpRRSfKvmWK`0$&u6r6PI(-2~eynev zJaX3`JD9magoL#|1Ei%X0;Lbf8uke>!z-!XpK8_By8Q2qiuP4CSQ_8>^^^98P|&w$ z4NOQWrr@zaXb2}RX8{nV`D~TtKJ#|>mHbwlP$fnOCMsfJhkBaus5rvXNov*QP$`|9 zZOGNj@@O;tc#*7TKjMWeku0pt&g;z0fU7QQh`BueU@55*K9?{RD6_>?K|0Z*ftKio z&?A(Wo$$A%jg#BnCVVaN1K8{y_Wz`alyW@6*?Xp&h%sE@j24ZL5MLm~l(N_^7O`sKa^tuG#wTo4$A1bC<}AO9HUix*Pm-1=J1}z0G-XjmkF9^nyp__`50kS}^roA6rGj6;PWnCWwU1>Cid04s?G%ULL_0l2 zdBxWf%h^vGgyvVb)z|A8h->!Q-2|?fEI|ABhP4z}y7g}0u+m7<%h@@s$1@rulv*!y zYsw(%lSgy(J^A$pmH{GPsH`ks2;ayO4PkQ&B2Zx7&cTEtHJA}H7^nQZ1-^wE7522f zv#{sp*p<3oF|p8bbV%<0dD)k2uytbM$xGs$;buC9&E5 zR?yC;S+yy2yb4vohu77jr_TkDt?eP5hRmewYBJ4JH6fos@nSC*G3+Vtf`FPE=c7q^0)~w}kkQ=4%Ou zT)!G2r!?$=v&^XFD{}bo6=i%_lV_gjhy85Rs)fVhw7?sEm&>*7OV58|-C5q#G1Dty zWhxQC18d)dA7rM_|}n+FQbwVO=pEK9_;sFrNE-9}}__S7`Bh2FvS zde!{Gvvsc=9iED^Tuf z%Nc~lJ`sUvK&dI(UA|{|$KU;$acJ=Xo$;d&nmqU&slkF!Lf2K~BgC4kM&12rOz$9{ zHHJJMS4|{*Zl)wmMj%a+)K49~6m3eO?>~_$2=CLZo2ca&ed-9yJD40_olEWj&XzPm zBkq5M9{x*044?zP7))05xO~Le%`(gP^>Xbc>#p7E-5Syu#~ChPFVl!ypln9DGk_y5 z$SYor7%&r9g;>RC(5swzeKF56&giJfUab$)&rQ*@@V?EF>#6y~GKdINj~6Gyz*!&m zONjZK(6`sgo&7n1R;-`C>=ELzbZdfAf9fw@Fkhyx857J~O}d{yN_;WbLX_|FOGVka zIg;h8NDsWP+i;)Q-juk;@3FuwV|aLv1TFb@Z@%x{iHsgxy$>la``=0dBsW|Z+M29L z3iNK|n*~Wv;-ju&QndBU6JFL;)orrU3{(z(GBQg8(Cx84Ls=`t5WwC?Y|MB@y`m@% zepq|bHXd{SiN0i!B48DH#dHlcOB{%8SJ_Qz_mH^G%rz<84>jPpBkMjZ)VHjW_;t$R z-QL~0Fx8c7K$k~}m~-Tq3P;Qw)7R5v6C^9(QSKnT8-(Af1pY3P)f6R@bmpo7Os(lQ zf39wi)xH`deyfwLpGSss{3{S@f&%ww5OKyFLzoc?&5a+rX?ZQG>%(R;W$1i>!f7Ty zk@;A^+shi%c9|lm9fpOl1G)5_t*~c5W?pc^&w_QXfli5>YhZ*?;~MCAhK-GEhB-Ld z0AWLfOOb97D+WBk9fLCMhAD9@s!#WQ~C6Q8izuTul`yt_H|y0CARN>oC} zlKTn}X#@=>b-5z!3N$GSp*Q|sxK-!#wsb0NR>|wPmb0Kx`X{CYQex9KjUxtkx#9y9yk;4*WCew9%8Ij&j#hz;k6o0=8cq7%xE zNGC!oG;8W)~#`~ zV+&t#NYg0{yU89reErP-MzOIigWT?qrq;1nj{G3if;wevPj9e^;vnT2YGq6*^e)6E zc3Ot3>=|lA9yPDQ;y=e=>ngfa-+Y;Ip)c3*djEo`>?uk8%@2j2ld^x#>wE7{xc_cD zZPu``^H}ryI7Q!*G7ouA2MeFD$tfImBAp;5{igMuGDg&u%gU)p6c}XOHh$VkJP%!w z`Cu4w>yfB>qp`*VQVaNEw~tLIg2SWOVXDg5uJ{GdySxb1x1NNmI$umbBy6V5)z<|L z;RlV;Ek*k8xUfEFKD(LlRyx^?UgZm(vn}r0pr1~c0jMV)Y=j`6EHBs9YtlRBV`fVl zph%&Ym!w;&T$gc4f8FDeHdN$)3*kR0tG+_4zu1+@Ua!(~B$RqC8%4YJ$~Oo336CP3 z!er7aXH(j8U;IPC%&ZzGn4M;mQDWltcY}uduq{x~7TvGNUIr;D;m@a_G5}87BOmFb z(Y*-nTXG6l6K^cCuU7u0lCsaB5V2gP7U=UjDF!D!?NpBP=~e%T=%qx!`x6}o{V|y>7#OV2V zDFM(#+Cc?Yv#47*J|du~_0WB%)p)~mKybP&ReR^djyWplsify#~&N?PY~s&Q0JWuahq0!7S|@wZ0@Y zFY2lupVWu zxMGiVcz3M-nn(ZDIB9q|V&+cNe2C3p_q}+bV9Q%Gy$dc=O^aa?Q*Er5skLCR?IGVn ziBrBwk65W$igI${!Nhr;w4dA~-v^u0uBNI!bu=Yjth0v^y5Gz<4CzJB`J@M*1a=kb z&&@tGbcrKO5gRTCwiQ_Jp-flmL$D->1twJM?nT0OfbBVX^|?&SA$xkLOl1u?{gzvw z*q+B@Ia;-7EeA}^oM@{>N~0c?iho(m=pQO>n$7gA1_!&2R|D5Tv`1+sHdF!|tiDlXmsO)1Zq*px zmB}S-K3Q`~wiZ`l**Ms-MkMPFxs7-76RhAc1AA5W%EET1ET>)x_U$t^sA&83;%gmE z(DwreY>l7CU-%l6%o|HG^4_U!IE;oY58M`++t>9%)0$$un9DybYeaZz8_XE%^PVJ$ zK6&voKGoI(%a8!QvMBQrs|(JXng39t&fQBKJY`#!V1!-Z1HWtd7S3$F_(iHTM%AnHVBdEmgv|i;R;h9yf^CB@p@~P~wGY=WqlI z3&zd^$;{ZB>S~u-QmQJgG<6`ApaJ0@@xxiCCm~#E3$3oK881s&)Tj-c!r!E#2+_ij zaWiJnsxHk~QvaC5fx&NZMk zc5IwAn+7Y`8*V&#N2A`Z-my~FcT4eB-%VbZ?9SX6e3n2>+>&)dgmFHmT^nt4!AI)z zYfO#!J*-q#vTA_jk-}}&hh0z38@>#W1rF>jo5q_O7sl$A&~DHHZ5??yfL13oS?KnXW(p4pLsT`?!$P=l}?=l=O*wW zLIXN+g`kSZhZz<+7@Z=F0gO`(<5W`qd4z6vcV(QOpDmS6dki-zcv_}D(^TC(!Ge! zqLSZ{UOW@`IT5X{jYIE^%~Cfec(!y3GKVwKY$@X&T~!S+M0WRa4%yre-b{C zFmd2B0*b|WYVe%Yqia5>y&8S_iVUM>zvRz~B?*+*zq}GbS%31yk_Z?cZf!e}2rv%b zW^;BX_=%J<`*}L#VyeZLQEVbNYxtmEn1A}667FYY(7ei$|8xB#<~zm;rUM1~a!XRQ zeAvKVKQ9YWoK<<+u=*A7Oxo1BcD2Vuh-bamD7RUm`i^d$gk{{%GhNfAtY{Vr^s^?% z*j#(COVNNW^U?t`qO4eg;3Y5wUrO6oA;}lSqX+`~e6q;fOf!_ROY*Gd2bUFxQJ#_fzR4rT(~eJg$CFVlf~o z4@cs1BsfH(Y>+mQJORAX!>7g@NU#f)4Y$yt}XXrWSf< z8Etj<`bf;F{BffUOVoU~J?mTRqgH6oN58(FY|BO~K%f_z=-w=J9J5TvB3TOTg+p{r z=GJMyd(^C0|G-b2E8e6Sm)D67UVWp4^0onCpFgoHQxy|!ITKcxeI7fyFr(Hl zXWGkrfvQ^CupPq({Ev4)$)pu;aU7;{ZwokKg{`{#$^%0Q-U_mG@}S9bu7Kcm9}!^5fWwD@qR^3}@3%`&Fm z#9X#@Ix@*O=7B@^`^tR$_Ofg~88Z6)ZP|>12Y-@(Af(P<6*zv?!3zt`6gmmuK(zS4 zdbx1d_e0WR>yps90c01_llx*>1jF{zw8YYNgHnPjvntFdF-taHQaovA{KY@)eEgG% z9~JzV(^u-_O+l5KWf^f%+hdnwr0f_RxdI7;(*J1o)_EdOtE70!1}xcB&N3~X-ZO?= zi1c;IpV49i^E%GsulQT(U%_aOD`=)D+`Al}vN84_@lAieDE0wRrUbKnsA%NwdWgk5 zZTN-i&EZ0j>lY5AWmn%->9edPvHje*5p;Sk|48yy66Tyb;Ll<`8>F5j44 zTsl07=3Q*d`}2(Esy^BD%U4mtI^83=7YG63(WHqh*m-m_ht%F5#w=H zyJ}e<<;W*s4f<}H>O8=n zPVweGCmsnz6YTsad#|OrJB!dG!>ik?DWd}G*TqKA4z#}7EpTCCW2OQz`BSf9PvtMz zRstB{)jhLVOOoP3)i#r*m1cn3_-n6u+w%cN%r)=~j8uSVj+)#?W|3_NkhT$EQuHot zO1DxI)nB2Fhn=^1afcppmo>a0 zLeTRE|B*^p0!{PFS0K!Uqp>!qI>2feVv$G23z=?{Ze4)oZ}NP=M7qhPb_v}2IrE*PwOiV_tB3dL z^U;u3_wif_vc>scB<^(fo^A6a3}N)l*MAM>S-mJ2EYi_BWjK0B1RTpZWjfz4_Cd^TI2l z0FDqSRwJ%)0@j^(dZ((hY zf`9UdU&6btZV6x>?guOrp9@aaRm`+aox9MfpUpaaVslWlfsdo zNtuev_~+4cT=uKyhf~2H;e*Khw5&)hi;%w^HI+o&b-%#CfChJM-3?|nBrNRBzD@_+ z1kUb89mEG`%1zWVOJJ!+FiDtA=b@;s1aH7pw*=|xDQlkPDWitAL+ptAFg?OONe3-| z!7+WsF!r*+ROVcArD7Q^iev!O>OnCQn*FWn0M1@xTF8D zXkY1OVop4kfimp;?D%f$)4-cN1O6=bXUXe*rV-*2X`vG*o@KN%yK5O~l5Xj{+Rp8v zkm|jPPYx{1XsWcf91jF)+qH+$_~{sxLS!g@WXCF6fu;68aka&MDl^KYa|fxORN!Mw z3*pf#DaDKA9s$%_;+`n`ceP`%^aw;g_Z*!K9qX>F?=L8XcG z8Wj+ws`QQ`O{618S3v26UIRgpULqhM9i&SWsnUB90Vxui1VS%?gc=}(GvDvqXYcjC zYhC+WYp->#z0W!8N3JV#%$Yey#(3r!&$yraxrZ$=@=n<~r`fpYN>jkC4Z*ycuMS4$ z!b#Wf{Pvy$H%G?4Z~Uhe^8ZXHC)z{4sX<1tz`G$4A&ZmsMRq2lug_k##E7S+7ERY5 zL&mAIGF6PHFx_eOo$#npQ>bn=T(=F&cb)~NQFOC@KCJIJqwi$8Jwi;()K8)Z6+>Pl zaQJNXrubO|IoJ9JIOzIXy&GH!ismm+U09~!*)aCzV8n%D-Fv0D*J3?vWkhpq_kB^w zA!`1icd83(Jhsd?K*AG0$XZ5Cy#P7|!yI1crwFjpqAF+$7eIH-Y`%T5#EHo0xtDKNjb#1JB-a-JIll z*jY>rVLKkNKhTP86wE_`-%7Qnew4`z}mHO zI}Xy2&hk&w03Hfo@(39*K~|f+;qDc#zAe4N?LuKgIr0m$&FA5s)?K~hl14cF7rlWgU!tE zIkOlSS#REI8j|vP0e3Om=~rNu zq0;gLVX4EBmkzR-@d9JD0fweOd+?a5n!6Hv+n8-S-fKSn1IsqDr55cL*F{@67l0M| z1*rbjSz!4hvvsZ7GIw*=vDKVk9UDznzEzv3UMB}Hu$~YinZ`XCTnwG7uXC-@o*#6L zaC`plyVz391qd48P>xaQl=Qd&g*MJdqM~yJOHqnkh<%lPU(KbJ4#KUX)q?@ReHjoj zp(X|r_)5xf$X>ZyF#7qsAATu1xDDF(C6U+Ny3FPwv3>8p`J06ioN6F1p1yv(Hq-4` zHF;1+>@;+5RkETyUffe+c~{~21;`^Y>tW?$~J&1$B0D4J$=YZ#WMexq%3&}P*Mc^`CihzgSE z|A^V`LdKY1ugASYMQ1)@SH>A_)~zlLM}%4HBx}>hv1PbD)b^>UMr9VPmY+Su2|cO) zS#eP1X~Wxm6dV4mJG5>ssOKS36VSNAJwJR>o=?bJDOt~^6r~h?ia9*}?)a{oOJ2lL zAvSQ6u)8bvKue;c()>s5xy4dZ5dQIu2*!B!x%_OzE6;(?93se#Sxo4pF- zwU}Y-O6!Y~V}1B?@$5?FPKr*H9vvsw9W^5PRB$H9FVj~GeN&|F0z~F)euabQ%#_&e zKH08c)S>-81TIBdg0curVetxmC2%-v+KFNcdmc2G23jUa^_A8KLwQ`G-;gqB>8FO&}X7Idx<}YGAQgxo7 z%_pk2lObz!?P)_4Q(|e8vI6m@2FM*;y^DXBO%0nJA-o?n5ApYRDtfNvAMoIz6NFWr zzrv+B$2t*b$cQmio`A|@V2{T|OV#*yU+m+jxS6bf$;1dBl7M>~VDRfcYu#T|7PHB5 z5S@lmon-Z`h#-sF_+U=G^U=Ab#DnEa7H=_gxMNgY3s!EEEJX8_7|Roh4r`|0Es z2=)y9JdpD5<>q(}rBRlv}op*}><6IO4rFQ_n1(vbYZi;AtU0FcCH$yGo4krmuROC zV{f1!R;~=|Kp<*Z!I0{r(_JgACl;_PUwBHPOjPcq^ zOq<3qzJV+wb*6dnUiIh0@`d*kCbfr1*CS@WNTlQmnVioOMArkUf)dGa@T z>gfCMBv#BlZUiEXu@B%MXVVCH{<6?D<3$*~V;U@$XiqpZ&G!0NksR^FEGJtkEa(F%1v27gw&wS7A)cih`^FE8 zH&-20-nl;TO=RzyrI42b_2HhTm|w#Uphm(!BjympQ~WH zJA2GW)|AL(W+rRScV3AH5;@dqtvB#;nEDW?yl1hw&#}%|?8M!*yz|NjYCL*-cLbx9 zU3wa}vVJ0P`(|yE^41=cf@_d^Q={qT>YFo0&FdY`vaoV@W2$h}IgkSp(R>?ND?+%j zzikc+)`q9utG^j3xqoF2J$0v_CnF|px^c8wuRL(j-NzPZembsG8#Q_P#rw)s_b=A3 zUu5cor1yMtuAag>)lITP>`=2U{?8k*^c7K!ZyB9D9`$^=hT_sW)+dUS9FZ)Ku8cfw z%{&vF!c`6-%jP--bQj-)=Y3vWZ=TaH!iBN8m0{-4fH zh593$oo^-K`%xg((ig=sfTuAZpt<72GJd8! zeB$*)3{72gca4cBKKtQVW91t^hN8uhw?|UWUtb9%ExSJ*qR68ldKZ7HO=f`#xGF^J zW1=%!Mu}{_jH1tyKnSi}+>n%)odErOZ>DS)emNJJk ziq!d@2lPHRadMREl~BLY!w7-t8fjF$R59`L^+ysE^0TalgfkJMBmllZw338(%dujY z6MDD{61H4UhK*vJSgMP8N>(HYN2fNSheK9f*QLHF$nd>DYRacQaj`~xhf&zP;;=+R1D)2+MxbJu7Xd8tSh z-6v>zy!?<+wXo}f{f4K>pI=AohkvWj(xq@*an2(;bJLGGTP^p2^#B1fDC5UjoP!?D zQ|zl~6uH0unMq64087kGOZqoUYzajZ#A$Qb*32a>dcsI!ZDDnOck9h&+i8!p+tgLR zb>1^w4t^Aq1;}HN^`#NYtuT3u!|AU|)$@!U9Bdql?TdSiFMn6d&aQLo&VV=i_BteE zExO>;J}{KcTaiq8)1RUdqF=v@Cs)E6Z4p7YDL%9>XQ@bQ$~I<4ou(X#x66`u?u#~V zrFa>I-WTQ)}-VI~P>lgpv0-{1!jEM{UU5UmP+YIeLc;YjS@n;%A1A z0pO#1C)_XI1(TicA(L)5Ew)&$9c5rfB5sVY2HZxdB`{aCpK!Vf-YY_`Spb=g$iBKX z2dMjmC9cE0)MPzHHBYIj?p?G`7+H=)pJe;Oo-&mKQieKDF~{f8aOa3own?qo2*ls@ zPEwYbzf~jSvaHxHe{g8mgRTL#;F~o=DQZnne<=%0&Xw`^*p!Pr7VK? z))OxK7@At1Iz++9vQ_ZL(ZMcp#ALhdo|^oRI@SRHZAB zn!T|Y>(K2jcg=}fGwr}=Gtj9cf_SA+FA?35L$%w7QpVY#UXnt`^UX;5Oiu)&mSHvq zF?j0HZl5{shU->m^X?a*r-p?Zbncy)?{AjkpEQ16e8Y6BnM}0`2gg{h>HmNVFD9Y_ zsCK-vH8ZUxgFg4NQThGWFF_I$GLS>Do@^w?kAEe`JbV7eqfH2ZxQ778DH`SyhRd08 z;JgTIgSrb>-*NLA;X@JhCe9nSmBKz3h3=5l@ z$6H~+3q8XnIXIgxp6*ljIka4+RKGjX%NPl^1M+t+SD48X6&MNZcw{XPd>(nOP=6J- z(dJ=Mp=kKkFbzmxBrRAJ5Z9ZO(cR*SsNI6s%%g9?i$L#>R)+7?Za4p#z-2fW$48E@Q~0}=C< z-47)z-cn!%63mKzLfNr;7C1Xt@lc7~WOC=RW}4Taa=6XFiK@g#5*Jb0QR7})=sX3M z#iz>{dkp7{LKywbyQXMGOUm#gw)y%M=96nyvT?p#)cQHpSx}`#J{U*f1WR4`r%jgF z@_aviZ}KDNZl?x*s|HT+eY7EW?PTi}s50hfW>JLDA)LY|cx@ZvP&}|I+m!r_f*KTn z@gcr(O+`_^_LsK-W*7ae6lrS?&hDm#S@$Lwn|!0`eq}irN9Cfx)aN%_J1S#^)kBFz zR{B&wf=~ju-QM}f$#1^m8m?jwNn$7{J{^Kyys+W=L3V#hh-SlF6xUH^+bS`6C?MU% za{Ff3pjMdS*;8cq$V#5~FGL+^*BDH37_CJGeG$?XNHKA!q1S0#Uiw*mom;EQl(+f? zGmX#9`|WEk!>U70xWumc2N<#*J|Jx6!>DQo)0m7`&MPcS=Q3nENonJGryw!c9`gdB zxG2O3eTbEhEN`o6rfX&Wkw@ih-PEvu`yE=Eo|F!rPJ(YCv(ToN#Ds?nHM?R}Q0CFz zrSsG4A-cc3>b{_pb-6yMFj-|5yY&RIp>@VZw_()HA z7;wt_Y7@7=24A6*^f$UBamSnDIyEyJA{+|BdA=;i%QR22KKr>{QAsg*Js@sT=dsZv zuizpI*O*gU3njBs+4t)q{G*?VCs56^3)JDB5DNS~!U$rUyQ=Zbv2yv_y;)UL@K}({ z_ySqyIk=lZAKjgTn8_FS^2?p3ukBY&AH3Ya!F^19->9zW4Uo}qrrAWun7CtA^hYc4Qpp6i`g&@Ik}%06g1K-8 z+e!n7rald{ZTq)07ypH21?6_}4glY?z*L&caB|E*=o;?h>gZwiHO*?R z-=g9vKmc=dIiqT1ykr@X_a~;_Uo!W6i@L#=aACWBe)4fpdeNA)x)kThp;yJ$N+LGi z%IvJiu^Y2l_k5AGK6)rfkGi@OZI7Q<7x! z8Oiw+t#tK)dwbFUGg(US+!{_xbi?EK zIKsa_|L2gRH!Bw`z>-qp#y66a#H;Z1w_ap$sdE)VDn8dZ4T-AmE=+xEd#zTh@o z2u!fVpE~RSf@XD+Aodp4s%9hYjA6^TX8#Ki@Q_w*zHe2sF^TqcEtZIypY^(um{B5I z6>{>-U(!e#avJ(`+e_b&GskCmbZ;gc9z643Fgfk$#Y(PlkwAuiWKQIKKZAJnwA%h8)=~}vpwC>6mROlP=nChX>*1R zKym9$sT#>g(V?*w)Kg=Q1(MWh4CFaY-TMVSx@Jc%j`cHjN zPR#G8BImT$CYksz-q3%vF7*2<9Tq42Gb3mFu=Oqrb;J<(H`sEugZ%CgfSgl$0X*;6CsjG{P3culUc;3BNyC*d_wbiTjntNW zYWJlfG0Aj;t_0%yG&s7?H zdN_QDxcWsbGS+UBgMLg@;5U)zXl(&bZBBjeCsw&6ZqzOIrQDT83uTI-JB<#w4Dm?% z3W9)R4QrMxulAYNBZXcVr_pCqg|_N}*r@Os%h@dN6bZ1olAlmGl(oReX2_pDS*;MI zR>5s&7GC%~(P(WE9&Ymd%r^{n7;I5}o{P^UGzr&#M(Y-lyLpUboCpQ}b93jg1@2Qu z07P7Dw!3jNMFSKvd+fQEBKBh*%7ZCr86yi*@28*0uyzvNrZrJ=wLKaWwDh>6@7jAm zs;e0z7ap)UC8Aco%wVw1!mXBRq{>9*B3TmqIDh%9=-AZNAQ+yAFLO8abBc?^aw=$C zrGK*;r{l`@c%fJ)7-oE6zXp|Eh~??>)^fKwimYIB+IP0`eNL_LJi|~)Px5wx@hrZB z$A1b?DEUMTE(Ve% z=Z9<@?xx(xdWZ06 zonS+9coO|rnMtt*Q7vk`YAxc%XvLwlNi=uuOS^iHr%V}{-L6A)+nHzeC%0B?$bAEg zK6aaSX4w)Q#ZGNx9c)?)TEAg`m-~vO)YCNX{psTy|74^7p;Ic;~b9ttG$cmg=u4b-{Id)tx13F@KsidW6H$6Ps5|i`gRX>CpYols~NONe&q8YTdV7Itcoy0bj?@FRHjPC zw_)R8HApz;uYQZbm8x`RNsdD;WVcxYY7c8BrDfK4U+kq*XXaC6E2_Gep(J4L1&Uqw zmxlU^ibUZHXCDMxZ{upwq_-H3cqRIj5`v^>{-pi$XDy(A==daWp%S0$WOIJfcJQ*Y zU~3f~+_q;_n|-_r#0kQh?g2rT3WLqY96%`I4bNEM=$9u7i18z zY{>lkJoZN!@xMBL7{HI2R_D&YWtZd@pBU7)rPjn3wtQfi4Hd%zY&(;YYef+^qkh$# z#k0Be40nWNxd@L{6=2DtYq1qu0PsdxkenzIulV{0-+4}v*>_*&rOEVh!}~%jSHzkWX{Cl;`Ru<(i$yCq$NUfR8(m zBNIwy^E~`$zWw$2L-)Q^jtwPOFeTJMJPI%U`WQ18P?ZY=jxVcDE!9za9qL9$SKXZh zhPn9A|EW`|&zKVb+(fizfbaVGYTqx8!XO^Nmh%l$W>TWc+V4%nAaf$s&cuPw9<=5G zddKD=cK%KQmxgQ}Xs}X*DP|zDak_ki=PEr0_7q~U*<(^8SnJh7eGa6BA7~wpf7&;7 zu(Z5^!SZ*(h0n7spg**Z5(C0D&xg~g2SvJKaSN3d?#P)pz<71@h+X7FjK-Be58(Gq zk5smRVpYUgAUidU=_RU@Uj}3wCu0SuX-|F9q`w zFK=AK49n?=Nu3=Mp1~J3&^vN~`IfcsDYZmZFfw-zm~awqcYO;vmU?O`EX3g~wLhEI zgK_F<>FXY0sC{>d24Y$I20_jZ^8Q!4C-i$-!Th!7iYUg28<=vuf%x{gQ^I4wWfY($ zjt|+jFfsg-ucA$$*LwU?Zz-}8gLsVP3CHVrgQJS#*u7S&*blc!Uw!c7Tc$WbwS;d6 z-UURTTeB}fK^hmJp2>;HAErS(krr&hDx4d-2+k*C^M6%04CE06;YoB;E`%s=x%c#A==Yc5ng0 zUxE+>;Z;6Ggy2&cfk^xU#AtG$O-eS^3?%YA43Gz;Y=JR7I&a(jkCi&7Bl_P^jZ#0) z)_VF$v?gH^#h&jNHkCV4;mtAuC~bu8?9BI0sz(nbT()BN<#ObOyX)y$$8yKy7gxk~ z7%-D2PEmt#dMHYc-5ztn`ud*&*2#POo{juDsmiQLhipGJc)A?E*#+x5_L(f?xKx}iv+1b%)CDl(A8?3UV zsMeQ+cD5MAhh;Ydq#xSF;cU57fa0ZI+o=1c?D0G0`^h|~2;m}?RiC!Lh?1`{svzRZ z9fKBNKVr}esvtdv%Spc`xhO6`zQHl|h{;coG~E=yQMgvLqmnX?@s^N(>o=Jy9}F;F z$)~{DwQu>4zAb%^2_l-4irU>Qs7rcjyJ$;+o%sS3 zS$RsDewNOp$(>R`m3ITSA={UIU&&v?ubx=QZ#{VB{`? zk(rvzL4k{mVjc@@>q8rc8J>W4|CNx~65+0c)bN`H))w`ygfhd=QtaQ~^nSn31bQ&=jBDQolYqnBN_%gydGe z-KwYN?8gZfXut6D0L&>Bu#tCSEH*nHxQ67Hy%(S(cZA#l7#R3*DH|W6HKSM3UiRW$ z3}xN32tSjAqD0i|%%n#2YwN!}JR5i#@_<^4&_e5zr`Y&vyzEfj#Q#qF^(WR~K;alM zA0!&vY#e^do_Atw)^@!y!?%0`P?$Q*zW}|f+OzCtc`EOVSlM@7_lvWCFO{5F@l*sY ztsTBCw&455l;M3g%rUUm)3uziN&U-Cd(Q~AQXzZhc83Ts9QWVac07E1Y%EfS`b;_U z(t0r-M+h)2)Ob?C_tt!mA@T21KC#ruj#Hawepi>o1t_^;D`b|$Ks-cHpd#?LPi>j& za(PQsu=JvJ4%O+uaH&Dsc!ks2HR)wAA3(_uWOmSs<+!o0cWcnSl;%e@_4>~Pb{}L| zv!16@~5NEeFbeMYnk%PUbgvR{X7hkOEsL6;5CftG@s}-mX(y?%#>dG z2%E{>!el1ln@!PsJBCbry!f*Fv+)^zG$u7m+;>U@^9>55=((Tx_e|r1qwaiq@DHI2 ze+#MD9|?o)-Rb~9UPFsh9d18%-`y^u6Pg#mYPhuW{7ypQlO+{HCFx5sSL2i!S^wjU zB$KHV-S*Xcca~qe*64k{)1DU}+B>S*o_Fc*z2t6wiG9~qUTL`a_U=)@M^k81ICF(? zM_N|3H!9O@-1zJDbT93QkjokM4{^H2O_b{uUMG1HTjpNjI#|)wTA#Fnp-*-@15R`T zwQirNOc3SzeulQpd}>$GH34WxM~#FEhRKoBs( z=&H6liqao-yR-u5MJeSUAOVC7TjM7#-5aByq0(H6IkjvNiHUi}4p#pB!vkxTKYPNk zn0mBp!yP%mRmGKEQlOijZoD41&B4oLs}HSzpOkb|Z{Dr}Nh*CRcPs{HK~zkC?z^`m*``eXUo zsYlL2hMxz6G%bbx(lfp%1M0PtDHeRt9U$Ie@A6NF+kB6^XaHg+7a1X|qU|7e>xaWg zD>JM=6apB$H|$h)}w3+FYXhn%^b1$?{>UBxfgmAF06 zp>L)$V8NEjYq~!V!y-{(M=w{%bn}ZxB;<{=yMGMwL>{QbiN7*Papz4S`zD3Z2N8o_ z_~~dI>`@VHKG;beh{-Xxj#<}z6(1YqRiUYeiml45G3^>BGw7Z-Jse#nIS(U}Aw(^J z$Tl4s?-Yd4{}!$om!wPifIQ#{>g2)ehO1188KC<;qAkcnr#G9KZKXTzM=sywcr2b+ zxzbd}kny@`TEzSWA~bMiY(*6W#@2saUE2Qm>9-~OxSSUrqH|+($}hg>d|p@GP_ujC zd`zfg036JRf0Y#T=M4>kW7FMG*m5zhp3t%lJ7DJfSmE8-wx74n}5&E{+?^hH5MuTwz{&|SA@TA{6}hN;RGG z`s%R{69cMGr%Cw#(Wbx>rNrXDwN3>g$}~dI1&qmnO;rA81B?O<*mwTqfBcyPo&Ml8 zqCb`X6 zzY3lQe8`9Uzu)Xpm0RQ)WPd0FwpPs*7JWB&V0>0P zArheXc*4_6!_(8~kqY^z+?XUzm#d_H#})f#KOCEt3e(vit1a&up3f$|c-Sv_8a476 zBNuPw%RVYDuG>SXM7yUx0_$WYecu?EST#c&TCKbIhF+C;rRiTJz+bzn1~sXaW~cXU z3l*q<9178O@LhJKwP>($ab1O$B*}#U_HnBj*_n(GKZQq?uig@n_1p^c9)^x2J;?Wi z#d>7RcnC&T+^to*w&8+Vh972cXB-`uIY6lIO>n0GVwk=0HejmheVYCykemYe$=nSG zkV$*sNTErLF!;odFf4nQ9OekFRy@n(opX9Ezc&tHb=}xSE6{DPV(I%b21`1Qd^ATz zB1rd4T;o{pb({y0RS^HE*`+^Tx|)LuqS|-fd6xmQf(+YeN$*5;g6-e0^YfnzF++ zzV4~vBlmLXUf`NqNDwu?w$D=99bd}YaU5@s*T6c~0h{dsL7MDW|LRcWztEEY%F_4Y zSB-yJ*mLlP89et`LF`b#o1qsV-dCysxW;ne2b?xBv#^)D8?1b7W26}1pIge?9|2+}%?^yx-pKuKTvue(4X;0vvLGJ$EWv0UY z)DQmSeT{29+@N12(APD#O+bOOG3)}YVxoJvO32LxO*{IpHZ%mRlT&N2m& z%U<%mjIj;CWjP=v($cdU2+z~n6W|G1<#XVo!yH)ma>{#O7E`ujps3;SU^Og`(&YFF zw44{Q%&T(!KR5%|Ju9;;07&%!2oEGTZ1g$X5~<)d-Oy*5x2foUhwMjy&1Dv5i!0@B z`_!p>@-fv{JtOfV=XR{eYsz`c8N^c)nGlSZCcM^84CF&9P|dh>)U?1vndN+sK22OS z5Jj!|7n8jHQBv67dp*!&bahRw6Hqm_!kv9#_#Im3b1&(OWiUL*@qBFrnM|t0yCyzg%Mm(1JlZ`>6zi09IKvHYNdb~_>=m^ z|Cz^8Yv0fKTOaKt+RX^Zq^-!1lSPQ28Kj-u)ztmN-1fg!=lRC@)zM`?Gz+Bz#pJ#( zr3k+FaM#om9{PH`*+JOu2sQpNf%L&_u7#l8hma;`A9??J$%=1Lpw(5(?bubBMn^Y0 zcWH=C6^zf_FT=Aq7t>pGyVgmpyfl4_PuHC3>CHgP`}=H}Q(I$=X+S)ca1BOPi=43; zL+^0!Q$&s5aEkGZ&&t$rR-$w1<&31K@#Bpl()wFFP5is;uV(E3C%u9HkKJ4TV*39A Dx^_5` literal 0 HcmV?d00001 diff --git a/arithmetic_analysis/in_static_equilibrium.py b/arithmetic_analysis/in_static_equilibrium.py new file mode 100644 index 000000000000..48eb6135eba7 --- /dev/null +++ b/arithmetic_analysis/in_static_equilibrium.py @@ -0,0 +1,89 @@ +""" +Checks if a system of forces is in static equilibrium. + +python/black : true +flake8 : passed +mypy : passed +""" + +from numpy import array, cos, sin, radians, cross # type: ignore +from typing import List + + +def polar_force( + magnitude: float, angle: float, radian_mode: bool = False +) -> List[float]: + """ + Resolves force along rectangular components. + (force, angle) => (force_x, force_y) + >>> polar_force(10, 45) + [7.0710678118654755, 7.071067811865475] + >>> polar_force(10, 3.14, radian_mode=True) + [-9.999987317275394, 0.01592652916486828] + """ + if radian_mode: + return [magnitude * cos(angle), magnitude * sin(angle)] + return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))] + + +def in_static_equilibrium( + forces: array, location: array, eps: float = 10 ** -1 +) -> bool: + """ + Check if a system is in equilibrium. + It takes two numpy.array objects. + forces ==> [ + [force1_x, force1_y], + [force2_x, force2_y], + ....] + location ==> [ + [x1, y1], + [x2, y2], + ....] + >>> force = array([[1, 1], [-1, 2]]) + >>> location = array([[1, 0], [10, 0]]) + >>> in_static_equilibrium(force, location) + False + """ + # summation of moments is zero + moments: array = cross(location, forces) + sum_moments: float = sum(moments) + return abs(sum_moments) < eps + + +if __name__ == "__main__": + # Test to check if it works + forces = array( + [ + polar_force(718.4, 180 - 30), + polar_force(879.54, 45), + polar_force(100, -90) + ]) + + location = array([[0, 0], [0, 0], [0, 0]]) + + assert in_static_equilibrium(forces, location) + + # Problem 1 in image_data/2D_problems.jpg + forces = array( + [ + polar_force(30 * 9.81, 15), + polar_force(215, 180 - 45), + polar_force(264, 90 - 30), + ] + ) + + location = array([[0, 0], [0, 0], [0, 0]]) + + assert in_static_equilibrium(forces, location) + + # Problem in image_data/2D_problems_1.jpg + forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) + + location = array([[0, 0], [6, 0], [10, 0], [12, 0]]) + + assert in_static_equilibrium(forces, location) + + import doctest + + doctest.testmod() diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py index 4ca1301dd8fe..526f5ec27987 100644 --- a/data_structures/binary_tree/red_black_tree.py +++ b/data_structures/binary_tree/red_black_tree.py @@ -1,665 +1,711 @@ -class RedBlackTree: - """ - A Red-Black tree, which is a self-balancing BST (binary search - tree). - - This tree has similar performance to AVL trees, but the balancing is - less strict, so it will perform faster for writing/deleting nodes - and slower for reading in the average case, though, because they're - both balanced binary search trees, both will get the same asymptotic - perfomance. - - To read more about them, https://en.wikipedia.org/wiki/Red–black_tree - - Unless otherwise specified, all asymptotic runtimes are specified in - terms of the size of the tree. - """ - def __init__(self, label=None, color=0, parent=None, left=None, right=None): - """Initialize a new Red-Black Tree node with the given values: - label: The value associated with this node - color: 0 if black, 1 if red - parent: The parent to this node - left: This node's left child - right: This node's right child - """ - self.label = label - self.parent = parent - self.left = left - self.right = right - self.color = color - - # Here are functions which are specific to red-black trees - - def rotate_left(self): - """Rotate the subtree rooted at this node to the left and - returns the new root to this subtree. - - Perfoming one rotation can be done in O(1). - """ - parent = self.parent - right = self.right - self.right = right.left - if self.right: - self.right.parent = self - self.parent = right - right.left = self - if parent is not None: - if parent.left is self: - parent.left = right - else: - parent.right = right - right.parent = parent - return right - - def rotate_right(self): - """Rotate the subtree rooted at this node to the right and - returns the new root to this subtree. - - Performing one rotation can be done in O(1). - """ - parent = self.parent - left = self.left - self.left = left.right - if self.left: - self.left.parent = self - self.parent = left - left.right = self - if parent is not None: - if parent.right is self: - parent.right = left - else: - parent.left = left - left.parent = parent - return left - - def insert(self, label): - """Inserts label into the subtree rooted at self, performs any - rotations necessary to maintain balance, and then returns the - new root to this subtree (likely self). - - This is guaranteed to run in O(log(n)) time. - """ - if self.label is None: - # Only possible with an empty tree - self.label = label - return self - if self.label == label: - return self - elif self.label > label: - if self.left: - self.left.insert(label) - else: - self.left = RedBlackTree(label, 1, self) - self.left._insert_repair() - else: - if self.right: - self.right.insert(label) - else: - self.right = RedBlackTree(label, 1, self) - self.right._insert_repair() - return self.parent or self - - def _insert_repair(self): - """Repair the coloring from inserting into a tree.""" - if self.parent is None: - # This node is the root, so it just needs to be black - self.color = 0 - elif color(self.parent) == 0: - # If the parent is black, then it just needs to be red - self.color = 1 - else: - uncle = self.parent.sibling - if color(uncle) == 0: - if self.is_left() and self.parent.is_right(): - self.parent.rotate_right() - self.right._insert_repair() - elif self.is_right() and self.parent.is_left(): - self.parent.rotate_left() - self.left._insert_repair() - elif self.is_left(): - self.grandparent.rotate_right() - self.parent.color = 0 - self.parent.right.color = 1 - else: - self.grandparent.rotate_left() - self.parent.color = 0 - self.parent.left.color = 1 - else: - self.parent.color = 0 - uncle.color = 0 - self.grandparent.color = 1 - self.grandparent._insert_repair() - - def remove(self, label): - """Remove label from this tree.""" - if self.label == label: - if self.left and self.right: - # It's easier to balance a node with at most one child, - # so we replace this node with the greatest one less than - # it and remove that. - value = self.left.get_max() - self.label = value - self.left.remove(value) - else: - # This node has at most one non-None child, so we don't - # need to replace - child = self.left or self.right - if self.color == 1: - # This node is red, and its child is black - # The only way this happens to a node with one child - # is if both children are None leaves. - # We can just remove this node and call it a day. - if self.is_left(): - self.parent.left = None - else: - self.parent.right = None - else: - # The node is black - if child is None: - # This node and its child are black - if self.parent is None: - # The tree is now empty - return RedBlackTree(None) - else: - self._remove_repair() - if self.is_left(): - self.parent.left = None - else: - self.parent.right = None - self.parent = None - else: - # This node is black and its child is red - # Move the child node here and make it black - self.label = child.label - self.left = child.left - self.right = child.right - if self.left: - self.left.parent = self - if self.right: - self.right.parent = self - elif self.label > label: - if self.left: - self.left.remove(label) - else: - if self.right: - self.right.remove(label) - return self.parent or self - - def _remove_repair(self): - """Repair the coloring of the tree that may have been messed up.""" - if color(self.sibling) == 1: - self.sibling.color = 0 - self.parent.color = 1 - if self.is_left(): - self.parent.rotate_left() - else: - self.parent.rotate_right() - if color(self.parent) == 0 and color(self.sibling) == 0 \ - and color(self.sibling.left) == 0 \ - and color(self.sibling.right) == 0: - self.sibling.color = 1 - self.parent._remove_repair() - return - if color(self.parent) == 1 and color(self.sibling) == 0 \ - and color(self.sibling.left) == 0 \ - and color(self.sibling.right) == 0: - self.sibling.color = 1 - self.parent.color = 0 - return - if (self.is_left() - and color(self.sibling) == 0 - and color(self.sibling.right) == 0 - and color(self.sibling.left) == 1): - self.sibling.rotate_right() - self.sibling.color = 0 - self.sibling.right.color = 1 - if (self.is_right() - and color(self.sibling) == 0 - and color(self.sibling.right) == 1 - and color(self.sibling.left) == 0): - self.sibling.rotate_left() - self.sibling.color = 0 - self.sibling.left.color = 1 - if (self.is_left() - and color(self.sibling) == 0 - and color(self.sibling.right) == 1): - self.parent.rotate_left() - self.grandparent.color = self.parent.color - self.parent.color = 0 - self.parent.sibling.color = 0 - if (self.is_right() - and color(self.sibling) == 0 - and color(self.sibling.left) == 1): - self.parent.rotate_right() - self.grandparent.color = self.parent.color - self.parent.color = 0 - self.parent.sibling.color = 0 - - def check_color_properties(self): - """Check the coloring of the tree, and return True iff the tree - is colored in a way which matches these five properties: - (wording stolen from wikipedia article) - 1. Each node is either red or black. - 2. The root node is black. - 3. All leaves are black. - 4. If a node is red, then both its children are black. - 5. Every path from any node to all of its descendent NIL nodes - has the same number of black nodes. - - This function runs in O(n) time, because properties 4 and 5 take - that long to check. - """ - # I assume property 1 to hold because there is nothing that can - # make the color be anything other than 0 or 1. - - # Property 2 - if self.color: - # The root was red - print('Property 2') - return False; - - # Property 3 does not need to be checked, because None is assumed - # to be black and is all the leaves. - - # Property 4 - if not self.check_coloring(): - print('Property 4') - return False - - # Property 5 - if self.black_height() is None: - print('Property 5') - return False - # All properties were met - return True - - def check_coloring(self): - """A helper function to recursively check Property 4 of a - Red-Black Tree. See check_color_properties for more info. - """ - if self.color == 1: - if color(self.left) == 1 or color(self.right) == 1: - return False - if self.left and not self.left.check_coloring(): - return False - if self.right and not self.right.check_coloring(): - return False - return True - - def black_height(self): - """Returns the number of black nodes from this node to the - leaves of the tree, or None if there isn't one such value (the - tree is color incorrectly). - """ - if self is None: - # If we're already at a leaf, there is no path - return 1 - left = RedBlackTree.black_height(self.left) - right = RedBlackTree.black_height(self.right) - if left is None or right is None: - # There are issues with coloring below children nodes - return None - if left != right: - # The two children have unequal depths - return None - # Return the black depth of children, plus one if this node is - # black - return left + (1-self.color) - - # Here are functions which are general to all binary search trees - - def __contains__(self, label): - """Search through the tree for label, returning True iff it is - found somewhere in the tree. - - Guaranteed to run in O(log(n)) time. - """ - return self.search(label) is not None - - def search(self, label): - """Search through the tree for label, returning its node if - it's found, and None otherwise. - - This method is guaranteed to run in O(log(n)) time. - """ - if self.label == label: - return self - elif label > self.label: - if self.right is None: - return None - else: - return self.right.search(label) - else: - if self.left is None: - return None - else: - return self.left.search(label) - - def floor(self, label): - """Returns the largest element in this tree which is at most label. - - This method is guaranteed to run in O(log(n)) time.""" - if self.label == label: - return self.label - elif self.label > label: - if self.left: - return self.left.floor(label) - else: - return None - else: - if self.right: - attempt = self.right.floor(label) - if attempt is not None: - return attempt - return self.label - - def ceil(self, label): - """Returns the smallest element in this tree which is at least label. - - This method is guaranteed to run in O(log(n)) time. - """ - if self.label == label: - return self.label - elif self.label < label: - if self.right: - return self.right.ceil(label) - else: - return None - else: - if self.left: - attempt = self.left.ceil(label) - if attempt is not None: - return attempt - return self.label - - def get_max(self): - """Returns the largest element in this tree. - - This method is guaranteed to run in O(log(n)) time. - """ - if self.right: - # Go as far right as possible - return self.right.get_max() - else: - return self.label - - def get_min(self): - """Returns the smallest element in this tree. - - This method is guaranteed to run in O(log(n)) time. - """ - if self.left: - # Go as far left as possible - return self.left.get_min() - else: - return self.label - - @property - def grandparent(self): - """Get the current node's grandparent, or None if it doesn't exist.""" - if self.parent is None: - return None - else: - return self.parent.parent - - @property - def sibling(self): - """Get the current node's sibling, or None if it doesn't exist.""" - if self.parent is None: - return None - elif self.parent.left is self: - return self.parent.right - else: - return self.parent.left - - def is_left(self): - """Returns true iff this node is the left child of its parent.""" - return self.parent and self.parent.left is self - - def is_right(self): - """Returns true iff this node is the right child of its parent.""" - return self.parent and self.parent.right is self - - def __bool__(self): - return True - - def __len__(self): - """ - Return the number of nodes in this tree. - """ - ln = 1 - if self.left: - ln += len(self.left) - if self.right: - ln += len(self.right) - return ln - - def preorder_traverse(self): - yield self.label - if self.left: - yield from self.left.preorder_traverse() - if self.right: - yield from self.right.preorder_traverse() - - def inorder_traverse(self): - if self.left: - yield from self.left.inorder_traverse() - yield self.label - if self.right: - yield from self.right.inorder_traverse() - - - def postorder_traverse(self): - if self.left: - yield from self.left.postorder_traverse() - if self.right: - yield from self.right.postorder_traverse() - yield self.label - - def __repr__(self): - from pprint import pformat - if self.left is None and self.right is None: - return "'%s %s'" % (self.label, (self.color and 'red') or 'blk') - return pformat({'%s %s' % (self.label, (self.color and 'red') or 'blk'): - (self.left, self.right)}, - indent=1) - - def __eq__(self, other): - """Test if two trees are equal.""" - if self.label == other.label: - return self.left == other.left and self.right == other.right - else: - return False - -def color(node): - """Returns the color of a node, allowing for None leaves.""" - if node is None: - return 0 - else: - return node.color - -""" -Code for testing the various functions of the red-black tree. -""" - -def test_rotations(): - """Test that the rotate_left and rotate_right functions work.""" - # Make a tree to test on - tree = RedBlackTree(0) - tree.left = RedBlackTree(-10, parent=tree) - tree.right = RedBlackTree(10, parent=tree) - tree.left.left = RedBlackTree(-20, parent=tree.left) - tree.left.right = RedBlackTree(-5, parent=tree.left) - tree.right.left = RedBlackTree(5, parent=tree.right) - tree.right.right = RedBlackTree(20, parent=tree.right) - # Make the right rotation - left_rot = RedBlackTree(10) - left_rot.left = RedBlackTree(0, parent=left_rot) - left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) - left_rot.left.right = RedBlackTree(5, parent=left_rot.left) - left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) - left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) - left_rot.right = RedBlackTree(20, parent=left_rot) - tree = tree.rotate_left() - if tree != left_rot: - return False - tree = tree.rotate_right() - tree = tree.rotate_right() - # Make the left rotation - right_rot = RedBlackTree(-10) - right_rot.left = RedBlackTree(-20, parent=right_rot) - right_rot.right = RedBlackTree(0, parent=right_rot) - right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) - right_rot.right.right = RedBlackTree(10, parent=right_rot.right) - right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) - right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) - if tree != right_rot: - return False - return True - -def test_insertion_speed(): - """Test that the tree balances inserts to O(log(n)) by doing a lot - of them. - """ - tree = RedBlackTree(-1) - for i in range(300000): - tree = tree.insert(i) - return True - -def test_insert(): - """Test the insert() method of the tree correctly balances, colors, - and inserts. - """ - tree = RedBlackTree(0) - tree.insert(8) - tree.insert(-8) - tree.insert(4) - tree.insert(12) - tree.insert(10) - tree.insert(11) - ans = RedBlackTree(0, 0) - ans.left = RedBlackTree(-8, 0, ans) - ans.right = RedBlackTree(8, 1, ans) - ans.right.left = RedBlackTree(4, 0, ans.right) - ans.right.right = RedBlackTree(11, 0, ans.right) - ans.right.right.left = RedBlackTree(10, 1, ans.right.right) - ans.right.right.right = RedBlackTree(12, 1, ans.right.right) - return tree == ans - -def test_insert_and_search(): - """Tests searching through the tree for values.""" - tree = RedBlackTree(0) - tree.insert(8) - tree.insert(-8) - tree.insert(4) - tree.insert(12) - tree.insert(10) - tree.insert(11) - if 5 in tree or -6 in tree or -10 in tree or 13 in tree: - # Found something not in there - return False - if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): - # Didn't find something in there - return False - return True - -def test_insert_delete(): - """Test the insert() and delete() method of the tree, verifying the - insertion and removal of elements, and the balancing of the tree. - """ - tree = RedBlackTree(0) - tree = tree.insert(-12) - tree = tree.insert(8) - tree = tree.insert(-8) - tree = tree.insert(15) - tree = tree.insert(4) - tree = tree.insert(12) - tree = tree.insert(10) - tree = tree.insert(9) - tree = tree.insert(11) - tree = tree.remove(15) - tree = tree.remove(-12) - tree = tree.remove(9) - if not tree.check_color_properties(): - return False - if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: - return False - return True - -def test_floor_ceil(): - """Tests the floor and ceiling functions in the tree.""" - tree = RedBlackTree(0) - tree.insert(-16) - tree.insert(16) - tree.insert(8) - tree.insert(24) - tree.insert(20) - tree.insert(22) - tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] - for val, floor, ceil in tuples: - if tree.floor(val) != floor or tree.ceil(val) != ceil: - return False - return True - -def test_min_max(): - """Tests the min and max functions in the tree.""" - tree = RedBlackTree(0) - tree.insert(-16) - tree.insert(16) - tree.insert(8) - tree.insert(24) - tree.insert(20) - tree.insert(22) - if tree.get_max() != 22 or tree.get_min() != -16: - return False - return True - -def test_tree_traversal(): - """Tests the three different tree traversal functions.""" - tree = RedBlackTree(0) - tree.insert(-16) - tree.insert(16) - tree.insert(8) - tree.insert(24) - tree.insert(20) - tree.insert(22) - if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: - return False - if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: - return False - if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: - return False - return True - -def main(): - if test_rotations(): - print('Rotating right and left works!') - else: - print('Rotating right and left doesn\'t work. :(') - if test_insert(): - print('Inserting works!') - else: - print('Inserting doesn\'t work :(') - if test_insert_and_search(): - print('Searching works!') - else: - print('Searching doesn\'t work :(') - if test_insert_delete(): - print('Deleting works!') - else: - print('Deleting doesn\'t work :(') - if test_floor_ceil(): - print('Floor and ceil work!') - else: - print('Floor and ceil don\'t work :(') - if test_tree_traversal(): - print('Tree traversal works!') - else: - print('Tree traversal doesn\'t work :(') - print('Testing tree balancing...') - print('This should only be a few seconds.') - test_insertion_speed() - print('Done!') - -if __name__ == '__main__': - main() +""" +python/black : true +flake8 : passed +""" + + +class RedBlackTree: + """ + A Red-Black tree, which is a self-balancing BST (binary search + tree). + This tree has similar performance to AVL trees, but the balancing is + less strict, so it will perform faster for writing/deleting nodes + and slower for reading in the average case, though, because they're + both balanced binary search trees, both will get the same asymptotic + perfomance. + To read more about them, https://en.wikipedia.org/wiki/Red–black_tree + Unless otherwise specified, all asymptotic runtimes are specified in + terms of the size of the tree. + """ + + def __init__(self, label=None, color=0, parent=None, left=None, right=None): + """Initialize a new Red-Black Tree node with the given values: + label: The value associated with this node + color: 0 if black, 1 if red + parent: The parent to this node + left: This node's left child + right: This node's right child + """ + self.label = label + self.parent = parent + self.left = left + self.right = right + self.color = color + + # Here are functions which are specific to red-black trees + + def rotate_left(self): + """Rotate the subtree rooted at this node to the left and + returns the new root to this subtree. + Perfoming one rotation can be done in O(1). + """ + parent = self.parent + right = self.right + self.right = right.left + if self.right: + self.right.parent = self + self.parent = right + right.left = self + if parent is not None: + if parent.left == self: + parent.left = right + else: + parent.right = right + right.parent = parent + return right + + def rotate_right(self): + """Rotate the subtree rooted at this node to the right and + returns the new root to this subtree. + Performing one rotation can be done in O(1). + """ + parent = self.parent + left = self.left + self.left = left.right + if self.left: + self.left.parent = self + self.parent = left + left.right = self + if parent is not None: + if parent.right is self: + parent.right = left + else: + parent.left = left + left.parent = parent + return left + + def insert(self, label): + """Inserts label into the subtree rooted at self, performs any + rotations necessary to maintain balance, and then returns the + new root to this subtree (likely self). + This is guaranteed to run in O(log(n)) time. + """ + if self.label is None: + # Only possible with an empty tree + self.label = label + return self + if self.label == label: + return self + elif self.label > label: + if self.left: + self.left.insert(label) + else: + self.left = RedBlackTree(label, 1, self) + self.left._insert_repair() + else: + if self.right: + self.right.insert(label) + else: + self.right = RedBlackTree(label, 1, self) + self.right._insert_repair() + return self.parent or self + + def _insert_repair(self): + """Repair the coloring from inserting into a tree.""" + if self.parent is None: + # This node is the root, so it just needs to be black + self.color = 0 + elif color(self.parent) == 0: + # If the parent is black, then it just needs to be red + self.color = 1 + else: + uncle = self.parent.sibling + if color(uncle) == 0: + if self.is_left() and self.parent.is_right(): + self.parent.rotate_right() + self.right._insert_repair() + elif self.is_right() and self.parent.is_left(): + self.parent.rotate_left() + self.left._insert_repair() + elif self.is_left(): + self.grandparent.rotate_right() + self.parent.color = 0 + self.parent.right.color = 1 + else: + self.grandparent.rotate_left() + self.parent.color = 0 + self.parent.left.color = 1 + else: + self.parent.color = 0 + uncle.color = 0 + self.grandparent.color = 1 + self.grandparent._insert_repair() + + def remove(self, label): + """Remove label from this tree.""" + if self.label == label: + if self.left and self.right: + # It's easier to balance a node with at most one child, + # so we replace this node with the greatest one less than + # it and remove that. + value = self.left.get_max() + self.label = value + self.left.remove(value) + else: + # This node has at most one non-None child, so we don't + # need to replace + child = self.left or self.right + if self.color == 1: + # This node is red, and its child is black + # The only way this happens to a node with one child + # is if both children are None leaves. + # We can just remove this node and call it a day. + if self.is_left(): + self.parent.left = None + else: + self.parent.right = None + else: + # The node is black + if child is None: + # This node and its child are black + if self.parent is None: + # The tree is now empty + return RedBlackTree(None) + else: + self._remove_repair() + if self.is_left(): + self.parent.left = None + else: + self.parent.right = None + self.parent = None + else: + # This node is black and its child is red + # Move the child node here and make it black + self.label = child.label + self.left = child.left + self.right = child.right + if self.left: + self.left.parent = self + if self.right: + self.right.parent = self + elif self.label > label: + if self.left: + self.left.remove(label) + else: + if self.right: + self.right.remove(label) + return self.parent or self + + def _remove_repair(self): + """Repair the coloring of the tree that may have been messed up.""" + if color(self.sibling) == 1: + self.sibling.color = 0 + self.parent.color = 1 + if self.is_left(): + self.parent.rotate_left() + else: + self.parent.rotate_right() + if ( + color(self.parent) == 0 + and color(self.sibling) == 0 + and color(self.sibling.left) == 0 + and color(self.sibling.right) == 0 + ): + self.sibling.color = 1 + self.parent._remove_repair() + return + if ( + color(self.parent) == 1 + and color(self.sibling) == 0 + and color(self.sibling.left) == 0 + and color(self.sibling.right) == 0 + ): + self.sibling.color = 1 + self.parent.color = 0 + return + if ( + self.is_left() + and color(self.sibling) == 0 + and color(self.sibling.right) == 0 + and color(self.sibling.left) == 1 + ): + self.sibling.rotate_right() + self.sibling.color = 0 + self.sibling.right.color = 1 + if ( + self.is_right() + and color(self.sibling) == 0 + and color(self.sibling.right) == 1 + and color(self.sibling.left) == 0 + ): + self.sibling.rotate_left() + self.sibling.color = 0 + self.sibling.left.color = 1 + if ( + self.is_left() + and color(self.sibling) == 0 + and color(self.sibling.right) == 1 + ): + self.parent.rotate_left() + self.grandparent.color = self.parent.color + self.parent.color = 0 + self.parent.sibling.color = 0 + if ( + self.is_right() + and color(self.sibling) == 0 + and color(self.sibling.left) == 1 + ): + self.parent.rotate_right() + self.grandparent.color = self.parent.color + self.parent.color = 0 + self.parent.sibling.color = 0 + + def check_color_properties(self): + """Check the coloring of the tree, and return True iff the tree + is colored in a way which matches these five properties: + (wording stolen from wikipedia article) + 1. Each node is either red or black. + 2. The root node is black. + 3. All leaves are black. + 4. If a node is red, then both its children are black. + 5. Every path from any node to all of its descendent NIL nodes + has the same number of black nodes. + This function runs in O(n) time, because properties 4 and 5 take + that long to check. + """ + # I assume property 1 to hold because there is nothing that can + # make the color be anything other than 0 or 1. + + # Property 2 + if self.color: + # The root was red + print("Property 2") + return False + + # Property 3 does not need to be checked, because None is assumed + # to be black and is all the leaves. + + # Property 4 + if not self.check_coloring(): + print("Property 4") + return False + + # Property 5 + if self.black_height() is None: + print("Property 5") + return False + # All properties were met + return True + + def check_coloring(self): + """A helper function to recursively check Property 4 of a + Red-Black Tree. See check_color_properties for more info. + """ + if self.color == 1: + if color(self.left) == 1 or color(self.right) == 1: + return False + if self.left and not self.left.check_coloring(): + return False + if self.right and not self.right.check_coloring(): + return False + return True + + def black_height(self): + """Returns the number of black nodes from this node to the + leaves of the tree, or None if there isn't one such value (the + tree is color incorrectly). + """ + if self is None: + # If we're already at a leaf, there is no path + return 1 + left = RedBlackTree.black_height(self.left) + right = RedBlackTree.black_height(self.right) + if left is None or right is None: + # There are issues with coloring below children nodes + return None + if left != right: + # The two children have unequal depths + return None + # Return the black depth of children, plus one if this node is + # black + return left + (1 - self.color) + + # Here are functions which are general to all binary search trees + + def __contains__(self, label): + """Search through the tree for label, returning True iff it is + found somewhere in the tree. + Guaranteed to run in O(log(n)) time. + """ + return self.search(label) is not None + + def search(self, label): + """Search through the tree for label, returning its node if + it's found, and None otherwise. + This method is guaranteed to run in O(log(n)) time. + """ + if self.label == label: + return self + elif label > self.label: + if self.right is None: + return None + else: + return self.right.search(label) + else: + if self.left is None: + return None + else: + return self.left.search(label) + + def floor(self, label): + """Returns the largest element in this tree which is at most label. + This method is guaranteed to run in O(log(n)) time.""" + if self.label == label: + return self.label + elif self.label > label: + if self.left: + return self.left.floor(label) + else: + return None + else: + if self.right: + attempt = self.right.floor(label) + if attempt is not None: + return attempt + return self.label + + def ceil(self, label): + """Returns the smallest element in this tree which is at least label. + This method is guaranteed to run in O(log(n)) time. + """ + if self.label == label: + return self.label + elif self.label < label: + if self.right: + return self.right.ceil(label) + else: + return None + else: + if self.left: + attempt = self.left.ceil(label) + if attempt is not None: + return attempt + return self.label + + def get_max(self): + """Returns the largest element in this tree. + This method is guaranteed to run in O(log(n)) time. + """ + if self.right: + # Go as far right as possible + return self.right.get_max() + else: + return self.label + + def get_min(self): + """Returns the smallest element in this tree. + This method is guaranteed to run in O(log(n)) time. + """ + if self.left: + # Go as far left as possible + return self.left.get_min() + else: + return self.label + + @property + def grandparent(self): + """Get the current node's grandparent, or None if it doesn't exist.""" + if self.parent is None: + return None + else: + return self.parent.parent + + @property + def sibling(self): + """Get the current node's sibling, or None if it doesn't exist.""" + if self.parent is None: + return None + elif self.parent.left is self: + return self.parent.right + else: + return self.parent.left + + def is_left(self): + """Returns true iff this node is the left child of its parent.""" + return self.parent and self.parent.left is self + + def is_right(self): + """Returns true iff this node is the right child of its parent.""" + return self.parent and self.parent.right is self + + def __bool__(self): + return True + + def __len__(self): + """ + Return the number of nodes in this tree. + """ + ln = 1 + if self.left: + ln += len(self.left) + if self.right: + ln += len(self.right) + return ln + + def preorder_traverse(self): + yield self.label + if self.left: + yield from self.left.preorder_traverse() + if self.right: + yield from self.right.preorder_traverse() + + def inorder_traverse(self): + if self.left: + yield from self.left.inorder_traverse() + yield self.label + if self.right: + yield from self.right.inorder_traverse() + + def postorder_traverse(self): + if self.left: + yield from self.left.postorder_traverse() + if self.right: + yield from self.right.postorder_traverse() + yield self.label + + def __repr__(self): + from pprint import pformat + + if self.left is None and self.right is None: + return "'%s %s'" % (self.label, (self.color and "red") or "blk") + return pformat( + { + "%s %s" + % (self.label, (self.color and "red") or "blk"): (self.left, self.right) + }, + indent=1, + ) + + def __eq__(self, other): + """Test if two trees are equal.""" + if self.label == other.label: + return self.left == other.left and self.right == other.right + else: + return False + + +def color(node): + """Returns the color of a node, allowing for None leaves.""" + if node is None: + return 0 + else: + return node.color + + +""" +Code for testing the various +functions of the red-black tree. +""" + + +def test_rotations(): + """Test that the rotate_left and rotate_right functions work.""" + # Make a tree to test on + tree = RedBlackTree(0) + tree.left = RedBlackTree(-10, parent=tree) + tree.right = RedBlackTree(10, parent=tree) + tree.left.left = RedBlackTree(-20, parent=tree.left) + tree.left.right = RedBlackTree(-5, parent=tree.left) + tree.right.left = RedBlackTree(5, parent=tree.right) + tree.right.right = RedBlackTree(20, parent=tree.right) + # Make the right rotation + left_rot = RedBlackTree(10) + left_rot.left = RedBlackTree(0, parent=left_rot) + left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) + left_rot.left.right = RedBlackTree(5, parent=left_rot.left) + left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) + left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) + left_rot.right = RedBlackTree(20, parent=left_rot) + tree = tree.rotate_left() + if tree != left_rot: + return False + tree = tree.rotate_right() + tree = tree.rotate_right() + # Make the left rotation + right_rot = RedBlackTree(-10) + right_rot.left = RedBlackTree(-20, parent=right_rot) + right_rot.right = RedBlackTree(0, parent=right_rot) + right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) + right_rot.right.right = RedBlackTree(10, parent=right_rot.right) + right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) + right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) + if tree != right_rot: + return False + return True + + +def test_insertion_speed(): + """Test that the tree balances inserts to O(log(n)) by doing a lot + of them. + """ + tree = RedBlackTree(-1) + for i in range(300000): + tree = tree.insert(i) + return True + + +def test_insert(): + """Test the insert() method of the tree correctly balances, colors, + and inserts. + """ + tree = RedBlackTree(0) + tree.insert(8) + tree.insert(-8) + tree.insert(4) + tree.insert(12) + tree.insert(10) + tree.insert(11) + ans = RedBlackTree(0, 0) + ans.left = RedBlackTree(-8, 0, ans) + ans.right = RedBlackTree(8, 1, ans) + ans.right.left = RedBlackTree(4, 0, ans.right) + ans.right.right = RedBlackTree(11, 0, ans.right) + ans.right.right.left = RedBlackTree(10, 1, ans.right.right) + ans.right.right.right = RedBlackTree(12, 1, ans.right.right) + return tree == ans + + +def test_insert_and_search(): + """Tests searching through the tree for values.""" + tree = RedBlackTree(0) + tree.insert(8) + tree.insert(-8) + tree.insert(4) + tree.insert(12) + tree.insert(10) + tree.insert(11) + if 5 in tree or -6 in tree or -10 in tree or 13 in tree: + # Found something not in there + return False + if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): + # Didn't find something in there + return False + return True + + +def test_insert_delete(): + """Test the insert() and delete() method of the tree, verifying the + insertion and removal of elements, and the balancing of the tree. + """ + tree = RedBlackTree(0) + tree = tree.insert(-12) + tree = tree.insert(8) + tree = tree.insert(-8) + tree = tree.insert(15) + tree = tree.insert(4) + tree = tree.insert(12) + tree = tree.insert(10) + tree = tree.insert(9) + tree = tree.insert(11) + tree = tree.remove(15) + tree = tree.remove(-12) + tree = tree.remove(9) + if not tree.check_color_properties(): + return False + if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: + return False + return True + + +def test_floor_ceil(): + """Tests the floor and ceiling functions in the tree.""" + tree = RedBlackTree(0) + tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] + for val, floor, ceil in tuples: + if tree.floor(val) != floor or tree.ceil(val) != ceil: + return False + return True + + +def test_min_max(): + """Tests the min and max functions in the tree.""" + tree = RedBlackTree(0) + tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + if tree.get_max() != 22 or tree.get_min() != -16: + return False + return True + + +def test_tree_traversal(): + """Tests the three different tree traversal functions.""" + tree = RedBlackTree(0) + tree = tree.insert(-16) + tree.insert(16) + tree.insert(8) + tree.insert(24) + tree.insert(20) + tree.insert(22) + if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: + return False + if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: + return False + if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: + return False + return True + + +def test_tree_chaining(): + """Tests the three different tree chaning functions.""" + tree = RedBlackTree(0) + tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22) + if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: + return False + if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: + return False + if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: + return False + return True + + +def print_results(msg: str, passes: bool) -> None: + print(str(msg), "works!" if passes else "doesn't work :(") + + +def pytests(): + assert test_rotations() + assert test_insert() + assert test_insert_and_search() + assert test_insert_delete() + assert test_floor_ceil() + assert test_tree_traversal() + assert test_tree_chaining() + + +def main(): + """ + >>> pytests() + """ + print_results("Rotating right and left", test_rotations()) + + print_results("Inserting", test_insert()) + + print_results("Searching", test_insert_and_search()) + + print_results("Deleting", test_insert_delete()) + + print_results("Floor and ceil", test_floor_ceil()) + + print_results("Tree traversal", test_tree_traversal()) + + print_results("Tree traversal", test_tree_chaining()) + + + print("Testing tree balancing...") + print("This should only be a few seconds.") + test_insertion_speed() + print("Done!") + + +if __name__ == "__main__": + main() From 46bc6738d78de3a05901881c919e8d91a28b8ef4 Mon Sep 17 00:00:00 2001 From: obelisk0114 Date: Fri, 26 Jul 2019 03:25:38 -0700 Subject: [PATCH 229/594] Add doctest to maths/sieve_of_eratosthenes.py and remove other/finding_primes.py (#1078) Both of the two files implemented sieve of eratosthenes. However, there was a bug in other/finding_primes.py, and the time complexity was larger than the other. Therefore, remove other/finding_primes.py and add doctest tomaths/sieve_of_eratosthenes.py. --- maths/sieve_of_eratosthenes.py | 38 ++++++++++++++++++++++++++++++++-- other/finding_primes.py | 21 ------------------- 2 files changed, 36 insertions(+), 23 deletions(-) delete mode 100644 other/finding_primes.py diff --git a/maths/sieve_of_eratosthenes.py b/maths/sieve_of_eratosthenes.py index cedd04f92aa0..44c7f8a02682 100644 --- a/maths/sieve_of_eratosthenes.py +++ b/maths/sieve_of_eratosthenes.py @@ -1,19 +1,53 @@ -"""Sieve of Eratosthones.""" +# -*- coding: utf-8 -*- + +""" +Sieve of Eratosthones + +The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value. +Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif +Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes + +doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich) +Also thanks Dmitry (https://github.com/LizardWizzard) for finding the problem +""" + import math + def sieve(n): - """Sieve of Eratosthones.""" + """ + Returns a list with all prime numbers up to n. + + >>> sieve(50) + [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] + >>> sieve(25) + [2, 3, 5, 7, 11, 13, 17, 19, 23] + >>> sieve(10) + [2, 3, 5, 7] + >>> sieve(9) + [2, 3, 5, 7] + >>> sieve(2) + [2] + >>> sieve(1) + [] + """ + l = [True] * (n + 1) prime = [] start = 2 end = int(math.sqrt(n)) + while start <= end: + # If start is a prime if l[start] is True: prime.append(start) + + # Set multiples of start be False for i in range(start * start, n + 1, start): if l[i] is True: l[i] = False + start += 1 for j in range(end + 1, n + 1): diff --git a/other/finding_primes.py b/other/finding_primes.py deleted file mode 100644 index 035a14f4a335..000000000000 --- a/other/finding_primes.py +++ /dev/null @@ -1,21 +0,0 @@ -''' --The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value. --Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif -''' -from __future__ import print_function - - -from math import sqrt -def SOE(n): - check = round(sqrt(n)) #Need not check for multiples past the square root of n - - sieve = [False if i <2 else True for i in range(n+1)] #Set every index to False except for index 0 and 1 - - for i in range(2, check): - if(sieve[i] == True): #If i is a prime - for j in range(i+i, n+1, i): #Step through the list in increments of i(the multiples of the prime) - sieve[j] = False #Sets every multiple of i to False - - for i in range(n+1): - if(sieve[i] == True): - print(i, end=" ") From 3b63857b657ef9e552368d66fe536a0454c6307f Mon Sep 17 00:00:00 2001 From: Jasper <46252815+jasper256@users.noreply.github.com> Date: Fri, 26 Jul 2019 12:28:32 -0400 Subject: [PATCH 230/594] added automated doctest to decimal_to_hexadecimal.py in conversions (#1071) * added automated doctest to decimal_to_hexadecimal.py in conversions * improved error handling and added more test cases in decimal_to_hexadecimal.py * implemented 0x notation and simplified AssertionError * fixed negative notation and added comparison test against Python hex function --- conversions/decimal_to_hexadecimal.py | 59 ++++++++++++++++++++------- 1 file changed, 45 insertions(+), 14 deletions(-) diff --git a/conversions/decimal_to_hexadecimal.py b/conversions/decimal_to_hexadecimal.py index f91fac063adc..e6435f1ef570 100644 --- a/conversions/decimal_to_hexadecimal.py +++ b/conversions/decimal_to_hexadecimal.py @@ -21,23 +21,54 @@ } def decimal_to_hexadecimal(decimal): - """ take decimal value, return hexadecimal representation as str """ + """ + take integer decimal value, return hexadecimal representation as str beginning with 0x + >>> decimal_to_hexadecimal(5) + '0x5' + >>> decimal_to_hexadecimal(15) + '0xf' + >>> decimal_to_hexadecimal(37) + '0x25' + >>> decimal_to_hexadecimal(255) + '0xff' + >>> decimal_to_hexadecimal(4096) + '0x1000' + >>> decimal_to_hexadecimal(999098) + '0xf3eba' + >>> # negatives work too + >>> decimal_to_hexadecimal(-256) + '-0x100' + >>> # floats are acceptable if equivalent to an int + >>> decimal_to_hexadecimal(17.0) + '0x11' + >>> # other floats will error + >>> decimal_to_hexadecimal(16.16) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + AssertionError + >>> # strings will error as well + >>> decimal_to_hexadecimal('0xfffff') # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + AssertionError + >>> # results are the same when compared to Python's default hex function + >>> decimal_to_hexadecimal(-256) == hex(-256) + True + """ + assert type(decimal) in (int, float) and decimal == int(decimal) hexadecimal = '' + negative = False + if decimal < 0: + negative = True + decimal *= -1 while decimal > 0: - remainder = decimal % 16 - decimal -= remainder + decimal, remainder = divmod(decimal, 16) hexadecimal = values[remainder] + hexadecimal - decimal /= 16 + hexadecimal = '0x' + hexadecimal + if negative: + hexadecimal = '-' + hexadecimal return hexadecimal -def main(): - """ print test cases """ - print("5 in hexadecimal is", decimal_to_hexadecimal(5)) - print("15 in hexadecimal is", decimal_to_hexadecimal(15)) - print("37 in hexadecimal is", decimal_to_hexadecimal(37)) - print("255 in hexadecimal is", decimal_to_hexadecimal(255)) - print("4096 in hexadecimal is", decimal_to_hexadecimal(4096)) - print("999098 in hexadecimal is", decimal_to_hexadecimal(999098)) - if __name__ == '__main__': - main() \ No newline at end of file + import doctest + doctest.testmod() From a0817bdcf0c5ce17a7798fc0ede1821cd1bc983f Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 28 Jul 2019 17:27:23 +0200 Subject: [PATCH 231/594] Rewrite build_directory_md.py (#1076) * Rewrite build_directory_md.py * Regenerate DIRECTORY.md --- .travis.yml | 2 +- DIRECTORY.md | 23 +++++---- scripts/build_directory_md.py | 94 +++++++++++++---------------------- 3 files changed, 48 insertions(+), 71 deletions(-) mode change 100644 => 100755 scripts/build_directory_md.py diff --git a/.travis.yml b/.travis.yml index 6d432c660ddd..d09ef9de262d 100644 --- a/.travis.yml +++ b/.travis.yml @@ -19,5 +19,5 @@ script: --ignore=machine_learning/random_forest_classification/random_forest_classification.py --ignore=machine_learning/random_forest_regression/random_forest_regression.py after_success: - - python scripts/build_directory_md.py + - scripts/build_directory_md.py > DIRECTORY.md - cat DIRECTORY.md diff --git a/DIRECTORY.md b/DIRECTORY.md index fc06a8cd1548..d97791bb5dd3 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,5 +1,6 @@ ## Arithmetic Analysis * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) + * [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) @@ -42,7 +43,6 @@ * [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) - * Image Data ## Conversions * [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) @@ -62,9 +62,9 @@ * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) - * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Number Theory * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) + * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * Linked List @@ -87,6 +87,7 @@ * Trie * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing + * [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * Edge Detection * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters @@ -94,7 +95,6 @@ * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) - * Image Data ## Divide And Conquer * [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) @@ -167,24 +167,22 @@ * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/lib.py) * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/tests.py) ## Machine Learning + * [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb) * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) - * [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py) - * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) - * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * Random Forest Classification * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) - * [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/Social_Network_Ads.csv) * Random Forest Regression - * [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/Position_Salaries.csv) * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) + * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) + * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) ## Maths * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) @@ -203,11 +201,15 @@ * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) + * [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) + * [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) + * [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) + * [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) @@ -219,6 +221,8 @@ * [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) + * Tests + * [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) @@ -228,6 +232,7 @@ * [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other + * [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb) * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) @@ -235,7 +240,6 @@ * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) * [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py) * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) - * [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb) * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) @@ -247,7 +251,6 @@ * [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) - * [words](https://github.com/TheAlgorithms/Python/blob/master/other/words) ## Project Euler * Problem 01 * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py old mode 100644 new mode 100755 index 47192701880d..2ebd445b3667 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -1,71 +1,45 @@ -""" -This is a simple script that will scan through the current directory -and generate the corresponding DIRECTORY.md file, can also specify -files or folders to be ignored. -""" +#!/usr/bin/env python3 + import os +from typing import Iterator + +URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" + +def good_filepaths(top_dir: str = ".") -> Iterator[str]: + for dirpath, dirnames, filenames in os.walk(top_dir): + dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"] + for filename in filenames: + if filename == "__init__.py": + continue + if os.path.splitext(filename)[1] in (".py", ".ipynb"): + yield os.path.join(dirpath, filename).lstrip("./") -# Target URL (master) -URL = "https://github.com/TheAlgorithms/Python/blob/master/" +def md_prefix(i): + return f"{i * ' '}*" if i else "##" -def tree(d, ignores, ignores_ext): - return _markdown(d, ignores, ignores_ext, 0) - -def _markdown(parent, ignores, ignores_ext, depth): - out = "" - dirs, files = [], [] - for i in os.listdir(parent): - full = os.path.join(parent, i) - name, ext = os.path.splitext(i) - if i not in ignores and ext not in ignores_ext: - if os.path.isfile(full): - # generate list - pre = parent.replace("./", "").replace(" ", "%20") - # replace all spaces to safe URL - child = i.replace(" ", "%20") - files.append((pre, child, name)) - else: - dirs.append(i) - # Sort files - files.sort(key=lambda e: e[2].lower()) - for f in files: - pre, child, name = f - out += " " * depth + "* [" + name.replace("_", " ") + "](" + URL + pre + "/" + child + ")\n" - # Sort directories - dirs.sort() - for i in dirs: - full = os.path.join(parent, i) - i = i.replace("_", " ").title() - if depth == 0: - out += "## " + i + "\n" - else: - out += " " * depth + "* " + i + "\n" - out += _markdown(full, ignores, ignores_ext, depth+1) - return out +def print_path(old_path: str, new_path: str) -> str: + old_parts = old_path.split(os.sep) + for i, new_part in enumerate(new_path.split(os.sep)): + if i + 1 > len(old_parts) or old_parts[i] != new_part: + if new_part: + print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") + return new_path -# Specific files or folders with the given names will be ignored -ignores = [".vs", - ".gitignore", - ".git", - "scripts", - "__init__.py", - "requirements.txt", - ".github" -] -# Files with given entensions will be ignored -ignores_ext = [ - ".md", - ".ipynb", - ".png", - ".jpg", - ".yml" -] +def print_directory_md(top_dir: str = ".") -> None: + old_path = "" + for filepath in sorted(good_filepaths()): + filepath, filename = os.path.split(filepath) + if filepath != old_path: + old_path = print_path(old_path, filepath) + indent = (filepath.count(os.sep) + 1) if filepath else 0 + url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") + filename = os.path.splitext(filename.replace("_", " "))[0] + print(f"{md_prefix(indent)} [{filename}]({url})") if __name__ == "__main__": - with open("DIRECTORY.md", "w+") as f: - f.write(tree(".", ignores, ignores_ext)) + print_directory_md(".") From 7b2c9541691a8a1d6ac523287225bfc368146403 Mon Sep 17 00:00:00 2001 From: Abhijeeth S Date: Tue, 30 Jul 2019 12:17:54 +0530 Subject: [PATCH 232/594] LargestOfVeryLargeNumbers (#818) * LargestOfVeryLargeNumbers Finds the largest among two very large numbers of the form x^y. Numbers like 512^513 etc * Rename LargestOfVeryLargeNumbers to LargestOfVeryLargeNumbers.py * Input() statements have been indented. input() statements are indented under if __name__ == "__main__": * largest_of_very_large_numbers.py --- maths/largest_of_very_large_numbers.py | 35 ++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) create mode 100644 maths/largest_of_very_large_numbers.py diff --git a/maths/largest_of_very_large_numbers.py b/maths/largest_of_very_large_numbers.py new file mode 100644 index 000000000000..d2dc0af18126 --- /dev/null +++ b/maths/largest_of_very_large_numbers.py @@ -0,0 +1,35 @@ +# Author: Abhijeeth S + +import math + + +def res(x, y): + if 0 not in (x, y): + # We use the relation x^y = y*log10(x), where 10 is the base. + return y * math.log10(x) + else: + if x == 0: # 0 raised to any number is 0 + return 0 + elif y == 0: + return 1 # any number raised to 0 is 1 + + +if __name__ == "__main__": # Main function + # Read two numbers from input and typecast them to int using map function. + # Here x is the base and y is the power. + prompt = "Enter the base and the power separated by a comma: " + x1, y1 = map(int, input(prompt).split(",")) + x2, y2 = map(int, input(prompt).split(",")) + + # We find the log of each number, using the function res(), which takes two + # arguments. + res1 = res(x1, y1) + res2 = res(x2, y2) + + # We check for the largest number + if res1 > res2: + print("Largest number is", x1, "^", y1) + elif res2 > res1: + print("Largest number is", x2, "^", y2) + else: + print("Both are equal") From a9ecdb33ca04d44c979d8d9c1c99df312f4dd50c Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 30 Jul 2019 12:02:13 +0200 Subject: [PATCH 233/594] Validate Python filenames (#1086) --- .travis.yml | 1 + .../{NaiveBayes.ipynb => naive_bayes.ipynb} | 0 ...wastage_analysis_from_1961-2013_fao.ipynb} | 0 scripts/validate_filenames.py | 28 +++++++++++++++++++ 4 files changed, 29 insertions(+) rename machine_learning/{NaiveBayes.ipynb => naive_bayes.ipynb} (100%) rename other/{Food wastage analysis from 1961-2013 (FAO).ipynb => food_wastage_analysis_from_1961-2013_fao.ipynb} (100%) create mode 100755 scripts/validate_filenames.py diff --git a/.travis.yml b/.travis.yml index d09ef9de262d..c46d0d1d653a 100644 --- a/.travis.yml +++ b/.travis.yml @@ -8,6 +8,7 @@ before_script: - black --check . || true - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics script: + - scripts/validate_filenames.py # no uppercase and no spaces - mypy --ignore-missing-imports . - pytest . --doctest-modules --ignore=data_structures/stacks/balanced_parentheses.py diff --git a/machine_learning/NaiveBayes.ipynb b/machine_learning/naive_bayes.ipynb similarity index 100% rename from machine_learning/NaiveBayes.ipynb rename to machine_learning/naive_bayes.ipynb diff --git a/other/Food wastage analysis from 1961-2013 (FAO).ipynb b/other/food_wastage_analysis_from_1961-2013_fao.ipynb similarity index 100% rename from other/Food wastage analysis from 1961-2013 (FAO).ipynb rename to other/food_wastage_analysis_from_1961-2013_fao.ipynb diff --git a/scripts/validate_filenames.py b/scripts/validate_filenames.py new file mode 100755 index 000000000000..9e1f1503321b --- /dev/null +++ b/scripts/validate_filenames.py @@ -0,0 +1,28 @@ +#!/usr/bin/env python3 + +import os +from build_directory_md import good_filepaths + +filepaths = list(good_filepaths()) +assert filepaths, "good_filepaths() failed!" + + +upper_files = [file for file in filepaths if file != file.lower()] +if upper_files: + print(f"{len(upper_files)} files contain uppercase characters:") + print("\n".join(upper_files) + "\n") + +space_files = [file for file in filepaths if " " in file] +if space_files: + print(f"{len(space_files)} files contain space characters:") + print("\n".join(space_files) + "\n") + +nodir_files = [file for file in filepaths if os.sep not in file] +if nodir_files: + print(f"{len(nodir_files)} files are not in a directory:") + print("\n".join(nodir_files) + "\n") + +bad_files = len(upper_files + space_files + nodir_files) +if bad_files: + import sys + sys.exit(bad_files) From 861a8c36316a0bb10ee93f5560ce3313ef991399 Mon Sep 17 00:00:00 2001 From: obelisk0114 Date: Tue, 30 Jul 2019 09:00:24 -0700 Subject: [PATCH 234/594] Add Lucas_Lehmer_primality_test (#1050) * Add Lucas_Lehmer_primality_test * Add explanation for Lucas_Lehmer_primality_test * Update and rename Lucas_Lehmer_primality_test.py to lucas_lehmer_primality_test.py --- maths/lucas_lehmer_primality_test.py | 42 ++++++++++++++++++++++++++++ 1 file changed, 42 insertions(+) create mode 100644 maths/lucas_lehmer_primality_test.py diff --git a/maths/lucas_lehmer_primality_test.py b/maths/lucas_lehmer_primality_test.py new file mode 100644 index 000000000000..44e41ba58d93 --- /dev/null +++ b/maths/lucas_lehmer_primality_test.py @@ -0,0 +1,42 @@ +# -*- coding: utf-8 -*- +""" + In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. + https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test + + A Mersenne number is a number that is one less than a power of two. + That is M_p = 2^p - 1 + https://en.wikipedia.org/wiki/Mersenne_prime + + The Lucas–Lehmer test is the primality test used by the + Great Internet Mersenne Prime Search (GIMPS) to locate large primes. +""" + + +# Primality test 2^p - 1 +# Return true if 2^p - 1 is prime +def lucas_lehmer_test(p: int) -> bool: + """ + >>> lucas_lehmer_test(p=7) + True + + >>> lucas_lehmer_test(p=11) + False + + # M_11 = 2^11 - 1 = 2047 = 23 * 89 + """ + + if p < 2: + raise ValueError("p should not be less than 2!") + elif p == 2: + return True + + s = 4 + M = (1 << p) - 1 + for i in range(p - 2): + s = ((s * s) - 2) % M + return s == 0 + + +if __name__ == "__main__": + print(lucas_lehmer_test(7)) + print(lucas_lehmer_test(11)) From e58a5e68424df74a4c7b30df04162c775044405c Mon Sep 17 00:00:00 2001 From: FrogBattle <44649323+FrogBattle@users.noreply.github.com> Date: Tue, 30 Jul 2019 17:06:48 +0100 Subject: [PATCH 235/594] Update tim_sort.py (#972) * Update tim_sort.py Update tim_sort.py The previous algorithm was skipping numbers, according to issue #959, and my own tests. The version I am applying uses a while loop, which works correctly and is easier to compute, as there is no break statement. * Update tim_sort.py --- sorts/tim_sort.py | 47 ++++++++++++++++++++++++----------------------- 1 file changed, 24 insertions(+), 23 deletions(-) diff --git a/sorts/tim_sort.py b/sorts/tim_sort.py index b4032b91aec1..b95ff34cf384 100644 --- a/sorts/tim_sort.py +++ b/sorts/tim_sort.py @@ -1,10 +1,6 @@ -from __future__ import print_function def binary_search(lst, item, start, end): if start == end: - if lst[start] > item: - return start - else: - return start + 1 + return start if lst[start] > item else start + 1 if start > end: return start @@ -23,7 +19,7 @@ def insertion_sort(lst): for index in range(1, length): value = lst[index] pos = binary_search(lst, value, 0, index - 1) - lst = lst[:pos] + [value] + lst[pos:index] + lst[index+1:] + lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :] return lst @@ -42,30 +38,34 @@ def merge(left, right): def tim_sort(lst): - runs, sorted_runs = [], [] + """ + >>> tim_sort("Python") + ['P', 'h', 'n', 'o', 't', 'y'] + >>> tim_sort((1.1, 1, 0, -1, -1.1)) + [-1.1, -1, 0, 1, 1.1] + >>> tim_sort(list(reversed(list(range(7))))) + [0, 1, 2, 3, 4, 5, 6] + >>> tim_sort([3, 2, 1]) == insertion_sort([3, 2, 1]) + True + >>> tim_sort([3, 2, 1]) == sorted([3, 2, 1]) + True + """ length = len(lst) + runs, sorted_runs = [], [] new_run = [lst[0]] sorted_array = [] - - for i in range(1, length): - if i == length - 1: - new_run.append(lst[i]) - runs.append(new_run) - break - + i = 1 + while i < length: if lst[i] < lst[i - 1]: - if not new_run: - runs.append([lst[i - 1]]) - new_run.append(lst[i]) - else: - runs.append(new_run) - new_run = [] + runs.append(new_run) + new_run = [lst[i]] else: new_run.append(lst[i]) + i += 1 + runs.append(new_run) for run in runs: sorted_runs.append(insertion_sort(run)) - for run in sorted_runs: sorted_array = merge(sorted_array, run) @@ -74,9 +74,10 @@ def tim_sort(lst): def main(): - lst = [5,9,10,3,-4,5,178,92,46,-18,0,7] + lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7] sorted_lst = tim_sort(lst) print(sorted_lst) -if __name__ == '__main__': + +if __name__ == "__main__": main() From 4a5589f4fcb71fc6101132bad44981693ef65d2c Mon Sep 17 00:00:00 2001 From: vinayak Date: Wed, 31 Jul 2019 16:50:32 +0530 Subject: [PATCH 236/594] project_euler/problem_10 (#1089) * project_euler/problem_10 * update project_euler/problem_10 * update project_euler/problem_10 * Negative user tests added. --- project_euler/problem_10/sol3.py | 58 ++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) create mode 100644 project_euler/problem_10/sol3.py diff --git a/project_euler/problem_10/sol3.py b/project_euler/problem_10/sol3.py new file mode 100644 index 000000000000..e5bc0731d8ab --- /dev/null +++ b/project_euler/problem_10/sol3.py @@ -0,0 +1,58 @@ +""" +https://projecteuler.net/problem=10 + +Problem Statement: +The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. + +Find the sum of all the primes below two million using Sieve_of_Eratosthenes: + +The sieve of Eratosthenes is one of the most efficient ways to find all primes +smaller than n when n is smaller than 10 million. Only for positive numbers. +""" + + +def prime_sum(n: int) -> int: + """ Returns the sum of all the primes below n. + + >>> prime_sum(2_000_000) + 142913828922 + >>> prime_sum(1_000) + 76127 + >>> prime_sum(5_000) + 1548136 + >>> prime_sum(10_000) + 5736396 + >>> prime_sum(7) + 10 + >>> prime_sum(7.1) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + TypeError: 'float' object cannot be interpreted as an integer + >>> prime_sum(-7) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + IndexError: list assignment index out of range + >>> prime_sum("seven") # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + TypeError: can only concatenate str (not "int") to str + """ + list_ = [0 for i in range(n + 1)] + list_[0] = 1 + list_[1] = 1 + + for i in range(2, int(n ** 0.5) + 1): + if list_[i] == 0: + for j in range(i * i, n + 1, i): + list_[j] = 1 + s = 0 + for i in range(n): + if list_[i] == 0: + s += i + return s + + +if __name__ == "__main__": + # import doctest + # doctest.testmod() + print(prime_sum(int(input().strip()))) From 7b267e5e4f8ccb72dd58fcf0057642fd62a36bdf Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 31 Jul 2019 17:14:35 +0200 Subject: [PATCH 237/594] Fix data_structures to pass our Travis CI pytests (#1088) * Fix data_structures to pass pytests * Restore data_structures/stacks/__init__.py --- .travis.yml | 2 -- data_structures/stacks/balanced_parentheses.py | 3 ++- data_structures/stacks/infix_to_postfix_conversion.py | 2 +- 3 files changed, 3 insertions(+), 4 deletions(-) diff --git a/.travis.yml b/.travis.yml index c46d0d1d653a..eab55af63492 100644 --- a/.travis.yml +++ b/.travis.yml @@ -11,8 +11,6 @@ script: - scripts/validate_filenames.py # no uppercase and no spaces - mypy --ignore-missing-imports . - pytest . --doctest-modules - --ignore=data_structures/stacks/balanced_parentheses.py - --ignore=data_structures/stacks/infix_to_postfix_conversion.py --ignore=file_transfer_protocol/ftp_send_receive.py --ignore=file_transfer_protocol/ftp_client_server.py --ignore=machine_learning/linear_regression.py diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index 3229d19c8621..36a4e07a97a3 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -1,6 +1,7 @@ from __future__ import print_function from __future__ import absolute_import -from stack import Stack + +from .stack import Stack __author__ = 'Omkar Pathak' diff --git a/data_structures/stacks/infix_to_postfix_conversion.py b/data_structures/stacks/infix_to_postfix_conversion.py index e71dccf1f45c..9376b55b8b23 100644 --- a/data_structures/stacks/infix_to_postfix_conversion.py +++ b/data_structures/stacks/infix_to_postfix_conversion.py @@ -2,7 +2,7 @@ from __future__ import absolute_import import string -from stack import Stack +from .stack import Stack __author__ = 'Omkar Pathak' From 9c0cbe33076a570a3c02825b7c6d9866a760e777 Mon Sep 17 00:00:00 2001 From: Sanders Lin <45224617+SandersLin@users.noreply.github.com> Date: Thu, 1 Aug 2019 23:54:03 +0800 Subject: [PATCH 238/594] Create collatz_sequence.py (#639) * Create collatz_sequence.py * Update and rename collatz_sequence.py to maths/collatz_sequence.py * doctest --- maths/collatz_sequence.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 maths/collatz_sequence.py diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py new file mode 100644 index 000000000000..9f88453d518b --- /dev/null +++ b/maths/collatz_sequence.py @@ -0,0 +1,28 @@ +def collatz_sequence(n): + """ + Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows: + if the previous term is even, the next term is one half the previous term. + If the previous term is odd, the next term is 3 times the previous term plus 1. + The conjecture states the sequence will always reach 1 regaardess of starting n. + Example: + >>> collatz_sequence(43) + [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] + """ + sequence = [n] + while n != 1: + if n % 2 == 0:# even + n //= 2 + else: + n = 3*n +1 + sequence.append(n) + return sequence + + +def main(): + n = 43 + sequence = collatz_sequence(n) + print(sequence) + print("collatz sequence from %d took %d steps."%(n,len(sequence))) + +if __name__ == '__main__': + main() From e3131419048010d9d67441387da4e73755364cf2 Mon Sep 17 00:00:00 2001 From: Syed Waleed Hyder Date: Sat, 3 Aug 2019 20:00:10 +0200 Subject: [PATCH 239/594] bin(num). convert ZERO and negative decimal numbers to binary. (#1093) * bin(num) can convert ZERO and negative decimal numbers to binary. Consistent with built-in python bin(x) function. * bin(num) can convert ZERO and negative decimal numbers to binary. Consistent with built-in python bin(x) function. * Added doctests. bin(num) can convert ZERO and negative decimal numbers to binary. Consistent with built-in python bin(x) function. * Added doctests. bin(num) can convert ZERO and negative decimal numbers to binary. Consistent with built-in python bin(x) function. * Added doctests. bin(num) can convert ZERO and negative decimal numbers to binary. Consistent with built-in python bin(x) function. * doctests still failing. * Doctests added. --- conversions/decimal_to_binary.py | 59 +++++++++++++++++++++++++------- 1 file changed, 46 insertions(+), 13 deletions(-) diff --git a/conversions/decimal_to_binary.py b/conversions/decimal_to_binary.py index 43ceee61a388..934cf0dfb363 100644 --- a/conversions/decimal_to_binary.py +++ b/conversions/decimal_to_binary.py @@ -2,24 +2,57 @@ def decimal_to_binary(num): - """Convert a Decimal Number to a Binary Number.""" + + """ + Convert a Integer Decimal Number to a Binary Number as str. + >>> decimal_to_binary(0) + '0b0' + >>> decimal_to_binary(2) + '0b10' + >>> decimal_to_binary(7) + '0b111' + >>> decimal_to_binary(35) + '0b100011' + >>> # negatives work too + >>> decimal_to_binary(-2) + '-0b10' + >>> # other floats will error + >>> decimal_to_binary(16.16) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + TypeError: 'float' object cannot be interpreted as an integer + >>> # strings will error as well + >>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + TypeError: 'str' object cannot be interpreted as an integer + """ + + if type(num) == float: + raise TypeError("'float' object cannot be interpreted as an integer") + if type(num) == str: + raise TypeError("'str' object cannot be interpreted as an integer") + + if num == 0: + return "0b0" + + negative = False + + if num < 0: + negative = True + num = -num + binary = [] while num > 0: binary.insert(0, num % 2) num >>= 1 - return "".join(str(e) for e in binary) + if negative: + return "-0b" + "".join(str(e) for e in binary) -def main(): - """Print binary equivelents of decimal numbers.""" - print("\n2 in binary is:") - print(decimal_to_binary(2)) # = 10 - print("\n7 in binary is:") - print(decimal_to_binary(7)) # = 111 - print("\n35 in binary is:") - print(decimal_to_binary(35)) # = 100011 - print("\n") + return "0b" + "".join(str(e) for e in binary) -if __name__ == '__main__': - main() +if __name__ == "__main__": + import doctest + doctest.testmod() From bdbe6825684d61131e0caee3a7361bd581c2442b Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" Date: Sun, 4 Aug 2019 23:22:28 -0400 Subject: [PATCH 240/594] Zeller's Congruence Algorithm (#1095) * doctest updates * remove unused math import * cleanup (suggestions) * cleanup - Dict fix (TravisCI error) --- maths/zellers_congruence.py | 157 ++++++++++++++++++++++++++++++++++++ 1 file changed, 157 insertions(+) create mode 100644 maths/zellers_congruence.py diff --git a/maths/zellers_congruence.py b/maths/zellers_congruence.py new file mode 100644 index 000000000000..e04425eec903 --- /dev/null +++ b/maths/zellers_congruence.py @@ -0,0 +1,157 @@ +from __future__ import annotations +import datetime +import argparse + + +def zeller(date_input: str) -> str: + + """ + Zellers Congruence Algorithm + Find the day of the week for nearly any Gregorian or Julian calendar date + + >>> zeller('01-31-2010') + 'Your date 01-31-2010, is a Sunday!' + + Validate out of range month + >>> zeller('13-31-2010') + Traceback (most recent call last): + ... + ValueError: Month must be between 1 - 12 + >>> zeller('.2-31-2010') + Traceback (most recent call last): + ... + ValueError: invalid literal for int() with base 10: '.2' + + Validate out of range date: + >>> zeller('01-33-2010') + Traceback (most recent call last): + ... + ValueError: Date must be between 1 - 31 + >>> zeller('01-.4-2010') + Traceback (most recent call last): + ... + ValueError: invalid literal for int() with base 10: '.4' + + Validate second seperator: + >>> zeller('01-31*2010') + Traceback (most recent call last): + ... + ValueError: Date seperator must be '-' or '/' + + Validate first seperator: + >>> zeller('01^31-2010') + Traceback (most recent call last): + ... + ValueError: Date seperator must be '-' or '/' + + Validate out of range year: + >>> zeller('01-31-8999') + Traceback (most recent call last): + ... + ValueError: Year out of range. There has to be some sort of limit...right? + + Test null input: + >>> zeller() + Traceback (most recent call last): + ... + TypeError: zeller() missing 1 required positional argument: 'date_input' + + Test length fo date_input: + >>> zeller('') + Traceback (most recent call last): + ... + ValueError: Must be 10 characters long + >>> zeller('01-31-19082939') + Traceback (most recent call last): + ... + ValueError: Must be 10 characters long +""" + + # Days of the week for response + days = { + '0': 'Sunday', + '1': 'Monday', + '2': 'Tuesday', + '3': 'Wednesday', + '4': 'Thursday', + '5': 'Friday', + '6': 'Saturday' + } + + convert_datetime_days = { + 0:1, + 1:2, + 2:3, + 3:4, + 4:5, + 5:6, + 6:0 + } + + # Validate + if not 0 < len(date_input) < 11: + raise ValueError("Must be 10 characters long") + + # Get month + m: int = int(date_input[0] + date_input[1]) + # Validate + if not 0 < m < 13: + raise ValueError("Month must be between 1 - 12") + + sep_1:str = date_input[2] + # Validate + if sep_1 not in ["-","/"]: + raise ValueError("Date seperator must be '-' or '/'") + + # Get day + d: int = int(date_input[3] + date_input[4]) + # Validate + if not 0 < d < 32: + raise ValueError("Date must be between 1 - 31") + + # Get second seperator + sep_2: str = date_input[5] + # Validate + if sep_2 not in ["-","/"]: + raise ValueError("Date seperator must be '-' or '/'") + + # Get year + y: int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) + # Arbitrary year range + if not 45 < y < 8500: + raise ValueError("Year out of range. There has to be some sort of limit...right?") + + # Get datetime obj for validation + dt_ck = datetime.date(int(y), int(m), int(d)) + + # Start math + if m <= 2: + y = y - 1 + m = m + 12 + # maths var + c: int = int(str(y)[:2]) + k: int = int(str(y)[2:]) + t: int = int(2.6*m - 5.39) + u: int = int(c / 4) + v: int = int(k / 4) + x: int = int(d + k) + z: int = int(t + u + v + x) + w: int = int(z - (2 * c)) + f: int = round(w%7) + # End math + + # Validate math + if f != convert_datetime_days[dt_ck.weekday()]: + raise AssertionError("The date was evaluated incorrectly. Contact developer.") + + # Response + response: str = f"Your date {date_input}, is a {days[str(f)]}!" + return response + +if __name__ == '__main__': + import doctest + doctest.testmod() + parser = argparse.ArgumentParser(description='Find out what day of the week nearly any date is or was. Enter date as a string in the mm-dd-yyyy or mm/dd/yyyy format') + parser.add_argument('date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)') + args = parser.parse_args() + zeller(args.date_input) From 87a789af515333c35aed1060c7a2b5c7d287123c Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" Date: Mon, 5 Aug 2019 01:05:36 -0400 Subject: [PATCH 241/594] Boolean algebra pytests (#1097) * Added Zeller's congruence algorithm * Update args help * add a few doctests * remove old file --- boolean_algebra/quine_mc_cluskey.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py index db4d153cbfd7..94319ca45482 100644 --- a/boolean_algebra/quine_mc_cluskey.py +++ b/boolean_algebra/quine_mc_cluskey.py @@ -1,3 +1,18 @@ +""" + doctests + + >>> decimal_to_binary(3,[1.5]) + ['0.00.01.5'] + + >>> check(['0.00.01.5']) + ['0.00.01.5'] + + >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) + [[1]] + + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] +""" def compare_string(string1, string2): l1 = list(string1); l2 = list(string2) count = 0 @@ -113,4 +128,6 @@ def main(): print(essential_prime_implicants) if __name__ == '__main__': + import doctest + doctest.testmod() main() From 4437439363c8aa3347dfcd817afe7c69b3d7f59e Mon Sep 17 00:00:00 2001 From: Hector S Date: Mon, 5 Aug 2019 01:07:52 -0400 Subject: [PATCH 242/594] Added Unicode test to strings/rabin_karp.py (#1096) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py * Unicode test on strings/rabin_karp.py per #1067 --- strings/rabin_karp.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/strings/rabin_karp.py b/strings/rabin_karp.py index 7c36f7659e24..1fb145ec97fa 100644 --- a/strings/rabin_karp.py +++ b/strings/rabin_karp.py @@ -73,6 +73,13 @@ def test_rabin_karp(): pattern = "abcdabcy" text = "abcxabcdabxabcdabcdabcy" assert rabin_karp(pattern, text) + + # Test 5) + pattern = "Lü" + text = "Lüsai" + assert rabin_karp(pattern, text) + pattern = "Lue" + assert not rabin_karp(pattern, text) print("Success.") From 47bc34ac268d1b0102c72d9cf5f2b7cb52db6a5e Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Tue, 6 Aug 2019 05:06:15 +0500 Subject: [PATCH 243/594] Added pytests to sha1.py (#1098) --- 16L' | 0 Q' | 0 hashes/sha1.py | 10 ++++++++-- 3 files changed, 8 insertions(+), 2 deletions(-) create mode 100644 16L' create mode 100644 Q' diff --git a/16L' b/16L' new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/Q' b/Q' new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/hashes/sha1.py b/hashes/sha1.py index 4c78ad3a89e5..511ea6363733 100644 --- a/hashes/sha1.py +++ b/hashes/sha1.py @@ -2,7 +2,7 @@ Demonstrates implementation of SHA1 Hash function in a Python class and gives utilities to find hash of string or hash of text from a file. Usage: python sha1.py --string "Hello World!!" - pyhton sha1.py --file "hello_world.txt" + python sha1.py --file "hello_world.txt" When run without any arguments, it prints the hash of the string "Hello World!! Welcome to Cryptography" Also contains a Test class to verify that the generated Hash is same as that returned by the hashlib library @@ -32,6 +32,8 @@ class SHA1Hash: """ Class to contain the entire pipeline for SHA1 Hashing Algorithm + >>> SHA1Hash(bytes('Allan', 'utf-8')).final_hash() + '872af2d8ac3d8695387e7c804bf0e02c18df9e6e' """ def __init__(self, data): """ @@ -47,6 +49,8 @@ def __init__(self, data): def rotate(n, b): """ Static method to be used inside other methods. Left rotates n by b. + >>> SHA1Hash('').rotate(12,2) + 48 """ return ((n << b) | (n >> (32 - b))) & 0xffffffff @@ -68,7 +72,7 @@ def split_blocks(self): def expand_block(self, block): """ Takes a bytestring-block of length 64, unpacks it to a list of integers and returns a - list of 80 integers pafter some bit operations + list of 80 integers after some bit operations """ w = list(struct.unpack('>16L', block)) + [0] * 64 for i in range(16, 80): @@ -146,3 +150,5 @@ def main(): if __name__ == '__main__': main() + import doctest + doctest.testmod() \ No newline at end of file From 22d2453773522b677052d074ca0b8f2315309a01 Mon Sep 17 00:00:00 2001 From: AugustofCravo <49079453+AugustofCravo@users.noreply.github.com> Date: Mon, 5 Aug 2019 21:22:34 -0300 Subject: [PATCH 244/594] Create Quadratic Equations(Complexes Numbers) (#941) * Create Quadratic Equations(Complexes Numbers) Created function that solves quadratic equations treating the cases with complexes numbers. Giving an answer with the imaginary unit "i". * Update Quadratic Equations(Complexes Numbers) Since there was no response from the owner of this PR, I made this little change which I hope will solve the issue! --- maths/Quadratic Equations(Complexes Numbers) | 40 ++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 maths/Quadratic Equations(Complexes Numbers) diff --git a/maths/Quadratic Equations(Complexes Numbers) b/maths/Quadratic Equations(Complexes Numbers) new file mode 100644 index 000000000000..8e8e78fec68f --- /dev/null +++ b/maths/Quadratic Equations(Complexes Numbers) @@ -0,0 +1,40 @@ +from __future__ import print_function +import math + +def QuadraticEquation(a,b,c): + """ + Prints the solutions for a quadratic equation, given the numerical coefficients a, b and c, + for a*x*x + b*x + c. + Ex.: a = 1, b = 3, c = -4 + Solution1 = 1 and Solution2 = -4 + """ + Delta = b*b - 4*a*c + if a != 0: + if Delta >= 0: + Solution1 = (-b + math.sqrt(Delta))/(2*a) + Solution2 = (-b - math.sqrt(Delta))/(2*a) + print ("The equation solutions are: ", Solution1," and ", Solution2) + else: + """ + Treats cases of Complexes Solutions(i = imaginary unit) + Ex.: a = 5, b = 2, c = 1 + Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 + """ + if b > 0: + print("The equation solutions are: (-",b,"+",math.sqrt(-Delta),"*i)/2 and (-",b,"+",math.sqrt(-Delta),"*i)/", 2*a) + if b < 0: + print("The equation solutions are: (",b,"+",math.sqrt(-Delta),"*i)/2 and (",b,"+",math.sqrt(-Delta),"*i/",2*a) + if b == 0: + print("The equation solutions are: (",math.sqrt(-Delta),"*i)/2 and ",math.sqrt(-Delta),"*i)/", 2*a) + else: + print("Error. Please, coeficient 'a' must not be zero for quadratic equations.") +def main(): + a = 5 + b = 6 + c = 1 + + QuadraticEquation(a,b,c) # The equation solutions are: -0.2 and -1.0 + + +if __name__ == '__main__': + main() From 58126406fd345c4f0dda6b7d8d5beaa1b9360810 Mon Sep 17 00:00:00 2001 From: rsun0013 <50036197+rsun0013@users.noreply.github.com> Date: Tue, 6 Aug 2019 19:17:17 +1000 Subject: [PATCH 245/594] pytests for closest_pair_of_points.py (#1099) added some tests to the file --- divide_and_conquer/closest_pair_of_points.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/divide_and_conquer/closest_pair_of_points.py b/divide_and_conquer/closest_pair_of_points.py index ee06d27063df..b6f63396410c 100644 --- a/divide_and_conquer/closest_pair_of_points.py +++ b/divide_and_conquer/closest_pair_of_points.py @@ -19,6 +19,19 @@ Time complexity: O(n * log n) """ +""" + doctests + >>> euclidean_distance_sqr([1,2],[2,4]) + 5 + >>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5) + 5 + >>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5) + 85 + >>> points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] + >>> print("Distance:", closest_pair_of_points(points, len(points))) + "Distance: 1.4142135623730951" +""" + def euclidean_distance_sqr(point1, point2): return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 From 6654e1ec7de8c4ca6ee604799645b4b210856190 Mon Sep 17 00:00:00 2001 From: Harshil Date: Tue, 6 Aug 2019 11:41:23 +0200 Subject: [PATCH 246/594] remove from __future__, propre filename (#1102) --- ...Complexes Numbers) => quadratic_equations_complex_numbers.py} | 1 - 1 file changed, 1 deletion(-) rename maths/{Quadratic Equations(Complexes Numbers) => quadratic_equations_complex_numbers.py} (97%) diff --git a/maths/Quadratic Equations(Complexes Numbers) b/maths/quadratic_equations_complex_numbers.py similarity index 97% rename from maths/Quadratic Equations(Complexes Numbers) rename to maths/quadratic_equations_complex_numbers.py index 8e8e78fec68f..f05b938fefe9 100644 --- a/maths/Quadratic Equations(Complexes Numbers) +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math def QuadraticEquation(a,b,c): From 89acf5d01733754b1403df2313a0a6ef17b4b051 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 6 Aug 2019 12:14:23 +0200 Subject: [PATCH 247/594] print() is a function just like every other function (#1101) * print() is a function just like every other function --- arithmetic_analysis/newton_raphson_method.py | 16 ++-- ciphers/caesar_cipher.py | 6 +- ciphers/morse_code_implementation.py | 4 +- ciphers/trafid_cipher.py | 14 +-- ciphers/xor_cipher.py | 18 ++-- data_structures/binary_tree/fenwick_tree.py | 12 +-- .../binary_tree/lazy_segment_tree.py | 18 ++-- data_structures/binary_tree/segment_tree.py | 20 ++-- data_structures/queue/double_ended_queue.py | 42 ++++----- data_structures/stacks/stock_span_problem.py | 92 +++++++++---------- machine_learning/logistic_regression.py | 10 +- maths/quadratic_equations_complex_numbers.py | 8 +- other/fischer_yates_shuffle.py | 6 +- 13 files changed, 133 insertions(+), 133 deletions(-) diff --git a/arithmetic_analysis/newton_raphson_method.py b/arithmetic_analysis/newton_raphson_method.py index 569f96476afc..bb6fdd2193ec 100644 --- a/arithmetic_analysis/newton_raphson_method.py +++ b/arithmetic_analysis/newton_raphson_method.py @@ -8,25 +8,25 @@ def NewtonRaphson(func, a): ''' Finds root from the point 'a' onwards by Newton-Raphson method ''' while True: c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) ) - + a = c # This number dictates the accuracy of the answer if abs(eval(func)) < 10**-15: return c - + # Let's Execute if __name__ == '__main__': # Find root of trigonometric function # Find value of pi - print ('sin(x) = 0', NewtonRaphson('sin(x)', 2)) - + print('sin(x) = 0', NewtonRaphson('sin(x)', 2)) + # Find root of polynomial - print ('x**2 - 5*x +2 = 0', NewtonRaphson('x**2 - 5*x +2', 0.4)) - + print('x**2 - 5*x +2 = 0', NewtonRaphson('x**2 - 5*x +2', 0.4)) + # Find Square Root of 5 - print ('x**2 - 5 = 0', NewtonRaphson('x**2 - 5', 0.1)) + print('x**2 - 5 = 0', NewtonRaphson('x**2 - 5', 0.1)) # Exponential Roots - print ('exp(x) - 1 = 0', NewtonRaphson('exp(x) - 1', 0)) + print('exp(x) - 1 = 0', NewtonRaphson('exp(x) - 1', 0)) diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 872b5d8195c1..95d65d404266 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -41,12 +41,12 @@ def main(): print("4.Quit") choice = input("What would you like to do?: ") if choice not in ['1', '2', '3', '4']: - print ("Invalid choice, please enter a valid choice") + print("Invalid choice, please enter a valid choice") elif choice == '1': strng = input("Please enter the string to be encrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1, 95): - print (encrypt(strng.lower(), key)) + print(encrypt(strng.lower(), key)) elif choice == '2': strng = input("Please enter the string to be decrypted: ") key = int(input("Please enter off-set between 1-94: ")) @@ -57,7 +57,7 @@ def main(): brute_force(strng) main() elif choice == '4': - print ("Goodbye.") + print("Goodbye.") break diff --git a/ciphers/morse_code_implementation.py b/ciphers/morse_code_implementation.py index 7b2d0a94b24b..5d0e7b2779b1 100644 --- a/ciphers/morse_code_implementation.py +++ b/ciphers/morse_code_implementation.py @@ -71,11 +71,11 @@ def decrypt(message): def main(): message = "Morse code here" result = encrypt(message.upper()) - print (result) + print(result) message = result result = decrypt(message) - print (result) + print(result) if __name__ == '__main__': diff --git a/ciphers/trafid_cipher.py b/ciphers/trafid_cipher.py index 0453272f26a0..53f4d288bfe2 100644 --- a/ciphers/trafid_cipher.py +++ b/ciphers/trafid_cipher.py @@ -3,7 +3,7 @@ def __encryptPart(messagePart, character2Number): one, two, three = "", "", "" tmp = [] - + for character in messagePart: tmp.append(character2Number[character]) @@ -11,7 +11,7 @@ def __encryptPart(messagePart, character2Number): one += each[0] two += each[1] three += each[2] - + return one+two+three def __decryptPart(messagePart, character2Number): @@ -25,7 +25,7 @@ def __decryptPart(messagePart, character2Number): tmp += digit if len(tmp) == len(messagePart): result.append(tmp) - tmp = "" + tmp = "" return result[0], result[1], result[2] @@ -48,7 +48,7 @@ def __prepare(message, alphabet): for letter, number in zip(alphabet, numbers): character2Number[letter] = number number2Character[number] = letter - + return message, alphabet, character2Number, number2Character def encryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): @@ -57,7 +57,7 @@ def encryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): for i in range(0, len(message)+1, period): encrypted_numeric += __encryptPart(message[i:i+period], character2Number) - + for i in range(0, len(encrypted_numeric), 3): encrypted += number2Character[encrypted_numeric[i:i+3]] @@ -70,7 +70,7 @@ def decryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): for i in range(0, len(message)+1, period): a,b,c = __decryptPart(message[i:i+period], character2Number) - + for j in range(0, len(a)): decrypted_numeric.append(a[j]+b[j]+c[j]) @@ -83,4 +83,4 @@ def decryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg,"EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") - print ("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted)) \ No newline at end of file + print("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted)) diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py index 727fac3b0703..8bb94212c15a 100644 --- a/ciphers/xor_cipher.py +++ b/ciphers/xor_cipher.py @@ -122,7 +122,7 @@ def decrypt_string(self,content,key = 0): # This will be returned ans = "" - + for ch in content: ans += chr(ord(ch) ^ key) @@ -188,22 +188,22 @@ def decrypt_file(self,file, key): # key = 67 # # test enrcypt -# print crypt.encrypt("hallo welt",key) +# print(crypt.encrypt("hallo welt",key)) # # test decrypt -# print crypt.decrypt(crypt.encrypt("hallo welt",key), key) +# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string -# print crypt.encrypt_string("hallo welt",key) +# print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string -# print crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key) +# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): -# print "encrypt successful" +# print("encrypt successful") # else: -# print "encrypt unsuccessful" +# print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): -# print "decrypt successful" +# print("decrypt successful") # else: -# print "decrypt unsuccessful" \ No newline at end of file +# print("decrypt unsuccessful") diff --git a/data_structures/binary_tree/fenwick_tree.py b/data_structures/binary_tree/fenwick_tree.py index f429161c8c36..ef984082d9e8 100644 --- a/data_structures/binary_tree/fenwick_tree.py +++ b/data_structures/binary_tree/fenwick_tree.py @@ -16,14 +16,14 @@ def query(self, i): # query cumulative data from index 0 to i in O(lg N) ret += self.ft[i] i -= i & (-i) return ret - + if __name__ == '__main__': f = FenwickTree(100) f.update(1,20) f.update(4,4) - print (f.query(1)) - print (f.query(3)) - print (f.query(4)) + print(f.query(1)) + print(f.query(3)) + print(f.query(4)) f.update(2,-5) - print (f.query(1)) - print (f.query(3)) + print(f.query(1)) + print(f.query(3)) diff --git a/data_structures/binary_tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py index 9b14b24e81fa..215399976dd3 100644 --- a/data_structures/binary_tree/lazy_segment_tree.py +++ b/data_structures/binary_tree/lazy_segment_tree.py @@ -2,13 +2,13 @@ import math class SegmentTree: - + def __init__(self, N): self.N = N self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update self.flag = [0 for i in range(0,4*N)] # flag for lazy update - + def left(self, idx): return idx*2 @@ -34,7 +34,7 @@ def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update va self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True - + if r < a or l > b: return True if l >= a and r <= b : @@ -74,18 +74,18 @@ def showData(self): showList = [] for i in range(1,N+1): showList += [self.query(1, 1, self.N, i, i)] - print (showList) - + print(showList) + if __name__ == '__main__': A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] N = 15 segt = SegmentTree(N) segt.build(1,1,N,A) - print (segt.query(1,1,N,4,6)) - print (segt.query(1,1,N,7,11)) - print (segt.query(1,1,N,7,12)) + print(segt.query(1,1,N,4,6)) + print(segt.query(1,1,N,7,11)) + print(segt.query(1,1,N,7,12)) segt.update(1,1,N,1,3,111) - print (segt.query(1,1,N,1,15)) + print(segt.query(1,1,N,1,15)) segt.update(1,1,N,7,8,235) segt.showData() diff --git a/data_structures/binary_tree/segment_tree.py b/data_structures/binary_tree/segment_tree.py index 001bf999f391..7e61198ca59c 100644 --- a/data_structures/binary_tree/segment_tree.py +++ b/data_structures/binary_tree/segment_tree.py @@ -2,12 +2,12 @@ import math class SegmentTree: - + def __init__(self, A): self.N = len(A) self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N self.build(1, 0, self.N - 1) - + def left(self, idx): return idx * 2 @@ -22,10 +22,10 @@ def build(self, idx, l, r): self.build(self.left(idx), l, mid) self.build(self.right(idx), mid + 1, r) self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) - + def update(self, a, b, val): return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val) - + def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b] if r < a or l > b: return True @@ -55,17 +55,17 @@ def showData(self): showList = [] for i in range(1,N+1): showList += [self.query(i, i)] - print (showList) - + print(showList) + if __name__ == '__main__': A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] N = 15 segt = SegmentTree(A) - print (segt.query(4, 6)) - print (segt.query(7, 11)) - print (segt.query(7, 12)) + print(segt.query(4, 6)) + print(segt.query(7, 11)) + print(segt.query(7, 12)) segt.update(1,3,111) - print (segt.query(1, 15)) + print(segt.query(1, 15)) segt.update(7,8,235) segt.showData() diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py index fdee64eb6ae0..838bf2f4bc36 100644 --- a/data_structures/queue/double_ended_queue.py +++ b/data_structures/queue/double_ended_queue.py @@ -1,40 +1,40 @@ from __future__ import print_function -# Python code to demonstrate working of +# Python code to demonstrate working of # extend(), extendleft(), rotate(), reverse() - + # importing "collections" for deque operations import collections - + # initializing deque de = collections.deque([1, 2, 3,]) - -# using extend() to add numbers to right end + +# using extend() to add numbers to right end # adds 4,5,6 to right end de.extend([4,5,6]) - + # printing modified deque -print ("The deque after extending deque at end is : ") -print (de) - -# using extendleft() to add numbers to left end +print("The deque after extending deque at end is : ") +print(de) + +# using extendleft() to add numbers to left end # adds 7,8,9 to right end de.extendleft([7,8,9]) - + # printing modified deque -print ("The deque after extending deque at beginning is : ") -print (de) - +print("The deque after extending deque at beginning is : ") +print(de) + # using rotate() to rotate the deque # rotates by 3 to left de.rotate(-3) - + # printing modified deque -print ("The deque after rotating deque is : ") -print (de) - +print("The deque after rotating deque is : ") +print(de) + # using reverse() to reverse the deque de.reverse() - + # printing modified deque -print ("The deque after reversing deque is : ") -print (de) +print("The deque after reversing deque is : ") +print(de) diff --git a/data_structures/stacks/stock_span_problem.py b/data_structures/stacks/stock_span_problem.py index 9628864edd10..e9afebc193b6 100644 --- a/data_structures/stacks/stock_span_problem.py +++ b/data_structures/stacks/stock_span_problem.py @@ -1,52 +1,52 @@ ''' -The stock span problem is a financial problem where we have a series of n daily +The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate span of stock's price for all n days. -The span Si of the stock's price on a given day i is defined as the maximum -number of consecutive days just before the given day, for which the price of the stock +The span Si of the stock's price on a given day i is defined as the maximum +number of consecutive days just before the given day, for which the price of the stock on the current day is less than or equal to its price on the given day. ''' from __future__ import print_function -def calculateSpan(price, S): - - n = len(price) - # Create a stack and push index of fist element to it - st = [] - st.append(0) - - # Span value of first element is always 1 - S[0] = 1 - - # Calculate span values for rest of the elements - for i in range(1, n): - - # Pop elements from stack whlie stack is not - # empty and top of stack is smaller than price[i] - while( len(st) > 0 and price[st[0]] <= price[i]): - st.pop() - - # If stack becomes empty, then price[i] is greater - # than all elements on left of it, i.e. price[0], - # price[1], ..price[i-1]. Else the price[i] is - # greater than elements after top of stack - S[i] = i+1 if len(st) <= 0 else (i - st[0]) - - # Push this element to stack - st.append(i) - - -# A utility function to print elements of array -def printArray(arr, n): - for i in range(0,n): - print (arr[i],end =" ") - - -# Driver program to test above function -price = [10, 4, 5, 90, 120, 80] -S = [0 for i in range(len(price)+1)] - -# Fill the span values in array S[] -calculateSpan(price, S) - -# Print the calculated span values -printArray(S, len(price)) +def calculateSpan(price, S): + + n = len(price) + # Create a stack and push index of fist element to it + st = [] + st.append(0) + + # Span value of first element is always 1 + S[0] = 1 + + # Calculate span values for rest of the elements + for i in range(1, n): + + # Pop elements from stack whlie stack is not + # empty and top of stack is smaller than price[i] + while( len(st) > 0 and price[st[0]] <= price[i]): + st.pop() + + # If stack becomes empty, then price[i] is greater + # than all elements on left of it, i.e. price[0], + # price[1], ..price[i-1]. Else the price[i] is + # greater than elements after top of stack + S[i] = i+1 if len(st) <= 0 else (i - st[0]) + + # Push this element to stack + st.append(i) + + +# A utility function to print elements of array +def printArray(arr, n): + for i in range(0,n): + print(arr[i],end =" ") + + +# Driver program to test above function +price = [10, 4, 5, 90, 120, 80] +S = [0 for i in range(len(price)+1)] + +# Fill the span values in array S[] +calculateSpan(price, S) + +# Print the calculated span values +printArray(S, len(price)) diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py index 9a60831862da..853de7896af1 100644 --- a/machine_learning/logistic_regression.py +++ b/machine_learning/logistic_regression.py @@ -9,7 +9,7 @@ # importing all the required libraries -''' Implementing logistic regression for classification problem +''' Implementing logistic regression for classification problem Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac''' import numpy as np @@ -63,10 +63,10 @@ def logistic_reg( if step % 10000 == 0: print(log_likelihood(X,y,weights)) # Print log-likelihood every so often return weights - + if iterations == max_iterations: - print ('Maximum iterations exceeded!') - print ('Minimal cost function J=', J) + print('Maximum iterations exceeded!') + print('Minimal cost function J=', J) converged = True return theta @@ -79,7 +79,7 @@ def logistic_reg( alpha = 0.1 theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000) - print (theta) + print(theta) def predict_prob(X): diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index f05b938fefe9..c3842fee5f96 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -12,7 +12,7 @@ def QuadraticEquation(a,b,c): if Delta >= 0: Solution1 = (-b + math.sqrt(Delta))/(2*a) Solution2 = (-b - math.sqrt(Delta))/(2*a) - print ("The equation solutions are: ", Solution1," and ", Solution2) + print("The equation solutions are: ", Solution1," and ", Solution2) else: """ Treats cases of Complexes Solutions(i = imaginary unit) @@ -25,7 +25,7 @@ def QuadraticEquation(a,b,c): print("The equation solutions are: (",b,"+",math.sqrt(-Delta),"*i)/2 and (",b,"+",math.sqrt(-Delta),"*i/",2*a) if b == 0: print("The equation solutions are: (",math.sqrt(-Delta),"*i)/2 and ",math.sqrt(-Delta),"*i)/", 2*a) - else: + else: print("Error. Please, coeficient 'a' must not be zero for quadratic equations.") def main(): a = 5 @@ -33,7 +33,7 @@ def main(): c = 1 QuadraticEquation(a,b,c) # The equation solutions are: -0.2 and -1.0 - - + + if __name__ == '__main__': main() diff --git a/other/fischer_yates_shuffle.py b/other/fischer_yates_shuffle.py index d87792f45558..bc2b136344c7 100644 --- a/other/fischer_yates_shuffle.py +++ b/other/fischer_yates_shuffle.py @@ -17,6 +17,6 @@ def FYshuffle(LIST): if __name__ == '__main__': integers = [0,1,2,3,4,5,6,7] strings = ['python', 'says', 'hello', '!'] - print ('Fisher-Yates Shuffle:') - print ('List',integers, strings) - print ('FY Shuffle',FYshuffle(integers), FYshuffle(strings)) + print('Fisher-Yates Shuffle:') + print('List',integers, strings) + print('FY Shuffle',FYshuffle(integers), FYshuffle(strings)) From d21b4cfb4839833b2302da72a646f5a4ecd1bf3b Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Tue, 6 Aug 2019 16:16:30 +0500 Subject: [PATCH 248/594] Added pytests to hashes/md5.py (#1100) * Added pytests to sha1.py * tweaking md5 * Added Pytests to hashes/md5.py --- hashes/md5.py | 287 +++++++++++++++++++++++++++----------------------- 1 file changed, 154 insertions(+), 133 deletions(-) diff --git a/hashes/md5.py b/hashes/md5.py index d3f15510874e..7891f2077986 100644 --- a/hashes/md5.py +++ b/hashes/md5.py @@ -1,155 +1,176 @@ from __future__ import print_function import math + def rearrange(bitString32): - """[summary] - Regroups the given binary string. - - Arguments: - bitString32 {[string]} -- [32 bit binary] - - Raises: - ValueError -- [if the given string not are 32 bit binary string] - - Returns: - [string] -- [32 bit binary string] - """ - - if len(bitString32) != 32: - raise ValueError("Need length 32") - newString = "" - for i in [3,2,1,0]: - newString += bitString32[8*i:8*i+8] - return newString + """[summary] + Regroups the given binary string. + + Arguments: + bitString32 {[string]} -- [32 bit binary] + + Raises: + ValueError -- [if the given string not are 32 bit binary string] + + Returns: + [string] -- [32 bit binary string] + >>> rearrange('1234567890abcdfghijklmnopqrstuvw') + 'pqrstuvwhijklmno90abcdfg12345678' + """ + + if len(bitString32) != 32: + raise ValueError("Need length 32") + newString = "" + for i in [3, 2,1,0]: + newString += bitString32[8*i:8*i+8] + return newString + def reformatHex(i): - """[summary] - Converts the given integer into 8-digit hex number. + """[summary] + Converts the given integer into 8-digit hex number. - Arguments: - i {[int]} -- [integer] - """ + Arguments: + i {[int]} -- [integer] + >>> reformatHex(666) + '9a020000' + """ + + hexrep = format(i, '08x') + thing = "" + for i in [3, 2,1,0]: + thing += hexrep[2*i:2*i+2] + return thing - hexrep = format(i,'08x') - thing = "" - for i in [3,2,1,0]: - thing += hexrep[2*i:2*i+2] - return thing def pad(bitString): - """[summary] - Fills up the binary string to a 512 bit binary string - - Arguments: - bitString {[string]} -- [binary string] - - Returns: - [string] -- [binary string] - """ - - startLength = len(bitString) - bitString += '1' - while len(bitString) % 512 != 448: - bitString += '0' - lastPart = format(startLength,'064b') - bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32]) - return bitString + """[summary] + Fills up the binary string to a 512 bit binary string + + Arguments: + bitString {[string]} -- [binary string] + + Returns: + [string] -- [binary string] + """ + startLength = len(bitString) + bitString += '1' + while len(bitString) % 512 != 448: + bitString += '0' + lastPart = format(startLength, '064b') + bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32]) + return bitString + def getBlock(bitString): - """[summary] - Iterator: - Returns by each call a list of length 16 with the 32 bit - integer blocks. - - Arguments: - bitString {[string]} -- [binary string >= 512] - """ - - currPos = 0 - while currPos < len(bitString): - currPart = bitString[currPos:currPos+512] - mySplits = [] - for i in range(16): - mySplits.append(int(rearrange(currPart[32*i:32*i+32]),2)) - yield mySplits - currPos += 512 + """[summary] + Iterator: + Returns by each call a list of length 16 with the 32 bit + integer blocks. -def not32(i): - i_str = format(i,'032b') - new_str = '' - for c in i_str: - new_str += '1' if c=='0' else '0' - return int(new_str,2) + Arguments: + bitString {[string]} -- [binary string >= 512] + """ -def sum32(a,b): - return (a + b) % 2**32 + currPos = 0 + while currPos < len(bitString): + currPart = bitString[currPos:currPos+512] + mySplits = [] + for i in range(16): + mySplits.append(int(rearrange(currPart[32*i:32*i+32]), 2)) + yield mySplits + currPos += 512 + + +def not32(i): + ''' + >>> not32(34) + 4294967261 + ''' + i_str = format(i, '032b') + new_str = '' + for c in i_str: + new_str += '1' if c == '0' else '0' + return int(new_str, 2) + +def sum32(a, b): + ''' + + ''' + return (a + b) % 2**32 + +def leftrot32(i, s): + return (i << s) ^ (i >> (32-s)) -def leftrot32(i,s): - return (i << s) ^ (i >> (32-s)) def md5me(testString): - """[summary] - Returns a 32-bit hash code of the string 'testString' - - Arguments: - testString {[string]} -- [message] - """ - - bs ='' - for i in testString: - bs += format(ord(i),'08b') - bs = pad(bs) - - tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)] - - a0 = 0x67452301 - b0 = 0xefcdab89 - c0 = 0x98badcfe - d0 = 0x10325476 - - s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, \ - 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \ - 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \ - 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ] - - for m in getBlock(bs): - A = a0 - B = b0 - C = c0 - D = d0 - for i in range(64): - if i <= 15: - #f = (B & C) | (not32(B) & D) - f = D ^ (B & (C ^ D)) - g = i - elif i<= 31: - #f = (D & B) | (not32(D) & C) - f = C ^ (D & (B ^ C)) - g = (5*i+1) % 16 - elif i <= 47: - f = B ^ C ^ D - g = (3*i+5) % 16 - else: - f = C ^ (B | not32(D)) - g = (7*i) % 16 - dtemp = D - D = C - C = B - B = sum32(B,leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i])) - A = dtemp - a0 = sum32(a0, A) - b0 = sum32(b0, B) - c0 = sum32(c0, C) - d0 = sum32(d0, D) - - digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0) - return digest + """[summary] + Returns a 32-bit hash code of the string 'testString' + + Arguments: + testString {[string]} -- [message] + """ + + bs = '' + for i in testString: + bs += format(ord(i), '08b') + bs = pad(bs) + + tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)] + + a0 = 0x67452301 + b0 = 0xefcdab89 + c0 = 0x98badcfe + d0 = 0x10325476 + + s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, + 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \ + 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \ + 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ] + + for m in getBlock(bs): + A = a0 + B = b0 + C = c0 + D = d0 + for i in range(64): + if i <= 15: + #f = (B & C) | (not32(B) & D) + f = D ^ (B & (C ^ D)) + g = i + elif i <= 31: + #f = (D & B) | (not32(D) & C) + f = C ^ (D & (B ^ C)) + g = (5*i+1) % 16 + elif i <= 47: + f = B ^ C ^ D + g = (3*i+5) % 16 + else: + f = C ^ (B | not32(D)) + g = (7*i) % 16 + dtemp = D + D = C + C = B + B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i])) + A = dtemp + a0 = sum32(a0, A) + b0 = sum32(b0, B) + c0 = sum32(c0, C) + d0 = sum32(d0, D) + + digest = reformatHex(a0) + reformatHex(b0) + \ + reformatHex(c0) + reformatHex(d0) + return digest + def test(): - assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e" - assert md5me("The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6" - print("Success.") + assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e" + assert md5me( + "The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6" + print("Success.") if __name__ == "__main__": - test() + test() + import doctest + doctest.testmod() From 762482dc40bdd067e2ab01d94fd2c35857e7de9b Mon Sep 17 00:00:00 2001 From: Harshil Date: Tue, 6 Aug 2019 21:31:03 +0200 Subject: [PATCH 249/594] Update closest_pair_of_points.py (#1109) --- divide_and_conquer/closest_pair_of_points.py | 107 ++++++++++--------- 1 file changed, 57 insertions(+), 50 deletions(-) diff --git a/divide_and_conquer/closest_pair_of_points.py b/divide_and_conquer/closest_pair_of_points.py index b6f63396410c..11dac7e0ab2a 100644 --- a/divide_and_conquer/closest_pair_of_points.py +++ b/divide_and_conquer/closest_pair_of_points.py @@ -1,55 +1,54 @@ """ -The algorithm finds distance between closest pair of points +The algorithm finds distance between closest pair of points in the given n points. -Approach used -> Divide and conquer -The points are sorted based on Xco-ords and +Approach used -> Divide and conquer +The points are sorted based on Xco-ords and then based on Yco-ords separately. -And by applying divide and conquer approach, +And by applying divide and conquer approach, minimum distance is obtained recursively. >> Closest points can lie on different sides of partition. -This case handled by forming a strip of points +This case handled by forming a strip of points whose Xco-ords distance is less than closest_pair_dis -from mid-point's Xco-ords. Points sorted based on Yco-ords +from mid-point's Xco-ords. Points sorted based on Yco-ords are used in this step to reduce sorting time. Closest pair distance is found in the strip of points. (closest_in_strip) min(closest_pair_dis, closest_in_strip) would be the final answer. - -Time complexity: O(n * log n) -""" -""" - doctests - >>> euclidean_distance_sqr([1,2],[2,4]) - 5 - >>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5) - 5 - >>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5) - 85 - >>> points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] - >>> print("Distance:", closest_pair_of_points(points, len(points))) - "Distance: 1.4142135623730951" +Time complexity: O(n * log n) """ def euclidean_distance_sqr(point1, point2): + """ + >>> euclidean_distance_sqr([1,2],[2,4]) + 5 + """ return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 def column_based_sort(array, column = 0): + """ + >>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1) + [(3, 0), (5, 1), (4, 2)] + """ return sorted(array, key = lambda x: x[column]) - + def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): - """ brute force approach to find distance between closest pair points + """ + brute force approach to find distance between closest pair points + + Parameters : + points, points_count, min_dis (list(tuple(int, int)), int, int) - Parameters : - points, points_count, min_dis (list(tuple(int, int)), int, int) - - Returns : + Returns : min_dis (float): distance between closest pair of points + >>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5) + 5 + """ for i in range(points_counts - 1): @@ -61,14 +60,17 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): - """ closest pair of points in strip + """ + closest pair of points in strip + + Parameters : + points, points_count, min_dis (list(tuple(int, int)), int, int) - Parameters : - points, points_count, min_dis (list(tuple(int, int)), int, int) - - Returns : + Returns : min_dis (float): distance btw closest pair of points in the strip (< min_dis) + >>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5) + 85 """ for i in range(min(6, points_counts - 1), points_counts): @@ -82,29 +84,32 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts): """ divide and conquer approach - Parameters : - points, points_count (list(tuple(int, int)), int) - - Returns : - (float): distance btw closest pair of points + Parameters : + points, points_count (list(tuple(int, int)), int) + + Returns : + (float): distance btw closest pair of points + >>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2) + 8 """ # base case if points_counts <= 3: return dis_between_closest_pair(points_sorted_on_x, points_counts) - + # recursion mid = points_counts//2 - closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x, - points_sorted_on_y[:mid], + closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x, + points_sorted_on_y[:mid], mid) - closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y, - points_sorted_on_y[mid:], + closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y, + points_sorted_on_y[mid:], points_counts - mid) closest_pair_dis = min(closest_in_left, closest_in_right) - - """ cross_strip contains the points, whose Xcoords are at a + + """ + cross_strip contains the points, whose Xcoords are at a distance(< closest_pair_dis) from mid's Xcoord """ @@ -113,21 +118,23 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(point) - closest_in_strip = dis_between_closest_in_strip(cross_strip, + closest_in_strip = dis_between_closest_in_strip(cross_strip, len(cross_strip), closest_pair_dis) return min(closest_pair_dis, closest_in_strip) - + def closest_pair_of_points(points, points_counts): + """ + >>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)])) + 28.792360097775937 + """ points_sorted_on_x = column_based_sort(points, column = 0) points_sorted_on_y = column_based_sort(points, column = 1) - return (closest_pair_of_points_sqr(points_sorted_on_x, - points_sorted_on_y, + return (closest_pair_of_points_sqr(points_sorted_on_x, + points_sorted_on_y, points_counts)) ** 0.5 if __name__ == "__main__": - points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] + points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points))) - - From 7b5a18453b0abe64350930d675cdfe9bef19c57a Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 6 Aug 2019 21:31:45 +0200 Subject: [PATCH 250/594] print() is a function just like every other function (#1104) From 7cf3db184320a454e545882408b8c2f561ef0cdb Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 6 Aug 2019 21:32:27 +0200 Subject: [PATCH 251/594] Add test for QuadraticEquation() (#1107) --- maths/quadratic_equations_complex_numbers.py | 64 ++++++++++---------- 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index c3842fee5f96..8f97508609bf 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,39 +1,39 @@ -import math +from math import sqrt +from typing import Tuple -def QuadraticEquation(a,b,c): + +def QuadraticEquation(a: int, b: int, c: int) -> Tuple[str, str]: + """ + Given the numerical coefficients a, b and c, + prints the solutions for a quadratic equation, for a*x*x + b*x + c. + + >>> QuadraticEquation(a=1, b=3, c=-4) + ('1.0', '-4.0') + >>> QuadraticEquation(5, 6, 1) + ('-0.2', '-1.0') """ - Prints the solutions for a quadratic equation, given the numerical coefficients a, b and c, - for a*x*x + b*x + c. - Ex.: a = 1, b = 3, c = -4 - Solution1 = 1 and Solution2 = -4 + if a == 0: + raise ValueError("Coefficient 'a' must not be zero for quadratic equations.") + delta = b * b - 4 * a * c + if delta >= 0: + return str((-b + sqrt(delta)) / (2 * a)), str((-b - sqrt(delta)) / (2 * a)) """ - Delta = b*b - 4*a*c - if a != 0: - if Delta >= 0: - Solution1 = (-b + math.sqrt(Delta))/(2*a) - Solution2 = (-b - math.sqrt(Delta))/(2*a) - print("The equation solutions are: ", Solution1," and ", Solution2) - else: - """ - Treats cases of Complexes Solutions(i = imaginary unit) - Ex.: a = 5, b = 2, c = 1 - Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 - """ - if b > 0: - print("The equation solutions are: (-",b,"+",math.sqrt(-Delta),"*i)/2 and (-",b,"+",math.sqrt(-Delta),"*i)/", 2*a) - if b < 0: - print("The equation solutions are: (",b,"+",math.sqrt(-Delta),"*i)/2 and (",b,"+",math.sqrt(-Delta),"*i/",2*a) - if b == 0: - print("The equation solutions are: (",math.sqrt(-Delta),"*i)/2 and ",math.sqrt(-Delta),"*i)/", 2*a) - else: - print("Error. Please, coeficient 'a' must not be zero for quadratic equations.") -def main(): - a = 5 - b = 6 - c = 1 + Treats cases of Complexes Solutions(i = imaginary unit) + Ex.: a = 5, b = 2, c = 1 + Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 + """ + snd = sqrt(-delta) + if b == 0: + return f"({snd} * i) / 2", f"({snd} * i) / {2 * a}" + b = -abs(b) + return f"({b}+{snd} * i) / 2", f"({b}+{snd} * i) / {2 * a}" + - QuadraticEquation(a,b,c) # The equation solutions are: -0.2 and -1.0 +def main(): + solutions = QuadraticEquation(a=5, b=6, c=1) + print("The equation solutions are: {} and {}".format(*solutions)) + # The equation solutions are: -0.2 and -1.0 -if __name__ == '__main__': +if __name__ == "__main__": main() From 561a41464f6dca6c15656ac2257370410b1e9efa Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 6 Aug 2019 21:53:12 +0200 Subject: [PATCH 252/594] Travis CI: Run each failing pytest in allow_failures mode (#1087) * Travis CI: Run failing pytest in allow_failures mode * Sync with master * Sync with master --- .travis.yml | 28 +++++++++++++++++++++++++++- 1 file changed, 27 insertions(+), 1 deletion(-) diff --git a/.travis.yml b/.travis.yml index eab55af63492..9abbb0365bc6 100644 --- a/.travis.yml +++ b/.travis.yml @@ -4,11 +4,37 @@ python: 3.7 cache: pip before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt +matrix: + include: + - name: "Main tests" + # The following files currently fail pytests. See issues: #1016, #1044, #1080 + # Here they are run allow_failures mode and when each passes pytest, it can be + # removed BOTH lists below. Complex now but simple once all files pass pytest. + # - env: FILE=pytest file_transfer_protocol/ftp_client_server.py + # before_script: true + # script: pytest ${FILE} --doctest-modules + - env: FILE=pytest file_transfer_protocol/ftp_send_receive.py + before_script: true + script: pytest ${FILE} --doctest-modules + - env: FILE=pytest machine_learning/linear_regression.py + before_script: true + script: pytest ${FILE} --doctest-modules + - env: FILE=pytest machine_learning/perceptron.py + before_script: true + script: pytest ${FILE} --doctest-modules + - env: FILE=pytest machine_learning/random_forest_classification/random_forest_classification.py + before_script: true + script: pytest ${FILE} --doctest-modules + - env: FILE=pytest machine_learning/random_forest_regression/random_forest_regression.py + before_script: true + script: pytest ${FILE} --doctest-modules + allow_failures: + - before_script: true before_script: - black --check . || true - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics script: - - scripts/validate_filenames.py # no uppercase and no spaces + - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . - pytest . --doctest-modules --ignore=file_transfer_protocol/ftp_send_receive.py From 9456e81437bbab7b1781750fed07121c6cd6e301 Mon Sep 17 00:00:00 2001 From: AlexDvorak Date: Wed, 7 Aug 2019 09:44:48 -0400 Subject: [PATCH 253/594] Seperate client and server of FTP (#1106) * added sample file to transfer * split client and server into separate files * client and server now work in python2 * server works on python3 * client works on python3 * allow configurable ONE_CONNECTION_ONLY for testing server * allow testing of ftp server + client * use f-strings * removed single letter vars * fixed bad quote marks * clearer file handler names * 'with open() as' syntax * unicode and emojis in the test data * s -> sock * consistent comment spacing * remove closing formalities * swap in and out_file * f-string * if __name__ == '__main__': --- .travis.yml | 1 - file_transfer_protocol/client.py | 23 +++++++++ file_transfer_protocol/ftp_client_server.py | 57 --------------------- file_transfer_protocol/mytext.txt | 6 +++ file_transfer_protocol/server.py | 34 ++++++++++++ 5 files changed, 63 insertions(+), 58 deletions(-) create mode 100644 file_transfer_protocol/client.py delete mode 100644 file_transfer_protocol/ftp_client_server.py create mode 100644 file_transfer_protocol/mytext.txt create mode 100644 file_transfer_protocol/server.py diff --git a/.travis.yml b/.travis.yml index 9abbb0365bc6..2536e72fadff 100644 --- a/.travis.yml +++ b/.travis.yml @@ -38,7 +38,6 @@ script: - mypy --ignore-missing-imports . - pytest . --doctest-modules --ignore=file_transfer_protocol/ftp_send_receive.py - --ignore=file_transfer_protocol/ftp_client_server.py --ignore=machine_learning/linear_regression.py --ignore=machine_learning/perceptron.py --ignore=machine_learning/random_forest_classification/random_forest_classification.py diff --git a/file_transfer_protocol/client.py b/file_transfer_protocol/client.py new file mode 100644 index 000000000000..f404546d7765 --- /dev/null +++ b/file_transfer_protocol/client.py @@ -0,0 +1,23 @@ +if __name__ == '__main__': + import socket # Import socket module + + sock = socket.socket() # Create a socket object + host = socket.gethostname() # Get local machine name + port = 12312 + + sock.connect((host, port)) + sock.send(b'Hello server!') + + with open('Received_file', 'wb') as out_file: + print('File opened') + print('Receiving data...') + while True: + data = sock.recv(1024) + print(f"data={data}") + if not data: + break + out_file.write(data) # Write data to a file + + print('Successfully got the file') + sock.close() + print('Connection closed') diff --git a/file_transfer_protocol/ftp_client_server.py b/file_transfer_protocol/ftp_client_server.py deleted file mode 100644 index 414c336dee9f..000000000000 --- a/file_transfer_protocol/ftp_client_server.py +++ /dev/null @@ -1,57 +0,0 @@ -# server - -import socket # Import socket module - -port = 60000 # Reserve a port for your service. -s = socket.socket() # Create a socket object -host = socket.gethostname() # Get local machine name -s.bind((host, port)) # Bind to the port -s.listen(5) # Now wait for client connection. - -print('Server listening....') - -while True: - conn, addr = s.accept() # Establish connection with client. - print('Got connection from', addr) - data = conn.recv(1024) - print('Server received', repr(data)) - - filename = 'mytext.txt' - with open(filename, 'rb') as f: - in_data = f.read(1024) - while in_data: - conn.send(in_data) - print('Sent ', repr(in_data)) - in_data = f.read(1024) - - print('Done sending') - conn.send('Thank you for connecting') - conn.close() - - -# client side server - -import socket # Import socket module - -s = socket.socket() # Create a socket object -host = socket.gethostname() # Get local machine name -port = 60000 # Reserve a port for your service. - -s.connect((host, port)) -s.send("Hello server!") - -with open('received_file', 'wb') as f: - print('file opened') - while True: - print('receiving data...') - data = s.recv(1024) - print('data=%s', (data)) - if not data: - break - # write data to a file - f.write(data) - -f.close() -print('Successfully get the file') -s.close() -print('connection closed') diff --git a/file_transfer_protocol/mytext.txt b/file_transfer_protocol/mytext.txt new file mode 100644 index 000000000000..54cfa7f766c7 --- /dev/null +++ b/file_transfer_protocol/mytext.txt @@ -0,0 +1,6 @@ +Hello +This is sample data +«küßî» +“ЌύБЇ” +😀😉 +😋 diff --git a/file_transfer_protocol/server.py b/file_transfer_protocol/server.py new file mode 100644 index 000000000000..92fab206c1a1 --- /dev/null +++ b/file_transfer_protocol/server.py @@ -0,0 +1,34 @@ +if __name__ == '__main__': + import socket # Import socket module + + ONE_CONNECTION_ONLY = True # Set this to False if you wish to continuously accept connections + + filename='mytext.txt' + port = 12312 # Reserve a port for your service. + sock = socket.socket() # Create a socket object + host = socket.gethostname() # Get local machine name + sock.bind((host, port)) # Bind to the port + sock.listen(5) # Now wait for client connection. + + print('Server listening....') + + while True: + conn, addr = sock.accept() # Establish connection with client. + print(f"Got connection from {addr}") + data = conn.recv(1024) + print(f"Server received {data}") + + with open(filename,'rb') as in_file: + data = in_file.read(1024) + while (data): + conn.send(data) + print(f"Sent {data!r}") + data = in_file.read(1024) + + print('Done sending') + conn.close() + if ONE_CONNECTION_ONLY: # This is to make sure that the program doesn't hang while testing + break + + sock.shutdown(1) + sock.close() From c92d06bf1f82f21ecb74650b63fd72f07b0a1a70 Mon Sep 17 00:00:00 2001 From: John Law Date: Thu, 8 Aug 2019 01:35:36 +0800 Subject: [PATCH 254/594] Delete redundant files (#1115) * Delete 16L' * Delete Q' --- 16L' | 0 Q' | 0 2 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 16L' delete mode 100644 Q' diff --git a/16L' b/16L' deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/Q' b/Q' deleted file mode 100644 index e69de29bb2d1..000000000000 From 32c0418f635824a14665c58c71bc7c220c509a78 Mon Sep 17 00:00:00 2001 From: Amrit Khera <31596604+AmritK10@users.noreply.github.com> Date: Thu, 8 Aug 2019 01:09:44 +0530 Subject: [PATCH 255/594] Infinite loop was fixed. (#1105) * Infinite loop was fixed. Removed issue of unused variables. * Update logistic_regression.py * Update logistic_regression.py * correct spacing according to PEP8 --- machine_learning/logistic_regression.py | 27 +++++++------------------ 1 file changed, 7 insertions(+), 20 deletions(-) diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py index 853de7896af1..b2749f1be260 100644 --- a/machine_learning/logistic_regression.py +++ b/machine_learning/logistic_regression.py @@ -40,34 +40,20 @@ def logistic_reg( alpha, X, y, - num_steps, max_iterations=70000, ): - converged = False - iterations = 0 theta = np.zeros(X.shape[1]) - while not converged: + for iterations in range(max_iterations): z = np.dot(X, theta) h = sigmoid_function(z) gradient = np.dot(X.T, h - y) / y.size - theta = theta - alpha * gradient + theta = theta - alpha * gradient # updating the weights z = np.dot(X, theta) h = sigmoid_function(z) J = cost_function(h, y) - iterations += 1 # update iterations - weights = np.zeros(X.shape[1]) - for step in range(num_steps): - scores = np.dot(X, weights) - predictions = sigmoid_function(scores) - if step % 10000 == 0: - print(log_likelihood(X,y,weights)) # Print log-likelihood every so often - return weights - - if iterations == max_iterations: - print('Maximum iterations exceeded!') - print('Minimal cost function J=', J) - converged = True + if iterations % 100 == 0: + print(f'loss: {J} \t') # printing the loss after every 100 iterations return theta # In[68]: @@ -78,8 +64,8 @@ def logistic_reg( y = (iris.target != 0) * 1 alpha = 0.1 - theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000) - print(theta) + theta = logistic_reg(alpha,X,y,max_iterations=70000) + print("theta: ",theta) # printing the theta i.e our weights vector def predict_prob(X): @@ -105,3 +91,4 @@ def predict_prob(X): ) plt.legend() + plt.show() From 3ba67c7d2d72b166d7fd0a8a549de46951002f4f Mon Sep 17 00:00:00 2001 From: AlexDvorak Date: Wed, 7 Aug 2019 16:02:31 -0400 Subject: [PATCH 256/594] rename non-ftp files (#1116) --- file_transfer_protocol/{client.py => recieve_file.py} | 0 file_transfer_protocol/{server.py => send_file.py} | 0 2 files changed, 0 insertions(+), 0 deletions(-) rename file_transfer_protocol/{client.py => recieve_file.py} (100%) rename file_transfer_protocol/{server.py => send_file.py} (100%) diff --git a/file_transfer_protocol/client.py b/file_transfer_protocol/recieve_file.py similarity index 100% rename from file_transfer_protocol/client.py rename to file_transfer_protocol/recieve_file.py diff --git a/file_transfer_protocol/server.py b/file_transfer_protocol/send_file.py similarity index 100% rename from file_transfer_protocol/server.py rename to file_transfer_protocol/send_file.py From c686cc5863c2ac2530ed1f34bd9ce758bb17945a Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" Date: Thu, 8 Aug 2019 11:59:15 -0400 Subject: [PATCH 257/594] fix outdated fork error (#1117) --- .../filters/median_filter.py | 2 +- .../test_digital_image_processing.py | 62 +++++++++++++++++++ 2 files changed, 63 insertions(+), 1 deletion(-) create mode 100644 digital_image_processing/test_digital_image_processing.py diff --git a/digital_image_processing/filters/median_filter.py b/digital_image_processing/filters/median_filter.py index ed20b1ab7f78..4b21b96b080b 100644 --- a/digital_image_processing/filters/median_filter.py +++ b/digital_image_processing/filters/median_filter.py @@ -15,7 +15,7 @@ def median_filter(gray_img, mask=3): # set image borders bd = int(mask / 2) # copy image size - median_img = zeros_like(gray) + median_img = zeros_like(gray_img) for i in range(bd, gray_img.shape[0] - bd): for j in range(bd, gray_img.shape[1] - bd): # get mask according with mask diff --git a/digital_image_processing/test_digital_image_processing.py b/digital_image_processing/test_digital_image_processing.py new file mode 100644 index 000000000000..0ff9e3333ca8 --- /dev/null +++ b/digital_image_processing/test_digital_image_processing.py @@ -0,0 +1,62 @@ +""" +PyTest's for Digital Image Processing +""" + +import digital_image_processing.edge_detection.canny as canny +import digital_image_processing.filters.gaussian_filter as gg +import digital_image_processing.filters.median_filter as med +import digital_image_processing.filters.sobel_filter as sob +import digital_image_processing.filters.convolve as conv +import digital_image_processing.change_contrast as cc +from cv2 import imread, cvtColor, COLOR_BGR2GRAY +from numpy import array, uint8 +from PIL import Image + +img = imread(r"digital_image_processing/image_data/lena.jpg") +gray = cvtColor(img, COLOR_BGR2GRAY) + +# Test: change_contrast() +def test_change_contrast(): + with Image.open("digital_image_processing/image_data/lena.jpg") as img: + # Work around assertion for response + assert str(cc.change_contrast(img, 110)).startswith( + " Date: Fri, 9 Aug 2019 21:37:16 +0200 Subject: [PATCH 258/594] Rename file_transfer and linear_algebra (#1118) * Rename file_transfer and linear_algebra * Rename file_transfer and linear_algebra --- .travis.yml | 4 ++-- {file_transfer_protocol => file_transfer}/ftp_send_receive.py | 0 {file_transfer_protocol => file_transfer}/mytext.txt | 0 {file_transfer_protocol => file_transfer}/recieve_file.py | 0 {file_transfer_protocol => file_transfer}/send_file.py | 0 {linear_algebra_python => linear_algebra}/README.md | 0 {linear_algebra_python => linear_algebra}/src/lib.py | 0 {linear_algebra_python => linear_algebra}/src/tests.py | 0 8 files changed, 2 insertions(+), 2 deletions(-) rename {file_transfer_protocol => file_transfer}/ftp_send_receive.py (100%) rename {file_transfer_protocol => file_transfer}/mytext.txt (100%) rename {file_transfer_protocol => file_transfer}/recieve_file.py (100%) rename {file_transfer_protocol => file_transfer}/send_file.py (100%) rename {linear_algebra_python => linear_algebra}/README.md (100%) rename {linear_algebra_python => linear_algebra}/src/lib.py (100%) rename {linear_algebra_python => linear_algebra}/src/tests.py (100%) diff --git a/.travis.yml b/.travis.yml index 2536e72fadff..532f73f5e895 100644 --- a/.travis.yml +++ b/.travis.yml @@ -13,7 +13,7 @@ matrix: # - env: FILE=pytest file_transfer_protocol/ftp_client_server.py # before_script: true # script: pytest ${FILE} --doctest-modules - - env: FILE=pytest file_transfer_protocol/ftp_send_receive.py + - env: FILE=pytest file_transfer/ftp_send_receive.py before_script: true script: pytest ${FILE} --doctest-modules - env: FILE=pytest machine_learning/linear_regression.py @@ -37,7 +37,7 @@ script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . - pytest . --doctest-modules - --ignore=file_transfer_protocol/ftp_send_receive.py + --ignore=file_transfer/ftp_send_receive.py --ignore=machine_learning/linear_regression.py --ignore=machine_learning/perceptron.py --ignore=machine_learning/random_forest_classification/random_forest_classification.py diff --git a/file_transfer_protocol/ftp_send_receive.py b/file_transfer/ftp_send_receive.py similarity index 100% rename from file_transfer_protocol/ftp_send_receive.py rename to file_transfer/ftp_send_receive.py diff --git a/file_transfer_protocol/mytext.txt b/file_transfer/mytext.txt similarity index 100% rename from file_transfer_protocol/mytext.txt rename to file_transfer/mytext.txt diff --git a/file_transfer_protocol/recieve_file.py b/file_transfer/recieve_file.py similarity index 100% rename from file_transfer_protocol/recieve_file.py rename to file_transfer/recieve_file.py diff --git a/file_transfer_protocol/send_file.py b/file_transfer/send_file.py similarity index 100% rename from file_transfer_protocol/send_file.py rename to file_transfer/send_file.py diff --git a/linear_algebra_python/README.md b/linear_algebra/README.md similarity index 100% rename from linear_algebra_python/README.md rename to linear_algebra/README.md diff --git a/linear_algebra_python/src/lib.py b/linear_algebra/src/lib.py similarity index 100% rename from linear_algebra_python/src/lib.py rename to linear_algebra/src/lib.py diff --git a/linear_algebra_python/src/tests.py b/linear_algebra/src/tests.py similarity index 100% rename from linear_algebra_python/src/tests.py rename to linear_algebra/src/tests.py From 36684db2780d695add9bd0a4523d73496cb35664 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 10 Aug 2019 22:48:00 +0200 Subject: [PATCH 259/594] Travis CI: Add pytest --doctest-modules machine_learning (#1016) * Travis CI: Add pytest --doctest-modules neural_network Fixes #987 ``` neural_network/perceptron.py:123: in sample.insert(i, float(input('value: '))) ../lib/python3.7/site-packages/_pytest/capture.py:693: in read raise IOError("reading from stdin while output is captured") E OSError: reading from stdin while output is captured -------------------------------------------------------------------------------- Captured stdout -------------------------------------------------------------------------------- ('\nEpoch:\n', 399) ------------------------ value: ``` * Adding fix from #1056 -- thanks @QuantumNovice * if __name__ == '__main__': * pytest --ignore=virtualenv # do not test our dependencies --- machine_learning/perceptron.py | 124 ------------------ .../random_forest_classification.py | 8 +- .../random_forest_regression.py | 8 +- neural_network/perceptron.py | 8 +- requirements.txt | 1 + 5 files changed, 15 insertions(+), 134 deletions(-) delete mode 100644 machine_learning/perceptron.py diff --git a/machine_learning/perceptron.py b/machine_learning/perceptron.py deleted file mode 100644 index fe1032aff4af..000000000000 --- a/machine_learning/perceptron.py +++ /dev/null @@ -1,124 +0,0 @@ -''' - - Perceptron - w = w + N * (d(k) - y) * x(k) - - Using perceptron network for oil analysis, - with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 - p1 = -1 - p2 = 1 - -''' -from __future__ import print_function - -import random - - -class Perceptron: - def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1): - self.sample = sample - self.exit = exit - self.learn_rate = learn_rate - self.epoch_number = epoch_number - self.bias = bias - self.number_sample = len(sample) - self.col_sample = len(sample[0]) - self.weight = [] - - def trannig(self): - for sample in self.sample: - sample.insert(0, self.bias) - - for i in range(self.col_sample): - self.weight.append(random.random()) - - self.weight.insert(0, self.bias) - - epoch_count = 0 - - while True: - erro = False - for i in range(self.number_sample): - u = 0 - for j in range(self.col_sample + 1): - u = u + self.weight[j] * self.sample[i][j] - y = self.sign(u) - if y != self.exit[i]: - - for j in range(self.col_sample + 1): - - self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] - erro = True - #print('Epoch: \n',epoch_count) - epoch_count = epoch_count + 1 - # if you want controle the epoch or just by erro - if erro == False: - print(('\nEpoch:\n',epoch_count)) - print('------------------------\n') - #if epoch_count > self.epoch_number or not erro: - break - - def sort(self, sample): - sample.insert(0, self.bias) - u = 0 - for i in range(self.col_sample + 1): - u = u + self.weight[i] * sample[i] - - y = self.sign(u) - - if y == -1: - print(('Sample: ', sample)) - print('classification: P1') - else: - print(('Sample: ', sample)) - print('classification: P2') - - def sign(self, u): - return 1 if u >= 0 else -1 - - -samples = [ - [-0.6508, 0.1097, 4.0009], - [-1.4492, 0.8896, 4.4005], - [2.0850, 0.6876, 12.0710], - [0.2626, 1.1476, 7.7985], - [0.6418, 1.0234, 7.0427], - [0.2569, 0.6730, 8.3265], - [1.1155, 0.6043, 7.4446], - [0.0914, 0.3399, 7.0677], - [0.0121, 0.5256, 4.6316], - [-0.0429, 0.4660, 5.4323], - [0.4340, 0.6870, 8.2287], - [0.2735, 1.0287, 7.1934], - [0.4839, 0.4851, 7.4850], - [0.4089, -0.1267, 5.5019], - [1.4391, 0.1614, 8.5843], - [-0.9115, -0.1973, 2.1962], - [0.3654, 1.0475, 7.4858], - [0.2144, 0.7515, 7.1699], - [0.2013, 1.0014, 6.5489], - [0.6483, 0.2183, 5.8991], - [-0.1147, 0.2242, 7.2435], - [-0.7970, 0.8795, 3.8762], - [-1.0625, 0.6366, 2.4707], - [0.5307, 0.1285, 5.6883], - [-1.2200, 0.7777, 1.7252], - [0.3957, 0.1076, 5.6623], - [-0.1013, 0.5989, 7.1812], - [2.4482, 0.9455, 11.2095], - [2.0149, 0.6192, 10.9263], - [0.2012, 0.2611, 5.4631] - -] - -exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] - -network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) - -network.trannig() - -while True: - sample = [] - for i in range(3): - sample.insert(i, float(input('value: '))) - network.sort(sample) diff --git a/machine_learning/random_forest_classification/random_forest_classification.py b/machine_learning/random_forest_classification/random_forest_classification.py index d5dde4b13822..81016387ecc7 100644 --- a/machine_learning/random_forest_classification/random_forest_classification.py +++ b/machine_learning/random_forest_classification/random_forest_classification.py @@ -1,17 +1,19 @@ # Random Forest Classification # Importing the libraries +import os import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset -dataset = pd.read_csv('Social_Network_Ads.csv') +script_dir = os.path.dirname(os.path.realpath(__file__)) +dataset = pd.read_csv(os.path.join(script_dir, 'Social_Network_Ads.csv')) X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set -from sklearn.cross_validation import train_test_split +from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling @@ -66,4 +68,4 @@ plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() -plt.show() \ No newline at end of file +plt.show() diff --git a/machine_learning/random_forest_regression/random_forest_regression.py b/machine_learning/random_forest_regression/random_forest_regression.py index fce58b1fe283..85ce0676b598 100644 --- a/machine_learning/random_forest_regression/random_forest_regression.py +++ b/machine_learning/random_forest_regression/random_forest_regression.py @@ -1,12 +1,14 @@ # Random Forest Regression # Importing the libraries +import os import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset -dataset = pd.read_csv('Position_Salaries.csv') +script_dir = os.path.dirname(os.path.realpath(__file__)) +dataset = pd.read_csv(os.path.join(script_dir, 'Position_Salaries.csv')) X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values @@ -28,7 +30,7 @@ regressor.fit(X, y) # Predicting a new result -y_pred = regressor.predict(6.5) +y_pred = regressor.predict([[6.5]]) # Visualising the Random Forest Regression results (higher resolution) X_grid = np.arange(min(X), max(X), 0.01) @@ -38,4 +40,4 @@ plt.title('Truth or Bluff (Random Forest Regression)') plt.xlabel('Position level') plt.ylabel('Salary') -plt.show() \ No newline at end of file +plt.show() diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 787ea8f73bf1..871eca20273b 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -113,13 +113,13 @@ def sign(self, u): exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] -if __name__ == '__main__': - network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) +network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) - network.training() +network.training() +if __name__ == '__main__': while True: sample = [] for i in range(3): - sample.insert(i, float(input('value: ').strip())) + sample.insert(i, float(input('value: '))) network.sort(sample) diff --git a/requirements.txt b/requirements.txt index a3e62cf968f7..f5790ad53c30 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,6 +7,7 @@ opencv-python pandas pillow pytest +requests sklearn sympy tensorflow From 55cea57ffa45ad4ef062363c8ec214e81f8c2448 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 11 Aug 2019 13:00:58 +0200 Subject: [PATCH 260/594] Fix tests for file_transfer and perceptron.py (#1121) --- .travis.yml | 31 -------------------------- file_transfer/ftp_send_receive.py | 36 ------------------------------- 2 files changed, 67 deletions(-) delete mode 100644 file_transfer/ftp_send_receive.py diff --git a/.travis.yml b/.travis.yml index 532f73f5e895..f7a9264803f8 100644 --- a/.travis.yml +++ b/.travis.yml @@ -4,32 +4,6 @@ python: 3.7 cache: pip before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt -matrix: - include: - - name: "Main tests" - # The following files currently fail pytests. See issues: #1016, #1044, #1080 - # Here they are run allow_failures mode and when each passes pytest, it can be - # removed BOTH lists below. Complex now but simple once all files pass pytest. - # - env: FILE=pytest file_transfer_protocol/ftp_client_server.py - # before_script: true - # script: pytest ${FILE} --doctest-modules - - env: FILE=pytest file_transfer/ftp_send_receive.py - before_script: true - script: pytest ${FILE} --doctest-modules - - env: FILE=pytest machine_learning/linear_regression.py - before_script: true - script: pytest ${FILE} --doctest-modules - - env: FILE=pytest machine_learning/perceptron.py - before_script: true - script: pytest ${FILE} --doctest-modules - - env: FILE=pytest machine_learning/random_forest_classification/random_forest_classification.py - before_script: true - script: pytest ${FILE} --doctest-modules - - env: FILE=pytest machine_learning/random_forest_regression/random_forest_regression.py - before_script: true - script: pytest ${FILE} --doctest-modules - allow_failures: - - before_script: true before_script: - black --check . || true - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics @@ -37,11 +11,6 @@ script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . - pytest . --doctest-modules - --ignore=file_transfer/ftp_send_receive.py - --ignore=machine_learning/linear_regression.py - --ignore=machine_learning/perceptron.py - --ignore=machine_learning/random_forest_classification/random_forest_classification.py - --ignore=machine_learning/random_forest_regression/random_forest_regression.py after_success: - scripts/build_directory_md.py > DIRECTORY.md - cat DIRECTORY.md diff --git a/file_transfer/ftp_send_receive.py b/file_transfer/ftp_send_receive.py deleted file mode 100644 index 6a9819ef3f21..000000000000 --- a/file_transfer/ftp_send_receive.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -File transfer protocol used to send and receive files using FTP server. -Use credentials to provide access to the FTP client - -Note: Do not use root username & password for security reasons -Create a seperate user and provide access to a home directory of the user -Use login id and password of the user created -cwd here stands for current working directory -""" - -from ftplib import FTP -ftp = FTP('xxx.xxx.x.x') # Enter the ip address or the domain name here -ftp.login(user='username', passwd='password') -ftp.cwd('/Enter the directory here/') - -""" -The file which will be received via the FTP server -Enter the location of the file where the file is received -""" - -def ReceiveFile(): - FileName = 'example.txt' """ Enter the location of the file """ - with open(FileName, 'wb') as LocalFile: - ftp.retrbinary('RETR ' + FileName, LocalFile.write, 1024) - ftp.quit() - -""" -The file which will be sent via the FTP server -The file send will be send to the current working directory -""" - -def SendFile(): - FileName = 'example.txt' """ Enter the name of the file """ - with open(FileName, 'rb') as LocalFile: - ftp.storbinary('STOR ' + FileName, LocalFile) - ftp.quit() From 158b319d22e6ffa5399ce42bcfe1a7c968ebaa66 Mon Sep 17 00:00:00 2001 From: Niclas Dern <52120196+nic-dern@users.noreply.github.com> Date: Mon, 12 Aug 2019 09:13:57 +0200 Subject: [PATCH 261/594] New linear algebra algorithm (#1122) * Added new algorithm which takes points as an input and outputs a polynom connecting them * Rename Python-Polynom-for-points.py to python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Update python-polynom-for-points.py * Add doctests and run thru psf/black --- .../src/python-polynom-for-points.py | 130 ++++++++++++++++++ 1 file changed, 130 insertions(+) create mode 100644 linear_algebra/src/python-polynom-for-points.py diff --git a/linear_algebra/src/python-polynom-for-points.py b/linear_algebra/src/python-polynom-for-points.py new file mode 100644 index 000000000000..c884416b6dad --- /dev/null +++ b/linear_algebra/src/python-polynom-for-points.py @@ -0,0 +1,130 @@ +def points_to_polynomial(coordinates): + """ + coordinates is a two dimensional matrix: [[x, y], [x, y], ...] + number of points you want to use + + >>> print(points_to_polynomial([])) + The program cannot work out a fitting polynomial. + >>> print(points_to_polynomial([[]])) + The program cannot work out a fitting polynomial. + >>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*1.0 + >>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*3.0 + >>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) + f(x)=x^2*0.0+x^1*1.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) + f(x)=x^2*1.0+x^1*-0.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) + f(x)=x^2*1.0+x^1*-0.0+x^0*2.0 + >>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) + f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0 + >>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]])) + f(x)=x^2*5.0+x^1*-18.0+x^0*18.0 + """ + try: + check = 1 + more_check = 0 + d = coordinates[0][0] + for j in range(len(coordinates)): + if j == 0: + continue + if d == coordinates[j][0]: + more_check += 1 + solved = "x=" + str(coordinates[j][0]) + if more_check == len(coordinates) - 1: + check = 2 + break + elif more_check > 0 and more_check != len(coordinates) - 1: + check = 3 + else: + check = 1 + + if len(coordinates) == 1 and coordinates[0][0] == 0: + check = 2 + solved = "x=0" + except Exception: + check = 3 + + x = len(coordinates) + + if check == 1: + count_of_line = 0 + matrix = [] + # put the x and x to the power values in a matrix + while count_of_line < x: + count_in_line = 0 + a = coordinates[count_of_line][0] + count_line = [] + while count_in_line < x: + count_line.append(a ** (x - (count_in_line + 1))) + count_in_line += 1 + matrix.append(count_line) + count_of_line += 1 + + count_of_line = 0 + # put the y values into a vector + vector = [] + while count_of_line < x: + count_in_line = 0 + vector.append(coordinates[count_of_line][1]) + count_of_line += 1 + + count = 0 + + while count < x: + zahlen = 0 + while zahlen < x: + if count == zahlen: + zahlen += 1 + if zahlen == x: + break + bruch = (matrix[zahlen][count]) / (matrix[count][count]) + for counting_columns, item in enumerate(matrix[count]): + # manipulating all the values in the matrix + matrix[zahlen][counting_columns] -= item * bruch + # manipulating the values in the vector + vector[zahlen] -= vector[count] * bruch + zahlen += 1 + count += 1 + + count = 0 + # make solutions + solution = [] + while count < x: + solution.append(vector[count] / matrix[count][count]) + count += 1 + + count = 0 + solved = "f(x)=" + + while count < x: + remove_e = str(solution[count]).split("E") + if len(remove_e) > 1: + solution[count] = remove_e[0] + "*10^" + remove_e[1] + solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count]) + if count + 1 != x: + solved += "+" + count += 1 + + return solved + + elif check == 2: + return solved + else: + return "The program cannot work out a fitting polynomial." + + +if __name__ == "__main__": + print(points_to_polynomial([])) + print(points_to_polynomial([[]])) + print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) + print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) + print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) + print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) + print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) + print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) + print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) + print(points_to_polynomial([[1, 5], [2, 2], [3, 9]])) From 4fea48072ae88c19f5133a2303e6707eddf96700 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 12 Aug 2019 17:59:59 +0200 Subject: [PATCH 262/594] Add type hints to binary_tree_traversals.py (#1123) --- traversals/binary_tree_traversals.py | 103 +++++++++++++-------------- 1 file changed, 50 insertions(+), 53 deletions(-) diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 393664579146..7fd9f7111844 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -1,14 +1,8 @@ """ This is pure python implementation of tree traversal algorithms """ -from __future__ import print_function - import queue - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 +from typing import List class TreeNode: @@ -20,35 +14,31 @@ def __init__(self, data): def build_tree(): print("\n********Press N to stop entering at any point of time********\n") - print("Enter the value of the root node: ", end="") - check = raw_input().strip().lower() - if check == 'n': + check = input("Enter the value of the root node: ").strip().lower() or "n" + if check == "n": return None - data = int(check) - q = queue.Queue() - tree_node = TreeNode(data) + q: queue.Queue = queue.Queue() + tree_node = TreeNode(int(check)) q.put(tree_node) while not q.empty(): node_found = q.get() - print("Enter the left node of %s: " % node_found.data, end="") - check = raw_input().strip().lower() - if check == 'n': + msg = "Enter the left node of %s: " % node_found.data + check = input(msg).strip().lower() or "n" + if check == "n": return tree_node - left_data = int(check) - left_node = TreeNode(left_data) + left_node = TreeNode(int(check)) node_found.left = left_node q.put(left_node) - print("Enter the right node of %s: " % node_found.data, end="") - check = raw_input().strip().lower() - if check == 'n': + msg = "Enter the right node of %s: " % node_found.data + check = input(msg).strip().lower() or "n" + if check == "n": return tree_node - right_data = int(check) - right_node = TreeNode(right_data) + right_node = TreeNode(int(check)) node_found.right = right_node q.put(right_node) -def pre_order(node): +def pre_order(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return print(node.data, end=" ") @@ -56,7 +46,7 @@ def pre_order(node): pre_order(node.right) -def in_order(node): +def in_order(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return in_order(node.left) @@ -64,7 +54,7 @@ def in_order(node): in_order(node.right) -def post_order(node): +def post_order(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return post_order(node.left) @@ -72,10 +62,10 @@ def post_order(node): print(node.data, end=" ") -def level_order(node): +def level_order(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return - q = queue.Queue() + q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): node_dequeued = q.get() @@ -86,10 +76,10 @@ def level_order(node): q.put(node_dequeued.right) -def level_order_actual(node): +def level_order_actual(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return - q = queue.Queue() + q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): list = [] @@ -106,10 +96,10 @@ def level_order_actual(node): # iteration version -def pre_order_iter(node): +def pre_order_iter(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return - stack = [] + stack: List[TreeNode] = [] n = node while n or stack: while n: # start from root node, find its left child @@ -122,10 +112,10 @@ def pre_order_iter(node): n = n.right -def in_order_iter(node): +def in_order_iter(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return - stack = [] + stack: List[TreeNode] = [] n = node while n or stack: while n: @@ -136,7 +126,7 @@ def in_order_iter(node): n = n.right -def post_order_iter(node): +def post_order_iter(node: TreeNode) -> None: if not isinstance(node, TreeNode) or not node: return stack1, stack2 = [], [] @@ -153,38 +143,45 @@ def post_order_iter(node): print(stack2.pop().data, end=" ") -if __name__ == '__main__': - print("\n********* Binary Tree Traversals ************\n") +def prompt(s: str = "", width=50, char="*") -> str: + if not s: + return "\n" + width * char + left, extra = divmod(width - len(s) - 2, 2) + return f"{left * char} {s} {(left + extra) * char}" + + +if __name__ == "__main__": + print(prompt("Binary Tree Traversals")) node = build_tree() - print("\n********* Pre Order Traversal ************") + print(prompt("Pre Order Traversal")) pre_order(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* In Order Traversal ************") + print(prompt("In Order Traversal")) in_order(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* Post Order Traversal ************") + print(prompt("Post Order Traversal")) post_order(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* Level Order Traversal ************") + print(prompt("Level Order Traversal")) level_order(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* Actual Level Order Traversal ************") + print(prompt("Actual Level Order Traversal")) level_order_actual(node) - print("\n******************************************\n") + print("*" * 50 + "\n") - print("\n********* Pre Order Traversal - Iteration Version ************") + print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* In Order Traversal - Iteration Version ************") + print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) - print("\n******************************************\n") + print(prompt() + "\n") - print("\n********* Post Order Traversal - Iteration Version ************") + print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) - print("\n******************************************\n") + print(prompt()) From c74fd0c9bf984613d9087a793f832d25d19e855f Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 13 Aug 2019 11:50:13 +0200 Subject: [PATCH 263/594] Add maths/test_prime_check.py (#1125) * Add maths/test_prime_check.py * Add comments on why this file is required --- maths/test_prime_check.py | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 maths/test_prime_check.py diff --git a/maths/test_prime_check.py b/maths/test_prime_check.py new file mode 100644 index 000000000000..b6389684af9e --- /dev/null +++ b/maths/test_prime_check.py @@ -0,0 +1,8 @@ +""" +Minimalist file that allows pytest to find and run the Test unittest. For details, see: +http://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery +""" + +from .prime_check import Test + +Test() From dc2b575274ad4920a0e3f2303a80796daafce84f Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 13 Aug 2019 11:59:49 +0200 Subject: [PATCH 264/594] Add doctests to networking_flow/minimum_cut.py (#1126) --- networking_flow/minimum_cut.py | 57 +++++++++++++++++++--------------- 1 file changed, 32 insertions(+), 25 deletions(-) diff --git a/networking_flow/minimum_cut.py b/networking_flow/minimum_cut.py index 8ad6e03b00c6..7773df72f8f0 100644 --- a/networking_flow/minimum_cut.py +++ b/networking_flow/minimum_cut.py @@ -1,12 +1,21 @@ # Minimum cut on Ford_Fulkerson algorithm. - + +test_graph = [ + [0, 16, 13, 0, 0, 0], + [0, 0, 10, 12, 0, 0], + [0, 4, 0, 0, 14, 0], + [0, 0, 9, 0, 0, 20], + [0, 0, 0, 7, 0, 4], + [0, 0, 0, 0, 0, 0], +] + + def BFS(graph, s, t, parent): # Return True if there is node that has not iterated. - visited = [False]*len(graph) - queue=[] - queue.append(s) + visited = [False] * len(graph) + queue = [s] visited[s] = True - + while queue: u = queue.pop(0) for ind in range(len(graph[u])): @@ -16,26 +25,30 @@ def BFS(graph, s, t, parent): parent[ind] = u return True if visited[t] else False - + + def mincut(graph, source, sink): - # This array is filled by BFS and to store path - parent = [-1]*(len(graph)) - max_flow = 0 + """This array is filled by BFS and to store path + >>> mincut(test_graph, source=0, sink=5) + [(1, 3), (4, 3), (4, 5)] + """ + parent = [-1] * (len(graph)) + max_flow = 0 res = [] - temp = [i[:] for i in graph] # Record orignial cut, copy. - while BFS(graph, source, sink, parent) : + temp = [i[:] for i in graph] # Record orignial cut, copy. + while BFS(graph, source, sink, parent): path_flow = float("Inf") s = sink - while(s != source): + while s != source: # Find the minimum value in select path - path_flow = min (path_flow, graph[parent[s]][s]) + path_flow = min(path_flow, graph[parent[s]][s]) s = parent[s] - max_flow += path_flow + max_flow += path_flow v = sink - - while(v != source): + + while v != source: u = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow @@ -44,16 +57,10 @@ def mincut(graph, source, sink): for i in range(len(graph)): for j in range(len(graph[0])): if graph[i][j] == 0 and temp[i][j] > 0: - res.append((i,j)) + res.append((i, j)) return res -graph = [[0, 16, 13, 0, 0, 0], - [0, 0, 10 ,12, 0, 0], - [0, 4, 0, 0, 14, 0], - [0, 0, 9, 0, 0, 20], - [0, 0, 0, 7, 0, 4], - [0, 0, 0, 0, 0, 0]] -source, sink = 0, 5 -print(mincut(graph, source, sink)) \ No newline at end of file +if __name__ == "__main__": + print(mincut(test_graph, source=0, sink=5)) From f3c0b132bcfcf2773734e9418153af01f37475a2 Mon Sep 17 00:00:00 2001 From: adith bharadwaj Date: Tue, 13 Aug 2019 19:21:06 +0530 Subject: [PATCH 265/594] Added sudoku solving program in backtracking algorithms (#1128) * Added sudoku solver in backtracking * Added sudoku solver program * Added sudoku solver * Added sudoku solver * Format with black, add doctests, cleanup main --- backtracking/sudoku.py | 151 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 151 insertions(+) create mode 100644 backtracking/sudoku.py diff --git a/backtracking/sudoku.py b/backtracking/sudoku.py new file mode 100644 index 000000000000..b33351fd4911 --- /dev/null +++ b/backtracking/sudoku.py @@ -0,0 +1,151 @@ +""" + + Given a partially filled 9×9 2D array, the objective is to fill a 9×9 + square grid with digits numbered 1 to 9, so that every row, column, and + and each of the nine 3×3 sub-grids contains all of the digits. + + This can be solved using Backtracking and is similar to n-queens. + We check to see if a cell is safe or not and recursively call the + function on the next column to see if it returns True. if yes, we + have solved the puzzle. else, we backtrack and place another number + in that cell and repeat this process. + +""" + +# assigning initial values to the grid +initial_grid = [ + [3, 0, 6, 5, 0, 8, 4, 0, 0], + [5, 2, 0, 0, 0, 0, 0, 0, 0], + [0, 8, 7, 0, 0, 0, 0, 3, 1], + [0, 0, 3, 0, 1, 0, 0, 8, 0], + [9, 0, 0, 8, 6, 3, 0, 0, 5], + [0, 5, 0, 0, 9, 0, 6, 0, 0], + [1, 3, 0, 0, 0, 0, 2, 5, 0], + [0, 0, 0, 0, 0, 0, 0, 7, 4], + [0, 0, 5, 2, 0, 6, 3, 0, 0], +] +# a grid with no solution +no_solution = [ + [5, 0, 6, 5, 0, 8, 4, 0, 3], + [5, 2, 0, 0, 0, 0, 0, 0, 2], + [1, 8, 7, 0, 0, 0, 0, 3, 1], + [0, 0, 3, 0, 1, 0, 0, 8, 0], + [9, 0, 0, 8, 6, 3, 0, 0, 5], + [0, 5, 0, 0, 9, 0, 6, 0, 0], + [1, 3, 0, 0, 0, 0, 2, 5, 0], + [0, 0, 0, 0, 0, 0, 0, 7, 4], + [0, 0, 5, 2, 0, 6, 3, 0, 0], +] + + +def is_safe(grid, row, column, n): + """ + This function checks the grid to see if each row, + column, and the 3x3 subgrids contain the digit 'n'. + It returns False if it is not 'safe' (a duplicate digit + is found) else returns True if it is 'safe' + + """ + + for i in range(9): + if grid[row][i] == n or grid[i][column] == n: + return False + + for i in range(3): + for j in range(3): + if grid[(row - row % 3) + i][(column - column % 3) + j] == n: + return False + + return True + + +def is_completed(grid): + """ + This function checks if the puzzle is completed or not. + it is completed when all the cells are assigned with a number(not zero) + and There is no repeating number in any column, row or 3x3 subgrid. + + """ + + for row in grid: + for cell in row: + if cell == 0: + return False + + return True + + +def find_empty_location(grid): + """ + This function finds an empty location so that we can assign a number + for that particular row and column. + + """ + + for i in range(9): + for j in range(9): + if grid[i][j] == 0: + return i, j + + +def sudoku(grid): + """ + Takes a partially filled-in grid and attempts to assign values to + all unassigned locations in such a way to meet the requirements + for Sudoku solution (non-duplication across rows, columns, and boxes) + + >>> sudoku(initial_grid) # doctest: +NORMALIZE_WHITESPACE + [[3, 1, 6, 5, 7, 8, 4, 9, 2], + [5, 2, 9, 1, 3, 4, 7, 6, 8], + [4, 8, 7, 6, 2, 9, 5, 3, 1], + [2, 6, 3, 4, 1, 5, 9, 8, 7], + [9, 7, 4, 8, 6, 3, 1, 2, 5], + [8, 5, 1, 7, 9, 2, 6, 4, 3], + [1, 3, 8, 9, 4, 7, 2, 5, 6], + [6, 9, 2, 3, 5, 1, 8, 7, 4], + [7, 4, 5, 2, 8, 6, 3, 1, 9]] + >>> sudoku(no_solution) + False + """ + + if is_completed(grid): + return grid + + row, column = find_empty_location(grid) + + for digit in range(1, 10): + if is_safe(grid, row, column, digit): + grid[row][column] = digit + + if sudoku(grid): + return grid + + grid[row][column] = 0 + + return False + + +def print_solution(grid): + """ + A function to print the solution in the form + of a 9x9 grid + + """ + + for row in grid: + for cell in row: + print(cell, end=" ") + print() + + +if __name__ == "__main__": + + # make a copy of grid so that you can compare with the unmodified grid + for grid in (initial_grid, no_solution): + grid = list(map(list, grid)) + solution = sudoku(grid) + if solution: + print("grid after solving:") + print_solution(solution) + else: + print("Cannot find a solution.") From 8eab2f17f4e3378995b8ccdc8f547784e046fc31 Mon Sep 17 00:00:00 2001 From: Alok Shukla Date: Tue, 13 Aug 2019 22:46:11 +0530 Subject: [PATCH 266/594] Solution for Problem Euler 56 (#1131) * Solution for Euler 56 * Adding Type and Doctest as per guideline * removing unused import * correcting the way type check works --- project_euler/problem_56/__init__.py | 0 project_euler/problem_56/sol1.py | 26 ++++++++++++++++++++++++++ 2 files changed, 26 insertions(+) create mode 100644 project_euler/problem_56/__init__.py create mode 100644 project_euler/problem_56/sol1.py diff --git a/project_euler/problem_56/__init__.py b/project_euler/problem_56/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_56/sol1.py b/project_euler/problem_56/sol1.py new file mode 100644 index 000000000000..194a7a37af43 --- /dev/null +++ b/project_euler/problem_56/sol1.py @@ -0,0 +1,26 @@ + + +def maximum_digital_sum(a: int, b: int) -> int: + """ + Considering natural numbers of the form, a**b, where a, b < 100, + what is the maximum digital sum? + :param a: + :param b: + :return: + >>> maximum_digital_sum(10,10) + 45 + + >>> maximum_digital_sum(100,100) + 972 + + >>> maximum_digital_sum(100,200) + 1872 + """ + + # RETURN the MAXIMUM from the list of SUMs of the list of INT converted from STR of BASE raised to the POWER + return max([sum([int(x) for x in str(base**power)]) for base in range(a) for power in range(b)]) + +#Tests +if __name__ == "__main__": + import doctest + doctest.testmod() From 27205d454877e76fc753feb3dfd528d5d29b93f2 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 14 Aug 2019 23:24:58 +0200 Subject: [PATCH 267/594] Update DIRECTORY.md (#1129) --- DIRECTORY.md | 430 +++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 420 insertions(+), 10 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index d97791bb5dd3..80bf64ef4c30 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,395 +1,805 @@ ## Arithmetic Analysis + * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) + * [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) + * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) + * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) + * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) + * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) + ## Backtracking + * [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) + * [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) + * [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) + * [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) + * [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) + + * [sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) + * [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + ## Boolean Algebra + * [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) + ## Ciphers + * [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) + * [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) + * [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) + * [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) + * [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) + * [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) + * [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) + * [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) + * [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) + * [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) + * [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) + * [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) + * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) + * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) + * [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) + * [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) + * [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) + * [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) + * [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) + * [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) + * [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) + * [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) + * [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) + * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) + ## Compression + * [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) + * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) + * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + ## Conversions + * [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) + * [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) + * [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) + ## Data Structures + * Binary Tree + * [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) + * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) + * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) + * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + * [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) + * [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) + * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) + * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) + * Hashing + * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) + * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) + * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) + * Number Theory + * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) + * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) + * Heap + * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) + * Linked List + * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + * [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + * [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) + * Queue + * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) + * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) + * [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) + * Stacks + * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) + * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) + * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) + * [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) + * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) + * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) + * Trie + * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + ## Digital Image Processing + * [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) + * Edge Detection + * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) + * Filters + * [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) + * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) + * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) + * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) + + * [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) + ## Divide And Conquer + * [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) + * [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + ## Dynamic Programming + * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) + * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) + * [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) + * [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) + * [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) + * [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) + * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) + * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) + * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) + * [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) + * [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) + * [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) + * [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) + * [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) + * [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) + * [longest increasing subsequence o(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) + * [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) + * [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) + * [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) + * [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) + * [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) + * [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) + * [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) -## File Transfer Protocol - * [ftp client server](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_client_server.py) - * [ftp send receive](https://github.com/TheAlgorithms/Python/blob/master/file_transfer_protocol/ftp_send_receive.py) + +## File Transfer + + * [recieve file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) + + * [send file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) + ## Graphs + * [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) + * [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) + * [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) + * [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) + * [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) + * [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) + * [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) + * [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) + * [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) + * [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) + * [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) + * [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) + * [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) + * [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) + * [directed and undirected (weighted) graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) + * [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) + * [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) + * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) + * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) + * [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) + * [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) + * [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) + * [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) + * [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) + * [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) + * [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) + * [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) + * [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) + * [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) + * [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) + * [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) + ## Hashes + * [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) + * [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) + * [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) + * [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) -## Linear Algebra Python + +## Linear Algebra + * Src - * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/lib.py) - * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/tests.py) + + * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) + + * [python-polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/python-polynom-for-points.py) + + * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/tests.py) + ## Machine Learning - * [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb) + * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) + * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) + * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) + * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) + * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) + * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) - * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py) + + * [naive bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/naive_bayes.ipynb) + * Random Forest Classification + * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) + * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) + * Random Forest Regression + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) + * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) + * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) + ## Maths + * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) + * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) + * [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) + * [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) + * [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) + * [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) + * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) + + * [collatz sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) + * [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) + * [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) + * [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) + * [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) + * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) + * [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) + * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) + * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) + * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) + * [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) + * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) + * [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) + + * [largest of very large numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) + + * [lucas lehmer primality test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) + * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) + * [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) + * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) + * [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) + + * [quadratic equations complex numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) + * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) + * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) + * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) + + * [test prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) + * [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) + * [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) + + * [zellers congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) + ## Matrix + * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) + * [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) + * [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) + * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) + * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) + * Tests + * [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) + ## Networking Flow + * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) + * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) + ## Neural Network + * [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) + * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) + * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) + ## Other - * [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb) + * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) + * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) + * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) + * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) + * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) - * [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py) + * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) + + * [food wastage analysis from 1961-2013 fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) + * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) + * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) + * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) + * [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) + * [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) + * [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) + * [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) + * [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) + * [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) + * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) + * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + ## Project Euler + * Problem 01 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) + * [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) + * [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) + * Problem 02 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) + * Problem 03 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) + * Problem 04 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) + * Problem 05 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) + * Problem 06 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) + * Problem 07 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) + * Problem 08 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) + * Problem 09 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) + * Problem 10 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) + + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) + * Problem 11 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) + * Problem 12 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) + * Problem 13 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) + * Problem 14 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) + * Problem 15 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) + * Problem 16 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) + * Problem 17 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) + * Problem 19 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) + * Problem 20 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) + * Problem 21 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) + * Problem 22 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) + * Problem 234 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) + * Problem 24 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) + * Problem 25 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) + * Problem 28 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) + * Problem 29 + * [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) + * Problem 31 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) + * Problem 36 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) + * Problem 40 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) + * Problem 48 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) + * Problem 52 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) + * Problem 53 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) + * Problem 76 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) + ## Searches + * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) + * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) + * [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) + * [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) + * [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) + * [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) + * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) + * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + ## Sorts + * [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) + * [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) + * [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) + * [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) + * [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) + * [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) + * [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) + * [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) + * [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) + * [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) + * [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) + * [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) + * [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) + * [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) + * [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) + * [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) + * [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) + * [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) + * [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) + * [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) + * [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) + * [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) + * [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) + * [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) + * [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) + * [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) + * [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) + * [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) + * [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) + ## Strings + * [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) + * [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) + * [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) + * [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) + * [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) + * [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) + * [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + ## Traversals + * [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) From 3e69733e44d2789647b434a1a6d112062b143e00 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 15 Aug 2019 13:19:38 +0200 Subject: [PATCH 268/594] Remove 'python' from the filename (#1130) --- .../src/{python-polynom-for-points.py => polynom-for-points.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename linear_algebra/src/{python-polynom-for-points.py => polynom-for-points.py} (100%) diff --git a/linear_algebra/src/python-polynom-for-points.py b/linear_algebra/src/polynom-for-points.py similarity index 100% rename from linear_algebra/src/python-polynom-for-points.py rename to linear_algebra/src/polynom-for-points.py From 5bdcd4836c1a47fb14f7bf89339b3c99bf67fe51 Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Thu, 15 Aug 2019 14:07:43 -0400 Subject: [PATCH 269/594] =?UTF-8?q?EHN:=20A=20divide-and-conquer,=20and=20?= =?UTF-8?q?brute-force=20algorithms=20for=20array=20inversions=20co?= =?UTF-8?q?=E2=80=A6=20(#1133)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting --- divide_and_conquer/inversions.py | 173 +++++++++++++++++++++++++++++++ 1 file changed, 173 insertions(+) create mode 100644 divide_and_conquer/inversions.py diff --git a/divide_and_conquer/inversions.py b/divide_and_conquer/inversions.py new file mode 100644 index 000000000000..527741cad3b7 --- /dev/null +++ b/divide_and_conquer/inversions.py @@ -0,0 +1,173 @@ +from __future__ import print_function, absolute_import, division + +""" +Given an array-like data structure A[1..n], how many pairs +(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are +called inversions. Counting the number of such inversions in an array-like +object is the important. Among other things, counting inversions can help +us determine how close a given array is to being sorted + +In this implementation, I provide two algorithms, a divide-and-conquer +algorithm which runs in nlogn and the brute-force n^2 algorithm. + +""" + + +def count_inversions_bf(arr): + """ + Counts the number of inversions using a a naive brute-force algorithm + + Parameters + ---------- + arr: arr: array-like, the list containing the items for which the number + of inversions is desired. The elements of `arr` must be comparable. + + Returns + ------- + num_inversions: The total number of inversions in `arr` + + Examples + --------- + + >>> count_inversions_bf([1, 4, 2, 4, 1]) + 4 + >>> count_inversions_bf([1, 1, 2, 4, 4]) + 0 + >>> count_inversions_bf([]) + 0 + """ + + num_inversions = 0 + n = len(arr) + + for i in range(n-1): + for j in range(i + 1, n): + if arr[i] > arr[j]: + num_inversions += 1 + + return num_inversions + + +def count_inversions_recursive(arr): + """ + Counts the number of inversions using a divide-and-conquer algorithm + + Parameters + ----------- + arr: array-like, the list containing the items for which the number + of inversions is desired. The elements of `arr` must be comparable. + + Returns + ------- + C: a sorted copy of `arr`. + num_inversions: int, the total number of inversions in 'arr' + + Examples + -------- + + >>> count_inversions_recursive([1, 4, 2, 4, 1]) + ([1, 1, 2, 4, 4], 4) + >>> count_inversions_recursive([1, 1, 2, 4, 4]) + ([1, 1, 2, 4, 4], 0) + >>> count_inversions_recursive([]) + ([], 0) + """ + if len(arr) <= 1: + return arr, 0 + else: + mid = len(arr)//2 + P = arr[0:mid] + Q = arr[mid:] + + A, inversion_p = count_inversions_recursive(P) + B, inversions_q = count_inversions_recursive(Q) + C, cross_inversions = _count_cross_inversions(A, B) + + num_inversions = inversion_p + inversions_q + cross_inversions + return C, num_inversions + + +def _count_cross_inversions(P, Q): + """ + Counts the inversions across two sorted arrays. + And combine the two arrays into one sorted array + + For all 1<= i<=len(P) and for all 1 <= j <= len(Q), + if P[i] > Q[j], then (i, j) is a cross inversion + + Parameters + ---------- + P: array-like, sorted in non-decreasing order + Q: array-like, sorted in non-decreasing order + + Returns + ------ + R: array-like, a sorted array of the elements of `P` and `Q` + num_inversion: int, the number of inversions across `P` and `Q` + + Examples + -------- + + >>> _count_cross_inversions([1, 2, 3], [0, 2, 5]) + ([0, 1, 2, 2, 3, 5], 4) + >>> _count_cross_inversions([1, 2, 3], [3, 4, 5]) + ([1, 2, 3, 3, 4, 5], 0) + """ + + R = [] + i = j = num_inversion = 0 + while i < len(P) and j < len(Q): + if P[i] > Q[j]: + # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) + # These are all inversions. The claim emerges from the + # property that P is sorted. + num_inversion += (len(P) - i) + R.append(Q[j]) + j += 1 + else: + R.append(P[i]) + i += 1 + + if i < len(P): + R.extend(P[i:]) + else: + R.extend(Q[j:]) + + return R, num_inversion + + +def main(): + arr_1 = [10, 2, 1, 5, 5, 2, 11] + + # this arr has 8 inversions: + # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) + + num_inversions_bf = count_inversions_bf(arr_1) + _, num_inversions_recursive = count_inversions_recursive(arr_1) + + assert num_inversions_bf == num_inversions_recursive == 8 + + print("number of inversions = ", num_inversions_bf) + + # testing an array with zero inversion (a sorted arr_1) + + arr_1.sort() + num_inversions_bf = count_inversions_bf(arr_1) + _, num_inversions_recursive = count_inversions_recursive(arr_1) + + assert num_inversions_bf == num_inversions_recursive == 0 + print("number of inversions = ", num_inversions_bf) + + # an empty list should also have zero inversions + arr_1 = [] + num_inversions_bf = count_inversions_bf(arr_1) + _, num_inversions_recursive = count_inversions_recursive(arr_1) + + assert num_inversions_bf == num_inversions_recursive == 0 + print("number of inversions = ", num_inversions_bf) + + +if __name__ == "__main__": + main() + + From a18a8fe2b9e8cfa659d59e14b9a2077f37d86719 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 17 Aug 2019 00:46:33 +0200 Subject: [PATCH 270/594] Update .gitignore to remove __pycache__/ (#1127) --- .gitignore | 34 +++++++++++++++++++++++++--------- 1 file changed, 25 insertions(+), 9 deletions(-) diff --git a/.gitignore b/.gitignore index 0c3f33058614..b840d4ed0490 100644 --- a/.gitignore +++ b/.gitignore @@ -7,9 +7,7 @@ __pycache__/ *.so # Distribution / packaging -.vscode/ .Python -env/ build/ develop-eggs/ dist/ @@ -21,9 +19,11 @@ lib64/ parts/ sdist/ var/ +wheels/ *.egg-info/ .installed.cfg *.egg +MANIFEST # PyInstaller # Usually these files are written by a python script from a template @@ -43,8 +43,9 @@ htmlcov/ .cache nosetests.xml coverage.xml -*,cover +*.cover .hypothesis/ +.pytest_cache/ # Translations *.mo @@ -53,6 +54,7 @@ coverage.xml # Django stuff: *.log local_settings.py +db.sqlite3 # Flask stuff: instance/ @@ -67,7 +69,7 @@ docs/_build/ # PyBuilder target/ -# IPython Notebook +# Jupyter Notebook .ipynb_checkpoints # pyenv @@ -76,18 +78,32 @@ target/ # celery beat schedule file celerybeat-schedule -# dotenv -.env +# SageMath parsed files +*.sage.py -# virtualenv +# Environments +.env +.venv +env/ venv/ ENV/ +env.bak/ +venv.bak/ # Spyder project settings .spyderproject +.spyproject # Rope project settings .ropeproject -.idea + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + .DS_Store -.try \ No newline at end of file +.idea +.try +.vscode/ From 05c9a05f3663df7a93c0e50f9035c8b2c5f2754b Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Sat, 17 Aug 2019 11:36:31 -0400 Subject: [PATCH 271/594] ENH: two algorithms for the convex hull problem of a set of 2d points on a plain (#1135) * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * a naive and divide-and-conquer algorithms for the convex-hull problem * two convex-hull algorithms, a divide-and-conquer and a naive algorithm * two convex-hull algorithms, a divide-and-conquer and a naive algorithm * two convex-hull algorithms, a divide-and-conquer and a naive algorithm --- divide_and_conquer/convex_hull.py | 431 ++++++++++++++++++++++++++++++ 1 file changed, 431 insertions(+) create mode 100644 divide_and_conquer/convex_hull.py diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py new file mode 100644 index 000000000000..f15d74ddea68 --- /dev/null +++ b/divide_and_conquer/convex_hull.py @@ -0,0 +1,431 @@ +from __future__ import print_function, absolute_import, division + +from numbers import Number +""" +The convex hull problem is problem of finding all the vertices of convex polygon, P of +a set of points in a plane such that all the points are either on the vertices of P or +inside P. TH convex hull problem has several applications in geometrical problems, +computer graphics and game development. + +Two algorithms have been implemented for the convex hull problem here. +1. A brute-force algorithm which runs in O(n^3) +2. A divide-and-conquer algorithm which runs in O(n^3) + +There are other several other algorithms for the convex hull problem +which have not been implemented here, yet. + +""" + + +class Point: + """ + Defines a 2-d point for use by all convex-hull algorithms. + + Parameters + ---------- + x: an int or a float, the x-coordinate of the 2-d point + y: an int or a float, the y-coordinate of the 2-d point + + Examples + -------- + >>> Point(1, 2) + (1, 2) + >>> Point("1", "2") + (1.0, 2.0) + >>> Point(1, 2) > Point(0, 1) + True + >>> Point(1, 1) == Point(1, 1) + True + >>> Point(-0.5, 1) == Point(0.5, 1) + False + >>> Point("pi", "e") + Traceback (most recent call last): + ... + ValueError: x and y must be both numeric types but got , instead + """ + + def __init__(self, x, y): + if not (isinstance(x, Number) and isinstance(y, Number)): + try: + x, y = float(x), float(y) + except ValueError as e: + e.args = ("x and y must be both numeric types " + "but got {}, {} instead".format(type(x), type(y)), ) + raise + + self.x = x + self.y = y + + def __eq__(self, other): + return self.x == other.x and self.y == other.y + + def __ne__(self, other): + return not self == other + + def __gt__(self, other): + if self.x > other.x: + return True + elif self.x == other.x: + return self.y > other.y + return False + + def __lt__(self, other): + return not self > other + + def __ge__(self, other): + if self.x > other.x: + return True + elif self.x == other.x: + return self.y >= other.y + return False + + def __le__(self, other): + if self.x < other.x: + return True + elif self.x == other.x: + return self.y <= other.y + return False + + def __repr__(self): + return "({}, {})".format(self.x, self.y) + + def __hash__(self): + return hash(self.x) + + +def _construct_points(list_of_tuples): + """ + constructs a list of points from an array-like object of numbers + + Arguments + --------- + + list_of_tuples: array-like object of type numbers. Acceptable types so far + are lists, tuples and sets. + + Returns + -------- + points: a list where each item is of type Point. This contains only objects + which can be converted into a Point. + + Examples + ------- + >>> _construct_points([[1, 1], [2, -1], [0.3, 4]]) + [(1, 1), (2, -1), (0.3, 4)] + >>> _construct_points(([1, 1], [2, -1], [0.3, 4])) + [(1, 1), (2, -1), (0.3, 4)] + >>> _construct_points([(1, 1), (2, -1), (0.3, 4)]) + [(1, 1), (2, -1), (0.3, 4)] + >>> _construct_points([[1, 1], (2, -1), [0.3, 4]]) + [(1, 1), (2, -1), (0.3, 4)] + >>> _construct_points([1, 2]) + Ignoring deformed point 1. All points must have at least 2 coordinates. + Ignoring deformed point 2. All points must have at least 2 coordinates. + [] + >>> _construct_points([]) + [] + >>> _construct_points(None) + [] + """ + + points = [] + if list_of_tuples: + for p in list_of_tuples: + try: + points.append(Point(p[0], p[1])) + except (IndexError, TypeError): + print("Ignoring deformed point {}. All points" + " must have at least 2 coordinates.".format(p)) + return points + + +def _validate_input(points): + """ + validates an input instance before a convex-hull algorithms uses it + + Parameters + --------- + points: array-like, the 2d points to validate before using with + a convex-hull algorithm. The elements of points must be either lists, tuples or + Points. + + Returns + ------- + points: array_like, an iterable of all well-defined Points constructed passed in. + + + Exception + --------- + ValueError: if points is empty or None, or if a wrong data structure like a scalar is passed + + TypeError: if an iterable but non-indexable object (eg. dictionary) is passed. + The exception to this a set which we'll convert to a list before using + + + Examples + ------- + >>> _validate_input([[1, 2]]) + [(1, 2)] + >>> _validate_input([(1, 2)]) + [(1, 2)] + >>> _validate_input([Point(2, 1), Point(-1, 2)]) + [(2, 1), (-1, 2)] + >>> _validate_input([]) + Traceback (most recent call last): + ... + ValueError: Expecting a list of points but got [] + >>> _validate_input(1) + Traceback (most recent call last): + ... + ValueError: Expecting an iterable object but got an non-iterable type 1 + """ + + if not points: + raise ValueError("Expecting a list of points but got {}".format(points)) + + if isinstance(points, set): + points = list(points) + + try: + if hasattr(points, "__iter__") and not isinstance(points[0], Point): + if isinstance(points[0], (list, tuple)): + points = _construct_points(points) + else: + raise ValueError("Expecting an iterable of type Point, list or tuple. " + "Found objects of type {} instead" + .format(["point", "list", "tuple"], type(points[0]))) + elif not hasattr(points, "__iter__"): + raise ValueError("Expecting an iterable object " + "but got an non-iterable type {}".format(points)) + except TypeError as e: + print("Expecting an iterable of type Point, list or tuple.") + raise + + return points + + +def _det(a, b, c): + """ + Computes the sign perpendicular distance of a 2d point c from a line segment + ab. The sign indicates the direction of c relative to ab. + A Positive value means c is above ab (to the left), while a negative value + means c is below ab (to the right). 0 means all three points are on a straight line. + + As a side note, 0.5 * abs|det| is the area of triangle abc + + Parameters + ---------- + a: point, the point on the left end of line segment ab + b: point, the point on the right end of line segment ab + c: point, the point for which the direction and location is desired. + + Returns + -------- + det: float, abs(det) is the distance of c from ab. The sign + indicates which side of line segment ab c is. det is computed as + (a_xb_y + c_xa_y + b_xc_y) - (a_yb_x + c_ya_x + b_yc_x) + + Examples + ---------- + >>> _det(Point(1, 1), Point(1, 2), Point(1, 5)) + 0 + >>> _det(Point(0, 0), Point(10, 0), Point(0, 10)) + 100 + >>> _det(Point(0, 0), Point(10, 0), Point(0, -10)) + -100 + """ + + det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x) + return det + + +def convex_hull_bf(points): + """ + Constructs the convex hull of a set of 2D points using a brute force algorithm. + The algorithm basically considers all combinations of points (i, j) and uses the + definition of convexity to determine whether (i, j) is part of the convex hull or not. + (i, j) is part of the convex hull if and only iff there are no points on both sides + of the line segment connecting the ij, and there is no point k such that k is on either end + of the ij. + + Runtime: O(n^3) - definitely horrible + + Parameters + --------- + points: array-like of object of Points, lists or tuples. + The set of 2d points for which the convex-hull is needed + + Returns + ------ + convex_set: list, the convex-hull of points sorted in non-decreasing order. + + See Also + -------- + convex_hull_recursive, + + Examples + --------- + >>> convex_hull_bf([[0, 0], [1, 0], [10, 1]]) + [(0, 0), (1, 0), (10, 1)] + >>> convex_hull_bf([[0, 0], [1, 0], [10, 0]]) + [(0, 0), (10, 0)] + >>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) + [(-1, -1), (-1, 1), (1, -1), (1, 1)] + >>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) + [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] + """ + + points = sorted(_validate_input(points)) + n = len(points) + convex_set = set() + + for i in range(n-1): + for j in range(i + 1, n): + points_left_of_ij = points_right_of_ij = False + ij_part_of_convex_hull = True + for k in range(n): + if k != i and k != j: + det_k = _det(points[i], points[j], points[k]) + + if det_k > 0: + points_left_of_ij = True + elif det_k < 0: + points_right_of_ij = True + else: + # point[i], point[j], point[k] all lie on a straight line + # if point[k] is to the left of point[i] or it's to the + # right of point[j], then point[i], point[j] cannot be + # part of the convex hull of A + if points[k] < points[i] or points[k] > points[j]: + ij_part_of_convex_hull = False + break + + if points_left_of_ij and points_right_of_ij: + ij_part_of_convex_hull = False + break + + if ij_part_of_convex_hull: + convex_set.update([points[i], points[j]]) + + return sorted(convex_set) + + +def convex_hull_recursive(points): + """ + Constructs the convex hull of a set of 2D points using a divide-and-conquer strategy + The algorithm exploits the geometric properties of the problem by repeatedly partitioning + the set of points into smaller hulls, and finding the convex hull of these smaller hulls. + The union of the convex hull from smaller hulls is the solution to the convex hull of the larger problem. + + Parameter + --------- + points: array-like of object of Points, lists or tuples. + The set of 2d points for which the convex-hull is needed + + Runtime: O(n log n) + + Returns + ------- + convex_set: list, the convex-hull of points sorted in non-decreasing order. + + Examples + --------- + >>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]]) + [(0, 0), (1, 0), (10, 1)] + >>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]]) + [(0, 0), (10, 0)] + >>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) + [(-1, -1), (-1, 1), (1, -1), (1, 1)] + >>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) + [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] + + """ + points = sorted(_validate_input(points)) + n = len(points) + + # divide all the points into an upper hull and a lower hull + # the left most point and the right most point are definitely + # members of the convex hull by definition. + # use these two anchors to divide all the points into two hulls, + # an upper hull and a lower hull. + + # all points to the left (above) the line joining the extreme points belong to the upper hull + # all points to the right (below) the line joining the extreme points below to the lower hull + # ignore all points on the line joining the extreme points since they cannot be part of the + # convex hull + + left_most_point = points[0] + right_most_point = points[n-1] + + convex_set = {left_most_point, right_most_point} + upperhull = [] + lowerhull = [] + + for i in range(1, n-1): + det = _det(left_most_point, right_most_point, points[i]) + + if det > 0: + upperhull.append(points[i]) + elif det < 0: + lowerhull.append(points[i]) + + _construct_hull(upperhull, left_most_point, right_most_point, convex_set) + _construct_hull(lowerhull, right_most_point, left_most_point, convex_set) + + return sorted(convex_set) + + +def _construct_hull(points, left, right, convex_set): + """ + + Parameters + --------- + points: list or None, the hull of points from which to choose the next convex-hull point + left: Point, the point to the left of line segment joining left and right + right: The point to the right of the line segment joining left and right + convex_set: set, the current convex-hull. The state of convex-set gets updated by this function + + Note + ---- + For the line segment 'ab', 'a' is on the left and 'b' on the right. + but the reverse is true for the line segment 'ba'. + + Returns + ------- + Nothing, only updates the state of convex-set + """ + if points: + extreme_point = None + extreme_point_distance = float('-inf') + candidate_points = [] + + for p in points: + det = _det(left, right, p) + + if det > 0: + candidate_points.append(p) + + if det > extreme_point_distance: + extreme_point_distance = det + extreme_point = p + + if extreme_point: + _construct_hull(candidate_points, left, extreme_point, convex_set) + convex_set.add(extreme_point) + _construct_hull(candidate_points, extreme_point, right, convex_set) + + +def main(): + points = [(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), + (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)] + # the convex set of points is + # [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] + results_recursive = convex_hull_recursive(points) + results_bf = convex_hull_bf(points) + assert results_bf == results_recursive + + print(results_bf) + + +if __name__ == '__main__': + main() From 5d46a4dd7beeeeb27f393b972effe785feab7306 Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Mon, 19 Aug 2019 01:39:39 -0400 Subject: [PATCH 272/594] ENH: Added a functionality to make it possible to reconstruct an optimal subset for the dynamic programming problem (#1139) * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * some pep8 cleanup too --- dynamic_programming/knapsack.py | 131 ++++++++++++++++++++++++++++---- 1 file changed, 116 insertions(+), 15 deletions(-) diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py index 27d1cfed799b..488059d6244d 100644 --- a/dynamic_programming/knapsack.py +++ b/dynamic_programming/knapsack.py @@ -1,7 +1,13 @@ """ -Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. +Given weights and values of n items, put these items in a knapsack of + capacity W to get the maximum total value in the knapsack. + +Note that only the integer weights 0-1 knapsack problem is solvable + using dynamic programming. """ -def MF_knapsack(i,wt,val,j): + + +def MF_knapsack(i, wt, val, j): ''' This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example @@ -9,34 +15,129 @@ def MF_knapsack(i,wt,val,j): ''' global F # a global dp table for knapsack if F[i][j] < 0: - if j < wt[i - 1]: - val = MF_knapsack(i - 1,wt,val,j) + if j < wt[i-1]: + val = MF_knapsack(i-1, wt, val, j) else: - val = max(MF_knapsack(i - 1,wt,val,j),MF_knapsack(i - 1,wt,val,j - wt[i - 1]) + val[i - 1]) + val = max(MF_knapsack(i-1, wt, val, j), + MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1]) F[i][j] = val return F[i][j] + def knapsack(W, wt, val, n): dp = [[0 for i in range(W+1)]for j in range(n+1)] for i in range(1,n+1): - for w in range(1,W+1): - if(wt[i-1]<=w): - dp[i][w] = max(val[i-1]+dp[i-1][w-wt[i-1]],dp[i-1][w]) + for w in range(1, W+1): + if wt[i-1] <= w: + dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]) else: dp[i][w] = dp[i-1][w] - return dp[n][w] + return dp[n][W], dp + + +def knapsack_with_example_solution(W: int, wt: list, val:list): + """ + Solves the integer weights knapsack problem returns one of + the several possible optimal subsets. + + Parameters + --------- + + W: int, the total maximum weight for the given knapsack problem. + wt: list, the vector of weights for all items where wt[i] is the weight + of the ith item. + val: list, the vector of values for all items where val[i] is the value + of te ith item + + Returns + ------- + optimal_val: float, the optimal value for the given knapsack problem + example_optional_set: set, the indices of one of the optimal subsets + which gave rise to the optimal value. + + Examples + ------- + >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) + (142, {2, 3, 4}) + >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) + (8, {3, 4}) + >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) + Traceback (most recent call last): + ... + ValueError: The number of weights must be the same as the number of values. + But got 4 weights and 3 values + """ + if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): + raise ValueError("Both the weights and values vectors must be either lists or tuples") + + num_items = len(wt) + if num_items != len(val): + raise ValueError("The number of weights must be the " + "same as the number of values.\nBut " + "got {} weights and {} values".format(num_items, len(val))) + for i in range(num_items): + if not isinstance(wt[i], int): + raise TypeError("All weights must be integers but " + "got weight of type {} at index {}".format(type(wt[i]), i)) + + optimal_val, dp_table = knapsack(W, wt, val, num_items) + example_optional_set = set() + _construct_solution(dp_table, wt, num_items, W, example_optional_set) + + return optimal_val, example_optional_set + + +def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): + """ + Recursively reconstructs one of the optimal subsets given + a filled DP table and the vector of weights + + Parameters + --------- + + dp: list of list, the table of a solved integer weight dynamic programming problem + + wt: list or tuple, the vector of weights of the items + i: int, the index of the item under consideration + j: int, the current possible maximum weight + optimal_set: set, the optimal subset so far. This gets modified by the function. + + Returns + ------- + None + + """ + # for the current item i at a maximum weight j to be part of an optimal subset, + # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). + # where i - 1 means considering only the previous items at the given maximum weight + if i > 0 and j > 0: + if dp[i - 1][j] == dp[i][j]: + _construct_solution(dp, wt, i - 1, j, optimal_set) + else: + optimal_set.add(i) + _construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set) + if __name__ == '__main__': ''' Adding test case for knapsack ''' - val = [3,2,4,4] - wt = [4,3,2,3] + val = [3, 2, 4, 4] + wt = [4, 3, 2, 3] n = 4 w = 6 - F = [[0]*(w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] - print(knapsack(w,wt,val,n)) - print(MF_knapsack(n,wt,val,w)) # switched the n and w - + F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] + optimal_solution, _ = knapsack(w,wt,val, n) + print(optimal_solution) + print(MF_knapsack(n,wt,val,w)) # switched the n and w + + # testing the dynamic programming problem with example + # the optimal subset for the above example are items 3 and 4 + optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) + assert optimal_solution == 8 + assert optimal_subset == {3, 4} + print("optimal_value = ", optimal_solution) + print("An optimal subset corresponding to the optimal value", optimal_subset) + From 32aa7ff0819dba3d2166b8a66317999a7790e510 Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Mon, 19 Aug 2019 03:40:36 -0400 Subject: [PATCH 273/594] ENH: refactored longest common subsequence, also fixed a bug with the sequence returned (#1142) * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * some pep8 cleanup too * ENH: refactored longest common subsequence, also fixed a bug with the sequence returned * renamed function --- .../longest_common_subsequence.py | 90 ++++++++++++++----- 1 file changed, 68 insertions(+), 22 deletions(-) diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index 0a4771cb2efd..7836fe303688 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -1,37 +1,83 @@ """ LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. -A subsequence is a sequence that appears in the same relative order, but not necessarily continious. +A subsequence is a sequence that appears in the same relative order, but not necessarily continuous. Example:"abc", "abg" are subsequences of "abcdefgh". """ from __future__ import print_function -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 -def lcs_dp(x, y): +def longest_common_subsequence(x: str, y: str): + """ + Finds the longest common subsequence between two strings. Also returns the + The subsequence found + + Parameters + ---------- + + x: str, one of the strings + y: str, the other string + + Returns + ------- + L[m][n]: int, the length of the longest subsequence. Also equal to len(seq) + Seq: str, the subsequence found + + >>> longest_common_subsequence("programming", "gaming") + (6, 'gaming') + >>> longest_common_subsequence("physics", "smartphone") + (2, 'ph') + >>> longest_common_subsequence("computer", "food") + (1, 'o') + """ # find the length of strings + + assert x is not None + assert y is not None + m = len(x) n = len(y) # declaring the array for storing the dp values - L = [[None] * (n + 1) for i in xrange(m + 1)] - seq = [] - - for i in range(m + 1): - for j in range(n + 1): - if i == 0 or j == 0: - L[i][j] = 0 - elif x[i - 1] == y[ j - 1]: - L[i][j] = L[i - 1][j - 1] + 1 - seq.append(x[i -1]) + L = [[0] * (n + 1) for _ in range(m + 1)] + + for i in range(1, m + 1): + for j in range(1, n + 1): + if x[i-1] == y[j-1]: + match = 1 else: - L[i][j] = max(L[i - 1][j], L[i][j - 1]) - # L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1] + match = 0 + + L[i][j] = max(L[i-1][j], L[i][j-1], L[i-1][j-1] + match) + + seq = "" + i, j = m, n + while i > 0 and i > 0: + if x[i - 1] == y[j - 1]: + match = 1 + else: + match = 0 + + if L[i][j] == L[i - 1][j - 1] + match: + if match == 1: + seq = x[i - 1] + seq + i -= 1 + j -= 1 + elif L[i][j] == L[i - 1][j]: + i -= 1 + else: + j -= 1 + return L[m][n], seq -if __name__=='__main__': - x = 'AGGTAB' - y = 'GXTXAYB' - print(lcs_dp(x, y)) + +if __name__ == '__main__': + a = 'AGGTAB' + b = 'GXTXAYB' + expected_ln = 4 + expected_subseq = "GTAB" + + ln, subseq = longest_common_subsequence(a, b) + assert expected_ln == ln + assert expected_subseq == subseq + print("len =", ln, ", sub-sequence =", subseq) + From 47a9ea2b0b4eaef3e748d4d61763a77abc3e48cb Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 19 Aug 2019 15:37:49 +0200 Subject: [PATCH 274/594] Simplify code by dropping support for legacy Python (#1143) * Simplify code by dropping support for legacy Python * sort() --> sorted() --- CONTRIBUTING.md | 20 +++--- ciphers/affine_cipher.py | 1 - ciphers/atbash.py | 20 ++---- ciphers/brute_force_caesar_cipher.py | 1 - ciphers/onepad_cipher.py | 4 +- ciphers/rabin_miller.py | 1 - ciphers/rot13.py | 1 - ciphers/rsa_cipher.py | 3 +- ciphers/rsa_key_generator.py | 1 - ciphers/simple_substitution_cipher.py | 5 +- ciphers/transposition_cipher.py | 1 - ...ansposition_cipher_encrypt_decrypt_file.py | 7 +- ciphers/vigenere_cipher.py | 1 - .../binary_tree/binary_search_tree.py | 15 ++-- data_structures/binary_tree/fenwick_tree.py | 1 - .../binary_tree/lazy_segment_tree.py | 1 - data_structures/binary_tree/segment_tree.py | 1 - data_structures/heap/heap.py | 13 +--- .../linked_list/doubly_linked_list.py | 27 ++++--- .../linked_list/singly_linked_list.py | 13 ++-- data_structures/queue/double_ended_queue.py | 1 - .../stacks/balanced_parentheses.py | 3 - .../stacks/infix_to_postfix_conversion.py | 2 - .../stacks/next_greater_element.py | 9 ++- data_structures/stacks/stack.py | 1 - data_structures/stacks/stock_span_problem.py | 1 - divide_and_conquer/convex_hull.py | 12 ++-- divide_and_conquer/inversions.py | 14 ++-- dynamic_programming/bitmask.py | 35 +++++---- dynamic_programming/coin_change.py | 3 - dynamic_programming/edit_distance.py | 23 ++---- dynamic_programming/fast_fibonacci.py | 1 - dynamic_programming/fibonacci.py | 14 ++-- dynamic_programming/integer_partition.py | 22 ++---- .../longest_common_subsequence.py | 2 - .../longest_increasing_subsequence.py | 4 +- ...longest_increasing_subsequence_o(nlogn).py | 21 +++--- dynamic_programming/longest_sub_array.py | 1 - dynamic_programming/matrix_chain_order.py | 2 - dynamic_programming/max_sub_array.py | 23 +++--- graphs/a_star.py | 16 ++--- graphs/basic_graphs.py | 53 ++++++-------- graphs/bellman_ford.py | 2 - graphs/breadth_first_search.py | 2 - graphs/depth_first_search.py | 1 - graphs/dijkstra_2.py | 2 - graphs/dijkstra_algorithm.py | 1 - graphs/even_tree.py | 1 - graphs/graph_list.py | 1 - graphs/graph_matrix.py | 3 - graphs/graphs_floyd_warshall.py | 8 +-- graphs/minimum_spanning_tree_kruskal.py | 2 - graphs/multi_hueristic_astar.py | 8 +-- graphs/scc_kosaraju.py | 3 - hashes/chaos_machine.py | 8 +-- hashes/enigma_machine.py | 2 - hashes/md5.py | 5 +- machine_learning/decision_tree.py | 10 ++- machine_learning/gradient_descent.py | 1 - machine_learning/k_means_clust.py | 71 +++++++++---------- machine_learning/linear_regression.py | 2 - maths/simpson_rule.py | 3 - maths/trapezoidal_rule.py | 4 +- maths/zellers_congruence.py | 5 +- ...h_fibonacci_using_matrix_exponentiation.py | 3 - neural_network/convolution_neural_network.py | 2 - neural_network/perceptron.py | 2 - other/anagrams.py | 1 - other/euclidean_gcd.py | 1 - other/linear_congruential_generator.py | 7 +- other/nested_brackets.py | 3 - other/password_generator.py | 1 - other/tower_of_hanoi.py | 3 +- other/two_sum.py | 4 +- other/word_patterns.py | 1 - project_euler/problem_01/sol1.py | 12 +--- project_euler/problem_01/sol2.py | 10 +-- project_euler/problem_01/sol3.py | 12 +--- project_euler/problem_01/sol4.py | 12 +--- project_euler/problem_01/sol5.py | 10 +-- project_euler/problem_01/sol6.py | 12 +--- project_euler/problem_02/sol1.py | 12 +--- project_euler/problem_02/sol2.py | 12 +--- project_euler/problem_02/sol3.py | 12 +--- project_euler/problem_02/sol4.py | 10 +-- project_euler/problem_03/sol1.py | 8 +-- project_euler/problem_03/sol2.py | 8 +-- project_euler/problem_04/sol1.py | 12 +--- project_euler/problem_04/sol2.py | 12 +--- project_euler/problem_05/sol1.py | 10 +-- project_euler/problem_05/sol2.py | 11 +-- project_euler/problem_06/sol1.py | 12 +--- project_euler/problem_06/sol2.py | 12 +--- project_euler/problem_06/sol3.py | 10 +-- project_euler/problem_07/sol1.py | 10 +-- project_euler/problem_07/sol2.py | 12 +--- project_euler/problem_07/sol3.py | 10 +-- project_euler/problem_09/sol1.py | 3 +- project_euler/problem_09/sol2.py | 12 +--- project_euler/problem_09/sol3.py | 3 - project_euler/problem_10/sol1.py | 19 ++--- project_euler/problem_10/sol2.py | 10 +-- project_euler/problem_11/sol1.py | 14 ++-- project_euler/problem_11/sol2.py | 26 +++---- project_euler/problem_12/sol1.py | 10 +-- project_euler/problem_12/sol2.py | 5 +- project_euler/problem_14/sol1.py | 12 +--- project_euler/problem_14/sol2.py | 10 +-- project_euler/problem_21/sol1.py | 8 +-- project_euler/problem_22/sol1.py | 6 -- project_euler/problem_25/sol1.py | 8 +-- project_euler/problem_28/sol1.py | 7 +- project_euler/problem_29/solution.py | 5 +- project_euler/problem_31/sol1.py | 8 --- project_euler/problem_36/sol1.py | 8 +-- project_euler/problem_40/sol1.py | 5 +- project_euler/problem_48/sol1.py | 7 +- project_euler/problem_53/sol1.py | 10 +-- project_euler/problem_76/sol1.py | 14 ++-- searches/binary_search.py | 14 ++-- searches/interpolation_search.py | 24 +++---- searches/jump_search.py | 1 - searches/linear_search.py | 9 +-- searches/sentinel_linear_search.py | 9 +-- searches/ternary_search.py | 29 +++----- sorts/bogo_sort.py | 8 +-- sorts/bubble_sort.py | 19 +++-- sorts/cocktail_shaker_sort.py | 15 ++-- sorts/comb_sort.py | 7 +- sorts/counting_sort.py | 13 ++-- sorts/cycle_sort.py | 10 +-- sorts/gnome_sort.py | 9 +-- sorts/heap_sort.py | 10 +-- sorts/insertion_sort.py | 10 +-- sorts/merge_sort.py | 10 +-- sorts/merge_sort_fastest.py | 10 +-- sorts/pigeon_sort.py | 10 +-- sorts/quick_sort.py | 10 +-- sorts/quick_sort_3_partition.py | 9 +-- sorts/random_normal_distribution_quicksort.py | 22 +++--- sorts/selection_sort.py | 10 +-- sorts/shell_sort.py | 10 +-- sorts/topological_sort.py | 1 - strings/levenshtein_distance.py | 9 +-- strings/min_cost_string_conversion.py | 31 ++++---- 145 files changed, 367 insertions(+), 976 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 3202b817f1c5..8c0f54ad528d 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -56,7 +56,7 @@ We want your work to be readable by others; therefore, we encourage you to note ```python """ - This function sums a and b + This function sums a and b """ def sum(a, b): return a + b @@ -82,13 +82,13 @@ We want your work to be readable by others; therefore, we encourage you to note The following "testing" approaches are **not** encouraged: ```python - input('Enter your input:') + input('Enter your input:') # Or even worse... - input = eval(raw_input("Enter your input: ")) + input = eval(input("Enter your input: ")) ``` - + However, if your code uses __input()__ then we encourage you to gracefully deal with leading and trailing whitespace in user input by adding __.strip()__ to the end as in: - + ```python starting_value = int(input("Please enter a starting value: ").strip()) ``` @@ -99,13 +99,13 @@ We want your work to be readable by others; therefore, we encourage you to note def sumab(a, b): return a + b # Write tests this way: - print(sumab(1,2)) # 1+2 = 3 - print(sumab(6,4)) # 6+4 = 10 + print(sumab(1, 2)) # 1+2 = 3 + print(sumab(6, 4)) # 6+4 = 10 # Or this way: - print("1 + 2 = ", sumab(1,2)) # 1+2 = 3 - print("6 + 4 = ", sumab(6,4)) # 6+4 = 10 + print("1 + 2 = ", sumab(1, 2)) # 1+2 = 3 + print("6 + 4 = ", sumab(6, 4)) # 6+4 = 10 ``` - + Better yet, if you know how to write [__doctests__](https://docs.python.org/3/library/doctest.html), please consider adding them. - Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py index af5f4e0ff4c6..a5d94f087dbf 100644 --- a/ciphers/affine_cipher.py +++ b/ciphers/affine_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function import sys, random, cryptomath_module as cryptoMath SYMBOLS = r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" diff --git a/ciphers/atbash.py b/ciphers/atbash.py index 5653f0213745..9ed47e0874f8 100644 --- a/ciphers/atbash.py +++ b/ciphers/atbash.py @@ -1,23 +1,15 @@ -try: # Python 2 - raw_input - unichr -except NameError: # Python 3 - raw_input = input - unichr = chr - - -def Atbash(): +def atbash(): output="" - for i in raw_input("Enter the sentence to be encrypted ").strip(): + for i in input("Enter the sentence to be encrypted ").strip(): extract = ord(i) if 65 <= extract <= 90: - output += unichr(155-extract) + output += chr(155-extract) elif 97 <= extract <= 122: - output += unichr(219-extract) + output += chr(219-extract) else: - output+=i + output += i print(output) if __name__ == '__main__': - Atbash() + atbash() diff --git a/ciphers/brute_force_caesar_cipher.py b/ciphers/brute_force_caesar_cipher.py index 3b0716442fc5..3e6e975c8297 100644 --- a/ciphers/brute_force_caesar_cipher.py +++ b/ciphers/brute_force_caesar_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function def decrypt(message): """ >>> decrypt('TMDETUX PMDVU') diff --git a/ciphers/onepad_cipher.py b/ciphers/onepad_cipher.py index 6afbd45249ec..1dac270bda1f 100644 --- a/ciphers/onepad_cipher.py +++ b/ciphers/onepad_cipher.py @@ -1,5 +1,3 @@ -from __future__ import print_function - import random @@ -15,7 +13,7 @@ def encrypt(self, text): cipher.append(c) key.append(k) return cipher, key - + def decrypt(self, cipher, key): '''Function to decrypt text using psedo-random numbers.''' plain = [] diff --git a/ciphers/rabin_miller.py b/ciphers/rabin_miller.py index f71fb03c0051..21378cff6885 100644 --- a/ciphers/rabin_miller.py +++ b/ciphers/rabin_miller.py @@ -1,4 +1,3 @@ -from __future__ import print_function # Primality Testing with the Rabin-Miller Algorithm import random diff --git a/ciphers/rot13.py b/ciphers/rot13.py index 2abf981e9d7d..208de4890e67 100644 --- a/ciphers/rot13.py +++ b/ciphers/rot13.py @@ -1,4 +1,3 @@ -from __future__ import print_function def dencrypt(s, n): out = '' for c in s: diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index d81f1ffc1a1e..02e5d95d1e95 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function import sys, rsa_key_generator as rkg, os DEFAULT_BLOCK_SIZE = 128 @@ -16,7 +15,7 @@ def main(): if mode == 'encrypt': if not os.path.exists('rsa_pubkey.txt'): rkg.makeKeyFiles('rsa', 1024) - + message = input('\nEnter message: ') pubKeyFilename = 'rsa_pubkey.txt' print('Encrypting and writing to %s...' % (filename)) diff --git a/ciphers/rsa_key_generator.py b/ciphers/rsa_key_generator.py index 541e90d6e884..7cd7163b68d5 100644 --- a/ciphers/rsa_key_generator.py +++ b/ciphers/rsa_key_generator.py @@ -1,4 +1,3 @@ -from __future__ import print_function import random, sys, os import rabin_miller as rabinMiller, cryptomath_module as cryptoMath diff --git a/ciphers/simple_substitution_cipher.py b/ciphers/simple_substitution_cipher.py index 1bdd7dc04a57..5da07f8526b9 100644 --- a/ciphers/simple_substitution_cipher.py +++ b/ciphers/simple_substitution_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function import sys, random LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' @@ -18,7 +17,7 @@ def main(): translated = decryptMessage(key, message) print('\n%sion: \n%s' % (mode.title(), translated)) - + def checkValidKey(key): keyList = list(key) lettersList = list(LETTERS) @@ -49,7 +48,7 @@ def translateMessage(key, message, mode): if mode == 'decrypt': charsA, charsB = charsB, charsA - + for symbol in message: if symbol.upper() in charsA: symIndex = charsA.find(symbol.upper()) diff --git a/ciphers/transposition_cipher.py b/ciphers/transposition_cipher.py index dbb358315d22..1c2ed0aa0452 100644 --- a/ciphers/transposition_cipher.py +++ b/ciphers/transposition_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math def main(): diff --git a/ciphers/transposition_cipher_encrypt_decrypt_file.py b/ciphers/transposition_cipher_encrypt_decrypt_file.py index a186cf81cde7..8ebfc1ea7e0c 100644 --- a/ciphers/transposition_cipher_encrypt_decrypt_file.py +++ b/ciphers/transposition_cipher_encrypt_decrypt_file.py @@ -1,4 +1,3 @@ -from __future__ import print_function import time, os, sys import transposition_cipher as transCipher @@ -16,7 +15,7 @@ def main(): response = input('> ') if not response.lower().startswith('y'): sys.exit() - + startTime = time.time() if mode.lower().startswith('e'): with open(inputFile) as f: @@ -29,9 +28,9 @@ def main(): with open(outputFile, 'w') as outputObj: outputObj.write(translated) - + totalTime = round(time.time() - startTime, 2) print(('Done (', totalTime, 'seconds )')) - + if __name__ == '__main__': main() diff --git a/ciphers/vigenere_cipher.py b/ciphers/vigenere_cipher.py index 5d5be0792835..95eeb431109f 100644 --- a/ciphers/vigenere_cipher.py +++ b/ciphers/vigenere_cipher.py @@ -1,4 +1,3 @@ -from __future__ import print_function LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def main(): diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index cef5b55f245d..634b6cbcc231 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -1,7 +1,6 @@ ''' A binary search Tree ''' -from __future__ import print_function class Node: def __init__(self, label, parent): @@ -66,8 +65,8 @@ def insert(self, label): else: parent_node.setRight(new_node) #Set parent to the new node - new_node.setParent(parent_node) - + new_node.setParent(parent_node) + def delete(self, label): if (not self.empty()): #Look for the node with that label @@ -92,7 +91,7 @@ def delete(self, label): self.delete(tmpNode.getLabel()) #Assigns the value to the node to delete and keesp tree structure node.setLabel(tmpNode.getLabel()) - + def getNode(self, label): curr_node = None #If the tree is not empty @@ -177,7 +176,7 @@ def traversalTree(self, traversalFunction = None, root = None): #Returns a list of nodes in the order that the users wants to return traversalFunction(self.root) - #Returns an string of all the nodes labels in the list + #Returns an string of all the nodes labels in the list #In Order Traversal def __str__(self): list = self.__InOrderTraversal(self.root) @@ -203,7 +202,7 @@ def testBinarySearchTree(): / \ \ 1 6 14 / \ / - 4 7 13 + 4 7 13 ''' r''' @@ -236,11 +235,11 @@ def testBinarySearchTree(): print("The label -1 exists") else: print("The label -1 doesn't exist") - + if(not t.empty()): print(("Max Value: ", t.getMax().getLabel())) print(("Min Value: ", t.getMin().getLabel())) - + t.delete(13) t.delete(10) t.delete(8) diff --git a/data_structures/binary_tree/fenwick_tree.py b/data_structures/binary_tree/fenwick_tree.py index ef984082d9e8..30a87fbd7fcf 100644 --- a/data_structures/binary_tree/fenwick_tree.py +++ b/data_structures/binary_tree/fenwick_tree.py @@ -1,4 +1,3 @@ -from __future__ import print_function class FenwickTree: def __init__(self, SIZE): # create fenwick tree with size SIZE diff --git a/data_structures/binary_tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py index 215399976dd3..bbe37a6eb97f 100644 --- a/data_structures/binary_tree/lazy_segment_tree.py +++ b/data_structures/binary_tree/lazy_segment_tree.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math class SegmentTree: diff --git a/data_structures/binary_tree/segment_tree.py b/data_structures/binary_tree/segment_tree.py index 7e61198ca59c..da3d15f26b6a 100644 --- a/data_structures/binary_tree/segment_tree.py +++ b/data_structures/binary_tree/segment_tree.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math class SegmentTree: diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py index 39778f725c3a..2373d71bb897 100644 --- a/data_structures/heap/heap.py +++ b/data_structures/heap/heap.py @@ -1,15 +1,8 @@ #!/usr/bin/python -from __future__ import print_function, division - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - -#This heap class start from here. +# This heap class start from here. class Heap: - def __init__(self): #Default constructor of heap class. + def __init__(self): # Default constructor of heap class. self.h = [] self.currsize = 0 @@ -79,7 +72,7 @@ def display(self): #This function is used to print the heap. print(self.h) def main(): - l = list(map(int, raw_input().split())) + l = list(map(int, input().split())) h = Heap() h.buildHeap(l) h.heapSort() diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 75b1f889dfc2..23d91383fa0e 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -4,14 +4,13 @@ - Each link references the next link and the previous one. - A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together with next pointer and data which are there in singly linked list. - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficent''' -from __future__ import print_function class LinkedList: #making main class named linked list def __init__(self): self.head = None self.tail = None - + def insertHead(self, x): newLink = Link(x) #Create a new link with a value attached to it if(self.isEmpty() == True): #Set the first element added to be the tail @@ -20,52 +19,52 @@ def insertHead(self, x): self.head.previous = newLink # newLink <-- currenthead(head) newLink.next = self.head # newLink <--> currenthead(head) self.head = newLink # newLink(head) <--> oldhead - + def deleteHead(self): temp = self.head - self.head = self.head.next # oldHead <--> 2ndElement(head) + self.head = self.head.next # oldHead <--> 2ndElement(head) self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed if(self.head is None): self.tail = None #if empty linked list return temp - + def insertTail(self, x): newLink = Link(x) newLink.next = None # currentTail(tail) newLink --> self.tail.next = newLink # currentTail(tail) --> newLink --> newLink.previous = self.tail #currentTail(tail) <--> newLink --> self.tail = newLink # oldTail <--> newLink(tail) --> - + def deleteTail(self): temp = self.tail self.tail = self.tail.previous # 2ndLast(tail) <--> oldTail --> None self.tail.next = None # 2ndlast(tail) --> None return temp - + def delete(self, x): current = self.head - + while(current.value != x): # Find the position to delete current = current.next - + if(current == self.head): self.deleteHead() - + elif(current == self.tail): self.deleteTail() - + else: #Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 - + def isEmpty(self): #Will return True if the list is empty return(self.head is None) - + def display(self): #Prints contents of the list current = self.head while(current != None): current.displayLink() - current = current.next + current = current.next print() class Link: diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 5ae97523b9a1..5943b88d5964 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -1,6 +1,3 @@ -from __future__ import print_function - - class Node: # create a Node def __init__(self, data): self.data = data # given data @@ -10,7 +7,7 @@ def __init__(self, data): class Linked_List: def __init__(self): self.Head = None # Initialize Head to None - + def insert_tail(self, data): if(self.Head is None): self.insert_head(data) #If this is first node, call insert_head else: @@ -37,7 +34,7 @@ def delete_head(self): # delete from head self.Head = self.Head.next temp.next = None return temp - + def delete_tail(self): # delete from tail tamp = self.Head if self.Head != None: @@ -46,7 +43,7 @@ def delete_tail(self): # delete from tail else: while tamp.next.next is not None: # find the 2nd last element tamp = tamp.next - tamp.next, tamp = None, tamp.next #(2nd last element).next = None and tamp = last element + tamp.next, tamp = None, tamp.next #(2nd last element).next = None and tamp = last element return tamp def isEmpty(self): @@ -79,7 +76,7 @@ def main(): print("\nPrint List : ") A.printList() print("\nInserting 1st at Tail") - a3=input() + a3=input() A.insert_tail(a3) print("Inserting 2nd at Tail") a4=input() @@ -96,6 +93,6 @@ def main(): A.reverse() print("\nPrint List : ") A.printList() - + if __name__ == '__main__': main() diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py index 838bf2f4bc36..a2fc8f66ec22 100644 --- a/data_structures/queue/double_ended_queue.py +++ b/data_structures/queue/double_ended_queue.py @@ -1,4 +1,3 @@ -from __future__ import print_function # Python code to demonstrate working of # extend(), extendleft(), rotate(), reverse() diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index 36a4e07a97a3..3f43ccbf5760 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -1,6 +1,3 @@ -from __future__ import print_function -from __future__ import absolute_import - from .stack import Stack __author__ = 'Omkar Pathak' diff --git a/data_structures/stacks/infix_to_postfix_conversion.py b/data_structures/stacks/infix_to_postfix_conversion.py index 9376b55b8b23..84a5d1480a24 100644 --- a/data_structures/stacks/infix_to_postfix_conversion.py +++ b/data_structures/stacks/infix_to_postfix_conversion.py @@ -1,5 +1,3 @@ -from __future__ import print_function -from __future__ import absolute_import import string from .stack import Stack diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py index bca83339592c..2e67f1764a5a 100644 --- a/data_structures/stacks/next_greater_element.py +++ b/data_structures/stacks/next_greater_element.py @@ -1,17 +1,16 @@ -from __future__ import print_function # Function to print element and NGE pair for all elements of list def printNGE(arr): - + for i in range(0, len(arr), 1): - + next = -1 for j in range(i+1, len(arr), 1): if arr[i] < arr[j]: next = arr[j] break - + print(str(arr[i]) + " -- " + str(next)) - + # Driver program to test above function arr = [11,13,21,3] printNGE(arr) diff --git a/data_structures/stacks/stack.py b/data_structures/stacks/stack.py index 7f979d927d08..387367db2fcc 100644 --- a/data_structures/stacks/stack.py +++ b/data_structures/stacks/stack.py @@ -1,4 +1,3 @@ -from __future__ import print_function __author__ = 'Omkar Pathak' diff --git a/data_structures/stacks/stock_span_problem.py b/data_structures/stacks/stock_span_problem.py index e9afebc193b6..47d916fde9ed 100644 --- a/data_structures/stacks/stock_span_problem.py +++ b/data_structures/stacks/stock_span_problem.py @@ -6,7 +6,6 @@ number of consecutive days just before the given day, for which the price of the stock on the current day is less than or equal to its price on the given day. ''' -from __future__ import print_function def calculateSpan(price, S): n = len(price) diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index f15d74ddea68..42219794aed1 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -1,18 +1,16 @@ -from __future__ import print_function, absolute_import, division - from numbers import Number """ -The convex hull problem is problem of finding all the vertices of convex polygon, P of +The convex hull problem is problem of finding all the vertices of convex polygon, P of a set of points in a plane such that all the points are either on the vertices of P or -inside P. TH convex hull problem has several applications in geometrical problems, -computer graphics and game development. +inside P. TH convex hull problem has several applications in geometrical problems, +computer graphics and game development. -Two algorithms have been implemented for the convex hull problem here. +Two algorithms have been implemented for the convex hull problem here. 1. A brute-force algorithm which runs in O(n^3) 2. A divide-and-conquer algorithm which runs in O(n^3) There are other several other algorithms for the convex hull problem -which have not been implemented here, yet. +which have not been implemented here, yet. """ diff --git a/divide_and_conquer/inversions.py b/divide_and_conquer/inversions.py index 527741cad3b7..e4d50b7d4729 100644 --- a/divide_and_conquer/inversions.py +++ b/divide_and_conquer/inversions.py @@ -1,15 +1,13 @@ -from __future__ import print_function, absolute_import, division - """ Given an array-like data structure A[1..n], how many pairs -(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are -called inversions. Counting the number of such inversions in an array-like -object is the important. Among other things, counting inversions can help +(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are +called inversions. Counting the number of such inversions in an array-like +object is the important. Among other things, counting inversions can help us determine how close a given array is to being sorted - + In this implementation, I provide two algorithms, a divide-and-conquer -algorithm which runs in nlogn and the brute-force n^2 algorithm. - +algorithm which runs in nlogn and the brute-force n^2 algorithm. + """ diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py index 213b22fe9051..6685e1c68ee6 100644 --- a/dynamic_programming/bitmask.py +++ b/dynamic_programming/bitmask.py @@ -9,27 +9,26 @@ """ -from __future__ import print_function from collections import defaultdict class AssignmentUsingBitmask: def __init__(self,task_performed,total): - + self.total_tasks = total #total no of tasks (N) - + # DP table will have a dimension of (2^M)*N # initially all values are set to -1 self.dp = [[-1 for i in range(total+1)] for j in range(2**len(task_performed))] - + self.task = defaultdict(list) #stores the list of persons for each task - + #finalmask is used to check if all persons are included by setting all bits to 1 self.finalmask = (1< int: dp = [[0 for _ in range(n+1) ] for _ in range(m+1)] for i in range(m+1): for j in range(n+1): - + if i == 0: #first string is empty dp[i][j] = j - elif j == 0: #second string is empty - dp[i][j] = i + elif j == 0: #second string is empty + dp[i][j] = i elif word1[i-1] == word2[j-1]: #last character of both substing is equal dp[i][j] = dp[i-1][j-1] - else: + else: insert = dp[i][j-1] delete = dp[i-1][j] replace = dp[i-1][j-1] @@ -82,21 +81,13 @@ def min_distance_bottom_up(word1: str, word2: str) -> int: return dp[m][n] if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - solver = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() - print("Enter the first string: ", end="") - S1 = raw_input().strip() - - print("Enter the second string: ", end="") - S2 = raw_input().strip() + S1 = input("Enter the first string: ").strip() + S2 = input("Enter the second string: ").strip() print() print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) @@ -106,4 +97,4 @@ def min_distance_bottom_up(word1: str, word2: str) -> int: - + diff --git a/dynamic_programming/fast_fibonacci.py b/dynamic_programming/fast_fibonacci.py index cbc118467b3c..47248078bd81 100644 --- a/dynamic_programming/fast_fibonacci.py +++ b/dynamic_programming/fast_fibonacci.py @@ -5,7 +5,6 @@ This program calculates the nth Fibonacci number in O(log(n)). It's possible to calculate F(1000000) in less than a second. """ -from __future__ import print_function import sys diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py index b453ce255853..90fe6386044a 100644 --- a/dynamic_programming/fibonacci.py +++ b/dynamic_programming/fibonacci.py @@ -1,7 +1,6 @@ """ This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem. """ -from __future__ import print_function class Fibonacci: @@ -29,21 +28,16 @@ def get(self, sequence_no=None): if __name__ == '__main__': print("\n********* Fibonacci Series Using Dynamic Programming ************\n") - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - print("\n Enter the upper limit for the fibonacci sequence: ", end="") try: - N = eval(raw_input().strip()) + N = int(input().strip()) fib = Fibonacci(N) print( - "\n********* Enter different values to get the corresponding fibonacci sequence, enter any negative number to exit. ************\n") + "\n********* Enter different values to get the corresponding fibonacci " + "sequence, enter any negative number to exit. ************\n") while True: - print("Enter value: ", end=" ") try: - i = eval(raw_input().strip()) + i = int(input("Enter value: ").strip()) if i < 0: print("\n********* Good Bye!! ************\n") break diff --git a/dynamic_programming/integer_partition.py b/dynamic_programming/integer_partition.py index 7b27afebaa6c..f17561fc135b 100644 --- a/dynamic_programming/integer_partition.py +++ b/dynamic_programming/integer_partition.py @@ -1,27 +1,15 @@ -from __future__ import print_function - -try: - xrange #Python 2 -except NameError: - xrange = range #Python 3 - -try: - raw_input #Python 2 -except NameError: - raw_input = input #Python 3 - ''' The number of partitions of a number n into at least k parts equals the number of partitions into exactly k parts plus the number of partitions into at least k-1 parts. Subtracting 1 from each part of a partition of n into k parts gives a partition of n-k into k parts. These two facts together are used for this algorithm. ''' def partition(m): - memo = [[0 for _ in xrange(m)] for _ in xrange(m+1)] - for i in xrange(m+1): + memo = [[0 for _ in range(m)] for _ in range(m+1)] + for i in range(m+1): memo[i][0] = 1 - for n in xrange(m+1): - for k in xrange(1, m): + for n in range(m+1): + for k in range(1, m): memo[n][k] += memo[n][k-1] if n-k > 0: memo[n][k] += memo[n-k-1][k] @@ -33,7 +21,7 @@ def partition(m): if len(sys.argv) == 1: try: - n = int(raw_input('Enter a number: ')) + n = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index 7836fe303688..7447a0cc7810 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -3,7 +3,6 @@ A subsequence is a sequence that appears in the same relative order, but not necessarily continuous. Example:"abc", "abg" are subsequences of "abcdefgh". """ -from __future__ import print_function def longest_common_subsequence(x: str, y: str): @@ -80,4 +79,3 @@ def longest_common_subsequence(x: str, y: str): assert expected_ln == ln assert expected_subseq == subseq print("len =", ln, ", sub-sequence =", subseq) - diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index b6d165909e70..151a5e0b7c80 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -7,10 +7,8 @@ Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it. Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output ''' -from __future__ import print_function - def longestSub(ARRAY): #This function is recursive - + ARRAY_LENGTH = len(ARRAY) if(ARRAY_LENGTH <= 1): #If the array contains only one element, we return it (it's the stop condition of recursion) return ARRAY diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py index 86bec089adc7..9b27ed6be303 100644 --- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py @@ -1,9 +1,8 @@ -from __future__ import print_function ############################# # Author: Aravind Kashyap # File: lis.py # comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN) -# Where N is the Number of elements in the list +# Where N is the Number of elements in the list ############################# def CeilIndex(v,l,r,key): while r-l > 1: @@ -12,30 +11,30 @@ def CeilIndex(v,l,r,key): r = m else: l = m - + return r - + def LongestIncreasingSubsequenceLength(v): if(len(v) == 0): - return 0 - + return 0 + tail = [0]*len(v) length = 1 - + tail[0] = v[0] - + for i in range(1,len(v)): if v[i] < tail[0]: tail[0] = v[i] elif v[i] > tail[length-1]: tail[length] = v[i] - length += 1 + length += 1 else: tail[CeilIndex(tail,-1,length-1,v[i])] = v[i] - + return length - + if __name__ == "__main__": v = [2, 5, 3, 7, 11, 8, 10, 13, 6] diff --git a/dynamic_programming/longest_sub_array.py b/dynamic_programming/longest_sub_array.py index de2c88a8b525..856b31f03982 100644 --- a/dynamic_programming/longest_sub_array.py +++ b/dynamic_programming/longest_sub_array.py @@ -6,7 +6,6 @@ The problem is : Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array. ''' -from __future__ import print_function class SubArray: diff --git a/dynamic_programming/matrix_chain_order.py b/dynamic_programming/matrix_chain_order.py index b8234a65acbe..cb4aec345437 100644 --- a/dynamic_programming/matrix_chain_order.py +++ b/dynamic_programming/matrix_chain_order.py @@ -1,5 +1,3 @@ -from __future__ import print_function - import sys ''' Dynamic Programming diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index 56983b7d22c2..d6084ecfd6d9 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -1,7 +1,6 @@ """ author : Mayank Kumar Jha (mk9440) """ -from __future__ import print_function from typing import List import time import matplotlib.pyplot as plt @@ -10,7 +9,7 @@ def find_max_sub_array(A,low,high): if low==high: return low,high,A[low] else : - mid=(low+high)//2 + mid=(low+high)//2 left_low,left_high,left_sum=find_max_sub_array(A,low,mid) right_low,right_high,right_sum=find_max_sub_array(A,mid+1,high) cross_left,cross_right,cross_sum=find_max_cross_sum(A,low,mid,high) @@ -30,7 +29,7 @@ def find_max_cross_sum(A,low,mid,high): if summ > left_sum: left_sum=summ max_left=i - summ=0 + summ=0 for i in range(mid+1,high+1): summ+=A[i] if summ > right_sum: @@ -40,7 +39,7 @@ def find_max_cross_sum(A,low,mid,high): def max_sub_array(nums: List[int]) -> int: """ - Finds the contiguous subarray (can be empty array) + Finds the contiguous subarray (can be empty array) which has the largest sum and return its sum. >>> max_sub_array([-2,1,-3,4,-1,2,1,-5,4]) @@ -50,14 +49,14 @@ def max_sub_array(nums: List[int]) -> int: >>> max_sub_array([-1,-2,-3]) 0 """ - best = 0 - current = 0 - for i in nums: - current += i + best = 0 + current = 0 + for i in nums: + current += i if current < 0: current = 0 best = max(best, current) - return best + return best if __name__=='__main__': inputs=[10,100,1000,10000,50000,100000,200000,300000,400000,500000] @@ -68,8 +67,8 @@ def max_sub_array(nums: List[int]) -> int: (find_max_sub_array(li,0,len(li)-1)) end=time.time() tim.append(end-strt) - print("No of Inputs Time Taken") - for i in range(len(inputs)): + print("No of Inputs Time Taken") + for i in range(len(inputs)): print(inputs[i],'\t\t',tim[i]) plt.plot(inputs,tim) plt.xlabel("Number of Inputs");plt.ylabel("Time taken in seconds ") @@ -77,4 +76,4 @@ def max_sub_array(nums: List[int]) -> int: - + diff --git a/graphs/a_star.py b/graphs/a_star.py index 584222e6f62b..09a7a0e579d8 100644 --- a/graphs/a_star.py +++ b/graphs/a_star.py @@ -1,5 +1,3 @@ -from __future__ import print_function - grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], @@ -14,13 +12,13 @@ [5, 4, 3, 2, 1, 0]]''' init = [0, 0] -goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x] +goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x] cost = 1 #the cost map which pushes the path closer to the goal heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] -for i in range(len(grid)): - for j in range(len(grid[0])): +for i in range(len(grid)): + for j in range(len(grid[0])): heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: heuristic[i][j] = 99 #added extra penalty in the heuristic map @@ -62,7 +60,7 @@ def search(grid,init,goal,cost,heuristic): g = next[1] f = next[0] - + if x == goal[0] and y == goal[1]: found = True else: @@ -93,10 +91,10 @@ def search(grid,init,goal,cost,heuristic): print("ACTION MAP") for i in range(len(action)): print(action[i]) - + return path - + a = search(grid,init,goal,cost,heuristic) for i in range(len(a)): - print(a[i]) + print(a[i]) diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index ee63ca995de6..64c51e139cca 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -1,23 +1,10 @@ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - - if __name__ == "__main__": # Accept No. of Nodes and edges - n, m = map(int, raw_input().split(" ")) + n, m = map(int, input().split(" ")) # Initialising Dictionary of edges g = {} - for i in xrange(n): + for i in range(n): g[i + 1] = [] """ @@ -25,8 +12,8 @@ Accepting edges of Unweighted Directed Graphs ---------------------------------------------------------------------------- """ - for _ in xrange(m): - x, y = map(int, raw_input().strip().split(" ")) + for _ in range(m): + x, y = map(int, input().strip().split(" ")) g[x].append(y) """ @@ -34,8 +21,8 @@ Accepting edges of Unweighted Undirected Graphs ---------------------------------------------------------------------------- """ - for _ in xrange(m): - x, y = map(int, raw_input().strip().split(" ")) + for _ in range(m): + x, y = map(int, input().strip().split(" ")) g[x].append(y) g[y].append(x) @@ -44,8 +31,8 @@ Accepting edges of Weighted Undirected Graphs ---------------------------------------------------------------------------- """ - for _ in xrange(m): - x, y, r = map(int, raw_input().strip().split(" ")) + for _ in range(m): + x, y, r = map(int, input().strip().split(" ")) g[x].append([y, r]) g[y].append([x, r]) @@ -170,10 +157,10 @@ def topo(G, ind=None, Q=[1]): def adjm(): - n = raw_input().strip() + n = input().strip() a = [] - for i in xrange(n): - a.append(map(int, raw_input().strip().split())) + for i in range(n): + a.append(map(int, input().strip().split())) return a, n @@ -193,10 +180,10 @@ def adjm(): def floy(A_and_n): (A, n) = A_and_n dist = list(A) - path = [[0] * n for i in xrange(n)] - for k in xrange(n): - for i in xrange(n): - for j in xrange(n): + path = [[0] * n for i in range(n)] + for k in range(n): + for i in range(n): + for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] path[i][k] = k @@ -245,10 +232,10 @@ def prim(G, s): def edglist(): - n, m = map(int, raw_input().split(" ")) + n, m = map(int, input().split(" ")) l = [] - for i in xrange(m): - l.append(map(int, raw_input().split(' '))) + for i in range(m): + l.append(map(int, input().split(' '))) return l, n @@ -272,10 +259,10 @@ def krusk(E_and_n): break print(s) x = E.pop() - for i in xrange(len(s)): + for i in range(len(s)): if x[0] in s[i]: break - for j in xrange(len(s)): + for j in range(len(s)): if x[1] in s[j]: if i == j: break diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index f49157230054..bebe8f354b26 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -1,5 +1,3 @@ -from __future__ import print_function - def printDist(dist, V): print("\nVertex Distance") for i in range(V): diff --git a/graphs/breadth_first_search.py b/graphs/breadth_first_search.py index 3992e2d4d892..205f49a6172b 100644 --- a/graphs/breadth_first_search.py +++ b/graphs/breadth_first_search.py @@ -3,8 +3,6 @@ """ Author: OMKAR PATHAK """ -from __future__ import print_function - class Graph(): def __init__(self): diff --git a/graphs/depth_first_search.py b/graphs/depth_first_search.py index 98faf61354f9..2b03683c0047 100644 --- a/graphs/depth_first_search.py +++ b/graphs/depth_first_search.py @@ -2,7 +2,6 @@ # encoding=utf8 """ Author: OMKAR PATHAK """ -from __future__ import print_function class Graph(): diff --git a/graphs/dijkstra_2.py b/graphs/dijkstra_2.py index 8f39aec41906..f6118830c9c0 100644 --- a/graphs/dijkstra_2.py +++ b/graphs/dijkstra_2.py @@ -1,5 +1,3 @@ -from __future__ import print_function - def printDist(dist, V): print("\nVertex Distance") for i in range(V): diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py index 985c7f6c1301..c43ff37f5336 100644 --- a/graphs/dijkstra_algorithm.py +++ b/graphs/dijkstra_algorithm.py @@ -2,7 +2,6 @@ # Author: Shubham Malik # References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm -from __future__ import print_function import math import sys # For storing the vertex set to retreive node with the lowest distance diff --git a/graphs/even_tree.py b/graphs/even_tree.py index 9383ea9a13c1..45d55eecff8a 100644 --- a/graphs/even_tree.py +++ b/graphs/even_tree.py @@ -12,7 +12,6 @@ Note: The tree input will be such that it can always be decomposed into components containing an even number of nodes. """ -from __future__ import print_function # pylint: disable=invalid-name from collections import defaultdict diff --git a/graphs/graph_list.py b/graphs/graph_list.py index 0c981c39d320..2ca363b1d746 100644 --- a/graphs/graph_list.py +++ b/graphs/graph_list.py @@ -1,7 +1,6 @@ #!/usr/bin/python # encoding=utf8 -from __future__ import print_function # Author: OMKAR PATHAK # We can use Python's dictionary for constructing the graph. diff --git a/graphs/graph_matrix.py b/graphs/graph_matrix.py index de25301d6dd1..1998fec8d6fe 100644 --- a/graphs/graph_matrix.py +++ b/graphs/graph_matrix.py @@ -1,6 +1,3 @@ -from __future__ import print_function - - class Graph: def __init__(self, vertex): diff --git a/graphs/graphs_floyd_warshall.py b/graphs/graphs_floyd_warshall.py index a1d12aac02b4..5f159683733f 100644 --- a/graphs/graphs_floyd_warshall.py +++ b/graphs/graphs_floyd_warshall.py @@ -4,8 +4,6 @@ have negative edge weights. """ -from __future__ import print_function - def _print_dist(dist, v): print("\nThe shortest path matrix using Floyd Warshall algorithm\n") @@ -34,9 +32,9 @@ def floyd_warshall(graph, v): 4. The above is repeated for each vertex k in the graph. 5. Whenever distance[i][j] is given a new minimum value, next vertex[i][j] is updated to the next vertex[i][k]. """ - + dist=[[float('inf') for _ in range(v)] for _ in range(v)] - + for i in range(v): for j in range(v): dist[i][j] = graph[i][j] @@ -53,7 +51,7 @@ def floyd_warshall(graph, v): _print_dist(dist, v) return dist, v - + if __name__== '__main__': v = int(input("Enter number of vertices: ")) diff --git a/graphs/minimum_spanning_tree_kruskal.py b/graphs/minimum_spanning_tree_kruskal.py index 975151c90ede..a2211582ec40 100644 --- a/graphs/minimum_spanning_tree_kruskal.py +++ b/graphs/minimum_spanning_tree_kruskal.py @@ -1,5 +1,3 @@ -from __future__ import print_function - if __name__ == "__main__": num_nodes, num_edges = list(map(int, input().strip().split())) diff --git a/graphs/multi_hueristic_astar.py b/graphs/multi_hueristic_astar.py index 1c01fe9aa6d3..3021c4162b8e 100644 --- a/graphs/multi_hueristic_astar.py +++ b/graphs/multi_hueristic_astar.py @@ -1,12 +1,6 @@ -from __future__ import print_function import heapq import numpy as np -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - class PriorityQueue: def __init__(self): @@ -96,7 +90,7 @@ def do_something(back_pointer, goal, start): grid[(n-1)][0] = "-" - for i in xrange(n): + for i in range(n): for j in range(n): if (i, j) == (0, n-1): print(grid[i][j], end=' ') diff --git a/graphs/scc_kosaraju.py b/graphs/scc_kosaraju.py index 0d0375203b6d..99564a7cfa35 100644 --- a/graphs/scc_kosaraju.py +++ b/graphs/scc_kosaraju.py @@ -1,6 +1,3 @@ -from __future__ import print_function - - def dfs(u): global g, r, scc, component, visit, stack if visit[u]: return diff --git a/hashes/chaos_machine.py b/hashes/chaos_machine.py index f0a305bfeade..3a7c3950bb29 100644 --- a/hashes/chaos_machine.py +++ b/hashes/chaos_machine.py @@ -1,10 +1,4 @@ """example of simple chaos machine""" -from __future__ import print_function - -try: - input = raw_input # Python 2 -except NameError: - pass # Python 3 # Chaos Machine (K, t, m) K = [0.33, 0.44, 0.55, 0.44, 0.33]; t = 3; m = 5 @@ -96,7 +90,7 @@ def reset(): for chunk in message: push(chunk) -# for controlling +# for controlling inp = "" # Pulling Data (Output) diff --git a/hashes/enigma_machine.py b/hashes/enigma_machine.py index bd410c5cb21d..06215785765f 100644 --- a/hashes/enigma_machine.py +++ b/hashes/enigma_machine.py @@ -1,5 +1,3 @@ -from __future__ import print_function - alphabets = [chr(i) for i in range(32, 126)] gear_one = [i for i in range(len(alphabets))] gear_two = [i for i in range(len(alphabets))] diff --git a/hashes/md5.py b/hashes/md5.py index 7891f2077986..1ad43013363f 100644 --- a/hashes/md5.py +++ b/hashes/md5.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math @@ -66,7 +65,7 @@ def getBlock(bitString): """[summary] Iterator: Returns by each call a list of length 16 with the 32 bit - integer blocks. + integer blocks. Arguments: bitString {[string]} -- [binary string >= 512] @@ -95,7 +94,7 @@ def not32(i): def sum32(a, b): ''' - + ''' return (a + b) % 2**32 diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py index 71849904ccf2..acdf646875ac 100644 --- a/machine_learning/decision_tree.py +++ b/machine_learning/decision_tree.py @@ -1,10 +1,8 @@ """ Implementation of a basic regression decision tree. Input data set: The input data set must be 1-dimensional with continuous labels. -Output: The decision tree maps a real number input to a real number output. +Output: The decision tree maps a real number input to a real number output. """ -from __future__ import print_function - import numpy as np class Decision_Tree: @@ -19,7 +17,7 @@ def __init__(self, depth = 5, min_leaf_size = 5): def mean_squared_error(self, labels, prediction): """ mean_squared_error: - @param labels: a one dimensional numpy array + @param labels: a one dimensional numpy array @param prediction: a floating point value return value: mean_squared_error calculates the error if prediction is used to estimate the labels """ @@ -32,7 +30,7 @@ def train(self, X, y): """ train: @param X: a one dimensional numpy array - @param y: a one dimensional numpy array. + @param y: a one dimensional numpy array. The contents of y are the labels for the corresponding X values train does not have a return value @@ -135,6 +133,6 @@ def main(): print("Predictions: " + str(predictions)) print("Average error: " + str(avg_error)) - + if __name__ == '__main__': main() \ No newline at end of file diff --git a/machine_learning/gradient_descent.py b/machine_learning/gradient_descent.py index 6387d4939205..9a17113b7ddb 100644 --- a/machine_learning/gradient_descent.py +++ b/machine_learning/gradient_descent.py @@ -1,7 +1,6 @@ """ Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis function. """ -from __future__ import print_function, division import numpy # List of input, output pairs diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index 368739a45fe9..d0ce0f2599e0 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -17,36 +17,35 @@ Usage: 1. define 'k' value, 'X' features array and 'hetrogeneity' empty list - + 2. create initial_centroids, initial_centroids = get_initial_centroids( - X, - k, + X, + k, seed=0 # seed value for initial centroid generation, None for randomness(default=None) ) 3. find centroids and clusters using kmeans function. - + centroids, cluster_assignment = kmeans( - X, - k, - initial_centroids, + X, + k, + initial_centroids, maxiter=400, - record_heterogeneity=heterogeneity, + record_heterogeneity=heterogeneity, verbose=True # whether to print logs in console or not.(default=False) ) - - + + 4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list. plot_heterogeneity( - heterogeneity, + heterogeneity, k ) - + 5. Have fun.. - + ''' -from __future__ import print_function from sklearn.metrics import pairwise_distances import numpy as np @@ -57,30 +56,30 @@ def get_initial_centroids(data, k, seed=None): if seed is not None: # useful for obtaining consistent results np.random.seed(seed) n = data.shape[0] # number of data points - + # Pick K indices from range [0, N). rand_indices = np.random.randint(0, n, k) - + # Keep centroids as dense format, as many entries will be nonzero due to averaging. # As long as at least one document in a cluster contains a word, # it will carry a nonzero weight in the TF-IDF vector of the centroid. centroids = data[rand_indices,:] - + return centroids def centroid_pairwise_dist(X,centroids): return pairwise_distances(X,centroids,metric='euclidean') def assign_clusters(data, centroids): - + # Compute distances between each data point and the set of centroids: # Fill in the blank (RHS only) distances_from_centroids = centroid_pairwise_dist(data,centroids) - + # Compute cluster assignments for each data point: # Fill in the blank (RHS only) cluster_assignment = np.argmin(distances_from_centroids,axis=1) - + return cluster_assignment def revise_centroids(data, k, cluster_assignment): @@ -92,23 +91,23 @@ def revise_centroids(data, k, cluster_assignment): centroid = member_data_points.mean(axis=0) new_centroids.append(centroid) new_centroids = np.array(new_centroids) - + return new_centroids def compute_heterogeneity(data, k, centroids, cluster_assignment): - + heterogeneity = 0.0 for i in range(k): - + # Select all data points that belong to cluster i. Fill in the blank (RHS only) member_data_points = data[cluster_assignment==i, :] - + if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty # Compute distances from centroid to data points (RHS only) distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean') squared_distances = distances**2 heterogeneity += np.sum(squared_distances) - + return heterogeneity from matplotlib import pyplot as plt @@ -129,36 +128,36 @@ def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, v verbose: if True, print how many data points changed their cluster labels in each iteration''' centroids = initial_centroids[:] prev_cluster_assignment = None - - for itr in range(maxiter): + + for itr in range(maxiter): if verbose: print(itr, end='') - + # 1. Make cluster assignments using nearest centroids cluster_assignment = assign_clusters(data,centroids) - + # 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster. centroids = revise_centroids(data,k, cluster_assignment) - + # Check for convergence: if none of the assignments changed, stop if prev_cluster_assignment is not None and \ (prev_cluster_assignment==cluster_assignment).all(): break - - # Print number of new assignments + + # Print number of new assignments if prev_cluster_assignment is not None: num_changed = np.sum(prev_cluster_assignment!=cluster_assignment) if verbose: - print(' {0:5d} elements changed their cluster assignment.'.format(num_changed)) - + print(' {0:5d} elements changed their cluster assignment.'.format(num_changed)) + # Record heterogeneity convergence metric if record_heterogeneity is not None: # YOUR CODE HERE score = compute_heterogeneity(data,k,centroids,cluster_assignment) record_heterogeneity.append(score) - + prev_cluster_assignment = cluster_assignment[:] - + return centroids, cluster_assignment # Mock test below diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py index 03f16629e451..9d9738fced8d 100644 --- a/machine_learning/linear_regression.py +++ b/machine_learning/linear_regression.py @@ -7,8 +7,6 @@ fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs Rating). We try to best fit a line through dataset and estimate the parameters. """ -from __future__ import print_function - import requests import numpy as np diff --git a/maths/simpson_rule.py b/maths/simpson_rule.py index 2b237d2e1a4e..5cf9c14b07ee 100644 --- a/maths/simpson_rule.py +++ b/maths/simpson_rule.py @@ -8,9 +8,6 @@ "Simpson Rule" """ -from __future__ import print_function - - def method_2(boundary, steps): # "Simpson Rule" # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index 789f263c6991..f5e5fbbc2662 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -7,8 +7,6 @@ "extended trapezoidal rule" """ -from __future__ import print_function - def method_1(boundary, steps): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) @@ -19,7 +17,7 @@ def method_1(boundary, steps): y = 0.0 y += (h/2.0)*f(a) for i in x_i: - #print(i) + #print(i) y += h*f(i) y += (h/2.0)*f(b) return y diff --git a/maths/zellers_congruence.py b/maths/zellers_congruence.py index e04425eec903..67c5550802ea 100644 --- a/maths/zellers_congruence.py +++ b/maths/zellers_congruence.py @@ -1,4 +1,3 @@ -from __future__ import annotations import datetime import argparse @@ -7,7 +6,7 @@ def zeller(date_input: str) -> str: """ Zellers Congruence Algorithm - Find the day of the week for nearly any Gregorian or Julian calendar date + Find the day of the week for nearly any Gregorian or Julian calendar date >>> zeller('01-31-2010') 'Your date 01-31-2010, is a Sunday!' @@ -108,7 +107,7 @@ def zeller(date_input: str) -> str: # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") - + # Get second seperator sep_2: str = date_input[5] # Validate diff --git a/matrix/nth_fibonacci_using_matrix_exponentiation.py b/matrix/nth_fibonacci_using_matrix_exponentiation.py index 7491abcae031..57cdfacd47dd 100644 --- a/matrix/nth_fibonacci_using_matrix_exponentiation.py +++ b/matrix/nth_fibonacci_using_matrix_exponentiation.py @@ -13,9 +13,6 @@ So we just need the n times multiplication of the matrix [1,1],[1,0]]. We can decrease the n times multiplication by following the divide and conquer approach. """ -from __future__ import print_function - - def multiply(matrix_a, matrix_b): matrix_c = [] n = len(matrix_a) diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index 0e72f0c0dca2..e4dd0a11db9d 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -15,8 +15,6 @@ Date: 2017.9.20 - - - - - -- - - - - - - - - - - - - - - - - - - - - - - ''' -from __future__ import print_function - import pickle import numpy as np import matplotlib.pyplot as plt diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 871eca20273b..fdc710597241 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -9,8 +9,6 @@ p2 = 1 ''' -from __future__ import print_function - import random diff --git a/other/anagrams.py b/other/anagrams.py index 29b34fbdc5d3..1e6e38dee139 100644 --- a/other/anagrams.py +++ b/other/anagrams.py @@ -1,4 +1,3 @@ -from __future__ import print_function import collections, pprint, time, os start_time = time.time() diff --git a/other/euclidean_gcd.py b/other/euclidean_gcd.py index 30853e172076..13378379f286 100644 --- a/other/euclidean_gcd.py +++ b/other/euclidean_gcd.py @@ -1,4 +1,3 @@ -from __future__ import print_function # https://en.wikipedia.org/wiki/Euclidean_algorithm def euclidean_gcd(a, b): diff --git a/other/linear_congruential_generator.py b/other/linear_congruential_generator.py index 34abdf34eaf3..7c592a6400b5 100644 --- a/other/linear_congruential_generator.py +++ b/other/linear_congruential_generator.py @@ -1,4 +1,3 @@ -from __future__ import print_function __author__ = "Tobias Carryer" from time import time @@ -7,11 +6,11 @@ class LinearCongruentialGenerator(object): """ A pseudorandom number generator. """ - + def __init__( self, multiplier, increment, modulo, seed=int(time()) ): """ These parameters are saved and used when nextNumber() is called. - + modulo is the largest number that can be generated (exclusive). The most efficent values are powers of 2. 2^32 is a common value. """ @@ -19,7 +18,7 @@ def __init__( self, multiplier, increment, modulo, seed=int(time()) ): self.increment = increment self.modulo = modulo self.seed = seed - + def next_number( self ): """ The smallest number that can be generated is zero. diff --git a/other/nested_brackets.py b/other/nested_brackets.py index 76677d56439a..14147eaa6456 100644 --- a/other/nested_brackets.py +++ b/other/nested_brackets.py @@ -13,9 +13,6 @@ returns true if S is nested and false otherwise. ''' -from __future__ import print_function - - def is_balanced(S): stack = [] diff --git a/other/password_generator.py b/other/password_generator.py index fd0701041240..16b7e16b22a1 100644 --- a/other/password_generator.py +++ b/other/password_generator.py @@ -1,5 +1,4 @@ """Password generator allows you to generate a random password of length N.""" -from __future__ import print_function from random import choice from string import ascii_letters, digits, punctuation diff --git a/other/tower_of_hanoi.py b/other/tower_of_hanoi.py index 9cc5b9e40543..cd6fbf4d88ac 100644 --- a/other/tower_of_hanoi.py +++ b/other/tower_of_hanoi.py @@ -1,5 +1,4 @@ -from __future__ import print_function -def moveTower(height, fromPole, toPole, withPole): +def moveTower(height, fromPole, toPole, withPole): ''' >>> moveTower(3, 'A', 'B', 'C') moving disk from A to B diff --git a/other/two_sum.py b/other/two_sum.py index d4484aa85505..b784da82767a 100644 --- a/other/two_sum.py +++ b/other/two_sum.py @@ -9,8 +9,6 @@ Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. """ -from __future__ import print_function - def twoSum(nums, target): """ :type nums: List[int] @@ -20,7 +18,7 @@ def twoSum(nums, target): chk_map = {} for index, val in enumerate(nums): compl = target - val - if compl in chk_map: + if compl in chk_map: indices = [chk_map[compl], index] print(indices) return [indices] diff --git a/other/word_patterns.py b/other/word_patterns.py index c33d520087f7..1364d1277255 100644 --- a/other/word_patterns.py +++ b/other/word_patterns.py @@ -1,4 +1,3 @@ -from __future__ import print_function import pprint, time def getWordPattern(word): diff --git a/project_euler/problem_01/sol1.py b/project_euler/problem_01/sol1.py index 1433129af303..76b13b852c87 100644 --- a/project_euler/problem_01/sol1.py +++ b/project_euler/problem_01/sol1.py @@ -4,17 +4,9 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -31,4 +23,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_01/sol2.py b/project_euler/problem_01/sol2.py index e58fb03a8fb0..8041c7ffa589 100644 --- a/project_euler/problem_01/sol2.py +++ b/project_euler/problem_01/sol2.py @@ -4,17 +4,11 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -36,4 +30,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_01/sol3.py b/project_euler/problem_01/sol3.py index 013ce5e54fdf..532203ddd95d 100644 --- a/project_euler/problem_01/sol3.py +++ b/project_euler/problem_01/sol3.py @@ -4,20 +4,12 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """ This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3. Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -63,4 +55,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_01/sol4.py b/project_euler/problem_01/sol4.py index 90403c3bd6a3..3e6712618870 100644 --- a/project_euler/problem_01/sol4.py +++ b/project_euler/problem_01/sol4.py @@ -4,17 +4,9 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -50,4 +42,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_01/sol5.py b/project_euler/problem_01/sol5.py index 302fe44f8bfa..bd96d965f92d 100644 --- a/project_euler/problem_01/sol5.py +++ b/project_euler/problem_01/sol5.py @@ -4,19 +4,13 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 """A straightforward pythonic solution using list comprehension""" def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -31,4 +25,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_01/sol6.py b/project_euler/problem_01/sol6.py index cf6e751d4c05..b9c3db4f8550 100644 --- a/project_euler/problem_01/sol6.py +++ b/project_euler/problem_01/sol6.py @@ -4,17 +4,9 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution(3) 0 >>> solution(4) @@ -37,4 +29,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_02/sol1.py b/project_euler/problem_02/sol1.py index f61d04e3dfce..d2ad67e2f424 100644 --- a/project_euler/problem_02/sol1.py +++ b/project_euler/problem_02/sol1.py @@ -9,18 +9,10 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. - + >>> solution(10) 10 >>> solution(15) @@ -44,4 +36,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_02/sol2.py b/project_euler/problem_02/sol2.py index 3e103a6a4373..71f51b695e84 100644 --- a/project_euler/problem_02/sol2.py +++ b/project_euler/problem_02/sol2.py @@ -9,18 +9,10 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. - + >>> solution(10) [2, 8] >>> solution(15) @@ -42,4 +34,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_02/sol3.py b/project_euler/problem_02/sol3.py index abd9d6c753b8..c698b8e38ab2 100644 --- a/project_euler/problem_02/sol3.py +++ b/project_euler/problem_02/sol3.py @@ -9,18 +9,10 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. - + >>> solution(10) 10 >>> solution(15) @@ -44,4 +36,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_02/sol4.py b/project_euler/problem_02/sol4.py index 5e8c04899f3d..92ea0a51e026 100644 --- a/project_euler/problem_02/sol4.py +++ b/project_euler/problem_02/sol4.py @@ -9,20 +9,14 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ -from __future__ import print_function import math from decimal import Decimal, getcontext -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. - + >>> solution(10) 10 >>> solution(15) @@ -68,4 +62,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_03/sol1.py b/project_euler/problem_03/sol1.py index ab19d8b30457..9f8ecc5e6565 100644 --- a/project_euler/problem_03/sol1.py +++ b/project_euler/problem_03/sol1.py @@ -5,14 +5,8 @@ e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. """ -from __future__ import print_function, division import math -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def isprime(no): if no == 2: @@ -81,4 +75,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_03/sol2.py b/project_euler/problem_03/sol2.py index f93a0b75f4e0..b6fad079fa31 100644 --- a/project_euler/problem_03/sol2.py +++ b/project_euler/problem_03/sol2.py @@ -5,12 +5,6 @@ e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. """ -from __future__ import print_function, division - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 def solution(n): @@ -60,4 +54,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_04/sol1.py b/project_euler/problem_04/sol1.py index 7a255f7308e6..51417b146bbf 100644 --- a/project_euler/problem_04/sol1.py +++ b/project_euler/problem_04/sol1.py @@ -6,18 +6,10 @@ Find the largest palindrome made from the product of two 3-digit numbers which is less than N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. - + >>> solution(20000) 19591 >>> solution(30000) @@ -47,4 +39,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_04/sol2.py b/project_euler/problem_04/sol2.py index 45c6b256daf8..8740ee44a4b4 100644 --- a/project_euler/problem_04/sol2.py +++ b/project_euler/problem_04/sol2.py @@ -6,18 +6,10 @@ Find the largest palindrome made from the product of two 3-digit numbers which is less than N. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. - + >>> solution(20000) 19591 >>> solution(30000) @@ -35,4 +27,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_05/sol1.py b/project_euler/problem_05/sol1.py index e2deb91fb6aa..83c387e4ae6e 100644 --- a/project_euler/problem_05/sol1.py +++ b/project_euler/problem_05/sol1.py @@ -6,14 +6,6 @@ What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to n. @@ -66,4 +58,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_05/sol2.py b/project_euler/problem_05/sol2.py index 293dd96f2294..5aa84d21c8e8 100644 --- a/project_euler/problem_05/sol2.py +++ b/project_euler/problem_05/sol2.py @@ -6,13 +6,6 @@ What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - """ Euclidean GCD Algorithm """ @@ -30,7 +23,7 @@ def lcm(x, y): def solution(n): """Returns the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to n. - + >>> solution(10) 2520 >>> solution(15) @@ -47,4 +40,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_06/sol1.py b/project_euler/problem_06/sol1.py index 728701e167c3..0a964272e7e8 100644 --- a/project_euler/problem_06/sol1.py +++ b/project_euler/problem_06/sol1.py @@ -14,18 +14,10 @@ Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. - + >>> solution(10) 2640 >>> solution(15) @@ -45,4 +37,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_06/sol2.py b/project_euler/problem_06/sol2.py index 2c64812d56f8..45d08d244647 100644 --- a/project_euler/problem_06/sol2.py +++ b/project_euler/problem_06/sol2.py @@ -14,18 +14,10 @@ Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. - + >>> solution(10) 2640 >>> solution(15) @@ -42,4 +34,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_06/sol3.py b/project_euler/problem_06/sol3.py index 7d94b1e2254f..f9c5dacb3777 100644 --- a/project_euler/problem_06/sol3.py +++ b/project_euler/problem_06/sol3.py @@ -14,19 +14,13 @@ Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. """ -from __future__ import print_function import math -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def solution(n): """Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. - + >>> solution(10) 2640 >>> solution(15) @@ -42,4 +36,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_07/sol1.py b/project_euler/problem_07/sol1.py index 403ded568dda..d8d67e157860 100644 --- a/project_euler/problem_07/sol1.py +++ b/project_euler/problem_07/sol1.py @@ -6,14 +6,8 @@ We can see that the 6th prime is 13. What is the Nth prime number? """ -from __future__ import print_function from math import sqrt -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def isprime(n): if n == 2: @@ -30,7 +24,7 @@ def isprime(n): def solution(n): """Returns the n-th prime number. - + >>> solution(6) 13 >>> solution(1) @@ -58,4 +52,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index 67336f7c1c96..7d078af32176 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -6,14 +6,6 @@ We can see that the 6th prime is 13. What is the Nth prime number? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def isprime(number): for i in range(2, int(number ** 0.5) + 1): if number % i == 0: @@ -23,7 +15,7 @@ def isprime(number): def solution(n): """Returns the n-th prime number. - + >>> solution(6) 13 >>> solution(1) @@ -73,4 +65,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_07/sol3.py b/project_euler/problem_07/sol3.py index bc94762604b3..3c28ecf7fb34 100644 --- a/project_euler/problem_07/sol3.py +++ b/project_euler/problem_07/sol3.py @@ -6,15 +6,9 @@ We can see that the 6th prime is 13. What is the Nth prime number? """ -from __future__ import print_function import math import itertools -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def primeCheck(number): if number % 2 == 0 and number > 2: @@ -32,7 +26,7 @@ def prime_generator(): def solution(n): """Returns the n-th prime number. - + >>> solution(6) 13 >>> solution(1) @@ -50,4 +44,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_09/sol1.py b/project_euler/problem_09/sol1.py index d9ebe8760861..3bb5c968115d 100644 --- a/project_euler/problem_09/sol1.py +++ b/project_euler/problem_09/sol1.py @@ -7,7 +7,6 @@ There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ -from __future__ import print_function def solution(): @@ -17,7 +16,7 @@ def solution(): 1. a < b < c 2. a**2 + b**2 = c**2 3. a + b + c = 1000 - + # The code below has been commented due to slow execution affecting Travis. # >>> solution() # 31875000 diff --git a/project_euler/problem_09/sol2.py b/project_euler/problem_09/sol2.py index 674daae9ec8e..502f334417c8 100644 --- a/project_euler/problem_09/sol2.py +++ b/project_euler/problem_09/sol2.py @@ -7,14 +7,6 @@ There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """ Return the product of a,b,c which are Pythagorean Triplet that satisfies @@ -22,7 +14,7 @@ def solution(n): 1. a < b < c 2. a**2 + b**2 = c**2 3. a + b + c = 1000 - + >>> solution(1000) 31875000 """ @@ -41,4 +33,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py index 006029c8a30d..bbe7dcf743e7 100644 --- a/project_euler/problem_09/sol3.py +++ b/project_euler/problem_09/sol3.py @@ -10,9 +10,6 @@ There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ -from __future__ import print_function - - def solution(): """ Returns the product of a,b,c which are Pythagorean Triplet that satisfies diff --git a/project_euler/problem_10/sol1.py b/project_euler/problem_10/sol1.py index 49384d7c78f0..c81085951ecf 100644 --- a/project_euler/problem_10/sol1.py +++ b/project_euler/problem_10/sol1.py @@ -4,22 +4,11 @@ Find the sum of all the primes below two million. """ -from __future__ import print_function from math import sqrt -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - def is_prime(n): - for i in xrange(2, int(sqrt(n)) + 1): + for i in range(2, int(sqrt(n)) + 1): if n % i == 0: return False @@ -32,7 +21,7 @@ def sum_of_primes(n): else: return 0 - for i in xrange(3, n, 2): + for i in range(3, n, 2): if is_prime(i): sumOfPrimes += i @@ -41,7 +30,7 @@ def sum_of_primes(n): def solution(n): """Returns the sum of all the primes below n. - + # The code below has been commented due to slow execution affecting Travis. # >>> solution(2000000) # 142913828922 @@ -58,4 +47,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_10/sol2.py b/project_euler/problem_10/sol2.py index 451a4ae5e8f3..b2e2b6e1adf3 100644 --- a/project_euler/problem_10/sol2.py +++ b/project_euler/problem_10/sol2.py @@ -4,15 +4,9 @@ Find the sum of all the primes below two million. """ -from __future__ import print_function import math from itertools import takewhile -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def primeCheck(number): if number % 2 == 0 and number > 2: @@ -30,7 +24,7 @@ def prime_generator(): def solution(n): """Returns the sum of all the primes below n. - + # The code below has been commented due to slow execution affecting Travis. # >>> solution(2000000) # 142913828922 @@ -47,4 +41,4 @@ def solution(n): if __name__ == "__main__": - print(solution(int(raw_input().strip()))) + print(solution(int(input().strip()))) diff --git a/project_euler/problem_11/sol1.py b/project_euler/problem_11/sol1.py index 3bdddc89d917..1473439ae00d 100644 --- a/project_euler/problem_11/sol1.py +++ b/project_euler/problem_11/sol1.py @@ -24,14 +24,8 @@ 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 """ -from __future__ import print_function import os -try: - xrange # Python 2 -except NameError: - xrange = range # Python 2 - def largest_product(grid): nColumns = len(grid[0]) @@ -43,8 +37,8 @@ def largest_product(grid): # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) - for i in xrange(nColumns): - for j in xrange(nRows - 3): + for i in range(nColumns): + for j in range(nRows - 3): vertProduct = ( grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] ) @@ -81,7 +75,7 @@ def largest_product(grid): def solution(): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution() 70600674 """ @@ -90,7 +84,7 @@ def solution(): for line in file: grid.append(line.strip("\n").split(" ")) - grid = [[int(i) for i in grid[j]] for j in xrange(len(grid))] + grid = [[int(i) for i in grid[j]] for j in range(len(grid))] return largest_product(grid) diff --git a/project_euler/problem_11/sol2.py b/project_euler/problem_11/sol2.py index 0a5785b42b2c..be6c11a378ad 100644 --- a/project_euler/problem_11/sol2.py +++ b/project_euler/problem_11/sol2.py @@ -24,45 +24,39 @@ 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 """ -from __future__ import print_function import os -try: - xrange # Python 2 -except NameError: - xrange = range # Python 2 - def solution(): """Returns the sum of all the multiples of 3 or 5 below n. - + >>> solution() 70600674 """ with open(os.path.dirname(__file__) + "/grid.txt") as f: l = [] - for i in xrange(20): + for i in range(20): l.append([int(x) for x in f.readline().split()]) maximum = 0 # right - for i in xrange(20): - for j in xrange(17): + for i in range(20): + for j in range(17): temp = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: maximum = temp # down - for i in xrange(17): - for j in xrange(20): + for i in range(17): + for j in range(20): temp = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: maximum = temp # diagonal 1 - for i in xrange(17): - for j in xrange(17): + for i in range(17): + for j in range(17): temp = ( l[i][j] * l[i + 1][j + 1] @@ -73,8 +67,8 @@ def solution(): maximum = temp # diagonal 2 - for i in xrange(17): - for j in xrange(3, 20): + for i in range(17): + for j in range(3, 20): temp = ( l[i][j] * l[i + 1][j - 1] diff --git a/project_euler/problem_12/sol1.py b/project_euler/problem_12/sol1.py index 54476110b503..7e080c4e45a1 100644 --- a/project_euler/problem_12/sol1.py +++ b/project_euler/problem_12/sol1.py @@ -21,18 +21,12 @@ What is the value of the first triangle number to have over five hundred divisors? """ -from __future__ import print_function from math import sqrt -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - def count_divisors(n): nDivisors = 0 - for i in xrange(1, int(sqrt(n)) + 1): + for i in range(1, int(sqrt(n)) + 1): if n % i == 0: nDivisors += 2 # check if n is perfect square @@ -44,7 +38,7 @@ def count_divisors(n): def solution(): """Returns the value of the first triangle number to have over five hundred divisors. - + # The code below has been commented due to slow execution affecting Travis. # >>> solution() # 76576500 diff --git a/project_euler/problem_12/sol2.py b/project_euler/problem_12/sol2.py index 0d1502830bee..97a4910723ac 100644 --- a/project_euler/problem_12/sol2.py +++ b/project_euler/problem_12/sol2.py @@ -21,9 +21,6 @@ What is the value of the first triangle number to have over five hundred divisors? """ -from __future__ import print_function - - def triangle_number_generator(): for n in range(1, 1000000): yield n * (n + 1) // 2 @@ -38,7 +35,7 @@ def count_divisors(n): def solution(): """Returns the value of the first triangle number to have over five hundred divisors. - + # The code below has been commented due to slow execution affecting Travis. # >>> solution() # 76576500 diff --git a/project_euler/problem_14/sol1.py b/project_euler/problem_14/sol1.py index 8d3efbc59eb5..156322b7d507 100644 --- a/project_euler/problem_14/sol1.py +++ b/project_euler/problem_14/sol1.py @@ -16,20 +16,12 @@ Which starting number, under one million, produces the longest chain? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def solution(n): """Returns the number under n that generates the longest sequence using the formula: n → n/2 (n is even) n → 3n + 1 (n is odd) - + # The code below has been commented due to slow execution affecting Travis. # >>> solution(1000000) # {'counter': 525, 'largest_number': 837799} @@ -62,7 +54,7 @@ def solution(n): if __name__ == "__main__": - result = solution(int(raw_input().strip())) + result = solution(int(input().strip())) print( ( "Largest Number:", diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py index 0ec80e221f09..25ebd41571c2 100644 --- a/project_euler/problem_14/sol2.py +++ b/project_euler/problem_14/sol2.py @@ -24,14 +24,6 @@ Which starting number, under one million, produces the longest chain? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def collatz_sequence(n): """Returns the Collatz sequence for n.""" sequence = [n] @@ -63,7 +55,7 @@ def solution(n): if __name__ == "__main__": - result = solution(int(raw_input().strip())) + result = solution(int(input().strip())) print( "Longest Collatz sequence under one million is %d with length %d" % (result["largest_number"], result["counter"]) diff --git a/project_euler/problem_21/sol1.py b/project_euler/problem_21/sol1.py index 9cf2a64cf2a9..a890e6a98611 100644 --- a/project_euler/problem_21/sol1.py +++ b/project_euler/problem_21/sol1.py @@ -16,15 +16,9 @@ Evaluate the sum of all the amicable numbers under 10000. """ -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - - def sum_of_divisors(n): total = 0 - for i in xrange(1, int(sqrt(n) + 1)): + for i in range(1, int(sqrt(n) + 1)): if n % i == 0 and i != sqrt(n): total += i + n // i elif i == sqrt(n): diff --git a/project_euler/problem_22/sol1.py b/project_euler/problem_22/sol1.py index aa779f222eaa..f6275e2138bb 100644 --- a/project_euler/problem_22/sol1.py +++ b/project_euler/problem_22/sol1.py @@ -18,12 +18,6 @@ import os -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - - def solution(): """Returns the total of all the name scores in the file. diff --git a/project_euler/problem_25/sol1.py b/project_euler/problem_25/sol1.py index be3b4d9b2d7d..4371c533ce16 100644 --- a/project_euler/problem_25/sol1.py +++ b/project_euler/problem_25/sol1.py @@ -25,12 +25,6 @@ digits? """ -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - - def fibonacci(n): if n == 1 or type(n) is not int: return 0 @@ -38,7 +32,7 @@ def fibonacci(n): return 1 else: sequence = [0, 1] - for i in xrange(2, n + 1): + for i in range(2, n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] diff --git a/project_euler/problem_28/sol1.py b/project_euler/problem_28/sol1.py index 63386ce3058c..11b48fea9adf 100644 --- a/project_euler/problem_28/sol1.py +++ b/project_euler/problem_28/sol1.py @@ -16,11 +16,6 @@ from math import ceil -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - def diagonal_sum(n): """Returns the sum of the numbers on the diagonals in a n by n spiral @@ -39,7 +34,7 @@ def diagonal_sum(n): """ total = 1 - for i in xrange(1, int(ceil(n / 2.0))): + for i in range(1, int(ceil(n / 2.0))): odd = 2 * i + 1 even = 2 * i total = total + 4 * odd ** 2 - 6 * even diff --git a/project_euler/problem_29/solution.py b/project_euler/problem_29/solution.py index e67dafe4639d..24d3e20d94fe 100644 --- a/project_euler/problem_29/solution.py +++ b/project_euler/problem_29/solution.py @@ -14,13 +14,10 @@ How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100? """ -from __future__ import print_function - - def solution(n): """Returns the number of distinct terms in the sequence generated by a^b for 2 <= a <= 100 and 2 <= b <= 100. - + >>> solution(100) 9183 >>> solution(50) diff --git a/project_euler/problem_31/sol1.py b/project_euler/problem_31/sol1.py index e2a209e5df5a..f7439d346130 100644 --- a/project_euler/problem_31/sol1.py +++ b/project_euler/problem_31/sol1.py @@ -11,14 +11,6 @@ 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p How many different ways can £2 be made using any number of coins? """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - - def one_pence(): return 1 diff --git a/project_euler/problem_36/sol1.py b/project_euler/problem_36/sol1.py index 38b60420992b..7ed74af8fd63 100644 --- a/project_euler/problem_36/sol1.py +++ b/project_euler/problem_36/sol1.py @@ -9,12 +9,6 @@ (Please note that the palindromic number, in either base, may not include leading zeros.) """ -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - - def is_palindrome(n): n = str(n) @@ -47,7 +41,7 @@ def solution(n): """ total = 0 - for i in xrange(1, n): + for i in range(1, n): if is_palindrome(i) and is_palindrome(bin(i).split("b")[1]): total += i return total diff --git a/project_euler/problem_40/sol1.py b/project_euler/problem_40/sol1.py index accd7125354c..d15376b739db 100644 --- a/project_euler/problem_40/sol1.py +++ b/project_euler/problem_40/sol1.py @@ -14,11 +14,8 @@ d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 """ -from __future__ import print_function - - def solution(): - """Returns + """Returns >>> solution() 210 diff --git a/project_euler/problem_48/sol1.py b/project_euler/problem_48/sol1.py index 95af951c0e8a..06ad1408dcef 100644 --- a/project_euler/problem_48/sol1.py +++ b/project_euler/problem_48/sol1.py @@ -7,11 +7,6 @@ Find the last ten digits of the series, 11 + 22 + 33 + ... + 10001000. """ -try: - xrange -except NameError: - xrange = range - def solution(): """Returns the last 10 digits of the series, 11 + 22 + 33 + ... + 10001000. @@ -20,7 +15,7 @@ def solution(): '9110846700' """ total = 0 - for i in xrange(1, 1001): + for i in range(1, 1001): total += i ** i return str(total)[-10:] diff --git a/project_euler/problem_53/sol1.py b/project_euler/problem_53/sol1.py index c72e0b993a34..f17508b005d1 100644 --- a/project_euler/problem_53/sol1.py +++ b/project_euler/problem_53/sol1.py @@ -17,14 +17,8 @@ How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million? """ -from __future__ import print_function from math import factorial -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 - def combinations(n, r): return factorial(n) / (factorial(r) * factorial(n - r)) @@ -39,8 +33,8 @@ def solution(): """ total = 0 - for i in xrange(1, 101): - for j in xrange(1, i + 1): + for i in range(1, 101): + for j in range(1, i + 1): if combinations(i, j) > 1e6: total += 1 return total diff --git a/project_euler/problem_76/sol1.py b/project_euler/problem_76/sol1.py index c9e3c452fbc4..ed0ee6b507e9 100644 --- a/project_euler/problem_76/sol1.py +++ b/project_euler/problem_76/sol1.py @@ -14,12 +14,6 @@ How many different ways can one hundred be written as a sum of at least two positive integers? """ -from __future__ import print_function - -try: - xrange # Python 2 -except NameError: - xrange = range # Python 3 def partition(m): @@ -43,12 +37,12 @@ def partition(m): >>> partition(1) 0 """ - memo = [[0 for _ in xrange(m)] for _ in xrange(m + 1)] - for i in xrange(m + 1): + memo = [[0 for _ in range(m)] for _ in range(m + 1)] + for i in range(m + 1): memo[i][0] = 1 - for n in xrange(m + 1): - for k in xrange(1, m): + for n in range(m + 1): + for k in range(1, m): memo[n][k] += memo[n][k - 1] if n > k: memo[n][k] += memo[n - k - 1][k] diff --git a/searches/binary_search.py b/searches/binary_search.py index e658dac2a3ef..77abf90239ab 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -9,14 +9,8 @@ For manual testing run: python binary_search.py """ -from __future__ import print_function import bisect -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - def binary_search(sorted_collection, item): """Pure implementation of binary search algorithm in Python @@ -112,7 +106,7 @@ def binary_search_by_recursion(sorted_collection, item, left, right): """ if (right < left): return None - + midpoint = left + (right - left) // 2 if sorted_collection[midpoint] == item: @@ -121,7 +115,7 @@ def binary_search_by_recursion(sorted_collection, item, left, right): return binary_search_by_recursion(sorted_collection, item, left, midpoint-1) else: return binary_search_by_recursion(sorted_collection, item, midpoint+1, right) - + def __assert_sorted(collection): """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` @@ -145,14 +139,14 @@ def __assert_sorted(collection): if __name__ == '__main__': import sys - user_input = raw_input('Enter numbers separated by comma:\n').strip() + user_input = input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply binary search') - target_input = raw_input('Enter a single number to be found in the list:\n') + target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) result = binary_search(collection, target) if result is not None: diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index 329596d340a5..27ee979bb649 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -1,12 +1,6 @@ """ This is pure python implementation of interpolation search algorithm """ -from __future__ import print_function - -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 def interpolation_search(sorted_collection, item): @@ -29,7 +23,7 @@ def interpolation_search(sorted_collection, item): return None point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) - + #out of range check if point<0 or point>=len(sorted_collection): return None @@ -42,9 +36,9 @@ def interpolation_search(sorted_collection, item): right = left left = point elif point>right: - left = right + left = right right = point - else: + else: if item < current_item: right = point - 1 else: @@ -70,7 +64,7 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right): return None point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) - + #out of range check if point<0 or point>=len(sorted_collection): return None @@ -86,7 +80,7 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right): return interpolation_search_by_recursion(sorted_collection, item, left, point-1) else: return interpolation_search_by_recursion(sorted_collection, item, point+1, right) - + def __assert_sorted(collection): """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` :param collection: collection @@ -107,16 +101,16 @@ def __assert_sorted(collection): if __name__ == '__main__': import sys - + """ - user_input = raw_input('Enter numbers separated by comma:\n').strip() + user_input = input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') - target_input = raw_input('Enter a single number to be found in the list:\n') + target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) """ @@ -128,7 +122,7 @@ def __assert_sorted(collection): except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') target = 67 - + result = interpolation_search(collection, target) if result is not None: print('{} found at positions: {}'.format(target, result)) diff --git a/searches/jump_search.py b/searches/jump_search.py index 10cb933f2f35..78d9f79dc6a8 100644 --- a/searches/jump_search.py +++ b/searches/jump_search.py @@ -1,4 +1,3 @@ -from __future__ import print_function import math def jump_search(arr, x): n = len(arr) diff --git a/searches/linear_search.py b/searches/linear_search.py index 058322f21d09..fb784924132e 100644 --- a/searches/linear_search.py +++ b/searches/linear_search.py @@ -9,12 +9,7 @@ For manual testing run: python linear_search.py """ -from __future__ import print_function -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 def linear_search(sequence, target): """Pure implementation of linear search algorithm in Python @@ -43,10 +38,10 @@ def linear_search(sequence, target): if __name__ == '__main__': - user_input = raw_input('Enter numbers separated by comma:\n').strip() + user_input = input('Enter numbers separated by comma:\n').strip() sequence = [int(item) for item in user_input.split(',')] - target_input = raw_input('Enter a single number to be found in the list:\n') + target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) result = linear_search(sequence, target) if result is not None: diff --git a/searches/sentinel_linear_search.py b/searches/sentinel_linear_search.py index 336cc5ab3b74..eb9d32e5f503 100644 --- a/searches/sentinel_linear_search.py +++ b/searches/sentinel_linear_search.py @@ -45,15 +45,10 @@ def sentinel_linear_search(sequence, target): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by comma:\n').strip() + user_input = input('Enter numbers separated by comma:\n').strip() sequence = [int(item) for item in user_input.split(',')] - target_input = raw_input('Enter a single number to be found in the list:\n') + target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: diff --git a/searches/ternary_search.py b/searches/ternary_search.py index c610f9b3c6da..41033f33cec6 100644 --- a/searches/ternary_search.py +++ b/searches/ternary_search.py @@ -1,20 +1,13 @@ ''' This is a type of divide and conquer algorithm which divides the search space into -3 parts and finds the target value based on the property of the array or list +3 parts and finds the target value based on the property of the array or list (usually monotonic property). Time Complexity : O(log3 N) Space Complexity : O(1) ''' -from __future__ import print_function - import sys -try: - raw_input # Python 2 -except NameError: - raw_input = input # Python 3 - # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. precision = 10 @@ -31,23 +24,23 @@ def ite_ternary_search(A, target): right = len(A) - 1; while(True): if(left>> bubble_sort([-2, -5, -45]) [-45, -5, -2] - - >>> bubble_sort([-23,0,6,-4,34]) + + >>> bubble_sort([-23, 0, 6, -4, 34]) [-23, -4, 0, 6, 34] + + >>> bubble_sort([-23, 0, 6, -4, 34]) == sorted([-23, 0, 6, -4, 34]) + True """ length = len(collection) for i in range(length-1): @@ -28,15 +28,12 @@ def bubble_sort(collection): if collection[j] > collection[j+1]: swapped = True collection[j], collection[j+1] = collection[j+1], collection[j] - if not swapped: break # Stop iteration if the collection is sorted. + if not swapped: + break # Stop iteration if the collection is sorted. return collection if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - user_input = raw_input('Enter numbers separated by a comma:').strip() + user_input = input('Enter numbers separated by a comma:').strip() unsorted = [int(item) for item in user_input.split(',')] print(*bubble_sort(unsorted), sep=',') diff --git a/sorts/cocktail_shaker_sort.py b/sorts/cocktail_shaker_sort.py index 8ad3383bbe9f..d486e6a11dfa 100644 --- a/sorts/cocktail_shaker_sort.py +++ b/sorts/cocktail_shaker_sort.py @@ -1,12 +1,10 @@ -from __future__ import print_function - def cocktail_shaker_sort(unsorted): """ Pure implementation of the cocktail shaker sort algorithm in Python. """ for i in range(len(unsorted)-1, 0, -1): swapped = False - + for j in range(i, 0, -1): if unsorted[j] < unsorted[j-1]: unsorted[j], unsorted[j-1] = unsorted[j-1], unsorted[j] @@ -16,17 +14,12 @@ def cocktail_shaker_sort(unsorted): if unsorted[j] > unsorted[j+1]: unsorted[j], unsorted[j+1] = unsorted[j+1], unsorted[j] swapped = True - + if not swapped: return unsorted - + if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] cocktail_shaker_sort(unsorted) print(unsorted) diff --git a/sorts/comb_sort.py b/sorts/comb_sort.py index 22b6f66f04cc..6ce6c1c094f9 100644 --- a/sorts/comb_sort.py +++ b/sorts/comb_sort.py @@ -48,11 +48,6 @@ def comb_sort(data): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(comb_sort(unsorted)) diff --git a/sorts/counting_sort.py b/sorts/counting_sort.py index ad98f1a0da4c..a3de1811849e 100644 --- a/sorts/counting_sort.py +++ b/sorts/counting_sort.py @@ -8,8 +8,6 @@ python counting_sort.py """ -from __future__ import print_function - def counting_sort(collection): """Pure implementation of counting sort algorithm in Python @@ -58,6 +56,10 @@ def counting_sort(collection): return ordered def counting_sort_string(string): + """ + >>> counting_sort_string("thisisthestring") + 'eghhiiinrsssttt' + """ return ''.join([chr(i) for i in counting_sort([ord(c) for c in string])]) @@ -65,11 +67,6 @@ def counting_sort_string(string): # Test string sort assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring") - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted)) diff --git a/sorts/cycle_sort.py b/sorts/cycle_sort.py index 492022164427..06a377cbd906 100644 --- a/sorts/cycle_sort.py +++ b/sorts/cycle_sort.py @@ -1,7 +1,4 @@ # Code contributed by Honey Sharma -from __future__ import print_function - - def cycle_sort(array): ans = 0 @@ -45,12 +42,7 @@ def cycle_sort(array): # Main Code starts here if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n') + user_input = input('Enter numbers separated by a comma:\n') unsorted = [int(item) for item in user_input.split(',')] n = len(unsorted) cycle_sort(unsorted) diff --git a/sorts/gnome_sort.py b/sorts/gnome_sort.py index 075749e37663..fed70eb6bc1b 100644 --- a/sorts/gnome_sort.py +++ b/sorts/gnome_sort.py @@ -1,7 +1,5 @@ """Gnome Sort Algorithm.""" -from __future__ import print_function - def gnome_sort(unsorted): """Pure implementation of the gnome sort algorithm in Python.""" @@ -21,12 +19,7 @@ def gnome_sort(unsorted): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] gnome_sort(unsorted) print(unsorted) diff --git a/sorts/heap_sort.py b/sorts/heap_sort.py index 3c72abca8059..ca4a061afbb7 100644 --- a/sorts/heap_sort.py +++ b/sorts/heap_sort.py @@ -10,9 +10,6 @@ python heap_sort.py ''' -from __future__ import print_function - - def heapify(unsorted, index, heap_size): largest = index left_index = 2 * index + 1 @@ -54,11 +51,6 @@ def heap_sort(unsorted): return unsorted if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(heap_sort(unsorted)) diff --git a/sorts/insertion_sort.py b/sorts/insertion_sort.py index e088705947d4..e10497b0e282 100644 --- a/sorts/insertion_sort.py +++ b/sorts/insertion_sort.py @@ -9,9 +9,6 @@ For manual testing run: python insertion_sort.py """ -from __future__ import print_function - - def insertion_sort(collection): """Pure implementation of the insertion sort algorithm in Python @@ -40,11 +37,6 @@ def insertion_sort(collection): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(insertion_sort(unsorted)) diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index 714861e72642..e64e90785a32 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -9,9 +9,6 @@ For manual testing run: python merge_sort.py """ -from __future__ import print_function - - def merge_sort(collection): """Pure implementation of the merge sort algorithm in Python @@ -46,11 +43,6 @@ def merge(left, right): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',') diff --git a/sorts/merge_sort_fastest.py b/sorts/merge_sort_fastest.py index bd356c935ca0..3c9ed3e9e8ee 100644 --- a/sorts/merge_sort_fastest.py +++ b/sorts/merge_sort_fastest.py @@ -4,9 +4,6 @@ Best Case Scenario : O(n) Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n) ''' -from __future__ import print_function - - def merge_sort(collection): """Pure implementation of the fastest merge sort algorithm in Python @@ -36,11 +33,6 @@ def merge_sort(collection): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',') diff --git a/sorts/pigeon_sort.py b/sorts/pigeon_sort.py index 65eb8896ea9c..5e5afa137685 100644 --- a/sorts/pigeon_sort.py +++ b/sorts/pigeon_sort.py @@ -1,9 +1,6 @@ ''' This is an implementation of Pigeon Hole Sort. ''' - -from __future__ import print_function - def pigeon_sort(array): # Manually finds the minimum and maximum of the array. min = array[0] @@ -38,12 +35,7 @@ def pigeon_sort(array): return array if __name__ == '__main__': - try: - raw_input # Python2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by comma:\n') + user_input = input('Enter numbers separated by comma:\n') unsorted = [int(x) for x in user_input.split(',')] sorted = pigeon_sort(unsorted) diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index 7e8c868ebb06..60f8803cb79c 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -9,9 +9,6 @@ For manual testing run: python quick_sort.py """ -from __future__ import print_function - - def quick_sort(collection): """Pure implementation of quick sort algorithm in Python @@ -47,11 +44,6 @@ def quick_sort(collection): if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [ int(item) for item in user_input.split(',') ] print( quick_sort(unsorted) ) diff --git a/sorts/quick_sort_3_partition.py b/sorts/quick_sort_3_partition.py index def646cdbc50..9056b204740a 100644 --- a/sorts/quick_sort_3_partition.py +++ b/sorts/quick_sort_3_partition.py @@ -1,5 +1,3 @@ -from __future__ import print_function - def quick_sort_3partition(sorting, left, right): if right <= left: return @@ -20,12 +18,7 @@ def quick_sort_3partition(sorting, left, right): quick_sort_3partition(sorting, b + 1, right) if __name__ == '__main__': - try: - raw_input # Python 2 - except NameError: - raw_input = input # Python 3 - - user_input = raw_input('Enter numbers separated by a comma:\n').strip() + user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [ int(item) for item in user_input.split(',') ] quick_sort_3partition(unsorted,0,len(unsorted)-1) print(unsorted) diff --git a/sorts/random_normal_distribution_quicksort.py b/sorts/random_normal_distribution_quicksort.py index dfa37da61e26..39c54c46e263 100644 --- a/sorts/random_normal_distribution_quicksort.py +++ b/sorts/random_normal_distribution_quicksort.py @@ -1,25 +1,23 @@ -from __future__ import print_function from random import randint from tempfile import TemporaryFile import numpy as np - -def _inPlaceQuickSort(A,start,end): +def _inPlaceQuickSort(A,start,end): count = 0 if start Date: Tue, 20 Aug 2019 01:02:43 -0400 Subject: [PATCH 275/594] Fixing lgtm issue in basic graphs (#1141) * Added print function into matrix_multiplication_addition.py and removed blank space in data_structures/binary tree directory * Removed .vs/ folder per #893 * Rename matrix_multiplication_addition.py to matrix_operation.py * Fixing lgtm issue in basic_graphs per ##1024 * Fixed lgtm issue per @cclauss recommendation in #1024 --- graphs/basic_graphs.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index 64c51e139cca..308abc0839fa 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -128,7 +128,9 @@ def dijk(G, s): from collections import deque -def topo(G, ind=None, Q=[1]): +def topo(G, ind=None, Q=None): + if Q is None: + Q = [1] if ind is None: ind = [0] * (len(G) + 1) # SInce oth Index is ignored for u in G: From 47cb394b5c9a42682803f09d41b3cbe9d1b09304 Mon Sep 17 00:00:00 2001 From: pathak-deep15 <44609019+pathak-deep15@users.noreply.github.com> Date: Thu, 22 Aug 2019 22:25:41 +0530 Subject: [PATCH 276/594] added doctests for compare_string and is_for_table (#1138) * added doctests for compare_string and is_for_table >>>compare_string('0010','0110') '0_10' >>> is_for_table('__1','011',2) True The above doctests were added * Update quine_mc_cluskey.py * Update quine_mc_cluskey.py * Update quine_mc_cluskey.py --- boolean_algebra/quine_mc_cluskey.py | 48 ++++++++++++++++++++--------- 1 file changed, 33 insertions(+), 15 deletions(-) diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py index 94319ca45482..b7ca8da437a3 100644 --- a/boolean_algebra/quine_mc_cluskey.py +++ b/boolean_algebra/quine_mc_cluskey.py @@ -1,19 +1,11 @@ -""" - doctests - - >>> decimal_to_binary(3,[1.5]) - ['0.00.01.5'] - - >>> check(['0.00.01.5']) - ['0.00.01.5'] - - >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) - [[1]] - - >>> selection([[1]],['0.00.01.5']) - ['0.00.01.5'] -""" def compare_string(string1, string2): + """ + >>> compare_string('0010','0110') + '0_10' + + >>> compare_string('0110','1101') + -1 + """ l1 = list(string1); l2 = list(string2) count = 0 for i in range(len(l1)): @@ -26,6 +18,10 @@ def compare_string(string1, string2): return("".join(l1)) def check(binary): + """ + >>> check(['0.00.01.5']) + ['0.00.01.5'] + """ pi = [] while 1: check1 = ['$']*len(binary) @@ -45,6 +41,10 @@ def check(binary): binary = list(set(temp)) def decimal_to_binary(no_of_variable, minterms): + """ + >>> decimal_to_binary(3,[1.5]) + ['0.00.01.5'] + """ temp = [] s = '' for m in minterms: @@ -56,6 +56,13 @@ def decimal_to_binary(no_of_variable, minterms): return temp def is_for_table(string1, string2, count): + """ + >>> is_for_table('__1','011',2) + True + + >>> is_for_table('01_','001',1) + False + """ l1 = list(string1);l2=list(string2) count_n = 0 for i in range(len(l1)): @@ -67,6 +74,13 @@ def is_for_table(string1, string2, count): return False def selection(chart, prime_implicants): + """ + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] + + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] + """ temp = [] select = [0]*len(chart) for i in range(len(chart[0])): @@ -104,6 +118,10 @@ def selection(chart, prime_implicants): chart[j][i] = 0 def prime_implicant_chart(prime_implicants, binary): + """ + >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) + [[1]] + """ chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] for i in range(len(prime_implicants)): count = prime_implicants[i].count('_') From e694e596a3fc42ae5f28f0e267c44f74948e25ee Mon Sep 17 00:00:00 2001 From: Nishant Aklecha <31594715+Naklecha@users.noreply.github.com> Date: Sun, 25 Aug 2019 17:44:17 +0530 Subject: [PATCH 277/594] Added a few doctests for traversals (#1149) --- traversals/binary_tree_traversals.py | 116 +++++++++++++++++++++++++++ 1 file changed, 116 insertions(+) diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 7fd9f7111844..389311a7cfde 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -39,6 +39,20 @@ def build_tree(): def pre_order(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> pre_order(root) + 1 2 4 5 3 6 7 + """ if not isinstance(node, TreeNode) or not node: return print(node.data, end=" ") @@ -47,6 +61,20 @@ def pre_order(node: TreeNode) -> None: def in_order(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> in_order(root) + 4 2 5 1 6 3 7 + """ if not isinstance(node, TreeNode) or not node: return in_order(node.left) @@ -55,6 +83,20 @@ def in_order(node: TreeNode) -> None: def post_order(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> post_order(root) + 4 5 2 6 7 3 1 + """ if not isinstance(node, TreeNode) or not node: return post_order(node.left) @@ -63,6 +105,20 @@ def post_order(node: TreeNode) -> None: def level_order(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> level_order(root) + 1 2 3 4 5 6 7 + """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() @@ -77,6 +133,22 @@ def level_order(node: TreeNode) -> None: def level_order_actual(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> level_order_actual(root) + 1 + 2 3 + 4 5 6 7 + """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() @@ -97,6 +169,20 @@ def level_order_actual(node: TreeNode) -> None: # iteration version def pre_order_iter(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> pre_order_iter(root) + 1 2 4 5 3 6 7 + """ if not isinstance(node, TreeNode) or not node: return stack: List[TreeNode] = [] @@ -113,6 +199,20 @@ def pre_order_iter(node: TreeNode) -> None: def in_order_iter(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> in_order_iter(root) + 4 2 5 1 6 3 7 + """ if not isinstance(node, TreeNode) or not node: return stack: List[TreeNode] = [] @@ -127,6 +227,20 @@ def in_order_iter(node: TreeNode) -> None: def post_order_iter(node: TreeNode) -> None: + """ + >>> root = TreeNode(1) + >>> tree_node2 = TreeNode(2) + >>> tree_node3 = TreeNode(3) + >>> tree_node4 = TreeNode(4) + >>> tree_node5 = TreeNode(5) + >>> tree_node6 = TreeNode(6) + >>> tree_node7 = TreeNode(7) + >>> root.left, root.right = tree_node2, tree_node3 + >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 + >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 + >>> post_order_iter(root) + 4 5 2 6 7 3 1 + """ if not isinstance(node, TreeNode) or not node: return stack1, stack2 = [], [] @@ -151,6 +265,8 @@ def prompt(s: str = "", width=50, char="*") -> str: if __name__ == "__main__": + import doctest + doctest.testmod() print(prompt("Binary Tree Traversals")) node = build_tree() From 2f8516e561dc07571e48044f75a942db05068fa9 Mon Sep 17 00:00:00 2001 From: Riemann <40825655+anand372@users.noreply.github.com> Date: Wed, 28 Aug 2019 16:26:43 +0530 Subject: [PATCH 278/594] implementation of sorted vector machines (#1156) * svm.py for issue #840 I would like to add the Support Vector Machine algorithm implemented in Python 3.6.7 Requirements: - sklearn * update svm.py * update svm.py * Update and renamed to sorted_vector_machines.py * Updated sorted_vector_machines.py --- machine_learning/sorted_vector_machines.py | 54 ++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 machine_learning/sorted_vector_machines.py diff --git a/machine_learning/sorted_vector_machines.py b/machine_learning/sorted_vector_machines.py new file mode 100644 index 000000000000..92fa814c998f --- /dev/null +++ b/machine_learning/sorted_vector_machines.py @@ -0,0 +1,54 @@ +from sklearn.datasets import load_iris +from sklearn import svm +from sklearn.model_selection import train_test_split +import doctest + +# different functions implementing different types of SVM's +def NuSVC(train_x, train_y): + svc_NuSVC = svm.NuSVC() + svc_NuSVC.fit(train_x, train_y) + return svc_NuSVC + + +def Linearsvc(train_x, train_y): + svc_linear = svm.LinearSVC() + svc_linear.fit(train_x, train_y) + return svc_linear + + +def SVC(train_x, train_y): + # svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None) + # various parameters like "kernal","gamma","C" can effectively tuned for a given machine learning model. + SVC = svm.SVC(gamma="auto") + SVC.fit(train_x, train_y) + return SVC + + +def test(X_new): + """ + 3 test cases to be passed + an array containing the sepal length (cm), sepal width (cm),petal length (cm),petal width (cm) + based on which the target name will be predicted + >>> test([1,2,1,4]) + 'virginica' + >>> test([5, 2, 4, 1]) + 'versicolor' + >>> test([6,3,4,1]) + 'versicolor' + + """ + iris = load_iris() + # splitting the dataset to test and train + train_x, test_x, train_y, test_y = train_test_split( + iris["data"], iris["target"], random_state=4 + ) + # any of the 3 types of SVM can be used + # current_model=SVC(train_x, train_y) + # current_model=NuSVC(train_x, train_y) + current_model = Linearsvc(train_x, train_y) + prediction = current_model.predict([X_new]) + return iris["target_names"][prediction][0] + + +if __name__ == "__main__": + doctest.testmod() From 82a079c209bf7836baade1aa4e7a6e3a85b740a2 Mon Sep 17 00:00:00 2001 From: Harshil Date: Wed, 28 Aug 2019 17:16:12 +0200 Subject: [PATCH 279/594] add .github/stale.yml (#1158) --- .github/stale.yml | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 .github/stale.yml diff --git a/.github/stale.yml b/.github/stale.yml new file mode 100644 index 000000000000..6af2a10216b8 --- /dev/null +++ b/.github/stale.yml @@ -0,0 +1,18 @@ +# Number of days of inactivity before an issue becomes stale +daysUntilStale: 14 +# Number of days of inactivity before a stale issue is closed +daysUntilClose: 7 +# Issues with these labels will never be considered stale +exemptLabels: + - bug + - help wanted + - OK to merge +# Label to use when marking an issue as stale +staleLabel: wontfix +# Comment to post when marking an issue as stale. Set to `false` to disable +markComment: > + This issue has been automatically marked as stale because it has not had + recent activity. It will be closed if no further activity occurs. Thank you + for your contributions. +# Comment to post when closing a stale issue. Set to `false` to disable +closeComment: false \ No newline at end of file From d327f107022a51f8ae75436d6dae20fda34622ee Mon Sep 17 00:00:00 2001 From: Rohit Gupta Date: Thu, 29 Aug 2019 00:53:42 +0530 Subject: [PATCH 280/594] Update stale.yml --- .github/stale.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/stale.yml b/.github/stale.yml index 6af2a10216b8..70032115fc2c 100644 --- a/.github/stale.yml +++ b/.github/stale.yml @@ -1,5 +1,5 @@ # Number of days of inactivity before an issue becomes stale -daysUntilStale: 14 +daysUntilStale: 30 # Number of days of inactivity before a stale issue is closed daysUntilClose: 7 # Issues with these labels will never be considered stale @@ -15,4 +15,4 @@ markComment: > recent activity. It will be closed if no further activity occurs. Thank you for your contributions. # Comment to post when closing a stale issue. Set to `false` to disable -closeComment: false \ No newline at end of file +closeComment: true From d4151bd5164d99a8184a4d842fe5e36305716dbc Mon Sep 17 00:00:00 2001 From: Rwithik Manoj Date: Sat, 31 Aug 2019 17:10:50 +0530 Subject: [PATCH 281/594] Fix possible error in longest_common_subsequence.py (#1163) The comparison at line 53 was not checking if (j > 0). --- dynamic_programming/longest_common_subsequence.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index 7447a0cc7810..d39485408988 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -50,7 +50,7 @@ def longest_common_subsequence(x: str, y: str): seq = "" i, j = m, n - while i > 0 and i > 0: + while i > 0 and j > 0: if x[i - 1] == y[j - 1]: match = 1 else: From d567a9eb8c1bf00e7bc5a007f21e3c977d7f83ec Mon Sep 17 00:00:00 2001 From: b63 <52578583+b63@users.noreply.github.com> Date: Sun, 1 Sep 2019 01:07:31 -0500 Subject: [PATCH 282/594] solution to problem 551 from project euler (#1164) * solution to problem 551 from project euler * renamed variables, and added more comments to improve readabilty --- project_euler/problem_551/__init__.py | 0 project_euler/problem_551/sol1.py | 204 ++++++++++++++++++++++++++ 2 files changed, 204 insertions(+) create mode 100644 project_euler/problem_551/__init__.py create mode 100644 project_euler/problem_551/sol1.py diff --git a/project_euler/problem_551/__init__.py b/project_euler/problem_551/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_551/sol1.py b/project_euler/problem_551/sol1.py new file mode 100644 index 000000000000..238d7b772190 --- /dev/null +++ b/project_euler/problem_551/sol1.py @@ -0,0 +1,204 @@ +""" +Sum of digits sequence +Problem 551 + +Let a(0), a(1),... be an interger sequence defined by: + a(0) = 1 + for n >= 1, a(n) is the sum of the digits of all preceding terms + +The sequence starts with 1, 1, 2, 4, 8, ... +You are given a(10^6) = 31054319. + +Find a(10^15) +""" + +ks = [k for k in range(2, 20+1)] +base = [10 ** k for k in range(ks[-1] + 1)] +memo = {} + + +def next_term(a_i, k, i, n): + """ + Calculates and updates a_i in-place to either the n-th term or the + smallest term for which c > 10^k when the terms are written in the form: + a(i) = b * 10^k + c + + For any a(i), if digitsum(b) and c have the same value, the difference + between subsequent terms will be the same until c >= 10^k. This difference + is cached to greatly speed up the computation. + + Arguments: + a_i -- array of digits starting from the one's place that represent + the i-th term in the sequence + k -- k when terms are written in the from a(i) = b*10^k + c. + Term are calulcated until c > 10^k or the n-th term is reached. + i -- position along the sequence + n -- term to caluclate up to if k is large enough + + Return: a tuple of difference between ending term and starting term, and + the number of terms calculated. ex. if starting term is a_0=1, and + ending term is a_10=62, then (61, 9) is returned. + """ + # ds_b - digitsum(b) + ds_b = 0 + for j in range(k, len(a_i)): + ds_b += a_i[j] + c = 0 + for j in range(min(len(a_i), k)): + c += a_i[j] * base[j] + + diff, dn = 0, 0 + max_dn = n - i + + sub_memo = memo.get(ds_b) + + if sub_memo != None: + jumps = sub_memo.get(c) + + if jumps != None and len(jumps) > 0: + # find and make the largest jump without going over + max_jump = -1 + for _k in range(len(jumps) - 1, -1, -1): + if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: + max_jump = _k + break + + if max_jump >= 0: + diff, dn, _kk = jumps[max_jump] + # since the difference between jumps is cached, add c + new_c = diff + c + for j in range(min(k, len(a_i))): + new_c, a_i[j] = divmod(new_c, 10) + if new_c > 0: + add(a_i, k, new_c) + + else: + sub_memo[c] = [] + else: + sub_memo = {c: []} + memo[ds_b] = sub_memo + + if dn >= max_dn or c + diff >= base[k]: + return diff, dn + + if k > ks[0]: + while True: + # keep doing smaller jumps + _diff, terms_jumped = next_term(a_i, k - 1, i + dn, n) + diff += _diff + dn += terms_jumped + + if dn >= max_dn or c + diff >= base[k]: + break + else: + # would be too small a jump, just compute sequential terms instead + _diff, terms_jumped = compute(a_i, k, i + dn, n) + diff += _diff + dn += terms_jumped + + jumps = sub_memo[c] + + # keep jumps sorted by # of terms skipped + j = 0 + while j < len(jumps): + if jumps[j][1] > dn: + break + j += 1 + + # cache the jump for this value digitsum(b) and c + sub_memo[c].insert(j, (diff, dn, k)) + return (diff, dn) + + +def compute(a_i, k, i, n): + """ + same as next_term(a_i, k, i, n) but computes terms without memoizing results. + """ + if i >= n: + return 0, i + if k > len(a_i): + a_i.extend([0 for _ in range(k - len(a_i))]) + + # note: a_i -> b * 10^k + c + # ds_b -> digitsum(b) + # ds_c -> digitsum(c) + start_i = i + ds_b, ds_c, diff = 0, 0, 0 + for j in range(len(a_i)): + if j >= k: + ds_b += a_i[j] + else: + ds_c += a_i[j] + + while i < n: + i += 1 + addend = ds_c + ds_b + diff += addend + ds_c = 0 + for j in range(k): + s = a_i[j] + addend + addend, a_i[j] = divmod(s, 10) + + ds_c += a_i[j] + + if addend > 0: + break + + if addend > 0: + add(a_i, k, addend) + return diff, i - start_i + + +def add(digits, k, addend): + """ + adds addend to digit array given in digits + starting at index k + """ + for j in range(k, len(digits)): + s = digits[j] + addend + if s >= 10: + quotient, digits[j] = divmod(s, 10) + addend = addend // 10 + quotient + else: + digits[j] = s + addend = addend // 10 + + if addend == 0: + break + + while addend > 0: + addend, digit = divmod(addend, 10) + digits.append(digit) + + +def solution(n): + """ + returns n-th term of sequence + + >>> solution(10) + 62 + + >>> solution(10**6) + 31054319 + + >>> solution(10**15) + 73597483551591773 + """ + + digits = [1] + i = 1 + dn = 0 + while True: + diff, terms_jumped = next_term(digits, 20, i + dn, n) + dn += terms_jumped + if dn == n - i: + break + + a_n = 0 + for j in range(len(digits)): + a_n += digits[j] * 10 ** j + return a_n + + +if __name__ == "__main__": + print(solution(10 ** 15)) From 9492e7af7cb24bb2fbe9e814c2e96dde96e95909 Mon Sep 17 00:00:00 2001 From: McDic Date: Tue, 3 Sep 2019 16:02:53 +0900 Subject: [PATCH 283/594] Created Sherman Morrison method (#1162) * Created Sherman Morrison * Added docstring for class * Updated Sherman morrison 1. Added docstring tests 2. Tweaked __str__() using join 3. Added __repr__() 4. Changed index validation to be independent method * Applied cclauss's point 1. Reduced line length for __str__() 2. Removed parens for assert --- matrix/sherman_morrison.py | 255 +++++++++++++++++++++++++++++++++++++ 1 file changed, 255 insertions(+) create mode 100644 matrix/sherman_morrison.py diff --git a/matrix/sherman_morrison.py b/matrix/sherman_morrison.py new file mode 100644 index 000000000000..0d49d78509be --- /dev/null +++ b/matrix/sherman_morrison.py @@ -0,0 +1,255 @@ +class Matrix: + """ + + Matrix structure. + """ + + def __init__(self, row: int, column: int, default_value: float = 0): + """ + + Initialize matrix with given size and default value. + + Example: + >>> a = Matrix(2, 3, 1) + >>> a + Matrix consist of 2 rows and 3 columns + [1, 1, 1] + [1, 1, 1] + """ + + self.row, self.column = row, column + self.array = [[default_value for c in range(column)] for r in range(row)] + + def __str__(self): + """ + + Return string representation of this matrix. + """ + + # Prefix + s = "Matrix consist of %d rows and %d columns\n" % (self.row, self.column) + + # Make string identifier + max_element_length = 0 + for row_vector in self.array: + for obj in row_vector: + max_element_length = max(max_element_length, len(str(obj))) + string_format_identifier = "%%%ds" % (max_element_length,) + + # Make string and return + def single_line(row_vector): + nonlocal string_format_identifier + line = "[" + line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) + line += "]" + return line + s += "\n".join(single_line(row_vector) for row_vector in self.array) + return s + + def __repr__(self): return str(self) + + def validateIndices(self, loc: tuple): + """ + + Check if given indices are valid to pick element from matrix. + + Example: + >>> a = Matrix(2, 6, 0) + >>> a.validateIndices((2, 7)) + False + >>> a.validateIndices((0, 0)) + True + """ + if not(isinstance(loc, (list, tuple)) and len(loc) == 2): return False + elif not(0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False + else: return True + + def __getitem__(self, loc: tuple): + """ + + Return array[row][column] where loc = (row, column). + + Example: + >>> a = Matrix(3, 2, 7) + >>> a[1, 0] + 7 + """ + assert self.validateIndices(loc) + return self.array[loc[0]][loc[1]] + + def __setitem__(self, loc: tuple, value: float): + """ + + Set array[row][column] = value where loc = (row, column). + + Example: + >>> a = Matrix(2, 3, 1) + >>> a[1, 2] = 51 + >>> a + Matrix consist of 2 rows and 3 columns + [ 1, 1, 1] + [ 1, 1, 51] + """ + assert self.validateIndices(loc) + self.array[loc[0]][loc[1]] = value + + def __add__(self, another): + """ + + Return self + another. + + Example: + >>> a = Matrix(2, 1, -4) + >>> b = Matrix(2, 1, 3) + >>> a+b + Matrix consist of 2 rows and 1 columns + [-1] + [-1] + """ + + # Validation + assert isinstance(another, Matrix) + assert self.row == another.row and self.column == another.column + + # Add + result = Matrix(self.row, self.column) + for r in range(self.row): + for c in range(self.column): + result[r,c] = self[r,c] + another[r,c] + return result + + def __neg__(self): + """ + + Return -self. + + Example: + >>> a = Matrix(2, 2, 3) + >>> a[0, 1] = a[1, 0] = -2 + >>> -a + Matrix consist of 2 rows and 2 columns + [-3, 2] + [ 2, -3] + """ + + result = Matrix(self.row, self.column) + for r in range(self.row): + for c in range(self.column): + result[r,c] = -self[r,c] + return result + + def __sub__(self, another): return self + (-another) + + def __mul__(self, another): + """ + + Return self * another. + + Example: + >>> a = Matrix(2, 3, 1) + >>> a[0,2] = a[1,2] = 3 + >>> a * -2 + Matrix consist of 2 rows and 3 columns + [-2, -2, -6] + [-2, -2, -6] + """ + + if isinstance(another, (int, float)): # Scalar multiplication + result = Matrix(self.row, self.column) + for r in range(self.row): + for c in range(self.column): + result[r,c] = self[r,c] * another + return result + elif isinstance(another, Matrix): # Matrix multiplication + assert(self.column == another.row) + result = Matrix(self.row, another.column) + for r in range(self.row): + for c in range(another.column): + for i in range(self.column): + result[r,c] += self[r,i] * another[i,c] + return result + else: raise TypeError("Unsupported type given for another (%s)" % (type(another),)) + + def transpose(self): + """ + + Return self^T. + + Example: + >>> a = Matrix(2, 3) + >>> for r in range(2): + ... for c in range(3): + ... a[r,c] = r*c + ... + >>> a.transpose() + Matrix consist of 3 rows and 2 columns + [0, 0] + [0, 1] + [0, 2] + """ + + result = Matrix(self.column, self.row) + for r in range(self.row): + for c in range(self.column): + result[c,r] = self[r,c] + return result + + def ShermanMorrison(self, u, v): + """ + + Apply Sherman-Morrison formula in O(n^2). + To learn this formula, please look this: https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula + This method returns (A + uv^T)^(-1) where A^(-1) is self. Returns None if it's impossible to calculate. + Warning: This method doesn't check if self is invertible. + Make sure self is invertible before execute this method. + + Example: + >>> ainv = Matrix(3, 3, 0) + >>> for i in range(3): ainv[i,i] = 1 + ... + >>> u = Matrix(3, 1, 0) + >>> u[0,0], u[1,0], u[2,0] = 1, 2, -3 + >>> v = Matrix(3, 1, 0) + >>> v[0,0], v[1,0], v[2,0] = 4, -2, 5 + >>> ainv.ShermanMorrison(u, v) + Matrix consist of 3 rows and 3 columns + [ 1.2857142857142856, -0.14285714285714285, 0.3571428571428571] + [ 0.5714285714285714, 0.7142857142857143, 0.7142857142857142] + [ -0.8571428571428571, 0.42857142857142855, -0.0714285714285714] + """ + + # Size validation + assert isinstance(u, Matrix) and isinstance(v, Matrix) + assert self.row == self.column == u.row == v.row # u, v should be column vector + assert u.column == v.column == 1 # u, v should be column vector + + # Calculate + vT = v.transpose() + numerator_factor = (vT * self * u)[0, 0] + 1 + if numerator_factor == 0: return None # It's not invertable + return self - ((self * u) * (vT * self) * (1.0 / numerator_factor)) + +# Testing +if __name__ == "__main__": + + def test1(): + # a^(-1) + ainv = Matrix(3, 3, 0) + for i in range(3): ainv[i,i] = 1 + print("a^(-1) is %s" % (ainv,)) + # u, v + u = Matrix(3, 1, 0) + u[0,0], u[1,0], u[2,0] = 1, 2, -3 + v = Matrix(3, 1, 0) + v[0,0], v[1,0], v[2,0] = 4, -2, 5 + print("u is %s" % (u,)) + print("v is %s" % (v,)) + print("uv^T is %s" % (u * v.transpose())) + # Sherman Morrison + print("(a + uv^T)^(-1) is %s" % (ainv.ShermanMorrison(u, v),)) + + def test2(): + import doctest + doctest.testmod() + + test2() \ No newline at end of file From a4ed40be86e79375ea54421fda9d860a3e0526e2 Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Wed, 4 Sep 2019 16:06:44 -0400 Subject: [PATCH 284/594] changing typo (#1168) --- divide_and_conquer/convex_hull.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index 42219794aed1..a0c319e766da 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -7,7 +7,7 @@ Two algorithms have been implemented for the convex hull problem here. 1. A brute-force algorithm which runs in O(n^3) -2. A divide-and-conquer algorithm which runs in O(n^3) +2. A divide-and-conquer algorithm which runs in O(n log(n)) There are other several other algorithms for the convex hull problem which have not been implemented here, yet. From f31a812c468e41c3f5f7f170ae1dd5fa13bae6dd Mon Sep 17 00:00:00 2001 From: KirilBangachev <51961981+KirilBangachev@users.noreply.github.com> Date: Thu, 5 Sep 2019 08:58:38 +0300 Subject: [PATCH 285/594] Add Binomial Heap (#1146) * Binomial Heap Implementation of Binomial Heap. Reference: Advanced Data Structures, Peter Brass * Update binomial_heap.py * Update binomial_heap.py * Update binomial_heap.py - Fuller documentation of binomial heap - Update unit tests - Replace printing method by overwriting __str__() * Update binomial_heap.py - Added more tests - Added to the documentation - Stylistic editing - mergeHeaps now also returns a reference to the merged heap - added a preOrder function that returns a list with the preorder of the heap * Update binomial_heap.py Changed the unit tests structure * Turned the tests into doctests --- data_structures/heap/binomial_heap.py | 442 ++++++++++++++++++++++++++ 1 file changed, 442 insertions(+) create mode 100644 data_structures/heap/binomial_heap.py diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py new file mode 100644 index 000000000000..bc9cb5145f2e --- /dev/null +++ b/data_structures/heap/binomial_heap.py @@ -0,0 +1,442 @@ +""" + Binomial Heap + + Reference: Advanced Data Structures, Peter Brass +""" + + +class Node: + """ + Node in a doubly-linked binomial tree, containing: + - value + - size of left subtree + - link to left, right and parent nodes + """ + + def __init__(self, val): + self.val = val + # Number of nodes in left subtree + self.left_tree_size = 0 + self.left = None + self.right = None + self.parent = None + + def mergeTrees(self, other): + """ + In-place merge of two binomial trees of equal size. + Returns the root of the resulting tree + """ + assert ( + self.left_tree_size == other.left_tree_size + ), "Unequal Sizes of Blocks" + + if self.val < other.val: + other.left = self.right + other.parent = None + if self.right: + self.right.parent = other + self.right = other + self.left_tree_size = ( + self.left_tree_size * 2 + 1 + ) + return self + else: + self.left = other.right + self.parent = None + if other.right: + other.right.parent = self + other.right = self + other.left_tree_size = ( + other.left_tree_size * 2 + 1 + ) + return other + + +class BinomialHeap: + """ + Min-oriented priority queue implemented with the Binomial Heap data + structure implemented with the BinomialHeap class. It supports: + + - Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1 + - Merge (meld) heaps of size m and n: O(logn + logm) + - Delete Min: O(logn) + - Peek (return min without deleting it): O(1) + + Example: + + Create a random permutation of 30 integers to be inserted and + 19 of them deleted + >>> import numpy as np + >>> permutation = np.random.permutation(list(range(30))) + + Create a Heap and insert the 30 integers + + __init__() test + >>> first_heap = BinomialHeap() + + 30 inserts - insert() test + >>> for number in permutation: + ... first_heap.insert(number) + + Size test + >>> print(first_heap.size) + 30 + + Deleting - delete() test + >>> for i in range(25): + ... print(first_heap.deleteMin(), end=" ") + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 + + Create a new Heap + >>> second_heap = BinomialHeap() + >>> vals = [17, 20, 31, 34] + >>> for value in vals: + ... second_heap.insert(value) + + + The heap should have the following structure: + + 17 + / \ + # 31 + / \ + 20 34 + / \ / \ + # # # # + + preOrder() test + >>> print(second_heap.preOrder()) + [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] + + printing Heap - __str__() test + >>> print(second_heap) + 17 + -# + -31 + --20 + ---# + ---# + --34 + ---# + ---# + + mergeHeaps() test + >>> merged = second_heap.mergeHeaps(first_heap) + >>> merged.peek() + 17 + + values in merged heap; (merge is inplace) + >>> while not first_heap.isEmpty(): + ... print(first_heap.deleteMin(), end=" ") + 17 20 25 26 27 28 29 31 34 + + """ + + def __init__( + self, bottom_root=None, min_node=None, heap_size=0 + ): + self.size = heap_size + self.bottom_root = bottom_root + self.min_node = min_node + + def mergeHeaps(self, other): + """ + In-place merge of two binomial heaps. + Both of them become the resulting merged heap + """ + + # Empty heaps corner cases + if other.size == 0: + return + if self.size == 0: + self.size = other.size + self.bottom_root = other.bottom_root + self.min_node = other.min_node + return + # Update size + self.size = self.size + other.size + + # Update min.node + if self.min_node.val > other.min_node.val: + self.min_node = other.min_node + # Merge + + # Order roots by left_subtree_size + combined_roots_list = [] + i, j = self.bottom_root, other.bottom_root + while i or j: + if i and ( + (not j) + or i.left_tree_size < j.left_tree_size + ): + combined_roots_list.append((i, True)) + i = i.parent + else: + combined_roots_list.append((j, False)) + j = j.parent + # Insert links between them + for i in range(len(combined_roots_list) - 1): + if ( + combined_roots_list[i][1] + != combined_roots_list[i + 1][1] + ): + combined_roots_list[i][ + 0 + ].parent = combined_roots_list[i + 1][0] + combined_roots_list[i + 1][ + 0 + ].left = combined_roots_list[i][0] + # Consecutively merge roots with same left_tree_size + i = combined_roots_list[0][0] + while i.parent: + if ( + ( + i.left_tree_size + == i.parent.left_tree_size + ) + and (not i.parent.parent) + ) or ( + i.left_tree_size == i.parent.left_tree_size + and i.left_tree_size + != i.parent.parent.left_tree_size + ): + + # Neighbouring Nodes + previous_node = i.left + next_node = i.parent.parent + + # Merging trees + i = i.mergeTrees(i.parent) + + # Updating links + i.left = previous_node + i.parent = next_node + if previous_node: + previous_node.parent = i + if next_node: + next_node.left = i + else: + i = i.parent + # Updating self.bottom_root + while i.left: + i = i.left + self.bottom_root = i + + # Update other + other.size = self.size + other.bottom_root = self.bottom_root + other.min_node = self.min_node + + # Return the merged heap + return self + + def insert(self, val): + """ + insert a value in the heap + """ + if self.size == 0: + self.bottom_root = Node(val) + self.size = 1 + self.min_node = self.bottom_root + else: + # Create new node + new_node = Node(val) + + # Update size + self.size += 1 + + # update min_node + if val < self.min_node.val: + self.min_node = new_node + # Put new_node as a bottom_root in heap + self.bottom_root.left = new_node + new_node.parent = self.bottom_root + self.bottom_root = new_node + + # Consecutively merge roots with same left_tree_size + while ( + self.bottom_root.parent + and self.bottom_root.left_tree_size + == self.bottom_root.parent.left_tree_size + ): + + # Next node + next_node = self.bottom_root.parent.parent + + # Merge + self.bottom_root = self.bottom_root.mergeTrees( + self.bottom_root.parent + ) + + # Update Links + self.bottom_root.parent = next_node + self.bottom_root.left = None + if next_node: + next_node.left = self.bottom_root + + def peek(self): + """ + return min element without deleting it + """ + return self.min_node.val + + def isEmpty(self): + return self.size == 0 + + def deleteMin(self): + """ + delete min element and return it + """ + # assert not self.isEmpty(), "Empty Heap" + + # Save minimal value + min_value = self.min_node.val + + # Last element in heap corner case + if self.size == 1: + # Update size + self.size = 0 + + # Update bottom root + self.bottom_root = None + + # Update min_node + self.min_node = None + + return min_value + # No right subtree corner case + # The structure of the tree implies that this should be the bottom root + # and there is at least one other root + if self.min_node.right == None: + # Update size + self.size -= 1 + + # Update bottom root + self.bottom_root = self.bottom_root.parent + self.bottom_root.left = None + + # Update min_node + self.min_node = self.bottom_root + i = self.bottom_root.parent + while i: + if i.val < self.min_node.val: + self.min_node = i + i = i.parent + return min_value + # General case + # Find the BinomialHeap of the right subtree of min_node + bottom_of_new = self.min_node.right + bottom_of_new.parent = None + min_of_new = bottom_of_new + size_of_new = 1 + + # Size, min_node and bottom_root + while bottom_of_new.left: + size_of_new = size_of_new * 2 + 1 + bottom_of_new = bottom_of_new.left + if bottom_of_new.val < min_of_new.val: + min_of_new = bottom_of_new + # Corner case of single root on top left path + if (not self.min_node.left) and ( + not self.min_node.parent + ): + self.size = size_of_new + self.bottom_root = bottom_of_new + self.min_node = min_of_new + # print("Single root, multiple nodes case") + return min_value + # Remaining cases + # Construct heap of right subtree + newHeap = BinomialHeap( + bottom_root=bottom_of_new, + min_node=min_of_new, + heap_size=size_of_new, + ) + + # Update size + self.size = self.size - 1 - size_of_new + + # Neighbour nodes + previous_node = self.min_node.left + next_node = self.min_node.parent + + # Initialize new bottom_root and min_node + self.min_node = previous_node or next_node + self.bottom_root = next_node + + # Update links of previous_node and search below for new min_node and + # bottom_root + if previous_node: + previous_node.parent = next_node + + # Update bottom_root and search for min_node below + self.bottom_root = previous_node + self.min_node = previous_node + while self.bottom_root.left: + self.bottom_root = self.bottom_root.left + if self.bottom_root.val < self.min_node.val: + self.min_node = self.bottom_root + if next_node: + next_node.left = previous_node + + # Search for new min_node above min_node + i = next_node + while i: + if i.val < self.min_node.val: + self.min_node = i + i = i.parent + # Merge heaps + self.mergeHeaps(newHeap) + + return min_value + + def preOrder(self): + """ + Returns the Pre-order representation of the heap including + values of nodes plus their level distance from the root; + Empty nodes appear as # + """ + # Find top root + top_root = self.bottom_root + while top_root.parent: + top_root = top_root.parent + # preorder + heap_preOrder = [] + self.__traversal(top_root, heap_preOrder) + return heap_preOrder + + def __traversal(self, curr_node, preorder, level=0): + """ + Pre-order traversal of nodes + """ + if curr_node: + preorder.append((curr_node.val, level)) + self.__traversal( + curr_node.left, preorder, level + 1 + ) + self.__traversal( + curr_node.right, preorder, level + 1 + ) + else: + preorder.append(("#", level)) + + def __str__(self): + """ + Overwriting str for a pre-order print of nodes in heap; + Performance is poor, so use only for small examples + """ + if self.isEmpty(): + return "" + preorder_heap = self.preOrder() + + return "\n".join( + ("-" * level + str(value)) + for value, level in preorder_heap + ) + + +# Unit Tests +if __name__ == "__main__": + import doctest + + doctest.testmod() From 2dfe01e4d8e4e84fbe3b04da08e5dfd18e17410a Mon Sep 17 00:00:00 2001 From: Maxwell Aladago Date: Thu, 5 Sep 2019 02:22:06 -0400 Subject: [PATCH 286/594] Fully refactored the rod cutting module. (#1169) * changing typo * fully refactored the rod-cutting module * more documentations * rewording --- dynamic_programming/rod_cutting.py | 230 +++++++++++++++++++++++------ 1 file changed, 183 insertions(+), 47 deletions(-) diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py index c3111dcfc8a1..5b52eaca7c89 100644 --- a/dynamic_programming/rod_cutting.py +++ b/dynamic_programming/rod_cutting.py @@ -1,57 +1,193 @@ -from typing import List +""" +This module provides two implementations for the rod-cutting problem: +1. A naive recursive implementation which has an exponential runtime +2. Two dynamic programming implementations which have quadratic runtime -def rod_cutting(prices: List[int],length: int) -> int: +The rod-cutting problem is the problem of finding the maximum possible revenue +obtainable from a rod of length ``n`` given a list of prices for each integral piece +of the rod. The maximum revenue can thus be obtained by cutting the rod and selling the +pieces separately or not cutting it at all if the price of it is the maximum obtainable. + +""" + + +def naive_cut_rod_recursive(n: int, prices: list): + """ + Solves the rod-cutting problem via naively without using the benefit of dynamic programming. + The results is the same sub-problems are solved several times leading to an exponential runtime + + Runtime: O(2^n) + + Arguments + ------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + + Examples + -------- + >>> naive_cut_rod_recursive(4, [1, 5, 8, 9]) + 10 + >>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ + + _enforce_args(n, prices) + if n == 0: + return 0 + max_revue = float("-inf") + for i in range(1, n + 1): + max_revue = max(max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices)) + + return max_revue + + +def top_down_cut_rod(n: int, prices: list): """ - Given a rod of length n and array of prices that indicate price at each length. - Determine the maximum value obtainable by cutting up the rod and selling the pieces - - >>> rod_cutting([1,5,8,9],4) + Constructs a top-down dynamic programming solution for the rod-cutting problem + via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive + + Runtime: O(n^2) + + Arguments + -------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + Note + ---- + For convenience and because Python's lists using 0-indexing, length(max_rev) = n + 1, + to accommodate for the revenue obtainable from a rod of length 0. + + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + + Examples + ------- + >>> top_down_cut_rod(4, [1, 5, 8, 9]) 10 - >>> rod_cutting([1,1,1],3) - 3 - >>> rod_cutting([1,2,3], -1) - Traceback (most recent call last): - ValueError: Given integer must be greater than 1, not -1 - >>> rod_cutting([1,2,3], 3.2) - Traceback (most recent call last): - TypeError: Must be int, not float - >>> rod_cutting([], 3) - Traceback (most recent call last): - AssertionError: prices list is shorted than length: 3 - - - - Args: - prices: list indicating price at each length, where prices[0] = 0 indicating rod of zero length has no value - length: length of rod - - Returns: - Maximum revenue attainable by cutting up the rod in any way. - """ - - prices.insert(0, 0) - if not isinstance(length, int): - raise TypeError('Must be int, not {0}'.format(type(length).__name__)) - if length < 0: - raise ValueError('Given integer must be greater than 1, not {0}'.format(length)) - assert len(prices) - 1 >= length, "prices list is shorted than length: {0}".format(length) - - return rod_cutting_recursive(prices, length) - -def rod_cutting_recursive(prices: List[int],length: int) -> int: - #base case - if length == 0: + >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ + _enforce_args(n, prices) + max_rev = [float("-inf") for _ in range(n + 1)] + return _top_down_cut_rod_recursive(n, prices, max_rev) + + +def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): + """ + Constructs a top-down dynamic programming solution for the rod-cutting problem + via memoization. + + Runtime: O(n^2) + + Arguments + -------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + max_rev: list, the computed maximum revenue for a piece of rod. + ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` + + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + """ + if max_rev[n] >= 0: + return max_rev[n] + elif n == 0: return 0 - value = float('-inf') - for firstCutLocation in range(1,length+1): - value = max(value, prices[firstCutLocation]+rod_cutting_recursive(prices,length - firstCutLocation)) - return value + else: + max_revenue = float("-inf") + for i in range(1, n + 1): + max_revenue = max(max_revenue, prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev)) + + max_rev[n] = max_revenue + + return max_rev[n] + + +def bottom_up_cut_rod(n: int, prices: list): + """ + Constructs a bottom-up dynamic programming solution for the rod-cutting problem + + Runtime: O(n^2) + + Arguments + ---------- + n: int, the maximum length of the rod. + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + Returns + ------- + The maximum revenue obtainable from cutting a rod of length n given + the prices for each piece of rod p. + + Examples + ------- + >>> bottom_up_cut_rod(4, [1, 5, 8, 9]) + 10 + >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ + _enforce_args(n, prices) + + # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0. + max_rev = [float("-inf") for _ in range(n + 1)] + max_rev[0] = 0 + + for i in range(1, n + 1): + max_revenue_i = max_rev[i] + for j in range(1, i + 1): + max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j]) + + max_rev[i] = max_revenue_i + + return max_rev[n] + + +def _enforce_args(n: int, prices: list): + """ + Basic checks on the arguments to the rod-cutting algorithms + + n: int, the length of the rod + prices: list, the price list for each piece of rod. + + Throws ValueError: + + if n is negative or there are fewer items in the price list than the length of the rod + """ + if n < 0: + raise ValueError(f"n must be greater than or equal to 0. Got n = {n}") + + if n > len(prices): + raise ValueError(f"Each integral piece of rod must have a corresponding " + f"price. Got n = {n} but length of prices = {len(prices)}") def main(): - assert rod_cutting([1,5,8,9,10,17,17,20,24,30],10) == 30 - # print(rod_cutting([],0)) + prices = [6, 10, 12, 15, 20, 23] + n = len(prices) + + # the best revenue comes from cutting the rod into 6 pieces, each + # of length 1 resulting in a revenue of 6 * 6 = 36. + expected_max_revenue = 36 + + max_rev_top_down = top_down_cut_rod(n, prices) + max_rev_bottom_up = bottom_up_cut_rod(n, prices) + max_rev_naive = naive_cut_rod_recursive(n, prices) + + assert expected_max_revenue == max_rev_top_down + assert max_rev_top_down == max_rev_bottom_up + assert max_rev_bottom_up == max_rev_naive + if __name__ == '__main__': main() - From ab25079e168aa6de61bfd082af5a056b8ee50b43 Mon Sep 17 00:00:00 2001 From: Jai Kumar Dewani Date: Fri, 6 Sep 2019 14:32:37 +0530 Subject: [PATCH 287/594] Update DIRECTORY (#1161) * Update DIRECTORY * Updated DIRECTORY * Fixed bug in directory build and re-build the directory.md * fixed url issue * fixed indentation in Directory.md --- DIRECTORY.md | 622 +++++++--------------------------- scripts/build_directory_md.py | 6 +- 2 files changed, 117 insertions(+), 511 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index 80bf64ef4c30..248fe7b9eaa6 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,805 +1,411 @@ ## Arithmetic Analysis - * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) - * [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) - * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) - * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) - * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) - * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) - ## Backtracking - * [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) - * [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) - * [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) - * [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) - * [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) - * [sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) - * [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) - ## Boolean Algebra - * [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) - ## Ciphers - * [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) - * [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) - * [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) - * [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) - * [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) - * [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) - * [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) - * [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) - * [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) - * [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) - * [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) - * [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) - * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) - * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) - * [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) - * [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) - * [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) - * [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) - * [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) - * [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) - * [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) - * [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) - * [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) - * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) - ## Compression - * [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) - * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) - * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) - ## Conversions - * [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) - * [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) - * [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) - ## Data Structures - * Binary Tree - - * [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) - - * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) - - * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) - - * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) - - * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) - - * [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) - - * [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) - - * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) - - * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) - + * [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/avl_tree.py) + * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/basic_binary_tree.py) + * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_search_tree.py) + * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/fenwick_tree.py) + * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/lazy_segment_tree.py) + * [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/lca.py) + * [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/red_black_tree.py) + * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/segment_tree.py) + * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/treap.py) * Hashing - - * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) - - * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) - - * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) - - * Number Theory - - * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) - - * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) - + * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/double_hash.py) + * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hash_table.py) + * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hash_table_with_linked_list.py) + * Number Theory + * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/prime_numbers.py) + * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/quadratic_probing.py) * Heap - - * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) - + * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap.py) * Linked List - - * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) - - * [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) - - * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) - - * [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) - + * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/doubly_linked_list.py) + * [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/is_palindrome.py) + * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/singly_linked_list.py) + * [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/swap_nodes.py) * Queue - - * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) - - * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) - - * [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) - + * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/double_ended_queue.py) + * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue_on_list.py) + * [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue_on_pseudo_stack.py) * Stacks - - * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) - - * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) - - * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) - - * [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) - - * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) - - * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) - - * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) - + * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/balanced_parentheses.py) + * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/infix_to_postfix_conversion.py) + * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/infix_to_prefix_conversion.py) + * [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/next_greater_element.py) + * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/postfix_evaluation.py) + * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stack.py) + * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stock_span_problem.py) * Trie - - * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) - + * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie.py) ## Digital Image Processing - - * [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) - + * [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * Edge Detection - - * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) - + * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/canny.py) * Filters - - * [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) - - * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) - - * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) - - * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) - - * [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) - + * [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convolve.py) + * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/gaussian_filter.py) + * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/median_filter.py) + * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sobel_filter.py) + * [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer - * [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) - + * [convex hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) + * [inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) - ## Dynamic Programming - * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) - * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) - * [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) - * [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) - * [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) - * [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) - * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) - * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) - * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) - * [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) - * [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) - * [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) - * [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) - * [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) - * [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) - * [longest increasing subsequence o(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) - * [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) - * [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) - * [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) - * [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) - * [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) - * [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) - * [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) - ## File Transfer - * [recieve file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) - * [send file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) - ## Graphs - * [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) - * [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) - * [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) - * [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) - * [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) - * [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) - * [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) - * [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) - * [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) - * [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) - * [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) - * [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) - * [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) - * [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) - * [directed and undirected (weighted) graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) - * [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) - * [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) - * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) - * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) - * [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) - * [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) - * [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) - * [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) - * [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) - * [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) - * [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) - * [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) - * [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) - * [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) - * [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) - * [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) - ## Hashes - * [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) - * [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) - * [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) - * [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) - ## Linear Algebra - * Src - - * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) - - * [python-polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/python-polynom-for-points.py) - - * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/tests.py) - + * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/lib.py) + * [polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/polynom-for-points.py) + * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/tests.py) ## Machine Learning - * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) - * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) - * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) - * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) - * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) - * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) - * [naive bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/naive_bayes.ipynb) - * Random Forest Classification - - * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) - - * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) - + * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification.py) + * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.ipynb) * Random Forest Regression - - * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) - - * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) - + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression.ipynb) + * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression.py) * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) - * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) - + * [sorted vector machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sorted_vector_machines.py) ## Maths - * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) - * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) - * [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) - * [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) - * [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) - * [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) - * [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) - * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) - * [collatz sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) - * [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) - * [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) - * [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) - * [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) - * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) - * [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) - * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) - * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) - * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) - * [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) - * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) - * [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) - * [largest of very large numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) - * [lucas lehmer primality test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) - * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) - * [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) - * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) - * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) - * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) - * [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) - * [quadratic equations complex numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) - * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) - * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) - * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) - * [test prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) - * [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) - * [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) - * [zellers congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) - ## Matrix - * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) - * [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) - * [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) - * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) - * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) - * Tests - - * [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) - + * [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/test_matrix_operation.py) ## Networking Flow - * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) - * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) - ## Neural Network - * [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) - * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) - * [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) - * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) - ## Other - * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) - * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) - * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) - * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) - * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) - * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) - * [food wastage analysis from 1961-2013 fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) - * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) - * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) - * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) - * [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) - * [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) - * [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) - * [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) - * [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) - * [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) - * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) - * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) - ## Project Euler - * Problem 01 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) - - * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) - - * [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) - - * [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol4.py) + * [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol5.py) + * [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol6.py) * Problem 02 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) - - * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) + * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol4.py) * Problem 03 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 04 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 05 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 06 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) * Problem 07 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) * Problem 08 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 09 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) * Problem 10 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) - - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) + * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) * Problem 11 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 12 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 13 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 14 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 15 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 16 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 17 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * Problem 18 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 19 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 20 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 21 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 22 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 234 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 24 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 25 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) - - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) * Problem 28 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 29 - - * [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) - + * [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/solution.py) * Problem 31 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 36 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 40 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 48 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 52 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 53 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + * Problem 56 + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) * Problem 76 - - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) - + * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) ## Searches - * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) - * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) - * [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) - * [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) - * [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) - * [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) - * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) - * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) - ## Sorts - * [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) - * [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) - * [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) - * [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) - * [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) - * [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) - * [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) - * [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) - * [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) - * [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) - * [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) - * [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) - * [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) - * [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) - * [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) - * [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) - * [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) - * [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) - * [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) - * [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) - * [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) - * [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) - * [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) - * [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) - * [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) - * [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) - * [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) - * [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) - * [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) - ## Strings - * [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) - * [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) - * [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) - * [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) - * [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) - * [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) - * [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) - ## Traversals - * [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) + diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py index 2ebd445b3667..b39edca6c933 100755 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -14,7 +14,7 @@ def good_filepaths(top_dir: str = ".") -> Iterator[str]: continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dirpath, filename).lstrip("./") - + def md_prefix(i): return f"{i * ' '}*" if i else "##" @@ -25,7 +25,7 @@ def print_path(old_path: str, new_path: str) -> str: for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: - print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") + print(f"{md_prefix(i-1)} {new_part.replace('_', ' ').title()}") return new_path @@ -36,7 +36,7 @@ def print_directory_md(top_dir: str = ".") -> None: if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 - url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") + url = "/".join((URL_BASE, filepath.split(os.sep)[1], filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " "))[0] print(f"{md_prefix(indent)} [{filename}]({url})") From a41a14f9d89b665178f08535f128ba14652ce449 Mon Sep 17 00:00:00 2001 From: KirilBangachev <51961981+KirilBangachev@users.noreply.github.com> Date: Fri, 6 Sep 2019 12:06:56 +0300 Subject: [PATCH 288/594] Add radix2 FFT (#1166) * Add radix2 FFT Created a dynamic implementation of the radix - 2 Fast Fourier Transform for fast polynomial multiplication. Reference: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case * Rename radix2_FFT.py to radix2_fft.py * Update radix2_fft printing Improved the printing method with f.prefix and String.join() * __str__ method update * Turned the tests into doctests --- maths/radix2_fft.py | 222 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 222 insertions(+) create mode 100644 maths/radix2_fft.py diff --git a/maths/radix2_fft.py b/maths/radix2_fft.py new file mode 100644 index 000000000000..c7ffe96528b4 --- /dev/null +++ b/maths/radix2_fft.py @@ -0,0 +1,222 @@ +""" +Fast Polynomial Multiplication using radix-2 fast Fourier Transform. +""" + +import mpmath # for roots of unity +import numpy as np + + +class FFT: + """ + Fast Polynomial Multiplication using radix-2 fast Fourier Transform. + + Reference: + https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case + + For polynomials of degree m and n the algorithms has complexity + O(n*logn + m*logm) + + The main part of the algorithm is split in two parts: + 1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a + bottom-up dynamic approach - + 2) __multiply: Once we obtain the DFT of A*B, we can similarly + invert it to obtain A*B + + The class FFT takes two polynomials A and B with complex coefficients as arguments; + The two polynomials should be represented as a sequence of coefficients starting + from the free term. Thus, for instance x + 2*x^3 could be represented as + [0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the + polynomials have the same length which is a power of 2 at least the length of + their product. + + Example: + + Create two polynomials as sequences + >>> A = [0, 1, 0, 2] # x+2x^3 + >>> B = (2, 3, 4, 0) # 2+3x+4x^2 + + Create an FFT object with them + >>> x = FFT(A, B) + + Print product + >>> print(x.product) # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5 + [(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)] + + __str__ test + >>> print(x) + A = 0*x^0 + 1*x^1 + 2*x^0 + 3*x^2 + B = 0*x^2 + 1*x^3 + 2*x^4 + A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j) + """ + + def __init__(self, polyA=[0], polyB=[0]): + # Input as list + self.polyA = list(polyA)[:] + self.polyB = list(polyB)[:] + + # Remove leading zero coefficients + while self.polyA[-1] == 0: + self.polyA.pop() + self.len_A = len(self.polyA) + + while self.polyB[-1] == 0: + self.polyB.pop() + self.len_B = len(self.polyB) + + # Add 0 to make lengths equal a power of 2 + self.C_max_length = int( + 2 + ** np.ceil( + np.log2( + len(self.polyA) + len(self.polyB) - 1 + ) + ) + ) + + while len(self.polyA) < self.C_max_length: + self.polyA.append(0) + while len(self.polyB) < self.C_max_length: + self.polyB.append(0) + # A complex root used for the fourier transform + self.root = complex( + mpmath.root(x=1, n=self.C_max_length, k=1) + ) + + # The product + self.product = self.__multiply() + + # Discrete fourier transform of A and B + def __DFT(self, which): + if which == "A": + dft = [[x] for x in self.polyA] + else: + dft = [[x] for x in self.polyB] + # Corner case + if len(dft) <= 1: + return dft[0] + # + next_ncol = self.C_max_length // 2 + while next_ncol > 0: + new_dft = [[] for i in range(next_ncol)] + root = self.root ** next_ncol + + # First half of next step + current_root = 1 + for j in range( + self.C_max_length // (next_ncol * 2) + ): + for i in range(next_ncol): + new_dft[i].append( + dft[i][j] + + current_root + * dft[i + next_ncol][j] + ) + current_root *= root + # Second half of next step + current_root = 1 + for j in range( + self.C_max_length // (next_ncol * 2) + ): + for i in range(next_ncol): + new_dft[i].append( + dft[i][j] + - current_root + * dft[i + next_ncol][j] + ) + current_root *= root + # Update + dft = new_dft + next_ncol = next_ncol // 2 + return dft[0] + + # multiply the DFTs of A and B and find A*B + def __multiply(self): + dftA = self.__DFT("A") + dftB = self.__DFT("B") + inverseC = [ + [ + dftA[i] * dftB[i] + for i in range(self.C_max_length) + ] + ] + del dftA + del dftB + + # Corner Case + if len(inverseC[0]) <= 1: + return inverseC[0] + # Inverse DFT + next_ncol = 2 + while next_ncol <= self.C_max_length: + new_inverseC = [[] for i in range(next_ncol)] + root = self.root ** (next_ncol // 2) + current_root = 1 + # First half of next step + for j in range(self.C_max_length // next_ncol): + for i in range(next_ncol // 2): + # Even positions + new_inverseC[i].append( + ( + inverseC[i][j] + + inverseC[i][ + j + + self.C_max_length + // next_ncol + ] + ) + / 2 + ) + # Odd positions + new_inverseC[i + next_ncol // 2].append( + ( + inverseC[i][j] + - inverseC[i][ + j + + self.C_max_length + // next_ncol + ] + ) + / (2 * current_root) + ) + current_root *= root + # Update + inverseC = new_inverseC + next_ncol *= 2 + # Unpack + inverseC = [ + round(x[0].real, 8) + round(x[0].imag, 8) * 1j + for x in inverseC + ] + + # Remove leading 0's + while inverseC[-1] == 0: + inverseC.pop() + return inverseC + + # Overwrite __str__ for print(); Shows A, B and A*B + def __str__(self): + A = "A = " + " + ".join( + f"{coef}*x^{i}" + for coef, i in enumerate( + self.polyA[: self.len_A] + ) + ) + B = "B = " + " + ".join( + f"{coef}*x^{i}" + for coef, i in enumerate( + self.polyB[: self.len_B] + ) + ) + C = "A*B = " + " + ".join( + f"{coef}*x^{i}" + for coef, i in enumerate(self.product) + ) + + return "\n".join((A, B, C)) + + +# Unit tests +if __name__ == "__main__": + import doctest + + doctest.testmod() From 5b483be73b95b9e5a39c122734ca4eff0da593cd Mon Sep 17 00:00:00 2001 From: Jasper <46252815+jasper256@users.noreply.github.com> Date: Sun, 8 Sep 2019 01:07:14 -0400 Subject: [PATCH 289/594] Added OOP approach to matrices (#1165) * Added OOP aproach to matrices * created methods for minors, cofactors, and determinants and added corresponding doctests * Added methods for adjugate, inverse, and identity (along with corresponding doctests) to matrix_class.py A small bug persists that causes the doctest to fail. After a couple Matrix objects are printed, the next one is printed in a different format. * formatted matrix_class.py with python/black * implemented negation and exponentiation as well as corresponding doctests in matrix_class.py. Also implemented eq and ne comparison operations * changed __str__ method in matrix_class.py to align with numpy standard and fixed bug in cofactors method * removed property decorators from several methods in matrix_class.py --- matrix/matrix_class.py | 364 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 364 insertions(+) create mode 100644 matrix/matrix_class.py diff --git a/matrix/matrix_class.py b/matrix/matrix_class.py new file mode 100644 index 000000000000..2cd43fc9ca8e --- /dev/null +++ b/matrix/matrix_class.py @@ -0,0 +1,364 @@ +# An OOP aproach to representing and manipulating matrices + + +class Matrix: + """ + Matrix object generated from a 2D array where each element is an array representing a row. + Rows can contain type int or float. + Common operations and information available. + >>> rows = [ + ... [1, 2, 3], + ... [4, 5, 6], + ... [7, 8, 9] + ... ] + >>> matrix = Matrix(rows) + >>> print(matrix) + [[1. 2. 3.] + [4. 5. 6.] + [7. 8. 9.]] + + Matrix rows and columns are available as 2D arrays + >>> print(matrix.rows) + [[1, 2, 3], [4, 5, 6], [7, 8, 9]] + >>> print(matrix.columns()) + [[1, 4, 7], [2, 5, 8], [3, 6, 9]] + + Order is returned as a tuple + >>> matrix.order + (3, 3) + + Squareness and invertability are represented as bool + >>> matrix.is_square + True + >>> matrix.is_invertable() + False + + Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be a Matrix or Nonetype + >>> print(matrix.identity()) + [[1. 0. 0.] + [0. 1. 0.] + [0. 0. 1.]] + >>> print(matrix.minors()) + [[-3. -6. -3.] + [-6. -12. -6.] + [-3. -6. -3.]] + >>> print(matrix.cofactors()) + [[-3. 6. -3.] + [6. -12. 6.] + [-3. 6. -3.]] + >>> print(matrix.adjugate()) # won't be apparent due to the nature of the cofactor matrix + [[-3. 6. -3.] + [6. -12. 6.] + [-3. 6. -3.]] + >>> print(matrix.inverse()) + None + + Determinant is an int, float, or Nonetype + >>> matrix.determinant() + 0 + + Negation, scalar multiplication, addition, subtraction, multiplication and exponentiation are available and all return a Matrix + >>> print(-matrix) + [[-1. -2. -3.] + [-4. -5. -6.] + [-7. -8. -9.]] + >>> matrix2 = matrix * 3 + >>> print(matrix2) + [[3. 6. 9.] + [12. 15. 18.] + [21. 24. 27.]] + >>> print(matrix + matrix2) + [[4. 8. 12.] + [16. 20. 24.] + [28. 32. 36.]] + >>> print(matrix - matrix2) + [[-2. -4. -6.] + [-8. -10. -12.] + [-14. -16. -18.]] + >>> print(matrix ** 3) + [[468. 576. 684.] + [1062. 1305. 1548.] + [1656. 2034. 2412.]] + + Matrices can also be modified + >>> matrix.add_row([10, 11, 12]) + >>> print(matrix) + [[1. 2. 3.] + [4. 5. 6.] + [7. 8. 9.] + [10. 11. 12.]] + >>> matrix2.add_column([8, 16, 32]) + >>> print(matrix2) + [[3. 6. 9. 8.] + [12. 15. 18. 16.] + [21. 24. 27. 32.]] + >>> print(matrix * matrix2) + [[90. 108. 126. 136.] + [198. 243. 288. 304.] + [306. 378. 450. 472.] + [414. 513. 612. 640.]] + + """ + + def __init__(self, rows): + error = TypeError( + "Matrices must be formed from a list of zero or more lists containing at least one and the same number of values, \ + each of which must be of type int or float" + ) + if len(rows) != 0: + cols = len(rows[0]) + if cols == 0: + raise error + for row in rows: + if not len(row) == cols: + raise error + for value in row: + if not isinstance(value, (int, float)): + raise error + self.rows = rows + else: + self.rows = [] + + # MATRIX INFORMATION + def columns(self): + return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] + + @property + def num_rows(self): + return len(self.rows) + + @property + def num_columns(self): + return len(self.rows[0]) + + @property + def order(self): + return (self.num_rows, self.num_columns) + + @property + def is_square(self): + if self.order[0] == self.order[1]: + return True + return False + + def identity(self): + values = [ + [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] + for row_num in range(self.num_rows) + ] + return Matrix(values) + + def determinant(self): + if not self.is_square: + return None + if self.order == (0, 0): + return 1 + if self.order == (1, 1): + return self.rows[0][0] + if self.order == (2, 2): + return (self.rows[0][0] * self.rows[1][1]) - ( + self.rows[0][1] * self.rows[1][0] + ) + else: + return sum( + [ + self.rows[0][column] * self.cofactors().rows[0][column] + for column in range(self.num_columns) + ] + ) + + def is_invertable(self): + if self.determinant(): + return True + return False + + def get_minor(self, row, column): + values = [ + [ + self.rows[other_row][other_column] + for other_column in range(self.num_columns) + if other_column != column + ] + for other_row in range(self.num_rows) + if other_row != row + ] + return Matrix(values).determinant() + + def get_cofactor(self, row, column): + if (row + column) % 2 == 0: + return self.get_minor(row, column) + return -1 * self.get_minor(row, column) + + def minors(self): + return Matrix( + [ + [self.get_minor(row, column) for column in range(self.num_columns)] + for row in range(self.num_rows) + ] + ) + + def cofactors(self): + return Matrix( + [ + [ + self.minors().rows[row][column] + if (row + column) % 2 == 0 + else self.minors().rows[row][column] * -1 + for column in range(self.minors().num_columns) + ] + for row in range(self.minors().num_rows) + ] + ) + + def adjugate(self): + values = [ + [self.cofactors().rows[column][row] for column in range(self.num_columns)] + for row in range(self.num_rows) + ] + return Matrix(values) + + def inverse(self): + if not self.is_invertable(): + return None + return self.adjugate() * (1 / self.determinant()) + + def __repr__(self): + return str(self.rows) + + def __str__(self): + if self.num_rows == 0: + return "[]" + if self.num_rows == 1: + return "[[" + ". ".join(self.rows[0]) + "]]" + return ( + "[" + + "\n ".join( + [ + "[" + ". ".join([str(value) for value in row]) + ".]" + for row in self.rows + ] + ) + + "]" + ) + + # MATRIX MANIPULATION + def add_row(self, row, position=None): + type_error = TypeError("Row must be a list containing all ints and/or floats") + if not isinstance(row, list): + raise type_error + for value in row: + if not isinstance(value, (int, float)): + raise type_error + if len(row) != self.num_columns: + raise ValueError( + "Row must be equal in length to the other rows in the matrix" + ) + if position is None: + self.rows.append(row) + else: + self.rows = self.rows[0:position] + [row] + self.rows[position:] + + def add_column(self, column, position=None): + type_error = TypeError( + "Column must be a list containing all ints and/or floats" + ) + if not isinstance(column, list): + raise type_error + for value in column: + if not isinstance(value, (int, float)): + raise type_error + if len(column) != self.num_rows: + raise ValueError( + "Column must be equal in length to the other columns in the matrix" + ) + if position is None: + self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)] + else: + self.rows = [ + self.rows[i][0:position] + [column[i]] + self.rows[i][position:] + for i in range(self.num_rows) + ] + + # MATRIX OPERATIONS + def __eq__(self, other): + if not isinstance(other, Matrix): + raise TypeError("A Matrix can only be compared with another Matrix") + if self.rows == other.rows: + return True + return False + + def __ne__(self, other): + if self == other: + return False + return True + + def __neg__(self): + return self * -1 + + def __add__(self, other): + if self.order != other.order: + raise ValueError("Addition requires matrices of the same order") + return Matrix( + [ + [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] + for i in range(self.num_rows) + ] + ) + + def __sub__(self, other): + if self.order != other.order: + raise ValueError("Subtraction requires matrices of the same order") + return Matrix( + [ + [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] + for i in range(self.num_rows) + ] + ) + + def __mul__(self, other): + if not isinstance(other, (int, float, Matrix)): + raise TypeError( + "A Matrix can only be multiplied by an int, float, or another matrix" + ) + if type(other) in (int, float): + return Matrix([[element * other for element in row] for row in self.rows]) + if type(other) is Matrix: + if self.num_columns != other.num_rows: + raise ValueError( + "The number of columns in the first matrix must be equal to the number of rows in the second" + ) + return Matrix( + [ + [Matrix.dot_product(row, column) for column in other.columns()] + for row in self.rows + ] + ) + + def __pow__(self, other): + if not isinstance(other, int): + raise TypeError("A Matrix can only be raised to the power of an int") + if not self.is_square: + raise ValueError("Only square matrices can be raised to a power") + if other == 0: + return self.identity() + if other < 0: + if self.is_invertable: + return self.inverse() ** (-other) + raise ValueError( + "Only invertable matrices can be raised to a negative power" + ) + result = self + for i in range(other - 1): + result *= self + return result + + @classmethod + def dot_product(cls, row, column): + return sum([row[i] * column[i] for i in range(len(row))]) + + +if __name__ == "__main__": + import doctest + + test = doctest.testmod() + print(test) From 3c3f92db530e3ae0e594cd1d5c4e034cc23defc9 Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Sun, 8 Sep 2019 04:40:07 -0400 Subject: [PATCH 290/594] Add problem 67 solution (#1170) --- project_euler/problem_67/__init__.py | 0 project_euler/problem_67/sol1.py | 49 +++++++++++++ project_euler/problem_67/triangle.txt | 100 ++++++++++++++++++++++++++ 3 files changed, 149 insertions(+) create mode 100644 project_euler/problem_67/__init__.py create mode 100644 project_euler/problem_67/sol1.py create mode 100644 project_euler/problem_67/triangle.txt diff --git a/project_euler/problem_67/__init__.py b/project_euler/problem_67/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_67/sol1.py b/project_euler/problem_67/sol1.py new file mode 100644 index 000000000000..2da757e303aa --- /dev/null +++ b/project_euler/problem_67/sol1.py @@ -0,0 +1,49 @@ +""" +Problem Statement: +By starting at the top of the triangle below and moving to adjacent numbers on +the row below, the maximum total from top to bottom is 23. +3 +7 4 +2 4 6 +8 5 9 3 +That is, 3 + 7 + 4 + 9 = 23. +Find the maximum total from top to bottom in triangle.txt (right click and +'Save Link/Target As...'), a 15K text file containing a triangle with +one-hundred rows. +""" +import os + + +def solution(): + """ + Finds the maximum total in a triangle as described by the problem statement + above. + + >>> solution() + 7273 + """ + script_dir = os.path.dirname(os.path.realpath(__file__)) + triangle = os.path.join(script_dir, 'triangle.txt') + + with open(triangle, 'r') as f: + triangle = f.readlines() + + a = map(lambda x: x.rstrip('\r\n').split(' '), triangle) + a = list(map(lambda x: list(map(lambda y: int(y), x)), a)) + + for i in range(1, len(a)): + for j in range(len(a[i])): + if j != len(a[i - 1]): + number1 = a[i - 1][j] + else: + number1 = 0 + if j > 0: + number2 = a[i - 1][j - 1] + else: + number2 = 0 + a[i][j] += max(number1, number2) + return max(a[-1]) + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_67/triangle.txt b/project_euler/problem_67/triangle.txt new file mode 100644 index 000000000000..00aa2bc6382d --- /dev/null +++ b/project_euler/problem_67/triangle.txt @@ -0,0 +1,100 @@ +59 +73 41 +52 40 09 +26 53 06 34 +10 51 87 86 81 +61 95 66 57 25 68 +90 81 80 38 92 67 73 +30 28 51 76 81 18 75 44 +84 14 95 87 62 81 17 78 58 +21 46 71 58 02 79 62 39 31 09 +56 34 35 53 78 31 81 18 90 93 15 +78 53 04 21 84 93 32 13 97 11 37 51 +45 03 81 79 05 18 78 86 13 30 63 99 95 +39 87 96 28 03 38 42 17 82 87 58 07 22 57 +06 17 51 17 07 93 09 07 75 97 95 78 87 08 53 +67 66 59 60 88 99 94 65 55 77 55 34 27 53 78 28 +76 40 41 04 87 16 09 42 75 69 23 97 30 60 10 79 87 +12 10 44 26 21 36 32 84 98 60 13 12 36 16 63 31 91 35 +70 39 06 05 55 27 38 48 28 22 34 35 62 62 15 14 94 89 86 +66 56 68 84 96 21 34 34 34 81 62 40 65 54 62 05 98 03 02 60 +38 89 46 37 99 54 34 53 36 14 70 26 02 90 45 13 31 61 83 73 47 +36 10 63 96 60 49 41 05 37 42 14 58 84 93 96 17 09 43 05 43 06 59 +66 57 87 57 61 28 37 51 84 73 79 15 39 95 88 87 43 39 11 86 77 74 18 +54 42 05 79 30 49 99 73 46 37 50 02 45 09 54 52 27 95 27 65 19 45 26 45 +71 39 17 78 76 29 52 90 18 99 78 19 35 62 71 19 23 65 93 85 49 33 75 09 02 +33 24 47 61 60 55 32 88 57 55 91 54 46 57 07 77 98 52 80 99 24 25 46 78 79 05 +92 09 13 55 10 67 26 78 76 82 63 49 51 31 24 68 05 57 07 54 69 21 67 43 17 63 12 +24 59 06 08 98 74 66 26 61 60 13 03 09 09 24 30 71 08 88 70 72 70 29 90 11 82 41 34 +66 82 67 04 36 60 92 77 91 85 62 49 59 61 30 90 29 94 26 41 89 04 53 22 83 41 09 74 90 +48 28 26 37 28 52 77 26 51 32 18 98 79 36 62 13 17 08 19 54 89 29 73 68 42 14 08 16 70 37 +37 60 69 70 72 71 09 59 13 60 38 13 57 36 09 30 43 89 30 39 15 02 44 73 05 73 26 63 56 86 12 +55 55 85 50 62 99 84 77 28 85 03 21 27 22 19 26 82 69 54 04 13 07 85 14 01 15 70 59 89 95 10 19 +04 09 31 92 91 38 92 86 98 75 21 05 64 42 62 84 36 20 73 42 21 23 22 51 51 79 25 45 85 53 03 43 22 +75 63 02 49 14 12 89 14 60 78 92 16 44 82 38 30 72 11 46 52 90 27 08 65 78 03 85 41 57 79 39 52 33 48 +78 27 56 56 39 13 19 43 86 72 58 95 39 07 04 34 21 98 39 15 39 84 89 69 84 46 37 57 59 35 59 50 26 15 93 +42 89 36 27 78 91 24 11 17 41 05 94 07 69 51 96 03 96 47 90 90 45 91 20 50 56 10 32 36 49 04 53 85 92 25 65 +52 09 61 30 61 97 66 21 96 92 98 90 06 34 96 60 32 69 68 33 75 84 18 31 71 50 84 63 03 03 19 11 28 42 75 45 45 +61 31 61 68 96 34 49 39 05 71 76 59 62 67 06 47 96 99 34 21 32 47 52 07 71 60 42 72 94 56 82 83 84 40 94 87 82 46 +01 20 60 14 17 38 26 78 66 81 45 95 18 51 98 81 48 16 53 88 37 52 69 95 72 93 22 34 98 20 54 27 73 61 56 63 60 34 63 +93 42 94 83 47 61 27 51 79 79 45 01 44 73 31 70 83 42 88 25 53 51 30 15 65 94 80 44 61 84 12 77 02 62 02 65 94 42 14 94 +32 73 09 67 68 29 74 98 10 19 85 48 38 31 85 67 53 93 93 77 47 67 39 72 94 53 18 43 77 40 78 32 29 59 24 06 02 83 50 60 66 +32 01 44 30 16 51 15 81 98 15 10 62 86 79 50 62 45 60 70 38 31 85 65 61 64 06 69 84 14 22 56 43 09 48 66 69 83 91 60 40 36 61 +92 48 22 99 15 95 64 43 01 16 94 02 99 19 17 69 11 58 97 56 89 31 77 45 67 96 12 73 08 20 36 47 81 44 50 64 68 85 40 81 85 52 09 +91 35 92 45 32 84 62 15 19 64 21 66 06 01 52 80 62 59 12 25 88 28 91 50 40 16 22 99 92 79 87 51 21 77 74 77 07 42 38 42 74 83 02 05 +46 19 77 66 24 18 05 32 02 84 31 99 92 58 96 72 91 36 62 99 55 29 53 42 12 37 26 58 89 50 66 19 82 75 12 48 24 87 91 85 02 07 03 76 86 +99 98 84 93 07 17 33 61 92 20 66 60 24 66 40 30 67 05 37 29 24 96 03 27 70 62 13 04 45 47 59 88 43 20 66 15 46 92 30 04 71 66 78 70 53 99 +67 60 38 06 88 04 17 72 10 99 71 07 42 25 54 05 26 64 91 50 45 71 06 30 67 48 69 82 08 56 80 67 18 46 66 63 01 20 08 80 47 07 91 16 03 79 87 +18 54 78 49 80 48 77 40 68 23 60 88 58 80 33 57 11 69 55 53 64 02 94 49 60 92 16 35 81 21 82 96 25 24 96 18 02 05 49 03 50 77 06 32 84 27 18 38 +68 01 50 04 03 21 42 94 53 24 89 05 92 26 52 36 68 11 85 01 04 42 02 45 15 06 50 04 53 73 25 74 81 88 98 21 67 84 79 97 99 20 95 04 40 46 02 58 87 +94 10 02 78 88 52 21 03 88 60 06 53 49 71 20 91 12 65 07 49 21 22 11 41 58 99 36 16 09 48 17 24 52 36 23 15 72 16 84 56 02 99 43 76 81 71 29 39 49 17 +64 39 59 84 86 16 17 66 03 09 43 06 64 18 63 29 68 06 23 07 87 14 26 35 17 12 98 41 53 64 78 18 98 27 28 84 80 67 75 62 10 11 76 90 54 10 05 54 41 39 66 +43 83 18 37 32 31 52 29 95 47 08 76 35 11 04 53 35 43 34 10 52 57 12 36 20 39 40 55 78 44 07 31 38 26 08 15 56 88 86 01 52 62 10 24 32 05 60 65 53 28 57 99 +03 50 03 52 07 73 49 92 66 80 01 46 08 67 25 36 73 93 07 42 25 53 13 96 76 83 87 90 54 89 78 22 78 91 73 51 69 09 79 94 83 53 09 40 69 62 10 79 49 47 03 81 30 +71 54 73 33 51 76 59 54 79 37 56 45 84 17 62 21 98 69 41 95 65 24 39 37 62 03 24 48 54 64 46 82 71 78 33 67 09 16 96 68 52 74 79 68 32 21 13 78 96 60 09 69 20 36 +73 26 21 44 46 38 17 83 65 98 07 23 52 46 61 97 33 13 60 31 70 15 36 77 31 58 56 93 75 68 21 36 69 53 90 75 25 82 39 50 65 94 29 30 11 33 11 13 96 02 56 47 07 49 02 +76 46 73 30 10 20 60 70 14 56 34 26 37 39 48 24 55 76 84 91 39 86 95 61 50 14 53 93 64 67 37 31 10 84 42 70 48 20 10 72 60 61 84 79 69 65 99 73 89 25 85 48 92 56 97 16 +03 14 80 27 22 30 44 27 67 75 79 32 51 54 81 29 65 14 19 04 13 82 04 91 43 40 12 52 29 99 07 76 60 25 01 07 61 71 37 92 40 47 99 66 57 01 43 44 22 40 53 53 09 69 26 81 07 +49 80 56 90 93 87 47 13 75 28 87 23 72 79 32 18 27 20 28 10 37 59 21 18 70 04 79 96 03 31 45 71 81 06 14 18 17 05 31 50 92 79 23 47 09 39 47 91 43 54 69 47 42 95 62 46 32 85 +37 18 62 85 87 28 64 05 77 51 47 26 30 65 05 70 65 75 59 80 42 52 25 20 44 10 92 17 71 95 52 14 77 13 24 55 11 65 26 91 01 30 63 15 49 48 41 17 67 47 03 68 20 90 98 32 04 40 68 +90 51 58 60 06 55 23 68 05 19 76 94 82 36 96 43 38 90 87 28 33 83 05 17 70 83 96 93 06 04 78 47 80 06 23 84 75 23 87 72 99 14 50 98 92 38 90 64 61 58 76 94 36 66 87 80 51 35 61 38 +57 95 64 06 53 36 82 51 40 33 47 14 07 98 78 65 39 58 53 06 50 53 04 69 40 68 36 69 75 78 75 60 03 32 39 24 74 47 26 90 13 40 44 71 90 76 51 24 36 50 25 45 70 80 61 80 61 43 90 64 11 +18 29 86 56 68 42 79 10 42 44 30 12 96 18 23 18 52 59 02 99 67 46 60 86 43 38 55 17 44 93 42 21 55 14 47 34 55 16 49 24 23 29 96 51 55 10 46 53 27 92 27 46 63 57 30 65 43 27 21 20 24 83 +81 72 93 19 69 52 48 01 13 83 92 69 20 48 69 59 20 62 05 42 28 89 90 99 32 72 84 17 08 87 36 03 60 31 36 36 81 26 97 36 48 54 56 56 27 16 91 08 23 11 87 99 33 47 02 14 44 73 70 99 43 35 33 +90 56 61 86 56 12 70 59 63 32 01 15 81 47 71 76 95 32 65 80 54 70 34 51 40 45 33 04 64 55 78 68 88 47 31 47 68 87 03 84 23 44 89 72 35 08 31 76 63 26 90 85 96 67 65 91 19 14 17 86 04 71 32 95 +37 13 04 22 64 37 37 28 56 62 86 33 07 37 10 44 52 82 52 06 19 52 57 75 90 26 91 24 06 21 14 67 76 30 46 14 35 89 89 41 03 64 56 97 87 63 22 34 03 79 17 45 11 53 25 56 96 61 23 18 63 31 37 37 47 +77 23 26 70 72 76 77 04 28 64 71 69 14 85 96 54 95 48 06 62 99 83 86 77 97 75 71 66 30 19 57 90 33 01 60 61 14 12 90 99 32 77 56 41 18 14 87 49 10 14 90 64 18 50 21 74 14 16 88 05 45 73 82 47 74 44 +22 97 41 13 34 31 54 61 56 94 03 24 59 27 98 77 04 09 37 40 12 26 87 09 71 70 07 18 64 57 80 21 12 71 83 94 60 39 73 79 73 19 97 32 64 29 41 07 48 84 85 67 12 74 95 20 24 52 41 67 56 61 29 93 35 72 69 +72 23 63 66 01 11 07 30 52 56 95 16 65 26 83 90 50 74 60 18 16 48 43 77 37 11 99 98 30 94 91 26 62 73 45 12 87 73 47 27 01 88 66 99 21 41 95 80 02 53 23 32 61 48 32 43 43 83 14 66 95 91 19 81 80 67 25 88 +08 62 32 18 92 14 83 71 37 96 11 83 39 99 05 16 23 27 10 67 02 25 44 11 55 31 46 64 41 56 44 74 26 81 51 31 45 85 87 09 81 95 22 28 76 69 46 48 64 87 67 76 27 89 31 11 74 16 62 03 60 94 42 47 09 34 94 93 72 +56 18 90 18 42 17 42 32 14 86 06 53 33 95 99 35 29 15 44 20 49 59 25 54 34 59 84 21 23 54 35 90 78 16 93 13 37 88 54 19 86 67 68 55 66 84 65 42 98 37 87 56 33 28 58 38 28 38 66 27 52 21 81 15 08 22 97 32 85 27 +91 53 40 28 13 34 91 25 01 63 50 37 22 49 71 58 32 28 30 18 68 94 23 83 63 62 94 76 80 41 90 22 82 52 29 12 18 56 10 08 35 14 37 57 23 65 67 40 72 39 93 39 70 89 40 34 07 46 94 22 20 05 53 64 56 30 05 56 61 88 27 +23 95 11 12 37 69 68 24 66 10 87 70 43 50 75 07 62 41 83 58 95 93 89 79 45 39 02 22 05 22 95 43 62 11 68 29 17 40 26 44 25 71 87 16 70 85 19 25 59 94 90 41 41 80 61 70 55 60 84 33 95 76 42 63 15 09 03 40 38 12 03 32 +09 84 56 80 61 55 85 97 16 94 82 94 98 57 84 30 84 48 93 90 71 05 95 90 73 17 30 98 40 64 65 89 07 79 09 19 56 36 42 30 23 69 73 72 07 05 27 61 24 31 43 48 71 84 21 28 26 65 65 59 65 74 77 20 10 81 61 84 95 08 52 23 70 +47 81 28 09 98 51 67 64 35 51 59 36 92 82 77 65 80 24 72 53 22 07 27 10 21 28 30 22 48 82 80 48 56 20 14 43 18 25 50 95 90 31 77 08 09 48 44 80 90 22 93 45 82 17 13 96 25 26 08 73 34 99 06 49 24 06 83 51 40 14 15 10 25 01 +54 25 10 81 30 64 24 74 75 80 36 75 82 60 22 69 72 91 45 67 03 62 79 54 89 74 44 83 64 96 66 73 44 30 74 50 37 05 09 97 70 01 60 46 37 91 39 75 75 18 58 52 72 78 51 81 86 52 08 97 01 46 43 66 98 62 81 18 70 93 73 08 32 46 34 +96 80 82 07 59 71 92 53 19 20 88 66 03 26 26 10 24 27 50 82 94 73 63 08 51 33 22 45 19 13 58 33 90 15 22 50 36 13 55 06 35 47 82 52 33 61 36 27 28 46 98 14 73 20 73 32 16 26 80 53 47 66 76 38 94 45 02 01 22 52 47 96 64 58 52 39 +88 46 23 39 74 63 81 64 20 90 33 33 76 55 58 26 10 46 42 26 74 74 12 83 32 43 09 02 73 55 86 54 85 34 28 23 29 79 91 62 47 41 82 87 99 22 48 90 20 05 96 75 95 04 43 28 81 39 81 01 28 42 78 25 39 77 90 57 58 98 17 36 73 22 63 74 51 +29 39 74 94 95 78 64 24 38 86 63 87 93 06 70 92 22 16 80 64 29 52 20 27 23 50 14 13 87 15 72 96 81 22 08 49 72 30 70 24 79 31 16 64 59 21 89 34 96 91 48 76 43 53 88 01 57 80 23 81 90 79 58 01 80 87 17 99 86 90 72 63 32 69 14 28 88 69 +37 17 71 95 56 93 71 35 43 45 04 98 92 94 84 96 11 30 31 27 31 60 92 03 48 05 98 91 86 94 35 90 90 08 48 19 33 28 68 37 59 26 65 96 50 68 22 07 09 49 34 31 77 49 43 06 75 17 81 87 61 79 52 26 27 72 29 50 07 98 86 01 17 10 46 64 24 18 56 +51 30 25 94 88 85 79 91 40 33 63 84 49 67 98 92 15 26 75 19 82 05 18 78 65 93 61 48 91 43 59 41 70 51 22 15 92 81 67 91 46 98 11 11 65 31 66 10 98 65 83 21 05 56 05 98 73 67 46 74 69 34 08 30 05 52 07 98 32 95 30 94 65 50 24 63 28 81 99 57 +19 23 61 36 09 89 71 98 65 17 30 29 89 26 79 74 94 11 44 48 97 54 81 55 39 66 69 45 28 47 13 86 15 76 74 70 84 32 36 33 79 20 78 14 41 47 89 28 81 05 99 66 81 86 38 26 06 25 13 60 54 55 23 53 27 05 89 25 23 11 13 54 59 54 56 34 16 24 53 44 06 +13 40 57 72 21 15 60 08 04 19 11 98 34 45 09 97 86 71 03 15 56 19 15 44 97 31 90 04 87 87 76 08 12 30 24 62 84 28 12 85 82 53 99 52 13 94 06 65 97 86 09 50 94 68 69 74 30 67 87 94 63 07 78 27 80 36 69 41 06 92 32 78 37 82 30 05 18 87 99 72 19 99 +44 20 55 77 69 91 27 31 28 81 80 27 02 07 97 23 95 98 12 25 75 29 47 71 07 47 78 39 41 59 27 76 13 15 66 61 68 35 69 86 16 53 67 63 99 85 41 56 08 28 33 40 94 76 90 85 31 70 24 65 84 65 99 82 19 25 54 37 21 46 33 02 52 99 51 33 26 04 87 02 08 18 96 +54 42 61 45 91 06 64 79 80 82 32 16 83 63 42 49 19 78 65 97 40 42 14 61 49 34 04 18 25 98 59 30 82 72 26 88 54 36 21 75 03 88 99 53 46 51 55 78 22 94 34 40 68 87 84 25 30 76 25 08 92 84 42 61 40 38 09 99 40 23 29 39 46 55 10 90 35 84 56 70 63 23 91 39 +52 92 03 71 89 07 09 37 68 66 58 20 44 92 51 56 13 71 79 99 26 37 02 06 16 67 36 52 58 16 79 73 56 60 59 27 44 77 94 82 20 50 98 33 09 87 94 37 40 83 64 83 58 85 17 76 53 02 83 52 22 27 39 20 48 92 45 21 09 42 24 23 12 37 52 28 50 78 79 20 86 62 73 20 59 +54 96 80 15 91 90 99 70 10 09 58 90 93 50 81 99 54 38 36 10 30 11 35 84 16 45 82 18 11 97 36 43 96 79 97 65 40 48 23 19 17 31 64 52 65 65 37 32 65 76 99 79 34 65 79 27 55 33 03 01 33 27 61 28 66 08 04 70 49 46 48 83 01 45 19 96 13 81 14 21 31 79 93 85 50 05 +92 92 48 84 59 98 31 53 23 27 15 22 79 95 24 76 05 79 16 93 97 89 38 89 42 83 02 88 94 95 82 21 01 97 48 39 31 78 09 65 50 56 97 61 01 07 65 27 21 23 14 15 80 97 44 78 49 35 33 45 81 74 34 05 31 57 09 38 94 07 69 54 69 32 65 68 46 68 78 90 24 28 49 51 45 86 35 +41 63 89 76 87 31 86 09 46 14 87 82 22 29 47 16 13 10 70 72 82 95 48 64 58 43 13 75 42 69 21 12 67 13 64 85 58 23 98 09 37 76 05 22 31 12 66 50 29 99 86 72 45 25 10 28 19 06 90 43 29 31 67 79 46 25 74 14 97 35 76 37 65 46 23 82 06 22 30 76 93 66 94 17 96 13 20 72 +63 40 78 08 52 09 90 41 70 28 36 14 46 44 85 96 24 52 58 15 87 37 05 98 99 39 13 61 76 38 44 99 83 74 90 22 53 80 56 98 30 51 63 39 44 30 91 91 04 22 27 73 17 35 53 18 35 45 54 56 27 78 48 13 69 36 44 38 71 25 30 56 15 22 73 43 32 69 59 25 93 83 45 11 34 94 44 39 92 +12 36 56 88 13 96 16 12 55 54 11 47 19 78 17 17 68 81 77 51 42 55 99 85 66 27 81 79 93 42 65 61 69 74 14 01 18 56 12 01 58 37 91 22 42 66 83 25 19 04 96 41 25 45 18 69 96 88 36 93 10 12 98 32 44 83 83 04 72 91 04 27 73 07 34 37 71 60 59 31 01 54 54 44 96 93 83 36 04 45 +30 18 22 20 42 96 65 79 17 41 55 69 94 81 29 80 91 31 85 25 47 26 43 49 02 99 34 67 99 76 16 14 15 93 08 32 99 44 61 77 67 50 43 55 87 55 53 72 17 46 62 25 50 99 73 05 93 48 17 31 70 80 59 09 44 59 45 13 74 66 58 94 87 73 16 14 85 38 74 99 64 23 79 28 71 42 20 37 82 31 23 +51 96 39 65 46 71 56 13 29 68 53 86 45 33 51 49 12 91 21 21 76 85 02 17 98 15 46 12 60 21 88 30 92 83 44 59 42 50 27 88 46 86 94 73 45 54 23 24 14 10 94 21 20 34 23 51 04 83 99 75 90 63 60 16 22 33 83 70 11 32 10 50 29 30 83 46 11 05 31 17 86 42 49 01 44 63 28 60 07 78 95 40 +44 61 89 59 04 49 51 27 69 71 46 76 44 04 09 34 56 39 15 06 94 91 75 90 65 27 56 23 74 06 23 33 36 69 14 39 05 34 35 57 33 22 76 46 56 10 61 65 98 09 16 69 04 62 65 18 99 76 49 18 72 66 73 83 82 40 76 31 89 91 27 88 17 35 41 35 32 51 32 67 52 68 74 85 80 57 07 11 62 66 47 22 67 +65 37 19 97 26 17 16 24 24 17 50 37 64 82 24 36 32 11 68 34 69 31 32 89 79 93 96 68 49 90 14 23 04 04 67 99 81 74 70 74 36 96 68 09 64 39 88 35 54 89 96 58 66 27 88 97 32 14 06 35 78 20 71 06 85 66 57 02 58 91 72 05 29 56 73 48 86 52 09 93 22 57 79 42 12 01 31 68 17 59 63 76 07 77 +73 81 14 13 17 20 11 09 01 83 08 85 91 70 84 63 62 77 37 07 47 01 59 95 39 69 39 21 99 09 87 02 97 16 92 36 74 71 90 66 33 73 73 75 52 91 11 12 26 53 05 26 26 48 61 50 90 65 01 87 42 47 74 35 22 73 24 26 56 70 52 05 48 41 31 18 83 27 21 39 80 85 26 08 44 02 71 07 63 22 05 52 19 08 20 +17 25 21 11 72 93 33 49 64 23 53 82 03 13 91 65 85 02 40 05 42 31 77 42 05 36 06 54 04 58 07 76 87 83 25 57 66 12 74 33 85 37 74 32 20 69 03 97 91 68 82 44 19 14 89 28 85 85 80 53 34 87 58 98 88 78 48 65 98 40 11 57 10 67 70 81 60 79 74 72 97 59 79 47 30 20 54 80 89 91 14 05 33 36 79 39 +60 85 59 39 60 07 57 76 77 92 06 35 15 72 23 41 45 52 95 18 64 79 86 53 56 31 69 11 91 31 84 50 44 82 22 81 41 40 30 42 30 91 48 94 74 76 64 58 74 25 96 57 14 19 03 99 28 83 15 75 99 01 89 85 79 50 03 95 32 67 44 08 07 41 62 64 29 20 14 76 26 55 48 71 69 66 19 72 44 25 14 01 48 74 12 98 07 +64 66 84 24 18 16 27 48 20 14 47 69 30 86 48 40 23 16 61 21 51 50 26 47 35 33 91 28 78 64 43 68 04 79 51 08 19 60 52 95 06 68 46 86 35 97 27 58 04 65 30 58 99 12 12 75 91 39 50 31 42 64 70 04 46 07 98 73 98 93 37 89 77 91 64 71 64 65 66 21 78 62 81 74 42 20 83 70 73 95 78 45 92 27 34 53 71 15 +30 11 85 31 34 71 13 48 05 14 44 03 19 67 23 73 19 57 06 90 94 72 57 69 81 62 59 68 88 57 55 69 49 13 07 87 97 80 89 05 71 05 05 26 38 40 16 62 45 99 18 38 98 24 21 26 62 74 69 04 85 57 77 35 58 67 91 79 79 57 86 28 66 34 72 51 76 78 36 95 63 90 08 78 47 63 45 31 22 70 52 48 79 94 15 77 61 67 68 +23 33 44 81 80 92 93 75 94 88 23 61 39 76 22 03 28 94 32 06 49 65 41 34 18 23 08 47 62 60 03 63 33 13 80 52 31 54 73 43 70 26 16 69 57 87 83 31 03 93 70 81 47 95 77 44 29 68 39 51 56 59 63 07 25 70 07 77 43 53 64 03 94 42 95 39 18 01 66 21 16 97 20 50 90 16 70 10 95 69 29 06 25 61 41 26 15 59 63 35 From 030600f9b3c4f9265fcaed97ae81b41ad2d7f7f4 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 10 Sep 2019 07:49:07 +0200 Subject: [PATCH 291/594] Update matrix_class.py (#1175) --- matrix/matrix_class.py | 45 +++++++++++++++--------------------------- 1 file changed, 16 insertions(+), 29 deletions(-) diff --git a/matrix/matrix_class.py b/matrix/matrix_class.py index 2cd43fc9ca8e..c82fb2cf6464 100644 --- a/matrix/matrix_class.py +++ b/matrix/matrix_class.py @@ -102,15 +102,15 @@ class Matrix: def __init__(self, rows): error = TypeError( - "Matrices must be formed from a list of zero or more lists containing at least one and the same number of values, \ - each of which must be of type int or float" + "Matrices must be formed from a list of zero or more lists containing at least " + "one and the same number of values, each of which must be of type int or float." ) if len(rows) != 0: cols = len(rows[0]) if cols == 0: raise error for row in rows: - if not len(row) == cols: + if len(row) != cols: raise error for value in row: if not isinstance(value, (int, float)): @@ -137,9 +137,7 @@ def order(self): @property def is_square(self): - if self.order[0] == self.order[1]: - return True - return False + return self.order[0] == self.order[1] def identity(self): values = [ @@ -168,9 +166,7 @@ def determinant(self): ) def is_invertable(self): - if self.determinant(): - return True - return False + return bool(self.determinant()) def get_minor(self, row, column): values = [ @@ -218,9 +214,8 @@ def adjugate(self): return Matrix(values) def inverse(self): - if not self.is_invertable(): - return None - return self.adjugate() * (1 / self.determinant()) + determinant = self.determinant() + return None if not determinant else self.adjugate() * (1 / determinant) def __repr__(self): return str(self.rows) @@ -283,14 +278,10 @@ def add_column(self, column, position=None): def __eq__(self, other): if not isinstance(other, Matrix): raise TypeError("A Matrix can only be compared with another Matrix") - if self.rows == other.rows: - return True - return False + return self.rows == other.rows def __ne__(self, other): - if self == other: - return False - return True + return not self == other def __neg__(self): return self * -1 @@ -316,23 +307,20 @@ def __sub__(self, other): ) def __mul__(self, other): - if not isinstance(other, (int, float, Matrix)): - raise TypeError( - "A Matrix can only be multiplied by an int, float, or another matrix" - ) - if type(other) in (int, float): + if isinstance(other, (int, float)): return Matrix([[element * other for element in row] for row in self.rows]) - if type(other) is Matrix: + elif isinstance(other, Matrix): if self.num_columns != other.num_rows: - raise ValueError( - "The number of columns in the first matrix must be equal to the number of rows in the second" - ) + raise ValueError("The number of columns in the first matrix must " + "be equal to the number of rows in the second") return Matrix( [ [Matrix.dot_product(row, column) for column in other.columns()] for row in self.rows ] ) + else: + raise TypeError("A Matrix can only be multiplied by an int, float, or another matrix") def __pow__(self, other): if not isinstance(other, int): @@ -360,5 +348,4 @@ def dot_product(cls, row, column): if __name__ == "__main__": import doctest - test = doctest.testmod() - print(test) + doctest.testmod() From 47d17951b830f23fe7cddffa9c24431c29cfea74 Mon Sep 17 00:00:00 2001 From: Kiril Bangachev <51961981+KirilBangachev@users.noreply.github.com> Date: Fri, 13 Sep 2019 07:13:55 -0400 Subject: [PATCH 292/594] Add Kth lexicographic permutation (#1179) * Add Kth lexicographic permutation Function that computes the kth lexicographic permtation of 0,1,2,...,n-1 in O(n^2) time * Update kth_lexicographic_permutation.py Addressed requested changes --- maths/kth_lexicographic_permutation.py | 40 ++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 maths/kth_lexicographic_permutation.py diff --git a/maths/kth_lexicographic_permutation.py b/maths/kth_lexicographic_permutation.py new file mode 100644 index 000000000000..1820be7274e3 --- /dev/null +++ b/maths/kth_lexicographic_permutation.py @@ -0,0 +1,40 @@ +def kthPermutation(k, n): + """ + Finds k'th lexicographic permutation (in increasing order) of + 0,1,2,...n-1 in O(n^2) time. + + Examples: + First permutation is always 0,1,2,...n + >>> kthPermutation(0,5) + [0, 1, 2, 3, 4] + + The order of permutation of 0,1,2,3 is [0,1,2,3], [0,1,3,2], [0,2,1,3], + [0,2,3,1], [0,3,1,2], [0,3,2,1], [1,0,2,3], [1,0,3,2], [1,2,0,3], + [1,2,3,0], [1,3,0,2] + >>> kthPermutation(10,4) + [1, 3, 0, 2] + """ + # Factorails from 1! to (n-1)! + factorials = [1] + for i in range(2, n): + factorials.append(factorials[-1] * i) + assert 0 <= k < factorials[-1] * n, "k out of bounds" + + permutation = [] + elements = list(range(n)) + + # Find permutation + while factorials: + factorial = factorials.pop() + number, k = divmod(k, factorial) + permutation.append(elements[number]) + elements.remove(elements[number]) + permutation.append(elements[0]) + + return permutation + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From f8e30cfab1863b4f76415956ee1f10d606c50674 Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" Date: Fri, 13 Sep 2019 07:40:14 -0400 Subject: [PATCH 293/594] Digital Image Processing Tests (#1178) * add version of smaller image * swap image in tests * edits for image src --- .../image_data/lena_small.jpg | Bin 0 -> 6971 bytes .../test_digital_image_processing.py | 8 ++++---- 2 files changed, 4 insertions(+), 4 deletions(-) create mode 100644 digital_image_processing/image_data/lena_small.jpg diff --git a/digital_image_processing/image_data/lena_small.jpg b/digital_image_processing/image_data/lena_small.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b85144e9f65ca0c115c41e79a6c29c24aa9a322d GIT binary patch literal 6971 zcmbW4cTiJd7v@7RB1lK1NC#=sq(~8wE+9y65s)q-y#+!Mklq9YsUk%KM5Kd+-g^@X zz1Khj5&{Wf@%wgmXZEk%J$K$S_nmw0o#%JYJI{UZ^`Gliz#Sb8Z4Cec0Rcek<^WtT z0Mr14H&X(Ff0^)K5EK2&B*er-#H1vor2iRY6y&626lA2NAuc{W<6~x4_NScOFC||~%gQUheg9coSKrXs)ZEh5-P7CG zKQK5nH9a%?d+yIXd~JPWb8CBNcW)nca{BiSeU7=f{KrKAAo?%XP5v*~|G`Cj!$tV7 z2W0=a2nYji1`#bW36}&ZovI<3ofkc~WCS_G)3oB6P6{3=BP64}_ar3~uk;!p>L1#F z$o}uZBLBb0{ukK)=7IyLhzM?)M??!y0h}+~Ru1``+0txJr;-z=oKFI}!oG7eTEujB z|5S_)5czD(5yd&y_Sgbb>l}bO*2l<}7;KBSK^EO4i#Pl=n9s&1Xe>`?7T`OF%2LQ* zFEmd%rP)&KfT>$L-$(XNU47wyYgK-(X{#^Wz!3VfoiEcMc@0l&<;R4lM8z`f2^Z14 zbD5Y2*8mSxzgVY_gPGPX}aHS@^-_bRI3@5cp!?^dQ z>!35&x_N5^9{d=am+Ezf`<_K@o&5$SrFcq{-G?6>TH)yucP1t^wSTBJ>|Y(w_c^!s zZIP1&_p4piBWhKA{h3)0^bf4t=7&OiCmPFNb|<4`Ts}}NG%eYZ|L=Yq%y1NxjgrH} zb}7`aMByBYZ1z~|<8JwtyWL?aP5c>Sqm9cR%f=eypxySccZ#2 zRIm)*eUwubr!a%Ssjb}-)j6wGnV+>5LRV>tAOF3F@$=yJ6tl9(GPlB3e!T;hunk3? z8sfV#eva$+;s_URy_l*|B-nSiwFy0QXKb!%rty3r+{?`tL;8!#h6U@)R}WVRg9vH& z7cYb@0BI0mA|RzHu=_F5!nS)Ly#Xq-4s@ZaKl3pKZH^GYR+bk*GhkdGW29%7IN9I^ zC-cg~l*eyGx$X}KNw8^zUj-=vHs@x6lweo!Sa5BB6i&|z`(%k|_14t`lizC+ITYTd zCWd4pQ_impXEGH5dSOa98%${h$Q*Tbo?t#sotG_{LcNzw_ZG`oaJmI?h{XCId9J^~ zI_$}riBx@B&bPwKDPhaeFOS+uPL$sU#y86<--RrgE9XH=t^v2E$JI(v0*D~2ntSe2 zU&$BTi`id~T~0V__Z0L?dGB;J53HHLzO30S9AF&8xUXvV6@FmyJ_w`0m{lJzeUp#3 z`h4rjZhAONF>lHzQllrU&g|ZT(8;y}6V1gs#`f;Z{lKwm?vicq;LAdfup!p5;;OKT z$%B^C1-+mUhAC^E?qiAjc(o#QbpoD}j9YyJN;S&GDUq=yP>`8|6+5=>Tf*OQH{}*MQ`Hty%s5PRYRNyB+}XQ;0zVD%)fg3bNeX|k5q3nS|boHn`_e z<3+6_f7!R{IdF7B0qu{PX;FR1_a#7Qz(f0o2`Ll)XVBtnfHNnhdn)i0W^@$PX7Jtm-}*WHh_^xGG0zk5MHtcIGcdX zyTYz}qOC-N+ZKGB50&DssL5&uM%_b>K(Tj1ER1~jsxGeq*%t-awboWEtJjfZf{2%Z zL(|3aqkahI-14skH0mnp?=c+Gk&YSfdnFchC2YpPM3HdlL}(@ehgG6g2rW%zYgN!ZzrV`liJ_Ml;LWi9=rVO#A8g`)(w1vQxF4K0qc2ieM?-{O*#&2T2Fs>A zM5W!(wX-f^A~&l}2PPU=VuP6s!YVG!8`za$IL?Y^509ALt@rPPMpXAdP|qk)TSRb0 z2Q?l-kTjN<3)Iuw+`|5>e#r|-mPr0*UOTr~&iv&ml@d(H5$7oCX>{yWD~va=yHm^4 zvupG-sf`8B7)qV-3{ofHBk} zVfk+8ckuptQH0|I$l{LYvc0!1hcxVo=GsYj`+L@JhFIcDZcQf#Kw zCV<5COIZ2>pfP^6tYQxkHlYW2vULr9`Xm=q{h?8nQI)P0Ns3?YUjsc2Jamm`vfxup zizkbz1#j{b=sO%Hh&ncuqJuaSuK}I{4XEDa&ubnUs}>83*{~psFAXjZ55~wl9rD5f z@XeMJSxV%1GPo`!0T&7uoXXp4d7IBG&fdH;#@n>mbD|51aurBSEARrY$#&+0(J?5d zLgYs0Q(YyUP%Z1F#RoN5J_xfbP>EOc!;sLzpuINb0$6w0`?(k}Hj9U`#jJK-{8U+3 zY6M>+qo2}UKL<28RnEqQpia>P7}Q1xFs6{uxh`C1VlXH)M?tHZ&t0)}9{^~6r4Io36aE6Pa&~$W zg$>y%^}KfazyDA2e#+PLhZ&G+GD>m4xiL7 zkKSB3To(EqPr)1%`&MgMqS+J~>`E)sJ@q{CnxnI&NmWmcJWk5p&*zH!FvsX2Ou%a4 z9UI&u)F^|oXb**%| zmU*_f`DQ^|sC%QxuBT>|;7;JVZMG*RSz_8+_1L!R8bBg6Ri53Wd|N$@S#mHEytD_D#`m`*e^Wuku6-!g{1{|LbrO*Y z%x;EOfLDt*5X!trwPmfEZggCLcG}6>JvNDZ&HckO@s%DFhU2>$;%1z9t;>Bs6U(#= zOACB#Do%a|M2|eTgrUIw_a;ksAGN$rcbzk8=0Dk^dP668M{4XV)6+0@Y7K3I=)m(7 zWiCw0x@WIN)@{lK^%@lKZ+L?14;?TF@+tkuiTEP@{h|i>Gr-$1{YNl~1Lr3fXRS1*p|a;?VAnec zu%}ExCCLv=xwxmXuIqkL#U1%)XDqxyv`aEE<_V8Uhy2UBtUs#!hnwqoN-wQXCI^=7w%sfak!;prCy|sGHS2Wvdba zW7?Y#Pr|7O)R2~f*>of0N1L|-=mbMo6bn=po1q$4d3cq;n+{;It8nj7(e3leRo*4) z(`lz1Id%-`>Lg!51n*6FQ%QH6y(Rm8aq#xf^w{Mlr|QWATjxWUPcPWz`OVnE9?7{X zi7dGP+}jFhw-T53d&Ei7?pBz%d>yBEmjRUzqkImv306c`V+<~ zffOE3BK`K)OCqK{p2oyK`b+J@hVd$s+tV;Em(zXIigN`@{Th+*RMb!*Kf&sWhSI@? zb7C^L;dZ=rTV}?Yav6-$YZxMCLm!=m*3p)(n>5Fvu8L(=;%V`d%S`Pz@3(cF*1+?d z#j-M_Vj&I;h1^88Hks0P{j%Mk0Ni!9>bwMQA>SossOVV0b&k2GI| zEcaDBSMJRNaW1TnlJ|kCQ%+5J6=Qs=tOJIe6?hG`N-Q_sc2>S#bmypX1e4xB++3?q9K~93v*tKDD`(4-w zn9gsYucYE;|M^Gj8gPQ(t+dd5gJ2)bPFE_pxz2`r@UqI4Wu*U4M8SP;2 z!%rJW#_9Kjq=-o?`b7g-g8p$b%uM|*G4OVy`~awb zV|UND8tag@nHyFIkWVF(RY#>uZVa#Lp658fiC+6)0?77eCh+dw^P!})HhY?jv7A0~ z-ZhrU>a0`?y^9LcJ>~#8wM^DU{?HJwKE_Xa)=5uhcqwQnqLX}TkHU2WpiUSyq_DwN z5y-XN6-X~uT~#TnY-6;c_x@HZrYLPYdFe$Se(zkOV=2>wMMVm9ip)CNrn%>;az{p^ zrEXdbLAShpvMkBVzdohwm@b7=XLGFiv%@0uHz2zHa|(kCbFfYO2g_m0N7cF6AN~p# zwL2u6FE3m0ijW?5t!o(8-2u=P=7n|ICLTC?m+Qf`T{q`|X&3d@YUL^D49mxOSw%DS zC}xi)0q3mJH4f->by%xX*uMWeSYy04XYH|(j3Y}Lw<+i+4l1m*@qmY?>M9ZBRqFEF zq3b*`ZZiizp7$CG=Y6LlL;~7bzXp(7V;&uOP-9{X{tWbK%|;I1b?H)wB)EHbbu}vW zohsuuWT#9*JDs`t{Jzwmai#SRaXZDH9TF?{(>lV(iF5r+u`j; zPwwJrCur26lfZd_=i*4<6BMXIc@`4rt|v=_dp-$QV-{$?ti71)wdKapprp{wsH{fh z@CG#UNLti9G_$g&)Ka*K>=W^XR@~5Be{oN)>IM5gTQ??E)mKd;mH88Ako)guTdxq1{NwoY5Mhd~oQBNA z0(ZnUAgX{K--B^3?qDGFh4|Ym5Nsua3xjc+vv{#Tfo0n&)JwaU(Rru3Y*J*6VhoB2 z9IEU=b{BKY*MPclggSBot&VvLdx-kF#S_m^JL%hWQGj=RE@CKv;*c~@2V{g(K;Ms5 z=oUotLiv}{FTgn)PPZ6MB}!TL=l2TyK5dY+!^!m+FWA>TF~Zr1)Adm&kAUuJj6oNg zUgA;kW0z5Xlx9ZVuj&mS+BpD?s=9AK_b39T8f1fygZ6YO$|Sm-<6#@JYs_)S%G@BS zs~ni%fn3u}HOR!vp<<<74C`^k@EZG(Gt>VXfV9Zhw-OI$3N~h@=ViWZYsz=vQF$P;*h~?KiQLRIb=H-LRtvL=xkKcFuF&=Z)lqVI>Dw+|FlnG>mT2gb3y0)k7 zsCrUWJs;k;n{BMQXvhF6yG#K0VUBqc+I-zTl(3Qf-dTF0B0wtO8sOrK*aOz)rLLGS z27--Xu&KABt)q6|ESeq|-nnR)<|ilLrC21RYL@F9KQIqE8Cntn^+_tuW9k#IrC`Y&j&?fu_)VVr4*ym(c~lLHUF{Rlc1ZZ5@she-2q3a5)W z0fExc5Tr_X0~}xeWw(H%!EOzFt2~EsqwmR#r$57O4zCtzl4N}1h(v0$%I%&{#}Ku2 z@qmEc2B55?=L9y4sUt*vT6dV+34V^Rr$q}(1}FJz|^$e=JxtO24* z^yv+ZYjpo?uv9)0l}LG@d@nFwS9o9}HPi8xL@us=X4~I+e&>^Vd}phuf%eVUr7Ua= z4n*9=Qer+^PfKrs88P>sf9~P9+xF~g{}X*^ZVt_&`rI;@!f#Zz2ga`OwuH`r0mX8}mFCS(-Yvx5d3U}2L703XWMi&F zJT6QW8I}T7|NbZeYGcJ;Sg{aErOU$-pEeYe2%&KRYQ~s&u>||tA7->%EEpU#Uzl1U z=&MxQ?2nyK+jm1fu*@Lp3A|_^9@}Tj_wGkv*wJhiA~I!V#JY+1Qap?L@%FEqA7?L= zY4`dHf17GgLAlKEL+vi-NrNhX&f0Q>_!=-`rIx)M;fJ!A)0(Yk z=P|6WL1tD)FCVg#~$PZ?a} z$ZCBWZ|y_jv5r@$z>%XW|0)()1{~V|*fG>Jw@@{_Tqo1a64L%aN4OTuyw!fen$4PA z=q{9u9~hPZ3^+t_8JugDDHz%spfvkzg@2;nUk1eZ@#$JQ(q029u_IDh^2fQt$9tYa2QqzyDDFX#Eqfojn7R%&)cL|`r8q_uu{rt` zq%<9OHT}7aM*w=%KaD!LoKz2djOyjYhFk-*6-StH@sMjk68?p<8qz=Ebrorm>_ys= zISCi){3tDMV|wU?5|M1RMqh2^N}yE_lP%Yzg(eI^{N2IVFXXjHP9ImEw zr@JW_lqRq)_ytxXjHmw#F1{e1vcOd>oM|S4-XYOxWf)048xP{Cs%dqWye&hobOtI1 z0ch1bRtDD+kTS}wr`2!e`@AKuY5M4?h+xNSLBy4WI^+K9q+#*}yyuBBL|I3M&eHX= zzz5m7298nY2{Zv&tY@|4o~#F)vWrnB!#$DhD{nif?P> Hxt{+YSh(6Q literal 0 HcmV?d00001 diff --git a/digital_image_processing/test_digital_image_processing.py b/digital_image_processing/test_digital_image_processing.py index 0ff9e3333ca8..02c1a2d3a663 100644 --- a/digital_image_processing/test_digital_image_processing.py +++ b/digital_image_processing/test_digital_image_processing.py @@ -12,15 +12,15 @@ from numpy import array, uint8 from PIL import Image -img = imread(r"digital_image_processing/image_data/lena.jpg") +img = imread(r"digital_image_processing/image_data/lena_small.jpg") gray = cvtColor(img, COLOR_BGR2GRAY) # Test: change_contrast() def test_change_contrast(): - with Image.open("digital_image_processing/image_data/lena.jpg") as img: + with Image.open("digital_image_processing/image_data/lena_small.jpg") as img: # Work around assertion for response assert str(cc.change_contrast(img, 110)).startswith( - " Date: Fri, 13 Sep 2019 12:07:24 +0000 Subject: [PATCH 294/594] Add Flake8 F4 Tests to .travis.yml (#974) * Add Flake8 F4 Tests to .travis.yml F4 tests check for import errors. Implements issue #973 * Remove wildcard imports --- .travis.yml | 2 +- linear_algebra/src/tests.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.travis.yml b/.travis.yml index f7a9264803f8..be227df1fdbd 100644 --- a/.travis.yml +++ b/.travis.yml @@ -6,7 +6,7 @@ before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt before_script: - black --check . || true - - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics + - flake8 . --count --select=E9,F4,F63,F7,F82 --show-source --statistics script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . diff --git a/linear_algebra/src/tests.py b/linear_algebra/src/tests.py index a26eb92653e2..afca4ce87117 100644 --- a/linear_algebra/src/tests.py +++ b/linear_algebra/src/tests.py @@ -9,7 +9,7 @@ """ import unittest -from lib import * +from lib import Matrix, Vector, axpy, squareZeroMatrix, unitBasisVector, zeroVector class Test(unittest.TestCase): def test_component(self): From 768700b91f85b21fbb422d9deba6bb69d320e18d Mon Sep 17 00:00:00 2001 From: Sangeet K Date: Fri, 13 Sep 2019 13:24:25 -0700 Subject: [PATCH 295/594] Add delete to trie.py + tests (#1177) * Add delete to trie.py + tests * Minor fixes + tests * Remove noqa comments + modify tests for Travis CI to detect * Minor improvement --- data_structures/trie/trie.py | 84 +++++++++++++++++++++++++++++------- 1 file changed, 68 insertions(+), 16 deletions(-) diff --git a/data_structures/trie/trie.py b/data_structures/trie/trie.py index b6234c6704c6..5a560b97c293 100644 --- a/data_structures/trie/trie.py +++ b/data_structures/trie/trie.py @@ -1,9 +1,8 @@ """ A Trie/Prefix Tree is a kind of search tree used to provide quick lookup of words/patterns in a set of words. A basic Trie however has O(n^2) space complexity -making it impractical in practice. It however provides O(max(search_string, length of longest word)) lookup -time making it an optimal approach when space is not an issue. - +making it impractical in practice. It however provides O(max(search_string, length of longest word)) +lookup time making it an optimal approach when space is not an issue. """ @@ -12,7 +11,7 @@ def __init__(self): self.nodes = dict() # Mapping from char to TrieNode self.is_leaf = False - def insert_many(self, words: [str]): # noqa: E999 This syntax is Python 3 only + def insert_many(self, words: [str]): """ Inserts a list of words into the Trie :param words: list of string words @@ -21,7 +20,7 @@ def insert_many(self, words: [str]): # noqa: E999 This syntax is Python 3 only for word in words: self.insert(word) - def insert(self, word: str): # noqa: E999 This syntax is Python 3 only + def insert(self, word: str): """ Inserts a word into the Trie :param word: word to be inserted @@ -34,7 +33,7 @@ def insert(self, word: str): # noqa: E999 This syntax is Python 3 only curr = curr.nodes[char] curr.is_leaf = True - def find(self, word: str) -> bool: # noqa: E999 This syntax is Python 3 only + def find(self, word: str) -> bool: """ Tries to find word in a Trie :param word: word to look for @@ -47,8 +46,36 @@ def find(self, word: str) -> bool: # noqa: E999 This syntax is Python 3 only curr = curr.nodes[char] return curr.is_leaf + def delete(self, word: str): + """ + Deletes a word in a Trie + :param word: word to delete + :return: None + """ -def print_words(node: TrieNode, word: str): # noqa: E999 This syntax is Python 3 only + def _delete(curr: TrieNode, word: str, index: int): + if index == len(word): + # If word does not exist + if not curr.is_leaf: + return False + curr.is_leaf = False + return len(curr.nodes) == 0 + char = word[index] + char_node = curr.nodes.get(char) + # If char not in current trie node + if not char_node: + return False + # Flag to check if node can be deleted + delete_curr = _delete(char_node, word, index + 1) + if delete_curr: + del curr.nodes[char] + return len(curr.nodes) == 0 + return delete_curr + + _delete(self, word, 0) + + +def print_words(node: TrieNode, word: str): """ Prints all the words in a Trie :param node: root node of Trie @@ -56,20 +83,45 @@ def print_words(node: TrieNode, word: str): # noqa: E999 This syntax is Python :return: None """ if node.is_leaf: - print(word, end=' ') + print(word, end=" ") for key, value in node.nodes.items(): print_words(value, word + key) -def test(): - words = ['banana', 'bananas', 'bandana', 'band', 'apple', 'all', 'beast'] +def test_trie(): + words = "banana bananas bandana band apple all beast".split() root = TrieNode() root.insert_many(words) - # print_words(root, '') - assert root.find('banana') - assert not root.find('bandanas') - assert not root.find('apps') - assert root.find('apple') + # print_words(root, "") + assert all(root.find(word) for word in words) + assert root.find("banana") + assert not root.find("bandanas") + assert not root.find("apps") + assert root.find("apple") + assert root.find("all") + root.delete("all") + assert not root.find("all") + root.delete("banana") + assert not root.find("banana") + assert root.find("bananas") + return True + + +def print_results(msg: str, passes: bool) -> None: + print(str(msg), "works!" if passes else "doesn't work :(") + + +def pytests(): + assert test_trie() + + +def main(): + """ + >>> pytests() + """ + print_results("Testing trie functionality", test_trie()) + -test() +if __name__ == "__main__": + main() From a2b5a90c11ad07f82432fe4b96f6f17bed40e6c8 Mon Sep 17 00:00:00 2001 From: BAKEZQ Date: Wed, 18 Sep 2019 22:01:05 +0800 Subject: [PATCH 296/594] Added sequential minimum optimization algorithm for SVM (#508) * Implementation of sequential minimal optimization algorithm * Update smo.py * Add demonstration of svm partition boundary 1:Use matplotlib show svm's partition boundary 2:Automatically download test dataset * Update smo.py * Update smo.py * Rename smo.py to sequential_minimum_optimization.py * Update doc and simplify the code. Fix filename typo error in doc. Use ternary conditional operator in predict() * Update doc. --- .../sequential_minimum_optimization.py | 526 ++++++++++++++++++ 1 file changed, 526 insertions(+) create mode 100644 machine_learning/sequential_minimum_optimization.py diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py new file mode 100644 index 000000000000..0b5d788e92e1 --- /dev/null +++ b/machine_learning/sequential_minimum_optimization.py @@ -0,0 +1,526 @@ +# coding: utf-8 +""" + Implementation of sequential minimal optimization(SMO) for support vector machines(SVM). + + Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem + that arises during the training of support vector machines. + It was invented by John Platt in 1998. + +Input: + 0: type: numpy.ndarray. + 1: first column of ndarray must be tags of samples, must be 1 or -1. + 2: rows of ndarray represent samples. + +Usage: + Command: + python3 sequential_minimum_optimization.py + Code: + from sequential_minimum_optimization import SmoSVM, Kernel + + kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5) + init_alphas = np.zeros(train.shape[0]) + SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4, b=0.0, tolerance=0.001) + SVM.fit() + predict = SVM.predict(test_samples) + +Reference: + https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf + https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf + http://web.cs.iastate.edu/~honavar/smo-svm.pdf +""" + +from __future__ import division + +import os +import sys +import urllib.request + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from sklearn.datasets import make_blobs, make_circles +from sklearn.preprocessing import StandardScaler + +CANCER_DATASET_URL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data' + + +class SmoSVM(object): + def __init__(self, train, kernel_func, alpha_list=None, cost=0.4, b=0.0, tolerance=0.001, auto_norm=True): + self._init = True + self._auto_norm = auto_norm + self._c = np.float64(cost) + self._b = np.float64(b) + self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001) + + self.tags = train[:, 0] + self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:] + self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0]) + self.Kernel = kernel_func + + self._eps = 0.001 + self._all_samples = list(range(self.length)) + self._K_matrix = self._calculate_k_matrix() + self._error = np.zeros(self.length) + self._unbound = [] + + self.choose_alpha = self._choose_alphas() + + # Calculate alphas using SMO algorithsm + def fit(self): + K = self._k + state = None + while True: + + # 1: Find alpha1, alpha2 + try: + i1, i2 = self.choose_alpha.send(state) + state = None + except StopIteration: + print("Optimization done!\r\nEvery sample satisfy the KKT condition!") + break + + # 2: calculate new alpha2 and new alpha1 + y1, y2 = self.tags[i1], self.tags[i2] + a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy() + e1, e2 = self._e(i1), self._e(i2) + args = (i1, i2, a1, a2, e1, e2, y1, y2) + a1_new, a2_new = self._get_new_alpha(*args) + if not a1_new and not a2_new: + state = False + continue + self.alphas[i1], self.alphas[i2] = a1_new, a2_new + + # 3: update threshold(b) + b1_new = np.float64(-e1 - y1 * K(i1, i1) * (a1_new - a1) - y2 * K(i2, i1) * (a2_new - a2) + self._b) + b2_new = np.float64(-e2 - y2 * K(i2, i2) * (a2_new - a2) - y1 * K(i1, i2) * (a1_new - a1) + self._b) + if 0.0 < a1_new < self._c: + b = b1_new + if 0.0 < a2_new < self._c: + b = b2_new + if not (np.float64(0) < a2_new < self._c) and not (np.float64(0) < a1_new < self._c): + b = (b1_new + b2_new) / 2.0 + b_old = self._b + self._b = b + + # 4: update error value,here we only calculate those non-bound samples' error + self._unbound = [i for i in self._all_samples if self._is_unbound(i)] + for s in self.unbound: + if s == i1 or s == i2: + continue + self._error[s] += y1 * (a1_new - a1) * K(i1, s) + y2 * (a2_new - a2) * K(i2, s) + (self._b - b_old) + + # if i1 or i2 is non-bound,update there error value to zero + if self._is_unbound(i1): + self._error[i1] = 0 + if self._is_unbound(i2): + self._error[i2] = 0 + + # Predict test samles + def predict(self, test_samples, classify=True): + + if test_samples.shape[1] > self.samples.shape[1]: + raise ValueError("Test samples' feature length does not equal to that of train samples") + + if self._auto_norm: + test_samples = self._norm(test_samples) + + results = [] + for test_sample in test_samples: + result = self._predict(test_sample) + if classify: + results.append(1 if result > 0 else -1) + else: + results.append(result) + return np.array(results) + + # Check if alpha violate KKT condition + def _check_obey_kkt(self, index): + alphas = self.alphas + tol = self._tol + r = self._e(index) * self.tags[index] + c = self._c + + return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0) + + # Get value calculated from kernel function + def _k(self, i1, i2): + # for test samples,use Kernel function + if isinstance(i2, np.ndarray): + return self.Kernel(self.samples[i1], i2) + # for train samples,Kernel values have been saved in matrix + else: + return self._K_matrix[i1, i2] + + # Get sample's error + def _e(self, index): + """ + Two cases: + 1:Sample[index] is non-bound,Fetch error from list: _error + 2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi + + """ + # get from error data + if self._is_unbound(index): + return self._error[index] + # get by g(xi) - yi + else: + gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b + yi = self.tags[index] + return gx - yi + + # Calculate Kernel matrix of all possible i1,i2 ,saving time + def _calculate_k_matrix(self): + k_matrix = np.zeros([self.length, self.length]) + for i in self._all_samples: + for j in self._all_samples: + k_matrix[i, j] = np.float64(self.Kernel(self.samples[i, :], self.samples[j, :])) + return k_matrix + + # Predict test sample's tag + def _predict(self, sample): + k = self._k + predicted_value = np.sum( + [self.alphas[i1] * self.tags[i1] * k(i1, sample) for i1 in self._all_samples]) + self._b + return predicted_value + + # Choose alpha1 and alpha2 + def _choose_alphas(self): + locis = yield from self._choose_a1() + if not locis: + return + return locis + + def _choose_a1(self): + """ + Choose first alpha ;steps: + 1:Fisrt loop over all sample + 2:Second loop over all non-bound samples till all non-bound samples does not voilate kkt condition. + 3:Repeat this two process endlessly,till all samples does not voilate kkt condition samples after first loop. + """ + while True: + all_not_obey = True + # all sample + print('scanning all sample!') + for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]: + all_not_obey = False + yield from self._choose_a2(i1) + + # non-bound sample + print('scanning non-bound sample!') + while True: + not_obey = True + for i1 in [i for i in self._all_samples if self._check_obey_kkt(i) and self._is_unbound(i)]: + not_obey = False + yield from self._choose_a2(i1) + if not_obey: + print('all non-bound samples fit the KKT condition!') + break + if all_not_obey: + print('all samples fit the KKT condition! Optimization done!') + break + return False + + def _choose_a2(self, i1): + """ + Choose the second alpha by using heuristic algorithm ;steps: + 1:Choosed alpha2 which get the maximum step size (|E1 - E2|). + 2:Start in a random point,loop over all non-bound samples till alpha1 and alpha2 are optimized. + 3:Start in a random point,loop over all samples till alpha1 and alpha2 are optimized. + """ + self._unbound = [i for i in self._all_samples if self._is_unbound(i)] + + if len(self.unbound) > 0: + tmp_error = self._error.copy().tolist() + tmp_error_dict = {index: value for index, value in enumerate(tmp_error) if self._is_unbound(index)} + if self._e(i1) >= 0: + i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index]) + else: + i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index]) + cmd = yield i1, i2 + if cmd is None: + return + + for i2 in np.roll(self.unbound, np.random.choice(self.length)): + cmd = yield i1, i2 + if cmd is None: + return + + for i2 in np.roll(self._all_samples, np.random.choice(self.length)): + cmd = yield i1, i2 + if cmd is None: + return + + # Get the new alpha2 and new alpha1 + def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2): + K = self._k + if i1 == i2: + return None, None + + # calculate L and H which bound the new alpha2 + s = y1 * y2 + if s == -1: + L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1) + else: + L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1) + if L == H: + return None, None + + # calculate eta + k11 = K(i1, i1) + k22 = K(i2, i2) + k12 = K(i1, i2) + eta = k11 + k22 - 2.0 * k12 + + # select the new alpha2 which could get the minimal objectives + if eta > 0.0: + a2_new_unc = a2 + (y2 * (e1 - e2)) / eta + # a2_new has a boundry + if a2_new_unc >= H: + a2_new = H + elif a2_new_unc <= L: + a2_new = L + else: + a2_new = a2_new_unc + else: + b = self._b + l1 = a1 + s * (a2 - L) + h1 = a1 + s * (a2 - H) + + # way 1 + f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2) + f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2) + ol = l1 * f1 + L * f2 + 1 / 2 * l1 ** 2 * K(i1, i1) + 1 / 2 * L ** 2 * K(i2, i2) + s * L * l1 * K(i1, i2) + oh = h1 * f1 + H * f2 + 1 / 2 * h1 ** 2 * K(i1, i1) + 1 / 2 * H ** 2 * K(i2, i2) + s * H * h1 * K(i1, i2) + """ + # way 2 + Use objective function check which alpha2 new could get the minimal objectives + + """ + if ol < (oh - self._eps): + a2_new = L + elif ol > oh + self._eps: + a2_new = H + else: + a2_new = a2 + + # a1_new has a boundry too + a1_new = a1 + s * (a2 - a2_new) + if a1_new < 0: + a2_new += s * a1_new + a1_new = 0 + if a1_new > self._c: + a2_new += s * (a1_new - self._c) + a1_new = self._c + + return a1_new, a2_new + + # Normalise data using min_max way + def _norm(self, data): + if self._init: + self._min = np.min(data, axis=0) + self._max = np.max(data, axis=0) + self._init = False + return (data - self._min) / (self._max - self._min) + else: + return (data - self._min) / (self._max - self._min) + + def _is_unbound(self, index): + if 0.0 < self.alphas[index] < self._c: + return True + else: + return False + + def _is_support(self, index): + if self.alphas[index] > 0: + return True + else: + return False + + @property + def unbound(self): + return self._unbound + + @property + def support(self): + return [i for i in range(self.length) if self._is_support(i)] + + @property + def length(self): + return self.samples.shape[0] + + +class Kernel(object): + def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0): + self.degree = np.float64(degree) + self.coef0 = np.float64(coef0) + self.gamma = np.float64(gamma) + self._kernel_name = kernel + self._kernel = self._get_kernel(kernel_name=kernel) + self._check() + + def _polynomial(self, v1, v2): + return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree + + def _linear(self, v1, v2): + return np.inner(v1, v2) + self.coef0 + + def _rbf(self, v1, v2): + return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2)) + + def _check(self): + if self._kernel == self._rbf: + if self.gamma < 0: + raise ValueError('gamma value must greater than 0') + + def _get_kernel(self, kernel_name): + maps = { + 'linear': self._linear, + 'poly': self._polynomial, + 'rbf': self._rbf + } + return maps[kernel_name] + + def __call__(self, v1, v2): + return self._kernel(v1, v2) + + def __repr__(self): + return self._kernel_name + + +def count_time(func): + def call_func(*args, **kwargs): + import time + start_time = time.time() + func(*args, **kwargs) + end_time = time.time() + print('smo algorithm cost {} seconds'.format(end_time - start_time)) + + return call_func + + +@count_time +def test_cancel_data(): + print('Hello!\r\nStart test svm by smo algorithm!') + # 0: download dataset and load into pandas' dataframe + if not os.path.exists(r'cancel_data.csv'): + request = urllib.request.Request( + CANCER_DATASET_URL, + headers={'User-Agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'} + ) + response = urllib.request.urlopen(request) + content = response.read().decode('utf-8') + with open(r'cancel_data.csv', 'w') as f: + f.write(content) + + data = pd.read_csv(r'cancel_data.csv', header=None) + + # 1: pre-processing data + del data[data.columns.tolist()[0]] + data = data.dropna(axis=0) + data = data.replace({'M': np.float64(1), 'B': np.float64(-1)}) + samples = np.array(data)[:, :] + + # 2: deviding data into train_data data and test_data data + train_data, test_data = samples[:328, :], samples[328:, :] + test_tags, test_samples = test_data[:, 0], test_data[:, 1:] + + # 3: choose kernel function,and set initial alphas to zero(optional) + mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5) + al = np.zeros(train_data.shape[0]) + + # 4: calculating best alphas using SMO algorithm and predict test_data samples + mysvm = SmoSVM(train=train_data, kernel_func=mykernel, alpha_list=al, cost=0.4, b=0.0, tolerance=0.001) + mysvm.fit() + predict = mysvm.predict(test_samples) + + # 5: check accuracy + score = 0 + test_num = test_tags.shape[0] + for i in range(test_tags.shape[0]): + if test_tags[i] == predict[i]: + score += 1 + print('\r\nall: {}\r\nright: {}\r\nfalse: {}'.format(test_num, score, test_num - score)) + print("Rough Accuracy: {}".format(score / test_tags.shape[0])) + + +def test_demonstration(): + # change stdout + print('\r\nStart plot,please wait!!!') + sys.stdout = open(os.devnull, 'w') + + ax1 = plt.subplot2grid((2, 2), (0, 0)) + ax2 = plt.subplot2grid((2, 2), (0, 1)) + ax3 = plt.subplot2grid((2, 2), (1, 0)) + ax4 = plt.subplot2grid((2, 2), (1, 1)) + ax1.set_title("linear svm,cost:0.1") + test_linear_kernel(ax1, cost=0.1) + ax2.set_title("linear svm,cost:500") + test_linear_kernel(ax2, cost=500) + ax3.set_title("rbf kernel svm,cost:0.1") + test_rbf_kernel(ax3, cost=0.1) + ax4.set_title("rbf kernel svm,cost:500") + test_rbf_kernel(ax4, cost=500) + + sys.stdout = sys.__stdout__ + print("Plot done!!!") + +def test_linear_kernel(ax, cost): + train_x, train_y = make_blobs(n_samples=500, centers=2, + n_features=2, random_state=1) + train_y[train_y == 0] = -1 + scaler = StandardScaler() + train_x_scaled = scaler.fit_transform(train_x, train_y) + train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) + mykernel = Kernel(kernel='linear', degree=5, coef0=1, gamma=0.5) + mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False) + mysvm.fit() + plot_partition_boundary(mysvm, train_data, ax=ax) + + +def test_rbf_kernel(ax, cost): + train_x, train_y = make_circles(n_samples=500, noise=0.1, factor=0.1, random_state=1) + train_y[train_y == 0] = -1 + scaler = StandardScaler() + train_x_scaled = scaler.fit_transform(train_x, train_y) + train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) + mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5) + mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False) + mysvm.fit() + plot_partition_boundary(mysvm, train_data, ax=ax) + + +def plot_partition_boundary(model, train_data, ax, resolution=100, colors=('b', 'k', 'r')): + """ + We can not get the optimum w of our kernel svm model which is different from linear svm. + For this reason, we generate randomly destributed points with high desity and prediced values of these points are + calculated by using our tained model. Then we could use this prediced values to draw contour map. + And this contour map can represent svm's partition boundary. + + """ + train_data_x = train_data[:, 1] + train_data_y = train_data[:, 2] + train_data_tags = train_data[:, 0] + xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution) + yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution) + test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(resolution * resolution, 2) + + test_tags = model.predict(test_samples, classify=False) + grid = test_tags.reshape((len(xrange), len(yrange))) + + # Plot contour map which represents the partition boundary + ax.contour(xrange, yrange, np.mat(grid).T, levels=(-1, 0, 1), linestyles=('--', '-', '--'), + linewidths=(1, 1, 1), + colors=colors) + # Plot all train samples + ax.scatter(train_data_x, train_data_y, c=train_data_tags, cmap=plt.cm.Dark2, lw=0, alpha=0.5) + + # Plot support vectors + support = model.support + ax.scatter(train_data_x[support], train_data_y[support], c=train_data_tags[support], cmap=plt.cm.Dark2) + + +if __name__ == '__main__': + test_cancel_data() + test_demonstration() + plt.show() + From 04962c0d17b82f349e0453b06b76d9f594e2b024 Mon Sep 17 00:00:00 2001 From: Denis Trofimov Date: Sat, 21 Sep 2019 17:23:34 +0300 Subject: [PATCH 297/594] Fix lgtm error display #1024 (#1190) * fix: Syntax Error lgtm display in matrix/matrix_operation.py. * Testing for None should use the 'is' operator. * fix: Too many arguments for string format. * fix: supress lgtm alert as false positive. * style: Unnecessary 'pass' statement. * Revert "fix: Syntax Error lgtm display in matrix/matrix_operation.py." This reverts commit 4c629b4ce16a32b99a8127f5553cdb9015bf5e80. --- data_structures/heap/binomial_heap.py | 2 +- divide_and_conquer/convex_hull.py | 2 +- neural_network/convolution_neural_network.py | 3 +-- strings/boyer_moore_search.py | 2 +- 4 files changed, 4 insertions(+), 5 deletions(-) diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py index bc9cb5145f2e..0154390d7707 100644 --- a/data_structures/heap/binomial_heap.py +++ b/data_structures/heap/binomial_heap.py @@ -307,7 +307,7 @@ def deleteMin(self): # No right subtree corner case # The structure of the tree implies that this should be the bottom root # and there is at least one other root - if self.min_node.right == None: + if self.min_node.right is None: # Update size self.size -= 1 diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index a0c319e766da..534ebda2c780 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -191,7 +191,7 @@ def _validate_input(points): else: raise ValueError("Expecting an iterable of type Point, list or tuple. " "Found objects of type {} instead" - .format(["point", "list", "tuple"], type(points[0]))) + .format(type(points[0]))) elif not hasattr(points, "__iter__"): raise ValueError("Expecting an iterable object " "but got an non-iterable type {}".format(points)) diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index e4dd0a11db9d..786992c054a0 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -297,7 +297,6 @@ def convolution(self, data): if __name__ == '__main__': - pass ''' I will put the example on other file -''' + ''' diff --git a/strings/boyer_moore_search.py b/strings/boyer_moore_search.py index 781ff0ca6106..2d67043dc028 100644 --- a/strings/boyer_moore_search.py +++ b/strings/boyer_moore_search.py @@ -70,7 +70,7 @@ def bad_character_heuristic(self): positions.append(i) else: match_index = self.match_in_pattern(self.text[mismatch_index]) - i = mismatch_index - match_index #shifting index + i = mismatch_index - match_index #shifting index lgtm [py/multiple-definition] return positions From 837bfffd991cddb3113139a3d13292b58529f05f Mon Sep 17 00:00:00 2001 From: Holden-Lin Date: Sun, 22 Sep 2019 22:56:32 +0800 Subject: [PATCH 298/594] Rename sorted_vector_machines.py to support_vector_machines.py (#1195) SVM stands for support vector machines. Intuitively, a support vector is the vector right near the decision boundary. --- .../{sorted_vector_machines.py => support_vector_machines.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename machine_learning/{sorted_vector_machines.py => support_vector_machines.py} (100%) diff --git a/machine_learning/sorted_vector_machines.py b/machine_learning/support_vector_machines.py similarity index 100% rename from machine_learning/sorted_vector_machines.py rename to machine_learning/support_vector_machines.py From 01601e6382e92b5a3806fb3a44357460dff97ee7 Mon Sep 17 00:00:00 2001 From: luoheng <1301089462@qq.com> Date: Mon, 23 Sep 2019 11:08:20 +0800 Subject: [PATCH 299/594] Add disjoint set (#1194) * Add disjoint set * disjoint set: add doctest, make code more Pythonic * disjoint set: replace x.p with x.parent * disjoint set: add test and refercence --- data_structures/disjoint_set/disjoint_set.py | 79 ++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 data_structures/disjoint_set/disjoint_set.py diff --git a/data_structures/disjoint_set/disjoint_set.py b/data_structures/disjoint_set/disjoint_set.py new file mode 100644 index 000000000000..a93b89621c4a --- /dev/null +++ b/data_structures/disjoint_set/disjoint_set.py @@ -0,0 +1,79 @@ +""" + disjoint set + Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure +""" + + +class Node: + def __init__(self, data): + self.data = data + + +def make_set(x): + """ + make x as a set. + """ + # rank is the distance from x to its' parent + # root's rank is 0 + x.rank = 0 + x.parent = x + + +def union_set(x, y): + """ + union two sets. + set with bigger rank should be parent, so that the + disjoint set tree will be more flat. + """ + x, y = find_set(x), find_set(y) + if x.rank > y.rank: + y.parent = x + else: + x.parent = y + if x.rank == y.rank: + y.rank += 1 + + +def find_set(x): + """ + return the parent of x + """ + if x != x.parent: + x.parent = find_set(x.parent) + return x.parent + + +def find_python_set(node: Node) -> set: + """ + Return a Python Standard Library set that contains i. + """ + sets = ({0, 1, 2}, {3, 4, 5}) + for s in sets: + if node.data in s: + return s + raise ValueError(f"{node.data} is not in {sets}") + + +def test_disjoint_set(): + """ + >>> test_disjoint_set() + """ + vertex = [Node(i) for i in range(6)] + for v in vertex: + make_set(v) + + union_set(vertex[0], vertex[1]) + union_set(vertex[1], vertex[2]) + union_set(vertex[3], vertex[4]) + union_set(vertex[3], vertex[5]) + + for node0 in vertex: + for node1 in vertex: + if find_python_set(node0).isdisjoint(find_python_set(node1)): + assert find_set(node0) != find_set(node1) + else: + assert find_set(node0) == find_set(node1) + + +if __name__ == "__main__": + test_disjoint_set() From e40d4a25f9b7a58d08fdc5d247a25cb226a46d21 Mon Sep 17 00:00:00 2001 From: Aniruddha Bhattacharjee Date: Wed, 25 Sep 2019 23:38:45 +0530 Subject: [PATCH 300/594] Added Matrix Exponentiation (#1203) * Added the matrix_exponentiation.py file in maths directory * Implemented the requested changes * Update matrix_exponentiation.py --- maths/matrix_exponentiation.py | 99 ++++++++++++++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 maths/matrix_exponentiation.py diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py new file mode 100644 index 000000000000..ee9e1757687c --- /dev/null +++ b/maths/matrix_exponentiation.py @@ -0,0 +1,99 @@ +"""Matrix Exponentiation""" + +import timeit + +""" +Matrix Exponentiation is a technique to solve linear recurrences in logarithmic time. +You read more about it here: +http://zobayer.blogspot.com/2010/11/matrix-exponentiation.html +https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/ +""" + + +class Matrix(object): + def __init__(self, arg): + if isinstance(arg, list): # Initialzes a matrix identical to the one provided. + self.t = arg + self.n = len(arg) + else: # Initializes a square matrix of the given size and set the values to zero. + self.n = arg + self.t = [[0 for _ in range(self.n)] for _ in range(self.n)] + + def __mul__(self, b): + matrix = Matrix(self.n) + for i in range(self.n): + for j in range(self.n): + for k in range(self.n): + matrix.t[i][j] += self.t[i][k] * b.t[k][j] + return matrix + + +def modular_exponentiation(a, b): + matrix = Matrix([[1, 0], [0, 1]]) + while b > 0: + if b & 1: + matrix *= a + a *= a + b >>= 1 + return matrix + + +def fibonacci_with_matrix_exponentiation(n, f1, f2): + # Trivial Cases + if n == 1: + return f1 + elif n == 2: + return f2 + matrix = Matrix([[1, 1], [1, 0]]) + matrix = modular_exponentiation(matrix, n - 2) + return f2 * matrix.t[0][0] + f1 * matrix.t[0][1] + + +def simple_fibonacci(n, f1, f2): + # Trival Cases + if n == 1: + return f1 + elif n == 2: + return f2 + + fn_1 = f1 + fn_2 = f2 + n -= 2 + + while n > 0: + fn_1, fn_2 = fn_1 + fn_2, fn_1 + n -= 1 + + return fn + + +def matrix_exponentiation_time(): + setup = """ +from random import randint +from __main__ import fibonacci_with_matrix_exponentiation +""" + code = "fibonacci_with_matrix_exponentiation(randint(1,70000), 1, 1)" + exec_time = timeit.timeit(setup=setup, stmt=code, number=100) + print("With matrix exponentiation the average execution time is ", exec_time / 100) + return exec_time + + +def simple_fibonacci_time(): + setup = """ +from random import randint +from __main__ import simple_fibonacci +""" + code = "simple_fibonacci(randint(1,70000), 1, 1)" + exec_time = timeit.timeit(setup=setup, stmt=code, number=100) + print("Without matrix exponentiation the average execution time is ", + exec_time / 100) + return exec_time + + +def main(): + matrix_exponentiation_time() + simple_fibonacci_time() + + +if __name__ == "__main__": + main() From 6ac7b1387f9b2c2fa428bbe2bd26d3e087e41b23 Mon Sep 17 00:00:00 2001 From: Raj Date: Wed, 25 Sep 2019 15:03:31 -0700 Subject: [PATCH 301/594] Min head with decrease key functionality (#1202) * Min head with decrease key functionality * doctest added * __str__ changed as per Python convention * edits in doctest * get_value by key added * __getitem__ added --- data_structures/heap/min_heap.py | 169 +++++++++++++++++++++++++++++++ 1 file changed, 169 insertions(+) create mode 100644 data_structures/heap/min_heap.py diff --git a/data_structures/heap/min_heap.py b/data_structures/heap/min_heap.py new file mode 100644 index 000000000000..6184d83be774 --- /dev/null +++ b/data_structures/heap/min_heap.py @@ -0,0 +1,169 @@ +# Min head data structure +# with decrease key functionality - in O(log(n)) time + + +class Node: + def __init__(self, name, val): + self.name = name + self.val = val + + def __str__(self): + return f"{self.__class__.__name__}({self.name}, {self.val})" + + def __lt__(self, other): + return self.val < other.val + + +class MinHeap: + """ + >>> r = Node("R", -1) + >>> b = Node("B", 6) + >>> a = Node("A", 3) + >>> x = Node("X", 1) + >>> e = Node("E", 4) + >>> print(b) + Node(B, 6) + >>> myMinHeap = MinHeap([r, b, a, x, e]) + >>> myMinHeap.decrease_key(b, -17) + >>> print(b) + Node(B, -17) + >>> print(myMinHeap["B"]) + -17 + """ + + def __init__(self, array): + self.idx_of_element = {} + self.heap_dict = {} + self.heap = self.build_heap(array) + + def __getitem__(self, key): + return self.get_value(key) + + def get_parent_idx(self, idx): + return (idx - 1) // 2 + + def get_left_child_idx(self, idx): + return idx * 2 + 1 + + def get_right_child_idx(self, idx): + return idx * 2 + 2 + + def get_value(self, key): + return self.heap_dict[key] + + def build_heap(self, array): + lastIdx = len(array) - 1 + startFrom = self.get_parent_idx(lastIdx) + + for idx, i in enumerate(array): + self.idx_of_element[i] = idx + self.heap_dict[i.name] = i.val + + for i in range(startFrom, -1, -1): + self.sift_down(i, array) + return array + + # this is min-heapify method + def sift_down(self, idx, array): + while True: + l = self.get_left_child_idx(idx) + r = self.get_right_child_idx(idx) + + smallest = idx + if l < len(array) and array[l] < array[idx]: + smallest = l + if r < len(array) and array[r] < array[smallest]: + smallest = r + + if smallest != idx: + array[idx], array[smallest] = array[smallest], array[idx] + self.idx_of_element[array[idx]], self.idx_of_element[ + array[smallest] + ] = ( + self.idx_of_element[array[smallest]], + self.idx_of_element[array[idx]], + ) + idx = smallest + else: + break + + def sift_up(self, idx): + p = self.get_parent_idx(idx) + while p >= 0 and self.heap[p] > self.heap[idx]: + self.heap[p], self.heap[idx] = self.heap[idx], self.heap[p] + self.idx_of_element[self.heap[p]], self.idx_of_element[self.heap[idx]] = ( + self.idx_of_element[self.heap[idx]], + self.idx_of_element[self.heap[p]], + ) + idx = p + p = self.get_parent_idx(idx) + + def peek(self): + return self.heap[0] + + def remove(self): + self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0] + self.idx_of_element[self.heap[0]], self.idx_of_element[self.heap[-1]] = ( + self.idx_of_element[self.heap[-1]], + self.idx_of_element[self.heap[0]], + ) + + x = self.heap.pop() + del self.idx_of_element[x] + self.sift_down(0, self.heap) + return x + + def insert(self, node): + self.heap.append(node) + self.idx_of_element[node] = len(self.heap) - 1 + self.heap_dict[node.name] = node.val + self.sift_up(len(self.heap) - 1) + + def is_empty(self): + return True if len(self.heap) == 0 else False + + def decrease_key(self, node, newValue): + assert ( + self.heap[self.idx_of_element[node]].val > newValue + ), "newValue must be less that current value" + node.val = newValue + self.heap_dict[node.name] = newValue + self.sift_up(self.idx_of_element[node]) + + +## USAGE + +r = Node("R", -1) +b = Node("B", 6) +a = Node("A", 3) +x = Node("X", 1) +e = Node("E", 4) + +# Use one of these two ways to generate Min-Heap + +# Generating Min-Heap from array +myMinHeap = MinHeap([r, b, a, x, e]) + +# Generating Min-Heap by Insert method +# myMinHeap.insert(a) +# myMinHeap.insert(b) +# myMinHeap.insert(x) +# myMinHeap.insert(r) +# myMinHeap.insert(e) + +# Before +print("Min Heap - before decrease key") +for i in myMinHeap.heap: + print(i) + +print("Min Heap - After decrease key of node [B -> -17]") +myMinHeap.decrease_key(b, -17) + +# After +for i in myMinHeap.heap: + print(i) + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 2375bfbee59f091435818d850e5057fdd50ffe19 Mon Sep 17 00:00:00 2001 From: Charitoc <37042130+Charitoc@users.noreply.github.com> Date: Thu, 26 Sep 2019 18:19:01 +0300 Subject: [PATCH 302/594] Adding stooge sort (#1206) * Adding stooge sort * Updated doctest * Just added underscore in the name --- sorts/stooge_sort.py | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 sorts/stooge_sort.py diff --git a/sorts/stooge_sort.py b/sorts/stooge_sort.py new file mode 100644 index 000000000000..d2325abc9b38 --- /dev/null +++ b/sorts/stooge_sort.py @@ -0,0 +1,34 @@ +def stooge_sort(arr): + """ + >>> arr = [2, 4, 5, 3, 1] + >>> stooge_sort(arr) + >>> print(arr) + [1, 2, 3, 4, 5] + """ + stooge(arr,0,len(arr)-1) + + +def stooge(arr, i, h): + + + if i >= h: + return + + # If first element is smaller than the last then swap them + if arr[i]>arr[h]: + arr[i], arr[h] = arr[h], arr[i] + + # If there are more than 2 elements in the array + if h-i+1 > 2: + t = (int)((h-i+1)/3) + + # Recursively sort first 2/3 elements + stooge(arr, i, (h-t)) + + # Recursively sort last 2/3 elements + stooge(arr, i+t, (h)) + + # Recursively sort first 2/3 elements + stooge(arr, i, (h-t)) + + From a79fc2b92ad2c36e77d1c1696a2a0bc746ef9fea Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 26 Sep 2019 17:32:04 +0200 Subject: [PATCH 303/594] Fix the build typo: fn --> fn1 (#1205) --- maths/matrix_exponentiation.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py index ee9e1757687c..f80f6c3cad5e 100644 --- a/maths/matrix_exponentiation.py +++ b/maths/matrix_exponentiation.py @@ -64,7 +64,7 @@ def simple_fibonacci(n, f1, f2): fn_1, fn_2 = fn_1 + fn_2, fn_1 n -= 1 - return fn + return fn_1 def matrix_exponentiation_time(): From 4617aa78b2a61fcfebc136f7fc217ea980205067 Mon Sep 17 00:00:00 2001 From: Kaushik Amar Das Date: Sun, 29 Sep 2019 14:14:41 +0530 Subject: [PATCH 304/594] DBSCAN algorithm (#1207) * Added dbscan in two formats. A jupyter notebook file for the storytelling and a .py file for people that just want to look at the code. The code in both is essentially the same. With a few things different in the .py file for plotting the clusters. * fixed LGTM problems * Some requested changes implemented. Still need to do docstring * implememted all changes as requested --- machine_learning/dbscan/dbscan.ipynb | 376 +++++++++++++++++++++++++++ machine_learning/dbscan/dbscan.py | 271 +++++++++++++++++++ 2 files changed, 647 insertions(+) create mode 100644 machine_learning/dbscan/dbscan.ipynb create mode 100644 machine_learning/dbscan/dbscan.py diff --git a/machine_learning/dbscan/dbscan.ipynb b/machine_learning/dbscan/dbscan.ipynb new file mode 100644 index 000000000000..603a4cd405b9 --- /dev/null +++ b/machine_learning/dbscan/dbscan.ipynb @@ -0,0 +1,376 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DBSCAN\n", + "This implementation and notebook is inspired from the original DBSCAN algorithm and article as given in \n", + "[DBSCAN Wikipedia](https://en.wikipedia.org/wiki/DBSCAN).\n", + "\n", + "Stands for __Density-based spatial clustering of applications with noise__ . \n", + "\n", + "DBSCAN is clustering algorithm that tries to captures the intuition that if two points belong to the same cluster they should be close to one another. It does so by finding regions that are densely packed together, i.e, the points that have many close neighbours.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### When to use ?\n", + "\n", + "1. You need a robust clustering algorithm.\n", + "2. You don't know how many clusters there are in the dataset\n", + "3. You find it difficult to guess the number of clusters there are just by eyeballing the dataset.\n", + "4. The clusters are of arbitrary shapes.\n", + "5. You want to detect outliers/noise." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Why DBSCAN ? \n", + "\n", + "This algorithm is way better than other clustering algorithms such as [k-means](https://en.wikipedia.org/wiki/K-means_clustering) whose only job is to find circular blobs. It is smart enough to figure out the number of clusters in the dataset on its own, unlike k-means where you need to specify 'k'. It can also find clusters of arbitrary shapes, not just circular blobs. Its too robust to be affected by outliers (the noise points) and isn't fooled by them, unlike k-means where the entire centroid get pulled thanks to pesky outliers. Plus, you can fine-tune its parameters depending on what you are clustering.\n", + "\n", + "#### Have a look at these [neat animations](https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/) of DBSCAN to see for yourself." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## First lets grab a dataset\n", + "We will take the moons dataset which is pretty good at showing the power of DBSCAN. \n", + "\n", + "Lets generate 200 random points in the shape of two moons" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_moons\n", + "\n", + "x, label = make_moons(n_samples=200, noise=0.1, random_state=19)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualize the dataset using matplotlib\n", + "You will observe that the points are in the shape of two crescent moons. \n", + "\n", + "The challenge here is to cluster the two moons. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2df5AlV3XfP2dnZ4QWsLX7VsZroZmViAIWToxhIoNMUcIQkFUpLSkrFeHRejGixlrFKVwpUqxqEyelZMv8qApgEyFvFJmFmUgCYjuKC0WWQIQ/jAQjol+grLRapEUqGVa7WLAlh5VWN390P03Pm/75+tft199PVdfrH7e7b9/Xfc+955x7rjnnEEII0V82tJ0BIYQQ7SJBIIQQPUeCQAgheo4EgRBC9BwJAiGE6DkSBEII0XMqEQRmdqOZ/dDMHko4vmBmD5jZg2b212b2y5Fjj4f77zOzlSryI4QQIj9WxTgCM3sbcAL4nHPul2KOXwg87Jz7kZn9BvDvnXO/Gh57HJh3zj2T935bt25127dvL51vIYToE/fee+8zzrkzR/dvrOLizrmvm9n2lON/Hdm8G3h1mftt376dlRV1HoQQoghm9kTc/jZsBFcCt0W2HfBXZnavmS22kB8hhOg1lfQI8mJmbycQBG+N7H6rc+4pM/s54A4z+7/Oua/HnLsILALMzs42kl8hhOgDjfUIzOwfAjcAO5xzx4b7nXNPhb8/BP4cuCDufOfcfufcvHNu/swz16m4hBBCjEkjgsDMZoE/A3Y65x6J7H+5mb1yuA68C4j1PBJCCFEPlaiGzOwm4CJgq5k9Cfw7YBrAOXc98AfAALjOzABecM7NA68C/jzctxH4b865/1VFnoQQQuSjKq+h92Yc/wDwgZj9h4FfXn+GEDWwvAx798KRIzA7C/v2wcJC27kSonUaNRYL0RrLy7C4CM89F2w/8USwDRIGovcoxIToB3v3rgqBIc89F+wXoudIEIh+cORIsf1C9AgJAlE/y8uwfTts2BD8Li83n4eksScakyKEBIGomaFu/oknwLlV3XxRYVBWmOzbB5s2rd23aVOwX4ieI0Eg6qUK3XwVwmRhAfbvh7k5MAt+9++XoVgIKoo+2jTz8/NOQec6woYNQeU9ihm8+GK+a2zfHlT+o8zNweOPl8mdEL3CzO4Nx3CtQT0CUS9V6OZl6BWiViQIRL1UoZuXoVeIWpEgEPVShW5ehl4hakWCQATU6eK5sBDo8l98MfgtaqD10dDrg0usEBUhQSCqc/Gsk6gw2bcv8DpqqxLuQnkJUQAJAtGt8AtxlfAVV8DWrfVUxHEt/y6VlxA5kPuoqMbFsymSXEkhsBtUqTIaDVQ3vMeoEBjiY3kJEUHuoyKZLnnlpLmMVt0qT2r5T03Fp/exvITIgQSBqNYrp24jalZlW+XYgqRrnTolLyYxUUgQiOq8csY1ohYRHnFCK8qWLcXynEaS0BmWj09eTEKUwTnXueVNb3qTEx6xtOTc3JxzQfW/fpmbSz9306a16TdtCvannbNhQ/y9BoN8eTULfrPuUzRvQngMsOJi6tRKKmbgRuCHwEMJxw34I+AQ8ADwxsixXcCj4bIrz/0kCDwirrIcXcySz08SIGnCw7ngmkXvNa7QySs4hPCcugXB24A3pgiCS4DbQoHwZuCecP8W4HD4uzlc35x1PwkCj0jrCeSp1NMq9LRKeBwBMq7QEWJCSBIEldgInHNfB46nJNkBfC7My93AGWa2DXg3cIdz7rhz7kfAHcDFVeRJNESWcTbLiJqkh9+yJd3eMI6BW8HrhIilKWPxWcD3I9tPhvuS9ouukObFk8eImlShQ/qgrXEM3El5dU5hIkSv6YzXkJktmtmKma0cPXq07eyIIUkV+dJSvrhCSRX68YQOZrT1XjSGUZrHkcJEiB7TlCB4Cjg7sv3qcF/S/nU45/Y75+adc/NnnnlmbRkVBanC9TSuQq9jkFs0r3E89xzs3Bk8h1l9YSuE8IymBMGtwG9bwJuBZ51zTwO3A+8ys81mthl4V7ivn3Q1omXZ6KJx1BV6ephXs/jjLhJq49gxeP/7u/M/CDEmlQgCM7sJ+AbwWjN70syuNLOrzOyqMMmXCTyCDgH/BbgawDl3HPgPwLfC5dpwX/9QRMu11B16Om/P4uRJBZMTE4+CzvlCH+blHUbuPHIkqIj37WtvNG5cQLkkFExOTAgKOuc7k+7a6EuPZ6h+27kTTj8dBoOgok8KJAcKJicmHgkCX+hSBNBx8CGG/6gwOnYM/u7v4Kqr4Iwz4s+ZmSlml+iqnUf0GgkCX2hiXt64Siqt4qqyUvOhx5MkjD7zmUAojDIYwI035ldf+dLrEaIoccONfV8mNsRE0YBoRWLgxMXZmZ52bmYmPvZO1QHXfAjvkBTOoqp8+fCMQqRAQogJGYu7SNLMWWleNWkze40y9LOv0ng9Tp6rpkgZjGMg7tJMb6KXyFg8SYyjby+igjlypHpVTt3uoHkoomYbxzYz6XYeMbFIEHSRcSrpIpXR7Gx6pTau7aCOgWdFWFgI9P5ZjGubacLOI0QNSBB0kXFannGV1PR04BUTZVhxJVVql1zSbYPopz61/rlmZlbdSMv0VHzo9QgxDnGGA9+XiTUW52VcQ26cgTnN6Bx3bBIMoppsRvQU6pyPQDTMuC3PUdUMrB/pC6tqnw9+EE6cWHsNH9xAy9K2ikoIz5DXUF+J8+KZmQna988/H3/Opk3BaNw4n/tJCoVRNz6F2hC9Ql5DPuDTqNM4z6OTJ5OFAKyml0F0fMYZdObTeyMmkzh9ke9LJ20EVQ/QyrpXlg68yOCqInMJTxpV2FWiFLWx7N69/r+q670REw91Tl7f9NJJQdCUkTWvwMkz6XzXjcJliSvLmZlgRPa4o7GTBLBZ/P2T0vfpfxCVkSQIZCNoiqZGnSaNnp2aggMHVnXR49oI+uQOWcdo7CLhxtPur9HKYgxkI2ibpkadJnnvnDq1Vhcd53l0443wp3+6um8wqMa/PkqX9N11jMYuMuisqgGCQmQR103wfemkaqgpG0GWyqeISqFqW0CTdpIqKKI+m5vLr/7LW65p9x8M+mGjEZWCxhG0TFOjTuNanFHytnLrCKnsw5wERYgry5mZYER2lKzR2ON6VCX9lxs3Bi68Vf0vQsRJh6ILcDFwkGBO4j0xxz8B3BcujwB/Gzl2KnLs1jz362SPoEmWlpybmirXI6jDuF3EUOoLVXsNpfWK8txrMKj+fxG9gbq8hoAp4DHgXGAGuB84PyX9vwRujGyfKHrP3guCPKqFsmqYOirtSQhPUZakMhgM8v1fXRSmwhuSBEEVqqELgEPOucPOuZPAzcCOlPTvBW6q4L7+U4dhNK/Kpqwqqg7jtqJzJqvmjh3LpzZTqGtRB3HSocgCXAbcENneCXw6Ie0c8DQwFdn3ArAC3A28J+U+i2G6ldnZ2TqFZjXUZRj1bTzCONdtajCajwPfio7fGG3pd83gLryCGlVDRQTBh4E/Htl3Vvh7LvA48Jqse3qrGopWPGV19Ek0qRrwsSLNi68VZlK+iuj+u/y/iFapUxC8Bbg9sn0NcE1C2v8DXJhyrc8Cl2Xd00tBEPeB11FhS8+eD5/LKcko7KPgEhNFkiCowkbwLeA8MzvHzGaAy4FbRxOZ2euAzcA3Ivs2m9lp4fpW4NeA71aQp+aJc42Mo6wuV3r2fPgcLjsuDLYmtREtUloQOOdeAH4PuB14GPiCc+47ZnatmV0aSXo5cHMolYb8IrBiZvcDdwEfcc51UxDkqWCqqLBVYeSjbaNqXkeBaLq9e4P3o+g8CV0arS38JK6b4PvipWooSRUxNZXt5lmXvrfPuuQ2VS15711FHqVSEgVA0UdrZpwPMuucMhW5Koj2BGFe+0QVdow81+hzg0CsQYKgCYp+cGkfcdmK3Gdj6aST17OrCg+wrGuoQSAiJAkChaFuk7TQ1LOz+cMVF722whfXS95Q00VCUo97ryruISYGhaH2jeXloLKOY3a2vNdL28bSPpPXs6sKD7Csa/jsPSW8QYKgCop6bQzDRJw6tf7Y8CMuW5HLzbQ98np2VeEBlnUNNQhEHuL0Rb4vXtkIxtHBpnkYRQ3FVXiUyEjYb2QjEBGQsbgmihpll5bi08cZCVWRiyzyRqLVeyRcsiCQsbgsRYyycfMER5EBTxQh7n3q27zSohAyFtdFER1sWhgK6e9FUbJmfNOIY5ETCYKyVDUZuVpxIo60yjzNI6iOqUbFxCJBUJYinh9JvYe5OQmBIWrFrpJVmaf1Rrs2P7RolzjDge+LV8biIsiDIx2Vz1qyHBHiysvMud27NaWliIUaw1CLvChyaDpqxa4lazDYwgLs2hW8S0OcgwMHYMuW+HOLjB9Q76xZWizvjY3dSQQMY8+L9WgU7FqSwoxEK/Mvf3m919pzz8Hppwe2qlGPorwOCaMeSUO1FOj9rYOWy1s9grpQayqb0TKqohU7SeRxREgSksePl+t9qnfWLG17gMXpi3xfvLcRSNedTVwZzcw4Nz2dXW59GiCV9ax1RZmVjaFZ0sq7wvoEjSyuibgPVSGgs0kqo8EgveKTkF1LXeWhd7hZ0sq7wv+iVkEAXAwcBA4Be2KOvw84CtwXLh+IHNsFPBouu/LczxtBkPQR5g0h0WfGbXGqglpPHT0kCdxmSSvvCntntQkCYAp4DDgXmAHuB84fSfM+4NMx524BDoe/m8P1zVn39EYQpAWPU2WVzrgVulQW1ZMkSPqkgvOBpPJuoEdQhbH4AuCQc+6wc+4kcDOwI+e57wbucM4dd879CLiDoHfRDZIMdadOKQR0FuOGyVZY5WpJG7S2sBDEvnrxxeA3zdAs54jyJJV3AyHlqxAEZwHfj2w/Ge4b5TfN7AEz+5KZnV3wXD9JGyms8QLpjDumQvMsVEsV3kEKZ1EvTYw/iusmFFmAy4AbIts7GVEDAQPgtHD9d4GvhusfAv5NJN2/BT6UcJ9FYAVYmZ2dLdwlyk2R7nAePaq619WjMq2OKlRtstt0Bmq0EbwFuD2yfQ1wTUr6KeDZcP29wJ9Ejv0J8N6se9ZmIxjHQJZWKcngJnynikpcdpvOkCQIqlANfQs4z8zOMbMZ4HLg1mgCM9sW2bwUeDhcvx14l5ltNrPNwLvCfe1Q9SCaotfrq561r8/tA1Wo2mS3yYfP73mcdCi6AJcAjxB4D+0N910LXBqu/yHwHQKPoruA10XOfT+B2+kh4Hfy3K+2HkHRlk1Wi7/I9frae+jrc1dFFWqystfQf5iNJ2WEBpTloGg3OSt9kev1Vc/a1+euAk8ql5fyIrtNMp6850mCQFNVRik69V/WNJVFrldkystJoq/PXQXbt8cHpdOUp/7hyXuuqSrzUNRNKytIWhWT1ky6nrWvz10FitbaHTx/zyUIRsk7iGZ5GX7yk/X7p6fXGtryXq+v/vF9fe4q8LxyERF8f8/j9EW+L42GmCg67HswqP5ek05fn7ssPtkIRDYevOfIRjAGaTr+nTu90PmJnrO8HLgjHzkS9AT27dMIdpGIbATjkDYOQN1y4QNF4gHFMY5vu8/+8HUyyc8d103wfWlMNdTQZBFCtMK4I+n7+N5PyHOjcQRjkOX764HOT4TovyjOOL7tnvjDN86EPHeSIJBqKI0sS3/ZbrlYz7iqCkW/TCeuXMdxP+2ry2rZ5/ZdrRQnHXxfvPAaEtUzbvd7QlprtbF793o1p5lzL3+5egR5Gfe5l5YCT8LR81pSKyHVkPAezVpWPWlTHYJz09PFKqg4YT10m57kRtI4Ied3706furYF4SlBIPwnb4U++sHFtbj60ErNQ5JwjVbgRXu8nrVyG6NoyPk0AdxSQyVJEGgcgWiOLJ/3pNg5r3gFDAbBeVu2wI9/DM8/v3p8ejoYv3Hy5Oq+tBhRfSIpxs2Qcce9KM7RWpLKI40WykrjCMbFdyNPV8hj0N23D2Zm1p974sTqeceOrRUCEGy/8pWaGjSOrHEt44576avROImiz+1TeAmQaiiVCfEd9oK8+v8kNU/WIntAPEk6/bLvcl+NxkkklUeceqhFewpyHx2Dqmcs6zN5W5DHj493fY3ojicaARdgair4HfaaYLwer+9B1JomqTyuumptT3VpCZ55xr/eapx08H3xYmSxKEbeFmSWcbPqlm2fKdvjlWv1WjpQHshYPAYyiFVH3kl64tKNMjMT2ASOH1egtTLo/e4dtRqLzexiMztoZofMbE/M8X9lZt81swfM7CtmNhc5dsrM7guXW0fPbRV1f6sj7yQ9cel27167feONQfdaI7rLIYPveEyiA0lcN6HIAkwRTFp/LjBDMEH9+SNp3g5sCtd3A7dEjp0oek+NLBaiAmTwLU7HHUio0Vh8AXDIOXfYOXcSuBnYMSJs7nLODfv6dwOvruC+zaB4QmJSUY+3OEUdSDrSe6hCEJwFfD+y/WS4L4krgdsi2y8zsxUzu9vM3lNBfvykIy+E6BFF5+gWxdRpHQqG2Kj7qJldAcwDH4/snnOB8eK3gE+a2WsSzl0MBcbK0aNH68tkHRV2h16ITiChWh3q8eZneTl45+KIc1/ukvt5nL6oyAK8Bbg9sn0NcE1MuncCDwM/l3KtzwKXZd2zNhtBnP5vejoYAFLGRiBdbHWME/yrI/pb4TF5BuaNvnceDn6krqBzwEbgMHAOq8bi14+k+RUCg/J5I/s3A6eF61uBRxkxNMcttQmCPD7s4xiGNB6hOvJMFtRhY14jSFAWJ+m9m5paFQJ5g8612ACsTRAE1+YS4JGwst8b7rsWuDRcvxP4AXBfuNwa7r8QeDAUHg8CV+a5X22CICtaYNIfmfVhqUdQHVlCVWWdjgTleIz73o0uMzOtlnWtgqDppdUewWhLPq+qQh9fNWRV9GnCXOUtQTkuZd676DI97aUgUKyhKHHudHFEDUN5DELyzqiOLJfHtJhDMtBrENk4LC8HEXBHyfveRXn++ck0Frex1DqgLKrmGQyCrtyoVI9GD5T+v3mKThCilu8q6hEUI++MbFnvnSd1A1INjUHSTExR1Y4+LP9YWvLyI2ycOIEpNWUxinzfHZg5T4KgKHkk/PDj0oflH30X0GnvpbyG8lOmx+9h3SBBUJS8hmN9WH7i4UfYKGnujnpP81O2QeFZ3SBBUJS8XgB9qly6hmcfYaPkeX/17mYzYQ2KJEGg+QiSKDIZteK3C9/I+/7q3c1meTnw9DlypPPzX2jy+qLkdSUFud4J/8j7/urdzaYH8ZgkCJKI8/0fDOLTbtnSbN6EyGL4/g7nKE5Ccz0LJAjSGW0JfOpTMD29Pt1PfqKBSsI/FhaCdzcJzT0gQiQIirCwAD/zM+v3nzzp52hBIZJa/FNTGt0uXkKCoCjHj8fvl65V+EhSSI4DByQExEtIEBQlqYUlXWu7aLKaeBTnql2uvho2bgzKfuPGYNtDJAiKonle/SNuBrgrroCtWyUQoBdeL15y9dXwmc/AqVPB9qlTwbaHwkCCoChqYflHXARYgGPHFHG0COpVVcv+/cX2t0h/BEGVL7laWH6RZp/xdY5Y39C82tUz7Ank3d8i/RAEesknmyz7jAz52XRpovWukDSGI2tsRwv0QxDoJe8+aT26rFG0MuRnowlrqmdxsdj+FqlEEJjZxWZ20MwOmdmemOOnmdkt4fF7zGx75Ng14f6DZvbuKvKzDr3k3SarRze028SN/JYhPx/yhque666D3btXewBTU8H2dde1m6844iLRFVmAKYJJ688FZggmoj9/JM3VwPXh+uXALeH6+WH604BzwutMZd2zcPTRvsem7zplJgfpaJTIxpmwKJsiHmqcs/gC4JBz7rBz7iRwM7BjJM0O4EC4/iXgHWZm4f6bnXM/dc59DzgUXq9a5PLZbYr06GTIH48i3nDyLkqmo2WzsYJrnAV8P7L9JPCrSWmccy+Y2bPAINx/98i5Z8XdxMwWgUWA2aLd1eHLPCGhZHvH7Gx8SGWpLaplYSH7mxiq6YY2t6Gabnh+n+lw2XTGWOyc2++cm3fOzZ955pnFL6CWYncZt0fX0dZZpVRdBnK8SC7TDpdNFYLgKeDsyParw32xacxsI/CzwLGc57aHKhI/GGcQn1yG6ymDvjtepJVpl8smznBQZCFQLx0mMPYOjcWvH0nzL1hrLP5CuP561hqLD1OHsXgcZDzzlzwGYTkI1FMGfSnXpHcs7fk7UDbUOWcxcAnwCIHXz95w37XApeH6y4AvEhiDvwmcGzl3b3jeQeA38tyv1cnrPfpTe0leAZ00Z69ZO/lugzrKoA8NpLRnTCvTDpRNrYKg6aXVyev7VJH4SF4BLUFeXxlMsovu0pJzU1PJ5ZZVpp6XjQRBUVSR+EleAd2B1lntqAyKEVdebbX6axIoEgRF0UfkJxpcVgyVQX6S3q0irf4qyrvGukeCYBz0EfnHOB+J/keRh6Te5rA3MBQGSe9PVRV4jdoICQIxOQwrdljV5yZ9oOrZibxk9Qiy3p+qKvAa7ZNJgqAzA8qEeImFhdVBZsPY7kk+8kUG+WjcSD8Z/u9PPBGMU4kyug3J709V4whaCAAoQSC6SVoFH63Q40JTwPqPUwPQ+kn0f4fgvx9W/nNzwXYccZV70Qo8qeHRRmy0uG6C74tUQz0jTsefps9N8/yQu6mIkvW/F3VOyKuGzEorryEJAhEh6YMZDOI/0CQf8KyPU+NG+knW/17UxpS3Am+p4ZEkCKQaEn6TpAKC+O5z2nywaXGKNDFLP8n634vGucob3NKzuEQSBMJvkj6M48fjP9C5ufj0c3PpH6fmrOgnef73OiIXe9bwkCAQfpP2wcR9oONW6AsLsGvX2mkFd+1SuPJJJ0+Lvw5vMt8aHnH6It8X2Qh6RFMDyDTeQMRR53vRwkBHZCwWnaWJD0ZeQ37hy2jwCXsvkgSBVEPCf5qYXS7NeKeBZs3i05gOz4y6dSFBIAQk2yK2bPGnUuoLbUz5mCTsPTPq1oUEgRCQbLyDzs5D21maboWn9UB8M+rWhASBEJDsPXL8eHz6rqoG6lZzVXH9plvhaT2QcebL7iJxhoO8C7AFuAN4NPzdHJPmDcA3gO8ADwD/PHLss8D3gPvC5Q157itjscikKmPjJBkL6/aMqur6TXtw9WhUOXV4DQEfA/aE63uAj8ak+fvAeeH6LwBPA2e4VUFwWdH7ShCIVKqsSCbJrbRuoVbl9Zv0GpokYZ9BXYLgILAtXN8GHMxxzv0RwSBBIKqn6g/bF1fGstTd8u1qy7queEIekiQIytoIXuWcezpc/xvgVWmJzewCYAZ4LLJ7n5k9YGafMLPTSuZHiOqNjU24rzZB3br3rnrYFLED+OTaWiGZgsDM7jSzh2KWHdF0obRxKdfZBnwe+B3n3Ivh7muA1wH/iMDe8OGU8xfNbMXMVo4ePZr9ZKK/NFkhdWmMQd0eMF32sMkr7NtwbW2CuG5C3oWcqiHgZ4Bvk6IGAi4C/jLPfaUaEqk0pdfvov2gbrVGh9Umueiq+iuEmmwEH2etsfhjMWlmgK8Avx9zbChEDPgk8JE895UgEJm0GZZiaI+YtEqwSXwVKB03LNclCAZhJf8ocCewJdw/D9wQrl8BPM+qi+hLbqLAV4EHgYeAJeAVee4rQSC8IG2WtC70DnzF556Wz3nLQS2CoK1FgkDkps6WZVqPoM6Woq+t5arwvdXd4fKXIBD9o40BVHXrjjveIs1FU3r4Dlfo45IkCCw41i3m5+fdyspK29kQvrN9e+DeN8rcXOAZUgXLy8EENklTZFZ5L2jmmdqmqf9tcXGtB9CmTZMZPiKCmd3rnJsf3a9YQ2JyaSJ42cJC4HKYRNWuk30Ii1yFG2qWW++kuoGOiQSBmFyaGk+QdL3BYLzWZVol1tVBW0UoG+gtz6CvPgjUIsTpi3xfZCMQufBtPEEenXTWtSbFRtCGET9qbPbdIF0TyFgseklTBsGs++StwPNUUG0bOcvevw5hFs1THsP9pAjUgkgQCNEmeVugaRWZDx4uVVSgdQQFzPLeirv+qEDbvduPMq6RJEEgryEhmmDDhqA6GsVsrbE5yWPGbO35bXm4VOHRk7csyuYpSlZ59cSLSF5DQozSZMC4JGPuhg1r7xvnMTMqBKA9D5ckY2pWRRylaoN3moE3r7G5515EEgSin+TxLKlSUMRV8BCMP4jeN85jJqnX3oaHS1JlbZZePtGyPHECpqfXHi8TpTQpT3Nza6OJpv2fffciitMX+b7IRiBKk6WnLqMLTzKmLi05NzVVXD/uk4fL0lKyHSMpP3FlOTPj3GBQjT4+z3+VlcanMq4RZCwWIkJWGINxK4asCmec8Alte7iMCrY0r5w4IdhEJZvmyZRHALddxg0hQSBElKzKadx4N1nXLSNgini0VOViGldBJpXNYBBfmaYJjrrJ8igadSntqddQ65X6OIsEgShNXaqCLAHSRMuzynsklcPoc27aFAiCPGnrVLuMVuZJeaozDx4jQSDEKFnqhHEqUx8GhFWlillayq5Eo8+QNT9DdJmebmaEd9oygaqfLCQIhCjKOBW2D7rmKlQxWZVqnFDJMz9DVI1UNUXuPzXVOyHgXLIgkPuoEEnkndB89JwyAdPKsrwc3DeOIn76cX71Q5JcPZNcZOM4fjx/XvKS19Vz0yY4cGCiBoqVRYJAiKoZR4CkUWQ8w969QZt3FLNifvpplerpp8POnevzEicEB4P4a9QRLTUtCmxbgrkrxHUT8i7AFuAOgjmL7wA2J6Q7xep8xbdG9p8D3AMcAm4BZvLcV6oh0RuKqprS9PTD6+VRdxUxEqepWOoeQ5B1rx7aAdKgpsnrPwbsCdf3AB9NSHciYf8XgMvD9euB3XnuK0EgOkUZ43BRw29a+iIVZVG30bzPPxgEhuK6KuseuICWoS5BcBDYFq5vAw4mpFsnCAADngE2httvAW7Pc18JAtEZyrZSi45nSLtfUaGSdyAZ5H+enozg9ZUkQVAq+qiZ/a1z7oxw3YAfDbdH0r0QqoVeAD7inPsLM9sK3O2c+3thmrOB25xzv5R1X0UfFZ2hbLTOcc5fXg5sBUeOBHrzffsCnXjZqJ9pUfYM6NoAAAehSURBVD7zPk/VkUdFIcaOPmpmd5rZQzHLjmi6UNokSZW58Oa/BXzSzF4zxgMsmtmKma0cPXq06OlCtEPZYGZF5+9NEgJQPupnmrE57/P0YarNLhLXTci7kFM1NHLOZ4HLkGpI9IEqVCGjOvYkQ2sT01wmjdTN+zxNjayWnSAWarIRfJy1xuKPxaTZDJwWrm8l8DA6P9z+ImuNxVfnua8EgegMVVZ8VYTF8GGayai9YhgMrqoKW55DqdQlCAbAV8LK/U5gS7h/HrghXL8QeBC4P/y9MnL+ucA3CdxHvzgUGFmLBIHoFEUq37S0dQXKq/N50q5RR4UtY3QqSYJAU1UK4QtXXw3XX7/WmBqdLjHL0FrFNJJNUVdeZYxORVNVCuEzy8vrhQCsnS4xy9Ba1LDcJnXNCCZj9FhIEAjhA0mhIWC1csyq6NuOc1SEuirsLglDj5AgEMIH0lrCw8oxT0VfdZyjuqirwu6SMPQICQIhfCBtUvho5diVij5KXNC8OivsLpZRy2xsOwNCCILKfnFxbehnM7jqqm5XZMvLa5/riSeCbQieq8vPNkGoRyCED8S1kD//ebjuurZzVo64eQ2iBnDhBXIfFULUh9w5vULuo0KI5pE7ZyeQIBBC1IfcOTuBBIEQoj7kztkJJAiEqIIi8wr3Dblzeo/cR4UoS5aLpBCeox6BEGWRi6ToOBIEQpSlrgBqQjSEBIEQZZGLpOg4EgRClEUukqLjSBAIURa5SIqOI68hIapAAdREhynVIzCzLWZ2h5k9Gv5ujknzdjO7L7L8PzN7T3jss2b2vcixN5TJjxBCiOKUVQ3tAb7inDuPYBL7PaMJnHN3Oefe4Jx7A/DrwHPAX0WS/OvhcefcfSXzI4QQoiBlBcEO4EC4fgB4T0b6y4DbnHPPZaQTQgjREGUFwaucc0+H638DvCoj/eXATSP79pnZA2b2CTM7rWR+hBBCFCTTWGxmdwI/H3NozbBJ55wzs8TJDcxsG/APgNsju68hECAzwH7gw8C1CecvAosAs/LPFkKIyig1MY2ZHQQucs49HVb0X3POvTYh7QeB1zvnFhOOXwR8yDn3T3Lc9yjwxNgZL8dW4JmW7l2GruYbupt35bt5upr3pvI955w7c3RnWffRW4FdwEfC3/+Rkva9BD2AlzCzbaEQMQL7wkN5bhr3IE1hZitxM/z4TlfzDd3Nu/LdPF3Ne9v5Lmsj+Ajwj83sUeCd4TZmNm9mNwwTmdl24Gzgf4+cv2xmDwIPEkjE/1gyP0IIIQpSqkfgnDsGvCNm/wrwgcj248BZMel+vcz9hRBClEchJoqzv+0MjElX8w3dzbvy3TxdzXur+S5lLBZCCNF91CMQQoieI0GQgZn9MzP7jpm9aGaJVn0zu9jMDprZITNbF2qjafLEgQrTnYrEerq16XyO5CW1DM3sNDO7JTx+T+iE0Do58v0+MzsaKecPxF2naczsRjP7oZnFeutZwB+Fz/WAmb2x6TzGkSPfF5nZs5Hy/oOm8xiHmZ1tZneZ2XfDOuWDMWnaKXPnnJaUBfhF4LXA14D5hDRTwGPAuQSD4+4Hzm853x8D9oTre4CPJqQ70XYZ5y1D4Grg+nD9cuCWjuT7fcCn285rTN7fBrwReCjh+CXAbYABbwbuaTvPOfN9EfCXbeczJl/bgDeG668EHol5V1opc/UIMnDOPeycO5iR7ALgkHPusHPuJHAzQRymNikaB6pt8pRh9Jm+BLwjHIPSJj7+97lwzn0dOJ6SZAfwORdwN3BGOHC0VXLk20ucc087574drv8EeJj13pStlLkEQTWcBXw/sv0kMe6yDZM3DtTLzGzFzO4ehgdviTxl+FIa59wLwLPAoJHcJZP3v//NsKv/JTM7u5mslcbH9zovbzGz+83sNjN7fduZGSVUa/4KcM/IoVbKXBPTkB5PyTmXNlq6VSqKAzXnnHvKzM4FvmpmDzrnHqs6rz3nfwI3Oed+ama/S9Cr0Ria+vg2wXt9wswuAf4COK/lPL2Emb0C+O/A7zvnftx2fkCCAADn3DtLXuIpgpHTQ14d7quVtHyb2Q8iITy2AT9MuMZT4e9hM/saQSulDUGQpwyHaZ40s43AzwLHmsleIpn5dsHAyyE3ENhvukAr73VZopWrc+7LZnadmW11zrUeg8jMpgmEwLJz7s9ikrRS5lINVcO3gPPM7BwzmyEwZLbqgcNqHChIiANlZpuHob/NbCvwa8B3G8vhWvKUYfSZLgO+6kILW4tk5ntEx3spgW64C9wK/HboyfJm4NmIutFbzOznh7YjM7uAoJ5ru8FAmKf/CjzsnPtPCcnaKfO2Lem+L8A/JdDT/RT4AXB7uP8XgC9H0l1C4AXwGIFKqe18DwhmjXsUuBPYEu6fB24I1y8kiPN0f/h7Zct5XleGBGHJLw3XXwZ8ETgEfBM4t+1yzpnvPwS+E5bzXcDr2s5zmK+bgKeB58N3/ErgKuCq8LgB/zl8rgdJ8JrzMN+/Fynvu4EL285zmK+3Ag54ALgvXC7xocw1slgIIXqOVENCCNFzJAiEEKLnSBAIIUTPkSAQQoieI0EghBA9R4JACCF6jgSBEEL0HAkCIYToOf8fbbT41ArTNJwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(x[:,0], x[:,1],'ro')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Abstract of the Algorithm\n", + "The DBSCAN algorithm can be abstracted into the following steps:\n", + "\n", + "- Find the points in the $ε$ (eps) neighborhood of every point, and identify the core points with more than min_pts neighbors.\n", + "- Find the connected components of core points on the neighbor graph, ignoring all non-core points.\n", + "- Assign each non-core point to a nearby cluster if the cluster is an $ε$ (eps) neighbor, otherwise assign it to noise.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preparing the points\n", + "Initially we label all the points in the dataset as __undefined__ .\n", + "\n", + "__points__ is our database of all points in the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "points = { (point[0],point[1]):{'label':'undefined'} for point in x }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Helper functions" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def euclidean_distance(q, p):\n", + " \"\"\"\n", + " Calculates the Euclidean distance\n", + " between points P and Q\n", + " \"\"\"\n", + " a = pow((q[0] - p[0]), 2)\n", + " b = pow((q[1] - p[1]), 2)\n", + " return pow((a + b), 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def find_neighbors(db, q, eps):\n", + " \"\"\"\n", + " Finds all points in the DB that\n", + " are within a distance of eps from Q\n", + " \"\"\"\n", + " return [p for p in db if euclidean_distance(q, p) <= eps]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_cluster(db, clusters):\n", + " \"\"\"\n", + " Extracts all the points in the DB and puts them together\n", + " as seperate clusters and finally plots them\n", + " \"\"\"\n", + " temp = []\n", + " noise = []\n", + " for i in clusters:\n", + " stack = []\n", + " for k, v in db.items():\n", + " if v[\"label\"] == i:\n", + " stack.append(k)\n", + " elif v[\"label\"] == \"noise\":\n", + " noise.append(k)\n", + " temp.append(stack)\n", + "\n", + " color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters))))\n", + " for i in range(0, len(temp)):\n", + " c = next(color)\n", + " x = [l[0] for l in temp[i]]\n", + " y = [l[1] for l in temp[i]]\n", + " plt.plot(x, y, \"ro\", c=c)\n", + "\n", + " x = [l[0] for l in noise]\n", + " y = [l[1] for l in noise]\n", + " plt.plot(x, y, \"ro\", c=\"0\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Implementation of DBSCAN\n", + "\n", + "Initialize an empty list, clusters = $[ ]$ and cluster identifier, c = 0\n", + "\n", + "1. For each point p in our database/dict db :\n", + "\n", + " 1.1 Check if p is already labelled. If it's already labelled (means it already been associated to a cluster), continue to the next point,i.e, go to step 1\n", + " \n", + " 1.2. Find the list of neighbors of p , i.e, points that are within a distance of eps from p\n", + " \n", + " 1.3. If p does not have atleast min_pts neighbours, we label it as noise and go back to step 1\n", + " \n", + " 1.4. Initialize the cluster, by incrementing c by 1\n", + " \n", + " 1.5. Append the cluster identifier c to clusters\n", + " \n", + " 1.6. Label p with the cluster identifier c\n", + " \n", + " 1.7 Remove p from the list of neighbors (p will be detected as its own neighbor because it is within eps of itself)\n", + " \n", + " 1.8. Initialize the seed_set as a copy of neighbors\n", + " \n", + " 1.9. While the seed_set is not empty:\n", + " 1.9.1. Removing the 1st point from seed_set and initialise it as q\n", + " 1.9.2. If it's label is noise, label it with c\n", + " 1.9.3. If it's not unlabelled, go back to step 1.9\n", + " 1.9.4. Label q with c\n", + " 1.9.5. Find the neighbours of q \n", + " 1.9.6. If there are atleast min_pts neighbors, append them to the seed_set" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def dbscan(db,eps,min_pts):\n", + " '''\n", + " Implementation of the DBSCAN algorithm\n", + " '''\n", + " clusters = []\n", + " c = 0\n", + " for p in db:\n", + " if db[p][\"label\"] != \"undefined\":\n", + " continue\n", + " neighbors = find_neighbors(db, p, eps)\n", + " if len(neighbors) < min_pts:\n", + " db[p][\"label\"] = \"noise\"\n", + " continue\n", + " c += 1\n", + " clusters.append(c)\n", + " db[p][\"label\"] = c\n", + " neighbors.remove(p)\n", + " seed_set = neighbors.copy()\n", + " while seed_set != []:\n", + " q = seed_set.pop(0)\n", + " if db[q][\"label\"] == \"noise\":\n", + " db[q][\"label\"] = c\n", + " if db[q][\"label\"] != \"undefined\":\n", + " continue\n", + " db[q][\"label\"] = c\n", + " neighbors_n = find_neighbors(db, q, eps)\n", + " if len(neighbors_n) >= min_pts:\n", + " seed_set = seed_set + neighbors_n\n", + " return db, clusters\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lets run it!" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de7Ac1X3nPz9dSVhabIyuiEMAXeGEPJwQv7Q4cVIpHGwHUxtkJ94KzjWRHbvuIsW7SaV2N6RUlcRkVYtx1RpSsSAqwhpbd40fix05MSEY2+s/EhxECpCBxcgEYalILCQvsRbWQuK3f3QP6ju3n9Pv6e+nampmTp/uPtPTfX7n/F7H3B0hhBDDZUXbDRBCCNEuEgRCCDFwJAiEEGLgSBAIIcTAkSAQQoiBI0EghBADpxJBYGa3mNl3zOwbCdvnzexBM9tnZn9rZq+ObHsiLL/fzPZW0R4hhBD5sSriCMzsF4BjwMfd/aditr8ReMTdv2tmbwP+yN3fEG57Atjk7k/nPd/69et948aNpdsthBBD4r777nva3c8aL19ZxcHd/WtmtjFl+99Gvt4DnFvmfBs3bmTvXk0ehBCiCGZ2IK68DRvB+4A7It8d+Bszu8/MFlpojxBCDJpKZgR5MbM3EQiCn48U/7y7HzKzHwDuMrP/7e5fi9l3AVgA2LBhQyPtFUKIIdDYjMDMfhq4Gdjs7kdG5e5+KHz/DvA54KK4/d19l7tvcvdNZ521TMUlhBBiQhoRBGa2AbgduNLdvxkp/1dm9tLRZ+CtQKznkRBCiHqoRDVkZp8ELgbWm9lB4A+BVQDufhPwB8AssNPMAE64+ybgFcDnwrKVwP9w97+uok1CCCHyUZXX0Lsytr8feH9M+ePAq5fvIUT17FuEu7fDM0/CGRvgkh1w4XzbrRKifRo1FgvRFvsW4QsL8PyzwfdnDgTfQcJACKWYEIPg7u2nhMCI558NyoUYOhIEYhA882SxciGGhASBqJ19i3D9RvjgiuB932LzbTgjIfQkqVyIISFBIGplpJt/5gDgp3TzRYVBWWFyyQ5YtXZp2aq1QbkQQ0eCQNRKFbr5KoTJhfPwy7vgjDnAgvdf3iVDsRAgryFRM1Xo5tOESZGO/MJ5dfxCxKEZgaiVKnTzMvQKUS8SBKJWqtDNy9ArRL1IEIhaqUI3L0OvEPUiG4EA6k2/UFY3P9q3S+khlK5CTBOVLFXZNJs2bXKtUFYd4+kXIBhxd9Wrpu1OuG/XS4gRZnZfmPBzCVINiV6lX4hzJb393XDd+noC1eLiF/p0vYTIg1RDoldeOXGdMMBzR6pPIpeUqC7u/NDN6yVEHjQjEL3yyknrbKselSeN/G0mvn4Xr5cQeZAgEJV65dSdVyirs61yVJ50LD8pLyYxXUgQiMrSL0yaCqKI8IgTWlHWrCvW5jQSZ0pzSlchpgt5DYnSvOjFcyB++xlz8DtPJO9b1ANn3yJ87jfAX1i+bc0s/Oenc7Q1h8eRvIPEtFGr15CZ3WJm3zGz2IXnLeBPzGy/mT1oZq+LbNtiZo+Fry1VtEc0x5JZQAJp6ppJPHAunIek8ctzR3O2NceMRYnqxFCoymvoY8CfAh9P2P424ILw9QbgRuANZraOYKH7TYAD95nZHnf/bkXtEjWT5MUTJU2vn+axlDZ6P2NDvPBJO9ckyeuUqE4MgUpmBO7+NSBlLMZm4OMecA/wcjM7G/gl4C53Pxp2/ncBl1bRJtEMWcbZLCNqUse9Zl366H0SA3ef3GSFaJKmjMXnAN+OfD8YliWVi56QNgLPo0pJ6tAhXWU0idomsa3e3sppQnSB3gSUmdkCsACwYYMctrvCJTvKGVST8gjdfmV8/ejovajaJq6tLx73QPUBaUL0haYEwSHgvMj3c8OyQ8DFY+VfjTuAu+8CdkHgNVRHI0VxqkgIF9ehJ3khlQnaWtLWmGM//2wggG5/d/B9zSy87QYJBjH9NKUa2gP8Rug99DPAM+7+FHAn8FYzO9PMzgTeGpYNki4s8j4JF84H7qF/+ELwXkXHWVfq6VFbsYQKkSHGc0fgL36zP/+DEJNSyYzAzD5JMLJfb2YHCTyBVgG4+03AF4HLgP3As8B7w21HzeyPgXvDQ13j7mlG56klKa8NDHNEWnfq6SSvo3FOHi++JKYQfUMBZR3h+o0JqpCUYKy+0Xb66PG2pCWQW4IFsx0h+k5SQFlvjMXTzrS7NnZlxhMVRmvWwco1QRCarQhyCMWhZHJi2lGuoY7Qpwygk9CFHP7jkcXPHYETz8Gmq+AlL4/fZ2Z1MbtEX+08YthIEHSEJtbljeuk0jquKju1Lsx4koTR3hsDoTDOmlnYfEv+GcukSfeEaBuphjpCUeNoUX17nGrm8+8Fs8AgOiobqWugWlXOJCkhqqaI0JnENjNJCgshuoAEQYfIGyA1ib49rpN64fnl9aLqmio7taTAsyZz+Of1FILJZipdmPUIMQlSDfWQSfTtRTqjZ56svlPrQibPIkJnkpnKtNt5xPQiQdBDJumki3RGZ2xI79QmtR3UEXhWhAvnA71/FpPOVJqw8whRBxIEPWSSkWdcJ7ViVeAVE2XUcSV1ahdc1m+D6NtuWP67ZlaHAqLkTKULsx4hJkE2gh4yib49yRgdVxbtuMa39d0gWnfEstYvEH1EgqCHTNqZjXdScZ5HEEY5Pxm//u80GETVWQuxFKWYGChxKRZmVgdLQMZ5E0Ew61i5Jt7nfppSYdRNl1JtiGFR65rFIh9dijqNU/GcPJ4sBOBUfRlEJ2eSoLMu3TdiOpEgaIgmo07zdByTqnKeOzosg2jV0dhFXX//aluwRkJfjfOiH0g11BBNZReNU/nErRiW1J4shqQCyqs+G11fyL72H1zBkjUPXiQmw+m+xXCltpj6Q/ofRHVINdQyTRlZk0acn9uydBQZ5x46szpwKU1iaCqgvOqz0Yg+z2i/iOvv3duJFxr0yzgvuo8EQUM0FXWa1EH4yaUqhTif9823wNv/+6myNbPV+NdH6ZO+u45o7CJBZ1UFCAqRhdxHG6KpXDtp+XTG/f2T3ChHZSPvlucqWjOuK2sS5KVIbqJRx5yVWK+I62/a+Y8fC4SpvI5EFWhG0BBNRZ3GjTij5B3l1mHc7sKaBEXIqz7LisaeVNgn/ZcrVoYuvDIei4qoas3iS4EbgBngZne/dmz7R4A3hV/XAj/g7i8Pt50E9oXbnnT3y6toUxdpIpBpdPzPbYlfcSuvSqGOCOK+BaNVFY09HsSXNCuK2/eXdy0tO35seRxHnyK7RTcp7TVkZjPAN4G3AAcJFqJ/l7s/nFD/3wOvdfffDL8fc/fTi5yzj15DVZInICmv91ASRbxb8jKEdZmzSLoGa2aD1dKy/q86/hcxHOr0GroI2O/uj7v7ceA2YHNK/XcBn6zgvJ2nDsNoXpVNWVVUHcZtZedMnv08dySf2kyprkUdVCEIzgG+Hfl+MCxbhpnNAecDX44Uv8TM9prZPWb29qSTmNlCWG/v4cOHK2h2vdQVQFZEz14m7XMdnXbT2Tm76KFUtMMeFxwSpqIOmvYaugL4rPsS7fWcux8ys1cCXzazfe7+rfEd3X0XsAsC1VAzzS1GVGVjK5br6KvQ5TalZ68rS2dTCd+66qGU5D2WmMNpTHDUnT1VDJMqBMEh4LzI93PDsjiuAH4rWuDuh8L3x83sq8BrgWWCoOuMdzxxhloo32E3ufZvn7N0djVddpoBOq97cZ//F9FNqhAE9wIXmNn5BALgCuDXxyuZ2Y8DZwJ/Fyk7E3jW3b9vZuuBnwOuq6BNjRPX8cRRtsPuwtq/faDLHkppHblG+qINSgsCdz9hZh8A7iRwH73F3R8ys2uAve6+J6x6BXCbL3VT+gngz8zsBQJ7xbVJ3kZdJ08HU0WHLdVAPpqcOcWRN9V0FSmpldZalEVJ5yoiyS3QZsBfSHfzrOshHnIHUdZ9tolzV9HGNn+n6B9KOlczSd4c77g12Wsny7OojNdLk2mvu0ib6wfn9eyqItI6zzG66D0luoVyDVXEJCqbrIe4jNdLV42lTdKWUTWvfaIKO0bWMbrqPSW6hQRBhRTteNIe4rIdeZeNpdNOXvtEFXaMrGNoQCDyINVQS+xbDGIN4jhjQ/mOXBGo7ZE36KuK4LCsY2hAIPIgQVABRXWwo+l6XKzB6CEu25ErArU98tonqrBjZB1DAwKRB3kNlWQSr400D6N33BrsV5VHyVC9hkSAvIpElCSvIdkISlJUB7tvMXmxEX9h6aIxo+NP2pErAnX6yRL2ijsReZAgKEkRHexodJZEXF4ZPbAiibweQbqPRBayEZSk6GLkSWkopL8XRclyP1b8gMiLBEFJqlqMXDpbEUdaZ542Gx16QKEohgRBSYp4fiTOHuYkBF5kcRE2boQVK4L3xeH2XFmdedpstG/rQ4t2kSCogLwLwMilM4PFRVhYgAMHwD14X1gYrDDI6sxjF7c3uOAyxQ+IYkgQNEib+W96wfbt8OxYz/fss0H5AMnqzC+ch1dvASyy0eGBW2HNuvh9i8QPyMbQMC3OhuU11DDy4EjhyYSeL6l8ysmTguKxL7JsMfvnnw1WPFu1dvJ1K5SjqGFGs+HRQGg0GwaYr/+Ca0ZQExpN5WB8BLQuYRi7YZhhsHlUiUmzhueOlpt9ysbQMBmz4W3btrFy5UrMjJUrV7Jt27ZKTy9BUAPy2MhBnD3ge9+DVauW1lu7FnbsWL7vAAzKeVSJaQbjvLarOGRjaJiU2fC2bdu48cYbOXkyyElz8uRJbrzxxkqFgVJMlCQusvPu7QlT+rnggRQEHfiBmIs0Owunnx48GBs2BEIgOjUen0JDICx27WpkCt016kohkZQGRfdwTSQ9D3NzrDx48EUhEGVmZoYTJ04UOk2tC9OY2aVm9qiZ7Tezq2O2v8fMDpvZ/eHr/ZFtW8zssfC1pYr2NEXSyD8phYRGUxGSRkBHj8ITT8ALLwTv4527DMpLqMsBQR5uDbNjRzCgiRLOhuOEAJBYPgmljcVmNgN8FHgLcBC418z2xKw9/Cl3/8DYvuuAPwQ2EZi87gv3/W7ZdjVBkh7VZuIziyrjY4QNG+JHQFn2ABmUl1HWASEtX5FyFDXEaMCzffuy2fDMli2JM4KqqGJGcBGw390fd/fjwG3A5pz7/hJwl7sfDTv/u4BLK2hTIySN8P2kRlOZpIyAUkkSFAM1KJclzZ5VxMYg54gKmJ+PnQ0vLMQnKEsqn4QqBME5wLcj3w+GZeP8qpk9aGafNbPzCu7bSdIihRUvkMH8fKDXn5sDs+A9j55/UgEiYqnCO0jOEfWyc+dOtm7d+uIMYGZmhq1bt7Jz587KztGU19AXgI3u/tMEo/5bix7AzBbMbK+Z7T18+HDlDRxRZGSTpkcdjaZ+5RNB+e1XaqS0jIQRUOY+kwgQEUsV3kFyNa2fnTt3cuLECdydEydOVCoEoBpBcAg4L/L93LDsRdz9iLt/P/x6M/D6vPtGjrHL3Te5+6azzjqrgmYvp+jIJstQp5FSTUwiQEQsVaxgJlfT/lOFILgXuMDMzjez1cAVwJ5oBTM7O/L1cuCR8POdwFvN7EwzOxN4a1jWClWPbIoeb7B61oHEBXSRKryDtBxmTjp8n5f2GnL3E2b2AYIOfAa4xd0fMrNrgL3uvgf4D2Z2OXACOAq8J9z3qJn9MYEwAbjG3Y+WbdOkFB3ZZIXhT7JozeBC+lsOre87ZZcjrcI76JId8bEMco6I0PH7XAFlEYoG0WTVL3K8wQbwpATS8MQTTbemV3RpPWKtj51BR+7zWgPKpoWi0+SsEX8Vi9ZMvZ5VcQET0yUjbZl0FoOg4/e5BEGEolGaWal+K1m0Ztr1rIoLmJjBDh76SMfvc6WhHiNvlOa+RTj+veXlK1YtHfHnPd5g9aw7dsTnDlJcQCZ50lSLjtDx+1wzggySPHnu3g4njy+vf9rLJpsWD3bRGsUFTIzyAfWIjt/nMhankGaMu/1Kli0IAoAFelIhmkBGWlEEGYsnIM0YN1idvugUZY20k8SuKN6le3EAZZEgSCHNGKdpueg7k0S+DzZaPm4hpYWFqREGEgQpZK3+NEidfleZ4tFaXUziftoll9VGmfJ1MCQIUsga9ct3ugYm6dCnfLRWBXHqnEncTwfrslo2DqDjAxUJghQ06m+YSTv0KR+tleWvtgXODVF1zu1XLh/kjEizcw3WNjZpHMDiIqxfD+9+d6cHKhIEGWjU3yCTdugdj9psk32LsPcmlnu4OTz/f4O4lyhZdq64WTLA8WNTbifIsw7G+Kh/27agwz9yZPnxOjZQkSAQ3SFvhz7+wK1LCPHuSNRmm9y9nXg355DTXlZsxjuaJa+ZXVr+3JEpNxpnxQHEzWZvumn5wCZKhwYqiiMQzbG4GLsm64skJeY6/XSYnQ32W7cO/uVf4PnnT21ftSp4OI9HIvzWru1UwE5bfHAFqYJg0riXwSZJTCLp3k2jhcSKiiOYkMH6TFdNHv3/jh2wevXyfY8dO7XfkSNLhQAE31/60s5GbbZJlu5+Ut3+YI3GSRQd3XcovQRIEKQyWJ/pOsij/5+fDzr0STh6VKuWxZCk04dycS+DNRonkaSGNFteNjvbuYGKBEEKg/WZroO8+v+jE65LJHtALEs83wAL1j9/0R4Ak814FVA5RpIx+aqrls5Ud++Gp5/ulBAAZR9NRdPfCtmwIV6HOt6BJ9VLo2PT7K6RlAG3zKp4VaxsNlWMOvY0G1iHkbE4BRnEKmR8qT6IN+jG1Rtn9epAhXT0aO8euC6h+3t41GosNrNLzexRM9tvZlfHbP9dM3vYzB40s7vNbC6y7aSZ3R++9ozv2yaa/lZI3jS8cfW2bl36/ZZbgum17AGl0Ix3QjoeJTwJpWcEZjYDfBN4C3CQYCH6d7n7w5E6bwK+7u7PmtlW4GJ3/7Vw2zF3P73IOZt0H1WaXzGtaEYwAXlnth2lzhnBRcB+d3/c3Y8DtwGboxXc/SvuPrpy9wDnVnDeRlBksZhWNOOdgKLR7z2ZPVQhCM4Bvh35fjAsS+J9wB2R7y8xs71mdo+Zvb2C9nQSxSOIrqFcWhNQJJ1Jj5IhNuo+ambvBjYBH44Uz4VTlV8HrjezH07YdyEUGHsPHz5cWxvr6LAVj1AxPRll9QHNeAuwuBjcc3HEuS/3KBliFYLgEHBe5Pu5YdkSzOzNwHbgcnf//qjc3Q+F748DXwVeG3cSd9/l7pvcfdNZZ51VQbOXE9dhf/69cN36coJB8QgVkmeUJUEhqmZ03508uXzbyH15/L5LcoPuUI6hEVUIgnuBC8zsfDNbDVwBLPH+MbPXAn9GIAS+Eyk/08xOCz+vB34OeJiWiOuwX3g+SKhVZiQv74wKyRpl9Wg63hZSU05A3H0HMDMTGIph+X0XF1UMnQx+LC0I3P0E8AHgTuAR4NPu/pCZXWNml4fVPgycDnxmzE30J4C9ZvYA8BXg2qi3UdPk6ZjjRvJZD5bC8SskS0fbo+l4G0hNOSFJ990LLwTeQnH3XZxH5urVnQx+rMRG4O5fdPcfdfcfdvcdYdkfuPue8POb3f0V7v6a8HV5WP637n6hu786fP/zKtozKXk75qjAyPNgyTujQrIWCEl6YA8c0KwAqSknZtL7bpyOBvAq11CEtARdUaICI8+DJe+MCslaICRt2i0VkdSUk7C4GGTAHSfvfRfl+ec7OTuVIIgw3mGvmYWZmKzI0dWY8j5Y8s6oiKwI5ThBMUIqIqkpizKyOY2vMjaeQTTtvhung8Zi5RpKYd8i3PHbobF4jFVrA6Fx93ZFZ3aOxcVgjdg4zAK97gCIi4qHpYnm4NS9rMFJDEneP3GLyowvvHTsWPwylS0sSDNCC9MUZKT7jxMCcEr9I/1/B5mfDx62ODrosVEHSbYrkJqyEEUCyObnl66JccMN2escdwQJggTidP/jjGYCerA6SJ7FxqeYJNvV57bA7VcG33/lE1JTZpJlJE4jb6LFDqD1CBLIazz7wkLQ8UsN1DF6nh++LEn3r4fxUEXWHhg0O3bEJ5nLO6CYn+/FPacZQQJ5jWdyvesw41P1HjyQVZHn/tW9m4MejerLIEGQQF5XUpDrnegeee9f3bs5GMCAQoIggTjf/zWz8XXXrGu0aUJkMrp/R2sUJyG3UQESBKmM+/6/7QZYsWp5vePfU4i+6B4XzoOneMrKu02MkCAowIXzcNrLlpefPC5dq+gmSSN+m5F3mziFBEFBnjsaXy5dq+giSXEu77hVQkCcQoKgIArR7yhagyAW5blqmW3bYOXKwONo5crgewdRiomCjCI2FaLfIeIWFIcgH8wNN0yll4foAdu2wY03Li/fuhV27my+PSSnmJAgmIC4HC4SAi2SthrU2rVT6fddB7qvK2blyvgVzWZm4MSJ5tuDBIFu8mlmxYr0PO8tJvnqC5rp1kDSCmXQ2roEg046p1WZppysvC8dTPvbNbRgTQ3MJARxJJW3yCAEgW7yKSDNGJyVC34gGUfLoAVramBhoVh5i1QiCMzsUjN71Mz2m9nVMdtPM7NPhdu/bmYbI9t+Pyx/1Mx+qYr2jKObvOdkLUg/ygczGxP6PaCMo2WQN1wN7NwZGIZHM4CZmVYNxWmUFgRmNgN8FHgb8CrgXWb2qrFq7wO+6+4/AnwE+FC476uAK4CfBC4FdobHqxTd5D0nz4L08/Pw9NOwe/fUJwirA62rURM7dwaGYffgvYNCAKqZEVwE7Hf3x939OHAbsHmszmbg1vDzZ4FLzMzC8tvc/fvu/o/A/vB4laKbvOeUWRxEQiAXReIN9i3C9RvhgyuCd9naIvQ0nqWK9QjOAb4d+X4QeENSHXc/YWbPALNh+T1j+54TdxIzWwAWADYU1PmObmZ5DfWUDRvi3UOl+6+UC+ezn4lx7yKtaxBhPJ5lpMKEzg9IemMsdvdd7r7J3TedddZZhffX4vE9ZtLVxno6OquSqkfvcrwg+b7Ko8LsKFXMCA4B50W+nxuWxdU5aGYrgTOAIzn3bQ3FHnSESVYb6/HorCrqGL0P3vEi7b4qosLsGFXMCO4FLjCz881sNYHxd89YnT3AlvDzO4EvexDJtge4IvQqOh+4APj7CtpUGsUedIyo7n/HjkAopI30ezw6q4o6Ru+DcbyYZNRfZn3jliktCNz9BPAB4E7gEeDT7v6QmV1jZpeH1f4cmDWz/cDvAleH+z4EfBp4GPhr4LfcPSYmu3k0Be4oWa6kI3o8OquKOkbvg3C8SLvH0u6rSVWYHWAwKSaK8sEVQNylscDOIFoiKa/QeBqJvPWmmOs3hjPaMc6YC+xkkzLVKtPFRdiyJT5H0Nxc8J52Xy0uFlNhNsygU0xMwmCmwH0j70i/x6Ozqqhr9D61jhejmUCcEIB8o/6q3JcbdnSQIEhgEFPgPpJXDzuKNh5wcJnWIihInP4/yoYN2fdVFR14XvVnlbh7716vf/3rvQke3O3+kTn3P7Lg/cHdjZxWpLF7t/vate7BIxK81q4NytP2mZtzNwve0+qK4WK29L6Kvkbb0u6fSe7NOObm4tswN1fyB7oDez2mT229U5/k1ZQgEB1l1LGD+8xM+gNa1cMppp+kDnj8lXT/VNWBJwkks9I/MUkQSDUk+sf8/Cld7UifmzR9LuJGqgC0YTL63w8cWL6GQNyaAkn3T1Weai24oUoQiH6S1sFHO/SklcvGH8429LKifaL/OwT//ajzn5tLXkAmrnMv2oEnDTzacHSImyZ0/SXV0MCI0/Gn6XPHVUF5pus16mVFh8n634vcF0XUkFl1a7JrIRuB6CVJD8zsbPwDOrIZFNXx1qiXFR0m638vamPK24G3NPBIEgRSDYluk6QCgvjpc5IPOKS7kfY4PYAoQdb/XtQNOW8cQcci3yUIRLdJejCOHo1/QEfRn+PMzaU/nApAGyZ5/vc61rjo2MBDgkB0m7QHJu4BnbRDn58PUgtElxXcsmVQAWiDJM+Ivw5vsq4NPOL0RV1/yUYwIJoKIFO8gYijzvuihUBHZCwWvaWJB0ZeQ92iK9HgU3ZfJAkCqYZE92liHeI0450CzZqlSzEdHTPq1oUEgRCQbItYt647ndJQaGNRoSRh3zGjbl1IEAgBycY7GPxKZ43T9Cg8bQbSNaNuTUgQCAHJ3iNHj8bX76tqoG41VxXHb3oUnjYDGUo68zjDQd4XsA64C3gsfD8zps5rgL8DHgIeBH4tsu1jwD8C94ev1+Q5r4zFIpOqjI3TZCys2zOqquM37cE1oKhy6vAaAq4Drg4/Xw18KKbOjwIXhJ9/CHgKeLmfEgTvLHpeCQKRSpUdyTS5ldYt1Ko8fpNeQ9Mk7DOoSxA8Cpwdfj4beDTHPg9EBIMEgaieqh/srrgylqXukW9fR9Z15RPqIEmCoKyN4BXu/lT4+Z+AV6RVNrOLgNXAtyLFO8zsQTP7iJmdVrI9QlRvbGzCfbUJ6ta999XDpogdoEuurRWSKQjM7Etm9o2Y1+ZovVDaeMpxzgY+AbzX3V8Ii38f+HHgXxPYG34vZf8FM9trZnsPHz6c/cvEcGmyQ+pTjEHdHjB99rDJK+zbcG1tgrhpQt4XOVVDwMuAfyBFDQRcDPxlnvNKNSRSaUqv30f7Qd1qjR6rTXLRV/VXCDXZCD7MUmPxdTF1VgN3A78Ts20kRAy4Hrg2z3klCEQmbaalGNkjpq0TbJKuCpSeG5brEgSzYSf/GPAlYF1Yvgm4Ofz8buB5TrmIvugmCnwZ2Ad8A9gNnJ7nvBIEohOkrZLWh9lBV+nyTKvLbctBLYKgrZcEgchNnSPLtBlBnSPFro6Wq6Lro+4eX38JAjE82gigqlt33PMRaS6a0sP3uEOflCRBYMG2frFp0ybfu3dv280QXWfjxsC9b5y5ucAzpAoWF4MFbJKWyKzyXNDMb2qbpv63hYWlHkBr105n+ogIZnafu28aL1euITG9NJG8bH4+cDlMomrXySGkRa7CDTXLrXda3UAnRIJATC9NxRMkHW92drLRZVon1tegrSKUTfSWJ+hrCAK1CHH6oq6/ZCMQuehaPEEenXTWsabFRtCGET9qbO66QbomkLFYDJKmDIJZ52kH/WcAAArwSURBVMnbgefpoNo2cpY9fx3CLNqmPIb7aRGoBZEgEKJN8o5A0zqyLni4VNGB1pEUMMt7K+744wJt69ZuXOMaSRIE8hoSoglWrAi6o3HMlhqbkzxmzJbu35aHSxUePXmvRdk2Rcm6XgPxIpLXkBDjNJkwLsmYu2LF0vPGecyMCwFoz8MlyZia1RFHqdrgnWbgzWtsHrgXkQSBGCZ5PEuqFBRxHTwE8QfR88Z5zCTN2tvwcEnqrM3Sr0/0Wh47BqtWLd1eJktpUpvm5pZmE037P4fuRRSnL+r6SzYCUZosPXUZXXiSMXX3bveZmeL68S55uOzenWzHSGpP3LVcvdp9drYafXye/yqrTpeucY0gY7EQEbLSGEzaMWR1OJOkT2jbw2VcsKV55cQJwSY62TRPpjwCuO1r3BASBEJEyeqcJs13k3XcMgKmiEdLVS6mcR1k0rWZnY3vTNMER91keRSNu5QO1Guo9U59kpcEgShNXaqCLAHSxMizynMkXYfx37l2bSAI8tStU+0y3pkntanONnQYCQIhxslSJ0zSmXYhIKwqVczu3dmdaPQ3ZK3PEH2tWtVMhHfaawpVP1lIEAhRlEk67C7omqtQxWR1qnFCJc/6DFE1UtUUOf/MzOCEgHuyIJD7qBBJ5F3QfHyfMgnTyrK4GJw3jiJ++nF+9SOSXD2TXGTjOHo0f1vyktfVc+1auPXWqQoUK4sEgRBVM4kASaNIPMP27cGYdxyzYn76aZ3qmjVw5ZXL2xInBGdn449RR7bUtCywbQnmvhA3Tcj7AtYBdxGsWXwXcGZCvZOcWq94T6T8fODrwH7gU8DqPOeVakgMhqKqpjQ9/eh4edRdRYzEaSqWumMIss41QDtAGtS0eP11wNXh56uBDyXUO5ZQ/mngivDzTcDWPOeVIBC9ooxxuKjhN61+kY6yqNto3t8/OxsYiuvqrAfgAlqGugTBo8DZ4eezgUcT6i0TBIABTwMrw+8/C9yZ57wSBKI3lB2lFo1nSDtfUaGSN5AM8v+egUTwdpUkQVAq+6iZ/R93f3n42YDvjr6P1TsRqoVOANe6++fNbD1wj7v/SFjnPOAOd/+prPMq+6joDWWzdU6y/+JiYCt48slAb75jR6ATL5v1My3LZ97fU3XmUVGIibOPmtmXzOwbMa/N0XqhtEmSKnPhyX8duN7MfniCH7BgZnvNbO/hw4eL7i5EO5RNZlZ0/d4kIQDls36mGZvz/p4hLLXZR+KmCXlf5FQNje3zMeCdSDUkhkAVqpBxHXuSobWJZS6TInXz/p6mIqtlJ4iFmmwEH2apsfi6mDpnAqeFn9cTeBi9Kvz+GZYai7flOa8EgegNVXZ8VaTF6MIyk1F7xSgZXFUdtjyHUqlLEMwCd4ed+5eAdWH5JuDm8PMbgX3AA+H7+yL7vxL4ewL30c+MBEbWS4JA9IoinW9a3boS5dX5e9KOUUeHLWN0KkmCQEtVCtEVtm2Dm25aakyNLpeYZWitYhnJpqirrTJGp6KlKoXoMouLy4UALF0uMcvQWtSw3CZ1rQgmY/RESBAI0QWSUkPAqc4xq6NvO89REerqsPskDDuEBIEQXSBtJDzqHPN09FXnOaqLujrsPgnDDiFBIEQXSFsUPto59qWjjxKXNK/ODruP16hlVrbdACEEQWe/sLA09bMZXHVVvzuyxcWlv+vAgeA7BL+rz79titCMQIguEDdC/sQnYOfOtltWjrh1DaIGcNEJ5D4qhKgPuXN2CrmPCiGaR+6cvUCCQAhRH3Ln7AUSBEKI+pA7Zy+QIBCiCoqsKzw05M7ZeeQ+KkRZslwkheg4mhEIURa5SIqeI0EgRFnqSqAmRENIEAhRFrlIip4jQSBEWeQiKXqOBIEQZZGLpOg58hoSogqUQE30mFIzAjNbZ2Z3mdlj4fuZMXXeZGb3R17/z8zeHm77mJn9Y2Tba8q0RwghRHHKqoauBu529wsIFrG/eryCu3/F3V/j7q8BfhF4FvibSJX/NNru7veXbI8QQoiClBUEm4Fbw8+3Am/PqP9O4A53fzajnhBCiIYoKwhe4e5PhZ//CXhFRv0rgE+Ole0wswfN7CNmdlrJ9gghhChIprHYzL4E/GDMpiVhk+7uZpa4uIGZnQ1cCNwZKf59AgGyGtgF/B5wTcL+C8ACwAb5ZwshRGWUWpjGzB4FLnb3p8KO/qvu/mMJdX8b+El3X0jYfjHwH9393+Q472HgwMQNL8d64OmWzl2GvrYb+tt2tbt5+tr2pto95+5njReWdR/dA2wBrg3f/yKl7rsIZgAvYmZnh0LECOwL38hz0rgf0hRmtjduhZ+u09d2Q3/brnY3T1/b3na7y9oIrgXeYmaPAW8Ov2Nmm8zs5lElM9sInAf8r7H9F81sH7CPQCL+l5LtEUIIUZBSMwJ3PwJcElO+F3h/5PsTwDkx9X6xzPmFEEKURykmirOr7QZMSF/bDf1tu9rdPH1te6vtLmUsFkII0X80IxBCiIEjQZCBmf1bM3vIzF4ws0SrvpldamaPmtl+M1uWaqNp8uSBCuudjOR62tN0O8faknoNzew0M/tUuP3roRNC6+Ro93vM7HDkOr8/7jhNY2a3mNl3zCzWW88C/iT8XQ+a2euabmMcOdp9sZk9E7nef9B0G+Mws/PM7Ctm9nDYp/x2TJ12rrm765XyAn4C+DHgq8CmhDozwLeAVxIExz0AvKrldl8HXB1+vhr4UEK9Y21f47zXENgG3BR+vgL4VE/a/R7gT9tua0zbfwF4HfCNhO2XAXcABvwM8PW225yz3RcDf9l2O2PadTbwuvDzS4FvxtwrrVxzzQgycPdH3P3RjGoXAfvd/XF3Pw7cRpCHqU2K5oFqmzzXMPqbPgtcEsagtEkX//tcuPvXgKMpVTYDH/eAe4CXh4GjrZKj3Z3E3Z9y938IP38PeITl3pStXHMJgmo4B/h25PtBYtxlGyZvHqiXmNleM7tnlB68JfJcwxfruPsJ4BlgtpHWJZP3v//VcKr/WTM7r5mmlaaL93VeftbMHjCzO8zsJ9tuzDihWvO1wNfHNrVyzbUwDen5lNw9LVq6VSrKAzXn7ofM7JXAl81sn7t/q+q2DpwvAJ909++b2b8jmNUohqY+/oHgvj5mZpcBnwcuaLlNL2JmpwP/E/gdd/+XttsDEgQAuPubSx7iEEHk9Ihzw7JaSWu3mf1zJIXH2cB3Eo5xKHx/3My+SjBKaUMQ5LmGozoHzWwlcAZwpJnmJZLZbg8CL0fcTGC/6QOt3NdliXau7v5FM9tpZuvdvfUcRGa2ikAILLr77TFVWrnmUg1Vw73ABWZ2vpmtJjBktuqBw6k8UJCQB8rMzhyl/jaz9cDPAQ831sKl5LmG0d/0TuDLHlrYWiSz3WM63ssJdMN9YA/wG6Eny88Az0TUjZ3FzH5wZDsys4sI+rm2BwyEbfpz4BF3/28J1dq55m1b0rv+At5BoKf7PvDPwJ1h+Q8BX4zUu4zAC+BbBCqltts9S7Bq3GPAl4B1Yfkm4Obw8xsJ8jw9EL6/r+U2L7uGBGnJLw8/vwT4DLAf+HvglW1f55zt/q/AQ+F1/grw4223OWzXJ4GngOfDe/x9wFXAVeF2Az4a/q59JHjNdbDdH4hc73uAN7bd5rBdPw848CBwf/i6rAvXXJHFQggxcKQaEkKIgSNBIIQQA0eCQAghBo4EgRBCDBwJAiGEGDgSBEIIMXAkCIQQYuBIEAghxMD5/1SENh4utwCVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eps = 0.25\n", + "min_pts = 12\n", + "\n", + "db,clusters = dbscan(points,eps,min_pts)\n", + "\n", + "plot_cluster(db,clusters)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I encourage you to try with different datasets and playing with the values of eps and min_pts.\n", + "\n", + "Also, try kmeans on this dataset and see how it compares to dbscan. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I hope by now you are convinced about about how cool dbscan is. But it has its pitfalls.\n", + "### When NOT to use ?\n", + "\n", + "1. You have a high dimentional dataset. Euclidean distance will fail thanks to '[curse of dimentionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_functions)'.\n", + "2. We have used a dict to store the points. So we can't do anything about the order in which the points will be processed. So it's not entirely deterministic.\n", + "3. Won't work well if there are large differences in density. Finding the min_pts and $ε$ combination will be difficult.\n", + "4. Choosing the $ε$ without understanding the data and its scale, might result is poor clustering performance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/machine_learning/dbscan/dbscan.py b/machine_learning/dbscan/dbscan.py new file mode 100644 index 000000000000..04fb5f0186e1 --- /dev/null +++ b/machine_learning/dbscan/dbscan.py @@ -0,0 +1,271 @@ +import matplotlib.pyplot as plt +import numpy as np +from sklearn.datasets import make_moons +import warnings + + +def euclidean_distance(q, p): + """ + Calculates the Euclidean distance + between points q and p + + Distance can only be calculated between numeric values + >>> euclidean_distance([1,'a'],[1,2]) + Traceback (most recent call last): + ... + ValueError: Non-numeric input detected + + The dimentions of both the points must be the same + >>> euclidean_distance([1,1,1],[1,2]) + Traceback (most recent call last): + ... + ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 + + Supports only two dimentional points + >>> euclidean_distance([1,1,1],[1,2]) + Traceback (most recent call last): + ... + ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 + + Input should be in the format [x,y] or (x,y) + >>> euclidean_distance(1,2) + Traceback (most recent call last): + ... + TypeError: inputs must be iterable, either list [x,y] or tuple (x,y) + """ + if not hasattr(q, "__iter__") or not hasattr(p, "__iter__"): + raise TypeError("inputs must be iterable, either list [x,y] or tuple (x,y)") + + if isinstance(q, str) or isinstance(p, str): + raise TypeError("inputs cannot be str") + + if len(q) != 2 or len(p) != 2: + raise ValueError( + "expected dimensions to be 2-d, instead got p:{} and q:{}".format( + len(q), len(p) + ) + ) + + for num in q + p: + try: + num = int(num) + except: + raise ValueError("Non-numeric input detected") + + a = pow((q[0] - p[0]), 2) + b = pow((q[1] - p[1]), 2) + return pow((a + b), 0.5) + + +def find_neighbors(db, q, eps): + """ + Finds all points in the db that + are within a distance of eps from Q + + eps value should be a number + >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, (2,5),'a') + Traceback (most recent call last): + ... + ValueError: eps should be either int or float + + Q must be a 2-d point as list or tuple + >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 2, 0.5) + Traceback (most recent call last): + ... + TypeError: Q must a 2-dimentional point in the format (x,y) or [x,y] + + Points must be in correct format + >>> find_neighbors([], (2,2) ,0.4) + Traceback (most recent call last): + ... + TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} + """ + + if not isinstance(eps, (int, float)): + raise ValueError("eps should be either int or float") + + if not hasattr(q, "__iter__"): + raise TypeError("Q must a 2-dimentional point in the format (x,y) or [x,y]") + + if not isinstance(db, dict): + raise TypeError( + "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" + ) + + return [p for p in db if euclidean_distance(q, p) <= eps] + + +def plot_cluster(db, clusters, ax): + """ + Extracts all the points in the db and puts them together + as seperate clusters and finally plots them + + db cannot be empty + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) + >>> plot_cluster({},[1,2], axes[1] ) + Traceback (most recent call last): + ... + Exception: db is empty. No points to cluster + + clusters cannot be empty + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) + >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) + Traceback (most recent call last): + ... + Exception: nothing to cluster. Empty clusters + + clusters cannot be empty + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) + >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) + Traceback (most recent call last): + ... + Exception: nothing to cluster. Empty clusters + + ax must be a plotable + >>> plot_cluster({ (1,2):{'label':'1'}, (2,3):{'label':'2'}},[1,2], [] ) + Traceback (most recent call last): + ... + TypeError: ax must be an slot in a matplotlib figure + """ + if len(db) == 0: + raise Exception("db is empty. No points to cluster") + + if len(clusters) == 0: + raise Exception("nothing to cluster. Empty clusters") + + if not hasattr(ax, "plot"): + raise TypeError("ax must be an slot in a matplotlib figure") + + temp = [] + noise = [] + for i in clusters: + stack = [] + for k, v in db.items(): + if v["label"] == i: + stack.append(k) + elif v["label"] == "noise": + noise.append(k) + temp.append(stack) + + color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters)))) + for i in range(0, len(temp)): + c = next(color) + x = [l[0] for l in temp[i]] + y = [l[1] for l in temp[i]] + ax.plot(x, y, "ro", c=c) + + x = [l[0] for l in noise] + y = [l[1] for l in noise] + ax.plot(x, y, "ro", c="0") + + +def dbscan(db, eps, min_pts): + """ + Implementation of the DBSCAN algorithm + + Points must be in correct format + >>> dbscan([], (2,2) ,0.4) + Traceback (most recent call last): + ... + TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} + + eps value should be a number + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},'a',20 ) + Traceback (most recent call last): + ... + ValueError: eps should be either int or float + + min_pts value should be an integer + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},0.4,20.0 ) + Traceback (most recent call last): + ... + ValueError: min_pts should be int + + db cannot be empty + >>> dbscan({},0.4,20.0 ) + Traceback (most recent call last): + ... + Exception: db is empty, nothing to cluster + + min_pts cannot be negative + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 0.4, -20) + Traceback (most recent call last): + ... + ValueError: min_pts or eps cannot be negative + + eps cannot be negative + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},-0.4, 20) + Traceback (most recent call last): + ... + ValueError: min_pts or eps cannot be negative + + """ + if not isinstance(db, dict): + raise TypeError( + "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" + ) + + if len(db) == 0: + raise Exception("db is empty, nothing to cluster") + + if not isinstance(eps, (int, float)): + raise ValueError("eps should be either int or float") + + if not isinstance(min_pts, int): + raise ValueError("min_pts should be int") + + if min_pts < 0 or eps < 0: + raise ValueError("min_pts or eps cannot be negative") + + if min_pts == 0: + warnings.warn("min_pts is 0. Are you sure you want this ?") + + if eps == 0: + warnings.warn("eps is 0. Are you sure you want this ?") + + clusters = [] + c = 0 + for p in db: + if db[p]["label"] != "undefined": + continue + neighbors = find_neighbors(db, p, eps) + if len(neighbors) < min_pts: + db[p]["label"] = "noise" + continue + c += 1 + clusters.append(c) + db[p]["label"] = c + neighbors.remove(p) + seed_set = neighbors.copy() + while seed_set != []: + q = seed_set.pop(0) + if db[q]["label"] == "noise": + db[q]["label"] = c + if db[q]["label"] != "undefined": + continue + db[q]["label"] = c + neighbors_n = find_neighbors(db, q, eps) + if len(neighbors_n) >= min_pts: + seed_set = seed_set + neighbors_n + return db, clusters + + +if __name__ == "__main__": + + fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) + + x, label = make_moons(n_samples=200, noise=0.1, random_state=19) + + axes[0].plot(x[:, 0], x[:, 1], "ro") + + points = {(point[0], point[1]): {"label": "undefined"} for point in x} + + eps = 0.25 + + min_pts = 12 + + db, clusters = dbscan(points, eps, min_pts) + + plot_cluster(db, clusters, axes[1]) + + plt.show() From 189b35031224e78e10b668e19fc4b2a1966d19c1 Mon Sep 17 00:00:00 2001 From: yijoonsu <44707391+paulo9428@users.noreply.github.com> Date: Mon, 30 Sep 2019 23:27:41 +0900 Subject: [PATCH 305/594] Deque (#1200) * deque add pop * deque add remove --- data_structures/queue/double_ended_queue.py | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py index a2fc8f66ec22..a3cfa7230710 100644 --- a/data_structures/queue/double_ended_queue.py +++ b/data_structures/queue/double_ended_queue.py @@ -37,3 +37,21 @@ # printing modified deque print("The deque after reversing deque is : ") print(de) + +# get right-end value and eliminate +startValue = de.pop() + +print("The deque after popping value at end is : ") +print(de) + +# get left-end value and eliminate +endValue = de.popleft() + +print("The deque after popping value at start is : ") +print(de) + +# eliminate element searched by value +de.remove(5) + +print("The deque after eliminating element searched by value : ") +print(de) From b738281f2b0cf44257e50b4f21ad74c8cbb1714e Mon Sep 17 00:00:00 2001 From: Shoaib Asgar Date: Tue, 1 Oct 2019 12:28:00 +0530 Subject: [PATCH 306/594] maths-polynomial_evalutation (#1214) * maths-polynomial_evalutation * added doctest and removed redundancy --- maths/polynomial_evaluation.py | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 maths/polynomial_evaluation.py diff --git a/maths/polynomial_evaluation.py b/maths/polynomial_evaluation.py new file mode 100644 index 000000000000..b4f18b9fa106 --- /dev/null +++ b/maths/polynomial_evaluation.py @@ -0,0 +1,25 @@ +def evaluate_poly(poly, x): + """ + Objective: Computes the polynomial function for a given value x. + Returns that value. + Input Prams: + poly: tuple of numbers - value of cofficients + x: value for x in f(x) + Return: value of f(x) + + >>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10) + 79800.0 + """ + + return sum(c*(x**i) for i, c in enumerate(poly)) + + +if __name__ == "__main__": + """ + Example: poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2 + x = -13 + print (evaluate_poly(poly, x)) # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9 + """ + poly = (0.0, 0.0, 5.0, 9.3, 7.0) + x = 10 + print(evaluate_poly(poly, x)) From df44d1b703d756f965f0085ac05e91810b8e9c21 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 2 Oct 2019 18:19:00 +0200 Subject: [PATCH 307/594] Update CONTRIBUTING.md (#1250) * Update CONTRIBUTING.md * Update CONTRIBUTING.md * Add Python type hints and mypy --- CONTRIBUTING.md | 88 ++++++++++++++++++++++++++++--------------------- 1 file changed, 51 insertions(+), 37 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 8c0f54ad528d..8cd03217d51f 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -23,26 +23,38 @@ We are very happy that you consider implementing algorithms and data structure f We appreciate any contribution, from fixing a grammar mistake in a comment to implementing complex algorithms. Please read this section if you are contributing your work. +Your contribution will be tested by our [automated testing on Travis CI](https://travis-ci.org/TheAlgorithms/Python/pull_requests) to save time and mental energy. After you have submitted your pull request, you should see the Travis tests start to run at the bottom of your submission page. If those tests fail, then click on the ___details___ button try to read through the Travis output to understand the failure. If you do not understand, please leave a comment on your submission page and a community member will try to help. + #### Coding Style We want your work to be readable by others; therefore, we encourage you to note the following: -- Please write in Python 3.x. -- Please consider running [__python/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not a requirement but it does make your code more readable. There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python core team. To use it, +- Please write in Python 3.7+. __print()__ is a function in Python 3 so __print "Hello"__ will _not_ work but __print("Hello")__ will. + +- Please focus hard on naming of functions, classes, and variables. Help your reader by using __descriptive names__ that can help you to remove redundant comments. + - Single letter variable names are _old school_ so please avoid them unless their life only spans a few lines. + - Expand acronyms because __gcd()__ is hard to understand but __greatest_common_divisor()__ is not. + - Please follow the [Python Naming Conventions](https://pep8.org/#prescriptive-naming-conventions) so variable_names and function_names should be lower_case, CONSTANTS in UPPERCASE, ClassNames should be CamelCase, etc. + +- We encourage the use of Python [f-strings](https://realpython.com/python-f-strings/#f-strings-a-new-and-improved-way-to-format-strings-in-python) where the make the code easier to read. + +- Please consider running [__psf/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not yet a requirement but it does make your code more readable and automatically aligns it with much of [PEP 8](https://www.python.org/dev/peps/pep-0008/). There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python Core Team. To use it, ```bash pip3 install black # only required the first time - black my-submission.py + black . ``` - All submissions will need to pass the test __flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics__ before they will be accepted so if possible, try this test locally on your Python file(s) before submitting your pull request. + ```bash + pip3 install flake8 # only required the first time + flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + ``` -- If you know [PEP 8](https://www.python.org/dev/peps/pep-0008/) already, you will have no problem in coding style, though we do not follow it strictly. Read the remaining section and have fun coding! - -- Always use 4 spaces to indent. +- Original code submission require docstrings or comments to describe your work. -- Original code submission requires comments to describe your work. +- More on docstrings and comments: -- More on comments and docstrings: + If you are using a Wikipedia article or some other source material to create your algorithm, please add the URL in a docstring or comment to help your reader. The following are considered to be bad and may be requested to be improved: @@ -52,34 +64,40 @@ We want your work to be readable by others; therefore, we encourage you to note This is too trivial. Comments are expected to be explanatory. For comments, you can write them above, on or below a line of code, as long as you are consistent within the same piece of code. - *Sometimes, docstrings are avoided.* This will happen if you are using some editors and not careful with indentation: + We encourage you to put docstrings inside your functions but please pay attention to indentation of docstrings. The following is acceptable in this case: ```python + def sumab(a, b): + """ + This function returns the sum of two integers a and b + Return: a + b """ - This function sums a and b - """ - def sum(a, b): return a + b ``` - However, if you insist to use docstrings, we encourage you to put docstrings inside functions. Also, please pay attention to indentation to docstrings. The following is acceptable in this case: +- Write tests (especially [__doctests__](https://docs.python.org/3/library/doctest.html)) to illustrate and verify your work. We highly encourage the use of _doctests on all functions_. ```python def sumab(a, b): """ - This function sums two integers a and b - Return: a + b + This function returns the sum of two integers a and b + Return: a + b + >>> sum(2, 2) + 4 + >>> sum(-2, 3) + 1 + >>> sum(4.9, 6.1) + 10.0 """ return a + b ``` -- `lambda`, `map`, `filter`, `reduce` and complicated list comprehension are welcome and acceptable to demonstrate the power of Python, as long as they are simple enough to read. - - - This is arguable: **write comments** and assign appropriate variable names, so that the code is easy to read! - -- Write tests to illustrate your work. + These doctests will be run by pytest as part of our automated testing so please try to run your doctests locally and make sure that they are found and pass: + ```bash + python3 -m doctest -v my_submission.py + ``` - The following "testing" approaches are **not** encouraged: + The use of the Python builtin __input()__ function is **not** encouraged: ```python input('Enter your input:') @@ -87,34 +105,31 @@ We want your work to be readable by others; therefore, we encourage you to note input = eval(input("Enter your input: ")) ``` - However, if your code uses __input()__ then we encourage you to gracefully deal with leading and trailing whitespace in user input by adding __.strip()__ to the end as in: + However, if your code uses __input()__ then we encourage you to gracefully deal with leading and trailing whitespace in user input by adding __.strip()__ as in: ```python starting_value = int(input("Please enter a starting value: ").strip()) ``` - - Please write down your test case, like the following: - - ```python - def sumab(a, b): - return a + b - # Write tests this way: - print(sumab(1, 2)) # 1+2 = 3 - print(sumab(6, 4)) # 6+4 = 10 - # Or this way: - print("1 + 2 = ", sumab(1, 2)) # 1+2 = 3 - print("6 + 4 = ", sumab(6, 4)) # 6+4 = 10 + + The use of [Python type hints](https://docs.python.org/3/library/typing.html) is encouraged for function parameters and return values. Our automated testing will run [mypy](http://mypy-lang.org) so run that locally before making your submission. +```python +def sumab(a: int, b: int) --> int: + pass ``` - Better yet, if you know how to write [__doctests__](https://docs.python.org/3/library/doctest.html), please consider adding them. +- [__list comprehensions and generators__](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions) are preferred over the use of `lambda`, `map`, `filter`, `reduce` but the important thing is to demonstrate the power of Python in code that is easy to read and maintain. - Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. +- If you need a third party module that is not in the file __requirements.txt__, please add it to that file as part of your submission. + #### Other Standard While Submitting Your Work - File extension for code should be `.py`. Jupiter notebook files are acceptable in machine learning algorithms. -- Strictly use snake case (underscore separated) in your file name, as it will be easy to parse in future using scripts. +- Please avoid creating new directories if at all possible. Try to fit your work into the existing directory structue. + +- Strictly use snake_case (underscore_separated) in your file_name, as it will be easy to parse in future using scripts. If possible, follow the standard *within* the folder you are submitting to. @@ -135,5 +150,4 @@ We want your work to be readable by others; therefore, we encourage you to note - Happy coding! - Writer [@poyea](https://github.com/poyea), Jun 2019. From b8490ed097d8baab3234c54f835b8a7a55454e52 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Thu, 3 Oct 2019 12:47:22 +0530 Subject: [PATCH 308/594] Removed owners from README (#1254) --- README.md | 12 ------------ 1 file changed, 12 deletions(-) diff --git a/README.md b/README.md index d4f4acbadb6d..a5af46ad8505 100644 --- a/README.md +++ b/README.md @@ -10,18 +10,6 @@ These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. -## Owners - -Anup Kumar Panwar -  [[Gmail](mailto:1anuppanwar@gmail.com?Subject=The%20Algorithms%20-%20Python) -  [GitHub](https://github.com/anupkumarpanwar) -  [LinkedIn](https://www.linkedin.com/in/anupkumarpanwar/)] - -Chetan Kaushik -  [[Gmail](mailto:dynamitechetan@gmail.com?Subject=The%20Algorithms%20-%20Python) -  [GitHub](https://github.com/dynamitechetan) -  [LinkedIn](https://www.linkedin.com/in/chetankaushik/)] - ## Contribution Guidelines Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. From 390feb0b23b4845a7ddfec7afd703aa053d1b224 Mon Sep 17 00:00:00 2001 From: Parth Paradkar Date: Thu, 3 Oct 2019 13:49:11 +0530 Subject: [PATCH 309/594] Add doctests for sorting algorithms (#1263) * doctests and intro docstring added * doctests, docstrings and check for empty collection added * Intro docstring added * python versions reversed --- sorts/pancake_sort.py | 28 +++++++++++++++++++++++----- sorts/pigeon_sort.py | 26 +++++++++++++++++++++++--- 2 files changed, 46 insertions(+), 8 deletions(-) diff --git a/sorts/pancake_sort.py b/sorts/pancake_sort.py index 3b48bc6e46d9..873c14a0a174 100644 --- a/sorts/pancake_sort.py +++ b/sorts/pancake_sort.py @@ -1,9 +1,25 @@ -"""Pancake Sort Algorithm.""" -# Only can reverse array from 0 to i - +""" +This is a pure python implementation of the pancake sort algorithm +For doctests run following command: +python3 -m doctest -v pancake_sort.py +or +python -m doctest -v pancake_sort.py +For manual testing run: +python pancake_sort.py +""" def pancake_sort(arr): - """Sort Array with Pancake Sort.""" + """Sort Array with Pancake Sort. + :param arr: Collection containing comparable items + :return: Collection ordered in ascending order of items + Examples: + >>> pancake_sort([0, 5, 3, 2, 2]) + [0, 2, 2, 3, 5] + >>> pancake_sort([]) + [] + >>> pancake_sort([-2, -5, -45]) + [-45, -5, -2] + """ cur = len(arr) while cur > 1: # Find the maximum number in arr @@ -17,4 +33,6 @@ def pancake_sort(arr): if __name__ == '__main__': - print(pancake_sort([0, 10, 15, 3, 2, 9, 14, 13])) + user_input = input('Enter numbers separated by a comma:\n').strip() + unsorted = [int(item) for item in user_input.split(',')] + print(pancake_sort(unsorted)) diff --git a/sorts/pigeon_sort.py b/sorts/pigeon_sort.py index 5e5afa137685..5417234d331b 100644 --- a/sorts/pigeon_sort.py +++ b/sorts/pigeon_sort.py @@ -1,7 +1,29 @@ ''' This is an implementation of Pigeon Hole Sort. + For doctests run following command: + + python3 -m doctest -v pigeon_sort.py + or + python -m doctest -v pigeon_sort.py + + For manual testing run: + python pigeon_sort.py ''' def pigeon_sort(array): + """ + Implementation of pigeon hole sort algorithm + :param array: Collection of comparable items + :return: Collection sorted in ascending order + >>> pigeon_sort([0, 5, 3, 2, 2]) + [0, 2, 2, 3, 5] + >>> pigeon_sort([]) + [] + >>> pigeon_sort([-2, -5, -45]) + [-45, -5, -2] + """ + if(len(array) == 0): + return array + # Manually finds the minimum and maximum of the array. min = array[0] max = array[0] @@ -37,6 +59,4 @@ def pigeon_sort(array): if __name__ == '__main__': user_input = input('Enter numbers separated by comma:\n') unsorted = [int(x) for x in user_input.split(',')] - sorted = pigeon_sort(unsorted) - - print(sorted) + print(pigeon_sort(unsorted)) From 0e333ae02193fca1046fcd65ff5202eb054cc04e Mon Sep 17 00:00:00 2001 From: William Zhang <39932068+WilliamHYZhang@users.noreply.github.com> Date: Thu, 3 Oct 2019 05:17:30 -0400 Subject: [PATCH 310/594] added bogobogosort (#1258) * added bogobogosort * fix indentation error --- sorts/bogo_bogo_sort.py | 54 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 sorts/bogo_bogo_sort.py diff --git a/sorts/bogo_bogo_sort.py b/sorts/bogo_bogo_sort.py new file mode 100644 index 000000000000..f26a46e78645 --- /dev/null +++ b/sorts/bogo_bogo_sort.py @@ -0,0 +1,54 @@ +""" +Python implementation of bogobogosort, a "sorting algorithm +designed not to succeed before the heat death of the universe +on any sizable list" - https://en.wikipedia.org/wiki/Bogosort. + +Author: WilliamHYZhang +""" + +import random + + +def bogo_bogo_sort(collection): + """ + returns the collection sorted in ascending order + :param collection: list of comparable items + :return: the list sorted in ascending order + + Examples: + >>> bogo_bogo_sort([0, 5, 3, 2, 2]) + [0, 2, 2, 3, 5] + >>> bogo_bogo_sort([-2, -5, -45]) + [-45, -5, -2] + >>> bogo_bogo_sort([420, 69]) + [69, 420] + """ + + def is_sorted(collection): + if len(collection) == 1: + return True + + clone = collection.copy() + while True: + random.shuffle(clone) + ordered = bogo_bogo_sort(clone[:-1]) + if clone[len(clone) - 1] >= max(ordered): + break + + for i in range(len(ordered)): + clone[i] = ordered[i] + + for i in range(len(collection)): + if clone[i] != collection[i]: + return False + return True + + while not is_sorted(collection): + random.shuffle(collection) + return collection + + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(bogo_bogo_sort(unsorted)) From 0e2d6b2963deff0a47c97c2b41deb69aed254350 Mon Sep 17 00:00:00 2001 From: Kaushik Amar Das Date: Thu, 3 Oct 2019 20:00:36 +0530 Subject: [PATCH 311/594] adding softmax function (#1267) * adding softmax function * wraped lines as asked --- maths/softmax.py | 56 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 maths/softmax.py diff --git a/maths/softmax.py b/maths/softmax.py new file mode 100644 index 000000000000..92ff4ca27b88 --- /dev/null +++ b/maths/softmax.py @@ -0,0 +1,56 @@ +""" +This script demonstrates the implementation of the Softmax function. + +Its a function that takes as input a vector of K real numbers, and normalizes +it into a probability distribution consisting of K probabilities proportional +to the exponentials of the input numbers. After softmax, the elements of the +vector always sum up to 1. + +Script inspired from its corresponding Wikipedia article +https://en.wikipedia.org/wiki/Softmax_function +""" + +import numpy as np + + +def softmax(vector): + """ + Implements the softmax function + + Parameters: + vector (np.array,list,tuple): A numpy array of shape (1,n) + consisting of real values or a similar list,tuple + + + Returns: + softmax_vec (np.array): The input numpy array after applying + softmax. + + The softmax vector adds up to one. We need to ceil to mitigate for + precision + >>> np.ceil(np.sum(softmax([1,2,3,4]))) + 1.0 + + >>> vec = np.array([5,5]) + >>> softmax(vec) + array([0.5, 0.5]) + + >>> softmax([0]) + array([1.]) + """ + + # Calculate e^x for each x in your vector where e is Euler's + # number (approximately 2.718) + exponentVector = np.exp(vector) + + # Add up the all the exponentials + sumOfExponents = np.sum(exponentVector) + + # Divide every exponent by the sum of all exponents + softmax_vector = exponentVector / sumOfExponents + + return softmax_vector + + +if __name__ == "__main__": + print(softmax((0,))) From 03aba96c0a28cf69e827b85dac1a463c74930530 Mon Sep 17 00:00:00 2001 From: Shubham garg <42842217+shubhamgarg2000@users.noreply.github.com> Date: Fri, 4 Oct 2019 01:01:11 +0530 Subject: [PATCH 312/594] added defination (#1244) --- arithmetic_analysis/newton_raphson_method.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/arithmetic_analysis/newton_raphson_method.py b/arithmetic_analysis/newton_raphson_method.py index bb6fdd2193ec..d17b57a2e670 100644 --- a/arithmetic_analysis/newton_raphson_method.py +++ b/arithmetic_analysis/newton_raphson_method.py @@ -1,6 +1,7 @@ # Implementing Newton Raphson method in Python # Author: Syed Haseeb Shah (github.com/QuantumNovice) - +#The Newton-Raphson method (also known as Newton's method) is a way to +#quickly find a good approximation for the root of a real-valued function from sympy import diff from decimal import Decimal From f970c730611ea1c4679b5db1708c2f2f2cb8dabc Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Thu, 3 Oct 2019 16:08:25 -0400 Subject: [PATCH 313/594] Add problem 23 solution (#1261) --- project_euler/problem_23/sol1.py | 51 ++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 project_euler/problem_23/sol1.py diff --git a/project_euler/problem_23/sol1.py b/project_euler/problem_23/sol1.py new file mode 100644 index 000000000000..e76be053040f --- /dev/null +++ b/project_euler/problem_23/sol1.py @@ -0,0 +1,51 @@ +""" +A perfect number is a number for which the sum of its proper divisors is exactly +equal to the number. For example, the sum of the proper divisors of 28 would be +1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. + +A number n is called deficient if the sum of its proper divisors is less than n +and it is called abundant if this sum exceeds n. + +As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest +number that can be written as the sum of two abundant numbers is 24. By +mathematical analysis, it can be shown that all integers greater than 28123 +can be written as the sum of two abundant numbers. However, this upper limit +cannot be reduced any further by analysis even though it is known that the +greatest number that cannot be expressed as the sum of two abundant numbers +is less than this limit. + +Find the sum of all the positive integers which cannot be written as the sum +of two abundant numbers. +""" + +def solution(limit = 28123): + """ + Finds the sum of all the positive integers which cannot be written as + the sum of two abundant numbers + as described by the statement above. + + >>> solution() + 4179871 + """ + sumDivs = [1] * (limit + 1) + + for i in range(2, int(limit ** 0.5) + 1): + sumDivs[i * i] += i + for k in range(i + 1, limit // i + 1): + sumDivs[k * i] += k + i + + abundants = set() + res = 0 + + for n in range(1, limit + 1): + if sumDivs[n] > n: + abundants.add(n) + + if not any((n - a in abundants) for a in abundants): + res+=n + + return res + + +if __name__ == "__main__": + print(solution()) From d28fc7120281d726741e3001d5750bd737a38c59 Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Thu, 3 Oct 2019 16:47:08 -0400 Subject: [PATCH 314/594] Add problem18 solution (#1260) --- project_euler/problem_18/solution.py | 64 +++++++++++++++++++++++++++ project_euler/problem_18/triangle.txt | 15 +++++++ 2 files changed, 79 insertions(+) create mode 100644 project_euler/problem_18/solution.py create mode 100644 project_euler/problem_18/triangle.txt diff --git a/project_euler/problem_18/solution.py b/project_euler/problem_18/solution.py new file mode 100644 index 000000000000..f9762e8b0176 --- /dev/null +++ b/project_euler/problem_18/solution.py @@ -0,0 +1,64 @@ +""" +By starting at the top of the triangle below and moving to adjacent numbers on +the row below, the maximum total from top to bottom is 23. + +3 +7 4 +2 4 6 +8 5 9 3 + +That is, 3 + 7 + 4 + 9 = 23. + +Find the maximum total from top to bottom of the triangle below: + +75 +95 64 +17 47 82 +18 35 87 10 +20 04 82 47 65 +19 01 23 75 03 34 +88 02 77 73 07 63 67 +99 65 04 28 06 16 70 92 +41 41 26 56 83 40 80 70 33 +41 48 72 33 47 32 37 16 94 29 +53 71 44 65 25 43 91 52 97 51 14 +70 11 33 28 77 73 17 78 39 68 17 57 +91 71 52 38 17 14 91 43 58 50 27 29 48 +63 66 04 68 89 53 67 30 73 16 69 87 40 31 +04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 +""" +import os + + +def solution(): + """ + Finds the maximum total in a triangle as described by the problem statement + above. + + >>> solution() + 1074 + """ + script_dir = os.path.dirname(os.path.realpath(__file__)) + triangle = os.path.join(script_dir, 'triangle.txt') + + with open(triangle, 'r') as f: + triangle = f.readlines() + + a = [[int(y) for y in x.rstrip('\r\n').split(' ')] for x in triangle] + + for i in range(1, len(a)): + for j in range(len(a[i])): + if j != len(a[i - 1]): + number1 = a[i - 1][j] + else: + number1 = 0 + if j > 0: + number2 = a[i - 1][j - 1] + else: + number2 = 0 + a[i][j] += max(number1, number2) + return max(a[-1]) + + +if __name__ == "__main__": + print(solution()) diff --git a/project_euler/problem_18/triangle.txt b/project_euler/problem_18/triangle.txt new file mode 100644 index 000000000000..e236c2ff7ee2 --- /dev/null +++ b/project_euler/problem_18/triangle.txt @@ -0,0 +1,15 @@ +75 +95 64 +17 47 82 +18 35 87 10 +20 04 82 47 65 +19 01 23 75 03 34 +88 02 77 73 07 63 67 +99 65 04 28 06 16 70 92 +41 41 26 56 83 40 80 70 33 +41 48 72 33 47 32 37 16 94 29 +53 71 44 65 25 43 91 52 97 51 14 +70 11 33 28 77 73 17 78 39 68 17 57 +91 71 52 38 17 14 91 43 58 50 27 29 48 +63 66 04 68 89 53 67 30 73 16 69 87 40 31 +04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 From 6e6920866662f314a9cbb125667c64e421046a4b Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Thu, 3 Oct 2019 16:47:39 -0400 Subject: [PATCH 315/594] Add problem 32 solution (#1257) --- project_euler/problem_32/solution.py | 62 ++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 project_euler/problem_32/solution.py diff --git a/project_euler/problem_32/solution.py b/project_euler/problem_32/solution.py new file mode 100644 index 000000000000..fd5178303de3 --- /dev/null +++ b/project_euler/problem_32/solution.py @@ -0,0 +1,62 @@ +""" +We shall say that an n-digit number is pandigital if it makes use of all the +digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through +5 pandigital. + +The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing +multiplicand, multiplier, and product is 1 through 9 pandigital. + +Find the sum of all products whose multiplicand/multiplier/product identity can +be written as a 1 through 9 pandigital. + +HINT: Some products can be obtained in more than one way so be sure to only +include it once in your sum. +""" +import itertools + + +def isCombinationValid(combination): + """ + Checks if a combination (a tuple of 9 digits) + is a valid product equation. + + >>> isCombinationValid(('3', '9', '1', '8', '6', '7', '2', '5', '4')) + True + + >>> isCombinationValid(('1', '2', '3', '4', '5', '6', '7', '8', '9')) + False + + """ + return ( + int(''.join(combination[0:2])) * + int(''.join(combination[2:5])) == + int(''.join(combination[5:9])) + ) or ( + int(''.join(combination[0])) * + int(''.join(combination[1:5])) == + int(''.join(combination[5:9])) + ) + + +def solution(): + """ + Finds the sum of all products whose multiplicand/multiplier/product identity + can be written as a 1 through 9 pandigital + + >>> solution() + 45228 + """ + + return sum( + set( + [ + int(''.join(pandigital[5:9])) + for pandigital + in itertools.permutations('123456789') + if isCombinationValid(pandigital) + ] + ) + ) + +if __name__ == "__main__": + print(solution()) From 309204a5813cae19e2397f5aeb27fefb7dfac514 Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Thu, 3 Oct 2019 16:48:53 -0400 Subject: [PATCH 316/594] Add problem 42 solution (#1259) --- project_euler/problem_42/solution.py | 50 ++++++++++++++++++++++++++++ project_euler/problem_42/words.txt | 1 + 2 files changed, 51 insertions(+) create mode 100644 project_euler/problem_42/solution.py create mode 100644 project_euler/problem_42/words.txt diff --git a/project_euler/problem_42/solution.py b/project_euler/problem_42/solution.py new file mode 100644 index 000000000000..ff976545055d --- /dev/null +++ b/project_euler/problem_42/solution.py @@ -0,0 +1,50 @@ +""" +The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so +the first ten triangle numbers are: + +1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... + +By converting each letter in a word to a number corresponding to its +alphabetical position and adding these values we form a word value. For example, +the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a +triangle number then we shall call the word a triangle word. + +Using words.txt (right click and 'Save Link/Target As...'), a 16K text file +containing nearly two-thousand common English words, how many are triangle +words? +""" +import os + + +# Precomputes a list of the 100 first triangular numbers +TRIANGULAR_NUMBERS = [int(0.5 * n * (n + 1)) for n in range(1, 101)] + + +def solution(): + """ + Finds the amount of triangular words in the words file. + + >>> solution() + 162 + """ + script_dir = os.path.dirname(os.path.realpath(__file__)) + wordsFilePath = os.path.join(script_dir, 'words.txt') + + words = '' + with open(wordsFilePath, 'r') as f: + words = f.readline() + + words = list(map(lambda word: word.strip('"'), words.strip('\r\n').split(','))) + words = list( + filter( + lambda word: word in TRIANGULAR_NUMBERS, + map( + lambda word: sum(map(lambda x: ord(x) - 64, word)), + words + ) + ) + ) + return len(words) + +if __name__ == '__main__': + print(solution()) diff --git a/project_euler/problem_42/words.txt b/project_euler/problem_42/words.txt new file mode 100644 index 000000000000..af3aeb42f151 --- /dev/null +++ b/project_euler/problem_42/words.txt @@ -0,0 +1 @@ +"A","ABILITY","ABLE","ABOUT","ABOVE","ABSENCE","ABSOLUTELY","ACADEMIC","ACCEPT","ACCESS","ACCIDENT","ACCOMPANY","ACCORDING","ACCOUNT","ACHIEVE","ACHIEVEMENT","ACID","ACQUIRE","ACROSS","ACT","ACTION","ACTIVE","ACTIVITY","ACTUAL","ACTUALLY","ADD","ADDITION","ADDITIONAL","ADDRESS","ADMINISTRATION","ADMIT","ADOPT","ADULT","ADVANCE","ADVANTAGE","ADVICE","ADVISE","AFFAIR","AFFECT","AFFORD","AFRAID","AFTER","AFTERNOON","AFTERWARDS","AGAIN","AGAINST","AGE","AGENCY","AGENT","AGO","AGREE","AGREEMENT","AHEAD","AID","AIM","AIR","AIRCRAFT","ALL","ALLOW","ALMOST","ALONE","ALONG","ALREADY","ALRIGHT","ALSO","ALTERNATIVE","ALTHOUGH","ALWAYS","AMONG","AMONGST","AMOUNT","AN","ANALYSIS","ANCIENT","AND","ANIMAL","ANNOUNCE","ANNUAL","ANOTHER","ANSWER","ANY","ANYBODY","ANYONE","ANYTHING","ANYWAY","APART","APPARENT","APPARENTLY","APPEAL","APPEAR","APPEARANCE","APPLICATION","APPLY","APPOINT","APPOINTMENT","APPROACH","APPROPRIATE","APPROVE","AREA","ARGUE","ARGUMENT","ARISE","ARM","ARMY","AROUND","ARRANGE","ARRANGEMENT","ARRIVE","ART","ARTICLE","ARTIST","AS","ASK","ASPECT","ASSEMBLY","ASSESS","ASSESSMENT","ASSET","ASSOCIATE","ASSOCIATION","ASSUME","ASSUMPTION","AT","ATMOSPHERE","ATTACH","ATTACK","ATTEMPT","ATTEND","ATTENTION","ATTITUDE","ATTRACT","ATTRACTIVE","AUDIENCE","AUTHOR","AUTHORITY","AVAILABLE","AVERAGE","AVOID","AWARD","AWARE","AWAY","AYE","BABY","BACK","BACKGROUND","BAD","BAG","BALANCE","BALL","BAND","BANK","BAR","BASE","BASIC","BASIS","BATTLE","BE","BEAR","BEAT","BEAUTIFUL","BECAUSE","BECOME","BED","BEDROOM","BEFORE","BEGIN","BEGINNING","BEHAVIOUR","BEHIND","BELIEF","BELIEVE","BELONG","BELOW","BENEATH","BENEFIT","BESIDE","BEST","BETTER","BETWEEN","BEYOND","BIG","BILL","BIND","BIRD","BIRTH","BIT","BLACK","BLOCK","BLOOD","BLOODY","BLOW","BLUE","BOARD","BOAT","BODY","BONE","BOOK","BORDER","BOTH","BOTTLE","BOTTOM","BOX","BOY","BRAIN","BRANCH","BREAK","BREATH","BRIDGE","BRIEF","BRIGHT","BRING","BROAD","BROTHER","BUDGET","BUILD","BUILDING","BURN","BUS","BUSINESS","BUSY","BUT","BUY","BY","CABINET","CALL","CAMPAIGN","CAN","CANDIDATE","CAPABLE","CAPACITY","CAPITAL","CAR","CARD","CARE","CAREER","CAREFUL","CAREFULLY","CARRY","CASE","CASH","CAT","CATCH","CATEGORY","CAUSE","CELL","CENTRAL","CENTRE","CENTURY","CERTAIN","CERTAINLY","CHAIN","CHAIR","CHAIRMAN","CHALLENGE","CHANCE","CHANGE","CHANNEL","CHAPTER","CHARACTER","CHARACTERISTIC","CHARGE","CHEAP","CHECK","CHEMICAL","CHIEF","CHILD","CHOICE","CHOOSE","CHURCH","CIRCLE","CIRCUMSTANCE","CITIZEN","CITY","CIVIL","CLAIM","CLASS","CLEAN","CLEAR","CLEARLY","CLIENT","CLIMB","CLOSE","CLOSELY","CLOTHES","CLUB","COAL","CODE","COFFEE","COLD","COLLEAGUE","COLLECT","COLLECTION","COLLEGE","COLOUR","COMBINATION","COMBINE","COME","COMMENT","COMMERCIAL","COMMISSION","COMMIT","COMMITMENT","COMMITTEE","COMMON","COMMUNICATION","COMMUNITY","COMPANY","COMPARE","COMPARISON","COMPETITION","COMPLETE","COMPLETELY","COMPLEX","COMPONENT","COMPUTER","CONCENTRATE","CONCENTRATION","CONCEPT","CONCERN","CONCERNED","CONCLUDE","CONCLUSION","CONDITION","CONDUCT","CONFERENCE","CONFIDENCE","CONFIRM","CONFLICT","CONGRESS","CONNECT","CONNECTION","CONSEQUENCE","CONSERVATIVE","CONSIDER","CONSIDERABLE","CONSIDERATION","CONSIST","CONSTANT","CONSTRUCTION","CONSUMER","CONTACT","CONTAIN","CONTENT","CONTEXT","CONTINUE","CONTRACT","CONTRAST","CONTRIBUTE","CONTRIBUTION","CONTROL","CONVENTION","CONVERSATION","COPY","CORNER","CORPORATE","CORRECT","COS","COST","COULD","COUNCIL","COUNT","COUNTRY","COUNTY","COUPLE","COURSE","COURT","COVER","CREATE","CREATION","CREDIT","CRIME","CRIMINAL","CRISIS","CRITERION","CRITICAL","CRITICISM","CROSS","CROWD","CRY","CULTURAL","CULTURE","CUP","CURRENT","CURRENTLY","CURRICULUM","CUSTOMER","CUT","DAMAGE","DANGER","DANGEROUS","DARK","DATA","DATE","DAUGHTER","DAY","DEAD","DEAL","DEATH","DEBATE","DEBT","DECADE","DECIDE","DECISION","DECLARE","DEEP","DEFENCE","DEFENDANT","DEFINE","DEFINITION","DEGREE","DELIVER","DEMAND","DEMOCRATIC","DEMONSTRATE","DENY","DEPARTMENT","DEPEND","DEPUTY","DERIVE","DESCRIBE","DESCRIPTION","DESIGN","DESIRE","DESK","DESPITE","DESTROY","DETAIL","DETAILED","DETERMINE","DEVELOP","DEVELOPMENT","DEVICE","DIE","DIFFERENCE","DIFFERENT","DIFFICULT","DIFFICULTY","DINNER","DIRECT","DIRECTION","DIRECTLY","DIRECTOR","DISAPPEAR","DISCIPLINE","DISCOVER","DISCUSS","DISCUSSION","DISEASE","DISPLAY","DISTANCE","DISTINCTION","DISTRIBUTION","DISTRICT","DIVIDE","DIVISION","DO","DOCTOR","DOCUMENT","DOG","DOMESTIC","DOOR","DOUBLE","DOUBT","DOWN","DRAW","DRAWING","DREAM","DRESS","DRINK","DRIVE","DRIVER","DROP","DRUG","DRY","DUE","DURING","DUTY","EACH","EAR","EARLY","EARN","EARTH","EASILY","EAST","EASY","EAT","ECONOMIC","ECONOMY","EDGE","EDITOR","EDUCATION","EDUCATIONAL","EFFECT","EFFECTIVE","EFFECTIVELY","EFFORT","EGG","EITHER","ELDERLY","ELECTION","ELEMENT","ELSE","ELSEWHERE","EMERGE","EMPHASIS","EMPLOY","EMPLOYEE","EMPLOYER","EMPLOYMENT","EMPTY","ENABLE","ENCOURAGE","END","ENEMY","ENERGY","ENGINE","ENGINEERING","ENJOY","ENOUGH","ENSURE","ENTER","ENTERPRISE","ENTIRE","ENTIRELY","ENTITLE","ENTRY","ENVIRONMENT","ENVIRONMENTAL","EQUAL","EQUALLY","EQUIPMENT","ERROR","ESCAPE","ESPECIALLY","ESSENTIAL","ESTABLISH","ESTABLISHMENT","ESTATE","ESTIMATE","EVEN","EVENING","EVENT","EVENTUALLY","EVER","EVERY","EVERYBODY","EVERYONE","EVERYTHING","EVIDENCE","EXACTLY","EXAMINATION","EXAMINE","EXAMPLE","EXCELLENT","EXCEPT","EXCHANGE","EXECUTIVE","EXERCISE","EXHIBITION","EXIST","EXISTENCE","EXISTING","EXPECT","EXPECTATION","EXPENDITURE","EXPENSE","EXPENSIVE","EXPERIENCE","EXPERIMENT","EXPERT","EXPLAIN","EXPLANATION","EXPLORE","EXPRESS","EXPRESSION","EXTEND","EXTENT","EXTERNAL","EXTRA","EXTREMELY","EYE","FACE","FACILITY","FACT","FACTOR","FACTORY","FAIL","FAILURE","FAIR","FAIRLY","FAITH","FALL","FAMILIAR","FAMILY","FAMOUS","FAR","FARM","FARMER","FASHION","FAST","FATHER","FAVOUR","FEAR","FEATURE","FEE","FEEL","FEELING","FEMALE","FEW","FIELD","FIGHT","FIGURE","FILE","FILL","FILM","FINAL","FINALLY","FINANCE","FINANCIAL","FIND","FINDING","FINE","FINGER","FINISH","FIRE","FIRM","FIRST","FISH","FIT","FIX","FLAT","FLIGHT","FLOOR","FLOW","FLOWER","FLY","FOCUS","FOLLOW","FOLLOWING","FOOD","FOOT","FOOTBALL","FOR","FORCE","FOREIGN","FOREST","FORGET","FORM","FORMAL","FORMER","FORWARD","FOUNDATION","FREE","FREEDOM","FREQUENTLY","FRESH","FRIEND","FROM","FRONT","FRUIT","FUEL","FULL","FULLY","FUNCTION","FUND","FUNNY","FURTHER","FUTURE","GAIN","GAME","GARDEN","GAS","GATE","GATHER","GENERAL","GENERALLY","GENERATE","GENERATION","GENTLEMAN","GET","GIRL","GIVE","GLASS","GO","GOAL","GOD","GOLD","GOOD","GOVERNMENT","GRANT","GREAT","GREEN","GREY","GROUND","GROUP","GROW","GROWING","GROWTH","GUEST","GUIDE","GUN","HAIR","HALF","HALL","HAND","HANDLE","HANG","HAPPEN","HAPPY","HARD","HARDLY","HATE","HAVE","HE","HEAD","HEALTH","HEAR","HEART","HEAT","HEAVY","HELL","HELP","HENCE","HER","HERE","HERSELF","HIDE","HIGH","HIGHLY","HILL","HIM","HIMSELF","HIS","HISTORICAL","HISTORY","HIT","HOLD","HOLE","HOLIDAY","HOME","HOPE","HORSE","HOSPITAL","HOT","HOTEL","HOUR","HOUSE","HOUSEHOLD","HOUSING","HOW","HOWEVER","HUGE","HUMAN","HURT","HUSBAND","I","IDEA","IDENTIFY","IF","IGNORE","ILLUSTRATE","IMAGE","IMAGINE","IMMEDIATE","IMMEDIATELY","IMPACT","IMPLICATION","IMPLY","IMPORTANCE","IMPORTANT","IMPOSE","IMPOSSIBLE","IMPRESSION","IMPROVE","IMPROVEMENT","IN","INCIDENT","INCLUDE","INCLUDING","INCOME","INCREASE","INCREASED","INCREASINGLY","INDEED","INDEPENDENT","INDEX","INDICATE","INDIVIDUAL","INDUSTRIAL","INDUSTRY","INFLUENCE","INFORM","INFORMATION","INITIAL","INITIATIVE","INJURY","INSIDE","INSIST","INSTANCE","INSTEAD","INSTITUTE","INSTITUTION","INSTRUCTION","INSTRUMENT","INSURANCE","INTEND","INTENTION","INTEREST","INTERESTED","INTERESTING","INTERNAL","INTERNATIONAL","INTERPRETATION","INTERVIEW","INTO","INTRODUCE","INTRODUCTION","INVESTIGATE","INVESTIGATION","INVESTMENT","INVITE","INVOLVE","IRON","IS","ISLAND","ISSUE","IT","ITEM","ITS","ITSELF","JOB","JOIN","JOINT","JOURNEY","JUDGE","JUMP","JUST","JUSTICE","KEEP","KEY","KID","KILL","KIND","KING","KITCHEN","KNEE","KNOW","KNOWLEDGE","LABOUR","LACK","LADY","LAND","LANGUAGE","LARGE","LARGELY","LAST","LATE","LATER","LATTER","LAUGH","LAUNCH","LAW","LAWYER","LAY","LEAD","LEADER","LEADERSHIP","LEADING","LEAF","LEAGUE","LEAN","LEARN","LEAST","LEAVE","LEFT","LEG","LEGAL","LEGISLATION","LENGTH","LESS","LET","LETTER","LEVEL","LIABILITY","LIBERAL","LIBRARY","LIE","LIFE","LIFT","LIGHT","LIKE","LIKELY","LIMIT","LIMITED","LINE","LINK","LIP","LIST","LISTEN","LITERATURE","LITTLE","LIVE","LIVING","LOAN","LOCAL","LOCATION","LONG","LOOK","LORD","LOSE","LOSS","LOT","LOVE","LOVELY","LOW","LUNCH","MACHINE","MAGAZINE","MAIN","MAINLY","MAINTAIN","MAJOR","MAJORITY","MAKE","MALE","MAN","MANAGE","MANAGEMENT","MANAGER","MANNER","MANY","MAP","MARK","MARKET","MARRIAGE","MARRIED","MARRY","MASS","MASTER","MATCH","MATERIAL","MATTER","MAY","MAYBE","ME","MEAL","MEAN","MEANING","MEANS","MEANWHILE","MEASURE","MECHANISM","MEDIA","MEDICAL","MEET","MEETING","MEMBER","MEMBERSHIP","MEMORY","MENTAL","MENTION","MERELY","MESSAGE","METAL","METHOD","MIDDLE","MIGHT","MILE","MILITARY","MILK","MIND","MINE","MINISTER","MINISTRY","MINUTE","MISS","MISTAKE","MODEL","MODERN","MODULE","MOMENT","MONEY","MONTH","MORE","MORNING","MOST","MOTHER","MOTION","MOTOR","MOUNTAIN","MOUTH","MOVE","MOVEMENT","MUCH","MURDER","MUSEUM","MUSIC","MUST","MY","MYSELF","NAME","NARROW","NATION","NATIONAL","NATURAL","NATURE","NEAR","NEARLY","NECESSARILY","NECESSARY","NECK","NEED","NEGOTIATION","NEIGHBOUR","NEITHER","NETWORK","NEVER","NEVERTHELESS","NEW","NEWS","NEWSPAPER","NEXT","NICE","NIGHT","NO","NOBODY","NOD","NOISE","NONE","NOR","NORMAL","NORMALLY","NORTH","NORTHERN","NOSE","NOT","NOTE","NOTHING","NOTICE","NOTION","NOW","NUCLEAR","NUMBER","NURSE","OBJECT","OBJECTIVE","OBSERVATION","OBSERVE","OBTAIN","OBVIOUS","OBVIOUSLY","OCCASION","OCCUR","ODD","OF","OFF","OFFENCE","OFFER","OFFICE","OFFICER","OFFICIAL","OFTEN","OIL","OKAY","OLD","ON","ONCE","ONE","ONLY","ONTO","OPEN","OPERATE","OPERATION","OPINION","OPPORTUNITY","OPPOSITION","OPTION","OR","ORDER","ORDINARY","ORGANISATION","ORGANISE","ORGANIZATION","ORIGIN","ORIGINAL","OTHER","OTHERWISE","OUGHT","OUR","OURSELVES","OUT","OUTCOME","OUTPUT","OUTSIDE","OVER","OVERALL","OWN","OWNER","PACKAGE","PAGE","PAIN","PAINT","PAINTING","PAIR","PANEL","PAPER","PARENT","PARK","PARLIAMENT","PART","PARTICULAR","PARTICULARLY","PARTLY","PARTNER","PARTY","PASS","PASSAGE","PAST","PATH","PATIENT","PATTERN","PAY","PAYMENT","PEACE","PENSION","PEOPLE","PER","PERCENT","PERFECT","PERFORM","PERFORMANCE","PERHAPS","PERIOD","PERMANENT","PERSON","PERSONAL","PERSUADE","PHASE","PHONE","PHOTOGRAPH","PHYSICAL","PICK","PICTURE","PIECE","PLACE","PLAN","PLANNING","PLANT","PLASTIC","PLATE","PLAY","PLAYER","PLEASE","PLEASURE","PLENTY","PLUS","POCKET","POINT","POLICE","POLICY","POLITICAL","POLITICS","POOL","POOR","POPULAR","POPULATION","POSITION","POSITIVE","POSSIBILITY","POSSIBLE","POSSIBLY","POST","POTENTIAL","POUND","POWER","POWERFUL","PRACTICAL","PRACTICE","PREFER","PREPARE","PRESENCE","PRESENT","PRESIDENT","PRESS","PRESSURE","PRETTY","PREVENT","PREVIOUS","PREVIOUSLY","PRICE","PRIMARY","PRIME","PRINCIPLE","PRIORITY","PRISON","PRISONER","PRIVATE","PROBABLY","PROBLEM","PROCEDURE","PROCESS","PRODUCE","PRODUCT","PRODUCTION","PROFESSIONAL","PROFIT","PROGRAM","PROGRAMME","PROGRESS","PROJECT","PROMISE","PROMOTE","PROPER","PROPERLY","PROPERTY","PROPORTION","PROPOSE","PROPOSAL","PROSPECT","PROTECT","PROTECTION","PROVE","PROVIDE","PROVIDED","PROVISION","PUB","PUBLIC","PUBLICATION","PUBLISH","PULL","PUPIL","PURPOSE","PUSH","PUT","QUALITY","QUARTER","QUESTION","QUICK","QUICKLY","QUIET","QUITE","RACE","RADIO","RAILWAY","RAIN","RAISE","RANGE","RAPIDLY","RARE","RATE","RATHER","REACH","REACTION","READ","READER","READING","READY","REAL","REALISE","REALITY","REALIZE","REALLY","REASON","REASONABLE","RECALL","RECEIVE","RECENT","RECENTLY","RECOGNISE","RECOGNITION","RECOGNIZE","RECOMMEND","RECORD","RECOVER","RED","REDUCE","REDUCTION","REFER","REFERENCE","REFLECT","REFORM","REFUSE","REGARD","REGION","REGIONAL","REGULAR","REGULATION","REJECT","RELATE","RELATION","RELATIONSHIP","RELATIVE","RELATIVELY","RELEASE","RELEVANT","RELIEF","RELIGION","RELIGIOUS","RELY","REMAIN","REMEMBER","REMIND","REMOVE","REPEAT","REPLACE","REPLY","REPORT","REPRESENT","REPRESENTATION","REPRESENTATIVE","REQUEST","REQUIRE","REQUIREMENT","RESEARCH","RESOURCE","RESPECT","RESPOND","RESPONSE","RESPONSIBILITY","RESPONSIBLE","REST","RESTAURANT","RESULT","RETAIN","RETURN","REVEAL","REVENUE","REVIEW","REVOLUTION","RICH","RIDE","RIGHT","RING","RISE","RISK","RIVER","ROAD","ROCK","ROLE","ROLL","ROOF","ROOM","ROUND","ROUTE","ROW","ROYAL","RULE","RUN","RURAL","SAFE","SAFETY","SALE","SAME","SAMPLE","SATISFY","SAVE","SAY","SCALE","SCENE","SCHEME","SCHOOL","SCIENCE","SCIENTIFIC","SCIENTIST","SCORE","SCREEN","SEA","SEARCH","SEASON","SEAT","SECOND","SECONDARY","SECRETARY","SECTION","SECTOR","SECURE","SECURITY","SEE","SEEK","SEEM","SELECT","SELECTION","SELL","SEND","SENIOR","SENSE","SENTENCE","SEPARATE","SEQUENCE","SERIES","SERIOUS","SERIOUSLY","SERVANT","SERVE","SERVICE","SESSION","SET","SETTLE","SETTLEMENT","SEVERAL","SEVERE","SEX","SEXUAL","SHAKE","SHALL","SHAPE","SHARE","SHE","SHEET","SHIP","SHOE","SHOOT","SHOP","SHORT","SHOT","SHOULD","SHOULDER","SHOUT","SHOW","SHUT","SIDE","SIGHT","SIGN","SIGNAL","SIGNIFICANCE","SIGNIFICANT","SILENCE","SIMILAR","SIMPLE","SIMPLY","SINCE","SING","SINGLE","SIR","SISTER","SIT","SITE","SITUATION","SIZE","SKILL","SKIN","SKY","SLEEP","SLIGHTLY","SLIP","SLOW","SLOWLY","SMALL","SMILE","SO","SOCIAL","SOCIETY","SOFT","SOFTWARE","SOIL","SOLDIER","SOLICITOR","SOLUTION","SOME","SOMEBODY","SOMEONE","SOMETHING","SOMETIMES","SOMEWHAT","SOMEWHERE","SON","SONG","SOON","SORRY","SORT","SOUND","SOURCE","SOUTH","SOUTHERN","SPACE","SPEAK","SPEAKER","SPECIAL","SPECIES","SPECIFIC","SPEECH","SPEED","SPEND","SPIRIT","SPORT","SPOT","SPREAD","SPRING","STAFF","STAGE","STAND","STANDARD","STAR","START","STATE","STATEMENT","STATION","STATUS","STAY","STEAL","STEP","STICK","STILL","STOCK","STONE","STOP","STORE","STORY","STRAIGHT","STRANGE","STRATEGY","STREET","STRENGTH","STRIKE","STRONG","STRONGLY","STRUCTURE","STUDENT","STUDIO","STUDY","STUFF","STYLE","SUBJECT","SUBSTANTIAL","SUCCEED","SUCCESS","SUCCESSFUL","SUCH","SUDDENLY","SUFFER","SUFFICIENT","SUGGEST","SUGGESTION","SUITABLE","SUM","SUMMER","SUN","SUPPLY","SUPPORT","SUPPOSE","SURE","SURELY","SURFACE","SURPRISE","SURROUND","SURVEY","SURVIVE","SWITCH","SYSTEM","TABLE","TAKE","TALK","TALL","TAPE","TARGET","TASK","TAX","TEA","TEACH","TEACHER","TEACHING","TEAM","TEAR","TECHNICAL","TECHNIQUE","TECHNOLOGY","TELEPHONE","TELEVISION","TELL","TEMPERATURE","TEND","TERM","TERMS","TERRIBLE","TEST","TEXT","THAN","THANK","THANKS","THAT","THE","THEATRE","THEIR","THEM","THEME","THEMSELVES","THEN","THEORY","THERE","THEREFORE","THESE","THEY","THIN","THING","THINK","THIS","THOSE","THOUGH","THOUGHT","THREAT","THREATEN","THROUGH","THROUGHOUT","THROW","THUS","TICKET","TIME","TINY","TITLE","TO","TODAY","TOGETHER","TOMORROW","TONE","TONIGHT","TOO","TOOL","TOOTH","TOP","TOTAL","TOTALLY","TOUCH","TOUR","TOWARDS","TOWN","TRACK","TRADE","TRADITION","TRADITIONAL","TRAFFIC","TRAIN","TRAINING","TRANSFER","TRANSPORT","TRAVEL","TREAT","TREATMENT","TREATY","TREE","TREND","TRIAL","TRIP","TROOP","TROUBLE","TRUE","TRUST","TRUTH","TRY","TURN","TWICE","TYPE","TYPICAL","UNABLE","UNDER","UNDERSTAND","UNDERSTANDING","UNDERTAKE","UNEMPLOYMENT","UNFORTUNATELY","UNION","UNIT","UNITED","UNIVERSITY","UNLESS","UNLIKELY","UNTIL","UP","UPON","UPPER","URBAN","US","USE","USED","USEFUL","USER","USUAL","USUALLY","VALUE","VARIATION","VARIETY","VARIOUS","VARY","VAST","VEHICLE","VERSION","VERY","VIA","VICTIM","VICTORY","VIDEO","VIEW","VILLAGE","VIOLENCE","VISION","VISIT","VISITOR","VITAL","VOICE","VOLUME","VOTE","WAGE","WAIT","WALK","WALL","WANT","WAR","WARM","WARN","WASH","WATCH","WATER","WAVE","WAY","WE","WEAK","WEAPON","WEAR","WEATHER","WEEK","WEEKEND","WEIGHT","WELCOME","WELFARE","WELL","WEST","WESTERN","WHAT","WHATEVER","WHEN","WHERE","WHEREAS","WHETHER","WHICH","WHILE","WHILST","WHITE","WHO","WHOLE","WHOM","WHOSE","WHY","WIDE","WIDELY","WIFE","WILD","WILL","WIN","WIND","WINDOW","WINE","WING","WINNER","WINTER","WISH","WITH","WITHDRAW","WITHIN","WITHOUT","WOMAN","WONDER","WONDERFUL","WOOD","WORD","WORK","WORKER","WORKING","WORKS","WORLD","WORRY","WORTH","WOULD","WRITE","WRITER","WRITING","WRONG","YARD","YEAH","YEAR","YES","YESTERDAY","YET","YOU","YOUNG","YOUR","YOURSELF","YOUTH" From 07f04a2e5523f91954d7c468e94b395457ea3b7d Mon Sep 17 00:00:00 2001 From: Kaushik Amar Das Date: Fri, 4 Oct 2019 13:29:45 +0530 Subject: [PATCH 317/594] adding jaccard similarity (#1270) * adding jaccard similarity * renaming files. zeebus! what an headache --- maths/jaccard_similarity.py | 80 +++++++++++++++++++ .../problem_32/{solution.py => sol32.py} | 0 .../problem_42/{solution.py => solution42.py} | 0 3 files changed, 80 insertions(+) create mode 100644 maths/jaccard_similarity.py rename project_euler/problem_32/{solution.py => sol32.py} (100%) rename project_euler/problem_42/{solution.py => solution42.py} (100%) diff --git a/maths/jaccard_similarity.py b/maths/jaccard_similarity.py new file mode 100644 index 000000000000..4f24d308f340 --- /dev/null +++ b/maths/jaccard_similarity.py @@ -0,0 +1,80 @@ +""" +The Jaccard similarity coefficient is a commonly used indicator of the +similarity between two sets. Let U be a set and A and B be subsets of U, +then the Jaccard index/similarity is defined to be the ratio of the number +of elements of their intersection and the number of elements of their union. + +Inspired from Wikipedia and +the book Mining of Massive Datasets [MMDS 2nd Edition, Chapter 3] + +https://en.wikipedia.org/wiki/Jaccard_index +https://mmds.org + +Jaccard similarity is widely used with MinHashing. +""" + + +def jaccard_similariy(setA, setB, alternativeUnion=False): + """ + Finds the jaccard similarity between two sets. + Essentially, its intersection over union. + + The alternative way to calculate this is to take union as sum of the + number of items in the two sets. This will lead to jaccard similarity + of a set with itself be 1/2 instead of 1. [MMDS 2nd Edition, Page 77] + + Parameters: + :setA (set,list,tuple): A non-empty set/list + :setB (set,list,tuple): A non-empty set/list + :alternativeUnion (boolean): If True, use sum of number of + items as union + + Output: + (float) The jaccard similarity between the two sets. + + Examples: + >>> setA = {'a', 'b', 'c', 'd', 'e'} + >>> setB = {'c', 'd', 'e', 'f', 'h', 'i'} + >>> jaccard_similariy(setA,setB) + 0.375 + + >>> jaccard_similariy(setA,setA) + 1.0 + + >>> jaccard_similariy(setA,setA,True) + 0.5 + + >>> setA = ['a', 'b', 'c', 'd', 'e'] + >>> setB = ('c', 'd', 'e', 'f', 'h', 'i') + >>> jaccard_similariy(setA,setB) + 0.375 + """ + + if isinstance(setA, set) and isinstance(setB, set): + + intersection = len(setA.intersection(setB)) + + if alternativeUnion: + union = len(setA) + len(setB) + else: + union = len(setA.union(setB)) + + return intersection / union + + if isinstance(setA, (list, tuple)) and isinstance(setB, (list, tuple)): + + intersection = [element for element in setA if element in setB] + + if alternativeUnion: + union = len(setA) + len(setB) + else: + union = setA + [element for element in setB if element not in setA] + + return len(intersection) / len(union) + + +if __name__ == "__main__": + + setA = {"a", "b", "c", "d", "e"} + setB = {"c", "d", "e", "f", "h", "i"} + print(jaccard_similariy(setA, setB)) diff --git a/project_euler/problem_32/solution.py b/project_euler/problem_32/sol32.py similarity index 100% rename from project_euler/problem_32/solution.py rename to project_euler/problem_32/sol32.py diff --git a/project_euler/problem_42/solution.py b/project_euler/problem_42/solution42.py similarity index 100% rename from project_euler/problem_42/solution.py rename to project_euler/problem_42/solution42.py From 9eac17a4083ad08c4bb0520cb0b8e5ce385f9ce0 Mon Sep 17 00:00:00 2001 From: William Zhang <39932068+WilliamHYZhang@users.noreply.github.com> Date: Sat, 5 Oct 2019 01:14:13 -0400 Subject: [PATCH 318/594] psf/black code formatting (#1277) --- arithmetic_analysis/bisection.py | 13 +- arithmetic_analysis/in_static_equilibrium.py | 7 +- arithmetic_analysis/intersection.py | 21 +- arithmetic_analysis/lu_decomposition.py | 4 +- arithmetic_analysis/newton_method.py | 6 +- arithmetic_analysis/newton_raphson_method.py | 23 +- backtracking/all_combinations.py | 4 +- backtracking/all_permutations.py | 34 +- backtracking/all_subsequences.py | 28 +- backtracking/minimax.py | 40 +- backtracking/n_queens.py | 48 +- backtracking/sum_of_subsets.py | 56 +- boolean_algebra/quine_mc_cluskey.py | 241 ++--- ciphers/affine_cipher.py | 70 +- ciphers/atbash.py | 8 +- ciphers/base16.py | 12 +- ciphers/base32.py | 12 +- ciphers/base64_cipher.py | 63 +- ciphers/base85.py | 12 +- ciphers/brute_force_caesar_cipher.py | 5 +- ciphers/caesar_cipher.py | 25 +- ciphers/cryptomath_module.py | 5 +- ciphers/elgamal_key_generator.py | 41 +- ciphers/hill_cipher.py | 62 +- ciphers/morse_code_implementation.py | 95 +- ciphers/onepad_cipher.py | 14 +- ciphers/playfair_cipher.py | 60 +- ciphers/rabin_miller.py | 198 +++- ciphers/rot13.py | 14 +- ciphers/rsa_cipher.py | 72 +- ciphers/rsa_key_generator.py | 43 +- ciphers/simple_substitution_cipher.py | 39 +- ciphers/trafid_cipher.py | 66 +- ciphers/transposition_cipher.py | 32 +- ...ansposition_cipher_encrypt_decrypt_file.py | 30 +- ciphers/vigenere_cipher.py | 43 +- ciphers/xor_cipher.py | 172 ++-- compression/burrows_wheeler.py | 13 +- compression/huffman.py | 9 +- compression/peak_signal_to_noise_ratio.py | 13 +- conversions/decimal_to_binary.py | 1 + conversions/decimal_to_hexadecimal.py | 43 +- conversions/decimal_to_octal.py | 4 +- data_structures/binary_tree/avl_tree.py | 142 ++- .../binary_tree/basic_binary_tree.py | 22 +- .../binary_tree/binary_search_tree.py | 144 +-- data_structures/binary_tree/fenwick_tree.py | 22 +- .../binary_tree/lazy_segment_tree.py | 76 +- data_structures/binary_tree/lca.py | 2 +- data_structures/binary_tree/red_black_tree.py | 1 - data_structures/binary_tree/segment_tree.py | 36 +- data_structures/binary_tree/treap.py | 1 + data_structures/hashing/double_hash.py | 21 +- data_structures/hashing/hash_table.py | 12 +- .../hashing/hash_table_with_linked_list.py | 18 +- .../hashing/number_theory/prime_numbers.py | 20 +- data_structures/hashing/quadratic_probing.py | 13 +- data_structures/heap/binomial_heap.py | 68 +- data_structures/heap/heap.py | 138 +-- data_structures/linked_list/__init__.py | 1 + .../linked_list/doubly_linked_list.py | 65 +- .../linked_list/singly_linked_list.py | 36 +- data_structures/linked_list/swap_nodes.py | 13 +- data_structures/queue/double_ended_queue.py | 6 +- data_structures/queue/queue_on_list.py | 18 +- .../queue/queue_on_pseudo_stack.py | 19 +- data_structures/stacks/__init__.py | 35 +- .../stacks/balanced_parentheses.py | 14 +- .../stacks/infix_to_postfix_conversion.py | 33 +- .../stacks/infix_to_prefix_conversion.py | 86 +- .../stacks/next_greater_element.py | 5 +- data_structures/stacks/postfix_evaluation.py | 48 +- data_structures/stacks/stack.py | 22 +- data_structures/stacks/stock_span_problem.py | 16 +- .../edge_detection/canny.py | 46 +- digital_image_processing/filters/convolve.py | 12 +- .../filters/gaussian_filter.py | 20 +- .../filters/median_filter.py | 10 +- .../filters/sobel_filter.py | 14 +- divide_and_conquer/closest_pair_of_points.py | 43 +- divide_and_conquer/convex_hull.py | 52 +- divide_and_conquer/inversions.py | 14 +- divide_and_conquer/max_subarray_sum.py | 11 +- dynamic_programming/bitmask.py | 53 +- dynamic_programming/coin_change.py | 4 +- dynamic_programming/edit_distance.py | 81 +- dynamic_programming/factorial.py | 26 +- dynamic_programming/fibonacci.py | 8 +- dynamic_programming/floyd_warshall.py | 49 +- dynamic_programming/fractional_knapsack.py | 20 +- dynamic_programming/integer_partition.py | 53 +- .../k_means_clustering_tensorflow.py | 110 +- dynamic_programming/knapsack.py | 61 +- .../longest_common_subsequence.py | 10 +- .../longest_increasing_subsequence.py | 71 +- ...longest_increasing_subsequence_o(nlogn).py | 48 +- dynamic_programming/longest_sub_array.py | 22 +- dynamic_programming/matrix_chain_order.py | 62 +- dynamic_programming/max_sub_array.py | 86 +- dynamic_programming/minimum_partition.py | 24 +- dynamic_programming/rod_cutting.py | 113 ++- dynamic_programming/subset_generation.py | 74 +- dynamic_programming/sum_of_subset.py | 23 +- file_transfer/recieve_file.py | 14 +- file_transfer/send_file.py | 26 +- graphs/a_star.py | 62 +- graphs/articulation_points.py | 15 +- graphs/basic_graphs.py | 2 +- graphs/bellman_ford.py | 62 +- graphs/bfs.py | 18 +- graphs/bfs_shortest_path.py | 30 +- graphs/breadth_first_search.py | 11 +- graphs/check_bipartite_graph_bfs.py | 5 +- graphs/check_bipartite_graph_dfs.py | 4 +- graphs/depth_first_search.py | 13 +- graphs/dfs.py | 22 +- graphs/dijkstra.py | 1 + graphs/dijkstra_2.py | 71 +- graphs/dijkstra_algorithm.py | 26 +- ...irected_and_undirected_(weighted)_graph.py | 949 +++++++++--------- .../edmonds_karp_multiple_source_and_sink.py | 35 +- ...n_path_and_circuit_for_undirected_graph.py | 30 +- graphs/even_tree.py | 14 +- graphs/finding_bridges.py | 19 +- graphs/graph_list.py | 8 +- graphs/graph_matrix.py | 20 +- graphs/graphs_floyd_warshall.py | 151 +-- graphs/kahns_algorithm_long.py | 7 +- graphs/kahns_algorithm_topo.py | 5 +- graphs/minimum_spanning_tree_kruskal.py | 24 +- graphs/minimum_spanning_tree_prims.py | 27 +- graphs/multi_hueristic_astar.py | 503 ++++++---- graphs/page_rank.py | 38 +- graphs/prim.py | 6 +- graphs/scc_kosaraju.py | 23 +- graphs/tarjans_scc.py | 10 +- hashes/chaos_machine.py | 112 ++- hashes/enigma_machine.py | 5 +- hashes/md5.py | 142 ++- hashes/sha1.py | 67 +- linear_algebra/src/lib.py | 158 +-- linear_algebra/src/tests.py | 129 ++- machine_learning/decision_tree.py | 25 +- machine_learning/gradient_descent.py | 46 +- machine_learning/k_means_clust.py | 99 +- machine_learning/knn_sklearn.py | 27 +- machine_learning/linear_regression.py | 24 +- machine_learning/logistic_regression.py | 47 +- .../random_forest_classification.py | 74 +- .../random_forest_regression.py | 15 +- machine_learning/scoring_functions.py | 22 +- .../sequential_minimum_optimization.py | 207 +++- maths/3n+1.py | 25 +- maths/abs.py | 2 +- maths/abs_max.py | 15 +- maths/abs_min.py | 6 +- maths/average_mean.py | 2 +- maths/average_median.py | 4 +- maths/basic_maths.py | 6 +- maths/binary_exponentiation.py | 4 +- maths/collatz_sequence.py | 11 +- maths/extended_euclidean_algorithm.py | 4 +- maths/factorial_recursive.py | 2 +- maths/fermat_little_theorem.py | 4 +- maths/fibonacci.py | 23 +- maths/fibonacci_sequence_recursion.py | 8 +- maths/find_lcm.py | 16 +- maths/find_max.py | 13 +- maths/find_min.py | 3 +- maths/gaussian.py | 2 - maths/greater_common_divisor.py | 4 +- maths/lucas_series.py | 1 + maths/matrix_exponentiation.py | 5 +- maths/modular_exponential.py | 2 +- maths/newton_raphson.py | 36 +- maths/polynomial_evaluation.py | 2 +- maths/prime_check.py | 15 +- maths/radix2_fft.py | 68 +- maths/segmented_sieve.py | 2 +- maths/simpson_rule.py | 41 +- maths/trapezoidal_rule.py | 70 +- maths/zellers_congruence.py | 50 +- matrix/matrix_class.py | 10 +- matrix/matrix_operation.py | 53 +- ...h_fibonacci_using_matrix_exponentiation.py | 2 + matrix/searching_in_sorted_matrix.py | 13 +- matrix/sherman_morrison.py | 59 +- matrix/spiral_print.py | 6 +- matrix/tests/test_matrix_operation.py | 21 +- networking_flow/ford_fulkerson.py | 43 +- .../back_propagation_neural_network.py | 113 ++- neural_network/convolution_neural_network.py | 312 +++--- neural_network/perceptron.py | 73 +- other/anagrams.py | 23 +- other/binary_exponentiation.py | 7 +- other/binary_exponentiation_2.py | 6 +- other/detecting_english_programmatically.py | 18 +- other/euclidean_gcd.py | 5 +- other/fischer_yates_shuffle.py | 18 +- other/frequency_finder.py | 90 +- other/game_of_life.py | 87 +- other/linear_congruential_generator.py | 12 +- other/nested_brackets.py | 16 +- other/palindrome.py | 4 +- other/password_generator.py | 11 +- other/primelib.py | 223 ++-- other/sierpinski_triangle.py | 71 +- other/tower_of_hanoi.py | 21 +- other/two_sum.py | 16 +- other/word_patterns.py | 15 +- project_euler/problem_01/sol1.py | 2 + project_euler/problem_01/sol3.py | 2 + project_euler/problem_01/sol4.py | 2 + project_euler/problem_01/sol6.py | 2 + project_euler/problem_02/sol1.py | 2 + project_euler/problem_02/sol2.py | 2 + project_euler/problem_02/sol3.py | 2 + project_euler/problem_04/sol1.py | 6 +- project_euler/problem_04/sol2.py | 2 + project_euler/problem_05/sol1.py | 2 + project_euler/problem_06/sol1.py | 2 + project_euler/problem_06/sol2.py | 2 + project_euler/problem_07/sol2.py | 2 + project_euler/problem_09/sol2.py | 2 + project_euler/problem_09/sol3.py | 2 + project_euler/problem_11/sol1.py | 12 +- project_euler/problem_11/sol2.py | 14 +- project_euler/problem_12/sol2.py | 10 +- project_euler/problem_14/sol1.py | 10 +- project_euler/problem_14/sol2.py | 2 + project_euler/problem_15/sol1.py | 4 +- project_euler/problem_18/solution.py | 6 +- project_euler/problem_21/sol1.py | 5 +- project_euler/problem_23/sol1.py | 5 +- project_euler/problem_234/sol1.py | 29 +- project_euler/problem_25/sol1.py | 1 + project_euler/problem_29/solution.py | 2 + project_euler/problem_31/sol1.py | 2 + project_euler/problem_32/sol32.py | 16 +- project_euler/problem_36/sol1.py | 2 + project_euler/problem_40/sol1.py | 2 + project_euler/problem_42/solution42.py | 16 +- project_euler/problem_551/sol1.py | 2 +- project_euler/problem_56/sol1.py | 14 +- project_euler/problem_67/sol1.py | 6 +- scripts/build_directory_md.py | 6 +- scripts/validate_filenames.py | 1 + searches/binary_search.py | 25 +- searches/interpolation_search.py | 58 +- searches/jump_search.py | 9 +- searches/linear_search.py | 12 +- searches/quick_select.py | 23 +- searches/sentinel_linear_search.py | 13 +- searches/tabu_search.py | 55 +- searches/ternary_search.py | 85 +- sorts/bitonic_sort.py | 16 +- sorts/bogo_sort.py | 7 +- sorts/bubble_sort.py | 16 +- sorts/bucket_sort.py | 18 +- sorts/cocktail_shaker_sort.py | 17 +- sorts/comb_sort.py | 11 +- sorts/counting_sort.py | 13 +- sorts/cycle_sort.py | 8 +- sorts/external_sort.py | 43 +- sorts/gnome_sort.py | 8 +- sorts/heap_sort.py | 16 +- sorts/insertion_sort.py | 18 +- sorts/merge_sort.py | 16 +- sorts/merge_sort_fastest.py | 14 +- sorts/odd_even_transposition_parallel.py | 79 +- .../odd_even_transposition_single_threaded.py | 5 +- sorts/pancake_sort.py | 11 +- sorts/pigeon_sort.py | 30 +- sorts/quick_sort.py | 10 +- sorts/quick_sort_3_partition.py | 9 +- sorts/radix_sort.py | 30 +- sorts/random_normal_distribution_quicksort.py | 74 +- sorts/random_pivot_quick_sort.py | 23 +- sorts/selection_sort.py | 12 +- sorts/shell_sort.py | 9 +- sorts/stooge_sort.py | 29 +- sorts/topological_sort.py | 8 +- sorts/tree_sort.py | 4 +- sorts/wiggle_sort.py | 2 +- strings/boyer_moore_search.py | 23 +- strings/knuth_morris_pratt.py | 4 +- strings/levenshtein_distance.py | 13 +- strings/manacher.py | 34 +- strings/min_cost_string_conversion.py | 200 ++-- strings/naive_string_search.py | 27 +- traversals/binary_tree_traversals.py | 1 + 291 files changed, 6100 insertions(+), 4657 deletions(-) diff --git a/arithmetic_analysis/bisection.py b/arithmetic_analysis/bisection.py index 8bf3f09782a3..78582b025880 100644 --- a/arithmetic_analysis/bisection.py +++ b/arithmetic_analysis/bisection.py @@ -1,7 +1,9 @@ import math -def bisection(function, a, b): # finds where the function becomes 0 in [a,b] using bolzano +def bisection( + function, a, b +): # finds where the function becomes 0 in [a,b] using bolzano start = a end = b @@ -9,13 +11,15 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us return a elif function(b) == 0: return b - elif function(a) * function(b) > 0: # if none of these are root and they are both positive or negative, + elif ( + function(a) * function(b) > 0 + ): # if none of these are root and they are both positive or negative, # then his algorithm can't find the root print("couldn't find root in [a,b]") return else: mid = start + (end - start) / 2.0 - while abs(start - mid) > 10**-7: # until we achieve precise equals to 10^-7 + while abs(start - mid) > 10 ** -7: # until we achieve precise equals to 10^-7 if function(mid) == 0: return mid elif function(mid) * function(start) < 0: @@ -27,7 +31,8 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us def f(x): - return math.pow(x, 3) - 2*x - 5 + return math.pow(x, 3) - 2 * x - 5 + if __name__ == "__main__": print(bisection(f, 1, 1000)) diff --git a/arithmetic_analysis/in_static_equilibrium.py b/arithmetic_analysis/in_static_equilibrium.py index 48eb6135eba7..addaff888f7f 100644 --- a/arithmetic_analysis/in_static_equilibrium.py +++ b/arithmetic_analysis/in_static_equilibrium.py @@ -54,11 +54,8 @@ def in_static_equilibrium( if __name__ == "__main__": # Test to check if it works forces = array( - [ - polar_force(718.4, 180 - 30), - polar_force(879.54, 45), - polar_force(100, -90) - ]) + [polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90)] + ) location = array([[0, 0], [0, 0], [0, 0]]) diff --git a/arithmetic_analysis/intersection.py b/arithmetic_analysis/intersection.py index 2f25f76ebd96..0fdcfbf1943e 100644 --- a/arithmetic_analysis/intersection.py +++ b/arithmetic_analysis/intersection.py @@ -1,17 +1,24 @@ import math -def intersection(function,x0,x1): #function is the f we want to find its root and x0 and x1 are two random starting points + +def intersection( + function, x0, x1 +): # function is the f we want to find its root and x0 and x1 are two random starting points x_n = x0 x_n1 = x1 while True: - x_n2 = x_n1-(function(x_n1)/((function(x_n1)-function(x_n))/(x_n1-x_n))) - if abs(x_n2 - x_n1) < 10**-5: + x_n2 = x_n1 - ( + function(x_n1) / ((function(x_n1) - function(x_n)) / (x_n1 - x_n)) + ) + if abs(x_n2 - x_n1) < 10 ** -5: return x_n2 - x_n=x_n1 - x_n1=x_n2 + x_n = x_n1 + x_n1 = x_n2 + def f(x): - return math.pow(x , 3) - (2 * x) -5 + return math.pow(x, 3) - (2 * x) - 5 + if __name__ == "__main__": - print(intersection(f,3,3.5)) + print(intersection(f, 3, 3.5)) diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py index 19e259afb826..4372621d74cb 100644 --- a/arithmetic_analysis/lu_decomposition.py +++ b/arithmetic_analysis/lu_decomposition.py @@ -28,9 +28,7 @@ def LUDecompose(table): if __name__ == "__main__": - matrix = numpy.array([[2, -2, 1], - [0, 1, 2], - [5, 3, 1]]) + matrix = numpy.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]]) L, U = LUDecompose(matrix) print(L) print(U) diff --git a/arithmetic_analysis/newton_method.py b/arithmetic_analysis/newton_method.py index cf5649ee3f3b..1408a983041d 100644 --- a/arithmetic_analysis/newton_method.py +++ b/arithmetic_analysis/newton_method.py @@ -8,17 +8,17 @@ def newton(function, function1, startingInt): x_n = startingInt while True: x_n1 = x_n - function(x_n) / function1(x_n) - if abs(x_n - x_n1) < 10**-5: + if abs(x_n - x_n1) < 10 ** -5: return x_n1 x_n = x_n1 def f(x): - return (x**3) - (2 * x) - 5 + return (x ** 3) - (2 * x) - 5 def f1(x): - return 3 * (x**2) - 2 + return 3 * (x ** 2) - 2 if __name__ == "__main__": diff --git a/arithmetic_analysis/newton_raphson_method.py b/arithmetic_analysis/newton_raphson_method.py index d17b57a2e670..646b352a923c 100644 --- a/arithmetic_analysis/newton_raphson_method.py +++ b/arithmetic_analysis/newton_raphson_method.py @@ -1,33 +1,34 @@ # Implementing Newton Raphson method in Python # Author: Syed Haseeb Shah (github.com/QuantumNovice) -#The Newton-Raphson method (also known as Newton's method) is a way to -#quickly find a good approximation for the root of a real-valued function +# The Newton-Raphson method (also known as Newton's method) is a way to +# quickly find a good approximation for the root of a real-valued function from sympy import diff from decimal import Decimal + def NewtonRaphson(func, a): - ''' Finds root from the point 'a' onwards by Newton-Raphson method ''' + """ Finds root from the point 'a' onwards by Newton-Raphson method """ while True: - c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) ) + c = Decimal(a) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) a = c # This number dictates the accuracy of the answer - if abs(eval(func)) < 10**-15: - return c + if abs(eval(func)) < 10 ** -15: + return c # Let's Execute -if __name__ == '__main__': +if __name__ == "__main__": # Find root of trigonometric function # Find value of pi - print('sin(x) = 0', NewtonRaphson('sin(x)', 2)) + print("sin(x) = 0", NewtonRaphson("sin(x)", 2)) # Find root of polynomial - print('x**2 - 5*x +2 = 0', NewtonRaphson('x**2 - 5*x +2', 0.4)) + print("x**2 - 5*x +2 = 0", NewtonRaphson("x**2 - 5*x +2", 0.4)) # Find Square Root of 5 - print('x**2 - 5 = 0', NewtonRaphson('x**2 - 5', 0.1)) + print("x**2 - 5 = 0", NewtonRaphson("x**2 - 5", 0.1)) # Exponential Roots - print('exp(x) - 1 = 0', NewtonRaphson('exp(x) - 1', 0)) + print("exp(x) - 1 = 0", NewtonRaphson("exp(x) - 1", 0)) diff --git a/backtracking/all_combinations.py b/backtracking/all_combinations.py index 63425aeabbd1..23fe378f5462 100644 --- a/backtracking/all_combinations.py +++ b/backtracking/all_combinations.py @@ -12,7 +12,7 @@ def generate_all_combinations(n: int, k: int) -> [[int]]: >>> generate_all_combinations(n=4, k=2) [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] """ - + result = [] create_all_state(1, n, k, [], result) return result @@ -34,7 +34,7 @@ def print_all_state(total_list): print(*i) -if __name__ == '__main__': +if __name__ == "__main__": n = 4 k = 2 total_list = generate_all_combinations(n, k) diff --git a/backtracking/all_permutations.py b/backtracking/all_permutations.py index 299b708fef4e..b0955bf53a31 100644 --- a/backtracking/all_permutations.py +++ b/backtracking/all_permutations.py @@ -1,42 +1,42 @@ -''' +""" In this problem, we want to determine all possible permutations of the given sequence. We use backtracking to solve this problem. Time complexity: O(n! * n), where n denotes the length of the given sequence. -''' +""" def generate_all_permutations(sequence): - create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))]) + create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))]) def create_state_space_tree(sequence, current_sequence, index, index_used): - ''' + """ Creates a state space tree to iterate through each branch using DFS. We know that each state has exactly len(sequence) - index children. It terminates when it reaches the end of the given sequence. - ''' + """ - if index == len(sequence): - print(current_sequence) - return + if index == len(sequence): + print(current_sequence) + return - for i in range(len(sequence)): - if not index_used[i]: - current_sequence.append(sequence[i]) - index_used[i] = True - create_state_space_tree(sequence, current_sequence, index + 1, index_used) - current_sequence.pop() - index_used[i] = False + for i in range(len(sequence)): + if not index_used[i]: + current_sequence.append(sequence[i]) + index_used[i] = True + create_state_space_tree(sequence, current_sequence, index + 1, index_used) + current_sequence.pop() + index_used[i] = False -''' +""" remove the comment to take an input from the user print("Enter the elements") sequence = list(map(int, input().split())) -''' +""" sequence = [3, 1, 2, 4] generate_all_permutations(sequence) diff --git a/backtracking/all_subsequences.py b/backtracking/all_subsequences.py index d868377234a8..4a22c05d29a8 100644 --- a/backtracking/all_subsequences.py +++ b/backtracking/all_subsequences.py @@ -1,39 +1,39 @@ -''' +""" In this problem, we want to determine all possible subsequences of the given sequence. We use backtracking to solve this problem. Time complexity: O(2^n), where n denotes the length of the given sequence. -''' +""" def generate_all_subsequences(sequence): - create_state_space_tree(sequence, [], 0) + create_state_space_tree(sequence, [], 0) def create_state_space_tree(sequence, current_subsequence, index): - ''' + """ Creates a state space tree to iterate through each branch using DFS. We know that each state has exactly two children. It terminates when it reaches the end of the given sequence. - ''' + """ - if index == len(sequence): - print(current_subsequence) - return + if index == len(sequence): + print(current_subsequence) + return - create_state_space_tree(sequence, current_subsequence, index + 1) - current_subsequence.append(sequence[index]) - create_state_space_tree(sequence, current_subsequence, index + 1) - current_subsequence.pop() + create_state_space_tree(sequence, current_subsequence, index + 1) + current_subsequence.append(sequence[index]) + create_state_space_tree(sequence, current_subsequence, index + 1) + current_subsequence.pop() -''' +""" remove the comment to take an input from the user print("Enter the elements") sequence = list(map(int, input().split())) -''' +""" sequence = [3, 1, 2, 4] generate_all_subsequences(sequence) diff --git a/backtracking/minimax.py b/backtracking/minimax.py index 5168306e71fc..af07b8d8171a 100644 --- a/backtracking/minimax.py +++ b/backtracking/minimax.py @@ -1,28 +1,34 @@ -import math +import math -''' Minimax helps to achieve maximum score in a game by checking all possible moves +""" Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree. nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree -''' +""" -def minimax (Depth, nodeIndex, isMax, scores, height): - if Depth == height: - return scores[nodeIndex] +def minimax(Depth, nodeIndex, isMax, scores, height): - if isMax: - return (max(minimax(Depth + 1, nodeIndex * 2, False, scores, height), - minimax(Depth + 1, nodeIndex * 2 + 1, False, scores, height))) - return (min(minimax(Depth + 1, nodeIndex * 2, True, scores, height), - minimax(Depth + 1, nodeIndex * 2 + 1, True, scores, height))) + if Depth == height: + return scores[nodeIndex] -if __name__ == "__main__": - - scores = [90, 23, 6, 33, 21, 65, 123, 34423] - height = math.log(len(scores), 2) + if isMax: + return max( + minimax(Depth + 1, nodeIndex * 2, False, scores, height), + minimax(Depth + 1, nodeIndex * 2 + 1, False, scores, height), + ) + return min( + minimax(Depth + 1, nodeIndex * 2, True, scores, height), + minimax(Depth + 1, nodeIndex * 2 + 1, True, scores, height), + ) - print("Optimal value : ", end = "") - print(minimax(0, 0, True, scores, height)) + +if __name__ == "__main__": + + scores = [90, 23, 6, 33, 21, 65, 123, 34423] + height = math.log(len(scores), 2) + + print("Optimal value : ", end="") + print(minimax(0, 0, True, scores, height)) diff --git a/backtracking/n_queens.py b/backtracking/n_queens.py index dfd4498b166b..f95357c82e21 100644 --- a/backtracking/n_queens.py +++ b/backtracking/n_queens.py @@ -1,4 +1,4 @@ -''' +""" The nqueens problem is of placing N queens on a N * N chess board such that no queen can attack any other queens placed @@ -6,11 +6,12 @@ This means that one queen cannot have any other queen on its horizontal, vertical and diagonal lines. -''' +""" solution = [] + def isSafe(board, row, column): - ''' + """ This function returns a boolean value True if it is safe to place a queen there considering the current state of the board. @@ -21,64 +22,67 @@ def isSafe(board, row, column): Returns : Boolean Value - ''' + """ for i in range(len(board)): if board[row][i] == 1: return False for i in range(len(board)): if board[i][column] == 1: return False - for i,j in zip(range(row,-1,-1),range(column,-1,-1)): + for i, j in zip(range(row, -1, -1), range(column, -1, -1)): if board[i][j] == 1: return False - for i,j in zip(range(row,-1,-1),range(column,len(board))): + for i, j in zip(range(row, -1, -1), range(column, len(board))): if board[i][j] == 1: return False return True + def solve(board, row): - ''' + """ It creates a state space tree and calls the safe function untill it receives a False Boolean and terminates that brach and backtracks to the next poosible solution branch. - ''' + """ if row >= len(board): - ''' + """ If the row number exceeds N we have board with a successful combination and that combination is appended to the solution list and the board is printed. - ''' + """ solution.append(board) printboard(board) print() - return + return for i in range(len(board)): - ''' + """ For every row it iterates through each column to check if it is feesible to place a queen there. If all the combinations for that particaular branch are successfull the board is reinitialized for the next possible combination. - ''' - if isSafe(board,row,i): + """ + if isSafe(board, row, i): board[row][i] = 1 - solve(board,row+1) + solve(board, row + 1) board[row][i] = 0 return False + def printboard(board): - ''' + """ Prints the boards that have a successfull combination. - ''' + """ for i in range(len(board)): for j in range(len(board)): if board[i][j] == 1: - print("Q", end = " ") - else : - print(".", end = " ") + print("Q", end=" ") + else: + print(".", end=" ") print() -#n=int(input("The no. of queens")) + +# n=int(input("The no. of queens")) n = 8 -board = [[0 for i in range(n)]for j in range(n)] +board = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution)) diff --git a/backtracking/sum_of_subsets.py b/backtracking/sum_of_subsets.py index b01bffbb651d..d96552d39997 100644 --- a/backtracking/sum_of_subsets.py +++ b/backtracking/sum_of_subsets.py @@ -1,36 +1,46 @@ -''' +""" The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, determine all possible subsets of the given set whose summation sum equal to given M. Summation of the chosen numbers must be equal to given number M and one number can be used only once. -''' +""" + def generate_sum_of_subsets_soln(nums, max_sum): - result = [] - path = [] - num_index = 0 - remaining_nums_sum = sum(nums) - create_state_space_tree(nums, max_sum, num_index, path,result, remaining_nums_sum) - return result - -def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_sum): - ''' + result = [] + path = [] + num_index = 0 + remaining_nums_sum = sum(nums) + create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum) + return result + + +def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum): + """ Creates a state space tree to iterate through each branch using DFS. It terminates the branching of a node when any of the two conditions given below satisfy. This algorithm follows depth-fist-search and backtracks when the node is not branchable. - ''' - if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: - return - if sum(path) == max_sum: - result.append(path) - return - for num_index in range(num_index,len(nums)): - create_state_space_tree(nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index]) + """ + if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: + return + if sum(path) == max_sum: + result.append(path) + return + for num_index in range(num_index, len(nums)): + create_state_space_tree( + nums, + max_sum, + num_index + 1, + path + [nums[num_index]], + result, + remaining_nums_sum - nums[num_index], + ) + -''' +""" remove the comment to take an input from the user print("Enter the elements") @@ -38,8 +48,8 @@ def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_s print("Enter max_sum sum") max_sum = int(input()) -''' +""" nums = [3, 34, 4, 12, 5, 2] max_sum = 9 -result = generate_sum_of_subsets_soln(nums,max_sum) -print(*result) \ No newline at end of file +result = generate_sum_of_subsets_soln(nums, max_sum) +print(*result) diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py index b7ca8da437a3..7762d712a01a 100644 --- a/boolean_algebra/quine_mc_cluskey.py +++ b/boolean_algebra/quine_mc_cluskey.py @@ -1,151 +1,168 @@ def compare_string(string1, string2): - """ + """ >>> compare_string('0010','0110') '0_10' >>> compare_string('0110','1101') -1 """ - l1 = list(string1); l2 = list(string2) - count = 0 - for i in range(len(l1)): - if l1[i] != l2[i]: - count += 1 - l1[i] = '_' - if count > 1: - return -1 - else: - return("".join(l1)) + l1 = list(string1) + l2 = list(string2) + count = 0 + for i in range(len(l1)): + if l1[i] != l2[i]: + count += 1 + l1[i] = "_" + if count > 1: + return -1 + else: + return "".join(l1) + def check(binary): - """ + """ >>> check(['0.00.01.5']) ['0.00.01.5'] """ - pi = [] - while 1: - check1 = ['$']*len(binary) - temp = [] - for i in range(len(binary)): - for j in range(i+1, len(binary)): - k=compare_string(binary[i], binary[j]) - if k != -1: - check1[i] = '*' - check1[j] = '*' - temp.append(k) - for i in range(len(binary)): - if check1[i] == '$': - pi.append(binary[i]) - if len(temp) == 0: - return pi - binary = list(set(temp)) + pi = [] + while 1: + check1 = ["$"] * len(binary) + temp = [] + for i in range(len(binary)): + for j in range(i + 1, len(binary)): + k = compare_string(binary[i], binary[j]) + if k != -1: + check1[i] = "*" + check1[j] = "*" + temp.append(k) + for i in range(len(binary)): + if check1[i] == "$": + pi.append(binary[i]) + if len(temp) == 0: + return pi + binary = list(set(temp)) + def decimal_to_binary(no_of_variable, minterms): - """ + """ >>> decimal_to_binary(3,[1.5]) ['0.00.01.5'] """ - temp = [] - s = '' - for m in minterms: - for i in range(no_of_variable): - s = str(m%2) + s - m //= 2 - temp.append(s) - s = '' - return temp + temp = [] + s = "" + for m in minterms: + for i in range(no_of_variable): + s = str(m % 2) + s + m //= 2 + temp.append(s) + s = "" + return temp + def is_for_table(string1, string2, count): - """ + """ >>> is_for_table('__1','011',2) True >>> is_for_table('01_','001',1) False """ - l1 = list(string1);l2=list(string2) - count_n = 0 - for i in range(len(l1)): - if l1[i] != l2[i]: - count_n += 1 - if count_n == count: - return True - else: - return False + l1 = list(string1) + l2 = list(string2) + count_n = 0 + for i in range(len(l1)): + if l1[i] != l2[i]: + count_n += 1 + if count_n == count: + return True + else: + return False + def selection(chart, prime_implicants): - """ + """ >>> selection([[1]],['0.00.01.5']) ['0.00.01.5'] >>> selection([[1]],['0.00.01.5']) ['0.00.01.5'] """ - temp = [] - select = [0]*len(chart) - for i in range(len(chart[0])): - count = 0 - rem = -1 - for j in range(len(chart)): - if chart[j][i] == 1: - count += 1 - rem = j - if count == 1: - select[rem] = 1 - for i in range(len(select)): - if select[i] == 1: - for j in range(len(chart[0])): - if chart[i][j] == 1: - for k in range(len(chart)): - chart[k][j] = 0 - temp.append(prime_implicants[i]) - while 1: - max_n = 0; rem = -1; count_n = 0 - for i in range(len(chart)): - count_n = chart[i].count(1) - if count_n > max_n: - max_n = count_n - rem = i - - if max_n == 0: - return temp - - temp.append(prime_implicants[rem]) - - for i in range(len(chart[0])): - if chart[rem][i] == 1: - for j in range(len(chart)): - chart[j][i] = 0 - + temp = [] + select = [0] * len(chart) + for i in range(len(chart[0])): + count = 0 + rem = -1 + for j in range(len(chart)): + if chart[j][i] == 1: + count += 1 + rem = j + if count == 1: + select[rem] = 1 + for i in range(len(select)): + if select[i] == 1: + for j in range(len(chart[0])): + if chart[i][j] == 1: + for k in range(len(chart)): + chart[k][j] = 0 + temp.append(prime_implicants[i]) + while 1: + max_n = 0 + rem = -1 + count_n = 0 + for i in range(len(chart)): + count_n = chart[i].count(1) + if count_n > max_n: + max_n = count_n + rem = i + + if max_n == 0: + return temp + + temp.append(prime_implicants[rem]) + + for i in range(len(chart[0])): + if chart[rem][i] == 1: + for j in range(len(chart)): + chart[j][i] = 0 + + def prime_implicant_chart(prime_implicants, binary): - """ + """ >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) [[1]] """ - chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] - for i in range(len(prime_implicants)): - count = prime_implicants[i].count('_') - for j in range(len(binary)): - if(is_for_table(prime_implicants[i], binary[j], count)): - chart[i][j] = 1 - - return chart + chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] + for i in range(len(prime_implicants)): + count = prime_implicants[i].count("_") + for j in range(len(binary)): + if is_for_table(prime_implicants[i], binary[j], count): + chart[i][j] = 1 + + return chart + def main(): - no_of_variable = int(input("Enter the no. of variables\n")) - minterms = [int(x) for x in input("Enter the decimal representation of Minterms 'Spaces Seprated'\n").split()] - binary = decimal_to_binary(no_of_variable, minterms) - - prime_implicants = check(binary) - print("Prime Implicants are:") - print(prime_implicants) - chart = prime_implicant_chart(prime_implicants, binary) - - essential_prime_implicants = selection(chart,prime_implicants) - print("Essential Prime Implicants are:") - print(essential_prime_implicants) - -if __name__ == '__main__': - import doctest - doctest.testmod() - main() + no_of_variable = int(input("Enter the no. of variables\n")) + minterms = [ + int(x) + for x in input( + "Enter the decimal representation of Minterms 'Spaces Seprated'\n" + ).split() + ] + binary = decimal_to_binary(no_of_variable, minterms) + + prime_implicants = check(binary) + print("Prime Implicants are:") + print(prime_implicants) + chart = prime_implicant_chart(prime_implicants, binary) + + essential_prime_implicants = selection(chart, prime_implicants) + print("Essential Prime Implicants are:") + print(essential_prime_implicants) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + main() diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py index a5d94f087dbf..eb50acf8fc20 100644 --- a/ciphers/affine_cipher.py +++ b/ciphers/affine_cipher.py @@ -2,42 +2,56 @@ SYMBOLS = r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" + def main(): - message = input('Enter message: ') - key = int(input('Enter key [2000 - 9000]: ')) - mode = input('Encrypt/Decrypt [E/D]: ') - - if mode.lower().startswith('e'): - mode = 'encrypt' - translated = encryptMessage(key, message) - elif mode.lower().startswith('d'): - mode = 'decrypt' - translated = decryptMessage(key, message) - print('\n%sed text: \n%s' % (mode.title(), translated)) + message = input("Enter message: ") + key = int(input("Enter key [2000 - 9000]: ")) + mode = input("Encrypt/Decrypt [E/D]: ") + + if mode.lower().startswith("e"): + mode = "encrypt" + translated = encryptMessage(key, message) + elif mode.lower().startswith("d"): + mode = "decrypt" + translated = decryptMessage(key, message) + print("\n%sed text: \n%s" % (mode.title(), translated)) + def getKeyParts(key): keyA = key // len(SYMBOLS) keyB = key % len(SYMBOLS) return (keyA, keyB) + def checkKeys(keyA, keyB, mode): - if keyA == 1 and mode == 'encrypt': - sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key') - if keyB == 0 and mode == 'encrypt': - sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key') + if keyA == 1 and mode == "encrypt": + sys.exit( + "The affine cipher becomes weak when key A is set to 1. Choose different key" + ) + if keyB == 0 and mode == "encrypt": + sys.exit( + "The affine cipher becomes weak when key A is set to 1. Choose different key" + ) if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1: - sys.exit('Key A must be greater than 0 and key B must be between 0 and %s.' % (len(SYMBOLS) - 1)) + sys.exit( + "Key A must be greater than 0 and key B must be between 0 and %s." + % (len(SYMBOLS) - 1) + ) if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1: - sys.exit('Key A %s and the symbol set size %s are not relatively prime. Choose a different key.' % (keyA, len(SYMBOLS))) + sys.exit( + "Key A %s and the symbol set size %s are not relatively prime. Choose a different key." + % (keyA, len(SYMBOLS)) + ) + def encryptMessage(key, message): - ''' + """ >>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.') 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' - ''' + """ keyA, keyB = getKeyParts(key) - checkKeys(keyA, keyB, 'encrypt') - cipherText = '' + checkKeys(keyA, keyB, "encrypt") + cipherText = "" for symbol in message: if symbol in SYMBOLS: symIndex = SYMBOLS.find(symbol) @@ -46,14 +60,15 @@ def encryptMessage(key, message): cipherText += symbol return cipherText + def decryptMessage(key, message): - ''' + """ >>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi') 'The affine cipher is a type of monoalphabetic substitution cipher.' - ''' + """ keyA, keyB = getKeyParts(key) - checkKeys(keyA, keyB, 'decrypt') - plainText = '' + checkKeys(keyA, keyB, "decrypt") + plainText = "" modInverseOfkeyA = cryptoMath.findModInverse(keyA, len(SYMBOLS)) for symbol in message: if symbol in SYMBOLS: @@ -63,6 +78,7 @@ def decryptMessage(key, message): plainText += symbol return plainText + def getRandomKey(): while True: keyA = random.randint(2, len(SYMBOLS)) @@ -70,7 +86,9 @@ def getRandomKey(): if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1: return keyA * len(SYMBOLS) + keyB -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() main() diff --git a/ciphers/atbash.py b/ciphers/atbash.py index 9ed47e0874f8..4cf003859856 100644 --- a/ciphers/atbash.py +++ b/ciphers/atbash.py @@ -1,15 +1,15 @@ def atbash(): - output="" + output = "" for i in input("Enter the sentence to be encrypted ").strip(): extract = ord(i) if 65 <= extract <= 90: - output += chr(155-extract) + output += chr(155 - extract) elif 97 <= extract <= 122: - output += chr(219-extract) + output += chr(219 - extract) else: output += i print(output) -if __name__ == '__main__': +if __name__ == "__main__": atbash() diff --git a/ciphers/base16.py b/ciphers/base16.py index 9bc0e5d8337a..0210315d54e6 100644 --- a/ciphers/base16.py +++ b/ciphers/base16.py @@ -1,11 +1,13 @@ import base64 + def main(): - inp = input('->') - encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) - b16encoded = base64.b16encode(encoded) #b16encoded the encoded string + inp = input("->") + encoded = inp.encode("utf-8") # encoded the input (we need a bytes like object) + b16encoded = base64.b16encode(encoded) # b16encoded the encoded string print(b16encoded) - print(base64.b16decode(b16encoded).decode('utf-8'))#decoded it + print(base64.b16decode(b16encoded).decode("utf-8")) # decoded it + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/base32.py b/ciphers/base32.py index 2ac29f441e94..5bba8c4dd685 100644 --- a/ciphers/base32.py +++ b/ciphers/base32.py @@ -1,11 +1,13 @@ import base64 + def main(): - inp = input('->') - encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) - b32encoded = base64.b32encode(encoded) #b32encoded the encoded string + inp = input("->") + encoded = inp.encode("utf-8") # encoded the input (we need a bytes like object) + b32encoded = base64.b32encode(encoded) # b32encoded the encoded string print(b32encoded) - print(base64.b32decode(b32encoded).decode('utf-8'))#decoded it + print(base64.b32decode(b32encoded).decode("utf-8")) # decoded it + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/base64_cipher.py b/ciphers/base64_cipher.py index fa3451c0cbae..9fca5b02679f 100644 --- a/ciphers/base64_cipher.py +++ b/ciphers/base64_cipher.py @@ -1,64 +1,71 @@ def encodeBase64(text): base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" - - r = "" #the result - c = 3 - len(text) % 3 #the length of padding - p = "=" * c #the padding - s = text + "\0" * c #the text to encode - - i = 0 + + r = "" # the result + c = 3 - len(text) % 3 # the length of padding + p = "=" * c # the padding + s = text + "\0" * c # the text to encode + + i = 0 while i < len(s): if i > 0 and ((i / 3 * 4) % 76) == 0: r = r + "\r\n" - - n = (ord(s[i]) << 16) + (ord(s[i+1]) << 8 ) + ord(s[i+2]) - + + n = (ord(s[i]) << 16) + (ord(s[i + 1]) << 8) + ord(s[i + 2]) + n1 = (n >> 18) & 63 n2 = (n >> 12) & 63 - n3 = (n >> 6) & 63 + n3 = (n >> 6) & 63 n4 = n & 63 - + r += base64chars[n1] + base64chars[n2] + base64chars[n3] + base64chars[n4] i += 3 - return r[0: len(r)-len(p)] + p - + return r[0 : len(r) - len(p)] + p + + def decodeBase64(text): base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" s = "" - + for i in text: if i in base64chars: s += i c = "" else: - if i == '=': - c += '=' - + if i == "=": + c += "=" + p = "" if c == "=": - p = 'A' + p = "A" else: if c == "==": p = "AA" - + r = "" s = s + p - + i = 0 while i < len(s): - n = (base64chars.index(s[i]) << 18) + (base64chars.index(s[i+1]) << 12) + (base64chars.index(s[i+2]) << 6) +base64chars.index(s[i+3]) - + n = ( + (base64chars.index(s[i]) << 18) + + (base64chars.index(s[i + 1]) << 12) + + (base64chars.index(s[i + 2]) << 6) + + base64chars.index(s[i + 3]) + ) + r += chr((n >> 16) & 255) + chr((n >> 8) & 255) + chr(n & 255) - + i += 4 - - return r[0: len(r) - len(p)] + + return r[0 : len(r) - len(p)] + def main(): print(encodeBase64("WELCOME to base64 encoding")) print(decodeBase64(encodeBase64("WELCOME to base64 encoding"))) - -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/ciphers/base85.py b/ciphers/base85.py index 5fd13837f662..ebfd0480f794 100644 --- a/ciphers/base85.py +++ b/ciphers/base85.py @@ -1,11 +1,13 @@ import base64 + def main(): - inp = input('->') - encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) - a85encoded = base64.a85encode(encoded) #a85encoded the encoded string + inp = input("->") + encoded = inp.encode("utf-8") # encoded the input (we need a bytes like object) + a85encoded = base64.a85encode(encoded) # a85encoded the encoded string print(a85encoded) - print(base64.a85decode(a85encoded).decode('utf-8'))#decoded it + print(base64.a85decode(a85encoded).decode("utf-8")) # decoded it + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/brute_force_caesar_cipher.py b/ciphers/brute_force_caesar_cipher.py index 3e6e975c8297..2586803ba5ff 100644 --- a/ciphers/brute_force_caesar_cipher.py +++ b/ciphers/brute_force_caesar_cipher.py @@ -42,12 +42,15 @@ def decrypt(message): translated = translated + symbol print("Decryption using Key #%s: %s" % (key, translated)) + def main(): message = input("Encrypted message: ") message = message.upper() decrypt(message) -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() main() diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 95d65d404266..3f24e049afb0 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -1,5 +1,5 @@ def encrypt(strng, key): - encrypted = '' + encrypted = "" for x in strng: indx = (ord(x) + key) % 256 if indx > 126: @@ -9,7 +9,7 @@ def encrypt(strng, key): def decrypt(strng, key): - decrypted = '' + decrypted = "" for x in strng: indx = (ord(x) - key) % 256 if indx < 32: @@ -17,9 +17,10 @@ def decrypt(strng, key): decrypted = decrypted + chr(indx) return decrypted + def brute_force(strng): key = 1 - decrypted = '' + decrypted = "" while key <= 94: for x in strng: indx = (ord(x) - key) % 256 @@ -27,39 +28,39 @@ def brute_force(strng): indx = indx + 95 decrypted = decrypted + chr(indx) print("Key: {}\t| Message: {}".format(key, decrypted)) - decrypted = '' + decrypted = "" key += 1 return None def main(): while True: - print('-' * 10 + "\n**Menu**\n" + '-' * 10) + print("-" * 10 + "\n**Menu**\n" + "-" * 10) print("1.Encrpyt") print("2.Decrypt") print("3.BruteForce") print("4.Quit") choice = input("What would you like to do?: ") - if choice not in ['1', '2', '3', '4']: + if choice not in ["1", "2", "3", "4"]: print("Invalid choice, please enter a valid choice") - elif choice == '1': + elif choice == "1": strng = input("Please enter the string to be encrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1, 95): print(encrypt(strng.lower(), key)) - elif choice == '2': + elif choice == "2": strng = input("Please enter the string to be decrypted: ") key = int(input("Please enter off-set between 1-94: ")) - if key in range(1,95): + if key in range(1, 95): print(decrypt(strng, key)) - elif choice == '3': + elif choice == "3": strng = input("Please enter the string to be decrypted: ") brute_force(strng) main() - elif choice == '4': + elif choice == "4": print("Goodbye.") break -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/cryptomath_module.py b/ciphers/cryptomath_module.py index 3e8e71b117ed..fc38e4bd2a22 100644 --- a/ciphers/cryptomath_module.py +++ b/ciphers/cryptomath_module.py @@ -3,6 +3,7 @@ def gcd(a, b): a, b = b % a, a return b + def findModInverse(a, m): if gcd(a, m) != 1: return None @@ -10,5 +11,5 @@ def findModInverse(a, m): v1, v2, v3 = 0, 1, m while v3 != 0: q = u3 // v3 - v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q *v3), v1, v2, v3 - return u1 % m + v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q * v3), v1, v2, v3 + return u1 % m diff --git a/ciphers/elgamal_key_generator.py b/ciphers/elgamal_key_generator.py index 6a8751f69524..cc6b297f2daf 100644 --- a/ciphers/elgamal_key_generator.py +++ b/ciphers/elgamal_key_generator.py @@ -7,9 +7,9 @@ def main(): - print('Making key files...') - makeKeyFiles('elgamal', 2048) - print('Key files generation successful') + print("Making key files...") + makeKeyFiles("elgamal", 2048) + print("Key files generation successful") # I have written my code naively same as definition of primitive root @@ -19,7 +19,7 @@ def main(): def primitiveRoot(p_val): print("Generating primitive root of p") while True: - g = random.randrange(3,p_val) + g = random.randrange(3, p_val) if pow(g, 2, p_val) == 1: continue if pow(g, p_val, p_val) == 1: @@ -28,7 +28,7 @@ def primitiveRoot(p_val): def generateKey(keySize): - print('Generating prime p...') + print("Generating prime p...") p = rabinMiller.generateLargePrime(keySize) # select large prime number. e_1 = primitiveRoot(p) # one primitive root on modulo p. d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety. @@ -41,23 +41,28 @@ def generateKey(keySize): def makeKeyFiles(name, keySize): - if os.path.exists('%s_pubkey.txt' % name) or os.path.exists('%s_privkey.txt' % name): - print('\nWARNING:') - print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n' - 'Use a different name or delete these files and re-run this program.' % - (name, name)) + if os.path.exists("%s_pubkey.txt" % name) or os.path.exists( + "%s_privkey.txt" % name + ): + print("\nWARNING:") + print( + '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n' + "Use a different name or delete these files and re-run this program." + % (name, name) + ) sys.exit() publicKey, privateKey = generateKey(keySize) - print('\nWriting public key to file %s_pubkey.txt...' % name) - with open('%s_pubkey.txt' % name, 'w') as fo: - fo.write('%d,%d,%d,%d' % (publicKey[0], publicKey[1], publicKey[2], publicKey[3])) + print("\nWriting public key to file %s_pubkey.txt..." % name) + with open("%s_pubkey.txt" % name, "w") as fo: + fo.write( + "%d,%d,%d,%d" % (publicKey[0], publicKey[1], publicKey[2], publicKey[3]) + ) - print('Writing private key to file %s_privkey.txt...' % name) - with open('%s_privkey.txt' % name, 'w') as fo: - fo.write('%d,%d' % (privateKey[0], privateKey[1])) + print("Writing private key to file %s_privkey.txt..." % name) + with open("%s_privkey.txt" % name, "w") as fo: + fo.write("%d,%d" % (privateKey[0], privateKey[1])) -if __name__ == '__main__': +if __name__ == "__main__": main() - \ No newline at end of file diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py index 89b88beed17e..e01b6a3f48a8 100644 --- a/ciphers/hill_cipher.py +++ b/ciphers/hill_cipher.py @@ -44,7 +44,7 @@ def gcd(a, b): if a == 0: return b - return gcd(b%a, a) + return gcd(b % a, a) class HillCipher: @@ -59,25 +59,29 @@ class HillCipher: modulus = numpy.vectorize(lambda x: x % 36) toInt = numpy.vectorize(lambda x: round(x)) - + def __init__(self, encrypt_key): """ encrypt_key is an NxN numpy matrix """ - self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key - self.checkDeterminant() # validate the determinant of the encryption key + self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key + self.checkDeterminant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] def checkDeterminant(self): det = round(numpy.linalg.det(self.encrypt_key)) - + if det < 0: det = det % len(self.key_string) req_l = len(self.key_string) if gcd(det, len(self.key_string)) != 1: - raise ValueError("discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format(req_l, det, req_l)) + raise ValueError( + "discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format( + req_l, det, req_l + ) + ) def processText(self, text): text = list(text.upper()) @@ -87,25 +91,27 @@ def processText(self, text): while len(text) % self.break_key != 0: text.append(last) - return ''.join(text) - + return "".join(text) + def encrypt(self, text): text = self.processText(text.upper()) - encrypted = '' + encrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): - batch = text[i:i+self.break_key] + batch = text[i : i + self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T - batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[0] - encrypted_batch = ''.join(list(map(self.replaceNumbers, batch_encrypted))) + batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ + 0 + ] + encrypted_batch = "".join(list(map(self.replaceNumbers, batch_encrypted))) encrypted += encrypted_batch return encrypted def makeDecryptKey(self): det = round(numpy.linalg.det(self.encrypt_key)) - + if det < 0: det = det % len(self.key_string) det_inv = None @@ -114,22 +120,27 @@ def makeDecryptKey(self): det_inv = i break - inv_key = det_inv * numpy.linalg.det(self.encrypt_key) *\ - numpy.linalg.inv(self.encrypt_key) + inv_key = ( + det_inv + * numpy.linalg.det(self.encrypt_key) + * numpy.linalg.inv(self.encrypt_key) + ) return self.toInt(self.modulus(inv_key)) - + def decrypt(self, text): self.decrypt_key = self.makeDecryptKey() text = self.processText(text.upper()) - decrypted = '' + decrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): - batch = text[i:i+self.break_key] + batch = text[i : i + self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T - batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[0] - decrypted_batch = ''.join(list(map(self.replaceNumbers, batch_decrypted))) + batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[ + 0 + ] + decrypted_batch = "".join(list(map(self.replaceNumbers, batch_decrypted))) decrypted += decrypted_batch return decrypted @@ -147,21 +158,22 @@ def main(): hc = HillCipher(numpy.matrix(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") - option = input(""" + option = input( + """ 1. Encrypt 2. Decrypt """ - ) + ) - if option == '1': + if option == "1": text_e = input("What text would you like to encrypt?: ") print("Your encrypted text is:") print(hc.encrypt(text_e)) - elif option == '2': + elif option == "2": text_d = input("What text would you like to decrypt?: ") print("Your decrypted text is:") print(hc.decrypt(text_d)) - + if __name__ == "__main__": main() diff --git a/ciphers/morse_code_implementation.py b/ciphers/morse_code_implementation.py index 5d0e7b2779b1..6df4632af4cb 100644 --- a/ciphers/morse_code_implementation.py +++ b/ciphers/morse_code_implementation.py @@ -2,68 +2,93 @@ # Dictionary representing the morse code chart -MORSE_CODE_DICT = { 'A':'.-', 'B':'-...', - 'C':'-.-.', 'D':'-..', 'E':'.', - 'F':'..-.', 'G':'--.', 'H':'....', - 'I':'..', 'J':'.---', 'K':'-.-', - 'L':'.-..', 'M':'--', 'N':'-.', - 'O':'---', 'P':'.--.', 'Q':'--.-', - 'R':'.-.', 'S':'...', 'T':'-', - 'U':'..-', 'V':'...-', 'W':'.--', - 'X':'-..-', 'Y':'-.--', 'Z':'--..', - '1':'.----', '2':'..---', '3':'...--', - '4':'....-', '5':'.....', '6':'-....', - '7':'--...', '8':'---..', '9':'----.', - '0':'-----', ', ':'--..--', '.':'.-.-.-', - '?':'..--..', '/':'-..-.', '-':'-....-', - '(':'-.--.', ')':'-.--.-'} +MORSE_CODE_DICT = { + "A": ".-", + "B": "-...", + "C": "-.-.", + "D": "-..", + "E": ".", + "F": "..-.", + "G": "--.", + "H": "....", + "I": "..", + "J": ".---", + "K": "-.-", + "L": ".-..", + "M": "--", + "N": "-.", + "O": "---", + "P": ".--.", + "Q": "--.-", + "R": ".-.", + "S": "...", + "T": "-", + "U": "..-", + "V": "...-", + "W": ".--", + "X": "-..-", + "Y": "-.--", + "Z": "--..", + "1": ".----", + "2": "..---", + "3": "...--", + "4": "....-", + "5": ".....", + "6": "-....", + "7": "--...", + "8": "---..", + "9": "----.", + "0": "-----", + ", ": "--..--", + ".": ".-.-.-", + "?": "..--..", + "/": "-..-.", + "-": "-....-", + "(": "-.--.", + ")": "-.--.-", +} def encrypt(message): - cipher = '' + cipher = "" for letter in message: - if letter != ' ': + if letter != " ": - - cipher += MORSE_CODE_DICT[letter] + ' ' + cipher += MORSE_CODE_DICT[letter] + " " else: - cipher += ' ' + cipher += " " return cipher def decrypt(message): - message += ' ' + message += " " - decipher = '' - citext = '' + decipher = "" + citext = "" for letter in message: - if (letter != ' '): - + if letter != " ": i = 0 - citext += letter else: i += 1 + if i == 2: - if i == 2 : - - - decipher += ' ' + decipher += " " else: - - decipher += list(MORSE_CODE_DICT.keys())[list(MORSE_CODE_DICT - .values()).index(citext)] - citext = '' + decipher += list(MORSE_CODE_DICT.keys())[ + list(MORSE_CODE_DICT.values()).index(citext) + ] + citext = "" return decipher @@ -78,5 +103,5 @@ def main(): print(result) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/onepad_cipher.py b/ciphers/onepad_cipher.py index 1dac270bda1f..5a410bfa638a 100644 --- a/ciphers/onepad_cipher.py +++ b/ciphers/onepad_cipher.py @@ -3,28 +3,28 @@ class Onepad: def encrypt(self, text): - '''Function to encrypt text using psedo-random numbers''' + """Function to encrypt text using psedo-random numbers""" plain = [ord(i) for i in text] key = [] cipher = [] for i in plain: k = random.randint(1, 300) - c = (i+k)*k + c = (i + k) * k cipher.append(c) key.append(k) return cipher, key def decrypt(self, cipher, key): - '''Function to decrypt text using psedo-random numbers.''' + """Function to decrypt text using psedo-random numbers.""" plain = [] for i in range(len(key)): - p = int((cipher[i]-(key[i])**2)/key[i]) + p = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(p)) - plain = ''.join([i for i in plain]) + plain = "".join([i for i in plain]) return plain -if __name__ == '__main__': - c, k = Onepad().encrypt('Hello') +if __name__ == "__main__": + c, k = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k)) diff --git a/ciphers/playfair_cipher.py b/ciphers/playfair_cipher.py index 20449b161963..030fe8155a69 100644 --- a/ciphers/playfair_cipher.py +++ b/ciphers/playfair_cipher.py @@ -1,14 +1,14 @@ import string import itertools + def chunker(seq, size): it = iter(seq) while True: - chunk = tuple(itertools.islice(it, size)) - if not chunk: - return - yield chunk - + chunk = tuple(itertools.islice(it, size)) + if not chunk: + return + yield chunk def prepare_input(dirty): @@ -16,32 +16,33 @@ def prepare_input(dirty): Prepare the plaintext by up-casing it and separating repeated letters with X's """ - - dirty = ''.join([c.upper() for c in dirty if c in string.ascii_letters]) + + dirty = "".join([c.upper() for c in dirty if c in string.ascii_letters]) clean = "" - + if len(dirty) < 2: return dirty - for i in range(len(dirty)-1): + for i in range(len(dirty) - 1): clean += dirty[i] - - if dirty[i] == dirty[i+1]: - clean += 'X' - + + if dirty[i] == dirty[i + 1]: + clean += "X" + clean += dirty[-1] if len(clean) & 1: - clean += 'X' + clean += "X" return clean + def generate_table(key): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ" - # we're using a list instead of a '2d' array because it makes the math + # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler table = [] @@ -57,6 +58,7 @@ def generate_table(key): return table + def encode(plaintext, key): table = generate_table(key) plaintext = prepare_input(plaintext) @@ -68,14 +70,14 @@ def encode(plaintext, key): row2, col2 = divmod(table.index(char2), 5) if row1 == row2: - ciphertext += table[row1*5+(col1+1)%5] - ciphertext += table[row2*5+(col2+1)%5] + ciphertext += table[row1 * 5 + (col1 + 1) % 5] + ciphertext += table[row2 * 5 + (col2 + 1) % 5] elif col1 == col2: - ciphertext += table[((row1+1)%5)*5+col1] - ciphertext += table[((row2+1)%5)*5+col2] - else: # rectangle - ciphertext += table[row1*5+col2] - ciphertext += table[row2*5+col1] + ciphertext += table[((row1 + 1) % 5) * 5 + col1] + ciphertext += table[((row2 + 1) % 5) * 5 + col2] + else: # rectangle + ciphertext += table[row1 * 5 + col2] + ciphertext += table[row2 * 5 + col1] return ciphertext @@ -90,13 +92,13 @@ def decode(ciphertext, key): row2, col2 = divmod(table.index(char2), 5) if row1 == row2: - plaintext += table[row1*5+(col1-1)%5] - plaintext += table[row2*5+(col2-1)%5] + plaintext += table[row1 * 5 + (col1 - 1) % 5] + plaintext += table[row2 * 5 + (col2 - 1) % 5] elif col1 == col2: - plaintext += table[((row1-1)%5)*5+col1] - plaintext += table[((row2-1)%5)*5+col2] - else: # rectangle - plaintext += table[row1*5+col2] - plaintext += table[row2*5+col1] + plaintext += table[((row1 - 1) % 5) * 5 + col1] + plaintext += table[((row2 - 1) % 5) * 5 + col2] + else: # rectangle + plaintext += table[row1 * 5 + col2] + plaintext += table[row2 * 5 + col1] return plaintext diff --git a/ciphers/rabin_miller.py b/ciphers/rabin_miller.py index 21378cff6885..c544abdf9acc 100644 --- a/ciphers/rabin_miller.py +++ b/ciphers/rabin_miller.py @@ -2,6 +2,7 @@ import random + def rabinMiller(num): s = num - 1 t = 0 @@ -23,24 +24,181 @@ def rabinMiller(num): v = (v ** 2) % num return True + def isPrime(num): - if (num < 2): + if num < 2: return False - lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, - 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, - 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, - 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, - 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, - 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, - 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, - 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, - 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, - 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, - 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, - 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, - 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, - 971, 977, 983, 991, 997] + lowPrimes = [ + 2, + 3, + 5, + 7, + 11, + 13, + 17, + 19, + 23, + 29, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 73, + 79, + 83, + 89, + 97, + 101, + 103, + 107, + 109, + 113, + 127, + 131, + 137, + 139, + 149, + 151, + 157, + 163, + 167, + 173, + 179, + 181, + 191, + 193, + 197, + 199, + 211, + 223, + 227, + 229, + 233, + 239, + 241, + 251, + 257, + 263, + 269, + 271, + 277, + 281, + 283, + 293, + 307, + 311, + 313, + 317, + 331, + 337, + 347, + 349, + 353, + 359, + 367, + 373, + 379, + 383, + 389, + 397, + 401, + 409, + 419, + 421, + 431, + 433, + 439, + 443, + 449, + 457, + 461, + 463, + 467, + 479, + 487, + 491, + 499, + 503, + 509, + 521, + 523, + 541, + 547, + 557, + 563, + 569, + 571, + 577, + 587, + 593, + 599, + 601, + 607, + 613, + 617, + 619, + 631, + 641, + 643, + 647, + 653, + 659, + 661, + 673, + 677, + 683, + 691, + 701, + 709, + 719, + 727, + 733, + 739, + 743, + 751, + 757, + 761, + 769, + 773, + 787, + 797, + 809, + 811, + 821, + 823, + 827, + 829, + 839, + 853, + 857, + 859, + 863, + 877, + 881, + 883, + 887, + 907, + 911, + 919, + 929, + 937, + 941, + 947, + 953, + 967, + 971, + 977, + 983, + 991, + 997, + ] if num in lowPrimes: return True @@ -51,13 +209,15 @@ def isPrime(num): return rabinMiller(num) -def generateLargePrime(keysize = 1024): + +def generateLargePrime(keysize=1024): while True: num = random.randrange(2 ** (keysize - 1), 2 ** (keysize)) if isPrime(num): return num -if __name__ == '__main__': + +if __name__ == "__main__": num = generateLargePrime() - print(('Prime number:', num)) - print(('isPrime:', isPrime(num))) + print(("Prime number:", num)) + print(("isPrime:", isPrime(num))) diff --git a/ciphers/rot13.py b/ciphers/rot13.py index 208de4890e67..a7b546511967 100644 --- a/ciphers/rot13.py +++ b/ciphers/rot13.py @@ -1,17 +1,17 @@ def dencrypt(s, n): - out = '' + out = "" for c in s: - if c >= 'A' and c <= 'Z': - out += chr(ord('A') + (ord(c) - ord('A') + n) % 26) - elif c >= 'a' and c <= 'z': - out += chr(ord('a') + (ord(c) - ord('a') + n) % 26) + if c >= "A" and c <= "Z": + out += chr(ord("A") + (ord(c) - ord("A") + n) % 26) + elif c >= "a" and c <= "z": + out += chr(ord("a") + (ord(c) - ord("a") + n) % 26) else: out += c return out def main(): - s0 = 'HELLO' + s0 = "HELLO" s1 = dencrypt(s0, 13) print(s1) # URYYB @@ -20,5 +20,5 @@ def main(): print(s2) # HELLO -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index 02e5d95d1e95..a9b2dcc55daa 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -3,41 +3,42 @@ DEFAULT_BLOCK_SIZE = 128 BYTE_SIZE = 256 + def main(): - filename = 'encrypted_file.txt' - response = input(r'Encrypte\Decrypt [e\d]: ') + filename = "encrypted_file.txt" + response = input(r"Encrypte\Decrypt [e\d]: ") - if response.lower().startswith('e'): - mode = 'encrypt' - elif response.lower().startswith('d'): - mode = 'decrypt' + if response.lower().startswith("e"): + mode = "encrypt" + elif response.lower().startswith("d"): + mode = "decrypt" - if mode == 'encrypt': - if not os.path.exists('rsa_pubkey.txt'): - rkg.makeKeyFiles('rsa', 1024) + if mode == "encrypt": + if not os.path.exists("rsa_pubkey.txt"): + rkg.makeKeyFiles("rsa", 1024) - message = input('\nEnter message: ') - pubKeyFilename = 'rsa_pubkey.txt' - print('Encrypting and writing to %s...' % (filename)) + message = input("\nEnter message: ") + pubKeyFilename = "rsa_pubkey.txt" + print("Encrypting and writing to %s..." % (filename)) encryptedText = encryptAndWriteToFile(filename, pubKeyFilename, message) - print('\nEncrypted text:') + print("\nEncrypted text:") print(encryptedText) - elif mode == 'decrypt': - privKeyFilename = 'rsa_privkey.txt' - print('Reading from %s and decrypting...' % (filename)) + elif mode == "decrypt": + privKeyFilename = "rsa_privkey.txt" + print("Reading from %s and decrypting..." % (filename)) decryptedText = readFromFileAndDecrypt(filename, privKeyFilename) - print('writing decryption to rsa_decryption.txt...') - with open('rsa_decryption.txt', 'w') as dec: + print("writing decryption to rsa_decryption.txt...") + with open("rsa_decryption.txt", "w") as dec: dec.write(decryptedText) - print('\nDecryption:') + print("\nDecryption:") print(decryptedText) def getBlocksFromText(message, blockSize=DEFAULT_BLOCK_SIZE): - messageBytes = message.encode('ascii') + messageBytes = message.encode("ascii") blockInts = [] for blockStart in range(0, len(messageBytes), blockSize): @@ -58,7 +59,7 @@ def getTextFromBlocks(blockInts, messageLength, blockSize=DEFAULT_BLOCK_SIZE): blockInt = blockInt % (BYTE_SIZE ** i) blockMessage.insert(0, chr(asciiNumber)) message.extend(blockMessage) - return ''.join(message) + return "".join(message) def encryptMessage(message, key, blockSize=DEFAULT_BLOCK_SIZE): @@ -81,22 +82,27 @@ def decryptMessage(encryptedBlocks, messageLength, key, blockSize=DEFAULT_BLOCK_ def readKeyFile(keyFilename): with open(keyFilename) as fo: content = fo.read() - keySize, n, EorD = content.split(',') + keySize, n, EorD = content.split(",") return (int(keySize), int(n), int(EorD)) -def encryptAndWriteToFile(messageFilename, keyFilename, message, blockSize=DEFAULT_BLOCK_SIZE): +def encryptAndWriteToFile( + messageFilename, keyFilename, message, blockSize=DEFAULT_BLOCK_SIZE +): keySize, n, e = readKeyFile(keyFilename) if keySize < blockSize * 8: - sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Either decrease the block size or use different keys.' % (blockSize * 8, keySize)) + sys.exit( + "ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Either decrease the block size or use different keys." + % (blockSize * 8, keySize) + ) encryptedBlocks = encryptMessage(message, (n, e), blockSize) for i in range(len(encryptedBlocks)): encryptedBlocks[i] = str(encryptedBlocks[i]) - encryptedContent = ','.join(encryptedBlocks) - encryptedContent = '%s_%s_%s' % (len(message), blockSize, encryptedContent) - with open(messageFilename, 'w') as fo: + encryptedContent = ",".join(encryptedBlocks) + encryptedContent = "%s_%s_%s" % (len(message), blockSize, encryptedContent) + with open(messageFilename, "w") as fo: fo.write(encryptedContent) return encryptedContent @@ -105,18 +111,22 @@ def readFromFileAndDecrypt(messageFilename, keyFilename): keySize, n, d = readKeyFile(keyFilename) with open(messageFilename) as fo: content = fo.read() - messageLength, blockSize, encryptedMessage = content.split('_') + messageLength, blockSize, encryptedMessage = content.split("_") messageLength = int(messageLength) blockSize = int(blockSize) if keySize < blockSize * 8: - sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Did you specify the correct key file and encrypted file?' % (blockSize * 8, keySize)) + sys.exit( + "ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Did you specify the correct key file and encrypted file?" + % (blockSize * 8, keySize) + ) encryptedBlocks = [] - for block in encryptedMessage.split(','): + for block in encryptedMessage.split(","): encryptedBlocks.append(int(block)) return decryptMessage(encryptedBlocks, messageLength, (n, d), blockSize) -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/ciphers/rsa_key_generator.py b/ciphers/rsa_key_generator.py index 7cd7163b68d5..ce7c1f3dd12b 100644 --- a/ciphers/rsa_key_generator.py +++ b/ciphers/rsa_key_generator.py @@ -1,45 +1,54 @@ import random, sys, os import rabin_miller as rabinMiller, cryptomath_module as cryptoMath + def main(): - print('Making key files...') - makeKeyFiles('rsa', 1024) - print('Key files generation successful.') + print("Making key files...") + makeKeyFiles("rsa", 1024) + print("Key files generation successful.") + def generateKey(keySize): - print('Generating prime p...') + print("Generating prime p...") p = rabinMiller.generateLargePrime(keySize) - print('Generating prime q...') + print("Generating prime q...") q = rabinMiller.generateLargePrime(keySize) n = p * q - print('Generating e that is relatively prime to (p - 1) * (q - 1)...') + print("Generating e that is relatively prime to (p - 1) * (q - 1)...") while True: e = random.randrange(2 ** (keySize - 1), 2 ** (keySize)) if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1: break - print('Calculating d that is mod inverse of e...') + print("Calculating d that is mod inverse of e...") d = cryptoMath.findModInverse(e, (p - 1) * (q - 1)) publicKey = (n, e) privateKey = (n, d) return (publicKey, privateKey) + def makeKeyFiles(name, keySize): - if os.path.exists('%s_pubkey.txt' % (name)) or os.path.exists('%s_privkey.txt' % (name)): - print('\nWARNING:') - print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \nUse a different name or delete these files and re-run this program.' % (name, name)) + if os.path.exists("%s_pubkey.txt" % (name)) or os.path.exists( + "%s_privkey.txt" % (name) + ): + print("\nWARNING:") + print( + '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \nUse a different name or delete these files and re-run this program.' + % (name, name) + ) sys.exit() publicKey, privateKey = generateKey(keySize) - print('\nWriting public key to file %s_pubkey.txt...' % name) - with open('%s_pubkey.txt' % name, 'w') as fo: - fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1])) + print("\nWriting public key to file %s_pubkey.txt..." % name) + with open("%s_pubkey.txt" % name, "w") as fo: + fo.write("%s,%s,%s" % (keySize, publicKey[0], publicKey[1])) + + print("Writing private key to file %s_privkey.txt..." % name) + with open("%s_privkey.txt" % name, "w") as fo: + fo.write("%s,%s,%s" % (keySize, privateKey[0], privateKey[1])) - print('Writing private key to file %s_privkey.txt...' % name) - with open('%s_privkey.txt' % name, 'w') as fo: - fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1])) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/simple_substitution_cipher.py b/ciphers/simple_substitution_cipher.py index 5da07f8526b9..12511cc39bbc 100644 --- a/ciphers/simple_substitution_cipher.py +++ b/ciphers/simple_substitution_cipher.py @@ -1,22 +1,24 @@ import sys, random -LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' +LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + def main(): - message = input('Enter message: ') - key = 'LFWOAYUISVKMNXPBDCRJTQEGHZ' - resp = input('Encrypt/Decrypt [e/d]: ') + message = input("Enter message: ") + key = "LFWOAYUISVKMNXPBDCRJTQEGHZ" + resp = input("Encrypt/Decrypt [e/d]: ") checkValidKey(key) - if resp.lower().startswith('e'): - mode = 'encrypt' + if resp.lower().startswith("e"): + mode = "encrypt" translated = encryptMessage(key, message) - elif resp.lower().startswith('d'): - mode = 'decrypt' + elif resp.lower().startswith("d"): + mode = "decrypt" translated = decryptMessage(key, message) - print('\n%sion: \n%s' % (mode.title(), translated)) + print("\n%sion: \n%s" % (mode.title(), translated)) + def checkValidKey(key): keyList = list(key) @@ -25,28 +27,31 @@ def checkValidKey(key): lettersList.sort() if keyList != lettersList: - sys.exit('Error in the key or symbol set.') + sys.exit("Error in the key or symbol set.") + def encryptMessage(key, message): """ >>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji') 'Ilcrism Olcvs' """ - return translateMessage(key, message, 'encrypt') + return translateMessage(key, message, "encrypt") + def decryptMessage(key, message): """ >>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs') 'Harshil Darji' """ - return translateMessage(key, message, 'decrypt') + return translateMessage(key, message, "decrypt") + def translateMessage(key, message, mode): - translated = '' + translated = "" charsA = LETTERS charsB = key - if mode == 'decrypt': + if mode == "decrypt": charsA, charsB = charsB, charsA for symbol in message: @@ -61,10 +66,12 @@ def translateMessage(key, message, mode): return translated + def getRandomKey(): key = list(LETTERS) random.shuffle(key) - return ''.join(key) + return "".join(key) + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/trafid_cipher.py b/ciphers/trafid_cipher.py index 53f4d288bfe2..0add9ee74beb 100644 --- a/ciphers/trafid_cipher.py +++ b/ciphers/trafid_cipher.py @@ -1,4 +1,5 @@ -#https://en.wikipedia.org/wiki/Trifid_cipher +# https://en.wikipedia.org/wiki/Trifid_cipher + def __encryptPart(messagePart, character2Number): one, two, three = "", "", "" @@ -12,7 +13,8 @@ def __encryptPart(messagePart, character2Number): two += each[1] three += each[2] - return one+two+three + return one + two + three + def __decryptPart(messagePart, character2Number): tmp, thisPart = "", "" @@ -29,20 +31,49 @@ def __decryptPart(messagePart, character2Number): return result[0], result[1], result[2] + def __prepare(message, alphabet): - #Validate message and alphabet, set to upper and remove spaces + # Validate message and alphabet, set to upper and remove spaces alphabet = alphabet.replace(" ", "").upper() message = message.replace(" ", "").upper() - #Check length and characters + # Check length and characters if len(alphabet) != 27: raise KeyError("Length of alphabet has to be 27.") for each in message: if each not in alphabet: raise ValueError("Each message character has to be included in alphabet!") - #Generate dictionares - numbers = ("111","112","113","121","122","123","131","132","133","211","212","213","221","222","223","231","232","233","311","312","313","321","322","323","331","332","333") + # Generate dictionares + numbers = ( + "111", + "112", + "113", + "121", + "122", + "123", + "131", + "132", + "133", + "211", + "212", + "213", + "221", + "222", + "223", + "231", + "232", + "233", + "311", + "312", + "313", + "321", + "322", + "323", + "331", + "332", + "333", + ) character2Number = {} number2Character = {} for letter, number in zip(alphabet, numbers): @@ -51,36 +82,39 @@ def __prepare(message, alphabet): return message, alphabet, character2Number, number2Character -def encryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): + +def encryptMessage(message, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) encrypted, encrypted_numeric = "", "" - for i in range(0, len(message)+1, period): - encrypted_numeric += __encryptPart(message[i:i+period], character2Number) + for i in range(0, len(message) + 1, period): + encrypted_numeric += __encryptPart(message[i : i + period], character2Number) for i in range(0, len(encrypted_numeric), 3): - encrypted += number2Character[encrypted_numeric[i:i+3]] + encrypted += number2Character[encrypted_numeric[i : i + 3]] return encrypted -def decryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): + +def decryptMessage(message, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) decrypted_numeric = [] decrypted = "" - for i in range(0, len(message)+1, period): - a,b,c = __decryptPart(message[i:i+period], character2Number) + for i in range(0, len(message) + 1, period): + a, b, c = __decryptPart(message[i : i + period], character2Number) for j in range(0, len(a)): - decrypted_numeric.append(a[j]+b[j]+c[j]) + decrypted_numeric.append(a[j] + b[j] + c[j]) for each in decrypted_numeric: decrypted += number2Character[each] return decrypted -if __name__ == '__main__': + +if __name__ == "__main__": msg = "DEFEND THE EAST WALL OF THE CASTLE." - encrypted = encryptMessage(msg,"EPSDUCVWYM.ZLKXNBTFGORIJHAQ") + encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") print("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted)) diff --git a/ciphers/transposition_cipher.py b/ciphers/transposition_cipher.py index 1c2ed0aa0452..b6c9195b5dee 100644 --- a/ciphers/transposition_cipher.py +++ b/ciphers/transposition_cipher.py @@ -1,30 +1,33 @@ import math + def main(): - message = input('Enter message: ') - key = int(input('Enter key [2-%s]: ' % (len(message) - 1))) - mode = input('Encryption/Decryption [e/d]: ') + message = input("Enter message: ") + key = int(input("Enter key [2-%s]: " % (len(message) - 1))) + mode = input("Encryption/Decryption [e/d]: ") - if mode.lower().startswith('e'): + if mode.lower().startswith("e"): text = encryptMessage(key, message) - elif mode.lower().startswith('d'): + elif mode.lower().startswith("d"): text = decryptMessage(key, message) # Append pipe symbol (vertical bar) to identify spaces at the end. - print('Output:\n%s' %(text + '|')) + print("Output:\n%s" % (text + "|")) + def encryptMessage(key, message): """ >>> encryptMessage(6, 'Harshil Darji') 'Hlia rDsahrij' """ - cipherText = [''] * key + cipherText = [""] * key for col in range(key): pointer = col while pointer < len(message): cipherText[col] += message[pointer] pointer += key - return ''.join(cipherText) + return "".join(cipherText) + def decryptMessage(key, message): """ @@ -35,19 +38,26 @@ def decryptMessage(key, message): numRows = key numShadedBoxes = (numCols * numRows) - len(message) plainText = [""] * numCols - col = 0; row = 0; + col = 0 + row = 0 for symbol in message: plainText[col] += symbol col += 1 - if (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes): + if ( + (col == numCols) + or (col == numCols - 1) + and (row >= numRows - numShadedBoxes) + ): col = 0 row += 1 return "".join(plainText) -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() main() diff --git a/ciphers/transposition_cipher_encrypt_decrypt_file.py b/ciphers/transposition_cipher_encrypt_decrypt_file.py index 8ebfc1ea7e0c..775df354e117 100644 --- a/ciphers/transposition_cipher_encrypt_decrypt_file.py +++ b/ciphers/transposition_cipher_encrypt_decrypt_file.py @@ -1,36 +1,38 @@ import time, os, sys import transposition_cipher as transCipher + def main(): - inputFile = 'Prehistoric Men.txt' - outputFile = 'Output.txt' - key = int(input('Enter key: ')) - mode = input('Encrypt/Decrypt [e/d]: ') + inputFile = "Prehistoric Men.txt" + outputFile = "Output.txt" + key = int(input("Enter key: ")) + mode = input("Encrypt/Decrypt [e/d]: ") if not os.path.exists(inputFile): - print('File %s does not exist. Quitting...' % inputFile) + print("File %s does not exist. Quitting..." % inputFile) sys.exit() if os.path.exists(outputFile): - print('Overwrite %s? [y/n]' % outputFile) - response = input('> ') - if not response.lower().startswith('y'): + print("Overwrite %s? [y/n]" % outputFile) + response = input("> ") + if not response.lower().startswith("y"): sys.exit() startTime = time.time() - if mode.lower().startswith('e'): + if mode.lower().startswith("e"): with open(inputFile) as f: content = f.read() translated = transCipher.encryptMessage(key, content) - elif mode.lower().startswith('d'): + elif mode.lower().startswith("d"): with open(outputFile) as f: content = f.read() - translated =transCipher .decryptMessage(key, content) + translated = transCipher.decryptMessage(key, content) - with open(outputFile, 'w') as outputObj: + with open(outputFile, "w") as outputObj: outputObj.write(translated) totalTime = round(time.time() - startTime, 2) - print(('Done (', totalTime, 'seconds )')) + print(("Done (", totalTime, "seconds )")) + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/vigenere_cipher.py b/ciphers/vigenere_cipher.py index 95eeb431109f..6c10e7d773f2 100644 --- a/ciphers/vigenere_cipher.py +++ b/ciphers/vigenere_cipher.py @@ -1,33 +1,37 @@ -LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' +LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + def main(): - message = input('Enter message: ') - key = input('Enter key [alphanumeric]: ') - mode = input('Encrypt/Decrypt [e/d]: ') + message = input("Enter message: ") + key = input("Enter key [alphanumeric]: ") + mode = input("Encrypt/Decrypt [e/d]: ") - if mode.lower().startswith('e'): - mode = 'encrypt' + if mode.lower().startswith("e"): + mode = "encrypt" translated = encryptMessage(key, message) - elif mode.lower().startswith('d'): - mode = 'decrypt' + elif mode.lower().startswith("d"): + mode = "decrypt" translated = decryptMessage(key, message) - print('\n%sed message:' % mode.title()) + print("\n%sed message:" % mode.title()) print(translated) + def encryptMessage(key, message): - ''' + """ >>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.') 'Akij ra Odrjqqs Gaisq muod Mphumrs.' - ''' - return translateMessage(key, message, 'encrypt') + """ + return translateMessage(key, message, "encrypt") + def decryptMessage(key, message): - ''' + """ >>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.') 'This is Harshil Darji from Dharmaj.' - ''' - return translateMessage(key, message, 'decrypt') + """ + return translateMessage(key, message, "decrypt") + def translateMessage(key, message, mode): translated = [] @@ -37,9 +41,9 @@ def translateMessage(key, message, mode): for symbol in message: num = LETTERS.find(symbol.upper()) if num != -1: - if mode == 'encrypt': + if mode == "encrypt": num += LETTERS.find(key[keyIndex]) - elif mode == 'decrypt': + elif mode == "decrypt": num -= LETTERS.find(key[keyIndex]) num %= len(LETTERS) @@ -54,7 +58,8 @@ def translateMessage(key, message, mode): keyIndex = 0 else: translated.append(symbol) - return ''.join(translated) + return "".join(translated) + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py index 8bb94212c15a..7d8dbe41fdea 100644 --- a/ciphers/xor_cipher.py +++ b/ciphers/xor_cipher.py @@ -16,121 +16,120 @@ - encrypt_file : boolean - decrypt_file : boolean """ -class XORCipher(object): - def __init__(self, key = 0): - """ + +class XORCipher(object): + def __init__(self, key=0): + """ simple constructor that receives a key or uses default key = 0 """ - #private field - self.__key = key + # private field + self.__key = key - def encrypt(self, content, key): - """ + def encrypt(self, content, key): + """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ - # precondition - assert (isinstance(key,int) and isinstance(content,str)) + # precondition + assert isinstance(key, int) and isinstance(content, str) - key = key or self.__key or 1 + key = key or self.__key or 1 - # make sure key can be any size - while (key > 255): - key -= 255 + # make sure key can be any size + while key > 255: + key -= 255 - # This will be returned - ans = [] + # This will be returned + ans = [] - for ch in content: - ans.append(chr(ord(ch) ^ key)) + for ch in content: + ans.append(chr(ord(ch) ^ key)) - return ans + return ans - def decrypt(self,content,key): - """ + def decrypt(self, content, key): + """ input: 'content' of type list and 'key' of type int output: decrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ - # precondition - assert (isinstance(key,int) and isinstance(content,list)) + # precondition + assert isinstance(key, int) and isinstance(content, list) - key = key or self.__key or 1 + key = key or self.__key or 1 - # make sure key can be any size - while (key > 255): - key -= 255 + # make sure key can be any size + while key > 255: + key -= 255 - # This will be returned - ans = [] + # This will be returned + ans = [] - for ch in content: - ans.append(chr(ord(ch) ^ key)) + for ch in content: + ans.append(chr(ord(ch) ^ key)) - return ans + return ans - - def encrypt_string(self,content, key = 0): - """ + def encrypt_string(self, content, key=0): + """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ - # precondition - assert (isinstance(key,int) and isinstance(content,str)) + # precondition + assert isinstance(key, int) and isinstance(content, str) - key = key or self.__key or 1 + key = key or self.__key or 1 - # make sure key can be any size - while (key > 255): - key -= 255 + # make sure key can be any size + while key > 255: + key -= 255 - # This will be returned - ans = "" + # This will be returned + ans = "" - for ch in content: - ans += chr(ord(ch) ^ key) + for ch in content: + ans += chr(ord(ch) ^ key) - return ans + return ans - def decrypt_string(self,content,key = 0): - """ + def decrypt_string(self, content, key=0): + """ input: 'content' of type string and 'key' of type int output: decrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ - # precondition - assert (isinstance(key,int) and isinstance(content,str)) - - key = key or self.__key or 1 + # precondition + assert isinstance(key, int) and isinstance(content, str) - # make sure key can be any size - while (key > 255): - key -= 255 + key = key or self.__key or 1 - # This will be returned - ans = "" + # make sure key can be any size + while key > 255: + key -= 255 - for ch in content: - ans += chr(ord(ch) ^ key) + # This will be returned + ans = "" - return ans + for ch in content: + ans += chr(ord(ch) ^ key) + return ans - def encrypt_file(self, file, key = 0): - """ + def encrypt_file(self, file, key=0): + """ input: filename (str) and a key (int) output: returns true if encrypt process was successful otherwise false @@ -138,25 +137,24 @@ def encrypt_file(self, file, key = 0): otherwise key = 1 """ - #precondition - assert (isinstance(file,str) and isinstance(key,int)) - - try: - with open(file,"r") as fin: - with open("encrypt.out","w+") as fout: + # precondition + assert isinstance(file, str) and isinstance(key, int) - # actual encrypt-process - for line in fin: - fout.write(self.encrypt_string(line,key)) + try: + with open(file, "r") as fin: + with open("encrypt.out", "w+") as fout: - except: - return False + # actual encrypt-process + for line in fin: + fout.write(self.encrypt_string(line, key)) - return True + except: + return False + return True - def decrypt_file(self,file, key): - """ + def decrypt_file(self, file, key): + """ input: filename (str) and a key (int) output: returns true if decrypt process was successful otherwise false @@ -164,23 +162,21 @@ def decrypt_file(self,file, key): otherwise key = 1 """ - #precondition - assert (isinstance(file,str) and isinstance(key,int)) - - try: - with open(file,"r") as fin: - with open("decrypt.out","w+") as fout: - - # actual encrypt-process - for line in fin: - fout.write(self.decrypt_string(line,key)) + # precondition + assert isinstance(file, str) and isinstance(key, int) - except: - return False + try: + with open(file, "r") as fin: + with open("decrypt.out", "w+") as fout: - return True + # actual encrypt-process + for line in fin: + fout.write(self.decrypt_string(line, key)) + except: + return False + return True # Tests diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py index fabeab39adf8..50ee62aa0cb3 100644 --- a/compression/burrows_wheeler.py +++ b/compression/burrows_wheeler.py @@ -141,15 +141,10 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: ) ) if idx_original_string < 0: - raise ValueError( - "The parameter idx_original_string must not be lower than 0." - ) + raise ValueError("The parameter idx_original_string must not be lower than 0.") if idx_original_string >= len(bwt_string): raise ValueError( - ( - "The parameter idx_original_string must be lower than" - " len(bwt_string)." - ) + ("The parameter idx_original_string must be lower than" " len(bwt_string).") ) ordered_rotations = [""] * len(bwt_string) @@ -166,9 +161,7 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: result = bwt_transform(s) bwt_output_msg = "Burrows Wheeler tranform for string '{}' results in '{}'" print(bwt_output_msg.format(s, result["bwt_string"])) - original_string = reverse_bwt( - result["bwt_string"], result["idx_original_string"] - ) + original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"]) fmt = ( "Reversing Burrows Wheeler tranform for entry '{}' we get original" " string '{}'" diff --git a/compression/huffman.py b/compression/huffman.py index 7417551ba209..73c084351c85 100644 --- a/compression/huffman.py +++ b/compression/huffman.py @@ -1,5 +1,6 @@ import sys + class Letter: def __init__(self, letter, freq): self.letter = letter @@ -7,7 +8,7 @@ def __init__(self, letter, freq): self.bitstring = "" def __repr__(self): - return f'{self.letter}:{self.freq}' + return f"{self.letter}:{self.freq}" class TreeNode: @@ -31,6 +32,7 @@ def parse_file(file_path): chars[c] = chars[c] + 1 if c in chars.keys() else 1 return sorted([Letter(c, f) for c, f in chars.items()], key=lambda l: l.freq) + def build_tree(letters): """ Run through the list of Letters and build the min heap @@ -45,6 +47,7 @@ def build_tree(letters): letters.sort(key=lambda l: l.freq) return letters[0] + def traverse_tree(root, bitstring): """ Recursively traverse the Huffman Tree to set each @@ -58,6 +61,7 @@ def traverse_tree(root, bitstring): letters += traverse_tree(root.right, bitstring + "1") return letters + def huffman(file_path): """ Parse the file, build the tree, then run through the file @@ -67,7 +71,7 @@ def huffman(file_path): letters_list = parse_file(file_path) root = build_tree(letters_list) letters = traverse_tree(root, "") - print(f'Huffman Coding of {file_path}: ') + print(f"Huffman Coding of {file_path}: ") with open(file_path) as f: while True: c = f.read(1) @@ -77,6 +81,7 @@ def huffman(file_path): print(le.bitstring, end=" ") print() + if __name__ == "__main__": # pass the file path to the huffman function huffman(sys.argv[1]) diff --git a/compression/peak_signal_to_noise_ratio.py b/compression/peak_signal_to_noise_ratio.py index b0efb1462dcc..418832a8127c 100644 --- a/compression/peak_signal_to_noise_ratio.py +++ b/compression/peak_signal_to_noise_ratio.py @@ -9,6 +9,7 @@ import cv2 import numpy as np + def psnr(original, contrast): mse = np.mean((original - contrast) ** 2) if mse == 0: @@ -21,11 +22,13 @@ def psnr(original, contrast): def main(): dir_path = os.path.dirname(os.path.realpath(__file__)) # Loading images (original image and compressed image) - original = cv2.imread(os.path.join(dir_path, 'image_data/original_image.png')) - contrast = cv2.imread(os.path.join(dir_path, 'image_data/compressed_image.png'), 1) + original = cv2.imread(os.path.join(dir_path, "image_data/original_image.png")) + contrast = cv2.imread(os.path.join(dir_path, "image_data/compressed_image.png"), 1) - original2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-base.png')) - contrast2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-comp-10.jpg'), 1) + original2 = cv2.imread(os.path.join(dir_path, "image_data/PSNR-example-base.png")) + contrast2 = cv2.imread( + os.path.join(dir_path, "image_data/PSNR-example-comp-10.jpg"), 1 + ) # Value expected: 29.73dB print("-- First Test --") @@ -36,5 +39,5 @@ def main(): print(f"PSNR value is {psnr(original2, contrast2)} dB") -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/conversions/decimal_to_binary.py b/conversions/decimal_to_binary.py index 934cf0dfb363..ad4ba166745d 100644 --- a/conversions/decimal_to_binary.py +++ b/conversions/decimal_to_binary.py @@ -55,4 +55,5 @@ def decimal_to_binary(num): if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/conversions/decimal_to_hexadecimal.py b/conversions/decimal_to_hexadecimal.py index e6435f1ef570..a70e3c7b97bf 100644 --- a/conversions/decimal_to_hexadecimal.py +++ b/conversions/decimal_to_hexadecimal.py @@ -2,24 +2,25 @@ # set decimal value for each hexadecimal digit values = { - 0:'0', - 1:'1', - 2:'2', - 3:'3', - 4:'4', - 5:'5', - 6:'6', - 7:'7', - 8:'8', - 9:'9', - 10:'a', - 11:'b', - 12:'c', - 13:'d', - 14:'e', - 15:'f' + 0: "0", + 1: "1", + 2: "2", + 3: "3", + 4: "4", + 5: "5", + 6: "6", + 7: "7", + 8: "8", + 9: "9", + 10: "a", + 11: "b", + 12: "c", + 13: "d", + 14: "e", + 15: "f", } + def decimal_to_hexadecimal(decimal): """ take integer decimal value, return hexadecimal representation as str beginning with 0x @@ -56,7 +57,7 @@ def decimal_to_hexadecimal(decimal): True """ assert type(decimal) in (int, float) and decimal == int(decimal) - hexadecimal = '' + hexadecimal = "" negative = False if decimal < 0: negative = True @@ -64,11 +65,13 @@ def decimal_to_hexadecimal(decimal): while decimal > 0: decimal, remainder = divmod(decimal, 16) hexadecimal = values[remainder] + hexadecimal - hexadecimal = '0x' + hexadecimal + hexadecimal = "0x" + hexadecimal if negative: - hexadecimal = '-' + hexadecimal + hexadecimal = "-" + hexadecimal return hexadecimal -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/conversions/decimal_to_octal.py b/conversions/decimal_to_octal.py index 187a0300e33a..0b005429d9d7 100644 --- a/conversions/decimal_to_octal.py +++ b/conversions/decimal_to_octal.py @@ -16,7 +16,7 @@ def decimal_to_octal(num): counter += 1 num = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. - return'{0:g}'.format(float(octal)) + return "{0:g}".format(float(octal)) def main(): @@ -34,5 +34,5 @@ def main(): print("\n") -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/data_structures/binary_tree/avl_tree.py b/data_structures/binary_tree/avl_tree.py index ff44963d1690..31d12c811105 100644 --- a/data_structures/binary_tree/avl_tree.py +++ b/data_structures/binary_tree/avl_tree.py @@ -1,71 +1,88 @@ # -*- coding: utf-8 -*- -''' +""" An auto-balanced binary tree! -''' +""" import math import random + + class my_queue: def __init__(self): self.data = [] self.head = 0 self.tail = 0 + def isEmpty(self): return self.head == self.tail - def push(self,data): + + def push(self, data): self.data.append(data) self.tail = self.tail + 1 + def pop(self): ret = self.data[self.head] self.head = self.head + 1 return ret + def count(self): return self.tail - self.head + def print(self): print(self.data) print("**************") - print(self.data[self.head:self.tail]) - + print(self.data[self.head : self.tail]) + + class my_node: - def __init__(self,data): + def __init__(self, data): self.data = data self.left = None self.right = None self.height = 1 + def getdata(self): return self.data + def getleft(self): return self.left + def getright(self): return self.right + def getheight(self): return self.height - def setdata(self,data): + + def setdata(self, data): self.data = data return - def setleft(self,node): + + def setleft(self, node): self.left = node return - def setright(self,node): + + def setright(self, node): self.right = node return - def setheight(self,height): + + def setheight(self, height): self.height = height return + def getheight(node): if node is None: return 0 return node.getheight() -def my_max(a,b): + +def my_max(a, b): if a > b: return a return b - def leftrotation(node): - r''' + r""" A B / \ / \ B C Bl A @@ -75,33 +92,35 @@ def leftrotation(node): UB UB = unbalanced node - ''' - print("left rotation node:",node.getdata()) + """ + print("left rotation node:", node.getdata()) ret = node.getleft() node.setleft(ret.getright()) ret.setright(node) - h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 + h1 = my_max(getheight(node.getright()), getheight(node.getleft())) + 1 node.setheight(h1) - h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1 + h2 = my_max(getheight(ret.getright()), getheight(ret.getleft())) + 1 ret.setheight(h2) return ret + def rightrotation(node): - ''' + """ a mirror symmetry rotation of the leftrotation - ''' - print("right rotation node:",node.getdata()) + """ + print("right rotation node:", node.getdata()) ret = node.getright() node.setright(ret.getleft()) ret.setleft(node) - h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 + h1 = my_max(getheight(node.getright()), getheight(node.getleft())) + 1 node.setheight(h1) - h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1 + h2 = my_max(getheight(ret.getright()), getheight(ret.getleft())) + 1 ret.setheight(h2) return ret + def rlrotation(node): - r''' + r""" A A Br / \ / \ / \ B C RR Br C LR B A @@ -110,51 +129,60 @@ def rlrotation(node): \ / UB Bl RR = rightrotation LR = leftrotation - ''' + """ node.setleft(rightrotation(node.getleft())) return leftrotation(node) + def lrrotation(node): node.setright(leftrotation(node.getright())) return rightrotation(node) -def insert_node(node,data): +def insert_node(node, data): if node is None: return my_node(data) if data < node.getdata(): - node.setleft(insert_node(node.getleft(),data)) - if getheight(node.getleft()) - getheight(node.getright()) == 2: #an unbalance detected - if data < node.getleft().getdata(): #new node is the left child of the left child + node.setleft(insert_node(node.getleft(), data)) + if ( + getheight(node.getleft()) - getheight(node.getright()) == 2 + ): # an unbalance detected + if ( + data < node.getleft().getdata() + ): # new node is the left child of the left child node = leftrotation(node) else: - node = rlrotation(node) #new node is the right child of the left child + node = rlrotation(node) # new node is the right child of the left child else: - node.setright(insert_node(node.getright(),data)) + node.setright(insert_node(node.getright(), data)) if getheight(node.getright()) - getheight(node.getleft()) == 2: if data < node.getright().getdata(): node = lrrotation(node) else: node = rightrotation(node) - h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 + h1 = my_max(getheight(node.getright()), getheight(node.getleft())) + 1 node.setheight(h1) return node + def getRightMost(root): while root.getright() is not None: root = root.getright() return root.getdata() + + def getLeftMost(root): while root.getleft() is not None: root = root.getleft() return root.getdata() -def del_node(root,data): + +def del_node(root, data): if root.getdata() == data: if root.getleft() is not None and root.getright() is not None: temp_data = getLeftMost(root.getright()) root.setdata(temp_data) - root.setright(del_node(root.getright(),temp_data)) + root.setright(del_node(root.getright(), temp_data)) elif root.getleft() is not None: root = root.getleft() else: @@ -164,12 +192,12 @@ def del_node(root,data): print("No such data") return root else: - root.setleft(del_node(root.getleft(),data)) + root.setleft(del_node(root.getleft(), data)) elif root.getdata() < data: if root.getright() is None: return root else: - root.setright(del_node(root.getright(),data)) + root.setright(del_node(root.getright(), data)) if root is None: return root if getheight(root.getright()) - getheight(root.getleft()) == 2: @@ -182,27 +210,31 @@ def del_node(root,data): root = leftrotation(root) else: root = rlrotation(root) - height = my_max(getheight(root.getright()),getheight(root.getleft())) + 1 + height = my_max(getheight(root.getright()), getheight(root.getleft())) + 1 root.setheight(height) return root + class AVLtree: def __init__(self): self.root = None + def getheight(self): -# print("yyy") + # print("yyy") return getheight(self.root) - def insert(self,data): - print("insert:"+str(data)) - self.root = insert_node(self.root,data) - - def del_node(self,data): - print("delete:"+str(data)) + + def insert(self, data): + print("insert:" + str(data)) + self.root = insert_node(self.root, data) + + def del_node(self, data): + print("delete:" + str(data)) if self.root is None: print("Tree is empty!") return - self.root = del_node(self.root,data) - def traversale(self): #a level traversale, gives a more intuitive look on the tree + self.root = del_node(self.root, data) + + def traversale(self): # a level traversale, gives a more intuitive look on the tree q = my_queue() q.push(self.root) layer = self.getheight() @@ -211,21 +243,21 @@ def traversale(self): #a level traversale, gives a more intuitive look on the tr cnt = 0 while not q.isEmpty(): node = q.pop() - space = " "*int(math.pow(2,layer-1)) - print(space,end = "") + space = " " * int(math.pow(2, layer - 1)) + print(space, end="") if node is None: - print("*",end = "") + print("*", end="") q.push(None) q.push(None) else: - print(node.getdata(),end = "") + print(node.getdata(), end="") q.push(node.getleft()) q.push(node.getright()) - print(space,end = "") + print(space, end="") cnt = cnt + 1 for i in range(100): - if cnt == math.pow(2,i) - 1: - layer = layer -1 + if cnt == math.pow(2, i) - 1: + layer = layer - 1 if layer == 0: print() print("*************************************") @@ -235,11 +267,13 @@ def traversale(self): #a level traversale, gives a more intuitive look on the tr print() print("*************************************") return - + def test(self): getheight(None) print("****") self.getheight() + + if __name__ == "__main__": t = AVLtree() t.traversale() @@ -248,7 +282,7 @@ def test(self): for i in l: t.insert(i) t.traversale() - + random.shuffle(l) for i in l: t.del_node(i) diff --git a/data_structures/binary_tree/basic_binary_tree.py b/data_structures/binary_tree/basic_binary_tree.py index 7c6240fb4dd4..6b7de7803704 100644 --- a/data_structures/binary_tree/basic_binary_tree.py +++ b/data_structures/binary_tree/basic_binary_tree.py @@ -1,12 +1,13 @@ -class Node: # This is the Class Node with constructor that contains data variable to type data and left,right pointers. +class Node: # This is the Class Node with constructor that contains data variable to type data and left,right pointers. def __init__(self, data): self.data = data self.left = None self.right = None -def display(tree): #In Order traversal of the tree - if tree is None: +def display(tree): # In Order traversal of the tree + + if tree is None: return if tree.left is not None: @@ -19,7 +20,10 @@ def display(tree): #In Order traversal of the tree return -def depth_of_tree(tree): #This is the recursive function to find the depth of binary tree. + +def depth_of_tree( + tree +): # This is the recursive function to find the depth of binary tree. if tree is None: return 0 else: @@ -31,18 +35,20 @@ def depth_of_tree(tree): #This is the recursive function to find the depth of bi return 1 + depth_r_tree -def is_full_binary_tree(tree): # This functions returns that is it full binary tree or not? +def is_full_binary_tree( + tree +): # This functions returns that is it full binary tree or not? if tree is None: return True if (tree.left is None) and (tree.right is None): return True if (tree.left is not None) and (tree.right is not None): - return (is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right)) + return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return False -def main(): # Main func for testing. +def main(): # Main func for testing. tree = Node(1) tree.left = Node(2) tree.right = Node(3) @@ -59,5 +65,5 @@ def main(): # Main func for testing. display(tree) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 634b6cbcc231..c6e037880bb6 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -1,13 +1,14 @@ -''' +""" A binary search Tree -''' -class Node: +""" + +class Node: def __init__(self, label, parent): self.label = label self.left = None self.right = None - #Added in order to delete a node easier + # Added in order to delete a node easier self.parent = parent def getLabel(self): @@ -34,8 +35,8 @@ def getParent(self): def setParent(self, parent): self.parent = parent -class BinarySearchTree: +class BinarySearchTree: def __init__(self): self.root = None @@ -46,90 +47,90 @@ def insert(self, label): if self.empty(): self.root = new_node else: - #If Tree is not empty + # If Tree is not empty curr_node = self.root - #While we don't get to a leaf + # While we don't get to a leaf while curr_node is not None: - #We keep reference of the parent node + # We keep reference of the parent node parent_node = curr_node - #If node label is less than current node + # If node label is less than current node if new_node.getLabel() < curr_node.getLabel(): - #We go left + # We go left curr_node = curr_node.getLeft() else: - #Else we go right + # Else we go right curr_node = curr_node.getRight() - #We insert the new node in a leaf + # We insert the new node in a leaf if new_node.getLabel() < parent_node.getLabel(): parent_node.setLeft(new_node) else: parent_node.setRight(new_node) - #Set parent to the new node + # Set parent to the new node new_node.setParent(parent_node) def delete(self, label): - if (not self.empty()): - #Look for the node with that label + if not self.empty(): + # Look for the node with that label node = self.getNode(label) - #If the node exists - if(node is not None): - #If it has no children - if(node.getLeft() is None and node.getRight() is None): + # If the node exists + if node is not None: + # If it has no children + if node.getLeft() is None and node.getRight() is None: self.__reassignNodes(node, None) node = None - #Has only right children - elif(node.getLeft() is None and node.getRight() is not None): + # Has only right children + elif node.getLeft() is None and node.getRight() is not None: self.__reassignNodes(node, node.getRight()) - #Has only left children - elif(node.getLeft() is not None and node.getRight() is None): + # Has only left children + elif node.getLeft() is not None and node.getRight() is None: self.__reassignNodes(node, node.getLeft()) - #Has two children + # Has two children else: - #Gets the max value of the left branch + # Gets the max value of the left branch tmpNode = self.getMax(node.getLeft()) - #Deletes the tmpNode + # Deletes the tmpNode self.delete(tmpNode.getLabel()) - #Assigns the value to the node to delete and keesp tree structure + # Assigns the value to the node to delete and keesp tree structure node.setLabel(tmpNode.getLabel()) def getNode(self, label): curr_node = None - #If the tree is not empty - if(not self.empty()): - #Get tree root + # If the tree is not empty + if not self.empty(): + # Get tree root curr_node = self.getRoot() - #While we don't find the node we look for - #I am using lazy evaluation here to avoid NoneType Attribute error + # While we don't find the node we look for + # I am using lazy evaluation here to avoid NoneType Attribute error while curr_node is not None and curr_node.getLabel() is not label: - #If node label is less than current node + # If node label is less than current node if label < curr_node.getLabel(): - #We go left + # We go left curr_node = curr_node.getLeft() else: - #Else we go right + # Else we go right curr_node = curr_node.getRight() return curr_node - def getMax(self, root = None): - if(root is not None): + def getMax(self, root=None): + if root is not None: curr_node = root else: - #We go deep on the right branch + # We go deep on the right branch curr_node = self.getRoot() - if(not self.empty()): - while(curr_node.getRight() is not None): + if not self.empty(): + while curr_node.getRight() is not None: curr_node = curr_node.getRight() return curr_node - def getMin(self, root = None): - if(root is not None): + def getMin(self, root=None): + if root is not None: curr_node = root else: - #We go deep on the left branch + # We go deep on the left branch curr_node = self.getRoot() - if(not self.empty()): + if not self.empty(): curr_node = self.getRoot() - while(curr_node.getLeft() is not None): + while curr_node.getLeft() is not None: curr_node = curr_node.getLeft() return curr_node @@ -150,34 +151,34 @@ def getRoot(self): return self.root def __isRightChildren(self, node): - if(node == node.getParent().getRight()): + if node == node.getParent().getRight(): return True return False def __reassignNodes(self, node, newChildren): - if(newChildren is not None): + if newChildren is not None: newChildren.setParent(node.getParent()) - if(node.getParent() is not None): - #If it is the Right Children - if(self.__isRightChildren(node)): + if node.getParent() is not None: + # If it is the Right Children + if self.__isRightChildren(node): node.getParent().setRight(newChildren) else: - #Else it is the left children + # Else it is the left children node.getParent().setLeft(newChildren) - #This function traversal the tree. By default it returns an - #In order traversal list. You can pass a function to traversal - #The tree as needed by client code - def traversalTree(self, traversalFunction = None, root = None): - if(traversalFunction is None): - #Returns a list of nodes in preOrder by default + # This function traversal the tree. By default it returns an + # In order traversal list. You can pass a function to traversal + # The tree as needed by client code + def traversalTree(self, traversalFunction=None, root=None): + if traversalFunction is None: + # Returns a list of nodes in preOrder by default return self.__InOrderTraversal(self.root) else: - #Returns a list of nodes in the order that the users wants to + # Returns a list of nodes in the order that the users wants to return traversalFunction(self.root) - #Returns an string of all the nodes labels in the list - #In Order Traversal + # Returns an string of all the nodes labels in the list + # In Order Traversal def __str__(self): list = self.__InOrderTraversal(self.root) str = "" @@ -185,6 +186,7 @@ def __str__(self): str = str + " " + x.getLabel().__str__() return str + def InPreOrder(curr_node): nodeList = [] if curr_node is not None: @@ -193,8 +195,9 @@ def InPreOrder(curr_node): nodeList = nodeList + InPreOrder(curr_node.getRight()) return nodeList + def testBinarySearchTree(): - r''' + r""" Example 8 / \ @@ -203,15 +206,15 @@ def testBinarySearchTree(): 1 6 14 / \ / 4 7 13 - ''' + """ - r''' + r""" Example After Deletion 7 / \ 1 4 - ''' + """ t = BinarySearchTree() t.insert(8) t.insert(3) @@ -223,20 +226,20 @@ def testBinarySearchTree(): t.insert(4) t.insert(7) - #Prints all the elements of the list in order traversal + # Prints all the elements of the list in order traversal print(t.__str__()) - if(t.getNode(6) is not None): + if t.getNode(6) is not None: print("The label 6 exists") else: print("The label 6 doesn't exist") - if(t.getNode(-1) is not None): + if t.getNode(-1) is not None: print("The label -1 exists") else: print("The label -1 doesn't exist") - if(not t.empty()): + if not t.empty(): print(("Max Value: ", t.getMax().getLabel())) print(("Min Value: ", t.getMin().getLabel())) @@ -247,11 +250,12 @@ def testBinarySearchTree(): t.delete(6) t.delete(14) - #Gets all the elements of the tree In pre order - #And it prints them + # Gets all the elements of the tree In pre order + # And it prints them list = t.traversalTree(InPreOrder, t.root) for x in list: print(x) + if __name__ == "__main__": testBinarySearchTree() diff --git a/data_structures/binary_tree/fenwick_tree.py b/data_structures/binary_tree/fenwick_tree.py index 30a87fbd7fcf..54f0f07ac68d 100644 --- a/data_structures/binary_tree/fenwick_tree.py +++ b/data_structures/binary_tree/fenwick_tree.py @@ -1,28 +1,28 @@ class FenwickTree: - - def __init__(self, SIZE): # create fenwick tree with size SIZE + def __init__(self, SIZE): # create fenwick tree with size SIZE self.Size = SIZE - self.ft = [0 for i in range (0,SIZE)] + self.ft = [0 for i in range(0, SIZE)] - def update(self, i, val): # update data (adding) in index i in O(lg N) - while (i < self.Size): + def update(self, i, val): # update data (adding) in index i in O(lg N) + while i < self.Size: self.ft[i] += val i += i & (-i) - def query(self, i): # query cumulative data from index 0 to i in O(lg N) + def query(self, i): # query cumulative data from index 0 to i in O(lg N) ret = 0 - while (i > 0): + while i > 0: ret += self.ft[i] i -= i & (-i) return ret -if __name__ == '__main__': + +if __name__ == "__main__": f = FenwickTree(100) - f.update(1,20) - f.update(4,4) + f.update(1, 20) + f.update(4, 4) print(f.query(1)) print(f.query(3)) print(f.query(4)) - f.update(2,-5) + f.update(2, -5) print(f.query(1)) print(f.query(3)) diff --git a/data_structures/binary_tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py index bbe37a6eb97f..acd551b41b96 100644 --- a/data_structures/binary_tree/lazy_segment_tree.py +++ b/data_structures/binary_tree/lazy_segment_tree.py @@ -1,34 +1,38 @@ import math -class SegmentTree: +class SegmentTree: def __init__(self, N): self.N = N - self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N - self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update - self.flag = [0 for i in range(0,4*N)] # flag for lazy update + self.st = [ + 0 for i in range(0, 4 * N) + ] # approximate the overall size of segment tree with array N + self.lazy = [0 for i in range(0, 4 * N)] # create array to store lazy update + self.flag = [0 for i in range(0, 4 * N)] # flag for lazy update def left(self, idx): - return idx*2 + return idx * 2 def right(self, idx): - return idx*2 + 1 + return idx * 2 + 1 def build(self, idx, l, r, A): - if l==r: - self.st[idx] = A[l-1] - else : - mid = (l+r)//2 - self.build(self.left(idx),l,mid, A) - self.build(self.right(idx),mid+1,r, A) - self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) + if l == r: + self.st[idx] = A[l - 1] + else: + mid = (l + r) // 2 + self.build(self.left(idx), l, mid, A) + self.build(self.right(idx), mid + 1, r, A) + self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)]) # update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update) - def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b] + def update( + self, idx, l, r, a, b, val + ): # update(1, 1, N, a, b, v) for update val v to [a,b] if self.flag[idx] == True: self.st[idx] = self.lazy[idx] self.flag[idx] = False - if l!=r: + if l != r: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True @@ -36,22 +40,22 @@ def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update va if r < a or l > b: return True - if l >= a and r <= b : + if l >= a and r <= b: self.st[idx] = val - if l!=r: + if l != r: self.lazy[self.left(idx)] = val self.lazy[self.right(idx)] = val self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True return True - mid = (l+r)//2 - self.update(self.left(idx),l,mid,a,b,val) - self.update(self.right(idx),mid+1,r,a,b,val) - self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) + mid = (l + r) // 2 + self.update(self.left(idx), l, mid, a, b, val) + self.update(self.right(idx), mid + 1, r, a, b, val) + self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)]) return True # query with O(lg N) - def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b] + def query(self, idx, l, r, a, b): # query(1, 1, N, a, b) for query max of [a,b] if self.flag[idx] == True: self.st[idx] = self.lazy[idx] self.flag[idx] = False @@ -64,27 +68,27 @@ def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b] return -math.inf if l >= a and r <= b: return self.st[idx] - mid = (l+r)//2 - q1 = self.query(self.left(idx),l,mid,a,b) - q2 = self.query(self.right(idx),mid+1,r,a,b) - return max(q1,q2) + mid = (l + r) // 2 + q1 = self.query(self.left(idx), l, mid, a, b) + q2 = self.query(self.right(idx), mid + 1, r, a, b) + return max(q1, q2) def showData(self): showList = [] - for i in range(1,N+1): + for i in range(1, N + 1): showList += [self.query(1, 1, self.N, i, i)] print(showList) -if __name__ == '__main__': - A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] +if __name__ == "__main__": + A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] N = 15 segt = SegmentTree(N) - segt.build(1,1,N,A) - print(segt.query(1,1,N,4,6)) - print(segt.query(1,1,N,7,11)) - print(segt.query(1,1,N,7,12)) - segt.update(1,1,N,1,3,111) - print(segt.query(1,1,N,1,15)) - segt.update(1,1,N,7,8,235) + segt.build(1, 1, N, A) + print(segt.query(1, 1, N, 4, 6)) + print(segt.query(1, 1, N, 7, 11)) + print(segt.query(1, 1, N, 7, 12)) + segt.update(1, 1, N, 1, 3, 111) + print(segt.query(1, 1, N, 1, 15)) + segt.update(1, 1, N, 7, 8, 235) segt.showData() diff --git a/data_structures/binary_tree/lca.py b/data_structures/binary_tree/lca.py index 9c9d8ca629c7..c18f1e944bab 100644 --- a/data_structures/binary_tree/lca.py +++ b/data_structures/binary_tree/lca.py @@ -75,7 +75,7 @@ def main(): 10: [], 11: [], 12: [], - 13: [] + 13: [], } level, parent = bfs(level, parent, max_node, graph, 1) parent = creatSparse(max_node, parent) diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py index 526f5ec27987..908f13cd581e 100644 --- a/data_structures/binary_tree/red_black_tree.py +++ b/data_structures/binary_tree/red_black_tree.py @@ -700,7 +700,6 @@ def main(): print_results("Tree traversal", test_tree_chaining()) - print("Testing tree balancing...") print("This should only be a few seconds.") test_insertion_speed() diff --git a/data_structures/binary_tree/segment_tree.py b/data_structures/binary_tree/segment_tree.py index da3d15f26b6a..ad9476b4514b 100644 --- a/data_structures/binary_tree/segment_tree.py +++ b/data_structures/binary_tree/segment_tree.py @@ -1,10 +1,12 @@ import math -class SegmentTree: +class SegmentTree: def __init__(self, A): self.N = len(A) - self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N + self.st = [0] * ( + 4 * self.N + ) # approximate the overall size of segment tree with array N self.build(1, 0, self.N - 1) def left(self, idx): @@ -20,51 +22,55 @@ def build(self, idx, l, r): mid = (l + r) // 2 self.build(self.left(idx), l, mid) self.build(self.right(idx), mid + 1, r) - self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) + self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)]) def update(self, a, b, val): return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val) - def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b] + def update_recursive( + self, idx, l, r, a, b, val + ): # update(1, 1, N, a, b, v) for update val v to [a,b] if r < a or l > b: return True - if l == r : + if l == r: self.st[idx] = val return True - mid = (l+r)//2 + mid = (l + r) // 2 self.update_recursive(self.left(idx), l, mid, a, b, val) - self.update_recursive(self.right(idx), mid+1, r, a, b, val) - self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) + self.update_recursive(self.right(idx), mid + 1, r, a, b, val) + self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)]) return True def query(self, a, b): return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1) - def query_recursive(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b] + def query_recursive( + self, idx, l, r, a, b + ): # query(1, 1, N, a, b) for query max of [a,b] if r < a or l > b: return -math.inf if l >= a and r <= b: return self.st[idx] - mid = (l+r)//2 + mid = (l + r) // 2 q1 = self.query_recursive(self.left(idx), l, mid, a, b) q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b) return max(q1, q2) def showData(self): showList = [] - for i in range(1,N+1): + for i in range(1, N + 1): showList += [self.query(i, i)] print(showList) -if __name__ == '__main__': - A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] +if __name__ == "__main__": + A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] N = 15 segt = SegmentTree(A) print(segt.query(4, 6)) print(segt.query(7, 11)) print(segt.query(7, 12)) - segt.update(1,3,111) + segt.update(1, 3, 111) print(segt.query(1, 15)) - segt.update(7,8,235) + segt.update(7, 8, 235) segt.showData() diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index 0399ff67030a..5d34abc3c931 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -7,6 +7,7 @@ class Node: Treap's node Treap is a binary tree by key and heap by priority """ + def __init__(self, key: int): self.key = key self.prior = random() diff --git a/data_structures/hashing/double_hash.py b/data_structures/hashing/double_hash.py index 7a0ce0b3a67b..6c3699cc9950 100644 --- a/data_structures/hashing/double_hash.py +++ b/data_structures/hashing/double_hash.py @@ -8,13 +8,17 @@ class DoubleHash(HashTable): """ Hash Table example with open addressing and Double Hash """ + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __hash_function_2(self, value, data): - next_prime_gt = next_prime(value % self.size_table) \ - if not check_prime(value % self.size_table) else value % self.size_table #gt = bigger than + next_prime_gt = ( + next_prime(value % self.size_table) + if not check_prime(value % self.size_table) + else value % self.size_table + ) # gt = bigger than return next_prime_gt - (data % next_prime_gt) def __hash_double_function(self, key, data, increment): @@ -25,9 +29,14 @@ def _colision_resolution(self, key, data=None): new_key = self.hash_function(data) while self.values[new_key] is not None and self.values[new_key] != key: - new_key = self.__hash_double_function(key, data, i) if \ - self.balanced_factor() >= self.lim_charge else None - if new_key is None: break - else: i += 1 + new_key = ( + self.__hash_double_function(key, data, i) + if self.balanced_factor() >= self.lim_charge + else None + ) + if new_key is None: + break + else: + i += 1 return new_key diff --git a/data_structures/hashing/hash_table.py b/data_structures/hashing/hash_table.py index f0de128d1ad1..ab473dc52324 100644 --- a/data_structures/hashing/hash_table.py +++ b/data_structures/hashing/hash_table.py @@ -19,8 +19,9 @@ def keys(self): return self._keys def balanced_factor(self): - return sum([1 for slot in self.values - if slot is not None]) / (self.size_table * self.charge_factor) + return sum([1 for slot in self.values if slot is not None]) / ( + self.size_table * self.charge_factor + ) def hash_function(self, key): return key % self.size_table @@ -46,8 +47,7 @@ def _set_value(self, key, data): def _colision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) - while self.values[new_key] is not None \ - and self.values[new_key] != key: + while self.values[new_key] is not None and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) @@ -61,7 +61,7 @@ def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() - self.values = [None] * self.size_table #hell's pointers D: don't DRY ;/ + self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ map(self.insert_data, survivor_values) def insert_data(self, data): @@ -80,5 +80,3 @@ def insert_data(self, data): else: self.rehashing() self.insert_data(data) - - diff --git a/data_structures/hashing/hash_table_with_linked_list.py b/data_structures/hashing/hash_table_with_linked_list.py index a45876df49bd..236985b69ac6 100644 --- a/data_structures/hashing/hash_table_with_linked_list.py +++ b/data_structures/hashing/hash_table_with_linked_list.py @@ -7,18 +7,20 @@ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _set_value(self, key, data): - self.values[key] = deque([]) if self.values[key] is None else self.values[key] + self.values[key] = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(data) self._keys[key] = self.values[key] def balanced_factor(self): - return sum([self.charge_factor - len(slot) for slot in self.values])\ - / self.size_table * self.charge_factor - + return ( + sum([self.charge_factor - len(slot) for slot in self.values]) + / self.size_table + * self.charge_factor + ) + def _colision_resolution(self, key, data=None): - if not (len(self.values[key]) == self.charge_factor - and self.values.count(None) == 0): + if not ( + len(self.values[key]) == self.charge_factor and self.values.count(None) == 0 + ): return key return super()._colision_resolution(key, data) - - diff --git a/data_structures/hashing/number_theory/prime_numbers.py b/data_structures/hashing/number_theory/prime_numbers.py index 8a521bc45758..2a966e0da7f2 100644 --- a/data_structures/hashing/number_theory/prime_numbers.py +++ b/data_structures/hashing/number_theory/prime_numbers.py @@ -5,25 +5,25 @@ def check_prime(number): - """ + """ it's not the best solution """ - special_non_primes = [0,1,2] - if number in special_non_primes[:2]: - return 2 - elif number == special_non_primes[-1]: - return 3 - - return all([number % i for i in range(2, number)]) + special_non_primes = [0, 1, 2] + if number in special_non_primes[:2]: + return 2 + elif number == special_non_primes[-1]: + return 3 + + return all([number % i for i in range(2, number)]) def next_prime(value, factor=1, **kwargs): value = factor * value first_value_val = value - + while not check_prime(value): value += 1 if not ("desc" in kwargs.keys() and kwargs["desc"] is True) else -1 - + if value == first_value_val: return next_prime(value + 1, **kwargs) return value diff --git a/data_structures/hashing/quadratic_probing.py b/data_structures/hashing/quadratic_probing.py index 1e61100a81fa..ac966e1cd67e 100644 --- a/data_structures/hashing/quadratic_probing.py +++ b/data_structures/hashing/quadratic_probing.py @@ -7,18 +7,21 @@ class QuadraticProbing(HashTable): """ Basic Hash Table example with open addressing using Quadratic Probing """ + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _colision_resolution(self, key, data=None): i = 1 - new_key = self.hash_function(key + i*i) + new_key = self.hash_function(key + i * i) - while self.values[new_key] is not None \ - and self.values[new_key] != key: + while self.values[new_key] is not None and self.values[new_key] != key: i += 1 - new_key = self.hash_function(key + i*i) if not \ - self.balanced_factor() >= self.lim_charge else None + new_key = ( + self.hash_function(key + i * i) + if not self.balanced_factor() >= self.lim_charge + else None + ) if new_key is None: break diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py index 0154390d7707..e1a005487e34 100644 --- a/data_structures/heap/binomial_heap.py +++ b/data_structures/heap/binomial_heap.py @@ -26,9 +26,7 @@ def mergeTrees(self, other): In-place merge of two binomial trees of equal size. Returns the root of the resulting tree """ - assert ( - self.left_tree_size == other.left_tree_size - ), "Unequal Sizes of Blocks" + assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks" if self.val < other.val: other.left = self.right @@ -36,9 +34,7 @@ def mergeTrees(self, other): if self.right: self.right.parent = other self.right = other - self.left_tree_size = ( - self.left_tree_size * 2 + 1 - ) + self.left_tree_size = self.left_tree_size * 2 + 1 return self else: self.left = other.right @@ -46,9 +42,7 @@ def mergeTrees(self, other): if other.right: other.right.parent = self other.right = self - other.left_tree_size = ( - other.left_tree_size * 2 + 1 - ) + other.left_tree_size = other.left_tree_size * 2 + 1 return other @@ -132,9 +126,7 @@ class BinomialHeap: """ - def __init__( - self, bottom_root=None, min_node=None, heap_size=0 - ): + def __init__(self, bottom_root=None, min_node=None, heap_size=0): self.size = heap_size self.bottom_root = bottom_root self.min_node = min_node @@ -165,10 +157,7 @@ def mergeHeaps(self, other): combined_roots_list = [] i, j = self.bottom_root, other.bottom_root while i or j: - if i and ( - (not j) - or i.left_tree_size < j.left_tree_size - ): + if i and ((not j) or i.left_tree_size < j.left_tree_size): combined_roots_list.append((i, True)) i = i.parent else: @@ -176,29 +165,17 @@ def mergeHeaps(self, other): j = j.parent # Insert links between them for i in range(len(combined_roots_list) - 1): - if ( - combined_roots_list[i][1] - != combined_roots_list[i + 1][1] - ): - combined_roots_list[i][ - 0 - ].parent = combined_roots_list[i + 1][0] - combined_roots_list[i + 1][ - 0 - ].left = combined_roots_list[i][0] + if combined_roots_list[i][1] != combined_roots_list[i + 1][1]: + combined_roots_list[i][0].parent = combined_roots_list[i + 1][0] + combined_roots_list[i + 1][0].left = combined_roots_list[i][0] # Consecutively merge roots with same left_tree_size i = combined_roots_list[0][0] while i.parent: if ( - ( - i.left_tree_size - == i.parent.left_tree_size - ) - and (not i.parent.parent) + (i.left_tree_size == i.parent.left_tree_size) and (not i.parent.parent) ) or ( i.left_tree_size == i.parent.left_tree_size - and i.left_tree_size - != i.parent.parent.left_tree_size + and i.left_tree_size != i.parent.parent.left_tree_size ): # Neighbouring Nodes @@ -264,9 +241,7 @@ def insert(self, val): next_node = self.bottom_root.parent.parent # Merge - self.bottom_root = self.bottom_root.mergeTrees( - self.bottom_root.parent - ) + self.bottom_root = self.bottom_root.mergeTrees(self.bottom_root.parent) # Update Links self.bottom_root.parent = next_node @@ -337,9 +312,7 @@ def deleteMin(self): if bottom_of_new.val < min_of_new.val: min_of_new = bottom_of_new # Corner case of single root on top left path - if (not self.min_node.left) and ( - not self.min_node.parent - ): + if (not self.min_node.left) and (not self.min_node.parent): self.size = size_of_new self.bottom_root = bottom_of_new self.min_node = min_of_new @@ -348,9 +321,7 @@ def deleteMin(self): # Remaining cases # Construct heap of right subtree newHeap = BinomialHeap( - bottom_root=bottom_of_new, - min_node=min_of_new, - heap_size=size_of_new, + bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new ) # Update size @@ -411,12 +382,8 @@ def __traversal(self, curr_node, preorder, level=0): """ if curr_node: preorder.append((curr_node.val, level)) - self.__traversal( - curr_node.left, preorder, level + 1 - ) - self.__traversal( - curr_node.right, preorder, level + 1 - ) + self.__traversal(curr_node.left, preorder, level + 1) + self.__traversal(curr_node.right, preorder, level + 1) else: preorder.append(("#", level)) @@ -429,10 +396,7 @@ def __str__(self): return "" preorder_heap = self.preOrder() - return "\n".join( - ("-" * level + str(value)) - for value, level in preorder_heap - ) + return "\n".join(("-" * level + str(value)) for value, level in preorder_heap) # Unit Tests diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py index 2373d71bb897..b020ab067cc8 100644 --- a/data_structures/heap/heap.py +++ b/data_structures/heap/heap.py @@ -2,83 +2,85 @@ # This heap class start from here. class Heap: - def __init__(self): # Default constructor of heap class. - self.h = [] - self.currsize = 0 + def __init__(self): # Default constructor of heap class. + self.h = [] + self.currsize = 0 - def leftChild(self,i): - if 2*i+1 < self.currsize: - return 2*i+1 - return None + def leftChild(self, i): + if 2 * i + 1 < self.currsize: + return 2 * i + 1 + return None - def rightChild(self,i): - if 2*i+2 < self.currsize: - return 2*i+2 - return None + def rightChild(self, i): + if 2 * i + 2 < self.currsize: + return 2 * i + 2 + return None - def maxHeapify(self,node): - if node < self.currsize: - m = node - lc = self.leftChild(node) - rc = self.rightChild(node) - if lc is not None and self.h[lc] > self.h[m]: - m = lc - if rc is not None and self.h[rc] > self.h[m]: - m = rc - if m!=node: - temp = self.h[node] - self.h[node] = self.h[m] - self.h[m] = temp - self.maxHeapify(m) + def maxHeapify(self, node): + if node < self.currsize: + m = node + lc = self.leftChild(node) + rc = self.rightChild(node) + if lc is not None and self.h[lc] > self.h[m]: + m = lc + if rc is not None and self.h[rc] > self.h[m]: + m = rc + if m != node: + temp = self.h[node] + self.h[node] = self.h[m] + self.h[m] = temp + self.maxHeapify(m) - def buildHeap(self,a): #This function is used to build the heap from the data container 'a'. - self.currsize = len(a) - self.h = list(a) - for i in range(self.currsize//2,-1,-1): - self.maxHeapify(i) + def buildHeap( + self, a + ): # This function is used to build the heap from the data container 'a'. + self.currsize = len(a) + self.h = list(a) + for i in range(self.currsize // 2, -1, -1): + self.maxHeapify(i) - def getMax(self): #This function is used to get maximum value from the heap. - if self.currsize >= 1: - me = self.h[0] - temp = self.h[0] - self.h[0] = self.h[self.currsize-1] - self.h[self.currsize-1] = temp - self.currsize -= 1 - self.maxHeapify(0) - return me - return None + def getMax(self): # This function is used to get maximum value from the heap. + if self.currsize >= 1: + me = self.h[0] + temp = self.h[0] + self.h[0] = self.h[self.currsize - 1] + self.h[self.currsize - 1] = temp + self.currsize -= 1 + self.maxHeapify(0) + return me + return None - def heapSort(self): #This function is used to sort the heap. - size = self.currsize - while self.currsize-1 >= 0: - temp = self.h[0] - self.h[0] = self.h[self.currsize-1] - self.h[self.currsize-1] = temp - self.currsize -= 1 - self.maxHeapify(0) - self.currsize = size + def heapSort(self): # This function is used to sort the heap. + size = self.currsize + while self.currsize - 1 >= 0: + temp = self.h[0] + self.h[0] = self.h[self.currsize - 1] + self.h[self.currsize - 1] = temp + self.currsize -= 1 + self.maxHeapify(0) + self.currsize = size - def insert(self,data): #This function is used to insert data in the heap. - self.h.append(data) - curr = self.currsize - self.currsize+=1 - while self.h[curr] > self.h[curr/2]: - temp = self.h[curr/2] - self.h[curr/2] = self.h[curr] - self.h[curr] = temp - curr = curr/2 + def insert(self, data): # This function is used to insert data in the heap. + self.h.append(data) + curr = self.currsize + self.currsize += 1 + while self.h[curr] > self.h[curr / 2]: + temp = self.h[curr / 2] + self.h[curr / 2] = self.h[curr] + self.h[curr] = temp + curr = curr / 2 - def display(self): #This function is used to print the heap. - print(self.h) + def display(self): # This function is used to print the heap. + print(self.h) -def main(): - l = list(map(int, input().split())) - h = Heap() - h.buildHeap(l) - h.heapSort() - h.display() -if __name__=='__main__': - main() +def main(): + l = list(map(int, input().split())) + h = Heap() + h.buildHeap(l) + h.heapSort() + h.display() +if __name__ == "__main__": + main() diff --git a/data_structures/linked_list/__init__.py b/data_structures/linked_list/__init__.py index 6d50f23c1f1a..a050adba42b2 100644 --- a/data_structures/linked_list/__init__.py +++ b/data_structures/linked_list/__init__.py @@ -3,6 +3,7 @@ def __init__(self, item, next): self.item = item self.next = next + class LinkedList: def __init__(self): self.head = None diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 23d91383fa0e..38fff867b416 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -1,76 +1,81 @@ -''' +""" - A linked list is similar to an array, it holds values. However, links in a linked list do not have indexes. - This is an example of a double ended, doubly linked list. - Each link references the next link and the previous one. - A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together with next pointer and data which are there in singly linked list. - - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficent''' + - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficent""" -class LinkedList: #making main class named linked list +class LinkedList: # making main class named linked list def __init__(self): self.head = None self.tail = None def insertHead(self, x): - newLink = Link(x) #Create a new link with a value attached to it - if(self.isEmpty() == True): #Set the first element added to be the tail + newLink = Link(x) # Create a new link with a value attached to it + if self.isEmpty() == True: # Set the first element added to be the tail self.tail = newLink else: - self.head.previous = newLink # newLink <-- currenthead(head) - newLink.next = self.head # newLink <--> currenthead(head) - self.head = newLink # newLink(head) <--> oldhead + self.head.previous = newLink # newLink <-- currenthead(head) + newLink.next = self.head # newLink <--> currenthead(head) + self.head = newLink # newLink(head) <--> oldhead def deleteHead(self): temp = self.head - self.head = self.head.next # oldHead <--> 2ndElement(head) - self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed - if(self.head is None): - self.tail = None #if empty linked list + self.head = self.head.next # oldHead <--> 2ndElement(head) + self.head.previous = ( + None + ) # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed + if self.head is None: + self.tail = None # if empty linked list return temp def insertTail(self, x): newLink = Link(x) - newLink.next = None # currentTail(tail) newLink --> - self.tail.next = newLink # currentTail(tail) --> newLink --> - newLink.previous = self.tail #currentTail(tail) <--> newLink --> - self.tail = newLink # oldTail <--> newLink(tail) --> + newLink.next = None # currentTail(tail) newLink --> + self.tail.next = newLink # currentTail(tail) --> newLink --> + newLink.previous = self.tail # currentTail(tail) <--> newLink --> + self.tail = newLink # oldTail <--> newLink(tail) --> def deleteTail(self): temp = self.tail - self.tail = self.tail.previous # 2ndLast(tail) <--> oldTail --> None - self.tail.next = None # 2ndlast(tail) --> None + self.tail = self.tail.previous # 2ndLast(tail) <--> oldTail --> None + self.tail.next = None # 2ndlast(tail) --> None return temp def delete(self, x): current = self.head - while(current.value != x): # Find the position to delete + while current.value != x: # Find the position to delete current = current.next - if(current == self.head): + if current == self.head: self.deleteHead() - elif(current == self.tail): + elif current == self.tail: self.deleteTail() - else: #Before: 1 <--> 2(current) <--> 3 - current.previous.next = current.next # 1 --> 3 - current.next.previous = current.previous # 1 <--> 3 + else: # Before: 1 <--> 2(current) <--> 3 + current.previous.next = current.next # 1 --> 3 + current.next.previous = current.previous # 1 <--> 3 - def isEmpty(self): #Will return True if the list is empty - return(self.head is None) + def isEmpty(self): # Will return True if the list is empty + return self.head is None - def display(self): #Prints contents of the list + def display(self): # Prints contents of the list current = self.head - while(current != None): + while current != None: current.displayLink() current = current.next print() + class Link: - next = None #This points to the link in front of the new link - previous = None #This points to the link behind the new link + next = None # This points to the link in front of the new link + previous = None # This points to the link behind the new link + def __init__(self, x): self.value = x + def displayLink(self): print("{}".format(self.value), end=" ") diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 5943b88d5964..16436ff90274 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -6,21 +6,22 @@ def __init__(self, data): class Linked_List: def __init__(self): - self.Head = None # Initialize Head to None + self.Head = None # Initialize Head to None def insert_tail(self, data): - if(self.Head is None): self.insert_head(data) #If this is first node, call insert_head + if self.Head is None: + self.insert_head(data) # If this is first node, call insert_head else: temp = self.Head - while(temp.next != None): #traverse to last node + while temp.next != None: # traverse to last node temp = temp.next - temp.next = Node(data) #create node & link to tail + temp.next = Node(data) # create node & link to tail def insert_head(self, data): - newNod = Node(data) # create a new node + newNod = Node(data) # create a new node if self.Head != None: - newNod.next = self.Head # link newNode to head - self.Head = newNod # make NewNode as Head + newNod.next = self.Head # link newNode to head + self.Head = newNod # make NewNode as Head def printList(self): # print every node data tamp = self.Head @@ -38,12 +39,15 @@ def delete_head(self): # delete from head def delete_tail(self): # delete from tail tamp = self.Head if self.Head != None: - if(self.Head.next is None): # if Head is the only Node in the Linked List + if self.Head.next is None: # if Head is the only Node in the Linked List self.Head = None else: while tamp.next.next is not None: # find the 2nd last element tamp = tamp.next - tamp.next, tamp = None, tamp.next #(2nd last element).next = None and tamp = last element + tamp.next, tamp = ( + None, + tamp.next, + ) # (2nd last element).next = None and tamp = last element return tamp def isEmpty(self): @@ -65,21 +69,22 @@ def reverse(self): # Return prev in order to put the head at the end self.Head = prev + def main(): A = Linked_List() print("Inserting 1st at Head") - a1=input() + a1 = input() A.insert_head(a1) print("Inserting 2nd at Head") - a2=input() + a2 = input() A.insert_head(a2) print("\nPrint List : ") A.printList() print("\nInserting 1st at Tail") - a3=input() + a3 = input() A.insert_tail(a3) print("Inserting 2nd at Tail") - a4=input() + a4 = input() A.insert_tail(a4) print("\nPrint List : ") A.printList() @@ -94,5 +99,6 @@ def main(): print("\nPrint List : ") A.printList() -if __name__ == '__main__': - main() + +if __name__ == "__main__": + main() diff --git a/data_structures/linked_list/swap_nodes.py b/data_structures/linked_list/swap_nodes.py index ce2543bc46d8..a6a50091e3e0 100644 --- a/data_structures/linked_list/swap_nodes.py +++ b/data_structures/linked_list/swap_nodes.py @@ -1,6 +1,6 @@ class Node: def __init__(self, data): - self.data = data; + self.data = data self.next = None @@ -14,13 +14,13 @@ def print_list(self): print(temp.data) temp = temp.next -# adding nodes + # adding nodes def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node -# swapping nodes + # swapping nodes def swapNodes(self, d1, d2): prevD1 = None prevD2 = None @@ -53,11 +53,11 @@ def swapNodes(self, d1, d2): D1.next = D2.next D2.next = temp -# swapping code ends here +# swapping code ends here -if __name__ == '__main__': +if __name__ == "__main__": list = Linkedlist() list.push(5) list.push(4) @@ -70,6 +70,3 @@ def swapNodes(self, d1, d2): list.swapNodes(1, 4) print("After swapping") list.print_list() - - - diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py index a3cfa7230710..dd003b7c98ac 100644 --- a/data_structures/queue/double_ended_queue.py +++ b/data_structures/queue/double_ended_queue.py @@ -5,11 +5,11 @@ import collections # initializing deque -de = collections.deque([1, 2, 3,]) +de = collections.deque([1, 2, 3]) # using extend() to add numbers to right end # adds 4,5,6 to right end -de.extend([4,5,6]) +de.extend([4, 5, 6]) # printing modified deque print("The deque after extending deque at end is : ") @@ -17,7 +17,7 @@ # using extendleft() to add numbers to left end # adds 7,8,9 to right end -de.extendleft([7,8,9]) +de.extendleft([7, 8, 9]) # printing modified deque print("The deque after extending deque at beginning is : ") diff --git a/data_structures/queue/queue_on_list.py b/data_structures/queue/queue_on_list.py index 2ec9bac8398a..bb44e08ad6c5 100644 --- a/data_structures/queue/queue_on_list.py +++ b/data_structures/queue/queue_on_list.py @@ -1,46 +1,52 @@ """Queue represented by a python list""" -class Queue(): + + +class Queue: def __init__(self): self.entries = [] self.length = 0 - self.front=0 + self.front = 0 def __str__(self): - printed = '<' + str(self.entries)[1:-1] + '>' + printed = "<" + str(self.entries)[1:-1] + ">" return printed """Enqueues {@code item} @param item item to enqueue""" + def put(self, item): self.entries.append(item) self.length = self.length + 1 - """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" + def get(self): self.length = self.length - 1 dequeued = self.entries[self.front] - #self.front-=1 - #self.entries = self.entries[self.front:] + # self.front-=1 + # self.entries = self.entries[self.front:] self.entries = self.entries[1:] return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" + def rotate(self, rotation): for i in range(rotation): self.put(self.get()) """Enqueues {@code item} @return item at front of self.entries""" + def front(self): return self.entries[0] """Returns the length of this.entries""" + def size(self): return self.length diff --git a/data_structures/queue/queue_on_pseudo_stack.py b/data_structures/queue/queue_on_pseudo_stack.py index b69fbcc988f7..7fa2fb2566af 100644 --- a/data_structures/queue/queue_on_pseudo_stack.py +++ b/data_structures/queue/queue_on_pseudo_stack.py @@ -1,16 +1,19 @@ """Queue represented by a pseudo stack (represented by a list with pop and append)""" -class Queue(): + + +class Queue: def __init__(self): self.stack = [] self.length = 0 def __str__(self): - printed = '<' + str(self.stack)[1:-1] + '>' + printed = "<" + str(self.stack)[1:-1] + ">" return printed """Enqueues {@code item} @param item item to enqueue""" + def put(self, item): self.stack.append(item) self.length = self.length + 1 @@ -19,17 +22,19 @@ def put(self, item): @requirement: |self.length| > 0 @return dequeued item that was dequeued""" + def get(self): self.rotate(1) - dequeued = self.stack[self.length-1] + dequeued = self.stack[self.length - 1] self.stack = self.stack[:-1] - self.rotate(self.length-1) - self.length = self.length -1 + self.rotate(self.length - 1) + self.length = self.length - 1 return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" + def rotate(self, rotation): for i in range(rotation): temp = self.stack[0] @@ -39,12 +44,14 @@ def rotate(self, rotation): """Reports item at the front of self @return item at front of self.stack""" + def front(self): front = self.get() self.put(front) - self.rotate(self.length-1) + self.rotate(self.length - 1) return front """Returns the length of this.stack""" + def size(self): return self.length diff --git a/data_structures/stacks/__init__.py b/data_structures/stacks/__init__.py index f7e92ae2d269..f6995cf98977 100644 --- a/data_structures/stacks/__init__.py +++ b/data_structures/stacks/__init__.py @@ -1,23 +1,22 @@ class Stack: + def __init__(self): + self.stack = [] + self.top = 0 - def __init__(self): - self.stack = [] - self.top = 0 + def is_empty(self): + return self.top == 0 - def is_empty(self): - return (self.top == 0) + def push(self, item): + if self.top < len(self.stack): + self.stack[self.top] = item + else: + self.stack.append(item) - def push(self, item): - if self.top < len(self.stack): - self.stack[self.top] = item - else: - self.stack.append(item) + self.top += 1 - self.top += 1 - - def pop(self): - if self.is_empty(): - return None - else: - self.top -= 1 - return self.stack[self.top] + def pop(self): + if self.is_empty(): + return None + else: + self.top -= 1 + return self.stack[self.top] diff --git a/data_structures/stacks/balanced_parentheses.py b/data_structures/stacks/balanced_parentheses.py index 3f43ccbf5760..7aacd5969277 100644 --- a/data_structures/stacks/balanced_parentheses.py +++ b/data_structures/stacks/balanced_parentheses.py @@ -1,23 +1,23 @@ from .stack import Stack -__author__ = 'Omkar Pathak' +__author__ = "Omkar Pathak" def balanced_parentheses(parentheses): """ Use a stack to check if a string of parentheses is balanced.""" stack = Stack(len(parentheses)) for parenthesis in parentheses: - if parenthesis == '(': + if parenthesis == "(": stack.push(parenthesis) - elif parenthesis == ')': + elif parenthesis == ")": if stack.is_empty(): return False stack.pop() return stack.is_empty() -if __name__ == '__main__': - examples = ['((()))', '((())', '(()))'] - print('Balanced parentheses demonstration:\n') +if __name__ == "__main__": + examples = ["((()))", "((())", "(()))"] + print("Balanced parentheses demonstration:\n") for example in examples: - print(example + ': ' + str(balanced_parentheses(example))) + print(example + ": " + str(balanced_parentheses(example))) diff --git a/data_structures/stacks/infix_to_postfix_conversion.py b/data_structures/stacks/infix_to_postfix_conversion.py index 84a5d1480a24..61114402377a 100644 --- a/data_structures/stacks/infix_to_postfix_conversion.py +++ b/data_structures/stacks/infix_to_postfix_conversion.py @@ -2,7 +2,7 @@ from .stack import Stack -__author__ = 'Omkar Pathak' +__author__ = "Omkar Pathak" def is_operand(char): @@ -15,9 +15,7 @@ def precedence(char): https://en.wikipedia.org/wiki/Order_of_operations """ - dictionary = {'+': 1, '-': 1, - '*': 2, '/': 2, - '^': 3} + dictionary = {"+": 1, "-": 1, "*": 2, "/": 2, "^": 3} return dictionary.get(char, -1) @@ -34,29 +32,28 @@ def infix_to_postfix(expression): for char in expression: if is_operand(char): postfix.append(char) - elif char not in {'(', ')'}: - while (not stack.is_empty() - and precedence(char) <= precedence(stack.peek())): + elif char not in {"(", ")"}: + while not stack.is_empty() and precedence(char) <= precedence(stack.peek()): postfix.append(stack.pop()) stack.push(char) - elif char == '(': + elif char == "(": stack.push(char) - elif char == ')': - while not stack.is_empty() and stack.peek() != '(': + elif char == ")": + while not stack.is_empty() and stack.peek() != "(": postfix.append(stack.pop()) # Pop '(' from stack. If there is no '(', there is a mismatched # parentheses. - if stack.peek() != '(': - raise ValueError('Mismatched parentheses') + if stack.peek() != "(": + raise ValueError("Mismatched parentheses") stack.pop() while not stack.is_empty(): postfix.append(stack.pop()) - return ' '.join(postfix) + return " ".join(postfix) -if __name__ == '__main__': - expression = 'a+b*(c^d-e)^(f+g*h)-i' +if __name__ == "__main__": + expression = "a+b*(c^d-e)^(f+g*h)-i" - print('Infix to Postfix Notation demonstration:\n') - print('Infix notation: ' + expression) - print('Postfix notation: ' + infix_to_postfix(expression)) + print("Infix to Postfix Notation demonstration:\n") + print("Infix notation: " + expression) + print("Postfix notation: " + infix_to_postfix(expression)) diff --git a/data_structures/stacks/infix_to_prefix_conversion.py b/data_structures/stacks/infix_to_prefix_conversion.py index da5fc261fb9f..4f0e1ab8adfa 100644 --- a/data_structures/stacks/infix_to_prefix_conversion.py +++ b/data_structures/stacks/infix_to_prefix_conversion.py @@ -14,48 +14,82 @@ a+b^c (Infix) -> +a^bc (Prefix) """ + def infix_2_postfix(Infix): Stack = [] Postfix = [] - priority = {'^':3, '*':2, '/':2, '%':2, '+':1, '-':1} # Priority of each operator - print_width = len(Infix) if(len(Infix)>7) else 7 + priority = { + "^": 3, + "*": 2, + "/": 2, + "%": 2, + "+": 1, + "-": 1, + } # Priority of each operator + print_width = len(Infix) if (len(Infix) > 7) else 7 # Print table header for output - print('Symbol'.center(8), 'Stack'.center(print_width), 'Postfix'.center(print_width), sep = " | ") - print('-'*(print_width*3+7)) + print( + "Symbol".center(8), + "Stack".center(print_width), + "Postfix".center(print_width), + sep=" | ", + ) + print("-" * (print_width * 3 + 7)) for x in Infix: - if(x.isalpha() or x.isdigit()): Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix - elif(x == '('): Stack.append(x) # if x is "(" push to Stack - elif(x == ')'): # if x is ")" pop stack until "(" is encountered - while(Stack[-1] != '('): - Postfix.append( Stack.pop() ) #Pop stack & add the content to Postfix + if x.isalpha() or x.isdigit(): + Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix + elif x == "(": + Stack.append(x) # if x is "(" push to Stack + elif x == ")": # if x is ")" pop stack until "(" is encountered + while Stack[-1] != "(": + Postfix.append(Stack.pop()) # Pop stack & add the content to Postfix Stack.pop() else: - if(len(Stack)==0): Stack.append(x) #If stack is empty, push x to stack + if len(Stack) == 0: + Stack.append(x) # If stack is empty, push x to stack else: - while( len(Stack) > 0 and priority[x] <= priority[Stack[-1]]): # while priority of x is not greater than priority of element in the stack - Postfix.append( Stack.pop() ) # pop stack & add to Postfix - Stack.append(x) # push x to stack + while ( + len(Stack) > 0 and priority[x] <= priority[Stack[-1]] + ): # while priority of x is not greater than priority of element in the stack + Postfix.append(Stack.pop()) # pop stack & add to Postfix + Stack.append(x) # push x to stack + + print( + x.center(8), + ("".join(Stack)).ljust(print_width), + ("".join(Postfix)).ljust(print_width), + sep=" | ", + ) # Output in tabular format - print(x.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format + while len(Stack) > 0: # while stack is not empty + Postfix.append(Stack.pop()) # pop stack & add to Postfix + print( + " ".center(8), + ("".join(Stack)).ljust(print_width), + ("".join(Postfix)).ljust(print_width), + sep=" | ", + ) # Output in tabular format - while(len(Stack) > 0): # while stack is not empty - Postfix.append( Stack.pop() ) # pop stack & add to Postfix - print(' '.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format + return "".join(Postfix) # return Postfix as str - return "".join(Postfix) # return Postfix as str def infix_2_prefix(Infix): - Infix = list(Infix[::-1]) # reverse the infix equation - + Infix = list(Infix[::-1]) # reverse the infix equation + for i in range(len(Infix)): - if(Infix[i] == '('): Infix[i] = ')' # change "(" to ")" - elif(Infix[i] == ')'): Infix[i] = '(' # change ")" to "(" - - return (infix_2_postfix("".join(Infix)))[::-1] # call infix_2_postfix on Infix, return reverse of Postfix + if Infix[i] == "(": + Infix[i] = ")" # change "(" to ")" + elif Infix[i] == ")": + Infix[i] = "(" # change ")" to "(" + + return (infix_2_postfix("".join(Infix)))[ + ::-1 + ] # call infix_2_postfix on Infix, return reverse of Postfix + if __name__ == "__main__": - Infix = input("\nEnter an Infix Equation = ") #Input an Infix equation - Infix = "".join(Infix.split()) #Remove spaces from the input + Infix = input("\nEnter an Infix Equation = ") # Input an Infix equation + Infix = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)") diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py index 2e67f1764a5a..02a86196f5bf 100644 --- a/data_structures/stacks/next_greater_element.py +++ b/data_structures/stacks/next_greater_element.py @@ -4,13 +4,14 @@ def printNGE(arr): for i in range(0, len(arr), 1): next = -1 - for j in range(i+1, len(arr), 1): + for j in range(i + 1, len(arr), 1): if arr[i] < arr[j]: next = arr[j] break print(str(arr[i]) + " -- " + str(next)) + # Driver program to test above function -arr = [11,13,21,3] +arr = [11, 13, 21, 3] printNGE(arr) diff --git a/data_structures/stacks/postfix_evaluation.py b/data_structures/stacks/postfix_evaluation.py index 1786e71dd383..0f3d5c76d6a3 100644 --- a/data_structures/stacks/postfix_evaluation.py +++ b/data_structures/stacks/postfix_evaluation.py @@ -19,32 +19,52 @@ import operator as op + def Solve(Postfix): Stack = [] - Div = lambda x, y: int(x/y) # integer division operation - Opr = {'^':op.pow, '*':op.mul, '/':Div, '+':op.add, '-':op.sub} # operators & their respective operation + Div = lambda x, y: int(x / y) # integer division operation + Opr = { + "^": op.pow, + "*": op.mul, + "/": Div, + "+": op.add, + "-": op.sub, + } # operators & their respective operation # print table header - print('Symbol'.center(8), 'Action'.center(12), 'Stack', sep = " | ") - print('-'*(30+len(Postfix))) + print("Symbol".center(8), "Action".center(12), "Stack", sep=" | ") + print("-" * (30 + len(Postfix))) for x in Postfix: - if( x.isdigit() ): # if x in digit - Stack.append(x) # append x to stack - print(x.rjust(8), ('push('+x+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + if x.isdigit(): # if x in digit + Stack.append(x) # append x to stack + print( + x.rjust(8), ("push(" + x + ")").ljust(12), ",".join(Stack), sep=" | " + ) # output in tabular format else: - B = Stack.pop() # pop stack - print("".rjust(8), ('pop('+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + B = Stack.pop() # pop stack + print( + "".rjust(8), ("pop(" + B + ")").ljust(12), ",".join(Stack), sep=" | " + ) # output in tabular format - A = Stack.pop() # pop stack - print("".rjust(8), ('pop('+A+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + A = Stack.pop() # pop stack + print( + "".rjust(8), ("pop(" + A + ")").ljust(12), ",".join(Stack), sep=" | " + ) # output in tabular format - Stack.append( str(Opr[x](int(A), int(B))) ) # evaluate the 2 values poped from stack & push result to stack - print(x.rjust(8), ('push('+A+x+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format + Stack.append( + str(Opr[x](int(A), int(B))) + ) # evaluate the 2 values poped from stack & push result to stack + print( + x.rjust(8), + ("push(" + A + x + B + ")").ljust(12), + ",".join(Stack), + sep=" | ", + ) # output in tabular format return int(Stack[0]) if __name__ == "__main__": - Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(' ') + Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", Solve(Postfix)) diff --git a/data_structures/stacks/stack.py b/data_structures/stacks/stack.py index 387367db2fcc..9f5b279710c6 100644 --- a/data_structures/stacks/stack.py +++ b/data_structures/stacks/stack.py @@ -1,4 +1,4 @@ -__author__ = 'Omkar Pathak' +__author__ = "Omkar Pathak" class Stack(object): @@ -32,7 +32,7 @@ def pop(self): if self.stack: return self.stack.pop() else: - raise IndexError('pop from an empty stack') + raise IndexError("pop from an empty stack") def peek(self): """ Peek at the top-most element of the stack.""" @@ -52,17 +52,17 @@ class StackOverflowError(BaseException): pass -if __name__ == '__main__': +if __name__ == "__main__": stack = Stack() for i in range(10): stack.push(i) - print('Stack demonstration:\n') - print('Initial stack: ' + str(stack)) - print('pop(): ' + str(stack.pop())) - print('After pop(), the stack is now: ' + str(stack)) - print('peek(): ' + str(stack.peek())) + print("Stack demonstration:\n") + print("Initial stack: " + str(stack)) + print("pop(): " + str(stack.pop())) + print("After pop(), the stack is now: " + str(stack)) + print("peek(): " + str(stack.peek())) stack.push(100) - print('After push(100), the stack is now: ' + str(stack)) - print('is_empty(): ' + str(stack.is_empty())) - print('size(): ' + str(stack.size())) + print("After push(100), the stack is now: " + str(stack)) + print("is_empty(): " + str(stack.is_empty())) + print("size(): " + str(stack.size())) diff --git a/data_structures/stacks/stock_span_problem.py b/data_structures/stacks/stock_span_problem.py index 47d916fde9ed..45cd6bae1282 100644 --- a/data_structures/stacks/stock_span_problem.py +++ b/data_structures/stacks/stock_span_problem.py @@ -1,11 +1,13 @@ -''' +""" The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate span of stock's price for all n days. The span Si of the stock's price on a given day i is defined as the maximum number of consecutive days just before the given day, for which the price of the stock on the current day is less than or equal to its price on the given day. -''' +""" + + def calculateSpan(price, S): n = len(price) @@ -21,14 +23,14 @@ def calculateSpan(price, S): # Pop elements from stack whlie stack is not # empty and top of stack is smaller than price[i] - while( len(st) > 0 and price[st[0]] <= price[i]): + while len(st) > 0 and price[st[0]] <= price[i]: st.pop() # If stack becomes empty, then price[i] is greater # than all elements on left of it, i.e. price[0], # price[1], ..price[i-1]. Else the price[i] is # greater than elements after top of stack - S[i] = i+1 if len(st) <= 0 else (i - st[0]) + S[i] = i + 1 if len(st) <= 0 else (i - st[0]) # Push this element to stack st.append(i) @@ -36,13 +38,13 @@ def calculateSpan(price, S): # A utility function to print elements of array def printArray(arr, n): - for i in range(0,n): - print(arr[i],end =" ") + for i in range(0, n): + print(arr[i], end=" ") # Driver program to test above function price = [10, 4, 5, 90, 120, 80] -S = [0 for i in range(len(price)+1)] +S = [0 for i in range(len(price) + 1)] # Fill the span values in array S[] calculateSpan(price, S) diff --git a/digital_image_processing/edge_detection/canny.py b/digital_image_processing/edge_detection/canny.py index 7fde75a90a48..6f98fee6308e 100644 --- a/digital_image_processing/edge_detection/canny.py +++ b/digital_image_processing/edge_detection/canny.py @@ -8,8 +8,12 @@ def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 - x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center] - g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) + x, y = np.mgrid[0 - center : k_size - center, 0 - center : k_size - center] + g = ( + 1 + / (2 * np.pi * sigma) + * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) + ) return g @@ -34,27 +38,33 @@ def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): if ( 0 <= direction < 22.5 - or 15 * PI / 8 <= direction <= 2 * PI - or 7 * PI / 8 <= direction <= 9 * PI / 8 + or 15 * PI / 8 <= direction <= 2 * PI + or 7 * PI / 8 <= direction <= 9 * PI / 8 ): W = sobel_grad[row, col - 1] E = sobel_grad[row, col + 1] if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E: dst[row, col] = sobel_grad[row, col] - elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8): + elif (PI / 8 <= direction < 3 * PI / 8) or ( + 9 * PI / 8 <= direction < 11 * PI / 8 + ): SW = sobel_grad[row + 1, col - 1] NE = sobel_grad[row - 1, col + 1] if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE: dst[row, col] = sobel_grad[row, col] - elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8): + elif (3 * PI / 8 <= direction < 5 * PI / 8) or ( + 11 * PI / 8 <= direction < 13 * PI / 8 + ): N = sobel_grad[row - 1, col] S = sobel_grad[row + 1, col] if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S: dst[row, col] = sobel_grad[row, col] - elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8): + elif (5 * PI / 8 <= direction < 7 * PI / 8) or ( + 13 * PI / 8 <= direction < 15 * PI / 8 + ): NW = sobel_grad[row - 1, col - 1] SE = sobel_grad[row + 1, col + 1] if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE: @@ -82,14 +92,14 @@ def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): for col in range(1, image_col): if dst[row, col] == weak: if 255 in ( - dst[row, col + 1], - dst[row, col - 1], - dst[row - 1, col], - dst[row + 1, col], - dst[row - 1, col - 1], - dst[row + 1, col - 1], - dst[row - 1, col + 1], - dst[row + 1, col + 1], + dst[row, col + 1], + dst[row, col - 1], + dst[row - 1, col], + dst[row + 1, col], + dst[row - 1, col - 1], + dst[row + 1, col - 1], + dst[row - 1, col + 1], + dst[row + 1, col + 1], ): dst[row, col] = strong else: @@ -98,10 +108,10 @@ def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): return dst -if __name__ == '__main__': +if __name__ == "__main__": # read original image in gray mode - lena = cv2.imread(r'../image_data/lena.jpg', 0) + lena = cv2.imread(r"../image_data/lena.jpg", 0) # canny edge detection canny_dst = canny(lena) - cv2.imshow('canny', canny_dst) + cv2.imshow("canny", canny_dst) cv2.waitKey(0) diff --git a/digital_image_processing/filters/convolve.py b/digital_image_processing/filters/convolve.py index b7600d74c294..ec500d940366 100644 --- a/digital_image_processing/filters/convolve.py +++ b/digital_image_processing/filters/convolve.py @@ -13,7 +13,7 @@ def im2col(image, block_size): row = 0 for i in range(0, dst_height): for j in range(0, dst_width): - window = ravel(image[i:i + block_size[0], j:j + block_size[1]]) + window = ravel(image[i : i + block_size[0], j : j + block_size[1]]) image_array[row, :] = window row += 1 @@ -23,9 +23,9 @@ def im2col(image, block_size): def img_convolve(image, filter_kernel): height, width = image.shape[0], image.shape[1] k_size = filter_kernel.shape[0] - pad_size = k_size//2 + pad_size = k_size // 2 # Pads image with the edge values of array. - image_tmp = pad(image, pad_size, mode='edge') + image_tmp = pad(image, pad_size, mode="edge") # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = im2col(image_tmp, (k_size, k_size)) @@ -37,13 +37,13 @@ def img_convolve(image, filter_kernel): return dst -if __name__ == '__main__': +if __name__ == "__main__": # read original image - img = imread(r'../image_data/lena.jpg') + img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # Laplace operator Laplace_kernel = array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) out = img_convolve(gray, Laplace_kernel).astype(uint8) - imshow('Laplacian', out) + imshow("Laplacian", out) waitKey(0) diff --git a/digital_image_processing/filters/gaussian_filter.py b/digital_image_processing/filters/gaussian_filter.py index ff85ce047220..b800f0a7edc8 100644 --- a/digital_image_processing/filters/gaussian_filter.py +++ b/digital_image_processing/filters/gaussian_filter.py @@ -7,23 +7,23 @@ def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 - x, y = mgrid[0-center:k_size-center, 0-center:k_size-center] - g = 1/(2*pi*sigma) * exp(-(square(x) + square(y))/(2*square(sigma))) + x, y = mgrid[0 - center : k_size - center, 0 - center : k_size - center] + g = 1 / (2 * pi * sigma) * exp(-(square(x) + square(y)) / (2 * square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width - dst_height = height-k_size+1 - dst_width = width-k_size+1 + dst_height = height - k_size + 1 + dst_width = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows - image_array = zeros((dst_height*dst_width, k_size*k_size)) + image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 for i in range(0, dst_height): for j in range(0, dst_width): - window = ravel(image[i:i + k_size, j:j + k_size]) + window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 @@ -37,9 +37,9 @@ def gaussian_filter(image, k_size, sigma): return dst -if __name__ == '__main__': +if __name__ == "__main__": # read original image - img = imread(r'../image_data/lena.jpg') + img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) @@ -48,6 +48,6 @@ def gaussian_filter(image, k_size, sigma): gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images - imshow('gaussian filter with 3x3 mask', gaussian3x3) - imshow('gaussian filter with 5x5 mask', gaussian5x5) + imshow("gaussian filter with 3x3 mask", gaussian3x3) + imshow("gaussian filter with 5x5 mask", gaussian5x5) waitKey() diff --git a/digital_image_processing/filters/median_filter.py b/digital_image_processing/filters/median_filter.py index 4b21b96b080b..151ef8a55df1 100644 --- a/digital_image_processing/filters/median_filter.py +++ b/digital_image_processing/filters/median_filter.py @@ -19,16 +19,16 @@ def median_filter(gray_img, mask=3): for i in range(bd, gray_img.shape[0] - bd): for j in range(bd, gray_img.shape[1] - bd): # get mask according with mask - kernel = ravel(gray_img[i - bd:i + bd + 1, j - bd:j + bd + 1]) + kernel = ravel(gray_img[i - bd : i + bd + 1, j - bd : j + bd + 1]) # calculate mask median median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)] median_img[i, j] = median return median_img -if __name__ == '__main__': +if __name__ == "__main__": # read original image - img = imread('../image_data/lena.jpg') + img = imread("../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) @@ -37,6 +37,6 @@ def median_filter(gray_img, mask=3): median5x5 = median_filter(gray, 5) # show result images - imshow('median filter with 3x3 mask', median3x3) - imshow('median filter with 5x5 mask', median5x5) + imshow("median filter with 3x3 mask", median3x3) + imshow("median filter with 5x5 mask", median5x5) waitKey(0) diff --git a/digital_image_processing/filters/sobel_filter.py b/digital_image_processing/filters/sobel_filter.py index f3ef407d49e5..822d49fe38a1 100644 --- a/digital_image_processing/filters/sobel_filter.py +++ b/digital_image_processing/filters/sobel_filter.py @@ -13,26 +13,26 @@ def sobel_filter(image): dst_x = np.abs(img_convolve(image, kernel_x)) dst_y = np.abs(img_convolve(image, kernel_y)) # modify the pix within [0, 255] - dst_x = dst_x * 255/np.max(dst_x) - dst_y = dst_y * 255/np.max(dst_y) + dst_x = dst_x * 255 / np.max(dst_x) + dst_y = dst_y * 255 / np.max(dst_y) dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y))) - dst_xy = dst_xy * 255/np.max(dst_xy) + dst_xy = dst_xy * 255 / np.max(dst_xy) dst = dst_xy.astype(np.uint8) theta = np.arctan2(dst_y, dst_x) return dst, theta -if __name__ == '__main__': +if __name__ == "__main__": # read original image - img = imread('../image_data/lena.jpg') + img = imread("../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) sobel_grad, sobel_theta = sobel_filter(gray) # show result images - imshow('sobel filter', sobel_grad) - imshow('sobel theta', sobel_theta) + imshow("sobel filter", sobel_grad) + imshow("sobel theta", sobel_theta) waitKey(0) diff --git a/divide_and_conquer/closest_pair_of_points.py b/divide_and_conquer/closest_pair_of_points.py index 11dac7e0ab2a..eecf53a7450e 100644 --- a/divide_and_conquer/closest_pair_of_points.py +++ b/divide_and_conquer/closest_pair_of_points.py @@ -28,15 +28,15 @@ def euclidean_distance_sqr(point1, point2): return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 -def column_based_sort(array, column = 0): +def column_based_sort(array, column=0): """ >>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1) [(3, 0), (5, 1), (4, 2)] """ - return sorted(array, key = lambda x: x[column]) + return sorted(array, key=lambda x: x[column]) -def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): +def dis_between_closest_pair(points, points_counts, min_dis=float("inf")): """ brute force approach to find distance between closest pair points @@ -52,14 +52,14 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): """ for i in range(points_counts - 1): - for j in range(i+1, points_counts): + for j in range(i + 1, points_counts): current_dis = euclidean_distance_sqr(points[i], points[j]) if current_dis < min_dis: min_dis = current_dis return min_dis -def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): +def dis_between_closest_in_strip(points, points_counts, min_dis=float("inf")): """ closest pair of points in strip @@ -74,7 +74,7 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): """ for i in range(min(6, points_counts - 1), points_counts): - for j in range(max(0, i-6), i): + for j in range(max(0, i - 6), i): current_dis = euclidean_distance_sqr(points[i], points[j]) if current_dis < min_dis: min_dis = current_dis @@ -99,13 +99,13 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co return dis_between_closest_pair(points_sorted_on_x, points_counts) # recursion - mid = points_counts//2 - closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x, - points_sorted_on_y[:mid], - mid) - closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y, - points_sorted_on_y[mid:], - points_counts - mid) + mid = points_counts // 2 + closest_in_left = closest_pair_of_points_sqr( + points_sorted_on_x, points_sorted_on_y[:mid], mid + ) + closest_in_right = closest_pair_of_points_sqr( + points_sorted_on_y, points_sorted_on_y[mid:], points_counts - mid + ) closest_pair_dis = min(closest_in_left, closest_in_right) """ @@ -118,8 +118,9 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(point) - closest_in_strip = dis_between_closest_in_strip(cross_strip, - len(cross_strip), closest_pair_dis) + closest_in_strip = dis_between_closest_in_strip( + cross_strip, len(cross_strip), closest_pair_dis + ) return min(closest_pair_dis, closest_in_strip) @@ -128,11 +129,13 @@ def closest_pair_of_points(points, points_counts): >>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)])) 28.792360097775937 """ - points_sorted_on_x = column_based_sort(points, column = 0) - points_sorted_on_y = column_based_sort(points, column = 1) - return (closest_pair_of_points_sqr(points_sorted_on_x, - points_sorted_on_y, - points_counts)) ** 0.5 + points_sorted_on_x = column_based_sort(points, column=0) + points_sorted_on_y = column_based_sort(points, column=1) + return ( + closest_pair_of_points_sqr( + points_sorted_on_x, points_sorted_on_y, points_counts + ) + ) ** 0.5 if __name__ == "__main__": diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index 534ebda2c780..bd88256ab01c 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -1,4 +1,5 @@ from numbers import Number + """ The convex hull problem is problem of finding all the vertices of convex polygon, P of a set of points in a plane such that all the points are either on the vertices of P or @@ -47,8 +48,10 @@ def __init__(self, x, y): try: x, y = float(x), float(y) except ValueError as e: - e.args = ("x and y must be both numeric types " - "but got {}, {} instead".format(type(x), type(y)), ) + e.args = ( + "x and y must be both numeric types " + "but got {}, {} instead".format(type(x), type(y)), + ) raise self.x = x @@ -85,7 +88,7 @@ def __le__(self, other): return False def __repr__(self): - return "({}, {})".format(self.x, self.y) + return "({}, {})".format(self.x, self.y) def __hash__(self): return hash(self.x) @@ -132,8 +135,10 @@ def _construct_points(list_of_tuples): try: points.append(Point(p[0], p[1])) except (IndexError, TypeError): - print("Ignoring deformed point {}. All points" - " must have at least 2 coordinates.".format(p)) + print( + "Ignoring deformed point {}. All points" + " must have at least 2 coordinates.".format(p) + ) return points @@ -189,12 +194,15 @@ def _validate_input(points): if isinstance(points[0], (list, tuple)): points = _construct_points(points) else: - raise ValueError("Expecting an iterable of type Point, list or tuple. " - "Found objects of type {} instead" - .format(type(points[0]))) + raise ValueError( + "Expecting an iterable of type Point, list or tuple. " + "Found objects of type {} instead".format(type(points[0])) + ) elif not hasattr(points, "__iter__"): - raise ValueError("Expecting an iterable object " - "but got an non-iterable type {}".format(points)) + raise ValueError( + "Expecting an iterable object " + "but got an non-iterable type {}".format(points) + ) except TypeError as e: print("Expecting an iterable of type Point, list or tuple.") raise @@ -277,7 +285,7 @@ def convex_hull_bf(points): n = len(points) convex_set = set() - for i in range(n-1): + for i in range(n - 1): for j in range(i + 1, n): points_left_of_ij = points_right_of_ij = False ij_part_of_convex_hull = True @@ -353,13 +361,13 @@ def convex_hull_recursive(points): # convex hull left_most_point = points[0] - right_most_point = points[n-1] + right_most_point = points[n - 1] convex_set = {left_most_point, right_most_point} upperhull = [] lowerhull = [] - for i in range(1, n-1): + for i in range(1, n - 1): det = _det(left_most_point, right_most_point, points[i]) if det > 0: @@ -394,7 +402,7 @@ def _construct_hull(points, left, right, convex_set): """ if points: extreme_point = None - extreme_point_distance = float('-inf') + extreme_point_distance = float("-inf") candidate_points = [] for p in points: @@ -414,8 +422,18 @@ def _construct_hull(points, left, right, convex_set): def main(): - points = [(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), - (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)] + points = [ + (0, 3), + (2, 2), + (1, 1), + (2, 1), + (3, 0), + (0, 0), + (3, 3), + (2, -1), + (2, -4), + (1, -3), + ] # the convex set of points is # [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] results_recursive = convex_hull_recursive(points) @@ -425,5 +443,5 @@ def main(): print(results_bf) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/divide_and_conquer/inversions.py b/divide_and_conquer/inversions.py index e4d50b7d4729..9bb656229321 100644 --- a/divide_and_conquer/inversions.py +++ b/divide_and_conquer/inversions.py @@ -38,7 +38,7 @@ def count_inversions_bf(arr): num_inversions = 0 n = len(arr) - for i in range(n-1): + for i in range(n - 1): for j in range(i + 1, n): if arr[i] > arr[j]: num_inversions += 1 @@ -73,7 +73,7 @@ def count_inversions_recursive(arr): if len(arr) <= 1: return arr, 0 else: - mid = len(arr)//2 + mid = len(arr) // 2 P = arr[0:mid] Q = arr[mid:] @@ -119,7 +119,7 @@ def _count_cross_inversions(P, Q): # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. - num_inversion += (len(P) - i) + num_inversion += len(P) - i R.append(Q[j]) j += 1 else: @@ -127,9 +127,9 @@ def _count_cross_inversions(P, Q): i += 1 if i < len(P): - R.extend(P[i:]) + R.extend(P[i:]) else: - R.extend(Q[j:]) + R.extend(Q[j:]) return R, num_inversion @@ -166,6 +166,4 @@ def main(): if __name__ == "__main__": - main() - - + main() diff --git a/divide_and_conquer/max_subarray_sum.py b/divide_and_conquer/max_subarray_sum.py index 0428f4e13768..9e81c83649a6 100644 --- a/divide_and_conquer/max_subarray_sum.py +++ b/divide_and_conquer/max_subarray_sum.py @@ -40,8 +40,8 @@ def max_cross_array_sum(array, left, mid, right): """ - max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) - max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) + max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1]) + max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1]) return max_sum_of_left + max_sum_of_right @@ -60,7 +60,7 @@ def max_subarray_sum(array, left, right): # base case: array has only one element if left == right: return array[right] - + # Recursion mid = (left + right) // 2 left_half_sum = max_subarray_sum(array, left, mid) @@ -71,5 +71,6 @@ def max_subarray_sum(array, left, right): array = [-2, -5, 6, -2, -3, 1, 5, -6] array_length = len(array) -print("Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1)) - +print( + "Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1) +) diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py index 6685e1c68ee6..5c1ed36cb42a 100644 --- a/dynamic_programming/bitmask.py +++ b/dynamic_programming/bitmask.py @@ -13,54 +13,55 @@ class AssignmentUsingBitmask: - def __init__(self,task_performed,total): + def __init__(self, task_performed, total): - self.total_tasks = total #total no of tasks (N) + self.total_tasks = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 - self.dp = [[-1 for i in range(total+1)] for j in range(2**len(task_performed))] + self.dp = [ + [-1 for i in range(total + 1)] for j in range(2 ** len(task_performed)) + ] - self.task = defaultdict(list) #stores the list of persons for each task + self.task = defaultdict(list) # stores the list of persons for each task - #finalmask is used to check if all persons are included by setting all bits to 1 - self.finalmask = (1< self.total_tasks: return 0 - #if case already considered - if self.dp[mask][taskno]!=-1: + # if case already considered + if self.dp[mask][taskno] != -1: return self.dp[mask][taskno] # Number of ways when we dont this task in the arrangement - total_ways_util = self.CountWaysUtil(mask,taskno+1) + total_ways_util = self.CountWaysUtil(mask, taskno + 1) # now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks. if taskno in self.task: for p in self.task[taskno]: # if p is already given a task - if mask & (1<-1): + if x == -1: + return y + 1 + elif y == -1: + return x + 1 + elif self.dp[x][y] > -1: return self.dp[x][y] else: - if (self.A[x]==self.B[y]): - self.dp[x][y] = self.__solveDP(x-1,y-1) + if self.A[x] == self.B[y]: + self.dp[x][y] = self.__solveDP(x - 1, y - 1) else: - self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1)) + self.dp[x][y] = 1 + min( + self.__solveDP(x, y - 1), + self.__solveDP(x - 1, y), + self.__solveDP(x - 1, y - 1), + ) return self.dp[x][y] def solve(self, A, B): - if isinstance(A,bytes): - A = A.decode('ascii') + if isinstance(A, bytes): + A = A.decode("ascii") - if isinstance(B,bytes): - B = B.decode('ascii') + if isinstance(B, bytes): + B = B.decode("ascii") self.A = str(A) self.B = str(B) self.__prepare__(len(A), len(B)) - return self.__solveDP(len(A)-1, len(B)-1) + return self.__solveDP(len(A) - 1, len(B) - 1) def min_distance_bottom_up(word1: str, word2: str) -> int: @@ -63,38 +67,37 @@ def min_distance_bottom_up(word1: str, word2: str) -> int: """ m = len(word1) n = len(word2) - dp = [[0 for _ in range(n+1) ] for _ in range(m+1)] - for i in range(m+1): - for j in range(n+1): + dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)] + for i in range(m + 1): + for j in range(n + 1): - if i == 0: #first string is empty + if i == 0: # first string is empty dp[i][j] = j - elif j == 0: #second string is empty + elif j == 0: # second string is empty dp[i][j] = i - elif word1[i-1] == word2[j-1]: #last character of both substing is equal - dp[i][j] = dp[i-1][j-1] + elif ( + word1[i - 1] == word2[j - 1] + ): # last character of both substing is equal + dp[i][j] = dp[i - 1][j - 1] else: - insert = dp[i][j-1] - delete = dp[i-1][j] - replace = dp[i-1][j-1] + insert = dp[i][j - 1] + delete = dp[i - 1][j] + replace = dp[i - 1][j - 1] dp[i][j] = 1 + min(insert, delete, replace) return dp[m][n] -if __name__ == '__main__': - solver = EditDistance() - - print("****************** Testing Edit Distance DP Algorithm ******************") - print() - - S1 = input("Enter the first string: ").strip() - S2 = input("Enter the second string: ").strip() - - print() - print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) - print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2))) - print() - print("*************** End of Testing Edit Distance DP Algorithm ***************") +if __name__ == "__main__": + solver = EditDistance() + print("****************** Testing Edit Distance DP Algorithm ******************") + print() + S1 = input("Enter the first string: ").strip() + S2 = input("Enter the second string: ").strip() + print() + print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) + print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2))) + print() + print("*************** End of Testing Edit Distance DP Algorithm ***************") diff --git a/dynamic_programming/factorial.py b/dynamic_programming/factorial.py index 7c6541ee2a74..0269014e7a18 100644 --- a/dynamic_programming/factorial.py +++ b/dynamic_programming/factorial.py @@ -1,6 +1,8 @@ -#Factorial of a number using memoization -result=[-1]*10 -result[0]=result[1]=1 +# Factorial of a number using memoization +result = [-1] * 10 +result[0] = result[1] = 1 + + def factorial(num): """ >>> factorial(7) @@ -10,19 +12,20 @@ def factorial(num): >>> [factorial(i) for i in range(5)] [1, 1, 2, 6, 24] """ - - if num<0: + + if num < 0: return "Number should not be negative." - if result[num]!=-1: + if result[num] != -1: return result[num] else: - result[num]=num*factorial(num-1) - #uncomment the following to see how recalculations are avoided - #print(result) + result[num] = num * factorial(num - 1) + # uncomment the following to see how recalculations are avoided + # print(result) return result[num] -#factorial of num -#uncomment the following to see how recalculations are avoided + +# factorial of num +# uncomment the following to see how recalculations are avoided ##result=[-1]*10 ##result[0]=result[1]=1 ##print(factorial(5)) @@ -31,4 +34,5 @@ def factorial(num): if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py index 90fe6386044a..2dd1c2555f3e 100644 --- a/dynamic_programming/fibonacci.py +++ b/dynamic_programming/fibonacci.py @@ -4,7 +4,6 @@ class Fibonacci: - def __init__(self, N=None): self.fib_array = [] if N: @@ -19,14 +18,14 @@ def __init__(self, N=None): def get(self, sequence_no=None): if sequence_no != None: if sequence_no < len(self.fib_array): - return print(self.fib_array[:sequence_no + 1]) + return print(self.fib_array[: sequence_no + 1]) else: print("Out of bound.") else: print("Please specify a value") -if __name__ == '__main__': +if __name__ == "__main__": print("\n********* Fibonacci Series Using Dynamic Programming ************\n") print("\n Enter the upper limit for the fibonacci sequence: ", end="") try: @@ -34,7 +33,8 @@ def get(self, sequence_no=None): fib = Fibonacci(N) print( "\n********* Enter different values to get the corresponding fibonacci " - "sequence, enter any negative number to exit. ************\n") + "sequence, enter any negative number to exit. ************\n" + ) while True: try: i = int(input("Enter value: ").strip()) diff --git a/dynamic_programming/floyd_warshall.py b/dynamic_programming/floyd_warshall.py index 038499ca03b6..a4b6c6a82568 100644 --- a/dynamic_programming/floyd_warshall.py +++ b/dynamic_programming/floyd_warshall.py @@ -1,37 +1,42 @@ import math + class Graph: - - def __init__(self, N = 0): # a graph with Node 0,1,...,N-1 + def __init__(self, N=0): # a graph with Node 0,1,...,N-1 self.N = N - self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight - self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j + self.W = [ + [math.inf for j in range(0, N)] for i in range(0, N) + ] # adjacency matrix for weight + self.dp = [ + [math.inf for j in range(0, N)] for i in range(0, N) + ] # dp[i][j] stores minimum distance from i to j def addEdge(self, u, v, w): self.dp[u][v] = w def floyd_warshall(self): - for k in range(0,self.N): - for i in range(0,self.N): - for j in range(0,self.N): + for k in range(0, self.N): + for i in range(0, self.N): + for j in range(0, self.N): self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j]) def showMin(self, u, v): return self.dp[u][v] - -if __name__ == '__main__': + + +if __name__ == "__main__": graph = Graph(5) - graph.addEdge(0,2,9) - graph.addEdge(0,4,10) - graph.addEdge(1,3,5) - graph.addEdge(2,3,7) - graph.addEdge(3,0,10) - graph.addEdge(3,1,2) - graph.addEdge(3,2,1) - graph.addEdge(3,4,6) - graph.addEdge(4,1,3) - graph.addEdge(4,2,4) - graph.addEdge(4,3,9) + graph.addEdge(0, 2, 9) + graph.addEdge(0, 4, 10) + graph.addEdge(1, 3, 5) + graph.addEdge(2, 3, 7) + graph.addEdge(3, 0, 10) + graph.addEdge(3, 1, 2) + graph.addEdge(3, 2, 1) + graph.addEdge(3, 4, 6) + graph.addEdge(4, 1, 3) + graph.addEdge(4, 2, 4) + graph.addEdge(4, 3, 9) graph.floyd_warshall() - graph.showMin(1,4) - graph.showMin(0,3) + graph.showMin(1, 4) + graph.showMin(0, 3) diff --git a/dynamic_programming/fractional_knapsack.py b/dynamic_programming/fractional_knapsack.py index 74e85b4b4708..881b6a3969d0 100644 --- a/dynamic_programming/fractional_knapsack.py +++ b/dynamic_programming/fractional_knapsack.py @@ -1,12 +1,20 @@ from itertools import accumulate from bisect import bisect + def fracKnapsack(vl, wt, W, n): - r = list(sorted(zip(vl,wt), key=lambda x:x[0]/x[1],reverse=True)) - vl , wt = [i[0] for i in r],[i[1] for i in r] - acc=list(accumulate(wt)) - k = bisect(acc,W) - return 0 if k == 0 else sum(vl[:k])+(W-acc[k-1])*(vl[k])/(wt[k]) if k!=n else sum(vl[:k]) + r = list(sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True)) + vl, wt = [i[0] for i in r], [i[1] for i in r] + acc = list(accumulate(wt)) + k = bisect(acc, W) + return ( + 0 + if k == 0 + else sum(vl[:k]) + (W - acc[k - 1]) * (vl[k]) / (wt[k]) + if k != n + else sum(vl[:k]) + ) + -print("%.0f"%fracKnapsack([60, 100, 120],[10, 20, 30],50,3)) +print("%.0f" % fracKnapsack([60, 100, 120], [10, 20, 30], 50, 3)) diff --git a/dynamic_programming/integer_partition.py b/dynamic_programming/integer_partition.py index f17561fc135b..ec8c5bf62d7d 100644 --- a/dynamic_programming/integer_partition.py +++ b/dynamic_programming/integer_partition.py @@ -1,33 +1,36 @@ -''' +""" The number of partitions of a number n into at least k parts equals the number of partitions into exactly k parts plus the number of partitions into at least k-1 parts. Subtracting 1 from each part of a partition of n into k parts gives a partition of n-k into k parts. These two facts together are used for this algorithm. -''' +""" + + def partition(m): - memo = [[0 for _ in range(m)] for _ in range(m+1)] - for i in range(m+1): - memo[i][0] = 1 + memo = [[0 for _ in range(m)] for _ in range(m + 1)] + for i in range(m + 1): + memo[i][0] = 1 + + for n in range(m + 1): + for k in range(1, m): + memo[n][k] += memo[n][k - 1] + if n - k > 0: + memo[n][k] += memo[n - k - 1][k] - for n in range(m+1): - for k in range(1, m): - memo[n][k] += memo[n][k-1] - if n-k > 0: - memo[n][k] += memo[n-k-1][k] + return memo[m][m - 1] - return memo[m][m-1] -if __name__ == '__main__': - import sys +if __name__ == "__main__": + import sys - if len(sys.argv) == 1: - try: - n = int(input('Enter a number: ').strip()) - print(partition(n)) - except ValueError: - print('Please enter a number.') - else: - try: - n = int(sys.argv[1]) - print(partition(n)) - except ValueError: - print('Please pass a number.') \ No newline at end of file + if len(sys.argv) == 1: + try: + n = int(input("Enter a number: ").strip()) + print(partition(n)) + except ValueError: + print("Please enter a number.") + else: + try: + n = int(sys.argv[1]) + print(partition(n)) + except ValueError: + print("Please pass a number.") diff --git a/dynamic_programming/k_means_clustering_tensorflow.py b/dynamic_programming/k_means_clustering_tensorflow.py index b6813c6a22b3..6b1eb628e5c3 100644 --- a/dynamic_programming/k_means_clustering_tensorflow.py +++ b/dynamic_programming/k_means_clustering_tensorflow.py @@ -14,24 +14,24 @@ def TFKMeansCluster(vectors, noofclusters): noofclusters = int(noofclusters) assert noofclusters < len(vectors) - #Find out the dimensionality + # Find out the dimensionality dim = len(vectors[0]) - #Will help select random centroids from among the available vectors + # Will help select random centroids from among the available vectors vector_indices = list(range(len(vectors))) shuffle(vector_indices) - #GRAPH OF COMPUTATION - #We initialize a new graph and set it as the default during each run - #of this algorithm. This ensures that as this function is called - #multiple times, the default graph doesn't keep getting crowded with - #unused ops and Variables from previous function calls. + # GRAPH OF COMPUTATION + # We initialize a new graph and set it as the default during each run + # of this algorithm. This ensures that as this function is called + # multiple times, the default graph doesn't keep getting crowded with + # unused ops and Variables from previous function calls. graph = tf.Graph() with graph.as_default(): - #SESSION OF COMPUTATION + # SESSION OF COMPUTATION sess = tf.Session() @@ -39,8 +39,9 @@ def TFKMeansCluster(vectors, noofclusters): ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points - centroids = [tf.Variable((vectors[vector_indices[i]])) - for i in range(noofclusters)] + centroids = [ + tf.Variable((vectors[vector_indices[i]])) for i in range(noofclusters) + ] ##These nodes will assign the centroid Variables the appropriate ##values centroid_value = tf.placeholder("float64", [dim]) @@ -56,26 +57,24 @@ def TFKMeansCluster(vectors, noofclusters): assignment_value = tf.placeholder("int32") cluster_assigns = [] for assignment in assignments: - cluster_assigns.append(tf.assign(assignment, - assignment_value)) + cluster_assigns.append(tf.assign(assignment, assignment_value)) ##Now lets construct the node that will compute the mean - #The placeholder for the input + # The placeholder for the input mean_input = tf.placeholder("float", [None, dim]) - #The Node/op takes the input and computes a mean along the 0th - #dimension, i.e. the list of input vectors + # The Node/op takes the input and computes a mean along the 0th + # dimension, i.e. the list of input vectors mean_op = tf.reduce_mean(mean_input, 0) ##Node for computing Euclidean distances - #Placeholders for input + # Placeholders for input v1 = tf.placeholder("float", [dim]) v2 = tf.placeholder("float", [dim]) - euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub( - v1, v2), 2))) + euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(v1, v2), 2))) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. - #Placeholder for input + # Placeholder for input centroid_distances = tf.placeholder("float", [noofclusters]) cluster_assignment = tf.argmin(centroid_distances, 0) @@ -87,55 +86,62 @@ def TFKMeansCluster(vectors, noofclusters): ##will be included in the initialization. init_op = tf.initialize_all_variables() - #Initialize all variables + # Initialize all variables sess.run(init_op) ##CLUSTERING ITERATIONS - #Now perform the Expectation-Maximization steps of K-Means clustering - #iterations. To keep things simple, we will only do a set number of - #iterations, instead of using a Stopping Criterion. + # Now perform the Expectation-Maximization steps of K-Means clustering + # iterations. To keep things simple, we will only do a set number of + # iterations, instead of using a Stopping Criterion. noofiterations = 100 for iteration_n in range(noofiterations): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. - #Iterate over each vector + # Iterate over each vector for vector_n in range(len(vectors)): vect = vectors[vector_n] - #Compute Euclidean distance between this vector and each - #centroid. Remember that this list cannot be named + # Compute Euclidean distance between this vector and each + # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the - #cluster assignment node. - distances = [sess.run(euclid_dist, feed_dict={ - v1: vect, v2: sess.run(centroid)}) - for centroid in centroids] - #Now use the cluster assignment node, with the distances - #as the input - assignment = sess.run(cluster_assignment, feed_dict = { - centroid_distances: distances}) - #Now assign the value to the appropriate state variable - sess.run(cluster_assigns[vector_n], feed_dict={ - assignment_value: assignment}) + # cluster assignment node. + distances = [ + sess.run(euclid_dist, feed_dict={v1: vect, v2: sess.run(centroid)}) + for centroid in centroids + ] + # Now use the cluster assignment node, with the distances + # as the input + assignment = sess.run( + cluster_assignment, feed_dict={centroid_distances: distances} + ) + # Now assign the value to the appropriate state variable + sess.run( + cluster_assigns[vector_n], feed_dict={assignment_value: assignment} + ) ##MAXIMIZATION STEP - #Based on the expected state computed from the Expectation Step, - #compute the locations of the centroids so as to maximize the - #overall objective of minimizing within-cluster Sum-of-Squares + # Based on the expected state computed from the Expectation Step, + # compute the locations of the centroids so as to maximize the + # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(noofclusters): - #Collect all the vectors assigned to this cluster - assigned_vects = [vectors[i] for i in range(len(vectors)) - if sess.run(assignments[i]) == cluster_n] - #Compute new centroid location - new_location = sess.run(mean_op, feed_dict={ - mean_input: array(assigned_vects)}) - #Assign value to appropriate variable - sess.run(cent_assigns[cluster_n], feed_dict={ - centroid_value: new_location}) - - #Return centroids and assignments + # Collect all the vectors assigned to this cluster + assigned_vects = [ + vectors[i] + for i in range(len(vectors)) + if sess.run(assignments[i]) == cluster_n + ] + # Compute new centroid location + new_location = sess.run( + mean_op, feed_dict={mean_input: array(assigned_vects)} + ) + # Assign value to appropriate variable + sess.run( + cent_assigns[cluster_n], feed_dict={centroid_value: new_location} + ) + + # Return centroids and assignments centroids = sess.run(centroids) assignments = sess.run(assignments) return centroids, assignments - diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py index 488059d6244d..e71e3892e8cc 100644 --- a/dynamic_programming/knapsack.py +++ b/dynamic_programming/knapsack.py @@ -8,36 +8,38 @@ def MF_knapsack(i, wt, val, j): - ''' + """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up - ''' + """ global F # a global dp table for knapsack if F[i][j] < 0: - if j < wt[i-1]: - val = MF_knapsack(i-1, wt, val, j) + if j < wt[i - 1]: + val = MF_knapsack(i - 1, wt, val, j) else: - val = max(MF_knapsack(i-1, wt, val, j), - MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1]) + val = max( + MF_knapsack(i - 1, wt, val, j), + MF_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1], + ) F[i][j] = val return F[i][j] def knapsack(W, wt, val, n): - dp = [[0 for i in range(W+1)]for j in range(n+1)] + dp = [[0 for i in range(W + 1)] for j in range(n + 1)] - for i in range(1,n+1): - for w in range(1, W+1): - if wt[i-1] <= w: - dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]) + for i in range(1, n + 1): + for w in range(1, W + 1): + if wt[i - 1] <= w: + dp[i][w] = max(val[i - 1] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w]) else: - dp[i][w] = dp[i-1][w] + dp[i][w] = dp[i - 1][w] return dp[n][W], dp -def knapsack_with_example_solution(W: int, wt: list, val:list): +def knapsack_with_example_solution(W: int, wt: list, val: list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. @@ -70,17 +72,23 @@ def knapsack_with_example_solution(W: int, wt: list, val:list): But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): - raise ValueError("Both the weights and values vectors must be either lists or tuples") + raise ValueError( + "Both the weights and values vectors must be either lists or tuples" + ) num_items = len(wt) if num_items != len(val): - raise ValueError("The number of weights must be the " - "same as the number of values.\nBut " - "got {} weights and {} values".format(num_items, len(val))) + raise ValueError( + "The number of weights must be the " + "same as the number of values.\nBut " + "got {} weights and {} values".format(num_items, len(val)) + ) for i in range(num_items): if not isinstance(wt[i], int): - raise TypeError("All weights must be integers but " - "got weight of type {} at index {}".format(type(wt[i]), i)) + raise TypeError( + "All weights must be integers but " + "got weight of type {} at index {}".format(type(wt[i]), i) + ) optimal_val, dp_table = knapsack(W, wt, val, num_items) example_optional_set = set() @@ -89,7 +97,7 @@ def knapsack_with_example_solution(W: int, wt: list, val:list): return optimal_val, example_optional_set -def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): +def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights @@ -117,21 +125,21 @@ def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) - _construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set) + _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set) -if __name__ == '__main__': - ''' +if __name__ == "__main__": + """ Adding test case for knapsack - ''' + """ val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] - optimal_solution, _ = knapsack(w,wt,val, n) + optimal_solution, _ = knapsack(w, wt, val, n) print(optimal_solution) - print(MF_knapsack(n,wt,val,w)) # switched the n and w + print(MF_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 @@ -140,4 +148,3 @@ def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset) - diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index d39485408988..12fcae684051 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -41,12 +41,12 @@ def longest_common_subsequence(x: str, y: str): for i in range(1, m + 1): for j in range(1, n + 1): - if x[i-1] == y[j-1]: + if x[i - 1] == y[j - 1]: match = 1 else: match = 0 - L[i][j] = max(L[i-1][j], L[i][j-1], L[i-1][j-1] + match) + L[i][j] = max(L[i - 1][j], L[i][j - 1], L[i - 1][j - 1] + match) seq = "" i, j = m, n @@ -69,9 +69,9 @@ def longest_common_subsequence(x: str, y: str): return L[m][n], seq -if __name__ == '__main__': - a = 'AGGTAB' - b = 'GXTXAYB' +if __name__ == "__main__": + a = "AGGTAB" + b = "GXTXAYB" expected_ln = 4 expected_subseq = "GTAB" diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index 151a5e0b7c80..3cb57806e06f 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -1,4 +1,4 @@ -''' +""" Author : Mehdi ALAOUI This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence. @@ -6,35 +6,40 @@ The problem is : Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it. Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output -''' -def longestSub(ARRAY): #This function is recursive - - ARRAY_LENGTH = len(ARRAY) - if(ARRAY_LENGTH <= 1): #If the array contains only one element, we return it (it's the stop condition of recursion) - return ARRAY - #Else - PIVOT=ARRAY[0] - isFound=False - i=1 - LONGEST_SUB=[] - while(not isFound and i= ARRAY[i] ] - TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY) - if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ): - LONGEST_SUB = TEMPORARY_ARRAY - else: - i+=1 - - TEMPORARY_ARRAY = [ element for element in ARRAY[1:] if element >= PIVOT ] - TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY) - if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ): - return TEMPORARY_ARRAY - else: - return LONGEST_SUB - -#Some examples - -print(longestSub([4,8,7,5,1,12,2,3,9])) -print(longestSub([9,8,7,6,5,7])) \ No newline at end of file +""" + + +def longestSub(ARRAY): # This function is recursive + + ARRAY_LENGTH = len(ARRAY) + if ( + ARRAY_LENGTH <= 1 + ): # If the array contains only one element, we return it (it's the stop condition of recursion) + return ARRAY + # Else + PIVOT = ARRAY[0] + isFound = False + i = 1 + LONGEST_SUB = [] + while not isFound and i < ARRAY_LENGTH: + if ARRAY[i] < PIVOT: + isFound = True + TEMPORARY_ARRAY = [element for element in ARRAY[i:] if element >= ARRAY[i]] + TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY) + if len(TEMPORARY_ARRAY) > len(LONGEST_SUB): + LONGEST_SUB = TEMPORARY_ARRAY + else: + i += 1 + + TEMPORARY_ARRAY = [element for element in ARRAY[1:] if element >= PIVOT] + TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY) + if len(TEMPORARY_ARRAY) > len(LONGEST_SUB): + return TEMPORARY_ARRAY + else: + return LONGEST_SUB + + +# Some examples + +print(longestSub([4, 8, 7, 5, 1, 12, 2, 3, 9])) +print(longestSub([9, 8, 7, 6, 5, 7])) diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py index 9b27ed6be303..f7b2c6915bcb 100644 --- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py @@ -4,38 +4,38 @@ # comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN) # Where N is the Number of elements in the list ############################# -def CeilIndex(v,l,r,key): - while r-l > 1: - m = (l + r)/2 - if v[m] >= key: - r = m - else: - l = m +def CeilIndex(v, l, r, key): + while r - l > 1: + m = (l + r) / 2 + if v[m] >= key: + r = m + else: + l = m - return r + return r def LongestIncreasingSubsequenceLength(v): - if(len(v) == 0): - return 0 + if len(v) == 0: + return 0 - tail = [0]*len(v) - length = 1 + tail = [0] * len(v) + length = 1 - tail[0] = v[0] + tail[0] = v[0] - for i in range(1,len(v)): - if v[i] < tail[0]: - tail[0] = v[i] - elif v[i] > tail[length-1]: - tail[length] = v[i] - length += 1 - else: - tail[CeilIndex(tail,-1,length-1,v[i])] = v[i] + for i in range(1, len(v)): + if v[i] < tail[0]: + tail[0] = v[i] + elif v[i] > tail[length - 1]: + tail[length] = v[i] + length += 1 + else: + tail[CeilIndex(tail, -1, length - 1, v[i])] = v[i] - return length + return length if __name__ == "__main__": - v = [2, 5, 3, 7, 11, 8, 10, 13, 6] - print(LongestIncreasingSubsequenceLength(v)) + v = [2, 5, 3, 7, 11, 8, 10, 13, 6] + print(LongestIncreasingSubsequenceLength(v)) diff --git a/dynamic_programming/longest_sub_array.py b/dynamic_programming/longest_sub_array.py index 856b31f03982..65ce151c33d6 100644 --- a/dynamic_programming/longest_sub_array.py +++ b/dynamic_programming/longest_sub_array.py @@ -1,32 +1,32 @@ -''' +""" Auther : Yvonne This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem. The problem is : Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array. -''' +""" class SubArray: - def __init__(self, arr): # we need a list not a string, so do something to change the type - self.array = arr.split(',') + self.array = arr.split(",") print(("the input array is:", self.array)) def solve_sub_array(self): - rear = [int(self.array[0])]*len(self.array) - sum_value = [int(self.array[0])]*len(self.array) + rear = [int(self.array[0])] * len(self.array) + sum_value = [int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): - sum_value[i] = max(int(self.array[i]) + sum_value[i-1], int(self.array[i])) - rear[i] = max(sum_value[i], rear[i-1]) - return rear[len(self.array)-1] + sum_value[i] = max( + int(self.array[i]) + sum_value[i - 1], int(self.array[i]) + ) + rear[i] = max(sum_value[i], rear[i - 1]) + return rear[len(self.array) - 1] -if __name__ == '__main__': +if __name__ == "__main__": whole_array = input("please input some numbers:") array = SubArray(whole_array) re = array.solve_sub_array() print(("the results is:", re)) - diff --git a/dynamic_programming/matrix_chain_order.py b/dynamic_programming/matrix_chain_order.py index cb4aec345437..f88a9be8ac95 100644 --- a/dynamic_programming/matrix_chain_order.py +++ b/dynamic_programming/matrix_chain_order.py @@ -1,44 +1,54 @@ import sys -''' + +""" Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) -''' +""" + + def MatrixChainOrder(array): - N=len(array) - Matrix=[[0 for x in range(N)] for x in range(N)] - Sol=[[0 for x in range(N)] for x in range(N)] + N = len(array) + Matrix = [[0 for x in range(N)] for x in range(N)] + Sol = [[0 for x in range(N)] for x in range(N)] - for ChainLength in range(2,N): - for a in range(1,N-ChainLength+1): - b = a+ChainLength-1 + for ChainLength in range(2, N): + for a in range(1, N - ChainLength + 1): + b = a + ChainLength - 1 Matrix[a][b] = sys.maxsize - for c in range(a , b): - cost = Matrix[a][c] + Matrix[c+1][b] + array[a-1]*array[c]*array[b] + for c in range(a, b): + cost = ( + Matrix[a][c] + Matrix[c + 1][b] + array[a - 1] * array[c] * array[b] + ) if cost < Matrix[a][b]: Matrix[a][b] = cost Sol[a][b] = c - return Matrix , Sol -#Print order of matrix with Ai as Matrix -def PrintOptimalSolution(OptimalSolution,i,j): - if i==j: - print("A" + str(i),end = " ") + return Matrix, Sol + + +# Print order of matrix with Ai as Matrix +def PrintOptimalSolution(OptimalSolution, i, j): + if i == j: + print("A" + str(i), end=" ") else: - print("(",end = " ") - PrintOptimalSolution(OptimalSolution,i,OptimalSolution[i][j]) - PrintOptimalSolution(OptimalSolution,OptimalSolution[i][j]+1,j) - print(")",end = " ") + print("(", end=" ") + PrintOptimalSolution(OptimalSolution, i, OptimalSolution[i][j]) + PrintOptimalSolution(OptimalSolution, OptimalSolution[i][j] + 1, j) + print(")", end=" ") + def main(): - array=[30,35,15,5,10,20,25] - n=len(array) - #Size of matrix created from above array will be + array = [30, 35, 15, 5, 10, 20, 25] + n = len(array) + # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 - Matrix , OptimalSolution = MatrixChainOrder(array) + Matrix, OptimalSolution = MatrixChainOrder(array) + + print("No. of Operation required: " + str((Matrix[1][n - 1]))) + PrintOptimalSolution(OptimalSolution, 1, n - 1) + - print("No. of Operation required: "+str((Matrix[1][n-1]))) - PrintOptimalSolution(OptimalSolution,1,n-1) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index d6084ecfd6d9..eb6ab41bf52d 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -5,37 +5,41 @@ import time import matplotlib.pyplot as plt from random import randint -def find_max_sub_array(A,low,high): - if low==high: - return low,high,A[low] - else : - mid=(low+high)//2 - left_low,left_high,left_sum=find_max_sub_array(A,low,mid) - right_low,right_high,right_sum=find_max_sub_array(A,mid+1,high) - cross_left,cross_right,cross_sum=find_max_cross_sum(A,low,mid,high) - if left_sum>=right_sum and left_sum>=cross_sum: - return left_low,left_high,left_sum - elif right_sum>=left_sum and right_sum>=cross_sum : - return right_low,right_high,right_sum + + +def find_max_sub_array(A, low, high): + if low == high: + return low, high, A[low] + else: + mid = (low + high) // 2 + left_low, left_high, left_sum = find_max_sub_array(A, low, mid) + right_low, right_high, right_sum = find_max_sub_array(A, mid + 1, high) + cross_left, cross_right, cross_sum = find_max_cross_sum(A, low, mid, high) + if left_sum >= right_sum and left_sum >= cross_sum: + return left_low, left_high, left_sum + elif right_sum >= left_sum and right_sum >= cross_sum: + return right_low, right_high, right_sum else: - return cross_left,cross_right,cross_sum + return cross_left, cross_right, cross_sum + -def find_max_cross_sum(A,low,mid,high): - left_sum,max_left=-999999999,-1 - right_sum,max_right=-999999999,-1 - summ=0 - for i in range(mid,low-1,-1): - summ+=A[i] +def find_max_cross_sum(A, low, mid, high): + left_sum, max_left = -999999999, -1 + right_sum, max_right = -999999999, -1 + summ = 0 + for i in range(mid, low - 1, -1): + summ += A[i] if summ > left_sum: - left_sum=summ - max_left=i - summ=0 - for i in range(mid+1,high+1): - summ+=A[i] + left_sum = summ + max_left = i + summ = 0 + for i in range(mid + 1, high + 1): + summ += A[i] if summ > right_sum: - right_sum=summ - max_right=i - return max_left,max_right,(left_sum+right_sum) + right_sum = summ + max_right = i + return max_left, max_right, (left_sum + right_sum) + def max_sub_array(nums: List[int]) -> int: """ @@ -58,22 +62,20 @@ def max_sub_array(nums: List[int]) -> int: best = max(best, current) return best -if __name__=='__main__': - inputs=[10,100,1000,10000,50000,100000,200000,300000,400000,500000] - tim=[] + +if __name__ == "__main__": + inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] + tim = [] for i in inputs: - li=[randint(1,i) for j in range(i)] - strt=time.time() - (find_max_sub_array(li,0,len(li)-1)) - end=time.time() - tim.append(end-strt) + li = [randint(1, i) for j in range(i)] + strt = time.time() + (find_max_sub_array(li, 0, len(li) - 1)) + end = time.time() + tim.append(end - strt) print("No of Inputs Time Taken") for i in range(len(inputs)): - print(inputs[i],'\t\t',tim[i]) - plt.plot(inputs,tim) - plt.xlabel("Number of Inputs");plt.ylabel("Time taken in seconds ") + print(inputs[i], "\t\t", tim[i]) + plt.plot(inputs, tim) + plt.xlabel("Number of Inputs") + plt.ylabel("Time taken in seconds ") plt.show() - - - - diff --git a/dynamic_programming/minimum_partition.py b/dynamic_programming/minimum_partition.py index 18aa1faa2fa6..d5750326fea4 100644 --- a/dynamic_programming/minimum_partition.py +++ b/dynamic_programming/minimum_partition.py @@ -1,28 +1,30 @@ """ Partition a set into two subsets such that the difference of subset sums is minimum """ + + def findMin(arr): n = len(arr) s = sum(arr) - dp = [[False for x in range(s+1)]for y in range(n+1)] + dp = [[False for x in range(s + 1)] for y in range(n + 1)] - for i in range(1, n+1): + for i in range(1, n + 1): dp[i][0] = True - for i in range(1, s+1): + for i in range(1, s + 1): dp[0][i] = False - for i in range(1, n+1): - for j in range(1, s+1): - dp[i][j]= dp[i][j-1] + for i in range(1, n + 1): + for j in range(1, s + 1): + dp[i][j] = dp[i][j - 1] - if (arr[i-1] <= j): - dp[i][j] = dp[i][j] or dp[i-1][j-arr[i-1]] + if arr[i - 1] <= j: + dp[i][j] = dp[i][j] or dp[i - 1][j - arr[i - 1]] - for j in range(int(s/2), -1, -1): + for j in range(int(s / 2), -1, -1): if dp[n][j] == True: - diff = s-2*j - break; + diff = s - 2 * j + break return diff diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py index 5b52eaca7c89..3a1d55320d7b 100644 --- a/dynamic_programming/rod_cutting.py +++ b/dynamic_programming/rod_cutting.py @@ -12,7 +12,7 @@ def naive_cut_rod_recursive(n: int, prices: list): - """ + """ Solves the rod-cutting problem via naively without using the benefit of dynamic programming. The results is the same sub-problems are solved several times leading to an exponential runtime @@ -36,18 +36,20 @@ def naive_cut_rod_recursive(n: int, prices: list): 30 """ - _enforce_args(n, prices) - if n == 0: - return 0 - max_revue = float("-inf") - for i in range(1, n + 1): - max_revue = max(max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices)) + _enforce_args(n, prices) + if n == 0: + return 0 + max_revue = float("-inf") + for i in range(1, n + 1): + max_revue = max( + max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices) + ) - return max_revue + return max_revue def top_down_cut_rod(n: int, prices: list): - """ + """ Constructs a top-down dynamic programming solution for the rod-cutting problem via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive @@ -75,13 +77,13 @@ def top_down_cut_rod(n: int, prices: list): >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) 30 """ - _enforce_args(n, prices) - max_rev = [float("-inf") for _ in range(n + 1)] - return _top_down_cut_rod_recursive(n, prices, max_rev) + _enforce_args(n, prices) + max_rev = [float("-inf") for _ in range(n + 1)] + return _top_down_cut_rod_recursive(n, prices, max_rev) def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): - """ + """ Constructs a top-down dynamic programming solution for the rod-cutting problem via memoization. @@ -99,22 +101,25 @@ def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): ------- The maximum revenue obtainable for a rod of length n given the list of prices for each piece. """ - if max_rev[n] >= 0: - return max_rev[n] - elif n == 0: - return 0 - else: - max_revenue = float("-inf") - for i in range(1, n + 1): - max_revenue = max(max_revenue, prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev)) + if max_rev[n] >= 0: + return max_rev[n] + elif n == 0: + return 0 + else: + max_revenue = float("-inf") + for i in range(1, n + 1): + max_revenue = max( + max_revenue, + prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev), + ) - max_rev[n] = max_revenue + max_rev[n] = max_revenue - return max_rev[n] + return max_rev[n] def bottom_up_cut_rod(n: int, prices: list): - """ + """ Constructs a bottom-up dynamic programming solution for the rod-cutting problem Runtime: O(n^2) @@ -137,24 +142,24 @@ def bottom_up_cut_rod(n: int, prices: list): >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) 30 """ - _enforce_args(n, prices) + _enforce_args(n, prices) - # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0. - max_rev = [float("-inf") for _ in range(n + 1)] - max_rev[0] = 0 + # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0. + max_rev = [float("-inf") for _ in range(n + 1)] + max_rev[0] = 0 - for i in range(1, n + 1): - max_revenue_i = max_rev[i] - for j in range(1, i + 1): - max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j]) + for i in range(1, n + 1): + max_revenue_i = max_rev[i] + for j in range(1, i + 1): + max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j]) - max_rev[i] = max_revenue_i + max_rev[i] = max_revenue_i - return max_rev[n] + return max_rev[n] def _enforce_args(n: int, prices: list): - """ + """ Basic checks on the arguments to the rod-cutting algorithms n: int, the length of the rod @@ -164,30 +169,32 @@ def _enforce_args(n: int, prices: list): if n is negative or there are fewer items in the price list than the length of the rod """ - if n < 0: - raise ValueError(f"n must be greater than or equal to 0. Got n = {n}") + if n < 0: + raise ValueError(f"n must be greater than or equal to 0. Got n = {n}") - if n > len(prices): - raise ValueError(f"Each integral piece of rod must have a corresponding " - f"price. Got n = {n} but length of prices = {len(prices)}") + if n > len(prices): + raise ValueError( + f"Each integral piece of rod must have a corresponding " + f"price. Got n = {n} but length of prices = {len(prices)}" + ) def main(): - prices = [6, 10, 12, 15, 20, 23] - n = len(prices) + prices = [6, 10, 12, 15, 20, 23] + n = len(prices) - # the best revenue comes from cutting the rod into 6 pieces, each - # of length 1 resulting in a revenue of 6 * 6 = 36. - expected_max_revenue = 36 + # the best revenue comes from cutting the rod into 6 pieces, each + # of length 1 resulting in a revenue of 6 * 6 = 36. + expected_max_revenue = 36 - max_rev_top_down = top_down_cut_rod(n, prices) - max_rev_bottom_up = bottom_up_cut_rod(n, prices) - max_rev_naive = naive_cut_rod_recursive(n, prices) + max_rev_top_down = top_down_cut_rod(n, prices) + max_rev_bottom_up = bottom_up_cut_rod(n, prices) + max_rev_naive = naive_cut_rod_recursive(n, prices) - assert expected_max_revenue == max_rev_top_down - assert max_rev_top_down == max_rev_bottom_up - assert max_rev_bottom_up == max_rev_naive + assert expected_max_revenue == max_rev_top_down + assert max_rev_top_down == max_rev_bottom_up + assert max_rev_bottom_up == max_rev_naive -if __name__ == '__main__': - main() +if __name__ == "__main__": + main() diff --git a/dynamic_programming/subset_generation.py b/dynamic_programming/subset_generation.py index 4b7a2bf87fd5..2cca97fc3cbc 100644 --- a/dynamic_programming/subset_generation.py +++ b/dynamic_programming/subset_generation.py @@ -1,39 +1,43 @@ # python program to print all subset combination of n element in given set of r element . -#arr[] ---> Input Array -#data[] ---> Temporary array to store current combination +# arr[] ---> Input Array +# data[] ---> Temporary array to store current combination # start & end ---> Staring and Ending indexes in arr[] # index ---> Current index in data[] -#r ---> Size of a combination to be printed -def combinationUtil(arr,n,r,index,data,i): -#Current combination is ready to be printed, -# print it - if(index == r): - for j in range(r): - print(data[j],end =" ") - print(" ") - return -# When no more elements are there to put in data[] - if(i >= n): - return -#current is included, put next at next -# location - data[index] = arr[i] - combinationUtil(arr,n,r,index+1,data,i+1) - # current is excluded, replace it with - # next (Note that i+1 is passed, but - # index is not changed) - combinationUtil(arr,n,r,index,data,i+1) - # The main function that prints all combinations - #of size r in arr[] of size n. This function - #mainly uses combinationUtil() -def printcombination(arr,n,r): -# A temporary array to store all combination -# one by one - data = [0]*r -#Print all combination using temprary -#array 'data[]' - combinationUtil(arr,n,r,0,data,0) +# r ---> Size of a combination to be printed +def combinationUtil(arr, n, r, index, data, i): + # Current combination is ready to be printed, + # print it + if index == r: + for j in range(r): + print(data[j], end=" ") + print(" ") + return + # When no more elements are there to put in data[] + if i >= n: + return + # current is included, put next at next + # location + data[index] = arr[i] + combinationUtil(arr, n, r, index + 1, data, i + 1) + # current is excluded, replace it with + # next (Note that i+1 is passed, but + # index is not changed) + combinationUtil(arr, n, r, index, data, i + 1) + # The main function that prints all combinations + # of size r in arr[] of size n. This function + # mainly uses combinationUtil() + + +def printcombination(arr, n, r): + # A temporary array to store all combination + # one by one + data = [0] * r + # Print all combination using temprary + # array 'data[]' + combinationUtil(arr, n, r, 0, data, 0) + + # Driver function to check for above function -arr = [10,20,30,40,50] -printcombination(arr,len(arr),3) -#This code is contributed by Ambuj sahu +arr = [10, 20, 30, 40, 50] +printcombination(arr, len(arr), 3) +# This code is contributed by Ambuj sahu diff --git a/dynamic_programming/sum_of_subset.py b/dynamic_programming/sum_of_subset.py index f6509a259c5d..581039080101 100644 --- a/dynamic_programming/sum_of_subset.py +++ b/dynamic_programming/sum_of_subset.py @@ -1,34 +1,35 @@ def isSumSubset(arr, arrLen, requiredSum): # a subset value says 1 if that subset sum can be formed else 0 - #initially no subsets can be formed hence False/0 - subset = ([[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)]) + # initially no subsets can be formed hence False/0 + subset = [[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)] - #for each arr value, a sum of zero(0) can be formed by not taking any element hence True/1 + # for each arr value, a sum of zero(0) can be formed by not taking any element hence True/1 for i in range(arrLen + 1): subset[i][0] = True - #sum is not zero and set is empty then false + # sum is not zero and set is empty then false for i in range(1, requiredSum + 1): subset[0][i] = False for i in range(1, arrLen + 1): for j in range(1, requiredSum + 1): - if arr[i-1]>j: - subset[i][j] = subset[i-1][j] - if arr[i-1]<=j: - subset[i][j] = (subset[i-1][j] or subset[i-1][j-arr[i-1]]) + if arr[i - 1] > j: + subset[i][j] = subset[i - 1][j] + if arr[i - 1] <= j: + subset[i][j] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] - #uncomment to print the subset + # uncomment to print the subset # for i in range(arrLen+1): # print(subset[i]) return subset[arrLen][requiredSum] + arr = [2, 4, 6, 8] -requiredSum = 5 +requiredSum = 5 arrLen = len(arr) if isSumSubset(arr, arrLen, requiredSum): print("Found a subset with required sum") else: - print("No subset with required sum") \ No newline at end of file + print("No subset with required sum") diff --git a/file_transfer/recieve_file.py b/file_transfer/recieve_file.py index f404546d7765..cfba6ed88484 100644 --- a/file_transfer/recieve_file.py +++ b/file_transfer/recieve_file.py @@ -1,4 +1,4 @@ -if __name__ == '__main__': +if __name__ == "__main__": import socket # Import socket module sock = socket.socket() # Create a socket object @@ -6,11 +6,11 @@ port = 12312 sock.connect((host, port)) - sock.send(b'Hello server!') + sock.send(b"Hello server!") - with open('Received_file', 'wb') as out_file: - print('File opened') - print('Receiving data...') + with open("Received_file", "wb") as out_file: + print("File opened") + print("Receiving data...") while True: data = sock.recv(1024) print(f"data={data}") @@ -18,6 +18,6 @@ break out_file.write(data) # Write data to a file - print('Successfully got the file') + print("Successfully got the file") sock.close() - print('Connection closed') + print("Connection closed") diff --git a/file_transfer/send_file.py b/file_transfer/send_file.py index 92fab206c1a1..ebc075a30ad4 100644 --- a/file_transfer/send_file.py +++ b/file_transfer/send_file.py @@ -1,16 +1,18 @@ -if __name__ == '__main__': +if __name__ == "__main__": import socket # Import socket module - ONE_CONNECTION_ONLY = True # Set this to False if you wish to continuously accept connections + ONE_CONNECTION_ONLY = ( + True + ) # Set this to False if you wish to continuously accept connections - filename='mytext.txt' + filename = "mytext.txt" port = 12312 # Reserve a port for your service. sock = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name sock.bind((host, port)) # Bind to the port sock.listen(5) # Now wait for client connection. - print('Server listening....') + print("Server listening....") while True: conn, addr = sock.accept() # Establish connection with client. @@ -18,16 +20,18 @@ data = conn.recv(1024) print(f"Server received {data}") - with open(filename,'rb') as in_file: + with open(filename, "rb") as in_file: data = in_file.read(1024) - while (data): - conn.send(data) - print(f"Sent {data!r}") - data = in_file.read(1024) + while data: + conn.send(data) + print(f"Sent {data!r}") + data = in_file.read(1024) - print('Done sending') + print("Done sending") conn.close() - if ONE_CONNECTION_ONLY: # This is to make sure that the program doesn't hang while testing + if ( + ONE_CONNECTION_ONLY + ): # This is to make sure that the program doesn't hang while testing break sock.shutdown(1) diff --git a/graphs/a_star.py b/graphs/a_star.py index 09a7a0e579d8..e1d17fc55434 100644 --- a/graphs/a_star.py +++ b/graphs/a_star.py @@ -1,42 +1,45 @@ -grid = [[0, 1, 0, 0, 0, 0], - [0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles - [0, 1, 0, 0, 0, 0], - [0, 1, 0, 0, 1, 0], - [0, 0, 0, 0, 1, 0]] - -''' +grid = [ + [0, 1, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles + [0, 1, 0, 0, 0, 0], + [0, 1, 0, 0, 1, 0], + [0, 0, 0, 0, 1, 0], +] + +""" heuristic = [[9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], [7, 6, 5, 4, 3, 2], [6, 5, 4, 3, 2, 1], - [5, 4, 3, 2, 1, 0]]''' + [5, 4, 3, 2, 1, 0]]""" init = [0, 0] -goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x] +goal = [len(grid) - 1, len(grid[0]) - 1] # all coordinates are given in format [y,x] cost = 1 -#the cost map which pushes the path closer to the goal +# the cost map which pushes the path closer to the goal heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: - heuristic[i][j] = 99 #added extra penalty in the heuristic map + heuristic[i][j] = 99 # added extra penalty in the heuristic map -#the actions we can take -delta = [[-1, 0 ], # go up - [ 0, -1], # go left - [ 1, 0 ], # go down - [ 0, 1 ]] # go right +# the actions we can take +delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # go up # go left # go down # go right -#function to search the path -def search(grid,init,goal,cost,heuristic): +# function to search the path +def search(grid, init, goal, cost, heuristic): - closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid + closed = [ + [0 for col in range(len(grid[0]))] for row in range(len(grid)) + ] # the referrence grid closed[init[0]][init[1]] = 1 - action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid + action = [ + [0 for col in range(len(grid[0]))] for row in range(len(grid)) + ] # the action grid x = init[0] y = init[1] @@ -45,14 +48,14 @@ def search(grid,init,goal,cost,heuristic): cell = [[f, g, x, y]] found = False # flag that is set when search is complete - resign = False # flag set if we can't find expand + resign = False # flag set if we can't find expand while not found and not resign: if len(cell) == 0: resign = True return "FAIL" else: - cell.sort()#to choose the least costliest action so as to move closer to the goal + cell.sort() # to choose the least costliest action so as to move closer to the goal cell.reverse() next = cell.pop() x = next[2] @@ -60,14 +63,13 @@ def search(grid,init,goal,cost,heuristic): g = next[1] f = next[0] - if x == goal[0] and y == goal[1]: found = True else: - for i in range(len(delta)):#to try out different valid actions + for i in range(len(delta)): # to try out different valid actions x2 = x + delta[i][0] y2 = y + delta[i][1] - if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]): + if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]): if closed[x2][y2] == 0 and grid[x2][y2] == 0: g2 = g + cost f2 = g2 + heuristic[x2][y2] @@ -77,7 +79,7 @@ def search(grid,init,goal,cost,heuristic): invpath = [] x = goal[0] y = goal[1] - invpath.append([x, y])#we get the reverse path from here + invpath.append([x, y]) # we get the reverse path from here while x != init[0] or y != init[1]: x2 = x - delta[action[x][y]][0] y2 = y - delta[action[x][y]][1] @@ -87,14 +89,14 @@ def search(grid,init,goal,cost,heuristic): path = [] for i in range(len(invpath)): - path.append(invpath[len(invpath) - 1 - i]) + path.append(invpath[len(invpath) - 1 - i]) print("ACTION MAP") for i in range(len(action)): print(action[i]) return path -a = search(grid,init,goal,cost,heuristic) -for i in range(len(a)): - print(a[i]) +a = search(grid, init, goal, cost, heuristic) +for i in range(len(a)): + print(a[i]) diff --git a/graphs/articulation_points.py b/graphs/articulation_points.py index 1173c4ea373c..3ecc829946e8 100644 --- a/graphs/articulation_points.py +++ b/graphs/articulation_points.py @@ -33,12 +33,23 @@ def dfs(root, at, parent, outEdgeCount): if not visited[i]: outEdgeCount = 0 outEdgeCount = dfs(i, i, -1, outEdgeCount) - isArt[i] = (outEdgeCount > 1) + isArt[i] = outEdgeCount > 1 for x in range(len(isArt)): if isArt[x] == True: print(x) + # Adjacency list of graph -l = {0:[1,2], 1:[0,2], 2:[0,1,3,5], 3:[2,4], 4:[3], 5:[2,6,8], 6:[5,7], 7:[6,8], 8:[5,7]} +l = { + 0: [1, 2], + 1: [0, 2], + 2: [0, 1, 3, 5], + 3: [2, 4], + 4: [3], + 5: [2, 6, 8], + 6: [5, 7], + 7: [6, 8], + 8: [5, 7], +} computeAP(l) diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index 308abc0839fa..161bc0c09d3b 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -237,7 +237,7 @@ def edglist(): n, m = map(int, input().split(" ")) l = [] for i in range(m): - l.append(map(int, input().split(' '))) + l.append(map(int, input().split(" "))) return l, n diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index bebe8f354b26..b782a899fda9 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -1,35 +1,35 @@ def printDist(dist, V): - print("\nVertex Distance") - for i in range(V): - if dist[i] != float('inf') : - print(i,"\t",int(dist[i]),end = "\t") - else: - print(i,"\t","INF",end="\t") - print() + print("\nVertex Distance") + for i in range(V): + if dist[i] != float("inf"): + print(i, "\t", int(dist[i]), end="\t") + else: + print(i, "\t", "INF", end="\t") + print() -def BellmanFord(graph, V, E, src): - mdist=[float('inf') for i in range(V)] - mdist[src] = 0.0 - for i in range(V-1): - for j in range(V): - u = graph[j]["src"] - v = graph[j]["dst"] - w = graph[j]["weight"] +def BellmanFord(graph, V, E, src): + mdist = [float("inf") for i in range(V)] + mdist[src] = 0.0 - if mdist[u] != float('inf') and mdist[u] + w < mdist[v]: - mdist[v] = mdist[u] + w - for j in range(V): - u = graph[j]["src"] - v = graph[j]["dst"] - w = graph[j]["weight"] + for i in range(V - 1): + for j in range(V): + u = graph[j]["src"] + v = graph[j]["dst"] + w = graph[j]["weight"] - if mdist[u] != float('inf') and mdist[u] + w < mdist[v]: - print("Negative cycle found. Solution not possible.") - return + if mdist[u] != float("inf") and mdist[u] + w < mdist[v]: + mdist[v] = mdist[u] + w + for j in range(V): + u = graph[j]["src"] + v = graph[j]["dst"] + w = graph[j]["weight"] - printDist(mdist, V) + if mdist[u] != float("inf") and mdist[u] + w < mdist[v]: + print("Negative cycle found. Solution not possible.") + return + printDist(mdist, V) if __name__ == "__main__": @@ -39,14 +39,14 @@ def BellmanFord(graph, V, E, src): graph = [dict() for j in range(E)] for i in range(V): - graph[i][i] = 0.0 + graph[i][i] = 0.0 for i in range(E): - print("\nEdge ",i+1) - src = int(input("Enter source:").strip()) - dst = int(input("Enter destination:").strip()) - weight = float(input("Enter weight:").strip()) - graph[i] = {"src": src,"dst": dst, "weight": weight} + print("\nEdge ", i + 1) + src = int(input("Enter source:").strip()) + dst = int(input("Enter destination:").strip()) + weight = float(input("Enter weight:").strip()) + graph[i] = {"src": src, "dst": dst, "weight": weight} gsrc = int(input("\nEnter shortest path source:").strip()) BellmanFord(graph, V, E, gsrc) diff --git a/graphs/bfs.py b/graphs/bfs.py index ebbde0c82ce6..9d9b1ac037d9 100644 --- a/graphs/bfs.py +++ b/graphs/bfs.py @@ -16,12 +16,14 @@ """ -G = {'A': ['B', 'C'], - 'B': ['A', 'D', 'E'], - 'C': ['A', 'F'], - 'D': ['B'], - 'E': ['B', 'F'], - 'F': ['C', 'E']} +G = { + "A": ["B", "C"], + "B": ["A", "D", "E"], + "C": ["A", "F"], + "D": ["B"], + "E": ["B", "F"], + "F": ["C", "E"], +} def bfs(graph, start): @@ -40,5 +42,5 @@ def bfs(graph, start): return explored -if __name__ == '__main__': - print(bfs(G, 'A')) +if __name__ == "__main__": + print(bfs(G, "A")) diff --git a/graphs/bfs_shortest_path.py b/graphs/bfs_shortest_path.py index 5853351a53a3..ec82c13997e2 100644 --- a/graphs/bfs_shortest_path.py +++ b/graphs/bfs_shortest_path.py @@ -1,21 +1,24 @@ -graph = {'A': ['B', 'C', 'E'], - 'B': ['A','D', 'E'], - 'C': ['A', 'F', 'G'], - 'D': ['B'], - 'E': ['A', 'B','D'], - 'F': ['C'], - 'G': ['C']} +graph = { + "A": ["B", "C", "E"], + "B": ["A", "D", "E"], + "C": ["A", "F", "G"], + "D": ["B"], + "E": ["A", "B", "D"], + "F": ["C"], + "G": ["C"], +} + def bfs_shortest_path(graph, start, goal): # keep track of explored nodes explored = [] # keep track of all the paths to be checked queue = [[start]] - + # return path if start is goal if start == goal: return "That was easy! Start = goal" - + # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue @@ -33,11 +36,12 @@ def bfs_shortest_path(graph, start, goal): # return path if neighbour is goal if neighbour == goal: return new_path - + # mark node as explored explored.append(node) - + # in case there's no path between the 2 nodes return "So sorry, but a connecting path doesn't exist :(" - -bfs_shortest_path(graph, 'G', 'D') # returns ['G', 'C', 'A', 'B', 'D'] + + +bfs_shortest_path(graph, "G", "D") # returns ['G', 'C', 'A', 'B', 'D'] diff --git a/graphs/breadth_first_search.py b/graphs/breadth_first_search.py index 205f49a6172b..8516e60a59c4 100644 --- a/graphs/breadth_first_search.py +++ b/graphs/breadth_first_search.py @@ -4,14 +4,14 @@ """ Author: OMKAR PATHAK """ -class Graph(): +class Graph: def __init__(self): self.vertex = {} # for printing the Graph vertexes def printGraph(self): for i in self.vertex.keys(): - print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]])) + print(i, " -> ", " -> ".join([str(j) for j in self.vertex[i]])) # for adding the edge beween two vertexes def addEdge(self, fromVertex, toVertex): @@ -35,7 +35,7 @@ def BFS(self, startVertex): while queue: startVertex = queue.pop(0) - print(startVertex, end = ' ') + print(startVertex, end=" ") # mark all adjacent nodes as visited and print them for i in self.vertex[startVertex]: @@ -43,7 +43,8 @@ def BFS(self, startVertex): queue.append(i) visited[i] = True -if __name__ == '__main__': + +if __name__ == "__main__": g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) @@ -53,7 +54,7 @@ def BFS(self, startVertex): g.addEdge(3, 3) g.printGraph() - print('BFS:') + print("BFS:") g.BFS(2) # OUTPUT: diff --git a/graphs/check_bipartite_graph_bfs.py b/graphs/check_bipartite_graph_bfs.py index 1b9c32c6ccc4..1ec3e3d1d45f 100644 --- a/graphs/check_bipartite_graph_bfs.py +++ b/graphs/check_bipartite_graph_bfs.py @@ -11,7 +11,7 @@ def checkBipartite(l): color = [-1] * len(l) def bfs(): - while(queue): + while queue: u = queue.pop(0) visited[u] = True @@ -38,6 +38,7 @@ def bfs(): return True + # Adjacency List of graph -l = {0:[1,3], 1:[0,2], 2:[1,3], 3:[0,2]} +l = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]} print(checkBipartite(l)) diff --git a/graphs/check_bipartite_graph_dfs.py b/graphs/check_bipartite_graph_dfs.py index eeb3a84b7a15..6fe54a6723c5 100644 --- a/graphs/check_bipartite_graph_dfs.py +++ b/graphs/check_bipartite_graph_dfs.py @@ -26,8 +26,8 @@ def dfs(v, c): return False return True - + # Adjacency list of graph -l = {0:[1,3], 1:[0,2], 2:[1,3], 3:[0,2], 4: []} +l = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(l)) diff --git a/graphs/depth_first_search.py b/graphs/depth_first_search.py index 2b03683c0047..5347c2fbcfa3 100644 --- a/graphs/depth_first_search.py +++ b/graphs/depth_first_search.py @@ -4,7 +4,7 @@ """ Author: OMKAR PATHAK """ -class Graph(): +class Graph: def __init__(self): self.vertex = {} @@ -12,7 +12,7 @@ def __init__(self): def printGraph(self): print(self.vertex) for i in self.vertex.keys(): - print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]])) + print(i, " -> ", " -> ".join([str(j) for j in self.vertex[i]])) # for adding the edge beween two vertexes def addEdge(self, fromVertex, toVertex): @@ -36,14 +36,15 @@ def DFSRec(self, startVertex, visited): # mark start vertex as visited visited[startVertex] = True - print(startVertex, end = ' ') + print(startVertex, end=" ") # Recur for all the vertexes that are adjacent to this node for i in self.vertex.keys(): if visited[i] == False: self.DFSRec(i, visited) -if __name__ == '__main__': + +if __name__ == "__main__": g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) @@ -53,7 +54,7 @@ def DFSRec(self, startVertex, visited): g.addEdge(3, 3) g.printGraph() - print('DFS:') + print("DFS:") g.DFS() # OUTPUT: @@ -62,4 +63,4 @@ def DFSRec(self, startVertex, visited): # 2  ->  0 -> 3 # 3  ->  3 # DFS: - # 0 1 2 3 + #  0 1 2 3 diff --git a/graphs/dfs.py b/graphs/dfs.py index 68bf60e3c298..f183eae73fef 100644 --- a/graphs/dfs.py +++ b/graphs/dfs.py @@ -17,8 +17,10 @@ def dfs(graph, start): it off the stack.""" explored, stack = set(), [start] while stack: - v = stack.pop() # one difference from BFS is to pop last element here instead of first one - + v = ( + stack.pop() + ) # one difference from BFS is to pop last element here instead of first one + if v in explored: continue @@ -30,11 +32,13 @@ def dfs(graph, start): return explored -G = {'A': ['B', 'C'], - 'B': ['A', 'D', 'E'], - 'C': ['A', 'F'], - 'D': ['B'], - 'E': ['B', 'F'], - 'F': ['C', 'E']} +G = { + "A": ["B", "C"], + "B": ["A", "D", "E"], + "C": ["A", "F"], + "D": ["B"], + "E": ["B", "F"], + "F": ["C", "E"], +} -print(dfs(G, 'A')) +print(dfs(G, "A")) diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py index 5f09a45cf2c4..195f4e02d409 100644 --- a/graphs/dijkstra.py +++ b/graphs/dijkstra.py @@ -115,4 +115,5 @@ def dijkstra(graph, start, end): if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/graphs/dijkstra_2.py b/graphs/dijkstra_2.py index f6118830c9c0..762884136e4a 100644 --- a/graphs/dijkstra_2.py +++ b/graphs/dijkstra_2.py @@ -1,55 +1,58 @@ def printDist(dist, V): - print("\nVertex Distance") - for i in range(V): - if dist[i] != float('inf') : - print(i,"\t",int(dist[i]),end = "\t") - else: - print(i,"\t","INF",end="\t") - print() - -def minDist(mdist, vset, V): - minVal = float('inf') - minInd = -1 - for i in range(V): - if (not vset[i]) and mdist[i] < minVal : - minInd = i - minVal = mdist[i] - return minInd + print("\nVertex Distance") + for i in range(V): + if dist[i] != float("inf"): + print(i, "\t", int(dist[i]), end="\t") + else: + print(i, "\t", "INF", end="\t") + print() -def Dijkstra(graph, V, src): - mdist=[float('inf') for i in range(V)] - vset = [False for i in range(V)] - mdist[src] = 0.0 - for i in range(V-1): - u = minDist(mdist, vset, V) - vset[u] = True +def minDist(mdist, vset, V): + minVal = float("inf") + minInd = -1 + for i in range(V): + if (not vset[i]) and mdist[i] < minVal: + minInd = i + minVal = mdist[i] + return minInd - for v in range(V): - if (not vset[v]) and graph[u][v]!=float('inf') and mdist[u] + graph[u][v] < mdist[v]: - mdist[v] = mdist[u] + graph[u][v] +def Dijkstra(graph, V, src): + mdist = [float("inf") for i in range(V)] + vset = [False for i in range(V)] + mdist[src] = 0.0 + for i in range(V - 1): + u = minDist(mdist, vset, V) + vset[u] = True - printDist(mdist, V) + for v in range(V): + if ( + (not vset[v]) + and graph[u][v] != float("inf") + and mdist[u] + graph[u][v] < mdist[v] + ): + mdist[v] = mdist[u] + graph[u][v] + printDist(mdist, V) if __name__ == "__main__": V = int(input("Enter number of vertices: ").strip()) E = int(input("Enter number of edges: ").strip()) - graph = [[float('inf') for i in range(V)] for j in range(V)] + graph = [[float("inf") for i in range(V)] for j in range(V)] for i in range(V): - graph[i][i] = 0.0 + graph[i][i] = 0.0 for i in range(E): - print("\nEdge ",i+1) - src = int(input("Enter source:").strip()) - dst = int(input("Enter destination:").strip()) - weight = float(input("Enter weight:").strip()) - graph[src][dst] = weight + print("\nEdge ", i + 1) + src = int(input("Enter source:").strip()) + dst = int(input("Enter destination:").strip()) + weight = float(input("Enter weight:").strip()) + graph[src][dst] = weight gsrc = int(input("\nEnter shortest path source:").strip()) Dijkstra(graph, V, gsrc) diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py index c43ff37f5336..9304a83148f3 100644 --- a/graphs/dijkstra_algorithm.py +++ b/graphs/dijkstra_algorithm.py @@ -4,6 +4,7 @@ import math import sys + # For storing the vertex set to retreive node with the lowest distance @@ -12,7 +13,7 @@ class PriorityQueue: def __init__(self): self.cur_size = 0 self.array = [] - self.pos = {} # To store the pos of node in array + self.pos = {} # To store the pos of node in array def isEmpty(self): return self.cur_size == 0 @@ -78,8 +79,8 @@ def decrease_key(self, tup, new_d): class Graph: def __init__(self, num): - self.adjList = {} # To store graph: u -> (v,w) - self.num_nodes = num # Number of nodes in graph + self.adjList = {} # To store graph: u -> (v,w) + self.num_nodes = num # Number of nodes in graph # To store the distance from source vertex self.dist = [0] * self.num_nodes self.par = [-1] * self.num_nodes # To store the path @@ -102,8 +103,11 @@ def add_edge(self, u, v, w): def show_graph(self): # u -> v(w) for u in self.adjList: - print(u, '->', ' -> '.join(str("{}({})".format(v, w)) - for v, w in self.adjList[u])) + print( + u, + "->", + " -> ".join(str("{}({})".format(v, w)) for v, w in self.adjList[u]), + ) def dijkstra(self, src): # Flush old junk values in par[] @@ -137,7 +141,7 @@ def dijkstra(self, src): def show_distances(self, src): print("Distance from node: {}".format(src)) for u in range(self.num_nodes): - print('Node {} has distance: {}'.format(u, self.dist[u])) + print("Node {} has distance: {}".format(u, self.dist[u])) def show_path(self, src, dest): # To show the shortest path from src to dest @@ -157,16 +161,16 @@ def show_path(self, src, dest): path.append(src) path.reverse() - print('----Path to reach {} from {}----'.format(dest, src)) + print("----Path to reach {} from {}----".format(dest, src)) for u in path: - print('{}'.format(u), end=' ') + print("{}".format(u), end=" ") if u != dest: - print('-> ', end='') + print("-> ", end="") - print('\nTotal cost of path: ', cost) + print("\nTotal cost of path: ", cost) -if __name__ == '__main__': +if __name__ == "__main__": graph = Graph(9) graph.add_edge(0, 1, 4) graph.add_edge(0, 7, 8) diff --git a/graphs/directed_and_undirected_(weighted)_graph.py b/graphs/directed_and_undirected_(weighted)_graph.py index a31a4a96d6d0..883a8a00c6b1 100644 --- a/graphs/directed_and_undirected_(weighted)_graph.py +++ b/graphs/directed_and_undirected_(weighted)_graph.py @@ -5,468 +5,493 @@ # the dfault weight is 1 if not assigend but all the implementation is weighted + class DirectedGraph: - def __init__(self): - self.graph = {} - - # adding vertices and edges - # adding the weight is optional - # handels repetition - def add_pair(self, u, v, w = 1): - if self.graph.get(u): - if self.graph[u].count([w,v]) == 0: - self.graph[u].append([w, v]) - else: - self.graph[u] = [[w, v]] - if not self.graph.get(v): - self.graph[v] = [] - - def all_nodes(self): - return list(self.graph) - - # handels if the input does not exist - def remove_pair(self, u, v): - if self.graph.get(u): - for _ in self.graph[u]: - if _[1] == v: - self.graph[u].remove(_) - - # if no destination is meant the defaut value is -1 - def dfs(self, s = -2, d = -1): - if s == d: - return [] - stack = [] - visited = [] - if s == -2: - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - ss = s - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) < 1: - if __[1] == d: - visited.append(d) - return visited - else: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return visited - - # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count - # will be random from 10 to 10000 - def fill_graph_randomly(self, c = -1): - if c == -1: - c = (math.floor(rand.random() * 10000)) + 10 - for _ in range(c): - # every vertex has max 100 edges - e = math.floor(rand.random() * 102) + 1 - for __ in range(e): - n = math.floor(rand.random() * (c)) + 1 - if n == _: - continue - self.add_pair(_, n, 1) - - def bfs(self, s = -2): - d = deque() - visited = [] - if s == -2: - s = list(self.graph.keys())[0] - d.append(s) - visited.append(s) - while d: - s = d.popleft() - if len(self.graph[s]) != 0: - for __ in self.graph[s]: - if visited.count(__[1]) < 1: - d.append(__[1]) - visited.append(__[1]) - return visited - def in_degree(self, u): - count = 0 - for _ in self.graph: - for __ in self.graph[_]: - if __[1] == u: - count += 1 - return count - - def out_degree(self, u): - return len(self.graph[u]) - - def topological_sort(self, s = -2): - stack = [] - visited = [] - if s == -2: - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - ss = s - sorted_nodes = [] - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) < 1: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - sorted_nodes.append(stack.pop()) - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return sorted_nodes - - def cycle_nodes(self): - stack = [] - visited = [] - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - parent = -2 - indirect_parents = [] - ss = s - on_the_way_back = False - anticipating_nodes = set() - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: - l = len(stack) - 1 - while True and l >= 0: - if stack[l] == __[1]: - anticipating_nodes.add(__[1]) - break - else: - anticipating_nodes.add(stack[l]) - l -= 1 - if visited.count(__[1]) < 1: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - on_the_way_back = True - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - on_the_way_back = False - indirect_parents.append(parent) - parent = s - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return list(anticipating_nodes) - - def has_cycle(self): - stack = [] - visited = [] - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - parent = -2 - indirect_parents = [] - ss = s - on_the_way_back = False - anticipating_nodes = set() - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: - l = len(stack) - 1 - while True and l >= 0: - if stack[l] == __[1]: - anticipating_nodes.add(__[1]) - break - else: - return True - anticipating_nodes.add(stack[l]) - l -= 1 - if visited.count(__[1]) < 1: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - on_the_way_back = True - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - on_the_way_back = False - indirect_parents.append(parent) - parent = s - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return False - - def dfs_time(self, s = -2, e = -1): - begin = time.time() - self.dfs(s,e) - end = time.time() - return end - begin - - def bfs_time(self, s = -2): - begin = time.time() - self.bfs(s) - end = time.time() - return end - begin + def __init__(self): + self.graph = {} + + # adding vertices and edges + # adding the weight is optional + # handels repetition + def add_pair(self, u, v, w=1): + if self.graph.get(u): + if self.graph[u].count([w, v]) == 0: + self.graph[u].append([w, v]) + else: + self.graph[u] = [[w, v]] + if not self.graph.get(v): + self.graph[v] = [] + + def all_nodes(self): + return list(self.graph) + + # handels if the input does not exist + def remove_pair(self, u, v): + if self.graph.get(u): + for _ in self.graph[u]: + if _[1] == v: + self.graph[u].remove(_) + + # if no destination is meant the defaut value is -1 + def dfs(self, s=-2, d=-1): + if s == d: + return [] + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + if __[1] == d: + visited.append(d) + return visited + else: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return visited + + # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # will be random from 10 to 10000 + def fill_graph_randomly(self, c=-1): + if c == -1: + c = (math.floor(rand.random() * 10000)) + 10 + for _ in range(c): + # every vertex has max 100 edges + e = math.floor(rand.random() * 102) + 1 + for __ in range(e): + n = math.floor(rand.random() * (c)) + 1 + if n == _: + continue + self.add_pair(_, n, 1) + + def bfs(self, s=-2): + d = deque() + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + d.append(s) + visited.append(s) + while d: + s = d.popleft() + if len(self.graph[s]) != 0: + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + d.append(__[1]) + visited.append(__[1]) + return visited + + def in_degree(self, u): + count = 0 + for _ in self.graph: + for __ in self.graph[_]: + if __[1] == u: + count += 1 + return count + + def out_degree(self, u): + return len(self.graph[u]) + + def topological_sort(self, s=-2): + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + sorted_nodes = [] + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + sorted_nodes.append(stack.pop()) + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return sorted_nodes + + def cycle_nodes(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + on_the_way_back = False + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if ( + visited.count(__[1]) > 0 + and __[1] != parent + and indirect_parents.count(__[1]) > 0 + and not on_the_way_back + ): + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return list(anticipating_nodes) + + def has_cycle(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + on_the_way_back = False + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if ( + visited.count(__[1]) > 0 + and __[1] != parent + and indirect_parents.count(__[1]) > 0 + and not on_the_way_back + ): + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + return True + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return False + + def dfs_time(self, s=-2, e=-1): + begin = time.time() + self.dfs(s, e) + end = time.time() + return end - begin + + def bfs_time(self, s=-2): + begin = time.time() + self.bfs(s) + end = time.time() + return end - begin + class Graph: - def __init__(self): - self.graph = {} - - # adding vertices and edges - # adding the weight is optional - # handels repetition - def add_pair(self, u, v, w = 1): - # check if the u exists - if self.graph.get(u): - # if there already is a edge - if self.graph[u].count([w,v]) == 0: - self.graph[u].append([w, v]) - else: - # if u does not exist - self.graph[u] = [[w, v]] - # add the other way - if self.graph.get(v): - # if there already is a edge - if self.graph[v].count([w,u]) == 0: - self.graph[v].append([w, u]) - else: - # if u does not exist - self.graph[v] = [[w, u]] - - # handels if the input does not exist - def remove_pair(self, u, v): - if self.graph.get(u): - for _ in self.graph[u]: - if _[1] == v: - self.graph[u].remove(_) - # the other way round - if self.graph.get(v): - for _ in self.graph[v]: - if _[1] == u: - self.graph[v].remove(_) - - # if no destination is meant the defaut value is -1 - def dfs(self, s = -2, d = -1): - if s == d: - return [] - stack = [] - visited = [] - if s == -2: - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - ss = s - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) < 1: - if __[1] == d: - visited.append(d) - return visited - else: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return visited - - # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count - # will be random from 10 to 10000 - def fill_graph_randomly(self, c = -1): - if c == -1: - c = (math.floor(rand.random() * 10000)) + 10 - for _ in range(c): - # every vertex has max 100 edges - e = math.floor(rand.random() * 102) + 1 - for __ in range(e): - n = math.floor(rand.random() * (c)) + 1 - if n == _: - continue - self.add_pair(_, n, 1) - - def bfs(self, s = -2): - d = deque() - visited = [] - if s == -2: - s = list(self.graph.keys())[0] - d.append(s) - visited.append(s) - while d: - s = d.popleft() - if len(self.graph[s]) != 0: - for __ in self.graph[s]: - if visited.count(__[1]) < 1: - d.append(__[1]) - visited.append(__[1]) - return visited - def degree(self, u): - return len(self.graph[u]) - - def cycle_nodes(self): - stack = [] - visited = [] - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - parent = -2 - indirect_parents = [] - ss = s - on_the_way_back = False - anticipating_nodes = set() - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: - l = len(stack) - 1 - while True and l >= 0: - if stack[l] == __[1]: - anticipating_nodes.add(__[1]) - break - else: - anticipating_nodes.add(stack[l]) - l -= 1 - if visited.count(__[1]) < 1: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - on_the_way_back = True - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - on_the_way_back = False - indirect_parents.append(parent) - parent = s - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return list(anticipating_nodes) - - def has_cycle(self): - stack = [] - visited = [] - s = list(self.graph.keys())[0] - stack.append(s) - visited.append(s) - parent = -2 - indirect_parents = [] - ss = s - on_the_way_back = False - anticipating_nodes = set() - - while True: - # check if there is any non isolated nodes - if len(self.graph[s]) != 0: - ss = s - for __ in self.graph[s]: - if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back: - l = len(stack) - 1 - while True and l >= 0: - if stack[l] == __[1]: - anticipating_nodes.add(__[1]) - break - else: - return True - anticipating_nodes.add(stack[l]) - l -= 1 - if visited.count(__[1]) < 1: - stack.append(__[1]) - visited.append(__[1]) - ss =__[1] - break - - # check if all the children are visited - if s == ss : - stack.pop() - on_the_way_back = True - if len(stack) != 0: - s = stack[len(stack) - 1] - else: - on_the_way_back = False - indirect_parents.append(parent) - parent = s - s = ss - - # check if se have reached the starting point - if len(stack) == 0: - return False - def all_nodes(self): - return list(self.graph) - - def dfs_time(self, s = -2, e = -1): - begin = time.time() - self.dfs(s,e) - end = time.time() - return end - begin - - def bfs_time(self, s = -2): - begin = time.time() - self.bfs(s) - end = time.time() - return end - begin + def __init__(self): + self.graph = {} + + # adding vertices and edges + # adding the weight is optional + # handels repetition + def add_pair(self, u, v, w=1): + # check if the u exists + if self.graph.get(u): + # if there already is a edge + if self.graph[u].count([w, v]) == 0: + self.graph[u].append([w, v]) + else: + # if u does not exist + self.graph[u] = [[w, v]] + # add the other way + if self.graph.get(v): + # if there already is a edge + if self.graph[v].count([w, u]) == 0: + self.graph[v].append([w, u]) + else: + # if u does not exist + self.graph[v] = [[w, u]] + + # handels if the input does not exist + def remove_pair(self, u, v): + if self.graph.get(u): + for _ in self.graph[u]: + if _[1] == v: + self.graph[u].remove(_) + # the other way round + if self.graph.get(v): + for _ in self.graph[v]: + if _[1] == u: + self.graph[v].remove(_) + + # if no destination is meant the defaut value is -1 + def dfs(self, s=-2, d=-1): + if s == d: + return [] + stack = [] + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + ss = s + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + if __[1] == d: + visited.append(d) + return visited + else: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return visited + + # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # will be random from 10 to 10000 + def fill_graph_randomly(self, c=-1): + if c == -1: + c = (math.floor(rand.random() * 10000)) + 10 + for _ in range(c): + # every vertex has max 100 edges + e = math.floor(rand.random() * 102) + 1 + for __ in range(e): + n = math.floor(rand.random() * (c)) + 1 + if n == _: + continue + self.add_pair(_, n, 1) + + def bfs(self, s=-2): + d = deque() + visited = [] + if s == -2: + s = list(self.graph.keys())[0] + d.append(s) + visited.append(s) + while d: + s = d.popleft() + if len(self.graph[s]) != 0: + for __ in self.graph[s]: + if visited.count(__[1]) < 1: + d.append(__[1]) + visited.append(__[1]) + return visited + + def degree(self, u): + return len(self.graph[u]) + + def cycle_nodes(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + on_the_way_back = False + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if ( + visited.count(__[1]) > 0 + and __[1] != parent + and indirect_parents.count(__[1]) > 0 + and not on_the_way_back + ): + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return list(anticipating_nodes) + + def has_cycle(self): + stack = [] + visited = [] + s = list(self.graph.keys())[0] + stack.append(s) + visited.append(s) + parent = -2 + indirect_parents = [] + ss = s + on_the_way_back = False + anticipating_nodes = set() + + while True: + # check if there is any non isolated nodes + if len(self.graph[s]) != 0: + ss = s + for __ in self.graph[s]: + if ( + visited.count(__[1]) > 0 + and __[1] != parent + and indirect_parents.count(__[1]) > 0 + and not on_the_way_back + ): + l = len(stack) - 1 + while True and l >= 0: + if stack[l] == __[1]: + anticipating_nodes.add(__[1]) + break + else: + return True + anticipating_nodes.add(stack[l]) + l -= 1 + if visited.count(__[1]) < 1: + stack.append(__[1]) + visited.append(__[1]) + ss = __[1] + break + + # check if all the children are visited + if s == ss: + stack.pop() + on_the_way_back = True + if len(stack) != 0: + s = stack[len(stack) - 1] + else: + on_the_way_back = False + indirect_parents.append(parent) + parent = s + s = ss + + # check if se have reached the starting point + if len(stack) == 0: + return False + + def all_nodes(self): + return list(self.graph) + + def dfs_time(self, s=-2, e=-1): + begin = time.time() + self.dfs(s, e) + end = time.time() + return end - begin + + def bfs_time(self, s=-2): + begin = time.time() + self.bfs(s) + end = time.time() + return end - begin diff --git a/graphs/edmonds_karp_multiple_source_and_sink.py b/graphs/edmonds_karp_multiple_source_and_sink.py index d231ac2c4cc3..6334f05c50bd 100644 --- a/graphs/edmonds_karp_multiple_source_and_sink.py +++ b/graphs/edmonds_karp_multiple_source_and_sink.py @@ -28,14 +28,13 @@ def _normalizeGraph(self, sources, sinks): for i in sources: maxInputFlow += sum(self.graph[i]) - size = len(self.graph) + 1 for room in self.graph: room.insert(0, 0) self.graph.insert(0, [0] * size) for i in sources: self.graph[0][i + 1] = maxInputFlow - self.sourceIndex = 0 + self.sourceIndex = 0 size = len(self.graph) + 1 for room in self.graph: @@ -45,7 +44,6 @@ def _normalizeGraph(self, sources, sinks): self.graph[i + 1][size - 1] = maxInputFlow self.sinkIndex = size - 1 - def findMaximumFlow(self): if self.maximumFlowAlgorithm is None: raise Exception("You need to set maximum flow algorithm before.") @@ -80,7 +78,6 @@ def _algorithm(self): pass - class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor): def __init__(self, flowNetwork): super(MaximumFlowAlgorithmExecutor, self).__init__(flowNetwork) @@ -93,6 +90,7 @@ def getMaximumFlow(self): return self.maximumFlow + class PushRelabelExecutor(MaximumFlowAlgorithmExecutor): def __init__(self, flowNetwork): super(PushRelabelExecutor, self).__init__(flowNetwork) @@ -112,8 +110,11 @@ def _algorithm(self): self.excesses[nextVertexIndex] += bandwidth # Relabel-to-front selection rule - verticesList = [i for i in range(self.verticesCount) - if i != self.sourceIndex and i != self.sinkIndex] + verticesList = [ + i + for i in range(self.verticesCount) + if i != self.sourceIndex and i != self.sinkIndex + ] # move through list i = 0 @@ -135,15 +136,21 @@ def processVertex(self, vertexIndex): while self.excesses[vertexIndex] > 0: for neighbourIndex in range(self.verticesCount): # if it's neighbour and current vertex is higher - if self.graph[vertexIndex][neighbourIndex] - self.preflow[vertexIndex][neighbourIndex] > 0\ - and self.heights[vertexIndex] > self.heights[neighbourIndex]: + if ( + self.graph[vertexIndex][neighbourIndex] + - self.preflow[vertexIndex][neighbourIndex] + > 0 + and self.heights[vertexIndex] > self.heights[neighbourIndex] + ): self.push(vertexIndex, neighbourIndex) self.relabel(vertexIndex) def push(self, fromIndex, toIndex): - preflowDelta = min(self.excesses[fromIndex], - self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex]) + preflowDelta = min( + self.excesses[fromIndex], + self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex], + ) self.preflow[fromIndex][toIndex] += preflowDelta self.preflow[toIndex][fromIndex] -= preflowDelta self.excesses[fromIndex] -= preflowDelta @@ -152,14 +159,18 @@ def push(self, fromIndex, toIndex): def relabel(self, vertexIndex): minHeight = None for toIndex in range(self.verticesCount): - if self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex] > 0: + if ( + self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex] + > 0 + ): if minHeight is None or self.heights[toIndex] < minHeight: minHeight = self.heights[toIndex] if minHeight is not None: self.heights[vertexIndex] = minHeight + 1 -if __name__ == '__main__': + +if __name__ == "__main__": entrances = [0] exits = [3] # graph = [ diff --git a/graphs/eulerian_path_and_circuit_for_undirected_graph.py b/graphs/eulerian_path_and_circuit_for_undirected_graph.py index c6c6a1a25f03..a2e5cf4da26a 100644 --- a/graphs/eulerian_path_and_circuit_for_undirected_graph.py +++ b/graphs/eulerian_path_and_circuit_for_undirected_graph.py @@ -50,32 +50,10 @@ def check_euler(graph, max_node): def main(): - G1 = { - 1: [2, 3, 4], - 2: [1, 3], - 3: [1, 2], - 4: [1, 5], - 5: [4] - } - G2 = { - 1: [2, 3, 4, 5], - 2: [1, 3], - 3: [1, 2], - 4: [1, 5], - 5: [1, 4] - } - G3 = { - 1: [2, 3, 4], - 2: [1, 3, 4], - 3: [1, 2], - 4: [1, 2, 5], - 5: [4] - } - G4 = { - 1: [2, 3], - 2: [1, 3], - 3: [1, 2], - } + G1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} + G2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} + G3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} + G4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]} G5 = { 1: [], 2: [] diff --git a/graphs/even_tree.py b/graphs/even_tree.py index 45d55eecff8a..c9aef6e7861f 100644 --- a/graphs/even_tree.py +++ b/graphs/even_tree.py @@ -45,23 +45,13 @@ def even_tree(): dfs(1) -if __name__ == '__main__': +if __name__ == "__main__": n, m = 10, 9 tree = defaultdict(list) visited = {} cuts = [] count = 0 - edges = [ - (2, 1), - (3, 1), - (4, 3), - (5, 2), - (6, 1), - (7, 2), - (8, 6), - (9, 8), - (10, 8), - ] + edges = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) diff --git a/graphs/finding_bridges.py b/graphs/finding_bridges.py index 56533dd48bde..e18a3bafa9c0 100644 --- a/graphs/finding_bridges.py +++ b/graphs/finding_bridges.py @@ -1,7 +1,7 @@ # Finding Bridges in Undirected Graph def computeBridges(l): id = 0 - n = len(l) # No of vertices in graph + n = len(l) # No of vertices in graph low = [0] * n visited = [False] * n @@ -23,9 +23,20 @@ def dfs(at, parent, bridges, id): bridges = [] for i in range(n): - if (not visited[i]): + if not visited[i]: dfs(i, -1, bridges, id) print(bridges) - -l = {0:[1,2], 1:[0,2], 2:[0,1,3,5], 3:[2,4], 4:[3], 5:[2,6,8], 6:[5,7], 7:[6,8], 8:[5,7]} + + +l = { + 0: [1, 2], + 1: [0, 2], + 2: [0, 1, 3, 5], + 3: [2, 4], + 4: [3], + 5: [2, 6, 8], + 6: [5, 7], + 7: [6, 8], + 8: [5, 7], +} computeBridges(l) diff --git a/graphs/graph_list.py b/graphs/graph_list.py index 2ca363b1d746..4f0cbf15c033 100644 --- a/graphs/graph_list.py +++ b/graphs/graph_list.py @@ -5,6 +5,7 @@ # We can use Python's dictionary for constructing the graph. + class AdjacencyList(object): def __init__(self): self.List = {} @@ -17,10 +18,11 @@ def addEdge(self, fromVertex, toVertex): self.List[fromVertex] = [toVertex] def printList(self): - for i in self.List: - print((i,'->',' -> '.join([str(j) for j in self.List[i]]))) + for i in self.List: + print((i, "->", " -> ".join([str(j) for j in self.List[i]]))) + -if __name__ == '__main__': +if __name__ == "__main__": al = AdjacencyList() al.addEdge(0, 1) al.addEdge(0, 4) diff --git a/graphs/graph_matrix.py b/graphs/graph_matrix.py index 1998fec8d6fe..987168426ba5 100644 --- a/graphs/graph_matrix.py +++ b/graphs/graph_matrix.py @@ -1,8 +1,7 @@ class Graph: - def __init__(self, vertex): self.vertex = vertex - self.graph = [[0] * vertex for i in range(vertex) ] + self.graph = [[0] * vertex for i in range(vertex)] def add_edge(self, u, v): self.graph[u - 1][v - 1] = 1 @@ -12,18 +11,15 @@ def show(self): for i in self.graph: for j in i: - print(j, end=' ') - print(' ') - - + print(j, end=" ") + print(" ") g = Graph(100) -g.add_edge(1,4) -g.add_edge(4,2) -g.add_edge(4,5) -g.add_edge(2,5) -g.add_edge(5,3) +g.add_edge(1, 4) +g.add_edge(4, 2) +g.add_edge(4, 5) +g.add_edge(2, 5) +g.add_edge(5, 3) g.show() - diff --git a/graphs/graphs_floyd_warshall.py b/graphs/graphs_floyd_warshall.py index 5f159683733f..5727a2f21d89 100644 --- a/graphs/graphs_floyd_warshall.py +++ b/graphs/graphs_floyd_warshall.py @@ -6,19 +6,18 @@ def _print_dist(dist, v): - print("\nThe shortest path matrix using Floyd Warshall algorithm\n") - for i in range(v): - for j in range(v): - if dist[i][j] != float('inf') : - print(int(dist[i][j]),end = "\t") - else: - print("INF",end="\t") - print() - + print("\nThe shortest path matrix using Floyd Warshall algorithm\n") + for i in range(v): + for j in range(v): + if dist[i][j] != float("inf"): + print(int(dist[i][j]), end="\t") + else: + print("INF", end="\t") + print() def floyd_warshall(graph, v): - """ + """ :param graph: 2D array calculated from weight[edge[i, j]] :type graph: List[List[float]] :param v: number of vertices @@ -33,68 +32,70 @@ def floyd_warshall(graph, v): 5. Whenever distance[i][j] is given a new minimum value, next vertex[i][j] is updated to the next vertex[i][k]. """ - dist=[[float('inf') for _ in range(v)] for _ in range(v)] - - for i in range(v): - for j in range(v): - dist[i][j] = graph[i][j] - - # check vertex k against all other vertices (i, j) - for k in range(v): - # looping through rows of graph array - for i in range(v): - # looping through columns of graph array - for j in range(v): - if dist[i][k]!=float('inf') and dist[k][j]!=float('inf') and dist[i][k]+dist[k][j] < dist[i][j]: - dist[i][j] = dist[i][k] + dist[k][j] - - _print_dist(dist, v) - return dist, v - - - -if __name__== '__main__': - v = int(input("Enter number of vertices: ")) - e = int(input("Enter number of edges: ")) - - graph = [[float('inf') for i in range(v)] for j in range(v)] - - for i in range(v): - graph[i][i] = 0.0 - - # src and dst are indices that must be within the array size graph[e][v] - # failure to follow this will result in an error - for i in range(e): - print("\nEdge ",i+1) - src = int(input("Enter source:")) - dst = int(input("Enter destination:")) - weight = float(input("Enter weight:")) - graph[src][dst] = weight - - floyd_warshall(graph, v) - - - # Example Input - # Enter number of vertices: 3 - # Enter number of edges: 2 - - # # generated graph from vertex and edge inputs - # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] - # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] - - # specify source, destination and weight for edge #1 - # Edge 1 - # Enter source:1 - # Enter destination:2 - # Enter weight:2 - - # specify source, destination and weight for edge #2 - # Edge 2 - # Enter source:2 - # Enter destination:1 - # Enter weight:1 - - # # Expected Output from the vertice, edge and src, dst, weight inputs!! - # 0 INF INF - # INF 0 2 - # INF 1 0 + dist = [[float("inf") for _ in range(v)] for _ in range(v)] + + for i in range(v): + for j in range(v): + dist[i][j] = graph[i][j] + + # check vertex k against all other vertices (i, j) + for k in range(v): + # looping through rows of graph array + for i in range(v): + # looping through columns of graph array + for j in range(v): + if ( + dist[i][k] != float("inf") + and dist[k][j] != float("inf") + and dist[i][k] + dist[k][j] < dist[i][j] + ): + dist[i][j] = dist[i][k] + dist[k][j] + + _print_dist(dist, v) + return dist, v + + +if __name__ == "__main__": + v = int(input("Enter number of vertices: ")) + e = int(input("Enter number of edges: ")) + + graph = [[float("inf") for i in range(v)] for j in range(v)] + + for i in range(v): + graph[i][i] = 0.0 + + # src and dst are indices that must be within the array size graph[e][v] + # failure to follow this will result in an error + for i in range(e): + print("\nEdge ", i + 1) + src = int(input("Enter source:")) + dst = int(input("Enter destination:")) + weight = float(input("Enter weight:")) + graph[src][dst] = weight + + floyd_warshall(graph, v) + + # Example Input + # Enter number of vertices: 3 + # Enter number of edges: 2 + + # # generated graph from vertex and edge inputs + # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] + # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] + + # specify source, destination and weight for edge #1 + # Edge 1 + # Enter source:1 + # Enter destination:2 + # Enter weight:2 + + # specify source, destination and weight for edge #2 + # Edge 2 + # Enter source:2 + # Enter destination:1 + # Enter weight:1 + + # # Expected Output from the vertice, edge and src, dst, weight inputs!! + # 0 INF INF + # INF 0 2 + # INF 1 0 diff --git a/graphs/kahns_algorithm_long.py b/graphs/kahns_algorithm_long.py index 453b5706f6da..0651040365d0 100644 --- a/graphs/kahns_algorithm_long.py +++ b/graphs/kahns_algorithm_long.py @@ -12,19 +12,20 @@ def longestDistance(l): if indegree[i] == 0: queue.append(i) - while(queue): + while queue: vertex = queue.pop(0) for x in l[vertex]: indegree[x] -= 1 if longDist[vertex] + 1 > longDist[x]: - longDist[x] = longDist[vertex] + 1 + longDist[x] = longDist[vertex] + 1 if indegree[x] == 0: queue.append(x) print(max(longDist)) + # Adjacency list of Graph -l = {0:[2,3,4], 1:[2,7], 2:[5], 3:[5,7], 4:[7], 5:[6], 6:[7], 7:[]} +l = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longestDistance(l) diff --git a/graphs/kahns_algorithm_topo.py b/graphs/kahns_algorithm_topo.py index 8c182c4e902c..d50bc9a43d19 100644 --- a/graphs/kahns_algorithm_topo.py +++ b/graphs/kahns_algorithm_topo.py @@ -13,7 +13,7 @@ def topologicalSort(l): if indegree[i] == 0: queue.append(i) - while(queue): + while queue: vertex = queue.pop(0) cnt += 1 topo.append(vertex) @@ -27,6 +27,7 @@ def topologicalSort(l): else: print(topo) + # Adjacency List of Graph -l = {0:[1,2], 1:[3], 2:[3], 3:[4,5], 4:[], 5:[]} +l = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topologicalSort(l) diff --git a/graphs/minimum_spanning_tree_kruskal.py b/graphs/minimum_spanning_tree_kruskal.py index a2211582ec40..91b44f6508e7 100644 --- a/graphs/minimum_spanning_tree_kruskal.py +++ b/graphs/minimum_spanning_tree_kruskal.py @@ -4,29 +4,29 @@ edges = [] for i in range(num_edges): - node1, node2, cost = list(map(int, input().strip().split())) - edges.append((i,node1,node2,cost)) + node1, node2, cost = list(map(int, input().strip().split())) + edges.append((i, node1, node2, cost)) edges = sorted(edges, key=lambda edge: edge[3]) parent = list(range(num_nodes)) def find_parent(i): - if i != parent[i]: - parent[i] = find_parent(parent[i]) - return parent[i] + if i != parent[i]: + parent[i] = find_parent(parent[i]) + return parent[i] minimum_spanning_tree_cost = 0 minimum_spanning_tree = [] for edge in edges: - parent_a = find_parent(edge[1]) - parent_b = find_parent(edge[2]) - if parent_a != parent_b: - minimum_spanning_tree_cost += edge[3] - minimum_spanning_tree.append(edge) - parent[parent_a] = parent_b + parent_a = find_parent(edge[1]) + parent_b = find_parent(edge[2]) + if parent_a != parent_b: + minimum_spanning_tree_cost += edge[3] + minimum_spanning_tree.append(edge) + parent[parent_a] = parent_b print(minimum_spanning_tree_cost) for edge in minimum_spanning_tree: - print(edge) + print(edge) diff --git a/graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py index 0f21b8f494e4..216d6a3f56de 100644 --- a/graphs/minimum_spanning_tree_prims.py +++ b/graphs/minimum_spanning_tree_prims.py @@ -1,9 +1,11 @@ import sys from collections import defaultdict + def PrimsAlgorithm(l): nodePosition = [] + def getPosition(vertex): return nodePosition[vertex] @@ -36,11 +38,11 @@ def topToBottom(heap, start, size, positions): def bottomToTop(val, index, heap, position): temp = position[index] - while(index != 0): + while index != 0: if index % 2 == 0: - parent = int( (index-2) / 2 ) + parent = int((index - 2) / 2) else: - parent = int( (index-1) / 2 ) + parent = int((index - 1) / 2) if val < heap[parent]: heap[index] = heap[parent] @@ -69,9 +71,9 @@ def deleteMinimum(heap, positions): return temp visited = [0 for i in range(len(l))] - Nbr_TV = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex + Nbr_TV = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree formed in graph - Distance_TV = [] # Heap of Distance of vertices from their neighboring vertex + Distance_TV = [] # Heap of Distance of vertices from their neighboring vertex Positions = [] for x in range(len(l)): @@ -84,8 +86,8 @@ def deleteMinimum(heap, positions): visited[0] = 1 Distance_TV[0] = sys.maxsize for x in l[0]: - Nbr_TV[ x[0] ] = 0 - Distance_TV[ x[0] ] = x[1] + Nbr_TV[x[0]] = 0 + Distance_TV[x[0]] = x[1] heapify(Distance_TV, Positions) for i in range(1, len(l)): @@ -94,12 +96,13 @@ def deleteMinimum(heap, positions): TreeEdges.append((Nbr_TV[vertex], vertex)) visited[vertex] = 1 for v in l[vertex]: - if visited[v[0]] == 0 and v[1] < Distance_TV[ getPosition(v[0]) ]: - Distance_TV[ getPosition(v[0]) ] = v[1] + if visited[v[0]] == 0 and v[1] < Distance_TV[getPosition(v[0])]: + Distance_TV[getPosition(v[0])] = v[1] bottomToTop(v[1], getPosition(v[0]), Distance_TV, Positions) - Nbr_TV[ v[0] ] = vertex + Nbr_TV[v[0]] = vertex return TreeEdges + if __name__ == "__main__": # < --------- Prims Algorithm --------- > n = int(input("Enter number of vertices: ").strip()) @@ -107,6 +110,6 @@ def deleteMinimum(heap, positions): adjlist = defaultdict(list) for x in range(e): l = [int(x) for x in input().strip().split()] - adjlist[l[0]].append([ l[1], l[2] ]) - adjlist[l[1]].append([ l[0], l[2] ]) + adjlist[l[0]].append([l[1], l[2]]) + adjlist[l[1]].append([l[0], l[2]]) print(PrimsAlgorithm(adjlist)) diff --git a/graphs/multi_hueristic_astar.py b/graphs/multi_hueristic_astar.py index 3021c4162b8e..56cfc727d338 100644 --- a/graphs/multi_hueristic_astar.py +++ b/graphs/multi_hueristic_astar.py @@ -3,260 +3,319 @@ class PriorityQueue: - def __init__(self): - self.elements = [] - self.set = set() - - def minkey(self): - if not self.empty(): - return self.elements[0][0] - else: - return float('inf') - - def empty(self): - return len(self.elements) == 0 - - def put(self, item, priority): - if item not in self.set: - heapq.heappush(self.elements, (priority, item)) - self.set.add(item) - else: - # update - # print("update", item) - temp = [] - (pri, x) = heapq.heappop(self.elements) - while x != item: - temp.append((pri, x)) - (pri, x) = heapq.heappop(self.elements) - temp.append((priority, item)) - for (pro, xxx) in temp: - heapq.heappush(self.elements, (pro, xxx)) - - def remove_element(self, item): - if item in self.set: - self.set.remove(item) - temp = [] - (pro, x) = heapq.heappop(self.elements) - while x != item: - temp.append((pro, x)) - (pro, x) = heapq.heappop(self.elements) - for (prito, yyy) in temp: - heapq.heappush(self.elements, (prito, yyy)) - - def top_show(self): - return self.elements[0][1] - - def get(self): - (priority, item) = heapq.heappop(self.elements) - self.set.remove(item) - return (priority, item) + def __init__(self): + self.elements = [] + self.set = set() + + def minkey(self): + if not self.empty(): + return self.elements[0][0] + else: + return float("inf") + + def empty(self): + return len(self.elements) == 0 + + def put(self, item, priority): + if item not in self.set: + heapq.heappush(self.elements, (priority, item)) + self.set.add(item) + else: + # update + # print("update", item) + temp = [] + (pri, x) = heapq.heappop(self.elements) + while x != item: + temp.append((pri, x)) + (pri, x) = heapq.heappop(self.elements) + temp.append((priority, item)) + for (pro, xxx) in temp: + heapq.heappush(self.elements, (pro, xxx)) + + def remove_element(self, item): + if item in self.set: + self.set.remove(item) + temp = [] + (pro, x) = heapq.heappop(self.elements) + while x != item: + temp.append((pro, x)) + (pro, x) = heapq.heappop(self.elements) + for (prito, yyy) in temp: + heapq.heappush(self.elements, (prito, yyy)) + + def top_show(self): + return self.elements[0][1] + + def get(self): + (priority, item) = heapq.heappop(self.elements) + self.set.remove(item) + return (priority, item) + def consistent_hueristic(P, goal): - # euclidean distance - a = np.array(P) - b = np.array(goal) - return np.linalg.norm(a - b) + # euclidean distance + a = np.array(P) + b = np.array(goal) + return np.linalg.norm(a - b) + def hueristic_2(P, goal): - # integer division by time variable - return consistent_hueristic(P, goal) // t + # integer division by time variable + return consistent_hueristic(P, goal) // t + def hueristic_1(P, goal): - # manhattan distance - return abs(P[0] - goal[0]) + abs(P[1] - goal[1]) + # manhattan distance + return abs(P[0] - goal[0]) + abs(P[1] - goal[1]) + def key(start, i, goal, g_function): - ans = g_function[start] + W1 * hueristics[i](start, goal) - return ans + ans = g_function[start] + W1 * hueristics[i](start, goal) + return ans + def do_something(back_pointer, goal, start): - grid = np.chararray((n, n)) - for i in range(n): - for j in range(n): - grid[i][j] = '*' - - for i in range(n): - for j in range(n): - if (j, (n-1)-i) in blocks: - grid[i][j] = "#" - - grid[0][(n-1)] = "-" - x = back_pointer[goal] - while x != start: - (x_c, y_c) = x - # print(x) - grid[(n-1)-y_c][x_c] = "-" - x = back_pointer[x] - grid[(n-1)][0] = "-" - - - for i in range(n): - for j in range(n): - if (i, j) == (0, n-1): - print(grid[i][j], end=' ') - print("<-- End position", end=' ') - else: - print(grid[i][j], end=' ') - print() - print("^") - print("Start position") - print() - print("# is an obstacle") - print("- is the path taken by algorithm") - print("PATH TAKEN BY THE ALGORITHM IS:-") - x = back_pointer[goal] - while x != start: - print(x, end=' ') - x = back_pointer[x] - print(x) - quit() + grid = np.chararray((n, n)) + for i in range(n): + for j in range(n): + grid[i][j] = "*" + + for i in range(n): + for j in range(n): + if (j, (n - 1) - i) in blocks: + grid[i][j] = "#" + + grid[0][(n - 1)] = "-" + x = back_pointer[goal] + while x != start: + (x_c, y_c) = x + # print(x) + grid[(n - 1) - y_c][x_c] = "-" + x = back_pointer[x] + grid[(n - 1)][0] = "-" + + for i in range(n): + for j in range(n): + if (i, j) == (0, n - 1): + print(grid[i][j], end=" ") + print("<-- End position", end=" ") + else: + print(grid[i][j], end=" ") + print() + print("^") + print("Start position") + print() + print("# is an obstacle") + print("- is the path taken by algorithm") + print("PATH TAKEN BY THE ALGORITHM IS:-") + x = back_pointer[goal] + while x != start: + print(x, end=" ") + x = back_pointer[x] + print(x) + quit() + def valid(p): - if p[0] < 0 or p[0] > n-1: - return False - if p[1] < 0 or p[1] > n-1: - return False - return True - -def expand_state(s, j, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer): - for itera in range(n_hueristic): - open_list[itera].remove_element(s) - # print("s", s) - # print("j", j) - (x, y) = s - left = (x-1, y) - right = (x+1, y) - up = (x, y+1) - down = (x, y-1) - - for neighbours in [left, right, up, down]: - if neighbours not in blocks: - if valid(neighbours) and neighbours not in visited: - # print("neighbour", neighbours) - visited.add(neighbours) - back_pointer[neighbours] = -1 - g_function[neighbours] = float('inf') - - if valid(neighbours) and g_function[neighbours] > g_function[s] + 1: - g_function[neighbours] = g_function[s] + 1 - back_pointer[neighbours] = s - if neighbours not in close_list_anchor: - open_list[0].put(neighbours, key(neighbours, 0, goal, g_function)) - if neighbours not in close_list_inad: - for var in range(1,n_hueristic): - if key(neighbours, var, goal, g_function) <= W2 * key(neighbours, 0, goal, g_function): - # print("why not plssssssssss") - open_list[j].put(neighbours, key(neighbours, var, goal, g_function)) - - - # print + if p[0] < 0 or p[0] > n - 1: + return False + if p[1] < 0 or p[1] > n - 1: + return False + return True + + +def expand_state( + s, + j, + visited, + g_function, + close_list_anchor, + close_list_inad, + open_list, + back_pointer, +): + for itera in range(n_hueristic): + open_list[itera].remove_element(s) + # print("s", s) + # print("j", j) + (x, y) = s + left = (x - 1, y) + right = (x + 1, y) + up = (x, y + 1) + down = (x, y - 1) + + for neighbours in [left, right, up, down]: + if neighbours not in blocks: + if valid(neighbours) and neighbours not in visited: + # print("neighbour", neighbours) + visited.add(neighbours) + back_pointer[neighbours] = -1 + g_function[neighbours] = float("inf") + + if valid(neighbours) and g_function[neighbours] > g_function[s] + 1: + g_function[neighbours] = g_function[s] + 1 + back_pointer[neighbours] = s + if neighbours not in close_list_anchor: + open_list[0].put(neighbours, key(neighbours, 0, goal, g_function)) + if neighbours not in close_list_inad: + for var in range(1, n_hueristic): + if key(neighbours, var, goal, g_function) <= W2 * key( + neighbours, 0, goal, g_function + ): + # print("why not plssssssssss") + open_list[j].put( + neighbours, key(neighbours, var, goal, g_function) + ) + + # print + def make_common_ground(): - some_list = [] - # block 1 - for x in range(1, 5): - for y in range(1, 6): - some_list.append((x, y)) - - # line - for x in range(15, 20): - some_list.append((x, 17)) - - # block 2 big - for x in range(10, 19): - for y in range(1, 15): - some_list.append((x, y)) - - # L block - for x in range(1, 4): - for y in range(12, 19): - some_list.append((x, y)) - for x in range(3, 13): - for y in range(16, 19): - some_list.append((x, y)) - return some_list + some_list = [] + # block 1 + for x in range(1, 5): + for y in range(1, 6): + some_list.append((x, y)) + + # line + for x in range(15, 20): + some_list.append((x, 17)) + + # block 2 big + for x in range(10, 19): + for y in range(1, 15): + some_list.append((x, y)) + + # L block + for x in range(1, 4): + for y in range(12, 19): + some_list.append((x, y)) + for x in range(3, 13): + for y in range(16, 19): + some_list.append((x, y)) + return some_list + hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2} -blocks_blk = [(0, 1),(1, 1),(2, 1),(3, 1),(4, 1),(5, 1),(6, 1),(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1),(14, 1),(15, 1),(16, 1),(17, 1),(18, 1), (19, 1)] +blocks_blk = [ + (0, 1), + (1, 1), + (2, 1), + (3, 1), + (4, 1), + (5, 1), + (6, 1), + (7, 1), + (8, 1), + (9, 1), + (10, 1), + (11, 1), + (12, 1), + (13, 1), + (14, 1), + (15, 1), + (16, 1), + (17, 1), + (18, 1), + (19, 1), +] blocks_no = [] blocks_all = make_common_ground() - - blocks = blocks_blk # hyper parameters W1 = 1 W2 = 1 n = 20 -n_hueristic = 3 # one consistent and two other inconsistent +n_hueristic = 3 # one consistent and two other inconsistent # start and end destination start = (0, 0) -goal = (n-1, n-1) +goal = (n - 1, n - 1) t = 1 + + def multi_a_star(start, goal, n_hueristic): - g_function = {start: 0, goal: float('inf')} - back_pointer = {start:-1, goal:-1} - open_list = [] - visited = set() - - for i in range(n_hueristic): - open_list.append(PriorityQueue()) - open_list[i].put(start, key(start, i, goal, g_function)) - - close_list_anchor = [] - close_list_inad = [] - while open_list[0].minkey() < float('inf'): - for i in range(1, n_hueristic): - # print("i", i) - # print(open_list[0].minkey(), open_list[i].minkey()) - if open_list[i].minkey() <= W2 * open_list[0].minkey(): - global t - t += 1 - # print("less prio") - if g_function[goal] <= open_list[i].minkey(): - if g_function[goal] < float('inf'): - do_something(back_pointer, goal, start) - else: - _, get_s = open_list[i].top_show() - visited.add(get_s) - expand_state(get_s, i, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer) - close_list_inad.append(get_s) - else: - # print("more prio") - if g_function[goal] <= open_list[0].minkey(): - if g_function[goal] < float('inf'): - do_something(back_pointer, goal, start) - else: - # print("hoolla") - get_s = open_list[0].top_show() - visited.add(get_s) - expand_state(get_s, 0, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer) - close_list_anchor.append(get_s) - print("No path found to goal") - print() - for i in range(n-1,-1, -1): - for j in range(n): - if (j, i) in blocks: - print('#', end=' ') - elif (j, i) in back_pointer: - if (j, i) == (n-1, n-1): - print('*', end=' ') - else: - print('-', end=' ') - else: - print('*', end=' ') - if (j, i) == (n-1, n-1): - print('<-- End position', end=' ') - print() - print("^") - print("Start position") - print() - print("# is an obstacle") - print("- is the path taken by algorithm") + g_function = {start: 0, goal: float("inf")} + back_pointer = {start: -1, goal: -1} + open_list = [] + visited = set() + + for i in range(n_hueristic): + open_list.append(PriorityQueue()) + open_list[i].put(start, key(start, i, goal, g_function)) + + close_list_anchor = [] + close_list_inad = [] + while open_list[0].minkey() < float("inf"): + for i in range(1, n_hueristic): + # print("i", i) + # print(open_list[0].minkey(), open_list[i].minkey()) + if open_list[i].minkey() <= W2 * open_list[0].minkey(): + global t + t += 1 + # print("less prio") + if g_function[goal] <= open_list[i].minkey(): + if g_function[goal] < float("inf"): + do_something(back_pointer, goal, start) + else: + _, get_s = open_list[i].top_show() + visited.add(get_s) + expand_state( + get_s, + i, + visited, + g_function, + close_list_anchor, + close_list_inad, + open_list, + back_pointer, + ) + close_list_inad.append(get_s) + else: + # print("more prio") + if g_function[goal] <= open_list[0].minkey(): + if g_function[goal] < float("inf"): + do_something(back_pointer, goal, start) + else: + # print("hoolla") + get_s = open_list[0].top_show() + visited.add(get_s) + expand_state( + get_s, + 0, + visited, + g_function, + close_list_anchor, + close_list_inad, + open_list, + back_pointer, + ) + close_list_anchor.append(get_s) + print("No path found to goal") + print() + for i in range(n - 1, -1, -1): + for j in range(n): + if (j, i) in blocks: + print("#", end=" ") + elif (j, i) in back_pointer: + if (j, i) == (n - 1, n - 1): + print("*", end=" ") + else: + print("-", end=" ") + else: + print("*", end=" ") + if (j, i) == (n - 1, n - 1): + print("<-- End position", end=" ") + print() + print("^") + print("Start position") + print() + print("# is an obstacle") + print("- is the path taken by algorithm") if __name__ == "__main__": diff --git a/graphs/page_rank.py b/graphs/page_rank.py index 59f15a99e6b2..1e2c7d9aeb48 100644 --- a/graphs/page_rank.py +++ b/graphs/page_rank.py @@ -1,7 +1,7 @@ -''' +""" Author: https://github.com/bhushan-borole -''' -''' +""" +""" The input graph for the algorithm is: A B C @@ -9,11 +9,9 @@ B 0 0 1 C 1 0 0 -''' +""" -graph = [[0, 1, 1], - [0, 0, 1], - [1, 0, 0]] +graph = [[0, 1, 1], [0, 0, 1], [1, 0, 0]] class Node: @@ -21,17 +19,17 @@ def __init__(self, name): self.name = name self.inbound = [] self.outbound = [] - + def add_inbound(self, node): self.inbound.append(node) - + def add_outbound(self, node): self.outbound.append(node) - + def __repr__(self): - return 'Node {}: Inbound: {} ; Outbound: {}'.format(self.name, - self.inbound, - self.outbound) + return "Node {}: Inbound: {} ; Outbound: {}".format( + self.name, self.inbound, self.outbound + ) def page_rank(nodes, limit=3, d=0.85): @@ -44,17 +42,19 @@ def page_rank(nodes, limit=3, d=0.85): outbounds[node.name] = len(node.outbound) for i in range(limit): - print("======= Iteration {} =======".format(i+1)) + print("======= Iteration {} =======".format(i + 1)) for j, node in enumerate(nodes): - ranks[node.name] = (1 - d) + d * sum([ ranks[ib]/outbounds[ib] for ib in node.inbound ]) + ranks[node.name] = (1 - d) + d * sum( + [ranks[ib] / outbounds[ib] for ib in node.inbound] + ) print(ranks) def main(): - names = list(input('Enter Names of the Nodes: ').split()) + names = list(input("Enter Names of the Nodes: ").split()) nodes = [Node(name) for name in names] - + for ri, row in enumerate(graph): for ci, col in enumerate(row): if col == 1: @@ -68,5 +68,5 @@ def main(): page_rank(nodes) -if __name__ == '__main__': - main() \ No newline at end of file +if __name__ == "__main__": + main() diff --git a/graphs/prim.py b/graphs/prim.py index f7e08278966d..336424d2c3c1 100644 --- a/graphs/prim.py +++ b/graphs/prim.py @@ -21,7 +21,7 @@ import math -class vertex(): +class vertex: """Class Vertex.""" def __init__(self, id): @@ -40,7 +40,7 @@ def __init__(self, id): def __lt__(self, other): """Comparison rule to < operator.""" - return (self.key < other.key) + return self.key < other.key def __repr__(self): """Return the vertex id.""" @@ -76,4 +76,4 @@ def prim(graph, root): v.key = u.edges[v.id] for i in range(1, len(graph)): A.append([graph[i].id, graph[i].pi.id]) - return(A) + return A diff --git a/graphs/scc_kosaraju.py b/graphs/scc_kosaraju.py index 99564a7cfa35..573c1bf5e363 100644 --- a/graphs/scc_kosaraju.py +++ b/graphs/scc_kosaraju.py @@ -1,26 +1,31 @@ def dfs(u): global g, r, scc, component, visit, stack - if visit[u]: return + if visit[u]: + return visit[u] = True for v in g[u]: dfs(v) stack.append(u) + def dfs2(u): global g, r, scc, component, visit, stack - if visit[u]: return + if visit[u]: + return visit[u] = True component.append(u) for v in r[u]: dfs2(v) + def kosaraju(): global g, r, scc, component, visit, stack for i in range(n): dfs(i) - visit = [False]*n + visit = [False] * n for i in stack[::-1]: - if visit[i]: continue + if visit[i]: + continue component = [] dfs2(i) scc.append(component) @@ -29,18 +34,18 @@ def kosaraju(): if __name__ == "__main__": # n - no of nodes, m - no of edges - n, m = list(map(int,input().strip().split())) + n, m = list(map(int, input().strip().split())) - g = [[] for i in range(n)] #graph - r = [[] for i in range(n)] #reversed graph + g = [[] for i in range(n)] # graph + r = [[] for i in range(n)] # reversed graph # input graph data (edges) for i in range(m): - u, v = list(map(int,input().strip().split())) + u, v = list(map(int, input().strip().split())) g[u].append(v) r[v].append(u) stack = [] - visit = [False]*n + visit = [False] * n scc = [] component = [] print(kosaraju()) diff --git a/graphs/tarjans_scc.py b/graphs/tarjans_scc.py index 89754e593508..4b0a689ea3c0 100644 --- a/graphs/tarjans_scc.py +++ b/graphs/tarjans_scc.py @@ -36,9 +36,13 @@ def strong_connect(v, index, components): for w in g[v]: if index_of[w] == -1: index = strong_connect(w, index, components) - lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] + lowlink_of[v] = ( + lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] + ) elif on_stack[w]: - lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] + lowlink_of[v] = ( + lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] + ) if lowlink_of[v] == index_of[v]: component = [] @@ -67,7 +71,7 @@ def create_graph(n, edges): return g -if __name__ == '__main__': +if __name__ == "__main__": # Test n_vertices = 7 source = [0, 0, 1, 2, 3, 3, 4, 4, 6] diff --git a/hashes/chaos_machine.py b/hashes/chaos_machine.py index 3a7c3950bb29..8d3bbd4c0251 100644 --- a/hashes/chaos_machine.py +++ b/hashes/chaos_machine.py @@ -1,7 +1,9 @@ """example of simple chaos machine""" # Chaos Machine (K, t, m) -K = [0.33, 0.44, 0.55, 0.44, 0.33]; t = 3; m = 5 +K = [0.33, 0.44, 0.55, 0.44, 0.33] +t = 3 +m = 5 # Buffer Space (with Parameters Space) buffer_space, params_space = [], [] @@ -9,75 +11,73 @@ # Machine Time machine_time = 0 + def push(seed): - global buffer_space, params_space, machine_time, \ - K, m, t + global buffer_space, params_space, machine_time, K, m, t + + # Choosing Dynamical Systems (All) + for key, value in enumerate(buffer_space): + # Evolution Parameter + e = float(seed / value) - # Choosing Dynamical Systems (All) - for key, value in enumerate(buffer_space): - # Evolution Parameter - e = float(seed / value) + # Control Theory: Orbit Change + value = (buffer_space[(key + 1) % m] + e) % 1 - # Control Theory: Orbit Change - value = (buffer_space[(key + 1) % m] + e) % 1 + # Control Theory: Trajectory Change + r = (params_space[key] + e) % 1 + 3 - # Control Theory: Trajectory Change - r = (params_space[key] + e) % 1 + 3 + # Modification (Transition Function) - Jumps + buffer_space[key] = round(float(r * value * (1 - value)), 10) + params_space[key] = r # Saving to Parameters Space - # Modification (Transition Function) - Jumps - buffer_space[key] = \ - round(float(r * value * (1 - value)), 10) - params_space[key] = \ - r # Saving to Parameters Space + # Logistic Map + assert max(buffer_space) < 1 + assert max(params_space) < 4 - # Logistic Map - assert max(buffer_space) < 1 - assert max(params_space) < 4 + # Machine Time + machine_time += 1 - # Machine Time - machine_time += 1 def pull(): - global buffer_space, params_space, machine_time, \ - K, m, t + global buffer_space, params_space, machine_time, K, m, t + + # PRNG (Xorshift by George Marsaglia) + def xorshift(X, Y): + X ^= Y >> 13 + Y ^= X << 17 + X ^= Y >> 5 + return X - # PRNG (Xorshift by George Marsaglia) - def xorshift(X, Y): - X ^= Y >> 13 - Y ^= X << 17 - X ^= Y >> 5 - return X + # Choosing Dynamical Systems (Increment) + key = machine_time % m - # Choosing Dynamical Systems (Increment) - key = machine_time % m + # Evolution (Time Length) + for i in range(0, t): + # Variables (Position + Parameters) + r = params_space[key] + value = buffer_space[key] - # Evolution (Time Length) - for i in range(0, t): - # Variables (Position + Parameters) - r = params_space[key] - value = buffer_space[key] + # Modification (Transition Function) - Flow + buffer_space[key] = round(float(r * value * (1 - value)), 10) + params_space[key] = (machine_time * 0.01 + r * 1.01) % 1 + 3 - # Modification (Transition Function) - Flow - buffer_space[key] = \ - round(float(r * value * (1 - value)), 10) - params_space[key] = \ - (machine_time * 0.01 + r * 1.01) % 1 + 3 + # Choosing Chaotic Data + X = int(buffer_space[(key + 2) % m] * (10 ** 10)) + Y = int(buffer_space[(key - 2) % m] * (10 ** 10)) - # Choosing Chaotic Data - X = int(buffer_space[(key + 2) % m] * (10 ** 10)) - Y = int(buffer_space[(key - 2) % m] * (10 ** 10)) + # Machine Time + machine_time += 1 - # Machine Time - machine_time += 1 + return xorshift(X, Y) % 0xFFFFFFFF - return xorshift(X, Y) % 0xFFFFFFFF def reset(): - global buffer_space, params_space, machine_time, \ - K, m, t + global buffer_space, params_space, machine_time, K, m, t + + buffer_space = K + params_space = [0] * m + machine_time = 0 - buffer_space = K; params_space = [0] * m - machine_time = 0 ####################################### @@ -86,15 +86,17 @@ def reset(): # Pushing Data (Input) import random + message = random.sample(range(0xFFFFFFFF), 100) for chunk in message: - push(chunk) + push(chunk) # for controlling inp = "" # Pulling Data (Output) while inp in ("e", "E"): - print("%s" % format(pull(), '#04x')) - print(buffer_space); print(params_space) - inp = input("(e)exit? ").strip() + print("%s" % format(pull(), "#04x")) + print(buffer_space) + print(params_space) + inp = input("(e)exit? ").strip() diff --git a/hashes/enigma_machine.py b/hashes/enigma_machine.py index 06215785765f..5420bacc1409 100644 --- a/hashes/enigma_machine.py +++ b/hashes/enigma_machine.py @@ -40,7 +40,7 @@ def engine(input_character): rotator() -if __name__ == '__main__': +if __name__ == "__main__": decode = input("Type your message:\n") decode = list(decode) while True: @@ -56,4 +56,5 @@ def engine(input_character): print("\n" + "".join(code)) print( f"\nYour Token is {token} please write it down.\nIf you want to decode " - f"this message again you should input same digits as token!") + f"this message again you should input same digits as token!" + ) diff --git a/hashes/md5.py b/hashes/md5.py index 1ad43013363f..85565533d175 100644 --- a/hashes/md5.py +++ b/hashes/md5.py @@ -20,8 +20,8 @@ def rearrange(bitString32): if len(bitString32) != 32: raise ValueError("Need length 32") newString = "" - for i in [3, 2,1,0]: - newString += bitString32[8*i:8*i+8] + for i in [3, 2, 1, 0]: + newString += bitString32[8 * i : 8 * i + 8] return newString @@ -35,10 +35,10 @@ def reformatHex(i): '9a020000' """ - hexrep = format(i, '08x') + hexrep = format(i, "08x") thing = "" - for i in [3, 2,1,0]: - thing += hexrep[2*i:2*i+2] + for i in [3, 2, 1, 0]: + thing += hexrep[2 * i : 2 * i + 2] return thing @@ -53,10 +53,10 @@ def pad(bitString): [string] -- [binary string] """ startLength = len(bitString) - bitString += '1' + bitString += "1" while len(bitString) % 512 != 448: - bitString += '0' - lastPart = format(startLength, '064b') + bitString += "0" + lastPart = format(startLength, "064b") bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32]) return bitString @@ -73,33 +73,35 @@ def getBlock(bitString): currPos = 0 while currPos < len(bitString): - currPart = bitString[currPos:currPos+512] + currPart = bitString[currPos : currPos + 512] mySplits = [] for i in range(16): - mySplits.append(int(rearrange(currPart[32*i:32*i+32]), 2)) + mySplits.append(int(rearrange(currPart[32 * i : 32 * i + 32]), 2)) yield mySplits currPos += 512 def not32(i): - ''' + """ >>> not32(34) 4294967261 - ''' - i_str = format(i, '032b') - new_str = '' + """ + i_str = format(i, "032b") + new_str = "" for c in i_str: - new_str += '1' if c == '0' else '0' + new_str += "1" if c == "0" else "0" return int(new_str, 2) + def sum32(a, b): - ''' + """ + + """ + return (a + b) % 2 ** 32 - ''' - return (a + b) % 2**32 def leftrot32(i, s): - return (i << s) ^ (i >> (32-s)) + return (i << s) ^ (i >> (32 - s)) def md5me(testString): @@ -110,22 +112,84 @@ def md5me(testString): testString {[string]} -- [message] """ - bs = '' + bs = "" for i in testString: - bs += format(ord(i), '08b') + bs += format(ord(i), "08b") bs = pad(bs) - tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)] + tvals = [int(2 ** 32 * abs(math.sin(i + 1))) for i in range(64)] a0 = 0x67452301 - b0 = 0xefcdab89 - c0 = 0x98badcfe + b0 = 0xEFCDAB89 + c0 = 0x98BADCFE d0 = 0x10325476 - s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, - 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \ - 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \ - 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ] + s = [ + 7, + 12, + 17, + 22, + 7, + 12, + 17, + 22, + 7, + 12, + 17, + 22, + 7, + 12, + 17, + 22, + 5, + 9, + 14, + 20, + 5, + 9, + 14, + 20, + 5, + 9, + 14, + 20, + 5, + 9, + 14, + 20, + 4, + 11, + 16, + 23, + 4, + 11, + 16, + 23, + 4, + 11, + 16, + 23, + 4, + 11, + 16, + 23, + 6, + 10, + 15, + 21, + 6, + 10, + 15, + 21, + 6, + 10, + 15, + 21, + 6, + 10, + 15, + 21, + ] for m in getBlock(bs): A = a0 @@ -134,42 +198,44 @@ def md5me(testString): D = d0 for i in range(64): if i <= 15: - #f = (B & C) | (not32(B) & D) + # f = (B & C) | (not32(B) & D) f = D ^ (B & (C ^ D)) g = i elif i <= 31: - #f = (D & B) | (not32(D) & C) + # f = (D & B) | (not32(D) & C) f = C ^ (D & (B ^ C)) - g = (5*i+1) % 16 + g = (5 * i + 1) % 16 elif i <= 47: f = B ^ C ^ D - g = (3*i+5) % 16 + g = (3 * i + 5) % 16 else: f = C ^ (B | not32(D)) - g = (7*i) % 16 + g = (7 * i) % 16 dtemp = D D = C C = B - B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i])) + B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2 ** 32, s[i])) A = dtemp a0 = sum32(a0, A) b0 = sum32(b0, B) c0 = sum32(c0, C) d0 = sum32(d0, D) - digest = reformatHex(a0) + reformatHex(b0) + \ - reformatHex(c0) + reformatHex(d0) + digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0) return digest def test(): assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e" - assert md5me( - "The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6" + assert ( + md5me("The quick brown fox jumps over the lazy dog") + == "9e107d9d372bb6826bd81d3542a419d6" + ) print("Success.") if __name__ == "__main__": test() import doctest + doctest.testmod() diff --git a/hashes/sha1.py b/hashes/sha1.py index 511ea6363733..3bf27af27582 100644 --- a/hashes/sha1.py +++ b/hashes/sha1.py @@ -25,7 +25,7 @@ import argparse import struct -import hashlib #hashlib is only used inside the Test class +import hashlib # hashlib is only used inside the Test class import unittest @@ -35,6 +35,7 @@ class SHA1Hash: >>> SHA1Hash(bytes('Allan', 'utf-8')).final_hash() '872af2d8ac3d8695387e7c804bf0e02c18df9e6e' """ + def __init__(self, data): """ Inititates the variables data and h. h is a list of 5 8-digit Hexadecimal @@ -52,21 +53,23 @@ def rotate(n, b): >>> SHA1Hash('').rotate(12,2) 48 """ - return ((n << b) | (n >> (32 - b))) & 0xffffffff + return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF def padding(self): """ Pads the input message with zeros so that padded_data has 64 bytes or 512 bits """ - padding = b'\x80' + b'\x00'*(63 - (len(self.data) + 8) % 64) - padded_data = self.data + padding + struct.pack('>Q', 8 * len(self.data)) + padding = b"\x80" + b"\x00" * (63 - (len(self.data) + 8) % 64) + padded_data = self.data + padding + struct.pack(">Q", 8 * len(self.data)) return padded_data def split_blocks(self): """ Returns a list of bytestrings each of length 64 """ - return [self.padded_data[i:i+64] for i in range(0, len(self.padded_data), 64)] + return [ + self.padded_data[i : i + 64] for i in range(0, len(self.padded_data), 64) + ] # @staticmethod def expand_block(self, block): @@ -74,9 +77,9 @@ def expand_block(self, block): Takes a bytestring-block of length 64, unpacks it to a list of integers and returns a list of 80 integers after some bit operations """ - w = list(struct.unpack('>16L', block)) + [0] * 64 + w = list(struct.unpack(">16L", block)) + [0] * 64 for i in range(16, 80): - w[i] = self.rotate((w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]), 1) + w[i] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1) return w def final_hash(self): @@ -106,22 +109,30 @@ def final_hash(self): elif 60 <= i < 80: f = b ^ c ^ d k = 0xCA62C1D6 - a, b, c, d, e = self.rotate(a, 5) + f + e + k + expanded_block[i] & 0xffffffff,\ - a, self.rotate(b, 30), c, d - self.h = self.h[0] + a & 0xffffffff,\ - self.h[1] + b & 0xffffffff,\ - self.h[2] + c & 0xffffffff,\ - self.h[3] + d & 0xffffffff,\ - self.h[4] + e & 0xffffffff - return '%08x%08x%08x%08x%08x' %tuple(self.h) + a, b, c, d, e = ( + self.rotate(a, 5) + f + e + k + expanded_block[i] & 0xFFFFFFFF, + a, + self.rotate(b, 30), + c, + d, + ) + self.h = ( + self.h[0] + a & 0xFFFFFFFF, + self.h[1] + b & 0xFFFFFFFF, + self.h[2] + c & 0xFFFFFFFF, + self.h[3] + d & 0xFFFFFFFF, + self.h[4] + e & 0xFFFFFFFF, + ) + return "%08x%08x%08x%08x%08x" % tuple(self.h) class SHA1HashTest(unittest.TestCase): """ Test class for the SHA1Hash class. Inherits the TestCase class from unittest """ + def testMatchHashes(self): - msg = bytes('Test String', 'utf-8') + msg = bytes("Test String", "utf-8") self.assertEqual(SHA1Hash(msg).final_hash(), hashlib.sha1(msg).hexdigest()) @@ -132,23 +143,27 @@ def main(): the test each time. """ # unittest.main() - parser = argparse.ArgumentParser(description='Process some strings or files') - parser.add_argument('--string', dest='input_string', - default='Hello World!! Welcome to Cryptography', - help='Hash the string') - parser.add_argument('--file', dest='input_file', help='Hash contents of a file') + parser = argparse.ArgumentParser(description="Process some strings or files") + parser.add_argument( + "--string", + dest="input_string", + default="Hello World!! Welcome to Cryptography", + help="Hash the string", + ) + parser.add_argument("--file", dest="input_file", help="Hash contents of a file") args = parser.parse_args() input_string = args.input_string - #In any case hash input should be a bytestring + # In any case hash input should be a bytestring if args.input_file: - with open(args.input_file, 'rb') as f: + with open(args.input_file, "rb") as f: hash_input = f.read() else: - hash_input = bytes(input_string, 'utf-8') + hash_input = bytes(input_string, "utf-8") print(SHA1Hash(hash_input).final_hash()) -if __name__ == '__main__': +if __name__ == "__main__": main() import doctest - doctest.testmod() \ No newline at end of file + + doctest.testmod() diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index 281991a93b2d..5ce0f696ad71 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -45,13 +45,15 @@ class Vector(object): changeComponent(pos,value) : changes the specified component. TODO: compare-operator """ - def __init__(self,components=[]): + + def __init__(self, components=[]): """ input: components or nothing simple constructor for init the vector """ self.__components = list(components) - def set(self,components): + + def set(self, components): """ input: new components changes the components of the vector. @@ -61,34 +63,39 @@ def set(self,components): self.__components = list(components) else: raise Exception("please give any vector") + def __str__(self): """ returns a string representation of the vector """ return "(" + ",".join(map(str, self.__components)) + ")" - def component(self,i): + + def component(self, i): """ input: index (start at 0) output: the i-th component of the vector. """ - if type(i) is int and -len(self.__components) <= i < len(self.__components) : + if type(i) is int and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("index out of range") + def __len__(self): """ returns the size of the vector """ return len(self.__components) + def eulidLength(self): """ returns the eulidean length of the vector """ summe = 0 for c in self.__components: - summe += c**2 + summe += c ** 2 return math.sqrt(summe) - def __add__(self,other): + + def __add__(self, other): """ input: other vector assumes: other vector has the same size @@ -100,7 +107,8 @@ def __add__(self,other): return Vector(result) else: raise Exception("must have the same size") - def __sub__(self,other): + + def __sub__(self, other): """ input: other vector assumes: other vector has the same size @@ -110,73 +118,80 @@ def __sub__(self,other): if size == len(other): result = [self.__components[i] - other.component(i) for i in range(size)] return result - else: # error case + else: # error case raise Exception("must have the same size") - def __mul__(self,other): + + def __mul__(self, other): """ mul implements the scalar multiplication and the dot-product """ - if isinstance(other,float) or isinstance(other,int): - ans = [c*other for c in self.__components] + if isinstance(other, float) or isinstance(other, int): + ans = [c * other for c in self.__components] return ans - elif (isinstance(other,Vector) and (len(self) == len(other))): + elif isinstance(other, Vector) and (len(self) == len(other)): size = len(self) summe = 0 for i in range(size): summe += self.__components[i] * other.component(i) return summe - else: # error case + else: # error case raise Exception("invalide operand!") + def copy(self): """ copies this vector and returns it. """ return Vector(self.__components) - def changeComponent(self,pos,value): + + def changeComponent(self, pos, value): """ input: an index (pos) and a value changes the specified component (pos) with the 'value' """ - #precondition - assert (-len(self.__components) <= pos < len(self.__components)) + # precondition + assert -len(self.__components) <= pos < len(self.__components) self.__components[pos] = value - + + def zeroVector(dimension): """ returns a zero-vector of size 'dimension' - """ - #precondition - assert(isinstance(dimension,int)) - return Vector([0]*dimension) + """ + # precondition + assert isinstance(dimension, int) + return Vector([0] * dimension) -def unitBasisVector(dimension,pos): +def unitBasisVector(dimension, pos): """ returns a unit basis vector with a One at index 'pos' (indexing at 0) """ - #precondition - assert(isinstance(dimension,int) and (isinstance(pos,int))) - ans = [0]*dimension + # precondition + assert isinstance(dimension, int) and (isinstance(pos, int)) + ans = [0] * dimension ans[pos] = 1 return Vector(ans) - -def axpy(scalar,x,y): + +def axpy(scalar, x, y): """ input: a 'scalar' and two vectors 'x' and 'y' output: a vector computes the axpy operation """ # precondition - assert(isinstance(x,Vector) and (isinstance(y,Vector)) \ - and (isinstance(scalar,int) or isinstance(scalar,float))) - return (x*scalar + y) - + assert ( + isinstance(x, Vector) + and (isinstance(y, Vector)) + and (isinstance(scalar, int) or isinstance(scalar, float)) + ) + return x * scalar + y + -def randomVector(N,a,b): +def randomVector(N, a, b): """ input: size (N) of the vector. random range (a,b) @@ -184,7 +199,7 @@ def randomVector(N,a,b): random integer components between 'a' and 'b'. """ random.seed(None) - ans = [random.randint(a,b) for i in range(N)] + ans = [random.randint(a, b) for i in range(N)] return Vector(ans) @@ -205,7 +220,8 @@ class Matrix(object): operator + : implements the matrix-addition. operator - _ implements the matrix-subtraction """ - def __init__(self,matrix,w,h): + + def __init__(self, matrix, w, h): """ simple constructor for initialzes the matrix with components. @@ -213,6 +229,7 @@ def __init__(self,matrix,w,h): self.__matrix = matrix self.__width = w self.__height = h + def __str__(self): """ returns a string representation of this @@ -222,102 +239,113 @@ def __str__(self): for i in range(self.__height): ans += "|" for j in range(self.__width): - if j < self.__width -1: + if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans - def changeComponent(self,x,y, value): + + def changeComponent(self, x, y, value): """ changes the x-y component of this matrix """ if x >= 0 and x < self.__height and y >= 0 and y < self.__width: self.__matrix[x][y] = value else: - raise Exception ("changeComponent: indices out of bounds") - def component(self,x,y): + raise Exception("changeComponent: indices out of bounds") + + def component(self, x, y): """ returns the specified (x,y) component """ if x >= 0 and x < self.__height and y >= 0 and y < self.__width: return self.__matrix[x][y] else: - raise Exception ("changeComponent: indices out of bounds") + raise Exception("changeComponent: indices out of bounds") + def width(self): """ getter for the width """ return self.__width + def height(self): """ getter for the height """ return self.__height - def __mul__(self,other): + + def __mul__(self, other): """ implements the matrix-vector multiplication. implements the matrix-scalar multiplication """ - if isinstance(other, Vector): # vector-matrix - if (len(other) == self.__width): + if isinstance(other, Vector): # vector-matrix + if len(other) == self.__width: ans = zeroVector(self.__height) for i in range(self.__height): summe = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] - ans.changeComponent(i,summe) + ans.changeComponent(i, summe) summe = 0 return ans else: - raise Exception("vector must have the same size as the " + "number of columns of the matrix!") - elif isinstance(other,int) or isinstance(other,float): # matrix-scalar - matrix = [[self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height)] - return Matrix(matrix,self.__width,self.__height) - def __add__(self,other): + raise Exception( + "vector must have the same size as the " + + "number of columns of the matrix!" + ) + elif isinstance(other, int) or isinstance(other, float): # matrix-scalar + matrix = [ + [self.__matrix[i][j] * other for j in range(self.__width)] + for i in range(self.__height) + ] + return Matrix(matrix, self.__width, self.__height) + + def __add__(self, other): """ implements the matrix-addition. """ - if (self.__width == other.width() and self.__height == other.height()): + if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): - row.append(self.__matrix[i][j] + other.component(i,j)) + row.append(self.__matrix[i][j] + other.component(i, j)) matrix.append(row) - return Matrix(matrix,self.__width,self.__height) + return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") - def __sub__(self,other): + + def __sub__(self, other): """ implements the matrix-subtraction. """ - if (self.__width == other.width() and self.__height == other.height()): + if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): - row.append(self.__matrix[i][j] - other.component(i,j)) + row.append(self.__matrix[i][j] - other.component(i, j)) matrix.append(row) - return Matrix(matrix,self.__width,self.__height) + return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") - + def squareZeroMatrix(N): """ returns a square zero-matrix of dimension NxN """ - ans = [[0]*N for i in range(N)] - return Matrix(ans,N,N) - - -def randomMatrix(W,H,a,b): + ans = [[0] * N for i in range(N)] + return Matrix(ans, N, N) + + +def randomMatrix(W, H, a, b): """ returns a random matrix WxH with integer components between 'a' and 'b' """ random.seed(None) - matrix = [[random.randint(a,b) for j in range(W)] for i in range(H)] - return Matrix(matrix,W,H) - - + matrix = [[random.randint(a, b) for j in range(W)] for i in range(H)] + return Matrix(matrix, W, H) diff --git a/linear_algebra/src/tests.py b/linear_algebra/src/tests.py index afca4ce87117..b63f2ae8c2db 100644 --- a/linear_algebra/src/tests.py +++ b/linear_algebra/src/tests.py @@ -11,123 +11,144 @@ import unittest from lib import Matrix, Vector, axpy, squareZeroMatrix, unitBasisVector, zeroVector + class Test(unittest.TestCase): def test_component(self): """ test for method component """ - x = Vector([1,2,3]) - self.assertEqual(x.component(0),1) - self.assertEqual(x.component(2),3) + x = Vector([1, 2, 3]) + self.assertEqual(x.component(0), 1) + self.assertEqual(x.component(2), 3) try: y = Vector() self.assertTrue(False) except: self.assertTrue(True) + def test_str(self): """ test for toString() method """ - x = Vector([0,0,0,0,0,1]) - self.assertEqual(str(x),"(0,0,0,0,0,1)") + x = Vector([0, 0, 0, 0, 0, 1]) + self.assertEqual(str(x), "(0,0,0,0,0,1)") + def test_size(self): """ test for size()-method """ - x = Vector([1,2,3,4]) - self.assertEqual(len(x),4) + x = Vector([1, 2, 3, 4]) + self.assertEqual(len(x), 4) + def test_euclidLength(self): """ test for the eulidean length """ - x = Vector([1,2]) - self.assertAlmostEqual(x.eulidLength(),2.236,3) + x = Vector([1, 2]) + self.assertAlmostEqual(x.eulidLength(), 2.236, 3) + def test_add(self): """ test for + operator """ - x = Vector([1,2,3]) - y = Vector([1,1,1]) - self.assertEqual((x+y).component(0),2) - self.assertEqual((x+y).component(1),3) - self.assertEqual((x+y).component(2),4) + x = Vector([1, 2, 3]) + y = Vector([1, 1, 1]) + self.assertEqual((x + y).component(0), 2) + self.assertEqual((x + y).component(1), 3) + self.assertEqual((x + y).component(2), 4) + def test_sub(self): """ test for - operator """ - x = Vector([1,2,3]) - y = Vector([1,1,1]) - self.assertEqual((x-y).component(0),0) - self.assertEqual((x-y).component(1),1) - self.assertEqual((x-y).component(2),2) + x = Vector([1, 2, 3]) + y = Vector([1, 1, 1]) + self.assertEqual((x - y).component(0), 0) + self.assertEqual((x - y).component(1), 1) + self.assertEqual((x - y).component(2), 2) + def test_mul(self): """ test for * operator """ - x = Vector([1,2,3]) - a = Vector([2,-1,4]) # for test of dot-product - b = Vector([1,-2,-1]) - self.assertEqual(str(x*3.0),"(3.0,6.0,9.0)") - self.assertEqual((a*b),0) + x = Vector([1, 2, 3]) + a = Vector([2, -1, 4]) # for test of dot-product + b = Vector([1, -2, -1]) + self.assertEqual(str(x * 3.0), "(3.0,6.0,9.0)") + self.assertEqual((a * b), 0) + def test_zeroVector(self): """ test for the global function zeroVector(...) """ self.assertTrue(str(zeroVector(10)).count("0") == 10) + def test_unitBasisVector(self): """ test for the global function unitBasisVector(...) """ - self.assertEqual(str(unitBasisVector(3,1)),"(0,1,0)") + self.assertEqual(str(unitBasisVector(3, 1)), "(0,1,0)") + def test_axpy(self): """ test for the global function axpy(...) (operation) """ - x = Vector([1,2,3]) - y = Vector([1,0,1]) - self.assertEqual(str(axpy(2,x,y)),"(3,4,7)") + x = Vector([1, 2, 3]) + y = Vector([1, 0, 1]) + self.assertEqual(str(axpy(2, x, y)), "(3,4,7)") + def test_copy(self): """ test for the copy()-method """ - x = Vector([1,0,0,0,0,0]) + x = Vector([1, 0, 0, 0, 0, 0]) y = x.copy() - self.assertEqual(str(x),str(y)) + self.assertEqual(str(x), str(y)) + def test_changeComponent(self): """ test for the changeComponent(...)-method """ - x = Vector([1,0,0]) - x.changeComponent(0,0) - x.changeComponent(1,1) - self.assertEqual(str(x),"(0,1,0)") + x = Vector([1, 0, 0]) + x.changeComponent(0, 0) + x.changeComponent(1, 1) + self.assertEqual(str(x), "(0,1,0)") + def test_str_matrix(self): - A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) - self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n",str(A)) + A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) + self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(A)) + def test__mul__matrix(self): - A = Matrix([[1,2,3],[4,5,6],[7,8,9]],3,3) - x = Vector([1,2,3]) - self.assertEqual("(14,32,50)",str(A*x)) - self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n",str(A*2)) + A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3) + x = Vector([1, 2, 3]) + self.assertEqual("(14,32,50)", str(A * x)) + self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(A * 2)) + def test_changeComponent_matrix(self): - A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) - A.changeComponent(0,2,5) - self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n",str(A)) + A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) + A.changeComponent(0, 2, 5) + self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(A)) + def test_component_matrix(self): - A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) - self.assertEqual(7,A.component(2,1),0.01) + A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) + self.assertEqual(7, A.component(2, 1), 0.01) + def test__add__matrix(self): - A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) - B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3) - self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n",str(A+B)) + A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) + B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) + self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(A + B)) + def test__sub__matrix(self): - A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) - B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3) - self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n",str(A-B)) + A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) + B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) + self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(A - B)) + def test_squareZeroMatrix(self): - self.assertEqual('|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|' - +'\n|0,0,0,0,0|\n',str(squareZeroMatrix(5))) - + self.assertEqual( + "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|" + "\n|0,0,0,0,0|\n", + str(squareZeroMatrix(5)), + ) + if __name__ == "__main__": unittest.main() diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py index acdf646875ac..4f7a4d12966e 100644 --- a/machine_learning/decision_tree.py +++ b/machine_learning/decision_tree.py @@ -5,8 +5,9 @@ """ import numpy as np + class Decision_Tree: - def __init__(self, depth = 5, min_leaf_size = 5): + def __init__(self, depth=5, min_leaf_size=5): self.depth = depth self.decision_boundary = 0 self.left = None @@ -58,8 +59,7 @@ def train(self, X, y): return best_split = 0 - min_error = self.mean_squared_error(X,np.mean(y)) * 2 - + min_error = self.mean_squared_error(X, np.mean(y)) * 2 """ loop over all possible splits for the decision tree. find the best split. @@ -86,8 +86,12 @@ def train(self, X, y): right_y = y[best_split:] self.decision_boundary = X[best_split] - self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size) - self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size) + self.left = Decision_Tree( + depth=self.depth - 1, min_leaf_size=self.min_leaf_size + ) + self.right = Decision_Tree( + depth=self.depth - 1, min_leaf_size=self.min_leaf_size + ) self.left.train(left_X, left_y) self.right.train(right_X, right_y) else: @@ -113,17 +117,18 @@ def predict(self, x): print("Error: Decision tree not yet trained") return None + def main(): """ In this demonstration we're generating a sample data set from the sin function in numpy. We then train a decision tree on the data set and use the decision tree to predict the label of 10 different test values. Then the mean squared error over this test is displayed. """ - X = np.arange(-1., 1., 0.005) + X = np.arange(-1.0, 1.0, 0.005) y = np.sin(X) - tree = Decision_Tree(depth = 10, min_leaf_size = 10) - tree.train(X,y) + tree = Decision_Tree(depth=10, min_leaf_size=10) + tree.train(X, y) test_cases = (np.random.rand(10) * 2) - 1 predictions = np.array([tree.predict(x) for x in test_cases]) @@ -134,5 +139,5 @@ def main(): print("Average error: " + str(avg_error)) -if __name__ == '__main__': - main() \ No newline at end of file +if __name__ == "__main__": + main() diff --git a/machine_learning/gradient_descent.py b/machine_learning/gradient_descent.py index 9a17113b7ddb..811cc68467f9 100644 --- a/machine_learning/gradient_descent.py +++ b/machine_learning/gradient_descent.py @@ -4,21 +4,28 @@ import numpy # List of input, output pairs -train_data = (((5, 2, 3), 15), ((6, 5, 9), 25), - ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41)) +train_data = ( + ((5, 2, 3), 15), + ((6, 5, 9), 25), + ((11, 12, 13), 41), + ((1, 1, 1), 8), + ((11, 12, 13), 41), +) test_data = (((515, 22, 13), 555), ((61, 35, 49), 150)) parameter_vector = [2, 4, 1, 5] m = len(train_data) LEARNING_RATE = 0.009 -def _error(example_no, data_set='train'): +def _error(example_no, data_set="train"): """ :param data_set: train data or test data :param example_no: example number whose error has to be checked :return: error in example pointed by example number. """ - return calculate_hypothesis_value(example_no, data_set) - output(example_no, data_set) + return calculate_hypothesis_value(example_no, data_set) - output( + example_no, data_set + ) def _hypothesis_value(data_input_tuple): @@ -32,7 +39,7 @@ def _hypothesis_value(data_input_tuple): """ hyp_val = 0 for i in range(len(parameter_vector) - 1): - hyp_val += data_input_tuple[i]*parameter_vector[i+1] + hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val @@ -43,9 +50,9 @@ def output(example_no, data_set): :param example_no: example whose output is to be fetched :return: output for that example """ - if data_set == 'train': + if data_set == "train": return train_data[example_no][1] - elif data_set == 'test': + elif data_set == "test": return test_data[example_no][1] @@ -75,7 +82,7 @@ def summation_of_cost_derivative(index, end=m): if index == -1: summation_value += _error(i) else: - summation_value += _error(i)*train_data[i][0][index] + summation_value += _error(i) * train_data[i][0][index] return summation_value @@ -85,7 +92,7 @@ def get_cost_derivative(index): :return: derivative wrt to that index Note: If index is -1, this means we are calculating summation wrt to biased parameter. """ - cost_derivative_value = summation_of_cost_derivative(index, m)/m + cost_derivative_value = summation_of_cost_derivative(index, m) / m return cost_derivative_value @@ -99,11 +106,16 @@ def run_gradient_descent(): j += 1 temp_parameter_vector = [0, 0, 0, 0] for i in range(0, len(parameter_vector)): - cost_derivative = get_cost_derivative(i-1) - temp_parameter_vector[i] = parameter_vector[i] - \ - LEARNING_RATE*cost_derivative - if numpy.allclose(parameter_vector, temp_parameter_vector, - atol=absolute_error_limit, rtol=relative_error_limit): + cost_derivative = get_cost_derivative(i - 1) + temp_parameter_vector[i] = ( + parameter_vector[i] - LEARNING_RATE * cost_derivative + ) + if numpy.allclose( + parameter_vector, + temp_parameter_vector, + atol=absolute_error_limit, + rtol=relative_error_limit, + ): break parameter_vector = temp_parameter_vector print(("Number of iterations:", j)) @@ -111,11 +123,11 @@ def run_gradient_descent(): def test_gradient_descent(): for i in range(len(test_data)): - print(("Actual output value:", output(i, 'test'))) - print(("Hypothesis output:", calculate_hypothesis_value(i, 'test'))) + print(("Actual output value:", output(i, "test"))) + print(("Hypothesis output:", calculate_hypothesis_value(i, "test"))) -if __name__ == '__main__': +if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent() diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index d0ce0f2599e0..4c643226b213 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -1,4 +1,4 @@ -'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com) +"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com) Requirements: - sklearn @@ -45,17 +45,18 @@ 5. Have fun.. -''' +""" from sklearn.metrics import pairwise_distances import numpy as np -TAG = 'K-MEANS-CLUST/ ' +TAG = "K-MEANS-CLUST/ " + def get_initial_centroids(data, k, seed=None): - '''Randomly choose k data points as initial centroids''' - if seed is not None: # useful for obtaining consistent results + """Randomly choose k data points as initial centroids""" + if seed is not None: # useful for obtaining consistent results np.random.seed(seed) - n = data.shape[0] # number of data points + n = data.shape[0] # number of data points # Pick K indices from range [0, N). rand_indices = np.random.randint(0, n, k) @@ -63,30 +64,33 @@ def get_initial_centroids(data, k, seed=None): # Keep centroids as dense format, as many entries will be nonzero due to averaging. # As long as at least one document in a cluster contains a word, # it will carry a nonzero weight in the TF-IDF vector of the centroid. - centroids = data[rand_indices,:] + centroids = data[rand_indices, :] return centroids -def centroid_pairwise_dist(X,centroids): - return pairwise_distances(X,centroids,metric='euclidean') + +def centroid_pairwise_dist(X, centroids): + return pairwise_distances(X, centroids, metric="euclidean") + def assign_clusters(data, centroids): # Compute distances between each data point and the set of centroids: # Fill in the blank (RHS only) - distances_from_centroids = centroid_pairwise_dist(data,centroids) + distances_from_centroids = centroid_pairwise_dist(data, centroids) # Compute cluster assignments for each data point: # Fill in the blank (RHS only) - cluster_assignment = np.argmin(distances_from_centroids,axis=1) + cluster_assignment = np.argmin(distances_from_centroids, axis=1) return cluster_assignment + def revise_centroids(data, k, cluster_assignment): new_centroids = [] for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) - member_data_points = data[cluster_assignment==i] + member_data_points = data[cluster_assignment == i] # Compute the mean of the data points. Fill in the blank (RHS only) centroid = member_data_points.mean(axis=0) new_centroids.append(centroid) @@ -94,79 +98,102 @@ def revise_centroids(data, k, cluster_assignment): return new_centroids + def compute_heterogeneity(data, k, centroids, cluster_assignment): heterogeneity = 0.0 for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) - member_data_points = data[cluster_assignment==i, :] + member_data_points = data[cluster_assignment == i, :] - if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty + if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty # Compute distances from centroid to data points (RHS only) - distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean') - squared_distances = distances**2 + distances = pairwise_distances( + member_data_points, [centroids[i]], metric="euclidean" + ) + squared_distances = distances ** 2 heterogeneity += np.sum(squared_distances) return heterogeneity + from matplotlib import pyplot as plt + + def plot_heterogeneity(heterogeneity, k): - plt.figure(figsize=(7,4)) + plt.figure(figsize=(7, 4)) plt.plot(heterogeneity, linewidth=4) - plt.xlabel('# Iterations') - plt.ylabel('Heterogeneity') - plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k)) - plt.rcParams.update({'font.size': 16}) + plt.xlabel("# Iterations") + plt.ylabel("Heterogeneity") + plt.title("Heterogeneity of clustering over time, K={0:d}".format(k)) + plt.rcParams.update({"font.size": 16}) plt.show() -def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False): - '''This function runs k-means on given data and initial set of centroids. + +def kmeans( + data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False +): + """This function runs k-means on given data and initial set of centroids. maxiter: maximum number of iterations to run.(default=500) record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations if None, do not store the history. - verbose: if True, print how many data points changed their cluster labels in each iteration''' + verbose: if True, print how many data points changed their cluster labels in each iteration""" centroids = initial_centroids[:] prev_cluster_assignment = None for itr in range(maxiter): if verbose: - print(itr, end='') + print(itr, end="") # 1. Make cluster assignments using nearest centroids - cluster_assignment = assign_clusters(data,centroids) + cluster_assignment = assign_clusters(data, centroids) # 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster. - centroids = revise_centroids(data,k, cluster_assignment) + centroids = revise_centroids(data, k, cluster_assignment) # Check for convergence: if none of the assignments changed, stop - if prev_cluster_assignment is not None and \ - (prev_cluster_assignment==cluster_assignment).all(): + if ( + prev_cluster_assignment is not None + and (prev_cluster_assignment == cluster_assignment).all() + ): break # Print number of new assignments if prev_cluster_assignment is not None: - num_changed = np.sum(prev_cluster_assignment!=cluster_assignment) + num_changed = np.sum(prev_cluster_assignment != cluster_assignment) if verbose: - print(' {0:5d} elements changed their cluster assignment.'.format(num_changed)) + print( + " {0:5d} elements changed their cluster assignment.".format( + num_changed + ) + ) # Record heterogeneity convergence metric if record_heterogeneity is not None: # YOUR CODE HERE - score = compute_heterogeneity(data,k,centroids,cluster_assignment) + score = compute_heterogeneity(data, k, centroids, cluster_assignment) record_heterogeneity.append(score) prev_cluster_assignment = cluster_assignment[:] return centroids, cluster_assignment + # Mock test below -if False: # change to true to run this test case. +if False: # change to true to run this test case. import sklearn.datasets as ds + dataset = ds.load_iris() k = 3 heterogeneity = [] - initial_centroids = get_initial_centroids(dataset['data'], k, seed=0) - centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400, - record_heterogeneity=heterogeneity, verbose=True) + initial_centroids = get_initial_centroids(dataset["data"], k, seed=0) + centroids, cluster_assignment = kmeans( + dataset["data"], + k, + initial_centroids, + maxiter=400, + record_heterogeneity=heterogeneity, + verbose=True, + ) plot_heterogeneity(heterogeneity, k) diff --git a/machine_learning/knn_sklearn.py b/machine_learning/knn_sklearn.py index 64582564304f..a371e30f5403 100644 --- a/machine_learning/knn_sklearn.py +++ b/machine_learning/knn_sklearn.py @@ -2,27 +2,30 @@ from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier -#Load iris file +# Load iris file iris = load_iris() iris.keys() -print('Target names: \n {} '.format(iris.target_names)) -print('\n Features: \n {}'.format(iris.feature_names)) +print("Target names: \n {} ".format(iris.target_names)) +print("\n Features: \n {}".format(iris.feature_names)) -#Train set e Test set -X_train, X_test, y_train, y_test = train_test_split(iris['data'],iris['target'], random_state=4) +# Train set e Test set +X_train, X_test, y_train, y_test = train_test_split( + iris["data"], iris["target"], random_state=4 +) -#KNN +# KNN -knn = KNeighborsClassifier (n_neighbors = 1) +knn = KNeighborsClassifier(n_neighbors=1) knn.fit(X_train, y_train) -#new array to test -X_new = [[1,2,1,4], - [2,3,4,5]] +# new array to test +X_new = [[1, 2, 1, 4], [2, 3, 4, 5]] prediction = knn.predict(X_new) -print('\nNew array: \n {}' - '\n\nTarget Names Prediction: \n {}'.format(X_new, iris['target_names'][prediction])) +print( + "\nNew array: \n {}" + "\n\nTarget Names Prediction: \n {}".format(X_new, iris["target_names"][prediction]) +) diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py index 9d9738fced8d..b666feddccc7 100644 --- a/machine_learning/linear_regression.py +++ b/machine_learning/linear_regression.py @@ -16,21 +16,22 @@ def collect_dataset(): The dataset contains ADR vs Rating of a Player :return : dataset obtained from the link, as matrix """ - response = requests.get('https://raw.githubusercontent.com/yashLadha/' + - 'The_Math_of_Intelligence/master/Week1/ADRvs' + - 'Rating.csv') + response = requests.get( + "https://raw.githubusercontent.com/yashLadha/" + + "The_Math_of_Intelligence/master/Week1/ADRvs" + + "Rating.csv" + ) lines = response.text.splitlines() data = [] for item in lines: - item = item.split(',') + item = item.split(",") data.append(item) data.pop(0) # This is for removing the labels from the list dataset = np.matrix(data) return dataset -def run_steep_gradient_descent(data_x, data_y, - len_data, alpha, theta): +def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta): """ Run steep gradient descent and updates the Feature vector accordingly_ :param data_x : contains the dataset :param data_y : contains the output associated with each data-entry @@ -79,10 +80,9 @@ def run_linear_regression(data_x, data_y): theta = np.zeros((1, no_features)) for i in range(0, iterations): - theta = run_steep_gradient_descent(data_x, data_y, - len_data, alpha, theta) + theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta) error = sum_of_square_error(data_x, data_y, len_data, theta) - print('At Iteration %d - Error is %.5f ' % (i + 1, error)) + print("At Iteration %d - Error is %.5f " % (i + 1, error)) return theta @@ -97,10 +97,10 @@ def main(): theta = run_linear_regression(data_x, data_y) len_result = theta.shape[1] - print('Resultant Feature vector : ') + print("Resultant Feature vector : ") for i in range(0, len_result): - print('%.5f' % (theta[0, i])) + print("%.5f" % (theta[0, i])) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py index b2749f1be260..f23d400ced55 100644 --- a/machine_learning/logistic_regression.py +++ b/machine_learning/logistic_regression.py @@ -9,8 +9,8 @@ # importing all the required libraries -''' Implementing logistic regression for classification problem - Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac''' +""" Implementing logistic regression for classification problem + Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac""" import numpy as np import matplotlib.pyplot as plt @@ -24,6 +24,7 @@ # sigmoid function or logistic function is used as a hypothesis function in classification problems + def sigmoid_function(z): return 1 / (1 + np.exp(-z)) @@ -31,17 +32,14 @@ def sigmoid_function(z): def cost_function(h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() + def log_likelihood(X, Y, weights): scores = np.dot(X, weights) - return np.sum(Y*scores - np.log(1 + np.exp(scores)) ) + return np.sum(Y * scores - np.log(1 + np.exp(scores))) + # here alpha is the learning rate, X is the feature matrix,y is the target matrix -def logistic_reg( - alpha, - X, - y, - max_iterations=70000, - ): +def logistic_reg(alpha, X, y, max_iterations=70000): theta = np.zeros(X.shape[1]) for iterations in range(max_iterations): @@ -53,42 +51,35 @@ def logistic_reg( h = sigmoid_function(z) J = cost_function(h, y) if iterations % 100 == 0: - print(f'loss: {J} \t') # printing the loss after every 100 iterations + print(f"loss: {J} \t") # printing the loss after every 100 iterations return theta + # In[68]: -if __name__ == '__main__': +if __name__ == "__main__": iris = datasets.load_iris() X = iris.data[:, :2] y = (iris.target != 0) * 1 alpha = 0.1 - theta = logistic_reg(alpha,X,y,max_iterations=70000) - print("theta: ",theta) # printing the theta i.e our weights vector - + theta = logistic_reg(alpha, X, y, max_iterations=70000) + print("theta: ", theta) # printing the theta i.e our weights vector def predict_prob(X): - return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm - + return sigmoid_function( + np.dot(X, theta) + ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) - plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0') - plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1') + plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="b", label="0") + plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="r", label="1") (x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max()) (x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max()) - (xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), - np.linspace(x2_min, x2_max)) + (xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) grid = np.c_[xx1.ravel(), xx2.ravel()] probs = predict_prob(grid).reshape(xx1.shape) - plt.contour( - xx1, - xx2, - probs, - [0.5], - linewidths=1, - colors='black', - ) + plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show() diff --git a/machine_learning/random_forest_classification/random_forest_classification.py b/machine_learning/random_forest_classification/random_forest_classification.py index 81016387ecc7..6aed4e6e66de 100644 --- a/machine_learning/random_forest_classification/random_forest_classification.py +++ b/machine_learning/random_forest_classification/random_forest_classification.py @@ -8,23 +8,30 @@ # Importing the dataset script_dir = os.path.dirname(os.path.realpath(__file__)) -dataset = pd.read_csv(os.path.join(script_dir, 'Social_Network_Ads.csv')) +dataset = pd.read_csv(os.path.join(script_dir, "Social_Network_Ads.csv")) X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) + +X_train, X_test, y_train, y_test = train_test_split( + X, y, test_size=0.25, random_state=0 +) # Feature Scaling from sklearn.preprocessing import StandardScaler + sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting Random Forest Classification to the Training set from sklearn.ensemble import RandomForestClassifier -classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) + +classifier = RandomForestClassifier( + n_estimators=10, criterion="entropy", random_state=0 +) classifier.fit(X_train, y_train) # Predicting the Test set results @@ -32,40 +39,65 @@ # Making the Confusion Matrix from sklearn.metrics import confusion_matrix + cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap + X_set, y_set = X_train, y_train -X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), - np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) -plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +X1, X2 = np.meshgrid( + np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), + np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01), +) +plt.contourf( + X1, + X2, + classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), + alpha=0.75, + cmap=ListedColormap(("red", "green")), +) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): - plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], - c = ListedColormap(('red', 'green'))(i), label = j) -plt.title('Random Forest Classification (Training set)') -plt.xlabel('Age') -plt.ylabel('Estimated Salary') + plt.scatter( + X_set[y_set == j, 0], + X_set[y_set == j, 1], + c=ListedColormap(("red", "green"))(i), + label=j, + ) +plt.title("Random Forest Classification (Training set)") +plt.xlabel("Age") +plt.ylabel("Estimated Salary") plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap + X_set, y_set = X_test, y_test -X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), - np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) -plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +X1, X2 = np.meshgrid( + np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), + np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01), +) +plt.contourf( + X1, + X2, + classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), + alpha=0.75, + cmap=ListedColormap(("red", "green")), +) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): - plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], - c = ListedColormap(('red', 'green'))(i), label = j) -plt.title('Random Forest Classification (Test set)') -plt.xlabel('Age') -plt.ylabel('Estimated Salary') + plt.scatter( + X_set[y_set == j, 0], + X_set[y_set == j, 1], + c=ListedColormap(("red", "green"))(i), + label=j, + ) +plt.title("Random Forest Classification (Test set)") +plt.xlabel("Age") +plt.ylabel("Estimated Salary") plt.legend() plt.show() diff --git a/machine_learning/random_forest_regression/random_forest_regression.py b/machine_learning/random_forest_regression/random_forest_regression.py index 85ce0676b598..2599e97e957e 100644 --- a/machine_learning/random_forest_regression/random_forest_regression.py +++ b/machine_learning/random_forest_regression/random_forest_regression.py @@ -8,7 +8,7 @@ # Importing the dataset script_dir = os.path.dirname(os.path.realpath(__file__)) -dataset = pd.read_csv(os.path.join(script_dir, 'Position_Salaries.csv')) +dataset = pd.read_csv(os.path.join(script_dir, "Position_Salaries.csv")) X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values @@ -26,7 +26,8 @@ # Fitting Random Forest Regression to the dataset from sklearn.ensemble import RandomForestRegressor -regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) + +regressor = RandomForestRegressor(n_estimators=10, random_state=0) regressor.fit(X, y) # Predicting a new result @@ -35,9 +36,9 @@ # Visualising the Random Forest Regression results (higher resolution) X_grid = np.arange(min(X), max(X), 0.01) X_grid = X_grid.reshape((len(X_grid), 1)) -plt.scatter(X, y, color = 'red') -plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') -plt.title('Truth or Bluff (Random Forest Regression)') -plt.xlabel('Position level') -plt.ylabel('Salary') +plt.scatter(X, y, color="red") +plt.plot(X_grid, regressor.predict(X_grid), color="blue") +plt.title("Truth or Bluff (Random Forest Regression)") +plt.xlabel("Position level") +plt.ylabel("Salary") plt.show() diff --git a/machine_learning/scoring_functions.py b/machine_learning/scoring_functions.py index a2d97b09ded2..2b24287b3726 100755 --- a/machine_learning/scoring_functions.py +++ b/machine_learning/scoring_functions.py @@ -14,7 +14,7 @@ and types of data """ -#Mean Absolute Error +# Mean Absolute Error def mae(predict, actual): predict = np.array(predict) actual = np.array(actual) @@ -24,7 +24,8 @@ def mae(predict, actual): return score -#Mean Squared Error + +# Mean Squared Error def mse(predict, actual): predict = np.array(predict) actual = np.array(actual) @@ -35,7 +36,8 @@ def mse(predict, actual): score = square_diff.mean() return score -#Root Mean Squared Error + +# Root Mean Squared Error def rmse(predict, actual): predict = np.array(predict) actual = np.array(actual) @@ -46,13 +48,14 @@ def rmse(predict, actual): score = np.sqrt(mean_square_diff) return score -#Root Mean Square Logarithmic Error + +# Root Mean Square Logarithmic Error def rmsle(predict, actual): predict = np.array(predict) actual = np.array(actual) - log_predict = np.log(predict+1) - log_actual = np.log(actual+1) + log_predict = np.log(predict + 1) + log_actual = np.log(actual + 1) difference = log_predict - log_actual square_diff = np.square(difference) @@ -62,14 +65,15 @@ def rmsle(predict, actual): return score -#Mean Bias Deviation + +# Mean Bias Deviation def mbd(predict, actual): predict = np.array(predict) actual = np.array(actual) difference = predict - actual - numerator = np.sum(difference) / len(predict) - denumerator = np.sum(actual) / len(predict) + numerator = np.sum(difference) / len(predict) + denumerator = np.sum(actual) / len(predict) print(numerator) print(denumerator) diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index 0b5d788e92e1..1d4e4a276bc1 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -41,11 +41,20 @@ from sklearn.datasets import make_blobs, make_circles from sklearn.preprocessing import StandardScaler -CANCER_DATASET_URL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data' +CANCER_DATASET_URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data" class SmoSVM(object): - def __init__(self, train, kernel_func, alpha_list=None, cost=0.4, b=0.0, tolerance=0.001, auto_norm=True): + def __init__( + self, + train, + kernel_func, + alpha_list=None, + cost=0.4, + b=0.0, + tolerance=0.001, + auto_norm=True, + ): self._init = True self._auto_norm = auto_norm self._c = np.float64(cost) @@ -91,13 +100,25 @@ def fit(self): self.alphas[i1], self.alphas[i2] = a1_new, a2_new # 3: update threshold(b) - b1_new = np.float64(-e1 - y1 * K(i1, i1) * (a1_new - a1) - y2 * K(i2, i1) * (a2_new - a2) + self._b) - b2_new = np.float64(-e2 - y2 * K(i2, i2) * (a2_new - a2) - y1 * K(i1, i2) * (a1_new - a1) + self._b) + b1_new = np.float64( + -e1 + - y1 * K(i1, i1) * (a1_new - a1) + - y2 * K(i2, i1) * (a2_new - a2) + + self._b + ) + b2_new = np.float64( + -e2 + - y2 * K(i2, i2) * (a2_new - a2) + - y1 * K(i1, i2) * (a1_new - a1) + + self._b + ) if 0.0 < a1_new < self._c: b = b1_new if 0.0 < a2_new < self._c: b = b2_new - if not (np.float64(0) < a2_new < self._c) and not (np.float64(0) < a1_new < self._c): + if not (np.float64(0) < a2_new < self._c) and not ( + np.float64(0) < a1_new < self._c + ): b = (b1_new + b2_new) / 2.0 b_old = self._b self._b = b @@ -107,7 +128,11 @@ def fit(self): for s in self.unbound: if s == i1 or s == i2: continue - self._error[s] += y1 * (a1_new - a1) * K(i1, s) + y2 * (a2_new - a2) * K(i2, s) + (self._b - b_old) + self._error[s] += ( + y1 * (a1_new - a1) * K(i1, s) + + y2 * (a2_new - a2) * K(i2, s) + + (self._b - b_old) + ) # if i1 or i2 is non-bound,update there error value to zero if self._is_unbound(i1): @@ -119,7 +144,9 @@ def fit(self): def predict(self, test_samples, classify=True): if test_samples.shape[1] > self.samples.shape[1]: - raise ValueError("Test samples' feature length does not equal to that of train samples") + raise ValueError( + "Test samples' feature length does not equal to that of train samples" + ) if self._auto_norm: test_samples = self._norm(test_samples) @@ -173,14 +200,23 @@ def _calculate_k_matrix(self): k_matrix = np.zeros([self.length, self.length]) for i in self._all_samples: for j in self._all_samples: - k_matrix[i, j] = np.float64(self.Kernel(self.samples[i, :], self.samples[j, :])) + k_matrix[i, j] = np.float64( + self.Kernel(self.samples[i, :], self.samples[j, :]) + ) return k_matrix # Predict test sample's tag def _predict(self, sample): k = self._k - predicted_value = np.sum( - [self.alphas[i1] * self.tags[i1] * k(i1, sample) for i1 in self._all_samples]) + self._b + predicted_value = ( + np.sum( + [ + self.alphas[i1] * self.tags[i1] * k(i1, sample) + for i1 in self._all_samples + ] + ) + + self._b + ) return predicted_value # Choose alpha1 and alpha2 @@ -200,23 +236,27 @@ def _choose_a1(self): while True: all_not_obey = True # all sample - print('scanning all sample!') + print("scanning all sample!") for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]: all_not_obey = False yield from self._choose_a2(i1) # non-bound sample - print('scanning non-bound sample!') + print("scanning non-bound sample!") while True: not_obey = True - for i1 in [i for i in self._all_samples if self._check_obey_kkt(i) and self._is_unbound(i)]: + for i1 in [ + i + for i in self._all_samples + if self._check_obey_kkt(i) and self._is_unbound(i) + ]: not_obey = False yield from self._choose_a2(i1) if not_obey: - print('all non-bound samples fit the KKT condition!') + print("all non-bound samples fit the KKT condition!") break if all_not_obey: - print('all samples fit the KKT condition! Optimization done!') + print("all samples fit the KKT condition! Optimization done!") break return False @@ -231,7 +271,11 @@ def _choose_a2(self, i1): if len(self.unbound) > 0: tmp_error = self._error.copy().tolist() - tmp_error_dict = {index: value for index, value in enumerate(tmp_error) if self._is_unbound(index)} + tmp_error_dict = { + index: value + for index, value in enumerate(tmp_error) + if self._is_unbound(index) + } if self._e(i1) >= 0: i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index]) else: @@ -289,8 +333,20 @@ def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2): # way 1 f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2) f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2) - ol = l1 * f1 + L * f2 + 1 / 2 * l1 ** 2 * K(i1, i1) + 1 / 2 * L ** 2 * K(i2, i2) + s * L * l1 * K(i1, i2) - oh = h1 * f1 + H * f2 + 1 / 2 * h1 ** 2 * K(i1, i1) + 1 / 2 * H ** 2 * K(i2, i2) + s * H * h1 * K(i1, i2) + ol = ( + l1 * f1 + + L * f2 + + 1 / 2 * l1 ** 2 * K(i1, i1) + + 1 / 2 * L ** 2 * K(i2, i2) + + s * L * l1 * K(i1, i2) + ) + oh = ( + h1 * f1 + + H * f2 + + 1 / 2 * h1 ** 2 * K(i1, i1) + + 1 / 2 * H ** 2 * K(i2, i2) + + s * H * h1 * K(i1, i2) + ) """ # way 2 Use objective function check which alpha2 new could get the minimal objectives @@ -370,14 +426,10 @@ def _rbf(self, v1, v2): def _check(self): if self._kernel == self._rbf: if self.gamma < 0: - raise ValueError('gamma value must greater than 0') + raise ValueError("gamma value must greater than 0") def _get_kernel(self, kernel_name): - maps = { - 'linear': self._linear, - 'poly': self._polynomial, - 'rbf': self._rbf - } + maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf} return maps[kernel_name] def __call__(self, v1, v2): @@ -390,34 +442,35 @@ def __repr__(self): def count_time(func): def call_func(*args, **kwargs): import time + start_time = time.time() func(*args, **kwargs) end_time = time.time() - print('smo algorithm cost {} seconds'.format(end_time - start_time)) + print("smo algorithm cost {} seconds".format(end_time - start_time)) return call_func @count_time def test_cancel_data(): - print('Hello!\r\nStart test svm by smo algorithm!') + print("Hello!\r\nStart test svm by smo algorithm!") # 0: download dataset and load into pandas' dataframe - if not os.path.exists(r'cancel_data.csv'): + if not os.path.exists(r"cancel_data.csv"): request = urllib.request.Request( CANCER_DATASET_URL, - headers={'User-Agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'} + headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"}, ) response = urllib.request.urlopen(request) - content = response.read().decode('utf-8') - with open(r'cancel_data.csv', 'w') as f: + content = response.read().decode("utf-8") + with open(r"cancel_data.csv", "w") as f: f.write(content) - data = pd.read_csv(r'cancel_data.csv', header=None) + data = pd.read_csv(r"cancel_data.csv", header=None) # 1: pre-processing data del data[data.columns.tolist()[0]] data = data.dropna(axis=0) - data = data.replace({'M': np.float64(1), 'B': np.float64(-1)}) + data = data.replace({"M": np.float64(1), "B": np.float64(-1)}) samples = np.array(data)[:, :] # 2: deviding data into train_data data and test_data data @@ -425,11 +478,18 @@ def test_cancel_data(): test_tags, test_samples = test_data[:, 0], test_data[:, 1:] # 3: choose kernel function,and set initial alphas to zero(optional) - mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5) + mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5) al = np.zeros(train_data.shape[0]) # 4: calculating best alphas using SMO algorithm and predict test_data samples - mysvm = SmoSVM(train=train_data, kernel_func=mykernel, alpha_list=al, cost=0.4, b=0.0, tolerance=0.001) + mysvm = SmoSVM( + train=train_data, + kernel_func=mykernel, + alpha_list=al, + cost=0.4, + b=0.0, + tolerance=0.001, + ) mysvm.fit() predict = mysvm.predict(test_samples) @@ -439,14 +499,18 @@ def test_cancel_data(): for i in range(test_tags.shape[0]): if test_tags[i] == predict[i]: score += 1 - print('\r\nall: {}\r\nright: {}\r\nfalse: {}'.format(test_num, score, test_num - score)) + print( + "\r\nall: {}\r\nright: {}\r\nfalse: {}".format( + test_num, score, test_num - score + ) + ) print("Rough Accuracy: {}".format(score / test_tags.shape[0])) def test_demonstration(): # change stdout - print('\r\nStart plot,please wait!!!') - sys.stdout = open(os.devnull, 'w') + print("\r\nStart plot,please wait!!!") + sys.stdout = open(os.devnull, "w") ax1 = plt.subplot2grid((2, 2), (0, 0)) ax2 = plt.subplot2grid((2, 2), (0, 1)) @@ -464,32 +528,50 @@ def test_demonstration(): sys.stdout = sys.__stdout__ print("Plot done!!!") + def test_linear_kernel(ax, cost): - train_x, train_y = make_blobs(n_samples=500, centers=2, - n_features=2, random_state=1) + train_x, train_y = make_blobs( + n_samples=500, centers=2, n_features=2, random_state=1 + ) train_y[train_y == 0] = -1 scaler = StandardScaler() train_x_scaled = scaler.fit_transform(train_x, train_y) train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) - mykernel = Kernel(kernel='linear', degree=5, coef0=1, gamma=0.5) - mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False) + mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5) + mysvm = SmoSVM( + train=train_data, + kernel_func=mykernel, + cost=cost, + tolerance=0.001, + auto_norm=False, + ) mysvm.fit() plot_partition_boundary(mysvm, train_data, ax=ax) def test_rbf_kernel(ax, cost): - train_x, train_y = make_circles(n_samples=500, noise=0.1, factor=0.1, random_state=1) + train_x, train_y = make_circles( + n_samples=500, noise=0.1, factor=0.1, random_state=1 + ) train_y[train_y == 0] = -1 scaler = StandardScaler() train_x_scaled = scaler.fit_transform(train_x, train_y) train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) - mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5) - mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False) + mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5) + mysvm = SmoSVM( + train=train_data, + kernel_func=mykernel, + cost=cost, + tolerance=0.001, + auto_norm=False, + ) mysvm.fit() plot_partition_boundary(mysvm, train_data, ax=ax) -def plot_partition_boundary(model, train_data, ax, resolution=100, colors=('b', 'k', 'r')): +def plot_partition_boundary( + model, train_data, ax, resolution=100, colors=("b", "k", "r") +): """ We can not get the optimum w of our kernel svm model which is different from linear svm. For this reason, we generate randomly destributed points with high desity and prediced values of these points are @@ -502,25 +584,44 @@ def plot_partition_boundary(model, train_data, ax, resolution=100, colors=('b', train_data_tags = train_data[:, 0] xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution) yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution) - test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(resolution * resolution, 2) + test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape( + resolution * resolution, 2 + ) test_tags = model.predict(test_samples, classify=False) grid = test_tags.reshape((len(xrange), len(yrange))) # Plot contour map which represents the partition boundary - ax.contour(xrange, yrange, np.mat(grid).T, levels=(-1, 0, 1), linestyles=('--', '-', '--'), - linewidths=(1, 1, 1), - colors=colors) + ax.contour( + xrange, + yrange, + np.mat(grid).T, + levels=(-1, 0, 1), + linestyles=("--", "-", "--"), + linewidths=(1, 1, 1), + colors=colors, + ) # Plot all train samples - ax.scatter(train_data_x, train_data_y, c=train_data_tags, cmap=plt.cm.Dark2, lw=0, alpha=0.5) + ax.scatter( + train_data_x, + train_data_y, + c=train_data_tags, + cmap=plt.cm.Dark2, + lw=0, + alpha=0.5, + ) # Plot support vectors support = model.support - ax.scatter(train_data_x[support], train_data_y[support], c=train_data_tags[support], cmap=plt.cm.Dark2) + ax.scatter( + train_data_x[support], + train_data_y[support], + c=train_data_tags[support], + cmap=plt.cm.Dark2, + ) -if __name__ == '__main__': +if __name__ == "__main__": test_cancel_data() test_demonstration() plt.show() - diff --git a/maths/3n+1.py b/maths/3n+1.py index d6c14ff0f47d..6b2dfc785794 100644 --- a/maths/3n+1.py +++ b/maths/3n+1.py @@ -1,6 +1,7 @@ from typing import Tuple, List -def n31(a: int) -> Tuple[List[int], int]: + +def n31(a: int) -> Tuple[List[int], int]: """ Returns the Collatz sequence and its length of any postiver integer. >>> n31(4) @@ -8,23 +9,29 @@ def n31(a: int) -> Tuple[List[int], int]: """ if not isinstance(a, int): - raise TypeError('Must be int, not {0}'.format(type(a).__name__)) - if a < 1: - raise ValueError('Given integer must be greater than 1, not {0}'.format(a)) - + raise TypeError("Must be int, not {0}".format(type(a).__name__)) + if a < 1: + raise ValueError("Given integer must be greater than 1, not {0}".format(a)) + path = [a] while a != 1: if a % 2 == 0: a = a // 2 else: - a = 3*a +1 + a = 3 * a + 1 path += [a] return path, len(path) + def main(): num = 4 - path , length = n31(num) - print("The Collatz sequence of {0} took {1} steps. \nPath: {2}".format(num,length, path)) + path, length = n31(num) + print( + "The Collatz sequence of {0} took {1} steps. \nPath: {2}".format( + num, length, path + ) + ) + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/abs.py b/maths/abs.py index 2734e58ceee6..4d15ee6e82a8 100644 --- a/maths/abs.py +++ b/maths/abs.py @@ -22,5 +22,5 @@ def main(): print(abs_val(-34)) # = 34 -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/abs_max.py b/maths/abs_max.py index 28f631f0100e..554e27f6ee66 100644 --- a/maths/abs_max.py +++ b/maths/abs_max.py @@ -1,4 +1,5 @@ -from typing import List +from typing import List + def abs_max(x: List[int]) -> int: """ @@ -7,12 +8,13 @@ def abs_max(x: List[int]) -> int: >>> abs_max([3,-10,-2]) -10 """ - j =x[0] + j = x[0] for i in x: if abs(i) > abs(j): j = i return j + def abs_max_sort(x): """ >>> abs_max_sort([0,5,1,11]) @@ -20,13 +22,14 @@ def abs_max_sort(x): >>> abs_max_sort([3,-10,-2]) -10 """ - return sorted(x,key=abs)[-1] + return sorted(x, key=abs)[-1] + def main(): - a = [1,2,-11] + a = [1, 2, -11] assert abs_max(a) == -11 assert abs_max_sort(a) == -11 -if __name__ == '__main__': - main() +if __name__ == "__main__": + main() diff --git a/maths/abs_min.py b/maths/abs_min.py index abb0c9051b7d..eb84de37ce23 100644 --- a/maths/abs_min.py +++ b/maths/abs_min.py @@ -16,9 +16,9 @@ def absMin(x): def main(): - a = [-3,-1,2,-11] + a = [-3, -1, 2, -11] print(absMin(a)) # = -1 -if __name__ == '__main__': - main() \ No newline at end of file +if __name__ == "__main__": + main() diff --git a/maths/average_mean.py b/maths/average_mean.py index 78387111022d..e04b63be0e19 100644 --- a/maths/average_mean.py +++ b/maths/average_mean.py @@ -16,5 +16,5 @@ def main(): average([2, 4, 6, 8, 20, 50, 70]) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/average_median.py b/maths/average_median.py index eab0107d8da8..ccb250d7718c 100644 --- a/maths/average_median.py +++ b/maths/average_median.py @@ -24,11 +24,13 @@ def median(nums): med = sorted_list[mid_index] return med + def main(): print("Odd number of numbers:") print(median([2, 4, 6, 8, 20, 50, 70])) print("Even number of numbers:") print(median([2, 4, 6, 8, 20, 50])) -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/maths/basic_maths.py b/maths/basic_maths.py index cd7bac0113b8..34ffd1031527 100644 --- a/maths/basic_maths.py +++ b/maths/basic_maths.py @@ -49,7 +49,7 @@ def sum_of_divisors(n): temp += 1 n = int(n / 2) if temp > 1: - s *= (2**temp - 1) / (2 - 1) + s *= (2 ** temp - 1) / (2 - 1) for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 @@ -57,7 +57,7 @@ def sum_of_divisors(n): temp += 1 n = int(n / i) if temp > 1: - s *= (i**temp - 1) / (i - 1) + s *= (i ** temp - 1) / (i - 1) return s @@ -80,5 +80,5 @@ def main(): print(euler_phi(100)) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/binary_exponentiation.py b/maths/binary_exponentiation.py index a8d736adfea0..57c4b8686f5c 100644 --- a/maths/binary_exponentiation.py +++ b/maths/binary_exponentiation.py @@ -6,10 +6,10 @@ def binary_exponentiation(a, n): - if (n == 0): + if n == 0: return 1 - elif (n % 2 == 1): + elif n % 2 == 1: return binary_exponentiation(a, n - 1) * a else: diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py index 9f88453d518b..c83da3f0f0e8 100644 --- a/maths/collatz_sequence.py +++ b/maths/collatz_sequence.py @@ -10,10 +10,10 @@ def collatz_sequence(n): """ sequence = [n] while n != 1: - if n % 2 == 0:# even - n //= 2 + if n % 2 == 0: # even + n //= 2 else: - n = 3*n +1 + n = 3 * n + 1 sequence.append(n) return sequence @@ -22,7 +22,8 @@ def main(): n = 43 sequence = collatz_sequence(n) print(sequence) - print("collatz sequence from %d took %d steps."%(n,len(sequence))) + print("collatz sequence from %d took %d steps." % (n, len(sequence))) -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/maths/extended_euclidean_algorithm.py b/maths/extended_euclidean_algorithm.py index fc3798e7e432..fe81bcfaf71d 100644 --- a/maths/extended_euclidean_algorithm.py +++ b/maths/extended_euclidean_algorithm.py @@ -61,12 +61,12 @@ def extended_euclidean_algorithm(m, n): def main(): """Call Extended Euclidean Algorithm.""" if len(sys.argv) < 3: - print('2 integer arguments required') + print("2 integer arguments required") exit(1) m = int(sys.argv[1]) n = int(sys.argv[2]) print(extended_euclidean_algorithm(m, n)) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py index 06173dcbcd7d..f346c65f1962 100644 --- a/maths/factorial_recursive.py +++ b/maths/factorial_recursive.py @@ -11,4 +11,4 @@ def fact(n): where i ranges from 1 to 20. """ for i in range(1, 21): - print(i, ": ", fact(i), sep='') + print(i, ": ", fact(i), sep="") diff --git a/maths/fermat_little_theorem.py b/maths/fermat_little_theorem.py index 8cf60dafe3ca..24d558115795 100644 --- a/maths/fermat_little_theorem.py +++ b/maths/fermat_little_theorem.py @@ -6,10 +6,10 @@ def binary_exponentiation(a, n, mod): - if (n == 0): + if n == 0: return 1 - elif (n % 2 == 1): + elif n % 2 == 1: return (binary_exponentiation(a, n - 1, mod) * a) % mod else: diff --git a/maths/fibonacci.py b/maths/fibonacci.py index 0a0611f21379..5ba9f6636364 100644 --- a/maths/fibonacci.py +++ b/maths/fibonacci.py @@ -21,10 +21,11 @@ def timer_wrapper(*args, **kwargs): func(*args, **kwargs) end = time.time() if int(end - start) > 0: - print(f'Run time for {func.__name__}: {(end - start):0.2f}s') + print(f"Run time for {func.__name__}: {(end - start):0.2f}s") else: - print(f'Run time for {func.__name__}: {(end - start)*1000:0.2f}ms') + print(f"Run time for {func.__name__}: {(end - start)*1000:0.2f}ms") return func(*args, **kwargs) + return timer_wrapper @@ -69,9 +70,13 @@ def _check_number_input(n, min_thresh, max_thresh=None): except ValueLessThanZero: print("Incorrect Input: number must not be less than 0") except ValueTooSmallError: - print(f'Incorrect Input: input number must be > {min_thresh} for the recursive calculation') + print( + f"Incorrect Input: input number must be > {min_thresh} for the recursive calculation" + ) except ValueTooLargeError: - print(f'Incorrect Input: input number must be < {max_thresh} for the recursive calculation') + print( + f"Incorrect Input: input number must be < {max_thresh} for the recursive calculation" + ) return False @@ -86,8 +91,8 @@ def fib_iterative(n): if _check_number_input(n, 2): seq_out = [0, 1] a, b = 0, 1 - for _ in range(n-len(seq_out)): - a, b = b, a+b + for _ in range(n - len(seq_out)): + a, b = b, a + b seq_out.append(b) return seq_out @@ -106,12 +111,14 @@ def fib_formula(n): phi_1 = Decimal(1 + sqrt) / Decimal(2) phi_2 = Decimal(1 - sqrt) / Decimal(2) for i in range(2, n): - temp_out = ((phi_1**Decimal(i)) - (phi_2**Decimal(i))) * (Decimal(sqrt) ** Decimal(-1)) + temp_out = ((phi_1 ** Decimal(i)) - (phi_2 ** Decimal(i))) * ( + Decimal(sqrt) ** Decimal(-1) + ) seq_out.append(int(temp_out)) return seq_out -if __name__ == '__main__': +if __name__ == "__main__": num = 20 # print(f'{fib_recursive(num)}\n') # print(f'{fib_iterative(num)}\n') diff --git a/maths/fibonacci_sequence_recursion.py b/maths/fibonacci_sequence_recursion.py index 9190e7fc7a40..3a565a458631 100644 --- a/maths/fibonacci_sequence_recursion.py +++ b/maths/fibonacci_sequence_recursion.py @@ -1,14 +1,17 @@ # Fibonacci Sequence Using Recursion + def recur_fibo(n): if n <= 1: return n else: - (recur_fibo(n-1) + recur_fibo(n-2)) + (recur_fibo(n - 1) + recur_fibo(n - 2)) + def isPositiveInteger(limit): return limit >= 0 + def main(): limit = int(input("How many terms to include in fibonacci series: ")) if isPositiveInteger(limit): @@ -17,5 +20,6 @@ def main(): else: print("Please enter a positive integer: ") -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/maths/find_lcm.py b/maths/find_lcm.py index f7ac958070b5..dffadd1f3c5b 100644 --- a/maths/find_lcm.py +++ b/maths/find_lcm.py @@ -10,14 +10,14 @@ def find_lcm(num_1, num_2): >>> find_lcm(12,76) 228 """ - if num_1>=num_2: - max_num=num_1 + if num_1 >= num_2: + max_num = num_1 else: - max_num=num_2 - + max_num = num_2 + lcm = max_num while True: - if ((lcm % num_1 == 0) and (lcm % num_2 == 0)): + if (lcm % num_1 == 0) and (lcm % num_2 == 0): break lcm += max_num return lcm @@ -25,10 +25,10 @@ def find_lcm(num_1, num_2): def main(): """Use test numbers to run the find_lcm algorithm.""" - num_1 = int(input().strip()) - num_2 = int(input().strip()) + num_1 = int(input().strip()) + num_2 = int(input().strip()) print(find_lcm(num_1, num_2)) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/find_max.py b/maths/find_max.py index 0ce49a68c348..7cc82aacfb09 100644 --- a/maths/find_max.py +++ b/maths/find_max.py @@ -1,14 +1,17 @@ # NguyenU + def find_max(nums): max = nums[0] for x in nums: - if x > max: - max = x + if x > max: + max = x print(max) + def main(): - find_max([2, 4, 9, 7, 19, 94, 5]) + find_max([2, 4, 9, 7, 19, 94, 5]) + -if __name__ == '__main__': - main() +if __name__ == "__main__": + main() diff --git a/maths/find_min.py b/maths/find_min.py index c720da268a25..e24982a9369b 100644 --- a/maths/find_min.py +++ b/maths/find_min.py @@ -3,6 +3,7 @@ def main(): """Find Minimum Number in a List.""" + def find_min(x): min_num = x[0] for i in x: @@ -13,5 +14,5 @@ def find_min(x): print(find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])) # = -56 -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/gaussian.py b/maths/gaussian.py index f3a47a3f6a1b..e5f55dfaffd1 100644 --- a/maths/gaussian.py +++ b/maths/gaussian.py @@ -1,4 +1,3 @@ - """ Reference: https://en.wikipedia.org/wiki/Gaussian_function @@ -9,7 +8,6 @@ from numpy import pi, sqrt, exp - def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: """ >>> gaussian(1) diff --git a/maths/greater_common_divisor.py b/maths/greater_common_divisor.py index adc7811e8317..ec608488a61f 100644 --- a/maths/greater_common_divisor.py +++ b/maths/greater_common_divisor.py @@ -13,7 +13,7 @@ def gcd(a, b): def main(): """Call GCD Function.""" try: - nums = input("Enter two Integers separated by comma (,): ").split(',') + nums = input("Enter two Integers separated by comma (,): ").split(",") num_1 = int(nums[0]) num_2 = int(nums[1]) except (IndexError, UnboundLocalError, ValueError): @@ -21,5 +21,5 @@ def main(): print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}") -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/lucas_series.py b/maths/lucas_series.py index 9ae437dc9f54..22ad893a6567 100644 --- a/maths/lucas_series.py +++ b/maths/lucas_series.py @@ -1,5 +1,6 @@ # Lucas Sequence Using Recursion + def recur_luc(n): """ >>> recur_luc(1) diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py index f80f6c3cad5e..c20292735a92 100644 --- a/maths/matrix_exponentiation.py +++ b/maths/matrix_exponentiation.py @@ -85,8 +85,9 @@ def simple_fibonacci_time(): """ code = "simple_fibonacci(randint(1,70000), 1, 1)" exec_time = timeit.timeit(setup=setup, stmt=code, number=100) - print("Without matrix exponentiation the average execution time is ", - exec_time / 100) + print( + "Without matrix exponentiation the average execution time is ", exec_time / 100 + ) return exec_time diff --git a/maths/modular_exponential.py b/maths/modular_exponential.py index 750de7cba99e..8715e17147ff 100644 --- a/maths/modular_exponential.py +++ b/maths/modular_exponential.py @@ -21,5 +21,5 @@ def main(): print(modular_exponential(3, 200, 13)) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py index d89f264acdd8..093cc4438416 100644 --- a/maths/newton_raphson.py +++ b/maths/newton_raphson.py @@ -1,4 +1,4 @@ -''' +""" Author: P Shreyas Shetty Implementation of Newton-Raphson method for solving equations of kind f(x) = 0. It is an iterative method where solution is found by the expression @@ -6,27 +6,29 @@ If no solution exists, then either the solution will not be found when iteration limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception is raised. If iteration limit is reached, try increasing maxiter. - ''' + """ import math as m + def calc_derivative(f, a, h=0.001): - ''' + """ Calculates derivative at point a for function f using finite difference method - ''' - return (f(a+h)-f(a-h))/(2*h) + """ + return (f(a + h) - f(a - h)) / (2 * h) + + +def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False): -def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False): - - a = x0 #set the initial guess + a = x0 # set the initial guess steps = [a] error = abs(f(a)) - f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x) + f1 = lambda x: calc_derivative(f, x, h=step) # Derivative of f(x) for _ in range(maxiter): if f1(a) == 0: raise ValueError("No converging solution found") - a = a - f(a)/f1(a) #Calculate the next estimate + a = a - f(a) / f1(a) # Calculate the next estimate if logsteps: steps.append(a) if error < maxerror: @@ -34,14 +36,18 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=Fal else: raise ValueError("Iteration limit reached, no converging solution found") if logsteps: - #If logstep is true, then log intermediate steps + # If logstep is true, then log intermediate steps return a, error, steps return a, error - -if __name__ == '__main__': + + +if __name__ == "__main__": import matplotlib.pyplot as plt - f = lambda x:m.tanh(x)**2-m.exp(3*x) - solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True) + + f = lambda x: m.tanh(x) ** 2 - m.exp(3 * x) + solution, error, steps = newton_raphson( + f, x0=10, maxiter=1000, step=1e-6, logsteps=True + ) plt.plot([abs(f(x)) for x in steps]) plt.xlabel("step") plt.ylabel("error") diff --git a/maths/polynomial_evaluation.py b/maths/polynomial_evaluation.py index b4f18b9fa106..3c91ecd93031 100644 --- a/maths/polynomial_evaluation.py +++ b/maths/polynomial_evaluation.py @@ -11,7 +11,7 @@ def evaluate_poly(poly, x): 79800.0 """ - return sum(c*(x**i) for i, c in enumerate(poly)) + return sum(c * (x ** i) for i, c in enumerate(poly)) if __name__ == "__main__": diff --git a/maths/prime_check.py b/maths/prime_check.py index 9249834dc069..e60281228fda 100644 --- a/maths/prime_check.py +++ b/maths/prime_check.py @@ -40,12 +40,13 @@ def test_primes(self): self.assertTrue(prime_check(29)) def test_not_primes(self): - self.assertFalse(prime_check(-19), - "Negative numbers are not prime.") - self.assertFalse(prime_check(0), - "Zero doesn't have any divider, primes must have two") - self.assertFalse(prime_check(1), - "One just have 1 divider, primes must have two.") + self.assertFalse(prime_check(-19), "Negative numbers are not prime.") + self.assertFalse( + prime_check(0), "Zero doesn't have any divider, primes must have two" + ) + self.assertFalse( + prime_check(1), "One just have 1 divider, primes must have two." + ) self.assertFalse(prime_check(2 * 2)) self.assertFalse(prime_check(2 * 3)) self.assertFalse(prime_check(3 * 3)) @@ -53,5 +54,5 @@ def test_not_primes(self): self.assertFalse(prime_check(3 * 5 * 7)) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/maths/radix2_fft.py b/maths/radix2_fft.py index c7ffe96528b4..3911fea1d04d 100644 --- a/maths/radix2_fft.py +++ b/maths/radix2_fft.py @@ -65,12 +65,7 @@ def __init__(self, polyA=[0], polyB=[0]): # Add 0 to make lengths equal a power of 2 self.C_max_length = int( - 2 - ** np.ceil( - np.log2( - len(self.polyA) + len(self.polyB) - 1 - ) - ) + 2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1)) ) while len(self.polyA) < self.C_max_length: @@ -78,9 +73,7 @@ def __init__(self, polyA=[0], polyB=[0]): while len(self.polyB) < self.C_max_length: self.polyB.append(0) # A complex root used for the fourier transform - self.root = complex( - mpmath.root(x=1, n=self.C_max_length, k=1) - ) + self.root = complex(mpmath.root(x=1, n=self.C_max_length, k=1)) # The product self.product = self.__multiply() @@ -102,27 +95,15 @@ def __DFT(self, which): # First half of next step current_root = 1 - for j in range( - self.C_max_length // (next_ncol * 2) - ): + for j in range(self.C_max_length // (next_ncol * 2)): for i in range(next_ncol): - new_dft[i].append( - dft[i][j] - + current_root - * dft[i + next_ncol][j] - ) + new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step current_root = 1 - for j in range( - self.C_max_length // (next_ncol * 2) - ): + for j in range(self.C_max_length // (next_ncol * 2)): for i in range(next_ncol): - new_dft[i].append( - dft[i][j] - - current_root - * dft[i + next_ncol][j] - ) + new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update dft = new_dft @@ -133,12 +114,7 @@ def __DFT(self, which): def __multiply(self): dftA = self.__DFT("A") dftB = self.__DFT("B") - inverseC = [ - [ - dftA[i] * dftB[i] - for i in range(self.C_max_length) - ] - ] + inverseC = [[dftA[i] * dftB[i] for i in range(self.C_max_length)]] del dftA del dftB @@ -158,11 +134,7 @@ def __multiply(self): new_inverseC[i].append( ( inverseC[i][j] - + inverseC[i][ - j - + self.C_max_length - // next_ncol - ] + + inverseC[i][j + self.C_max_length // next_ncol] ) / 2 ) @@ -170,11 +142,7 @@ def __multiply(self): new_inverseC[i + next_ncol // 2].append( ( inverseC[i][j] - - inverseC[i][ - j - + self.C_max_length - // next_ncol - ] + - inverseC[i][j + self.C_max_length // next_ncol] ) / (2 * current_root) ) @@ -183,10 +151,7 @@ def __multiply(self): inverseC = new_inverseC next_ncol *= 2 # Unpack - inverseC = [ - round(x[0].real, 8) + round(x[0].imag, 8) * 1j - for x in inverseC - ] + inverseC = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverseC] # Remove leading 0's while inverseC[-1] == 0: @@ -196,20 +161,13 @@ def __multiply(self): # Overwrite __str__ for print(); Shows A, B and A*B def __str__(self): A = "A = " + " + ".join( - f"{coef}*x^{i}" - for coef, i in enumerate( - self.polyA[: self.len_A] - ) + f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A]) ) B = "B = " + " + ".join( - f"{coef}*x^{i}" - for coef, i in enumerate( - self.polyB[: self.len_B] - ) + f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B]) ) C = "A*B = " + " + ".join( - f"{coef}*x^{i}" - for coef, i in enumerate(self.product) + f"{coef}*x^{i}" for coef, i in enumerate(self.product) ) return "\n".join((A, B, C)) diff --git a/maths/segmented_sieve.py b/maths/segmented_sieve.py index b15ec2480678..c1cc497ad33e 100644 --- a/maths/segmented_sieve.py +++ b/maths/segmented_sieve.py @@ -48,4 +48,4 @@ def sieve(n): return prime -print(sieve(10**6)) +print(sieve(10 ** 6)) diff --git a/maths/simpson_rule.py b/maths/simpson_rule.py index 5cf9c14b07ee..f4620be8e70f 100644 --- a/maths/simpson_rule.py +++ b/maths/simpson_rule.py @@ -1,4 +1,3 @@ - """ Numerical integration or quadrature for a smooth function f with known values at x_i @@ -8,39 +7,45 @@ "Simpson Rule" """ + + def method_2(boundary, steps): -# "Simpson Rule" -# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) + # "Simpson Rule" + # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] - x_i = make_points(a,b,h) + x_i = make_points(a, b, h) y = 0.0 - y += (h/3.0)*f(a) + y += (h / 3.0) * f(a) cnt = 2 for i in x_i: - y += (h/3)*(4-2*(cnt%2))*f(i) + y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i) cnt += 1 - y += (h/3.0)*f(b) + y += (h / 3.0) * f(b) return y -def make_points(a,b,h): + +def make_points(a, b, h): x = a + h - while x < (b-h): + while x < (b - h): yield x x = x + h -def f(x): #enter your function here - y = (x-0)*(x-0) + +def f(x): # enter your function here + y = (x - 0) * (x - 0) return y + def main(): - a = 0.0 #Lower bound of integration - b = 1.0 #Upper bound of integration - steps = 10.0 #define number of steps or resolution - boundary = [a, b] #define boundary of integration + a = 0.0 # Lower bound of integration + b = 1.0 # Upper bound of integration + steps = 10.0 # define number of steps or resolution + boundary = [a, b] # define boundary of integration y = method_2(boundary, steps) - print('y = {0}'.format(y)) + print("y = {0}".format(y)) + -if __name__ == '__main__': - main() +if __name__ == "__main__": + main() diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index f5e5fbbc2662..0f321317614d 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -7,38 +7,44 @@ "extended trapezoidal rule" """ + + def method_1(boundary, steps): -# "extended trapezoidal rule" -# int(f) = dx/2 * (f1 + 2f2 + ... + fn) - h = (boundary[1] - boundary[0]) / steps - a = boundary[0] - b = boundary[1] - x_i = make_points(a,b,h) - y = 0.0 - y += (h/2.0)*f(a) - for i in x_i: - #print(i) - y += h*f(i) - y += (h/2.0)*f(b) - return y - -def make_points(a,b,h): - x = a + h - while x < (b-h): - yield x - x = x + h - -def f(x): #enter your function here - y = (x-0)*(x-0) - return y + # "extended trapezoidal rule" + # int(f) = dx/2 * (f1 + 2f2 + ... + fn) + h = (boundary[1] - boundary[0]) / steps + a = boundary[0] + b = boundary[1] + x_i = make_points(a, b, h) + y = 0.0 + y += (h / 2.0) * f(a) + for i in x_i: + # print(i) + y += h * f(i) + y += (h / 2.0) * f(b) + return y + + +def make_points(a, b, h): + x = a + h + while x < (b - h): + yield x + x = x + h + + +def f(x): # enter your function here + y = (x - 0) * (x - 0) + return y + def main(): - a = 0.0 #Lower bound of integration - b = 1.0 #Upper bound of integration - steps = 10.0 #define number of steps or resolution - boundary = [a, b] #define boundary of integration - y = method_1(boundary, steps) - print('y = {0}'.format(y)) - -if __name__ == '__main__': - main() + a = 0.0 # Lower bound of integration + b = 1.0 # Upper bound of integration + steps = 10.0 # define number of steps or resolution + boundary = [a, b] # define boundary of integration + y = method_1(boundary, steps) + print("y = {0}".format(y)) + + +if __name__ == "__main__": + main() diff --git a/maths/zellers_congruence.py b/maths/zellers_congruence.py index 67c5550802ea..277ecfaf0da9 100644 --- a/maths/zellers_congruence.py +++ b/maths/zellers_congruence.py @@ -68,24 +68,16 @@ def zeller(date_input: str) -> str: # Days of the week for response days = { - '0': 'Sunday', - '1': 'Monday', - '2': 'Tuesday', - '3': 'Wednesday', - '4': 'Thursday', - '5': 'Friday', - '6': 'Saturday' + "0": "Sunday", + "1": "Monday", + "2": "Tuesday", + "3": "Wednesday", + "4": "Thursday", + "5": "Friday", + "6": "Saturday", } - convert_datetime_days = { - 0:1, - 1:2, - 2:3, - 3:4, - 4:5, - 5:6, - 6:0 - } + convert_datetime_days = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(date_input) < 11: @@ -97,9 +89,9 @@ def zeller(date_input: str) -> str: if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") - sep_1:str = date_input[2] + sep_1: str = date_input[2] # Validate - if sep_1 not in ["-","/"]: + if sep_1 not in ["-", "/"]: raise ValueError("Date seperator must be '-' or '/'") # Get day @@ -111,14 +103,16 @@ def zeller(date_input: str) -> str: # Get second seperator sep_2: str = date_input[5] # Validate - if sep_2 not in ["-","/"]: + if sep_2 not in ["-", "/"]: raise ValueError("Date seperator must be '-' or '/'") # Get year y: int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: - raise ValueError("Year out of range. There has to be some sort of limit...right?") + raise ValueError( + "Year out of range. There has to be some sort of limit...right?" + ) # Get datetime obj for validation dt_ck = datetime.date(int(y), int(m), int(d)) @@ -130,13 +124,13 @@ def zeller(date_input: str) -> str: # maths var c: int = int(str(y)[:2]) k: int = int(str(y)[2:]) - t: int = int(2.6*m - 5.39) + t: int = int(2.6 * m - 5.39) u: int = int(c / 4) v: int = int(k / 4) x: int = int(d + k) z: int = int(t + u + v + x) w: int = int(z - (2 * c)) - f: int = round(w%7) + f: int = round(w % 7) # End math # Validate math @@ -147,10 +141,16 @@ def zeller(date_input: str) -> str: response: str = f"Your date {date_input}, is a {days[str(f)]}!" return response -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() - parser = argparse.ArgumentParser(description='Find out what day of the week nearly any date is or was. Enter date as a string in the mm-dd-yyyy or mm/dd/yyyy format') - parser.add_argument('date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)') + parser = argparse.ArgumentParser( + description="Find out what day of the week nearly any date is or was. Enter date as a string in the mm-dd-yyyy or mm/dd/yyyy format" + ) + parser.add_argument( + "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" + ) args = parser.parse_args() zeller(args.date_input) diff --git a/matrix/matrix_class.py b/matrix/matrix_class.py index c82fb2cf6464..a8066e319559 100644 --- a/matrix/matrix_class.py +++ b/matrix/matrix_class.py @@ -311,8 +311,10 @@ def __mul__(self, other): return Matrix([[element * other for element in row] for row in self.rows]) elif isinstance(other, Matrix): if self.num_columns != other.num_rows: - raise ValueError("The number of columns in the first matrix must " - "be equal to the number of rows in the second") + raise ValueError( + "The number of columns in the first matrix must " + "be equal to the number of rows in the second" + ) return Matrix( [ [Matrix.dot_product(row, column) for column in other.columns()] @@ -320,7 +322,9 @@ def __mul__(self, other): ] ) else: - raise TypeError("A Matrix can only be multiplied by an int, float, or another matrix") + raise TypeError( + "A Matrix can only be multiplied by an int, float, or another matrix" + ) def __pow__(self, other): if not isinstance(other, int): diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py index b32a4dcf7af3..5ca61b4ed023 100644 --- a/matrix/matrix_operation.py +++ b/matrix/matrix_operation.py @@ -39,8 +39,10 @@ def multiply(matrix_a, matrix_b): rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) if cols[0] != rows[1]: - raise ValueError(f'Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) ' - f'and ({rows[1]},{cols[1]})') + raise ValueError( + f"Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) " + f"and ({rows[1]},{cols[1]})" + ) for i in range(rows[0]): list_1 = [] for j in range(cols[1]): @@ -59,7 +61,7 @@ def identity(n): :return: Identity matrix of shape [n, n] """ n = int(n) - return [[int(row == column) for column in range(n)] for row in range(n)] + return [[int(row == column) for column in range(n)] for row in range(n)] def transpose(matrix, return_map=True): @@ -75,15 +77,15 @@ def transpose(matrix, return_map=True): def minor(matrix, row, column): - minor = matrix[:row] + matrix[row + 1:] - minor = [row[:column] + row[column + 1:] for row in minor] + minor = matrix[:row] + matrix[row + 1 :] + minor = [row[:column] + row[column + 1 :] for row in minor] return minor def determinant(matrix): if len(matrix) == 1: return matrix[0][0] - + res = 0 for x in range(len(matrix)): res += matrix[0][x] * determinant(minor(matrix, 0, x)) * (-1) ** x @@ -99,10 +101,13 @@ def inverse(matrix): for i in range(len(matrix)): for j in range(len(matrix)): matrix_minor[i].append(determinant(minor(matrix, i, j))) - - cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix))] + + cofactors = [ + [x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] + for row in range(len(matrix)) + ] adjugate = transpose(cofactors) - return scalar_multiply(adjugate, 1/det) + return scalar_multiply(adjugate, 1 / det) def _check_not_integer(matrix): @@ -122,8 +127,10 @@ def _verify_matrix_sizes(matrix_a, matrix_b): shape = _shape(matrix_a) shape += _shape(matrix_b) if shape[0] != shape[2] or shape[1] != shape[3]: - raise ValueError(f"operands could not be broadcast together with shape " - f"({shape[0], shape[1]}), ({shape[2], shape[3]})") + raise ValueError( + f"operands could not be broadcast together with shape " + f"({shape[0], shape[1]}), ({shape[2], shape[3]})" + ) return [shape[0], shape[2]], [shape[1], shape[3]] @@ -132,13 +139,19 @@ def main(): matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] - print('Add Operation, %s + %s = %s \n' %(matrix_a, matrix_b, (add(matrix_a, matrix_b)))) - print('Multiply Operation, %s * %s = %s \n' %(matrix_a, matrix_b, multiply(matrix_a, matrix_b))) - print('Identity: %s \n' %identity(5)) - print('Minor of %s = %s \n' %(matrix_c, minor(matrix_c, 1, 2))) - print('Determinant of %s = %s \n' %(matrix_b, determinant(matrix_b))) - print('Inverse of %s = %s\n'%(matrix_d, inverse(matrix_d))) - - -if __name__ == '__main__': + print( + "Add Operation, %s + %s = %s \n" + % (matrix_a, matrix_b, (add(matrix_a, matrix_b))) + ) + print( + "Multiply Operation, %s * %s = %s \n" + % (matrix_a, matrix_b, multiply(matrix_a, matrix_b)) + ) + print("Identity: %s \n" % identity(5)) + print("Minor of %s = %s \n" % (matrix_c, minor(matrix_c, 1, 2))) + print("Determinant of %s = %s \n" % (matrix_b, determinant(matrix_b))) + print("Inverse of %s = %s\n" % (matrix_d, inverse(matrix_d))) + + +if __name__ == "__main__": main() diff --git a/matrix/nth_fibonacci_using_matrix_exponentiation.py b/matrix/nth_fibonacci_using_matrix_exponentiation.py index 57cdfacd47dd..222779f454f9 100644 --- a/matrix/nth_fibonacci_using_matrix_exponentiation.py +++ b/matrix/nth_fibonacci_using_matrix_exponentiation.py @@ -13,6 +13,8 @@ So we just need the n times multiplication of the matrix [1,1],[1,0]]. We can decrease the n times multiplication by following the divide and conquer approach. """ + + def multiply(matrix_a, matrix_b): matrix_c = [] n = len(matrix_a) diff --git a/matrix/searching_in_sorted_matrix.py b/matrix/searching_in_sorted_matrix.py index 54913b350803..1b3eeedf3110 100644 --- a/matrix/searching_in_sorted_matrix.py +++ b/matrix/searching_in_sorted_matrix.py @@ -2,26 +2,21 @@ def search_in_a_sorted_matrix(mat, m, n, key): i, j = m - 1, 0 while i >= 0 and j < n: if key == mat[i][j]: - print('Key %s found at row- %s column- %s' % (key, i + 1, j + 1)) + print("Key %s found at row- %s column- %s" % (key, i + 1, j + 1)) return if key < mat[i][j]: i -= 1 else: j += 1 - print('Key %s not found' % (key)) + print("Key %s not found" % (key)) def main(): - mat = [ - [2, 5, 7], - [4, 8, 13], - [9, 11, 15], - [12, 17, 20] - ] + mat = [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]] x = int(input("Enter the element to be searched:")) print(mat) search_in_a_sorted_matrix(mat, len(mat), len(mat[0]), x) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/matrix/sherman_morrison.py b/matrix/sherman_morrison.py index 0d49d78509be..531b76cdeb94 100644 --- a/matrix/sherman_morrison.py +++ b/matrix/sherman_morrison.py @@ -28,7 +28,7 @@ def __str__(self): # Prefix s = "Matrix consist of %d rows and %d columns\n" % (self.row, self.column) - + # Make string identifier max_element_length = 0 for row_vector in self.array: @@ -37,16 +37,18 @@ def __str__(self): string_format_identifier = "%%%ds" % (max_element_length,) # Make string and return - def single_line(row_vector): + def single_line(row_vector): nonlocal string_format_identifier line = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line + s += "\n".join(single_line(row_vector) for row_vector in self.array) return s - def __repr__(self): return str(self) + def __repr__(self): + return str(self) def validateIndices(self, loc: tuple): """ @@ -60,9 +62,12 @@ def validateIndices(self, loc: tuple): >>> a.validateIndices((0, 0)) True """ - if not(isinstance(loc, (list, tuple)) and len(loc) == 2): return False - elif not(0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False - else: return True + if not (isinstance(loc, (list, tuple)) and len(loc) == 2): + return False + elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): + return False + else: + return True def __getitem__(self, loc: tuple): """ @@ -115,7 +120,7 @@ def __add__(self, another): result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): - result[r,c] = self[r,c] + another[r,c] + result[r, c] = self[r, c] + another[r, c] return result def __neg__(self): @@ -135,10 +140,11 @@ def __neg__(self): result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): - result[r,c] = -self[r,c] + result[r, c] = -self[r, c] return result - def __sub__(self, another): return self + (-another) + def __sub__(self, another): + return self + (-another) def __mul__(self, another): """ @@ -154,21 +160,24 @@ def __mul__(self, another): [-2, -2, -6] """ - if isinstance(another, (int, float)): # Scalar multiplication + if isinstance(another, (int, float)): # Scalar multiplication result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): - result[r,c] = self[r,c] * another + result[r, c] = self[r, c] * another return result - elif isinstance(another, Matrix): # Matrix multiplication - assert(self.column == another.row) + elif isinstance(another, Matrix): # Matrix multiplication + assert self.column == another.row result = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): - result[r,c] += self[r,i] * another[i,c] + result[r, c] += self[r, i] * another[i, c] return result - else: raise TypeError("Unsupported type given for another (%s)" % (type(another),)) + else: + raise TypeError( + "Unsupported type given for another (%s)" % (type(another),) + ) def transpose(self): """ @@ -191,7 +200,7 @@ def transpose(self): result = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): - result[c,r] = self[r,c] + result[c, r] = self[r, c] return result def ShermanMorrison(self, u, v): @@ -220,28 +229,31 @@ def ShermanMorrison(self, u, v): # Size validation assert isinstance(u, Matrix) and isinstance(v, Matrix) - assert self.row == self.column == u.row == v.row # u, v should be column vector - assert u.column == v.column == 1 # u, v should be column vector + assert self.row == self.column == u.row == v.row # u, v should be column vector + assert u.column == v.column == 1 # u, v should be column vector # Calculate vT = v.transpose() numerator_factor = (vT * self * u)[0, 0] + 1 - if numerator_factor == 0: return None # It's not invertable + if numerator_factor == 0: + return None # It's not invertable return self - ((self * u) * (vT * self) * (1.0 / numerator_factor)) + # Testing if __name__ == "__main__": def test1(): # a^(-1) ainv = Matrix(3, 3, 0) - for i in range(3): ainv[i,i] = 1 + for i in range(3): + ainv[i, i] = 1 print("a^(-1) is %s" % (ainv,)) # u, v u = Matrix(3, 1, 0) - u[0,0], u[1,0], u[2,0] = 1, 2, -3 + u[0, 0], u[1, 0], u[2, 0] = 1, 2, -3 v = Matrix(3, 1, 0) - v[0,0], v[1,0], v[2,0] = 4, -2, 5 + v[0, 0], v[1, 0], v[2, 0] = 4, -2, 5 print("u is %s" % (u,)) print("v is %s" % (v,)) print("uv^T is %s" % (u * v.transpose())) @@ -250,6 +262,7 @@ def test1(): def test2(): import doctest + doctest.testmod() - test2() \ No newline at end of file + test2() diff --git a/matrix/spiral_print.py b/matrix/spiral_print.py index 447881e508e7..31d9fff84bfd 100644 --- a/matrix/spiral_print.py +++ b/matrix/spiral_print.py @@ -6,6 +6,8 @@ i) matrix should be only one or two dimensional ii)column of all the row should be equal """ + + def checkMatrix(a): # must be if type(a) == list and len(a) > 0: @@ -51,7 +53,7 @@ def spiralPrint(a): # vertical printing up for i in range(matRow - 2, 0, -1): print(a[i][0]), - remainMat = [row[1:matCol - 1] for row in a[1:matRow - 1]] + remainMat = [row[1 : matCol - 1] for row in a[1 : matRow - 1]] if len(remainMat) > 0: spiralPrint(remainMat) else: @@ -62,5 +64,5 @@ def spiralPrint(a): # driver code -a = [[1 , 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]] +a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] spiralPrint(a) diff --git a/matrix/tests/test_matrix_operation.py b/matrix/tests/test_matrix_operation.py index 8b81b65d0fc8..f9f72cf59af8 100644 --- a/matrix/tests/test_matrix_operation.py +++ b/matrix/tests/test_matrix_operation.py @@ -29,8 +29,9 @@ @pytest.mark.mat_ops -@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), - (mat_f, mat_h)]) +@pytest.mark.parametrize( + ("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)] +) def test_addition(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): with pytest.raises(TypeError): @@ -48,8 +49,9 @@ def test_addition(mat1, mat2): @pytest.mark.mat_ops -@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), - (mat_f, mat_h)]) +@pytest.mark.parametrize( + ("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)] +) def test_subtraction(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): with pytest.raises(TypeError): @@ -67,8 +69,9 @@ def test_subtraction(mat1, mat2): @pytest.mark.mat_ops -@pytest.mark.parametrize(('mat1', 'mat2'), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), - (mat_f, mat_h)]) +@pytest.mark.parametrize( + ("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)] +) def test_multiplication(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): logger.info(f"\n\t{test_multiplication.__name__} returned integer") @@ -81,7 +84,9 @@ def test_multiplication(mat1, mat2): assert theo == act else: with pytest.raises(ValueError): - logger.info(f"\n\t{test_multiplication.__name__} does not meet dim requirements") + logger.info( + f"\n\t{test_multiplication.__name__} does not meet dim requirements" + ) assert matop.subtract(mat1, mat2) @@ -100,7 +105,7 @@ def test_identity(): @pytest.mark.mat_ops -@pytest.mark.parametrize('mat', [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f]) +@pytest.mark.parametrize("mat", [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f]) def test_transpose(mat): if (np.array(mat)).shape < (2, 2): with pytest.raises(TypeError): diff --git a/networking_flow/ford_fulkerson.py b/networking_flow/ford_fulkerson.py index d51f1f0661b3..0028c7cc577f 100644 --- a/networking_flow/ford_fulkerson.py +++ b/networking_flow/ford_fulkerson.py @@ -4,14 +4,15 @@ (1) Start with initial flow as 0; (2) Choose augmenting path from source to sink and add path to flow; """ - + + def BFS(graph, s, t, parent): # Return True if there is node that has not iterated. - visited = [False]*len(graph) - queue=[] + visited = [False] * len(graph) + queue = [] queue.append(s) visited[s] = True - + while queue: u = queue.pop(0) for ind in range(len(graph[u])): @@ -21,36 +22,40 @@ def BFS(graph, s, t, parent): parent[ind] = u return True if visited[t] else False - + + def FordFulkerson(graph, source, sink): # This array is filled by BFS and to store path - parent = [-1]*(len(graph)) - max_flow = 0 - while BFS(graph, source, sink, parent) : + parent = [-1] * (len(graph)) + max_flow = 0 + while BFS(graph, source, sink, parent): path_flow = float("Inf") s = sink - while(s != source): + while s != source: # Find the minimum value in select path - path_flow = min (path_flow, graph[parent[s]][s]) + path_flow = min(path_flow, graph[parent[s]][s]) s = parent[s] - max_flow += path_flow + max_flow += path_flow v = sink - while(v != source): + while v != source: u = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow v = parent[v] return max_flow -graph = [[0, 16, 13, 0, 0, 0], - [0, 0, 10 ,12, 0, 0], - [0, 4, 0, 0, 14, 0], - [0, 0, 9, 0, 0, 20], - [0, 0, 0, 7, 0, 4], - [0, 0, 0, 0, 0, 0]] + +graph = [ + [0, 16, 13, 0, 0, 0], + [0, 0, 10, 12, 0, 0], + [0, 4, 0, 0, 14, 0], + [0, 0, 9, 0, 0, 20], + [0, 0, 0, 7, 0, 4], + [0, 0, 0, 0, 0, 0], +] source, sink = 0, 5 -print(FordFulkerson(graph, source, sink)) \ No newline at end of file +print(FordFulkerson(graph, source, sink)) diff --git a/neural_network/back_propagation_neural_network.py b/neural_network/back_propagation_neural_network.py index 92deaee19c6e..86797694bb0a 100644 --- a/neural_network/back_propagation_neural_network.py +++ b/neural_network/back_propagation_neural_network.py @@ -1,7 +1,7 @@ #!/usr/bin/python # encoding=utf8 -''' +""" A Framework of Back Propagation Neural Network(BP) model @@ -17,7 +17,7 @@ Github : https://github.com/RiptideBo Date: 2017.11.23 -''' +""" import numpy as np import matplotlib.pyplot as plt @@ -26,18 +26,22 @@ def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) -class DenseLayer(): - ''' + +class DenseLayer: + """ Layers of BP neural network - ''' - def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False): - ''' + """ + + def __init__( + self, units, activation=None, learning_rate=None, is_input_layer=False + ): + """ common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not - ''' + """ self.units = units self.weight = None self.bias = None @@ -47,21 +51,21 @@ def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False) self.learn_rate = learning_rate self.is_input_layer = is_input_layer - def initializer(self,back_units): - self.weight = np.asmatrix(np.random.normal(0,0.5,(self.units,back_units))) - self.bias = np.asmatrix(np.random.normal(0,0.5,self.units)).T + def initializer(self, back_units): + self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) + self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): if self.activation == sigmoid: - gradient_mat = np.dot(self.output ,(1- self.output).T) + gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation - def forward_propagation(self,xdata): + def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer @@ -69,22 +73,22 @@ def forward_propagation(self,xdata): self.output = xdata return xdata else: - self.wx_plus_b = np.dot(self.weight,self.xdata) - self.bias + self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output - def back_propagation(self,gradient): + def back_propagation(self, gradient): - gradient_activation = self.cal_gradient() # i * i 维 - gradient = np.asmatrix(np.dot(gradient.T,gradient_activation)) + gradient_activation = self.cal_gradient() # i * i 维 + gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight - self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T) + self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias - self.gradient = np.dot(gradient,self._gradient_x).T + self.gradient = np.dot(gradient, self._gradient_x).T # ----------------------upgrade # -----------the Negative gradient direction -------- self.weight = self.weight - self.learn_rate * self.gradient_weight @@ -93,33 +97,34 @@ def back_propagation(self,gradient): return self.gradient -class BPNN(): - ''' +class BPNN: + """ Back Propagation Neural Network model - ''' + """ + def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() - self.ax_loss = self.fig_loss.add_subplot(1,1,1) + self.ax_loss = self.fig_loss.add_subplot(1, 1, 1) - def add_layer(self,layer): + def add_layer(self, layer): self.layers.append(layer) def build(self): - for i,layer in enumerate(self.layers[:]): + for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: - layer.initializer(self.layers[i-1].units) + layer.initializer(self.layers[i - 1].units) def summary(self): - for i,layer in enumerate(self.layers[:]): - print('------- layer %d -------'%i) - print('weight.shape ',np.shape(layer.weight)) - print('bias.shape ',np.shape(layer.bias)) + for i, layer in enumerate(self.layers[:]): + print("------- layer %d -------" % i) + print("weight.shape ", np.shape(layer.weight)) + print("bias.shape ", np.shape(layer.bias)) - def train(self,xdata,ydata,train_round,accuracy): + def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy @@ -129,8 +134,8 @@ def train(self,xdata,ydata,train_round,accuracy): for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): - _xdata = np.asmatrix(xdata[row,:]).T - _ydata = np.asmatrix(ydata[row,:]).T + _xdata = np.asmatrix(xdata[row, :]).T + _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: @@ -144,40 +149,49 @@ def train(self,xdata,ydata,train_round,accuracy): for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) - mse = all_loss/x_shape[0] + mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: - print('----达到精度----') + print("----达到精度----") return mse - def cal_loss(self,ydata,ydata_): - self.loss = np.sum(np.power((ydata - ydata_),2)) + def cal_loss(self, ydata, ydata_): + self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) - return self.loss,self.loss_gradient + return self.loss, self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) - self.ax_loss.plot(self.train_mse, 'r-') + self.ax_loss.plot(self.train_mse, "r-") plt.ion() - plt.xlabel('step') - plt.ylabel('loss') + plt.xlabel("step") + plt.ylabel("loss") plt.show() plt.pause(0.1) - - def example(): - x = np.random.randn(10,10) - y = np.asarray([[0.8,0.4],[0.4,0.3],[0.34,0.45],[0.67,0.32], - [0.88,0.67],[0.78,0.77],[0.55,0.66],[0.55,0.43],[0.54,0.1], - [0.1,0.5]]) + x = np.random.randn(10, 10) + y = np.asarray( + [ + [0.8, 0.4], + [0.4, 0.3], + [0.34, 0.45], + [0.67, 0.32], + [0.88, 0.67], + [0.78, 0.77], + [0.55, 0.66], + [0.55, 0.43], + [0.54, 0.1], + [0.1, 0.5], + ] + ) model = BPNN() model.add_layer(DenseLayer(10)) @@ -189,7 +203,8 @@ def example(): model.summary() - model.train(xdata=x,ydata=y,train_round=100,accuracy=0.01) + model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) + -if __name__ == '__main__': +if __name__ == "__main__": example() diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index 786992c054a0..9448671abace 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -1,6 +1,6 @@ -#-*- coding: utf-8 -*- +# -*- coding: utf-8 -*- -''' +""" - - - - - -- - - - - - - - - - - - - - - - - - - - - - - Name - - CNN - Convolution Neural Network For Photo Recognizing Goal - - Recognize Handing Writting Word Photo @@ -14,15 +14,17 @@ Github: 245885195@qq.com Date: 2017.9.20 - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -''' +""" import pickle import numpy as np import matplotlib.pyplot as plt -class CNN(): - def __init__(self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2): - ''' +class CNN: + def __init__( + self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2 + ): + """ :param conv1_get: [a,c,d],size, number, step of convolution kernel :param size_p1: pooling size :param bp_num1: units number of flatten layer @@ -30,7 +32,7 @@ def __init__(self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, ra :param bp_num3: units number of output layer :param rate_w: rate of weight learning :param rate_t: rate of threshold learning - ''' + """ self.num_bp1 = bp_num1 self.num_bp2 = bp_num2 self.num_bp3 = bp_num3 @@ -39,206 +41,246 @@ def __init__(self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, ra self.size_pooling1 = size_p1 self.rate_weight = rate_w self.rate_thre = rate_t - self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])] + self.w_conv1 = [ + np.mat(-1 * np.random.rand(self.conv1[0], self.conv1[0]) + 0.5) + for i in range(self.conv1[1]) + ] self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5) - self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5) - self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1 - self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1 - self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1 - + self.vji = np.mat(-1 * np.random.rand(self.num_bp2, self.num_bp1) + 0.5) + self.thre_conv1 = -2 * np.random.rand(self.conv1[1]) + 1 + self.thre_bp2 = -2 * np.random.rand(self.num_bp2) + 1 + self.thre_bp3 = -2 * np.random.rand(self.num_bp3) + 1 def save_model(self, save_path): - #save model dict with pickle - model_dic = {'num_bp1':self.num_bp1, - 'num_bp2':self.num_bp2, - 'num_bp3':self.num_bp3, - 'conv1':self.conv1, - 'step_conv1':self.step_conv1, - 'size_pooling1':self.size_pooling1, - 'rate_weight':self.rate_weight, - 'rate_thre':self.rate_thre, - 'w_conv1':self.w_conv1, - 'wkj':self.wkj, - 'vji':self.vji, - 'thre_conv1':self.thre_conv1, - 'thre_bp2':self.thre_bp2, - 'thre_bp3':self.thre_bp3} - with open(save_path, 'wb') as f: + # save model dict with pickle + model_dic = { + "num_bp1": self.num_bp1, + "num_bp2": self.num_bp2, + "num_bp3": self.num_bp3, + "conv1": self.conv1, + "step_conv1": self.step_conv1, + "size_pooling1": self.size_pooling1, + "rate_weight": self.rate_weight, + "rate_thre": self.rate_thre, + "w_conv1": self.w_conv1, + "wkj": self.wkj, + "vji": self.vji, + "thre_conv1": self.thre_conv1, + "thre_bp2": self.thre_bp2, + "thre_bp3": self.thre_bp3, + } + with open(save_path, "wb") as f: pickle.dump(model_dic, f) - print('Model saved: %s'% save_path) + print("Model saved: %s" % save_path) @classmethod def ReadModel(cls, model_path): - #read saved model - with open(model_path, 'rb') as f: + # read saved model + with open(model_path, "rb") as f: model_dic = pickle.load(f) - conv_get= model_dic.get('conv1') - conv_get.append(model_dic.get('step_conv1')) - size_p1 = model_dic.get('size_pooling1') - bp1 = model_dic.get('num_bp1') - bp2 = model_dic.get('num_bp2') - bp3 = model_dic.get('num_bp3') - r_w = model_dic.get('rate_weight') - r_t = model_dic.get('rate_thre') - #create model instance - conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t) - #modify model parameter - conv_ins.w_conv1 = model_dic.get('w_conv1') - conv_ins.wkj = model_dic.get('wkj') - conv_ins.vji = model_dic.get('vji') - conv_ins.thre_conv1 = model_dic.get('thre_conv1') - conv_ins.thre_bp2 = model_dic.get('thre_bp2') - conv_ins.thre_bp3 = model_dic.get('thre_bp3') + conv_get = model_dic.get("conv1") + conv_get.append(model_dic.get("step_conv1")) + size_p1 = model_dic.get("size_pooling1") + bp1 = model_dic.get("num_bp1") + bp2 = model_dic.get("num_bp2") + bp3 = model_dic.get("num_bp3") + r_w = model_dic.get("rate_weight") + r_t = model_dic.get("rate_thre") + # create model instance + conv_ins = CNN(conv_get, size_p1, bp1, bp2, bp3, r_w, r_t) + # modify model parameter + conv_ins.w_conv1 = model_dic.get("w_conv1") + conv_ins.wkj = model_dic.get("wkj") + conv_ins.vji = model_dic.get("vji") + conv_ins.thre_conv1 = model_dic.get("thre_conv1") + conv_ins.thre_bp2 = model_dic.get("thre_bp2") + conv_ins.thre_bp3 = model_dic.get("thre_bp3") return conv_ins - def sig(self, x): - return 1 / (1 + np.exp(-1*x)) + return 1 / (1 + np.exp(-1 * x)) def do_round(self, x): return round(x, 3) def convolute(self, data, convs, w_convs, thre_convs, conv_step): - #convolution process + # convolution process size_conv = convs[0] - num_conv =convs[1] + num_conv = convs[1] size_data = np.shape(data)[0] - #get the data slice of original image data, data_focus + # get the data slice of original image data, data_focus data_focus = [] for i_focus in range(0, size_data - size_conv + 1, conv_step): for j_focus in range(0, size_data - size_conv + 1, conv_step): - focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv] + focus = data[ + i_focus : i_focus + size_conv, j_focus : j_focus + size_conv + ] data_focus.append(focus) - #caculate the feature map of every single kernel, and saved as list of matrix + # caculate the feature map of every single kernel, and saved as list of matrix data_featuremap = [] Size_FeatureMap = int((size_data - size_conv) / conv_step + 1) for i_map in range(num_conv): featuremap = [] for i_focus in range(len(data_focus)): - net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map] + net_focus = ( + np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) + - thre_convs[i_map] + ) featuremap.append(self.sig(net_focus)) - featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap) + featuremap = np.asmatrix(featuremap).reshape( + Size_FeatureMap, Size_FeatureMap + ) data_featuremap.append(featuremap) - #expanding the data slice to One dimenssion + # expanding the data slice to One dimenssion focus1_list = [] for each_focus in data_focus: focus1_list.extend(self.Expand_Mat(each_focus)) focus_list = np.asarray(focus1_list) - return focus_list,data_featuremap + return focus_list, data_featuremap - def pooling(self, featuremaps, size_pooling, type='average_pool'): - #pooling process + def pooling(self, featuremaps, size_pooling, type="average_pool"): + # pooling process size_map = len(featuremaps[0]) - size_pooled = int(size_map/size_pooling) + size_pooled = int(size_map / size_pooling) featuremap_pooled = [] for i_map in range(len(featuremaps)): map = featuremaps[i_map] map_pooled = [] - for i_focus in range(0,size_map,size_pooling): + for i_focus in range(0, size_map, size_pooling): for j_focus in range(0, size_map, size_pooling): - focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling] - if type == 'average_pool': - #average pooling + focus = map[ + i_focus : i_focus + size_pooling, + j_focus : j_focus + size_pooling, + ] + if type == "average_pool": + # average pooling map_pooled.append(np.average(focus)) - elif type == 'max_pooling': - #max pooling + elif type == "max_pooling": + # max pooling map_pooled.append(np.max(focus)) - map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled) + map_pooled = np.asmatrix(map_pooled).reshape(size_pooled, size_pooled) featuremap_pooled.append(map_pooled) return featuremap_pooled def _expand(self, datas): - #expanding three dimension data to one dimension list + # expanding three dimension data to one dimension list data_expanded = [] for i in range(len(datas)): shapes = np.shape(datas[i]) - data_listed = datas[i].reshape(1,shapes[0]*shapes[1]) + data_listed = datas[i].reshape(1, shapes[0] * shapes[1]) data_listed = data_listed.getA().tolist()[0] data_expanded.extend(data_listed) data_expanded = np.asarray(data_expanded) return data_expanded def _expand_mat(self, data_mat): - #expanding matrix to one dimension list + # expanding matrix to one dimension list data_mat = np.asarray(data_mat) shapes = np.shape(data_mat) - data_expanded = data_mat.reshape(1,shapes[0]*shapes[1]) + data_expanded = data_mat.reshape(1, shapes[0] * shapes[1]) return data_expanded - def _calculate_gradient_from_pool(self, out_map, pd_pool,num_map, size_map, size_pooling): - ''' + def _calculate_gradient_from_pool( + self, out_map, pd_pool, num_map, size_map, size_pooling + ): + """ calcluate the gradient from the data slice of pool layer pd_pool: list of matrix out_map: the shape of data slice(size_map*size_map) return: pd_all: list of matrix, [num, size_map, size_map] - ''' + """ pd_all = [] i_pool = 0 for i_map in range(num_map): pd_conv1 = np.ones((size_map, size_map)) for i in range(0, size_map, size_pooling): for j in range(0, size_map, size_pooling): - pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool] + pd_conv1[i : i + size_pooling, j : j + size_pooling] = pd_pool[ + i_pool + ] i_pool = i_pool + 1 - pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map]))) + pd_conv2 = np.multiply( + pd_conv1, np.multiply(out_map[i_map], (1 - out_map[i_map])) + ) pd_all.append(pd_conv2) return pd_all - def train(self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, draw_e = bool): - #model traning - print('----------------------Start Training-------------------------') - print((' - - Shape: Train_Data ',np.shape(datas_train))) - print((' - - Shape: Teach_Data ',np.shape(datas_teach))) + def train( + self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, draw_e=bool + ): + # model traning + print("----------------------Start Training-------------------------") + print((" - - Shape: Train_Data ", np.shape(datas_train))) + print((" - - Shape: Teach_Data ", np.shape(datas_teach))) rp = 0 all_mse = [] - mse = 10000 + mse = 10000 while rp < n_repeat and mse >= error_accuracy: alle = 0 - print('-------------Learning Time %d--------------'%rp) + print("-------------Learning Time %d--------------" % rp) for p in range(len(datas_train)): - #print('------------Learning Image: %d--------------'%p) + # print('------------Learning Image: %d--------------'%p) data_train = np.asmatrix(datas_train[p]) data_teach = np.asarray(datas_teach[p]) - data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1, - self.thre_conv1,conv_step=self.step_conv1) - data_pooled1 = self.pooling(data_conved1,self.size_pooling1) + data_focus1, data_conved1 = self.convolute( + data_train, + self.conv1, + self.w_conv1, + self.thre_conv1, + conv_step=self.step_conv1, + ) + data_pooled1 = self.pooling(data_conved1, self.size_pooling1) shape_featuremap1 = np.shape(data_conved1) - ''' + """ print(' -----original shape ', np.shape(data_train)) print(' ---- after convolution ',np.shape(data_conv1)) print(' -----after pooling ',np.shape(data_pooled1)) - ''' + """ data_bp_input = self._expand(data_pooled1) bp_out1 = data_bp_input - bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2 + bp_net_j = np.dot(bp_out1, self.vji.T) - self.thre_bp2 bp_out2 = self.sig(bp_net_j) - bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3 + bp_net_k = np.dot(bp_out2, self.wkj.T) - self.thre_bp3 bp_out3 = self.sig(bp_net_k) - #--------------Model Leaning ------------------------ + # --------------Model Leaning ------------------------ # calcluate error and gradient--------------- - pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3))) - pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2))) - pd_i_all = np.dot(pd_j_all,self.vji) + pd_k_all = np.multiply( + (data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)) + ) + pd_j_all = np.multiply( + np.dot(pd_k_all, self.wkj), np.multiply(bp_out2, (1 - bp_out2)) + ) + pd_i_all = np.dot(pd_j_all, self.vji) - pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1) + pd_conv1_pooled = pd_i_all / (self.size_pooling1 * self.size_pooling1) pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist() - pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0], - shape_featuremap1[1],self.size_pooling1) - #weight and threshold learning process--------- - #convolution layer + pd_conv1_all = self._calculate_gradient_from_pool( + data_conved1, + pd_conv1_pooled, + shape_featuremap1[0], + shape_featuremap1[1], + self.size_pooling1, + ) + # weight and threshold learning process--------- + # convolution layer for k_conv in range(self.conv1[1]): pd_conv_list = self._expand_mat(pd_conv1_all[k_conv]) - delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1) + delta_w = self.rate_weight * np.dot(pd_conv_list, data_focus1) - self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0])) + self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape( + (self.conv1[0], self.conv1[0]) + ) - self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre - #all connected layer + self.thre_conv1[k_conv] = ( + self.thre_conv1[k_conv] + - np.sum(pd_conv1_all[k_conv]) * self.rate_thre + ) + # all connected layer self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre @@ -246,34 +288,41 @@ def train(self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, dr # calculate the sum error of all single image errors = np.sum(abs((data_teach - bp_out3))) alle = alle + errors - #print(' ----Teach ',data_teach) - #print(' ----BP_output ',bp_out3) + # print(' ----Teach ',data_teach) + # print(' ----BP_output ',bp_out3) rp = rp + 1 - mse = alle/patterns + mse = alle / patterns all_mse.append(mse) + def draw_error(): yplot = [error_accuracy for i in range(int(n_repeat * 1.2))] - plt.plot(all_mse, '+-') - plt.plot(yplot, 'r--') - plt.xlabel('Learning Times') - plt.ylabel('All_mse') + plt.plot(all_mse, "+-") + plt.plot(yplot, "r--") + plt.xlabel("Learning Times") + plt.ylabel("All_mse") plt.grid(True, alpha=0.5) plt.show() - print('------------------Training Complished---------------------') - print((' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)) + + print("------------------Training Complished---------------------") + print((" - - Training epoch: ", rp, " - - Mse: %.6f" % mse)) if draw_e: draw_error() return mse def predict(self, datas_test): - #model predict + # model predict produce_out = [] - print('-------------------Start Testing-------------------------') - print((' - - Shape: Test_Data ',np.shape(datas_test))) + print("-------------------Start Testing-------------------------") + print((" - - Shape: Test_Data ", np.shape(datas_test))) for p in range(len(datas_test)): data_test = np.asmatrix(datas_test[p]) - data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, - self.thre_conv1, conv_step=self.step_conv1) + data_focus1, data_conved1 = self.convolute( + data_test, + self.conv1, + self.w_conv1, + self.thre_conv1, + conv_step=self.step_conv1, + ) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) data_bp_input = self._expand(data_pooled1) @@ -283,20 +332,25 @@ def predict(self, datas_test): bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3 bp_out3 = self.sig(bp_net_k) produce_out.extend(bp_out3.getA().tolist()) - res = [list(map(self.do_round,each)) for each in produce_out] + res = [list(map(self.do_round, each)) for each in produce_out] return np.asarray(res) def convolution(self, data): - #return the data of image after convoluting process so we can check it out + # return the data of image after convoluting process so we can check it out data_test = np.asmatrix(data) - data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, - self.thre_conv1, conv_step=self.step_conv1) + data_focus1, data_conved1 = self.convolute( + data_test, + self.conv1, + self.w_conv1, + self.thre_conv1, + conv_step=self.step_conv1, + ) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) - return data_conved1,data_pooled1 + return data_conved1, data_pooled1 -if __name__ == '__main__': - ''' +if __name__ == "__main__": + """ I will put the example on other file - ''' + """ diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index fdc710597241..5feb8610a911 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -1,4 +1,4 @@ -''' +""" Perceptron w = w + N * (d(k) - y) * x(k) @@ -8,7 +8,7 @@ p1 = -1 p2 = 1 -''' +""" import random @@ -28,7 +28,7 @@ def training(self): sample.insert(0, self.bias) for i in range(self.col_sample): - self.weight.append(random.random()) + self.weight.append(random.random()) self.weight.insert(0, self.bias) @@ -45,15 +45,18 @@ def training(self): for j in range(self.col_sample + 1): - self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] + self.weight[j] = ( + self.weight[j] + + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] + ) erro = True - #print('Epoch: \n',epoch_count) + # print('Epoch: \n',epoch_count) epoch_count = epoch_count + 1 # if you want controle the epoch or just by erro if erro == False: - print(('\nEpoch:\n',epoch_count)) - print('------------------------\n') - #if epoch_count > self.epoch_number or not erro: + print(("\nEpoch:\n", epoch_count)) + print("------------------------\n") + # if epoch_count > self.epoch_number or not erro: break def sort(self, sample): @@ -64,12 +67,12 @@ def sort(self, sample): y = self.sign(u) - if y == -1: - print(('Sample: ', sample)) - print('classification: P1') + if y == -1: + print(("Sample: ", sample)) + print("classification: P1") else: - print(('Sample: ', sample)) - print('classification: P2') + print(("Sample: ", sample)) + print("classification: P2") def sign(self, u): return 1 if u >= 0 else -1 @@ -105,19 +108,51 @@ def sign(self, u): [-0.1013, 0.5989, 7.1812], [2.4482, 0.9455, 11.2095], [2.0149, 0.6192, 10.9263], - [0.2012, 0.2611, 5.4631] - + [0.2012, 0.2611, 5.4631], ] -exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] +exit = [ + -1, + -1, + -1, + 1, + 1, + -1, + 1, + -1, + 1, + 1, + -1, + 1, + -1, + -1, + -1, + -1, + 1, + 1, + 1, + 1, + -1, + 1, + 1, + 1, + 1, + -1, + -1, + 1, + -1, + 1, +] -network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) +network = Perceptron( + sample=samples, exit=exit, learn_rate=0.01, epoch_number=1000, bias=-1 +) network.training() -if __name__ == '__main__': +if __name__ == "__main__": while True: sample = [] for i in range(3): - sample.insert(i, float(input('value: '))) + sample.insert(i, float(input("value: "))) network.sort(sample) diff --git a/other/anagrams.py b/other/anagrams.py index 1e6e38dee139..9e103296b382 100644 --- a/other/anagrams.py +++ b/other/anagrams.py @@ -1,29 +1,32 @@ import collections, pprint, time, os start_time = time.time() -print('creating word list...') +print("creating word list...") path = os.path.split(os.path.realpath(__file__)) -with open(path[0] + '/words') as f: +with open(path[0] + "/words") as f: word_list = sorted(list(set([word.strip().lower() for word in f]))) + def signature(word): - return ''.join(sorted(word)) + return "".join(sorted(word)) + word_bysig = collections.defaultdict(list) for word in word_list: word_bysig[signature(word)].append(word) + def anagram(myword): return word_bysig[signature(myword)] -print('finding anagrams...') -all_anagrams = {word: anagram(word) - for word in word_list if len(anagram(word)) > 1} -print('writing anagrams to file...') -with open('anagrams.txt', 'w') as file: - file.write('all_anagrams = ') +print("finding anagrams...") +all_anagrams = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} + +print("writing anagrams to file...") +with open("anagrams.txt", "w") as file: + file.write("all_anagrams = ") file.write(pprint.pformat(all_anagrams)) total_time = round(time.time() - start_time, 2) -print(('Done [', total_time, 'seconds ]')) +print(("Done [", total_time, "seconds ]")) diff --git a/other/binary_exponentiation.py b/other/binary_exponentiation.py index 1a30fb8fd266..dd4e70e74129 100644 --- a/other/binary_exponentiation.py +++ b/other/binary_exponentiation.py @@ -14,7 +14,7 @@ def b_expo(a, b): res = 1 while b > 0: - if b&1: + if b & 1: res *= a a *= a @@ -26,14 +26,15 @@ def b_expo(a, b): def b_expo_mod(a, b, c): res = 1 while b > 0: - if b&1: - res = ((res%c) * (a%c)) % c + if b & 1: + res = ((res % c) * (a % c)) % c a *= a b >>= 1 return res + """ * Wondering how this method works ! * It's pretty simple. diff --git a/other/binary_exponentiation_2.py b/other/binary_exponentiation_2.py index 217a616c99fb..51ec4baf2598 100644 --- a/other/binary_exponentiation_2.py +++ b/other/binary_exponentiation_2.py @@ -14,7 +14,7 @@ def b_expo(a, b): res = 0 while b > 0: - if b&1: + if b & 1: res += a a += a @@ -26,8 +26,8 @@ def b_expo(a, b): def b_expo_mod(a, b, c): res = 0 while b > 0: - if b&1: - res = ((res%c) + (a%c)) % c + if b & 1: + res = ((res % c) + (a % c)) % c a += a b >>= 1 diff --git a/other/detecting_english_programmatically.py b/other/detecting_english_programmatically.py index 8b73ff6cf0c3..4b0bb37ce520 100644 --- a/other/detecting_english_programmatically.py +++ b/other/detecting_english_programmatically.py @@ -1,18 +1,21 @@ import os -UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' -LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n' +UPPERLETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + " \t\n" + def loadDictionary(): path = os.path.split(os.path.realpath(__file__)) englishWords = {} - with open(path[0] + '/dictionary.txt') as dictionaryFile: - for word in dictionaryFile.read().split('\n'): + with open(path[0] + "/dictionary.txt") as dictionaryFile: + for word in dictionaryFile.read().split("\n"): englishWords[word] = None return englishWords + ENGLISH_WORDS = loadDictionary() + def getEnglishCount(message): message = message.upper() message = removeNonLetters(message) @@ -28,14 +31,16 @@ def getEnglishCount(message): return float(matches) / len(possibleWords) + def removeNonLetters(message): lettersOnly = [] for symbol in message: if symbol in LETTERS_AND_SPACE: lettersOnly.append(symbol) - return ''.join(lettersOnly) + return "".join(lettersOnly) + -def isEnglish(message, wordPercentage = 20, letterPercentage = 85): +def isEnglish(message, wordPercentage=20, letterPercentage=85): """ >>> isEnglish('Hello World') True @@ -51,4 +56,5 @@ def isEnglish(message, wordPercentage = 20, letterPercentage = 85): import doctest + doctest.testmod() diff --git a/other/euclidean_gcd.py b/other/euclidean_gcd.py index 13378379f286..c6c11f947a08 100644 --- a/other/euclidean_gcd.py +++ b/other/euclidean_gcd.py @@ -1,5 +1,6 @@ # https://en.wikipedia.org/wiki/Euclidean_algorithm + def euclidean_gcd(a, b): while b: t = b @@ -7,6 +8,7 @@ def euclidean_gcd(a, b): a = t return a + def main(): print("GCD(3, 5) = " + str(euclidean_gcd(3, 5))) print("GCD(5, 3) = " + str(euclidean_gcd(5, 3))) @@ -14,5 +16,6 @@ def main(): print("GCD(3, 6) = " + str(euclidean_gcd(3, 6))) print("GCD(6, 3) = " + str(euclidean_gcd(6, 3))) -if __name__ == '__main__': + +if __name__ == "__main__": main() diff --git a/other/fischer_yates_shuffle.py b/other/fischer_yates_shuffle.py index bc2b136344c7..977e5f131e4f 100644 --- a/other/fischer_yates_shuffle.py +++ b/other/fischer_yates_shuffle.py @@ -7,16 +7,18 @@ """ import random + def FYshuffle(LIST): for i in range(len(LIST)): - a = random.randint(0, len(LIST)-1) - b = random.randint(0, len(LIST)-1) + a = random.randint(0, len(LIST) - 1) + b = random.randint(0, len(LIST) - 1) LIST[a], LIST[b] = LIST[b], LIST[a] return LIST -if __name__ == '__main__': - integers = [0,1,2,3,4,5,6,7] - strings = ['python', 'says', 'hello', '!'] - print('Fisher-Yates Shuffle:') - print('List',integers, strings) - print('FY Shuffle',FYshuffle(integers), FYshuffle(strings)) + +if __name__ == "__main__": + integers = [0, 1, 2, 3, 4, 5, 6, 7] + strings = ["python", "says", "hello", "!"] + print("Fisher-Yates Shuffle:") + print("List", integers, strings) + print("FY Shuffle", FYshuffle(integers), FYshuffle(strings)) diff --git a/other/frequency_finder.py b/other/frequency_finder.py index 6264b25bf303..48760a9deb09 100644 --- a/other/frequency_finder.py +++ b/other/frequency_finder.py @@ -1,29 +1,78 @@ # Frequency Finder # frequency taken from http://en.wikipedia.org/wiki/Letter_frequency -englishLetterFreq = {'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, - 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, - 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, - 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, - 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, - 'Z': 0.07} -ETAOIN = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' -LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' +englishLetterFreq = { + "E": 12.70, + "T": 9.06, + "A": 8.17, + "O": 7.51, + "I": 6.97, + "N": 6.75, + "S": 6.33, + "H": 6.09, + "R": 5.99, + "D": 4.25, + "L": 4.03, + "C": 2.78, + "U": 2.76, + "M": 2.41, + "W": 2.36, + "F": 2.23, + "G": 2.02, + "Y": 1.97, + "P": 1.93, + "B": 1.29, + "V": 0.98, + "K": 0.77, + "J": 0.15, + "X": 0.15, + "Q": 0.10, + "Z": 0.07, +} +ETAOIN = "ETAOINSHRDLCUMWFGYPBVKJXQZ" +LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + def getLetterCount(message): - letterCount = {'A': 0, 'B': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0, 'G': 0, 'H': 0, - 'I': 0, 'J': 0, 'K': 0, 'L': 0, 'M': 0, 'N': 0, 'O': 0, 'P': 0, - 'Q': 0, 'R': 0, 'S': 0, 'T': 0, 'U': 0, 'V': 0, 'W': 0, 'X': 0, - 'Y': 0, 'Z': 0} + letterCount = { + "A": 0, + "B": 0, + "C": 0, + "D": 0, + "E": 0, + "F": 0, + "G": 0, + "H": 0, + "I": 0, + "J": 0, + "K": 0, + "L": 0, + "M": 0, + "N": 0, + "O": 0, + "P": 0, + "Q": 0, + "R": 0, + "S": 0, + "T": 0, + "U": 0, + "V": 0, + "W": 0, + "X": 0, + "Y": 0, + "Z": 0, + } for letter in message.upper(): if letter in LETTERS: letterCount[letter] += 1 return letterCount + def getItemAtIndexZero(x): return x[0] + def getFrequencyOrder(message): letterToFreq = getLetterCount(message) freqToLetter = {} @@ -34,23 +83,24 @@ def getFrequencyOrder(message): freqToLetter[letterToFreq[letter]].append(letter) for freq in freqToLetter: - freqToLetter[freq].sort(key = ETAOIN.find, reverse = True) - freqToLetter[freq] = ''.join(freqToLetter[freq]) + freqToLetter[freq].sort(key=ETAOIN.find, reverse=True) + freqToLetter[freq] = "".join(freqToLetter[freq]) freqPairs = list(freqToLetter.items()) - freqPairs.sort(key = getItemAtIndexZero, reverse = True) + freqPairs.sort(key=getItemAtIndexZero, reverse=True) freqOrder = [] for freqPair in freqPairs: freqOrder.append(freqPair[1]) - return ''.join(freqOrder) + return "".join(freqOrder) + def englishFreqMatchScore(message): - ''' + """ >>> englishFreqMatchScore('Hello World') 1 - ''' + """ freqOrder = getFrequencyOrder(message) matchScore = 0 for commonLetter in ETAOIN[:6]: @@ -63,6 +113,8 @@ def englishFreqMatchScore(message): return matchScore -if __name__ == '__main__': + +if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/other/game_of_life.py b/other/game_of_life.py index 1fdaa21b4a7b..2b4d1116fa8c 100644 --- a/other/game_of_life.py +++ b/other/game_of_life.py @@ -1,4 +1,4 @@ -'''Conway's Game Of Life, Author Anurag Kumar(mailto:anuragkumarak95@gmail.com) +"""Conway's Game Of Life, Author Anurag Kumar(mailto:anuragkumarak95@gmail.com) Requirements: - numpy @@ -26,28 +26,31 @@ 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. - ''' + """ import numpy as np import random, sys from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap -usage_doc='Usage of script: script_nama ' +usage_doc = "Usage of script: script_nama " -choice = [0]*100 + [1]*10 +choice = [0] * 100 + [1] * 10 random.shuffle(choice) + def create_canvas(size): - canvas = [ [False for i in range(size)] for j in range(size)] + canvas = [[False for i in range(size)] for j in range(size)] return canvas + def seed(canvas): - for i,row in enumerate(canvas): - for j,_ in enumerate(row): - canvas[i][j]=bool(random.getrandbits(1)) + for i, row in enumerate(canvas): + for j, _ in enumerate(row): + canvas[i][j] = bool(random.getrandbits(1)) + def run(canvas): - ''' This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) + """ This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @@ -55,63 +58,71 @@ def run(canvas): @returns: -- None - ''' + """ canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(canvas.shape[0])) for r, row in enumerate(canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) - next_gen_canvas[r][c] = __judge_point(pt,canvas[r-1:r+2,c-1:c+2]) - + next_gen_canvas[r][c] = __judge_point( + pt, canvas[r - 1 : r + 2, c - 1 : c + 2] + ) + canvas = next_gen_canvas - del next_gen_canvas # cleaning memory as we move on. - return canvas.tolist() + del next_gen_canvas # cleaning memory as we move on. + return canvas.tolist() + -def __judge_point(pt,neighbours): - dead = 0 +def __judge_point(pt, neighbours): + dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: - if status: alive+=1 - else: dead+=1 + if status: + alive += 1 + else: + dead += 1 # handling duplicate entry for focus pt. - if pt : alive-=1 - else : dead-=1 - + if pt: + alive -= 1 + else: + dead -= 1 + # running the rules of game here. state = pt if pt: - if alive<2: - state=False - elif alive==2 or alive==3: - state=True - elif alive>3: - state=False + if alive < 2: + state = False + elif alive == 2 or alive == 3: + state = True + elif alive > 3: + state = False else: - if alive==3: - state=True + if alive == 3: + state = True return state -if __name__=='__main__': - if len(sys.argv) != 2: raise Exception(usage_doc) - +if __name__ == "__main__": + if len(sys.argv) != 2: + raise Exception(usage_doc) + canvas_size = int(sys.argv[1]) # main working structure of this module. - c=create_canvas(canvas_size) + c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() - fig.show() - cmap = ListedColormap(['w','k']) + fig.show() + cmap = ListedColormap(["w", "k"]) try: while True: - c = run(c) - ax.matshow(c,cmap=cmap) + c = run(c) + ax.matshow(c, cmap=cmap) fig.canvas.draw() - ax.cla() + ax.cla() except KeyboardInterrupt: # do nothing. pass diff --git a/other/linear_congruential_generator.py b/other/linear_congruential_generator.py index 7c592a6400b5..3b150f422e4f 100644 --- a/other/linear_congruential_generator.py +++ b/other/linear_congruential_generator.py @@ -2,12 +2,13 @@ from time import time + class LinearCongruentialGenerator(object): """ A pseudorandom number generator. """ - def __init__( self, multiplier, increment, modulo, seed=int(time()) ): + def __init__(self, multiplier, increment, modulo, seed=int(time())): """ These parameters are saved and used when nextNumber() is called. @@ -19,7 +20,7 @@ def __init__( self, multiplier, increment, modulo, seed=int(time()) ): self.modulo = modulo self.seed = seed - def next_number( self ): + def next_number(self): """ The smallest number that can be generated is zero. The largest number that can be generated is modulo-1. modulo is set in the constructor. @@ -27,8 +28,9 @@ def next_number( self ): self.seed = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed + if __name__ == "__main__": # Show the LCG in action. - lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31) - while True : - print(lcg.next_number()) \ No newline at end of file + lcg = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) + while True: + print(lcg.next_number()) diff --git a/other/nested_brackets.py b/other/nested_brackets.py index 14147eaa6456..011e94b92928 100644 --- a/other/nested_brackets.py +++ b/other/nested_brackets.py @@ -1,4 +1,4 @@ -''' +""" The nested brackets problem is a problem that determines if a sequence of brackets are properly nested. A sequence of brackets s is considered properly nested if any of the following conditions are true: @@ -12,13 +12,15 @@ The function called is_balanced takes as input a string S which is a sequence of brackets and returns true if S is nested and false otherwise. -''' +""" + + def is_balanced(S): stack = [] - open_brackets = set({'(', '[', '{'}) - closed_brackets = set({')', ']', '}'}) - open_to_closed = dict({'{':'}', '[':']', '(':')'}) + open_brackets = set({"(", "[", "{"}) + closed_brackets = set({")", "]", "}"}) + open_to_closed = dict({"{": "}", "[": "]", "(": ")"}) for i in range(len(S)): @@ -26,7 +28,9 @@ def is_balanced(S): stack.append(S[i]) elif S[i] in closed_brackets: - if len(stack) == 0 or (len(stack) > 0 and open_to_closed[stack.pop()] != S[i]): + if len(stack) == 0 or ( + len(stack) > 0 and open_to_closed[stack.pop()] != S[i] + ): return False return len(stack) == 0 diff --git a/other/palindrome.py b/other/palindrome.py index 990ec844f9fb..2ca453b64702 100644 --- a/other/palindrome.py +++ b/other/palindrome.py @@ -22,10 +22,10 @@ def recursive_palindrome(str): def main(): - str = 'ama' + str = "ama" print(recursive_palindrome(str.lower())) print(is_palindrome(str.lower())) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/other/password_generator.py b/other/password_generator.py index 16b7e16b22a1..f72686bfb1c0 100644 --- a/other/password_generator.py +++ b/other/password_generator.py @@ -17,7 +17,7 @@ def password_generator(length=8): 0 """ chars = tuple(ascii_letters) + tuple(digits) + tuple(punctuation) - return ''.join(choice(chars) for x in range(length)) + return "".join(choice(chars) for x in range(length)) # ALTERNATIVE METHODS @@ -42,11 +42,10 @@ def random_characters(ctbi, i): def main(): - length = int( - input('Please indicate the max length of your password: ').strip()) - print('Password generated:', password_generator(length)) - print('[If you are thinking of using this passsword, You better save it.]') + length = int(input("Please indicate the max length of your password: ").strip()) + print("Password generated:", password_generator(length)) + print("[If you are thinking of using this passsword, You better save it.]") -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/other/primelib.py b/other/primelib.py index c000213a7a42..6fc5eddeb257 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -49,8 +49,9 @@ def isPrime(number): """ # precondition - assert isinstance(number,int) and (number >= 0) , \ - "'number' must been an int and positive" + assert isinstance(number, int) and ( + number >= 0 + ), "'number' must been an int and positive" status = True @@ -58,7 +59,7 @@ def isPrime(number): if number <= 1: status = False - for divisor in range(2,int(round(sqrt(number)))+1): + for divisor in range(2, int(round(sqrt(number))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. @@ -67,12 +68,14 @@ def isPrime(number): break # precondition - assert isinstance(status,bool), "'status' must been from type bool" + assert isinstance(status, bool), "'status' must been from type bool" return status + # ------------------------------------------ + def sieveEr(N): """ input: positive integer 'N' > 2 @@ -84,33 +87,33 @@ def sieveEr(N): """ # precondition - assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" + assert isinstance(N, int) and (N > 2), "'N' must been an int and > 2" # beginList: conatins all natural numbers from 2 upt to N - beginList = [x for x in range(2,N+1)] + beginList = [x for x in range(2, N + 1)] - ans = [] # this list will be returns. + ans = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(beginList)): - for j in range(i+1,len(beginList)): + for j in range(i + 1, len(beginList)): - if (beginList[i] != 0) and \ - (beginList[j] % beginList[i] == 0): + if (beginList[i] != 0) and (beginList[j] % beginList[i] == 0): beginList[j] = 0 # filters actual prime numbers. ans = [x for x in beginList if x != 0] # precondition - assert isinstance(ans,list), "'ans' must been from type list" + assert isinstance(ans, list), "'ans' must been from type list" return ans # -------------------------------- + def getPrimeNumbers(N): """ input: positive integer 'N' > 2 @@ -119,26 +122,27 @@ def getPrimeNumbers(N): """ # precondition - assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" + assert isinstance(N, int) and (N > 2), "'N' must been an int and > 2" ans = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' - for number in range(2,N+1): + for number in range(2, N + 1): if isPrime(number): ans.append(number) # precondition - assert isinstance(ans,list), "'ans' must been from type list" + assert isinstance(ans, list), "'ans' must been from type list" return ans # ----------------------------------------- + def primeFactorization(number): """ input: positive integer 'number' @@ -146,10 +150,9 @@ def primeFactorization(number): """ # precondition - assert isinstance(number,int) and number >= 0, \ - "'number' must been an int and >= 0" + assert isinstance(number, int) and number >= 0, "'number' must been an int and >= 0" - ans = [] # this list will be returns of the function. + ans = [] # this list will be returns of the function. # potential prime number factors. @@ -157,7 +160,6 @@ def primeFactorization(number): quotient = number - if number == 0 or number == 1: ans.append(number) @@ -165,25 +167,26 @@ def primeFactorization(number): # if 'number' not prime then builds the prime factorization of 'number' elif not isPrime(number): - while (quotient != 1): + while quotient != 1: if isPrime(factor) and (quotient % factor == 0): - ans.append(factor) - quotient /= factor + ans.append(factor) + quotient /= factor else: - factor += 1 + factor += 1 else: ans.append(number) # precondition - assert isinstance(ans,list), "'ans' must been from type list" + assert isinstance(ans, list), "'ans' must been from type list" return ans # ----------------------------------------- + def greatestPrimeFactor(number): """ input: positive integer 'number' >= 0 @@ -191,8 +194,9 @@ def greatestPrimeFactor(number): """ # precondition - assert isinstance(number,int) and (number >= 0), \ - "'number' bust been an int and >= 0" + assert isinstance(number, int) and ( + number >= 0 + ), "'number' bust been an int and >= 0" ans = 0 @@ -202,7 +206,7 @@ def greatestPrimeFactor(number): ans = max(primeFactors) # precondition - assert isinstance(ans,int), "'ans' must been from type int" + assert isinstance(ans, int), "'ans' must been from type int" return ans @@ -217,8 +221,9 @@ def smallestPrimeFactor(number): """ # precondition - assert isinstance(number,int) and (number >= 0), \ - "'number' bust been an int and >= 0" + assert isinstance(number, int) and ( + number >= 0 + ), "'number' bust been an int and >= 0" ans = 0 @@ -228,13 +233,14 @@ def smallestPrimeFactor(number): ans = min(primeFactors) # precondition - assert isinstance(ans,int), "'ans' must been from type int" + assert isinstance(ans, int), "'ans' must been from type int" return ans # ---------------------- + def isEven(number): """ input: integer 'number' @@ -247,8 +253,10 @@ def isEven(number): return number % 2 == 0 + # ------------------------ + def isOdd(number): """ input: integer 'number' @@ -261,6 +269,7 @@ def isOdd(number): return number % 2 != 0 + # ------------------------ @@ -272,10 +281,11 @@ def goldbach(number): """ # precondition - assert isinstance(number,int) and (number > 2) and isEven(number), \ - "'number' must been an int, even and > 2" + assert ( + isinstance(number, int) and (number > 2) and isEven(number) + ), "'number' must been an int, even and > 2" - ans = [] # this list will returned + ans = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' primeNumbers = getPrimeNumbers(number) @@ -288,12 +298,11 @@ def goldbach(number): # exit variable. for break up the loops loop = True - while (i < lenPN and loop): + while i < lenPN and loop: - j = i+1 + j = i + 1 - - while (j < lenPN and loop): + while j < lenPN and loop: if primeNumbers[i] + primeNumbers[j] == number: loop = False @@ -305,15 +314,21 @@ def goldbach(number): i += 1 # precondition - assert isinstance(ans,list) and (len(ans) == 2) and \ - (ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \ - "'ans' must contains two primes. And sum of elements must been eq 'number'" + assert ( + isinstance(ans, list) + and (len(ans) == 2) + and (ans[0] + ans[1] == number) + and isPrime(ans[0]) + and isPrime(ans[1]) + ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans + # ---------------------------------------------- -def gcd(number1,number2): + +def gcd(number1, number2): """ Greatest common divisor input: two positive integer 'number1' and 'number2' @@ -321,9 +336,12 @@ def gcd(number1,number2): """ # precondition - assert isinstance(number1,int) and isinstance(number2,int) \ - and (number1 >= 0) and (number2 >= 0), \ - "'number1' and 'number2' must been positive integer." + assert ( + isinstance(number1, int) + and isinstance(number2, int) + and (number1 >= 0) + and (number2 >= 0) + ), "'number1' and 'number2' must been positive integer." rest = 0 @@ -334,13 +352,16 @@ def gcd(number1,number2): number2 = rest # precondition - assert isinstance(number1,int) and (number1 >= 0), \ - "'number' must been from type int and positive" + assert isinstance(number1, int) and ( + number1 >= 0 + ), "'number' must been from type int and positive" return number1 + # ---------------------------------------------------- + def kgV(number1, number2): """ Least common multiple @@ -349,11 +370,14 @@ def kgV(number1, number2): """ # precondition - assert isinstance(number1,int) and isinstance(number2,int) \ - and (number1 >= 1) and (number2 >= 1), \ - "'number1' and 'number2' must been positive integer." + assert ( + isinstance(number1, int) + and isinstance(number2, int) + and (number1 >= 1) + and (number2 >= 1) + ), "'number1' and 'number2' must been positive integer." - ans = 1 # actual answer that will be return. + ans = 1 # actual answer that will be return. # for kgV (x,1) if number1 > 1 and number2 > 1: @@ -366,12 +390,12 @@ def kgV(number1, number2): primeFac1 = [] primeFac2 = [] - ans = max(number1,number2) + ans = max(number1, number2) count1 = 0 count2 = 0 - done = [] # captured numbers int both 'primeFac1' and 'primeFac2' + done = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in primeFac1: @@ -383,7 +407,7 @@ def kgV(number1, number2): count1 = primeFac1.count(n) count2 = primeFac2.count(n) - for i in range(max(count1,count2)): + for i in range(max(count1, count2)): ans *= n else: @@ -408,13 +432,16 @@ def kgV(number1, number2): done.append(n) # precondition - assert isinstance(ans,int) and (ans >= 0), \ - "'ans' must been from type int and positive" + assert isinstance(ans, int) and ( + ans >= 0 + ), "'ans' must been from type int and positive" return ans + # ---------------------------------- + def getPrime(n): """ Gets the n-th prime number. @@ -423,16 +450,16 @@ def getPrime(n): """ # precondition - assert isinstance(n,int) and (n >= 0), "'number' must been a positive int" + assert isinstance(n, int) and (n >= 0), "'number' must been a positive int" index = 0 - ans = 2 # this variable holds the answer + ans = 2 # this variable holds the answer while index < n: index += 1 - ans += 1 # counts to the next number + ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. @@ -440,13 +467,16 @@ def getPrime(n): ans += 1 # precondition - assert isinstance(ans,int) and isPrime(ans), \ - "'ans' must been a prime number and from type int" + assert isinstance(ans, int) and isPrime( + ans + ), "'ans' must been a prime number and from type int" return ans + # --------------------------------------------------- + def getPrimesBetween(pNumber1, pNumber2): """ input: prime numbers 'pNumber1' and 'pNumber2' @@ -456,12 +486,13 @@ def getPrimesBetween(pNumber1, pNumber2): """ # precondition - assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \ - "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" + assert ( + isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2) + ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" - number = pNumber1 + 1 # jump to the next number + number = pNumber1 + 1 # jump to the next number - ans = [] # this list will be returns. + ans = [] # this list will be returns. # if number is not prime then # fetch the next prime number. @@ -479,15 +510,17 @@ def getPrimesBetween(pNumber1, pNumber2): number += 1 # precondition - assert isinstance(ans,list) and ans[0] != pNumber1 \ - and ans[len(ans)-1] != pNumber2, \ - "'ans' must been a list without the arguments" + assert ( + isinstance(ans, list) and ans[0] != pNumber1 and ans[len(ans) - 1] != pNumber2 + ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans + # ---------------------------------------------------- + def getDivisors(n): """ input: positive integer 'n' >= 1 @@ -495,20 +528,17 @@ def getDivisors(n): """ # precondition - assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1" + assert isinstance(n, int) and (n >= 1), "'n' must been int and >= 1" - ans = [] # will be returned. + ans = [] # will be returned. - for divisor in range(1,n+1): + for divisor in range(1, n + 1): if n % divisor == 0: ans.append(divisor) - - #precondition - assert ans[0] == 1 and ans[len(ans)-1] == n, \ - "Error in function getDivisiors(...)" - + # precondition + assert ans[0] == 1 and ans[len(ans) - 1] == n, "Error in function getDivisiors(...)" return ans @@ -523,21 +553,26 @@ def isPerfectNumber(number): """ # precondition - assert isinstance(number,int) and (number > 1), \ - "'number' must been an int and >= 1" + assert isinstance(number, int) and ( + number > 1 + ), "'number' must been an int and >= 1" divisors = getDivisors(number) # precondition - assert isinstance(divisors,list) and(divisors[0] == 1) and \ - (divisors[len(divisors)-1] == number), \ - "Error in help-function getDivisiors(...)" + assert ( + isinstance(divisors, list) + and (divisors[0] == 1) + and (divisors[len(divisors) - 1] == number) + ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number + # ------------------------------------------------------------ + def simplifyFraction(numerator, denominator): """ input: two integer 'numerator' and 'denominator' @@ -546,22 +581,28 @@ def simplifyFraction(numerator, denominator): """ # precondition - assert isinstance(numerator, int) and isinstance(denominator,int) \ - and (denominator != 0), \ - "The arguments must been from type int and 'denominator' != 0" + assert ( + isinstance(numerator, int) + and isinstance(denominator, int) + and (denominator != 0) + ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. gcdOfFraction = gcd(abs(numerator), abs(denominator)) # precondition - assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \ - and (denominator % gcdOfFraction == 0), \ - "Error in function gcd(...,...)" + assert ( + isinstance(gcdOfFraction, int) + and (numerator % gcdOfFraction == 0) + and (denominator % gcdOfFraction == 0) + ), "Error in function gcd(...,...)" return (numerator // gcdOfFraction, denominator // gcdOfFraction) + # ----------------------------------------------------------------- + def factorial(n): """ input: positive integer 'n' @@ -569,17 +610,19 @@ def factorial(n): """ # precondition - assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0" + assert isinstance(n, int) and (n >= 0), "'n' must been a int and >= 0" - ans = 1 # this will be return. + ans = 1 # this will be return. - for factor in range(1,n+1): + for factor in range(1, n + 1): ans *= factor return ans + # ------------------------------------------------------------------- + def fib(n): """ input: positive integer 'n' @@ -591,9 +634,9 @@ def fib(n): tmp = 0 fib1 = 1 - ans = 1 # this will be return + ans = 1 # this will be return - for i in range(n-1): + for i in range(n - 1): tmp = ans ans += fib1 diff --git a/other/sierpinski_triangle.py b/other/sierpinski_triangle.py index fc22aad96059..0e6ce43e35d3 100644 --- a/other/sierpinski_triangle.py +++ b/other/sierpinski_triangle.py @@ -1,7 +1,7 @@ #!/usr/bin/python # encoding=utf8 -'''Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95 +"""Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95 Simple example of Fractal generation using recursive function. @@ -23,46 +23,51 @@ Credits: This code was written by editing the code from http://www.riannetrujillo.com/blog/python-fractal/ -''' +""" import turtle import sys -PROGNAME = 'Sierpinski Triangle' -points = [[-175,-125],[0,175],[175,-125]] #size of triangle +PROGNAME = "Sierpinski Triangle" -def getMid(p1,p2): - return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) #find midpoint +points = [[-175, -125], [0, 175], [175, -125]] # size of triangle -def triangle(points,depth): + +def getMid(p1, p2): + return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2) # find midpoint + + +def triangle(points, depth): myPen.up() - myPen.goto(points[0][0],points[0][1]) + myPen.goto(points[0][0], points[0][1]) myPen.down() - myPen.goto(points[1][0],points[1][1]) - myPen.goto(points[2][0],points[2][1]) - myPen.goto(points[0][0],points[0][1]) - - if depth>0: - triangle([points[0], - getMid(points[0], points[1]), - getMid(points[0], points[2])], - depth-1) - triangle([points[1], - getMid(points[0], points[1]), - getMid(points[1], points[2])], - depth-1) - triangle([points[2], - getMid(points[2], points[1]), - getMid(points[0], points[2])], - depth-1) - - -if __name__ == '__main__': - if len(sys.argv) !=2: - raise ValueError('right format for using this script: ' - '$python fractals.py ') + myPen.goto(points[1][0], points[1][1]) + myPen.goto(points[2][0], points[2][1]) + myPen.goto(points[0][0], points[0][1]) + + if depth > 0: + triangle( + [points[0], getMid(points[0], points[1]), getMid(points[0], points[2])], + depth - 1, + ) + triangle( + [points[1], getMid(points[0], points[1]), getMid(points[1], points[2])], + depth - 1, + ) + triangle( + [points[2], getMid(points[2], points[1]), getMid(points[0], points[2])], + depth - 1, + ) + + +if __name__ == "__main__": + if len(sys.argv) != 2: + raise ValueError( + "right format for using this script: " + "$python fractals.py " + ) myPen = turtle.Turtle() myPen.ht() myPen.speed(5) - myPen.pencolor('red') - triangle(points,int(sys.argv[1])) + myPen.pencolor("red") + triangle(points, int(sys.argv[1])) diff --git a/other/tower_of_hanoi.py b/other/tower_of_hanoi.py index cd6fbf4d88ac..3cc0e40b369f 100644 --- a/other/tower_of_hanoi.py +++ b/other/tower_of_hanoi.py @@ -1,5 +1,5 @@ def moveTower(height, fromPole, toPole, withPole): - ''' + """ >>> moveTower(3, 'A', 'B', 'C') moving disk from A to B moving disk from A to C @@ -8,18 +8,21 @@ def moveTower(height, fromPole, toPole, withPole): moving disk from C to A moving disk from C to B moving disk from A to B - ''' + """ if height >= 1: - moveTower(height-1, fromPole, withPole, toPole) + moveTower(height - 1, fromPole, withPole, toPole) moveDisk(fromPole, toPole) - moveTower(height-1, withPole, toPole, fromPole) + moveTower(height - 1, withPole, toPole, fromPole) + + +def moveDisk(fp, tp): + print("moving disk from", fp, "to", tp) -def moveDisk(fp,tp): - print('moving disk from', fp, 'to', tp) def main(): - height = int(input('Height of hanoi: ').strip()) - moveTower(height, 'A', 'B', 'C') + height = int(input("Height of hanoi: ").strip()) + moveTower(height, "A", "B", "C") + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/other/two_sum.py b/other/two_sum.py index b784da82767a..70d5c5375026 100644 --- a/other/two_sum.py +++ b/other/two_sum.py @@ -9,6 +9,8 @@ Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. """ + + def twoSum(nums, target): """ :type nums: List[int] @@ -17,11 +19,11 @@ def twoSum(nums, target): """ chk_map = {} for index, val in enumerate(nums): - compl = target - val - if compl in chk_map: - indices = [chk_map[compl], index] - print(indices) - return [indices] - else: - chk_map[val] = index + compl = target - val + if compl in chk_map: + indices = [chk_map[compl], index] + print(indices) + return [indices] + else: + chk_map[val] = index return False diff --git a/other/word_patterns.py b/other/word_patterns.py index 1364d1277255..16089019704b 100644 --- a/other/word_patterns.py +++ b/other/word_patterns.py @@ -1,5 +1,6 @@ import pprint, time + def getWordPattern(word): word = word.upper() nextNum = 0 @@ -11,14 +12,15 @@ def getWordPattern(word): letterNums[letter] = str(nextNum) nextNum += 1 wordPattern.append(letterNums[letter]) - return '.'.join(wordPattern) + return ".".join(wordPattern) + def main(): startTime = time.time() allPatterns = {} - with open('Dictionary.txt') as fo: - wordList = fo.read().split('\n') + with open("Dictionary.txt") as fo: + wordList = fo.read().split("\n") for word in wordList: pattern = getWordPattern(word) @@ -28,11 +30,12 @@ def main(): else: allPatterns[pattern].append(word) - with open('Word Patterns.txt', 'w') as fo: + with open("Word Patterns.txt", "w") as fo: fo.write(pprint.pformat(allPatterns)) totalTime = round(time.time() - startTime, 2) - print(('Done! [', totalTime, 'seconds ]')) + print(("Done! [", totalTime, "seconds ]")) + -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/project_euler/problem_01/sol1.py b/project_euler/problem_01/sol1.py index 76b13b852c87..e81156edaee4 100644 --- a/project_euler/problem_01/sol1.py +++ b/project_euler/problem_01/sol1.py @@ -4,6 +4,8 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ + + def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. diff --git a/project_euler/problem_01/sol3.py b/project_euler/problem_01/sol3.py index 532203ddd95d..c0bcbc06ec83 100644 --- a/project_euler/problem_01/sol3.py +++ b/project_euler/problem_01/sol3.py @@ -4,6 +4,8 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ + + def solution(n): """ This solution is based on the pattern that the successive numbers in the diff --git a/project_euler/problem_01/sol4.py b/project_euler/problem_01/sol4.py index 3e6712618870..e01dc977d8cf 100644 --- a/project_euler/problem_01/sol4.py +++ b/project_euler/problem_01/sol4.py @@ -4,6 +4,8 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ + + def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. diff --git a/project_euler/problem_01/sol6.py b/project_euler/problem_01/sol6.py index b9c3db4f8550..c9f94b9f77c8 100644 --- a/project_euler/problem_01/sol6.py +++ b/project_euler/problem_01/sol6.py @@ -4,6 +4,8 @@ we get 3,5,6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below N. """ + + def solution(n): """Returns the sum of all the multiples of 3 or 5 below n. diff --git a/project_euler/problem_02/sol1.py b/project_euler/problem_02/sol1.py index d2ad67e2f424..ec89ddaeb2b5 100644 --- a/project_euler/problem_02/sol1.py +++ b/project_euler/problem_02/sol1.py @@ -9,6 +9,8 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ + + def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. diff --git a/project_euler/problem_02/sol2.py b/project_euler/problem_02/sol2.py index 71f51b695e84..bc5040cc6b3b 100644 --- a/project_euler/problem_02/sol2.py +++ b/project_euler/problem_02/sol2.py @@ -9,6 +9,8 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ + + def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. diff --git a/project_euler/problem_02/sol3.py b/project_euler/problem_02/sol3.py index c698b8e38ab2..f29f21c287e5 100644 --- a/project_euler/problem_02/sol3.py +++ b/project_euler/problem_02/sol3.py @@ -9,6 +9,8 @@ n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is 10. """ + + def solution(n): """Returns the sum of all fibonacci sequence even elements that are lower or equals to n. diff --git a/project_euler/problem_04/sol1.py b/project_euler/problem_04/sol1.py index 51417b146bbf..53fff8bed4d4 100644 --- a/project_euler/problem_04/sol1.py +++ b/project_euler/problem_04/sol1.py @@ -6,6 +6,8 @@ Find the largest palindrome made from the product of two 3-digit numbers which is less than N. """ + + def solution(n): """Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. @@ -31,9 +33,7 @@ def solution(n): # if 'number' is a product of two 3-digit numbers # then number is the answer otherwise fetch next number. while divisor != 99: - if (number % divisor == 0) and ( - len(str(int(number / divisor))) == 3 - ): + if (number % divisor == 0) and (len(str(int(number / divisor))) == 3): return number divisor -= 1 diff --git a/project_euler/problem_04/sol2.py b/project_euler/problem_04/sol2.py index 8740ee44a4b4..ecc503912c34 100644 --- a/project_euler/problem_04/sol2.py +++ b/project_euler/problem_04/sol2.py @@ -6,6 +6,8 @@ Find the largest palindrome made from the product of two 3-digit numbers which is less than N. """ + + def solution(n): """Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. diff --git a/project_euler/problem_05/sol1.py b/project_euler/problem_05/sol1.py index 83c387e4ae6e..b3a231f4dcf5 100644 --- a/project_euler/problem_05/sol1.py +++ b/project_euler/problem_05/sol1.py @@ -6,6 +6,8 @@ What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? """ + + def solution(n): """Returns the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to n. diff --git a/project_euler/problem_06/sol1.py b/project_euler/problem_06/sol1.py index 0a964272e7e8..c69b6c89e35a 100644 --- a/project_euler/problem_06/sol1.py +++ b/project_euler/problem_06/sol1.py @@ -14,6 +14,8 @@ Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. """ + + def solution(n): """Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. diff --git a/project_euler/problem_06/sol2.py b/project_euler/problem_06/sol2.py index 45d08d244647..1698a3fb61fd 100644 --- a/project_euler/problem_06/sol2.py +++ b/project_euler/problem_06/sol2.py @@ -14,6 +14,8 @@ Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. """ + + def solution(n): """Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index 7d078af32176..5d30e540b3e7 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -6,6 +6,8 @@ We can see that the 6th prime is 13. What is the Nth prime number? """ + + def isprime(number): for i in range(2, int(number ** 0.5) + 1): if number % i == 0: diff --git a/project_euler/problem_09/sol2.py b/project_euler/problem_09/sol2.py index 502f334417c8..de7b12d40c09 100644 --- a/project_euler/problem_09/sol2.py +++ b/project_euler/problem_09/sol2.py @@ -7,6 +7,8 @@ There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ + + def solution(n): """ Return the product of a,b,c which are Pythagorean Triplet that satisfies diff --git a/project_euler/problem_09/sol3.py b/project_euler/problem_09/sol3.py index bbe7dcf743e7..a6df46a3a66b 100644 --- a/project_euler/problem_09/sol3.py +++ b/project_euler/problem_09/sol3.py @@ -10,6 +10,8 @@ There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ + + def solution(): """ Returns the product of a,b,c which are Pythagorean Triplet that satisfies diff --git a/project_euler/problem_11/sol1.py b/project_euler/problem_11/sol1.py index 1473439ae00d..4e49013c8210 100644 --- a/project_euler/problem_11/sol1.py +++ b/project_euler/problem_11/sol1.py @@ -39,12 +39,8 @@ def largest_product(grid): # for nxn grid) for i in range(nColumns): for j in range(nRows - 3): - vertProduct = ( - grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] - ) - horzProduct = ( - grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] - ) + vertProduct = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] + horzProduct = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < nColumns - 3: @@ -64,9 +60,7 @@ def largest_product(grid): * grid[i - 3][j + 3] ) - maxProduct = max( - vertProduct, horzProduct, lrDiagProduct, rlDiagProduct - ) + maxProduct = max(vertProduct, horzProduct, lrDiagProduct, rlDiagProduct) if maxProduct > largest: largest = maxProduct diff --git a/project_euler/problem_11/sol2.py b/project_euler/problem_11/sol2.py index be6c11a378ad..64702e852b0f 100644 --- a/project_euler/problem_11/sol2.py +++ b/project_euler/problem_11/sol2.py @@ -57,24 +57,14 @@ def solution(): # diagonal 1 for i in range(17): for j in range(17): - temp = ( - l[i][j] - * l[i + 1][j + 1] - * l[i + 2][j + 2] - * l[i + 3][j + 3] - ) + temp = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: maximum = temp # diagonal 2 for i in range(17): for j in range(3, 20): - temp = ( - l[i][j] - * l[i + 1][j - 1] - * l[i + 2][j - 2] - * l[i + 3][j - 3] - ) + temp = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: maximum = temp return maximum diff --git a/project_euler/problem_12/sol2.py b/project_euler/problem_12/sol2.py index 97a4910723ac..5ff0d8349b90 100644 --- a/project_euler/problem_12/sol2.py +++ b/project_euler/problem_12/sol2.py @@ -21,15 +21,15 @@ What is the value of the first triangle number to have over five hundred divisors? """ + + def triangle_number_generator(): for n in range(1, 1000000): yield n * (n + 1) // 2 def count_divisors(n): - return sum( - [2 for i in range(1, int(n ** 0.5) + 1) if n % i == 0 and i * i != n] - ) + return sum([2 for i in range(1, int(n ** 0.5) + 1) if n % i == 0 and i * i != n]) def solution(): @@ -40,9 +40,7 @@ def solution(): # >>> solution() # 76576500 """ - return next( - i for i in triangle_number_generator() if count_divisors(i) > 500 - ) + return next(i for i in triangle_number_generator() if count_divisors(i) > 500) if __name__ == "__main__": diff --git a/project_euler/problem_14/sol1.py b/project_euler/problem_14/sol1.py index 156322b7d507..ab09937fb315 100644 --- a/project_euler/problem_14/sol1.py +++ b/project_euler/problem_14/sol1.py @@ -16,6 +16,8 @@ Which starting number, under one million, produces the longest chain? """ + + def solution(n): """Returns the number under n that generates the longest sequence using the formula: @@ -56,11 +58,5 @@ def solution(n): if __name__ == "__main__": result = solution(int(input().strip())) print( - ( - "Largest Number:", - result["largest_number"], - "->", - result["counter"], - "digits", - ) + ("Largest Number:", result["largest_number"], "->", result["counter"], "digits") ) diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py index 25ebd41571c2..9b8857e710b4 100644 --- a/project_euler/problem_14/sol2.py +++ b/project_euler/problem_14/sol2.py @@ -24,6 +24,8 @@ Which starting number, under one million, produces the longest chain? """ + + def collatz_sequence(n): """Returns the Collatz sequence for n.""" sequence = [n] diff --git a/project_euler/problem_15/sol1.py b/project_euler/problem_15/sol1.py index de58bb436d68..1be7d10ed674 100644 --- a/project_euler/problem_15/sol1.py +++ b/project_euler/problem_15/sol1.py @@ -35,9 +35,7 @@ def lattice_paths(n): 2 """ - n = ( - 2 * n - ) # middle entry of odd rows starting at row 3 is the solution for n = 1, + n = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... k = n / 2 diff --git a/project_euler/problem_18/solution.py b/project_euler/problem_18/solution.py index f9762e8b0176..38593813901e 100644 --- a/project_euler/problem_18/solution.py +++ b/project_euler/problem_18/solution.py @@ -39,12 +39,12 @@ def solution(): 1074 """ script_dir = os.path.dirname(os.path.realpath(__file__)) - triangle = os.path.join(script_dir, 'triangle.txt') + triangle = os.path.join(script_dir, "triangle.txt") - with open(triangle, 'r') as f: + with open(triangle, "r") as f: triangle = f.readlines() - a = [[int(y) for y in x.rstrip('\r\n').split(' ')] for x in triangle] + a = [[int(y) for y in x.rstrip("\r\n").split(" ")] for x in triangle] for i in range(1, len(a)): for j in range(len(a[i])): diff --git a/project_euler/problem_21/sol1.py b/project_euler/problem_21/sol1.py index a890e6a98611..49c2db964316 100644 --- a/project_euler/problem_21/sol1.py +++ b/project_euler/problem_21/sol1.py @@ -16,6 +16,8 @@ Evaluate the sum of all the amicable numbers under 10000. """ + + def sum_of_divisors(n): total = 0 for i in range(1, int(sqrt(n) + 1)): @@ -44,8 +46,7 @@ def solution(n): [ i for i in range(1, n) - if sum_of_divisors(sum_of_divisors(i)) == i - and sum_of_divisors(i) != i + if sum_of_divisors(sum_of_divisors(i)) == i and sum_of_divisors(i) != i ] ) return total diff --git a/project_euler/problem_23/sol1.py b/project_euler/problem_23/sol1.py index e76be053040f..a72b6123e3ee 100644 --- a/project_euler/problem_23/sol1.py +++ b/project_euler/problem_23/sol1.py @@ -18,7 +18,8 @@ of two abundant numbers. """ -def solution(limit = 28123): + +def solution(limit=28123): """ Finds the sum of all the positive integers which cannot be written as the sum of two abundant numbers @@ -42,7 +43,7 @@ def solution(limit = 28123): abundants.add(n) if not any((n - a in abundants) for a in abundants): - res+=n + res += n return res diff --git a/project_euler/problem_234/sol1.py b/project_euler/problem_234/sol1.py index c0d2949285e9..28d82b550c85 100644 --- a/project_euler/problem_234/sol1.py +++ b/project_euler/problem_234/sol1.py @@ -17,18 +17,19 @@ What is the sum of all semidivisible numbers not exceeding 999966663333 ? """ + def fib(a, b, n): - - if n==1: + + if n == 1: return a - elif n==2: + elif n == 2: return b - elif n==3: - return str(a)+str(b) - + elif n == 3: + return str(a) + str(b) + temp = 0 - for x in range(2,n): - c=str(a) + str(b) + for x in range(2, n): + c = str(a) + str(b) temp = b b = c a = temp @@ -39,14 +40,14 @@ def solution(n): """Returns the sum of all semidivisible numbers not exceeding n.""" semidivisible = [] for x in range(n): - l=[i for i in input().split()] - c2=1 - while(1): - if len(fib(l[0],l[1],c2)) int: """ Considering natural numbers of the form, a**b, where a, b < 100, @@ -18,9 +16,17 @@ def maximum_digital_sum(a: int, b: int) -> int: """ # RETURN the MAXIMUM from the list of SUMs of the list of INT converted from STR of BASE raised to the POWER - return max([sum([int(x) for x in str(base**power)]) for base in range(a) for power in range(b)]) + return max( + [ + sum([int(x) for x in str(base ** power)]) + for base in range(a) + for power in range(b) + ] + ) -#Tests + +# Tests if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/project_euler/problem_67/sol1.py b/project_euler/problem_67/sol1.py index 2da757e303aa..9494ff7bbabd 100644 --- a/project_euler/problem_67/sol1.py +++ b/project_euler/problem_67/sol1.py @@ -23,12 +23,12 @@ def solution(): 7273 """ script_dir = os.path.dirname(os.path.realpath(__file__)) - triangle = os.path.join(script_dir, 'triangle.txt') + triangle = os.path.join(script_dir, "triangle.txt") - with open(triangle, 'r') as f: + with open(triangle, "r") as f: triangle = f.readlines() - a = map(lambda x: x.rstrip('\r\n').split(' '), triangle) + a = map(lambda x: x.rstrip("\r\n").split(" "), triangle) a = list(map(lambda x: list(map(lambda y: int(y), x)), a)) for i in range(1, len(a)): diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py index b39edca6c933..cae38c13dbf4 100755 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -14,7 +14,7 @@ def good_filepaths(top_dir: str = ".") -> Iterator[str]: continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dirpath, filename).lstrip("./") - + def md_prefix(i): return f"{i * ' '}*" if i else "##" @@ -36,7 +36,9 @@ def print_directory_md(top_dir: str = ".") -> None: if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 - url = "/".join((URL_BASE, filepath.split(os.sep)[1], filename)).replace(" ", "%20") + url = "/".join((URL_BASE, filepath.split(os.sep)[1], filename)).replace( + " ", "%20" + ) filename = os.path.splitext(filename.replace("_", " "))[0] print(f"{md_prefix(indent)} [{filename}]({url})") diff --git a/scripts/validate_filenames.py b/scripts/validate_filenames.py index 9e1f1503321b..51dd6a40cb41 100755 --- a/scripts/validate_filenames.py +++ b/scripts/validate_filenames.py @@ -25,4 +25,5 @@ bad_files = len(upper_files + space_files + nodir_files) if bad_files: import sys + sys.exit(bad_files) diff --git a/searches/binary_search.py b/searches/binary_search.py index 77abf90239ab..9237c0e1f6f5 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -79,6 +79,7 @@ def binary_search_std_lib(sorted_collection, item): return index return None + def binary_search_by_recursion(sorted_collection, item, left, right): """Pure implementation of binary search algorithm in Python by recursion @@ -104,7 +105,7 @@ def binary_search_by_recursion(sorted_collection, item, left, right): >>> binary_search_std_lib([0, 5, 7, 10, 15], 6) """ - if (right < left): + if right < left: return None midpoint = left + (right - left) // 2 @@ -112,9 +113,10 @@ def binary_search_by_recursion(sorted_collection, item, left, right): if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: - return binary_search_by_recursion(sorted_collection, item, left, midpoint-1) + return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1) else: - return binary_search_by_recursion(sorted_collection, item, midpoint+1, right) + return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right) + def __assert_sorted(collection): """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` @@ -133,23 +135,24 @@ def __assert_sorted(collection): ValueError: Collection must be ascending sorted """ if collection != sorted(collection): - raise ValueError('Collection must be ascending sorted') + raise ValueError("Collection must be ascending sorted") return True -if __name__ == '__main__': +if __name__ == "__main__": import sys - user_input = input('Enter numbers separated by comma:\n').strip() - collection = [int(item) for item in user_input.split(',')] + + user_input = input("Enter numbers separated by comma:\n").strip() + collection = [int(item) for item in user_input.split(",")] try: __assert_sorted(collection) except ValueError: - sys.exit('Sequence must be ascending sorted to apply binary search') + sys.exit("Sequence must be ascending sorted to apply binary search") - target_input = input('Enter a single number to be found in the list:\n') + target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = binary_search(collection, target) if result is not None: - print('{} found at positions: {}'.format(target, result)) + print("{} found at positions: {}".format(target, result)) else: - print('Not found') + print("Not found") diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index 27ee979bb649..d1873083bf8a 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -15,27 +15,29 @@ def interpolation_search(sorted_collection, item): right = len(sorted_collection) - 1 while left <= right: - #avoid devided by 0 during interpolation - if sorted_collection[left]==sorted_collection[right]: - if sorted_collection[left]==item: + # avoid devided by 0 during interpolation + if sorted_collection[left] == sorted_collection[right]: + if sorted_collection[left] == item: return left else: return None - point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) + point = left + ((item - sorted_collection[left]) * (right - left)) // ( + sorted_collection[right] - sorted_collection[left] + ) - #out of range check - if point<0 or point>=len(sorted_collection): + # out of range check + if point < 0 or point >= len(sorted_collection): return None current_item = sorted_collection[point] if current_item == item: return point else: - if pointright: + elif point > right: left = right right = point else: @@ -45,6 +47,7 @@ def interpolation_search(sorted_collection, item): left = point + 1 return None + def interpolation_search_by_recursion(sorted_collection, item, left, right): """Pure implementation of interpolation search algorithm in Python by recursion @@ -56,30 +59,37 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right): :return: index of found item or None if item is not found """ - #avoid devided by 0 during interpolation - if sorted_collection[left]==sorted_collection[right]: - if sorted_collection[left]==item: + # avoid devided by 0 during interpolation + if sorted_collection[left] == sorted_collection[right]: + if sorted_collection[left] == item: return left else: return None - point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) + point = left + ((item - sorted_collection[left]) * (right - left)) // ( + sorted_collection[right] - sorted_collection[left] + ) - #out of range check - if point<0 or point>=len(sorted_collection): + # out of range check + if point < 0 or point >= len(sorted_collection): return None if sorted_collection[point] == item: return point - elif pointright: + elif point > right: return interpolation_search_by_recursion(sorted_collection, item, right, left) else: if sorted_collection[point] > item: - return interpolation_search_by_recursion(sorted_collection, item, left, point-1) + return interpolation_search_by_recursion( + sorted_collection, item, left, point - 1 + ) else: - return interpolation_search_by_recursion(sorted_collection, item, point+1, right) + return interpolation_search_by_recursion( + sorted_collection, item, point + 1, right + ) + def __assert_sorted(collection): """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` @@ -95,11 +105,11 @@ def __assert_sorted(collection): ValueError: Collection must be ascending sorted """ if collection != sorted(collection): - raise ValueError('Collection must be ascending sorted') + raise ValueError("Collection must be ascending sorted") return True -if __name__ == '__main__': +if __name__ == "__main__": import sys """ @@ -116,15 +126,15 @@ def __assert_sorted(collection): debug = 0 if debug == 1: - collection = [10,30,40,45,50,66,77,93] + collection = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: - sys.exit('Sequence must be ascending sorted to apply interpolation search') + sys.exit("Sequence must be ascending sorted to apply interpolation search") target = 67 result = interpolation_search(collection, target) if result is not None: - print('{} found at positions: {}'.format(target, result)) + print("{} found at positions: {}".format(target, result)) else: - print('Not found') + print("Not found") diff --git a/searches/jump_search.py b/searches/jump_search.py index 78d9f79dc6a8..e191cf2d4b27 100644 --- a/searches/jump_search.py +++ b/searches/jump_search.py @@ -1,9 +1,11 @@ import math + + def jump_search(arr, x): n = len(arr) step = int(math.floor(math.sqrt(n))) prev = 0 - while arr[min(step, n)-1] < x: + while arr[min(step, n) - 1] < x: prev = step step += int(math.floor(math.sqrt(n))) if prev >= n: @@ -18,8 +20,7 @@ def jump_search(arr, x): return -1 - -arr = [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] +arr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] x = 55 index = jump_search(arr, x) -print("\nNumber " + str(x) +" is at index " + str(index)); +print("\nNumber " + str(x) + " is at index " + str(index)) diff --git a/searches/linear_search.py b/searches/linear_search.py index fb784924132e..ab20f3527bb3 100644 --- a/searches/linear_search.py +++ b/searches/linear_search.py @@ -37,14 +37,14 @@ def linear_search(sequence, target): return None -if __name__ == '__main__': - user_input = input('Enter numbers separated by comma:\n').strip() - sequence = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by comma:\n").strip() + sequence = [int(item) for item in user_input.split(",")] - target_input = input('Enter a single number to be found in the list:\n') + target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = linear_search(sequence, target) if result is not None: - print('{} found at positions: {}'.format(target, result)) + print("{} found at positions: {}".format(target, result)) else: - print('Not found') + print("Not found") diff --git a/searches/quick_select.py b/searches/quick_select.py index 76d09cb97f97..6b70562bd78f 100644 --- a/searches/quick_select.py +++ b/searches/quick_select.py @@ -4,6 +4,8 @@ A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted https://en.wikipedia.org/wiki/Quickselect """ + + def _partition(data, pivot): """ Three way partition the data into smaller, equal and greater lists, @@ -21,29 +23,30 @@ def _partition(data, pivot): else: equal.append(element) return less, equal, greater - + + def quickSelect(list, k): - #k = len(list) // 2 when trying to find the median (index that value would be when list is sorted) - - #invalid input - if k>=len(list) or k<0: + # k = len(list) // 2 when trying to find the median (index that value would be when list is sorted) + + # invalid input + if k >= len(list) or k < 0: return None - + smaller = [] larger = [] pivot = random.randint(0, len(list) - 1) pivot = list[pivot] count = 0 - smaller, equal, larger =_partition(list, pivot) + smaller, equal, larger = _partition(list, pivot) count = len(equal) m = len(smaller) - #k is the pivot + # k is the pivot if m <= k < m + count: return pivot # must be in smaller elif m > k: return quickSelect(smaller, k) - #must be in larger + # must be in larger else: - return quickSelect(larger, k - (m + count)) \ No newline at end of file + return quickSelect(larger, k - (m + count)) diff --git a/searches/sentinel_linear_search.py b/searches/sentinel_linear_search.py index eb9d32e5f503..6c4da9b21189 100644 --- a/searches/sentinel_linear_search.py +++ b/searches/sentinel_linear_search.py @@ -10,6 +10,7 @@ python sentinel_linear_search.py """ + def sentinel_linear_search(sequence, target): """Pure implementation of sentinel linear search algorithm in Python @@ -44,14 +45,14 @@ def sentinel_linear_search(sequence, target): return index -if __name__ == '__main__': - user_input = input('Enter numbers separated by comma:\n').strip() - sequence = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by comma:\n").strip() + sequence = [int(item) for item in user_input.split(",")] - target_input = input('Enter a single number to be found in the list:\n') + target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: - print('{} found at positions: {}'.format(target, result)) + print("{} found at positions: {}".format(target, result)) else: - print('Not found') \ No newline at end of file + print("Not found") diff --git a/searches/tabu_search.py b/searches/tabu_search.py index ffd84f8ac031..9a1478244503 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -55,13 +55,17 @@ def generate_neighbours(path): _list.append([line.split()[1], line.split()[2]]) dict_of_neighbours[line.split()[0]] = _list else: - dict_of_neighbours[line.split()[0]].append([line.split()[1], line.split()[2]]) + dict_of_neighbours[line.split()[0]].append( + [line.split()[1], line.split()[2]] + ) if line.split()[1] not in dict_of_neighbours: _list = list() _list.append([line.split()[0], line.split()[2]]) dict_of_neighbours[line.split()[1]] = _list else: - dict_of_neighbours[line.split()[1]].append([line.split()[0], line.split()[2]]) + dict_of_neighbours[line.split()[1]].append( + [line.split()[0], line.split()[2]] + ) return dict_of_neighbours @@ -111,8 +115,11 @@ def generate_first_solution(path, dict_of_neighbours): break position += 1 - distance_of_first_solution = distance_of_first_solution + int( - dict_of_neighbours[first_solution[-2]][position][1]) - 10000 + distance_of_first_solution = ( + distance_of_first_solution + + int(dict_of_neighbours[first_solution[-2]][position][1]) + - 10000 + ) return first_solution, distance_of_first_solution @@ -167,7 +174,9 @@ def find_neighborhood(solution, dict_of_neighbours): return neighborhood_of_solution -def tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, iters, size): +def tabu_search( + first_solution, distance_of_first_solution, dict_of_neighbours, iters, size +): """ Pure implementation of Tabu search algorithm for a Travelling Salesman Problem in Python. @@ -207,8 +216,10 @@ def tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, break i = i + 1 - if [first_exchange_node, second_exchange_node] not in tabu_list and [second_exchange_node, - first_exchange_node] not in tabu_list: + if [first_exchange_node, second_exchange_node] not in tabu_list and [ + second_exchange_node, + first_exchange_node, + ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) found = True solution = best_solution[:-1] @@ -231,10 +242,17 @@ def tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, def main(args=None): dict_of_neighbours = generate_neighbours(args.File) - first_solution, distance_of_first_solution = generate_first_solution(args.File, dict_of_neighbours) + first_solution, distance_of_first_solution = generate_first_solution( + args.File, dict_of_neighbours + ) - best_sol, best_cost = tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, args.Iterations, - args.Size) + best_sol, best_cost = tabu_search( + first_solution, + distance_of_first_solution, + dict_of_neighbours, + args.Iterations, + args.Size, + ) print("Best solution: {0}, with total distance: {1}.".format(best_sol, best_cost)) @@ -242,11 +260,22 @@ def main(args=None): if __name__ == "__main__": parser = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( - "-f", "--File", type=str, help="Path to the file containing the data", required=True) + "-f", + "--File", + type=str, + help="Path to the file containing the data", + required=True, + ) parser.add_argument( - "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True) + "-i", + "--Iterations", + type=int, + help="How many iterations the algorithm should perform", + required=True, + ) parser.add_argument( - "-s", "--Size", type=int, help="Size of the tabu list", required=True) + "-s", "--Size", type=int, help="Size of the tabu list", required=True + ) # Pass the arguments to main method sys.exit(main(parser.parse_args())) diff --git a/searches/ternary_search.py b/searches/ternary_search.py index 41033f33cec6..43407b7e5538 100644 --- a/searches/ternary_search.py +++ b/searches/ternary_search.py @@ -1,11 +1,11 @@ -''' +""" This is a type of divide and conquer algorithm which divides the search space into 3 parts and finds the target value based on the property of the array or list (usually monotonic property). Time Complexity : O(log3 N) Space Complexity : O(1) -''' +""" import sys # This is the precision for this function which can be altered. @@ -14,87 +14,90 @@ # This is the linear search that will occur after the search space has become smaller. def lin_search(left, right, A, target): - for i in range(left, right+1): - if(A[i] == target): + for i in range(left, right + 1): + if A[i] == target: return i + # This is the iterative method of the ternary search algorithm. def ite_ternary_search(A, target): left = 0 - right = len(A) - 1; - while(True): - if(left a[j]) agrees with the direction, -# then a[i] and a[j] are interchanged.*/ +# The parameter dir indicates the sorting direction, ASCENDING +# or DESCENDING; if (a[i] > a[j]) agrees with the direction, +# then a[i] and a[j] are interchanged.*/ def compAndSwap(a, i, j, dire): if (dire == 1 and a[i] > a[j]) or (dire == 0 and a[i] < a[j]): a[i], a[j] = a[j], a[i] @@ -12,8 +12,8 @@ def compAndSwap(a, i, j, dire): # if dir = 1, and in descending order otherwise (means dir=0). -# The sequence to be sorted starts at index position low, -# the parameter cnt is the number of elements to be sorted. +# The sequence to be sorted starts at index position low, +# the parameter cnt is the number of elements to be sorted. def bitonicMerge(a, low, cnt, dire): if cnt > 1: k = int(cnt / 2) @@ -26,7 +26,7 @@ def bitonicMerge(a, low, cnt, dire): # sorting its two halves in opposite sorting orders, and then -# calls bitonicMerge to make them in the same order +# calls bitonicMerge to make them in the same order def bitonicSort(a, low, cnt, dire): if cnt > 1: k = int(cnt / 2) diff --git a/sorts/bogo_sort.py b/sorts/bogo_sort.py index a3b2cbc1aa29..0afa444e5b8e 100644 --- a/sorts/bogo_sort.py +++ b/sorts/bogo_sort.py @@ -37,7 +37,8 @@ def isSorted(collection): random.shuffle(collection) return collection -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(bogo_sort(unsorted)) diff --git a/sorts/bubble_sort.py b/sorts/bubble_sort.py index c41a51ea3cbf..ccd8a2e11ee1 100644 --- a/sorts/bubble_sort.py +++ b/sorts/bubble_sort.py @@ -22,18 +22,18 @@ def bubble_sort(collection): True """ length = len(collection) - for i in range(length-1): + for i in range(length - 1): swapped = False - for j in range(length-1-i): - if collection[j] > collection[j+1]: + for j in range(length - 1 - i): + if collection[j] > collection[j + 1]: swapped = True - collection[j], collection[j+1] = collection[j+1], collection[j] + collection[j], collection[j + 1] = collection[j + 1], collection[j] if not swapped: break # Stop iteration if the collection is sorted. return collection -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:').strip() - unsorted = [int(item) for item in user_input.split(',')] - print(*bubble_sort(unsorted), sep=',') +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(*bubble_sort(unsorted), sep=",") diff --git a/sorts/bucket_sort.py b/sorts/bucket_sort.py index 0678b1194657..217ee5893c4b 100644 --- a/sorts/bucket_sort.py +++ b/sorts/bucket_sort.py @@ -17,8 +17,8 @@ # number of buckets. # Time Complexity of Solution: -# Worst case scenario occurs when all the elements are placed in a single bucket. The overall performance -# would then be dominated by the algorithm used to sort each bucket. In this case, O(n log n), because of TimSort +# Worst case scenario occurs when all the elements are placed in a single bucket. The overall performance +# would then be dominated by the algorithm used to sort each bucket. In this case, O(n log n), because of TimSort # # Average Case O(n + (n^2)/k + k), where k is the number of buckets # @@ -32,18 +32,18 @@ def bucket_sort(my_list, bucket_size=DEFAULT_BUCKET_SIZE): raise Exception("Please add some elements in the array.") min_value, max_value = (min(my_list), max(my_list)) - bucket_count = ((max_value - min_value) // bucket_size + 1) + bucket_count = (max_value - min_value) // bucket_size + 1 buckets = [[] for _ in range(int(bucket_count))] for i in range(len(my_list)): - buckets[int((my_list[i] - min_value) // bucket_size) - ].append(my_list[i]) + buckets[int((my_list[i] - min_value) // bucket_size)].append(my_list[i]) - return sorted([buckets[i][j] for i in range(len(buckets)) - for j in range(len(buckets[i]))]) + return sorted( + [buckets[i][j] for i in range(len(buckets)) for j in range(len(buckets[i]))] + ) if __name__ == "__main__": - user_input = input('Enter numbers separated by a comma:').strip() - unsorted = [float(n) for n in user_input.split(',') if len(user_input) > 0] + user_input = input("Enter numbers separated by a comma:").strip() + unsorted = [float(n) for n in user_input.split(",") if len(user_input) > 0] print(bucket_sort(unsorted)) diff --git a/sorts/cocktail_shaker_sort.py b/sorts/cocktail_shaker_sort.py index d486e6a11dfa..ab624421a3d6 100644 --- a/sorts/cocktail_shaker_sort.py +++ b/sorts/cocktail_shaker_sort.py @@ -2,24 +2,25 @@ def cocktail_shaker_sort(unsorted): """ Pure implementation of the cocktail shaker sort algorithm in Python. """ - for i in range(len(unsorted)-1, 0, -1): + for i in range(len(unsorted) - 1, 0, -1): swapped = False for j in range(i, 0, -1): - if unsorted[j] < unsorted[j-1]: - unsorted[j], unsorted[j-1] = unsorted[j-1], unsorted[j] + if unsorted[j] < unsorted[j - 1]: + unsorted[j], unsorted[j - 1] = unsorted[j - 1], unsorted[j] swapped = True for j in range(i): - if unsorted[j] > unsorted[j+1]: - unsorted[j], unsorted[j+1] = unsorted[j+1], unsorted[j] + if unsorted[j] > unsorted[j + 1]: + unsorted[j], unsorted[j + 1] = unsorted[j + 1], unsorted[j] swapped = True if not swapped: return unsorted -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] cocktail_shaker_sort(unsorted) print(unsorted) diff --git a/sorts/comb_sort.py b/sorts/comb_sort.py index 6ce6c1c094f9..3c4c57483e3f 100644 --- a/sorts/comb_sort.py +++ b/sorts/comb_sort.py @@ -12,6 +12,7 @@ python comb_sort.py """ + def comb_sort(data): """Pure implementation of comb sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous @@ -38,16 +39,16 @@ def comb_sort(data): i = 0 while gap + i < len(data): - if data[i] > data[i+gap]: + if data[i] > data[i + gap]: # Swap values - data[i], data[i+gap] = data[i+gap], data[i] + data[i], data[i + gap] = data[i + gap], data[i] swapped = True i += 1 return data -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(comb_sort(unsorted)) diff --git a/sorts/counting_sort.py b/sorts/counting_sort.py index a3de1811849e..b672d4af47cb 100644 --- a/sorts/counting_sort.py +++ b/sorts/counting_sort.py @@ -42,7 +42,7 @@ def counting_sort(collection): # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, counting_arr_length): - counting_arr[i] = counting_arr[i] + counting_arr[i-1] + counting_arr[i] = counting_arr[i] + counting_arr[i - 1] # create the output collection ordered = [0] * coll_len @@ -50,23 +50,24 @@ def counting_sort(collection): # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, coll_len)): - ordered[counting_arr[collection[i] - coll_min]-1] = collection[i] + ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered + def counting_sort_string(string): """ >>> counting_sort_string("thisisthestring") 'eghhiiinrsssttt' """ - return ''.join([chr(i) for i in counting_sort([ord(c) for c in string])]) + return "".join([chr(i) for i in counting_sort([ord(c) for c in string])]) -if __name__ == '__main__': +if __name__ == "__main__": # Test string sort assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring") - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted)) diff --git a/sorts/cycle_sort.py b/sorts/cycle_sort.py index 06a377cbd906..4ce6a2a0e757 100644 --- a/sorts/cycle_sort.py +++ b/sorts/cycle_sort.py @@ -41,12 +41,12 @@ def cycle_sort(array): # Main Code starts here -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n') - unsorted = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n") + unsorted = [int(item) for item in user_input.split(",")] n = len(unsorted) cycle_sort(unsorted) print("After sort : ") for i in range(0, n): - print(unsorted[i], end=' ') + print(unsorted[i], end=" ") diff --git a/sorts/external_sort.py b/sorts/external_sort.py index 1638e9efafee..abdcb29f95b2 100644 --- a/sorts/external_sort.py +++ b/sorts/external_sort.py @@ -6,8 +6,9 @@ import os import argparse + class FileSplitter(object): - BLOCK_FILENAME_FORMAT = 'block_{0}.dat' + BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): self.filename = filename @@ -15,7 +16,7 @@ def __init__(self, filename): def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) - with open(filename, 'w') as file: + with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename) @@ -36,7 +37,7 @@ def split(self, block_size, sort_key=None): else: lines.sort(key=sort_key) - self.write_block(''.join(lines), i) + self.write_block("".join(lines), i) i += 1 def cleanup(self): @@ -63,14 +64,16 @@ def __init__(self, files): self.buffers = {i: None for i in range(self.num_buffers)} def get_dict(self): - return {i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty} + return { + i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty + } def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() - if self.buffers[i] == '': + if self.buffers[i] == "": self.empty.add(i) self.files[i].close() @@ -92,7 +95,7 @@ def __init__(self, merge_strategy): def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) - with open(outfilename, 'w', buffer_size) as outfile: + with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index)) @@ -101,12 +104,11 @@ def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): - files[i] = open(filenames[i], 'r', buffer_size) + files[i] = open(filenames[i], "r", buffer_size) return files - class ExternalSort(object): def __init__(self, block_size): self.block_size = block_size @@ -118,7 +120,7 @@ def sort(self, filename, sort_key=None): merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) - merger.merge(splitter.get_block_filenames(), filename + '.out', buffer_size) + merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup() @@ -127,32 +129,29 @@ def get_number_blocks(self, filename, block_size): def parse_memory(string): - if string[-1].lower() == 'k': + if string[-1].lower() == "k": return int(string[:-1]) * 1024 - elif string[-1].lower() == 'm': + elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 - elif string[-1].lower() == 'g': + elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string) - def main(): parser = argparse.ArgumentParser() - parser.add_argument('-m', - '--mem', - help='amount of memory to use for sorting', - default='100M') - parser.add_argument('filename', - metavar='', - nargs=1, - help='name of file to sort') + parser.add_argument( + "-m", "--mem", help="amount of memory to use for sorting", default="100M" + ) + parser.add_argument( + "filename", metavar="", nargs=1, help="name of file to sort" + ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0]) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/sorts/gnome_sort.py b/sorts/gnome_sort.py index fed70eb6bc1b..58a44c94da43 100644 --- a/sorts/gnome_sort.py +++ b/sorts/gnome_sort.py @@ -14,12 +14,12 @@ def gnome_sort(unsorted): else: unsorted[i - 1], unsorted[i] = unsorted[i], unsorted[i - 1] i -= 1 - if (i == 0): + if i == 0: i = 1 -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] gnome_sort(unsorted) print(unsorted) diff --git a/sorts/heap_sort.py b/sorts/heap_sort.py index ca4a061afbb7..a39ae2b88da2 100644 --- a/sorts/heap_sort.py +++ b/sorts/heap_sort.py @@ -1,4 +1,4 @@ -''' +""" This is a pure python implementation of the heap sort algorithm. For doctests run following command: @@ -8,7 +8,8 @@ For manual testing run: python heap_sort.py -''' +""" + def heapify(unsorted, index, heap_size): largest = index @@ -26,7 +27,7 @@ def heapify(unsorted, index, heap_size): def heap_sort(unsorted): - ''' + """ Pure implementation of the heap sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside @@ -41,7 +42,7 @@ def heap_sort(unsorted): >>> heap_sort([-2, -5, -45]) [-45, -5, -2] - ''' + """ n = len(unsorted) for i in range(n // 2 - 1, -1, -1): heapify(unsorted, i, n) @@ -50,7 +51,8 @@ def heap_sort(unsorted): heapify(unsorted, 0, i) return unsorted -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(heap_sort(unsorted)) diff --git a/sorts/insertion_sort.py b/sorts/insertion_sort.py index e10497b0e282..b767018c3d57 100644 --- a/sorts/insertion_sort.py +++ b/sorts/insertion_sort.py @@ -9,6 +9,8 @@ For manual testing run: python insertion_sort.py """ + + def insertion_sort(collection): """Pure implementation of the insertion sort algorithm in Python @@ -29,14 +31,20 @@ def insertion_sort(collection): for loop_index in range(1, len(collection)): insertion_index = loop_index - while insertion_index > 0 and collection[insertion_index - 1] > collection[insertion_index]: - collection[insertion_index], collection[insertion_index - 1] = collection[insertion_index - 1], collection[insertion_index] + while ( + insertion_index > 0 + and collection[insertion_index - 1] > collection[insertion_index] + ): + collection[insertion_index], collection[insertion_index - 1] = ( + collection[insertion_index - 1], + collection[insertion_index], + ) insertion_index -= 1 return collection -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(insertion_sort(unsorted)) diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index e64e90785a32..13f1144d4ad3 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -9,6 +9,8 @@ For manual testing run: python merge_sort.py """ + + def merge_sort(collection): """Pure implementation of the merge sort algorithm in Python @@ -26,23 +28,25 @@ def merge_sort(collection): >>> merge_sort([-2, -5, -45]) [-45, -5, -2] """ + def merge(left, right): - '''merge left and right + """merge left and right :param left: left collection :param right: right collection :return: merge result - ''' + """ result = [] while left and right: result.append((left if left[0] <= right[0] else right).pop(0)) return result + left + right + if len(collection) <= 1: return collection mid = len(collection) // 2 return merge(merge_sort(collection[:mid]), merge_sort(collection[mid:])) -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] - print(*merge_sort(unsorted), sep=',') +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(*merge_sort(unsorted), sep=",") diff --git a/sorts/merge_sort_fastest.py b/sorts/merge_sort_fastest.py index 3c9ed3e9e8ee..f3c067795dd5 100644 --- a/sorts/merge_sort_fastest.py +++ b/sorts/merge_sort_fastest.py @@ -1,9 +1,11 @@ -''' +""" Python implementation of the fastest merge sort algorithm. Takes an average of 0.6 microseconds to sort a list of length 1000 items. Best Case Scenario : O(n) Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n) -''' +""" + + def merge_sort(collection): """Pure implementation of the fastest merge sort algorithm in Python @@ -32,7 +34,7 @@ def merge_sort(collection): return start + collection + end -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] - print(*merge_sort(unsorted), sep=',') +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(*merge_sort(unsorted), sep=",") diff --git a/sorts/odd_even_transposition_parallel.py b/sorts/odd_even_transposition_parallel.py index 9bf81a39e27a..4d2f377024d2 100644 --- a/sorts/odd_even_transposition_parallel.py +++ b/sorts/odd_even_transposition_parallel.py @@ -12,7 +12,7 @@ """ from multiprocessing import Process, Pipe, Lock -#lock used to ensure that two processes do not access a pipe at the same time +# lock used to ensure that two processes do not access a pipe at the same time processLock = Lock() """ @@ -25,89 +25,117 @@ LRcv, RRcv = the pipes we use to receive from our left and right neighbors resultPipe = the pipe used to send results back to main """ + + def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): global processLock - #we perform n swaps since after n swaps we know we are sorted - #we *could* stop early if we are sorted already, but it takes as long to - #find out we are sorted as it does to sort the list with this algorithm + # we perform n swaps since after n swaps we know we are sorted + # we *could* stop early if we are sorted already, but it takes as long to + # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10): - if( (i + position) % 2 == 0 and RSend != None): - #send your value to your right neighbor + if (i + position) % 2 == 0 and RSend != None: + # send your value to your right neighbor processLock.acquire() RSend[1].send(value) processLock.release() - #receive your right neighbor's value + # receive your right neighbor's value processLock.acquire() temp = RRcv[0].recv() processLock.release() - #take the lower value since you are on the left + # take the lower value since you are on the left value = min(value, temp) - elif( (i + position) % 2 != 0 and LSend != None): - #send your value to your left neighbor + elif (i + position) % 2 != 0 and LSend != None: + # send your value to your left neighbor processLock.acquire() LSend[1].send(value) processLock.release() - #receive your left neighbor's value + # receive your left neighbor's value processLock.acquire() temp = LRcv[0].recv() processLock.release() - #take the higher value since you are on the right + # take the higher value since you are on the right value = max(value, temp) - #after all swaps are performed, send the values back to main + # after all swaps are performed, send the values back to main resultPipe[1].send(value) + """ the function which creates the processes that perform the parallel swaps arr = the list to be sorted """ + + def OddEvenTransposition(arr): processArray = [] resultPipe = [] - #initialize the list of pipes where the values will be retrieved + # initialize the list of pipes where the values will be retrieved for _ in arr: resultPipe.append(Pipe()) - #creates the processes - #the first and last process only have one neighbor so they are made outside - #of the loop + # creates the processes + # the first and last process only have one neighbor so they are made outside + # of the loop tempRs = Pipe() tempRr = Pipe() - processArray.append(Process(target = oeProcess, args = (0, arr[0], None, tempRs, None, tempRr, resultPipe[0]))) + processArray.append( + Process( + target=oeProcess, + args=(0, arr[0], None, tempRs, None, tempRr, resultPipe[0]), + ) + ) tempLr = tempRs tempLs = tempRr for i in range(1, len(arr) - 1): tempRs = Pipe() tempRr = Pipe() - processArray.append(Process(target = oeProcess, args = (i, arr[i], tempLs, tempRs, tempLr, tempRr, resultPipe[i]))) + processArray.append( + Process( + target=oeProcess, + args=(i, arr[i], tempLs, tempRs, tempLr, tempRr, resultPipe[i]), + ) + ) tempLr = tempRs tempLs = tempRr - processArray.append(Process(target = oeProcess, args = (len(arr) - 1, arr[len(arr) - 1], tempLs, None, tempLr, None, resultPipe[len(arr) - 1]))) - - #start the processes + processArray.append( + Process( + target=oeProcess, + args=( + len(arr) - 1, + arr[len(arr) - 1], + tempLs, + None, + tempLr, + None, + resultPipe[len(arr) - 1], + ), + ) + ) + + # start the processes for p in processArray: p.start() - #wait for the processes to end and write their values to the list + # wait for the processes to end and write their values to the list for p in range(0, len(resultPipe)): arr[p] = resultPipe[p][0].recv() processArray[p].join() - return(arr) + return arr -#creates a reverse sorted list and sorts it +# creates a reverse sorted list and sorts it def main(): arr = [] @@ -121,5 +149,6 @@ def main(): print("Sorted List\n") print(*arr) + if __name__ == "__main__": main() diff --git a/sorts/odd_even_transposition_single_threaded.py b/sorts/odd_even_transposition_single_threaded.py index ec5f3cf14e55..ec045d9dd08d 100644 --- a/sorts/odd_even_transposition_single_threaded.py +++ b/sorts/odd_even_transposition_single_threaded.py @@ -5,6 +5,7 @@ is no better than bubble sort. """ + def OddEvenTransposition(arr): for i in range(0, len(arr)): for i in range(i % 2, len(arr) - 1, 2): @@ -14,7 +15,8 @@ def OddEvenTransposition(arr): return arr -#creates a list and sorts it + +# creates a list and sorts it def main(): list = [] @@ -28,5 +30,6 @@ def main(): print("Sorted List\n") print(*list) + if __name__ == "__main__": main() diff --git a/sorts/pancake_sort.py b/sorts/pancake_sort.py index 873c14a0a174..ee54e57f9e0f 100644 --- a/sorts/pancake_sort.py +++ b/sorts/pancake_sort.py @@ -8,6 +8,7 @@ python pancake_sort.py """ + def pancake_sort(arr): """Sort Array with Pancake Sort. :param arr: Collection containing comparable items @@ -25,14 +26,14 @@ def pancake_sort(arr): # Find the maximum number in arr mi = arr.index(max(arr[0:cur])) # Reverse from 0 to mi - arr = arr[mi::-1] + arr[mi + 1:len(arr)] + arr = arr[mi::-1] + arr[mi + 1 : len(arr)] # Reverse whole list - arr = arr[cur - 1::-1] + arr[cur:len(arr)] + arr = arr[cur - 1 :: -1] + arr[cur : len(arr)] cur -= 1 return arr -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [int(item) for item in user_input.split(',')] +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted)) diff --git a/sorts/pigeon_sort.py b/sorts/pigeon_sort.py index 5417234d331b..cf900699bc8d 100644 --- a/sorts/pigeon_sort.py +++ b/sorts/pigeon_sort.py @@ -1,4 +1,4 @@ -''' +""" This is an implementation of Pigeon Hole Sort. For doctests run following command: @@ -8,7 +8,9 @@ For manual testing run: python pigeon_sort.py -''' +""" + + def pigeon_sort(array): """ Implementation of pigeon hole sort algorithm @@ -21,7 +23,7 @@ def pigeon_sort(array): >>> pigeon_sort([-2, -5, -45]) [-45, -5, -2] """ - if(len(array) == 0): + if len(array) == 0: return array # Manually finds the minimum and maximum of the array. @@ -29,26 +31,29 @@ def pigeon_sort(array): max = array[0] for i in range(len(array)): - if(array[i] < min): min = array[i] - elif(array[i] > max): max = array[i] + if array[i] < min: + min = array[i] + elif array[i] > max: + max = array[i] # Compute the variables - holes_range = max-min + 1 + holes_range = max - min + 1 holes = [0 for _ in range(holes_range)] holes_repeat = [0 for _ in range(holes_range)] # Make the sorting. for i in range(len(array)): index = array[i] - min - if(holes[index] != array[i]): + if holes[index] != array[i]: holes[index] = array[i] holes_repeat[index] += 1 - else: holes_repeat[index] += 1 + else: + holes_repeat[index] += 1 # Makes the array back by replacing the numbers. index = 0 for i in range(holes_range): - while(holes_repeat[i] > 0): + while holes_repeat[i] > 0: array[index] = holes[i] index += 1 holes_repeat[i] -= 1 @@ -56,7 +61,8 @@ def pigeon_sort(array): # Returns the sorted array. return array -if __name__ == '__main__': - user_input = input('Enter numbers separated by comma:\n') - unsorted = [int(x) for x in user_input.split(',')] + +if __name__ == "__main__": + user_input = input("Enter numbers separated by comma:\n") + unsorted = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted)) diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index 60f8803cb79c..29e10206f720 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -9,6 +9,8 @@ For manual testing run: python quick_sort.py """ + + def quick_sort(collection): """Pure implementation of quick sort algorithm in Python @@ -43,7 +45,7 @@ def quick_sort(collection): return quick_sort(lesser) + [pivot] + quick_sort(greater) -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [ int(item) for item in user_input.split(',') ] - print( quick_sort(unsorted) ) +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(quick_sort(unsorted)) diff --git a/sorts/quick_sort_3_partition.py b/sorts/quick_sort_3_partition.py index 9056b204740a..a25ac7def802 100644 --- a/sorts/quick_sort_3_partition.py +++ b/sorts/quick_sort_3_partition.py @@ -17,8 +17,9 @@ def quick_sort_3partition(sorting, left, right): quick_sort_3partition(sorting, left, a - 1) quick_sort_3partition(sorting, b + 1, right) -if __name__ == '__main__': - user_input = input('Enter numbers separated by a comma:\n').strip() - unsorted = [ int(item) for item in user_input.split(',') ] - quick_sort_3partition(unsorted,0,len(unsorted)-1) + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + quick_sort_3partition(unsorted, 0, len(unsorted) - 1) print(unsorted) diff --git a/sorts/radix_sort.py b/sorts/radix_sort.py index 8dfc66b17b23..2990247a0ac0 100644 --- a/sorts/radix_sort.py +++ b/sorts/radix_sort.py @@ -6,21 +6,21 @@ def radix_sort(lst): max_digit = max(lst) while placement < max_digit: - # declare and initialize buckets - buckets = [list() for _ in range( RADIX )] + # declare and initialize buckets + buckets = [list() for _ in range(RADIX)] - # split lst between lists - for i in lst: - tmp = int((i / placement) % RADIX) - buckets[tmp].append(i) + # split lst between lists + for i in lst: + tmp = int((i / placement) % RADIX) + buckets[tmp].append(i) - # empty lists into lst array - a = 0 - for b in range( RADIX ): - buck = buckets[b] - for i in buck: - lst[a] = i - a += 1 + # empty lists into lst array + a = 0 + for b in range(RADIX): + buck = buckets[b] + for i in buck: + lst[a] = i + a += 1 - # move to next - placement *= RADIX + # move to next + placement *= RADIX diff --git a/sorts/random_normal_distribution_quicksort.py b/sorts/random_normal_distribution_quicksort.py index 39c54c46e263..be3b90190407 100644 --- a/sorts/random_normal_distribution_quicksort.py +++ b/sorts/random_normal_distribution_quicksort.py @@ -3,62 +3,60 @@ import numpy as np -def _inPlaceQuickSort(A,start,end): +def _inPlaceQuickSort(A, start, end): count = 0 - if start>> print(arr) [1, 2, 3, 4, 5] """ - stooge(arr,0,len(arr)-1) + stooge(arr, 0, len(arr) - 1) - -def stooge(arr, i, h): +def stooge(arr, i, h): if i >= h: return - + # If first element is smaller than the last then swap them - if arr[i]>arr[h]: + if arr[i] > arr[h]: arr[i], arr[h] = arr[h], arr[i] - + # If there are more than 2 elements in the array - if h-i+1 > 2: - t = (int)((h-i+1)/3) - + if h - i + 1 > 2: + t = (int)((h - i + 1) / 3) + # Recursively sort first 2/3 elements - stooge(arr, i, (h-t)) - + stooge(arr, i, (h - t)) + # Recursively sort last 2/3 elements - stooge(arr, i+t, (h)) - - # Recursively sort first 2/3 elements - stooge(arr, i, (h-t)) + stooge(arr, i + t, (h)) - + # Recursively sort first 2/3 elements + stooge(arr, i, (h - t)) diff --git a/sorts/topological_sort.py b/sorts/topological_sort.py index 74e58899a9a0..e7a52f7c7714 100644 --- a/sorts/topological_sort.py +++ b/sorts/topological_sort.py @@ -5,8 +5,8 @@ # b c # / \ # d e -edges = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} -vertices = ['a', 'b', 'c', 'd', 'e'] +edges = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} +vertices = ["a", "b", "c", "d", "e"] def topological_sort(start, visited, sort): @@ -30,6 +30,6 @@ def topological_sort(start, visited, sort): return sort -if __name__ == '__main__': - sort = topological_sort('a', [], []) +if __name__ == "__main__": + sort = topological_sort("a", [], []) print(sort) diff --git a/sorts/tree_sort.py b/sorts/tree_sort.py index baa4fc1acc20..716170a94fd1 100644 --- a/sorts/tree_sort.py +++ b/sorts/tree_sort.py @@ -5,7 +5,7 @@ """ -class node(): +class node: # BST data structure def __init__(self, val): self.val = val @@ -49,5 +49,5 @@ def tree_sort(arr): return res -if __name__ == '__main__': +if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13])) diff --git a/sorts/wiggle_sort.py b/sorts/wiggle_sort.py index 606feb4d3dd1..5e5220ffbf05 100644 --- a/sorts/wiggle_sort.py +++ b/sorts/wiggle_sort.py @@ -16,7 +16,7 @@ def wiggle_sort(nums): nums[i - 1], nums[i] = nums[i], nums[i - 1] -if __name__ == '__main__': +if __name__ == "__main__": print("Enter the array elements:\n") array = list(map(int, input().split())) print("The unsorted array is:\n") diff --git a/strings/boyer_moore_search.py b/strings/boyer_moore_search.py index 2d67043dc028..59ee76b860d3 100644 --- a/strings/boyer_moore_search.py +++ b/strings/boyer_moore_search.py @@ -20,12 +20,9 @@ class BoyerMooreSearch: - - def __init__(self, text, pattern): self.text, self.pattern = text, pattern self.textLen, self.patLen = len(text), len(pattern) - def match_in_pattern(self, char): """ finds the index of char in pattern in reverse order @@ -36,14 +33,13 @@ def match_in_pattern(self, char): Returns : i (int): index of char from last in pattern -1 (int): if char is not found in pattern - """ + """ - for i in range(self.patLen-1, -1, -1): + for i in range(self.patLen - 1, -1, -1): if char == self.pattern[i]: return i return -1 - def mismatch_in_text(self, currentPos): """ finds the index of mis-matched character in text when compared with pattern from last @@ -55,14 +51,13 @@ def mismatch_in_text(self, currentPos): -1 (int): if there is no mis-match between pattern and text block """ - for i in range(self.patLen-1, -1, -1): + for i in range(self.patLen - 1, -1, -1): if self.pattern[i] != self.text[currentPos + i]: return currentPos + i return -1 - def bad_character_heuristic(self): - # searches pattern in text and returns index positions + # searches pattern in text and returns index positions positions = [] for i in range(self.textLen - self.patLen + 1): mismatch_index = self.mismatch_in_text(i) @@ -70,12 +65,14 @@ def bad_character_heuristic(self): positions.append(i) else: match_index = self.match_in_pattern(self.text[mismatch_index]) - i = mismatch_index - match_index #shifting index lgtm [py/multiple-definition] + i = ( + mismatch_index - match_index + ) # shifting index lgtm [py/multiple-definition] return positions - + text = "ABAABA" -pattern = "AB" +pattern = "AB" bms = BoyerMooreSearch(text, pattern) positions = bms.bad_character_heuristic() @@ -84,5 +81,3 @@ def bad_character_heuristic(self): else: print("Pattern found in following positions: ") print(positions) - - diff --git a/strings/knuth_morris_pratt.py b/strings/knuth_morris_pratt.py index 4553944284be..c7e96887c387 100644 --- a/strings/knuth_morris_pratt.py +++ b/strings/knuth_morris_pratt.py @@ -46,14 +46,14 @@ def get_failure_array(pattern): if pattern[i] == pattern[j]: i += 1 elif i > 0: - i = failure[i-1] + i = failure[i - 1] continue j += 1 failure.append(i) return failure -if __name__ == '__main__': +if __name__ == "__main__": # Test 1) pattern = "abc1abc12" text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc" diff --git a/strings/levenshtein_distance.py b/strings/levenshtein_distance.py index 78175576194b..9b8793544a99 100644 --- a/strings/levenshtein_distance.py +++ b/strings/levenshtein_distance.py @@ -64,10 +64,13 @@ def levenshtein_distance(first_word, second_word): return previous_row[-1] -if __name__ == '__main__': - first_word = input('Enter the first word:\n').strip() - second_word = input('Enter the second word:\n').strip() +if __name__ == "__main__": + first_word = input("Enter the first word:\n").strip() + second_word = input("Enter the second word:\n").strip() result = levenshtein_distance(first_word, second_word) - print('Levenshtein distance between {} and {} is {}'.format( - first_word, second_word, result)) + print( + "Levenshtein distance between {} and {} is {}".format( + first_word, second_word, result + ) + ) diff --git a/strings/manacher.py b/strings/manacher.py index e73e173b43e0..ef8a724d027d 100644 --- a/strings/manacher.py +++ b/strings/manacher.py @@ -1,10 +1,15 @@ # calculate palindromic length from center with incrementing difference -def palindromic_length( center, diff, string): - if center-diff == -1 or center+diff == len(string) or string[center-diff] != string[center+diff] : +def palindromic_length(center, diff, string): + if ( + center - diff == -1 + or center + diff == len(string) + or string[center - diff] != string[center + diff] + ): return 0 - return 1 + palindromic_length(center, diff+1, string) + return 1 + palindromic_length(center, diff + 1, string) -def palindromic_string( input_string ): + +def palindromic_string(input_string): """ Manacher’s algorithm which finds Longest Palindromic Substring in linear time. @@ -16,37 +21,36 @@ def palindromic_string( input_string ): 3. return output_string from center - max_length to center + max_length and remove all "|" """ max_length = 0 - + # if input_string is "aba" than new_input_string become "a|b|a" new_input_string = "" output_string = "" # append each character + "|" in new_string for range(0, length-1) - for i in input_string[:len(input_string)-1] : + for i in input_string[: len(input_string) - 1]: new_input_string += i + "|" - #append last character + # append last character new_input_string += input_string[-1] - # for each character in new_string find corresponding palindromic string - for i in range(len(new_input_string)) : + for i in range(len(new_input_string)): # get palindromic length from ith position length = palindromic_length(i, 1, new_input_string) # update max_length and start position - if max_length < length : + if max_length < length: max_length = length start = i - - #create that string - for i in new_input_string[start-max_length:start+max_length+1] : + + # create that string + for i in new_input_string[start - max_length : start + max_length + 1]: if i != "|": output_string += i - + return output_string -if __name__ == '__main__': +if __name__ == "__main__": n = input() print(palindromic_string(n)) diff --git a/strings/min_cost_string_conversion.py b/strings/min_cost_string_conversion.py index 95840c484ba7..abc9d2c65158 100644 --- a/strings/min_cost_string_conversion.py +++ b/strings/min_cost_string_conversion.py @@ -1,114 +1,118 @@ -''' +""" Algorithm for calculating the most cost-efficient sequence for converting one string into another. The only allowed operations are ---Copy character with cost cC ---Replace character with cost cR ---Delete character with cost cD ---Insert character with cost cI -''' +""" + + def compute_transform_tables(X, Y, cC, cR, cD, cI): - X = list(X) - Y = list(Y) - m = len(X) - n = len(Y) + X = list(X) + Y = list(Y) + m = len(X) + n = len(Y) + + costs = [[0 for _ in range(n + 1)] for _ in range(m + 1)] + ops = [[0 for _ in range(n + 1)] for _ in range(m + 1)] - costs = [[0 for _ in range(n+1)] for _ in range(m+1)] - ops = [[0 for _ in range(n+1)] for _ in range(m+1)] + for i in range(1, m + 1): + costs[i][0] = i * cD + ops[i][0] = "D%c" % X[i - 1] - for i in range(1, m+1): - costs[i][0] = i*cD - ops[i][0] = 'D%c' % X[i-1] + for i in range(1, n + 1): + costs[0][i] = i * cI + ops[0][i] = "I%c" % Y[i - 1] - for i in range(1, n+1): - costs[0][i] = i*cI - ops[0][i] = 'I%c' % Y[i-1] + for i in range(1, m + 1): + for j in range(1, n + 1): + if X[i - 1] == Y[j - 1]: + costs[i][j] = costs[i - 1][j - 1] + cC + ops[i][j] = "C%c" % X[i - 1] + else: + costs[i][j] = costs[i - 1][j - 1] + cR + ops[i][j] = "R%c" % X[i - 1] + str(Y[j - 1]) - for i in range(1, m+1): - for j in range(1, n+1): - if X[i-1] == Y[j-1]: - costs[i][j] = costs[i-1][j-1] + cC - ops[i][j] = 'C%c' % X[i-1] - else: - costs[i][j] = costs[i-1][j-1] + cR - ops[i][j] = 'R%c' % X[i-1] + str(Y[j-1]) + if costs[i - 1][j] + cD < costs[i][j]: + costs[i][j] = costs[i - 1][j] + cD + ops[i][j] = "D%c" % X[i - 1] - if costs[i-1][j] + cD < costs[i][j]: - costs[i][j] = costs[i-1][j] + cD - ops[i][j] = 'D%c' % X[i-1] + if costs[i][j - 1] + cI < costs[i][j]: + costs[i][j] = costs[i][j - 1] + cI + ops[i][j] = "I%c" % Y[j - 1] - if costs[i][j-1] + cI < costs[i][j]: - costs[i][j] = costs[i][j-1] + cI - ops[i][j] = 'I%c' % Y[j-1] + return costs, ops - return costs, ops def assemble_transformation(ops, i, j): - if i == 0 and j == 0: - seq = [] - return seq - else: - if ops[i][j][0] == 'C' or ops[i][j][0] == 'R': - seq = assemble_transformation(ops, i-1, j-1) - seq.append(ops[i][j]) - return seq - elif ops[i][j][0] == 'D': - seq = assemble_transformation(ops, i-1, j) - seq.append(ops[i][j]) - return seq - else: - seq = assemble_transformation(ops, i, j-1) - seq.append(ops[i][j]) - return seq - -if __name__ == '__main__': - _, operations = compute_transform_tables('Python', 'Algorithms', -1, 1, 2, 2) - - m = len(operations) - n = len(operations[0]) - sequence = assemble_transformation(operations, m-1, n-1) - - string = list('Python') - i = 0 - cost = 0 - - with open('min_cost.txt', 'w') as file: - for op in sequence: - print(''.join(string)) - - if op[0] == 'C': - file.write('%-16s' % 'Copy %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost -= 1 - elif op[0] == 'R': - string[i] = op[2] - - file.write('%-16s' % ('Replace %c' % op[1] + ' with ' + str(op[2]))) - file.write('\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 1 - elif op[0] == 'D': - string.pop(i) - - file.write('%-16s' % 'Delete %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 2 - else: - string.insert(i, op[1]) - - file.write('%-16s' % 'Insert %c' % op[1]) - file.write('\t\t\t' + ''.join(string)) - file.write('\r\n') - - cost += 2 - - i += 1 - - print(''.join(string)) - print('Cost: ', cost) - - file.write('\r\nMinimum cost: ' + str(cost)) + if i == 0 and j == 0: + seq = [] + return seq + else: + if ops[i][j][0] == "C" or ops[i][j][0] == "R": + seq = assemble_transformation(ops, i - 1, j - 1) + seq.append(ops[i][j]) + return seq + elif ops[i][j][0] == "D": + seq = assemble_transformation(ops, i - 1, j) + seq.append(ops[i][j]) + return seq + else: + seq = assemble_transformation(ops, i, j - 1) + seq.append(ops[i][j]) + return seq + + +if __name__ == "__main__": + _, operations = compute_transform_tables("Python", "Algorithms", -1, 1, 2, 2) + + m = len(operations) + n = len(operations[0]) + sequence = assemble_transformation(operations, m - 1, n - 1) + + string = list("Python") + i = 0 + cost = 0 + + with open("min_cost.txt", "w") as file: + for op in sequence: + print("".join(string)) + + if op[0] == "C": + file.write("%-16s" % "Copy %c" % op[1]) + file.write("\t\t\t" + "".join(string)) + file.write("\r\n") + + cost -= 1 + elif op[0] == "R": + string[i] = op[2] + + file.write("%-16s" % ("Replace %c" % op[1] + " with " + str(op[2]))) + file.write("\t\t" + "".join(string)) + file.write("\r\n") + + cost += 1 + elif op[0] == "D": + string.pop(i) + + file.write("%-16s" % "Delete %c" % op[1]) + file.write("\t\t\t" + "".join(string)) + file.write("\r\n") + + cost += 2 + else: + string.insert(i, op[1]) + + file.write("%-16s" % "Insert %c" % op[1]) + file.write("\t\t\t" + "".join(string)) + file.write("\r\n") + + cost += 2 + + i += 1 + + print("".join(string)) + print("Cost: ", cost) + + file.write("\r\nMinimum cost: " + str(cost)) diff --git a/strings/naive_string_search.py b/strings/naive_string_search.py index 04c0d8157b24..a8c2ea584399 100644 --- a/strings/naive_string_search.py +++ b/strings/naive_string_search.py @@ -7,23 +7,26 @@ n=length of main string m=length of pattern string """ -def naivePatternSearch(mainString,pattern): - patLen=len(pattern) - strLen=len(mainString) - position=[] - for i in range(strLen-patLen+1): - match_found=True + + +def naivePatternSearch(mainString, pattern): + patLen = len(pattern) + strLen = len(mainString) + position = [] + for i in range(strLen - patLen + 1): + match_found = True for j in range(patLen): - if mainString[i+j]!=pattern[j]: - match_found=False + if mainString[i + j] != pattern[j]: + match_found = False break if match_found: position.append(i) return position -mainString="ABAAABCDBBABCDDEBCABC" -pattern="ABC" -position=naivePatternSearch(mainString,pattern) + +mainString = "ABAAABCDBBABCDDEBCABC" +pattern = "ABC" +position = naivePatternSearch(mainString, pattern) print("Pattern found in position ") for x in position: - print(x) \ No newline at end of file + print(x) diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 389311a7cfde..31a73ae0c6a4 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -266,6 +266,7 @@ def prompt(s: str = "", width=50, char="*") -> str: if __name__ == "__main__": import doctest + doctest.testmod() print(prompt("Binary Tree Traversals")) From 6ebd899c0145e8a4655c9a0d476f19f5f4d7ba2f Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 5 Oct 2019 20:32:58 +0500 Subject: [PATCH 319/594] CONTRIBUTING.md: Fix mistake in doctest ;-) (#1266) * CONTRIBUTING.md: Fix mistake in doctest ;-) * Update CONTRIBUTING.md --- CONTRIBUTING.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 8cd03217d51f..6dd2f6c6ff78 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -82,11 +82,11 @@ We want your work to be readable by others; therefore, we encourage you to note """ This function returns the sum of two integers a and b Return: a + b - >>> sum(2, 2) + >>> sumab(2, 2) 4 - >>> sum(-2, 3) + >>> sumab(-2, 3) 1 - >>> sum(4.9, 6.1) + >>> sumab(4.9, 5.1) 10.0 """ return a + b From c4a97677a57ab5ed5bf1d8238983c8899eb88a6c Mon Sep 17 00:00:00 2001 From: Nikhil Nayak Date: Mon, 7 Oct 2019 00:05:56 +0530 Subject: [PATCH 320/594] Update fibonacci_sequence_recursion.py (#1287) - Fixed minor bugs. - Minimized Codes --- maths/fibonacci_sequence_recursion.py | 17 +++++++---------- 1 file changed, 7 insertions(+), 10 deletions(-) diff --git a/maths/fibonacci_sequence_recursion.py b/maths/fibonacci_sequence_recursion.py index 3a565a458631..2e0d835cf15e 100644 --- a/maths/fibonacci_sequence_recursion.py +++ b/maths/fibonacci_sequence_recursion.py @@ -2,20 +2,17 @@ def recur_fibo(n): - if n <= 1: - return n - else: - (recur_fibo(n - 1) + recur_fibo(n - 2)) - - -def isPositiveInteger(limit): - return limit >= 0 + """ + >>> [recur_fibo(i) for i in range(12)] + [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] + """ + return n if n <= 1 else recur_fibo(n-1) + recur_fibo(n-2) def main(): limit = int(input("How many terms to include in fibonacci series: ")) - if isPositiveInteger(limit): - print("The first {limit} terms of the fibonacci series are as follows:") + if limit > 0: + print(f"The first {limit} terms of the fibonacci series are as follows:") print([recur_fibo(n) for n in range(limit)]) else: print("Please enter a positive integer: ") From 0a7d387acbde85cda981ebc4cc4266270f77cf0a Mon Sep 17 00:00:00 2001 From: TheRealDarkCoder Date: Mon, 7 Oct 2019 00:47:32 +0600 Subject: [PATCH 321/594] Added a python script for finding sum of arithmetic series (#1279) * Added a python script for finding sum of arithmetic series * Added some linting * Resolved comments * Fixed flake8 test --- maths/sum_of_arithmetic_series.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100755 maths/sum_of_arithmetic_series.py diff --git a/maths/sum_of_arithmetic_series.py b/maths/sum_of_arithmetic_series.py new file mode 100755 index 000000000000..f7ea5dc84cb8 --- /dev/null +++ b/maths/sum_of_arithmetic_series.py @@ -0,0 +1,22 @@ +# DarkCoder +def sum_of_series(first_term, common_diff, num_of_terms): + """ + Find the sum of n terms in an arithmetic progression. + + >>> sum_of_series(1, 1, 10) + 55.0 + >>> sum_of_series(1, 10, 100) + 49600.0 + """ + sum = ((num_of_terms/2)*(2*first_term+(num_of_terms-1)*common_diff)) + # formula for sum of series + return sum + + +def main(): + print(sum_of_series(1, 1, 10)) + + +if __name__ == "__main__": + import doctest + doctest.testmod() From b1a769cf44df6f1eec740e10e393fab548e3822a Mon Sep 17 00:00:00 2001 From: Parth Paradkar Date: Mon, 7 Oct 2019 00:20:50 +0530 Subject: [PATCH 322/594] Add pure implementation of K-Nearest Neighbours (#1278) * Pure implementation of KNN added * Comments and test case added * doctest added --- machine_learning/k_nearest_neighbours.py | 55 ++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 machine_learning/k_nearest_neighbours.py diff --git a/machine_learning/k_nearest_neighbours.py b/machine_learning/k_nearest_neighbours.py new file mode 100644 index 000000000000..83d8399fe9b6 --- /dev/null +++ b/machine_learning/k_nearest_neighbours.py @@ -0,0 +1,55 @@ +import numpy as np +from collections import Counter +from sklearn import datasets +from sklearn.model_selection import train_test_split + +data = datasets.load_iris() + +X = np.array(data['data']) +y = np.array(data['target']) +classes = data['target_names'] + +X_train, X_test, y_train, y_test = train_test_split(X, y) + +def euclidean_distance(a, b): + """ + Gives the euclidean distance between two points + >>> euclidean_distance([0, 0], [3, 4]) + 5.0 + >>> euclidean_distance([1, 2, 3], [1, 8, 11]) + 10.0 + """ + return np.linalg.norm(np.array(a) - np.array(b)) + +def classifier(train_data, train_target, classes, point, k=5): + """ + Classifies the point using the KNN algorithm + k closest points are found (ranked in ascending order of euclidean distance) + Params: + :train_data: Set of points that are classified into two or more classes + :train_target: List of classes in the order of train_data points + :classes: Labels of the classes + :point: The data point that needs to be classifed + + >>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]] + >>> y_train = [0, 0, 0, 0, 1, 1, 1] + >>> classes = ['A','B']; point = [1.2,1.2] + >>> classifier(X_train, y_train, classes,point) + 'A' + """ + data = zip(train_data, train_target) + # List of distances of all points from the point to be classified + distances = [] + for data_point in data: + distance = euclidean_distance(data_point[0], point) + distances.append((distance, data_point[1])) + # Choosing 'k' points with the least distances. + votes = [i[1] for i in sorted(distances)[:k]] + # Most commonly occuring class among them + # is the class into which the point is classified + result = Counter(votes).most_common(1)[0][0] + return classes[result] + + +if __name__ == "__main__": + print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) \ No newline at end of file From 9cc9f67d646d427eb6b8296767aea50dd139969f Mon Sep 17 00:00:00 2001 From: Sushil Singh <36241112+OddExtension5@users.noreply.github.com> Date: Mon, 7 Oct 2019 00:22:04 +0530 Subject: [PATCH 323/594] Chinese Remainder Theorem | Diophantine Equation | Modular Division (#1248) * Update .gitignore to remove __pycache__/ * added chinese_remainder_theorem * Added Diophantine_equation algorithm * Update Diophantine eqn & chinese remainder theorem * Update Diophantine eqn & chinese remainder theorem * added efficient modular division algorithm * added GCD function * update chinese_remainder_theorem | dipohantine eqn | modular_division * update chinese_remainder_theorem | dipohantine eqn | modular_division * added a new directory named blockchain & a files from data_structures/hashing/number_theory * added a new directory named blockchain & a files from data_structures/hashing/number_theory --- blockchain/chinese_remainder_theorem.py | 91 +++++++++++++++ blockchain/diophantine_equation.py | 124 ++++++++++++++++++++ blockchain/modular_division.py | 149 ++++++++++++++++++++++++ 3 files changed, 364 insertions(+) create mode 100644 blockchain/chinese_remainder_theorem.py create mode 100644 blockchain/diophantine_equation.py create mode 100644 blockchain/modular_division.py diff --git a/blockchain/chinese_remainder_theorem.py b/blockchain/chinese_remainder_theorem.py new file mode 100644 index 000000000000..f1409530a70e --- /dev/null +++ b/blockchain/chinese_remainder_theorem.py @@ -0,0 +1,91 @@ +# Chinese Remainder Theorem: +# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) + +# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, +# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) + +# Algorithm : + +# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 +# 2. Take n = ra*by + rb*ax + + +# Extended Euclid +def extended_euclid(a, b): + """ + >>> extended_euclid(10, 6) + (-1, 2) + + >>> extended_euclid(7, 5) + (-2, 3) + + """ + if b == 0: + return (1, 0) + (x, y) = extended_euclid(b, a % b) + k = a // b + return (y, x - k * y) + + +# Uses ExtendedEuclid to find inverses +def chinese_remainder_theorem(n1, r1, n2, r2): + """ + >>> chinese_remainder_theorem(5,1,7,3) + 31 + + Explanation : 31 is the smallest number such that + (i) When we divide it by 5, we get remainder 1 + (ii) When we divide it by 7, we get remainder 3 + + >>> chinese_remainder_theorem(6,1,4,3) + 14 + + """ + (x, y) = extended_euclid(n1, n2) + m = n1 * n2 + n = r2 * x * n1 + r1 * y * n2 + return ((n % m + m) % m) + + +# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- + +# This function find the inverses of a i.e., a^(-1) +def invert_modulo(a, n): + """ + >>> invert_modulo(2, 5) + 3 + + >>> invert_modulo(8,7) + 1 + + """ + (b, x) = extended_euclid(a, n) + if b < 0: + b = (b % n + n) % n + return b + + +# Same a above using InvertingModulo +def chinese_remainder_theorem2(n1, r1, n2, r2): + """ + >>> chinese_remainder_theorem2(5,1,7,3) + 31 + + >>> chinese_remainder_theorem2(6,1,4,3) + 14 + + """ + x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) + m = n1 * n2 + n = r2 * x * n1 + r1 * y * n2 + return (n % m + m) % m + + +# import testmod for testing our function +from doctest import testmod + +if __name__ == '__main__': + testmod(name='chinese_remainder_theorem', verbose=True) + testmod(name='chinese_remainder_theorem2', verbose=True) + testmod(name='invert_modulo', verbose=True) + testmod(name='extended_euclid', verbose=True) diff --git a/blockchain/diophantine_equation.py b/blockchain/diophantine_equation.py new file mode 100644 index 000000000000..3ac7094eed6b --- /dev/null +++ b/blockchain/diophantine_equation.py @@ -0,0 +1,124 @@ +# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation +# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c. + +# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) + + +def diophantine(a, b, c): + """ + >>> diophantine(10,6,14) + (-7.0, 14.0) + + >>> diophantine(391,299,-69) + (9.0, -12.0) + + But above equation has one more solution i.e., x = -4, y = 5. + That's why we need diophantine all solution function. + + """ + + assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below + (d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below + r = c / d + return (r * x, r * y) + + +# Lemma : if n|ab and gcd(a,n) = 1, then n|b. + +# Finding All solutions of Diophantine Equations: + +# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c. +# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer. + +# n is the number of solution you want, n = 2 by default + +def diophantine_all_soln(a, b, c, n=2): + """ + >>> diophantine_all_soln(10, 6, 14) + -7.0 14.0 + -4.0 9.0 + + >>> diophantine_all_soln(10, 6, 14, 4) + -7.0 14.0 + -4.0 9.0 + -1.0 4.0 + 2.0 -1.0 + + >>> diophantine_all_soln(391, 299, -69, n = 4) + 9.0 -12.0 + 22.0 -29.0 + 35.0 -46.0 + 48.0 -63.0 + + """ + (x0, y0) = diophantine(a, b, c) # Initial value + d = greatest_common_divisor(a, b) + p = a // d + q = b // d + + for i in range(n): + x = x0 + i * q + y = y0 - i * p + print(x, y) + + +# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b + +# Euclid's Algorithm + +def greatest_common_divisor(a, b): + """ + >>> greatest_common_divisor(7,5) + 1 + + Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime + if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. + + >>> greatest_common_divisor(121, 11) + 11 + + """ + if a < b: + a, b = b, a + + while a % b != 0: + a, b = b, a % b + + return b + + +# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) + + +def extended_gcd(a, b): + """ + >>> extended_gcd(10, 6) + (2, -1, 2) + + >>> extended_gcd(7, 5) + (1, -2, 3) + + """ + assert a >= 0 and b >= 0 + + if b == 0: + d, x, y = a, 1, 0 + else: + (d, p, q) = extended_gcd(b, a % b) + x = q + y = p - q * (a // b) + + assert a % d == 0 and b % d == 0 + assert d == a * x + b * y + + return (d, x, y) + + +# import testmod for testing our function +from doctest import testmod + +if __name__ == '__main__': + testmod(name='diophantine', verbose=True) + testmod(name='diophantine_all_soln', verbose=True) + testmod(name='extended_gcd', verbose=True) + testmod(name='greatest_common_divisor', verbose=True) diff --git a/blockchain/modular_division.py b/blockchain/modular_division.py new file mode 100644 index 000000000000..4e1623fbe923 --- /dev/null +++ b/blockchain/modular_division.py @@ -0,0 +1,149 @@ +# Modular Division : +# An efficient algorithm for dividing b by a modulo n. + +# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) + +# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that +# 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)). + +# Theorem: +# a has a multiplicative inverse modulo n iff gcd(a,n) = 1 + + +# This find x = b*a^(-1) mod n +# Uses ExtendedEuclid to find the inverse of a + + +def modular_division(a, b, n): + """ + >>> modular_division(4,8,5) + 2 + + >>> modular_division(3,8,5) + 1 + + >>> modular_division(4, 11, 5) + 4 + + """ + assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1 + (d, t, s) = extended_gcd(n, a) # Implemented below + x = (b * s) % n + return x + + +# This function find the inverses of a i.e., a^(-1) +def invert_modulo(a, n): + """ + >>> invert_modulo(2, 5) + 3 + + >>> invert_modulo(8,7) + 1 + + """ + (b, x) = extended_euclid(a, n) # Implemented below + if b < 0: + b = (b % n + n) % n + return b + + +# ------------------ Finding Modular division using invert_modulo ------------------- + +# This function used the above inversion of a to find x = (b*a^(-1))mod n +def modular_division2(a, b, n): + """ + >>> modular_division2(4,8,5) + 2 + + >>> modular_division2(3,8,5) + 1 + + >>> modular_division2(4, 11, 5) + 4 + + """ + s = invert_modulo(a, n) + x = (b * s) % n + return x + + +# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) + +def extended_gcd(a, b): + """ + >>> extended_gcd(10, 6) + (2, -1, 2) + + >>> extended_gcd(7, 5) + (1, -2, 3) + + ** extended_gcd function is used when d = gcd(a,b) is required in output + + """ + assert a >= 0 and b >= 0 + + if b == 0: + d, x, y = a, 1, 0 + else: + (d, p, q) = extended_gcd(b, a % b) + x = q + y = p - q * (a // b) + + assert a % d == 0 and b % d == 0 + assert d == a * x + b * y + + return (d, x, y) + + +# Extended Euclid +def extended_euclid(a, b): + """ + >>> extended_euclid(10, 6) + (-1, 2) + + >>> extended_euclid(7, 5) + (-2, 3) + + """ + if b == 0: + return (1, 0) + (x, y) = extended_euclid(b, a % b) + k = a // b + return (y, x - k * y) + + +# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b +# Euclid's Algorithm + +def greatest_common_divisor(a, b): + """ + >>> greatest_common_divisor(7,5) + 1 + + Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime + if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. + + >>> greatest_common_divisor(121, 11) + 11 + + """ + if a < b: + a, b = b, a + + while a % b != 0: + a, b = b, a % b + + return b + + +# Import testmod for testing our function +from doctest import testmod + +if __name__ == '__main__': + testmod(name='modular_division', verbose=True) + testmod(name='modular_division2', verbose=True) + testmod(name='invert_modulo', verbose=True) + testmod(name='extended_gcd', verbose=True) + testmod(name='extended_euclid', verbose=True) + testmod(name='greatest_common_divisor', verbose=True) From 067a9b513628c8aa91fb1c74f44dfa5ee3ef6c1d Mon Sep 17 00:00:00 2001 From: mvhb Date: Sun, 6 Oct 2019 15:55:55 -0300 Subject: [PATCH 324/594] adding input option and increasing the number of doctest (#1281) * adding input option and incresing the number of doctest * mixing positive and negative numbers in the same test case --- sorts/stooge_sort.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/sorts/stooge_sort.py b/sorts/stooge_sort.py index 8cccd1e8c657..089b01a4def1 100644 --- a/sorts/stooge_sort.py +++ b/sorts/stooge_sort.py @@ -1,11 +1,14 @@ def stooge_sort(arr): """ - >>> arr = [2, 4, 5, 3, 1] - >>> stooge_sort(arr) - >>> print(arr) - [1, 2, 3, 4, 5] + Examples: + >>> stooge_sort([18.1, 0, -7.1, -1, 2, 2]) + [-7.1, -1, 0, 2, 2, 18.1] + + >>> stooge_sort([]) + [] """ stooge(arr, 0, len(arr) - 1) + return arr def stooge(arr, i, h): @@ -29,3 +32,8 @@ def stooge(arr, i, h): # Recursively sort first 2/3 elements stooge(arr, i, (h - t)) + +if __name__ == "__main__": + user_input = input("Enter numbers separated by a comma:\n").strip() + unsorted = [int(item) for item in user_input.split(",")] + print(stooge_sort(unsorted)) From 01bc785e84c0f116898ac482d3ad95d2acf4af51 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Mon, 7 Oct 2019 23:53:46 +0530 Subject: [PATCH 325/594] Fixed links in DIRECTORY.md (#1291) --- DIRECTORY.md | 818 +++++++++++++++++++++++++++------------------------ 1 file changed, 433 insertions(+), 385 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index 248fe7b9eaa6..a4838d24dab7 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,411 +1,459 @@ ## Arithmetic Analysis - * [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) - * [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) - * [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) - * [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) - * [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) - * [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) + +- [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) +- [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) +- [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) +- [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) +- [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) +- [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) + ## Backtracking - * [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) - * [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) - * [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) - * [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) - * [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) - * [sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) - * [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + +- [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) +- [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) +- [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) +- [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) +- [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) +- [sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) +- [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + ## Boolean Algebra - * [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) + +- [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) + ## Ciphers - * [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) - * [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) - * [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) - * [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) - * [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) - * [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) - * [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) - * [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) - * [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) - * [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) - * [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) - * [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) - * [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) - * [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) - * [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) - * [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) - * [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) - * [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) - * [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) - * [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) - * [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) - * [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) - * [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) - * [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) + +- [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) +- [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) +- [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) +- [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) +- [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) +- [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) +- [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) +- [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) +- [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) +- [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) +- [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) +- [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) +- [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) +- [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) +- [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) +- [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) +- [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) +- [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) +- [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) +- [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) +- [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) +- [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) +- [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) +- [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) + ## Compression - * [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) - * [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) - * [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + +- [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) +- [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) +- [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + ## Conversions - * [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) - * [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) - * [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) + +- [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) +- [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) +- [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) + ## Data Structures - * Binary Tree - * [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/avl_tree.py) - * [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/basic_binary_tree.py) - * [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_search_tree.py) - * [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/fenwick_tree.py) - * [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/lazy_segment_tree.py) - * [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/lca.py) - * [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/red_black_tree.py) - * [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/segment_tree.py) - * [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/treap.py) - * Hashing - * [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/double_hash.py) - * [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hash_table.py) - * [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hash_table_with_linked_list.py) - * Number Theory - * [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/prime_numbers.py) - * [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/quadratic_probing.py) - * Heap - * [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap.py) - * Linked List - * [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/doubly_linked_list.py) - * [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/is_palindrome.py) - * [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/singly_linked_list.py) - * [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/swap_nodes.py) - * Queue - * [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/double_ended_queue.py) - * [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue_on_list.py) - * [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue_on_pseudo_stack.py) - * Stacks - * [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/balanced_parentheses.py) - * [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/infix_to_postfix_conversion.py) - * [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/infix_to_prefix_conversion.py) - * [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/next_greater_element.py) - * [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/postfix_evaluation.py) - * [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stack.py) - * [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stock_span_problem.py) - * Trie - * [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie.py) + +- Binary Tree + - [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) + - [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) + - [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + - [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) + - [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + - [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) + - [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) + - [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) + - [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) +- Hashing + - [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) + - [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) + - [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) +- Number Theory + - [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/number_theory/prime_numbers.py) + - [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/number_theory/quadratic_probing.py) +- Heap + - [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) +- Linked List + - [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + - [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + - [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + - [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) +- Queue + - [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) + - [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) + - [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) +- Stacks + - [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) + - [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) + - [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) + - [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) + - [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + - [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) + - [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) +- Trie + - [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + ## Digital Image Processing - * [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) - * Edge Detection - * [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/canny.py) - * Filters - * [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convolve.py) - * [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/gaussian_filter.py) - * [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/median_filter.py) - * [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sobel_filter.py) - * [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) + +- [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) +- Edge Detection + - [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) +- Filters + - [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) + - [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) + - [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) + - [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) +- [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) + ## Divide And Conquer - * [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) - * [convex hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) - * [inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) - * [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + +- [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) +- [convex hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) +- [inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) +- [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + ## Dynamic Programming - * [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) - * [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) - * [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) - * [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) - * [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) - * [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) - * [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) - * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) - * [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) - * [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) - * [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) - * [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) - * [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) - * [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) - * [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) - * [longest increasing subsequence o(nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) - * [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) - * [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) - * [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) - * [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) - * [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) - * [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) - * [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) + +- [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) +- [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) +- [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) +- [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) +- [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) +- [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) +- [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) +- [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) +- [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) +- [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) +- [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) +- [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) +- [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) +- [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) +- [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) +- [longest increasing subsequence o(nlogn)]() +- [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) +- [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) +- [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) +- [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) +- [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) +- [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) +- [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) + ## File Transfer - * [recieve file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) - * [send file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) + +- [recieve file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) +- [send file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) + ## Graphs - * [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) - * [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) - * [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) - * [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) - * [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) - * [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) - * [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) - * [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) - * [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) - * [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) - * [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) - * [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) - * [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) - * [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) - * [directed and undirected (weighted) graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) - * [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) - * [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) - * [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) - * [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) - * [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) - * [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) - * [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) - * [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) - * [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) - * [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) - * [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) - * [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) - * [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) - * [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) - * [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) - * [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) + +- [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) +- [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) +- [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) +- [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) +- [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) +- [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) +- [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) +- [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) +- [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) +- [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) +- [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) +- [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) +- [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) +- [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) +- [directed and undirected (weighted) graph]() +- [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) +- [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) +- [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) +- [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) +- [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) +- [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) +- [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) +- [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) +- [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) +- [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) +- [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) +- [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) +- [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) +- [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) +- [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) +- [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) + ## Hashes - * [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) - * [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) - * [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) - * [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) + +- [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) +- [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) +- [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) +- [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) + ## Linear Algebra - * Src - * [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/lib.py) - * [polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/polynom-for-points.py) - * [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/tests.py) + +- Src + - [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) + - [polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) + - [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/tests.py) + ## Machine Learning - * [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) - * [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) - * [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) - * [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) - * [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) - * [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) - * [naive bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/naive_bayes.ipynb) - * Random Forest Classification - * [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification.py) - * [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.ipynb) - * Random Forest Regression - * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression.ipynb) - * [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression.py) - * [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) - * [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) - * [sorted vector machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sorted_vector_machines.py) + +- [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) +- [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) +- [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) +- [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) +- [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) +- [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) +- [naive bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/naive_bayes.ipynb) +- Random Forest Classification + - [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) + - [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) +- Random Forest Regression + - [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) + - [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) +- [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) +- [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) +- [sorted vector machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sorted_vector_machines.py) + ## Maths - * [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) - * [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) - * [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) - * [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) - * [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) - * [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) - * [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) - * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) - * [collatz sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) - * [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) - * [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) - * [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) - * [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) - * [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) - * [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) - * [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) - * [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) - * [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) - * [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) - * [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) - * [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) - * [largest of very large numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) - * [lucas lehmer primality test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) - * [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) - * [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) - * [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) - * [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) - * [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) - * [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) - * [quadratic equations complex numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) - * [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) - * [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) - * [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) - * [test prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) - * [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) - * [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) - * [zellers congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) + +- [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) +- [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) +- [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) +- [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) +- [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) +- [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) +- [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) +- [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) +- [collatz sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) +- [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) +- [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) +- [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) +- [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) +- [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) +- [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) +- [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) +- [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) +- [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) +- [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) +- [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) +- [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) +- [largest of very large numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) +- [lucas lehmer primality test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) +- [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) +- [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) +- [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) +- [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) +- [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) +- [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) +- [quadratic equations complex numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) +- [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) +- [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) +- [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) +- [test prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) +- [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) +- [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) +- [zellers congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) + ## Matrix - * [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) - * [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) - * [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) - * [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) - * [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) - * Tests - * [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/test_matrix_operation.py) + +- [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) +- [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) +- [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) +- [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) +- [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) +- Tests + - [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) + ## Networking Flow - * [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) - * [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) + +- [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) +- [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) + ## Neural Network - * [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) - * [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) - * [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) - * [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) + +- [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) +- [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) +- [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) +- [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) + ## Other - * [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) - * [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) - * [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) - * [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) - * [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) - * [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) - * [food wastage analysis from 1961-2013 fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) - * [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) - * [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) - * [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) - * [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) - * [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) - * [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) - * [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) - * [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) - * [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) - * [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) - * [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + +- [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) +- [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) +- [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) +- [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) +- [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) +- [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) +- [food wastage analysis from 1961-2013 fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) +- [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) +- [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) +- [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) +- [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) +- [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) +- [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) +- [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) +- [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) +- [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) +- [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) +- [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + ## Project Euler - * Problem 01 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol4.py) - * [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol5.py) - * [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol6.py) - * Problem 02 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol4.py) - * Problem 03 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 04 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 05 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 06 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * Problem 07 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * Problem 08 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 09 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * Problem 10 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol3.py) - * Problem 11 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 12 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 13 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 14 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 15 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 16 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 17 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 18 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 19 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 20 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 21 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 22 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 234 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 24 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 25 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol2.py) - * Problem 28 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 29 - * [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/solution.py) - * Problem 31 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 36 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 40 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 48 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 52 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 53 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 56 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) - * Problem 76 - * [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/sol1.py) + +- Problem 01 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) + - [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) + - [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) + - [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) +- Problem 02 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) + - [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) +- Problem 03 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) +- Problem 04 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) +- Problem 05 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) +- Problem 06 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) +- Problem 07 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) +- Problem 08 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) +- Problem 09 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) +- Problem 10 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) + - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) +- Problem 11 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) +- Problem 12 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) +- Problem 13 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) +- Problem 14 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) +- Problem 15 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) +- Problem 16 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) +- Problem 17 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) +- Problem 18 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_18/sol1.py) +- Problem 19 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) +- Problem 20 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) +- Problem 21 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) +- Problem 22 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) +- Problem 234 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) +- Problem 24 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) +- Problem 25 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) + - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) +- Problem 28 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) +- Problem 29 + - [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/solution.py) +- Problem 31 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) +- Problem 36 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) +- Problem 40 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) +- Problem 48 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) +- Problem 52 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) +- Problem 53 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) +- Problem 56 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_56/sol1.py) +- Problem 76 + - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) + ## Searches - * [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) - * [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) - * [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) - * [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) - * [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) - * [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) - * [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) - * [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + +- [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) +- [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) +- [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) +- [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) +- [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) +- [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) +- [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) +- [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + ## Sorts - * [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) - * [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) - * [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) - * [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) - * [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) - * [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) - * [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) - * [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) - * [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) - * [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) - * [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) - * [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) - * [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) - * [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) - * [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) - * [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) - * [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) - * [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) - * [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) - * [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) - * [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) - * [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) - * [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) - * [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) - * [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) - * [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) - * [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) - * [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) - * [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) + +- [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) +- [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) +- [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) +- [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) +- [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) +- [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) +- [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) +- [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) +- [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) +- [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) +- [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) +- [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) +- [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) +- [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) +- [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) +- [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) +- [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) +- [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) +- [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) +- [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) +- [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) +- [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) +- [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) +- [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) +- [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) +- [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) +- [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) +- [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) +- [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) + ## Strings - * [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) - * [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) - * [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) - * [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) - * [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) - * [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) - * [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + +- [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) +- [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) +- [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) +- [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) +- [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) +- [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) +- [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + ## Traversals - * [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) +- [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) From 22bd6ff967fd8a983490e241485f950c0a82380c Mon Sep 17 00:00:00 2001 From: Maram Sumanth Date: Mon, 7 Oct 2019 23:56:40 +0530 Subject: [PATCH 326/594] Update average_mean.py (#1293) --- maths/average_mean.py | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/maths/average_mean.py b/maths/average_mean.py index e04b63be0e19..77464ef5d9f7 100644 --- a/maths/average_mean.py +++ b/maths/average_mean.py @@ -3,17 +3,13 @@ def average(nums): """Find mean of a list of numbers.""" - sum = 0 - for x in nums: - sum += x - avg = sum / len(nums) - print(avg) + avg = sum(nums) / len(nums) return avg def main(): """Call average module to find mean of a specific list of numbers.""" - average([2, 4, 6, 8, 20, 50, 70]) + print(average([2, 4, 6, 8, 20, 50, 70])) if __name__ == "__main__": From 06d736199b058ab80d747da242085d48a6803096 Mon Sep 17 00:00:00 2001 From: Nishant-Ingle <30694286+Nishant-Ingle@users.noreply.github.com> Date: Mon, 7 Oct 2019 23:59:14 +0530 Subject: [PATCH 327/594] Added comment (#1294) --- data_structures/binary_tree/binary_search_tree.py | 1 + 1 file changed, 1 insertion(+) diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index c6e037880bb6..1e6c17112e81 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -40,6 +40,7 @@ class BinarySearchTree: def __init__(self): self.root = None + # Insert a new node in Binary Search Tree with value label def insert(self, label): # Create a new Node new_node = Node(label, None) From 3a06aba66a0a4265077979c6ad9aad923deb3023 Mon Sep 17 00:00:00 2001 From: Craigory V Coppola Date: Mon, 7 Oct 2019 14:32:16 -0400 Subject: [PATCH 328/594] Update Linear Algebra Readme (#1298) Update formatting to better indicate matrix and vector sections --- linear_algebra/README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/linear_algebra/README.md b/linear_algebra/README.md index 1e34d0bd7805..f1b554e139de 100644 --- a/linear_algebra/README.md +++ b/linear_algebra/README.md @@ -6,7 +6,8 @@ This module contains some useful classes and functions for dealing with linear a ## Overview -- class Vector +### class Vector +- - This class represents a vector of arbitray size and operations on it. **Overview about the methods:** @@ -32,7 +33,8 @@ This module contains some useful classes and functions for dealing with linear a - function randomVector(N,a,b) - returns a random vector of size N, with random integer components between 'a' and 'b'. -- class Matrix +### class Matrix +- - This class represents a matrix of arbitrary size and operations on it. **Overview about the methods:** From 25701a98773b30eb70e078d9a04f246989d11d64 Mon Sep 17 00:00:00 2001 From: Kaushik Amar Das Date: Tue, 8 Oct 2019 13:42:27 +0530 Subject: [PATCH 329/594] added doctests to scoring_functions.py (#1300) * added doctests to scoring_functions.py * dedented lines --- machine_learning/scoring_functions.py | 60 +++++++++++++++++++++++++-- 1 file changed, 57 insertions(+), 3 deletions(-) diff --git a/machine_learning/scoring_functions.py b/machine_learning/scoring_functions.py index 2b24287b3726..5c84f7026e74 100755 --- a/machine_learning/scoring_functions.py +++ b/machine_learning/scoring_functions.py @@ -16,6 +16,16 @@ # Mean Absolute Error def mae(predict, actual): + """ + Examples(rounded for precision): + >>> actual = [1,2,3];predict = [1,4,3] + >>> np.around(mae(predict,actual),decimals = 2) + 0.67 + + >>> actual = [1,1,1];predict = [1,1,1] + >>> mae(predict,actual) + 0.0 + """ predict = np.array(predict) actual = np.array(actual) @@ -27,6 +37,16 @@ def mae(predict, actual): # Mean Squared Error def mse(predict, actual): + """ + Examples(rounded for precision): + >>> actual = [1,2,3];predict = [1,4,3] + >>> np.around(mse(predict,actual),decimals = 2) + 1.33 + + >>> actual = [1,1,1];predict = [1,1,1] + >>> mse(predict,actual) + 0.0 + """ predict = np.array(predict) actual = np.array(actual) @@ -39,6 +59,16 @@ def mse(predict, actual): # Root Mean Squared Error def rmse(predict, actual): + """ + Examples(rounded for precision): + >>> actual = [1,2,3];predict = [1,4,3] + >>> np.around(rmse(predict,actual),decimals = 2) + 1.15 + + >>> actual = [1,1,1];predict = [1,1,1] + >>> rmse(predict,actual) + 0.0 + """ predict = np.array(predict) actual = np.array(actual) @@ -51,6 +81,16 @@ def rmse(predict, actual): # Root Mean Square Logarithmic Error def rmsle(predict, actual): + """ + Examples(rounded for precision): + >>> actual = [10,10,30];predict = [10,2,30] + >>> np.around(rmsle(predict,actual),decimals = 2) + 0.75 + + >>> actual = [1,1,1];predict = [1,1,1] + >>> rmsle(predict,actual) + 0.0 + """ predict = np.array(predict) actual = np.array(actual) @@ -68,15 +108,29 @@ def rmsle(predict, actual): # Mean Bias Deviation def mbd(predict, actual): + """ + This value is Negative, if the model underpredicts, + positive, if it overpredicts. + + Example(rounded for precision): + + Here the model overpredicts + >>> actual = [1,2,3];predict = [2,3,4] + >>> np.around(mbd(predict,actual),decimals = 2) + 50.0 + + Here the model underpredicts + >>> actual = [1,2,3];predict = [0,1,1] + >>> np.around(mbd(predict,actual),decimals = 2) + -66.67 + """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual numerator = np.sum(difference) / len(predict) denumerator = np.sum(actual) / len(predict) - print(numerator) - print(denumerator) - + # print(numerator, denumerator) score = float(numerator) / denumerator * 100 return score From 0da4d0a7f35c825447aa4666bb073a3ad118f319 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Tue, 8 Oct 2019 16:22:40 +0800 Subject: [PATCH 330/594] make code more readable (#1304) --- searches/binary_search.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/searches/binary_search.py b/searches/binary_search.py index 9237c0e1f6f5..76a50560e943 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -43,11 +43,10 @@ def binary_search(sorted_collection, item): current_item = sorted_collection[midpoint] if current_item == item: return midpoint + elif item < current_item: + right = midpoint - 1 else: - if item < current_item: - right = midpoint - 1 - else: - left = midpoint + 1 + left = midpoint + 1 return None From f0568d642ee6bcebbba330452e09e76d3c73e150 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Tue, 8 Oct 2019 16:24:01 +0800 Subject: [PATCH 331/594] less code (#1292) --- maths/abs.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/maths/abs.py b/maths/abs.py index 4d15ee6e82a8..7509c5c20a22 100644 --- a/maths/abs.py +++ b/maths/abs.py @@ -10,11 +10,7 @@ def abs_val(num): >>abs_val(0) 0 """ - if num < 0: - return -num - - # Returns if number is not < 0 - return num + return -num if num < 0 else num def main(): From e80d248e65d20227d23098d354ca82f111d79967 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Tue, 8 Oct 2019 16:25:00 +0800 Subject: [PATCH 332/594] optimization (#1303) --- sorts/selection_sort.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/sorts/selection_sort.py b/sorts/selection_sort.py index 43ad26a7bf27..6a9c063d3364 100644 --- a/sorts/selection_sort.py +++ b/sorts/selection_sort.py @@ -35,7 +35,8 @@ def selection_sort(collection): for k in range(i + 1, length): if collection[k] < collection[least]: least = k - collection[least], collection[i] = (collection[i], collection[least]) + if least != i: + collection[least], collection[i] = (collection[i], collection[least]) return collection From 61f7f94fde8dff80740ee5ef19b2998f192da8d2 Mon Sep 17 00:00:00 2001 From: Rishabh Kumar Date: Tue, 8 Oct 2019 17:55:50 +0530 Subject: [PATCH 333/594] Create karatsuba.py (#1309) * Create karatsuba.py Added karatsuba algorithm for multiplication of two numbers * Update karatsuba.py Added doctests and divmod * Update karatsuba.py --- maths/karatsuba.py | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 maths/karatsuba.py diff --git a/maths/karatsuba.py b/maths/karatsuba.py new file mode 100644 index 000000000000..be4630184933 --- /dev/null +++ b/maths/karatsuba.py @@ -0,0 +1,31 @@ +""" Multiply two numbers using Karatsuba algorithm """ + +def karatsuba(a, b): + """ + >>> karatsuba(15463, 23489) == 15463 * 23489 + True + >>> karatsuba(3, 9) == 3 * 9 + True + """ + if len(str(a)) == 1 or len(str(b)) == 1: + return (a * b) + else: + m1 = max(len(str(a)), len(str(b))) + m2 = m1 // 2 + + a1, a2 = divmod(a, 10**m2) + b1, b2 = divmod(b, 10**m2) + + x = karatsuba(a2, b2) + y = karatsuba((a1 + a2), (b1 + b2)) + z = karatsuba(a1, b1) + + return ((z * 10**(2*m2)) + ((y - z - x) * 10**(m2)) + (x)) + + +def main(): + print(karatsuba(15463, 23489)) + + +if __name__ == "__main__": + main() From b6cc37d461da2a631fe077d0cf952c5981d2dfdd Mon Sep 17 00:00:00 2001 From: Jigyasa G Date: Thu, 10 Oct 2019 00:42:09 +0530 Subject: [PATCH 334/594] mergesort added (#1313) * mergesort added * added doctest --- divide_and_conquer/mergesort.py | 45 +++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 divide_and_conquer/mergesort.py diff --git a/divide_and_conquer/mergesort.py b/divide_and_conquer/mergesort.py new file mode 100644 index 000000000000..b2a5a4c321ae --- /dev/null +++ b/divide_and_conquer/mergesort.py @@ -0,0 +1,45 @@ +def merge(a,b,m,e): + l=a[b:m+1] + r=a[m+1:e+1] + k=b + i=0 + j=0 + while i>> mergesort([3,2,1],0,2) + [1, 2, 3] + >>> mergesort([3,2,1,0,1,2,3,5,4],0,8) + [0, 1, 1, 2, 2, 3, 3, 4, 5] + """ + if b Date: Thu, 10 Oct 2019 00:50:19 +0530 Subject: [PATCH 335/594] Adding missing Doctests (#1330) * Adding doctests in abbreviation * Adding doctests in fibonacci.py --- dynamic_programming/abbreviation.py | 12 ++++++++++-- dynamic_programming/fibonacci.py | 16 ++++++++++++++++ 2 files changed, 26 insertions(+), 2 deletions(-) diff --git a/dynamic_programming/abbreviation.py b/dynamic_programming/abbreviation.py index f4d07e402925..a2aec35af77b 100644 --- a/dynamic_programming/abbreviation.py +++ b/dynamic_programming/abbreviation.py @@ -11,8 +11,13 @@ daBcd -> capitalize a and c(dABCd) -> remove d (ABC) """ - def abbr(a, b): + """ + >>> abbr("daBcd", "ABC") + True + >>> abbr("dBcd", "ABC") + False + """ n = len(a) m = len(b) dp = [[False for _ in range(m + 1)] for _ in range(n + 1)] @@ -28,4 +33,7 @@ def abbr(a, b): if __name__ == "__main__": - print(abbr("daBcd", "ABC")) # expect True + # print(abbr("daBcd", "ABC")) # expect True + import doctest + + doctest.testmod() diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py index 2dd1c2555f3e..125686416603 100644 --- a/dynamic_programming/fibonacci.py +++ b/dynamic_programming/fibonacci.py @@ -14,8 +14,20 @@ def __init__(self, N=None): self.fib_array.append(self.fib_array[i - 1] + self.fib_array[i - 2]) elif N == 0: self.fib_array.append(0) + print(self.fib_array) def get(self, sequence_no=None): + """ + >>> Fibonacci(5).get(3) + [0, 1, 1, 2, 3, 5] + [0, 1, 1, 2] + >>> Fibonacci(5).get(6) + [0, 1, 1, 2, 3, 5] + Out of bound. + >>> Fibonacci(5).get(-1) + [0, 1, 1, 2, 3, 5] + [] + """ if sequence_no != None: if sequence_no < len(self.fib_array): return print(self.fib_array[: sequence_no + 1]) @@ -46,3 +58,7 @@ def get(self, sequence_no=None): print("\nInvalid input, please try again.") except NameError: print("\n********* Invalid input, good bye!! ************\n") + + import doctest + + doctest.testmod() From e67887989232bb64533995cc1044e13d739b02ef Mon Sep 17 00:00:00 2001 From: Jigyasa G Date: Fri, 11 Oct 2019 23:59:50 +0530 Subject: [PATCH 336/594] Adding doctests for sum_of_subset.py (#1333) --- dynamic_programming/sum_of_subset.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/dynamic_programming/sum_of_subset.py b/dynamic_programming/sum_of_subset.py index 581039080101..5c7944d5090e 100644 --- a/dynamic_programming/sum_of_subset.py +++ b/dynamic_programming/sum_of_subset.py @@ -1,5 +1,10 @@ def isSumSubset(arr, arrLen, requiredSum): - + """ + >>> isSumSubset([2, 4, 6, 8], 4, 5) + False + >>> isSumSubset([2, 4, 6, 8], 4, 14) + True + """ # a subset value says 1 if that subset sum can be formed else 0 # initially no subsets can be formed hence False/0 subset = [[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)] @@ -22,14 +27,9 @@ def isSumSubset(arr, arrLen, requiredSum): # uncomment to print the subset # for i in range(arrLen+1): # print(subset[i]) + print(subset[arrLen][requiredSum]) - return subset[arrLen][requiredSum] - +if __name__ == "__main__": + import doctest -arr = [2, 4, 6, 8] -requiredSum = 5 -arrLen = len(arr) -if isSumSubset(arr, arrLen, requiredSum): - print("Found a subset with required sum") -else: - print("No subset with required sum") + doctest.testmod() From 67291a5bce1f5761ce2d6978193ec4a3b1f6dcc6 Mon Sep 17 00:00:00 2001 From: Jigyasa G Date: Sat, 12 Oct 2019 00:02:41 +0530 Subject: [PATCH 337/594] Modified longest_common_ssubsequence.py for successful doctests (#1332) --- dynamic_programming/longest_common_subsequence.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index 12fcae684051..4bb1db044d3b 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -76,6 +76,7 @@ def longest_common_subsequence(x: str, y: str): expected_subseq = "GTAB" ln, subseq = longest_common_subsequence(a, b) - assert expected_ln == ln - assert expected_subseq == subseq - print("len =", ln, ", sub-sequence =", subseq) +## print("len =", ln, ", sub-sequence =", subseq) + import doctest + + doctest.testmod() From b190c8f629d1fb8371fb9ea434d986a843b2ecab Mon Sep 17 00:00:00 2001 From: Aliabbas Merchant Date: Tue, 15 Oct 2019 00:05:51 +0530 Subject: [PATCH 338/594] Rename GCD File (#1354) --- ...greater_common_divisor.py => greatest_common_divisor.py} | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) rename maths/{greater_common_divisor.py => greatest_common_divisor.py} (76%) diff --git a/maths/greater_common_divisor.py b/maths/greatest_common_divisor.py similarity index 76% rename from maths/greater_common_divisor.py rename to maths/greatest_common_divisor.py index ec608488a61f..ebc08f37ffa6 100644 --- a/maths/greater_common_divisor.py +++ b/maths/greatest_common_divisor.py @@ -1,12 +1,12 @@ """ -Greater Common Divisor. +Greatest Common Divisor. Wikipedia reference: https://en.wikipedia.org/wiki/Greatest_common_divisor """ def gcd(a, b): - """Calculate Greater Common Divisor (GCD).""" + """Calculate Greatest Common Divisor (GCD).""" return b if a == 0 else gcd(b % a, a) @@ -16,9 +16,9 @@ def main(): nums = input("Enter two Integers separated by comma (,): ").split(",") num_1 = int(nums[0]) num_2 = int(nums[1]) + print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}") except (IndexError, UnboundLocalError, ValueError): print("Wrong Input") - print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}") if __name__ == "__main__": From dcee2eac68e0c1b4061c94c69e920ed2d42f42f2 Mon Sep 17 00:00:00 2001 From: Andrii Siriak Date: Thu, 17 Oct 2019 17:02:40 +0300 Subject: [PATCH 339/594] Update build badge (#1378) * Update build badge * Update README.md --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index a5af46ad8505..8ccb789be7e9 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ -# The Algorithms - Python +# The Algorithms - Python [![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg?logo=paypal&style=flat-square)](https://www.paypal.me/TheAlgorithms/100)  -[![Build Status](https://img.shields.io/travis/TheAlgorithms/Python.svg?label=Travis%20CI&logo=travis&style=flat-square)](https://travis-ci.org/TheAlgorithms/Python)  +[![Build Status](https://img.shields.io/travis/TheAlgorithms/Python.svg?label=Travis%20CI&logo=travis&style=flat-square)](https://travis-ci.com/TheAlgorithms/Python)  [![LGTM](https://img.shields.io/lgtm/alerts/github/TheAlgorithms/Python.svg?label=LGTM&logo=LGTM&style=flat-square)](https://lgtm.com/projects/g/TheAlgorithms/Python/alerts)  [![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)  [![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md)  From 927a8c7722a141b19a86fdb2f6fb3ae7dcb94c9e Mon Sep 17 00:00:00 2001 From: Stephen <24819660+infrontoftheforest@users.noreply.github.com> Date: Thu, 17 Oct 2019 14:50:51 +0000 Subject: [PATCH 340/594] added horner's method (#1360) --- maths/polynomial_evaluation.py | 60 +++++++++++++++++++++++++--------- 1 file changed, 44 insertions(+), 16 deletions(-) diff --git a/maths/polynomial_evaluation.py b/maths/polynomial_evaluation.py index 3c91ecd93031..d2394f398c36 100644 --- a/maths/polynomial_evaluation.py +++ b/maths/polynomial_evaluation.py @@ -1,25 +1,53 @@ -def evaluate_poly(poly, x): - """ - Objective: Computes the polynomial function for a given value x. - Returns that value. - Input Prams: - poly: tuple of numbers - value of cofficients - x: value for x in f(x) - Return: value of f(x) - - >>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10) - 79800.0 - """ +from typing import Sequence + + +def evaluate_poly(poly: Sequence[float], x: float) -> float: + """Evaluate a polynomial f(x) at specified point x and return the value. + Arguments: + poly -- the coeffiecients of a polynomial as an iterable in order of + ascending degree + x -- the point at which to evaluate the polynomial + + >>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) + 79800.0 + """ return sum(c * (x ** i) for i, c in enumerate(poly)) +def horner(poly: Sequence[float], x: float) -> float: + """Evaluate a polynomial at specified point using Horner's method. + + In terms of computational complexity, Horner's method is an efficient method + of evaluating a polynomial. It avoids the use of expensive exponentiation, + and instead uses only multiplication and addition to evaluate the polynomial + in O(n), where n is the degree of the polynomial. + + https://en.wikipedia.org/wiki/Horner's_method + + Arguments: + poly -- the coeffiecients of a polynomial as an iterable in order of + ascending degree + x -- the point at which to evaluate the polynomial + + >>> horner((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) + 79800.0 + """ + result = 0.0 + for coeff in reversed(poly): + result = result * x + coeff + return result + + if __name__ == "__main__": """ - Example: poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2 - x = -13 - print (evaluate_poly(poly, x)) # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9 + Example: + >>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2 + >>> x = -13.0 + >>> print(evaluate_poly(poly, x)) # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9 + 180339.9 """ poly = (0.0, 0.0, 5.0, 9.3, 7.0) - x = 10 + x = 10.0 print(evaluate_poly(poly, x)) + print(horner(poly, x)) From 63d8cadc3e5aea15d0eadec970a3639752572d94 Mon Sep 17 00:00:00 2001 From: Milad Sadeghi DM Date: Thu, 17 Oct 2019 21:43:28 +0330 Subject: [PATCH 341/594] Fixing Some Minor Issues (#1386) * Replacing mutable default argument in __init__ * Fixing typo mistakes in lib.py * Simplifying chained comparisons * Update lib.py --- linear_algebra/src/lib.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index 5ce0f696ad71..090427d9a520 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -27,7 +27,7 @@ class Vector(object): """ - This class represents a vector of arbitray size. + This class represents a vector of arbitrary size. You need to give the vector components. Overview about the methods: @@ -46,11 +46,13 @@ class Vector(object): TODO: compare-operator """ - def __init__(self, components=[]): + def __init__(self, components=None): """ input: components or nothing simple constructor for init the vector """ + if components is None: + components = [] self.__components = list(components) def set(self, components): @@ -112,7 +114,7 @@ def __sub__(self, other): """ input: other vector assumes: other vector has the same size - returns a new vector that represents the differenz. + returns a new vector that represents the difference. """ size = len(self) if size == len(other): @@ -136,7 +138,7 @@ def __mul__(self, other): summe += self.__components[i] * other.component(i) return summe else: # error case - raise Exception("invalide operand!") + raise Exception("invalid operand!") def copy(self): """ @@ -223,7 +225,7 @@ class Matrix(object): def __init__(self, matrix, w, h): """ - simple constructor for initialzes + simple constructor for initializing the matrix with components. """ self.__matrix = matrix @@ -249,7 +251,7 @@ def changeComponent(self, x, y, value): """ changes the x-y component of this matrix """ - if x >= 0 and x < self.__height and y >= 0 and y < self.__width: + if 0 <= x < self.__height and 0 <= y < self.__width: self.__matrix[x][y] = value else: raise Exception("changeComponent: indices out of bounds") @@ -258,7 +260,7 @@ def component(self, x, y): """ returns the specified (x,y) component """ - if x >= 0 and x < self.__height and y >= 0 and y < self.__width: + if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds") From 83c104e839c158c3e84e567c38f5d30a4224e832 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Fri, 18 Oct 2019 12:20:36 +0800 Subject: [PATCH 342/594] Divide and Conquer (#1308) Thanks for your persistence! --- maths/find_max_recursion.py | 25 +++++++++++++++++++++++++ maths/find_min_recursion.py | 25 +++++++++++++++++++++++++ 2 files changed, 50 insertions(+) create mode 100644 maths/find_max_recursion.py create mode 100644 maths/find_min_recursion.py diff --git a/maths/find_max_recursion.py b/maths/find_max_recursion.py new file mode 100644 index 000000000000..fc10ecf3757a --- /dev/null +++ b/maths/find_max_recursion.py @@ -0,0 +1,25 @@ +# Divide and Conquer algorithm +def find_max(nums, left, right): + """ + find max value in list + :param nums: contains elements + :param left: index of first element + :param right: index of last element + :return: max in nums + + >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] + >>> find_max(nums, 0, len(nums) - 1) == max(nums) + True + """ + if left == right: + return nums[left] + mid = (left + right) >> 1 # the middle + left_max = find_max(nums, left, mid) # find max in range[left, mid] + right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right] + + return left_max if left_max >= right_max else right_max + + +if __name__ == "__main__": + nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] + assert find_max(nums, 0, len(nums) - 1) == 10 diff --git a/maths/find_min_recursion.py b/maths/find_min_recursion.py new file mode 100644 index 000000000000..4488967cc57a --- /dev/null +++ b/maths/find_min_recursion.py @@ -0,0 +1,25 @@ +# Divide and Conquer algorithm +def find_min(nums, left, right): + """ + find min value in list + :param nums: contains elements + :param left: index of first element + :param right: index of last element + :return: min in nums + + >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] + >>> find_min(nums, 0, len(nums) - 1) == min(nums) + True + """ + if left == right: + return nums[left] + mid = (left + right) >> 1 # the middle + left_min = find_min(nums, left, mid) # find min in range[left, mid] + right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right] + + return left_min if left_min <= right_min else right_min + + +if __name__ == "__main__": + nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] + assert find_min(nums, 0, len(nums) - 1) == 1 From 28b964c9b56a52465ef69f36246947247ef1c21b Mon Sep 17 00:00:00 2001 From: aritrartira <53134837+aritrartira@users.noreply.github.com> Date: Fri, 18 Oct 2019 10:16:13 +0530 Subject: [PATCH 343/594] Added missing problem statements (#1364) --- project_euler/README.md | 56 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) diff --git a/project_euler/README.md b/project_euler/README.md index 9f77f719f0f1..89b6d63b5744 100644 --- a/project_euler/README.md +++ b/project_euler/README.md @@ -37,21 +37,77 @@ PROBLEMS: 7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the Nth prime number? + +8. Find the consecutive k digits in a number N that have the largest product. 9. A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a^2 + b^2 = c^2 There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. +10. Find sum of all prime numbers below 2 million. + +11. In the given 20x20 grid, find 4 adjacent numbers (horizontally, vertically or diagonally) that have the largest product. + +12. The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: + + 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... + + Let us list the factors of the first seven triangle numbers: + + 1: 1 + 3: 1,3 + 6: 1,2,3,6 + 10: 1,2,5,10 + 15: 1,3,5,15 + 21: 1,3,7,21 + 28: 1,2,4,7,14,28 + We can see that 28 is the first triangle number to have over five divisors. + + What is the value of the first triangle number to have over five hundred divisors? + +13. Work out the first 10 digits of the sum of the given hundred 50 digit numbers. + 14. The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 Which starting number, under one million, produces the longest chain? + +15. Starting from top left corner of a 20x20 grid how many routes are there to reach the bottom left corner? 16. 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? + +17. If the numbers 1 through 1000 were written in words, how many total letters would be used? + +18. By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. + 3 + 7 4 + 2 4 6 +8 5 9 3 + +That is, 3 + 7 + 4 + 9 = 23. + +Find the maximum total from top to bottom of the triangle below: + + 75 + 95 64 + 17 47 82 + 18 35 87 10 + 20 04 82 47 65 + 19 01 23 75 03 34 + 88 02 77 73 07 63 67 + 99 65 04 28 06 16 70 92 + 41 41 26 56 83 40 80 70 33 + 41 48 72 33 47 32 37 16 94 29 + 53 71 44 65 25 43 91 52 97 51 14 + 70 11 33 28 77 73 17 78 39 68 17 57 + 91 71 52 38 17 14 91 43 58 50 27 29 48 + 63 66 04 68 89 53 67 30 73 16 69 87 40 31 +04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 + 20. n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. From 14c23bc8475a6d1d0ddbab6a6259bf8f30af41cd Mon Sep 17 00:00:00 2001 From: Stephen <24819660+infrontoftheforest@users.noreply.github.com> Date: Fri, 18 Oct 2019 04:48:16 +0000 Subject: [PATCH 344/594] create qr_decomposition (#1363) --- maths/qr_decomposition.py | 71 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100644 maths/qr_decomposition.py diff --git a/maths/qr_decomposition.py b/maths/qr_decomposition.py new file mode 100644 index 000000000000..197211f1e694 --- /dev/null +++ b/maths/qr_decomposition.py @@ -0,0 +1,71 @@ +import numpy as np + + +def qr_householder(A): + """Return a QR-decomposition of the matrix A using Householder reflection. + + The QR-decomposition decomposes the matrix A of shape (m, n) into an + orthogonal matrix Q of shape (m, m) and an upper triangular matrix R of + shape (m, n). Note that the matrix A does not have to be square. This + method of decomposing A uses the Householder reflection, which is + numerically stable and of complexity O(n^3). + + https://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections + + Arguments: + A -- a numpy.ndarray of shape (m, n) + + Note: several optimizations can be made for numeric efficiency, but this is + intended to demonstrate how it would be represented in a mathematics + textbook. In cases where efficiency is particularly important, an optimized + version from BLAS should be used. + + >>> A = np.array([[12, -51, 4], [6, 167, -68], [-4, 24, -41]], dtype=float) + >>> Q, R = qr_householder(A) + + >>> # check that the decomposition is correct + >>> np.allclose(Q@R, A) + True + + >>> # check that Q is orthogonal + >>> np.allclose(Q@Q.T, np.eye(A.shape[0])) + True + >>> np.allclose(Q.T@Q, np.eye(A.shape[0])) + True + + >>> # check that R is upper triangular + >>> np.allclose(np.triu(R), R) + True + """ + m, n = A.shape + t = min(m, n) + Q = np.eye(m) + R = A.copy() + + for k in range(t - 1): + # select a column of modified matrix A': + x = R[k:, [k]] + # construct first basis vector + e1 = np.zeros_like(x) + e1[0] = 1.0 + # determine scaling factor + alpha = np.linalg.norm(x) + # construct vector v for Householder reflection + v = x + np.sign(x[0])*alpha*e1 + v /= np.linalg.norm(v) + + # construct the Householder matrix + Q_k = np.eye(m - k) - 2.0*v@v.T + # pad with ones and zeros as necessary + Q_k = np.block([[np.eye(k), np.zeros((k, m - k))], + [np.zeros((m - k, k)), Q_k ]]) + + Q = Q@Q_k.T + R = Q_k@R + + return Q, R + + +if __name__ == "__main__": + import doctest + doctest.testmod() From 870eebf349f78047461eb639d60921096179facb Mon Sep 17 00:00:00 2001 From: Yurii <33547678+yuriimchg@users.noreply.github.com> Date: Fri, 18 Oct 2019 08:27:55 +0300 Subject: [PATCH 345/594] rewrite the algorithm from scratch (#1351) --- maths/factorial_python.py | 38 ++++++++++++++++++++------------------ 1 file changed, 20 insertions(+), 18 deletions(-) diff --git a/maths/factorial_python.py b/maths/factorial_python.py index 6c1349fd5f4c..10083af0bef2 100644 --- a/maths/factorial_python.py +++ b/maths/factorial_python.py @@ -1,19 +1,21 @@ -"""Python program to find the factorial of a number provided by the user.""" +def factorial(input_number: int) -> int: + """ + Non-recursive algorithm of finding factorial of the + input number. + >>> factorial(1) + 1 + >>> factorial(6) + 720 + >>> factorial(0) + 1 + """ -# change the value for a different result -NUM = 10 - -# uncomment to take input from the user -# num = int(input("Enter a number: ")) - -FACTORIAL = 1 - -# check if the number is negative, positive or zero -if NUM < 0: - print("Sorry, factorial does not exist for negative numbers") -elif NUM == 0: - print("The factorial of 0 is 1") -else: - for i in range(1, NUM + 1): - FACTORIAL = FACTORIAL * i - print("The factorial of", NUM, "is", FACTORIAL) + if input_number < 0: + raise ValueError('Input input_number should be non-negative') + elif input_number == 0: + return 1 + else: + result = 1 + for i in range(input_number): + result = result * (i + 1) + return result From 3cc35310769b5681201e0fb2828ee4e40d947f05 Mon Sep 17 00:00:00 2001 From: Yurii <33547678+yuriimchg@users.noreply.github.com> Date: Fri, 18 Oct 2019 08:35:29 +0300 Subject: [PATCH 346/594] Feature/update least common multiple (#1352) * renamed module to extend the acronym * add type hints (will not work with Python less than 3.4) * update docstring * refactor the function * add unittests for the least common squares multiple --- maths/find_lcm.py | 34 -------------------------- maths/least_common_multiple.py | 44 ++++++++++++++++++++++++++++++++++ 2 files changed, 44 insertions(+), 34 deletions(-) delete mode 100644 maths/find_lcm.py create mode 100644 maths/least_common_multiple.py diff --git a/maths/find_lcm.py b/maths/find_lcm.py deleted file mode 100644 index dffadd1f3c5b..000000000000 --- a/maths/find_lcm.py +++ /dev/null @@ -1,34 +0,0 @@ -"""Find Least Common Multiple.""" - -# https://en.wikipedia.org/wiki/Least_common_multiple - - -def find_lcm(num_1, num_2): - """Find the least common multiple of two numbers. - >>> find_lcm(5,2) - 10 - >>> find_lcm(12,76) - 228 - """ - if num_1 >= num_2: - max_num = num_1 - else: - max_num = num_2 - - lcm = max_num - while True: - if (lcm % num_1 == 0) and (lcm % num_2 == 0): - break - lcm += max_num - return lcm - - -def main(): - """Use test numbers to run the find_lcm algorithm.""" - num_1 = int(input().strip()) - num_2 = int(input().strip()) - print(find_lcm(num_1, num_2)) - - -if __name__ == "__main__": - main() diff --git a/maths/least_common_multiple.py b/maths/least_common_multiple.py new file mode 100644 index 000000000000..863744e182b6 --- /dev/null +++ b/maths/least_common_multiple.py @@ -0,0 +1,44 @@ +import unittest + + +def find_lcm(first_num: int, second_num: int) -> int: + """Find the least common multiple of two numbers. + + Learn more: https://en.wikipedia.org/wiki/Least_common_multiple + + >>> find_lcm(5,2) + 10 + >>> find_lcm(12,76) + 228 + """ + max_num = first_num if first_num >= second_num else second_num + common_mult = max_num + while (common_mult % first_num > 0) or (common_mult % second_num > 0): + common_mult += max_num + return common_mult + + +class TestLeastCommonMultiple(unittest.TestCase): + + test_inputs = [ + (10, 20), + (13, 15), + (4, 31), + (10, 42), + (43, 34), + (5, 12), + (12, 25), + (10, 25), + (6, 9), + ] + expected_results = [20, 195, 124, 210, 1462, 60, 300, 50, 18] + + def test_lcm_function(self): + for i, (first_num, second_num) in enumerate(self.test_inputs): + actual_result = find_lcm(first_num, second_num) + with self.subTest(i=i): + self.assertEqual(actual_result, self.expected_results[i]) + + +if __name__ == "__main__": + unittest.main() From b7fb0630f2c466412337d25d2e611eeef7bc381b Mon Sep 17 00:00:00 2001 From: Yurii <33547678+yuriimchg@users.noreply.github.com> Date: Fri, 18 Oct 2019 08:36:52 +0300 Subject: [PATCH 347/594] Feature/fix caesar cipher (#1350) * change var names for better reading * rewrite encrypt function to fix ascii char ranges * fix decrypt function * update formatting (add f-strings) * upd fuctions * add f-string formatting (python3.6+) * add type hints (python3.4+) --- ciphers/caesar_cipher.py | 69 ++++++++++++++++++++-------------------- 1 file changed, 35 insertions(+), 34 deletions(-) diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 3f24e049afb0..52155bbdc49e 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -1,61 +1,62 @@ -def encrypt(strng, key): - encrypted = "" - for x in strng: - indx = (ord(x) + key) % 256 - if indx > 126: - indx = indx - 95 - encrypted = encrypted + chr(indx) - return encrypted +def encrypt(input_string: str, key: int) -> str: + result = '' + for x in input_string: + if not x.isalpha(): + result += x + elif x.isupper(): + result += chr((ord(x) + key - 65) % 26 + 65) + elif x.islower(): + result += chr((ord(x) + key - 97) % 26 + 97) + return result -def decrypt(strng, key): - decrypted = "" - for x in strng: - indx = (ord(x) - key) % 256 - if indx < 32: - indx = indx + 95 - decrypted = decrypted + chr(indx) - return decrypted +def decrypt(input_string: str, key: int) -> str: + result = '' + for x in input_string: + if not x.isalpha(): + result += x + elif x.isupper(): + result += chr((ord(x) - key - 65) % 26 + 65) + elif x.islower(): + result += chr((ord(x) - key - 97) % 26 + 97) + return result -def brute_force(strng): +def brute_force(input_string: str) -> None: key = 1 - decrypted = "" + result = '' while key <= 94: - for x in strng: + for x in input_string: indx = (ord(x) - key) % 256 if indx < 32: indx = indx + 95 - decrypted = decrypted + chr(indx) - print("Key: {}\t| Message: {}".format(key, decrypted)) - decrypted = "" + result = result + chr(indx) + print(f'Key: {key}\t| Message: {result}') + result = '' key += 1 return None def main(): while True: - print("-" * 10 + "\n**Menu**\n" + "-" * 10) - print("1.Encrpyt") - print("2.Decrypt") - print("3.BruteForce") - print("4.Quit") + print(f'{"-" * 10}\n Menu\n{"-", * 10}') + print(*["1.Encrpyt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep='\n') choice = input("What would you like to do?: ") if choice not in ["1", "2", "3", "4"]: print("Invalid choice, please enter a valid choice") elif choice == "1": - strng = input("Please enter the string to be encrypted: ") - key = int(input("Please enter off-set between 1-94: ")) + input_string = input("Please enter the string to be encrypted: ") + key = int(input("Please enter off-set between 0-25: ")) if key in range(1, 95): - print(encrypt(strng.lower(), key)) + print(encrypt(input_string.lower(), key)) elif choice == "2": - strng = input("Please enter the string to be decrypted: ") + input_string = input("Please enter the string to be decrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1, 95): - print(decrypt(strng, key)) + print(decrypt(input_string, key)) elif choice == "3": - strng = input("Please enter the string to be decrypted: ") - brute_force(strng) + input_string = input("Please enter the string to be decrypted: ") + brute_force(input_string) main() elif choice == "4": print("Goodbye.") From 9c634735d39a6d51aa94b0c92cf0473af72439f1 Mon Sep 17 00:00:00 2001 From: Laisha Wadhwa Date: Fri, 18 Oct 2019 11:40:08 +0530 Subject: [PATCH 348/594] added fibonacci_search.py (#1341) * added fibonacci_search.py * added Fibonacci_search.py after error handling * added doctests --- searches/fibonacci_search.py | 50 ++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 searches/fibonacci_search.py diff --git a/searches/fibonacci_search.py b/searches/fibonacci_search.py new file mode 100644 index 000000000000..f76528b9c283 --- /dev/null +++ b/searches/fibonacci_search.py @@ -0,0 +1,50 @@ +#run using python fibonacci_search.py -v + +''' +@params +arr: input array +val: the value to be searched +output: the index of element in the array or -1 if not found +return 0 if input array is empty +''' +def fibonacci_search(arr, val): + + """ + >>> fibonacci_search([1,6,7,0,0,0], 6) + 1 + >>> fibonacci_search([1,-1, 5, 2, 9], 10) + -1 + >>> fibonacci_search([], 9) + 0 + """ + fib_N_2 = 0 + fib_N_1 = 1 + fibNext = fib_N_1 + fib_N_2 + length = len(arr) + if length == 0: + return 0 + while (fibNext < len(arr)): + fib_N_2 = fib_N_1 + fib_N_1 = fibNext + fibNext = fib_N_1 + fib_N_2 + index = -1; + while (fibNext > 1): + i = min(index + fib_N_2, (length-1)) + if (arr[i] < val): + fibNext = fib_N_1 + fib_N_1 = fib_N_2 + fib_N_2 = fibNext - fib_N_1 + index = i + elif (arr[i] > val): + fibNext = fib_N_2 + fib_N_1 = fib_N_1 - fib_N_2 + fib_N_2 = fibNext - fib_N_1 + else : + return i + if (fib_N_1 and index < length-1) and (arr[index+1] == val): + return index+1; + return -1 + +if __name__ == "__main__": + import doctest + doctest.testmod() From ddb094919b8af4b1268e118fa3e33868c30f4386 Mon Sep 17 00:00:00 2001 From: Jigyasa G Date: Fri, 18 Oct 2019 11:43:20 +0530 Subject: [PATCH 349/594] Adding doctests for fractional_knapsack.py (#1331) * Adding doctests for fractional_knapsack.py * Update fractional_knapsack.py --- dynamic_programming/fractional_knapsack.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/dynamic_programming/fractional_knapsack.py b/dynamic_programming/fractional_knapsack.py index 881b6a3969d0..728cdeb009ac 100644 --- a/dynamic_programming/fractional_knapsack.py +++ b/dynamic_programming/fractional_knapsack.py @@ -3,6 +3,10 @@ def fracKnapsack(vl, wt, W, n): + """ + >>> fracKnapsack([60, 100, 120], [10, 20, 30], 50, 3) + 240.0 + """ r = list(sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True)) vl, wt = [i[0] for i in r], [i[1] for i in r] @@ -16,5 +20,7 @@ def fracKnapsack(vl, wt, W, n): else sum(vl[:k]) ) +if __name__ == "__main__": + import doctest -print("%.0f" % fracKnapsack([60, 100, 120], [10, 20, 30], 50, 3)) + doctest.testmod() From 455509acee831cb4a8c3bf9d495fd0e296825c68 Mon Sep 17 00:00:00 2001 From: Phyllipe Bezerra <32442929+pmba@users.noreply.github.com> Date: Fri, 18 Oct 2019 03:13:58 -0300 Subject: [PATCH 350/594] Add Topological Sort (#1302) * add topological sort * fix topological sort? * running black * renaming file --- blockchain/chinese_remainder_theorem.py | 12 +++--- blockchain/diophantine_equation.py | 16 +++++--- blockchain/modular_division.py | 16 ++++---- graphs/g_topological_sort.py | 47 ++++++++++++++++++++++++ machine_learning/k_nearest_neighbours.py | 14 ++++--- maths/fibonacci_sequence_recursion.py | 2 +- maths/sum_of_arithmetic_series.py | 3 +- sorts/stooge_sort.py | 1 + 8 files changed, 84 insertions(+), 27 deletions(-) create mode 100644 graphs/g_topological_sort.py diff --git a/blockchain/chinese_remainder_theorem.py b/blockchain/chinese_remainder_theorem.py index f1409530a70e..8c3eb9b4b01e 100644 --- a/blockchain/chinese_remainder_theorem.py +++ b/blockchain/chinese_remainder_theorem.py @@ -44,7 +44,7 @@ def chinese_remainder_theorem(n1, r1, n2, r2): (x, y) = extended_euclid(n1, n2) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 - return ((n % m + m) % m) + return (n % m + m) % m # ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- @@ -84,8 +84,8 @@ def chinese_remainder_theorem2(n1, r1, n2, r2): # import testmod for testing our function from doctest import testmod -if __name__ == '__main__': - testmod(name='chinese_remainder_theorem', verbose=True) - testmod(name='chinese_remainder_theorem2', verbose=True) - testmod(name='invert_modulo', verbose=True) - testmod(name='extended_euclid', verbose=True) +if __name__ == "__main__": + testmod(name="chinese_remainder_theorem", verbose=True) + testmod(name="chinese_remainder_theorem2", verbose=True) + testmod(name="invert_modulo", verbose=True) + testmod(name="extended_euclid", verbose=True) diff --git a/blockchain/diophantine_equation.py b/blockchain/diophantine_equation.py index 3ac7094eed6b..ec2ed26e40ec 100644 --- a/blockchain/diophantine_equation.py +++ b/blockchain/diophantine_equation.py @@ -17,7 +17,9 @@ def diophantine(a, b, c): """ - assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below + assert ( + c % greatest_common_divisor(a, b) == 0 + ) # greatest_common_divisor(a,b) function implemented below (d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below r = c / d return (r * x, r * y) @@ -32,6 +34,7 @@ def diophantine(a, b, c): # n is the number of solution you want, n = 2 by default + def diophantine_all_soln(a, b, c, n=2): """ >>> diophantine_all_soln(10, 6, 14) @@ -66,6 +69,7 @@ def diophantine_all_soln(a, b, c, n=2): # Euclid's Algorithm + def greatest_common_divisor(a, b): """ >>> greatest_common_divisor(7,5) @@ -117,8 +121,8 @@ def extended_gcd(a, b): # import testmod for testing our function from doctest import testmod -if __name__ == '__main__': - testmod(name='diophantine', verbose=True) - testmod(name='diophantine_all_soln', verbose=True) - testmod(name='extended_gcd', verbose=True) - testmod(name='greatest_common_divisor', verbose=True) +if __name__ == "__main__": + testmod(name="diophantine", verbose=True) + testmod(name="diophantine_all_soln", verbose=True) + testmod(name="extended_gcd", verbose=True) + testmod(name="greatest_common_divisor", verbose=True) diff --git a/blockchain/modular_division.py b/blockchain/modular_division.py index 4e1623fbe923..1255f04328d5 100644 --- a/blockchain/modular_division.py +++ b/blockchain/modular_division.py @@ -70,6 +70,7 @@ def modular_division2(a, b, n): # Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) + def extended_gcd(a, b): """ >>> extended_gcd(10, 6) @@ -116,6 +117,7 @@ def extended_euclid(a, b): # Euclid's Lemma : d divides a and b, if and only if d divides a-b and b # Euclid's Algorithm + def greatest_common_divisor(a, b): """ >>> greatest_common_divisor(7,5) @@ -140,10 +142,10 @@ def greatest_common_divisor(a, b): # Import testmod for testing our function from doctest import testmod -if __name__ == '__main__': - testmod(name='modular_division', verbose=True) - testmod(name='modular_division2', verbose=True) - testmod(name='invert_modulo', verbose=True) - testmod(name='extended_gcd', verbose=True) - testmod(name='extended_euclid', verbose=True) - testmod(name='greatest_common_divisor', verbose=True) +if __name__ == "__main__": + testmod(name="modular_division", verbose=True) + testmod(name="modular_division2", verbose=True) + testmod(name="invert_modulo", verbose=True) + testmod(name="extended_gcd", verbose=True) + testmod(name="extended_euclid", verbose=True) + testmod(name="greatest_common_divisor", verbose=True) diff --git a/graphs/g_topological_sort.py b/graphs/g_topological_sort.py new file mode 100644 index 000000000000..1a2f4fa11d88 --- /dev/null +++ b/graphs/g_topological_sort.py @@ -0,0 +1,47 @@ +# Author: Phyllipe Bezerra (https://github.com/pmba) + +clothes = { + 0: "underwear", + 1: "pants", + 2: "belt", + 3: "suit", + 4: "shoe", + 5: "socks", + 6: "shirt", + 7: "tie", + 8: "clock", +} + +graph = [[1, 4], [2, 4], [3], [], [], [4], [2, 7], [3], []] + +visited = [0 for x in range(len(graph))] +stack = [] + + +def print_stack(stack, clothes): + order = 1 + while stack: + cur_clothe = stack.pop() + print(order, clothes[cur_clothe]) + order += 1 + + +def dfs(u, visited, graph): + visited[u] = 1 + for v in graph[u]: + if not visited[v]: + dfs(v, visited, graph) + + stack.append(u) + + +def top_sort(graph, visited): + for v in range(len(graph)): + if not visited[v]: + dfs(v, visited, graph) + + +if __name__ == "__main__": + top_sort(graph, visited) + print(stack) + print_stack(stack, clothes) diff --git a/machine_learning/k_nearest_neighbours.py b/machine_learning/k_nearest_neighbours.py index 83d8399fe9b6..a60b744bc65e 100644 --- a/machine_learning/k_nearest_neighbours.py +++ b/machine_learning/k_nearest_neighbours.py @@ -5,12 +5,13 @@ data = datasets.load_iris() -X = np.array(data['data']) -y = np.array(data['target']) -classes = data['target_names'] +X = np.array(data["data"]) +y = np.array(data["target"]) +classes = data["target_names"] X_train, X_test, y_train, y_test = train_test_split(X, y) + def euclidean_distance(a, b): """ Gives the euclidean distance between two points @@ -21,6 +22,7 @@ def euclidean_distance(a, b): """ return np.linalg.norm(np.array(a) - np.array(b)) + def classifier(train_data, train_target, classes, point, k=5): """ Classifies the point using the KNN algorithm @@ -43,13 +45,13 @@ def classifier(train_data, train_target, classes, point, k=5): for data_point in data: distance = euclidean_distance(data_point[0], point) distances.append((distance, data_point[1])) - # Choosing 'k' points with the least distances. + # Choosing 'k' points with the least distances. votes = [i[1] for i in sorted(distances)[:k]] - # Most commonly occuring class among them + # Most commonly occuring class among them # is the class into which the point is classified result = Counter(votes).most_common(1)[0][0] return classes[result] if __name__ == "__main__": - print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) \ No newline at end of file + print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) diff --git a/maths/fibonacci_sequence_recursion.py b/maths/fibonacci_sequence_recursion.py index 2e0d835cf15e..91619600d5b4 100644 --- a/maths/fibonacci_sequence_recursion.py +++ b/maths/fibonacci_sequence_recursion.py @@ -6,7 +6,7 @@ def recur_fibo(n): >>> [recur_fibo(i) for i in range(12)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] """ - return n if n <= 1 else recur_fibo(n-1) + recur_fibo(n-2) + return n if n <= 1 else recur_fibo(n - 1) + recur_fibo(n - 2) def main(): diff --git a/maths/sum_of_arithmetic_series.py b/maths/sum_of_arithmetic_series.py index f7ea5dc84cb8..74eef0f18a12 100755 --- a/maths/sum_of_arithmetic_series.py +++ b/maths/sum_of_arithmetic_series.py @@ -8,7 +8,7 @@ def sum_of_series(first_term, common_diff, num_of_terms): >>> sum_of_series(1, 10, 100) 49600.0 """ - sum = ((num_of_terms/2)*(2*first_term+(num_of_terms-1)*common_diff)) + sum = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return sum @@ -19,4 +19,5 @@ def main(): if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/sorts/stooge_sort.py b/sorts/stooge_sort.py index 089b01a4def1..de997a85df12 100644 --- a/sorts/stooge_sort.py +++ b/sorts/stooge_sort.py @@ -33,6 +33,7 @@ def stooge(arr, i, h): # Recursively sort first 2/3 elements stooge(arr, i, (h - t)) + if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] From 2197bfa029641c1695f8172ecf95f25dad9ddd0d Mon Sep 17 00:00:00 2001 From: archit kaushal <38643326+archu5@users.noreply.github.com> Date: Fri, 18 Oct 2019 11:50:22 +0530 Subject: [PATCH 351/594] #840 adds polymonial regression program in python (#1235) * #840 adds polymonial regression program in python * Update polymonial_regression.py * Update polymonial_regression.py --- machine_learning/polymonial_regression.py | 37 +++++++++++++++++++++++ 1 file changed, 37 insertions(+) create mode 100644 machine_learning/polymonial_regression.py diff --git a/machine_learning/polymonial_regression.py b/machine_learning/polymonial_regression.py new file mode 100644 index 000000000000..03f5f0a9713d --- /dev/null +++ b/machine_learning/polymonial_regression.py @@ -0,0 +1,37 @@ +import matplotlib.pyplot as plt +import pandas as pd + +# Importing the dataset +dataset = pd.read_csv('https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv') +X = dataset.iloc[:, 1:2].values +y = dataset.iloc[:, 2].values + + +# Splitting the dataset into the Training set and Test set +from sklearn.model_selection import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + +# Fitting Polynomial Regression to the dataset +from sklearn.preprocessing import PolynomialFeatures +from sklearn.linear_model import LinearRegression +poly_reg = PolynomialFeatures(degree=4) +X_poly = poly_reg.fit_transform(X) +pol_reg = LinearRegression() +pol_reg.fit(X_poly, y) + + +# Visualizing the Polymonial Regression results +def viz_polymonial(): + plt.scatter(X, y, color='red') + plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') + plt.title('Truth or Bluff (Linear Regression)') + plt.xlabel('Position level') + plt.ylabel('Salary') + plt.show() + return +viz_polymonial() + +# Predicting a new result with Polymonial Regression +pol_reg.predict(poly_reg.fit_transform([[5.5]])) +#output should be 132148.43750003 From e177198177695d70cd17c351fce7033c9f4f2789 Mon Sep 17 00:00:00 2001 From: Pierrick <43653255+laurent-pck@users.noreply.github.com> Date: Fri, 18 Oct 2019 08:35:13 +0200 Subject: [PATCH 352/594] Add unicode support in ciphers/base64_cipher.py script. (#1316) * Add unicode support in ciphers/base64_cipher.py script. * Add doctests and correct the padding length computation in base64_cipher. --- ciphers/base64_cipher.py | 57 ++++++++++++++++++++++++++-------------- 1 file changed, 37 insertions(+), 20 deletions(-) diff --git a/ciphers/base64_cipher.py b/ciphers/base64_cipher.py index 9fca5b02679f..eea065b94ee0 100644 --- a/ciphers/base64_cipher.py +++ b/ciphers/base64_cipher.py @@ -1,35 +1,52 @@ -def encodeBase64(text): - base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" - +def encode_base64(text): + r""" + >>> encode_base64('WELCOME to base64 encoding 😁') + 'V0VMQ09NRSB0byBiYXNlNjQgZW5jb2Rpbmcg8J+YgQ==' + >>> encode_base64('AÅᐃ𐀏🤓') + 'QcOF4ZCD8JCAj/CfpJM=' + >>> encode_base64('A'*60) + 'QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\r\nQUFB' + """ + base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" + + byte_text = bytes(text, "utf-8") # put text in bytes for unicode support r = "" # the result - c = 3 - len(text) % 3 # the length of padding + c = -len(byte_text) % 3 # the length of padding p = "=" * c # the padding - s = text + "\0" * c # the text to encode + s = byte_text + b"\x00" * c # the text to encode i = 0 while i < len(s): if i > 0 and ((i / 3 * 4) % 76) == 0: - r = r + "\r\n" + r = r + "\r\n" # for unix newline, put "\n" - n = (ord(s[i]) << 16) + (ord(s[i + 1]) << 8) + ord(s[i + 2]) + n = (s[i] << 16) + (s[i + 1] << 8) + s[i + 2] n1 = (n >> 18) & 63 n2 = (n >> 12) & 63 n3 = (n >> 6) & 63 n4 = n & 63 - r += base64chars[n1] + base64chars[n2] + base64chars[n3] + base64chars[n4] + r += base64_chars[n1] + base64_chars[n2] + base64_chars[n3] + base64_chars[n4] i += 3 return r[0 : len(r) - len(p)] + p -def decodeBase64(text): - base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" +def decode_base64(text): + r""" + >>> decode_base64('V0VMQ09NRSB0byBiYXNlNjQgZW5jb2Rpbmcg8J+YgQ==') + 'WELCOME to base64 encoding 😁' + >>> decode_base64('QcOF4ZCD8JCAj/CfpJM=') + 'AÅᐃ𐀏🤓' + >>> decode_base64("QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\r\nQUFB") + 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' + """ + base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" s = "" for i in text: - if i in base64chars: + if i in base64_chars: s += i c = "" else: @@ -43,28 +60,28 @@ def decodeBase64(text): if c == "==": p = "AA" - r = "" + r = b"" s = s + p i = 0 while i < len(s): n = ( - (base64chars.index(s[i]) << 18) - + (base64chars.index(s[i + 1]) << 12) - + (base64chars.index(s[i + 2]) << 6) - + base64chars.index(s[i + 3]) + (base64_chars.index(s[i]) << 18) + + (base64_chars.index(s[i + 1]) << 12) + + (base64_chars.index(s[i + 2]) << 6) + + base64_chars.index(s[i + 3]) ) - r += chr((n >> 16) & 255) + chr((n >> 8) & 255) + chr(n & 255) + r += bytes([(n >> 16) & 255]) + bytes([(n >> 8) & 255]) + bytes([n & 255]) i += 4 - return r[0 : len(r) - len(p)] + return str(r[0 : len(r) - len(p)], "utf-8") def main(): - print(encodeBase64("WELCOME to base64 encoding")) - print(decodeBase64(encodeBase64("WELCOME to base64 encoding"))) + print(encode_base64("WELCOME to base64 encoding 😁")) + print(decode_base64(encode_base64("WELCOME to base64 encoding 😁"))) if __name__ == "__main__": From 7376addcd5f786a3c46e48e5600cf88d363015c3 Mon Sep 17 00:00:00 2001 From: Mariusz Skoneczko Date: Fri, 18 Oct 2019 17:38:31 +1100 Subject: [PATCH 353/594] Implement Linked Queue and Linked Stack data structures (#1324) * Add LinkedQueue * Add LinkedStack --- data_structures/queue/linked_queue.py | 74 ++++++++++++++++++++++++++ data_structures/stacks/linked_stack.py | 67 +++++++++++++++++++++++ 2 files changed, 141 insertions(+) create mode 100644 data_structures/queue/linked_queue.py create mode 100644 data_structures/stacks/linked_stack.py diff --git a/data_structures/queue/linked_queue.py b/data_structures/queue/linked_queue.py new file mode 100644 index 000000000000..614c60cd1ae2 --- /dev/null +++ b/data_structures/queue/linked_queue.py @@ -0,0 +1,74 @@ +""" A Queue using a Linked List like structure """ +from typing import Any, Optional + + +class Node: + def __init__(self, data: Any, next: Optional["Node"] = None): + self.data: Any = data + self.next: Optional["Node"] = next + + +class LinkedQueue: + """ + Linked List Queue implementing put (to end of queue), + get (from front of queue) and is_empty + + >>> queue = LinkedQueue() + >>> queue.is_empty() + True + >>> queue.put(5) + >>> queue.put(9) + >>> queue.put('python') + >>> queue.is_empty(); + False + >>> queue.get() + 5 + >>> queue.put('algorithms') + >>> queue.get() + 9 + >>> queue.get() + 'python' + >>> queue.get() + 'algorithms' + >>> queue.is_empty() + True + >>> queue.get() + Traceback (most recent call last): + ... + IndexError: get from empty queue + """ + + def __init__(self) -> None: + self.front: Optional[Node] = None + self.rear: Optional[Node] = None + + def is_empty(self) -> bool: + """ returns boolean describing if queue is empty """ + return self.front is None + + def put(self, item: Any) -> None: + """ append item to rear of queue """ + node: Node = Node(item) + if self.is_empty(): + # the queue contains just the single element + self.front = node + self.rear = node + else: + # not empty, so we add it to the rear of the queue + assert isinstance(self.rear, Node) + self.rear.next = node + self.rear = node + + def get(self) -> Any: + """ returns and removes item at front of queue """ + if self.is_empty(): + raise IndexError("get from empty queue") + else: + # "remove" element by having front point to the next one + assert isinstance(self.front, Node) + node: Node = self.front + self.front = node.next + if self.front is None: + self.rear = None + + return node.data diff --git a/data_structures/stacks/linked_stack.py b/data_structures/stacks/linked_stack.py new file mode 100644 index 000000000000..18ba87ddc221 --- /dev/null +++ b/data_structures/stacks/linked_stack.py @@ -0,0 +1,67 @@ +""" A Stack using a Linked List like structure """ +from typing import Any, Optional + + +class Node: + def __init__(self, data: Any, next: Optional["Node"] = None): + self.data: Any = data + self.next: Optional["Node"] = next + + +class LinkedStack: + """ + Linked List Stack implementing push (to top), + pop (from top) and is_empty + + >>> stack = LinkedStack() + >>> stack.is_empty() + True + >>> stack.push(5) + >>> stack.push(9) + >>> stack.push('python') + >>> stack.is_empty(); + False + >>> stack.pop() + 'python' + >>> stack.push('algorithms') + >>> stack.pop() + 'algorithms' + >>> stack.pop() + 9 + >>> stack.pop() + 5 + >>> stack.is_empty() + True + >>> stack.pop() + Traceback (most recent call last): + ... + IndexError: pop from empty stack + """ + + def __init__(self) -> None: + self.top: Optional[Node] = None + + def is_empty(self) -> bool: + """ returns boolean describing if stack is empty """ + return self.top is None + + def push(self, item: Any) -> None: + """ append item to top of stack """ + node: Node = Node(item) + if self.is_empty(): + self.top = node + else: + # each node points to the item "lower" in the stack + node.next = self.top + self.top = node + + def pop(self) -> Any: + """ returns and removes item at top of stack """ + if self.is_empty(): + raise IndexError("pop from empty stack") + else: + # "remove" element by having top point to the next one + assert isinstance(self.top, Node) + node: Node = self.top + self.top = node.next + return node.data From 179284a41bf265c59913b72d94bee47d7d6b7414 Mon Sep 17 00:00:00 2001 From: Hocnonsense <48747984+Hocnonsense@users.noreply.github.com> Date: Fri, 18 Oct 2019 15:39:37 +0800 Subject: [PATCH 354/594] Update treap.py (#1358) * Update treap.py check merge() * Update treap.py random() is used. its difficult to write doctests l->left r->right key->value add __repr__ and __str__ in preorder --- data_structures/binary_tree/treap.py | 188 +++++++++++++++++---------- 1 file changed, 116 insertions(+), 72 deletions(-) diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index 5d34abc3c931..0b5947f4cc04 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -2,129 +2,173 @@ from typing import Tuple -class Node: +class Node(object): """ Treap's node - Treap is a binary tree by key and heap by priority + Treap is a binary tree by value and heap by priority """ - - def __init__(self, key: int): - self.key = key + def __init__(self, value: int = None): + self.value = value self.prior = random() - self.l = None - self.r = None + self.left = None + self.right = None + def __repr__(self): + from pprint import pformat -def split(root: Node, key: int) -> Tuple[Node, Node]: + if self.left is None and self.right is None: + return "'%s: %.5s'" % (self.value, self.prior) + else: + return pformat( + { + "%s: %.5s" + % (self.value, self.prior): (self.left, self.right) + }, + indent=1, + ) + + def __str__(self): + value = str(self.value) + " " + left = str(self.left or "") + right = str(self.right or "") + return value + left + right + +def split(root: Node, value: int) -> Tuple[Node, Node]: """ - We split current tree into 2 trees with key: + We split current tree into 2 trees with value: - Left tree contains all keys less than split key. - Right tree contains all keys greater or equal, than split key + Left tree contains all values less than split value. + Right tree contains all values greater or equal, than split value """ if root is None: # None tree is split into 2 Nones return (None, None) - if root.key >= key: - """ - Right tree's root will be current node. - Now we split(with the same key) current node's left son - Left tree: left part of that split - Right tree's left son: right part of that split - """ - l, root.l = split(root.l, key) - return (l, root) + elif root.value is None: + return (None, None) else: - """ - Just symmetric to previous case - """ - root.r, r = split(root.r, key) - return (root, r) - + if value < root.value: + """ + Right tree's root will be current node. + Now we split(with the same value) current node's left son + Left tree: left part of that split + Right tree's left son: right part of that split + """ + left, root.left = split(root.left, value) + return (left, root) + else: + """ + Just symmetric to previous case + """ + root.right, right = split(root.right, value) + return (root, right) def merge(left: Node, right: Node) -> Node: """ We merge 2 trees into one. - Note: all left tree's keys must be less than all right tree's + Note: all left tree's values must be less than all right tree's """ - if (not left) or (not right): - """ - If one node is None, return the other - """ + if (not left) or (not right): # If one node is None, return the other return left or right - if left.key > right.key: + elif left.prior < right.prior: """ Left will be root because it has more priority Now we need to merge left's right son and right tree """ - left.r = merge(left.r, right) + left.right = merge(left.right, right) return left else: """ Symmetric as well """ - right.l = merge(left, right.l) + right.left = merge(left, right.left) return right - -def insert(root: Node, key: int) -> Node: +def insert(root: Node, value: int) -> Node: """ Insert element - Split current tree with a key into l, r, + Split current tree with a value into left, right, Insert new node into the middle - Merge l, node, r into root + Merge left, node, right into root """ - node = Node(key) - l, r = split(root, key) - root = merge(l, node) - root = merge(root, r) - return root + node = Node(value) + left, right = split(root, value) + return merge(merge(left, node), right) - -def erase(root: Node, key: int) -> Node: +def erase(root: Node, value: int) -> Node: """ Erase element - Split all nodes with keys less into l, - Split all nodes with keys greater into r. - Merge l, r + Split all nodes with values less into left, + Split all nodes with values greater into right. + Merge left, right """ - l, r = split(root, key) - _, r = split(r, key + 1) - return merge(l, r) - + left, right = split(root, value-1) + _, right = split(right, value) + return merge(left, right) -def node_print(root: Node): +def inorder(root: Node): """ Just recursive print of a tree """ - if not root: + if not root: # None return - node_print(root.l) - print(root.key, end=" ") - node_print(root.r) + else: + inorder(root.left) + print(root.value, end=" ") + inorder(root.right) -def interactTreap(): +def interactTreap(root, args): """ Commands: - + key to add key into treap - - key to erase all nodes with key - - After each command, program prints treap + + value to add value into treap + - value to erase all nodes with value + + >>> root = interactTreap(None, "+1") + >>> inorder(root) + 1 + >>> root = interactTreap(root, "+3 +5 +17 +19 +2 +16 +4 +0") + >>> inorder(root) + 0 1 2 3 4 5 16 17 19 + >>> root = interactTreap(root, "+4 +4 +4") + >>> inorder(root) + 0 1 2 3 4 4 4 4 5 16 17 19 + >>> root = interactTreap(root, "-0") + >>> inorder(root) + 1 2 3 4 4 4 4 5 16 17 19 + >>> root = interactTreap(root, "-4") + >>> inorder(root) + 1 2 3 5 16 17 19 + >>> root = interactTreap(root, "=0") + Unknown command """ - root = None - while True: - cmd = input().split() - cmd[1] = int(cmd[1]) - if cmd[0] == "+": - root = insert(root, cmd[1]) - elif cmd[0] == "-": - root = erase(root, cmd[1]) + for arg in args.split(): + if arg[0] == "+": + root = insert(root, int(arg[1:])) + + elif arg[0] == "-": + root = erase(root, int(arg[1:])) + else: print("Unknown command") - node_print(root) + return root + +def main(): + """After each command, program prints treap""" + root = None + print("enter numbers to creat a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. ") + + args = input() + while args != 'q': + root = interactTreap(root, args) + print(root) + args = input() + + print("good by!") + pass if __name__ == "__main__": - interactTreap() + import doctest + doctest.testmod() + main() From 4590363806857d389c489b2e45330e7b9b26f52c Mon Sep 17 00:00:00 2001 From: Hrishikesh Suslade <41867989+hash84@users.noreply.github.com> Date: Fri, 18 Oct 2019 23:53:37 +0530 Subject: [PATCH 355/594] Added Pytests for Decission Tree mean_squared_error method (#1374) * Added Pytests for Decission Tree Modified the mean_squared_error to be a static method Created the Test_Decision_Tree class Consists of two methods 1. helper_mean_squared_error_test: This method calculates the mean squared error manually without using numpy. Instead a for loop is used for the same. 2. test_one_mean_squared_error: This method considers a simple test case and compares the results by the helper function and the original mean_squared_error method of Decision_Tree class. This is done using asert keyword. Execution: PyTest installation pip3 install pytest OR pip install pytest Test function execution pytest decision_tree.py * Modified the pytests to be compatible with the doctest Added 2 doctest in the mean_squared_error method For its verification a static method helper_mean_squared_error(labels, prediction) is used It uses a for loop to calculate the error instead of the numpy inbuilt methods Execution ``` pytest .\decision_tree.py --doctest-modules ``` --- machine_learning/decision_tree.py | 32 +++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py index 4f7a4d12966e..14c02b64df0c 100644 --- a/machine_learning/decision_tree.py +++ b/machine_learning/decision_tree.py @@ -21,6 +21,14 @@ def mean_squared_error(self, labels, prediction): @param labels: a one dimensional numpy array @param prediction: a floating point value return value: mean_squared_error calculates the error if prediction is used to estimate the labels + >>> tester = Decision_Tree() + >>> test_labels = np.array([1,2,3,4,5,6,7,8,9,10]) + >>> test_prediction = np.float(6) + >>> assert tester.mean_squared_error(test_labels, test_prediction) == Test_Decision_Tree.helper_mean_squared_error_test(test_labels, test_prediction) + >>> test_labels = np.array([1,2,3]) + >>> test_prediction = np.float(2) + >>> assert tester.mean_squared_error(test_labels, test_prediction) == Test_Decision_Tree.helper_mean_squared_error_test(test_labels, test_prediction) + """ if labels.ndim != 1: print("Error: Input labels must be one dimensional") @@ -117,6 +125,27 @@ def predict(self, x): print("Error: Decision tree not yet trained") return None +class Test_Decision_Tree: + """Decision Tres test class + """ + + @staticmethod + def helper_mean_squared_error_test(labels, prediction): + """ + helper_mean_squared_error_test: + @param labels: a one dimensional numpy array + @param prediction: a floating point value + return value: helper_mean_squared_error_test calculates the mean squared error + """ + squared_error_sum = np.float(0) + for label in labels: + squared_error_sum += ((label-prediction) ** 2) + + return np.float(squared_error_sum/labels.size) + + + + def main(): """ @@ -141,3 +170,6 @@ def main(): if __name__ == "__main__": main() + import doctest + + doctest.testmod(name="mean_squarred_error", verbose=True) From a7f3851939f83b76252ec79d89cc874e8162754d Mon Sep 17 00:00:00 2001 From: Jigyasa G Date: Fri, 18 Oct 2019 23:56:48 +0530 Subject: [PATCH 356/594] fuzzy operations added (#1310) * fuzzy operations added * fuzzy inference system added * unnecessary files removed * requirements added * Modified requirements for travis ci * Modified requirements for travis ci * Add scikit-fuzzy to requirements.txt --- fuzzy_logic/fuzzy_operations.py | 100 ++++++++++++++++++++++++++++++++ requirements.txt | 1 + 2 files changed, 101 insertions(+) create mode 100644 fuzzy_logic/fuzzy_operations.py diff --git a/fuzzy_logic/fuzzy_operations.py b/fuzzy_logic/fuzzy_operations.py new file mode 100644 index 000000000000..e497eabd1690 --- /dev/null +++ b/fuzzy_logic/fuzzy_operations.py @@ -0,0 +1,100 @@ +"""README, Author - Jigyasa Gandhi(mailto:jigsgandhi97@gmail.com) +Requirements: + - scikit-fuzzy + - numpy + - matplotlib +Python: + - 3.5 +""" +# Create universe of discourse in python using linspace () +import numpy as np +X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) + +# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). +import skfuzzy as fuzz +abc1=[0,25,50] +abc2=[25,50,75] +young = fuzz.membership.trimf(X,abc1) +middle_aged = fuzz.membership.trimf(X,abc2) + +# Compute the different operations using inbuilt functions. +one = np.ones(75) +zero = np.zeros((75,)) +#1. Union = max(µA(x), µB(x)) +union = fuzz.fuzzy_or(X, young, X, middle_aged)[1] +#2. Intersection = min(µA(x), µB(x)) +intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1] +#3. Complement (A) = (1- min(µA(x)) +complement_a = fuzz.fuzzy_not(young) +#4. Difference (A/B) = min(µA(x),(1- µB(x))) +difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] +#5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] +alg_sum = young + middle_aged - (young*middle_aged) +#6. Algebraic Product = (µA(x) * µB(x)) +alg_product = young*middle_aged +#7. Bounded Sum = min[1,(µA(x), µB(x))] +bdd_sum = fuzz.fuzzy_and(X, one, X, young+middle_aged)[1] +#8. Bounded difference = min[0,(µA(x), µB(x))] +bdd_difference = fuzz.fuzzy_or(X, zero, X, young-middle_aged)[1] + +#max-min composition +#max-product composition + + +# Plot each set A, set B and each operation result using plot() and subplot(). +import matplotlib.pyplot as plt + +plt.figure() + +plt.subplot(4,3,1) +plt.plot(X,young) +plt.title("Young") +plt.grid(True) + +plt.subplot(4,3,2) +plt.plot(X,middle_aged) +plt.title("Middle aged") +plt.grid(True) + +plt.subplot(4,3,3) +plt.plot(X,union) +plt.title("union") +plt.grid(True) + +plt.subplot(4,3,4) +plt.plot(X,intersection) +plt.title("intersection") +plt.grid(True) + +plt.subplot(4,3,5) +plt.plot(X,complement_a) +plt.title("complement_a") +plt.grid(True) + +plt.subplot(4,3,6) +plt.plot(X,difference) +plt.title("difference a/b") +plt.grid(True) + +plt.subplot(4,3,7) +plt.plot(X,alg_sum) +plt.title("alg_sum") +plt.grid(True) + +plt.subplot(4,3,8) +plt.plot(X,alg_product) +plt.title("alg_product") +plt.grid(True) + +plt.subplot(4,3,9) +plt.plot(X,bdd_sum) +plt.title("bdd_sum") +plt.grid(True) + +plt.subplot(4,3,10) +plt.plot(X,bdd_difference) +plt.title("bdd_difference") +plt.grid(True) + +plt.subplots_adjust(hspace = 0.5) +plt.show() diff --git a/requirements.txt b/requirements.txt index f5790ad53c30..4f6ff321c268 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,6 +8,7 @@ pandas pillow pytest requests +scikit-fuzzy sklearn sympy tensorflow From 5ef5f67a51b658d768c6bf6f2f4e68c45736ca15 Mon Sep 17 00:00:00 2001 From: Jai Kumar Dewani Date: Sat, 19 Oct 2019 00:44:01 +0530 Subject: [PATCH 357/594] Added more details about the problem statement (#1367) * Update DIRECTORY * Updated DIRECTORY * Fixed bug in directory build and re-build the directory.md * fixed url issue * fixed indentation in Directory.md * Add problem-18 of project-euler * Delete sol1.py * Delete files * Added more details to question * Added doctest in printNGE() * Made changes to fix Travis CI build * Remove the trailing whitespace --- data_structures/stacks/next_greater_element.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py index 02a86196f5bf..29a039b9698b 100644 --- a/data_structures/stacks/next_greater_element.py +++ b/data_structures/stacks/next_greater_element.py @@ -1,6 +1,13 @@ -# Function to print element and NGE pair for all elements of list def printNGE(arr): - + """ + Function to print element and Next Greatest Element (NGE) pair for all elements of list + NGE - Maximum element present afterwards the current one which is also greater than current one + >>> printNGE([11,13,21,3]) + 11 -- 13 + 13 -- 21 + 21 -- -1 + 3 -- -1 + """ for i in range(0, len(arr), 1): next = -1 From 43f99e56c969b46d3ea65593d0a20e9d9896ed0f Mon Sep 17 00:00:00 2001 From: kunal kumar barman Date: Sat, 19 Oct 2019 03:00:52 +0530 Subject: [PATCH 358/594] Python program that surfs 3 site at a time (#1389) * Python program that scrufs 3 site at a time add input in the compiling time like -- python3 project1.py (man) * Update project1.py * noqa: F401 and reformat with black * Rename project1.py to web_programming/crawl_google_results.py * Add beautifulsoup4 to requirements.txt * Add fake_useragent to requirements.txt * Update crawl_google_results.py * headers={"UserAgent": UserAgent().random} * html.parser, not lxml * link, not links --- requirements.txt | 2 ++ web_programming/crawl_google_results.py | 20 ++++++++++++++++++++ 2 files changed, 22 insertions(+) create mode 100644 web_programming/crawl_google_results.py diff --git a/requirements.txt b/requirements.txt index 4f6ff321c268..824f534a245f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,6 @@ +beautifulsoup4 black +fake_useragent flake8 matplotlib mypy diff --git a/web_programming/crawl_google_results.py b/web_programming/crawl_google_results.py new file mode 100644 index 000000000000..c31ec1526d3e --- /dev/null +++ b/web_programming/crawl_google_results.py @@ -0,0 +1,20 @@ +import sys +import webbrowser + +from bs4 import BeautifulSoup +from fake_useragent import UserAgent +import requests + +print("Googling.....") +url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) +res = requests.get(url, headers={"UserAgent": UserAgent().random}) +# res.raise_for_status() +with open("project1a.html", "wb") as out_file: # only for knowing the class + for data in res.iter_content(10000): + out_file.write(data) +soup = BeautifulSoup(res.text, "html.parser") +links = list(soup.select(".eZt8xd"))[:5] + +print(len(links)) +for link in links: + webbrowser.open(f"http://google.com{link.get('href')}") From 83667826884fae7aa3dfbcf3b73aedab9922a356 Mon Sep 17 00:00:00 2001 From: Swati Prajapati <42577922+swatiprajapati08@users.noreply.github.com> Date: Sat, 19 Oct 2019 03:13:33 +0530 Subject: [PATCH 359/594] Create ActivitySelection (#1384) * Create ActivitySelection * Update and rename ActivitySelection to activity_selection.py * Update activity_selection.py * Update activity_selection.py * Update activity_selection.py * Update activity_selection.py * Update activity_selection.py * Update activity_selection.py * Rename activity_selection.py to other/activity_selection.py * Update activity_selection.py * Update activity_selection.py * Add a doctest * print(j, end=" ") * print(i, end=" ") * colons * Add trailing space --- other/activity_selection.py | 43 +++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 other/activity_selection.py diff --git a/other/activity_selection.py b/other/activity_selection.py new file mode 100644 index 000000000000..5c14df7d6aa7 --- /dev/null +++ b/other/activity_selection.py @@ -0,0 +1,43 @@ +"""The following implementation assumes that the activities +are already sorted according to their finish time""" + +"""Prints a maximum set of activities that can be done by a +single person, one at a time""" +# n --> Total number of activities +# start[]--> An array that contains start time of all activities +# finish[] --> An array that contains finish time of all activities + +def printMaxActivities(start, finish): + """ + >>> start = [1, 3, 0, 5, 8, 5] + >>> finish = [2, 4, 6, 7, 9, 9] + >>> printMaxActivities(start, finish) + The following activities are selected: + 0 1 3 4 + """ + n = len(finish) + print("The following activities are selected:") + + # The first activity is always selected + i = 0 + print(i, end=" ") + + # Consider rest of the activities + for j in range(n): + + # If this activity has start time greater than + # or equal to the finish time of previously + # selected activity, then select it + if start[j] >= finish[i]: + print(j, end=" ") + i = j + +# Driver program to test above function +start = [1, 3, 0, 5, 8, 5] +finish = [2, 4, 6, 7, 9, 9] +printMaxActivities(start, finish) + +""" +The following activities are selected: +0 1 3 4 +""" From 86a2d5fd037e29613171c84576f0eb0ea6e3d1e7 Mon Sep 17 00:00:00 2001 From: Iqrar Agalosi Nureyza Date: Sat, 19 Oct 2019 04:49:30 +0700 Subject: [PATCH 360/594] fixed some typos (#1392) missing 'c' in eulidianLength and eulidian. Should be euclidianLength and euclidian. --- linear_algebra/src/lib.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index 090427d9a520..bf9e0d302a89 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -37,7 +37,7 @@ class Vector(object): __str__() : toString method component(i : int): gets the i-th component (start by 0) __len__() : gets the size of the vector (number of components) - euclidLength() : returns the eulidean length of the vector. + euclidLength() : returns the euclidean length of the vector. operator + : vector addition operator - : vector subtraction operator * : scalar multiplication and dot product @@ -88,9 +88,9 @@ def __len__(self): """ return len(self.__components) - def eulidLength(self): + def euclidLength(self): """ - returns the eulidean length of the vector + returns the euclidean length of the vector """ summe = 0 for c in self.__components: From e0158c2c30a8273a6780fd9f83c36be6582e9e91 Mon Sep 17 00:00:00 2001 From: Kumar Shivam <53289673+kshivi99@users.noreply.github.com> Date: Sat, 19 Oct 2019 03:22:32 +0530 Subject: [PATCH 361/594] fixed project eular readme (#1391) --- project_euler/README.md | 105 +--------------------------------------- 1 file changed, 1 insertion(+), 104 deletions(-) diff --git a/project_euler/README.md b/project_euler/README.md index 89b6d63b5744..f80d58ea0038 100644 --- a/project_euler/README.md +++ b/project_euler/README.md @@ -8,107 +8,4 @@ insights to solve. Project Euler is ideal for mathematicians who are learning to Here the efficiency of your code is also checked. I've tried to provide all the best possible solutions. -PROBLEMS: - -1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23. - Find the sum of all the multiples of 3 or 5 below N. - -2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, - the first 10 terms will be: - 1,2,3,5,8,13,21,34,55,89,.. - By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms. - e.g. for n=10, we have {2,8}, sum is 10. - -3. The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N? - e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. - -4. A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. - Find the largest palindrome made from the product of two 3-digit numbers which is less than N. - -5. 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. - What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N? - -6. The sum of the squares of the first ten natural numbers is, - 1^2 + 2^2 + ... + 10^2 = 385 - The square of the sum of the first ten natural numbers is, - (1 + 2 + ... + 10)^2 = 552 = 3025 - Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. - Find the difference between the sum of the squares of the first N natural numbers and the square of the sum. - -7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. - What is the Nth prime number? - -8. Find the consecutive k digits in a number N that have the largest product. - -9. A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, - a^2 + b^2 = c^2 - There exists exactly one Pythagorean triplet for which a + b + c = 1000. - Find the product abc. - -10. Find sum of all prime numbers below 2 million. - -11. In the given 20x20 grid, find 4 adjacent numbers (horizontally, vertically or diagonally) that have the largest product. - -12. The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: - - 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... - - Let us list the factors of the first seven triangle numbers: - - 1: 1 - 3: 1,3 - 6: 1,2,3,6 - 10: 1,2,5,10 - 15: 1,3,5,15 - 21: 1,3,7,21 - 28: 1,2,4,7,14,28 - We can see that 28 is the first triangle number to have over five divisors. - - What is the value of the first triangle number to have over five hundred divisors? - -13. Work out the first 10 digits of the sum of the given hundred 50 digit numbers. - -14. The following iterative sequence is defined for the set of positive integers: - n → n/2 (n is even) - n → 3n + 1 (n is odd) - Using the rule above and starting with 13, we generate the following sequence: - 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 - Which starting number, under one million, produces the longest chain? - -15. Starting from top left corner of a 20x20 grid how many routes are there to reach the bottom left corner? - -16. 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. - What is the sum of the digits of the number 2^1000? - -17. If the numbers 1 through 1000 were written in words, how many total letters would be used? - -18. By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. - 3 - 7 4 - 2 4 6 -8 5 9 3 - -That is, 3 + 7 + 4 + 9 = 23. - -Find the maximum total from top to bottom of the triangle below: - - 75 - 95 64 - 17 47 82 - 18 35 87 10 - 20 04 82 47 65 - 19 01 23 75 03 34 - 88 02 77 73 07 63 67 - 99 65 04 28 06 16 70 92 - 41 41 26 56 83 40 80 70 33 - 41 48 72 33 47 32 37 16 94 29 - 53 71 44 65 25 43 91 52 97 51 14 - 70 11 33 28 77 73 17 78 39 68 17 57 - 91 71 52 38 17 14 91 43 58 50 27 29 48 - 63 66 04 68 89 53 67 30 73 16 69 87 40 31 -04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 - -20. n! means n × (n − 1) × ... × 3 × 2 × 1 - For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, - and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. - Find the sum of the digits in the number 100! +For description of the problem statements, kindly visit https://projecteuler.net/show=all From acd962b2b6ddbcd5cee9b70a6feee13cbe12bcfc Mon Sep 17 00:00:00 2001 From: Sourav kumar <33771969+souravs17031999@users.noreply.github.com> Date: Sat, 19 Oct 2019 03:32:32 +0530 Subject: [PATCH 362/594] adding program to print diamond pattern (#1338) * adding program to print diamond pattern Written a program to print diamond pattern with stars in python 3.7 * update - changing strings to r strings --- other/magicdiamondpattern.py | 53 ++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 other/magicdiamondpattern.py diff --git a/other/magicdiamondpattern.py b/other/magicdiamondpattern.py new file mode 100644 index 000000000000..024fbd0f569a --- /dev/null +++ b/other/magicdiamondpattern.py @@ -0,0 +1,53 @@ +# Python program for generating diamond pattern in python 3.7+ + +# Function to print upper half of diamond (pyramid) +def floyd(n): + ''' + Parameters: + n : size of pattern + ''' + for i in range(0, n): + for j in range(0, n-i-1): # printing spaces + print(" ", end = "") + for k in range(0, i + 1): # printing stars + print("* ", end = "") + print() + + +# Function to print lower half of diamond (pyramid) +def reverse_floyd(n): + ''' + Parameters: + n : size of pattern + ''' + for i in range(n, 0, -1): + for j in range(i, 0, -1): # printing stars + print("* ", end = "") + print() + for k in range(n-i+1, 0, -1): # printing spaces + print(" ", end = "") + +# Function to print complete diamond pattern of "*" +def pretty_print(n): + ''' + Parameters: + n : size of pattern + ''' + if n <= 0: + print(" ... .... nothing printing :(") + return + floyd(n) # upper half + reverse_floyd(n) # lower half + + +if __name__ == "__main__": + print(r"| /\ | |- | |- |--| |\ /| |-") + print(r"|/ \| |- |_ |_ |__| | \/ | |_") + K = 1 + while(K): + user_number = int(input("enter the number and , and see the magic : ")) + print() + pretty_print(user_number) + K = int(input("press 0 to exit... and 1 to continue...")) + + print("Good Bye...") From 5c351d81bf12e72030aff385275e8aa50846456d Mon Sep 17 00:00:00 2001 From: Alfin_William Date: Sat, 19 Oct 2019 09:32:38 +0530 Subject: [PATCH 363/594] Implementation of Hardy Ramanujan Algorithm in /maths (#1355) * Implementation of Hardy Ramanujan Algorithm * added docstrings * added doctests * Run Python black on the code * Travis CI: Upgrade to Python 3.8 * Revert to Python 3.7 --- .travis.yml | 1 - maths/hardy_ramanujanalgo.py | 45 ++++++++++++++++++++++++++++++++++++ 2 files changed, 45 insertions(+), 1 deletion(-) create mode 100644 maths/hardy_ramanujanalgo.py diff --git a/.travis.yml b/.travis.yml index be227df1fdbd..877dbee9ade2 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,5 +1,4 @@ language: python -dist: xenial # required for Python >= 3.7 python: 3.7 cache: pip before_install: pip install --upgrade pip setuptools diff --git a/maths/hardy_ramanujanalgo.py b/maths/hardy_ramanujanalgo.py new file mode 100644 index 000000000000..bb31a1be49fb --- /dev/null +++ b/maths/hardy_ramanujanalgo.py @@ -0,0 +1,45 @@ +# This theorem states that the number of prime factors of n +# will be approximately log(log(n)) for most natural numbers n + +import math + + +def exactPrimeFactorCount(n): + """ + >>> exactPrimeFactorCount(51242183) + 3 + """ + count = 0 + if n % 2 == 0: + count += 1 + while n % 2 == 0: + n = int(n / 2) + # the n input value must be odd so that + # we can skip one element (ie i += 2) + + i = 3 + + while i <= int(math.sqrt(n)): + if n % i == 0: + count += 1 + while n % i == 0: + n = int(n / i) + i = i + 2 + + # this condition checks the prime + # number n is greater than 2 + + if n > 2: + count += 1 + return count + + +if __name__ == "__main__": + n = 51242183 + print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}") + print("The value of log(log(n)) is {0:.4f}".format(math.log(math.log(n)))) + + """ + The number of distinct prime factors is/are 3 + The value of log(log(n)) is 2.8765 + """ From dbf904f4381132dbe8d1de349dc4f4de2a7b4342 Mon Sep 17 00:00:00 2001 From: Stephen <24819660+infrontoftheforest@users.noreply.github.com> Date: Sat, 19 Oct 2019 09:11:05 +0000 Subject: [PATCH 364/594] added runge-kutta (#1393) --- maths/runge_kutta.py | 44 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) create mode 100644 maths/runge_kutta.py diff --git a/maths/runge_kutta.py b/maths/runge_kutta.py new file mode 100644 index 000000000000..b0ba9025883f --- /dev/null +++ b/maths/runge_kutta.py @@ -0,0 +1,44 @@ +import numpy as np + + +def runge_kutta(f, y0, x0, h, x_end): + """ + Calculate the numeric solution at each step to the ODE f(x, y) using RK4 + + https://en.wikipedia.org/wiki/Runge-Kutta_methods + + Arguments: + f -- The ode as a function of x and y + y0 -- the initial value for y + x0 -- the initial value for x + h -- the stepsize + x_end -- the end value for x + + >>> # the exact solution is math.exp(x) + >>> def f(x, y): + ... return y + >>> y0 = 1 + >>> y = runge_kutta(f, y0, 0.0, 0.01, 5) + >>> y[-1] + 148.41315904125113 + """ + N = int(np.ceil((x_end - x0)/h)) + y = np.zeros((N + 1,)) + y[0] = y0 + x = x0 + + for k in range(N): + k1 = f(x, y[k]) + k2 = f(x + 0.5*h, y[k] + 0.5*h*k1) + k3 = f(x + 0.5*h, y[k] + 0.5*h*k2) + k4 = f(x + h, y[k] + h * k3) + y[k + 1] = y[k] + (1/6)*h*(k1 + 2*k2 + 2*k3 + k4) + x += h + + return y + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From ab65a3915c063bfc31102512bb3c9a755bef7ed0 Mon Sep 17 00:00:00 2001 From: ayush246 <37112252+ayush246@users.noreply.github.com> Date: Sat, 19 Oct 2019 16:08:15 +0530 Subject: [PATCH 365/594] Double sort (Added with required updates) (#1399) * Added with required updates * Updated * required updates * Update double_sort.py * Update double_sort.py --- sorts/double_sort.py | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 sorts/double_sort.py diff --git a/sorts/double_sort.py b/sorts/double_sort.py new file mode 100644 index 000000000000..011e17d8f035 --- /dev/null +++ b/sorts/double_sort.py @@ -0,0 +1,34 @@ +def double_sort(lst): + """this sorting algorithm sorts an array using the principle of bubble sort , + but does it both from left to right and right to left , + hence i decided to call it "double sort" + :param collection: mutable ordered sequence of elements + :return: the same collection in ascending order + Examples: + >>> double_sort([-1 ,-2 ,-3 ,-4 ,-5 ,-6 ,-7]) + [-7, -6, -5, -4, -3, -2, -1] + >>> double_sort([]) + [] + >>> double_sort([-1 ,-2 ,-3 ,-4 ,-5 ,-6]) + [-6, -5, -4, -3, -2, -1] + >>> double_sort([-3, 10, 16, -42, 29]) == sorted([-3, 10, 16, -42, 29]) + True + """ + no_of_elements=len(lst) + for i in range(0,int(((no_of_elements-1)/2)+1)): # we dont need to traverse to end of list as + for j in range(0,no_of_elements-1): + if (lst[j+1] Date: Sat, 19 Oct 2019 23:44:37 +0530 Subject: [PATCH 366/594] Issue #1397 (#1403) --- .../linked_list/singly_linked_list.py | 58 +++++++++---------- 1 file changed, 29 insertions(+), 29 deletions(-) diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 16436ff90274..73b982316e76 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -6,56 +6,56 @@ def __init__(self, data): class Linked_List: def __init__(self): - self.Head = None # Initialize Head to None + self.head = None # Initialize head to None def insert_tail(self, data): - if self.Head is None: + if self.head is None: self.insert_head(data) # If this is first node, call insert_head else: - temp = self.Head + temp = self.head while temp.next != None: # traverse to last node temp = temp.next temp.next = Node(data) # create node & link to tail def insert_head(self, data): newNod = Node(data) # create a new node - if self.Head != None: - newNod.next = self.Head # link newNode to head - self.Head = newNod # make NewNode as Head + if self.head != None: + newNod.next = self.head # link newNode to head + self.head = newNod # make NewNode as head def printList(self): # print every node data - tamp = self.Head - while tamp is not None: - print(tamp.data) - tamp = tamp.next + temp = self.head + while temp is not None: + print(temp.data) + temp = temp.next def delete_head(self): # delete from head - temp = self.Head - if self.Head != None: - self.Head = self.Head.next + temp = self.head + if self.head != None: + self.head = self.head.next temp.next = None return temp def delete_tail(self): # delete from tail - tamp = self.Head - if self.Head != None: - if self.Head.next is None: # if Head is the only Node in the Linked List - self.Head = None + temp = self.head + if self.head != None: + if self.head.next is None: # if head is the only Node in the Linked List + self.head = None else: - while tamp.next.next is not None: # find the 2nd last element - tamp = tamp.next - tamp.next, tamp = ( + while temp.next.next is not None: # find the 2nd last element + temp = temp.next + temp.next, temp = ( None, - tamp.next, - ) # (2nd last element).next = None and tamp = last element - return tamp + temp.next, + ) # (2nd last element).next = None and temp = last element + return temp def isEmpty(self): - return self.Head is None # Return if Head is none + return self.head is None # Return if head is none def reverse(self): prev = None - current = self.Head + current = self.head while current: # Store the current node's next node. @@ -67,15 +67,15 @@ def reverse(self): # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end - self.Head = prev + self.head = prev def main(): A = Linked_List() - print("Inserting 1st at Head") + print("Inserting 1st at head") a1 = input() A.insert_head(a1) - print("Inserting 2nd at Head") + print("Inserting 2nd at head") a2 = input() A.insert_head(a2) print("\nPrint List : ") @@ -88,7 +88,7 @@ def main(): A.insert_tail(a4) print("\nPrint List : ") A.printList() - print("\nDelete Head") + print("\nDelete head") A.delete_head() print("Delete Tail") A.delete_tail() From 38d7e7073affe758557636ea201615d17d24fa97 Mon Sep 17 00:00:00 2001 From: Sujitkumar Singh <37760194+SinghSujitkumar@users.noreply.github.com> Date: Sun, 20 Oct 2019 01:42:54 +0530 Subject: [PATCH 367/594] The time complexity of every algorithms make its value (#1401) * added timer in bubble sort * Updated time of execution * import time in main only * Update bubble_sort.py * start = time.process_time() --- sorts/bubble_sort.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/sorts/bubble_sort.py b/sorts/bubble_sort.py index ccd8a2e11ee1..4faa40da1d8e 100644 --- a/sorts/bubble_sort.py +++ b/sorts/bubble_sort.py @@ -6,13 +6,13 @@ def bubble_sort(collection): :return: the same collection ordered by ascending Examples: - >>> bubble_sort([0, 5, 3, 2, 2]) + >>> bubble_sort([0, 5, 2, 3, 2]) [0, 2, 2, 3, 5] >>> bubble_sort([]) [] - >>> bubble_sort([-2, -5, -45]) + >>> bubble_sort([-2, -45, -5]) [-45, -5, -2] >>> bubble_sort([-23, 0, 6, -4, 34]) @@ -29,11 +29,14 @@ def bubble_sort(collection): swapped = True collection[j], collection[j + 1] = collection[j + 1], collection[j] if not swapped: - break # Stop iteration if the collection is sorted. + break # Stop iteration if the collection is sorted. return collection if __name__ == "__main__": + import time user_input = input("Enter numbers separated by a comma:").strip() unsorted = [int(item) for item in user_input.split(",")] + start = time.process_time() print(*bubble_sort(unsorted), sep=",") + print(f"Processing time: {time.process_time() - start}") From 313a043107bc4882623ad5524a96fbb099d0d161 Mon Sep 17 00:00:00 2001 From: Archana Prabhu Date: Sun, 20 Oct 2019 14:10:40 +0530 Subject: [PATCH 368/594] Create autocomplete_using_trie.py (#1406) * Create autocomplete_using_trie.py The program aims to design a trie implementation for autocomplete which is easy to understand and ready to run. * Removed unused import * Updated the list value * Update autocomplete_using_trie.py * Run the code through Black and add doctest --- other/autocomplete_using_trie.py | 64 ++++++++++++++++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 other/autocomplete_using_trie.py diff --git a/other/autocomplete_using_trie.py b/other/autocomplete_using_trie.py new file mode 100644 index 000000000000..eb906f8efa9a --- /dev/null +++ b/other/autocomplete_using_trie.py @@ -0,0 +1,64 @@ +END = "#" + + +class Trie: + def __init__(self): + self._trie = {} + + def insert_word(self, text): + trie = self._trie + for char in text: + if char not in trie: + trie[char] = {} + trie = trie[char] + trie[END] = True + + def find_word(self, prefix): + trie = self._trie + for char in prefix: + if char in trie: + trie = trie[char] + else: + return [] + return self._elements(trie) + + def _elements(self, d): + result = [] + for c, v in d.items(): + if c == END: + subresult = [" "] + else: + subresult = [c + s for s in self._elements(v)] + result.extend(subresult) + return tuple(result) + + +trie = Trie() +words = ("depart", "detergent", "daring", "dog", "deer", "deal") +for word in words: + trie.insert_word(word) + + +def autocomplete_using_trie(s): + """ + >>> trie = Trie() + >>> for word in words: + ... trie.insert_word(word) + ... + >>> matches = autocomplete_using_trie("de") + + "detergent " in matches + True + "dog " in matches + False + """ + suffixes = trie.find_word(s) + return tuple(s + w for w in suffixes) + + +def main(): + print(autocomplete_using_trie("de")) + + +if __name__ == "__main__": + main() From afeb13bbc8a43bfb427cb6f730e014b1ca1f7a6d Mon Sep 17 00:00:00 2001 From: Stephen <24819660+infrontoftheforest@users.noreply.github.com> Date: Mon, 21 Oct 2019 17:19:43 +0000 Subject: [PATCH 369/594] added explicit euler's method (#1394) * added explicit euler's method * update explicit_euler.py variable names --- maths/explicit_euler.py | 41 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 maths/explicit_euler.py diff --git a/maths/explicit_euler.py b/maths/explicit_euler.py new file mode 100644 index 000000000000..9fce4e4185a6 --- /dev/null +++ b/maths/explicit_euler.py @@ -0,0 +1,41 @@ +import numpy as np + + +def explicit_euler(ode_func, y0, x0, stepsize, x_end): + """ + Calculate numeric solution at each step to an ODE using Euler's Method + + https://en.wikipedia.org/wiki/Euler_method + + Arguments: + ode_func -- The ode as a function of x and y + y0 -- the initial value for y + x0 -- the initial value for x + stepsize -- the increment value for x + x_end -- the end value for x + + >>> # the exact solution is math.exp(x) + >>> def f(x, y): + ... return y + >>> y0 = 1 + >>> y = explicit_euler(f, y0, 0.0, 0.01, 5) + >>> y[-1] + 144.77277243257308 + """ + N = int(np.ceil((x_end - x0)/stepsize)) + y = np.zeros((N + 1,)) + y[0] = y0 + x = x0 + + for k in range(N): + y[k + 1] = y[k] + stepsize*ode_func(x, y[k]) + x += stepsize + + return y + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + From a06995a686c0509f50a481e7d7d41bb35ffe8f19 Mon Sep 17 00:00:00 2001 From: Shubham Lad <30789414+ShuLaPy@users.noreply.github.com> Date: Mon, 21 Oct 2019 23:40:19 +0530 Subject: [PATCH 370/594] add simple improved Sieve Of Eratosthenes Algorithm (#1412) * add simple improved Sieve Of Eratosthenes Algorithm * added doctests * name changed --- maths/prime_sieve_eratosthenes.py | 41 +++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 maths/prime_sieve_eratosthenes.py diff --git a/maths/prime_sieve_eratosthenes.py b/maths/prime_sieve_eratosthenes.py new file mode 100644 index 000000000000..7d039aaadd7d --- /dev/null +++ b/maths/prime_sieve_eratosthenes.py @@ -0,0 +1,41 @@ +''' +Sieve of Eratosthenes + +Input : n =10 +Output : 2 3 5 7 + +Input : n = 20 +Output: 2 3 5 7 11 13 17 19 + +you can read in detail about this at +https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes +''' + +def prime_sieve_eratosthenes(num): + """ + print the prime numbers upto n + + >>> prime_sieve_eratosthenes(10) + 2 3 5 7 + >>> prime_sieve_eratosthenes(20) + 2 3 5 7 11 13 17 19 + """ + + + primes = [True for i in range(num + 1)] + p = 2 + + while p * p <= num: + if primes[p] == True: + for i in range(p*p, num+1, p): + primes[i] = False + p+=1 + + for prime in range(2, num+1): + if primes[prime]: + print(prime, end=" ") + +if __name__ == "__main__": + num = int(input()) + + prime_sieve_eratosthenes(num) From 67aa3cfb4dd50e1d6feff6a36f630b374e2ab922 Mon Sep 17 00:00:00 2001 From: akankshamahajan99 <47140026+akankshamahajan99@users.noreply.github.com> Date: Tue, 22 Oct 2019 01:35:12 +0530 Subject: [PATCH 371/594] Added alternative way to generate password in password_generator.py (#1415) --- other/password_generator.py | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) diff --git a/other/password_generator.py b/other/password_generator.py index f72686bfb1c0..b4c7999ca44a 100644 --- a/other/password_generator.py +++ b/other/password_generator.py @@ -1,5 +1,5 @@ """Password generator allows you to generate a random password of length N.""" -from random import choice +from random import choice, shuffle from string import ascii_letters, digits, punctuation @@ -26,9 +26,22 @@ def password_generator(length=8): def alternative_password_generator(ctbi, i): # Password generator = full boot with random_number, random_letters, and # random_character FUNCTIONS - pass # Put your code here... - + # Put your code here... + i = i - len(ctbi) + quotient = int(i / 3) + remainder = i % 3 + #chars = ctbi + random_letters(ascii_letters, i / 3 + remainder) + random_number(digits, i / 3) + random_characters(punctuation, i / 3) + chars = ctbi + random(ascii_letters, quotient + remainder) + random(digits, quotient) + random(punctuation, quotient) + chars = list(chars) + shuffle(chars) + return "".join(chars) + + #random is a generalised function for letters, characters and numbers +def random(ctbi, i): + return "".join(choice(ctbi) for x in range(i)) + + def random_number(ctbi, i): pass # Put your code here... @@ -43,7 +56,9 @@ def random_characters(ctbi, i): def main(): length = int(input("Please indicate the max length of your password: ").strip()) + ctbi = input("Please indicate the characters that must be in your password: ").strip() print("Password generated:", password_generator(length)) + print("Alternative Password generated:", alternative_password_generator(ctbi, length)) print("[If you are thinking of using this passsword, You better save it.]") From f93cce66a634746839a78624af4d7b8aab205808 Mon Sep 17 00:00:00 2001 From: moita69 Date: Mon, 21 Oct 2019 17:36:33 -0300 Subject: [PATCH 372/594] some pytest on math folder (#1405) * some pytest on math folder * Run the test function via a doctest Also format the code with psf/black as discussed in CONTRIBUTING.md * Update abs.py * Update average_mean.py --- maths/3n+1.py | 19 ++++++++++--------- maths/abs.py | 20 +++++++++++++------- maths/average_mean.py | 16 ++++++++++------ 3 files changed, 33 insertions(+), 22 deletions(-) diff --git a/maths/3n+1.py b/maths/3n+1.py index 6b2dfc785794..ff769550297c 100644 --- a/maths/3n+1.py +++ b/maths/3n+1.py @@ -23,15 +23,16 @@ def n31(a: int) -> Tuple[List[int], int]: return path, len(path) -def main(): - num = 4 - path, length = n31(num) - print( - "The Collatz sequence of {0} took {1} steps. \nPath: {2}".format( - num, length, path - ) - ) +def test_n31(): + """ + >>> test_n31() + """ + assert n31(4) == ([4, 2, 1], 3) + assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15) + assert n31(31) == ([31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1], 107) if __name__ == "__main__": - main() + num = 4 + path, length = n31(num) + print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}") diff --git a/maths/abs.py b/maths/abs.py index 7509c5c20a22..68c99a1d51d8 100644 --- a/maths/abs.py +++ b/maths/abs.py @@ -5,18 +5,24 @@ def abs_val(num): """ Find the absolute value of a number. - >>abs_val(-5) - 5 - >>abs_val(0) + >>> abs_val(-5.1) + 5.1 + >>> abs_val(-5) == abs_val(5) + True + >>> abs_val(0) 0 """ return -num if num < 0 else num -def main(): - """Print absolute value of -34.""" - print(abs_val(-34)) # = 34 +def test_abs_val(): + """ + >>> test_abs_val() + """ + assert 0 == abs_val(0) + assert 34 == abs_val(34) + assert 100000000000 == abs_val(-100000000000) if __name__ == "__main__": - main() + print(abs_val(-34)) # --> 34 diff --git a/maths/average_mean.py b/maths/average_mean.py index 77464ef5d9f7..4beca1f741a0 100644 --- a/maths/average_mean.py +++ b/maths/average_mean.py @@ -3,14 +3,18 @@ def average(nums): """Find mean of a list of numbers.""" - avg = sum(nums) / len(nums) - return avg + return sum(nums) / len(nums) -def main(): - """Call average module to find mean of a specific list of numbers.""" - print(average([2, 4, 6, 8, 20, 50, 70])) +def test_average(): + """ + >>> test_average() + """ + assert 12.0 == average([3, 6, 9, 12, 15, 18, 21]) + assert 20 == average([5, 10, 15, 20, 25, 30, 35]) + assert 4.5 == average([1, 2, 3, 4, 5, 6, 7, 8]) if __name__ == "__main__": - main() + """Call average module to find mean of a specific list of numbers.""" + print(average([2, 4, 6, 8, 20, 50, 70])) From 4531ea425e911a84a4fa507633fc5b566832e4b2 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 22 Oct 2019 08:45:03 +0200 Subject: [PATCH 373/594] Transfer .ipynb files to TheAlgorithms/Jupyter (#1414) --- machine_learning/dbscan/dbscan.ipynb | 376 ---- machine_learning/dbscan/dbscan.py | 271 --- machine_learning/naive_bayes.ipynb | 1659 ----------------- .../Social_Network_Ads.csv | 401 ---- .../random_forest_classification.py | 103 - .../random_forest_classifier.ipynb | 196 -- .../Position_Salaries.csv | 11 - .../random_forest_regression.ipynb | 147 -- .../random_forest_regression.py | 44 - .../reuters_one_vs_rest_classifier.ipynb | 405 ---- .../fully_connected_neural_network.ipynb | 327 ---- 11 files changed, 3940 deletions(-) delete mode 100644 machine_learning/dbscan/dbscan.ipynb delete mode 100644 machine_learning/dbscan/dbscan.py delete mode 100644 machine_learning/naive_bayes.ipynb delete mode 100644 machine_learning/random_forest_classification/Social_Network_Ads.csv delete mode 100644 machine_learning/random_forest_classification/random_forest_classification.py delete mode 100644 machine_learning/random_forest_classification/random_forest_classifier.ipynb delete mode 100644 machine_learning/random_forest_regression/Position_Salaries.csv delete mode 100644 machine_learning/random_forest_regression/random_forest_regression.ipynb delete mode 100644 machine_learning/random_forest_regression/random_forest_regression.py delete mode 100644 machine_learning/reuters_one_vs_rest_classifier.ipynb delete mode 100644 neural_network/fully_connected_neural_network.ipynb diff --git a/machine_learning/dbscan/dbscan.ipynb b/machine_learning/dbscan/dbscan.ipynb deleted file mode 100644 index 603a4cd405b9..000000000000 --- a/machine_learning/dbscan/dbscan.ipynb +++ /dev/null @@ -1,376 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DBSCAN\n", - "This implementation and notebook is inspired from the original DBSCAN algorithm and article as given in \n", - "[DBSCAN Wikipedia](https://en.wikipedia.org/wiki/DBSCAN).\n", - "\n", - "Stands for __Density-based spatial clustering of applications with noise__ . \n", - "\n", - "DBSCAN is clustering algorithm that tries to captures the intuition that if two points belong to the same cluster they should be close to one another. It does so by finding regions that are densely packed together, i.e, the points that have many close neighbours.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### When to use ?\n", - "\n", - "1. You need a robust clustering algorithm.\n", - "2. You don't know how many clusters there are in the dataset\n", - "3. You find it difficult to guess the number of clusters there are just by eyeballing the dataset.\n", - "4. The clusters are of arbitrary shapes.\n", - "5. You want to detect outliers/noise." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Why DBSCAN ? \n", - "\n", - "This algorithm is way better than other clustering algorithms such as [k-means](https://en.wikipedia.org/wiki/K-means_clustering) whose only job is to find circular blobs. It is smart enough to figure out the number of clusters in the dataset on its own, unlike k-means where you need to specify 'k'. It can also find clusters of arbitrary shapes, not just circular blobs. Its too robust to be affected by outliers (the noise points) and isn't fooled by them, unlike k-means where the entire centroid get pulled thanks to pesky outliers. Plus, you can fine-tune its parameters depending on what you are clustering.\n", - "\n", - "#### Have a look at these [neat animations](https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/) of DBSCAN to see for yourself." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## First lets grab a dataset\n", - "We will take the moons dataset which is pretty good at showing the power of DBSCAN. \n", - "\n", - "Lets generate 200 random points in the shape of two moons" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import make_moons\n", - "\n", - "x, label = make_moons(n_samples=200, noise=0.1, random_state=19)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize the dataset using matplotlib\n", - "You will observe that the points are in the shape of two crescent moons. \n", - "\n", - "The challenge here is to cluster the two moons. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2df5AlV3XfP2dnZ4QWsLX7VsZroZmViAIWToxhIoNMUcIQkFUpLSkrFeHRejGixlrFKVwpUqxqEyelZMv8qApgEyFvFJmFmUgCYjuKC0WWQIQ/jAQjol+grLRapEUqGVa7WLAlh5VWN390P03Pm/75+tft199PVdfrH7e7b9/Xfc+955x7rjnnEEII0V82tJ0BIYQQ7SJBIIQQPUeCQAgheo4EgRBC9BwJAiGE6DkSBEII0XMqEQRmdqOZ/dDMHko4vmBmD5jZg2b212b2y5Fjj4f77zOzlSryI4QQIj9WxTgCM3sbcAL4nHPul2KOXwg87Jz7kZn9BvDvnXO/Gh57HJh3zj2T935bt25127dvL51vIYToE/fee+8zzrkzR/dvrOLizrmvm9n2lON/Hdm8G3h1mftt376dlRV1HoQQoghm9kTc/jZsBFcCt0W2HfBXZnavmS22kB8hhOg1lfQI8mJmbycQBG+N7H6rc+4pM/s54A4z+7/Oua/HnLsILALMzs42kl8hhOgDjfUIzOwfAjcAO5xzx4b7nXNPhb8/BP4cuCDufOfcfufcvHNu/swz16m4hBBCjEkjgsDMZoE/A3Y65x6J7H+5mb1yuA68C4j1PBJCCFEPlaiGzOwm4CJgq5k9Cfw7YBrAOXc98AfAALjOzABecM7NA68C/jzctxH4b865/1VFnoQQQuSjKq+h92Yc/wDwgZj9h4FfXn+GEDWwvAx798KRIzA7C/v2wcJC27kSonUaNRYL0RrLy7C4CM89F2w/8USwDRIGovcoxIToB3v3rgqBIc89F+wXoudIEIh+cORIsf1C9AgJAlE/y8uwfTts2BD8Li83n4eksScakyKEBIGomaFu/oknwLlV3XxRYVBWmOzbB5s2rd23aVOwX4ieI0Eg6qUK3XwVwmRhAfbvh7k5MAt+9++XoVgIKoo+2jTz8/NOQec6woYNQeU9ihm8+GK+a2zfHlT+o8zNweOPl8mdEL3CzO4Nx3CtQT0CUS9V6OZl6BWiViQIRL1UoZuXoVeIWpEgEPVShW5ehl4hakWCQATU6eK5sBDo8l98MfgtaqD10dDrg0usEBUhQSCqc/Gsk6gw2bcv8DpqqxLuQnkJUQAJAtGt8AtxlfAVV8DWrfVUxHEt/y6VlxA5kPuoqMbFsymSXEkhsBtUqTIaDVQ3vMeoEBjiY3kJEUHuoyKZLnnlpLmMVt0qT2r5T03Fp/exvITIgQSBqNYrp24jalZlW+XYgqRrnTolLyYxUUgQiOq8csY1ohYRHnFCK8qWLcXynEaS0BmWj09eTEKUwTnXueVNb3qTEx6xtOTc3JxzQfW/fpmbSz9306a16TdtCvannbNhQ/y9BoN8eTULfrPuUzRvQngMsOJi6tRKKmbgRuCHwEMJxw34I+AQ8ADwxsixXcCj4bIrz/0kCDwirrIcXcySz08SIGnCw7ngmkXvNa7QySs4hPCcugXB24A3pgiCS4DbQoHwZuCecP8W4HD4uzlc35x1PwkCj0jrCeSp1NMq9LRKeBwBMq7QEWJCSBIEldgInHNfB46nJNkBfC7My93AGWa2DXg3cIdz7rhz7kfAHcDFVeRJNESWcTbLiJqkh9+yJd3eMI6BW8HrhIilKWPxWcD3I9tPhvuS9ouukObFk8eImlShQ/qgrXEM3El5dU5hIkSv6YzXkJktmtmKma0cPXq07eyIIUkV+dJSvrhCSRX68YQOZrT1XjSGUZrHkcJEiB7TlCB4Cjg7sv3qcF/S/nU45/Y75+adc/NnnnlmbRkVBanC9TSuQq9jkFs0r3E89xzs3Bk8h1l9YSuE8IymBMGtwG9bwJuBZ51zTwO3A+8ys81mthl4V7ivn3Q1omXZ6KJx1BV6ephXs/jjLhJq49gxeP/7u/M/CDEmlQgCM7sJ+AbwWjN70syuNLOrzOyqMMmXCTyCDgH/BbgawDl3HPgPwLfC5dpwX/9QRMu11B16Om/P4uRJBZMTE4+CzvlCH+blHUbuPHIkqIj37WtvNG5cQLkkFExOTAgKOuc7k+7a6EuPZ6h+27kTTj8dBoOgok8KJAcKJicmHgkCX+hSBNBx8CGG/6gwOnYM/u7v4Kqr4Iwz4s+ZmSlml+iqnUf0GgkCX2hiXt64Siqt4qqyUvOhx5MkjD7zmUAojDIYwI035ldf+dLrEaIoccONfV8mNsRE0YBoRWLgxMXZmZ52bmYmPvZO1QHXfAjvkBTOoqp8+fCMQqRAQogJGYu7SNLMWWleNWkze40y9LOv0ng9Tp6rpkgZjGMg7tJMb6KXyFg8SYyjby+igjlypHpVTt3uoHkoomYbxzYz6XYeMbFIEHSRcSrpIpXR7Gx6pTau7aCOgWdFWFgI9P5ZjGubacLOI0QNSBB0kXFannGV1PR04BUTZVhxJVVql1zSbYPopz61/rlmZlbdSMv0VHzo9QgxDnGGA9+XiTUW52VcQ26cgTnN6Bx3bBIMoppsRvQU6pyPQDTMuC3PUdUMrB/pC6tqnw9+EE6cWHsNH9xAy9K2ikoIz5DXUF+J8+KZmQna988/H3/Opk3BaNw4n/tJCoVRNz6F2hC9Ql5DPuDTqNM4z6OTJ5OFAKyml0F0fMYZdObTeyMmkzh9ke9LJ20EVQ/QyrpXlg68yOCqInMJTxpV2FWiFLWx7N69/r+q670REw91Tl7f9NJJQdCUkTWvwMkz6XzXjcJliSvLmZlgRPa4o7GTBLBZ/P2T0vfpfxCVkSQIZCNoiqZGnSaNnp2aggMHVnXR49oI+uQOWcdo7CLhxtPur9HKYgxkI2ibpkadJnnvnDq1Vhcd53l0443wp3+6um8wqMa/PkqX9N11jMYuMuisqgGCQmQR103wfemkaqgpG0GWyqeISqFqW0CTdpIqKKI+m5vLr/7LW65p9x8M+mGjEZWCxhG0TFOjTuNanFHytnLrCKnsw5wERYgry5mZYER2lKzR2ON6VCX9lxs3Bi68Vf0vQsRJh6ILcDFwkGBO4j0xxz8B3BcujwB/Gzl2KnLs1jz362SPoEmWlpybmirXI6jDuF3EUOoLVXsNpfWK8txrMKj+fxG9gbq8hoAp4DHgXGAGuB84PyX9vwRujGyfKHrP3guCPKqFsmqYOirtSQhPUZakMhgM8v1fXRSmwhuSBEEVqqELgEPOucPOuZPAzcCOlPTvBW6q4L7+U4dhNK/Kpqwqqg7jtqJzJqvmjh3LpzZTqGtRB3HSocgCXAbcENneCXw6Ie0c8DQwFdn3ArAC3A28J+U+i2G6ldnZ2TqFZjXUZRj1bTzCONdtajCajwPfio7fGG3pd83gLryCGlVDRQTBh4E/Htl3Vvh7LvA48Jqse3qrGopWPGV19Ek0qRrwsSLNi68VZlK+iuj+u/y/iFapUxC8Bbg9sn0NcE1C2v8DXJhyrc8Cl2Xd00tBEPeB11FhS8+eD5/LKcko7KPgEhNFkiCowkbwLeA8MzvHzGaAy4FbRxOZ2euAzcA3Ivs2m9lp4fpW4NeA71aQp+aJc42Mo6wuV3r2fPgcLjsuDLYmtREtUloQOOdeAH4PuB14GPiCc+47ZnatmV0aSXo5cHMolYb8IrBiZvcDdwEfcc51UxDkqWCqqLBVYeSjbaNqXkeBaLq9e4P3o+g8CV0arS38JK6b4PvipWooSRUxNZXt5lmXvrfPuuQ2VS15711FHqVSEgVA0UdrZpwPMuucMhW5Koj2BGFe+0QVdow81+hzg0CsQYKgCYp+cGkfcdmK3Gdj6aST17OrCg+wrGuoQSAiJAkChaFuk7TQ1LOz+cMVF722whfXS95Q00VCUo97ryruISYGhaH2jeXloLKOY3a2vNdL28bSPpPXs6sKD7Csa/jsPSW8QYKgCop6bQzDRJw6tf7Y8CMuW5HLzbQ98np2VeEBlnUNNQhEHuL0Rb4vXtkIxtHBpnkYRQ3FVXiUyEjYb2QjEBGQsbgmihpll5bi08cZCVWRiyzyRqLVeyRcsiCQsbgsRYyycfMER5EBTxQh7n3q27zSohAyFtdFER1sWhgK6e9FUbJmfNOIY5ETCYKyVDUZuVpxIo60yjzNI6iOqUbFxCJBUJYinh9JvYe5OQmBIWrFrpJVmaf1Rrs2P7RolzjDge+LV8biIsiDIx2Vz1qyHBHiysvMud27NaWliIUaw1CLvChyaDpqxa4lazDYwgLs2hW8S0OcgwMHYMuW+HOLjB9Q76xZWizvjY3dSQQMY8+L9WgU7FqSwoxEK/Mvf3m919pzz8Hppwe2qlGPorwOCaMeSUO1FOj9rYOWy1s9grpQayqb0TKqohU7SeRxREgSksePl+t9qnfWLG17gMXpi3xfvLcRSNedTVwZzcw4Nz2dXW59GiCV9ax1RZmVjaFZ0sq7wvoEjSyuibgPVSGgs0kqo8EgveKTkF1LXeWhd7hZ0sq7wv+iVkEAXAwcBA4Be2KOvw84CtwXLh+IHNsFPBouu/LczxtBkPQR5g0h0WfGbXGqglpPHT0kCdxmSSvvCntntQkCYAp4DDgXmAHuB84fSfM+4NMx524BDoe/m8P1zVn39EYQpAWPU2WVzrgVulQW1ZMkSPqkgvOBpPJuoEdQhbH4AuCQc+6wc+4kcDOwI+e57wbucM4dd879CLiDoHfRDZIMdadOKQR0FuOGyVZY5WpJG7S2sBDEvnrxxeA3zdAs54jyJJV3AyHlqxAEZwHfj2w/Ge4b5TfN7AEz+5KZnV3wXD9JGyms8QLpjDumQvMsVEsV3kEKZ1EvTYw/iusmFFmAy4AbIts7GVEDAQPgtHD9d4GvhusfAv5NJN2/BT6UcJ9FYAVYmZ2dLdwlyk2R7nAePaq619WjMq2OKlRtstt0Bmq0EbwFuD2yfQ1wTUr6KeDZcP29wJ9Ejv0J8N6se9ZmIxjHQJZWKcngJnynikpcdpvOkCQIqlANfQs4z8zOMbMZ4HLg1mgCM9sW2bwUeDhcvx14l5ltNrPNwLvCfe1Q9SCaotfrq561r8/tA1Wo2mS3yYfP73mcdCi6AJcAjxB4D+0N910LXBqu/yHwHQKPoruA10XOfT+B2+kh4Hfy3K+2HkHRlk1Wi7/I9frae+jrc1dFFWqystfQf5iNJ2WEBpTloGg3OSt9kev1Vc/a1+euAk8ql5fyIrtNMp6850mCQFNVRik69V/WNJVFrldkystJoq/PXQXbt8cHpdOUp/7hyXuuqSrzUNRNKytIWhWT1ky6nrWvz10FitbaHTx/zyUIRsk7iGZ5GX7yk/X7p6fXGtryXq+v/vF9fe4q8LxyERF8f8/j9EW+L42GmCg67HswqP5ek05fn7ssPtkIRDYevOfIRjAGaTr+nTu90PmJnrO8HLgjHzkS9AT27dMIdpGIbATjkDYOQN1y4QNF4gHFMY5vu8/+8HUyyc8d103wfWlMNdTQZBFCtMK4I+n7+N5PyHOjcQRjkOX764HOT4TovyjOOL7tnvjDN86EPHeSIJBqKI0sS3/ZbrlYz7iqCkW/TCeuXMdxP+2ry2rZ5/ZdrRQnHXxfvPAaEtUzbvd7QlprtbF793o1p5lzL3+5egR5Gfe5l5YCT8LR81pSKyHVkPAezVpWPWlTHYJz09PFKqg4YT10m57kRtI4Ied3706furYF4SlBIPwnb4U++sHFtbj60ErNQ5JwjVbgRXu8nrVyG6NoyPk0AdxSQyVJEGgcgWiOLJ/3pNg5r3gFDAbBeVu2wI9/DM8/v3p8ejoYv3Hy5Oq+tBhRfSIpxs2Qcce9KM7RWpLKI40WykrjCMbFdyNPV8hj0N23D2Zm1p974sTqeceOrRUCEGy/8pWaGjSOrHEt44576avROImiz+1TeAmQaiiVCfEd9oK8+v8kNU/WIntAPEk6/bLvcl+NxkkklUeceqhFewpyHx2Dqmcs6zN5W5DHj493fY3ojicaARdgair4HfaaYLwer+9B1JomqTyuumptT3VpCZ55xr/eapx08H3xYmSxKEbeFmSWcbPqlm2fKdvjlWv1WjpQHshYPAYyiFVH3kl64tKNMjMT2ASOH1egtTLo/e4dtRqLzexiMztoZofMbE/M8X9lZt81swfM7CtmNhc5dsrM7guXW0fPbRV1f6sj7yQ9cel27167feONQfdaI7rLIYPveEyiA0lcN6HIAkwRTFp/LjBDMEH9+SNp3g5sCtd3A7dEjp0oek+NLBaiAmTwLU7HHUio0Vh8AXDIOXfYOXcSuBnYMSJs7nLODfv6dwOvruC+zaB4QmJSUY+3OEUdSDrSe6hCEJwFfD+y/WS4L4krgdsi2y8zsxUzu9vM3lNBfvykIy+E6BFF5+gWxdRpHQqG2Kj7qJldAcwDH4/snnOB8eK3gE+a2WsSzl0MBcbK0aNH68tkHRV2h16ITiChWh3q8eZneTl45+KIc1/ukvt5nL6oyAK8Bbg9sn0NcE1MuncCDwM/l3KtzwKXZd2zNhtBnP5vejoYAFLGRiBdbHWME/yrI/pb4TF5BuaNvnceDn6krqBzwEbgMHAOq8bi14+k+RUCg/J5I/s3A6eF61uBRxkxNMcttQmCPD7s4xiGNB6hOvJMFtRhY14jSFAWJ+m9m5paFQJ5g8612ACsTRAE1+YS4JGwst8b7rsWuDRcvxP4AXBfuNwa7r8QeDAUHg8CV+a5X22CICtaYNIfmfVhqUdQHVlCVWWdjgTleIz73o0uMzOtlnWtgqDppdUewWhLPq+qQh9fNWRV9GnCXOUtQTkuZd676DI97aUgUKyhKHHudHFEDUN5DELyzqiOLJfHtJhDMtBrENk4LC8HEXBHyfveRXn++ck0Frex1DqgLKrmGQyCrtyoVI9GD5T+v3mKThCilu8q6hEUI++MbFnvnSd1A1INjUHSTExR1Y4+LP9YWvLyI2ycOIEpNWUxinzfHZg5T4KgKHkk/PDj0oflH30X0GnvpbyG8lOmx+9h3SBBUJS8hmN9WH7i4UfYKGnujnpP81O2QeFZ3SBBUJS8XgB9qly6hmcfYaPkeX/17mYzYQ2KJEGg+QiSKDIZteK3C9/I+/7q3c1meTnw9DlypPPzX2jy+qLkdSUFud4J/8j7/urdzaYH8ZgkCJKI8/0fDOLTbtnSbN6EyGL4/g7nKE5Ccz0LJAjSGW0JfOpTMD29Pt1PfqKBSsI/FhaCdzcJzT0gQiQIirCwAD/zM+v3nzzp52hBIZJa/FNTGt0uXkKCoCjHj8fvl65V+EhSSI4DByQExEtIEBQlqYUlXWu7aLKaeBTnql2uvho2bgzKfuPGYNtDJAiKonle/SNuBrgrroCtWyUQoBdeL15y9dXwmc/AqVPB9qlTwbaHwkCCoChqYflHXARYgGPHFHG0COpVVcv+/cX2t0h/BEGVL7laWH6RZp/xdY5Y39C82tUz7Ank3d8i/RAEesknmyz7jAz52XRpovWukDSGI2tsRwv0QxDoJe8+aT26rFG0MuRnowlrqmdxsdj+FqlEEJjZxWZ20MwOmdmemOOnmdkt4fF7zGx75Ng14f6DZvbuKvKzDr3k3SarRze028SN/JYhPx/yhque666D3btXewBTU8H2dde1m6844iLRFVmAKYJJ688FZggmoj9/JM3VwPXh+uXALeH6+WH604BzwutMZd2zcPTRvsem7zplJgfpaJTIxpmwKJsiHmqcs/gC4JBz7rBz7iRwM7BjJM0O4EC4/iXgHWZm4f6bnXM/dc59DzgUXq9a5PLZbYr06GTIH48i3nDyLkqmo2WzsYJrnAV8P7L9JPCrSWmccy+Y2bPAINx/98i5Z8XdxMwWgUWA2aLd1eHLPCGhZHvH7Gx8SGWpLaplYSH7mxiq6YY2t6Gabnh+n+lw2XTGWOyc2++cm3fOzZ955pnFL6CWYncZt0fX0dZZpVRdBnK8SC7TDpdNFYLgKeDsyParw32xacxsI/CzwLGc57aHKhI/GGcQn1yG6ymDvjtepJVpl8smznBQZCFQLx0mMPYOjcWvH0nzL1hrLP5CuP561hqLD1OHsXgcZDzzlzwGYTkI1FMGfSnXpHcs7fk7UDbUOWcxcAnwCIHXz95w37XApeH6y4AvEhiDvwmcGzl3b3jeQeA38tyv1cnrPfpTe0leAZ00Z69ZO/lugzrKoA8NpLRnTCvTDpRNrYKg6aXVyev7VJH4SF4BLUFeXxlMsovu0pJzU1PJ5ZZVpp6XjQRBUVSR+EleAd2B1lntqAyKEVdebbX6axIoEgRF0UfkJxpcVgyVQX6S3q0irf4qyrvGukeCYBz0EfnHOB+J/keRh6Te5rA3MBQGSe9PVRV4jdoICQIxOQwrdljV5yZ9oOrZibxk9Qiy3p+qKvAa7ZNJgqAzA8qEeImFhdVBZsPY7kk+8kUG+WjcSD8Z/u9PPBGMU4kyug3J709V4whaCAAoQSC6SVoFH63Q40JTwPqPUwPQ+kn0f4fgvx9W/nNzwXYccZV70Qo8qeHRRmy0uG6C74tUQz0jTsefps9N8/yQu6mIkvW/F3VOyKuGzEorryEJAhEh6YMZDOI/0CQf8KyPU+NG+knW/17UxpS3Am+p4ZEkCKQaEn6TpAKC+O5z2nywaXGKNDFLP8n634vGucob3NKzuEQSBMJvkj6M48fjP9C5ufj0c3PpH6fmrOgnef73OiIXe9bwkCAQfpP2wcR9oONW6AsLsGvX2mkFd+1SuPJJJ0+Lvw5vMt8aHnH6It8X2Qh6RFMDyDTeQMRR53vRwkBHZCwWnaWJD0ZeQ37hy2jwCXsvkgSBVEPCf5qYXS7NeKeBZs3i05gOz4y6dSFBIAQk2yK2bPGnUuoLbUz5mCTsPTPq1oUEgRCQbLyDzs5D21maboWn9UB8M+rWhASBEJDsPXL8eHz6rqoG6lZzVXH9plvhaT2QcebL7iJxhoO8C7AFuAN4NPzdHJPmDcA3gO8ADwD/PHLss8D3gPvC5Q157itjscikKmPjJBkL6/aMqur6TXtw9WhUOXV4DQEfA/aE63uAj8ak+fvAeeH6LwBPA2e4VUFwWdH7ShCIVKqsSCbJrbRuoVbl9Zv0GpokYZ9BXYLgILAtXN8GHMxxzv0RwSBBIKqn6g/bF1fGstTd8u1qy7queEIekiQIytoIXuWcezpc/xvgVWmJzewCYAZ4LLJ7n5k9YGafMLPTSuZHiOqNjU24rzZB3br3rnrYFLED+OTaWiGZgsDM7jSzh2KWHdF0obRxKdfZBnwe+B3n3Ivh7muA1wH/iMDe8OGU8xfNbMXMVo4ePZr9ZKK/NFkhdWmMQd0eMF32sMkr7NtwbW2CuG5C3oWcqiHgZ4Bvk6IGAi4C/jLPfaUaEqk0pdfvov2gbrVGh9Umueiq+iuEmmwEH2etsfhjMWlmgK8Avx9zbChEDPgk8JE895UgEJm0GZZiaI+YtEqwSXwVKB03LNclCAZhJf8ocCewJdw/D9wQrl8BPM+qi+hLbqLAV4EHgYeAJeAVee4rQSC8IG2WtC70DnzF556Wz3nLQS2CoK1FgkDkps6WZVqPoM6Woq+t5arwvdXd4fKXIBD9o40BVHXrjjveIs1FU3r4Dlfo45IkCCw41i3m5+fdyspK29kQvrN9e+DeN8rcXOAZUgXLy8EENklTZFZ5L2jmmdqmqf9tcXGtB9CmTZMZPiKCmd3rnJsf3a9YQ2JyaSJ42cJC4HKYRNWuk30Ii1yFG2qWW++kuoGOiQSBmFyaGk+QdL3BYLzWZVol1tVBW0UoG+gtz6CvPgjUIsTpi3xfZCMQufBtPEEenXTWtSbFRtCGET9qbPbdIF0TyFgseklTBsGs++StwPNUUG0bOcvevw5hFs1THsP9pAjUgkgQCNEmeVugaRWZDx4uVVSgdQQFzPLeirv+qEDbvduPMq6RJEEgryEhmmDDhqA6GsVsrbE5yWPGbO35bXm4VOHRk7csyuYpSlZ59cSLSF5DQozSZMC4JGPuhg1r7xvnMTMqBKA9D5ckY2pWRRylaoN3moE3r7G5515EEgSin+TxLKlSUMRV8BCMP4jeN85jJqnX3oaHS1JlbZZePtGyPHECpqfXHi8TpTQpT3Nza6OJpv2fffciitMX+b7IRiBKk6WnLqMLTzKmLi05NzVVXD/uk4fL0lKyHSMpP3FlOTPj3GBQjT4+z3+VlcanMq4RZCwWIkJWGINxK4asCmec8Alte7iMCrY0r5w4IdhEJZvmyZRHALddxg0hQSBElKzKadx4N1nXLSNgini0VOViGldBJpXNYBBfmaYJjrrJ8igadSntqddQ65X6OIsEgShNXaqCLAHSRMuzynsklcPoc27aFAiCPGnrVLuMVuZJeaozDx4jQSDEKFnqhHEqUx8GhFWlillayq5Eo8+QNT9DdJmebmaEd9oygaqfLCQIhCjKOBW2D7rmKlQxWZVqnFDJMz9DVI1UNUXuPzXVOyHgXLIgkPuoEEnkndB89JwyAdPKsrwc3DeOIn76cX71Q5JcPZNcZOM4fjx/XvKS19Vz0yY4cGCiBoqVRYJAiKoZR4CkUWQ8w969QZt3FLNifvpplerpp8POnevzEicEB4P4a9QRLTUtCmxbgrkrxHUT8i7AFuAOgjmL7wA2J6Q7xep8xbdG9p8D3AMcAm4BZvLcV6oh0RuKqprS9PTD6+VRdxUxEqepWOoeQ5B1rx7aAdKgpsnrPwbsCdf3AB9NSHciYf8XgMvD9euB3XnuK0EgOkUZ43BRw29a+iIVZVG30bzPPxgEhuK6KuseuICWoS5BcBDYFq5vAw4mpFsnCAADngE2httvAW7Pc18JAtEZyrZSi45nSLtfUaGSdyAZ5H+enozg9ZUkQVAq+qiZ/a1z7oxw3YAfDbdH0r0QqoVeAD7inPsLM9sK3O2c+3thmrOB25xzv5R1X0UfFZ2hbLTOcc5fXg5sBUeOBHrzffsCnXjZqJ9pUfYM6NoAAAehSURBVD7zPk/VkUdFIcaOPmpmd5rZQzHLjmi6UNokSZW58Oa/BXzSzF4zxgMsmtmKma0cPXq06OlCtEPZYGZF5+9NEgJQPupnmrE57/P0YarNLhLXTci7kFM1NHLOZ4HLkGpI9IEqVCGjOvYkQ2sT01wmjdTN+zxNjayWnSAWarIRfJy1xuKPxaTZDJwWrm8l8DA6P9z+ImuNxVfnua8EgegMVVZ8VYTF8GGayai9YhgMrqoKW55DqdQlCAbAV8LK/U5gS7h/HrghXL8QeBC4P/y9MnL+ucA3CdxHvzgUGFmLBIHoFEUq37S0dQXKq/N50q5RR4UtY3QqSYJAU1UK4QtXXw3XX7/WmBqdLjHL0FrFNJJNUVdeZYxORVNVCuEzy8vrhQCsnS4xy9Ba1LDcJnXNCCZj9FhIEAjhA0mhIWC1csyq6NuOc1SEuirsLglDj5AgEMIH0lrCw8oxT0VfdZyjuqirwu6SMPQICQIhfCBtUvho5diVij5KXNC8OivsLpZRy2xsOwNCCILKfnFxbehnM7jqqm5XZMvLa5/riSeCbQieq8vPNkGoRyCED8S1kD//ebjuurZzVo64eQ2iBnDhBXIfFULUh9w5vULuo0KI5pE7ZyeQIBBC1IfcOTuBBIEQoj7kztkJJAiEqIIi8wr3Dblzeo/cR4UoS5aLpBCeox6BEGWRi6ToOBIEQpSlrgBqQjSEBIEQZZGLpOg4EgRClEUukqLjSBAIURa5SIqOI68hIapAAdREhynVIzCzLWZ2h5k9Gv5ujknzdjO7L7L8PzN7T3jss2b2vcixN5TJjxBCiOKUVQ3tAb7inDuPYBL7PaMJnHN3Oefe4Jx7A/DrwHPAX0WS/OvhcefcfSXzI4QQoiBlBcEO4EC4fgB4T0b6y4DbnHPPZaQTQgjREGUFwaucc0+H638DvCoj/eXATSP79pnZA2b2CTM7rWR+hBBCFCTTWGxmdwI/H3NozbBJ55wzs8TJDcxsG/APgNsju68hECAzwH7gw8C1CecvAosAs/LPFkKIyig1MY2ZHQQucs49HVb0X3POvTYh7QeB1zvnFhOOXwR8yDn3T3Lc9yjwxNgZL8dW4JmW7l2GruYbupt35bt5upr3pvI955w7c3RnWffRW4FdwEfC3/+Rkva9BD2AlzCzbaEQMQL7wkN5bhr3IE1hZitxM/z4TlfzDd3Nu/LdPF3Ne9v5Lmsj+Ajwj83sUeCd4TZmNm9mNwwTmdl24Gzgf4+cv2xmDwIPEkjE/1gyP0IIIQpSqkfgnDsGvCNm/wrwgcj248BZMel+vcz9hRBClEchJoqzv+0MjElX8w3dzbvy3TxdzXur+S5lLBZCCNF91CMQQoieI0GQgZn9MzP7jpm9aGaJVn0zu9jMDprZITNbF2qjafLEgQrTnYrEerq16XyO5CW1DM3sNDO7JTx+T+iE0Do58v0+MzsaKecPxF2naczsRjP7oZnFeutZwB+Fz/WAmb2x6TzGkSPfF5nZs5Hy/oOm8xiHmZ1tZneZ2XfDOuWDMWnaKXPnnJaUBfhF4LXA14D5hDRTwGPAuQSD4+4Hzm853x8D9oTre4CPJqQ70XYZ5y1D4Grg+nD9cuCWjuT7fcCn285rTN7fBrwReCjh+CXAbYABbwbuaTvPOfN9EfCXbeczJl/bgDeG668EHol5V1opc/UIMnDOPeycO5iR7ALgkHPusHPuJHAzQRymNikaB6pt8pRh9Jm+BLwjHIPSJj7+97lwzn0dOJ6SZAfwORdwN3BGOHC0VXLk20ucc087574drv8EeJj13pStlLkEQTWcBXw/sv0kMe6yDZM3DtTLzGzFzO4ehgdviTxl+FIa59wLwLPAoJHcJZP3v//NsKv/JTM7u5mslcbH9zovbzGz+83sNjN7fduZGSVUa/4KcM/IoVbKXBPTkB5PyTmXNlq6VSqKAzXnnHvKzM4FvmpmDzrnHqs6rz3nfwI3Oed+ama/S9Cr0Ria+vg2wXt9wswuAf4COK/lPL2Emb0C+O/A7zvnftx2fkCCAADn3DtLXuIpgpHTQ14d7quVtHyb2Q8iITy2AT9MuMZT4e9hM/saQSulDUGQpwyHaZ40s43AzwLHmsleIpn5dsHAyyE3ENhvukAr73VZopWrc+7LZnadmW11zrUeg8jMpgmEwLJz7s9ikrRS5lINVcO3gPPM7BwzmyEwZLbqgcNqHChIiANlZpuHob/NbCvwa8B3G8vhWvKUYfSZLgO+6kILW4tk5ntEx3spgW64C9wK/HboyfJm4NmIutFbzOznh7YjM7uAoJ5ru8FAmKf/CjzsnPtPCcnaKfO2Lem+L8A/JdDT/RT4AXB7uP8XgC9H0l1C4AXwGIFKqe18DwhmjXsUuBPYEu6fB24I1y8kiPN0f/h7Zct5XleGBGHJLw3XXwZ8ETgEfBM4t+1yzpnvPwS+E5bzXcDr2s5zmK+bgKeB58N3/ErgKuCq8LgB/zl8rgdJ8JrzMN+/Fynvu4EL285zmK+3Ag54ALgvXC7xocw1slgIIXqOVENCCNFzJAiEEKLnSBAIIUTPkSAQQoieI0EghBA9R4JACCF6jgSBEEL0HAkCIYToOf8fbbT41ArTNJwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(x[:,0], x[:,1],'ro')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Abstract of the Algorithm\n", - "The DBSCAN algorithm can be abstracted into the following steps:\n", - "\n", - "- Find the points in the $ε$ (eps) neighborhood of every point, and identify the core points with more than min_pts neighbors.\n", - "- Find the connected components of core points on the neighbor graph, ignoring all non-core points.\n", - "- Assign each non-core point to a nearby cluster if the cluster is an $ε$ (eps) neighbor, otherwise assign it to noise.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preparing the points\n", - "Initially we label all the points in the dataset as __undefined__ .\n", - "\n", - "__points__ is our database of all points in the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "points = { (point[0],point[1]):{'label':'undefined'} for point in x }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Helper functions" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def euclidean_distance(q, p):\n", - " \"\"\"\n", - " Calculates the Euclidean distance\n", - " between points P and Q\n", - " \"\"\"\n", - " a = pow((q[0] - p[0]), 2)\n", - " b = pow((q[1] - p[1]), 2)\n", - " return pow((a + b), 0.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def find_neighbors(db, q, eps):\n", - " \"\"\"\n", - " Finds all points in the DB that\n", - " are within a distance of eps from Q\n", - " \"\"\"\n", - " return [p for p in db if euclidean_distance(q, p) <= eps]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def plot_cluster(db, clusters):\n", - " \"\"\"\n", - " Extracts all the points in the DB and puts them together\n", - " as seperate clusters and finally plots them\n", - " \"\"\"\n", - " temp = []\n", - " noise = []\n", - " for i in clusters:\n", - " stack = []\n", - " for k, v in db.items():\n", - " if v[\"label\"] == i:\n", - " stack.append(k)\n", - " elif v[\"label\"] == \"noise\":\n", - " noise.append(k)\n", - " temp.append(stack)\n", - "\n", - " color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters))))\n", - " for i in range(0, len(temp)):\n", - " c = next(color)\n", - " x = [l[0] for l in temp[i]]\n", - " y = [l[1] for l in temp[i]]\n", - " plt.plot(x, y, \"ro\", c=c)\n", - "\n", - " x = [l[0] for l in noise]\n", - " y = [l[1] for l in noise]\n", - " plt.plot(x, y, \"ro\", c=\"0\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Implementation of DBSCAN\n", - "\n", - "Initialize an empty list, clusters = $[ ]$ and cluster identifier, c = 0\n", - "\n", - "1. For each point p in our database/dict db :\n", - "\n", - " 1.1 Check if p is already labelled. If it's already labelled (means it already been associated to a cluster), continue to the next point,i.e, go to step 1\n", - " \n", - " 1.2. Find the list of neighbors of p , i.e, points that are within a distance of eps from p\n", - " \n", - " 1.3. If p does not have atleast min_pts neighbours, we label it as noise and go back to step 1\n", - " \n", - " 1.4. Initialize the cluster, by incrementing c by 1\n", - " \n", - " 1.5. Append the cluster identifier c to clusters\n", - " \n", - " 1.6. Label p with the cluster identifier c\n", - " \n", - " 1.7 Remove p from the list of neighbors (p will be detected as its own neighbor because it is within eps of itself)\n", - " \n", - " 1.8. Initialize the seed_set as a copy of neighbors\n", - " \n", - " 1.9. While the seed_set is not empty:\n", - " 1.9.1. Removing the 1st point from seed_set and initialise it as q\n", - " 1.9.2. If it's label is noise, label it with c\n", - " 1.9.3. If it's not unlabelled, go back to step 1.9\n", - " 1.9.4. Label q with c\n", - " 1.9.5. Find the neighbours of q \n", - " 1.9.6. If there are atleast min_pts neighbors, append them to the seed_set" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def dbscan(db,eps,min_pts):\n", - " '''\n", - " Implementation of the DBSCAN algorithm\n", - " '''\n", - " clusters = []\n", - " c = 0\n", - " for p in db:\n", - " if db[p][\"label\"] != \"undefined\":\n", - " continue\n", - " neighbors = find_neighbors(db, p, eps)\n", - " if len(neighbors) < min_pts:\n", - " db[p][\"label\"] = \"noise\"\n", - " continue\n", - " c += 1\n", - " clusters.append(c)\n", - " db[p][\"label\"] = c\n", - " neighbors.remove(p)\n", - " seed_set = neighbors.copy()\n", - " while seed_set != []:\n", - " q = seed_set.pop(0)\n", - " if db[q][\"label\"] == \"noise\":\n", - " db[q][\"label\"] = c\n", - " if db[q][\"label\"] != \"undefined\":\n", - " continue\n", - " db[q][\"label\"] = c\n", - " neighbors_n = find_neighbors(db, q, eps)\n", - " if len(neighbors_n) >= min_pts:\n", - " seed_set = seed_set + neighbors_n\n", - " return db, clusters\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lets run it!" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de7Ac1X3nPz9dSVhabIyuiEMAXeGEPJwQv7Q4cVIpHGwHUxtkJ94KzjWRHbvuIsW7SaV2N6RUlcRkVYtx1RpSsSAqwhpbd40fix05MSEY2+s/EhxECpCBxcgEYalILCQvsRbWQuK3f3QP6ju3n9Pv6e+nampmTp/uPtPTfX7n/F7H3B0hhBDDZUXbDRBCCNEuEgRCCDFwJAiEEGLgSBAIIcTAkSAQQoiBI0EghBADpxJBYGa3mNl3zOwbCdvnzexBM9tnZn9rZq+ObHsiLL/fzPZW0R4hhBD5sSriCMzsF4BjwMfd/aditr8ReMTdv2tmbwP+yN3fEG57Atjk7k/nPd/69et948aNpdsthBBD4r777nva3c8aL19ZxcHd/WtmtjFl+99Gvt4DnFvmfBs3bmTvXk0ehBCiCGZ2IK68DRvB+4A7It8d+Bszu8/MFlpojxBCDJpKZgR5MbM3EQiCn48U/7y7HzKzHwDuMrP/7e5fi9l3AVgA2LBhQyPtFUKIIdDYjMDMfhq4Gdjs7kdG5e5+KHz/DvA54KK4/d19l7tvcvdNZ521TMUlhBBiQhoRBGa2AbgduNLdvxkp/1dm9tLRZ+CtQKznkRBCiHqoRDVkZp8ELgbWm9lB4A+BVQDufhPwB8AssNPMAE64+ybgFcDnwrKVwP9w97+uok1CCCHyUZXX0Lsytr8feH9M+ePAq5fvIUT17FuEu7fDM0/CGRvgkh1w4XzbrRKifRo1FgvRFvsW4QsL8PyzwfdnDgTfQcJACKWYEIPg7u2nhMCI558NyoUYOhIEYhA882SxciGGhASBqJ19i3D9RvjgiuB932LzbTgjIfQkqVyIISFBIGplpJt/5gDgp3TzRYVBWWFyyQ5YtXZp2aq1QbkQQ0eCQNRKFbr5KoTJhfPwy7vgjDnAgvdf3iVDsRAgryFRM1Xo5tOESZGO/MJ5dfxCxKEZgaiVKnTzMvQKUS8SBKJWqtDNy9ArRL1IEIhaqUI3L0OvEPUiG4EA6k2/UFY3P9q3S+khlK5CTBOVLFXZNJs2bXKtUFYd4+kXIBhxd9Wrpu1OuG/XS4gRZnZfmPBzCVINiV6lX4hzJb393XDd+noC1eLiF/p0vYTIg1RDoldeOXGdMMBzR6pPIpeUqC7u/NDN6yVEHjQjEL3yyknrbKselSeN/G0mvn4Xr5cQeZAgEJV65dSdVyirs61yVJ50LD8pLyYxXUgQiMrSL0yaCqKI8IgTWlHWrCvW5jQSZ0pzSlchpgt5DYnSvOjFcyB++xlz8DtPJO9b1ANn3yJ87jfAX1i+bc0s/Oenc7Q1h8eRvIPEtFGr15CZ3WJm3zGz2IXnLeBPzGy/mT1oZq+LbNtiZo+Fry1VtEc0x5JZQAJp6ppJPHAunIek8ctzR3O2NceMRYnqxFCoymvoY8CfAh9P2P424ILw9QbgRuANZraOYKH7TYAD95nZHnf/bkXtEjWT5MUTJU2vn+axlDZ6P2NDvPBJO9ckyeuUqE4MgUpmBO7+NSBlLMZm4OMecA/wcjM7G/gl4C53Pxp2/ncBl1bRJtEMWcbZLCNqUse9Zl366H0SA3ef3GSFaJKmjMXnAN+OfD8YliWVi56QNgLPo0pJ6tAhXWU0idomsa3e3sppQnSB3gSUmdkCsACwYYMctrvCJTvKGVST8gjdfmV8/ejovajaJq6tLx73QPUBaUL0haYEwSHgvMj3c8OyQ8DFY+VfjTuAu+8CdkHgNVRHI0VxqkgIF9ehJ3khlQnaWtLWmGM//2wggG5/d/B9zSy87QYJBjH9NKUa2gP8Rug99DPAM+7+FHAn8FYzO9PMzgTeGpYNki4s8j4JF84H7qF/+ELwXkXHWVfq6VFbsYQKkSHGc0fgL36zP/+DEJNSyYzAzD5JMLJfb2YHCTyBVgG4+03AF4HLgP3As8B7w21HzeyPgXvDQ13j7mlG56klKa8NDHNEWnfq6SSvo3FOHi++JKYQfUMBZR3h+o0JqpCUYKy+0Xb66PG2pCWQW4IFsx0h+k5SQFlvjMXTzrS7NnZlxhMVRmvWwco1QRCarQhyCMWhZHJi2lGuoY7Qpwygk9CFHP7jkcXPHYETz8Gmq+AlL4/fZ2Z1MbtEX+08YthIEHSEJtbljeuk0jquKju1Lsx4koTR3hsDoTDOmlnYfEv+GcukSfeEaBuphjpCUeNoUX17nGrm8+8Fs8AgOiobqWugWlXOJCkhqqaI0JnENjNJCgshuoAEQYfIGyA1ib49rpN64fnl9aLqmio7taTAsyZz+Of1FILJZipdmPUIMQlSDfWQSfTtRTqjZ56svlPrQibPIkJnkpnKtNt5xPQiQdBDJumki3RGZ2xI79QmtR3UEXhWhAvnA71/FpPOVJqw8whRBxIEPWSSkWdcJ7ViVeAVE2XUcSV1ahdc1m+D6NtuWP67ZlaHAqLkTKULsx4hJkE2gh4yib49yRgdVxbtuMa39d0gWnfEstYvEH1EgqCHTNqZjXdScZ5HEEY5Pxm//u80GETVWQuxFKWYGChxKRZmVgdLQMZ5E0Ew61i5Jt7nfppSYdRNl1JtiGFR65rFIh9dijqNU/GcPJ4sBOBUfRlEJ2eSoLMu3TdiOpEgaIgmo07zdByTqnKeOzosg2jV0dhFXX//aluwRkJfjfOiH0g11BBNZReNU/nErRiW1J4shqQCyqs+G11fyL72H1zBkjUPXiQmw+m+xXCltpj6Q/ofRHVINdQyTRlZk0acn9uydBQZ5x46szpwKU1iaCqgvOqz0Yg+z2i/iOvv3duJFxr0yzgvuo8EQUM0FXWa1EH4yaUqhTif9823wNv/+6myNbPV+NdH6ZO+u45o7CJBZ1UFCAqRhdxHG6KpXDtp+XTG/f2T3ChHZSPvlucqWjOuK2sS5KVIbqJRx5yVWK+I62/a+Y8fC4SpvI5EFWhG0BBNRZ3GjTij5B3l1mHc7sKaBEXIqz7LisaeVNgn/ZcrVoYuvDIei4qoas3iS4EbgBngZne/dmz7R4A3hV/XAj/g7i8Pt50E9oXbnnT3y6toUxdpIpBpdPzPbYlfcSuvSqGOCOK+BaNVFY09HsSXNCuK2/eXdy0tO35seRxHnyK7RTcp7TVkZjPAN4G3AAcJFqJ/l7s/nFD/3wOvdfffDL8fc/fTi5yzj15DVZInICmv91ASRbxb8jKEdZmzSLoGa2aD1dKy/q86/hcxHOr0GroI2O/uj7v7ceA2YHNK/XcBn6zgvJ2nDsNoXpVNWVVUHcZtZedMnv08dySf2kyprkUdVCEIzgG+Hfl+MCxbhpnNAecDX44Uv8TM9prZPWb29qSTmNlCWG/v4cOHK2h2vdQVQFZEz14m7XMdnXbT2Tm76KFUtMMeFxwSpqIOmvYaugL4rPsS7fWcux8ys1cCXzazfe7+rfEd3X0XsAsC1VAzzS1GVGVjK5br6KvQ5TalZ68rS2dTCd+66qGU5D2WmMNpTHDUnT1VDJMqBMEh4LzI93PDsjiuAH4rWuDuh8L3x83sq8BrgWWCoOuMdzxxhloo32E3ufZvn7N0djVddpoBOq97cZ//F9FNqhAE9wIXmNn5BALgCuDXxyuZ2Y8DZwJ/Fyk7E3jW3b9vZuuBnwOuq6BNjRPX8cRRtsPuwtq/faDLHkppHblG+qINSgsCdz9hZh8A7iRwH73F3R8ys2uAve6+J6x6BXCbL3VT+gngz8zsBQJ7xbVJ3kZdJ08HU0WHLdVAPpqcOcWRN9V0FSmpldZalEVJ5yoiyS3QZsBfSHfzrOshHnIHUdZ9tolzV9HGNn+n6B9KOlczSd4c77g12Wsny7OojNdLk2mvu0ib6wfn9eyqItI6zzG66D0luoVyDVXEJCqbrIe4jNdLV42lTdKWUTWvfaIKO0bWMbrqPSW6hQRBhRTteNIe4rIdeZeNpdNOXvtEFXaMrGNoQCDyINVQS+xbDGIN4jhjQ/mOXBGo7ZE36KuK4LCsY2hAIPIgQVABRXWwo+l6XKzB6CEu25ErArU98tonqrBjZB1DAwKRB3kNlWQSr400D6N33BrsV5VHyVC9hkSAvIpElCSvIdkISlJUB7tvMXmxEX9h6aIxo+NP2pErAnX6yRL2ijsReZAgKEkRHexodJZEXF4ZPbAiibweQbqPRBayEZSk6GLkSWkopL8XRclyP1b8gMiLBEFJqlqMXDpbEUdaZ542Gx16QKEohgRBSYp4fiTOHuYkBF5kcRE2boQVK4L3xeH2XFmdedpstG/rQ4t2kSCogLwLwMilM4PFRVhYgAMHwD14X1gYrDDI6sxjF7c3uOAyxQ+IYkgQNEib+W96wfbt8OxYz/fss0H5AMnqzC+ch1dvASyy0eGBW2HNuvh9i8QPyMbQMC3OhuU11DDy4EjhyYSeL6l8ysmTguKxL7JsMfvnnw1WPFu1dvJ1K5SjqGFGs+HRQGg0GwaYr/+Ca0ZQExpN5WB8BLQuYRi7YZhhsHlUiUmzhueOlpt9ysbQMBmz4W3btrFy5UrMjJUrV7Jt27ZKTy9BUAPy2MhBnD3ge9+DVauW1lu7FnbsWL7vAAzKeVSJaQbjvLarOGRjaJiU2fC2bdu48cYbOXkyyElz8uRJbrzxxkqFgVJMlCQusvPu7QlT+rnggRQEHfiBmIs0Owunnx48GBs2BEIgOjUen0JDICx27WpkCt016kohkZQGRfdwTSQ9D3NzrDx48EUhEGVmZoYTJ04UOk2tC9OY2aVm9qiZ7Tezq2O2v8fMDpvZ/eHr/ZFtW8zssfC1pYr2NEXSyD8phYRGUxGSRkBHj8ITT8ALLwTv4527DMpLqMsBQR5uDbNjRzCgiRLOhuOEAJBYPgmljcVmNgN8FHgLcBC418z2xKw9/Cl3/8DYvuuAPwQ2EZi87gv3/W7ZdjVBkh7VZuIziyrjY4QNG+JHQFn2ABmUl1HWASEtX5FyFDXEaMCzffuy2fDMli2JM4KqqGJGcBGw390fd/fjwG3A5pz7/hJwl7sfDTv/u4BLK2hTIySN8P2kRlOZpIyAUkkSFAM1KJclzZ5VxMYg54gKmJ+PnQ0vLMQnKEsqn4QqBME5wLcj3w+GZeP8qpk9aGafNbPzCu7bSdIihRUvkMH8fKDXn5sDs+A9j55/UgEiYqnCO0jOEfWyc+dOtm7d+uIMYGZmhq1bt7Jz587KztGU19AXgI3u/tMEo/5bix7AzBbMbK+Z7T18+HDlDRxRZGSTpkcdjaZ+5RNB+e1XaqS0jIQRUOY+kwgQEUsV3kFyNa2fnTt3cuLECdydEydOVCoEoBpBcAg4L/L93LDsRdz9iLt/P/x6M/D6vPtGjrHL3Te5+6azzjqrgmYvp+jIJstQp5FSTUwiQEQsVaxgJlfT/lOFILgXuMDMzjez1cAVwJ5oBTM7O/L1cuCR8POdwFvN7EwzOxN4a1jWClWPbIoeb7B61oHEBXSRKryDtBxmTjp8n5f2GnL3E2b2AYIOfAa4xd0fMrNrgL3uvgf4D2Z2OXACOAq8J9z3qJn9MYEwAbjG3Y+WbdOkFB3ZZIXhT7JozeBC+lsOre87ZZcjrcI76JId8bEMco6I0PH7XAFlEYoG0WTVL3K8wQbwpATS8MQTTbemV3RpPWKtj51BR+7zWgPKpoWi0+SsEX8Vi9ZMvZ5VcQET0yUjbZl0FoOg4/e5BEGEolGaWal+K1m0Ztr1rIoLmJjBDh76SMfvc6WhHiNvlOa+RTj+veXlK1YtHfHnPd5g9aw7dsTnDlJcQCZ50lSLjtDx+1wzggySPHnu3g4njy+vf9rLJpsWD3bRGsUFTIzyAfWIjt/nMhankGaMu/1Kli0IAoAFelIhmkBGWlEEGYsnIM0YN1idvugUZY20k8SuKN6le3EAZZEgSCHNGKdpueg7k0S+DzZaPm4hpYWFqREGEgQpZK3+NEidfleZ4tFaXUziftoll9VGmfJ1MCQIUsga9ct3ugYm6dCnfLRWBXHqnEncTwfrslo2DqDjAxUJghQ06m+YSTv0KR+tleWvtgXODVF1zu1XLh/kjEizcw3WNjZpHMDiIqxfD+9+d6cHKhIEGWjU3yCTdugdj9psk32LsPcmlnu4OTz/f4O4lyhZdq64WTLA8WNTbifIsw7G+Kh/27agwz9yZPnxOjZQkSAQ3SFvhz7+wK1LCPHuSNRmm9y9nXg355DTXlZsxjuaJa+ZXVr+3JEpNxpnxQHEzWZvumn5wCZKhwYqiiMQzbG4GLsm64skJeY6/XSYnQ32W7cO/uVf4PnnT21ftSp4OI9HIvzWru1UwE5bfHAFqYJg0riXwSZJTCLp3k2jhcSKiiOYkMH6TFdNHv3/jh2wevXyfY8dO7XfkSNLhQAE31/60s5GbbZJlu5+Ut3+YI3GSRQd3XcovQRIEKQyWJ/pOsij/5+fDzr0STh6VKuWxZCk04dycS+DNRonkaSGNFteNjvbuYGKBEEKg/WZroO8+v+jE65LJHtALEs83wAL1j9/0R4Ak814FVA5RpIx+aqrls5Ud++Gp5/ulBAAZR9NRdPfCtmwIV6HOt6BJ9VLo2PT7K6RlAG3zKp4VaxsNlWMOvY0G1iHkbE4BRnEKmR8qT6IN+jG1Rtn9epAhXT0aO8euC6h+3t41GosNrNLzexRM9tvZlfHbP9dM3vYzB40s7vNbC6y7aSZ3R++9ozv2yaa/lZI3jS8cfW2bl36/ZZbgum17AGl0Ix3QjoeJTwJpWcEZjYDfBN4C3CQYCH6d7n7w5E6bwK+7u7PmtlW4GJ3/7Vw2zF3P73IOZt0H1WaXzGtaEYwAXlnth2lzhnBRcB+d3/c3Y8DtwGboxXc/SvuPrpy9wDnVnDeRlBksZhWNOOdgKLR7z2ZPVQhCM4Bvh35fjAsS+J9wB2R7y8xs71mdo+Zvb2C9nQSxSOIrqFcWhNQJJ1Jj5IhNuo+ambvBjYBH44Uz4VTlV8HrjezH07YdyEUGHsPHz5cWxvr6LAVj1AxPRll9QHNeAuwuBjcc3HEuS/3KBliFYLgEHBe5Pu5YdkSzOzNwHbgcnf//qjc3Q+F748DXwVeG3cSd9/l7pvcfdNZZ51VQbOXE9dhf/69cN36coJB8QgVkmeUJUEhqmZ03508uXzbyH15/L5LcoPuUI6hEVUIgnuBC8zsfDNbDVwBLPH+MbPXAn9GIAS+Eyk/08xOCz+vB34OeJiWiOuwX3g+SKhVZiQv74wKyRpl9Wg63hZSU05A3H0HMDMTGIph+X0XF1UMnQx+LC0I3P0E8AHgTuAR4NPu/pCZXWNml4fVPgycDnxmzE30J4C9ZvYA8BXg2qi3UdPk6ZjjRvJZD5bC8SskS0fbo+l4G0hNOSFJ990LLwTeQnH3XZxH5urVnQx+rMRG4O5fdPcfdfcfdvcdYdkfuPue8POb3f0V7v6a8HV5WP637n6hu786fP/zKtozKXk75qjAyPNgyTujQrIWCEl6YA8c0KwAqSknZtL7bpyOBvAq11CEtARdUaICI8+DJe+MCslaICRt2i0VkdSUk7C4GGTAHSfvfRfl+ec7OTuVIIgw3mGvmYWZmKzI0dWY8j5Y8s6oiKwI5ThBMUIqIqkpizKyOY2vMjaeQTTtvhung8Zi5RpKYd8i3PHbobF4jFVrA6Fx93ZFZ3aOxcVgjdg4zAK97gCIi4qHpYnm4NS9rMFJDEneP3GLyowvvHTsWPwylS0sSDNCC9MUZKT7jxMCcEr9I/1/B5mfDx62ODrosVEHSbYrkJqyEEUCyObnl66JccMN2escdwQJggTidP/jjGYCerA6SJ7FxqeYJNvV57bA7VcG33/lE1JTZpJlJE4jb6LFDqD1CBLIazz7wkLQ8UsN1DF6nh++LEn3r4fxUEXWHhg0O3bEJ5nLO6CYn+/FPacZQQJ5jWdyvesw41P1HjyQVZHn/tW9m4MejerLIEGQQF5XUpDrnegeee9f3bs5GMCAQoIggTjf/zWz8XXXrGu0aUJkMrp/R2sUJyG3UQESBKmM+/6/7QZYsWp5vePfU4i+6B4XzoOneMrKu02MkCAowIXzcNrLlpefPC5dq+gmSSN+m5F3mziFBEFBnjsaXy5dq+giSXEu77hVQkCcQoKgIArR7yhagyAW5blqmW3bYOXKwONo5crgewdRiomCjCI2FaLfIeIWFIcgH8wNN0yll4foAdu2wY03Li/fuhV27my+PSSnmJAgmIC4HC4SAi2SthrU2rVT6fddB7qvK2blyvgVzWZm4MSJ5tuDBIFu8mlmxYr0PO8tJvnqC5rp1kDSCmXQ2roEg046p1WZppysvC8dTPvbNbRgTQ3MJARxJJW3yCAEgW7yKSDNGJyVC34gGUfLoAVramBhoVh5i1QiCMzsUjN71Mz2m9nVMdtPM7NPhdu/bmYbI9t+Pyx/1Mx+qYr2jKObvOdkLUg/ygczGxP6PaCMo2WQN1wN7NwZGIZHM4CZmVYNxWmUFgRmNgN8FHgb8CrgXWb2qrFq7wO+6+4/AnwE+FC476uAK4CfBC4FdobHqxTd5D0nz4L08/Pw9NOwe/fUJwirA62rURM7dwaGYffgvYNCAKqZEVwE7Hf3x939OHAbsHmszmbg1vDzZ4FLzMzC8tvc/fvu/o/A/vB4laKbvOeUWRxEQiAXReIN9i3C9RvhgyuCd9naIvQ0nqWK9QjOAb4d+X4QeENSHXc/YWbPALNh+T1j+54TdxIzWwAWADYU1PmObmZ5DfWUDRvi3UOl+6+UC+ezn4lx7yKtaxBhPJ5lpMKEzg9IemMsdvdd7r7J3TedddZZhffX4vE9ZtLVxno6OquSqkfvcrwg+b7Ko8LsKFXMCA4B50W+nxuWxdU5aGYrgTOAIzn3bQ3FHnSESVYb6/HorCrqGL0P3vEi7b4qosLsGFXMCO4FLjCz881sNYHxd89YnT3AlvDzO4EvexDJtge4IvQqOh+4APj7CtpUGsUedIyo7n/HjkAopI30ezw6q4o6Ru+DcbyYZNRfZn3jliktCNz9BPAB4E7gEeDT7v6QmV1jZpeH1f4cmDWz/cDvAleH+z4EfBp4GPhr4LfcPSYmu3k0Be4oWa6kI3o8OquKOkbvg3C8SLvH0u6rSVWYHWAwKSaK8sEVQNylscDOIFoiKa/QeBqJvPWmmOs3hjPaMc6YC+xkkzLVKtPFRdiyJT5H0Nxc8J52Xy0uFlNhNsygU0xMwmCmwH0j70i/x6Ozqqhr9D61jhejmUCcEIB8o/6q3JcbdnSQIEhgEFPgPpJXDzuKNh5wcJnWIihInP4/yoYN2fdVFR14XvVnlbh7716vf/3rvQke3O3+kTn3P7Lg/cHdjZxWpLF7t/vate7BIxK81q4NytP2mZtzNwve0+qK4WK29L6Kvkbb0u6fSe7NOObm4tswN1fyB7oDez2mT229U5/k1ZQgEB1l1LGD+8xM+gNa1cMppp+kDnj8lXT/VNWBJwkks9I/MUkQSDUk+sf8/Cld7UifmzR9LuJGqgC0YTL63w8cWL6GQNyaAkn3T1Weai24oUoQiH6S1sFHO/SklcvGH8429LKifaL/OwT//ajzn5tLXkAmrnMv2oEnDTzacHSImyZ0/SXV0MCI0/Gn6XPHVUF5pus16mVFh8n634vcF0XUkFl1a7JrIRuB6CVJD8zsbPwDOrIZFNXx1qiXFR0m638vamPK24G3NPBIEgRSDYluk6QCgvjpc5IPOKS7kfY4PYAoQdb/XtQNOW8cQcci3yUIRLdJejCOHo1/QEfRn+PMzaU/nApAGyZ5/vc61rjo2MBDgkB0m7QHJu4BnbRDn58PUgtElxXcsmVQAWiDJM+Ivw5vsq4NPOL0RV1/yUYwIJoKIFO8gYijzvuihUBHZCwWvaWJB0ZeQ92iK9HgU3ZfJAkCqYZE92liHeI0450CzZqlSzEdHTPq1oUEgRCQbItYt647ndJQaGNRoSRh3zGjbl1IEAgBycY7GPxKZ43T9Cg8bQbSNaNuTUgQCAHJ3iNHj8bX76tqoG41VxXHb3oUnjYDGUo68zjDQd4XsA64C3gsfD8zps5rgL8DHgIeBH4tsu1jwD8C94ev1+Q5r4zFIpOqjI3TZCys2zOqquM37cE1oKhy6vAaAq4Drg4/Xw18KKbOjwIXhJ9/CHgKeLmfEgTvLHpeCQKRSpUdyTS5ldYt1Ko8fpNeQ9Mk7DOoSxA8Cpwdfj4beDTHPg9EBIMEgaieqh/srrgylqXukW9fR9Z15RPqIEmCoKyN4BXu/lT4+Z+AV6RVNrOLgNXAtyLFO8zsQTP7iJmdVrI9QlRvbGzCfbUJ6ta999XDpogdoEuurRWSKQjM7Etm9o2Y1+ZovVDaeMpxzgY+AbzX3V8Ii38f+HHgXxPYG34vZf8FM9trZnsPHz6c/cvEcGmyQ+pTjEHdHjB99rDJK+zbcG1tgrhpQt4XOVVDwMuAfyBFDQRcDPxlnvNKNSRSaUqv30f7Qd1qjR6rTXLRV/VXCDXZCD7MUmPxdTF1VgN3A78Ts20kRAy4Hrg2z3klCEQmbaalGNkjpq0TbJKuCpSeG5brEgSzYSf/GPAlYF1Yvgm4Ofz8buB5TrmIvugmCnwZ2Ad8A9gNnJ7nvBIEohOkrZLWh9lBV+nyTKvLbctBLYKgrZcEgchNnSPLtBlBnSPFro6Wq6Lro+4eX38JAjE82gigqlt33PMRaS6a0sP3uEOflCRBYMG2frFp0ybfu3dv280QXWfjxsC9b5y5ucAzpAoWF4MFbJKWyKzyXNDMb2qbpv63hYWlHkBr105n+ogIZnafu28aL1euITG9NJG8bH4+cDlMomrXySGkRa7CDTXLrXda3UAnRIJATC9NxRMkHW92drLRZVon1tegrSKUTfSWJ+hrCAK1CHH6oq6/ZCMQuehaPEEenXTWsabFRtCGET9qbO66QbomkLFYDJKmDIJZ52kH/WcAAArwSURBVMnbgefpoNo2cpY9fx3CLNqmPIb7aRGoBZEgEKJN8o5A0zqyLni4VNGB1pEUMMt7K+744wJt69ZuXOMaSRIE8hoSoglWrAi6o3HMlhqbkzxmzJbu35aHSxUePXmvRdk2Rcm6XgPxIpLXkBDjNJkwLsmYu2LF0vPGecyMCwFoz8MlyZia1RFHqdrgnWbgzWtsHrgXkQSBGCZ5PEuqFBRxHTwE8QfR88Z5zCTN2tvwcEnqrM3Sr0/0Wh47BqtWLd1eJktpUpvm5pZmE037P4fuRRSnL+r6SzYCUZosPXUZXXiSMXX3bveZmeL68S55uOzenWzHSGpP3LVcvdp9drYafXye/yqrTpeucY0gY7EQEbLSGEzaMWR1OJOkT2jbw2VcsKV55cQJwSY62TRPpjwCuO1r3BASBEJEyeqcJs13k3XcMgKmiEdLVS6mcR1k0rWZnY3vTNMER91keRSNu5QO1Guo9U59kpcEgShNXaqCLAHSxMizynMkXYfx37l2bSAI8tStU+0y3pkntanONnQYCQIhxslSJ0zSmXYhIKwqVczu3dmdaPQ3ZK3PEH2tWtVMhHfaawpVP1lIEAhRlEk67C7omqtQxWR1qnFCJc/6DFE1UtUUOf/MzOCEgHuyIJD7qBBJ5F3QfHyfMgnTyrK4GJw3jiJ++nF+9SOSXD2TXGTjOHo0f1vyktfVc+1auPXWqQoUK4sEgRBVM4kASaNIPMP27cGYdxyzYn76aZ3qmjVw5ZXL2xInBGdn449RR7bUtCywbQnmvhA3Tcj7AtYBdxGsWXwXcGZCvZOcWq94T6T8fODrwH7gU8DqPOeVakgMhqKqpjQ9/eh4edRdRYzEaSqWumMIss41QDtAGtS0eP11wNXh56uBDyXUO5ZQ/mngivDzTcDWPOeVIBC9ooxxuKjhN61+kY6yqNto3t8/OxsYiuvqrAfgAlqGugTBo8DZ4eezgUcT6i0TBIABTwMrw+8/C9yZ57wSBKI3lB2lFo1nSDtfUaGSN5AM8v+egUTwdpUkQVAq+6iZ/R93f3n42YDvjr6P1TsRqoVOANe6++fNbD1wj7v/SFjnPOAOd/+prPMq+6joDWWzdU6y/+JiYCt48slAb75jR6ATL5v1My3LZ97fU3XmUVGIibOPmtmXzOwbMa/N0XqhtEmSKnPhyX8duN7MfniCH7BgZnvNbO/hw4eL7i5EO5RNZlZ0/d4kIQDls36mGZvz/p4hLLXZR+KmCXlf5FQNje3zMeCdSDUkhkAVqpBxHXuSobWJZS6TInXz/p6mIqtlJ4iFmmwEH2apsfi6mDpnAqeFn9cTeBi9Kvz+GZYai7flOa8EgegNVXZ8VaTF6MIyk1F7xSgZXFUdtjyHUqlLEMwCd4ed+5eAdWH5JuDm8PMbgX3AA+H7+yL7vxL4ewL30c+MBEbWS4JA9IoinW9a3boS5dX5e9KOUUeHLWN0KkmCQEtVCtEVtm2Dm25aakyNLpeYZWitYhnJpqirrTJGp6KlKoXoMouLy4UALF0uMcvQWtSw3CZ1rQgmY/RESBAI0QWSUkPAqc4xq6NvO89REerqsPskDDuEBIEQXSBtJDzqHPN09FXnOaqLujrsPgnDDiFBIEQXSFsUPto59qWjjxKXNK/ODruP16hlVrbdACEEQWe/sLA09bMZXHVVvzuyxcWlv+vAgeA7BL+rz79titCMQIguEDdC/sQnYOfOtltWjrh1DaIGcNEJ5D4qhKgPuXN2CrmPCiGaR+6cvUCCQAhRH3Ln7AUSBEKI+pA7Zy+QIBCiCoqsKzw05M7ZeeQ+KkRZslwkheg4mhEIURa5SIqeI0EgRFnqSqAmRENIEAhRFrlIip4jQSBEWeQiKXqOBIEQZZGLpOg58hoSogqUQE30mFIzAjNbZ2Z3mdlj4fuZMXXeZGb3R17/z8zeHm77mJn9Y2Tba8q0RwghRHHKqoauBu529wsIFrG/eryCu3/F3V/j7q8BfhF4FvibSJX/NNru7veXbI8QQoiClBUEm4Fbw8+3Am/PqP9O4A53fzajnhBCiIYoKwhe4e5PhZ//CXhFRv0rgE+Ole0wswfN7CNmdlrJ9gghhChIprHYzL4E/GDMpiVhk+7uZpa4uIGZnQ1cCNwZKf59AgGyGtgF/B5wTcL+C8ACwAb5ZwshRGWUWpjGzB4FLnb3p8KO/qvu/mMJdX8b+El3X0jYfjHwH9393+Q472HgwMQNL8d64OmWzl2GvrYb+tt2tbt5+tr2pto95+5njReWdR/dA2wBrg3f/yKl7rsIZgAvYmZnh0LECOwL38hz0rgf0hRmtjduhZ+u09d2Q3/brnY3T1/b3na7y9oIrgXeYmaPAW8Ov2Nmm8zs5lElM9sInAf8r7H9F81sH7CPQCL+l5LtEUIIUZBSMwJ3PwJcElO+F3h/5PsTwDkx9X6xzPmFEEKURykmirOr7QZMSF/bDf1tu9rdPH1te6vtLmUsFkII0X80IxBCiIEjQZCBmf1bM3vIzF4ws0SrvpldamaPmtl+M1uWaqNp8uSBCuudjOR62tN0O8faknoNzew0M/tUuP3roRNC6+Ro93vM7HDkOr8/7jhNY2a3mNl3zCzWW88C/iT8XQ+a2euabmMcOdp9sZk9E7nef9B0G+Mws/PM7Ctm9nDYp/x2TJ12rrm765XyAn4C+DHgq8CmhDozwLeAVxIExz0AvKrldl8HXB1+vhr4UEK9Y21f47zXENgG3BR+vgL4VE/a/R7gT9tua0zbfwF4HfCNhO2XAXcABvwM8PW225yz3RcDf9l2O2PadTbwuvDzS4FvxtwrrVxzzQgycPdH3P3RjGoXAfvd/XF3Pw7cRpCHqU2K5oFqmzzXMPqbPgtcEsagtEkX//tcuPvXgKMpVTYDH/eAe4CXh4GjrZKj3Z3E3Z9y938IP38PeITl3pStXHMJgmo4B/h25PtBYtxlGyZvHqiXmNleM7tnlB68JfJcwxfruPsJ4BlgtpHWJZP3v//VcKr/WTM7r5mmlaaL93VeftbMHjCzO8zsJ9tuzDihWvO1wNfHNrVyzbUwDen5lNw9LVq6VSrKAzXn7ofM7JXAl81sn7t/q+q2DpwvAJ909++b2b8jmNUohqY+/oHgvj5mZpcBnwcuaLlNL2JmpwP/E/gdd/+XttsDEgQAuPubSx7iEEHk9Ihzw7JaSWu3mf1zJIXH2cB3Eo5xKHx/3My+SjBKaUMQ5LmGozoHzWwlcAZwpJnmJZLZbg8CL0fcTGC/6QOt3NdliXau7v5FM9tpZuvdvfUcRGa2ikAILLr77TFVWrnmUg1Vw73ABWZ2vpmtJjBktuqBw6k8UJCQB8rMzhyl/jaz9cDPAQ831sKl5LmG0d/0TuDLHlrYWiSz3WM63ssJdMN9YA/wG6Eny88Az0TUjZ3FzH5wZDsys4sI+rm2BwyEbfpz4BF3/28J1dq55m1b0rv+At5BoKf7PvDPwJ1h+Q8BX4zUu4zAC+BbBCqltts9S7Bq3GPAl4B1Yfkm4Obw8xsJ8jw9EL6/r+U2L7uGBGnJLw8/vwT4DLAf+HvglW1f55zt/q/AQ+F1/grw4223OWzXJ4GngOfDe/x9wFXAVeF2Az4a/q59JHjNdbDdH4hc73uAN7bd5rBdPw848CBwf/i6rAvXXJHFQggxcKQaEkKIgSNBIIQQA0eCQAghBo4EgRBCDBwJAiGEGDgSBEIIMXAkCIQQYuBIEAghxMD5/1SENh4utwCVAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "eps = 0.25\n", - "min_pts = 12\n", - "\n", - "db,clusters = dbscan(points,eps,min_pts)\n", - "\n", - "plot_cluster(db,clusters)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I encourage you to try with different datasets and playing with the values of eps and min_pts.\n", - "\n", - "Also, try kmeans on this dataset and see how it compares to dbscan. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I hope by now you are convinced about about how cool dbscan is. But it has its pitfalls.\n", - "### When NOT to use ?\n", - "\n", - "1. You have a high dimentional dataset. Euclidean distance will fail thanks to '[curse of dimentionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_functions)'.\n", - "2. We have used a dict to store the points. So we can't do anything about the order in which the points will be processed. So it's not entirely deterministic.\n", - "3. Won't work well if there are large differences in density. Finding the min_pts and $ε$ combination will be difficult.\n", - "4. Choosing the $ε$ without understanding the data and its scale, might result is poor clustering performance." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/machine_learning/dbscan/dbscan.py b/machine_learning/dbscan/dbscan.py deleted file mode 100644 index 04fb5f0186e1..000000000000 --- a/machine_learning/dbscan/dbscan.py +++ /dev/null @@ -1,271 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np -from sklearn.datasets import make_moons -import warnings - - -def euclidean_distance(q, p): - """ - Calculates the Euclidean distance - between points q and p - - Distance can only be calculated between numeric values - >>> euclidean_distance([1,'a'],[1,2]) - Traceback (most recent call last): - ... - ValueError: Non-numeric input detected - - The dimentions of both the points must be the same - >>> euclidean_distance([1,1,1],[1,2]) - Traceback (most recent call last): - ... - ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 - - Supports only two dimentional points - >>> euclidean_distance([1,1,1],[1,2]) - Traceback (most recent call last): - ... - ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 - - Input should be in the format [x,y] or (x,y) - >>> euclidean_distance(1,2) - Traceback (most recent call last): - ... - TypeError: inputs must be iterable, either list [x,y] or tuple (x,y) - """ - if not hasattr(q, "__iter__") or not hasattr(p, "__iter__"): - raise TypeError("inputs must be iterable, either list [x,y] or tuple (x,y)") - - if isinstance(q, str) or isinstance(p, str): - raise TypeError("inputs cannot be str") - - if len(q) != 2 or len(p) != 2: - raise ValueError( - "expected dimensions to be 2-d, instead got p:{} and q:{}".format( - len(q), len(p) - ) - ) - - for num in q + p: - try: - num = int(num) - except: - raise ValueError("Non-numeric input detected") - - a = pow((q[0] - p[0]), 2) - b = pow((q[1] - p[1]), 2) - return pow((a + b), 0.5) - - -def find_neighbors(db, q, eps): - """ - Finds all points in the db that - are within a distance of eps from Q - - eps value should be a number - >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, (2,5),'a') - Traceback (most recent call last): - ... - ValueError: eps should be either int or float - - Q must be a 2-d point as list or tuple - >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 2, 0.5) - Traceback (most recent call last): - ... - TypeError: Q must a 2-dimentional point in the format (x,y) or [x,y] - - Points must be in correct format - >>> find_neighbors([], (2,2) ,0.4) - Traceback (most recent call last): - ... - TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} - """ - - if not isinstance(eps, (int, float)): - raise ValueError("eps should be either int or float") - - if not hasattr(q, "__iter__"): - raise TypeError("Q must a 2-dimentional point in the format (x,y) or [x,y]") - - if not isinstance(db, dict): - raise TypeError( - "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" - ) - - return [p for p in db if euclidean_distance(q, p) <= eps] - - -def plot_cluster(db, clusters, ax): - """ - Extracts all the points in the db and puts them together - as seperate clusters and finally plots them - - db cannot be empty - >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) - >>> plot_cluster({},[1,2], axes[1] ) - Traceback (most recent call last): - ... - Exception: db is empty. No points to cluster - - clusters cannot be empty - >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) - >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) - Traceback (most recent call last): - ... - Exception: nothing to cluster. Empty clusters - - clusters cannot be empty - >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) - >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) - Traceback (most recent call last): - ... - Exception: nothing to cluster. Empty clusters - - ax must be a plotable - >>> plot_cluster({ (1,2):{'label':'1'}, (2,3):{'label':'2'}},[1,2], [] ) - Traceback (most recent call last): - ... - TypeError: ax must be an slot in a matplotlib figure - """ - if len(db) == 0: - raise Exception("db is empty. No points to cluster") - - if len(clusters) == 0: - raise Exception("nothing to cluster. Empty clusters") - - if not hasattr(ax, "plot"): - raise TypeError("ax must be an slot in a matplotlib figure") - - temp = [] - noise = [] - for i in clusters: - stack = [] - for k, v in db.items(): - if v["label"] == i: - stack.append(k) - elif v["label"] == "noise": - noise.append(k) - temp.append(stack) - - color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters)))) - for i in range(0, len(temp)): - c = next(color) - x = [l[0] for l in temp[i]] - y = [l[1] for l in temp[i]] - ax.plot(x, y, "ro", c=c) - - x = [l[0] for l in noise] - y = [l[1] for l in noise] - ax.plot(x, y, "ro", c="0") - - -def dbscan(db, eps, min_pts): - """ - Implementation of the DBSCAN algorithm - - Points must be in correct format - >>> dbscan([], (2,2) ,0.4) - Traceback (most recent call last): - ... - TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} - - eps value should be a number - >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},'a',20 ) - Traceback (most recent call last): - ... - ValueError: eps should be either int or float - - min_pts value should be an integer - >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},0.4,20.0 ) - Traceback (most recent call last): - ... - ValueError: min_pts should be int - - db cannot be empty - >>> dbscan({},0.4,20.0 ) - Traceback (most recent call last): - ... - Exception: db is empty, nothing to cluster - - min_pts cannot be negative - >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 0.4, -20) - Traceback (most recent call last): - ... - ValueError: min_pts or eps cannot be negative - - eps cannot be negative - >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},-0.4, 20) - Traceback (most recent call last): - ... - ValueError: min_pts or eps cannot be negative - - """ - if not isinstance(db, dict): - raise TypeError( - "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" - ) - - if len(db) == 0: - raise Exception("db is empty, nothing to cluster") - - if not isinstance(eps, (int, float)): - raise ValueError("eps should be either int or float") - - if not isinstance(min_pts, int): - raise ValueError("min_pts should be int") - - if min_pts < 0 or eps < 0: - raise ValueError("min_pts or eps cannot be negative") - - if min_pts == 0: - warnings.warn("min_pts is 0. Are you sure you want this ?") - - if eps == 0: - warnings.warn("eps is 0. Are you sure you want this ?") - - clusters = [] - c = 0 - for p in db: - if db[p]["label"] != "undefined": - continue - neighbors = find_neighbors(db, p, eps) - if len(neighbors) < min_pts: - db[p]["label"] = "noise" - continue - c += 1 - clusters.append(c) - db[p]["label"] = c - neighbors.remove(p) - seed_set = neighbors.copy() - while seed_set != []: - q = seed_set.pop(0) - if db[q]["label"] == "noise": - db[q]["label"] = c - if db[q]["label"] != "undefined": - continue - db[q]["label"] = c - neighbors_n = find_neighbors(db, q, eps) - if len(neighbors_n) >= min_pts: - seed_set = seed_set + neighbors_n - return db, clusters - - -if __name__ == "__main__": - - fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) - - x, label = make_moons(n_samples=200, noise=0.1, random_state=19) - - axes[0].plot(x[:, 0], x[:, 1], "ro") - - points = {(point[0], point[1]): {"label": "undefined"} for point in x} - - eps = 0.25 - - min_pts = 12 - - db, clusters = dbscan(points, eps, min_pts) - - plot_cluster(db, clusters, axes[1]) - - plt.show() diff --git a/machine_learning/naive_bayes.ipynb b/machine_learning/naive_bayes.ipynb deleted file mode 100644 index 5a427c5cb965..000000000000 --- a/machine_learning/naive_bayes.ipynb +++ /dev/null @@ -1,1659 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from sklearn import datasets\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "iris = datasets.load_iris()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "df = pd.DataFrame(iris.data)\n", - "df.columns = [\"sl\", \"sw\", 'pl', 'pw']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def abc(k, *val):\n", - " if k < val[0]:\n", - " return 0\n", - " else:\n", - " return 1" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 0\n", - "2 0\n", - "3 0\n", - "4 1\n", - "5 1\n", - "6 0\n", - "7 1\n", - "8 0\n", - "9 0\n", - "10 1\n", - "11 0\n", - "12 0\n", - "13 0\n", - "14 1\n", - "15 1\n", - "16 1\n", - "17 1\n", - "18 1\n", - "19 1\n", - "20 1\n", - "21 1\n", - "22 0\n", - "23 1\n", - "24 0\n", - "25 1\n", - "26 1\n", - "27 1\n", - "28 1\n", - "29 0\n", - " ..\n", - "120 1\n", - "121 1\n", - "122 1\n", - "123 1\n", - "124 1\n", - "125 1\n", - "126 1\n", - "127 1\n", - "128 1\n", - "129 1\n", - "130 1\n", - "131 1\n", - "132 1\n", - "133 1\n", - "134 1\n", - "135 1\n", - "136 1\n", - "137 1\n", - "138 1\n", - "139 1\n", - "140 1\n", - "141 1\n", - "142 1\n", - "143 1\n", - "144 1\n", - "145 1\n", - "146 1\n", - "147 1\n", - "148 1\n", - "149 1\n", - "Name: sl, dtype: int64" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.sl.apply(abc, args=(5,))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def label(val, *boundaries):\n", - " if (val < boundaries[0]):\n", - " return 'a'\n", - " elif (val < boundaries[1]):\n", - " return 'b'\n", - " elif (val < boundaries[2]):\n", - " return 'c'\n", - " else:\n", - " return 'd'\n", - "\n", - "def toLabel(df, old_feature_name):\n", - " second = df[old_feature_name].mean()\n", - " minimum = df[old_feature_name].min()\n", - " first = (minimum + second)/2\n", - " maximum = df[old_feature_name].max()\n", - " third = (maximum + second)/2\n", - " return df[old_feature_name].apply(label, args= (first, second, third))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
slswplpwsl_labeledsw_labeledpl_labeledpw_labeled
05.13.51.40.2bcaa
14.93.01.40.2abaa
24.73.21.30.2acaa
34.63.11.50.2acaa
45.03.61.40.2acaa
55.43.91.70.4bdaa
64.63.41.40.3acaa
75.03.41.50.2acaa
84.42.91.40.2abaa
94.93.11.50.1acaa
105.43.71.50.2bcaa
114.83.41.60.2acaa
124.83.01.40.1abaa
134.33.01.10.1abaa
145.84.01.20.2bdaa
155.74.41.50.4bdaa
165.43.91.30.4bdaa
175.13.51.40.3bcaa
185.73.81.70.3bdaa
195.13.81.50.3bdaa
205.43.41.70.2bcaa
215.13.71.50.4bcaa
224.63.61.00.2acaa
235.13.31.70.5bcaa
244.83.41.90.2acaa
255.03.01.60.2abaa
265.03.41.60.4acaa
275.23.51.50.2bcaa
285.23.41.40.2bcaa
294.73.21.60.2acaa
...........................
1206.93.25.72.3dcdd
1215.62.84.92.0bbcd
1227.72.86.72.0dbdd
1236.32.74.91.8cbcc
1246.73.35.72.1ccdd
1257.23.26.01.8dcdc
1266.22.84.81.8cbcc
1276.13.04.91.8cbcc
1286.42.85.62.1cbdd
1297.23.05.81.6dbdc
1307.42.86.11.9dbdd
1317.93.86.42.0dddd
1326.42.85.62.2cbdd
1336.32.85.11.5cbcc
1346.12.65.61.4cbdc
1357.73.06.12.3dbdd
1366.33.45.62.4ccdd
1376.43.15.51.8ccdc
1386.03.04.81.8cbcc
1396.93.15.42.1dcdd
1406.73.15.62.4ccdd
1416.93.15.12.3dccd
1425.82.75.11.9bbcd
1436.83.25.92.3ccdd
1446.73.35.72.5ccdd
1456.73.05.22.3cbcd
1466.32.55.01.9cacd
1476.53.05.22.0cbcd
1486.23.45.42.3ccdd
1495.93.05.11.8cbcc
\n", - "

150 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " sl sw pl pw sl_labeled sw_labeled pl_labeled pw_labeled\n", - "0 5.1 3.5 1.4 0.2 b c a a\n", - "1 4.9 3.0 1.4 0.2 a b a a\n", - "2 4.7 3.2 1.3 0.2 a c a a\n", - "3 4.6 3.1 1.5 0.2 a c a a\n", - "4 5.0 3.6 1.4 0.2 a c a a\n", - "5 5.4 3.9 1.7 0.4 b d a a\n", - "6 4.6 3.4 1.4 0.3 a c a a\n", - "7 5.0 3.4 1.5 0.2 a c a a\n", - "8 4.4 2.9 1.4 0.2 a b a a\n", - "9 4.9 3.1 1.5 0.1 a c a a\n", - "10 5.4 3.7 1.5 0.2 b c a a\n", - "11 4.8 3.4 1.6 0.2 a c a a\n", - "12 4.8 3.0 1.4 0.1 a b a a\n", - "13 4.3 3.0 1.1 0.1 a b a a\n", - "14 5.8 4.0 1.2 0.2 b d a a\n", - "15 5.7 4.4 1.5 0.4 b d a a\n", - "16 5.4 3.9 1.3 0.4 b d a a\n", - "17 5.1 3.5 1.4 0.3 b c a a\n", - "18 5.7 3.8 1.7 0.3 b d a a\n", - "19 5.1 3.8 1.5 0.3 b d a a\n", - "20 5.4 3.4 1.7 0.2 b c a a\n", - "21 5.1 3.7 1.5 0.4 b c a a\n", - "22 4.6 3.6 1.0 0.2 a c a a\n", - "23 5.1 3.3 1.7 0.5 b c a a\n", - "24 4.8 3.4 1.9 0.2 a c a a\n", - "25 5.0 3.0 1.6 0.2 a b a a\n", - "26 5.0 3.4 1.6 0.4 a c a a\n", - "27 5.2 3.5 1.5 0.2 b c a a\n", - "28 5.2 3.4 1.4 0.2 b c a a\n", - "29 4.7 3.2 1.6 0.2 a c a a\n", - ".. ... ... ... ... ... ... ... ...\n", - "120 6.9 3.2 5.7 2.3 d c d d\n", - "121 5.6 2.8 4.9 2.0 b b c d\n", - "122 7.7 2.8 6.7 2.0 d b d d\n", - "123 6.3 2.7 4.9 1.8 c b c c\n", - "124 6.7 3.3 5.7 2.1 c c d d\n", - "125 7.2 3.2 6.0 1.8 d c d c\n", - "126 6.2 2.8 4.8 1.8 c b c c\n", - "127 6.1 3.0 4.9 1.8 c b c c\n", - "128 6.4 2.8 5.6 2.1 c b d d\n", - "129 7.2 3.0 5.8 1.6 d b d c\n", - "130 7.4 2.8 6.1 1.9 d b d d\n", - "131 7.9 3.8 6.4 2.0 d d d d\n", - "132 6.4 2.8 5.6 2.2 c b d d\n", - "133 6.3 2.8 5.1 1.5 c b c c\n", - "134 6.1 2.6 5.6 1.4 c b d c\n", - "135 7.7 3.0 6.1 2.3 d b d d\n", - "136 6.3 3.4 5.6 2.4 c c d d\n", - "137 6.4 3.1 5.5 1.8 c c d c\n", - "138 6.0 3.0 4.8 1.8 c b c c\n", - "139 6.9 3.1 5.4 2.1 d c d d\n", - "140 6.7 3.1 5.6 2.4 c c d d\n", - "141 6.9 3.1 5.1 2.3 d c c d\n", - "142 5.8 2.7 5.1 1.9 b b c d\n", - "143 6.8 3.2 5.9 2.3 c c d d\n", - "144 6.7 3.3 5.7 2.5 c c d d\n", - "145 6.7 3.0 5.2 2.3 c b c d\n", - "146 6.3 2.5 5.0 1.9 c a c d\n", - "147 6.5 3.0 5.2 2.0 c b c d\n", - "148 6.2 3.4 5.4 2.3 c c d d\n", - "149 5.9 3.0 5.1 1.8 c b c c\n", - "\n", - "[150 rows x 8 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df['sl_labeled'] = toLabel(df, 'sl')\n", - "df['sw_labeled'] = toLabel(df, 'sw')\n", - "df['pl_labeled'] = toLabel(df, 'pl')\n", - "df['pw_labeled'] = toLabel(df, 'pw')\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "df.drop(['sl', 'sw', 'pl', 'pw'], axis = 1, inplace = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'a', 'b', 'c', 'd'}" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "set(df['sl_labeled'])" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"output\"] = iris.target" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sl_labeledsw_labeledpl_labeledpw_labeledoutput
0bcaa0
1abaa0
2acaa0
3acaa0
4acaa0
5bdaa0
6acaa0
7acaa0
8abaa0
9acaa0
10bcaa0
11acaa0
12abaa0
13abaa0
14bdaa0
15bdaa0
16bdaa0
17bcaa0
18bdaa0
19bdaa0
20bcaa0
21bcaa0
22acaa0
23bcaa0
24acaa0
25abaa0
26acaa0
27bcaa0
28bcaa0
29acaa0
..................
120dcdd2
121bbcd2
122dbdd2
123cbcc2
124ccdd2
125dcdc2
126cbcc2
127cbcc2
128cbdd2
129dbdc2
130dbdd2
131dddd2
132cbdd2
133cbcc2
134cbdc2
135dbdd2
136ccdd2
137ccdc2
138cbcc2
139dcdd2
140ccdd2
141dccd2
142bbcd2
143ccdd2
144ccdd2
145cbcd2
146cacd2
147cbcd2
148ccdd2
149cbcc2
\n", - "

150 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " sl_labeled sw_labeled pl_labeled pw_labeled output\n", - "0 b c a a 0\n", - "1 a b a a 0\n", - "2 a c a a 0\n", - "3 a c a a 0\n", - "4 a c a a 0\n", - "5 b d a a 0\n", - "6 a c a a 0\n", - "7 a c a a 0\n", - "8 a b a a 0\n", - "9 a c a a 0\n", - "10 b c a a 0\n", - "11 a c a a 0\n", - "12 a b a a 0\n", - "13 a b a a 0\n", - "14 b d a a 0\n", - "15 b d a a 0\n", - "16 b d a a 0\n", - "17 b c a a 0\n", - "18 b d a a 0\n", - "19 b d a a 0\n", - "20 b c a a 0\n", - "21 b c a a 0\n", - "22 a c a a 0\n", - "23 b c a a 0\n", - "24 a c a a 0\n", - "25 a b a a 0\n", - "26 a c a a 0\n", - "27 b c a a 0\n", - "28 b c a a 0\n", - "29 a c a a 0\n", - ".. ... ... ... ... ...\n", - "120 d c d d 2\n", - "121 b b c d 2\n", - "122 d b d d 2\n", - "123 c b c c 2\n", - "124 c c d d 2\n", - "125 d c d c 2\n", - "126 c b c c 2\n", - "127 c b c c 2\n", - "128 c b d d 2\n", - "129 d b d c 2\n", - "130 d b d d 2\n", - "131 d d d d 2\n", - "132 c b d d 2\n", - "133 c b c c 2\n", - "134 c b d c 2\n", - "135 d b d d 2\n", - "136 c c d d 2\n", - "137 c c d c 2\n", - "138 c b c c 2\n", - "139 d c d d 2\n", - "140 c c d d 2\n", - "141 d c c d 2\n", - "142 b b c d 2\n", - "143 c c d d 2\n", - "144 c c d d 2\n", - "145 c b c d 2\n", - "146 c a c d 2\n", - "147 c b c d 2\n", - "148 c c d d 2\n", - "149 c b c c 2\n", - "\n", - "[150 rows x 5 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def fit(data):\n", - " output_name = data.columns[-1]\n", - " features = data.columns[0:-1]\n", - " counts = {}\n", - " possible_outputs = set(data[output_name])\n", - " for output in possible_outputs:\n", - " counts[output] = {}\n", - " smallData = data[data[output_name] == output]\n", - " counts[output][\"total_count\"] = len(smallData)\n", - " for f in features:\n", - " counts[output][f] = {}\n", - " possible_values = set(smallData[f])\n", - " for value in possible_values:\n", - " val_count = len(smallData[smallData[f] == value])\n", - " counts[output][f][value] = val_count\n", - " return counts" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: {'pl_labeled': {'a': 50},\n", - " 'pw_labeled': {'a': 50},\n", - " 'sl_labeled': {'a': 28, 'b': 22},\n", - " 'sw_labeled': {'a': 1, 'b': 7, 'c': 32, 'd': 10},\n", - " 'total_count': 50},\n", - " 1: {'pl_labeled': {'b': 7, 'c': 43},\n", - " 'pw_labeled': {'b': 10, 'c': 40},\n", - " 'sl_labeled': {'a': 3, 'b': 21, 'c': 24, 'd': 2},\n", - " 'sw_labeled': {'a': 13, 'b': 29, 'c': 8},\n", - " 'total_count': 50},\n", - " 2: {'pl_labeled': {'c': 20, 'd': 30},\n", - " 'pw_labeled': {'c': 16, 'd': 34},\n", - " 'sl_labeled': {'a': 1, 'b': 5, 'c': 29, 'd': 15},\n", - " 'sw_labeled': {'a': 5, 'b': 28, 'c': 15, 'd': 2},\n", - " 'total_count': 50}}" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit(df)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python [default]", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/machine_learning/random_forest_classification/Social_Network_Ads.csv b/machine_learning/random_forest_classification/Social_Network_Ads.csv deleted file mode 100644 index 4a53849c2baf..000000000000 --- a/machine_learning/random_forest_classification/Social_Network_Ads.csv +++ /dev/null @@ -1,401 +0,0 @@ -User ID,Gender,Age,EstimatedSalary,Purchased -15624510,Male,19,19000,0 -15810944,Male,35,20000,0 -15668575,Female,26,43000,0 -15603246,Female,27,57000,0 -15804002,Male,19,76000,0 -15728773,Male,27,58000,0 -15598044,Female,27,84000,0 -15694829,Female,32,150000,1 -15600575,Male,25,33000,0 -15727311,Female,35,65000,0 -15570769,Female,26,80000,0 -15606274,Female,26,52000,0 -15746139,Male,20,86000,0 -15704987,Male,32,18000,0 -15628972,Male,18,82000,0 -15697686,Male,29,80000,0 -15733883,Male,47,25000,1 -15617482,Male,45,26000,1 -15704583,Male,46,28000,1 -15621083,Female,48,29000,1 -15649487,Male,45,22000,1 -15736760,Female,47,49000,1 -15714658,Male,48,41000,1 -15599081,Female,45,22000,1 -15705113,Male,46,23000,1 -15631159,Male,47,20000,1 -15792818,Male,49,28000,1 -15633531,Female,47,30000,1 -15744529,Male,29,43000,0 -15669656,Male,31,18000,0 -15581198,Male,31,74000,0 -15729054,Female,27,137000,1 -15573452,Female,21,16000,0 -15776733,Female,28,44000,0 -15724858,Male,27,90000,0 -15713144,Male,35,27000,0 -15690188,Female,33,28000,0 -15689425,Male,30,49000,0 -15671766,Female,26,72000,0 -15782806,Female,27,31000,0 -15764419,Female,27,17000,0 -15591915,Female,33,51000,0 -15772798,Male,35,108000,0 -15792008,Male,30,15000,0 -15715541,Female,28,84000,0 -15639277,Male,23,20000,0 -15798850,Male,25,79000,0 -15776348,Female,27,54000,0 -15727696,Male,30,135000,1 -15793813,Female,31,89000,0 -15694395,Female,24,32000,0 -15764195,Female,18,44000,0 -15744919,Female,29,83000,0 -15671655,Female,35,23000,0 -15654901,Female,27,58000,0 -15649136,Female,24,55000,0 -15775562,Female,23,48000,0 -15807481,Male,28,79000,0 -15642885,Male,22,18000,0 -15789109,Female,32,117000,0 -15814004,Male,27,20000,0 -15673619,Male,25,87000,0 -15595135,Female,23,66000,0 -15583681,Male,32,120000,1 -15605000,Female,59,83000,0 -15718071,Male,24,58000,0 -15679760,Male,24,19000,0 -15654574,Female,23,82000,0 -15577178,Female,22,63000,0 -15595324,Female,31,68000,0 -15756932,Male,25,80000,0 -15726358,Female,24,27000,0 -15595228,Female,20,23000,0 -15782530,Female,33,113000,0 -15592877,Male,32,18000,0 -15651983,Male,34,112000,1 -15746737,Male,18,52000,0 -15774179,Female,22,27000,0 -15667265,Female,28,87000,0 -15655123,Female,26,17000,0 -15595917,Male,30,80000,0 -15668385,Male,39,42000,0 -15709476,Male,20,49000,0 -15711218,Male,35,88000,0 -15798659,Female,30,62000,0 -15663939,Female,31,118000,1 -15694946,Male,24,55000,0 -15631912,Female,28,85000,0 -15768816,Male,26,81000,0 -15682268,Male,35,50000,0 -15684801,Male,22,81000,0 -15636428,Female,30,116000,0 -15809823,Male,26,15000,0 -15699284,Female,29,28000,0 -15786993,Female,29,83000,0 -15709441,Female,35,44000,0 -15710257,Female,35,25000,0 -15582492,Male,28,123000,1 -15575694,Male,35,73000,0 -15756820,Female,28,37000,0 -15766289,Male,27,88000,0 -15593014,Male,28,59000,0 -15584545,Female,32,86000,0 -15675949,Female,33,149000,1 -15672091,Female,19,21000,0 -15801658,Male,21,72000,0 -15706185,Female,26,35000,0 -15789863,Male,27,89000,0 -15720943,Male,26,86000,0 -15697997,Female,38,80000,0 -15665416,Female,39,71000,0 -15660200,Female,37,71000,0 -15619653,Male,38,61000,0 -15773447,Male,37,55000,0 -15739160,Male,42,80000,0 -15689237,Male,40,57000,0 -15679297,Male,35,75000,0 -15591433,Male,36,52000,0 -15642725,Male,40,59000,0 -15701962,Male,41,59000,0 -15811613,Female,36,75000,0 -15741049,Male,37,72000,0 -15724423,Female,40,75000,0 -15574305,Male,35,53000,0 -15678168,Female,41,51000,0 -15697020,Female,39,61000,0 -15610801,Male,42,65000,0 -15745232,Male,26,32000,0 -15722758,Male,30,17000,0 -15792102,Female,26,84000,0 -15675185,Male,31,58000,0 -15801247,Male,33,31000,0 -15725660,Male,30,87000,0 -15638963,Female,21,68000,0 -15800061,Female,28,55000,0 -15578006,Male,23,63000,0 -15668504,Female,20,82000,0 -15687491,Male,30,107000,1 -15610403,Female,28,59000,0 -15741094,Male,19,25000,0 -15807909,Male,19,85000,0 -15666141,Female,18,68000,0 -15617134,Male,35,59000,0 -15783029,Male,30,89000,0 -15622833,Female,34,25000,0 -15746422,Female,24,89000,0 -15750839,Female,27,96000,1 -15749130,Female,41,30000,0 -15779862,Male,29,61000,0 -15767871,Male,20,74000,0 -15679651,Female,26,15000,0 -15576219,Male,41,45000,0 -15699247,Male,31,76000,0 -15619087,Female,36,50000,0 -15605327,Male,40,47000,0 -15610140,Female,31,15000,0 -15791174,Male,46,59000,0 -15602373,Male,29,75000,0 -15762605,Male,26,30000,0 -15598840,Female,32,135000,1 -15744279,Male,32,100000,1 -15670619,Male,25,90000,0 -15599533,Female,37,33000,0 -15757837,Male,35,38000,0 -15697574,Female,33,69000,0 -15578738,Female,18,86000,0 -15762228,Female,22,55000,0 -15614827,Female,35,71000,0 -15789815,Male,29,148000,1 -15579781,Female,29,47000,0 -15587013,Male,21,88000,0 -15570932,Male,34,115000,0 -15794661,Female,26,118000,0 -15581654,Female,34,43000,0 -15644296,Female,34,72000,0 -15614420,Female,23,28000,0 -15609653,Female,35,47000,0 -15594577,Male,25,22000,0 -15584114,Male,24,23000,0 -15673367,Female,31,34000,0 -15685576,Male,26,16000,0 -15774727,Female,31,71000,0 -15694288,Female,32,117000,1 -15603319,Male,33,43000,0 -15759066,Female,33,60000,0 -15814816,Male,31,66000,0 -15724402,Female,20,82000,0 -15571059,Female,33,41000,0 -15674206,Male,35,72000,0 -15715160,Male,28,32000,0 -15730448,Male,24,84000,0 -15662067,Female,19,26000,0 -15779581,Male,29,43000,0 -15662901,Male,19,70000,0 -15689751,Male,28,89000,0 -15667742,Male,34,43000,0 -15738448,Female,30,79000,0 -15680243,Female,20,36000,0 -15745083,Male,26,80000,0 -15708228,Male,35,22000,0 -15628523,Male,35,39000,0 -15708196,Male,49,74000,0 -15735549,Female,39,134000,1 -15809347,Female,41,71000,0 -15660866,Female,58,101000,1 -15766609,Female,47,47000,0 -15654230,Female,55,130000,1 -15794566,Female,52,114000,0 -15800890,Female,40,142000,1 -15697424,Female,46,22000,0 -15724536,Female,48,96000,1 -15735878,Male,52,150000,1 -15707596,Female,59,42000,0 -15657163,Male,35,58000,0 -15622478,Male,47,43000,0 -15779529,Female,60,108000,1 -15636023,Male,49,65000,0 -15582066,Male,40,78000,0 -15666675,Female,46,96000,0 -15732987,Male,59,143000,1 -15789432,Female,41,80000,0 -15663161,Male,35,91000,1 -15694879,Male,37,144000,1 -15593715,Male,60,102000,1 -15575002,Female,35,60000,0 -15622171,Male,37,53000,0 -15795224,Female,36,126000,1 -15685346,Male,56,133000,1 -15691808,Female,40,72000,0 -15721007,Female,42,80000,1 -15794253,Female,35,147000,1 -15694453,Male,39,42000,0 -15813113,Male,40,107000,1 -15614187,Male,49,86000,1 -15619407,Female,38,112000,0 -15646227,Male,46,79000,1 -15660541,Male,40,57000,0 -15753874,Female,37,80000,0 -15617877,Female,46,82000,0 -15772073,Female,53,143000,1 -15701537,Male,42,149000,1 -15736228,Male,38,59000,0 -15780572,Female,50,88000,1 -15769596,Female,56,104000,1 -15586996,Female,41,72000,0 -15722061,Female,51,146000,1 -15638003,Female,35,50000,0 -15775590,Female,57,122000,1 -15730688,Male,41,52000,0 -15753102,Female,35,97000,1 -15810075,Female,44,39000,0 -15723373,Male,37,52000,0 -15795298,Female,48,134000,1 -15584320,Female,37,146000,1 -15724161,Female,50,44000,0 -15750056,Female,52,90000,1 -15609637,Female,41,72000,0 -15794493,Male,40,57000,0 -15569641,Female,58,95000,1 -15815236,Female,45,131000,1 -15811177,Female,35,77000,0 -15680587,Male,36,144000,1 -15672821,Female,55,125000,1 -15767681,Female,35,72000,0 -15600379,Male,48,90000,1 -15801336,Female,42,108000,1 -15721592,Male,40,75000,0 -15581282,Male,37,74000,0 -15746203,Female,47,144000,1 -15583137,Male,40,61000,0 -15680752,Female,43,133000,0 -15688172,Female,59,76000,1 -15791373,Male,60,42000,1 -15589449,Male,39,106000,1 -15692819,Female,57,26000,1 -15727467,Male,57,74000,1 -15734312,Male,38,71000,0 -15764604,Male,49,88000,1 -15613014,Female,52,38000,1 -15759684,Female,50,36000,1 -15609669,Female,59,88000,1 -15685536,Male,35,61000,0 -15750447,Male,37,70000,1 -15663249,Female,52,21000,1 -15638646,Male,48,141000,0 -15734161,Female,37,93000,1 -15631070,Female,37,62000,0 -15761950,Female,48,138000,1 -15649668,Male,41,79000,0 -15713912,Female,37,78000,1 -15586757,Male,39,134000,1 -15596522,Male,49,89000,1 -15625395,Male,55,39000,1 -15760570,Male,37,77000,0 -15566689,Female,35,57000,0 -15725794,Female,36,63000,0 -15673539,Male,42,73000,1 -15705298,Female,43,112000,1 -15675791,Male,45,79000,0 -15747043,Male,46,117000,1 -15736397,Female,58,38000,1 -15678201,Male,48,74000,1 -15720745,Female,37,137000,1 -15637593,Male,37,79000,1 -15598070,Female,40,60000,0 -15787550,Male,42,54000,0 -15603942,Female,51,134000,0 -15733973,Female,47,113000,1 -15596761,Male,36,125000,1 -15652400,Female,38,50000,0 -15717893,Female,42,70000,0 -15622585,Male,39,96000,1 -15733964,Female,38,50000,0 -15753861,Female,49,141000,1 -15747097,Female,39,79000,0 -15594762,Female,39,75000,1 -15667417,Female,54,104000,1 -15684861,Male,35,55000,0 -15742204,Male,45,32000,1 -15623502,Male,36,60000,0 -15774872,Female,52,138000,1 -15611191,Female,53,82000,1 -15674331,Male,41,52000,0 -15619465,Female,48,30000,1 -15575247,Female,48,131000,1 -15695679,Female,41,60000,0 -15713463,Male,41,72000,0 -15785170,Female,42,75000,0 -15796351,Male,36,118000,1 -15639576,Female,47,107000,1 -15693264,Male,38,51000,0 -15589715,Female,48,119000,1 -15769902,Male,42,65000,0 -15587177,Male,40,65000,0 -15814553,Male,57,60000,1 -15601550,Female,36,54000,0 -15664907,Male,58,144000,1 -15612465,Male,35,79000,0 -15810800,Female,38,55000,0 -15665760,Male,39,122000,1 -15588080,Female,53,104000,1 -15776844,Male,35,75000,0 -15717560,Female,38,65000,0 -15629739,Female,47,51000,1 -15729908,Male,47,105000,1 -15716781,Female,41,63000,0 -15646936,Male,53,72000,1 -15768151,Female,54,108000,1 -15579212,Male,39,77000,0 -15721835,Male,38,61000,0 -15800515,Female,38,113000,1 -15591279,Male,37,75000,0 -15587419,Female,42,90000,1 -15750335,Female,37,57000,0 -15699619,Male,36,99000,1 -15606472,Male,60,34000,1 -15778368,Male,54,70000,1 -15671387,Female,41,72000,0 -15573926,Male,40,71000,1 -15709183,Male,42,54000,0 -15577514,Male,43,129000,1 -15778830,Female,53,34000,1 -15768072,Female,47,50000,1 -15768293,Female,42,79000,0 -15654456,Male,42,104000,1 -15807525,Female,59,29000,1 -15574372,Female,58,47000,1 -15671249,Male,46,88000,1 -15779744,Male,38,71000,0 -15624755,Female,54,26000,1 -15611430,Female,60,46000,1 -15774744,Male,60,83000,1 -15629885,Female,39,73000,0 -15708791,Male,59,130000,1 -15793890,Female,37,80000,0 -15646091,Female,46,32000,1 -15596984,Female,46,74000,0 -15800215,Female,42,53000,0 -15577806,Male,41,87000,1 -15749381,Female,58,23000,1 -15683758,Male,42,64000,0 -15670615,Male,48,33000,1 -15715622,Female,44,139000,1 -15707634,Male,49,28000,1 -15806901,Female,57,33000,1 -15775335,Male,56,60000,1 -15724150,Female,49,39000,1 -15627220,Male,39,71000,0 -15672330,Male,47,34000,1 -15668521,Female,48,35000,1 -15807837,Male,48,33000,1 -15592570,Male,47,23000,1 -15748589,Female,45,45000,1 -15635893,Male,60,42000,1 -15757632,Female,39,59000,0 -15691863,Female,46,41000,1 -15706071,Male,51,23000,1 -15654296,Female,50,20000,1 -15755018,Male,36,33000,0 -15594041,Female,49,36000,1 \ No newline at end of file diff --git a/machine_learning/random_forest_classification/random_forest_classification.py b/machine_learning/random_forest_classification/random_forest_classification.py deleted file mode 100644 index 6aed4e6e66de..000000000000 --- a/machine_learning/random_forest_classification/random_forest_classification.py +++ /dev/null @@ -1,103 +0,0 @@ -# Random Forest Classification - -# Importing the libraries -import os -import numpy as np -import matplotlib.pyplot as plt -import pandas as pd - -# Importing the dataset -script_dir = os.path.dirname(os.path.realpath(__file__)) -dataset = pd.read_csv(os.path.join(script_dir, "Social_Network_Ads.csv")) -X = dataset.iloc[:, [2, 3]].values -y = dataset.iloc[:, 4].values - -# Splitting the dataset into the Training set and Test set -from sklearn.model_selection import train_test_split - -X_train, X_test, y_train, y_test = train_test_split( - X, y, test_size=0.25, random_state=0 -) - -# Feature Scaling -from sklearn.preprocessing import StandardScaler - -sc = StandardScaler() -X_train = sc.fit_transform(X_train) -X_test = sc.transform(X_test) - -# Fitting Random Forest Classification to the Training set -from sklearn.ensemble import RandomForestClassifier - -classifier = RandomForestClassifier( - n_estimators=10, criterion="entropy", random_state=0 -) -classifier.fit(X_train, y_train) - -# Predicting the Test set results -y_pred = classifier.predict(X_test) - -# Making the Confusion Matrix -from sklearn.metrics import confusion_matrix - -cm = confusion_matrix(y_test, y_pred) - -# Visualising the Training set results -from matplotlib.colors import ListedColormap - -X_set, y_set = X_train, y_train -X1, X2 = np.meshgrid( - np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), - np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01), -) -plt.contourf( - X1, - X2, - classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha=0.75, - cmap=ListedColormap(("red", "green")), -) -plt.xlim(X1.min(), X1.max()) -plt.ylim(X2.min(), X2.max()) -for i, j in enumerate(np.unique(y_set)): - plt.scatter( - X_set[y_set == j, 0], - X_set[y_set == j, 1], - c=ListedColormap(("red", "green"))(i), - label=j, - ) -plt.title("Random Forest Classification (Training set)") -plt.xlabel("Age") -plt.ylabel("Estimated Salary") -plt.legend() -plt.show() - -# Visualising the Test set results -from matplotlib.colors import ListedColormap - -X_set, y_set = X_test, y_test -X1, X2 = np.meshgrid( - np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), - np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01), -) -plt.contourf( - X1, - X2, - classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha=0.75, - cmap=ListedColormap(("red", "green")), -) -plt.xlim(X1.min(), X1.max()) -plt.ylim(X2.min(), X2.max()) -for i, j in enumerate(np.unique(y_set)): - plt.scatter( - X_set[y_set == j, 0], - X_set[y_set == j, 1], - c=ListedColormap(("red", "green"))(i), - label=j, - ) -plt.title("Random Forest Classification (Test set)") -plt.xlabel("Age") -plt.ylabel("Estimated Salary") -plt.legend() -plt.show() diff --git a/machine_learning/random_forest_classification/random_forest_classifier.ipynb b/machine_learning/random_forest_classification/random_forest_classifier.ipynb deleted file mode 100644 index 7ee66124c371..000000000000 --- a/machine_learning/random_forest_classification/random_forest_classifier.ipynb +++ /dev/null @@ -1,196 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Satyam\\AppData\\Roaming\\Python\\Python35\\site-packages\\sklearn\\ensemble\\weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.\n", - " from numpy.core.umath_tests import inner1d\n" - ] - } - ], - "source": [ - "# Importing the libraries\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.metrics import confusion_matrix\n", - "from matplotlib.colors import ListedColormap\n", - "from sklearn.ensemble import RandomForestClassifier" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Importing the dataset\n", - "dataset = pd.read_csv('Social_Network_Ads.csv')\n", - "X = dataset.iloc[:, [2, 3]].values\n", - "y = dataset.iloc[:, 4].values" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Splitting the dataset into the Training set and Test set\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Satyam\\AppData\\Roaming\\Python\\Python35\\site-packages\\sklearn\\utils\\validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.\n", - " warnings.warn(msg, DataConversionWarning)\n" - ] - } - ], - "source": [ - "# Feature Scaling\n", - "sc = StandardScaler()\n", - "X_train = sc.fit_transform(X_train)\n", - "X_test = sc.transform(X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[63 5]\n", - " [ 3 29]]\n" - ] - } - ], - "source": [ - "# Fitting classifier to the Training set\n", - "# Create your classifier here\n", - "classifier = RandomForestClassifier(n_estimators=10,criterion='entropy',random_state=0)\n", - "classifier.fit(X_train,y_train)\n", - "# Predicting the Test set results\n", - "y_pred = classifier.predict(X_test)\n", - "\n", - "# Making the Confusion Matrix\n", - "cm = confusion_matrix(y_test, y_pred)\n", - "print(cm)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuYHGWV8H+nZ5JJSGISBsgFCMl8kiEKGgTRIHyJIIgX\nFhV1wairLkbddVXQ9ZZlvaxZddeV9bJ+bgR1lSwoImoQVIhMBI0gYDRiQsAAAZJMyECGTEg6mZnz\n/VHVmb681VM1VdVVPXN+z5Mn3dXVVeft7jnnfc857zmiqhiGYRhGIWsBDMMwjHxgBsEwDMMAzCAY\nhmEYPmYQDMMwDMAMgmEYhuFjBsEwDMMAzCCMCURkiYg8lrUczULan5eIfF1ELi97/h4R6RaRPhFp\n9//vSPB+R4rIJhGZmNQ1q65/v4icmfS5WSAed4vICVnLkgVmEDJCRB4WkX3+H/8OEfm2iEzOWq64\niIiKyF5/XH0isrvB9w+lzEXkNBG5SUR2i8iTInKXiLy9ETKq6rtV9V98OcYBXwTOVdXJqtrj/78l\nwVt+FPi2qu4TkfvKvpsBEdlf9vzjIxxPp6renvS5jUBErhaRT5aeq7cx64vApzITKkPMIGTL+ao6\nGVgInAx8LGN5kuL5vlKbrKrTor5ZRFrTEKrs+ouAXwJrgWcD7cB7gFeked8AZgATgPviXsj1uYlI\nG/A3wNUAqvrc0ncD3A68t+y7+tcw1xwD/Ag4V0SOylqQRmMGIQeo6g7g53iGAQAReZWI/F5EnhaR\nR8tnMSIy15+J/42IbBWRXSKyvOz1if6K4ykR+TPwwvL7icgCEenyZ8f3ichflb32bRH5mojc7M8a\nfy0iM0XkP/3rbRKRk0cyThF5p4g86M/IfyIis8teUxH5exF5AHjAP3aCiNzin3+/iLyx7PxXisif\nRWSPiDwuIh8SkUnAzcDsslnv7BpB4N+B/1HVz6vqLvW4R1Xf6DgXEfmoiPzFv9efReS1Za89W0TW\nikiv/z18zz8uInKFiOz0v8MNInJi2Wf8GRGZD9zvX2q3iPyy7LN4tv+4TUS+4H/P3eK5myb6ry0R\nkcdE5CMisgP4lkP8FwG7VTWUC0xELhGRX4nIl0XkSeCfROR4EbnN/x52ich3RWRq2XseE5El/uPP\niMg1/sx7j4j8SUReMMJzTxWR9f5r14rIdeV/B1Vyz/flLn0P/1v22nNE5FZf/k0icqF//O+AvwY+\n7v9WbgBQ1WeA9cA5YT6zUYWq2r8M/gEPAy/zHx8DbAC+VPb6EuAkPKP9PKAbeI3/2lxAgW8AE4Hn\nA0Vggf/65/Bmf4cDxwJ/Ah7zXxsHPAh8HBgPnAXsATr9178N7AJOwZu5/hJ4CHgr0AJ8BritzrgU\neLbj+Fn+dV8AtAFfAX5V9b5bfJknApOAR4G3A614K6hdwHP887cDZ/qPpwMvKPvcHqsj32HAAPDS\nOudUXAN4AzDb/y7+GtgLzPJfuwZY7r82ATjDP/5y4B5gGiDAgrL3fBv4TNV32er6DIErgJ/4n8sU\nYDXw2TI5+4HP+5/pRMdY/h74acA4u4BLqo5d4l/zPf73PRGYD5zt/16OAn4NfKHsPY8BS/zHnwH2\n+eNvwTO+d0Q91x/PY8B78X6zbwAOAp8MGMt1wEfKvoeX+McnA4/j/X5b8X7XPQz93q92XRP4GvBv\nWeuJRv+zFUK2/EhE9uApvp3AJ0ovqGqXqm5Q1UFV/SOe4llc9f5Pqeo+Vf0D8Ac8wwDwRmCFqj6p\nqo8CXy57z4vx/kg+p6oHVPWXwI3AxWXn3KDejHk/cAOwX1W/o6oDwPfwlHM97vVXH7tFpHTvpcA3\nVfVeVS3iuccWicjcsvd91pd5H/Bq4GFV/Zaq9qvq74Hr8RQDeMrhOSLyLFV9SlXvHUamEtPxlMb2\nkOejqtep6jb/u/ge3grmtDI5jgNmq+p+Vb2j7PgU4ARAVHWjqoa+J3irDGAZcKn/uewB/hW4qOy0\nQeATqlr0P7dqpuEZ/ChsVdX/p6oD/u9rs6qu8X8vO/GMVPVvsZy1qvpz//fyXcpWvhHOfQkwqKpf\nVdWDqnodnoEN4iCecZ3lfw+/9o9fAGz2f7/9qnoPnkvo9cN8BnvwPrsxhRmEbHmNqk7Bm+mdABxR\nekFEXuQv058QkV7g3eWv++woe/wMnqIHbzb7aNlrj5Q9ng08qqqDVa8fXfa8u+zxPsfz4YLfL1DV\naf6/95Xd95AcqtqHN1Mrv2+5zMcBLyozLLvxjMpM//ULgVcCj/gum0XDyFTiKTwlOivk+YjIW33X\nRUmOExn6Lj6MtwK4Szz32zv88f0S+CrwX8BOEVkpIs8Ke0+fI/FWNPeU3ftn/vEST/iGO4in8AxT\nFMq/B8RzGX7fd809jbfCqf4tllP9u5w0gnNn460QAuWq4oN4K4m7fffc3/jHjwNeUvU7+muG//6n\nAA1NiMgDZhBygKquxfsj+0LZ4f/FcxUcq6pTga/jKZ4wbMdzFZWYU/Z4G3CsiBSqXn88othR2Yb3\nxwmA7+9vr7pveendR/Fmj9PK/k1W1fcAqOrvVPUCPBfGj4DvO65Rg3r+4XV4BmVYROQ4PNfce4F2\n9YLkf8L/LlR1h6q+U1VnA+8Cvlby/6vql1X1FOA5eG6XfwxzzzJ24Rng55Z9BlPVCwgfGtIw1/ij\nf+8oVF/z83guyZNU9VnA2wj/Wxwp26mcLEDlb7oCVd2uqpeo6iw8N9lKEZmH9zta4/gdvbf01oBL\nLsBbdY8pzCDkh/8EzhGRkttnCvCkqu4XkdOAN0W41veBj4nIdBE5BviHstfuxJuJfVhExvkBvvOB\na2OPoD7XAG8XkYXiZb78K3Cnqj4ccP6NwHwReYsv5zgReaF4AfHxIrJURKaq6kHgabxZP3irmfby\noKeDDwNvE5F/FJF2ABF5voi4PoNJeErjCf+8t+OtEPCfv8H/jMGbjSsw6Mv6IvHSSvcC+8tkDIW/\nivsGcIX4GS8icrSIvDzCZe4CpolItXKNwhS8MfSKyLHAh2JcKyx3AK3i7dFo9QPBpwSdLCJvLBvj\nbrzvYQBvUvVcEXlT2e/oNBHp9M/tBjqqrjURz3V1a8Jjyj1mEHKCqj4BfAf4Z//Q3wGf9mMM/8zQ\nDDgMn8JzzzwE/ALPN1u6zwE8A/AKvBno14C3quqmuGOoh6reClyOFwfYDvwfKn3h1efvAc71z9mG\n51ooBU8B3gI87Lsw3o3nTsIfxzXAFt9FUJNlpKq/wQtyn+Wf9ySwErjJce6fgf/AW1V04wX6f112\nyguBO0WkD0/5vF+9PQTPwlPmT+F9Fz14QdOofAQvCeC3/lhvBTrrv6VC/gN4q883j+DeJT6BFzPp\nxRvj9TGuFQo/zvRavO/2Kby42E14KxUXLwJ+JyJ7gR8Cf6+qW1W1Fy9o/Wa8390O4LMM/Y6uBJ4v\nXgbdD/xjrwFuUdVuxhiiag1yDGM0IyJH4mWdnRwQeG4KROQe4D9V9bvDnjzyewjwO+Atqroxrfvk\nFTMIhmHkEt+duRFvdfU3eNly8/xMJyMFxuIuRMMwmoMFeGnOk4C/ABeaMUgXWyEYhmEYgAWVDcMw\nDJ+mchmNmzJOJxwxIWsxDGPU0Ffs45Q9yRbZvWdKHy2FFiaOS6XatjEC+h7u26WqRw53XlMZhAlH\nTODUT56atRiGMWpY+1AXd69N9m9q3JldTJ40hYUz61WsMBpJ19u6Hhn+LHMZGYZhGD5mEAzDMAzA\nDIJhGIbh01QxBMMwjCyY3DKZi+ZcxKyJsyjkdB49yCDb923n2q3X0jfQN6JrmEEwDMMYhovmXMSJ\nx5xI25Q2vOoW+UNVad/TzkVcxJUPXTmia+TT1BmGYeSIWRNn5doYAIgIbVPamDUxdKuPGswgGIZh\nDEOBQq6NQQkRieXSyswgiMgEEblLRP7gd5r6VFayGIZhGNmuEIrAWar6fLxmFOeJyIszlMcwDCPX\n3L7mds578Xmc+8JzWfmllYlfPzODoB6lUPg4/59V2jMMw3AwMDDApz/6ab5x7Te48dc38tMbfsqD\n9z+Y6D0yjSGISIuIrAd24nUoutNxzjIRuVtE7j6452DjhTQMw4jIlB+spuPks5h/1AI6Tj6LKT9Y\nHfuaf7z3j8yZO4dj5x7L+PHjeeVrXsmam9ckIO0QmRoEVR1Q1YXAMcBpInKi45yVqnqqqp46bsq4\nxgtpGIYRgSk/WM3Myy5n3GPbEFXGPbaNmZddHtsodG/vZtbRQxlEM2fPpHt7sl0+c5FlpKq7gduA\n87KWxTAMIw5HrriCwr79FccK+/Zz5IorMpIoPFlmGR0pItP8xxOBc4BUG70bhmGkTevj2yMdD8uM\nWTPYXnaNHdt2MGPWjFjXrCbLFcIs4DYR+SNeU+tbVPXGDOUxDMOITf/R7o1hQcfDctLJJ/HIQ4/w\n2COPceDAAW760U2cdd5Zsa5ZTWalK1T1j8DJWd3fMAwjDZ5YfikzL7u8wm00OHECTyy/NNZ1W1tb\nufyzl/O3b/xbBgcHufDiCzn+hOPjilt5j0SvZhiGMcbZ8/rzAS+W0Pr4dvqPnsUTyy89dDwOi89Z\nzOJzFse+ThBmEAzDMBJmz+vPT8QANJpcZBkZhmEY2WMGwTAMwwDMIBiGYRg+ZhAMwzAMwAyCYRiG\n4WMGwTAMo0n4+Ps+zukLTuf8M9PJYDKDYBiG0SS89qLX8o1rv5Ha9c0gGIZhJMzqzas563/OYsF/\nLeCs/zmL1Zvjl78GeOHpL2Tq9KmJXMuFbUwzDMNIkNWbV3P5bZezv98rXbGtbxuX33Y5AOfPz/dm\nNVshGIZhJMgV6644ZAxK7O/fzxXrrPy1YRjGmGJ7n7vMddDxPGEGwTAMI0FmTXaXuQ46nifMIBiG\nYSTIpYsuZULrhIpjE1oncOmieOWvAS5bdhkXv+JiHnrwIRY/bzE/uPoHsa9ZjgWVDcMwEqQUOL5i\n3RVs79vOrMmzuHTRpYkElL+48ouxr1EPMwiGYaRCd183W57aQnGgSFtLGx3TO5gxOdmWj3nl/Pnn\n5z6jyIUZBKOpGQ1KZzSMoZpif5H7e+5nUAe95wPec6DpxzaaMYNgNIykFV93X3fTK53RMAYX+/v3\no2jFsUEdZMtTW5pyXIMMoqqISNai1EVVGWRwxO83g2A0hDQU35anthy6Xol6SiePM/GoY2gWqo1B\nieJAscGSJMP2fdtp39NO25S23BoFVaW4p8j2fSNPbzWDYDSENBRfkHJxHc/rTDzKGPLKqqO6Wd6x\nha1tReYU2xgQEMRpFNpa2jKQMD7Xbr2Wi7iIWRNnUchpcuYgg2zft51rt1474muYQTAaQhqKr62l\nzfl+l9LJ60w8yhjyyKqjulnWeT/PtHif7SMTiqAwTloZYKDiMy9IgY7pHVmJGou+gT6ufOjKrMVI\nnXyaOmPUEaTg4ii+jukdFKTyJxykdKIapO6+btY9uo6uh7tY9+g6uvu6RyxnPaKMIY8s79hyyBgc\nQqBf++ls7zz0/ba1tNHZ3tnUbrCxgK0QjIbQMb2jwmUD8RVfSbmEiQtEmYk30r0UZQx5ZGub26Aq\nyozJM2rGkXUcJ+v75x0zCEZDSEvxuZSOiygGqdHupbBjyCNzim2em6gKoTbwmnUcJ+v7NwNmEIyG\nkaXii2KQkoh3jJWZ6IotHRUxBAAUJoybUHNu1nGcrO/fDJhBMMYMYQ1S3EBv081Eu7thyxYoFqGt\nDTo6YEY4OZfu9M4rzzLaOr5IW2vtZ5V1RlXW928GzCAYRhVx4x15n4mufajr0OOLNwD33w+DvrzF\novccIhmFkmEAGHdml/O8rDOqsr5/M5CZQRCRY4HvADMABVaq6peykscwSsSNd6Q5E03KFTW4ohXO\nOAPWrYPBKrkGB70VQ0iDEJY0Egua6f7NQJYrhH7gg6p6r4hMAe4RkVtU9c8ZymQYQLx4R1oz0SRd\nUYXl/UAX/V1wzUmw/GzYOhXm9MKKNbB0QzrGq7O9M7PYSrNndDWCzAyCqm4HtvuP94jIRuBowAxC\nEzFag6dxxpXWTDQpV9TieUsOPf7yaV0sfxk8M957/sg0WHY+PDERLlvcFep6g2uX1BwLKm7X2d7J\nomMXhZY1aZo5o6sR5CKGICJzgZOBOx2vLQOWAbS1m68vTzRd8DQkcceV1kw0DVfUJ89t5ZnW/opj\nz4z3ji+ed8aw7y+PR5Qz2orbjRUyNwgiMhm4HviAqj5d/bqqrgRWAkyZN8VdMcvIhCRmrFFm4o1a\njSQxrjRmomm4onqrjMFwx8My2orbjRUyNQgiMg7PGKxS1R9mKYsRnbgz1igz8UauRqKOa/OuzWzr\n23bo+ezJs5l/xPxEZYJ0XFFRjMwdW+9wX6QqbfWiabBq4egqbjdWyDLLSICrgI2qmm5fOCMV4s5Y\no8zEG5nKGWVc1cYAOPQ8jlE4+zfdXHL9Fo7qKbKzvY0rL+xgzenJu6LaJ7bXyF86Xs7ah7poGYTJ\nByrP++BvqElb/fpP4dEjW7n9mOSL243WmFVeyHKF8BLgLcAGEVnvH/u4qt4U9Ia+Yl+gz9JoPAoU\nCoUR/9FHmYk3clNRlJm4S5mWjo/UIJz9m24+9O37mXDAu//MniIf+ra3GlpzerKuqJ59Pc7j2/Zs\nY/ueyrEd/KyfqlrOXbVpq5MOwneu6+e8z5xgDZGajCyzjO4AR8GTOpyyZzJ3rz01JYmMqBQWd8VK\nI4wyE2/kpqKs0xPf/L2NTKiaiU84MMhbv7/p0CqhnOpZc7G/GPiHtXjekopJlULgX2FN9pArxlx0\nG+RjdruL28Uh7xv+RgOZB5WN5ibOH32UmXijNxVlmZ44p9d9/JjdtT5516wZPEUft69XoU7a6SFj\n0dbmNAqPTUu+q5iVnkgfMwhGZkSZiWc9aw9i9uTZTrfR7MmzR3zNrVPh13NqN4ud+WitknXNmhFv\n5RSU71++D+GOrXfQP1ibUdTa0soZc9xppxVu246OyhgCsHccfPrltcXt4mKlJ9LHDIKRKVFm4nnc\nVFSKEySZZfSmC2H9TNhXtlnsnefDq/bOqjk37qzZZQzqHS9RvnoY/P6Ciiyjd7+iyI0nt7EwlATh\nsdIT6WMGwTBiMv+I+Ymmmd47r3YmvG88rJ7YQ/WcP+6seSTvL19hrH2oy6t5VFb36NqTupgc6u7R\nyOsqcTRhBsEwckaUWX/cWXOzzbrzuEocTZhBMMY0ecxrjzJrjztrtlm3UY4ZBGPM0t3XzaZdmw7t\nqC0OFNm0axOQbV571Fl73FlzXmfdeTTWox0zCMaY5YEnH6gpr6AoDzz5QKaKZzTM2nv37XZuIi2P\nP9TDNqFlgxkEI3GaZWY30gybRpDXWXsYDt6+xHm83r6GamwTWjaYQTASZSzO7JrFADYTtgktGwpZ\nC2CMLurN7PJGi7REOu6iZABLiqpkALv7uhORcawSlPZqm9DSxQyCkShp9xNe9+g6uh7uYt2j62Ir\n3fnt7r0DQcddNJMBbCY6pndQkEr1lOd02NGCuYyMRGmGfsIlkgjejgbXRh5dXqMhsN6MDGsQROQf\ngKtV9akGyGPkmapGKBcfDtfQVXGKq3pm1JmdS0HlNcjY7PV18hzzaebAerMSZoUwA/idiNwLfBP4\nuapaK8uxRnd3TSOUVT8qsGpjZ0XZgnFndjGubSKDOjiimV2Qgqop4OYTZyaehDLM607fsLP+vBpa\nIxuGNQiq+k8icjlwLvB24Ksi8n3gKlX9S9oCGjlhy5aKipaA93zLlgqDANDW2sbCmeFKm1V3Bjvh\nPQMMttYqqCCiBICrSap3culaeXFtRDF0o8HlZSRHqBiCqqqI7AB2AP3AdOAHInKLqn44TQGNnBDQ\nCCXweAhcncGejqjfvU6sIyMpZZg310YUQ9fsLi8jWcLEEN4PvBXYBVwJ/KOqHhSRAvAAYAZhLBDQ\nCIW2WsURtEu1mm99j5rOYHN6vXLPYYmziWy0KsNGFseriyPmtG1e/Msa6RFmhTAdeJ2qPlJ+UFUH\nReTV6Yhl5A5HIxQKBe94GUG7VJ30dtUcWrEGlp0Pz4wvu40UKEjBqfyn9rdyzQfXOZvRD0dUZZjH\nbBwX9Qydawxx2qAG4og5rVwNVxzRHfr7MRpP3X0IItICvL7aGJRQ1Y2pSGXkjxkzoLNzaEXQ1uY9\nnxHjj9uxuli6AVbe3MJx+9tAPSXW2d7J8YcfX5OX3jIIX1zdz8yeIgU8l9Ol39rIMavXhhvS5Bl0\ntnceWhGU7uVShs20AS0oh799YrtzDACLjl3EkrlLWHTsomSMnCPmNOkgXHK97c/IM3VXCKo6ICJ/\nEJE5qrq1UUIZOaWqEUpYgmrYXHw4rFztKYoSe8fBTfMG2No2gEBNG8jymeznbiryjj9UXnPSQfjM\nrcorXhpuNh/W/99M2ThBge6GjiEgtnRUjwWr80wYl9Es4D4RuQvYWzqoqn+VmlTG6GD9eujrg8Xu\nKpfb5nkuhPIsoysv7GDb6TNY7LhctfJ+311dztvePofI6aTrd6yn70Bf4FD6B/qdXeuL/flUcC5D\nt3GXe0GfSkZRQMxpZ3tzx2dGO2EMwqdSl8IYlRTev3vYc9acPmPEPuWd7W3MdMw4P3ZObarqcDPh\n3n27mbo/+F6TDsLjz6o9fvSeSCJnSkOD6I6Y095xcOWFVnoiz4TZhxDOIWsYDsLWvx8JV17YUZG2\nCrB/fIHHpoxsE9tTdy4JfG1VT1dNsPuwA/C5W+Cq50USOzMauomu5FosyzJa9qoi2yygnGvCpJ2+\nGPgKsAAYD7QAe1XVMV8yjMZRWllUu5zaWrc4lf9hB+Bb7+9iTi9snQrLz4ZrTgp3r6Wb22B1keVn\ne++d0+tlRL1kK1wVcxyNyl5q+Ca6qpjTNSd1OV2BecjeyoMMeSCMy+irwEXAdcCpeHsSjk9TKGPs\nEPcP0eVy6uijZibcMugFsOf2es/n9uIsvRFIRwdL77ufpRsqVx9LXxdvXI2uJZS3TXR5qKWUBxny\nQtidyg+KSIuqDgDfEpHfpCyXMQZI6w/RNRP+3E1Flm6oOjGg9Ib7orUuEAoFrjlpHydUKf/2ie3s\n2Lsj1LiaKXspDfIw/jzIkBfCGIRnRGQ8sF5E/g3YDkxKVyxjLJDmH2LYjKTBYpHWCK0dh/BcUkpt\nRtO2vm219wkY11ivJZSH8edBhrwQxiC8BS9u8F7gUuBY4MIkbi4i3wReDexU1ROTuKbRPDTyDzEo\nI2lnexuL5y1yvCMc6x5dF1reoAyfpDN/6pUNSTPIH4ZqV1prodW5Az1o/Gn4+kdrCZORMGzHNFV9\nRFX3qerTqvopVb1MVR9M6P7fBs5L6FpGk9HINolXXtjB/vGVP/f94wux0yCjGC/XuNLqDDa4dknl\nvy9FKBCVEqXVVPlO6aBaVO0T22uOpbVb3LqzDRG4QhCRDfj9TlyoauxkO1X9lYjMjXsdozlpZBpk\nUEZS3Lo6QbPLaoLGlcfy2WlSr5R5OT37emqOpeVinDF5Br37eytcfTMnzRy130E96rmMclG4TkSW\nAcsA5jhq3xjNS6OVYZxNcEEEGbWZk2bSs68n1LjylvmTB1xGNqqLMUqm1469OyqO7di7g6kTpo65\n7yXQIAQVtGs0qroSWAlw6pQp1qltlBFFGeYxV3yszfAbhcu9FsXXHyWDzbKMhrCNaUZTkOdccZvh\nh6cghRrlKwha5p0Ocq9FcTFGUfKWZTTEsEFlvI1pF+M1w5kIXIJnIAyjYdT7AzeaA4GacuMLjljA\nCUecEKoEeZRy5VGUfCOTG/JOphvTROQaYAlwhIg8BnxCVeNWAjBGITaLGx0Eraai9LAOc24U91JD\nazzlnEw3pqnqxUlcxxj9JJErnscYhJEOUZS8xYGGCLsxrUAKG9MMIyxxZ3FpxiByaWiq+hlTCPYO\n51L+mERV8hYH8ghT/voRABEZAH4CPK6qO9MWzDDKiTuLSyuTJI/B7os3UNPPuHS8usl9HuU3sqPe\nxrSvA19R1ftEZCqwDhgADheRD6nqNY0S0jAg3iwurRhEHlMWV6yhpp9x6fjbq/oc5lH+JDBDNzLq\nrRDOVNV3+4/fDmxW1deIyEzgZsAMgtE0RI1BhHWj5DHYPac3/PE8yp8Eo9XQpU29tNMDZY/PAX4E\noKo73KcbRn6JUq8mSs2cPKYsbp0a/nge5U+C0Wro0qaeQdgtIq8WkZOBlwA/AxCRVrz9CIbRNMyY\nPIOZk2ZWHAuqVxNlz0MeC6MtPxtnEHn52bXn5lH+JBithi5t6rmM3gV8GZgJfKBsZXA28NO0BTMy\npDpDpaMjuIlMlHMzJEq9miizyyRSFpPO8vHagg6yYg017UKrW1iO1pRL21swMurVMtqMozS1qv4c\n+HmaQhkZ0t1dm6FyvxeMq1H0Qef29kJPD/1dsLN9Xd2qomf/prumAikkX5U0ik85arwhTrA7jeDn\n4nlL2DavNoDs6mdcuk9Q0bdmNRSj1dCljag2T724U6dM0btPPTVrMUY369YdSlOsoK0NFi0Kd24V\ne8fBsvNrG9pfvMHrczzp4NCxYguowoRBx/ufJ5UXiPDbVfBqJzheqD7sPNe/VelwUo1mghrstLW0\nsejYkTfuiavMu/u62bhrY83x2ZNnV1RxLfYX0bVLKs6Z/qIueie4r5t1g56xStfbuu5R1WGVZ6jS\nFcYYIkjBu46HMAbgKfxVP21j1ZMOg3Kw8hptA+73/8fPYVtVOcXbrm6FM84IJcPcF97BI5Nqm7Ec\n90wrD/+u6hp33MFz3tXPlumegWobgKtWC0une3PswuKuiq5kYZWcS0mnEfxMYtWxuWez83h5z4CS\njKuO6mbpzqHr9o2HqROnsXDmwhHJb2SHGYQsyaP/vbUV+h1drFpba+VtaYEBhwZ3EcOgAMzcC7c9\nXOX0CGcLAFhxq7LsFfDM+KFjhx3wjlOdfXPGGfz5vqpj04ceDpZmxOvXU3j/7lD3D1LSUVtIhiGJ\nlMsBDfm9Cizv2FJhEIzmpd7GtMvqvVFVv5i8OGOIKL76RhLkhhkYqJVXXD6YAFzNjdrawhuFmM2R\nlv5+APoMAgRxAAAgAElEQVS94OrWqV6wdcUaWLphwCuvmDJBSlqQmpLQcYOfjU653NpmqZyjhXor\nhCn+/53AC/HKVgCcD/wqTaHGBFu21O4mHRz0jmdpEIJm/Kq1xkLVWzm0tAytGiZOhN2OWXN7bY9c\nOjoqjQx4Rqb6PoWCd24c2tpYuqHI0g21x+NSr6l9iaAYxsBg7ec9qINsemIjm56o9eGHxnGvKKuO\noJWLiznFtkirJSO/1Msy+hSAiPwCeIGq7vGffxK4riHSjWai+OobSZRZO3jupXI//h13uM/buROm\nTq11kXV21h6D5F1pLuMT19AsXMjg2nCnzn3xOh6ZUPu5Hlds4+Hfjjx47EIWd8VedRx/+PFs2rWp\nonFNdSMbABRWbOnAK4JsQeNmJ0wMYQ6Vu5YPAHNTkWYsEaR4s+4bHaQ4HbVxnLjiD6XjLhdZZ2dt\n9hIkv0oqXS+jmM2KLR0s67yfZ1qGPsfDBgq+Mk0WAQYHa91Tm57YGCqGcMfWOxgY6K9W/agoC45Y\nUBEYL/YX/fjB9sTkN7IjjEH4LnCXiNzgP38N8J30RBojRJ2xbt4M24YyPJg9G+bPD3+/sAHsIMW5\nMYb7okTWLrIZMzJzx5WCrss7trC1rcicYhsrtnSkEowdXLvEWf668OF9nntLhMVzg3YleEzdD0/d\nueTQ85fOXcva4/SQG0uAA/1FZyZvPZp5b8NYIEz56xUicjNwpn/o7ar6+3TFGgNEmbFWGwMYeh7G\nKEQNYLsUZ0nOaqpXNFEyj0qyjBGW7pzRmGwc1/ddKDD4aYGWFgrL+7lj6x2cMSd8mtZtDy+Gh2OK\nZRVIc0/YtNPDgKdV9VsicqSIzFPVh9IUbEwQdsZabQzKj4cxCFED2K7VRHu7W47qYPH8+e7VRL10\n1tIGt7yk3oL7M4B4LqegVVrS6cdB37e/uXDq/i76Eul5GFEsq0Cae4Y1CCLyCeBUvGyjbwHjgKvx\nCt4ZzUCUAHZ3N2zaNJTpUyx6z4PYubPSKM2Y4ZWuqHZvTZ3qzijq7x8yFGmn3oZVvK4ZdvlnUi0r\nDH/d7u5KQ1kses97e2HHjnjpx9XjKhZZdZIrxTbb1ZhVIM0/YVYIrwVOBu4FUNVtIjKl/luMXBEl\ngP3AA+700iCqZ/3d3Z6CK2fHDs8gVGcU9ffXupfSiitEcZtt2cKq5w5WKVStTVkdHPTceaqB9ZwO\njfXAAZy4Vl1RPgPHuK4+Cd51/tAmvEemeaU/npgIly3uAqBl+CvXEpRBFnK3eBJ9sY10CWMQDqiq\nioiXSi2SwWJzjDN7tltxzJ4d7v1RAthBWUJhqeeeWrSoUsl1dbmvkUZcIYLb7Or5RadCBWqNgite\nMjhY+X2NZDxh3+MY1z+dXbkjG7znnzy3lcXzImzvLuOlc9eydrF7YhA29dYqkOafMAbh+yLy38A0\nEXkn8A7gynTFMioouWRGmmWUZsplS9VcM4p7KmjlkkZcIYJcHz3HrVCXn+0wCGkRNv3YIX9Qg5ze\n1pjG3pGdFGZTXok8VCC1LKf6hMky+oKInAM8jRdH+GdVvSV1yYxK5s+PlmZaTdgAdlCWkGsHcUmu\ncuq5p6p93e3tlf7z0n3SiCtEMD6PBzhEaxRtoQCFAqsW9Dv89SHlCvq8w26Yc4xrTq+3qqk5Na5r\nRjWSAXARp1R4XCzLaXjCBJU/r6ofAW5xHDMaRaMK4QVlCZ1wgvf/cDIEuafa22t9+Dt2wMyZlb72\ntOIKQVlSDuMzfR88dVjtqXP6WqCttWL8q+b0suyUbeHcS9WIeGPavr3S2EapEeX4vP/5Nnj3+XCw\n7K+7ZRCKWjyk0FtaWg+lnVbPmg+V0yj7zd1WioNUrwghUpHBtAgz87csp+EJ4zI6B6hW/q9wHDPS\nopGF8IZzLw13v6D3B/nwe3oqdyqnFVfo6Ql33uAgX7nZU+o1lVFvGazZVb385C3h3UsiMH58zeey\n6kStDWBvDmkAHZ/3O55op+3H22pXLf0LYMYMpr9oKO3UNWsGeP52nHsZOP74fKQFlxF25m9ZTsNT\nr9rpe4C/AzpE5I9lL00Bfp22YEYZ9QKipdeTXDkEuZei7HauPh600zmtjWmOVMywlBR5rRtIayqj\nBlX6dPrxVYfkKBbh4YdZNb9YYXwOrTBWF1kaVuDqz3vdOpZucxiktloj45o1Azx4BNH2rixcCAz1\niQjqh5CGDz/szN+ynIan3grhf4Gbgc8CHy07vkdVn0xVKqOSegHRRq0c4q5SGlm7ySVrRJZuCHD5\nlK9gZs9mzsnwiEP5H/4MzP3AMHGFfftYHpARtPxlsLSsHkC9LmSDVR3LogTQg2bH24ISy+t8loMr\nWnnpmwdYe5w7GyktH37Ymb9lOQ1PvWqnvUAvcDGAiBwFTAAmi8hkVd3aGBHHIFEa0TSqPlDcct1h\nU1+DxuryXUeRNSx+IT/3xq6qc7dtY8Wtte6l8f3wdBv0+G6ZenGFoIygrVXd4frGu89zEsH4Bs2a\nZ++pc20X69dTWN7vxz/EuToImslv7tkca9UQduafhyynvBMmqHw+8EVgNrATOA7YCDw37s1F5Dzg\nS3j7ZK5U1c/FvWbT45rduoKM9SqQpuGGiVuuO2zqa1BANei4y40VdfwlBVoKFLdudLtxqFXoLvdS\n37ghY1AiKK4QlBE0p1ipzA7eviT8eCLsO3HNmgGevYva31iIcuH1iuYFzeQHdIABfxIwklVDlJl/\nlllOzUCYoPJngBcDt6rqySLyUvxVQxxEpAX4L7yg9WPA70TkJ6r657jXbmpcs1tXI5pSoLZRbpgk\nXD5hUl/rlc+uJsiNFVQ3KYiqQPHHF26MtA+h2r1U+IT7Nq7VwIo1sOw1heHLYq9fz/R31Tageeo/\nHH2lI+w7cc2aDwwc4A+z1N2rIsbKM2gmX03UzB+b+SdHGINwUFV7RKQgIgVVvU1EPp/AvU8DHlTV\nLQAici1wATC2DULQ7La6EQ3U1gwq4epOFpc0Gsy4iOIyCnJjiYTv4eBYeTwa5MYJOF5N4Ky/t/bY\n0g3Ags5hy2KP+4fdDBRq319Y3u/eKRyh1Hdp1rz2oS4O9Jf9/kZQLrxeUDloNeIiauaPzfyTIYxB\n2C0ik/HaZq4SkZ1AzC2PABwNPFr2/DHgRdUnicgyYBnAnKybxzSCKDPxoFTKsCmWUWhUg5koLqMg\n4zkwAAsW1G6CcxnP0v6KMuY808ojk2p/4i6FzsSJsG9fxaEVa2DZX8Ez44aOHXZQWLHGEWxdsCBU\nWexILqMY1ASow1LWPW7cmV3OU1wz+QEdcLbqtMyfbAhjEC4A9gOXAkuBqcCn0xSqHFVdCawEOHXK\nlDpV1kYJUWbiUauYxlXmjWgwE8VlVM94umR1tfB0jGfFI8ezbP4mnmkd+rkd1i+suGcqUOa2KZUP\nqepXsbRnNjwwtXbW34+X+pm3Ut8NpHomX515BJb5kyVhSlfsBRCRZwGrE7z348CxZc+P8Y+NbaLM\nxMOuJhq5sS0uUVxGKbmxArub7QLa9g19L1N9H5KjrMjSDd0s/TFQBNqADoINatxueGnRgN3x5v/P\nF2GyjN4FfApvlTCI1z1P8X7icfgdcLyIzMMzBBcBb4p5zdFB2Jl4WIUYN2W0kURxGUUxnhGNYo0b\nJ8r7o5wbtxteWjRwEmH+//wQxmX0IeBEVd2V5I1VtV9E3gv8HC/t9Juqel+S9xj1hFWIcVNGG0kU\nlxGEN55BRvGBB8IZlChGNcq94nbDS4tmmkQYiRHGIPwFeCaNm6vqTcBNaVx7zBBGITZyl3BUqt0S\nQSmjcWWtl70VprJqFKMa9V55pJkmEUZihDEIHwN+IyJ34nlEAVDV96UmlZEsjUoZHY7hyl+XlE11\nqe0kZA1bzyhoFhylrHfYfRAj3U3dCPI8iTBSI4xB+G/gl8AGvBiC0Ww0KmW0Hi6fdJC7pFDwlGoY\nWcMGPoPSTl24FOHEie7jhULsuklOwnbDS4u8TCKqsAY36RLGIPSr6mWpS2KkSyNSRku4smZ6esLP\niAcG4Mwzhz8vaqA3LK6Mpt21u4SBmj0IkXHtkUgiyyhuhlAeJhFVWIOb9AljEG7zN4etptJlZBVP\njVrqZc2EJWwLzSiBz6DigC6iNKiJS3t7/G541cTIECos7gJg8SPCbSwObwDWr6fw/gCjmRDW4CZ9\nwhiEUirox8qOJZF2aowGYvQdcBKlhWZagc/+/tpxpUUau8pHaYaQNbhJnzAb0+Y1QhCjCYnad8BV\nPTNOC820Ap8tLenEBVzkrDJtmqUr4mINbtKnXse0s1T1lyLyOtfrqvrD9MQyYhHFfxzH1xy170CY\n6plRWmimEfgsFLxVShQXUxxSWH08PBXmOuouPTwVOnyX0NTxk53vLbmMpu6Hp+5ckrhscbAGN+lT\nb4WwGC+76HzHawqYQcgjae2odRFldjt7dvJ7JqIEPqtTWYOYOTNazGPaNHj66ZGlkJaMV8KlK5af\nDVfdWGDCgSGZ9o8vcPVfd7J4XvDnv3jeEgDu2HoHydSvTBYrc5E+9Tqmlaq6f1pVHyp/zS83YeSR\nJHbUhvU1B9Udqla+URRc1Fl/2OyplpZwewN27Kjfoa6afftqVz71DGVVMx5nCfOYpSuuOQkWHNHJ\nJddv4aieIjvb27jywg7WnN78itPKXKRLmKDy9cALqo79ADgleXGM2CSxozbszD8oG6elpbZ3Q1jS\nSncM2zBncNDLcgrbT6FYrDVK69e701SnTfOb0ZexcaP7ujFLV6w5fcaoMABGY6kXQzgBr03m1Ko4\nwrPweisbeSSKyyVqULY63hC17lBYGrlnwkV/v7eqKZ+5B7mcXJ/VwoW1RmHaNJg1qzad1jByRL0V\nQifwamAalXGEPcA70xTKiEEUl0uUc6NkFDWyvEEaJZpFPNdRmPOClHr1SqBevKaBpLbTtwH7EIz0\nqRdD+DHwYxFZpKrrGiiTEYcoLpco54bNKGpkeYMoQfEoeyRUa1cDrtVBmCB1iaB4TRApbI7r7utm\n464hF1VxoHjoeVJ++VJg2mhOwsQQXisi9wH7gJ8Bzwc+oKpXpyqZUUmUmXAUl0vYc6MEShvl7okS\nFI9SyygKDzyQfEYWOFt7uiiliYZhc8/mwOPlBmHy+Mn0DuyOdG0Whz/VyC9hDMK5qvphEXktXt/j\nNwC3AWYQGkUeOp7VizcsWtQYGaqJEhRPY0cwhI+X1Pv8Ojpiub3CzsoH1J05VX184cyFzvOM0U8Y\ng1BqFf4q4BpVfVIaWevFyEcpgiQ2gSXt748SFI86Qw+bZRSWep9f1kH0UYpVRo1OGIOwWkQ24bmM\n3iMiR+K10zQaRR6alcRNB01jlRPFSEWJIbhm7QcOuGMGrsqoLvJQPVTxGuC6jg/D+h3r6d0XPmic\ndSwhamVUMx4eYWoZfVRE/g3oVdUBEXkGuCB90YxD5KVZSZyZbBqrnChK1mU8XKmkQbP27m73noEs\n21z6hFVm0/fBU4fVvn96iArevft2M7iiNdT+knFndrF+x/pMXU9RKqNaWe0h6u1D+LCq/pv/9GxV\nvQ5AVfeKyHLg440QcFQT1oWS02YlgbjGldYqJ6yRmjGjdlfwrFkwdWryGVkuUooDKYRWZl++Gd5x\nARws+6sf1+8dv+o5IW+YRppvCkSpjGpltYeot0K4CCgZhI8B15W9dh5mEOIRRUHkwd0A4ZRB0LjS\n6pUcJFNQu85yduzwDELYoHjeVkily4RUZi/b1sa3flxk+dmwdSrM6YUVa+DsbW1cFeZGAwPZJzeE\nJKgyKgprH+qqPBQQEh2LZbXrGQQJeOx6bkQlqoLIOvAY1oAFjSsoQDtxYvIy9fbW9mp2pZwmFZgP\nU5yuwXGgkjIrV34fXOwVvVu6obLo3Rfe1lFzrhPX/gzHZzj5APQWdg9/vRQ5JKVUHrz6h7B081Ca\n9FteUWTVQkEdgZSxWFa7nkHQgMeu50ZU8hAojkJYAxZV/qDWlHFkirLfIO7nXa9DXLlRaHAcqFyZ\nDa5dcmgnsavo3f8+D7Y8ug4Fjiu2sWJLB0t3uoxkl/tmVeMKLJu9fv0IRjJyVnUWWf6S/WydoszZ\nI6zoamXpfQMw6MtbLPL1n8Ldc4RNh9eqtPaJ7Q2VNw/UMwjPF5Gn8WzsRP8x/nOrZRSXvASKwxLW\ngCXRNS0sSdwn7ucdZHyqi9OlGAcqSKFuj4DC4q5DG8eqi95VBFQFHplQ5M0LNvLmBRtr3ABbfu/u\ns0BbW03pClejnSxLW2ydorzkLwehav4w6SDsaXWvXnv2pbR3JcfUK10RMp/OGBHNFigOa8CCxpVk\nTn9S1KtFlDRJxYGqYiNvOhx+f1ZnYJbRcOmfroAqwqHrlF/3H9/Wznf/346KPgt7x8G7X1Fk1fOL\nh+639qEuCou7aHF85VHSUZNOBZ3T2+U8vm2K+3yLIRiNIy+B4rCENWBB43LV/QfP354G1UbIlWIa\npRZREsSNAzliJitXwxVHwJrTR7ZbvF42TnX20g8P3wHvmclXru6pcDnd2LGdqQztcF48bwnrd6yn\n2F9kf/9+FEUQTjgiXDkOSCcVdGd7GzN7asd79B547Fm151sMwWgsWQeKoxC1aF5QplSCncEilYM4\ncMB9jc2b430H1WWyy48njSNmMukgXHL9lhH3PgjMxsGdvbT6iB52/Uel8VlI7b1nTZ7F/T33HwrW\nKhpJoaeRCnrlhR186Nv313SSe/HATH4oO6w1J2YQjCiENWBBqaDz5ye7kStKOYigXs1xeyeXxpOk\noQsiIGZylGPWG5agPsU1bqSSCCHdKHEVepR9BGEpGc3qoPquk2fQ2TfVdiqTkUEQkTcAnwQWAKep\n6t1ZyNFUNMmGoIYW4suL2y1pQxdEwIpoZ/vIXRtBfYpLz6tpLbSy7tF1wyrOuAo9aOUS140T1EnO\nWnN6FDK675+A1wG/yuj+zUVJyZaUQUnJdndnK5eLeumpaTBjhrexbMkS7/8gY9AaMPcJOp5HOjq8\nFVAZe8d5rpDEbzW9g4JU3ksQ+gf7Dynqkl+/u6/2dxikuMMqdNf9x6obp5Fk8tegqhsBrGpqSPJQ\n7TQsed1fcfzxsGlTZSBZxDveLDhWRMteVWRbhPhBdeZO+8R2duzdURO87WzvpLO9Mnupf7C/plR2\nkBsoyBUVVqEHrVzSmsVbcTuPJpoejWHyqmRd5HV/RZB7CWr7HLtKX+TFRVcVG7nmpK7QvWlcmTvb\n+moD4iUlv+jYRRVKsevhLud1Xa6dJBR6FDdOHIVuxe2GSM0giMitwEzHS8v99pxhr7MMWAYwJ2ul\nkhVpKtkoii/MuR0d7pl4HvZXuCqYhi19kdOaPUG4FKRzz0EAQf77KH79Rvnl4yp0K243RGoGQVVf\nltB1VgIrAU6dMmVslsxIaxNblABwPeXZ01NZRK6R+f5xZvJRSl/k1UXnIEhBhjUGQcR1A6VFHjOa\nmhVzGTUDaWXTRIlNhFGeQUXkSu9PWpnGzWiK6nKL66JrkBsqSEHGpdF+/bDkNaOpGckq7fS1wFeA\nI4Gfish6VX15FrI0DWlsYosSm4irDNOId8QNtketuxTHRdfAdNwkZrYt4q5ck8f0zCgK3eVKy+vK\nJwuyyjK6Abghi3sbZUSJTcQtWtfWlvwMOW6wPcgVN3NmZQyhdDyOi66BmWL1dh9HoVkyb8Iq9CBX\nmiujKq9jTRtzGY1GonRiCxsAdinPsBQKXmwh6RlyUNOdoL0Frs+ls9P9WYXtpBaWBmaKtU9sd2YP\nRWFAB5om8yasK6terKE6o2qsYgZhtBHVNRE2AOyKY5S6kLlm2OWB5lJdoaRnyEGyuo4HfS6dne6O\naUm76FLMFKueyVfvFRgpjcq8adRKxILHw2MGIY+kkTkTFCgOukbYonVhZ9KuBvUQb4YcVIfIdTzr\nzX0pZYq5eiqnSdLXT2IPQNhrWPB4eMwg5I20MmeiBIqjKOmwM+k0ZshRrpn15r4U6y6FzSBqkRYG\nddDZLtJ1rmulkbTyTGIPQNhrWPB4eMwg5I2gmezmzeGUSRKB4jQ2AKYxQ262JkMZljsXBBFBHe60\nFmmhtdBa4bIBQivPOC6fJNw49a5RXYjPgsf1MYOQN4JmrAMDQ66QequGKEqyvd29b6A9hV6yacyQ\n81LttAlQlP5BRwAeL4B85rFnOl8bTnnGdfkk4capl1VVXYivs72TRcc6YkYGYAYhf4RN7wzyf0dR\nkj0BPWO7u2uDwkko2TRmyM3UZKjJCLPnIK7LJwk3jusaLsZqOYoomEHIG65U0CCCDEdYJRl3NWLk\nAkEq4wIKuAoJBx2PQb2ZeRhXUlJF8KqvYRlFI8MMQh4JW/snrq8/7mqkmchrFdYEqAkSByj9FoUB\nx2tR3DPVSj4o+NxaaA3tSkpi93P1NUqxg2oso6g+WTXIMYII20gmieBpR4e3ES0MeSy1HQVHc5lc\nB6DjUmUjDjsASwJ+Wu0Tw8WMSvGCcr+8y01TkAKqGuhKagTWYGdk2Aohb9RTvKVZbhJlqks0ajUS\nhSD54+zPGGMB6PZnYPJB2DoV5vTCijXwkXPc5/bsC4glVeGKFyhKa6GVFmmpcPls3OXed9Iol02Q\nK+qBJx/ggScfqDj3jDlnNESmZsAMQjPh2lFbTZR9DFFXIy6FXLrOSJVs9TWrdz8n2aNglAagC1Ko\nUNQtg/Cln8HSDZXnvfl17veHVdJB5/UP9nPG3EqlGtSTuZEum2o30tqHumgZhMkHhs7pnQDrd6xn\n4cyFDZMrz5hBaHaqFWp/f/gduVFWI1C527hYrN19HFVJu4xXUC+CJu9RkBYCNbn1RS2ytH8BtJX9\nLgoFYJ/zGmGVdJQU0bxuAjv42VY4Y8h4jTuzKzthcogZhLwRJfjpUqhBBF0z6Hj1auT224OvXU4U\nJe3ahBeVZo9tJIBrJlyzGlq/HthXs5qIoqSjKPm89k4w6mMGIW9E2VgWRaG6DEqUewXVDXIRVkkn\nocxHQZZQo3CtJqIo6ahKPo+9E4z6mEHIG1GCn2EVapCSTyvQmrSSTqtHwRgkrpI2JT+6MYOQR+IW\njGtthZaWcEo+6UBrUkralVGVdI8CwzAqMIPQzAS5fI4/vrGKMmw6bND7XMcb0aPAMIwKzCA0M43M\nrZ89253pM3s2zJ8/sms2W7VSwxjlmEFodho1ay4p/XKjEMcYwJjbLGYYeccMghGe+fPjGQAX5gYy\njNxgtYwMwzAMwAyCYRiG4WMGwTAMwwDMIBiGYRg+ZhAMwzAMwAyCYRiG4WMGwTAMwwAyMggi8u8i\nsklE/igiN4jItCzkMAzDMIbIaoVwC3Ciqj4P2Ax8LCM5DMMwDJ9MDIKq/kJV+/2nvwWOyUIOwzAM\nY4g8xBDeAdwc9KKILBORu0Xk7icOHmygWIZhGGOL1GoZicitwEzHS8tV9cf+OcuBfmBV0HVUdSWw\nEuDUKVM0BVENwzAMUjQIqvqyeq+LyNuAVwNnq6opesMwjIzJpNqpiJwHfBhYrKrPZCGDYRiGUUlW\nMYSvAlOAW0RkvYh8PSM5DMMwDJ9MVgiq+uws7msYhmEEk4csI8MwDCMHmEEwDMMwADMIhmEYho8Z\nBMMwDAMwg2AYhmH4mEEwDMMwADMIhmEYho8ZBMMwDAMwg2AYhmH4mEEwDMMwADMIhmEYho8ZBMMw\nDAMwg2AYhmH4mEEwDMMwADMIhmEYho8ZBMMwxiyTD2QtQb6QZmpnLCJ7gPuzliMFjgB2ZS1ECozW\nccHoHdtoHReM3rGFGddxqnrkcBfKpGNaDO5X1VOzFiJpRORuG1dzMVrHNlrHBaN3bEmOy1xGhmEY\nBmAGwTAMw/BpNoOwMmsBUsLG1XyM1rGN1nHB6B1bYuNqqqCyYRiGkR7NtkIwDMMwUsIMgmEYhgE0\nmUEQkX8RkT+KyHoR+YWIzM5apqQQkX8XkU3++G4QkWlZy5QEIvIGEblPRAZFpOlT/kTkPBG5X0Qe\nFJGPZi1PUojIN0Vkp4j8KWtZkkREjhWR20Tkz/7v8P1Zy5QUIjJBRO4SkT/4Y/tU7Gs2UwxBRJ6l\nqk/7j98HPEdV352xWIkgIucCv1TVfhH5PICqfiRjsWIjIguAQeC/gQ+p6t0ZizRiRKQF2AycAzwG\n/A64WFX/nKlgCSAi/xfoA76jqidmLU9SiMgsYJaq3isiU4B7gNeMku9MgEmq2ici44A7gPer6m9H\nes2mWiGUjIHPJKB5rNkwqOovVLXff/pb4Jgs5UkKVd2oqqNld/lpwIOqukVVDwDXAhdkLFMiqOqv\ngCezliNpVHW7qt7rP94DbASOzlaqZFCPPv/pOP9fLJ3YVAYBQERWiMijwFLgn7OWJyXeAdyctRBG\nDUcDj5Y9f4xRolzGAiIyFzgZuDNbSZJDRFpEZD2wE7hFVWONLXcGQURuFZE/Of5dAKCqy1X1WGAV\n8N5spY3GcGPzz1kO9OONrykIMy7DyBIRmQxcD3ygytPQ1KjqgKouxPMonCYisdx9uatlpKovC3nq\nKuAm4BMpipMow41NRN4GvBo4W5souBPhO2t2HgeOLXt+jH/MyDG+f/16YJWq/jBredJAVXeLyG3A\necCIEwNyt0Koh4gcX/b0AmBTVrIkjYicB3wY+CtVfSZreQwnvwOOF5F5IjIeuAj4ScYyGXXwA69X\nARtV9YtZy5MkInJkKRtRRCbiJTvE0onNlmV0PdCJl7XyCPBuVR0VMzQReRBoA3r8Q78dDRlUIvJa\n4CvAkcBuYL2qvjxbqUaOiLwS+E+gBfimqq7IWKREEJFrgCV4pZS7gU+o6lWZCpUAInIGcDuwAU9v\nAHxcVW/KTqpkEJHnAf+D91ssAN9X1U/HumYzGQTDMAwjPZrKZWQYhmGkhxkEwzAMAzCDYBiGYfiY\nQTAMwzAAMwiGYRiGjxkEwwiJiLxGRFRETshaFsNIAzMIhhGei/EqSl6ctSCGkQZmEAwjBH4tnDOA\nv4Q1nyMAAAFOSURBVMXboYyIFETka34t+htF5CYReb3/2ikislZE7hGRn/tlmA0j15hBMIxwXAD8\nTFU3Az0icgrwOmAucBJwCbAIDtXO+QrwelU9BfgmMCp2NBujm9wVtzOMnHIx8CX/8bX+81bgOlUd\nBHb4xcXAK69yInCLV0qHFmB7Y8U1jOiYQTCMYRCRw4GzgJNERPEUvAI3BL0FuE9VFzVIRMNIBHMZ\nGcbwvB74rqoep6pz/X4cD+F1GLvQjyXMwCsOB3A/cKSIHHIhichzsxDcMKJgBsEwhudialcD1wMz\n8bqm/Qn4Ol4nrl6/vebrgc+LyB+A9cDpjRPXMEaGVTs1jBiIyGS/yXk7cBfwElXdkbVchjESLIZg\nGPG40W9SMh74FzMGRjNjKwTDMAwDsBiCYRiG4WMGwTAMwwDMIBiGYRg+ZhAMwzAMwAyCYRiG4fP/\nAfyzKuSV3NT5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHGWZ9/HvPTPJJJqQxEAm4RDirBBR1KAoB8ObCKLo\nyiKiLmzURcWou66IqyhGRF2j664r63pYRURUsrIqooKgIjDRaOQgjiDkADuBcEgmEEjIQDLJzNzv\nH1Wd9PRU91RPV3VVT/8+15Ur3VXVVU91J89dz9ncHRERkZasEyAiIvmggCAiIoACgoiIhBQQREQE\nUEAQEZGQAoKIiAAKCFLCzBab2UNZp6NRpP19mdnXzezCovfvNbNeM+szs5nh350JXu8AM1trZpOT\nOmeWzOzDZvaprNPRKBQQGoCZ3W9mO8P//JvN7HIzm5J1umplZm5mT4X31Wdm2+p8/ViZuZm9zMyu\nM7NtZva4md1qZm+vRxrd/T3u/i9hOiYAXwRe5e5T3H1r+HdPgpf8KHC5u+80s7uLfptBM9tV9P5j\nY72AmV1pZh9PMM2F855iZveVbP4a8C4zm5H09cYjBYTGcaq7TwEWAEcBF2ScnqS8KMzUprj79Go/\nbGZtaSSq6PzHATcBK4HnADOB9wKvSfO6ZXQAk4C7az1R1PdmZu3A3wNXALj78wu/DfBb4H1Fv9Vn\na01DPbj7U8CNwJKs09IIFBAajLtvBn5JEBgAMLO/NrM/mdmTZvagmX2yaN+88En8781so5k9ZmbL\nivZPDkscT5jZPcBLi69nZkeYWVf4dHy3mf1N0b7LzexrZnZ9+NT4OzObbWb/GZ5vrZkdNZb7NLN3\nmdl94RP5z8zswKJ9bmb/aGb3AveG255rZjeEx68zszcXHf9aM7vHzHaY2cNm9iEzeyZwPXBg0VPv\ngSMSAv8OfMfdP+/uj3ngj+7+5ohjMbOPmtn/hde6x8xOL9r3HDNbaWbbw9/hf8PtZmYXm9mW8De8\ny8yOLPqOP2NmhwPrwlNtM7Obir6L54Sv283sC+Hv3GtBddPkcN9iM3vIzD5iZpuBb0ck/xhgm7vH\nrgIzs3eH3/fjZvZzMzso3N5qZl81s0fD+/2zmc03s/cDZwAXht/5DyPOGfnZcN/k8N/XgxaUlr8c\n3vdM4Gqgs+j3nBmesgv467j31NTcXX9y/ge4H3hl+Ppg4C7gS0X7FwMvIAjwLwR6gdeH++YBDnwT\nmAy8COgHjgj3/yvB09+zgEOAvwAPhfsmAPcBHwMmAicCO4D54f7LgceAlxA8ud4EbADeBrQCnwFu\nrnBfDjwnYvuJ4XlfDLQDXwZ+U/K5G8I0TwaeCTwIvB1oIyhBPQY8Lzx+E3BC+HoG8OKi7+2hCul7\nBjAIvKLCMcPOAbwJODD8Lf4WeAqYE+77PrAs3DcJWBhufzXwR2A6YMARRZ+5HPhMyW/ZFvUdAhcD\nPwu/l6nANcDnitI5AHw+/E4nR9zLPwI/L3OfXcA5Jdv+FlgDHB7+W9n7ewOnAauB/cL7fT4wK9x3\nJfDxCt9ppc/+N/Cj8LuaRvBwdFG47xTgvojzHQ88kvX/40b4oxJC4/iJme0gyPi2ABcVdrh7l7vf\n5e5D7n4nQcazqOTzn3L3ne7+Z+DPBIEB4M3Acnd/3N0fBP6r6DPHAlOAf3X33e5+E3AtcFbRMVd7\n8MS8i+AJbZe7f9fdB4H/JcicK7kjLH1sM7PCtZcAl7n7He7eT1A9dpyZzSv63OfCNO8EXgfc7+7f\ndvcBd/8TcBVB5gywB3ieme3n7k+4+x2jpKlgBkGGtCnm8bj7D939kfC3+F+CEszLitJxKHCgu+9y\n91VF26cCzwXM3de4e+xrQlDKAJYC54Xfyw7gs8CZRYcNEWSe/eH3Vmo6QcCP6z0EwWq9u+8BPgUs\nNLOO8J72C+8Jd7/b3bfEPG/kZy2o5noncK67b3P37QQPNGeWPxWE91R1dWQzUkBoHK9396kET3rP\nBfYv7DCzY8zs5kIRm+A/6v4ln99c9PppgowegqfZB4v2PVD0+kDgQXcfKtl/UNH73qLXOyPej9b4\n/WJ3nx7+eX/Rdfemw937gK0l1y1O86HAMUWBZRtBUJkd7j8DeC3wQFhlc9woaSp4giATnRPzeMzs\nbWbWXZSOI9n3W5xPUAK4Nax+e0d4fzcBXwG+Cmwxs0vMbL+41wwdQFCi+WPRtX8Rbi94NAzc5TxB\nEJjiOhT4etH1HiUohRxMUB33LeAbwGYLqhbjdoQo99kDCUoidxdd8yfArFHONxWoa4eFRqWA0GDc\nfSVBNcIXijb/D0FVwSHuPg34OkHGE8cmgqqigrlFrx8BDjGzlpL9D1eZ7Go9QpDZABDW988suW7x\nNL0PAiuLAst0Dxo+3wvg7re5+2kEGcdPgB9EnGMEd3+aoOrijDiJNrNDCarm3gfM9KCR/C+Ev4W7\nb3b3d7n7gcC7ga8V6v/d/b/c/SXA8wiqYD4c55pFHiMIwM8v+g6medAgvPeWRjnHneG143oQOLvk\ne58clhjd3b/o7kcRVGO+CDg3TjoqfHYTQcD5q5J7LLQVlDvvEQSlYhmFAkJj+k/gZDMrVPtMBR53\n911m9jLg76o41w+AC8xshpkdDPxT0b5bCEoT55vZBDNbDJxKUAecpu8DbzezBRb0fPkscIu731/m\n+GuBw83srWE6J5jZSy1oEJ9oZkvMbFpYrfEkwVM/BKWZmWY2rUJazgfOtqA/+0wAM3uRmUV9B88k\nyJQeDY97O0EJgfD9m8LvGIKncQeGwrQeY0G30qeAXUVpjCUsxX0TuNjMZoXXO8jMXl3FaW4Fphca\nhmP4OvDxogbfGWZ2Rvj6WDM7OqzmeQrYzfDvvezYiXKfDX+/y4Avmdn+FjjEzE4uOu+siJLIIoJS\nh4xCAaEBufujwHeBT4Sb/gH4dNjG8An2PQHH8SmC6pkNwK+A7xVdZzdBAHgNwRPo14C3ufvaWu+h\nEnf/NXAhQTvAJuCvqFBPHNaXvyo85hGC6rFC4ynAW4H7zexJguq0JeHn1hIEn56wCmJELyN3/z1B\nI/eJ4XGPA5cA10Ucew/wHwSlil6Chv7fFR3yUuAWM+sjKNGd68EYgv0IMvMnCH6LrQS9m6r1EYJO\nAH8I7/XXwPy4Hw5/78uBt8Q8/vsEVV0/Dq/XDRQy5+nhubYBPQT39aVw3yXAS8PvPCqwVvrsBwh+\n49uB7QTVYs8J9/2Z4Ht9IDz3s8LS5SsJu9JKZeauBXJEJGBmBxD0OjuqTMNzQzGzDwNT3f0Tox4s\nCggiIhJQlZGIiAAKCCIiElJAEBERIBjm3zAmTJ3gk/aflHUyRMaNvv4+XrIj2Ylz/zi1j9aWViZP\nGBczaI8Lfff3PebuB4x2XEMFhEn7T+LoTx6ddTJExo2VG7q4fWWy/6cmnNDFlGdOZcHsBaMfLHXR\ndXbXA6MfpSojEREJKSCIiAiggCAiIqGGakMQEcnClNYpnDn3TOZMnkNLTp+jhxhi085NXLnxSvoG\n+8Z0DgUEEZFRnDn3TI48+Ejap7YTLD2RP+7OzB0zOZMzuXTDpWM6Rz5DnYhIjsyZPCfXwQDAzGif\n2s6cybGX7xhBAUFEZBQttOQ6GBSYWU1VWpkFBDObZGa3hgto321mn8oqLSIikm0JoR840d1fBCwA\nTjGzYzNMj4hIrv32xt9yyrGn8KqXvopLvnRJ4ufPLCCEy+QVmsInhH80F7eISITBwUE+/dFP880r\nv8m1v7uWn1/9c+5bd1+i18i0DcHMWs2sG9gC3ODut0Qcs9TMbjez2/fs2FP/RIqIVGnqj66h86gT\nOXzWEXQedSJTf3RNzee88447mTtvLofMO4SJEyfy2te/lhuvvzGB1O6TaUBw90F3XwAcDLzMzI6M\nOOYSdz/a3Y+eMHVC/RMpIlKFqT+6htkfvJAJDz2CuTPhoUeY/cELaw4KvZt6mXPQvh5Esw+cTe+m\n3lqTO0wuehm5+zbgZuCUrNMiIlKLA5ZfTMvOXcO2tezcxQHLL84oRfFl2cvoADObHr6eTLA4d6qL\nt4uIpK3t4U1VbY+rY04Hm4rOsfmRzXTM6ajpnKWyLCHMAW42szuB2wjaEK7NMD0iIjUbOCh6YFi5\n7XG94KgX8MCGB3jogYfYvXs31/3kOk485cSazlkqs6kr3P1O4Kisri8ikoZHl53H7A9eOKzaaGjy\nJB5ddl5N521ra+PCz13IO9/8ToaGhjjjrDM47LmH1Zrc4ddI9GwiIk1uxxtPBYK2hLaHNzFw0Bwe\nXXbe3u21WHTyIhadvKjm85SjgCAikrAdbzw1kQBQb7noZSQiItlTQBAREUABQUREQgoIIiICKCCI\niEhIAUFEpEF87P0f4/gjjufUE9LpwaSAICLSIE4/83S+eeU3Uzu/AoKISMKuWX8NJ37nRI746hGc\n+J0TuWZ97dNfA7z0+Jcybca0RM4VRQPTREQSdM36a7jw5gvZNRBMXfFI3yNcePOFAJx6eL4Hq6mE\nICKSoItXX7w3GBTsGtjFxas1/bWISFPZ1Bc9zXW57XmigCAikqA5U6KnuS63PU8UEEREEnTececx\nqW3SsG2T2iZx3nG1TX8N8MGlH+Ss15zFhvs2sOiFi/jRFT+q+ZzF1KgsIpKgQsPxxasvZlPfJuZM\nmcN5x52XSIPyFy/5Ys3nqEQBQRpGb18vPU/00D/YT3trO50zOumYkuwSgiJJOPXwU3PfoyiKAoI0\nhN6+XtZtXceQDwHQP9jPuq3rABQURBKiNgRpCD1P9OwNBgVDPkTPEz0ZpUiayRBDuHvWyRiVuzPE\n0OgHlqGAIA2hf7C/qu0iSdq0cxP9O/pzHRTcnf4d/WzaOfburaoykobQ3toemfm3t7ancj21V0ix\nKzdeyZmcyZzJc2jJ6XP0EENs2rmJKzdeOeZzKCBIQ+ic0TmsDQGgxVronNGZ+LXUXiGl+gb7uHTD\npVknI3UKCNIQChlx0k/tUSWBSu0VjR4QSu83vxUgtVMpr3oKCNIwOqZ0JPofulxJoDQYFDR6e0XU\n/QKsmNXLki3jK6NUKW9s8lkZJlIH5UoC5aTVXlEvUfeLwbLO8ddTS73SxkYBQZpWpSf+FmsZ8T6N\n9op6Kne/G9sbu+QTRb3SxkYBQZpWuSf+9tZ25s+cv3d/4X2jVzWUu9+5/dHbV8zqZd6xq2lZ1MW8\nY1ezYlZvmslLVKXfVspTG4I0rUo9l5Jur8iDqPvFYXnPyJLPilm9LJ2/jqdbg2MfmNTP0vlBHXwj\ntDfUs1faeJJZCcHMDjGzm83sHjO728zOzSot0pw6pnSMy5JAOYX7xcEcDt3VzhVrjojM4Jd19uwN\nBgVPtw41THtDs/22ScmyhDAA/LO732FmU4E/mtkN7n5PhmmSJjMeSwKVdEzpYO2ja4Cg7eCtR6yJ\nDAjl2hUaqb2h2X7bJGQWENx9E7ApfL3DzNYABwEKCCIpWvTsxXtfr9zQRcuirhHHlBuf4DDi+KGV\ni6MOlQaUizYEM5sHHAXcErFvKbAUoH2mGoREklQcHIqV9uOHoA5+/v7Dq11WbuhKOYVST5n3MjKz\nKcBVwAfc/cnS/e5+ibsf7e5HT5g6of4JFGlCqoNvTpmWEMxsAkEwWOHuP84yLSIyXGkd/KqNq7j3\n8XszTJGkLbOAYGYGfAtY4+7prgsnIjVZuaGL1iGYsnv49gW9lk2CJBVZlhBeDrwVuMvMusNtH3P3\n68p9oK+/T3WWOVOuDloa16qNqxgcHBixfc/n2mDhwgxSJPWSZS+jVUBVjxcv2TGF21cenVKKpFpR\nvVOkduUeeqZNns6C2QvG/HkIAnich6ppu+CJWxYP36hYMO7lopeRiAxX2pVzwglddb3+9kmVA349\nupqmMX21psSuTAFBZJwZrRqv1mq+elTbpjF9tabEHp0CgkgORT2dx6kuqpfi9KVRWkhjkaLxvPBR\nUhQQRHIm7w31pSOd05DG9NWaEnt0mQ9MExEplcb01ZoSe3QKCCKSO50zOhNfpCiNc443qjISkdwp\n1Okn2SMojXOONwoIIpK47Tu3RbYvVNM+ksb01ZoSuzIFBBFJ1J7fLo7croGM+aeAICINTwPOkqGA\nICINTQPOkqNeRiLS0CoNOJPqKCCISEPTgLPkjFplZGb/BFzh7k/UIT3SYKJ6ksSdlVMkCe2t7ZGZ\nvwacVS9OG0IHcJuZ3QFcBvzS3cutwS1NJGoOmzRn5Tzp972cc1UPs7b2s2VmO5ee0cmNx6uOuNl1\nzuiMXP9ZA86qN2qVkbt/HDiMYHWzs4F7zeyzZvZXKadNZK+Tft/Lhy5fx+yt/bQAs7f286HL13HS\n73uzTppkTOs/JydWLyN3dzPbDGwGBoAZwI/M7AZ3Pz/NBIoAnHNVD5N2D284nLR7iHOu6oksJag0\n0Vw04CwZcdoQzgXeBjwGXAp82N33mFkLcC+ggCDDlBulOhaFka2ztkY3EEZtL5QmCgGkUJoAFBRE\nKohTQpgBvMHdHyje6O5DZva6dJIljarcKNWxKB7ZumVmO7MjMv8tM0c2HFZbmhCRQMWAYGatwBvd\n/ZNR+919TRqJEil16Rmdw576AZ6aAP+8qH9EaWTW1uhzlCtliEigYkBw90Ez+7OZzXX3jfVKlIwv\nScxhU3iyL24X+OdF/Xz/BSOPfXAaHLp95Pao0kReaSoGyUKcKqM5wN1mdivwVGGju/9NaqmS8aG7\nG/r6YFEyq4DdeHzHiCqfRRHHfe9ve0eUJnZNbOHSM8p3Q+ze3E3f7r6q07Rw7sKqPzMaTcUgWYkT\nED6VeipkXGo5d1sm140qTYzWy2j7zm1M21X9tVZu6Ep8yUut/StZGTUguPvKeiRExqes1geOKk2M\n5olbFld3ke7uVIKepmKQrMTpdnos8GXgCGAi0Ao85e77pZw2kcSktRh8GjQVg2QlTpXRV4AzgR8C\nRxOMSTgszUSJpCFqqo08SnMqBjVWSyVxRyrfZ2at7j4IfNvMfp9yukSaVlpr/6qxWkYTJyA8bWYT\ngW4z+zdgE/DMdJMlkrzEl3CM6uKUkDSmYlBjtYwmTkB4K0G7wfuA84BDgDOSuLiZXQa8Dtji7kcm\ncU6RKFk1bseRdDVOufYSB7CR29VYLQVxehkVpqzYSfJdUC8naKP4bsLnFWkIaVXjjGgv6e7GMuoG\nLI2jbEAws7sIHyqiuPsLa724u//GzObVeh6RRqVqHMmTSiWEXExcZ2ZLgaUAc9vV7U7GlzyMOVB3\nVikoGxBKZzfNirtfAlwCcPTUqVqpTcaVeo85aLEWrSwmZY26YpqZHWtmt5lZn5ntNrNBM3uyHokT\nSVtvXy+rH1xN1/1drH5wNb199V2BrXNGJy02/L9hWpm0gVYWk4rGOjDtOWkmSqQe8tAvP60xB5Wu\npwAg5WQ6MM3Mvg8sBvY3s4eAi9z9W0mcW2Q0eWnQVSYteZHpwDR3PyuJ84iMRR4adEXyZNQ2BIKB\naS0EA9OeIsGBadL4VszqZd6xq2lZ1MW8Y1ezYlZ96+BrUa7hVr1upFnFHphmZoPAz4CH3X1L2gmT\n/Fsxq5el89fxdGtQ7fLApH6Wzg/q4JdsyX8VSJqTyIk0orIlBDP7upk9P3w9DfgzwYjiP5mZqnqE\nZZ09e4NBwdOtQyzr7MkoRdXpmNKhXjciRSqVEE5w9/eEr98OrHf315vZbOB64Pupp05ybWN7dF17\nue15pAZdkX0qtSHsLnp9MvATAHffnGqKpGHM7Y+uay+3XUTyrVJA2GZmrzOzo4CXA78AMLM2YHI9\nEif5trynk2cMDv8n9IzBFpb3qA5epBFVqjJ6N/BfwGzgA0Ulg5OAn6edMMm/QsPxss4eNrb3M7e/\nneU9nQ3RoDzejVj7ocLaDWmtorZiVu+wfxuadyb/Ks1ltB44JWL7L4FfppkoqaPeXujpgf5+aG+H\nzk7oiJ8ZLLkLlvwU6AfagU5A8SBT1az9kNZo7ageaHhwPbXZ5FeskcqSY7Vk6L29sG4dDIU9hfr7\ng/cQ7xy9vbB2Lbjv+/zatcM+X/Pi9haxokuBp/jMWXrdkmvlecGdaqQxWnvGMV1sm8TIxXiMzKf1\n1prSlSkgNLJaM/Senn2fLRgaCrbH+fy9947MlN1h/Xro6WGoi9GDVKWAtmoVr3jLYNnL33xFGyxc\nOHo6qxVx3eJrtSzqGhboGjk4pDFau28ikSuz1XreWuVh7qq8U0BoFFEZZ60Zen+Z/5zltpcaGIje\nPjgY/Cmcq1yQGi2gLVzIzfeXHF/8HRyWUuN16XUBiuLO3tXIurtpafBVyCpNv13L07RheESrQZaj\nwPMyd1WeVVox7YOVPujuX0w+OQKMzPhmzoTNm0dmnKXBoCBuht7eHn1s0gsRlQtS1QS0WktDEqnc\naO2Zk2fW9DQ9qW0S/YP9uRoFrrmrRlephDA1/Hs+8FKCaSsATgV+k2aimlpUxvfIIyOPKxcMIH6G\n3tkJa9ZEb4+jtXVfSWA0UYGnmhJKraWhFNXcTpKCuNVY5abfrvppuqS0NKWtnXnT5+Wqvr7eixE1\nokq9jD4FYGa/Al7s7jvC958kWBtB0hCV8VXS0jL8+JaW+Bk6BI2nxe0AlRpxS3V0RAerKO3tI0s+\n5QJKVECrtXorDQsWMLQyu8uXM6LL6SiiRmuveSziQYHRn6ZLA1GeqmI6Z3Ry35a17GnZ9+99wpDR\nuX+nGptDcdoQ5jJ81PJuYF4qqZHqMrjitoSx9DLq6YluFI771L11a7zrtLQE1V6lJZ+o4FMuoNWr\nemucKFdqiVNyWLVxFTiRDcON/DT9d3fCwbc6n1wMG6fB3O3wyS7n54u28+NnbVZjM/ECwveAW83s\n6vD96wkmuZNaRTUUl8v4ShUyzo6OsVeZ1PrUXem4wn1UagB3h7a2oKQwWkDr7BzZblJtaahJ7G30\nLhZW6azc0AVmLJpXYaQaMHkPWGvL8MkLHfoH+nNZRRbHOVf1MHsrnN09fPuFJz7CUMlzUbM2NseZ\n/nq5mV0PnBBueru7/yndZDWBco2ks2cPb0CGIOObPTt4Io9TEog7NqHWp+5Knz/uuOHbotoqIOip\nFKfraCH9NQyia2oLFjC0fBUALcsGWLVxFQvnlv/e2wfhK/fNH1ej0GdtjX6AeXhq5OambGyO2+30\nGcCT7v5tMzvAzJ7t7hvSTNi4V66RdOtWmD+/PoPNqn3qHq33U6XPJ1HlU0tpqFo1juCuRukUD6ll\nvGHgnbari74Yax4u2dLR0AGg1JaZ7cyOCAoH7YCH9ht5fCNXj43VqCummdlFwEeAC8JNE4Ar0kxU\nU6hUXdPRETxhL14c/F1NRlSpN06pjo4g+BQy5fb24H3U9QqBppDu/v4gGMyeHe/zM2dGp3fyZFi9\nGrq6gr97c7DiWm8vK9rWMO+9/bRcBPPe28+KtjWppG3FrF6WHr6WByb14xYuMnT42oZaea5RXHpG\nJ7smDs/ydk1s4djBA2mx4duz7iKblTglhNOBo4A7ANz9ETMrU8iS2NJqJK22XSDuU3elEk1p9VCU\ncg3Q24oGduVkbMGKSetZ+hp4emLw/oHpsPRU4Pr1LEl4oqZlh97L023DK7CfbnOWHXrvmJ/O4/Qy\nah3LiVetit6exmjxFNx4fPB9nnNVD7O29rNlZjuXntHJY0d1ML9vmnoZES8g7HZ3NzMHMLMYhU0Z\nVVqNpHkJNGM9Ls2xBTGrgT62aHBvMCh4eiIsWzTIku4Rh9dUvbTxGdGjvcttjyvp6TReMW8lKxdF\nzx2Vx6635dx4fMfewFBMCyUF4gSEH5jZN4DpZvYu4B3ApekmqwlUaiStpf46r4Embu8pSGdsQRVt\nKw9Oiz7FxqjtNY6gnrs9KIFEbc+diN5JjdrjSKLF6WX0BTM7GXiSYNTyJ9z9htRT1gyiqmtqnaIh\nrd44tQaaqM+Xk8bYgipGOh/0JDwUkflHZtLlzhtO8Dfab7B8ZStLXzO8RPKM3cF2ygSmzLgrAIxz\nowYEM/u8u38EuCFimyQtiSka0uiNU2ugifp8Nb2UalVFldfnfg3vPpWRmfSNQGnbeLnzxpzgb8mu\nw+GaNSw7ad9gqeU3wpKBw2sKCKNl3K2tbRW7nZa6+f5FcEW5NoQqEia5FqfK6GSCXkbFXhOxTZKQ\nxykaCmoNNFGfnzYtd2ML3rK+Hbumf2Qmvb4dStvP41aFlQvqHR0s6YUl/53cdxA5MK3IjGPidTsd\noUEaj2XsKs12+l7gH4BOM7uzaNdU4HdpJ6xpNdsUDfUcWxBXZydL7l7HkrtKSi7zI0ou1VSF1drT\nK88WLAD2rRMxbfJ0FsxekGmSpHqVSgj/A1wPfA74aNH2He7+eKqpamaaoiEd1QTaaqrHoo4dHIxe\nK6KGoD7jmC62T4reN1qJoF6GlrfxircMsvJQrZ7cqCrNdrod2A6cBWBms4BJwBQzm+LuG+uTxCaj\nKRrSUW2greapvfTY0o4Bo10rRq+yvonRH82N7m5alg2EExaaSgcNKk6j8qnAF4EDgS3AocAa4Pm1\nXtzMTgG+RDBO5lJ3/9dazzkujIcqhLypZ6Ct5loxe5Xt+e3i5NOZgtEmzZN8i9Oo/BngWODX7n6U\nmb2CsNRQCzNrBb5K0Gj9EHCbmf3M3e+p9dwNo47z5QixA+0r5q2ku2N4tceCXgt62iR8rdi9yrq7\nmfHukct1PvEfKa0rLU0pTkDY4+5bzazFzFrc/WYz+3wC134ZcJ+79wCY2ZXAaUBzBAQtCZlbUXXg\nKw91uD+Fi8XsVTbhn7YxGDHzWMuygcRGCicxxkCNyo0tTkDYZmZTCJbNXGFmW4DaxtUHDgIeLHr/\nEHBM6UFmthRYCjB3PPW0yfGSkM2uro20MRu761VlNOZ7L1o9bsIJXUklR+ps1NlOCZ7adwLnAb8A\n/o9gXeW6cPdL3P1odz/6gAkT6nXZ9OV5vIHUT2dn0OBcTL3KJCNxpq54CsDM9gOuSfDaDwOHFL0/\nONzWHJptvIFEU68yyZE46yG828w2A3cCtwN/DP+u1W3AYWb2bDObCJwJ/CyB8zYGPRmKSM7EaUP4\nEHCkuz9738tOAAAQ1UlEQVSW5IXdfcDM3gf8kqDb6WXufneS18i1NJ8Mo3ovpXUtqY06F0iOxAkI\n/wc8ncbF3f064Lo0zt0Q0hhvEJXBrFkTDBhy37dNmU5l9eoSrM4FkiNxAsIFwO/N7BZgb6W3u78/\ntVTJ2EVlMLAvGBQo0ymvnk/t6lwgORInIHwDuAm4C4gxg5dkqpqMRJlOtCSe2uNW26lzQSJ6+3q1\nBGYC4gSEAXf/YOopkWRUszKZMp1otT61V1NtN3t2/daEGKd6+3pZt3UdQx58h/2D/azbGpToFBSq\nEycg3BwODruG4VVGmvE0j8pNx1ycGcG+TKfWuvL16+GRR/a9P/BAOPzw2u4ha7U+tVdTbbd1K8yf\nn5sG/5ZFXQAseqDKqTq6u2k5d+TUGvXQ80TP3mBQMORD9DzRo4BQpTgB4e/Cvy8o2uaAHmHyqFzv\npXLbaqkrLw0GsO99HoNC3OBX6xTk1VbbaTLDmvQPRn/f5bZLeXEGpj27HgmRBJXLYEq3rV5dW115\naTAo3p63gFBNQ3GtXYIbuNquEaeuaG9tj8z821vz9d02gkorpp3o7jeZ2Rui9rv7j9NLltRFmj1c\nVq/ORRXIXvXs3llttV3CCtU+lUybOKXiZ6ftgiduWZxcolLUOaNzWBsCQIu10DlDlRjVqlRCWETQ\nuyhq3iIHFBAaXWvrvoXgS7fXqhBU8jLmoZrgV2u302qq7VL6ThY9e/GYP7Nq4yqSmb+yPgrtBOpl\nVLtKK6ZdFL78tLtvKN5nZqpGGg/Mqtte6sADy1cbFcvDmIdqGoqTKE3ErbaTRHRM6VAASECc2U6v\nitj2o6QTIhmIWve30vZShx8eBIU4sh7zUM3cURosJk2qUhvCcwmWyZxW0o6wH8HaylKrrFdMS2JQ\n1OGHD29ALrQd1HLONORhVtGsf2+RUVRqQ5gPvA6YzvB2hB3Au9JMVFPIw6RmtXavrNc5k5Jl987e\nXli7dvjAtLVr96Wr0WU4DkGSU6kN4afAT83sOHdfXcc0NYc8TGqWxlNzHp7Ey4n7hF6u5NTWNvbe\nU/feO3JgmnuwPQ/fTULG0pgt+RFnYNrpZnY3wappvwBeBHzA3a9INWXjXV7qqdN4aq7mnPWqRqmm\nRBZVyjEL2lYK7SvVluhqba8pI04X02pNmTiF7YPbqjt3FYOaJb/iBIRXufv5ZnY6wbrHbwJuBhQQ\nalHvSc3yWH9dz2qzakpkUaWcgYGRXXTz0HuK5J/KF8xekOj5pHHECQiFhYz/Gvi+uz9ucbslSnn1\nrGvPQ3tFlHpWm1VbIist5XR1Vff50gBcOiitIIkxHyIJiRMQrjGztQRVRu81swOAXekmqwnUs649\nD+0VUepZbVbrILxqSnRRAbjcQ1Tepvgoo3tzN9t3xm80VltCY4ozl9FHzezfgO3uPmhmTwOnpZ+0\nJlCvXi95aa8oVc9qs1oH4VVToosKwO5Bo3Rra76q7WLavnMbQ8vbYOHCUY+dcEIX3Zu7VfXUgMoO\nTDOz84venuTugwDu/hSg1dIaSbkMNuuxAdUMFqtVrY26HR3BNNWF76y9PXgflaGXC7QDA3DccbB4\ncfB3gwQDaR6VSghnAv8Wvr4A+GHRvlOAj6WVKElYXscGpFltVlqHX67KqJqgGLdEl+NV0E76fS/n\nXNXDrK39bJnZzqVndHLj8c0RmFZu6IrcPm3ydJVmQpUCgpV5HfVe8izPYwPSqDaLW4efVlDMUQAu\nzgTPugs+dG0Lk3YH6Zq9tZ8PXR50Lrjx+I6yGWa1puyG7S3bEjtfkkqrvQpTdWsJzkClgOBlXke9\nl7xrpkVYsq7Dz0EALmRwDhza387ym1t4+dqde4NBwaTdQ5xzVc/eUkLF9RBGbz4AKkyb3d0d7wRp\nWjiyJNA/0K8lOEOVAsKLzOxJgtLA5PA14XvNZST5VakOP0ajaCIyDMDD1hg2eGBSP285Bb73NMy7\na+Txs7bu+77GMtBtaOXiEVNXRAWWPExtMbR81Yh/A7sGduElz7jNugRnpakr1EFaGlOO6/DrIWqN\nYQwuOBneEhEQtswMvpexdBVduaGLCSd0MRiOVF707MWs3NBFy6IuWiOWlc6yO+rKDV20LBugdahr\n77bBFkYEg4JmXIIzzjgEkcaSozr8LJTLyB6aCrsmtgyrNto1sYVLzxj797Lo2Yvp3hxUBRUaZou3\nFat3w21pu8BzDziCTX2bRhy3c89OLcEZUkCQ8ScHdfhZKrvGcFs7Xzi7M/FeRlEZfda9doZVm7Gv\nXWD+zPkjqoFKj4XmXYJTAUHGp2ZqRC9RaY3hGw/paIpuplHVZuXaBbQE5z6ZBAQzexPwSeAI4GXu\nfnsW6RAZj5LK4Bq5K2a5arNy27UEZyCrEsJfgDcA38jo+jIWeZwxVSLVmsGVq3IpnDvvylabNWG7\nQDUyCQjuvgZAs6Y2kHrOmKrAk7lqqlyqUa9SR6VqMylPbQgyUlSGXK8ZU/M6Vfc4FpVJV1vlEvc6\n9Sp1qF1gbFILCGb2a2B2xK5l4fKccc+zFFgKMLdJ+pFnqlyGXBoMCpKeMTWvU3XnWC1P3eUy6VZr\nZdBHzv1US5VLWqWOctQuUL3UAoK7vzKh81wCXAJw9NSpmjIjbeUy5HKSDtJ5nao7pxxqeuoul0m3\ntbTRQkuiVS5plDokWWWnv5YmVSnjLW3zMUt+sFdep+rOsXJP3XGUy4wHhgaYP3P+3hJBe2t7ZB/+\napQrXaihNz+y6nZ6OvBl4ADg52bW7e6vziItUqLctA9tbSPXDohaErJWTT7KOClxn7or9cZJuspF\nDb35l1Uvo6uBq7O4dtOK23OnXIZcLvNPum6/yUcZJyXuU3elTDrpHkFq6M0/9TJqBtX03CmXIa9Z\nE33uNOr2m3iU8Vi02Njr+stl0lBb20Sl6ykA5JcCQh4l3Q+/2p47URlyIT2lVLefKQPmz5xf01N3\nVCa9+sHVde0RJPmggJA3afTDT6LnTqPV7TfR4LY0nrrVI6g5qZdR3lR6mh+rJHruVLPIfNYKQbUQ\n8ApBtbc323Q1EPUIak4qIeRNGv3wk3q6b5S6fQ1uq5l6BDUnBYS8SWO1r2bruaPBbTVTj6DmpICQ\nN2nV1TfK030SKo2lWL163AXFtCaMU4+g5qOAkDfN9jSfhqigahYMrCsMrhsnk+aVm7ri/m330942\nvFSZ9Spmkn8KCHmUxtN8Wr1u8tibJyqoDgzAYMlkbeOkXSGqe+jOPTvZ079z2PaVG7oyXeRe8k8B\noRmkNaV0nqeqLg2qXV3Rx43jdoVB9SGUKikgNIO0et3UuzdPHksj0lBWbVw1YtvCuQszSEk+KSA0\ng7R63dSzN0+eSyMZK526Aocr1hzBki1F30t3Ny3nbqt/4nJk5YYuWodgyu5927ZPgu7N3WpfCalQ\n2QzSmlK6nlNV1zpgb5xOq12YuqJ4mmpgeDCQvfZ8ro0nblm8909rhaU+mpFKCM0gra6saZ03qmqo\n1tJIo029UYXS7qErN3RllxhpaAoIzSCtrqxpnLdc1VDUegwQ/wlf3XlFRqWA0CzSGpiW9HnLVQ2Z\nBU/0tTzhN9PgPJExUBuC5Eu5KqDBwcaZXE+kQamEIPlSaS4nPeGLpEolBMmXzs6gKqjYOGn8Fck7\nlRAkX9T4K5IZBQTJH1UNiWRCVUYiIgIoIIiISEgBQUREAAUEEREJKSCIiAiggCAiIiEFBBERATIK\nCGb272a21szuNLOrzWx6FukQEZF9sioh3AAc6e4vBNYDF2SUDhERCWUSENz9V+5emNz+D8DBWaRD\nRET2yUMbwjuA68vtNLOlZna7md3+6J49dUyWiEhzSW0uIzP7NTA7Ytcyd/9peMwyYABYUe487n4J\ncAnA0VOnegpJFRERUgwI7v7KSvvN7GzgdcBJ7q6MXkQkY5nMdmpmpwDnA4vc/eks0iAiIsNl1Ybw\nFWAqcIOZdZvZ1zNKh4iIhDIpIbj7c7K4roiIlJeHXkYiIpIDCggiIgIoIIiISEgBQUREAAUEEREJ\nKSCIiAiggCAiIiEFBBERARQQREQkpIAgIiKAAoKIiIQUEEREBFBAEBGRkAKCiIgACggiIhJSQBCR\npjVld9YpyBdrpOWMzWwHsC7rdKRgf+CxrBORgvF6XzB+72283heM33uLc1+HuvsBo50okxXTarDO\n3Y/OOhFJM7PbdV+NZbze23i9Lxi/95bkfanKSEREAAUEEREJNVpAuCTrBKRE99V4xuu9jdf7gvF7\nb4ndV0M1KouISHoarYQgIiIpUUAQERGgwQKCmf2Lmd1pZt1m9iszOzDrNCXFzP7dzNaG93e1mU3P\nOk1JMLM3mdndZjZkZg3f5c/MTjGzdWZ2n5l9NOv0JMXMLjOzLWb2l6zTkiQzO8TMbjaze8J/h+dm\nnaakmNkkM7vVzP4c3tunaj5nI7UhmNl+7v5k+Pr9wPPc/T0ZJysRZvYq4CZ3HzCzzwO4+0cyTlbN\nzOwIYAj4BvAhd7894ySNmZm1AuuBk4GHgNuAs9z9nkwTlgAz+39AH/Bddz8y6/QkxczmAHPc/Q4z\nmwr8EXj9OPnNDHimu/eZ2QRgFXCuu/9hrOdsqBJCIRiEngk0TjQbhbv/yt0Hwrd/AA7OMj1Jcfc1\n7j5eRpe/DLjP3XvcfTdwJXBaxmlKhLv/Bng863Qkzd03ufsd4esdwBrgoGxTlQwP9IVvJ4R/asoT\nGyogAJjZcjN7EFgCfCLr9KTkHcD1WSdCRjgIeLDo/UOMk8ylGZjZPOAo4JZsU5IcM2s1s25gC3CD\nu9d0b7kLCGb2azP7S8Sf0wDcfZm7HwKsAN6XbWqrM9q9hccsAwYI7q8hxLkvkSyZ2RTgKuADJTUN\nDc3dB919AUGNwsvMrKbqvtzNZeTur4x56ArgOuCiFJOTqNHuzczOBl4HnOQN1LhTxW/W6B4GDil6\nf3C4TXIsrF+/Cljh7j/OOj1pcPdtZnYzcAow5o4BuSshVGJmhxW9PQ1Ym1VakmZmpwDnA3/j7k9n\nnR6JdBtwmJk928wmAmcCP8s4TVJB2PD6LWCNu38x6/QkycwOKPRGNLPJBJ0dasoTG62X0VXAfIJe\nKw8A73H3cfGEZmb3Ae3A1nDTH8ZDDyozOx34MnAAsA3odvdXZ5uqsTOz1wL/CbQCl7n78oyTlAgz\n+z6wmGAq5V7gInf/VqaJSoCZLQR+C9xFkG8AfMzdr8suVckwsxcC3yH4t9gC/MDdP13TORspIIiI\nSHoaqspIRETSo4AgIiKAAoKIiIQUEEREBFBAEBGRkAKCSExm9nozczN7btZpEUmDAoJIfGcRzCh5\nVtYJEUmDAoJIDOFcOAuBdxKMUMbMWszsa+Fc9Nea2XVm9sZw30vMbKWZ/dHMfhlOwyySawoIIvGc\nBvzC3dcDW83sJcAbgHnAC4BzgONg79w5Xwbe6O4vAS4DxsWIZhnfcje5nUhOnQV8KXx9Zfi+Dfih\nuw8Bm8PJxSCYXuVI4IZgKh1agU31Ta5I9RQQREZhZs8CTgReYGZOkME7cHW5jwB3u/txdUqiSCJU\nZSQyujcC33P3Q919XrgexwaCFcbOCNsSOggmhwNYBxxgZnurkMzs+VkkXKQaCggiozuLkaWBq4DZ\nBKum/QX4OsFKXNvD5TXfCHzezP4MdAPH1y+5ImOj2U5FamBmU8JFzmcCtwIvd/fNWadLZCzUhiBS\nm2vDRUomAv+iYCCNTCUEEREB1IYgIiIhBQQREQEUEEREJKSAICIigAKCiIiE/j8wn8IRk+gohgAA\nAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Visualising the Training set results\n", - "X_set, y_set = X_train, y_train\n", - "X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),\n", - " np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))\n", - "plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),\n", - " alpha = 0.75, cmap = ListedColormap(('red', 'green')))\n", - "plt.xlim(X1.min(), X1.max())\n", - "plt.ylim(X2.min(), X2.max())\n", - "for i, j in enumerate(np.unique(y_set)):\n", - " plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],\n", - " c = ListedColormap(('red', 'green'))(i), label = j)\n", - "plt.title('Random Forest Classifier (Training set)')\n", - "plt.xlabel('Age')\n", - "plt.ylabel('Estimated Salary')\n", - "plt.legend()\n", - "plt.show()\n", - "\n", - "# Visualising the Test set results\n", - "X_set, y_set = X_test, y_test\n", - "X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),\n", - " np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))\n", - "plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),\n", - " alpha = 0.75, cmap = ListedColormap(('red', 'green')))\n", - "plt.xlim(X1.min(), X1.max())\n", - "plt.ylim(X2.min(), X2.max())\n", - "for i, j in enumerate(np.unique(y_set)):\n", - " plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],\n", - " c = ListedColormap(('red', 'green'))(i), label = j)\n", - "plt.title('Random Forest Classifier (Test set)')\n", - "plt.xlabel('Age')\n", - "plt.ylabel('Estimated Salary')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/machine_learning/random_forest_regression/Position_Salaries.csv b/machine_learning/random_forest_regression/Position_Salaries.csv deleted file mode 100644 index 0c752c72a1d1..000000000000 --- a/machine_learning/random_forest_regression/Position_Salaries.csv +++ /dev/null @@ -1,11 +0,0 @@ -Position,Level,Salary -Business Analyst,1,45000 -Junior Consultant,2,50000 -Senior Consultant,3,60000 -Manager,4,80000 -Country Manager,5,110000 -Region Manager,6,150000 -Partner,7,200000 -Senior Partner,8,300000 -C-level,9,500000 -CEO,10,1000000 \ No newline at end of file diff --git a/machine_learning/random_forest_regression/random_forest_regression.ipynb b/machine_learning/random_forest_regression/random_forest_regression.ipynb deleted file mode 100644 index 17f4d42bfb0d..000000000000 --- a/machine_learning/random_forest_regression/random_forest_regression.ipynb +++ /dev/null @@ -1,147 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Importing the libraries\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "from sklearn.ensemble import RandomForestRegressor" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Importing the dataset\n", - "dataset = pd.read_csv('Position_Salaries.csv')\n", - "X = dataset.iloc[:, 1:2].values\n", - "y = dataset.iloc[:, 2].values" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,\n", - " max_features='auto', max_leaf_nodes=None,\n", - " min_impurity_split=1e-07, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=300, n_jobs=1, oob_score=False, random_state=0,\n", - " verbose=0, warm_start=False)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Fitting Random Forest Regression to the dataset\n", - "regressor = RandomForestRegressor(n_estimators = 300, random_state = 0)\n", - "regressor.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Predicting a new result\n", - "y_pred = regressor.predict(6.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 160333.33333333]\n" - ] - } - ], - "source": [ - "print(y_pred)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPNx1ICAgJkGHJziSKcUGgBwPMuABCADE4\nIuBEySCYUWEE0UeB+MgaxEEFHBl4MgGBsU1YlYisg7KNsiSIQECGGMiCBALZIB2SdOf3/HFPm0pT\nvVSlum5X6vt+vepVt85dzu/e6q5fnXtPnauIwMzMLA998g7AzMzql5OQmZnlxknIzMxy4yRkZma5\ncRIyM7PcOAmZmVlunISsS5JGS+o1ffklHSLppRKWP1XSa5LekrSDpH+QNC+9/mQH61wi6dSKBV0C\nST+TdG4edVvlSZou6ewKbOfTkpoqEVNv4iRU49IHadtjg6Q1Ba8nlrnNxZI+VuFQS6n/QknrC/bj\nWUlHl7mt/sAPgI9HxHYRsRK4ELg0vb69yDq7Ap8DpqfXh6Rj+5akNyX9SdIJ5e9h7yDpZEmt7f6G\nLqtyDJ0mXEl9JYWk1Sm+xekLQs18dkXEyRFxUQU29UtgH0nvq8C2eo2aeSOtuPRBul1EbAcsBI4q\nKHvHtyZJfasfZcc6iaepYL++CcyQtHMZVewK9IuIuQVlI4C5HSwPcCLwq4h4u6BsYYple+D/ANdI\nGl1GPL3NQ4V/QxFxeqkbqNLf1PvS8T8I+AIwqdIVSOrTm5NbZCMLzAS+lHcsldRrD7hVRmpV3CBp\nhqQ3gc+3//ZZeHpL0gxgd+DO9M3zjILlTkjfRJdKOrOTOgemOpZKeknSWZKU5p0s6UFJP5a0DPhO\nV/sQEXcAa4A9itTV9k15ZEHZzySdK+m9pGST9uWetJ/DC/avoUiVhwMPdBBLRMSvgFXABwrq/Ek6\nNqskPS7pgIJ5F6bj/7PUknpG0j4F8/eV9GSaNwPo124fv5xOH74h6ZeSdmu371+R9Oe0/jmSxkh6\nJMUyQ9JWXRzidyjnPUzlf5K0XNKdkoal8j5p2dckrZT0lKSxkr4KHAecnd6LX3QVV0T8L/A74EPt\nYv2ppFfSe3B+WzKR1CDpsnTs5kv6VxWcWpb0sKQLJP0eWA0M72J77077vlLS65J+3tk+pnnt/9+6\nej//Jc1fLunH7Q7B/cCRJbyVvZ6TUH34NPBzYAfghs4WjIjPAX8BDk/fjH9UMPsAYDRwGHCepDEd\nbOY/gAFkSeMg4CSg8PTVAcBzwGDg+53Fo8ynAAF/6mzZIvvyHLBXmt4uIg6NiJHt9q+1yKofAJ7v\nIJ4+kj4NDALmFcx6FPggsCNwM3CTpMJkcjTwX8BA4E7gx2l7/YDbgGvSurelZdvqOxQ4HzgGGJJi\nb9/C/QTZh/KBwBSy4388WYtvb+DYogeocyW9h5I+Q9ZCnJDKHiX7m4MsqY8DxpAdt+OBZRHxH2R/\njxel9+LTXQWVvlgcyKbH/r/IvqT8LbAv2Yf0iWneV4BDyN6bRuAfi2z2C8AXyVq5i7vY3lTg12k/\nhgJXdLaPReLvzvt5RKp3b7IvjYcUzHsOGC1pQJH9qE0R4ccW8gBeAg5pV3Yh8Jt2ZT8Dzi14fQjw\nUsHrxcDHCl6PBgLYtaDsCeCYIjFsBbQA7y4oOwX47zR9MjC/i/24EFgHrACagVbgG8XiBfqm2EYW\n27+22Nttf5P9K1L/BmB0u/o2pHjWpnhO7WR9AW+SnUJq25+7CuZ/EHgrTR8ELAJUMP+xgvivI/uQ\nbpu3fap/aMG+f7hg/h/bHavLgR90EOfJ6b1aUfBoLOc9BO4FJhW87puO1RDgULIvEB8G+nT2t1gk\nxrZ9XEXWUom0ztZp/hCyhNGvYJ0vAPem6QeBkwrmjS/8ewAeBr5b8Lqr7f0cuBIY0i7Obu1jN9/P\ncQXzbwW+WfB6m7TM7uV8RvTGh1tC9WFRJTYSEUsKXjYD2xVZ7G+ABmBBQdkCsn/uUuL5eUQMjIgB\nZN8uT5Z0Uokhl2sF8K52ZQsjYiDZh8YVwMGFMyV9K52KWgksB7YFCq9htT9226bp3YHFkT5hksJj\nt3vh64hYlbZfeDxfLZheU+R1sfepzcPpOLc9ZlPeezgCuELSCkkrgNfJEvfQiLgHuIrsw/tVSVdJ\nan98u/JBsvfkn4D92Xj8RpCdvny1oO4rgF3S/N3bxVrsb6+wrKvtfYMsSc+W9LSkSQAl7GN33s/O\n/s/atrmiyLZrkpNQfWjfvXo12amWNrt2sXwpXiP7ZjeioGw48HK524+I+cBdwFFF5rWQfePubH9K\n9RTw7g5iWUt22mkfpe7dkj4OnAF8hux02yDgLbIWUVdeIfsWXGh4wfRfKDiW6YNtEJsez0or5z1c\nRNbiKExo20TEowARcVlE7AO8HxhLdryKbadDEbEhImYAs8lOO7bV2wzsWFDv9hHxwTS//fEdVmzT\n7fajw+1FxCuR9Xbbjax1OE3SqC72sdDmvp/vBeZFRHM3l+/1nITq05PAkZIGpYuiX2s3/1WKdALo\njohYT3ZN5CJJ26V/0K+TnZIoS7rAfRgd92j7IzAxXYQ+Evj7cutK7gA+2tHMlIguBb6bit5Fdvrq\ndbJvyeey8Zt6Vx4G+ij7LVNfSccC+xTMnwGcJOmD6frR98h6tC0uYX9KUuZ7eBUwJV2zaesscEya\n3i89+pJ9AVpH1kqC8v7WLga+LGlwRCwi60TyA0nbp2t2oyV9JC17I3C6pN0lDSL7AtHZvne6PUnH\nSmprtawgS2CtXexjoc19Pz9Kdk1xi+EkVJ+uJbvAuYCshTGz3fyLyDoerJBUcpdd4Ktk/4Qvkf1D\nXwdcX+I2JqYeU2+RXeS+n+zaSjFfI+t8sQL4LDCr9JA3cR1wVLuOBe1NJ7tAfDhZ0vpv4AWyfV5F\n9g28SymhfZqs2+3yNP3Lgvl3kV3I/kXa5nCgrN9/laik9zAibgJ+RNYhYxVZa/KwNHsgcDXZ+/MS\n2X60dXiZDuyVeoLd3J3AIuIPwO/Juu4DfJ4s6T9LdgxvYmNr+Eqyv52ngTlknQrWdVFFZ9v7MPC4\npNVk12tOiYiFXexjYexlv5+SRNbhYVp3lq8V2vRUtJkBSPo3sutAP8k7FqscSUcBl0XE3+YdS6lS\nr8zPRsQ/5R1LJTkJmdkWS9K2wD+QtVR3JWuBPBAR3+x0RasaJyEz22JJ2o7sdOJ7yK7V3A6cHhFv\n5hqY/ZWTkJmZ5cYdE8zMLDe9ajDL3mjnnXeOkSNH5h2GmVlNmTNnzusRMbir5ZyEujBy5Ehmz56d\ndxhmZjVF0oKul/LpODMzy5GTkJmZ5cZJyMzMcuMkZGZmuXESMjOz3PRYEpJ0TbrV7TMFZTtKulfS\nC+l5UCpXujXuvHRb3MJbH09Ky7/Qdu+OVL5vup/HvLSuyq3DzMySpiYYORL69Mmem9rf+LWyerIl\ndC3ZXQwLnQncFxFjgPvSa8hujTsmPSaTjXyLpB2Bc8hGrt0POKctqaRlvlSw3vhy6jAzs6SpCSZP\nhgULICJ7njy5RxNRjyWhiHiQd95jfQLZkPCk56MLyq+PzCPAwHSfm8PIbqu7LCKWk91CeHyat31E\nPJLuSHl9u22VUoeZmQFMmQLN7e6X19yclfeQal8T2iUi2u6zsoSNt8wdwqa32F2cyjorX1ykvJw6\n3kHSZEmzJc1eunRpN3fNzKzGLVxYWnkF5NYxIbVgenT01HLriIhpEdEYEY2DB3c56oSZ2ZZh+PDS\nyiug2kno1bZTYOn5tVT+Mpve+31oKuusfGiR8nLqMDMzgKlTYcCATcsGDMjKe0i1k9AsoK2H2yTg\ntoLyE1IPtnHAynRK7W7gUEmDUoeEQ4G707xVksalXnEntNtWKXWYmRnAxIkwbRqMGAFS9jxtWlbe\nQ3psAFNJM4CPATtLWkzWy+1i4EZJJwELgGPT4ncARwDzgGbgRICIWCbpAuDxtNz5EdHW2eGrZD3w\ntgHuTA9KrcPMzApMnNijSac939SuC42NjeFRtM3MSiNpTkQ0drWcR0wwM7PcOAmZmVlunITMzCw3\nTkJmZpYbJyEzM8uNk5CZmeXGScjMzHLjJGRmZrlxEjIzs9w4CZmZWW6chMzMLDdOQmZmlhsnITMz\ny42TkJmZ5cZJyMzMcuMkZGZmuXESMjOz3DgJmZlZbpyEzMwsN05CZmaWGychMzPLjZOQmZnlxknI\nzMxy4yRkZma5cRIyM7PcOAmZmVlunITMzCw3TkJmZpYbJyEzM8uNk5CZmeXGScjMzHLjJGRmZrnJ\nJQlJ+rqkuZKekTRDUn9JoyQ9KmmepBskbZ2W7Zdez0vzRxZs56xU/rykwwrKx6eyeZLOLCgvWoeZ\nmeWjb7UrlDQE+BowNiLWSLoROB44Arg0ImZKugo4CbgyPS+PiNGSjge+DxwnaWxa733A7sB/S3p3\nquYK4BPAYuBxSbMi4tm0brE6zMy2GLfdBk89tXnbGDYM/vmfKxJOp6qehArq3UbSemAA8ApwEPBP\naf51wLlkCWJCmga4GfiJJKXymRGxFnhR0jxgv7TcvIiYDyBpJjBB0nOd1GFmtsX44hdh2bLN28aB\nB1YnCVX9dFxEvAz8AFhIlnxWAnOAFRHRkhZbDAxJ00OARWndlrT8ToXl7dbpqHynTuowM9tirF8P\np58OLS3lPx54oDqx5nE6bhBZK2YUsAK4CRhf7Tg6I2kyMBlg+PDhOUdjZlaaDRugb19oaMg7kq7l\n0THhEODFiFgaEeuBW4EDgYGS2pLiUODlNP0yMAwgzd8BeKOwvN06HZW/0Ukdm4iIaRHRGBGNgwcP\n3px9NTOrutZW6FMjfZ/zCHMhME7SgHRt52DgWeC3wDFpmUnAbWl6VnpNmv+biIhUfnzqPTcKGAM8\nBjwOjEk94bYm67wwK63TUR1mZluMDRuchDoUEY+SdTB4Ang6xTAN+DZwRupgsBNwdVrlamCnVH4G\ncGbazlzgRrIEdhdwSkS0pms+pwJ3A88BN6Zl6aQOM7MtRi0lIWUNBOtIY2NjzJ49O+8wzMy6raEB\nzj4bLrggvxgkzYmIxq6Wq5FcaWZm3VVLLaEaCdPMzLqj7eSWk5CZmVVda2v2XAvds8FJyMxsi7Jh\nQ/bslpCZmVWdk5CZmeXGScjMzHLjJGRmZrlxEjIzs9y09Y5zEjIzs6prawm5i7aZmVWdT8eZmVlu\nnITMzCw3TkJmZpYbJyEzM8uNe8eZmVlu3BIyM7PcuIu2mZnlxi0hMzPLjZOQmZnlxknIzMxy495x\nZmaWG7eEzMwsN05CZmaWG3fRNjOz3LglZGZmuXESMjOz3Lh3nJmZ5cYtITMzy42TkJmZ5cZJyMzM\ncuMkZGZmuam13wn1zTsAMzPb6OGH4aGHyl9/3rzsuVZaQrkkIUkDgenA+4EAvgg8D9wAjAReAo6N\niOWSBFwOHAE0A/8cEU+k7UwCvpM2e2FEXJfK9wWuBbYB7gBOi4iQtGOxOnp2b83Muu+00+CJJzZv\nG9tsA0OGVCaenpZXrrwcuCsi9gT2Ap4DzgTui4gxwH3pNcDhwJj0mAxcCZASyjnAh4H9gHMkDUrr\nXAl8qWC98am8ozrMzHqFtWthwgR4++3yH6tWwahRee9J91Q9CUnaAfgIcDVARKyLiBXABOC6tNh1\nwNFpegJwfWQeAQZK2g04DLg3Ipal1sy9wPg0b/uIeCQiAri+3baK1WFm1iu0tsLWW0O/fuU/+tbQ\nhZY8WkKjgKXATyX9QdJ0SdsCu0TEK2mZJcAuaXoIsKhg/cWprLPyxUXK6aSOTUiaLGm2pNlLly4t\nZx/NzMrS2lo7nQoqIY8k1BfYB7gyIvYGVtPutFhqwURPBtFZHRExLSIaI6Jx8ODBPRmGmdkmnIR6\n3mJgcUQ8ml7fTJaUXk2n0kjPr6X5LwPDCtYfmso6Kx9apJxO6jAz6xWchIqQVLFDEhFLgEWS3pOK\nDgaeBWYBk1LZJOC2ND0LOEGZccDKdErtbuBQSYNSh4RDgbvTvFWSxqWedSe021axOszMeoV6S0Ld\nvXz1gqRbgJ9GxLMVqPdfgSZJWwPzgRPJEuKNkk4CFgDHpmXvIOuePY+si/aJABGxTNIFwONpufMj\nYlma/iobu2jfmR4AF3dQh5lZr9DSUlsdCzZXd3d1L+B4YLqkPsA1wMyIWFVOpRHxJNBYZNbBRZYN\n4JQOtnNNiqV9+Wyy3yC1L3+jWB1mZr1FvbWEunU6LiLejIj/jIgDgG+T/T7nFUnXSRrdoxGamdUR\nJ6EiJDVI+pSkXwCXAT8E9gB+RXa6zMzMKqDeklC3rwkBvwUuiYjfFZTfLOkjlQ/LzKw+OQm1k3rG\nXRsR5xebHxFfq3hUZmZ1qt6SUJen4yKiFfh4FWIxM6t7ra3uHVfM7yT9hGwE6tVthW2jWZuZWWW0\ntNRXS6i7SeiA9Fx4Si6AgyobjplZ/YrIbkrnJNRORPh0nJlZD6u1u6JWQrfPPEo6Engf0L+trKPO\nCmZmVrrW1uy5npJQd38ndBVwHNlwOwI+C4zowbjMzOpOWxKqp44J3R1F+4CIOAFYHhHnAfuz6QjW\nZma2mdwS6tia9NwsaXdgPdnN6czMrEKchDp2u6SBwCXAE8BLwMyeCsrMrB61zLgJgIYzToORI6Gp\nKd+AqqC7veMuSJO3SLod6B8RK3suLDOzOtPUROsZU4DP0kALLFgAkydn8yZOzDW0ntRpEpL0j53M\nIyJurXxIZmZ1aMoUWtesBaCBdF6uuRmmTKnfJAQc1cm8AJyEzMwqYeFCWtkdgL60bFK+Jes0CUXE\nidUKxMysrg0fTuuCAApaQql8S+Yfq5qZ9QZTp9J68kXwdkESGjAApk7NN64e1q0klH6sOoBsNO3p\nwDHAYz0Yl5lZzbnwQrjkknLXnkhrHAvAVrTAiBFZAtqCrwdBCQOYRsQHJT0VEedJ+iG+HmRmtonH\nHoN+/TYnb2xF//5w6Dd/DjtVMrLeq7tJqP2PVZfhH6uamW2ipSX7ec+ll+YdSe3obhJq+7HqvwFz\nUtn0ngnJzKw21dtdUSuhq98J/R2wqO3HqpK2A54G/gQ415uZFWhpqa/BRyuhq2F7/h+wDkDSR4CL\nU9lKYFrPhmZmVlvq7a6oldBVzm6IiGVp+jhgWkTcQjZ8z5M9G5qZWW1pbYX+/btezjbqqiXUIKkt\nUR0M/KZgnhudZmYFfDqudF0drhnAA5JeJ+sh9xCApNFkp+TMzCxxx4TSdTVsz1RJ9wG7AfdERKRZ\nfcjusmpmZolbQqXr8nBFxCNFyv63Z8IxM6td7phQuu7e1M7MzLrQ2uqWUKmchMzMKsSn40rnJGRm\nViHumFC63JKQpAZJf0i3C0fSKEmPSpon6QZJW6fyfun1vDR/ZME2zkrlz0s6rKB8fCqbJ+nMgvKi\ndZiZVYJbQqXLsyV0GvBcwevvA5dGxGhgOXBSKj8JWJ7KL03LIWkscDzZPY7GA/+RElsDcAVwODAW\n+FxatrM6zMw2m1tCpcslCUkaChxJGgRVkoCDgJvTItcBR6fpCek1af7BafkJwMyIWBsRLwLzgP3S\nY15EzI+IdcBMYEIXdZiZbTa3hEqXV0voMuBbwIb0eidgRUS03Vh9MTAkTQ8BFgGk+SvT8n8tb7dO\nR+Wd1bEJSZMlzZY0e+nSpeXuo5nVGXfRLl3Vk5CkTwKvRcScLhfOSURMi4jGiGgcPHhw3uGYWY1w\nF+3S5XG4DgQ+JekIoD+wPXA5MFBS39RSGQq8nJZ/GRgGLE7j2O0AvFFQ3qZwnWLlb3RSh5nZZvPp\nuNJVvSUUEWdFxNCIGEnWseA3ETER+C1wTFpsEnBbmp6VXpPm/yYNHzQLOD71nhsFjAEeAx4HxqSe\ncFunOmaldTqqw8xss7ljQul60++Evg2cIWke2fWbq1P51cBOqfwM4EyAiJgL3Ag8C9wFnBIRramV\ncypwN1nvuxvTsp3VYWa22dwSKl2uhysi7gfuT9PzyXq2tV/mbeCzHaw/FZhapPwO4I4i5UXrMDOr\nBHdMKF1vagmZmdWsDRsgwi2hUvlwmZkBv/41nHdelkjK0baeW0KlcRIyMwPuuguefBI+8Ynyt3HU\nUXDkkZWLqR44CZmZAevWwU47ZS0iqx5fEzIzI0tCW3tI46pzEjIzA9avdxLKg5OQmRluCeXFScjM\nDCehvDgJmZmRJaGttso7ivrjJGRmhltCeXESMjPDSSgvTkJmZjgJ5cVJyMysqYn1f3iare+eBSNH\nQlNT3hHVDSchM6tvTU0weXLWEmIdLFgAkyc7EVWJk5CZ1bcpU6C5mXVsnSUhgObmrNx6nMeOM7Mt\nwptvZnc2LdmClcAOvE1/tmL9xvKFCysVmnXCScjMat4tt8Axx5S79vK/Tg2geWPx8OGbFZN1j5OQ\nmdW8P/85e/7+98vo4TZnNtxwI1q/lgnclpUNGABT33HTZusBTkJmVvPWpUs5Z5xRzp1NG2H889k1\noIULYfiILAFNnFjpMK0IJyEzq3lr10KfPptxa+2JE510cuLecWZW89auhX798o7CyuEkZGY1z0mo\ndjkJmVnNW7vWQ+7UKichM6t5bgnVLichM6t5TkK1y0nIzGreunVOQrXKScjMap6vCdUuJyEzq3k+\nHVe7/GNVM8vV+vXwq1/BmjXlb2PRIthll8rFZNXjJGRmubr3XvjMZzZ/Ox/60OZvw6rPScjMcrU8\nDWJ9zz3ZTU3LNWJERcKxKnMSMrNcrV6dPY8dC0OG5BuLVZ87JphZrprTLXy23TbfOCwfVU9CkoZJ\n+q2kZyXNlXRaKt9R0r2SXkjPg1K5JP1Y0jxJT0nap2Bbk9LyL0iaVFC+r6Sn0zo/lqTO6jCznDQ1\n0XzevwEwYK8x0NSUc0BWbXm0hFqAb0TEWGAccIqkscCZwH0RMQa4L70GOBwYkx6TgSshSyjAOcCH\ngf2AcwqSypXAlwrWG5/KO6rDzKqtqQkmT2b1ivU00MJWC+fB5MlORHWm6kkoIl6JiCfS9JvAc8AQ\nYAJwXVrsOuDoND0BuD4yjwADJe0GHAbcGxHLImI5cC8wPs3bPiIeiYgArm+3rWJ1mFm1TZkCzc00\nM4BtWY0gOzc3ZUrekVkV5XpNSNJIYG/gUWCXiHglzVoCtPX6HwIsKlhtcSrrrHxxkXI6qaN9XJMl\nzZY0e+nSpaXvmJl1beFCAJoZwACa31Fu9SG33nGStgNuAU6PiFXpsg0AERGSoifr76yOiJgGTANo\nbGzs0TjMatmSJVmvthUrylg5WrIn+jCaFzaWDx9emeCsJuSShCRtRZaAmiLi1lT8qqTdIuKVdErt\ntVT+MjCsYPWhqexl4GPtyu9P5UOLLN9ZHWZWhvnzs9/5fP7zMGpUiSs/PRduvx1a1rM/v8/KBgyA\nqVMrHqf1XlVPQqmn2tXAcxHxo4JZs4BJwMXp+baC8lMlzSTrhLAyJZG7gYsKOiMcCpwVEcskrZI0\njuw03wnAv3dRh5mVYdWq7PmUU2DcuFLX/gA0PZVdA1q4EIaPyBLQxImVDtN6sTxaQgcCXwCelvRk\nKjubLDHcKOkkYAFwbJp3B3AEMA9oBk4ESMnmAuDxtNz5EbEsTX8VuBbYBrgzPeikDjMrQ1sSete7\nytzAxIlOOnWu6kkoIh4G1MHsg4ssH8ApHWzrGuCaIuWzgfcXKX+jWB1mVp62JLT99vnGYbXLIyaY\nWdmchGxzeew4s3rU1MSGs7/DKQu/zcJt3g3vfk9ZA7fNm5c9b7ddheOzuuEkZFZv0kgFf2kexFV8\nmZFrXmTnp5fAqv6w004lbWr77eHEE6GhoYditS2ek5BZvUkjFbzKngBcytc5esNtsGEEPP5SvrFZ\n3fE1IbN6k0YkeI2/AWAXXt2k3Kya3BIyq1ETJsCjj5axol6FaOVt+gMFScgjFVgOnITMatCGDdlg\nA3vvDY2NJa78wgp48AFoaWE3XmEUL3qkAsuNk5BZDVq5MktEEyfC179e6tpjoOkxj1RgvYKTkFkN\nev317HnnncvcgEcqsF7CScis2pqaeOKbP+exJcNhxx2zizv77VfSJhYsyJ5L7FFt1us4CZlVU/qN\nzgnNjzKX98My4KfpUaKGBhg9utIBmlWXk5BZNU2ZQjQ3M589+DJXcg7nZeVDh8Hjj3e+bjvbbAM7\n7NADMZpVkZOQWYluvz1r0JRlwfdooS9rGMBYnmXXtu7RL78Gu1YsRLOa4SRkVqLLL4f/+R8YNqzr\nZd+h737Q0sIHeIqPcf/Gcv9Gx+qUk5BZiV59FQ49FH75yzJWbnoEJk+G5uaNZf6NjtUxD9tjVqIl\nS2CXXcpceeJEmDYNRowAKXueNs3dpa1uuSVk9aOpif/82tN8Y9nZhPpAv37Qd6uSN/PWW7Dr5ly/\n8W90zP7KScjqQ+oafU/ztfRjLSfE9dCyFXz8E/De95a0qYaG7PYFZrb5nISsZixbBjNnQktLGSuf\n+wI0n8RsGmlkNj/km9ACPDsC7nipwpGaWXc5CVnNmDYNzjqr3LXP/evUCVy/sdi3LzDLlZOQ9bym\nJpgyhdULXmf9sD3gO9+BY48teTNz52bXYubOLSOGvfaCxYsQwUBWbCx312izXDkJWc9K12Lub/47\nDmI+sagP/AvZowwf/Wg23FrJLv6Wu0ab9UJOQluy1ALJhusfXvZw/UuXwic/md0+oGR/Hgctc3iD\nnejP20xlCiJg0I7w3e+WvLmDDy4jBti43xU4HmZWOYqIvGPo1RobG2P27Nmlr1ihBNDSAqtXl149\nN94Ip53GhjVvM52TWczQrDvyQQfBnnuWtKn587Ohaj71qWy8spLcMPOvkx/lAb7CVdkLKbshjplt\nkSTNiYgub7noJNSFspJQUxN/Ofm7nPV2wTf9hr6w//6wxx7d3syGDXDnnfDGG6VVX0xf1rMdb0Gf\nPrB96aNejh0LDz2UrV6SkSM33neg0IgR8NJLJcdhZrWhu0nIp+N6wpQprHm7gQf5yMayVuD3fWFx\naZsaOhROOQUGDiwxhjPOALIvGMNYxGe4BQGEYHkVWyBTp/pajJl1yEmoJyxcyN8SvEi7Vs8GwYtV\nSgCX31rGX8C+AAAGXUlEQVS8BVLt3mC+FmNmnfDYcT2how/6aiaAqVOzFkehvFogEydmp942bMie\nnYDMLHES6gm9IQF4oEwzqwE+HdcTesspKA+UaWa9nJNQT3ECMDPrkk/HmZlZbuouCUkaL+l5SfMk\nnZl3PGZm9ayukpCkBuAK4HBgLPA5SWPzjcrMrH7VVRIC9gPmRcT8iFgHzAQm5ByTmVndqrckNARY\nVPB6cSrbhKTJkmZLmr106dKqBWdmVm/cO66IiJgGTAOQtFRSkaEHasrOwOt5B9GL+Hhs5GOxKR+P\njTb3WIzozkL1loReBoYVvB6ayjoUEYN7NKIqkDS7OwMJ1gsfj418LDbl47FRtY5FvZ2OexwYI2mU\npK2B44FZOcdkZla36qolFBEtkk4F7gYagGsiopybRZuZWQXUVRICiIg7gDvyjqPKpuUdQC/j47GR\nj8WmfDw2qsqx8E3tzMwsN/V2TcjMzHoRJyEzM8uNk9AWTNIwSb+V9KykuZJOyzumvElqkPQHSbfn\nHUveJA2UdLOkP0l6TtL+eceUF0lfT/8jz0iaIal/3jFVk6RrJL0m6ZmCsh0l3SvphfQ8qCfqdhLa\nsrUA34iIscA44BSPlcdpwHN5B9FLXA7cFRF7AntRp8dF0hDga0BjRLyfrOfs8flGVXXXAuPblZ0J\n3BcRY4D70uuKcxLagkXEKxHxRJp+k+xD5h3DFNULSUOBI4HpeceSN0k7AB8BrgaIiHURsSLfqHLV\nF9hGUl9gAPCXnOOpqoh4EFjWrngCcF2avg44uifqdhKqE5JGAnsDj+YbSa4uA74FbMg7kF5gFLAU\n+Gk6PTld0rZ5B5WHiHgZ+AGwEHgFWBkR9+QbVa+wS0S8kqaXALv0RCVOQnVA0nbALcDpEbEq73jy\nIOmTwGsRMSfvWHqJvsA+wJURsTewmh463dLbpWsdE8gS8+7AtpI+n29UvUtkv+Xpkd/zOAlt4SRt\nRZaAmiLi1rzjydGBwKckvUR2C4+DJP0s35BytRhYHBFtLeObyZJSPToEeDEilkbEeuBW4ICcY+oN\nXpW0G0B6fq0nKnES2oJJEtk5/+ci4kd5x5OniDgrIoZGxEiyi86/iYi6/bYbEUuARZLek4oOBp7N\nMaQ8LQTGSRqQ/mcOpk47abQzC5iUpicBt/VEJU5CW7YDgS+Qfet/Mj2OyDso6zX+FWiS9BTwIeCi\nnOPJRWoN3gw8ATxN9rlYV8P3SJoB/B54j6TFkk4CLgY+IekFstbixT1St4ftMTOzvLglZGZmuXES\nMjOz3DgJmZlZbpyEzMwsN05CZmaWGychszJJak3d3p+RdJOkAWVsY3rboLKSzm4373cVivNaScdU\nYls9uU2rT05CZuVbExEfSiMvrwO+XOoGIuLkiGj7kejZ7eb5V/u2xXMSMquMh4DRAJLOSK2jZySd\nnsq2lfRrSX9M5cel8vslNUq6mGwU5yclNaV5b6VnSbokrfd0wbofS+u33ROoKf3iv0OS9pX0gKQ5\nku6WtJukPSU9VrDMSElPd7R85Q+d1bO+eQdgVuvS8P+HA3dJ2hc4EfgwIOBRSQ8AewB/iYgj0zo7\nFG4jIs6UdGpEfKhIFf9INqLBXsDOwOOSHkzz9gbeR3brgf8hGyXj4Q7i3Ar4d2BCRCxNyWxqRHxR\n0taSRkXEi8BxwA0dLQ98sZzjZFaMk5BZ+baR9GSafohsnL6vAL+IiNUAkm4F/gG4C/ihpO8Dt0fE\nQyXU8/fAjIhoJRtU8gHg74BVwGMRsTjV9SQwkg6SEPAe4P3AvanB1EB26wKAG8mSz8Xp+bguljer\nCCchs/Ktad9y6ehsWET8r6R9gCOA70m6JyLOr0AMawumW+n8f1rA3IgodhvvG4CbUtKMiHhB0gc6\nWd6sInxNyKyyHgKOTiMybwt8GnhI0u5Ac0T8jOwGasVum7A+nQIrts3jJDVIGkx2R9THiizXleeB\nwZL2h+z0nKT3AUTEn8mS2P8lS0idLm9WKW4JmVVQRDwh6Vo2JonpEfEHSYcBl0jaAKwnO23X3jTg\nKUlPRMTEgvJfAPsDfyS7sdi3ImKJpD1LjG1d6lb943RNqi/Z3WbnpkVuAC4hu7lbd5Y322weRdvM\nzHLj03FmZpYbJyEzM8uNk5CZmeXGScjMzHLjJGRmZrlxEjIzs9w4CZmZWW7+P0PNi1lCP0XzAAAA\nAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Visualising the Random Forest Regression results (higher resolution)\n", - "X_grid = np.arange(min(X), max(X), 0.01)\n", - "X_grid = X_grid.reshape((len(X_grid), 1))\n", - "plt.scatter(X, y, color = 'red')\n", - "plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')\n", - "plt.title('Truth or Bluff (Random Forest Regression)')\n", - "plt.xlabel('Position level')\n", - "plt.ylabel('Salary')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/machine_learning/random_forest_regression/random_forest_regression.py b/machine_learning/random_forest_regression/random_forest_regression.py deleted file mode 100644 index 2599e97e957e..000000000000 --- a/machine_learning/random_forest_regression/random_forest_regression.py +++ /dev/null @@ -1,44 +0,0 @@ -# Random Forest Regression - -# Importing the libraries -import os -import numpy as np -import matplotlib.pyplot as plt -import pandas as pd - -# Importing the dataset -script_dir = os.path.dirname(os.path.realpath(__file__)) -dataset = pd.read_csv(os.path.join(script_dir, "Position_Salaries.csv")) -X = dataset.iloc[:, 1:2].values -y = dataset.iloc[:, 2].values - -# Splitting the dataset into the Training set and Test set -"""from sklearn.cross_validation import train_test_split -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" - -# Feature Scaling -"""from sklearn.preprocessing import StandardScaler -sc_X = StandardScaler() -X_train = sc_X.fit_transform(X_train) -X_test = sc_X.transform(X_test) -sc_y = StandardScaler() -y_train = sc_y.fit_transform(y_train)""" - -# Fitting Random Forest Regression to the dataset -from sklearn.ensemble import RandomForestRegressor - -regressor = RandomForestRegressor(n_estimators=10, random_state=0) -regressor.fit(X, y) - -# Predicting a new result -y_pred = regressor.predict([[6.5]]) - -# Visualising the Random Forest Regression results (higher resolution) -X_grid = np.arange(min(X), max(X), 0.01) -X_grid = X_grid.reshape((len(X_grid), 1)) -plt.scatter(X, y, color="red") -plt.plot(X_grid, regressor.predict(X_grid), color="blue") -plt.title("Truth or Bluff (Random Forest Regression)") -plt.xlabel("Position level") -plt.ylabel("Salary") -plt.show() diff --git a/machine_learning/reuters_one_vs_rest_classifier.ipynb b/machine_learning/reuters_one_vs_rest_classifier.ipynb deleted file mode 100644 index 968130a6053a..000000000000 --- a/machine_learning/reuters_one_vs_rest_classifier.ipynb +++ /dev/null @@ -1,405 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "try:\n", - " import nltk\n", - "except ModuleNotFoundError:\n", - " !pip install nltk" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "## This code downloads the required packages.\n", - "## You can run `nltk.download('all')` to download everything.\n", - "\n", - "nltk_packages = [\n", - " (\"reuters\", \"corpora/reuters.zip\")\n", - "]\n", - "\n", - "for pid, fid in nltk_packages:\n", - " try:\n", - " nltk.data.find(fid)\n", - " except LookupError:\n", - " nltk.download(pid)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up corpus" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from nltk.corpus import reuters" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up train/test data" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "train_documents, train_categories = zip(*[(reuters.raw(i), reuters.categories(i)) for i in reuters.fileids() if i.startswith('training/')])\n", - "test_documents, test_categories = zip(*[(reuters.raw(i), reuters.categories(i)) for i in reuters.fileids() if i.startswith('test/')])" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "all_categories = sorted(list(set(reuters.categories())))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following cell defines a function **tokenize** that performs following actions:\n", - "- Receive a document as an argument to the function\n", - "- Tokenize the document using `nltk.word_tokenize()`\n", - "- Use `PorterStemmer` provided by the `nltk` to remove morphological affixes from each token\n", - "- Append stemmed token to an already defined list `stems`\n", - "- Return the list `stems`" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from nltk.stem.porter import PorterStemmer\n", - "def tokenize(text):\n", - " tokens = nltk.word_tokenize(text)\n", - " stems = []\n", - " for item in tokens:\n", - " stems.append(PorterStemmer().stem(item))\n", - " return stems" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To begin, I first used TF-IDF for feature selection on both train as well as test data using `TfidfVectorizer`.\n", - "\n", - "But first, What `TfidfVectorizer` actually does?\n", - "- `TfidfVectorizer` converts a collection of raw documents to a matrix of **TF-IDF** features.\n", - "\n", - "**TF-IDF**?\n", - "- TFIDF (abbreviation of the term *frequency–inverse document frequency*) is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. [tf–idf](https://en.wikipedia.org/wiki/Tf%E2%80%93idf)\n", - "\n", - "**Why `TfidfVectorizer`**?\n", - "- `TfidfVectorizer` scale down the impact of tokens that occur very frequently (e.g., “a”, “the”, and “of”) in a given corpus. [Feature Extraction and Transformation](https://spark.apache.org/docs/latest/mllib-feature-extraction.html#tf-idf)\n", - "\n", - "I gave following two arguments to `TfidfVectorizer`:\n", - "- tokenizer: `tokenize` function\n", - "- stop_words\n", - "\n", - "Then I used `fit_transform` and `transform` on the train and test documents repectively.\n", - "\n", - "**Why `fit_transform` for training data while `transform` for test data**?\n", - "\n", - "To avoid data leakage during cross-validation, imputer computes the statistic on the train data during the `fit`, **stores it** and uses the same on the test data, during the `transform`. This also prevents the test data from appearing in `fit` operation." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.feature_extraction.text import TfidfVectorizer\n", - "\n", - "vectorizer = TfidfVectorizer(tokenizer = tokenize, stop_words = 'english')\n", - "\n", - "vectorised_train_documents = vectorizer.fit_transform(train_documents)\n", - "vectorised_test_documents = vectorizer.transform(test_documents)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the **efficient implementation** of machine learning algorithms, many machine learning algorithms **requires all input variables and output variables to be numeric**. This means that categorical data must be converted to a numerical form.\n", - "\n", - "For this purpose, I used `MultiLabelBinarizer` from `sklearn.preprocessing`." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MultiLabelBinarizer\n", - "\n", - "mlb = MultiLabelBinarizer()\n", - "train_labels = mlb.fit_transform(train_categories)\n", - "test_labels = mlb.transform(test_categories)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, To **train** the classifier, I used `LinearSVC` in combination with the `OneVsRestClassifier` function in the scikit-learn package.\n", - "\n", - "The strategy of `OneVsRestClassifier` is of **fitting one classifier per label** and the `OneVsRestClassifier` can efficiently do this task and also outputs are easy to interpret. Since each label is represented by **one and only one classifier**, it is possible to gain knowledge about the label by inspecting its corresponding classifier. [OneVsRestClassifier](http://scikit-learn.org/stable/modules/multiclass.html#one-vs-the-rest)\n", - "\n", - "The reason I combined `LinearSVC` with `OneVsRestClassifier` is because `LinearSVC` supports **Multi-class**, while we want to perform **Multi-label** classification." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "%%capture\n", - "from sklearn.multiclass import OneVsRestClassifier\n", - "from sklearn.svm import LinearSVC\n", - "\n", - "classifier = OneVsRestClassifier(LinearSVC())\n", - "classifier.fit(vectorised_train_documents, train_labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After fitting the classifier, I decided to use `cross_val_score` to **measure score** of the classifier by **cross validation** on the training data. But the only problem was, I wanted to **shuffle** data to use with `cross_val_score`, but it does not support shuffle argument.\n", - "\n", - "So, I decided to use `KFold` with `cross_val_score` as `KFold` supports shuffling the data.\n", - "\n", - "I also enabled `random_state`, because `random_state` will guarantee the same output in each run. By setting the `random_state`, it is guaranteed that the pseudorandom number generator will generate the same sequence of random integers each time, which in turn will affect the split.\n", - "\n", - "Why **42**?\n", - "- [Why '42' is the preferred number when indicating something random?](https://softwareengineering.stackexchange.com/questions/507/why-42-is-the-preferred-number-when-indicating-something-random)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "%%capture\n", - "from sklearn.model_selection import KFold, cross_val_score\n", - "\n", - "kf = KFold(n_splits=10, random_state = 42, shuffle = True)\n", - "scores = cross_val_score(classifier, vectorised_train_documents, train_labels, cv = kf)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cross-validation scores: [0.83655084 0.86743887 0.8043758 0.83011583 0.83655084 0.81724582\n", - " 0.82754183 0.8030888 0.80694981 0.82731959]\n", - "Cross-validation accuracy: 0.8257 (+/- 0.0368)\n" - ] - } - ], - "source": [ - "print('Cross-validation scores:', scores)\n", - "print('Cross-validation accuracy: {:.4f} (+/- {:.4f})'.format(scores.mean(), scores.std() * 2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the end, I used different methods (`accuracy_score`, `precision_score`, `recall_score`, `f1_score` and `confusion_matrix`) provided by scikit-learn **to evaluate** the classifier. (both *Macro-* and *Micro-averages*)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "%%capture\n", - "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix\n", - "\n", - "predictions = classifier.predict(vectorised_test_documents)\n", - "\n", - "accuracy = accuracy_score(test_labels, predictions)\n", - "\n", - "macro_precision = precision_score(test_labels, predictions, average='macro')\n", - "macro_recall = recall_score(test_labels, predictions, average='macro')\n", - "macro_f1 = f1_score(test_labels, predictions, average='macro')\n", - "\n", - "micro_precision = precision_score(test_labels, predictions, average='micro')\n", - "micro_recall = recall_score(test_labels, predictions, average='micro')\n", - "micro_f1 = f1_score(test_labels, predictions, average='micro')\n", - "\n", - "cm = confusion_matrix(test_labels.argmax(axis = 1), predictions.argmax(axis = 1))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.8099\n", - "Precision:\n", - "- Macro: 0.6076\n", - "- Micro: 0.9471\n", - "Recall:\n", - "- Macro: 0.3708\n", - "- Micro: 0.7981\n", - "F1-measure:\n", - "- Macro: 0.4410\n", - "- Micro: 0.8662\n" - ] - } - ], - "source": [ - "print(\"Accuracy: {:.4f}\\nPrecision:\\n- Macro: {:.4f}\\n- Micro: {:.4f}\\nRecall:\\n- Macro: {:.4f}\\n- Micro: {:.4f}\\nF1-measure:\\n- Macro: {:.4f}\\n- Micro: {:.4f}\".format(accuracy, macro_precision, micro_precision, macro_recall, micro_recall, macro_f1, micro_f1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In below cell, I used `matplotlib.pyplot` to **plot the confusion matrix** (of first *few results only* to keep the readings readable) using `heatmap` of `seaborn`." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSUAAAV0CAYAAAAhI3i0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8lOW5//HvPUlYVRRRIQkVW1xarYUWUKsiFQvUqnSlP0+1ttXD6XGptlW7aGu1p9upnurpplgFl8qiPXUFi2AtUBGIEiAQQBCKCRFXVHAhJPfvjxnoCDPPMpPMM3fuz/v1mhfJJN9c1/XMTeaZJ8/MGGutAAAAAAAAAKBUUkk3AAAAAAAAAMAvHJQEAAAAAAAAUFIclAQAAAAAAABQUhyUBAAAAAAAAFBSHJQEAAAAAAAAUFIclAQAAAAAAABQUokdlDTGjDPGrDHGrDPGfC9m9nZjzIvGmIYC6g40xvzNGNNojFlpjLk0RraHMWaxMWZZJnttAfUrjDFLjTEPF5DdaIxZYYypN8bUxczub4y5zxizOjP7CRFzR2bq7bq8YYy5LGbtb2W2V4MxZqoxpkeM7KWZ3MoodXOtDWNMX2PMY8aYZzP/HhAj+8VM7XZjzLCYdX+V2d7LjTF/McbsHyP7k0yu3hgz2xhTHad21tcuN8ZYY0y/GLV/bIxpzrrNT49T1xhzSeb/9kpjzH/HqDs9q+ZGY0x9nJmNMUOMMU/t+v9hjBkRI/sRY8zCzP+vh4wx++XJ5vz9EWWNBWSjrrF8+dB1FpANXWf5sllfz7vGAupGXWN5a4ets4DaoessIBt1jeXLh64zk+d+xhhzmDFmUWaNTTfGdIuRvdik72uDfhfky/4ps50bTPr/TlXM/G2Z65ab9H3QPlGzWV//jTFmW8y6U4wxG7Ju6yEx88YY81NjzNrM7fjNGNn5WXU3G2Puj5EdbYx5JpNdYIwZHCN7aibbYIy5wxhTmWvmrJ/znv2RKGssIBu6xgKykdZYnmzo+grKZ12fd40F1I60xvJkQ9dXQDZ0fYXkQ9dYQDbyGjM59llN9P2xXNmo95W5spH2xwLykfbJcmWzvha2P5arbtT7ypx1TYT9sYDakfbJ8mSj3lfmykbaH8t8716PbWKssVzZqGssVzbqPn+ubJx9/ryP5yKssVy1o66xnHWjrLE8dePs8+fKR11jubJR9sVyPv6Nsb7y5UPXWEA28u8xwDnW2pJfJFVIWi/p/ZK6SVom6UMx8iMlfVRSQwG1B0j6aObjfSWtjVpbkpG0T+bjKkmLJB0fs/63Jd0j6eECet8oqV+B2/wOSRdkPu4maf8Cb7cXJB0aI1MjaYOknpnPZ0j6asTsMZIaJPWSVClpjqTD464NSf8t6XuZj78n6Zcxsh+UdKSkJyQNi1l3jKTKzMe/jFl3v6yPvynp5ji1M9cPlPRXSf/Mt27y1P6xpMsj3D65sp/I3E7dM58fHKfnrK/fIOlHMWvPlvSpzMenS3oiRnaJpFMyH39d0k/yZHP+/oiyxgKyUddYvnzoOgvIhq6zfNkoayygbtQ1li8fus6C+g5bZwF1o66xfPnQdaY89zNK/+78f5nrb5b0nzGyQyUNUsB9SED29MzXjKSpueqG5LPX2P8o8/8kSjbz+TBJd0naFrPuFElfiLDG8uW/JulOSamANRa6TyDpz5K+EqPuWkkfzFx/oaQpEbMfl/S8pCMy118n6fyQ2d+zPxJljQVkQ9dYQDbSGsuTDV1fQfkoayygdqQ1licbur6Ceg5bXyG1Q9dYrqzSJzJEXmO51oKi74/lyka9r8yVjbQ/FpCPtE+Wb/0r2v5Yrro/VrT7ylzZSPtjQX1nfT3vPlme2lHvK3NlI+2PZb6+12ObGGssVzbqGsuVjbrPnysbZ58/5+O5iGssV+2oayxXNuo+f+Bj0KD1FVA76hrLlY28xjLfs/vxb9T1FZCPtMbyZCP/HuPCxbVLUmdKjpC0zlr7nLV2h6RpksZHDVtr50l6tZDC1toWa+0zmY/flNSo9IGzKFlrrd31l/SqzMVGrW2MqZX0aUl/jNV0kTJ/ARop6TZJstbusNZuLeBHjZa03lr7z5i5Skk9Tfov6r0kbY6Y+6Ckp6y1b1lrd0r6u6TPBgXyrI3xSt8pKfPvZ6JmrbWN1to1YY3myc7O9C1JT0mqjZF9I+vT3gpYZwH/H34t6coCs6HyZP9T0i+ste9mvufFuHWNMUbSBKUfnMapbSXt+mtnH+VZZ3myR0qal/n4MUmfz5PN9/sjdI3ly8ZYY/nyoessIBu6zkJ+ZwausWJ+34bkQ9dZWO2gdRaQjbrG8uVD11nA/cypku7LXJ9vjeXMWmuXWms35uo1QnZm5mtW0mLl/z2WL/+GtHt791TuNZYza4ypkPQrpddYrL6DZo2Y/09J11lr2zPfl2uNBdY2xuyr9O2215lsAdnQNZYn2ybpXWvt2sz1eX+PZXp7z/5I5vYJXWO5spmeQtdYQDbSGsuTDV1fQfkoayxfNqo82dD1FVY3aH2F5CP9HsuRPVAx1lgekfbHcol6X5knG2l/LCAfeZ8sj9D9sU4QaX8sTJR9shwirbE8Iu2PBTy2CV1j+bJR1lhANnSNBWQjra+Qx3OBa6yYx4IB2dA1FlY3bH0F5EPXWEA20hrLkv34t5DfYbvzBfwey84W9XsMKGdJHZSsUfqvrbs0KcYD1Y5ijBmk9F/3F8XIVGROMX9R0mPW2shZSTcqfYfRHiOTzUqabYx52hgzMUbu/ZJekjTZpJ+G80djTO8C6v8/xdspkbW2WdL1kjZJapH0urV2dsR4g6SRxpgDjTG9lP5L2MA49TMOsda2ZPppkXRwAT+jWF+XNCtOwKSf2vW8pC9L+lHM7FmSmq21y+LkslyceXrA7fmempDHEZJONumnAP7dGDO8gNonS9pirX02Zu4ySb/KbLPrJX0/RrZB0lmZj7+oCOtsj98fsdZYIb97IuZD19me2TjrLDsbd43l6DnWGtsjH2ud5dlekdbZHtnYa2yPfKR1tuf9jNLPLNiatTOa9z6zmPuooKxJP6X2XEmPxs0bYyYr/Zf+oyT9Jkb2YkkP7vq/VUDfP82ssV8bY7rHzH9A0pdM+mlhs4wxh8esLaX/iDZ3jwecYdkLJM00xjQpvb1/ESWr9MG8qqyng31Bwb/H9twfOVAR11iObBx5sxHWWM5slPUVkI+0xgL6jrLGcmUjra+AulLI+grIR1pjObIvK94ay7XPGvW+stD93SjZsPvJnPmI95V7ZWPcV+brO8p9Za5snPvJoG0Wdl+ZKxv1vjJXNur+WL7HNlHWWDGPi6Jk862xvNmI6ytnPuIaC+o7bI3ly0ZZY2HbK2x95ctHWWP5snH3+bMf/xbymDL24+cI2diPK4FyltRBSZPjulL+9VAm/bpDf5Z0WcgO3XtYa9ustUOU/uvECGPMMRHrnSHpRWvt0wU1nHaitfajkj4l6SJjzMiIuUqln676B2vtUEnblT7lPDKTfm2psyTdGzN3gNJ/VTpMUrWk3saYc6JkrbWNSp+e/pjSD1KWSdoZGCpDxpirlO77T3Fy1tqrrLUDM7mLY9TrJekqxTyQmeUPSj9gGqL0geQbYmQrJR2g9NMQr5A0wxiT6/97kLNV2J33f0r6VmabfUuZv4xG9HWl/089rfTTbXcEfXOhvz+KzQblo6yzXNmo6yw7m6kTeY3lqBtrjeXIR15nAds7dJ3lyMZaYznykdbZnvczSp81vte3RclGvY+KkP29pHnW2vlx89baryn9+79R0pciZkcq/WAh6CBTUN3vK32QarikvpK+GzPfXdI71tphkm6VdHucmTMC11ie7LcknW6trZU0WemnJIdmJR2t9IOXXxtjFkt6U3nuL/Psj0TaLytmXyZCNu8aC8pGWV+58ib9um2hayygdugaC8iGrq8I2ytwfQXkQ9dYrqy11iriGssodJ+107IR98dy5iPeV+bKRr2vzJWNel+ZKxtnfyxoe4fdV+bKRr2vzJWNuj9WzGObTsuGrLG82YjrK1f+x4q2xvLVjrLG8mWjrLGwbR22vvLlo6yxfNnI+/yFPv7tiHy+bKGPK4GyZhN4zrikEyT9Nevz70v6fsyfMUgFvKZkJlul9OtufLvIOa5RhNfhyHzvz5U+82Cj0n/Rf0vS3UXU/nGM2v0lbcz6/GRJj8SsN17S7AL6/KKk27I+/4qk3xc4888kXRh3bUhaI2lA5uMBktbEXVeK8NofubKSzpO0UFKvuNmsrx0attaz85I+rPTZMxszl51Kn6nav4Dagf/PcmzrRyWNyvp8vaSDYmyvSklbJNUWcDu/LslkPjaS3ihwex8haXFAdq/fH1HXWK5szDWWMx9lnQXVDltne2bjrLEIdcPWWK7tHWmdBWyv0HWWp26cNRY2d+A6y/q+a5Te2X9Z/3otoffch4ZkL8/6fKMivi5xdjbz8f3KvP5d3HzWdacowuspZ7LXKH1fuWuNtSv9si+F1B0VpW52XtJqSYOybuvXY26zAyW9IqlHjLpXKP00rV3XvU/SqgJnHiNpRp7vz7U/8qcoayxP9u6sr+ddY0HZsDUWVjdsfeXJvxZljUWsnXON5ctGWV8h2yt0feXJPxJljUWcOe8ay/Hzfqz0/6vI+2N7ZrM+f0IRXottz6wi7o8F1c5cF7pPlpX9oWLsj4XUHRSj7uWKsT8WsM0i75PtUTvyfWXIzHnvJ5XnsU2UNZYvG2WNBWXD1lhY3bD1lSc/N8oai1g75xoL2Nahayxke0XZF8tXO3SNRZw5bJ//PY9/o6yvoHyUNRaUDVtjXLi4eknqTMklkg436Xd67Kb0X14fLEXhzF9wbpPUaK3NeQZCQPYgk3mnK2NMT0mnKb1jGcpa+31rba21dpDS8z5urY10xmCmXm+Tfv0gZU49H6P06edRar8g6XljzJGZq0ZLWhW1dkahZ69tknS8MaZXZtuPVvpshkiMMQdn/n2fpM8V2MODSv8SV+bfBwr4GbEZY8YpfebEWdbat2Jms5/KdZYirjNJstausNYebK0dlFlvTUq/6cYLEWsPyPr0s4q4zjLuV/o1rmSMOULpF5V+OUb+NEmrrbVNMTK7bFb6QakyPUR++nfWOktJulrpN3nI9X35fn+ErrFifvcE5aOss4Bs6DrLlY26xgLqRlpjAdssdJ2FbO/AdRaQjbTGAuYOXWd57mcaJf1N6adLSvnXWMH3UfmyxpgLJI2VdLbNvP5djPwak3ln38w2OTNXP3myT1tr+2etsbestbneiTpf3wOy6n5G+ddYvm22e40pfZuvjZGV0n+Qe9ha+06Muo2S+mTWtCR9UjnuLwNm3rW+uiv9OyHn77E8+yNfVoQ1Vsy+TL5slDWWKyvp3CjrK6D2AVHWWEDfoWssYHuFrq+QbR24vgK22XhFWGMBM0daYwH7rFHuKwve382Xjbo/FpCPcl+ZK7sk4n1lvrqh95UB2yvS/ljI9g67r8yXDb2vDJg50v5YwGOb0DVWzOOifNkoaywgG2mfP0/+mShrLKB26BoL2F6hayxkW4fu8wfkQ9dYwMyR1ljGno9/4z6mLPTx817ZqL/HACeV4shnrovSrw+4Vum/qlwVMztV6VPMW5X+5Rv4DpN7ZE9S+ilJyyXVZy6nR8weK2lpJtuggHcKC/k5oxTz3beVfl2MZZnLygK22RBJdZne75d0QIxsL6X/It+nwHmvVfoOtkHpd7jsHiM7X+k7n2WSRheyNpQ+o2Cu0ndYcyX1jZH9bObjd5X+a17Os5PyZNcp/dqpu9ZZvndrzJX9c2Z7LZf0kNJvSlLQ/wcFn7mSq/ZdklZkaj+ozF8EI2a7KX0WSIOkZySdGqdnpd/N9BsF3s4nSXo6s1YWSfpYjOylSv8+Wqv062uZPNmcvz+irLGAbNQ1li8fus4CsqHrLF82yhoLqBt1jeXLh66zoL7D1llA3ahrLF8+dJ0pz/2M0vcBizO3973K8Xs0IPvNzBrbqfSO/B9jZHcqfT+9a45878C6V17pl4j5R+a2blD6bLz9otbe43vyvft2vr4fz6p7tzLvVh0jv7/SZ2OsUPqshI/E6VvpsyDGBayxfHU/m6m5LPMz3h8j+yulDzCtUfolAwJ/j2Yyo/Svd2UOXWMB2dA1FpCNtMb2zEZdX0G1o6yxgL4jrbE82dD1FdRz2PoKqR26xgKykdaY8uyzKtp9Zb5s6H1lQDbq/li+fJT7ytD9dOW/r8xXN/S+MiAbdX8sb98Kv6/MVzv0vjIgG2l/LPO9ez22ibLGArJR98dyZaOusVzZOPv8gY/n8q2xgNpR98dyZaOusZw9h62vkNpR98dyZaPu8+/1+Dfq+grIR11jubKR1hgXLi5edp32DAAAAAAAAAAlkdTTtwEAAAAAAAB4ioOSAAAAAAAAAEqKg5IAAAAAAAAASoqDkgAAAAAAAABKioOSAAAAAAAAAEoq8YOSxpiJrmWTrO1j3z7OnGRtZnanNjO7U5uZ3anNzO7U9rFvH2dOsjYzu1Obmd2pzcylzwPlLPGDkpKK+Q+WVDbJ2j727ePMSdZmZndqM7M7tZnZndrM7E5tH/v2ceYkazOzO7WZ2Z3azFz6PFC2yuGgJAAAAAAAAACPGGttpxZ4/WunBRaYsqZZXz2yJufXDvxTY+DPbm/frlSqd0F9FZNNsraPffs4c5K1u+LMpohslN+QLm7vcr2tOjObZG1mdqc2M7tT28e+fZw5ydrM7E5tZnanNjN3bH7njuawhzpean35uc490OWYqn7vL9t1kvhBySBhByUBIIpifgNzbwYAAACgHHFQMjcOSr5XOR+U5OnbAAAAAAAAAEqKg5IAAAAAAAAASoqDkgAAAAAAAABKKu5BySMl1Wdd3pB02R7fc5SkhZLelXR5sQ1KUrdu3XTPn/6g1asW6MkFD2nqPTdrc9MyrVv7lBY9NUtLn5mjRU/N0idGnRjp540dM0orG+Zp9aoFuvKKi2L1klQ2ydqu9n3rpBu0uWmZ6pfOjZXriNouZrt3766F/3hYT9c9pmX1j+uaH32nZLWTXGPPrn1KS5+Zo7ols/XUwpklq+vq/ysf+/Zx5mLyrv7uTbK2j327OrOr69vH28rHvn2cOcnazOxH367ODDjDWlvopcJa+4K19tA9rj/YWjvcWvtTa+3lW7862ka9vP6df7OtjfW7P6+oqrYVVdX2oou/b2++5U5bUVVtz/7yN+zcx+fbYcPH2HXrNtja9w21FVXV9tghn7BNTZt3Z/JdqrrX2nXrNtjBRxxve/Q61NYvW2mPOfaU0FySWfourPaoT3zWDhs+xq5oaIycSbrvJLdXRVW13W//wbaiqtp27/k+u2jR0/bjJ55R9n1HyVcGXDZs2GQP6X903q+7OnO5ZV3t28eZi827+LvX19vKxWzStV1c3z7eVj727ePMrvbt48yu9u3CzEUcz+nSlx1b1lou/7okfXsEXULPlDTGHGWM+a4x5n+NMTdlPv6gpNGS1kv65x6RFyUtkdS658+qOmG0ev/wt9rn2pvV47zLJBPtRM2zzhyju+66V5L05z8/omM//CG9+tpWvf3OO2pp2SJJWrlyjXr06KFu3boF/qwRw4dq/fqN2rBhk1pbWzVjxgM668yxkfpIKkvfhdWev2CRXn1ta+TvL4e+k9xekrR9+1uSpKqqSlVWVcnaaG9a5uoaK4arM9M3M3d23sXfvUnW9rFvV2eW3FzfPt5WPvbt48yu9u3jzK727erMgEsCjwoaY74raZokI2mx0gcbjaSpTz755E8lTY1caMD7VDVilLb/7FJtu+YbUnu7qk4YHSlbXdNfzzdtliS1tbXp9dff0AH793nP93zuc59WfX2DduzYEflnSVJTc4uqq/vH7qOU2SRru9p3sVzc3h2xvVKplOqWzFZL83LNnTtPi5csLfu+i81bazVr5lQtemqWLjj/yyWp6+r/Kx/79nHmjsgXytWZ6duPmYvl4vZ29bbysW8fZ06yNjP70berMwMuqQz5+vmSjrbWvuesx+uuu+43Rx111BuSzsgVMsZMvOGGGyZu27atrc+aZn31yBpVfmioKg49XPv86Hfpb6rqLvtG+i/NvS7+sVIH9ZcqqpQ68GDtc+3NkqTzKn6nO+6cIWPMXjWyz9/60IeO0M9/+gN96tP/Fjpwzp8V8WywpLJJ1na172K5uL07Ynu1t7dr2PAx6tNnP/353tt09NFHauXKNZ1aO8k1JkmnjPqMWlq26KCDDtSjs6Zp9Zp1WrBgUafWdfX/lY99+zhzR+QL5erM9F26bNK1i+Hi9nb1tvKxbx9nTrI2M8fLJlnbx5kBl4QdlGyXVK09nqI9duzYsxsaGt4ZOXLkllwha+2kTG7b6xvm/Sp9rdGOJx/Tu/fdttf3v/XbH6e/48BD1OuCK7X9l+k32LjjT42SpOamFg2srVZzc4sqKirUp89+2rr1dUlSTc0A3Xfvbfra1y/Vc8/t+Uzyve36WbvU1gzY/RTwcs0mWdvVvovl4vbuyO31+utv6O/znky/uHKEg5KurjFJu7/3pZde0f0PzNLw4UMiHZR0dWb6ZuZS5Avl6sz07cfMxXJxe7t6W/nYt48zJ1mbmf3o29WZAZeEvajjZZLmGmNmGWMmZS6PtrS0/PqVV165OU6hnY3PqGrYyTL77i9JMr33lTnw4EjZhx6erXPP/aIk6fOf/7T+9sQ/JEkVqQo9+MCduurqn+vJhXWRftaSunoNHnyYBg0aqKqqKk2YMF4PPTy7rLP0XVjtYri4vYvdXv369VWfPvtJknr06KHRp56sNWvWl33fxeR79eqpffbpvfvjT552SqSDsMXWdfX/lY99+zhzR+QL5erM9O3HzMVycXu7elv52LePM7vat48zu9q3qzNDkm3nkn0pY4FnSlprHzXGHCFphKQaSebII498afz48f9njLku61u/kfn3Zkn9JdVJ2k9S+743TNWbV52v9s2b9O7/TVHvy3+RfoObtp16+67fqO2VF0ObvH3yNN0x5X+1etUCvfbaVm3Z8pIWzHtQBx/cT8YY3XD9j3XVDy6TJH3q9LP10kuv5P1ZbW1tuvSyqzXzkXtUkUppyh3TtWrV2tAekszSd2G1777rdzpl5Anq16+vNj5Xp2uvu16Tp0wr676T3F4DBhyi22+7URUVKaVSKd1330N6ZOacsu+7mPwhhxyk++5Nn71dUVmhadPu1+zZT3R6XVf/X/nYt48zF5t38XdvkrV97NvVmSU317ePt5WPffs4s6t9+zizq327OjPgEtPZr0vw+tdOK7jAgZmnbwNAMfZ+RZboeOUWAAAAAOVo547mYh7qdFmtW9bwMC5L1SFHlu06CXv6NgAAAAAAAAB0KA5KAgAAAAAAACipsHffBgAAAAAAANzQXt5v7oJ/4UxJAAAAAAAAACXV6WdKHnTP6oKzKVP4a3G2d/Ib+ABwB78NAAAAAAAoL5wpCQAAAAAAAKCkOCgJAAAAAAAAoKQ4KAkAAAAAAACgpHj3bQAAAAAAAHQJ1vLu265I7EzJiy8+X0ufmaP6pXN1ySXnh37/pFuuV9Pz9Vr6zJzd133+c59W/dK5euftTfroR4+NXHvsmFFa2TBPq1ct0JVXXBSr76SySdamb3f69nHmJGszsx99+zhzkrWZ2Y++fZw5ydrM7EffPs5cW1utObPv1YrlT2hZ/eO65OLwx5UdVZvbyo++XZ0ZcIa1tlMvVd1q7J6XIUNOtQ0NjXa/Ph+wPXq+z86ZO89+8EMn7fV92ZdPnPo5O3zEWNvQ0Lj7ug8fe4o9+piT7RNPPGmPO/5T7/n+iqrqnJeq7rV23boNdvARx9sevQ619ctW2mOOPSXv95dDlr7pm5nLrzYz+9G3jzO72rePM7vat48zu9q3jzO72rePM1dUVduagUPssOFjbEVVte1zwOF2zdr1Zd+3r7eVi327MHNnH89x9fJuc4Pl8q9L0rdH0CWRMyWPOmqwFi1aqrfffkdtbW2aP+8pjR8/LjCzYMEivfba1vdct3r1Oq1d+1ys2iOGD9X69Ru1YcMmtba2asaMB3TWmWPLOkvf9N3ZWfp2J0vf7mTp250sfbuTpW93svTtTtblvl944UUtrW+QJG3btl2rVz+rmur+Zd23r7eVi327OjPgkoIPShpjvlZoduWqNTr55OPUt+/+6tmzh8aNO1W1tdWF/rhYqmv66/mmzbs/b2puUXXEO66ksknWpu/S1mZmP/r2ceYkazOzH337OHOStZnZj759nDnJ2swcv+9shx5aqyEfOUaLFi/t9NrcVn707erMgEuKeaObayVNLiS4evU6/er632vWzKnatm27lq9YpZ07dxbRSnTGmL2us9aWdTbJ2vRd2trMHC+bZG1mjpdNsjYzx8smWZuZ42WTrM3M8bJJ1mbmeNkkazNzvGy23r17acb0W/Xty6/Rm29u6/Ta3FbxsknW9nFmSGrnjW5cEXhQ0hizPN+XJB0SkJsoaaIkVVTsr1RF772+Z8qUaZoyZZok6SfXfVdNzS0RWy5Oc1OLBmadlVlbM0AtLVvKOptkbfoubW1m9qNvH2dOsjYz+9G3jzMnWZuZ/ejbx5mTrM3M8fuWpMrKSt07/VZNnfoX3X//rMg5V2embzeySdcGXBH29O1DJH1F0pk5Lq/kC1lrJ1lrh1lrh+U6IClJBx10oCRp4MBqfeYzn9L06Q/E774AS+rqNXjwYRo0aKCqqqo0YcJ4PfTw7LLO0jd9d3aWvt3J0rc7Wfp2J0vf7mTp250sfbuTdblvSbp10g1qXL1ON940KVbO1Znp241s0rUBV4Q9ffthSftYa+v3/IIx5oliCk+fNkkHHniAWlt36puXXqWtW18P/P677vytRo48Qf369dVz65foup/coNde3apf//onOuigvnrg/ju0bPlKnXHGOYE/p62tTZdedrVmPnKPKlIpTbljulatWhup56Sy9E3fnZ2lb3ey9O1Olr7dydK3O1n6didL3+5kXe77xI8P17nnfEHLV6xS3ZL0AZsf/vAXmvXo42Xbt6+3lYt9uzoz4BI2RzUVAAAgAElEQVTT2a9L0K17bSIvfNDO6y0AAAAAAIAuaueO5r1ffBLa0bSCA0JZutV+uGzXSTFvdAMAAAAAAACUD8sb3bgi7DUlAQAAAAAAAKBDcVASAAAAAAAAQElxUBIAAAAAAABASXFQEgAAAAAAAEBJdfob3ST1LtgpU9ybC/Hu3QAAAAAAAI5pb0u6A0TEmZIAAAAAAAAASoqDkgAAAAAAAABKioOSAAAAAAAAAEqKg5IAAAAAAAAASiqxg5K3TrpBm5uWqX7p3ILyY8eM0sqGeVq9aoGuvOKiWNmLLz5fS5+Zo/qlc3XJJeeXrG4x2SRr+9h3kuuT28qPvl2cuba2WnNm36sVy5/QsvrHdcnF8X5/FlPb1WyStX3s28eZk6zNzH707ePMSdZmZvbZy7m2j327OjPgDGttp14qqqptrsuoT3zWDhs+xq5oaMz59aBLVfdau27dBjv4iONtj16H2vplK+0xx57y3u/pVpPzMmTIqbahodHu1+cDtkfP99k5c+fZD37opL2+r9C6xfTcWXn6jt93Z6/PcsvStzvZJGvXDBxihw0fYyuqqm2fAw63a9aud6JvH28rH/v2cWZX+/ZxZlf79nFmV/v2ceaKKvbZ6bt8s6Wq3dnHc1y9vLthieXyr0vSt0fQJfRMSWPMUcaY0caYffa4flwxB0PnL1ikV1/bWlB2xPChWr9+ozZs2KTW1lbNmPGAzjpzbKTsUUcN1qJFS/X22++ora1N8+c9pfHjo41STN1isknW9rXvpNYnt5Uffbs68wsvvKil9Q2SpG3btmv16mdVU92/7Pv28bbysW8fZ3a1bx9ndrVvH2d2tW8fZ5bYZ6fv8s0mXRtwReBBSWPMNyU9IOkSSQ3GmPFZX/5ZZzYWpLqmv55v2rz786bmFlVHfGC8ctUanXzycerbd3/17NlD48adqtra6k6vW0w2ydq+9l0MV2embzeySdfe5dBDazXkI8do0eKlkTMubm9Xbysf+/Zx5iRrM7Mfffs4c5K1mZl99nKu7WPfrs4MuKQy5Ov/Lulj1tptxphBku4zxgyy1t4kyeQLGWMmSpooSaaij1Kp3h3U7u6fv9d11tpI2dWr1+lX1/9es2ZO1bZt27V8xSrt3Lmz0+sWk02ytq99F8PVmenbjWzStSWpd+9emjH9Vn378mv05pvbIudc3N6u3lY+9u3jzEnWZuZ42SRrM3O8bJK1mTletliuzkzfbmSTrg24Iuzp2xXW2m2SZK3dKGmUpE8ZY/5HAQclrbWTrLXDrLXDOvqApCQ1N7VoYNbZjbU1A9TSsiVyfsqUaTru+E9p9Glf0GuvbtW6dRs6vW6xPSdV29e+i+HqzPTtRjbp2pWVlbp3+q2aOvUvuv/+WZFzxdZ2MZtkbR/79nHmJGszsx99+zhzkrWZmX32cq7tY9+uzgy4JOyg5AvGmCG7PskcoDxDUj9JH+7MxoIsqavX4MGHadCggaqqqtKECeP10MOzI+cPOuhASdLAgdX6zGc+penTH+j0usX2nFRtX/suhqsz07cb2aRr3zrpBjWuXqcbb5oUOZN03z7eVj727ePMrvbt48yu9u3jzK727ePMxXJ1Zvp2I5t0be+1t3PJvpSxsKdvf0XSe57bbK3dKekrxphbiil8912/0ykjT1C/fn218bk6XXvd9Zo8ZVqkbFtbmy697GrNfOQeVaRSmnLHdK1atTZy7enTJunAAw9Qa+tOffPSq7R16+udXrfYnpOq7WvfSa1Pbis/+nZ15hM/PlznnvMFLV+xSnVL0jtFP/zhLzTr0cfLum8fbysf+/ZxZlf79nFmV/v2cWZX+/ZxZol9dvou32zStQFXmM5+XYLKbjWJvPBByuR9dnkk7bxeAwAAAAAAKFM7dzQXd+Cji9rx3GIO6GTp9v4RZbtOwp6+DQAAAAAAAAAdioOSAAAAAAAAAEoq7DUlAQAAAAAAACdYW95v7oJ/4UxJAAAAAAAAACXVZc+ULPaNaipTFQVnd7a3FVUbACSpmFcj5pWdAQAAAADljDMlAQAAAAAAAJQUByUBAAAAAAAAlBQHJQEAAAAAAACUVJd9TUkAAAAAAAB4pp1333ZFImdK1tZWa87se7Vi+RNaVv+4Lrn4/Ng/Y+yYUVrZME+rVy3QlVdc1GnZW275lTZtekZPP/3Y7us+/OEP6okn/qK6utn6859v17777tPpPRebTyqbZG0f+3Z15lsn3aDNTctUv3RurFxH1HYxK0l9+uynadMmacWKv2v58id0/HEfK0ltV9cYM/vRt48zJ1mbmf3o28eZk6zNzH707ePMxeSLPX7g4swdURtwgrW2Uy8VVdV2z0vNwCF22PAxtqKq2vY54HC7Zu16e8yxp+z1ffkuVd1r7bp1G+zgI463PXodauuXrYycj5rt3n2g7d59oB09+vP2uOM+ZRsaVu++bsmSenvaaV+w3bsPtBMnfsf+7Gc37v5a9+4DO7znUs1M38nX9nHmiqpqO+oTn7XDho+xKxoaI2eS7rsU2cqAy513zrATJ37HVlZV2569DrUH9jvqPV8vt5ld2N7MnHxtZvajbx9ndrVvH2d2tW8fZ3a1bx9nLjZfzPEDV2eOmu3s4zmuXt5Z+w/L5V+XpG+PoEsiZ0q+8MKLWlrfIEnatm27Vq9+VjXV/SPnRwwfqvXrN2rDhk1qbW3VjBkP6Kwzx3ZKdsGCxXrtta3vue6II96v+fMXSZLmzp2vz3zm9E7tudh8Uln6diebdO35Cxbp1T3+n5V730lur3333UcnnXScbp88VZLU2tqq119/o+z7dnF7+zizq337OLOrffs4s6t9+zizq337OLOrffs4c7H5Yo4fuDpzsbUBV4QelDTGjDDGDM98/CFjzLeNMeFH4SI69NBaDfnIMVq0eGnkTHVNfz3ftHn3503NLaqO+EupmOwuK1eu0RlnfFKS9LnPfVq1tQM6vW5SM9N3aWv7OHOxXNzexW6v97//UL388iu67Y+/1pLFf9UtN/9KvXr1LPu+XdzePs6cZG1m9qNvH2dOsjYz+9G3jzMnWZuZS9t3trjHD1ydOcnHV0ApBR6UNMZcI+l/Jf3BGPNzSb+VtI+k7xljriq2eO/evTRj+q369uXX6M03t0XOGWP2us5a2+nZXf7jP67QN75xnp588hHtu+8+2rGjtdPrJjUzfZe2to8zF8vF7V3s9qqsqNDQoR/WLbfcqeEjxmr79rd05ZUXd3ptV9cYM8fLJlmbmeNlk6zNzPGySdZm5njZJGszc7xskrWZOV62I/JSYccPXJ05ycdXXYJt55J9KWNh7779BUlDJHWX9IKkWmvtG8aYX0laJOmnuULGmImSJkqSqeijVKr33oUrK3Xv9Fs1depfdP/9s2I13dzUooG11bs/r60ZoJaWLZ2e3WXt2vU644xzJEmDBx+mceNO7fS6Sc1M36Wt7ePMxXJxexe7vZqaW9TU1KLFS9J/If7z/z2iK6+IdlDSxzXGzH707ePMSdZmZj/69nHmJGszsx99+zhzR+QLPX7g6sxJPr4CSins6ds7rbVt1tq3JK231r4hSdbatyXlPdxqrZ1krR1mrR2W64CklH633cbV63TjTZNiN72krl6DBx+mQYMGqqqqShMmjNdDD8/u9OwuBx10oKT0Xy++//1v6o9/vLvT6yY1M32707erMxfLxe1d7PbasuUlNTVt1hFHfECSdOqpJ6mxcW3Z9+3i9vZxZlf79nFmV/v2cWZX+/ZxZlf79nFmV/v2ceaOyBd6/MDVmZN8fAWUUtiZkjuMMb0yByU/tutKY0wfBRyUDHPix4fr3HO+oOUrVqluSfo/1g9/+AvNevTxSPm2tjZdetnVmvnIPapIpTTljulatSraA/K42Tvv/I1OPvkE9et3gNatW6T/+q//Ue/evfWNb3xFknT//Y/qjjtmdGrPxeaTytK3O9mka9991+90ysgT1K9fX218rk7XXne9Jk+ZVtZ9J7m9JOmyb/1Qd97xG3XrVqXnNmzSBRd8u+z7dnF7+zizq337OLOrffs4s6t9+zizq337OLOrffs4c7H5Yo4fuDpzRzxeAFxggl6XwBjT3Vr7bo7r+0kaYK1dEVagsluNky98UJmqKDi7s72tAzsB4Ku9X0kmOid/8QIAAACIbOeO5mIeMnRZ765dwMOhLN2POKls10ngmZK5Dkhmrn9Z0sud0hEAAAAAAABQCE4Uc0bYa0oCAAAAAAAAQIfioCQAAAAAAACAkuKgJAAAAAAAAICS4qAkAAAAAAAAgJIKfKMbnxXzDtq8Yy6AjsDvAwAAAABAV8VBSQAAAAAAAHQNtj3pDhART98GAAAAAAAAUFIclAQAAAAAAABQUhyUBAAAAAAAADxkjLndGPOiMaYh67q+xpjHjDHPZv49IHO9Mcb8rzFmnTFmuTHmo1mZ8zLf/6wx5rwotRM5KNm9e3ct/MfDerruMS2rf1zX/Og7sX/G2DGjtLJhnlavWqArr7jIiewRR3xAdUtm77688vJqffOSC8q+72KySdYuJnvrpBu0uWmZ6pfOjZXriNrcVn707ePMSdZmZj/69nHmYvepXJw5ydo+9u3jzEnWZmY/+vZx5mLyrt7XJV0biGGKpHF7XPc9SXOttYdLmpv5XJI+JenwzGWipD9I6YOYkq6RdJykEZKu2XUgM4ixtnPf37WyW03OAr1799L27W+psrJS8574i7717Wu0aPEzkX5mKpVS48r5Gnf62WpqatFTC2fqnHMvVGPjs2WRjfLu26lUSv/c+LROPOkMbdrUvPv6fLdGuc9cbrWL7fvkk47Ttm3bNXnyTRoydHSkTNJ9+3pbudi3jzO72rePM7vat48z71LoPpWrM9O3G1n6didL3+5kfe1bcu++rlS1d+5ojnL4wTvvrpzbuQe6HNP96NGh68QYM0jSw9baYzKfr5E0ylrbYowZIOkJa+2RxphbMh9Pzf6+XRdr7X9krn/P9+UT+0xJY8ydcTO5bN/+liSpqqpSlVVVinNwdMTwoVq/fqM2bNik1tZWzZjxgM46c2xZZ/d06qkn6bnn/vmeA5Ll2HexM7va9/wFi/Tqa1sjf3859O3rbeVi3z7O7GrfPs7sat8+zrxLoftUrs5M325k6dudLH27k/W1b8m9+7qkawMd4BBrbYskZf49OHN9jaTns76vKXNdvusDBR6UNMY8uMflIUmf2/V59FlyFE6lVLdktlqal2vu3HlavGRp5Gx1TX8937R59+dNzS2qru5f1tk9fWnCeE2ffn/k73d1Zlf7LoarM9O3G9kka/vYt48zJ1mbmQu7vyp0n8rVmenbjWyStX3s28eZk6zNzKXtW3Lvvi7p2kA2Y8xEY0xd1mViMT8ux3U24PpAYWdK1kp6Q9L/SLohc3kz6+OCtbe3a9jwMTr0sGEaPmyojj76yMhZY/aeNepfSpLKZquqqtIZZ4zRfX9+OHLG1Zld7bsYrs5M325kk6ztY98+zpxkbWaOl92l0H0qV2embzeySdb2sW8fZ06yNjPHy3ZE3rX7uqRrA9mstZOstcOyLpMixLZknratzL8vZq5vkjQw6/tqJW0OuD5Q2EHJYZKelnSVpNettU9Ietta+3dr7d/zhbKPwra3bw8s8Prrb+jv857U2DGjwnrdrbmpRQNrq3d/XlszQC0tW8o6m23cuE9o6dIVevHFlyNnXJ3Z1b6L4erM9O1GNsnaPvbt48xJ1mbm4u6v4u5TuTozfbuRTbK2j337OHOStZm5tH1nc+W+LunaQAd4UNKud9A+T9IDWdd/JfMu3McrfaywRdJfJY0xxhyQeYObMZnrAgUelLTWtltrfy3pa5KuMsb8VlJl2A/NPgqbSvXe6+v9+vVVnz77SZJ69Oih0aeerDVr1of92N2W1NVr8ODDNGjQQFVVVWnChPF66OHZZZ3N9qUvfSbWU7eT7LvYmV3tuxiuzkzfbmTp250sfbuTdbnvYvapXJ2Zvt3I0rc7Wfp2J+tr3y7e1yVd23u2nUv2JYQxZqqkhZKONMY0GWPOl/QLSZ80xjwr6ZOZzyVppqTnJK2TdKukCyXJWvuqpJ9IWpK5XJe5LlDoAcbMD2+S9EVjzKeVfjp3UQYMOES333ajKipSSqVSuu++h/TIzDmR821tbbr0sqs185F7VJFKacod07Vq1dqyzu7Ss2cPnTZ6pC688Luxcq7O7Grfd9/1O50y8gT169dXG5+r07XXXa/JU6aVdd++3lYu9u3jzK727ePMrvbt48xScftUrs5M325k6dudLH27k/W1bxfv65KuDcRhrT07z5dG5/heK+miPD/ndkm3x6ltOvt1CSq71Xj3wgeh77UewLuNBQAAAAAAYtu5o7mYww9d1rsNj3FoJUv3Yz5Ztusk7DUlAQAAAAAAAKBDcVASAAAAAAAAQElxUBIAAAAAAABASUV6oxsAAAAAAACg7LWHv+M0ygMHJTsBr6gKAAAAAAAA5MfTtwEAAAAAAACUFAclAQAAAAAAAJQUByUBAAAAAAAAlBSvKQkAAAAAAIAuwdq2pFtARJwpCQAAAAAAAKCkEjsoeeukG7S5aZnql84tKD92zCitbJin1asW6MorLury2SRr07c7ffs4c5K1mdmPvn2cOcnazOxH3z7OnGRtZvajbx9nTrI2M/vRt6szA64w1tpOLVDZrSZngZNPOk7btm3X5Mk3acjQ0bF+ZiqVUuPK+Rp3+tlqamrRUwtn6pxzL1Rj47NdMkvf9M3M5Vebmf3o28eZXe3bx5ld7dvHmV3t28eZXe3bx5ld7dvHmV3t24WZd+5oNpGa8cw7y2Z27oEux/T4yOllu05inSlpjDnJGPNtY8yYYgvPX7BIr762taDsiOFDtX79Rm3YsEmtra2aMeMBnXXm2C6bpW/67uwsfbuTpW93svTtTpa+3cnStztZ+nYnS9/uZOnbnWzStQFXBB6UNMYszvr43yX9VtK+kq4xxnyvk3vLq7qmv55v2rz786bmFlVX9++y2SRr03dpazOzH337OHOStZnZj759nDnJ2szsR98+zpxkbWb2o28fZ06yto8zQ5Jt55J9KWNhZ0pWZX08UdInrbXXShoj6cv5QsaYicaYOmNMXXv79g5oc6+fv9d1UZ+G7mI2ydr0XdrazBwvm2RtZo6XTbI2M8fLJlmbmeNlk6zNzPGySdZm5njZJGszc7xskrWZOV42ydo+zgy4pDLk6yljzAFKH7w01tqXJMlau90YszNfyFo7SdIkKf9rShajualFA2urd39eWzNALS1bumw2ydr0XdrazOxH3z7OnGRtZvajbx9nTrI2M/vRt48zJ1mbmf3o28eZk6zt48yAS8LOlOwj6WlJdZL6GmP6S5IxZh9Jib1Q5pK6eg0efJgGDRqoqqoqTZgwXg89PLvLZumbvjs7S9/uZOnbnSx9u5Olb3ey9O1Olr7dydK3O1n6diebdG3AFYFnSlprB+X5UrukzxZT+O67fqdTRp6gfv36auNzdbr2uus1ecq0SNm2tjZdetnVmvnIPapIpTTljulatWptl83SN313dpa+3cnStztZ+nYnS9/uZOnbnSx9u5Olb3ey9O1ONunagCtMZ78uQWc8fRsAAAAAAMBnO3c0J/YM1nL2zjMPchwqS4+PnlW26yTs6dsAAAAAAAAA0KE4KAkAAAAAAACgpDgoCQAAAAAAAKCkOCgJAAAAAAAAoKQC330bbqlIFXeMua29vYM6AQAAAAAAAPLjoCQAAAAAAAC6BssJV67g6dsAAAAAAAAASoqDkgAAAAAAAABKioOSAAAAAAAAAEoqsYOSt066QZublql+6dyC8mPHjNLKhnlavWqBrrzioi6fjZu/5Zbr9fympXrm6Tnvuf7C//yqVix/QkufmaOf/fQHZdd3uWSTrM3MfvTt48xJ1mZmP/r2ceYkazOzH337OHOStZnZj759nDnJ2j7ODLjCWGs7tUBlt5qcBU4+6Tht27ZdkyffpCFDR8f6malUSo0r52vc6WerqalFTy2cqXPOvVCNjc92yWzUfPa7b5+U2b6333ajPvqx0yRJp5xygr733Us0/jNf1Y4dO3TQQQfqpZde2Z3J9e7bpei73LKu9u3jzK727ePMrvbt48yu9u3jzK727ePMrvbt48yu9u3jzK727ePMrvbtwsw7dzSbSM145p0lf+7cA12O6TH882W7ThI7U3L+gkV69bWtBWVHDB+q9es3asOGTWptbdWMGQ/orDPHdtlsIfkFCxbptT2278R/P1e/uv732rFjhyS954BkufRdDllX+/ZxZlf79nFmV/v2cWZX+/ZxZlf79nFmV/v2cWZX+/ZxZlf79nFmV/t2dWbAJYEHJY0xxxlj9st83NMYc60x5iFjzC+NMX1K0+Leqmv66/mmzbs/b2puUXV1/y6b7Yi8JB1++Pt14okjNH/eg3rssXv1sY99pKz7dnV7u5hNsraPffs4c5K1mdmPvn2cOcnazOxH3z7OnGRtZvajbx9nTrK2jzMDLgk7U/J2SW9lPr5JUh9Jv8xcN7kT+wpkzN5nnkZ9GrqL2Y7IS1JlZaUO2L+PTh55lr7//Z/qnj/9vtPr+ri9XcwmWdvHvn2cOcnazBwvm2RtZo6XTbI2M8fLJlmbmeNlk6zNzPGySdZm5njZJGv7ODPgksqQr6estTszHw+z1n408/ECY0x9vpAxZqKkiZJkKvoolepdfKdZmptaNLC2evfntTUD1NKypctmOyIvSc3NLbr/gVmSpLq6erW3W/Xr11cvv/xqWfbt6vZ2MZtkbR/79nHmJGszsx99+zhzkrWZ2Y++fZw5ydrM7EffPs6cZG0fZwZcEnamZIMx5muZj5cZY4ZJkjHmCEmt+ULW2knW2mHW2mEdfUBSkpbU1Wvw4MM0aNBAVVVVacKE8Xro4dldNtsReUl68MG/atSoEyVJhw8+TFXdqgIPSCbdt6vb28UsfbuTpW93svTtTpa+3cnStztZ+nYnS9/uZOnbnWzStb1n27lkX8pY2JmSF0i6yRhztaSXJS00xjwv6fnM1wp2912/0ykjT1C/fn218bk6XXvd9Zo8ZVqkbFtbmy697GrNfOQeVaRSmnLHdK1atbbLZgvJ33nnbzXy5OPVr19frV+3WD/5rxs05Y7pmjTpej3z9Bzt2LFDF1zwrbLruxyyrvbt48yu9u3jzK727ePMrvbt48yu9u3jzK727ePMrvbt48yu9u3jzK727erMgEtMlNclMMbsK+n9Sh/EbLLWRj5vuLJbDS98UCIVqeLeTL2tvbyPoAMAAAAAgLSdO5r3fvFJ6J3F93IcKkuPEV8s23USdqakJMla+6akZZ3cCwAAAAAAAAAPFHdqHQAAAAAAAADExEFJAAAAAAAAACUV6enbAAAAAAAAQNnj/TKcwZmSAAAAAAAAAEqKMyW7EN49GwAAAAAAAC7gTEkAAAAAAAAAJcVBSQAAAAAAAAAlxdO3AQAAAAAA0DVYXtrOFZwpCQAAAAAAAKCkEjsoeeukG7S5aZnql84tKD92zCitbJin1asW6MorLury2SRr+3hbJVmbmf3o28eZk6zNzH707ePMSdZmZj/69nHmJGszsx99+zhzkrV9nBlwhbHWdmqBym41OQucfNJx2rZtuyZPvklDho6O9TNTqZQaV87XuNPPVlNTi55aOFPnnHuhGhuf7ZLZpGv7dlu52rePM7vat48zu9q3jzO72rePM7vat48zu9q3jzO72rePM7vat48zu9q3CzPv3NFsIjXjmXcWTu3cA12O6XHC2WW7TgLPlDTGfNMYM7AzCs9fsEivvra1oOyI4UO1fv1GbdiwSa2trZox4wGddebYLptNurZvt5Wrffs4s6t9+zizq337OLOrffs4s6t9+zizq337OLOrffs4s6t9+zizq327OjPgkrCnb/9E0iJjzHxjzIXGmINK0VSY6pr+er5p8+7Pm5pbVF3dv8tmk65dDLa3G9kka/vYt48zJ1mbmf3o28eZk6zNzH707ePMSdZmZj/69nHmJGv7ODMktbdzyb6UsbCDks9JqlX64OTHJK0yxjxqjDnPGLNvvpAxZqIxps4YU9fevr0D29398/e6LurT0F3MJl27GGxvN7JJ1vaxbx9nTrI2M8fLJlmbmeNlk6zNzPGySdZm5njZJGszc7xskrWZOV42ydo+zgy4JOygpLXWtltrZ1trz5dULen3ksYpfcAyX2iStXaYtXZYKtW7A9tNa25q0cDa6t2f19YMUEvLli6bTbp2MdjebmSTrO1j3z7OnGRtZvajbx9nTrI2M/vRt48zJ1mbmf3o28eZk6zt48yAS8IOSr7n8Ly1ttVa+6C19mxJ7+u8toItqavX4MGHadCggaqqqtKECeP10MOzu2w26drFYHu7kaVvd7L07U6Wvt3J0rc7Wfp2J0vf7mTp250sfbuTTbo24IrKkK9/Kd8XrLVvF1P47rt+p1NGnqB+/fpq43N1uva66zV5yrRI2ba2Nl162dWa+cg9qkilNOWO6Vq1am2XzSZd27fbytW+fZzZ1b59nNnVvn2c2dW+fZzZ1b59nNnVvn2c2dW+fZzZ1b59nNnVvl2dGXCJ6ezXJajsVsMLHwAAAAAAAHSgnTua937xSeidf/yJ41BZepz45bJdJ2FnSgIAAAAAAABuKPN3nMa/hL2mJAAAAAAAAAB0KA5KAgAAAAAAACgpDkoCAAAAAAAAKCkOSgIAAAAAAAAoKd7oBgAAAAAAAF2CtW1Jt4CIOFMSAAAAAAAAQElxUBIAAAAAAABASXFQEgAAAAAAAEBJJXZQcuyYUVrZME+rVy3QlVdcVNK8i9kka9O3O337OHOStZnZj759nDnJ2szsR98+zlxMvra2WnNm36sVy5/QsvrHdcnF55ekbrHZJGv72LePMydZm5n96NYHzSAAACAASURBVNvVmQFXGGttpxao7FazV4FUKqXGlfM17vSz1dTUoqcWztQ5516oxsZnI/3MYvIuZumbvpm5/Gozsx99+zizq337OLOrffs4c7H5/v0P1oD+B2tpfYP22ae3Fi96VJ//wte79Mz0zcxdtW8fZ3a1bxdm3rmj2URqxjNvP3F75x7ockzPUV8v23WSyJmSI4YP1fr1G7Vhwya1trZqxowHdNaZY0uSdzFL3/Td2Vn6didL3+5k6dudLH27k/W17xdeeFFL6xskSdu2bdfq1c+qprp/p9fltnKnbx9ndrVvH2d2tW9XZwZcEnhQ0hjTzRjzFWPMaZnP/80Y81tjzEXGmKpCi1bX9NfzTZt3f97U3KLqiDtWxeZdzCZZm75LW5uZ/ejbx5mTrM3MfvTt48xJ1mbm0vad7dBDazXkI8do0eKlnV6X26q0tZnZj759nDnJ2j7ODLikMuTrkzPf08sYc56kfST9n6TRkkZIOq+QosbsfeZonKeRF5N3MZtkbfoubW1mjpdNsjYzx8smWZuZ42WTrM3M8bJJ1mbmeNmOyEtS7969NGP6rfr25dfozTe3dXpdbqvS1mbmeNkkazNzvGyStX2cGXBJ2EHJD1trjzXGVEpqllRtrW0zxtwtaVm+kDFmoqSJkmQq+iiV6v2erzc3tWhgbfXuz2trBqilZUvkpovJu5hNsjZ9l7Y2M/vRt48zJ1mbmf3o28eZk6zNzKXtW5IqKyt17/RbNXXqX3T//bNKUpfbqrS1mdmPvn2cOcnaPs4MuCTsNSVTxphukvaV1EtSn8z13SXlffq2tXaStXaYtXbYngckJWlJXb0GDz5MgwYNVFVVlSZMGK+HHp4dueli8i5m6Zu+OztL3+5k6dudLH27k6Vvd7K+9i1Jt066QY2r1+nGmyZFzhRbl9vKnb59nNnVvn2c2dW+XZ0ZcEnYmZK3SVotqULSVZLuNcY8J+l4SdMKLdrW1qZLL7taMx+5RxWplKbcMV2rVq0tSd7FLH3Td2dn6dudLH27k6Vvd7L07U7W175P/PhwnXvOF7R8xSrVLUk/KP3hD3+hWY8+3ql1ua3c6dvHmV3t28eZXe3b1ZkhybYn3QEiMmGvS2CMqZYka+1mY8z+kk6TtMlauzhKgcpuNbzwAQAAAAAAQAfauaN57xefhN7+2x85DpWl5ycuKNt1EnampKy1m7M+3irpvk7tCAAAAAAAAECXFvaakgAAAAAAAADQoTgoCQAAAAAAAKCkQp++DQAAAAAAADihnTe6cQVnSgIAAAAAAAAoKc6UROK6V1YVlX93Z2sHdQIAAAAAAIBS4ExJAAAAAAAAACXFQUkAAAAAAAAAJcXTtwEAAAAAANA1WN7oxhWcKQkAAAAAAACgpBI7KDl2zCitbJin1asW6MorLipp3sVskrVL2XdNzQDNnDVVTz8zR0vqZuvCC78mSfrBVZfp2XVPaeFTM7XwqZkaO3ZUWfXdFbJJ1vaxbx9nTrI2M/vRt48zJ1mbmf3o28eZk6zNzH707ePMSdb2cWbAFcZa26kFKrvV7FUglUqpceV8jTv9bDU1teiphTN1zrkXqrHx2Ug/s5i8i9mu3nf2u2/373+Q+vc/WPX1K7XPPr214B8P6f99aaI+9/kztH3bdt1006171cj17ts+bm8fZ3a1bx9ndrVvH2d2tW8fZ3a1bx9ndrVvH2d2tW8fZ3a1bx9ndrVvF2beuaPZRGrGM2/PublzD3Q5pudp3yjbdRJ6pqQx5gPGmMuNMTcZY24wxnzDGNOnmKIjhg/V+vUbtWHDJrW2tmrGjAd01pljS5J3MetT3y+88JLq61dKkrZt2641a9arurp/5HpJ9e16lr7dydK3O1n6didL3+5k6dudLH27k6Vvd7L07U426dqAKwIPShpjvinpZkk9JA2X1FPSQEkLjTGjCi1aXdNfzzdt3v15U3NLrANPxeRdzCZZO8m+3/e+Wn3kIx/SkiX1kqT/+MZ5WrRolv5w839r//33K9u+XcwmWdvHvn2cOcnazOxH3z7OnGRtZvajbx9nTrI2M/vRt48zJ1nbx5khqb2dS/aljIWdKfnvksZZa/9L0mmSPmStvUrSOEm/LrSoMXufORrnaeTF5F3MJlk7qb579+6le6b+QVdeeZ3efHOb/njr3Trm6JE6/vjT9cILL+rnv7i6LPt2NZtkbR/79nHmJGszc7xskrWZOV42ydrMHC+bZG1mjpdNsjYzx8smWZuZ42WTrO3jzIBLorzRTWXm3+6S9pUka+0mSVX5AsaYicaYOmNMXXv79r2+3tzUooG11bs/r60ZoJaWLZGbLibvYjbJ2kn0XVlZqXvuuVnTp92vBx/4qyTpxRdfVnt7u6y1mnz7NA372EfKrm+Xs0nW9rFvH2dOsjYz+9G3jzMnWZuZ/ejbx5mTrM3MfvTt48xJ1vZxZsAlYQcl/yhpiTFmkqSFkn4rScaYgyS9mi9krZ1krR1mrR2WSvXe6+tL6uo1ePBhGjRooKqqqjRhwng99PDsyE0Xk3cx61vff/jDL7VmzTr95je37b6uf/+Ddn981lljtXLV2rLr2+UsfbuTpW93svTtTpa+3cnStztZ+nYnS9/uZOnbnWzStQFXVAZ90Vp7kzFmjqQPSvofa+3qzPUvSRpZaNG2tjZdetnVmvnIPapIpTTljulaFXKQqaPyLmZ96vuEE4bp3778eTWsaNTCp2ZKkn58zX/ri188S8ce+yFZa/XPTU365iU/KKu+Xc/StztZ+nYnS9/uZOnbnSx9u5Olb3ey9O1Olr7dySZdG3CF6ezXJajsVsMLHyBQ98q8rwQQybs7WzuoEwAAAAAA3LBzR/PeLz4JvT379xyHytJzzIVlu04Cz5QEAAAAAAAAnGHL+x2n8S9R3ugGAAAAAAAAADoMByUBAAAAAAAAlBQHJQEAAAAAAACUFK8picQV+0Y1KVP4a7a2d/IbPQEAAAAAAGBvHJQEAAAAAABA19DOG924gqdvAwAAAAAAACgpDkoCAAAAAAAAKCkOSgIAAAAAAAAoKQ5KAgAAAAAAACipRA5Kdu/eXQv/8bCerntMy+of1zU/+k7snzF2zCitbJin1asW6MorLury2SRru9L3pFuuV9Pz9Vr6zJzd1/3851drxfIn9HTdY7p3xh/Vp89+Zdd3uWSTrO1j3z7OnGRtZvajbx9nTrI2M/vRt48zJ1mbmf3o28eZk6zt48zea2/nkn0pY8Za26kFKrvV5CzQu3cvbd/+liorKzXvib/oW9++RosWPxPpZ6ZSKTWunK9xp5+tpqYWPbVwps4590I1Nj7bJbP0HZxNGSNJOumk47Rt23ZNvv1GDf3oaZKk004bqb/97R9qa2vTz376A0nSD6762e5se5717+L2duG2om9/Z3a1bx9ndrVvH2d2tW8fZ3a1bx9ndrVvH2d2tW8fZ3a1bxdm3rmj2URqxjNvP3Jj5x7ockzPT19Wtusksadvb9/+liSpqqpSlVVVinNwdMTwoVq/fqM2bNik1tZWzZjxgM46c2yXzdJ3tOyCBYv02mtb33PdnDnz1NbWJklatOgZ1dQMKLu+yyFL3+5k6dudLH27k6Vvd7L07U6Wvt3J0rc7Wfp2J5t0bcAViR2UTKVSqlsyWy3NyzV37jwtXrI0cra6pr+eb9q8+/Om5hZVV/fvstkka7vady5f/eqX9Ne//q3Ta7uYTbK2j337OHOStZnZj759nDnJ2szsR98+zpxkbWb2o28fZ06yto8zAy4JPChpjOljjPmFMWa1MeaVzKUxc93+AbmJxpg6Y0xde/v2nN/T3t6uYcPH6NDDhmn4sKE6+ugjIzdtzN5nnkY909LFbJK1Xe17T9/77iXaubNN90z9v06v7WI2ydo+9u3jzEnWZuZ42SRrM3O8bJK1mTleNsnazBwvm2RtZo6XTbI2M8fLJlnbx5kBl4SdKTlD0muSRllrD7TWHijpE5nr7s0XstZOstYOs9YOS6V6BxZ4/fU39Pd5T2rsmFGRm25uatHA2urdn9fWDFBLy5Yum02ytqt9Zzv3nC/o9NNP01fOuzhyxsXt7ept5WPfPs6cZG1m9qNvH2dOsjYz+9G3jzMnWZuZ/ejbx5mTrO3jzIBLwg5KDrLW/tJa+8KuK6y1L1hrfynpfYUW7dev7+53Qe7Ro4dGn3qy1qxZHzm/pK5egwcfpkGDBqqqqkoTJozXQw/P7rJZ+i6stiSNGTNKl19+oT73+a/p7bffKfu+fbytfOzbx5ld7dvHmV3t28eZXe3bx5ld7dvHmV3t28eZXe3bx5ld7dvVmSHJtnPJvpSxypCv/9MYc6WkO6y1WyTJGHOIpK9Ker7QogMGHKLbb7tRFRUppVIp3XffQ3pk5pzI+ba2Nl162dWa+cg9qkilNOWO6Vq1am2XzdJ3tOxdd/5WI0eeoH79+uq59Ut03U9u0JVXXqzu3bpp1sypkqRFi5/RxRd/v6z6LocsfbuTpW93svTtTpa+3cnStztZ+nYnS9/uZOnbnWzStQFXmKDXJTDGHCDpe5LG6/+zd+fhUZZn+8fPe5KwK5YihCQUbKltf31tQcGtiLgUcKV9tbRaUFv70hZ3q9RWraKt2gp1aW0VqoBYEdQqZZHiRiFVQqJElgQXlsKEgBtaElGSzP37g5BGQmbJZOaZe+7v5zhySGa4cp1nnmHxYWYeqVfjzTsk/V3SHdbanbEW5HYo5I0PkFIh0/ar20d4Xw4AAAAAgIPq91S1/X+Gs9juBb/nf/Sb6Xzm1Rn7OIn6TMnGk44/b/z4FGPMDyRNT1EuAAAAAAAAAFkq1ntKRjOp3VIAAAAAAAAA8EbUZ0oaY1a3dpek3u0fBwAAAAAAAGijSGZf3AX/FetCN70ljZS0/3tHGkkvpSQRAAAAAAAAgKwW66TkAkndrLXl+99hjFmakkRAgpK5WE2XvI5tnv2o7pM2zwKZjgtIAQAAAABSKdaFbi6Oct/57R8HAAAAAAAAQLZL5kI3AAAAAAAAAJCwWC/fBgAAAAAAANxgudCNK3imJAAAAAAAAIC0Cuyk5MgRw7Vu7TKtryjWxGsvSeu8i7NB7vYhd8eOHfTiP5/Sv1YsVEnpYv3y+islSYuXzFHxywtU/PICvf7Wy3r0sfszKnd7zga528fcLnWe+sBkhbeWa9WrzzXd9pnPHKJFix7VunXLtWjRozrkkO4ZlzsTZoPc7WNuHzsHuZvOfuT2sXOQu+nsR24fOyczP23qFG0Lv6byVc8nvDOZvcnOBr0bcIGxKb5Kam6HwhYLQqGQKtct16jTz1M4XK0VLy/S2HETVFn5ZlxfM5l5F2fJnbrZ5lff7tq1i2prP1Jubq6WPDdXP7/2FpWW/vfC87P++ictWvisZj/6lKTWr76d6Z0zbbePuV3o3Pzq20OHHqOamlpNf+huDTryVEnS7bddr/ff/0B3Tr5P115ziT7zme765fW3SWr96tsufr9dOFbk9rezq7l97Oxqbh87u5rbx86u5vaxc7LzJ+z7u+j0ezRw0Clx7WuPvS4cq/o9VaaVL+G13fN+l9oTXY7pPHpixj5OAnmm5NFDBmnDhs3atGmL6urqNHfuPJ191si0zLs4S+70zNbWfiRJysvLVW5erpqfsO/WrauGnXicFsx/NuNyt8csud2ZDWJ3cXGJdu784FO3nXXWCM165HFJ0qxHHtfZZ8fe7+L327Vj5XNuHzu7mtvHzq7m9rGzq7l97Oxqbh87Jzu/vLhE7+/3d9F07HX1WAEuCeSkZEFhvraGtzV9Hq6qVkFBflrmXZwNcrdPuUOhkIpfXqANm0v14gv/UlnZa033nXX2CP1z6Uvatasm43K3x2yQu33M7Wrn5nr16qnt29+WJG3f/rYOPfSzKd3t4myQu33M7WPnIHfT2Y/cPnYOcjed/cjtY+f2mG8rVzsH9f0C0i2Qq28b0/KZo4m8jDyZeRdng9ztU+5IJKKhx52p7t0P0l9n36+v/L/DVVnxhiTp3O+cpZkz5qZsd9CzQe72MbernZPl4vfb1WPlY24fOwe5m86JzQa5m86JzQa5m86JzQa5m86JzbbHfFu52jnIv7NnhQhX33ZFm58paYx5Jsp9440xZcaYskiktsX9VeFq9S0qaPq8qLCPqqt3xL07mXkXZ4Pc7WPuDz/cpeLlJTr1m8MkST16HKKjjvq6/rH4hYzO7eOxCnK3j52be/vtd5Wf30uSlJ/fS++8815Kd7s4G+RuH3P72DnI3XT2I7ePnYPcTWc/cvvYuT3m28rVzkF9v4B0i3pS0hhzZCsfR0ka2NqctXaqtXawtXZwKNS1xf2lZeUaMOAw9e/fV3l5eRozZrTmL1gSd+hk5l2cJXfqZz/bs4e6dz9IktSpU0cNP+kbevP1jZKkb337dC1e/II++WRPxuVur1lyuzMb9O595i94VuPGfkeSNG7sdzR/fuyv4eL329Vj5WNuHzu7mtvHzq7m9rGzq7l97Oxqbh87t8d8W7naOajvF5BusV6+XSrpn5IOdKWeQ9q6tKGhQVdceYMWLXxUOaGQZsyco4rGl8mmet7FWXKnfjY/v5fun3qncnJyFAoZPfXkIi1ufGbkOeeeqbt+f39ce9Odu71mye3ObBC7Zz38Rw0bdpx69uyhjRtKdcutU3TnnX/Uo4/er4t+8D1t3Vql8877ScblDnqW3O7MktudWXK7M0tud2bJ7c6sr7kfmXWfTmz8u+jmjWWadMtkTZ/xWMr3unqsAJeYaO9LYIxZK+nb1toW16w3xmy11vaNtSC3QyFvfICM1SWvY5tnP6r7pB2TAJklZA70b1HxifB+NwAAAEDK1e+pavtf2rPY7qfu4H9Imun87esy9nES65mSN6v1l3hf1r5RAAAAAAAAgCRYLnTjiqgnJa21T0S5+zPtnAUAAAAAAACAB9p89W1Jk9otBQAAAAAAAABvRH2mpDFmdWt3Serd/nEAAAAAAAAAZLtY7ynZW9JISTv3u91IeikliQAAAAAAAABktVgnJRdI6matLd//DmPM0pQkAtIomStoc3ViZDMeowAAAACcFOFCN66IdaGbi6Pcd377xwEAAAAAAACQ7ZK50A0AAAAAAAAAJIyTkgAAAAAAAADSipOSAAAAAAAAANIqsJOSI0cM17q1y7S+olgTr70krfMuzga5m9yx56c+MFnhreVa9epzTbed879nqHzV8/p49xYdeeTX0pKbY5XY/LSpU7Qt/JrKVz2f8M5k9iY7G+RuV79nPh4rH3P72DnI3fxe4sex8rFzkLvp7EduHzsHudvHzoArjE3xFVZzOxS2WBAKhVS5brlGnX6ewuFqrXh5kcaOm6DKyjfj+prJzLs4S+7MzN386ttDhx6jmppaTX/obg068lRJ0pe/PECRSET3/fG3+vl1t+rVV1c3/fzWrmyc6Z0zbTbZ+RP2Hbfp92jgoFPi2tcee109VpKb3zMfj5WPuX3s7HJu334vcTW3j51dze1jZ1dz+9jZ1dwudK7fU2Va+RJe2z33ltSe6HJM5zG/ytjHSSDPlDx6yCBt2LBZmzZtUV1dnebOnaezzxqZlnkXZ8md+bmLi0u0c+cHn7pt/fq39MYbG+PemWxujlXi88uLS/T+fsctHXtdPVaSm98zH4+Vj7l97Oxybt9+L3E1t4+dXc3tY2dXc/vY2dXcrnYGXBLIScmCwnxtDW9r+jxcVa2Cgvy0zLs4G+Rucrdtvq1c7exq7mS42jmo71eyu12cDXK3j7l97Bzkbn4v8eNY+dg5yN109iO3j52D3O1jZ8AlgZyUNKblM0cTeRl5MvMuzga5m9xtm28rVzu7mjsZrnYO6vuV7G4XZ4Pc7WNuHzsHuZvfSxKbDXI3nRObDXI3nRObDXI3nRObDXK3j50Bl0Q9KWmMOdgYc7sxZpYx5vz97vtTlLnxxpgyY0xZJFLb4v6qcLX6FhU0fV5U2EfV1TviDp3MvIuzQe4md9vm28rVzq7mToarnYP6fiW728XZIHf7mNvHzkHu5vcSP46Vj52D3E1nP3L72DnI3T52BlwS65mS0yUZSU9K+p4x5kljTMfG+45tbchaO9VaO9haOzgU6tri/tKycg0YcJj69++rvLw8jRkzWvMXLIk7dDLzLs6S263cyXC1s6u5k+Fq56C+X8nudnGW3O7MkpvfS1I962puHzu7mtvHzq7m9rGzq7ld7QxJ1vLR/COD5ca4/wvW2nMaf/y0MeZ6SS8YY85OZmlDQ4OuuPIGLVr4qHJCIc2YOUcVFW+kZd7FWXJnfu5ZD/9Rw4Ydp549e2jjhlLdcusU7Xz/A91116069NAemvf0TL22ep3OPHNs1nTOhNlk5x+ZdZ9ObDxumzeWadItkzV9xmMp3+vqsZLc/J75eKx8zO1jZ5dz+/Z7iau5fezsam4fO7ua28fOruZ2tTPgEhPtfQmMMZWSvmqtjTS77UJJEyV1s9b2i7Ugt0NhZp+WBdooZFq+z0e8Ihn+rxUAAAAAgMxWv6eq7f9TmsV2z5nE/3A30/m7N2Xs4yTWy7fnSzq5+Q3W2pmSfiZpT6pCAQAAAAAAAMheUV++ba2d2Mrti40xt6UmEgAAAAAAAIBsFus9JaOZpL0XwgEAAAAAAACCF4nE/jnICFFPShpjVrd2l6Te7R8HAAAAAAAAQLaL9UzJ3pJGStq53+1G0kspSQQ4IpmL1SRzkZxkd8MdyTxKeIQAAAAAADJZrJOSC7T3Ktvl+99hjFmakkQAAAAAAAAAslqsC91cHOW+89s/DgAAAAAAAIBsl8yFbgAAAAAAAIDMwYVunBEKOgAAAAAAAAAAv3BSEgAAAAAAAEBaBXpSMhQKqXTlPzTvqZkJz44cMVzr1i7T+opiTbz2kqyfDXI3uVO7e+oDkxXeWq5Vrz7XdNvtt9+gNauX6pWyZ/X43L+oe/eDU5552tQp2hZ+TeWrnk9orj12u3KsMmVWkt58Y4VWvfqcykqXaMXLi9K2m2PlTmdXf037eKx8zO1j5yB309mP3D52DnI3ndOX29W/0wS9G3CBsdamdEFuh8JWF1x5xXgdddTXdPBBB2n0ty+M+2uGQiFVrluuUaefp3C4WiteXqSx4yaosvLNrJwld/blDhnT9OOhQ49RTU2tpj90twYdeaok6dRTh+nFF/+lhoYG3fabX0qSfnn9bU0zkQP8uk228wn7cky/RwMHnRLXTHvszvRjFeSsaWVe2ntS8tjjTtN77+084P2t/cbLsfKjs+Tmr2kfj5WPuX3s7GpuHzu7mtvHzq7m9rFzsvMu/p0mXbvr91RF+18Gb+3+642pPdHlmM7fvzVjHyeBPVOysLCPTj/tFD300OyEZ48eMkgbNmzWpk1bVFdXp7lz5+nss0Zm7Sy5szt3cXGJdu784FO3PffcMjU0NEiSSkpeVWFhn5RmlqTlxSV6f78c8fLlWGXCbLI4Vn50ltz8Ne3jsfIxt4+dXc3tY2dXc/vY2dXcPnZOdt7Fv9MEvRtwRWAnJX8/ZZKu+8WvFWnDVZEKCvO1Nbyt6fNwVbUKCvKzdjbI3eRO/+79XXTRd/WPf7yY9r2J8PFYBf0YsdbqmUWzVbLiGf3o4u/HPcex8qNzslz8frt6rHzM7WPnIHfT2Y/cPnYOcjed05s7Ga52DvLvgVnBRvho/pHBop6UNMbkG2P+bIy5zxjzWWPMzcaYNcaYucaYVp+6ZYwZb4wpM8aURSK1Le4/4/RT9fbb7+rVVWvaFNqYls88jfdl6C7OBrmb3Onf3dx1P79M9fUNenT239K6N1E+HqugHyMnDv+Wjj5mlM48a6x++tOLNHToMSnfzbFKbDbo3clw8fvt6rHyMbePnYPcTefEZoPcTefEZoPcTefEZttjvq1c7Rzk3wOBdIr1TMkZkiokbZX0oqTdks6QtFzS/a0NWWunWmsHW2sHh0JdW9x//PGDddaZI/TWGyv010f+pJNO+oZmzrg37tBV4Wr1LSpo+ryosI+qq3dk7WyQu8md/t37jBt7rk4//VRdcOGlad3bFj4eq6AfI/t+/jvvvKen5z2jIUMGpnw3x8qdzsly8fvt6rHyMbePnYPcTWc/cvvYOcjddE5v7mS42jnIvwcC6RTrpGRva+0frLV3SDrEWvtba+0Wa+0fJPVr69Lrb7hD/T8/WAMOP1bfHztBL774L1140eVxz5eWlWvAgMPUv39f5eXlacyY0Zq/YEnWzpLbn9z7jBgxXNdcM0H/e84PtHv3x2nb21Y+HqsgO3fp0lndunVt+vE3Tz1R69a9nvG5Xfx+u9o5WS5+v109Vj7m9rGzq7l97Oxqbh87u5rbx87tMd9WrnYO8u+BQDrlxri/+UnLh/e7L6eds8StoaFBV1x5gxYtfFQ5oZBmzJyjioo3snaW3Nmde9bDf9SwYcepZ88e2rihVLfcOkUTJ16qjh066JlFey8EVbLyVV166S9S2vmRWffpxMYcmzeWadItkzV9xmMp6dyeuV18jCXbuXfvQ/XE4w9KknJyc/TYY09ryZKlGZ/bxe+3q50lN39N+3isfMztY2dXc/vY2dXcPnZ2NbePnZOdd/HvNEHvBlxhor0vgTHmFkm/s9bW7Hf7AEl3WGvPjbUgt0Mhb3wA7CdkWr5HSCIivJ+IF5J5lPAIAQAAALJb/Z6q5P7HMkvtfvgX/O9QM50vuD1jHydRnylprf1VK7e/ZYxZmJpIAAAAAAAAALJZrPeUjGZSu6UAAAAAAAAA4I2oz5Q0xqxu7S5Jvds/DgAAAAAAAIBsF+tCN70ljZS0c7/bjaSXUpIIAAAAAAAAQFaLdVJygaRu1try/e8wxixNSSLAA1yoBvHgUQIAAAAACeL/t50R60I3F0e57/z2jwMAAAAAAAAg2yVzoRsAAAAAAAAASBgnJQEAAAAAAACkFScl1/yoWAAAIABJREFUAQAAAAAAAKRVYCclp02dom3h11S+6vk2zY8cMVzr1i7T+opiTbz2kqyfDXI3ud3J7WPnIHfT2Y/cPnYOcjed/cjtY+cgd9PZj9w+dg5yN539yO1qZ8AVxqb4qkS5HQoPuOCEoceopqZW06ffo4GDTknoa4ZCIVWuW65Rp5+ncLhaK15epLHjJqiy8s2snCU3uemcebvp7EduHzu7mtvHzq7m9rGzq7l97Oxqbh87u5rbx86u5nahc/2eKhNXGM/snj6Ry2830/kHv8vYx0lgz5RcXlyi93d+0KbZo4cM0oYNm7Vp0xbV1dVp7tx5OvuskVk7S25yp3qW3O7MktudWXK7M0tud2bJ7c4sud2ZJbc7s+R2Zzbo3YArnHxPyYLCfG0Nb2v6PFxVrYKC/KydDXI3udO7m85+5Paxc5C76exHbh87B7mbzn7k9rFzkLvp7EduHzsHudvHzoBLEj4paYzplYogCWZocVu8L0N3cTbI3eRO7246JzYb5G46JzYb5G46JzYb5G46JzYb5G46JzYb5G46JzYb5G46JzYb5G46JzYb5G4fOwMuyY12pzGmx/43SVppjBmkve9H+X4rc+MljZckk9NdoVDX9sjapCpcrb5FBU2fFxX2UXX1jqydDXI3udO7m85+5Paxc5C76exHbh87B7mbzn7k9rFzkLvp7EduHzsHudvHzoBLYj1T8l1JrzT7KJNUKOnVxh8fkLV2qrV2sLV2cHufkJSk0rJyDRhwmPr376u8vDyNGTNa8xcsydpZcpM71bPkdmeW3O7MktudWXK7M0tud2bJ7c4sud2ZJbc7s0Hv9l4kwkfzjwwW9ZmSkiZKOlXStdbaNZJkjNlkrT0s2cWPzLpPJw47Tj179tDmjWWadMtkTZ/xWFyzDQ0NuuLKG7Ro4aPKCYU0Y+YcVVS8kbWz5CZ3qmfJ7c4sud2ZJbc7s+R2Z5bc7syS251ZcrszS253ZoPeDbjCxHpfAmNMkaS7JG2VdJOk16y1n493QW6HQt74AAAAAAAAoB3V76lq+eaT0O4Hr+E8VDOdL56csY+TmBe6sdaGrbXfkfSipGcldUl5KgAAAAAAAABZK+6rb1tr50s6SXtfzi1jzA9SFQoAAAAAAABA9or1npKfYq3dLWlt46eTJE1v90QAAAAAAABAW9jMvrgL/ivqSUljzOrW7pLUu/3jAAAAAAAAAMh2sZ4p2VvSSEk797vdSHopJYkAAAAAAAAAZLVYJyUXSOpmrS3f/w5jzNJ4FuTlJPQK8U+pa6hv8yyAAxvc84ttni179812TAIAAAAAAHwV9YyhtfbiKPed3/5xAAAAAAAAAGS7uK++DQAAAAAAAADtoe2vrQYAAAAAAAAyiI3YoCMgTjxTEgAAAAAAAEBape2kZFFRHy1e/JhWrXper7zyrC655AeSpF/96mdauXKxVqxYpPnzZ6lPn15xfb2RI4Zr3dplWl9RrInXXpJQFhdng9xN7szOPW3qFG0Lv6byVc8fcPbEYcfpvXcqVVa6RGWlS/TDqy5IKM+BdOjQQY/+9c9aX1Gsl4rnq1+/Io0cMVybN5aq5j8bFd6ySiUrntFJw78R19fz5Vi112yQu33M7WPnIHfT2Y/crnZu/mduW7j4/Xb1WPmY28fOkhQKhVS68h+a99TMhGdd7UxuN2aD3g24wFib2qe1du7cz0pSfn4v5ef3Unn5WnXr1lUvvbRAY8aMV1VVtXbtqpEkTZhwkb785S/q8suvl9T61bdDoZAq1y3XqNPPUzhcrRUvL9LYcRNUWRn7ysAuzpKb3NFmTxh6jGpqajVj+r3q1Klji9leh/bU1Vf9RKO/faGkxK6+3acoXzfefZ0mnHulpP9effsnP75QRxzxFV1y6XUaM+ZsfXv0aTryyK/p6p/9SmvWrtdTf5uhmyfdqT/ee5v6HTa43Tu317yLs+R2Z5bc7syS253ZoHfv+zN3+vR7NHDQKXHNBJ3bx2PlY24fO+9z5RXjddRRX9PBBx3U9PfdeLjamdxuzKZrd/2eKhNXGM98NPUqXr/dTJfxd2Xs4yRtz5Tcvv1tlZevlSTV1NRq/fq3VFDQu+mEpCR16dJF8ZwkPXrIIG3YsFmbNm1RXV2d5s6dp7PPGhlXDhdnyU3uaJYXl+j9nR+oc+dOCc+O+t9v6sGFf9bDz/5FP//t1QqF4vst4eyzRmjWrMclSU8+uVDf/OZwbdiwWQsXPa8tW6o0d+48/b+vHK5OnTqpQ4cO7d65veZdnCW3O7PkdmeW3O7MBr1735+5beHi99vVY+Vjbh87S1JhYR+dftopeuih2XHPBJ3b12PlYm5XOwMuCeQ9JT/3uSINHPhVlZaWS5Juvvlavfnmy/re976lW2/9fcz5gsJ8bQ1va/o8XFWtgoL8uHa7OBvkbnKnd3cys7l5ua3OHnvsUXql7Fkt+PssHXZ4f0lS/wGf06mjT9L40Zfqgm/+SJGGiEb+76kJ52xoaNDHH3+sd95571O7TzjhWJWXr9WePXtS1jnZeRdng9ztY24fOwe5m85+5Ha1c7Jc/H67eqx8zO1jZ0n6/ZRJuu4Xv1YkEol7pj12c6z8yO1qZ0iKRPho/pHBUnL1bWPMeEnjJSk3t4dyc7s13de1axfNnn2/rr32lqZnSd588526+eY7dc01E/STn1yoX//6rlhfv8Vt8b4M3cXZIHeTO727k5o9wG3WWr26ao0+P+Bo1dZ+pNNGnaw/PXS7vjN0rAafcJS+dMThmv7MA5Kkjp06aOd7e5/9cceDt6rgc32Ul5er3oW99fCzf5Ek/fau+zTz4bkHztnsx4UF+Tru2KM05JhRsXP7eKw87BzkbjonNhvkbjonNhvkbh87J8vF77erx8rH3D52PuP0U/X22+/q1VVrdOKw4+Kaaa/dHKvEZoPc7WNnwCVRT0oaY0ZZaxc3/ri7pN9LGiJpraSrrLU7DjRnrZ0qaar03/eUlKTc3FzNnn2/5sx5WvPmLW4xN3fuPP3tb9NjnpSsClerb1FB0+dFhX1UXX3AKFkxG+Rucqd3dzKzdXX1B5xt/hYJzyx+Qbl5uereo7uMkRY9/g/9+fZpLb7WdRffKKn195Tcl7Oqqlo5OTnq1KmTeh36WUl7X0Zz1VU/0WNzntbGjf9Oaedk512cDXK3j7l97Bzkbjr7kdvVzsly8fvt6rHyMbePnY8/frDOOnOETht1sjp16qiDDz5IM2fcqwsvujyjc/t4rILc7WNnwCWxXr59W7MfT5FULeksSaWSHkh02f33/06vv/6W7r33L023feEL/Zt+fMYZ39Qbb2yI+XVKy8o1YMBh6t+/r/Ly8jRmzGjNX7AkrgwuzpKb3PHYvfvjA8727n1o088ZMnigTMjow/c/VOnyV3XyGSfqM589RJJ08CEHKb+wd1y75i9YonHjviNJOuecM/Tc88s0YMBhOuKIr2j+3x9WbW2t7vvT9JR3TnbexVlyuzNLbndmye3ObNC7k+Hi99vVY+Vjbh87X3/DHer/+cEacPix+v7YCXrxxX/FfUIyyNw+HitXc7vaGXBJIi/fHmytHdj447uMMfFf2kx7/yXr+98/R2vWVGrFikWSpJtuulMXXfRdffGLn1ckEtGWLVW6/PJfxvxaDQ0NuuLKG7Ro4aPKCYU0Y+YcVVS8EVcOF2fJTe5oHpl1n04cdpx69uyhDz/cpeLl85UTCunll8tUUfGGJvz0Iv34xxeovr5BH+/+WDf+9BZJ0uY3/60Hfveg7nlsskLGqL6+Xnf+8h5tr4r9L3APTX9MM2fcq/UVxdq58wOdP3aCvvylAXr2H3PVo8ch2rHjHT0884+SpNNOP+9T7zfZnt+vZOddnCW3O7PkdmeW3O7MBr27+Z+5mzeWadItkzV9xmMZndvHY+Vjbh87J8vVzuR2Yzbo3YArTLT3JTDGhLX3JdtG0iWSvmAbB4wxq621X4u1oPnLtxNV11Df1lEArRjc84ttnt338m0AAAAAQLDq91Qd6NIC3vvoz5fxBpzNdPnpHzL2cRLr5dvTJB0kqZukmZJ6SpIxJl9SeWqjAQAAAAAAAMhGUV++ba2d1Mrt240xL6YmEgAAAAAAAIBsFuuZktEc8IQlAAAAAAAAAEQT9ZmSxpjVrd0lKb7L9AIAAAAAAABAM7Guvt1b0khJO/e73Uh6KZ4FXKwGyCxcrAYAAAAAAAQt1knJBZK6WWtbXNTGGLM0JYkAAAAAAACAtohw8W1XxLrQzcVR7ju//eMAAAAAAAAAyHbJXOgGAAAAAAAAABLGSUkAAAAAAAAAaRXYScmRI4Zr3dplWl9RrInXXpLWeRdng9xNbndy+9g5yN109iO3q52nTZ2ibeHXVL7q+YTm2mO3i7NB7vYxt4+dg9xNZz9y+9g5yN109iO3q50BVxhrU/sGoLkdClssCIVCqly3XKNOP0/hcLVWvLxIY8dNUGVlfFcFTmbexVlyk5vOmbebzn7kdrWzJJ0w9BjV1NRq+vR7NHDQKXHNBJ3bx2PlY24fO7ua28fOrub2sbOruX3s7GpuFzrX76kycYXxzEd/mMCVbprpctmfMvZxEsgzJY8eMkgbNmzWpk1bVFdXp7lz5+nss0amZd7FWXKTO9Wz5HZnltzuzAa9e3lxid7f+UHcPz8Tcvt4rHzM7WNnV3P72NnV3D52djW3j51dze1qZ8AlgZyULCjM19bwtqbPw1XVKijIT8u8i7NB7iZ3enfT2Y/cPnYOcrePnZPl4vfb1WPlY24fOwe5m85+5Paxc5C76exHblc7Ay5J+KSkMeazyS41puUzRxN5GXky8y7OBrmb3OndTefEZoPcTefEZoPc7WPnZLn4/Xb1WPmY28fOQe6mc2KzQe6mc2KzQe6mc2KzQe72sTPgkqgnJY0xdxhjejb+eLAxZqOkEmPMv40xJ0aZG2+MKTPGlEUitS3urwpXq29RQdPnRYV9VF29I+7Qycy7OBvkbnKndzed/cjtY+cgd/vYOVkufr9dPVY+5vaxc5C76exHbh87B7mbzn7kdrUz4JJYz5Q8w1r7buOP75T0XWvtAEnflDSltSFr7VRr7WBr7eBQqGuL+0vLyjVgwGHq37+v8vLyNGbMaM1fsCTu0MnMuzhLbnKnepbc7syS253ZoHcnw8Xvt6vHysfcPnZ2NbePnV3N7WNnV3P72NnV3K52hqRIhI/mHxksN8b9ecaYXGttvaTO1tpSSbLWvmGM6djWpQ0NDbriyhu0aOGjygmFNGPmHFVUvJGWeRdnyU3uVM+S251ZcrszG/TuR2bdpxOHHaeePXto88YyTbplsqbPeCyjc/t4rHzM7WNnV3P72NnV3D52djW3j51dze1qZ8AlJtr7EhhjLpN0lqQ7JA2TdIikv0k6RdLnrbXjYi3I7VDIGx8AAAAAAAC0o/o9VS3ffBL66J6fcB6qmS5X3J+xj5Ooz5S01v7BGLNG0k8lHd748w+X9LSkW1MfDwAAAAAAAEC2ifXybVlrl0pauv/txpgfSJre/pEAAAAAAAAAZLNYF7qJZlK7pQAAAAAAAADgjajPlDTGrG7tLkm92z8OAAAAAAAA0EZRrp2CzBLr5du9JY2UtHO/242kl1KSCAAAAAAAAEBWi3VScoGkbtba8v3vMMYsTUkiAFmrU26HNs9+XL+nHZMAANIhmUs98hwHAACA7Bbr6tsXR7nv/PaPAwAAAAAAACDbJXOhGwAAAAAAAABIWKyXbwMAAAAAAABuiESCToA48UxJAAAAAAAAAGkVyEnJoqICPbfkca1ZvVSvlb+gyy5t9a0rWzVyxHCtW7tM6yuKNfHaS7J+Nsjd5E7v7mlTp2hb+DWVr3o+oblk9yY7n8hsx44dtHTZ03p5xSKVlv1D199wpSSpX78ivfjPp1S++gXNfPgPysvLy6jcmTIb5G4fc7vYuWPHjnr5Xwv0Stmzeq38Bd30q58lGtvJ77eLxyrZ2SB3JzPbvfvBeuyxqVqz5p9avXqpjj3mqLhnk/lzUuJY0Tmzd9PZj9w+dg5yt4+dAVcYa1N7bcPcDoUtFuTn91Kf/F5aVb5W3bp11cqSxTrn3B+qsvLNuL5mKBRS5brlGnX6eQqHq7Xi5UUaO25CXPMuzpLbn9ySdMLQY1RTU6vp0+/RwEGnxDXTHnvT0bn51be7du2i2tqPlJubq2eff1wTr5mkyy7/kf4+b7GeeGKB7rn311qzplJ/mfZXSa1ffdvFx5gLx4rcbneWPv1rbNnSp3TV1TepZOWrGZ3bx2OV7blbu/r2Qw/ereLiEj00fbby8vLUpUtnffjhfz71c1r7G2pb/5xMJHd7zwa5m85+5Paxs6u5fezsam4XOtfvqWrtj1qvffT7/0vtiS7HdLl6WsY+TgJ5puT27W9rVflaSVJNTa3Wr39ThQX5cc8fPWSQNmzYrE2btqiurk5z587T2WeNzNpZcvuTW5KWF5fo/Z0fxP3z22tvujvX1n4kScrLy1VeXq6spBNPPE5PPfWMJOmvjzypM88ckXG5g54ltzuzQe9u/mssNy9PifwjpIvfb1ePlY+5Dzqom4YOPUYPTZ8tSaqrq2txQjKatv45mWxuH4+Vj51dze1jZ1dz+9jZ1dyudgZcEvh7SvbrV6SBX/8flaxcFfdMQWG+toa3NX0erqpWQZwnNV2cDXI3udO/u61c6xwKhfTSioXa9O8yvfB8sTZt/Lc++PA/amhokCRVVW1XQUHvjMsd9GyQu33M7Wpnae+vsbLSJaquWq3nn1+mlaX8OZuJu33M/fnP99O7776nB/9yl0pX/kMP3H+nunTpHNdssjhWdM7k3XT2I7ePnYPc7WNnSIpYPpp/ZLBAT0p27dpFc+dM09XX3KRdu2rinjOm5TNP430GiIuzQe4md/p3t5VrnSORiI4/9gx96YvHafDgr+tLXxrQpv0uPsZcO1btMRvkbh87S3t/jQ0eMkL9DhusIYMH6atf/VLcsy5+v109Vj7mzs3J0aBBR+iBBx7WkKNHqrb2I02ceGlcs8niWKVvNsjdPub2sXOQu+mc2GyQu33sDLgk6klJY8yrxpgbjDFfSOSLGmPGG2PKjDFlkUjtAX9Obm6uHp8zTbNnP6Wnn34mkS+vqnC1+hYVNH1eVNhH1dU7snY2yN3kTv/utnK184cf7tLy5Ss05OhBOqT7wcrJyZEkFRbmq7r67YzN7ePj08fcrnZu7sMP/6N/LntJI0cMj3vGxe+3q8fKx9zhqmqFw9VNz9598m8LNWjgEXHNJotjRedM3k1nP3L72DnI3T52BlwS65mSn5F0iKQXjTErjTFXGWMKYszIWjvVWjvYWjs4FOp6wJ8zbeoUVa5/S3ffMzXh0KVl5Row4DD1799XeXl5GjNmtOYvWJK1s+T2J3cyXOrcs2cPde9+kCSpU6eOOumkoXr99be0bNkKffvbp0mSvj/2HC1c+GxG5c6EWXK7Mxvk7r2/xg6WJHXq1EmnnHyCXn99Q8bn9vFY+Zh7x453FA5v0+GH7/0375NPHqrKyjfimk0Wx4rOmbybzn7k9rGzq7ld7Qy4JDfG/TuttddIusYYc4Kk8yS9aoyplDTbWpv4GUVJ3zh+iMaNPVer11SorHTvL6wbb7xDzyx+Ia75hoYGXXHlDVq08FHlhEKaMXOOKiri+8usi7Pk9ie3JD0y6z6dOOw49ezZQ5s3lmnSLZM1fcZjKd+bzs6983tp6rTJygnlKBQy+tvfFmrxMy9ofeWbmvHwH3TjTT/T6tcqNHPG3IzKnQmz5HZnNsjdffr01kMP3q2cnJBCoZCeeGK+Fi56LuNz+3isfM195VU36uGZf1CHDnnauGmLfvSjq+Oebeufk8nm9vFY+djZ1dw+dnY1t4+dXc3tamfAJSba+xIYY1611h653205kr4p6bvW2h/EWpDboZA3PgAgSeqU26HNsx/X72nHJACAdGj5jljx4y+QAABEV7+nKpk/arPWR3f+kL9GNNPl2ocy9nES65mSLU7FW2sbJC1u/AAAAAAAAACAhER9T0lr7fdau88YE/NZkgAAAAAAAACwv1gXuolmUrulAAAAAAAAAOCNqC/fNsasbu0uSb3bPw4AAAAAAACAdDHGXCXpR9r7tt5rJP1AUh9Jj0nqIelVSeOstXuMMR0lPSzpKEnvae81Zza3ZW+s95TsLWmkpJ3755X0UlsWAvAXF6sBAL/wLvMAAACZzRhTKOlySf/PWrvbGDNX0vcknS7pLmvtY8aY+yVdLOnPjf/daa0dYIz5nqTfSvpuW3bHOim5QFI3a235AUIvbctCAAAAAAAAICUi/LNoG+RK6myMqZPURVK1pJMlnd94/0xJN2vvScnRjT+WpCck/dEYY6y1CX/jY13o5mJrbXEr951/oNsBAAAAAAAAZD5rbZWkyZK2aO/JyA8lvSLpA2ttfeNPC0sqbPxxoaStjbP1jT//s23ZncyFbgAAAAAAAABkKGPMeGNMWbOP8fvd/xntffbjYZIKJHWVdNoBvtS+Z0KaKPclJNbLtwEAAAAAAAA4yFo7VdLUKD/lVEmbrLXvSJIx5m+Sjpd0iDEmt/HZkEWStjX+/LCkvpLCxphcSd0lvd+WbDxTEgAAAAAAAPDTFknHGmO6GGOMpFMkVUh6UdK5jT/nQknzGn/898bP1Xj/C215P0kpwJOSI0cM17q1y7S+olgTr70krfMuzga5m9zu5Paxc5C76exHbh87B7mbzn7knjZ1iraFX1P5qucTmmuP3RwrOmfybjr7kdvHzkHu9rGz72wkwkezj5jfL2tLtPeCNa9KWqO95wqnSvq5pKuNMW9p73tGPtg48qCkzzbefrWk69p6rEwbT2bGLbdDYYsFoVBIleuWa9Tp5ykcrtaKlxdp7LgJqqx8M66vmcy8i7PkJjedM283nf3I7WNnV3P72Nnl3CcMPUY1NbWaPv0eDRx0SlwzQef28Vj52NnV3D52djW3j51dze1C5/o9VQd6bz/v1d5+IZffbqbrL2Zm7OMkkGdKHj1kkDZs2KxNm7aorq5Oc+fO09lnjUzLvIuz5CZ3qmfJ7c4sud2ZJbc7s+ROf+7lxSV6f+cHcf/8TMjt47HysbOruX3s7GpuHzu7mtvVzoBLAjkpWVCYr63hbU2fh6uqVVCQn5Z5F2eD3E3u9O6msx+5fewc5G46+5Hbx85B7k42dzJc7exibh87B7mbzn7k9rFzkLt97Ay4JOpJSWPMYGPMi8aYR4wxfY0xzxpjPjTGlBpjBkWZa7rceCRSe6D7W9yWyMvIk5l3cTbI3eRO7246JzYb5G46JzYb5G46JzYb5G46JzYb5O5kcyfD1c4u5vaxc5C76ZzYbJC76ZzYbJC7fewMuCQ3xv1/knSTpEMkvSTpKmvtN40xpzTed9yBhppfbvxA7ylZFa5W36KCps+LCvuounpH3KGTmXdxNsjd5E7vbjr7kdvHzkHuprMfuX3sHOTuZHMnw9XOLub2sXOQu+nsR24fOwe528fOkBThBK4rYr18O89a+4y1drYka619Qnt/8LykTm1dWlpWrgEDDlP//n2Vl5enMWNGa/6CJWmZd3GW3ORO9Sy53Zkltzuz5HZnltzpz50MVzu7mNvHzq7m9rGzq7l97Oxqblc7Ay6J9UzJj40xIyR1l2SNMd+y1j5tjDlRUkNblzY0NOiKK2/QooWPKicU0oyZc1RR8UZa5l2cJTe5Uz1Lbndmye3OLLndmSV3+nM/Mus+nTjsOPXs2UObN5Zp0i2TNX3GYxmd28dj5WNnV3P72NnV3D52djW3q50Bl5ho70tgjPm6pN9Jiki6StJPJV0oqUrS/1lrX4q14EAv3wYAAAAAAEDb1e+pavnmk1Dtby7gPFQzXa9/OGMfJ1Ffvm2tfc1aO9Jae5q1dr219gpr7SHW2q9K+lKaMgIAAAAAAADIIrHeUzKaSe2WAgAAAAAAAIA3or6npDFmdWt3Serd/nEAAAAAAACANrKRoBMgTrEudNNb0khJO/e73UiK+X6SAAAAAAAAALC/WCclF0jqZq0t3/8OY8zSuBaEctoQa6/6SJsv8A0ATXZvW97m2c4FJ7RjEgAAAAAAIMU4KWmtvTjKfee3fxwAAAAAAAAA2S6ZC90AAAAAAAAAQMJivXwbAAAAAAAAcEPEBp0AceKZkgAAAAAAAADSKq0nJR944E5t2fKqXnnl2abbZs26TyUlz6ik5Bm9/vq/VFLyTFxfa+SI4Vq3dpnWVxRr4rWXJJTDxdkgd5PbndzJzBYVFei5JY9rzeqleq38BV12aatvKdvuuxOdPbRnR/X/XBf1Lex8wPm8PKPCPp31+f5d1f3gvISyRNP70I76XFEXFfbprNxco5Ejhqti7TK99cZL+s2tV6qooLO6donv4l4+Pj6D3E1nP3L72DnI3XT2I7ePnYPcTWc/cvvYOcjdPnYGXGGsTe3TWjt1+lzTgqFDj1ZNzUd68MG7dNRR32zxc++44wb95z+7dNtt90hq/erboVBIleuWa9Tp5ykcrtaKlxdp7LgJqqx8M2YeF2fJTe50dM7P76U++b20qnytunXrqpUli3XOuT/MyNydOoUUiew9SVhV/UmL+e+P/bE2bdysrl1z1dBgtX39C3F9DySpqnqHrv/NFM344+8k/ffq2wcflKsOHXL07nufqFvXXB3ULU9Llz6n0844T1u37t17wYWXqHZXWJu3fJSy71ey8/y6onO25vaxs6u5fezsam4fO7ua28fOrub2sbOruV3oXL+nysQVxjO1t3yf12830/VXf83Yx0lanylZXLxSO3d+0Or95557pubMmRfz6xw9ZJA2bNisTZu2qK6uTnPnztPZZ42MK4OLs+Qmd6pnJWn79re1qnytJKmmplbr17+pwoL8jMz98ccRRRrfJ+RA86PPPl2f7IkO+TCkAAAgAElEQVToQP/mMv8fL+h7P7pC51x4iSb97l41NBz4Hz/217VLrnbV1EmSamrrdeyxR2rDhs3auLF57hGK508/Hx+frub2sbOruX3s7GpuHzu7mtvHzq7m9rGzq7l97Oxqblc7Ay7JmPeUHDr0aO3Y8a42bNgc8+cWFOZra3hb0+fhqmoVxHnyxMXZIHeTO727g+zcXL9+RRr49f9RycpVKd+dzmO1YfMWLX7+n5p1/xQ9OfM+hUIhLVjyYlx7cnON6uv/e8qxV6/eClft3duxY0i7P3pPh3+xr95995N2zdze864cq2yYDXK3j7l97Bzkbjr7kdvHzkHuprMfuX3sHORuHztDUiTCR/OPDJYxV98eM2a05s6N/SxJSTKm5TNP430ZuouzQe4md3p3B9l5n65du2junGm6+pqbtGtXTcp3p/NYlZSVq2L9W/rexVdIkj755BP1+MwhkqTLf3GLqrbtUF19nap3vKNzLtz7vi0HdcvVrpr6qBk++SSi93buUU1NnQ45pIM+2r37gM/SbEvm9p535Vhlw2yQu33M7WPnIHfTObHZIHfTObHZIHfTObHZIHfTObHZIHf72BlwSdSTksaYbpImSjpHUpGkPZI2SLrfWjsjytx4SeMlKTf3M8rJ6RY1RE5OjkaPHqXjjz8jrtBV4Wr1LSpo+ryosI+qq3dk7WyQu8md3t1Bdpak3NxcPT5nmmbPfkpPPx3fRaeS3Z3OY2Wt1dmnnaqrfvqDFvfde/uv9n69Vt5Tsr7eKjfXqKFh718G3n57h4oKP703XLVdNmLVIS+kT/a0/i9SPj4+g9xNZz9y+9g5yN109iO3j52D3E1nP3L72DnI3T52BlwS6+Xbf5W0UdJISZMk3StpnKSTjDG3tTZkrZ1qrR1srR0c64SkJJ188lC98cYGVVVtjyt0aVm5Bgw4TP3791VeXp7GjBmt+QuWZO0sucmd6tl9pk2dosr1b+nue6YmNOfKsTp28EA9u7RY7zW+t+2H/9mlbdvj+8O99qMGHdRt75W8u3XNVUnJKg0YcJgGfOFzTXsXPfOs8vJCqquP/hR5Hx+frub2sbOruX3s7GpuHzu7mtvHzq7m9rGzq7l97Oxqblc7Ay6J9fLt/s2eEfl7Y0yptfZWY8wPJFVI+mUiyx5++A864YTj1LPnZ/TWWyX69a9/rxkz5mjMmLM1Z87f4/46DQ0NuuLKG7Ro4aPKCYU0Y+YcVVS8kbWz5CZ3qmcl6RvHD9G4sedq9ZoKlZXu/QPvxhvv0DOLY1+5Ot25ex3aUZ075Sgnx6iooKMuuujHuuyS78sYoyeemK/XX39T/fp2UShkZK10yrfGat5fH9AXDuuny/7vAo2/8npFbER5ubm6/uoJKsjvHTPnrpo69Tq0kz5X1EUNEasdb+/WFVfeoAXz/6q8vFzNnfu4dr63Re9/sCfm23b4+Ph0NbePnV3N7WNnV3P72NnV3D52djW3j51dze1jZ1dzu9oZcImJ9r4ExpiXJE201hYbY86SdKm1dmTjfa9ba78Ua0GnTp9r8xsf1EfiuyouAESze9vyNs/ue/k2AAAAAGSS+j1VLd98Eqq9+TzegLOZrjfPztjHSaxnSv5E0l+MMYdLWivph5JkjDlU0n0pzgYAAAAAAADEL8I5SVdEPSlprV0t6egD3P6OMWZXylIBAAAAAAAAyFqxLnQTzaR2SwEAAAAAAADAG1GfKWmMWd3aXZJiXxkCAAAAAAAAAPYT6z0le0saKWnnfrcbSS+lJBEAAAAAAACArBbrpOQCSd2steX732GMWRrPggauoA0gYFxBGwAAAAA8YSNBJ0CcYl3o5uIo953f/nEAAAAAAAAAZLtkLnQDAAAAAAAAAAnjpCQAAAAAAACAtOKkJAAAAAAAAIC0CuykZPfuB+uxx6ZqzZp/avXqpTr2mKMSmh85YrjWrV2m9RXFmnjtJVk/G+RucruTO5nZaVOnaFv4NZWvej6hufbY7eKxKioq0HNLHtea1Uv1WvkLuuzSVt+Ct90zJzvv27EKcjbI3T7m9rFzkLvp7EduHzsHuZvOfuT2sXOQu33s7L2I5aP5RwYz1qY2YF6HwgMueOjBu1VcXKKHps9WXl6eunTprA8//M+nfk5ryUKhkCrXLdeo089TOFytFS8v0thxE1RZ+WbMPC7Okpvc6eh8wtBjVFNTq+nT79HAQafENZMJuYPanZ/fS33ye2lV+Vp169ZVK0sW65xzf5jVnX3M7WNnV3P72NnV3D52djW3j51dze1jZ1dz+9jZ1dwudK7fU2XiCuOZ2uu/k9ln4tKs628ez9jHSSDPlDzooG4aOvQYPTR9tiSprq6uxQnJaI4eMkgbNmzWpk1bVFdXp7lz5+nss0Zm7Sy5yZ3qWUlaXlyi93d+EPfPz5TcQe3evv1trSpfK0mqqanV+vVvqrAgP+V7k5338VjR2Y/cPnZ2NbePnV3N7WNnV3P72NnV3D52djW3q50Bl0Q9KWmM6W6MucMYs94Y817jR2XjbYe0dennP99P7777nh78y10qXfkPPXD/nerSpXPc8wWF+doa3tb0ebiqWgVxngxwcTbI3eRO7+4gOyfDx2PVXL9+RRr49f9RycpVadnr6mPMxdw+dg5yN539yO1j5yB309mP3D52DnI3nf3I7WpnwCWxnik5V9JOScOttZ+11n5W0kmNtz3e2pAxZrwxpswYUxaJ1La4PzcnR4MGHaEHHnhYQ44eqdrajzRx4qVxhzam5TNP430ZuouzQe4md3p3B9k5GT4eq326du2iuXOm6eprbtKuXTVp2evqY8zF3D52DnI3nRObDXI3nRObDXI3nRObDXI3nRObDXI3nRObDXK3j50Bl8Q6KdnfWvtba+32fTdYa7dba38r6XOtDVlrp1prB1trB4dCXVvcH66qVjhcrZWle59V9OTfFmrQwCPiDl0VrlbfooKmz4sK+6i6ekfWzga5m9zp3R1k52T4eKwkKTc3V4/PmabZs5/S008/k5bMyc77eKzo7EduHzsHuZvOfuT2sXOQu+nsR24fOwe528fOgEtinZT8tzFmojGm974bjDG9jTE/l7S1rUt37HhH4fA2HX74FyRJJ588VJWVb8Q9X1pWrgEDDlP//n2Vl5enMWNGa/6CJVk7S25yp3o2WT4eK2nvFcsr17+lu++ZGvdMe+x19THmYm4fO7ua28fOrub2sbOruX3s7GpuHzu7mtvHzq7mdrUzJBuJ8NHsI5Plxrj/u5Kuk/TPxhOTVtIOSX+XNCaZxVdedaMenvkHdeiQp42btuhHP7o67tmGhgZdceUNWrTwUeWEQpoxc44qKuI7qeniLLnJnepZSXpk1n06cdhx6tmzhzZvLNOkWyZr+ozHMj53ULu/cfwQjRt7rlavqVBZ6d6/INx44x16ZvELKd2b7LyPx4rOfuT2sbOruX3s7GpuHzu7mtvHzq7m9rGzq7ld7Qy4xMR6XwJjzJclFUlaYa2taXb7KGvt4lgL8joUtvmND3jHBAAAAAAAgJbq91S1fPNJqOYX53A6qZlutz+ZsY+TWFffvlzSPEmXSlprjBnd7O7bUhkMAAAAAAAAQHaK9fLt/5N0lLW2xhjTX9ITxpj+1tp7JGXsmVYAAAAAAAAAmSvWScmcfS/ZttZuNsYM194Tk/3ESUkAAAAAAABkkgiv3nZFrKtvbzfGDNz3SeMJyjMl9ZR0RCqDAQAAAAAAAMhOsU5KXiBpe/MbrLX11toLJA1LWSoAAAAAAAAAWSvqy7etteEo9/2r/eMAAAAAAAAAyHaxnikJAAAAAAAAAO0q1oVuAAAAAAAAADdwoRtn8ExJAAAAAAAAAGkVyEnJww//gspKlzR9vPfuel1+2Y8S+hojRwzXurXLtL6iWBOvvSTrZ4PcTW53cvvYOcjdbZ0tKirQc0se15rVS/Va+Qu67NKLE9qbzO4gZ4PcTWc/cvvYOcjddPYjt4+dg9xNZz9y+9g5yN0+dgZcYaxN7dNa8zoURl0QCoX0782v6BtDz9SWLVWfuq+1wVAopMp1yzXq9PMUDldrxcuLNHbcBFVWvhkzj4uz5CY3nTNvdzKz+fm91Ce/l1aVr1W3bl21smSxzjn3h1nd2dXcPnZ2NbePnV3N7WNnV3P72NnV3D52djW3j51dze1C5/o9VSauMJ6pufbbvH67mW53PpWxj5PAX7598slDtXHjv1uckIzm6CGDtGHDZm3atEV1dXWaO3eezj5rZNbOkpvcqZ4ld3pnt29/W6vK10qSampqtX79myosyI9rNsjcPh4rHzu7mtvHzq7m9rGzq7l97Oxqbh87u5rbx86u5na1M+CSwE9KfnfMaM2Z83RCMwWF+doa3tb0ebiqWgVx/g+9i7NB7iZ3enfT2Z/c+/TrV6SBX/8flaxcFfeMq51dzO1j5yB309mP3D52DnI3nf3I7WPnIHfT2Y/crnaGJBvho/lHBmvzSUljzDPJLs/Ly9OZZ47QE08uSHR3i9vifRm6i7NB7iZ3enfTObHZIHcnm1uSunbtorlzpunqa27Srl01cc+52tnF3D52DnI3nRObDXI3nRObDXI3nRObDXI3nRObDXI3nRObDXK3j50Bl+RGu9MYc2Rrd0kaGGVuvKTxkhTK6a5QqOsBf96oUSdp1ao1evvtd+NL26gqXK2+RQVNnxcV9lF19Y6snQ1yN7nTu5vO/uTOzc3V43Omafbsp/T004n9G4+rnV3M7WPnIHfT2Y/cPnYOcjed/cjtY+cgd9PZj9yudgZcEuuZkqWSJkuast/HZEmHtDZkrZ1qrR1srR3c2glJSfrud7+V8Eu3Jam0rFwDBhym/v37Ki8vT2PGjNb8BUuydpbc5E71LLnTn3va1CmqXP+W7r5natwzQef28Vj52NnV3D52djW3j51dze1jZ1dz+9jZ1dw+dnY1t6udAZdEfaakpEpJP7bWtrg8lDFmazKLO3fupFNPGaYJE36e8GxDQ4OuuPIGLVr4qHJCIc2YOUcVFW9k7Sy5yZ3qWXKnd/Ybxw/RuLHnavWaCpWV7v3LxY033qFnFr+Q0bl9PFY+dnY1t4+dXc3tY2dXc/vY2dXcPnZ2NbePnV3N7WpnwCUm2vsSGGPOlbTGWvv6Ae77lrU25tMc8zoUtvmND3jHBAAAAAAAgJbq91S1fPNJqOaa0ZxOaqbb5HkZ+ziJ+kxJa+0TxpgvG2NOkVRirW1+JYaPUxsNAAAAAAAASECEc5KuiPqeksaYyyXNk3SZpLXGmNHN7r4tlcEAAAAAAAAAZKdY7yn5f5KOstbWGGP6S3rCGNPfWnuP9l6BGwAAAAAAAAASEuukZM6+l2xbazcbY4Zr74nJfuKkJAAAAAAAAIA2iPrybUnbjTED933SeILyTEk9JR2RymAAAAAAAAAAslOsZ0peIKm++Q3W2npJFxhjHohnAW8vCgBtkxOK9e9GrWuIRNoxCQAAAAC4wXKhG2fEuvp2OMp9/2r/OAAAAAAAAACyXdufhgMAAAAAAAAAbcBJSQAAAAAAAABpxUlJAAAAAAAAAGkVyEnJjh076uV/LdArZc/qtfIXdNOvfpbw1xg5YrjWrV2m9RXFmnjtJVk/G+RucruT28fOQe5O5+wDD0zW1i2r9OorzzXddsMNV2njhlKtLFmslSWLNWrkSRmXO1N209mP3D52DnJ3MrPTpk7RtvBrKl/1fEJz7bGbY0XnTN5NZz9y+9g5yN0+dvZexPLR/CODGWtTGzC3Q+EBF3Tt2kW1tR8pNzdXy5Y+pauuvkklK1+N62uGQiFVrluuUaefp3C4WiteXqSx4yaosvLNrJwlN7npnHm70zHb/OrbQ4ceo5qaWj304N068qhTJe09KVlb85HuuvuBFjtau/o2x4rO2Zrbx84u5z6h8fe06dPv0cBBp8Q1E3RuH4+Vj51dze1jZ1dz+9jZ1dwudK7fU2XiCuOZXZefmdln4tLsoHsXZOzjJLCXb9fWfiRJysvLVW5enhI5OXr0kEHasGGzNm3aorq6Os2dO09nnzUya2fJTe5Uz5I782eLi0u0c+cHcX39TMqdCbvp7EduHzu7nHt5cYneb+Pvaa52djG3j51dze1jZ1dz+9jZ1dyudgZcEthJyVAopLLSJaquWq3nn1+mlaWr4p4tKMzX1vC2ps/DVdUqKMjP2tkgd5M7vbvp7EfuZDs395OfXqiy0iV64IHJOuSQ7indzbHyo3OQu+nsT+5kuNrZxdw+dg5yN539yO1j5yB3+9gZcEnUk5LGmIONMbcbY2YZY87f774/JbM4Eolo8JAR6nfYYA0ZPEhf/eqX4p41puUzT+N9pqWLs0HuJnd6d9M5sdkgdwfZeZ+pU2fpK18ZqiFHj9T27W/rt7+9MaW7OVaJzQa528fcPnYOcnd7/T7WFq52djG3j52D3E3nxGaD3E3nxGaD3O1jZ8AlsZ4pOV2SkfSkpO8ZY540xnRsvO/Y1oaMMeONMWXGmLJIpDbqgg8//I/+uewljRwxPO7QVeFq9S0qaPq8qLCPqqt3ZO1skLvJnd7ddPYjd7Kd93n77XcViURkrdVDDz2qIYMHZnRuF7/fPnYOcjed/cmdDFc7u5jbx85B7qazH7l97Bzkbh87Ay6JdVLyC9ba66y1T1trz5b0qqQXjDGfjTZkrZ1qrR1srR0cCnVtcX/Pnj3UvfvBkqROnTrplJNP0Ouvb4g7dGlZuQYMOEz9+/dVXl6exowZrfkLlmTtLLnJnepZcrsz21x+fq+mH48+e5TWrXs9o3O7+P32sbOruX3s7HLuZLja2cXcPnZ2NbePnV3N7WNnV3O72hmSIhE+mn9ksNwY93c0xoSstRFJstb+xhgTlrRMUre2Lu3Tp7ceevBu5eSEFAqF9MQT87Vw0XNxzzc0NOiKK2/QooWPKicU0oyZc1RR8UbWzpKb3KmeJXfmzz788B817IRj1bNnD214a6Vu/fUUDRt2nL7+ta/KWqt//zusSy69LuNyZ8JuOvuR28fOLud+ZNZ9OnHYcerZs4c2byzTpFsma/qMxzI6t4/HysfOrub2sbOruX3s7GpuVzsDLjHR3pfAGPM7SUustc/td/soSX+w1n4x1oLcDoW88QEAtEFOqO3XImvI8H8RAwAAAJCc+j1VLd98Etp16emch2rmoD8uytjHSdT/47XWTpQUNsacYozp1uz2xZIuT3U4AAAAAAAAANkn1tW3L5M0T9JlktYaY0Y3u/s3qQwGAAAAAAAAIDvFek/J8ZKOstbWGGP6S3rCGNPfWnuP9l6VGwAAAAAAAMgMEV697YpYJyVzrLU1kmSt3WyMGa69Jyb7iZOSAAAAAAAAANog1knJ7caYgdbacklqfMbkmZIeknREytMBgMeSuVhNXk6s396jq2uoT2oeAAAAAIBoYl3a9QJJ25vfYK2tt9ZeIGlYylIBAAAAAAAAyFpRn0pjrQ1Hue9f7R8HAAAAAAAAQLZL7vV9AAAAAADg/7N393FWl3X+x9+fwwwqYCoiDjNDjMW2bmVCguYdUpSgibRqtBZo5cavVNJt06z050+3XEspqWwVKiANBN2EVZFQ1ASTgdEZuZkZQYSFGQbvwHTIYm6u3x/cNArMOWfOnHOd61yv5+MxD5kz85nP+z1nRLj8nnMA5Ate6CYYyR6+DQAAAAAAAADdikNJAAAAAAAAADnl5VCyvLxUjy++X6tXPaUXap7Q5CsvS/trjD57pNaueVr1tct07TVXFPysz93kDid3jJ197g6lc3n5AC1adJ+qq5fouece0xVXfOVdH7/66kl6553/1dFHH5VXuQth1ufuGHPH2NnnbjrHkTvGzj530zmO3DF29rk7xs5AKMy57D7Wvqhn2X4LSkr6a0BJf1XXrFGfPr21onKRLrzoq6qrW5/S10wkEqpbu1Rjzr1YDQ1NWv7sQk2YeHlK8yHOkpvcdM6/3fneubjH358yuKSkv0pK+qtmz++5f/rTwxo/fpLq69ervHyAfvnLH+kf//GDOu208/TGGzskSS1trV5yF9IsucOZJXc4s+QOZ5bc4cySO5xZcoczm6vdrbsaLaUwkXn762N4UskODr9rUd7+nHi5UnLbtldVXbNGktTcvFP19etVVlqS8vzJw4dqw4ZN2rhxs1paWjRv3gKdP3Z0wc6Sm9zZniV3OLNdmd+27VXVvOv33JdUWnqsJOnHP/6/+v73/1Op/A8q7qs4OoeaO8bOoeaOsXOouWPsHGruGDuHmjvGzqHmDrUzEJJODyXNrMTM/svM7jSzo83s/5nZajObZ2YDuiPAoEHlGnLiR1W5ojrlmdKyEm1p2Lrv/YbGJpWmeKgZ4qzP3eTO7W46x5HbZ+f3v79cQ4Z8RCtX1uizn/20tm7dptWr6/I+d4izPnfHmDvGzj530zmO3DF29rmbznHkjrGzz90xdobknOOtw1s+S3al5ExJtZK2SHpS0juSPitpqaS7DjZkZpPMrMrMqtrbdx70i/fu3Uvz5k7Xt759o95+uznl0Gb7X3ma6jc6xFmfu8md2910Tm/W5+4QO/fu3Utz5tyla665Wa2trfrOd67UzTf/JOt7u2M+xFmfu2PMHWNnn7vpnN6sz910Tm/W5246pzfrczed05v1uTvGzkBIkh1KHuuc+7lz7lZJRzrnfuSc2+yc+7mkQQcbcs5Nc84Nc84NSyR6H/BzioqKdP/c6Zoz50HNn/9oWqEbG5o0sLx03/vlZQPU1PRKwc763E3u3O6mcxy5fXQuKirSnDl3ae7c+VqwYJE+8IFBGjRooFaseFT19ctUVjZAzz77iI499pi8yh3yrM/dMeaOsbPP3XSOI3eMnX3upnMcuWPs7HN3jJ2BkCQ7lOz48d++52M9Mlk8fdoU1dW/pDumTkt7dmVVjQYPPk4VFQNVXFys8ePH6aGHFxfsLLnJne1Zcocz29X5u+76sV588SX97Ge/kiStXfuiBg06Sccff4aOP/4MNTY26dRTP6tXXnktr3KHPEvucGbJHc4sucOZJXc4s+QOZ5bc4cz63g2EoijJxxeYWR/nXLNz7vq9N5rZYEkvdnXp6acN18QJF2nV6lpVrdz9L9YNN9yqRxc9kdJ8W1ubrrr6ei18ZLZ6JBKaOWuuamvXFewsucmd7VlyhzPblfnTThumL33pQq1eXaflyxdKkm688Tb94Q9PprzTR+7QZ8kdziy5w5kldziz5A5nltzhzJI7nFnfu4FQWLLnJTCz4yWVSap0zjV3uH2Mc25RsgVFPct44gMAyLHiHsn+n1PnWtpauykJAAAAgGxo3dW4/5NPQm997WzOoTp43/TFeftzkuzVtydLWiBpsqQ1Zjauw4dvyWYwAAAAAAAAAIUp2aU0kySd5JxrNrMKSQ+YWYVzbqqkvD1pBQAAAAAAAJC/kh1K9tj7kG3n3CYzG6ndB5ODxKEkAAAAAAAAgC5I9urb28xsyN539hxQniepn6QTshkMAAAAAAAAQGFKdqXkJZLe9WoHzrlWSZeY2d2pLEhY1y+obE/yIjwAgAPL9IVqjj7s8C7PvvHO2xntBgAAAIAua+csKRSdHko65xo6+dgz3R8HAAAAAAAAQKFL9vBtAAAAAAAAAOhWHEoCAAAAAAAAyCkOJQEAAAAAAADkVE4PJafdfbsattSo+vnH99121FFHauHC2Vq7dqkWLpytI488IqWvNfrskVq75mnV1y7TtddckVaOEGd97o4xd3l5qR5ffL9Wr3pKL9Q8oclXXpaz3dxXceQOqfP7jjhcv/rtVC1buVBLVzyiYcOH6MijjtC8+b/Ws88v0rz5v9YRR74v73Lnw6zP3THmjrGzz910jiN3jJ197g6x8/RpU7S14QXVVC9Je2cmezPd7TO3r/vK599xMp0Pcdb3biAE5rL8Ctc9Dynft+CMM05Rc/NOzfjNHRr68U9Lkv7zlu9r+/Y3ddvtd+qab1+ho446Qt/7/i2SDv7q24lEQnVrl2rMuReroaFJy59dqAkTL1dd3fqkeUKcJXfuc5eU9NeAkv6qrlmjPn16a0XlIl140VfzOnes91WIuUPo3PHVt3/2X7eq8tkq/e63D6i4uFiH9TpUV/37/9GbO/6sn/90uib/29d0xJHv0w9unCLp4K++HeL3O4T7itzxdg41d4ydQ80dY+dQc/vsfObev+PNmKohQ0eltK+7cmey21dun/eVr7/jZDof4myudrfuarSUwkTmz1/5NC+/3cERMx7P25+TnF4puWxZpXbsePNdt40de7buufd+SdI9996v888fnfTrnDx8qDZs2KSNGzerpaVF8+Yt0Pljk8+FOkvu3Ofetu1VVdeskSQ1N+9Uff16lZWW5HXuWO+rEHOH1LnP4b116unD9LvfPiBJamlp0Vt/fltjzh2lubPnS5Lmzp6vcz776bzKnQ+z5A5nltzhzJI7nFlyhzOb6fzSZZXa/p6/4+Vib6a7feX2eV/5+jtOpvMhzvreDYQi7UNJM+vfnQH69++nbdtelbT7N8ljjjk66UxpWYm2NGzd935DY5NKU/zNNMRZn7tjzd3RoEHlGnLiR1W5ojrru7mv4sgdUudBFQP1xuvbNfWX/6nHl/5eP/n5f6hXr8N0zDFH69VXXpMkvfrKa+p3TN+8yp0Psz53x5g7xs4+d9M5jtwxdva5O9TOmfC1N1OFcF/l8u84mc6HOOt7NxCKTg8lzazve96OlrTCzI4ys+R/A80Ss/2vPE31YeghzvrcHWvuvXr37qV5c6frW9++UW+/3Zz13dxX6c363B1L56KiIp1w4oc169dz9OkzL9Bfdr6jyf/2tZSzZrI79Fmfu2PMHWNnn7vpnN6sz910Tm/W5+5QO2fC195MhX5f5frvOJnOhzjrezcQimRXSr4u6bkOb1WSyiQ9v+fXB2Rmk8ysysyq2tt2dqdQB78AACAASURBVLrg1VdfV0nJ7osvS0r667XX3kgaurGhSQPLS/e9X142QE1NrySdC3XW5+5Yc0u7D2Punztdc+Y8qPnzH015LtTO5A5jNte7tzZu09bGV/T8c6skSQ8t+INOOPHDeu21N9T/2GMkSf2PPUavv7Y9r3Lnw6zP3THmjrGzz910jiN3jJ197g61cyZ87c1UyPeVj7/jZDof4qzv3UAokh1KXivpRUnnO+eOc84dJ6lhz68/cLAh59w059ww59ywRI/enS546OHHNHHC5yVJEyd8Xg89tDhp6JVVNRo8+DhVVAxUcXGxxo8fp4ceTj4X6iy5c59b2v2KfHX1L+mOqdPSmgu1M7nDmM317tdefV1bG5v0wcHHSZLOPOtUrXtxg/7w6BP6whc/J0n6whc/p0ULk79yZYjf75Duq9hzx9g51Nwxdg41d4ydQ83ts3MmfO3NVMj3lY+/42Q6H+Ks793Ra3e8dXzLY0WdfdA5d7uZ3Sfpp2a2RdKNkrrc6J7f/kIjRpyqfv366uUNK3Xzf0zRbbf9QrNn36Uvf+VftGVLoy6++OtJv05bW5uuuvp6LXxktnokEpo5a65qa9ellCHEWXLnPvfppw3XxAkXadXqWlWt3P2b/w033KpHFz2Rt7ljva9CzB1a5+9d+wP98le3qWdxsf530xZddcX3lLCEps/6qb448UI1NjTpXy+9Ou9y+54ldziz5A5nltzhzJI7nNlM5++9506dtefveJtertJNN9+uGTPvy0nuTHb7yu3zvvL1d5xM50Oc9b0bCIWl8ZwGYyV9X1KFcy7lZ1jteUh5lw8x23nOBADw4ujDDu/y7BvvvN2NSQAAAAAcSOuuxv2ffBL686WjOEzq4IhZS/L25yTpq2+b2fFmNkrSk5I+KenTe24fk+VsAAAAAAAAAApQslff/qakBZImS1oj6Wzn3Jo9H74ly9kAAAAAAAAAFKBOn1NS0tckneScazazCkkPmFmFc26qpLy9/BMAAAAAAAARavcdAKlKdijZwznXLEnOuU1mNlK7DyYHiUNJAAAAAAAAAF2Q7Dklt5nZkL3v7DmgPE9SP0knZDMYAAAAAAAAgMKU7ErJSyS1drzBOdcq6RIzuzuVBbyCNgCEh1fQBgAAAABkU6eHks65hk4+9kz3xwEAAAAAAABQ6JJdKQkAAAAAAAAEwbXziN1QJHtOSQAAAAAAAADoVhxKAgAAAAAAAMgpb4eSo88eqbVrnlZ97TJde80VOZ0PcdbnbnKHkzvGzj530zmO3DF29rmbznHkjrFzJvPTp03R1oYXVFO9JO2dmezNdNbn7hhzx9jZ52465y53eXmpHl98v1avekov1DyhyVdelpO9mc763g2EwFyWXx27qGfZfgsSiYTq1i7VmHMvVkNDk5Y/u1ATJl6uurr1KX3NTOZDnCU3uemcf7vpHEfuGDuHmjvGzqHmjrFzpvNnnnGKmpt3asaMqRoydFRK+7pjL/dVOLlj7Bxq7hg7ZzpfUtJfA0r6q7pmjfr06a0VlYt04UVfLejOqc627mq0lMJE5s0vfYonlezgyN89kbc/J16ulDx5+FBt2LBJGzduVktLi+bNW6Dzx47OyXyIs+Qmd7ZnyR3OLLnDmSV3OLPkDmc21txLl1Vq+443U97VXXu5r8LJHWPnUHPH2DnT+W3bXlV1zRpJUnPzTtXXr1dZaUnW94Z6XwEh8XIoWVpWoi0NW/e939DYpNIUf1PJdD7EWZ+7yZ3b3XSOI3eMnX3upnMcuWPs7HM3nXObOxOhdiY3nfN5N539/R44aFC5hpz4UVWuqM763lDvK0hqd7x1fMtjnR5KmtmYDr8+wsx+bWarzGy2mR3b1aVm+185ms7DyDOZD3HW525y53Y3ndOb9bmbzunN+txN5/Rmfe6mc3qzPnfTOb3Z7pjvqlA7kzt3sz53x5g7xs7dMS9JvXv30ry50/Wtb9+ot99uzvreUO8rICTJrpS8pcOvp0hqkjRW0kpJdx9syMwmmVmVmVW1t+/c7+ONDU0aWF667/3ysgFqanol5dCZzIc463M3uXO7m85x5I6xs8/ddI4jd4ydfe6mc25zZyLUzuSmcz7vpnPufw8sKirS/XOna86cBzV//qM52RvqfQWEJJ2Hbw9zzl3vnPtf59xPJVUc7BOdc9Occ8Occ8MSid77fXxlVY0GDz5OFRUDVVxcrPHjx+mhhxenHCST+RBnyU3ubM+SO5xZcoczS+5wZskdzmysuTMRamdy0zmfd9M5978HTp82RXX1L+mOqdNSnsl0b6j3FRCSoiQf729m35Jkkt5nZub+fs1wl5+Psq2tTVddfb0WPjJbPRIJzZw1V7W163IyH+Isucmd7VlyhzNL7nBmyR3OLLnDmY0197333KmzRpyqfv36atPLVbrp5ts1Y+Z9Wd/LfRVO7hg7h5o7xs6Zzp9+2nBNnHCRVq2uVdXK3QdzN9xwqx5d9ERW94Z6XwEhsc6el8DMbnzPTb90zr1mZiWSfuycuyTZgqKeZTzxAQAAAAAAQDdq3dW4/5NPQm9+4ZOcQ3Vw5Nwn8/bnpNMrJZ1zN5nZ8ZLKJFU655r33L7NzGbnIiAAAAAAAACAwpLs1bcnS1ogabKkNWY2rsOHbznwFAAAAAAAAAAcXLLnlJwk6STnXLOZVUh6wMwqnHNTtft5JgEAAAAAAAAgLckOJXt0eMj2JjMbqd0Hk4PEoSQAAAAAAACALkh2KLnNzIY452okac8Vk+dJ+o2kE7KeDgAAAAAAAEiRa+d1bkLR6XNKSrpE0raONzjnWve86vaIrKUCAAAAAAAAULCSvfp2Qycfe6b74wAAAAAAAAAodMmulAQAAAAAAACAbsWhJAAAAAAAAICc4lASAAAAAAAAQE55O5QcffZIrV3ztOprl+naa67I6XyIsz53kzuc3JnMTp82RVsbXlBN9ZK05rpjN/dVHJ0zmT/kkEP07DMP67mqx/RCzRO68f/+e072Zjrrc3eMuWPs7HM3nePIHWNnn7vpHEfuGDv73B1j5+i18/autzxmzmX3pdKLepbttyCRSKhu7VKNOfdiNTQ0afmzCzVh4uWqq1uf0tfMZD7EWXKTOxedzzzjFDU379SMGVM1ZOiolGbyIXeI3+8YO3fHfO/evbRz519UVFSkp596UP/2rRtVueL5rO7lvgond4ydQ80dY+dQc8fYOdTcMXYONXeMnUPNHULn1l2NllKYyOy4cGR2D7oCc9R/P5W3PydpXylpZkdnuvTk4UO1YcMmbdy4WS0tLZo3b4HOHzs6J/MhzpKb3NmelaSlyyq1fcebKX9+vuQO8fsdY+fumN+58y+SpOLiIhUVFyvV/6kWamdy0zmfd9M5jtwxdg41d4ydQ80dY+dQc4faGQhJp4eSZnarmfXb8+thZvaypEoz+18zO6urS0vLSrSlYeu+9xsam1RaWpKT+RBnfe4md253++ycCe4rOudiPpFIqGrlYjU1rtKSJU9rxcrqrO/lvsrtbjrHkTvGzj530zmO3DF29rmbznHkDrUzEJJkV0p+1jn3+p5f3ybpC865wZI+I2nKwYbMbJKZVZlZVXv7zgN9fL/b0nkYeSbzIc763E3u3O722TkT3Fe5m/W522duSWpvb9ew4Wdr0HHDNHzYUH3kI/+Y9b3cV7ndTef0Zn3upnN6sz530zm9WZ+76ZzerM/ddE5v1ufuGDsDISlK8vFiMytyzrVKOsw5t1KSnHPrzOyQgw0556ZJmiYd+DklGxuaNLC8dN/75WUD1NT0SsqhM5kPcdbnbnLndrfPzpngvqJzLub3+vOf39Ifn/7T7if/XvtiVvdyX+V2N53jyB1jZ5+76RxH7hg7+9xN5zhyh9oZkmvnADcUya6UvFPSQjP7lKRFZnaHmY0ws5sk1XR16cqqGg0efJwqKgaquLhY48eP00MPL87JfIiz5CZ3tmczxX1F52zP9+vXV0cc8T5J0qGHHqpRnzpTL764Iet7ua/CyR1j51Bzx9g51Nwxdg41d4ydQ80dY+dQc4faGQhJp1dKOud+bmarJX1D0of2fP6HJM2X9IOuLm1ra9NVV1+vhY/MVo9EQjNnzVVt7bqczIc4S25yZ3tWku69506dNeJU9evXV5tertJNN9+uGTPvy/vcIX6/Y+yc6fyAAcfqN7++Qz16JJRIJPTAAw/pkYWPZ30v91U4uWPsHGruGDuHmjvGzqHmjrFzqLlj7Bxq7lA7AyGxZM9LYGbHSyqTVOmca+5w+xjn3KJkCw708G0AAAAAAAB0Xeuuxv2ffBLa/s9ncQ7VQd8H/5i3PyfJXn37m5IWSJosaY2Zjevw4VuyGQwAAAAAAABAYUr2Qjdfk3SSc67ZzCokPWBmFc65qZLy9qQVAAAAAAAAEWr3HQCpSnYo2WPvQ7adc5vMbKR2H0wOEoeSAAAAAAAAALog2atvbzOzIXvf2XNAeZ6kfpJOyGYwAAAAAAAAAIUp2aHkJZK2dbzBOdfqnLtE0oispQIAAAAAAABQsDp9+LZzrqGTjz3T/XEAAAAAAAAAFLpkV0oCAAAAAAAAQLdK9kI3AAAAAAAAQBAcr74dDK6UBAAAAAAAAJBT3g4lp0+boq0NL6imekmX5kefPVJr1zyt+tpluvaaK4KYjbGzz90x5o6xs8/ddA4jd3l5qR5ffL9Wr3pKL9Q8oclXXpazzJnOx3Zf+Zz1uTvG3DF29rmbznHkjrGzz910jiN3qJ2BUJhzLqsLinqWHXDBmWecoubmnZoxY6qGDB2V1tdMJBKqW7tUY869WA0NTVr+7EJNmHi56urW5+2sFGdncocxS+5wZsmd/mxJSX8NKOmv6po16tOnt1ZULtKFF321oDvHmDvGzqHmjrFzqLlj7Bxq7hg7h5o7xs6h5g6hc+uuRkspTGTeGHtWdg+6AnP0Q3/M258Tb1dKLl1Wqe073uzS7MnDh2rDhk3auHGzWlpaNG/eAp0/dnRez0pxdiZ3GLPkDmeW3OnPbtv2qqpr1kiSmpt3qr5+vcpKS7K+N9P5GO8rOseRO8bOoeaOsXOouWPsHGruGDuHmjvUzkBIgnxOydKyEm1p2Lrv/YbGJpWm+BdMX7OZCrUzucOY9bk7xtwxdva9e69Bg8o15MSPqnJFdU72cl+FMetzd4y5Y+zsczed48gdY2efu+kcR+5QO0NSO2/vestjnR5KmtnzZna9mX0wV4FSYbb/laepPgzd12ymQu1M7jBmfe6OMXeMnX3vlqTevXtp3tzp+ta3b9TbbzfnZC/3VRizPnfHmDvGzj530zm9WZ+76ZzerM/ddE5v1ufuGDsDIUl2peRRko6U9KSZrTCzfzOz0mRf1MwmmVmVmVW1t+/slqAdNTY0aWD532OUlw1QU9MreT2bqVA7kzuMWZ+7Y8wdY2ffu4uKinT/3OmaM+dBzZ//aE4yZzof431F5zhyx9jZ5246x5E7xs4+d9M5jtyhdgZCkuxQcodz7tvOufdL+ndJ/yDpeTN70swmHWzIOTfNOTfMOTcskejdnXklSSurajR48HGqqBio4uJijR8/Tg89vDivZzMVamdyhzFL7nBmyd213dOnTVFd/Uu6Y+q0lGe6Yy/3VRiz5A5nltzhzJI7nFlyhzNL7nBmfe8GQlGU6ic655ZKWmpmkyV9RtIXJKX3t7sO7r3nTp014lT169dXm16u0k03364ZM+9LabatrU1XXX29Fj4yWz0SCc2cNVe1tevyelaKszO5w5gldziz5E5/9vTThmvihIu0anWtqlbu/sPcDTfcqkcXPZHVvZnOx3hf0TmO3DF2DjV3jJ1DzR1j51Bzx9g51NyhdgZCYp09L4GZ3eec+5dMFhT1LOOJDwAAAAAAALpR667G/Z98Enr9nLM4h+qg36N/zNufk04fvu2c+xczO97MRplZn44fM7Mx2Y0GAAAAAAAAoBAle/XtyZIWSJosaY2Zjevw4VuyGQwAAAAAAABAYUr2nJKTJJ3knGs2swpJD5hZhXNuqqS8vfwTAAAAAAAAQP5KdijZwznXLEnOuU1mNlK7DyYHiUNJAAAAAAAAAF3Q6cO3JW0zsyF739lzQHmepH6STshmMAAAAAAAAACFKdmVkpdIau14g3OuVdIlZnZ31lIBAAAAAAAA6Wr3HQCp6vRQ0jnX0MnHnun+OAAAAAAAAAAKXbKHbwMAAAAAAABAt+JQEgAAAAAAAEBOcSgJAAAAAAAAIKe8HUpOnzZFWxteUE31ki7Njz57pNaueVr1tct07TVXFPysz93kDid3jJ197qZz4ecuLy/V44vv1+pVT+mFmic0+crL0tqbyW6fsz530zmO3DF29rmbznHkjrGzz910jiN3qJ1j59p56/iWz8w5l9UFRT3LDrjgzDNOUXPzTs2YMVVDho5K62smEgnVrV2qMederIaGJi1/dqEmTLxcdXXrC3KW3OSmc/7tpnMcuUtK+mtASX9V16xRnz69taJykS686KsF3TnU3DF2DjV3jJ1DzR1j51Bzx9g51Nwxdg41dwidW3c1WkphIvPaZ87K7kFXYI557I95+3Pi7UrJpcsqtX3Hm12aPXn4UG3YsEkbN25WS0uL5s1boPPHji7YWXKTO9uz5A5nlty5nd227VVV16yRJDU371R9/XqVlZakNOszd4z3VYydQ80dY+dQc8fYOdTcMXYONXeMnUPNHWpnICSdHkqa2TAze9LM7jWzgWb2mJn92cxWmtnQXIV8r9KyEm1p2Lrv/YbGJpWm+JfEEGd97iZ3bnfTOY7cMXb2uTvT3HsNGlSuISd+VJUrqlOeCbVziLlj7OxzN53jyB1jZ5+76RxH7hg7+9wdY2cgJMmulPylpB9LekTSnyTd7Zw7QtJ1ez52QGY2ycyqzKyqvX1nt4Xt8PX3uy3Vh6GHOOtzN7lzu5vO6c363E3n9GZ97s40tyT17t1L8+ZO17e+faPefrs55blQO4eYO8bOPnfTOb1Zn7vpnN6sz910Tm/W5246pzfrc3eMnYGQFCX5eLFz7lFJMrMfOecekCTn3BIzu/1gQ865aZKmSQd/TslMNDY0aWB56b73y8sGqKnplYKd9bmb3LndTec4csfY2efuTHMXFRXp/rnTNWfOg5o//9GU5zLdzX1F53zeTec4csfY2eduOseRO8bOPnfH2Bn5/+Iu+LtkV0r+1czONrPPS3Jm9jlJMrOzJLVlPd1BrKyq0eDBx6miYqCKi4s1fvw4PfTw4oKdJTe5sz1L7nBmyZ373NOnTVFd/Uu6Y+q0lGd8547xvoqxc6i5Y+wcau4YO4eaO8bOoeaOsXOouUPtDIQk2ZWSX9fuh2+3Sxot6RtmNlNSo6SvZbL43nvu1FkjTlW/fn216eUq3XTz7Zox876UZtva2nTV1ddr4SOz1SOR0MxZc1Vbu65gZ8lN7mzPkjucWXLndvb004Zr4oSLtGp1rapW7v6D4A033KpHFz2R17ljvK9i7Bxq7hg7h5o7xs6h5o6xc6i5Y+wcau5QOwMhsWTPS2Bm/ySpVFKlc665w+1jnHOLki3IxsO3AQAAAAAAYta6q3H/J5+EXh11FudQHfRf8se8/TlJ9urb35T0oKTJktaY2bgOH74lm8EAAAAAAAAAFKZkD9/+mqRhzrlmM6uQ9ICZVTjnpkrK25NWAAAAAAAAxIcXuglHskPJHnsfsu2c22RmI7X7YHKQOJQEAAAAAAAA0AXJXn17m5kN2fvOngPK8yT1k3RCNoMBAAAAAAAAKEzJDiUvkbSt4w3OuVbn3CWSRmQtFQAAAAAAAICC1enDt51zDZ187JnujwMAAAAAAACg0CW7UhIAAAAAAAAAulWyF7oBAAAAAAAAwuB4XeZQcKUkAAAAAAAAgJzyeiiZSCS0csUftODBWWnPjj57pNaueVr1tct07TVXFPysz93kDid3jJ197qZzHLlD7Tx92hRtbXhBNdVL0prrjt0hzvrcHWPuGDv73E3nOHLH2NnnbjrHkTvUzkAozDmX1QVFPcsOuuDqqybppJM+pvcdfrjG/fOlKX/NRCKhurVLNebci9XQ0KTlzy7UhImXq65ufUHOkpvcdM6/3XSOI3eonSXpzDNOUXPzTs2YMVVDho5KacZ37hjvqxhzx9g51Nwxdg41d4ydQ80dY+dQc4fQuXVXI49TPoBXRo7M7kFXYI596qm8/TnxdqVkWdkAnXvOKP3mN3PSnj15+FBt2LBJGzduVktLi+bNW6Dzx44u2Flykzvbs+QOZ5bc4cz63r10WaW273gz5c/Ph9wx3lcx5o6xc6i5Y+wcau4YO4eaO8bOoeYOtTMQEm+Hkj+ZcpOu++4P1N7envZsaVmJtjRs3fd+Q2OTSktLCnbW525y53Y3nePIHWNnn7tj7JypEL/fod5XMeaOsbPP3XSOI3eMnX3upnMcuUPtDMm189bxLZ91eihpZn3M7GYzW2tmfzaz18xsuZl9OZOlnz3303r11df1fPXqLs2b7X/laaoPQw9x1uducud2N53Tm/W5m87pzfrcHWPnTIX4/Q71vooxd4ydfe6mc3qzPnfTOb1Zn7vpnN6sz90xdgZCUpTk47+T9KCk0ZLGS+ot6T5J15vZh5xz3zvQkJlNkjRJkqzHEUoker/r46edNkxjzztb54z5lA499BC9732Ha9bMn+nSL38zpdCNDU0aWF667/3ysgFqanqlYGd97iZ3bnfTOY7cMXb2uTvGzpkK8fsd6n0VY+4YO/vcTec4csfY2eduOseRO9TOQEiSPXy7wjk30znX4Jz7iaTznXPrJX1F0gUHG3LOTXPODXPODXvvgaQkff/6W1XxgWEa/KFP6EsTLteTTz6T8oGkJK2sqtHgwcepomKgiouLNX78OD308OKCnSU3ubM9S+5wZskdzqzv3ZkI8fsd6n0VY+4YO4eaO8bOoeaOsXOouWPsHGruUDsDIUl2peROMzvDObfMzMZK2i5Jzrl2O9D1xDnS1tamq66+Xgsfma0eiYRmzpqr2tp1BTtLbnJne5bc4cySO5xZ37vvvedOnTXiVPXr11ebXq7STTffrhkz78vr3DHeVzHmjrFzqLlj7Bxq7hg7h5o7xs6h5g61MxAS6+x5CczsREnTJX1I0hpJlznnXjSzYyRd7Jz7WbIFRT3LeOIDAAAAAACAbtS6q9HbxWL5rOmMT3IO1cGAZU/m7c9Jp1dKOudeMLNLJZVJWu6ca95z+2tmxjE9AAAAAAAAgLQle/Xtb2r3C91cKWmNmY3r8OFbshkMAAAAAAAAQGFK9pySX5M0zDnXbGYVkh4wswrn3FRJeXv5JwAAAAAAAID8lexQskeHh2xvMrOR2n0wOUgcSgIAAAAAAADogk4fvi1pm5kN2fvOngPK8yT1k3RCNoMBAAAAAAAAKEzJrpS8RFJrxxucc62SLjGzu7OWCgAAAAAAAEiTa/edAKlK9urbDZ187JnujwMAAAAAAACg0CV7+DYAAAAAAAAAdCsOJQEAAAAAAADkFIeSAAAAAAAAAHLK26Hk9GlTtLXhBdVUL+nS/OizR2rtmqdVX7tM115zRcHP+txN7nByx9jZ5246x5E7xs4+d9M5jtwxdva5m85x5I6xs8/ddI4jd6idY+ec8dbhLZ+Zcy6rC4p6lh1wwZlnnKLm5p2aMWOqhgwdldbXTCQSqlu7VGPOvVgNDU1a/uxCTZh4uerq1hfkLLnJTef8203nOHLH2DnU3DF2DjV3jJ1DzR1j51Bzx9g51Nwxdg41dwidW3c15veJkyeNp34quwddgSl79om8/TnxdqXk0mWV2r7jzS7Nnjx8qDZs2KSNGzerpaVF8+Yt0PljRxfsLLnJne1ZcoczS+5wZskdziy5w5kldziz5A5nltzhzJI7nFnfu4FQBPmckqVlJdrSsHXf+w2NTSotLSnYWZ+7yZ3b3XSOI3eMnX3upnMcuWPs7HM3nePIHWNnn7vpHEfuGDv73B1jZyAkRZ190MyKJF0m6Z8llUpykrZKWiDp1865lqwnPHCu/W5L9WHoIc763E3u3O6mc3qzPnfTOb1Zn7vpnN6sz910Tm/W5246pzfrczed05v1uZvO6c363E3n9GZ97o6xMxCSTg8lJd0j6U1J/09Sw57byiVdKuleSV840JCZTZI0SZKsxxFKJHp3R9Z9GhuaNLC8dN/75WUD1NT0SsHO+txN7tzupnMcuWPs7HM3nePIHWNnn7vpHEfuGDv73E3nOHLH2Nnn7hg7Q3LtvhMgVckevv1x59w3nHPLnXMNe96WO+e+IWnowYacc9Occ8Occ8O6+0BSklZW1Wjw4ONUUTFQxcXFGj9+nB56eHHBzpKb3NmeJXc4s+QOZ5bc4cySO5xZcoczS+5wZskdziy5w5n1vRsIRbIrJXeY2ecl/bdzu8+azSwh6fOSdmSy+N577tRZI05Vv359tenlKt108+2aMfO+lGbb2tp01dXXa+Ejs9UjkdDMWXNVW7uuYGfJTe5sz5I7nFlyhzNL7nBmyR3OLLnDmSV3OLPkDmeW3OHM+t4NhMI6e14CM6uQ9CNJn9Tuh3FL0pGSnpR0nXNuY7IFRT3LeOIDAAAAAACAbtS6q3H/J5+EGk75FOdQHZRXPpG3PyedXinpnNtkZj+RNEXSBkn/JOkTkmpTOZAEAAAAAAAAgPdK9urbN0o6Z8/nPSbpZEl/lHSdmQ11zv0w+xEBAAAAAAAAFJJkzyl5kaQhkg6RtE1SuXPuLTO7TVKlJA4lAQAAAAAAkBdce94+WhnvkezVt1udc23Oub9I2uCce0uSnHPvSOJF1gEAAAAAAACkLdmVkrvMrNeeQ8mT9t5oZkcoxUPJokSPLodrbW/r8iwAADEo7dO3y7Nbm7d3YxJgf8U9kv1R8+Ba2lq7MQkAAADyTbI/KY5wzv1NkpxzHQ8hiyVd8/PJ6gAAIABJREFUmrVUAAAAAAAAAApWslff/ttBbn9d0utZSQQAAAAAAACgoHX9MTUAAAAAAABAHnHOdwKkKtkL3QAAAAAAAABAt+JQEgAAAAAAAEBO5fRQ8u67b9Pmzc/ruece23fbCSf8k5566kFVVS3Wf//3b3T44X1S+lqjzx6ptWueVn3tMl17zRVp5Qhx1uducoeTO9TO06dN0daGF1RTvSStue7YHeJsqN8vn7tj6XzZNybq8T89qMee+b1+Pv1HOuSQnpp69616svJ/9Ngzv9dtP79ZRUWpPXNLiN/vkO6r7pr1uTud2fLyAVq06D5VVy/Rc889piuu+Iok6YILztVzzz2mnTs36uMfPyHvcnfnrM/ddI4jd4ydfe6mcxy5Q+0MhMJclh9sf+ih79+34IwzTlZz81/061//VCed9BlJ0rJlD+m73/2Bli6t1KWXjldFxUDddNMUSVJre9sBv2YikVDd2qUac+7Famho0vJnF2rCxMtVV7c+aZ4QZ8lN7kLuLElnnnGKmpt3asaMqRoydFRKM75z8/0K52es0DuX9ukrSTp2QH/998JZGnXq5/S3v/5Nv/zN7XrisaV647XtevLxpZKkn0//kSr/9JzunTFPkrS1ebu33Pk0S+7szRb32H0IXlLSXyUl/VVTs0Z9+vTWn/70sMaPnyTnnNrb2/WLX9yi7373h3r++dX7ZlvaWoPsnG+76RxH7hg7h5o7xs6h5g6hc+uuRkspTGQ2DxvFs0p28P6qJXn7c5LTKyWXLVuhHTvefNdtH/rQB7R0aaUkacmSpfrc585N+nVOHj5UGzZs0saNm9XS0qJ58xbo/LGjU8oQ4iy5yZ3tWd+7ly6r1Pb3/N6Q77n5foXzMxZT56KiIh166CHq0aOHDjvsUL2y7dV9B5KSVPP8Gg0oPTbvcvueJXf2Z7dte1U1NWskSc3NO1Vf/5JKS4/Viy++pPXrX05pp4/c3TUbau4YO4eaO8bOoeaOsXOouUPtDMm1G28d3vJZlw8lzWxadwRYu/ZFnXfe7qsmL7jgsyovH5B0prSsRFsatu57v6GxSaWlJSntC3HW525y53Z3jJ0zFeL3O8bvl8/dsXR+pelVTfvFTC1f9Ziq6p7QW281a+mTz+77eFFRkS4Yf57+uOSZvMqdD7M+d8eY+/3vL9eQIR/RypU1KX1+d+7mvqJzPu+mcxy5Y+zsc3eMnYGQdHooaWZ9D/J2tKSDXtJoZpPMrMrMqtramjsN8H/+zzX6+tcv1Z/+9IgOP7yPdu1qSRrabP+T3lQfhh7irM/d5M7t7hg7ZyrE73eM3y+fu2PpfMQR79NnzvmkTh86RsM/PEq9eh2mf/78efs+/sPbv68Vzz6nFcufz6vc+TDrc3dsuXv37qU5c+7SNdfcrLff7vzPiN292+esz910Tm/W5246pzfrczed05v1uTvGzkBIkj3b/WuS/ldSx38j3J73+x9syDk3TdI06d3PKXkg69Zt0HnnTZAkDR58nMaM+VTS0I0NTRpYXrrv/fKyAWpqeiXpXKizPneTO7e7Y+ycqRC/3zF+v3zujqXzGSM/oS2bG7X9jR2SpEUPP66TTj5RD97/sK6+9uvqe3RfXfdvV+dd7nyY9bk7ptxFRUWaM+cuzZ07XwsWLEppT3ft9j3rczed48gdY2efu+kcR+5QOwMhSfbw7ZcljXTOHdfh7QPOueMkdcu/Ecccc7Sk3f8n4Lvf/aZ+9at7k86srKrR4MHHqaJioIqLizV+/Dg99PDilPaFOEtucmd71vfuTIT4/Y7x++VzdyydGxua9PFhH9Ohhx0qSTp9xCl6ad1G/cvECzTiU6fryq9dm/L/YQ/x+x3SfRVr7rvu+rFefPEl/exnv0ppR77k7o7ZUHPH2DnU3DF2DjV3jJ1DzR1qZyAkya6UvEPSUZI2H+BjP0532W9/+3Odeeap6tfvKL30UqV+8IOfqHfv3vr61y+RJM2fv0izZs1L+nXa2tp01dXXa+Ejs9UjkdDMWXNVW7supQwhzpKb3Nme9b373nvu1FkjTlW/fn216eUq3XTz7Zox8768zs33K5yfsVg61zy3Wgv/5zEtfHKe2tpatXZVvWbPul/1DSvUuKVJ8/+w+3/6LXp4iabedlfe5M6HWXJnf/a004bpS1+6UKtX12n58oWSpBtvvE2HHNJTP/nJTerXr69+//sZWrWqVueff0ne5O6u2VBzx9g51Nwxdg41d4ydQ80damegK8zsSEm/kvRR7X6E9FclvShprqQKSZskjXfO7bDdzy8wVbuf1vEvkr7snEv+HFEH2pvsqgkzO1mSc86tNLMPSxojqd45tzCVBckevt2Z1va2ro4CABCF0j59uzy7tXl7NyYB9lfcI9n//z64lrbWbkwCAEDhad3VmN8vrezJpiGf4Qk4O6ioeSzpz4mZzZK01Dn3KzPrKamXpO9J2u6cu9XMrpN0lHPuO2Z2rqTJ2n0oeYqkqc65U7qSrdM/KZrZjZLOkVRkZo/tWfaUpOvMbKhz7oddWQoAAAAAAADALzN7n6QRkr4sSc65XZJ2mdk4SSP3fNos7T4P/I6kcZJ+63Zf5bjczI40swHOuaZ0dyf739cXSRoi6RBJ2ySVO+feMrPbJFVK4lASAAAAAAAAyENmNknSpA43TdvzAtV7fUC7X+h6hpmdKOk5SVdJOnbvQaNzrsnM9r7gdZmkLR3mG/bc1u2Hkq3OuTZJfzGzDc65t/aEecfM2tNdBgAAAAAAACA39hxATuvkU4okfVzSZOdcpZlNlXRdJ59/oIeDd+kh88lefXuXmfXa8+uT9m03O0ISh5IAAAAAAABAuBokNTjnKve8/4B2H1K+YmYDJGnPP1/t8PkDO8yXS9ralcXJrpQc4Zz7myQ55zoeQhZLujSVBbxYDQAA2ZPJi9UkrOvPjd6e5IXyAIkXqwEAALnHH1PT45zbZmZbzOwfnXMvSholqXbP26WSbt3zzwV7Rv5H0pVmdp92v/bMn7vyfJJSkkPJvQeSB7j9dUmvd2UhAAAAAAAAgLwxWdLv9rzy9suSvqLdj66eZ2aXSdos6fN7Pnehdr/y9kuS/rLnc7sk2ZWSAAAAAAAAAAqUc65G0rADfGjUAT7XSbqiO/Yme05JAAAAAAAAAOhWHEoCAAAAAAAAyCkvh5Ll5aV6fPH9Wr3qKb1Q84QmX3lZ2l9j9NkjtXbN06qvXaZrr0nvqtEQZ33uJnc4uWPs7HM3nePIHWPnK6+8TNXPP66a6iWaPDmO/0b73B1j7hg7+9xN5zhyx9jZ5246x5E71M6xc+3GW4e3fGYuyy9LVNSzbL8FJSX9NaCkv6pr1qhPn95aUblIF170VdXVrU/payYSCdWtXaox516shoYmLX92oSZMvDyl+RBnyU1uOuffbjrHkbvQOx/o1bc/8uF/1L333qnTTj9Pu3a16OGH79Xkyd/TSy9tfNfnHezVt/O9c77tjjF3jJ1DzR1j51Bzx9g51Nwxdg41dwidW3c15veJkycvn3A2r7/dwQdWL87bnxMvV0pu2/aqqmvWSJKam3eqvn69ykpLUp4/efhQbdiwSRs3blZLS4vmzVug88eOLthZcpM727PkDmeW3OHMhpr7+OMHq7KyWu+881e1tbVp6dPLNW7cmJRmfeaO8b4KNXeMnUPNHWPnUHPH2DnU3DF2DjV3qJ2BkHh/TslBg8o15MSPqnJFdcozpWUl2tKwdd/7DY1NKk3xUDPEWZ+7yZ3b3XSOI3eMnX3upnN6s2trX9SZZ56ivn2P1GGHHaoxYz6l8vLSlGZ95o7xvvK5m85x5I6xs8/ddI4jd4ydfe6OsTMQkqLOPmhmPST9q6RySYucc890+Nj1zrkfZLK8d+9emjd3ur717Rv19tvNKc/ZAR5ulurD0EOc9bmb3LndTef0Zn3upnN6sz530zm92fr6l3Tb7b/UowvnqLl5p1atrlVra2tKs5nu5r5Kb9bnbjqnN+tzN53Tm/W5m87pzfrcTef0Zn3ujrEzEJJkV0reLeksSW9I+pmZ/aTDxy442JCZTTKzKjOram/fecDPKSoq0v1zp2vOnAc1f/6jaYVubGjSwA5XbZSXDVBT0ysFO+tzN7lzu5vOceSOsbPP3XROP/fMmffplE+co1Gfvkg7tr+53/NJ5mPuWO+rEHPH2NnnbjrHkTvGzj530zmO3KF2huSc8dbhLZ8lO5Q82Tn3RefcHZJOkdTHzH5vZodIOmgz59w059ww59ywRKL3AT9n+rQpqqt/SXdMnZZ26JVVNRo8+DhVVAxUcXGxxo8fp4ceXlyws+Qmd7ZnyR3OLLnDmQ059zHHHC1JGjiwVJ/73DmaO3dByrOhdiZ3GLPkDmeW3OHMkjucWXKHM+t7NxCKTh++Lann3l8451olTTKzGyU9IalPV5eeftpwTZxwkVatrlXVyt3/Yt1ww616dNETKc23tbXpqquv18JHZqtHIqGZs+aqtnZdwc6Sm9zZniV3OLPkDmc25Nxz75umo48+Si0trfrmVd/Xm2/+OeXZUDuTO4xZcoczS+5wZskdziy5w5n1vRsIhXX2vARmdq+ke51zi95z+79K+i/nXHGyBUU9y3jiAwAA8lDCuv5wjnae1wgAAMCr1l2N+f3YXE82fHQ0f1Dt4INr/pC3PyedPnzbOTdB0nYzGy5JZvZhM/uWpK2pHEgCAAAAAAAAwHsle/XtGyWdI6nIzB7T7ueVfErSdWY21Dn3w+xHBAAAAAAAAFBIkj2n5EWShkg6RNI2SeXOubfM7DZJlZI4lAQAAAAAAEBecO2+EyBVyV59u9U51+ac+4ukDc65tyTJOfeOJO5mAAAAAAAAAGlLdii5y8x67fn1SXtvNLMjxKEkAAAAAAAAgC5I9vDtEc65v0mSc++6ALZY0qWpLMjkJX54uSQAALInk1fQ5r/vAAAAADLR6aHk3gPJA9z+uqTXs5IIAAAAAAAAQEFLdqUkAAAAAAAAEIR2l8ljepBLyZ5TEgAAAAAAAAC6FYeSAAAAAAAAAHLK26Hk+nXLVf3846pauVjLn12Y9vzos0dq7ZqnVV+7TNdec0XBz/rcTe5wcsfYOZP56dOmaGvDC6qpXpL2zkz2Zjrrc3eMuWPsnOn8Vd/8mmpqnlB19RLdc8+dOuSQQ3Kyl/sqnNwxdva5m85x5I6xs8/ddI4jd6idgVCYy+CVN1NR3LPsgAvWr1uuT5x6jt54Y8dBZw+WLJFIqG7tUo0592I1NDRp+bMLNWHi5aqrW580T4iz5CY3nbMzf+YZp6i5eadmzJiqIUNHpbSvO/ZyX4WTO8bOqc4f7Jl6SktL9NSTD+pjJ35Sf/3rXzV79l1a9OgT+u098/Z9Tr79993n7hhzx9g51Nwxdg41d4ydQ80dY+dQc4fQuXVXI0+eeADr/mlMdg+6AvOhukV5+3MS5MO3Tx4+VBs2bNLGjZvV0tKiefMW6Pyxowt2ltzkzvZsrLmXLqvU9h1vpryru/ZyX4WTO8bO3TFfVFSkww47VD169FCvww7T1qZtWd/LfRVO7hg7h5o7xs6h5o6xc6i5Y+wcau5QO0Nyznjr8JbPOj2UNLNeZnatmV1jZoea2ZfN7H/M7Mdm1ieTxc45PbpwjiqXP6p/vexLac2WlpVoS8PWfe83NDaptLSkYGd97iZ3bnfTObe5MxFqZ3LTOdvzW7du009/epde3rBCWzZX66233tLjjz+d9b3cV7ndTec4csfY2eduOseRO8bOPnfH2BkISbIrJWdKOlbScZIekTRM0u3a/ait/zrYkJlNMrMqM6tqb995wM85a+TndPIpY3Te2An6xje+rDPOOCXl0Gb7n/Sm+jD0EGd97iZ3bnfTOb3Z7pjvqlA7kzt3sz53+8x95JFHaOzY0fqHD31C7x/0cfXq3Utf/OIFWd/LfZXb3XROb9bnbjqnN+tzN53Tm/W5m87pzfrcHWNnICTJDiU/5Jz7d0lXSPqIpMnOuaclXSvpxIMNOeemOeeGOeeGJRK9D/g5TU2vSJJee+0NzV/wqIYPH5Jy6MaGJg0sL933fnnZgH1frxBnfe4md2530zm3uTMRamdy0znb86NGnalNmzbr9de3q7W1VfPnP6pTPzEs63u5r3K7m85x5I6xs8/ddI4jd4ydfe6OsTMQkpSeU9LtPpJfuOefe9/v8jF9r16HqU+f3vt+/ZlPn6W1a19MeX5lVY0GDz5OFRUDVVxcrPHjx+mhhxcX7Cy5yZ3t2VhzZyLUzuSmc7bnt2xu1MmnfFyHHXaoJOlTnzxD9fWpPSF8qJ3JTed83k3nOHLH2DnU3DF2DjV3qJ2BkBQl+XiVmfVxzjU7576690Yz+6Ckt7u69Nhjj9ED9/9aktSjqIfuu2++Fi9+KuX5trY2XXX19Vr4yGz1SCQ0c9Zc1dauK9hZcpM727Ox5r73njt11ohT1a9fX216uUo33Xy7Zsy8L+t7ua/CyR1j50znV6ys1u9//4hWrPiDWltb9ULNWk3/1e+yvpf7KpzcMXYONXeMnUPNHWPnUHPH2DnU3KF2BkJiyZ6XwMxO1u6LI1ea2YcljZH0ojpcOdmZ4p5lXb6ikmdMAAAgP2XyOn789x0AACBzrbsa8/ullT2p/9C5/HGzg+PXLczbn5NOr5Q0sxslnSOpyMwek3SKpKckfUfSEEk/zHZAAAAAAAAAAIUl2cO3L9Luw8dDJG2TVO6ce8vMbpNUKQ4lAQAAAAAAAKQp2QvdtDrn2pxzf5G0wTn3liQ5596R1J71dAAAAAAAAAAKTrJDyV1m1mvPr0/ae6OZHSEOJQEAAAAAAAB0QbKHb49wzv1NkpxzHQ8hiyVdmsoCnl0UAIDCw3/fAQAAkI+SvyQz8kWnh5J7DyQPcPvrkl7PSiIAAAAAAAAABS3Zw7cBAAAAAAAAoFtxKAkAAAAAAAAgpziUBAAAAAAAAJBT3g4lp0+boq0NL6imekmX5kefPVJr1zyt+tpluvaaKwp+1uducoeTO8bOPnfTOY7cMXb2uZvOceSOsbPP3XSOI3eMnX3upnMcuUPtHDvXbrx1eMtn5rL8skRFPcsOuODMM05Rc/NOzZgxVUOGjkrrayYSCdWtXaox516shoYmLX92oSZMvFx1desLcpbc5KZz/u2mcxy5Y+wcau4YO4eaO8bOoeaOsXOouWPsHGruGDuHmjuEzq27GvP7xMmT2g9+ltff7uDDGx7J258Tb1dKLl1Wqe073uzS7MnDh2rDhk3auHGzWlpaNG/eAp0/dnTBzpKb3NmeJXc4s+QOZ5bc4cySO5xZcoczS+5wZskdziy5w5n1vRsIRZDPKVlaVqItDVv3vd/Q2KTS0pKCnfW5m9y53U3nOHLH2NnnbjrHkTvGzj530zmO3DF29rmbznHkjrGzz90xdgZCkvahpJmty0aQNDPsd1uqD0MPcdbnbnLndjed05v1uZvO6c363E3n9GZ97qZzerM+d9M5vVmfu+mc3qzP3XROb9bnbjqnN+tzd4ydgZAUdfZBM3tb0t6f/L3/VvTae7tz7n0HmZskaZIkWY8jlEj07qa4uzU2NGlgeem+98vLBqip6ZWCnfW5m9y53U3nOHLH2NnnbjrHkTvGzj530zmO3DF29rmbznHkjrGzz90xdgZCkuxKyZmS5kv6B+fc4c65wyVt3vPrAx5ISpJzbppzbphzblh3H0hK0sqqGg0efJwqKgaquLhY48eP00MPLy7YWXKTO9uz5A5nltzhzJI7nFlyhzNL7nBmyR3OLLnDmSV3OLO+d8eu3RlvHd7yWadXSjrnJpvZSZLmmNl8Sb/Q36+czMi999yps0acqn79+mrTy1W66ebbNWPmfSnNtrW16aqrr9fCR2arRyKhmbPmqrZ2XcHOkpvc2Z4ldziz5A5nltzhzJI7nFlyhzNL7nBmyR3OLLnDmfW9GwiFpfK8BGaWkHSlpM9L+qBzrjTVBUU9y3jiAwAAAAAAgG7Uuqsxvy+D82TNB87jHKqDj778cN7+nHR6paQkmdnJ2v38kT8zs2pJnzSzc51zC7MfDwAAAAAAAEChSfZCNzdKOkdSkZk9JulkSX+UdJ2ZDXXO/TAHGQEAAAAAAAAUkGRXSl4kaYikQyRtk1TunHvLzG6TVCmJQ0kAAAAAAADkBZfnL+6Cv0v26tutzrk259xfJG1wzr0lSc65dyS1Zz0dAAAAAAAAgIKT7FByl5n12vPrk/beaGZHiENJAAAAAAAAAF2Q7OHbI5xzf5Mk51zHQ8hiSZdmLRUAAMBBJKzrD8lpd7wYIwAAAJAPOj2U3HsgeYDbX5f0elYSAQAAAAAAAChoya6UBAAAAAAAAILAA2PCkew5JQEAAAAAAACgW3EoCQAAAAAAACCnvBxKlpeX6vHF92v1qqf0Qs0TmnzlZWl/jdFnj9TaNU+rvnaZrr3mioKf9bmb3OHkjrGzz910jiN3jJ197k53dtrdt6thS42qn398320XXvBZ1VQv0V/f2ayPf/xjeZm7u2Z97qZzHLlj7OxzN53jyB1jZ5+7Y+wMhMJclh9sX9SzbL8FJSX9NaCkv6pr1qhPn95aUblIF170VdXVrU/payYSCdWtXaox516shoYmLX92oSZMvDyl+RBnyU1uOuffbjrHkTvGziHk7vjq22eccYqam3dqxm/u0NCPf1qSdPzxg9Xe3q47f/Ejfee6/9Dzz6/a9/kHe/XtfO+cb7vpHEfuGDuHmjvGzqHmjrFzqLlD6Ny6q9EO8iWitqpiLM8q2cHHNj2Utz8nXq6U3LbtVVXXrJEkNTfvVH39epWVlqQ8f/LwodqwYZM2btyslpYWzZu3QOePHV2ws+Qmd7ZnyR3OLLnDmSV3bmaXLavUjh1vvuu2+vqXtG7dyynt9JW7O2ZDzR1j51Bzx9g51Nwxdg41d4ydQ80damcgJN6fU3LQoHINOfGjqlxRnfJMaVmJtjRs3fd+Q2OTSlM81Axx1uducud2N53jyB1jZ5+76RxP7kyE2jnE3DF29rmbznHkjrGzz910jiN3qJ0htTvjrcNbPuv0UNLMPtbh18Vmdr2Z/Y+Z3WJmvTJd3rt3L82bO13f+vaNevvt5pTnzPb/pqb6MPQQZ33uJndud9M5vVmfu+mc3qzP3XROb9bn7kxzZyLUziHmjrGzz910Tm/W5246pzfrczed05v1uTvGzkBIkl0pObPDr2+VNFjSFEmHSbrrYENmNsnMqsysqr195wE/p6ioSPfPna45cx7U/PmPphW6saFJA8tL971fXjZATU2vFOysz93kzu1uOseRO8bOPnfTOZ7cmQi1c4i5Y+zsczed48gdY2efu+kcR+5QOwMhSXYo2fF4fpSkrznn/ijpW5KGHGzIOTfNOTfMOTcskeh9wM+ZPm2K6upf0h1Tp6WbWSurajR48HGqqBio4uJijR8/Tg89vLhgZ8lN7mzPkjucWXKHM0vu3OfORKidQ8wdY+dQc8fYOdTcMXYONXeMnUPNHWpnICRFST5+hJldoN2Hk4c451okyTnnzKzL1w6fftpwTZxwkVatrlXVyt3/Yt1ww616dNETKc23tbXpqquv18JHZqtHIqGZs+aqtnZdwc6Sm9zZniV3OLPkDmeW3LmZvee3v9CIEaeqX7++ennDSt38H1O0Y/ub+ulP/0PHHNNXC+bP0gur1uq88ybkVe7umA01d4ydQ80dY+dQc8fYOdTcMXYONXeonYGQWGfPS2BmM95z03XOuVfMrETS75xzo5ItKOpZxhMfAACAbpOwrj9hdzvPxwQAAApE667G/H4VE0+q3z+OP/B1MHTzgrz9Oen0Sknn3FfM7BRJ7c65lWb2YTP7kqT6VA4kAQAAAAAAAOC9Oj2UNLMbJZ0jqcjMHpN0sqQ/SrrOzIY6536Yg4wAAAAAAAAACkiy55S8SLtf0OYQSdsklbv/z969x0dZ3nkf//6GBBBUFFFDEip22XZf9dmu1IDVeqDiAmJB21W2Vqx23fLseqhuu7q2sPXR7bbdVVbtrl2LB7BQ5OCqCESLopxUDlFiNQkeEAoTAtYqUlBLDtfzB4GNEjIzSWauueb6vF+vvCQTfvl9v7mnSG/vmdu5XWZ2m6Q1kjgpCQAAAAAAACAjqe6+3eSca3bOfSBpo3NulyQ55z6U1JL1dAAAAAAAAAAKTqorJfeaWZ/Wk5Kn7H/QzPqJk5IAAMADblYDAACAQ+GviuFIdVLyLOfcHyXJOdf2JGSxpMuzlgoAAAAAAABAwUp19+0/HuLxdyS9k5VEAAAAAAAAAApaqveUBAAAAAAAAIBuxUlJAAAAAAAAADmV6j0lAQAAAAAAgCC0OPMdAWnydqXkvdOmalvyZVWvX9qp+dGjRqjm1RXaULtKN95wdcHP+txN7nByx9jZ5246x5E7xs4+d9M5s9kY/z7lc3eMuWPs7HM3nePIHWNnn7tj7AyEwlyW75Ve1LOs3QVnnnGqdu/eo+nT79LJQ0dm9D0TiYTqalZqzNhLlEw2aPULlZp42VWqq3ujIGfJTW46599uOseRO8bOoeaOsbMU39+nyB3OLLnDmSV3OLPkDmc2V7ub9tZzSWA7qsovzO6JrsBUJB/L2+eJtyslV65ao3ff29mp2eHDhmrjxs3atGmLGhsbNW/eAo0fN7pgZ8lN7mzPkjucWXKHM0vucGZDzh3b36fIHc4sucOZJXc4s+QOZ9b3biAUHZ6UNLNrzGxA66+HmNkKM9tpZmvM7M9zE/FgpWUl2prcduDzZH2DSktLCnbW525y53Y3nePIHWNnn7vpHEfuGDt3VaidyR3GrM/dMeaOsbPP3XSOI3eonYGQpLpS8u+dc++0/vouSXc4546S9E+S7jnUkJlNMrMqM6tqadnTTVE/9v0Peizdl6GHOOtzN7lzu5vOmc363E3nzGZ97qZzZrPcbKrwAAAgAElEQVQ+d9M5s9muCrUzucOY9bk7xtwxdva5m86ZzfrcHWNnICSp7r7d9uvHOecelSTn3DIzO+JQQ865aZKmSYd+T8muqE82aFB56YHPy8sGqqFhR8HO+txN7tzupnMcuWPs7HM3nePIHWPnrgq1M7nDmPW5O8bcMXb2uZvOceQOtTMkx923g5HqSsmHzWyGmX1a0qNmdr2ZfcrMviVpSw7ytWtdVbWGDDlRgwcPUnFxsSZMuEALFy0p2Flykzvbs+QOZ5bc4cySO5zZkHN3RaidyR3GLLnDmSV3OLPkDmfW924gFB1eKemcm2xmV0h6SNKfSOolaZKkxyRd2pXFs2berbPPOk0DBvTX5reqdMutt2v6jDlpzTY3N+u666eocvFs9UgkNOPBuaqtfb1gZ8lN7mzPkjucWXKHM0vucGZDzh3b36fIHc4sucOZJXc4s+QOZ9b3biAUlup9CcxsuCTnnFtnZidJGiOpzjlXmc6CbLx8GwAAAAAAIGZNe+t5nXI71pV9lfNQbQyrfzRvnycdXilpZjdLOk9SkZk9JWm4pOWSbjKzoc65f81BRgAAAAAAAAAFJNWNbi6SdLL2vWx7u6Ry59wuM7tN0hpJnJQEAAAAAABAXmjhRjfBSHWjmybnXLNz7gNJG51zuyTJOfehpJaspwMAAAAAAABQcFKdlNxrZn1af33K/gfNrJ84KQkAAAAAAACgE1K9fPss59wfJck51/YkZLGky9NZkLDOXzbbkuImPAAAAAAAAADC0+FJyf0nJNt5/B1J72QlEQAAAAAAAICClupKSQAAAAAAACAIvOY2HKneUxIAAAAAAAAAuhUnJQEAAAAAAADkVE5PSk77xe1Kbq3W+peePvDY0UcfpcrK2aqpWanKytk66qh+aX2v0aNGqObVFdpQu0o33nB1RjlCnPW5m9zh5I6xs8/ddI4jd4ydfe6mcxy5Y+zsczed48gdY+d7p03VtuTLql6/NKO57tjNsYojt6/OXX1uA6Ewl+U7XPfsVX5gwRlnnKrdu/do+gN3augXzpUk/eTHk/Xuuzt12+1364Z/vFpHH91PP5j8Y0mHvvt2IpFQXc1KjRl7iZLJBq1+oVITL7tKdXVvpMwT4iy5yU3n/NtN5zhyx9g51Nwxdg41d4ydQ80dY+dQc8fYWZLO3P//L6ffpZOHjkxrxnfuWI9ViLl9dk73ud20t97SChOZ1aVf420l2/jitkfy9nmS0yslV61ao/fe2/mxx8aNG6WZs+ZLkmbOmq/x40en/D7Dhw3Vxo2btWnTFjU2NmrevAUaPy71XKiz5CZ3tmfJHc4sucOZJXc4s+QOZ5bc4cySO5zZkHOvXLVG737i/1+mK9TO5A5jtqvzXXluAyHx/p6Sxx03QNu3vy1J2r79bR177DEpZ0rLSrQ1ue3A58n6BpWWlqS1L8RZn7vJndvddI4jd4ydfe6mcxy5Y+zsczed48gdY2efu+mcee6uCLUzucOY7Y55dF6LMz7afOSzDk9KmtkjZjbRzA7PVaB0mB38Q033ZeghzvrcTe7c7qZzZrM+d9M5s1mfu+mc2azP3XTObNbnbjpnNutzN50zm/W5m86ZzXZVqJ3JHcZsd8wDMUh1peSpki6UtMXM5pnZV82sZ6pvamaTzKzKzKpamvd0+HvffvsdlZQcJ0kqKTlOv/vd71OGrk82aFB56YHPy8sGqqFhR8q5UGd97iZ3bnfTOY7cMXb2uZvOceSOsbPP3XSOI3eMnX3upnPmubsi1M7kDmO2O+aBGKQ6Kfm2c+4iSSdIWijp25LqzWy6mY061JBzbppzrsI5V5Ho0bfDBQsXPaXLJl4sSbps4sVauHBJytDrqqo1ZMiJGjx4kIqLizVhwgVauCj1XKiz5CZ3tmfJHc4sucOZJXc4s+QOZ5bc4cySO5zZkHN3RaidyR3GbHfMAzEoSvF1J0nOuT9Imilpppn1lzRB0k2SMvpf1Mxf/pfOOus0DRjQX29tXKdb/2WqbrvtvzR79j264ltf19at9brkkr9L+X2am5t13fVTVLl4tnokEprx4FzV1r6eVoYQZ8lN7mzPkjucWXKHM0vucGbJHc4sucOZJXc4syHnnjXzbp3d+v8vN79VpVtuvV3TZ8zJ69yxHqsQc/vs3JXnNhAS6+g9DcxshXPurK4s6NmrvNNvmtDC+y0AAAAAAAAcpGlvfX7fxcST50ou4mRSG1/a/nDePk86vFLSOXeWmQ3f90u3zsw+J2mMpA3OucqcJAQAAAAAAABQUDo8KWlmN0s6T1KRmT2lfTe+WSbpJjMb6pz71+xHBAAAAAAAAFBIUr2n5EWSTpbUS9J2SeXOuV1mdpukNZI4KQkAAAAAAAAgI6nuvt3knGt2zn0gaaNzbpckOec+lNSS9XQAAAAAAAAACk6qKyX3mlmf1pOSp+x/0Mz6iZOSAAAAAAAAyCOcrApHqpOSZznn/ihJzrm2x7VY0uXpLOAO2gAAAAAAAADaSnX37T8e4vF3JL2TlUQAAAAAAAAAClqq95QEAAAAAAAAgG7FSUkAAAAAAAAAOcVJSQAAAAAAAAA55e2k5OhRI1Tz6gptqF2lG2+4OqfzIc763E3ucHLH2NnnbjrHkTvGzj53x9a5V69eeuG5RXqx6im9XP2Mbv7h9zKNHeTPO8Rj1dVZn7vpHEfuGDv73E3nOHKH2jl2TsZHm498Zi7Ld8cu6ll20IJEIqG6mpUaM/YSJZMNWv1CpSZedpXq6t5I63t2ZT7EWXKTm875t5vOceSOsXOouUPtLEl9+/bRnj0fqKioSCuWPap/+O7NWrP2pbzOHeOxijF3jJ1DzR1j51Bzx9g51NwhdG7aW5/fZ5w8WVFycXZPdAXmrO3z8/Z54uVKyeHDhmrjxs3atGmLGhsbNW/eAo0fNzon8yHOkpvc2Z4ldziz5A5nltzhzPrevWfPB5Kk4uIiFRUXK5P/YBzizzvUYxVj7hg7h5o7xs6h5o6xc6i5Q+0MhKTDk5Jm9mkze8DMfmRmh5vZvWb2qpnNN7PBnV1aWlaircltBz5P1jeotLQkJ/MhzvrcTe7c7qZzHLlj7OxzN53jyB1qZ2nf1RBV65aoof43Wrp0hdauW5/3uWM8VjHmjrGzz910jiN3jJ197o6xMxCSVFdKzpC0TtJuSaslbZB0nqQnJT3Q2aVmB185mslVAV2ZD3HW525y53Y3nTOb9bmbzpnN+txN58xmfe6OsbMktbS0qGLYKJ1wYoWGVQzVSSd9Nu3ZEH/eoR6rGHPH2NnnbjpnNutzN50zm/W5O8bOQEiKUnz9COfcf0uSmV3lnJva+vj9ZnbNoYbMbJKkSZJkPfopkej7sa/XJxs0qLz0wOflZQPV0LAj7dBdmQ9x1uducud2N53jyB1jZ5+76RxH7lA7t/X++7u0fMXz+97Yvua1rO8Ocdbn7hhzx9jZ5246x5E7xs4+d8fYGVIL52+DkepKyRYz+4yZDZfUx8wqJMnMhkjqcagh59w051yFc67ikyckJWldVbWGDDlRgwcPUnFxsSZMuEALFy1JO3RX5kOcJTe5sz1L7nBmyR3OLLnDmfW5e8CA/urX70hJUu/evTXynDP12msb8z53jMcqxtwxdg41d4ydQ80dY+dQc4faGQhJqislb5S0UFKLpAslfd/MPi+pn6Rvd3Zpc3Ozrrt+iioXz1aPREIzHpyr2trXczIf4iy5yZ3tWXKHM0vucGbJHc6sz90DBx6vB+6/Uz16JJRIJPTwwwu1uPLpvM8d47GKMXeMnUPNHWPnUHPH2DnU3KF2BkJiqd6XwMxOldTinFtnZidp33tK1jrnKtNZUNSzjAtnAQAAAAAAulHT3vqD33wSWnb8xZyHamPEjvl5+zzp8EpJM7tZ+05CFpnZU5KGS1ou6SYzG+qc+9ccZAQAAAAAAABQQFK9fPsiSSdL6iVpu6Ry59wuM7tN0hpJnJQEAAAAAABAXmhR3l4YiE9IdaObJudcs3PuA0kbnXO7JMk596H2vc8kAAAAAAAAAGQk1UnJvWbWp/XXp+x/0Mz6iZOSAAAAAAAAADoh1cu3z3LO/VGSnHNtT0IWS7o8a6kAAAAAAAAAFKwOT0ruPyHZzuPvSHonK4kAAAAAAAAAFLRUL98GAAAAAAAAgG6V6uXbAAAAAAAAQBAcd98OBldKAgAAAAAAAMgpTkoCAAAAAAAAyCmvJyUTiYTWrf21Fjz6YMazo0eNUM2rK7ShdpVuvOHqgp/1uZvc4eSOsbPP3XSOI3eMnX3upnNms+XlpXp6yXy98ptlern6GV17zZU5282xiiN3jJ197qZzHLlj7Oxzd4ydgVCYcy6rC4p6lh1ywfXXTdIpp3xeRx5xhC746uVpf89EIqG6mpUaM/YSJZMNWv1CpSZedpXq6t4oyFlyk5vO+bebznHkjrFzqLlj7CxJJSXHaWDJcVpf/aoOP7yv1q55Un910d/kde5Yj1WIuWPsHGruGDuHmjvGzqHmDqFz09563jyxHUuP/+vsnugKzMgdc/P2eeLtSsmysoEae95IPfDAQxnPDh82VBs3btamTVvU2NioefMWaPy40QU7S25yZ3uW3OHMkjucWXKHMxty7u3b39b66lclSbt379GGDW+orLQkr3PHeqxCzB1j51Bzx9g51Nwxdg41d6idIbXw8bGPfNbhSUkzS5jZ35jZYjN72cxeNLM5Zjaiq4v/Y+otuun7P1JLS+Y/otKyEm1NbjvwebK+QaVp/gU8xFmfu8md2910jiN3jJ197qZzHLlj7PxJJ5xQrpP/4v9ozdr1Wd/NsYojd4ydfe6mcxy5Y+zsc3eMnYGQpLpS8n5Jn5L0E0nPSlrc+tgUM7v2UENmNsnMqsysqqVlz0FfP3/suXr77Xf00vpXOhXa7OArT9N9GXqIsz53kzu3u+mc2azP3XTObNbnbjpnNutzN50zm22rb98+mjf3Xn33H2/WH/6wO+u7OVaZzfrcTefMZn3upnNmsz530zmzWZ+7Y+wMhKQoxddPcc59q/XXq8xstXPuh2a2QlK1pP9sb8g5N03SNKn995Q8/fQKjfvKKJ035hz17t1LRx55hB6c8TNdfsV30gpdn2zQoPLSA5+Xlw1UQ8OOgp31uZvcud1N5zhyx9jZ5246x5E7xs77FRUVaf7ce/XQQ4/qsceeSHsu1M7kDmPW5+4Yc8fY2eduOseRO9TOQEhSXSnZaGZ/Iklm9gVJeyXJOfdHSZ0+TT95yk81+NMVGvKZL+rSiVfp2WefS/uEpCStq6rWkCEnavDgQSouLtaECRdo4aIlBTtLbnJne5bc4cySO5xZcoczG3JuSbp32lTVbXhTd941LaO5UDuTO4xZcoczS+5wZskdzqzv3UAoUl0peYOkZ83sI0nFkr4uSWZ2rKRFWc52SM3Nzbru+imqXDxbPRIJzXhwrmprXy/YWXKTO9uz5A5nltzhzJI7nNmQc3/p9GG6bOJF+s0rtapat+//rPzzP/9UTzz5TN7mjvVYhZg7xs6h5o6xc6i5Y+wcau5QO0NyytubTeMTLNX7EpjZaZKanHPrzOxzksZI2uCcq0xnQXsv3wYAAAAAAEDnNe2t5+xbO5Yc/3XOQ7UxasecvH2edHilpJndLOk8SUVm9pSk4ZKWS7rJzIY65/41BxkBAAAAAAAAFJBUL9++SNLJknpJ2i6p3Dm3y8xuk7RGEiclAQAAAAAAAGQk1Y1umpxzzc65DyRtdM7tkiTn3IeSWrKeDgAAAAAAAEDBSXVScq+Z9Wn99Sn7HzSzfuKkJAAAAAAAAIBOSPXy7bOcc3+UJOdc25OQxZIuz1oqAAAAAAAAIENcQReODk9K7j8h2c7j70h6JyuJAAAAAAAAABS0VC/fBgAAAAAAAIBuxUlJAAAAAAAAADnFSUkAAAAAAAAAOeX1pGQikdC6tb/WgkcfzHh29KgRqnl1hTbUrtKNN1xd8LM+d5M7nNwxdva5m85x5I6xs8/ddM5d7nunTdW25MuqXr80451d2dvVWZ+7Y8wdY2efu+kcR+4YO/vcHWPn2LXw8bGPfGbOuawuKOpZdsgF1183Saec8nkdecQRuuCr6d/MO5FIqK5mpcaMvUTJZINWv1CpiZddpbq6NwpyltzkpnP+7aZzHLlj7Bxq7hg7d3X+zDNO1e7dezR9+l06eejItPZ1x16OVTi5Y+wcau4YO4eaO8bOoeYOoXPT3npLK0xkKo//enZPdAVm7I45efs88XalZFnZQI09b6QeeOChjGeHDxuqjRs3a9OmLWpsbNS8eQs0ftzogp0lN7mzPUvucGbJHc4sucOZjTX3ylVr9O57O9Pe1V17OVbh5I6xc6i5Y+wcau4YO4eaO9TOQEi8nZT8j6m36Kbv/0gtLZlfTFpaVqKtyW0HPk/WN6i0tKRgZ33uJndud9M5jtwxdva5m85x5I6xc3fMd1aonclN53zeTec4csfY2efuGDsDIenwpKSZFZnZ/zWzJ83sN2b2spk9YWZ/Z2bFnV16/thz9fbb7+il9a90at7s4CtP030ZeoizPneTO7e76ZzZrM/ddM5s1uduOmc263M3nTOb7Y75zgq1M7lzN+tzd4y5Y+zsczedM5v1uTvGzkBIilJ8faaknZL+n6Rk62Plki6XNEvSX7c3ZGaTJE2SJOvRT4lE3499/fTTKzTuK6N03phz1Lt3Lx155BF6cMbPdPkV30krdH2yQYPKSw98Xl42UA0NOwp21uducud2N53jyB1jZ5+76RxH7hg7d8d8Z4Xamdx0zufddI4jd4ydfe6OsTMkp7x9C0V8QqqXb3/BOff3zrnVzrlk68dq59zfSxp6qCHn3DTnXIVzruKTJyQlafKUn2rwpys05DNf1KUTr9Kzzz6X9glJSVpXVa0hQ07U4MGDVFxcrAkTLtDCRUsKdpbc5M72LLnDmSV3OLPkDmc21txdEWpnctM5n3fTOY7cMXYONXeonYGQpLpS8j0zu1jS/zjnWiTJzBKSLpb0XrbDHUpzc7Ouu36KKhfPVo9EQjMenKva2tcLdpbc5M72LLnDmSV3OLPkDmc21tyzZt6ts886TQMG9Nfmt6p0y623a/qMOVnfy7EKJ3eMnUPNHWPnUHPH2DnU3KF2BkJiHb0vgZkNlvRvks7RvpOQJqmfpGcl3eSc25RqQVHPMt74AAAAAAAAoBs17a3ndcrtWHz8JZyHauP8HQ/l7fOkwyslnXOb1fq+kWZ2jPadlLzTOTcx+9EAAAAAAAAAFKIOT0qa2ePtPHzO/sedc+OzkgoAAAAAAADIUEveXheIT0r1npLlkmol3SfJad+VksMkTc1yLgAAAAAAAAAFKtXdtyskvShpsqT3nXPLJH3onFvunFue7XAAAAAAAAAACk+q95RskXSHmc1v/eeOVDMAAAAAAAAA0JG0TjA655KSLjaz8yXtym4kAAAAAAAAAIUso6senXOLJS3OUhYAAAAAAAAAEeCl2AAAAAAAACgILeL226FIdaMbAAAAAAAAAOhWnJQEAAAAAAAAkFPeTkqOHjVCNa+u0IbaVbrxhqtzOh/irM/d5A4nd4ydfe6OsfO906ZqW/JlVa9fmtFcd+wOcdbn7hhzx9jZ9+5EIqF1a3+tBY8+mNO9sR2rUP/s9bk7xtwxdva5m85x5A61MxAKc85ldUFRz7KDFiQSCdXVrNSYsZcomWzQ6hcqNfGyq1RX90Za37Mr8yHOkpvcdM6/3TF2lqQzzzhVu3fv0fTpd+nkoSPTmvGdO8ZjFWPuGDv73i1J1183Saec8nkdecQRuuCrl2c9c1fnQz1WIf7Z63N3jLlj7Bxq7hg7h5o7hM5Ne+t588R2LCj5RnZPdAXmgu2z8/Z54uVKyeHDhmrjxs3atGmLGhsbNW/eAo0fNzon8yHOkpvc2Z4ldzizvnevXLVG7763M+3fnw+5YzxWMeaOsbPv3WVlAzX2vJF64IGH0p7pjr0xHqsQ/+z1uTvG3DF2DjV3jJ1DzR1qZ0iOj4995LNOn5Q0s2mdnS0tK9HW5LYDnyfrG1RaWpKT+RBnfe4md2530zmO3KF27qoQf96hHqsYc8fY2ffu/5h6i276/o/U0tKS9kx37I3xWHVFqJ3JTed83k3nOHKH2hkISYcnJc2s/yE+jpE0toO5SWZWZWZVLS172vv6QY9l8jLyrsyHOOtzN7lzu5vOmc363B1j564K8ecd6rGKMXeMnX3uPn/suXr77Xf00vpX0vr93bW3q/OhHquuCLUzuXM363N3jLlj7Oxzd4ydgZAUpfj67yT9VlLb/0W41s+PO9SQc26apGlS++8pWZ9s0KDy0gOfl5cNVEPDjrRDd2U+xFmfu8md2910jiN3qJ27KsSfd6jHKsbcMXb2ufv00ys07iujdN6Yc9S7dy8deeQRenDGz3T5Fd/J6t6uzod6rLoi1M7kpnM+76ZzHLlD7QyEJNXLt9+SNMI5d2Kbj087506U1On/RayrqtaQISdq8OBBKi4u1oQJF2jhoiU5mQ9xltzkzvYsucOZ9b27K0L8eYd6rGLMHWNnn7snT/mpBn+6QkM+80VdOvEqPfvsc2mdkOzq3q7Oh3qsuiLUzuSmcz7vpnMcuUPtDIQk1ZWSd0o6WtKWdr72751d2tzcrOuun6LKxbPVI5HQjAfnqrb29ZzMhzhLbnJne5bc4cz63j1r5t06+6zTNGBAf21+q0q33Hq7ps+Yk9e5YzxWMeaOsbPv3Z0VamefuUP8s9fn7hhzx9g51Nwxdg41d6idIWX2btfwyTJ9XwIz+6Vz7pvp/v72Xr4NAAAAAACAzmvaW3/wm09Cj5R8g/NQbXxt++y8fZ50eKWkmT3+yYckfdnMjpIk59z4bAUDAAAAAAAAUJhSvXx7kKQaSffpf29wUyFpapZzAQAAAAAAAChQqW50c4qkFyVNlvS+c26ZpA+dc8udc8uzHQ4AAAAAAABA4enwSknnXIukO8xsfus/d6SaAQAAAAAAAICOpHWC0TmXlHSxmZ0vaVcmC3oX9exMLknSR017Oz0LAEAMEtb5961uyfBmd0Cmjurdt9OzOz/a041JAABALFq68Pdj5FZGVz065xZLWpylLAAAAAAAAAAikOo9JQEAAAAAAACgW3FSEgAAAAAAAEBOcVISAAAAAAAAQE7l7KRkr149tWzFY3phdaXWVf1ak6dcL0m6/4E79FL1Uq1d96R+fs+/qagovbe5HD1qhGpeXaENtat04w1XZ5QlxFmfu8kdTu4QO/fq1UsvPLdIL1Y9pZern9HNP/xeprGD/HmHeKy6Outzd4ydr7nmSq1/6WlVr1+qa6+9MqPZru4Ocdbn7lhyv/TKM1rxwkI9u2qBnl72P5Kk8ReO0ao1i/X2zg06eej/SWvvvdOmalvyZVWvX5pR3s7m7q5Zn7vpHEfuGDv73E3nOHKH2jl2jo+PfeQzc1m+8+bhfU48sKBv3z7as+cDFRUV6aml83XjP96io/sfpSW/XiZJmj7jLj333Frdd++vJB367tuJREJ1NSs1ZuwlSiYbtPqFSk287CrV1b2RMk+Is+QmdyF3lj7+Z8OKZY/qH757s9asfSmvc8d4rGLMHULn9u6+fdLnPqtZs+7W6V/6ivbubdSiRbN07bU/0JtvbvrY7zvU3bdD/HmHcKxizN327tsvvfKMzj37r/Tuu+8deOxPP/Mnci0tmnrXrbp5yr+pev2rB752qLtvn3nGqdq9e4+mT79LJw8dmTJrrjvn2246x5E7xs6h5o6xc6i5Q+jctLee20y3Y/7AS/P9XFxOXdzwq7x9nuT05dt79nwgSSouLlJxcZGcdOCEpCRVVb2ssrKBKb/P8GFDtXHjZm3atEWNjY2aN2+Bxo8bnVaGEGfJTe5sz/re3fbPhqLiYmXyH0tC/HmHeqxizB1q5z/7syFas2a9PvzwIzU3N2vlitW64IIxeZ87xmMVa+793nh940Eny1NZuWqN3n1vZ8a7JI4VnQs3d4ydQ80dY+dQc4faGQhJTk9KJhIJPb96sTb9tkrPLF2lqnXVB75WVFSkS77xVT21ZHnK71NaVqKtyW0HPk/WN6i0tCStDCHO+txN7tzujrGztO/Phqp1S9RQ/xstXbpCa9etz/vcMR6rGHOH2rmm9jWdeeap6t//KB12WG+NGXOOystL8z53jMcqptzOOT382ANauvwRffOKv05rT3fjWNE5n3fTOY7cMXb2uTvGzkBIOnwDRzPrIelvJZVLetI591ybr01xzv0ok2UtLS06/Yvnq1+/I/TQnF/oc5/7jGprX5ck3XHXv+i5VWv1/PPrUn4fa+elauleWRXirM/d5M7t7hg7S/v+bKgYNkr9+h2p/5l/v0466bOqqXkt67tDnPW5O8bcoXbesOFN3Xb7z/VE5UPavXuPfvNKrZqamtKa7eruEGd97o4p9/mjLtH27W9rwID+enjBDL3x+ka98HxVWvu6C8cqd7M+d8eYO8bOPnfTObNZn7tj7AyEJNWVkr+QdLak30v6mZn9R5uvfe1QQ2Y2ycyqzKyqsekPB339/ff/oJUrV+vcvzxbkvT9H3xHAwb0103/lN45zvpkgwa1ueKjvGygGhp2FOysz93kzu3uGDu39f77u7R8xfMaPWpE2jMh/rxDPVYx5g61syTNmDFHp37xPI089yK99+7OjF4iG+LPO9RjFVPu7dvfliS98867qlz0lL5wyufT2tWdOFZ0zufddI4jd4ydfe6OsTOkFj4+9pHPUp2UHO6c+4Zz7k5Jp0o63MweMbNekg75RpnOuWnOuQrnXEVx0RGSpAED+qtfv32/7t27l7785TP0+usbdfkVf62R556lb13+nbTP/K+rqtaQISdq8OBBKi4u1oQJF2jhoiUFO0tucmd71ufufX82HClJ6t27t0aec6Zee+4HO8wAACAASURBVG1j3ueO8VjFmDvUzpJ07LHHSJIGDSrVhReep7lzF+R97hiPVSy5+/Q5TIcf3vfAr0ec86W0bxTQnThWdM7n3XSOI3eMnUPNHWpnICQdvnxbUs/9v3DONUmaZGY3S3pG0uGZLDq+5DhNu/d29Uj0UCJheuSRxXryiWe0c9cb2rKlXs8se0SS9PiCJ/XTn/xnh9+rublZ110/RZWLZ6tHIqEZD8498DLwVEKcJTe5sz3rc/fAgcfrgfvvVI8eCSUSCT388EItrnw673PHeKxizB1qZ0maO2eajjnmaDU2Nuk7103Wzp3v533uGI9VLLmPPW6AHvzV3ZKkoqIe+p/5C/XM0ys19it/qZ/e9s86ZkB/zZ4/Ta++UqcJX72yw92zZt6ts886TQMG9Nfmt6p0y623a/qMOXnXOV920zmO3DF2DjV3jJ1DzR1qZyAk1tHViWY2S9Is59yTn3j8byX9t3OuONWCw/uc2Ok3PvioaW9nRwEAiELCDvnChZRaeG8iZNlRvft2enbnR3u6MQkAAIWnaW995/8iWMDmDryUv+S28dcNv8rb50mHL992zk1s54TkL51z96VzQhIAAAAAAAAAPinV3bcf/+RDkr5sZkdJknNufLaCAQAAAAAAAChMqd5TcpCkGkn3SXLad1KyQtLULOcCAAAAAAAAMtKSty9Wxieluvv2KZJelDRZ0vvOuWWSPnTOLXfOLc92OAAAAAAAAACFp8MrJZ1zLZLuMLP5rf/ckWoGAAAAAAAAADqS1glG51xS0sVmdr6kXZks+CN30AYAIGu4gzbyWVfuoF3co/P/HbyxuanTswAAAMiNjP6255xbLGlxlrIAAAAAAAAAiAAvxQYAAAAAAEBBaBF3uglFqhvdAAAAAAAAAEC34qQkAAAAAAAAgJzydlLyjddXa/1LT6tq3RKtfqEy4/nRo0ao5tUV2lC7SjfecHXBz/rcTe5wcsfY2eduOseRO9TO906bqm3Jl1W9fmlGc92xO8RZn7tjzJ3p87O8fKCefHKO1q9fqhdffEpXX/0tSdKPf/wDVVcv1dq1T2ru3F+oX78js5o7xmMVY2efu+kcR+4YO/vcHWNnIBTmsnzXzuKeZe0ueOP11friaefp979/75Czh0qWSCRUV7NSY8ZeomSyQatfqNTEy65SXd0bKfOEOEtuctM5/3bTOY7coXaWpDPPOFW7d+/R9Ol36eShI9Oa8Z07xmMVa+50np9t775dUnKcSkqOU3X1qzr88L56/vlFmjBhksrKSrRs2fNqbm7Wj350kyRpypSfHvLu2xwrOhdq7hg7h5o7xs6h5g6hc9Peet48sR2/Kp2Y3RNdgbl026y8fZ4E+fLt4cOGauPGzdq0aYsaGxs1b94CjR83umBnyU3ubM+SO5xZcocz63v3ylVr9O57O9P+/fmQO8ZjFWvuTJ+f27e/rerqVyVJu3fv0YYNb6q09HgtXbpSzc3NkqS1a9errGxg1nLHeKxi7Bxq7hg7h5o7xs6h5g61M/Zd4MbH/37kM28nJZ1zeqLyIa1Z/YT+9spLM5otLSvR1uS2A58n6xtUWlpSsLM+d5M7t7vpHEfuGDv73B1j564K8ecd6rGKNXdXfOpT5Tr55JO0bl31xx7/5jcn6Ne/XtbhLMeKzvm8m85x5I6xs8/dMXYGQlLU0RfNrI+ka7Tv5Op/Svq6pK9J2iDpVufc7s4uPnvEhWpo2KFjjz1GTz4xRxtee1OrVq1Ja9bs4CtP030ZeoizPneTO7e76ZzZrM/ddM5s1ufuGDt3VYg/71CPVay5O6tv3z566KF7dMMNt+oPf/jfv4beeOM1am5u0pw5j3Y4z7HK3azP3THmjrGzz910zmzW5+4YOwMhSXWl5AxJx0s6UdJiSRWSbpdkkv77UENmNsnMqsysqqVlT7u/p6FhhyTpd7/7vR5b8ISGDTs57dD1yQYNKi898Hl52cAD368QZ33uJndud9M5jtwxdva5O8bOXRXizzvUYxVr7s4oKirSQw/do7lzH9OCBU8eePzSS/9KY8eO1BVXXJfye3Cs6JzPu+kcR+4YO/vcHWNnICSpTkp+xjn3PUlXSzpJ0rXOuRWSbpT0F4cacs5Nc85VOOcqEom+B329T5/DdPjhfQ/8+i/PPVs1Na+lHXpdVbWGDDlRgwcPUnFxsSZMuEALFy0p2Flykzvbs+QOZ5bc4cz63t0VIf68Qz1WsebujHvu+Xe99tqb+tnP7jvw2F/+5dn63vf+XhdddKU+/PCjlN+DY0XnfN5N5zhyx9g51NyhdgZC0uHLt/dzzjkzq3St1wu3ft7pa4ePP/5YPTz/fklSj6IemjPnMS1Zsizt+ebmZl13/RRVLp6tHomEZjw4V7W1rxfsLLnJne1ZcoczS+5wZn3vnjXzbp191mkaMKC/Nr9VpVtuvV3TZ8zJ69wxHqtYc2f6/Dz99Apdeulf6ZVX6rR6daUk6eabb9PUqf9PvXr11KJFsyTtu9nNd74zOS87h3isYuwcau4YO4eaO8bOoeYOtTMQEuvofQnM7D5J13/yvSPN7E8kPeicOyPVguKeZZ0+eck7JgAAAMSpuEda/+28XY3NTd2YBACA/NS0t/7gN5+Eflk2kdNJbXyzflbePk86fPm2c+5v2zkh+Uvn3EZJZ2Y1GQAAAAAAAICClOru249/8iFJXzazo1o/H5+VVAAAAAAAAAAKVqrXxQySVCPpPu17NbVp3x24p2Y5FwAAAAAAAIACleru26dIelHSZEnvO+eWSfrQObfcObc82+EAAAAAAAAAFJ4Or5R0zrVIusPM5rf+c0eqmYO+RxfCAQAAIE7crAYAAHRGi+8ASFtaJxidc0lJF5vZ+ZJ2ZTcSAAAAAAAAgEKW2VWPzi2WtDhLWQAAAAAAAABEINV7SgIAAAAAAABAt+KkJAAAAAAAAICcyujl2wAAAAAAAEC+4obL4fB2peS906ZqW/JlVa9f2qn50aNGqObVFdpQu0o33nB1wc/63E3ucHLH2NnnbjrHkTvGzj530zmO3DF29rmbznHkjrGzz910jiN3qJ2BUJhz2T2HXNSzrN0FZ55xqnbv3qPp0+/SyUNHZvQ9E4mE6mpWaszYS5RMNmj1C5WaeNlVqqt7oyBnyU1uOuffbjrHkTvGzqHmjrFzqLlj7Bxq7hg7h5o7xs6h5o6xc6i5Q+jctLfe0goTmellE7lYso1v1c/K2+eJtyslV65ao3ff29mp2eHDhmrjxs3atGmLGhsbNW/eAo0fN7pgZ8lN7mzPkjucWXKHM0vucGbJHc4sucOZJXc4s+QOZ5bc4cz63g2EIuOTkmb2ejaCZKK0rERbk9sOfJ6sb1BpaUnBzvrcTe7c7qZzHLlj7OxzN53jyB1jZ5+76RxH7hg7+9xN5zhyx9jZ5+4YOwMh6fBGN2b2B/3ve4Tuv9yzz/7HnXNHHmJukqRJkmQ9+imR6NtNcQ98/4MeS/dl6CHO+txN7tzupnNmsz530zmzWZ+76ZzZrM/ddM5s1uduOmc263M3nTOb9bmbzpnN+txN58xmfe6OsTOklrx9sTI+KdWVkjMkPSbpT51zRzjnjpC0pfXX7Z6QlCTn3DTnXIVzrqK7T0hKUn2yQYPKSw98Xl42UA0NOwp21uducud2N53jyB1jZ5+76RxH7hg7+9xN5zhyx9jZ5246x5E7xs4+d8fYGQhJhyclnXPXSrpL0kNm9h0zSygP7q6+rqpaQ4acqMGDB6m4uFgTJlyghYuWFOwsucmd7VlyhzNL7nBmyR3OLLnDmSV3OLPkDmeW3OHMkjucWd+7gVB0+PJtSXLOvWhm50q6RtJySb27Y/GsmXfr7LNO04AB/bX5rSrdcuvtmj5jTlqzzc3Nuu76KapcPFs9EgnNeHCuamtfL9hZcpM727PkDmeW3OHMkjucWXKHM0vucGbJHc4sucOZJXc4s753A6GwDN8TYaCkV51zx6Q7U9SzzPuVlQAAAAAAAIWkaW89757YjvvLJ3Ieqo0rk7Py9nmS6kY3j7fzcK/9jzvnxmclFQAAAAAAAICClerl2+WSaiXdp33vJWmShkmamuVcAAAAAAAAQEZafAdA2lLdfbtC0ouSJkt63zm3TNKHzrnlzrnl2Q4HAAAAAAAAoPB0eKWkc65F0h1mNr/1nztSzQAAAAAAAABAR9I6weicS0q62MzOl7Qru5EAAAAAf7rybvC8sz4AAEB6Mrrq0Tm3WNLiLGUBAAAAAAAAEAFeig0AAAAAAICCwI1uwpHqRjcAAAAAAAAA0K04KQkAAAAAAAAgp7yclOzVq5deeG6RXqx6Si9XP6Obf/i9jL/H6FEjVPPqCm2oXaUbb7i64Gd97iZ3OLm7MnvvtKnalnxZ1euXZjTXHbs5VnF09rmbznHkjrGzz90xdr7uO99WdfUzWr9+qWbOvFu9evXK2e4QZ33ujjF3jJ1D/ftrjMfK5+4YOwOhMOeye4/Aop5l7S7o27eP9uz5QEVFRVqx7FH9w3dv1pq1L6X1PROJhOpqVmrM2EuUTDZo9QuVmnjZVaqre6MgZ8lN7lx0PvOMU7V79x5Nn36XTh46Mq2ZfMgd4s87xs6h5o6xc6i5Y+wcau4QOrd39+3S0hIte/ZRff4vvqyPPvpIs2ffoyefeEa/nDnvY7/vUH+zDvHnHcKxIne8naUw//4a67EKMXcInZv21rf3r6zo/aJ8YnZPdAXm/yZn5e3zxNvLt/fs+UCSVFxcpKLiYmVycnT4sKHauHGzNm3aosbGRs2bt0Djx40u2Flykzvbs5K0ctUavfvezrR/f77kDvHnHWPnUHPH2DnU3DF2DjV3qJ0lqaioSIcd1ls9evRQn8MO07aG7XmfO8ZjFWPuGDtLYf79NdZjFWLuUDtDcsZH2490mFkPM1tvZotaPz/RzNaY2RtmNtfMerY+3qv18zdbvz64K8fK20nJRCKhqnVL1FD/Gy1dukJr161Pe7a0rERbk9sOfJ6sb1BpaUnBzvrcTe7c7vbZuSs4VnTO5910jiN3jJ197o6x87Zt23XHHfforY1rtXXLeu3atUtPP70i73PHeKxizB1j564KtTO5w5j1vRvohOsk1bX5/N8k3eGc+1NJ70m6svXxKyW955wbIumO1t/XaR2elDSzz7f5dbGZTTGzx83sx2bWpyuLW1paVDFslE44sULDKobqpJM+m/as2cGnetO90jLEWZ+7yZ3b3T47dwXHKnezPnfHmDvGzj530zmzWZ+7Y+x81FH9NG7caP3pZ76oT53wBfXp20ff+MbX0prt6u4QZ33ujjF3jJ27KtTO5A5j1vduIBNmVi7pfEn3tX5uks6R9HDrb3lQ0oWtv76g9XO1fn2ktfeETVOqKyVntPn1TyUNkTRV0mGS7jnUkJlNMrMqM6tqadnT4YL339+l5Sue1+hRI9IKLEn1yQYNKi898Hl52UA1NOwo2Fmfu8md290+O3cFx4rO+bybznHkjrGzz90xdh458kxt3rxF77zzrpqamvTYY0/otC9W5H3uGI9VjLlj7NxVoXYmdxizvncDGbpT0o2SWlo/P0bSTudcU+vnSUllrb8uk7RVklq//n7r7++UVCcl257tHCnp28655ZK+K+nkQw0556Y55yqccxWJRN+Dvj5gQH/163ekJKl3794aec6Zeu21jWmHXldVrSFDTtTgwYNUXFysCRMu0MJFSwp2ltzkzvZsV3Gs6JzPu+kcR+4YO4eaO9TOW7fUa/ipX9Bhh/WWJJ3z5TO0YUN6NzvwmTvGYxVj7hg7d1Wonckdxqzv3UBbbS8cbP2Y1OZrX5H0tnPuxbYj7Xwbl8bXMlaU4uv9zOyr2nfyspdzrlGSnHPOzDq9dODA4/XA/XeqR4+EEomEHn54oRZXPp32fHNzs667fooqF89Wj0RCMx6cq9ra1wt2ltzkzvasJM2aebfOPus0DRjQX5vfqtItt96u6TPm5H3uEH/eMXYONXeMnUPNHWPnUHOH2nntuvV65JHFWrv212pqatLL1TW6975f5X3uGI9VjLlj7CyF+ffXWI9ViLlD7Qx8knNumqRph/jylySNN7OxknpLOlL7rpw8ysyKWq+GLJe0/01Ok5IGSUqaWZGkfpLe7Ww26+h9Ccxshj5+xvMm59wOMyuR9Cvn3MhUC4p6lvHGBwAAAAhGp98YSV24VAAAgAw17a3vyr+yCtbPB03kX8dtXLV1VlrPEzMbIekfnXNfMbP5kv7HOTfHzO6R9Bvn3M/N7GpJf+6c+zsz+7qkrznnJnQ2W4dXSjrnrmgn5C+dc9/UvpdzAwAAAAAAACgc/yRpjpn9SNJ6Sfe3Pn6/pJlm9qb2XSH59a4s6fCkpJk93s7D55jZUZLknBvfleUAAAAAAAAA/HLOLZO0rPXXb0ka3s7v+UjSxd21M9V7Sg6SVKN9twV32vdqlmHadwduAAAAAAAAAMhYqrtvnyLpRUmTJb3fetb0Q+fc8ta7cAMAAAAAAABARlK9p2SLpDta3+DyDjPbkWoGAAAAAAAA8KHFdwCkLa0TjM65pKSLzex8SbuyGwkAAADwh1t2AgAAZF9GVz065xZLWpylLAAAAAAAAAAikOo9JQEAAAAAAACgW3FSEgAAAAAAAEBOcdMaAAAAAAAAFATeGzoc3q6UvHfaVG1Lvqzq9Us7NT961AjVvLpCG2pX6cYbri74WZ+7yR1O7hg7+9xN5zhyx9jZ5246x5E7xs4+d9M5jtwxdva5m85x5A61MxAKcy6755CLepa1u+DMM07V7t17NH36XTp56MiMvmcikVBdzUqNGXuJkskGrX6hUhMvu0p1dW8U5Cy5yU3n/NtN5zhyx9g51Nwxdg41d4ydQ80dY+dQc8fYOdTcMXYONXcInZv21ltaYSLzn4MmcrFkG9dunZW3zxNvV0quXLVG7763s1Ozw4cN1caNm7Vp0xY1NjZq3rwFGj9udMHOkpvc2Z4ldziz5A5nltzhzJI7nFlyhzNL7nBmyR3OLLnDmfW9GwhFhyclzewaMxvQ+ushZrbCzHaa2Roz+/PcRDxYaVmJtia3Hfg8Wd+g0tKSgp31uZvcud1N5zhyx9jZ5246x5E7xs4+d9M5jtwxdva5m85x5I6xs8/dMXYGQpLqSsm/d8690/rruyTd4Zw7StI/SbrnUENmNsnMqsysqqVlTzdF/dj3P+ixdF+GHuKsz93kzu1uOmc263M3nTOb9bmbzpnN+txN58xmfe6mc2azPnfTObNZn7vpnNmsz910zmzW5+4YOwMhSXX37bZfP84596gkOeeWmdkRhxpyzk2TNE069HtKdkV9skGDyksPfF5eNlANDTsKdtbnbnLndjed48gdY2efu+kcR+4YO/vcTec4csfY2eduOseRO8bOPnfH2BlSS96+gyI+KdWVkg+b2Qwz+7SkR83sejP7lJl9S9KWHORr17qqag0ZcqIGDx6k4uJiTZhwgRYuWlKws+Qmd7ZnyR3OLLnDmSV3OLPkDmeW3OHMkjucWXKHM0vucGZ97wZC0eGVks65ya0nIB+S9CeSekmaJOkxSZd2ZfGsmXfr7LNO04AB/bX5rSrdcuvtmj5jTlqzzc3Nuu76KapcPFs9EgnNeHCuamtfL9hZcpM727PkDmeW3OHMkjucWXKHM0vucGbJHc4sucOZJXc4s753A6GwTN+XwMxmOucuS/f3Z+Pl2wAAAAAAADFr2lvPC5XbcdenJnIeqo3rtszK2+dJh1dKmtnj7Tx8zv7HnXPjs5IKAAAAAAAAQMFKdaObckm1ku6T5CSZpGGSpmY5FwAAAAAAAJCRFt8BkLZUN7qpkPSipMmS3nfOLZP0oXNuuXNuebbDAQAAAAAAACg8qW500yLpDjOb3/rPHalmAAAAAAAAAKAjaZ1gdM4lJV1sZudL2pXdSAAAAEB8Eta196FvyfAGlgAAAD5ldNWjc26xpMVZygIAAAAAAAAgArwUGwAAAAAAAAWBG92EI9WNbgAAAAAAAACgW3FSEgAAAAAAAEBOeTkp2atXL73w3CK9WPWUXq5+Rjf/8HsZf4/Ro0ao5tUV2lC7SjfecHXBz/rcTe5wcsfY2eduOseRO8bOPnfTOY7cMXbOdH7aL25Xcmu11r/09IHHjj76KFVWzlZNzUpVVs7WUUf1y3pujlU4uWPs7HM3nePIHWpnIBTmsnyXvqKeZe0u6Nu3j/bs+UBFRUVasexR/cN3b9aatS+l9T0TiYTqalZqzNhLlEw2aPULlZp42VWqq3ujIGfJTW46599uOseRO8bOoeaOsXOouWPsnO5827tvn3HGqdq9e4+mP3Cnhn7hXEnST348We++u1O33X63bvjHq3X00f30g8k/PjDT3t23871zvs2GmjvGzqHmjrFzqLlD6Ny0t94O8S2iNvVTE7N7oisw39syK2+fJ95evr1nzweSpOLiIhUVFyuTk6PDhw3Vxo2btWnTFjU2NmrevAUaP250wc6Sm9zZniV3OLPkDmeW3OHMkjuc2Zhyr1q1Ru+9t/Njj40bN0ozZ82XJM2cNV/jx6feH1LnfJgNNXeMnUPNHWPnUHOH2hkIibeTkolEQlXrlqih/jdaunSF1q5bn/ZsaVmJtia3Hfg8Wd+g0tKSgp31uZvcud1N5zhyx9jZ5246x5E7xs4+d9M5t7n3O+64Adq+/W1J0vbtb+vYY4/J6l6OVW530zmO3DF29rk7xs6QHB8f+8hnHZ6UNLNHzGyimR3e3YtbWlpUMWyUTjixQsMqhuqkkz6b9qzZwVeepnulZYizPneTO7e76ZzZrM/ddM5s1uduOmc263M3nTOb9bmbzpnNdsd8Z4Xamdy5m/W5O8bcMXb2uTvGzkBIUl0peaqkCyVtMbN5ZvZVM+uZ6pua2SQzqzKzqpaWPR3+3vff36XlK57X6FEj0g5dn2zQoPLSA5+Xlw1UQ8OOgp31uZvcud1N5zhyx9jZ5246x5E7xs4+d9M5t7n3e/vtd1RScpwkqaTkOP3ud7/P6l6OVW530zmO3DF29rk7xs5ASFKdlHzbOXeRpBMkLZT0bUn1ZjbdzEYdasg5N805V+Gcq0gk+h709QED+qtfvyMlSb1799bIc87Ua69tTDv0uqpqDRlyogYPHqTi4mJNmHCBFi5aUrCz5CZ3tmfJHc4sucOZJXc4s+QOZzbW3PstXPSULpt4sSTpsokXa+HC1POhdiY3nfN5N53jyB1qZyAkRSm+7iTJOfcHSTMlzTSz/pImSLpJUqf+VzFw4PF64P471aNHQolEQg8/vFCLK59Oe765uVnXXT9FlYtnq0cioRkPzlVt7esFO0tucmd7ltzhzJI7nFlyhzNL7nBmY8o985f/pbPOOk0DBvTXWxvX6dZ/marbbvsvzZ59j6741te1dWu9Lrnk7wqqcz7Mhpo7xs6h5o6xc6i5Q+0MhMQ6el8CM1vhnDurKwuKepbxxgcAAABACgk7+D3EMtHC+40BQFSa9tZ37V8cBerfT5jIvxDbuPG3s/L2edLhy7fbOyFpZr/MXhwAAAAAAAAAha7Dl2+b2eOffEjSl83sKElyzo3PVjAAAAAAAAAAhSnVe0oOklQj6T7te39Jk1QhaWqWcwEAAAAAAAAoUKnuvn2KpBclTZb0vnNumaQPnXPLnXPLsx0OAAAAAAAAQOHp8EpJ51yLpDvMbH7rP3ekmgEAAAAAAAB8aPEdAGlL6wSjcy4p6WIzO1/SruxGAgAAAOLT1btnd+Xu3dy5GwAA5FpGVz065xZLWpylLAAAAAAAAAAikOo9JQEAAAAAAACgW3FSEgAAAAAAAEBOcdMaAAAAAAAAFATeJTkc3q6UHD1qhGpeXaENtat04w1X53Q+xFmfu8kdTu4YO/vcTec4csfY2eduOseRO8bOPndfc82VWv/S06pev1TXXntlzvZ2dT7GY0XnOHLH2Nnn7hg7A6Ewl+U77RX1LDtoQSKRUF3NSo0Ze4mSyQatfqFSEy+7SnV1b6T1PbsyH+IsuclN5/zbTec4csfYOdTcMXYONXeMnXO1u727b5/0uc9q1qy7dfqXvqK9exu1aNEsXXvtD/Tmm5s+9vvau/t2CJ27ezbU3DF2DjV3jJ1DzR1C56a99Qf/wQ/95ISJXCzZxvd/OytvnyderpQcPmyoNm7crE2btqixsVHz5i3Q+HGjczIf4iy5yZ3tWXKHM0vucGbJHc4sucOZJXfms3/2Z0O0Zs16ffjhR2pubtbKFat1wQVjsr63q/MxHis6x5E7xs6h5g61MxASLyclS8tKtDW57cDnyfoGlZaW5GQ+xFmfu8md2910jiN3jJ197qZzHLlj7OxzN53DyV1T+5rOPPNU9e9/lA47rLfGjDlH5eWlWd/b1fkYjxWd48gdY2efu2PsDISkwxvdmNmnJU2RtE3STyXdIek0SXWSbnDObe7MUmvnpSWZvIy8K/MhzvrcTe7c7qZzZrM+d9M5s1mfu+mc2azP3XTObNbnbjpnNutz94YNb+q223+uJyof0u7de/SbV2rV1NSU9b1dnY/xWNE5s1mfu+mc2azP3TF2BkKS6krJGZLWSdotabWkDZLOk/SkpAcONWRmk8ysysyqWlr2HPT1+mSDBrX5L7TlZQPV0LAj7dBdmQ9x1uducud2N53jyB1jZ5+76RxH7hg7+9xN53ByS9KMGXN06hfP08hzL9J77+486P0ks7WXYxXGrM/dMeaOsbPP3TF2htQix0ebj3yW6qTkEc65/3bO/VTSkc65qc65rc65+yUdfagh59w051yFc64ikeh70NfXVVVryJATNXjwIBUXF2vChAu0cNGStEN3ZT7EWXKTO9uz5A5nltzhzJI7nFlyhzNL7s7tPvbYYyRJgwaV6sILz9PcuQtyspdjFcYsucOZJXc4s753A6Ho8OXbklrM7DOSMqASaAAAIABJREFU+knqY2YVzrkqMxsiqUdnlzY3N+u666eocvFs9UgkNOPBuaqtfT0n8yHOkpvc2Z4ldziz5A5nltzhzJI7nFlyd2733DnTdMwxR6uxsUnfuW6ydu58Pyd7OVZhzJI7nFlyhzPrezcQCuvofQnMbKSkn0tqkfRtSf8g6fPad5JyknPusVQLinqW5fe1ogAAAEABSNjB70GWrhbeqwwAgtO0t77zf/AXsH894VL+pdbG5N/+Km+fJx1eKemcWyrps20eWmVmiySNd861ZDUZAAAAAAAAgIKU6u7bj7fz8AhJj5mZnHPjs5IKAAAAAAAAyBBX0IUj1XtKDpJUI+k+SU6SSRomaWqWcwEAAAAAAAAoUKnuvn2KpBclTZb0vnNumaQPnXPLnXPLsx0OAAAAAAAAQOFJ9Z6SLZLuMLP5rf/ckWoGAAAAAAAAADqS1glG51xS0sVmdr6kXdmNBAAAACBT3EEbAACEJKOrHp1ziyUtzlIWAAAAAAAAoNP4T3ThSPWekgAAAAAAAADQrTgpCQAAAAAAACCnOCkJAAAAAAAAIKe8nZS8d9pUbUu+rOr1Szs1P3rUCNW8ukIbalfpxhuuLvhZn7vJHU7uGDv73E3nOHLH2NnnbjrHkTvGzj530zmO3DF29rmbznHkDrUzEApzWb5LX1HPsnYXnHnGqdq9e4+mT79LJw8dmdH3TCQSqqtZqTFjL1Ey2aDVL1Rq4mVXqa7ujYKcJTe56Zx/u+kcR+4YO4eaO8bOoeaOsXOouWPsHGruGDuHmjvGzqHmDqFz0956SytMZG494VLuddPGD3/7q7x9nni7UnLlqjV6972dnZodPmyoNm7crE2btqixsVHz5i3Q+HGjC3aW3OTO9iy5w5kldziz5A5nltzhzJI7nFlyhzNL7nBmyR3OrO/dsWvh42Mf+azDk5JmljCzvzGzxWb2spm9aGZzzGxEjvK1q7SsRFuT2w58nqxvUGlpScHO+txN7tzupnMcuWPs7HM3nePIHWNnn7vpHEfuGDv73E3nOHLH2Nnn7hg7AyEpSvH1+yX9VtJPJF0kaZeklZKmmNmfO+f+s70hM5skaZIkWY9+SiT6dl/ifd//oMfSfRl6iLM+d5M7t7v/P3t3Hyd1fd77/30NuxhFgzdolt0lrin19OT00YhF1MS7xArGBIiNoVWxuTPkdzSpNid67KmJR/trqy02MYlpAm2AaBAwTbACGuJdhP7kZpVFYZeKCIFZFjRVE8Gk7M31+4OVrC67M7OzM5/5zOf19LGPzO7stdf7vTPywG++M186FzYbcjedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu+lc2GzI3XQubDbk7hQ7AzHJdVDyD9390723V5vZGnf/qpk9KalF0mEPSrr7HElzpIHfU7IY7dkOjWusP/R5Y8NYdXTsrdrZkLvJXd7ddE4jd4qdQ+6mcxq5U+wccjed08idYueQu+mcRu4UO4fcnWJnICa53lOy08x+R5LM7HRJByTJ3f9LUrDD9OubWzR+/Clqahqn2tpazZgxXQ8uW1m1s+Qmd6lnyR3PLLnjmSV3PLPkjmeW3PHMkjueWXLHM0vueGZD7wZiketMyRskPW5m/9X7vZdLkpmdKGlZMYvvvedunX/e2Roz5njteLFZt942W/PmL8prtru7W9ddf7NWLF+oEZmM5i9YrNbW56t2ltzkLvUsueOZJXc8s+SOZ5bc8cySO55ZcsczS+54Zskdz2zo3anrqdhrTePtLNf7EtjBNzM4wd1/0fv59939z/JdUIqXbwMAAAAAAKSs60A7h98O46tNV3Icqo/bdvygYp8ng54paWb/1uf2mzc/ZGbHSpK7TytdNAAAAAAAAADVKNfLt8dJ2izpn3XwPSRN0hmS7ixxLgAAAAAAAABVKteFbv5Q0tOS/krSL939CUm/dvefufvPSh0OAAAAAAAAQPUZ9ExJd++R9DUzu7/3f/fmmgEAAAAAAABC6BFvKRmLvA4wuntW0ifM7COSflXaSAAAAAAAAACqWUFnPbr7cknLS5QFAAAAAAAAQAJyvackAAAAAAAAAAwrDkoCAAAAAAAAKCsOSgIAAAAAAAAoq2AHJadMvkCbNz2pLa2rdeMN15Z1PsbZkLvJHU/uFDuH3E3nNHKn2DnkbjqnkTvFziF3h+wsSZlMRuvX/UQP/HhB2XbzWKXROeRuOqeRO9bOqXM+3vJRycy9tBFrRjb0W5DJZNS2eZUuvuRyZbMdWvPUCs286hq1tW3N62cWMx/jLLnJTefK203nNHKn2DnW3Cl2jjV3ip1jzV1s5zddf90s/eEf/oHeecwxmn7pJ/Oa4bGic7XmTrFzrLlj6Nx1oN3yCpOYv2q6otKPxZXV3+xYWLHPkyBnSk46Y4K2bduh7dt3qrOzU0uWPKBpU6eUZT7GWXKTu9Sz5I5nltzxzJI7nllyxzNL7nhm39TQMFaXfPhCfe979xU0x2NF50reTec0csfaGYhJkIOS9Q112pXdfejzbHuH6uvryjIf42zI3eQu7246p5E7xc4hd9M5jdwpdg65m85p5C62syT945236qa//H/V09NT0ByPFZ0reTed08gda2cgJoMelDSz0WZ2u5ltMbP/7P1o6/3asUNdatb/zNFCXkZezHyMsyF3k7u8u+lc2GzI3XQubDbkbjoXNhtyN50Lmw25m86FzYbcHbLzRy75I7300i/0zIbn8p4Zjt08VoXNhtydYu4UO4fcnWJnICY1Oe5fIukxSRe4+x5JMrM6SZ+UdL+kiw43ZGazJM2SJBsxWpnMqLfc357t0LjG+kOfNzaMVUfH3rxDFzMf42zI3eQu7246p5E7xc4hd9M5jdwpdg65m85p5C628/vfP1FTPzpZH774Q3rHO47QO995jBbM/4Y++ak/r+jcMf6+U+wccjed08gda2dIhZ2bj5ByvXy7yd3vePOApCS5+x53v0PSuwcacvc57j7R3Se+/YCkJK1vbtH48aeoqWmcamtrNWPGdD24bGXeoYuZj3GW3OQu9Sy545kldzyz5I5nltzxzJI7nllJ+qubb1fTeyZq/Kln6cqZ1+jxx/89rwOSoXPH+PtOsXOsuVPsHGvuWDsDMcl1puTPzexGSQvcfa8kmdm7JH1K0q6hLu3u7tZ119+sFcsXakQmo/kLFqu19fmyzMc4S25yl3qW3PHMkjueWXLHM0vueGbJHc9ssXis6FzJu+mcRu5YOwMxscHel8DMjpN0k6Tpkt4lySXtlfRvku5w91dyLagZ2cAbHwAAAAAAAAyjrgPt/d98EvrLpis4DtXH3+1YWLHPk0HPlHT3VyX9794Pmdm5kiZJei6fA5IAAAAAAAAA8HaDHpQ0s3XuPqn39tWSrpW0VNItZna6u99ehowAAAAAAABATj3iRMlY5LrQTW2f25+XNNndb5U0WdKVJUsFAAAAAAAAoGrlutBNpvd9JTM6+P6TL0uSu+83s66SpwMAAAAAAABQdXIdlBwt6WlJJsnNrM7d95jZ0b1fAwAAAAAAAICC5LrQTdMAd/VIujSfBcUcueRdAAAAAAAAAIDqk+tMycNy9zckbR/mLAAAAAAAAAASMKSDkgAAAAAAAECl4VW38ch19W0AAAAAAAAAGFYclAQAAAAAAABQVsEOSm59fo02PPOImtev1JqnVhQ8P2XyBdq86UltaV2tG2+4tupnQ+4mdzy5U+wccjed08idYueQu+mcRu4UO4fcHWPnuXPu1O7sRrVseLTgncXsHY75GGdD7k4xd4qdQ+5OsTMQC3Mv7avta0c2HHbB1ufX6KyzP6z//M9XB5wdKFkmk1Hb5lW6+JLLlc12aM1TKzTzqmvU1rY1Z54YZ8lNbjpX3m46p5E7xc6x5k6xc6y5U+wca+6Qnc8950zt27df8+bdpdMmXJjXvkrIHeMsueOZJXc8s+Xa3XWg3fIKk5gbmy7nbSX7+Psd91Xs8yTKl29POmOCtm3boe3bd6qzs1NLljygaVOnVO0sucld6llyxzNL7nhmyR3PLLnjmSV3PLPFzq9avVavvPpa3rsqJXeMs+SOZ5bc8cyG3p26Hj7e8lHJgh2UdHc9tOI+rV3zkK7+7JUFzdY31GlXdvehz7PtHaqvr6va2ZC7yV3e3XROI3eKnUPupnMauVPsHHI3ndPIHbJzMXis0ugccjed08gda2cgJjVDHTSzh9z9w0OdP/+Cj6mjY69OPPEEPfzQIm35jxe0evXafHf3+1q+L0OPcTbkbnKXdzedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu2PtXAweq8JmQ+5OMXeKnUPuTrEzEJNBD0qa2ekD3SXptEHmZkmaJUmZEaOVyYzq9z0dHXslSS+//J9a+sBDOuOM0/I+KNme7dC4xvpDnzc2jD3086pxNuRucpd3N53TyJ1i55C76ZxG7hQ7h9xN5zRyh+xcDB6rNDqH3E3nNHLH2hmISa6Xb6+XNFvSnW/7mC3p2IGG3H2Ou09094mHOyB51FFH6uijRx26fdEfna/Nm/8j79Drm1s0fvwpamoap9raWs2YMV0PLltZtbPkJnepZ8kdzyy545kldzyz5I5nltzxzA7H/FDxWKXROdbcKXaONXesnYGY5Hr5dpukz7t7v8tDmdmuoS5917tO1A/v/xdJ0oiaEVq0aKlWrnwi7/nu7m5dd/3NWrF8oUZkMpq/YLFaW5+v2llyk7vUs+SOZ5bc8cySO55ZcsczS+54Zoudv/eeu3X+eWdrzJjjtePFZt1622zNm7+o4nPHOEvueGbJHc9s6N2p6xEvdY+FDfa+BGZ2maTn3L3faYxm9jF3X5prQe3IhiE/G3gaAQAAAAAA9Nd1oL3/m09CX2r6Uw4n9fGPOxZV7PNk0DMl3f2HfT83s3MkTZK0KZ8DkgAAAAAAAADwdoO+p6SZretz+3OSviXpGEm3mNlNJc4GAAAAAAAAoArlutBNbZ/bsyRd5O63Spos6cqSpQIAAAAAAABQtXJd6CZjZsfp4MFLc/eXJcnd95tZV8nTAQAAAAAAAHniDSXjkeug5GhJT0sySW5mde6+x8yO7v1aTjwZAAAAAAAAAPSV60I3TQPc1SPp0mFPAwAAAAAAAKDq5TpT8rDc/Q1J24c5CwAAAAAAAIAE5LrQDQAAAAAAAAAMKw5KAgAAAAAAACirIb18GwAAAAAAAKg0PaEDIG9BzpRsbKzXIyvv13PPPqGNLY/pi1/4bME/Y8rkC7R505Pa0rpaN95wbdXPhtxN7nhyp9g55O4YO8+dc6d2ZzeqZcOjBe8sZu9wzMc4G3J3irlT7BxyN53TyJ1i55C76ZxG7hQ7h9ydYmcgFubuJV1QM7Kh34K6upM0tu4kbWjZpKOPHqV1ax/Wxy/7jNratub1MzOZjNo2r9LFl1yubLZDa55aoZlXXZPXfIyz5CY3nStvd6ydzz3nTO3bt1/z5t2l0yZcmNe+Ssgd4yy545kldzyz5I5nltzxzJI7nllyxzNbrt1dB9otrzCJua7pT0t7oCsyd+1YVLHPkyBnSu7Z85I2tGySJO3bt19btmxVQ31d3vOTzpigbdt2aPv2ners7NSSJQ9o2tQpVTtLbnKXepbc8cwWO79q9Vq98upree+qlNwxzpI7nllyxzNL7nhmyR3PLLnjmSV3PLOhdwOxGPSgpJm908z+zszuMbMr3nbft4cjwMknN+q09/2+1q7bkPdMfUOddmV3H/o8296h+jwPasY4G3I3ucu7m85p5A7ZuRg8Vml0DrmbzmnkTrFzyN10TiN3ip1D7qZzGrlj7QzEJNeZkvMkmaR/lfSnZvavZnZE731nDTRkZrPMrNnMmnt69g/4w0eNOkpLFs/Vl758i15/fV/eoc36n3ma78vQY5wNuZvc5d1N58JmQ+6OtXMxeKwKmw25O8XcKXYOuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu1PsDMn55y3/VLJcByV/x91vcvel7j5N0jOSHjOzEwYbcvc57j7R3SdmMqMO+z01NTW6f/Fc3Xffj7V06UMFhW7PdmhcY/2hzxsbxqqjY2/VzobcTe7y7qZzGrlDdi4Gj1UanUPupnMauVPsHHI3ndPInWLnkLvpnEbuWDsDMcl1UPIIMzv0Pe7+N5LmSHpS0qAHJnOZO+dOtW15QV+/a07Bs+ubWzR+/Clqahqn2tpazZgxXQ8uW1m1s+Qmd6lnyR3P7HDMDxWPVRqdY82dYudYc6fYOdbcKXaONXeKnWPNnWLnWHPH2hmISU2O+x+U9CFJj7z5BXdfYGZ7JX1zqEs/8P4zdNXMy/Tsc61qXn/wX6yvfOV2PfTwY3nNd3d367rrb9aK5Qs1IpPR/AWL1dr6fNXOkpvcpZ4ldzyzxc7fe8/dOv+8szVmzPHa8WKzbr1ttubNX1TxuWOcJXc8s+SOZ5bc8cySO55ZcsczS+54ZkPvBmJhBb4nwjmSJkna5O55HaavGdlQ2S9gBwAAAAAAiEzXgfb+bz4J/XnTn3Acqo9v7Fhcsc+TXFffXtfn9uckfUvSMZJuMbObSpwNAAAAAAAAyFsPH2/5qGS53lOyts/tWZIucvdbJU2WdGXJUgEAAAAAAACoWrneUzJjZsfp4MFLc/eXJcnd95tZV8nTAQAAAAAAAKg6uQ5Kjpb0tCST5GZW5+57zOzo3q8BAAAAAAAAQEEGPSjp7k0D3NUj6dJhTwMAAAAAAACg6uU6U/Kw3P0NSduHOQsAAAAAAACABAzpoCQAAAAAAABQaXrkoSMgT7muvg0AAAAAAAAAw4qDkgAAAAAAAADKKshBycbGej2y8n499+wT2tjymL74hc8W/DOmTL5Amzc9qS2tq3XjDddW/WzI3eSOJ3eKnUPupnMauVPsHHI3ndPInWLnkLvpXNjs3Dl3and2o1o2PFrQ3HDs5rFKI3eKnUPuTrEzEAtzL+1r7WtGNvRbUFd3ksbWnaQNLZt09NGjtG7tw/r4ZZ9RW9vWvH5mJpNR2+ZVuviSy5XNdmjNUys086pr8pqPcZbc5KZz5e2mcxq5U+wca+4UO8eaO8XOseZOsbMknXvOmdq3b7/mzbtLp024MK+Z0LlTfaxizJ1i51hzx9C560C75RUmMdc0zeBNJfv49o4lFfs8CXKm5J49L2lDyyZJ0r59+7Vly1Y11NflPT/pjAnatm2Htm/fqc7OTi1Z8oCmTZ1StbPkJnepZ8kdzyy545kldzyz5I5nltzxzMace9XqtXrl1dfy/v5KyJ3qYxVj7hQ7x5o71s6QnI+3fFSy4O8pefLJjTrtfb+vtes25D1T31CnXdndhz7PtneoPs+DmjHOhtxN7vLupnMauVPsHHI3ndPInWLnkLvpnEbuFDsXK9bO5I5jNuTuFHPH2hmIyaAHJc2szsz+yczuNrMTzOz/mtlzZrbEzMYWu3zUqKO0ZPFcfenLt+j11/flPWfW/8zTfF+GHuNsyN3kLu9uOhc2G3I3nQubDbmbzoXNhtxN58JmQ+6mc2GzIXfTubDZYsXamdxxzIbcnWLuWDsDMcl1puR8Sa2Sdkl6XNKvJX1E0ipJ3xloyMxmmVmzmTX39Ow/7PfU1NTo/sVzdd99P9bSpQ8VFLo926FxjfWHPm9sGKuOjr1VOxtyN7nLu5vOaeROsXPI3XROI3eKnUPupnMauVPsXKxYO5M7jtmQu1PMHWtnICa5Dkq+y92/6e63SzrW3e9w953u/k1JJw805O5z3H2iu0/MZEYd9nvmzrlTbVte0NfvmlNw6PXNLRo//hQ1NY1TbW2tZsyYrgeXrazaWXKTu9Sz5I5nltzxzJI7nllyxzNL7nhmY85djFg7kzuOWXLHMxt6NxCLmhz39z1o+f1B7ivIB95/hq6aeZmefa5VzesP/ov1la/crocefiyv+e7ubl13/c1asXyhRmQymr9gsVpbn6/aWXKTu9Sz5I5nltzxzJI7nllyxzNL7nhmY8597z136/zzztaYMcdrx4vNuvW22Zo3f1FF5071sYoxd4qdY80da2dIPRV/eRe8yQZ7XwIzu03S37v7vrd9fbyk2939slwLakY28GwAAAAAAAAYRl0H2vu/+ST0+aZPcByqj+/uuL9inyeDninp7l/t+7mZnSNpkqRN+RyQBAAAAAAAAIC3y3X17XV9bn9O0rckHSPpFjO7qcTZAAAAAAAAAFShXO8LWdvn9ixJF7n7rZImS7qyZKkAAAAAAAAAVK2cF7oxs+N08OClufvLkuTu+82sq+TpAAAAAAAAAFSdXAclR0t6WpJJcjOrc/c9ZnZ079cAAAAAAACAitATOgDylutCN00D3NUj6dJhTwMAAAAAAACg6uU6U/Kw3P0NSduHOQsAAAAAAACABOS60A0AAAAAAAAADCsOSgIAAAAAAAAoqyG9fBsAAAAAAACoNC4PHQF5Cnam5Nw5d2p3dqNaNjw6pPkpky/Q5k1Pakvrat14w7VVPxtyN7njyZ1i55C76ZxG7hQ7h9xN5zRyx9qZv7/G81ilmDvFziF30zmN3LF2BmJh7qU9glwzsuGwC84950zt27df8+bdpdMmXFjQz8xkMmrbvEoXX3K5stkOrXlqhWZedY3a2rZW5Sy5yU3nyttN5zRyp9g51twpdo41d6ydJf7+GstjlWLuFDvHmjvFzrHmjqFz14F2yytMYq5uuoxTJfv45x0/rNjnScFnSprZScOxeNXqtXrl1deGNDvpjAnatm2Htm/fqc7OTi1Z8oCmTZ1StbPkJnepZ8kdzyy545kldzyz5I5nNvRu/v4ax2OVYu4UO8eaO8XOseaOtTMQk0EPSprZ8W/7OEHSOjM7zsyOL1PGfuob6rQru/vQ59n2DtXX11XtbMjd5C7vbjqnkTvFziF30zmN3Cl2Drk7xc7FivH3HetjlWLuFDuH3E3nNHLH2hmISa4L3fxC0s/f9rUGSc9IcknvOdyQmc2SNEuSbMRoZTKjiozZ7+f3+1q+L0OPcTbkbnKXdzedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd6fYuVgx/r5jfaxSzJ1i55C76VzYbMjdKXaG1BM6APKW6+XbN0r6D0nT3P0Udz9FUrb39mEPSEqSu89x94nuPnG4D0hKUnu2Q+Ma6w993tgwVh0de6t2NuRucpd3N53TyJ1i55C76ZxG7hQ7h9ydYudixfj7jvWxSjF3ip1D7qZzGrlj7QzEZNCDku4+W9LVkr5qZv9oZsdI4a+tvr65RePHn6KmpnGqra3VjBnT9eCylVU7S25yl3qW3PHMkjueWXLHM0vueGZD7y5GjL/vWB+rFHOn2DnW3Cl2jjV3rJ2BmOR6+bbcPSvpE2Y2VdJPJR01HIvvvedunX/e2Roz5njteLFZt942W/PmL8prtru7W9ddf7NWLF+oEZmM5i9YrNbW56t2ltzkLvUsueOZJXc8s+SOZ5bc8cyG3s3fX+N4rFLMnWLnWHOn2DnW3LF2BmJiBb4nwrmSzpe0zt3zOkxfM7Ih+JmVAAAAAAAA1aTrQHv/N5+EPtN0Gceh+vjejh9W7PMk19W31/W5/TlJ35A0QtItZnZTibMBAAAAAAAAqEK5Xr5d2+f2LEmT3f1lM5staY2k20uWDAAAAAAAACiAh78UCvKU66BkxsyO08EzKs3dX5Ykd99vZl0lTwcAAAAAAACg6uQ6KDla0tOSTJKbWZ277zGzo3u/BgAAAAAAAAAFGfSgpLs3DXBXj6RLhz0NAAAAAAAAgKqX60zJw3L3NyRtH+YsAAAAAAAAABIwpIOSAAAAAAAAQKXpCR0AecuEDgAAAAAAAAAgLRyUBAAAAAAAAFBWwQ5KTpl8gTZvelJbWlfrxhuuLet8jLMhd5M7ntzFzM6dc6d2ZzeqZcOjBc0Nx24eqzQ6h9xN5zRyp9g55G46p5E7xc4hd9M5jdwpdg65O8XOQCzM3Uu6oGZkQ78FmUxGbZtX6eJLLlc226E1T63QzKuuUVvb1rx+ZjHzMc6Sm9zl6HzuOWdq3779mjfvLp024cK8Ziohd4y/7xQ7x5o7xc6x5k6xc6y5U+wca+4UO8eaO8XOseZOsXOsuWPo3HWg3fIKk5hPNn28tAe6IrNgx79W7PMkyJmSk86YoG3bdmj79p3q7OzUkiUPaNrUKWWZj3GW3OQu9awkrVq9Vq+8+lre318puWP8fafYOdbcKXaONXeKnWPNnWLnWHOn2DnW3Cl2jjV3ip1jzR1rZ0g97nz0+ahkQQ5K1jfUaVd296HPs+0dqq+vK8t8jLMhd5O7vLtDdi4GjxWdK3k3ndPInWLnkLvpnEbuFDuH3E3nNHKn2Dnk7hQ7AzEZ9KCkmV3c5/ZoM/sXM3vWzBaa2buGutSs/5mjhbyMvJj5GGdD7iZ3eXeH7FwMHqvyzYbcnWLuFDuH3E3nwmZD7qZzYbMhd9O5sNmQu+lc2GzI3XQubDbk7hQ7AzHJdabk3/a5faekDklTJa2X9N2Bhsxslpk1m1lzT8/+fve3Zzs0rrH+0OeNDWPV0bE379DFzMc4G3I3ucu7O2TnYvBY0bmSd9M5jdwpdg65m85p5E6xc8jddE4jd4qdQ+5OsTMQk0Jevj3R3W9295+7+9ckNQ30je4+x90nuvvETGZUv/vXN7do/PhT1NQ0TrW1tZoxY7oeXLYy7yDFzMc4S25yl3q2WDxWdK7k3XROI3eKnWPNnWLnWHOn2DnW3Cl2jjV3ip1jzR1rZyAmNTnuP8nMviTJJL3TzMx/e87wkN+Psru7W9ddf7NWLF+oEZmM5i9YrNbW58syH+Msucld6llJuveeu3X+eWdrzJjjtePFZt1622zNm7+o4nPH+PtOsXOsuVPsHGvuFDvHmjvFzrHmTrFzrLlT7Bxr7hQ7x5o71s6QeKF7PGyw9yXz5hVrAAAgAElEQVQws1ve9qVvu/vLZlYn6e/d/c9yLagZ2cDzAQAAAAAAYBh1HWjv/+aT0MyT/5jjUH3c+/MfVezzZNAzJd391r6fm9k5ZnaVpE35HJAEAAAAAAAAgLfLdfXtdX1uXy3pW5KOkXSLmd1U4mwAAAAAAAAAqlCu94Ws7XP785Iu6j17crKkK0uWCgAAAAAAAEDVynWhm4yZHaeDBy/N3V+WJHffb2ZdJU8HAAAAAAAAoOrkOig5WtLTOnj1bTezOnffY2ZH934NAAAAAAAAqAg9XH87GrkudNM0wF09ki4d9jQAAAAAgAFlbOjnhvQ4/6EOAKgcuc6UPCx3f0PS9mHOAgAAAAAAACABuS50AwAAAAAAAADDioOSAAAAAAAAAMpqSC/fBgAAAAAAACqNc6GbaAQ7U3LunDu1O7tRLRseHdL8lMkXaPOmJ7WldbVuvOHaqp8NuZvc8eQuZjbWfydD7qZzGrlT7BxyN53TyJ1i55C76Vy9ued8d7ayu1q04ZlHDn3t43/8EbVseFS/+fVOnX76H1Rk7uGaDbmbzuXLzX+nDG03EAPzEl+BrWZkw2EXnHvOmdq3b7/mzbtLp024sKCfmclk1LZ5lS6+5HJlsx1a89QKzbzqGrW1ba3KWXKTuxydY/x3MuRuOqeRO8XOseZOsXOsuVPsHGvuFDvHkLvv1bfPefPvb9/7uiac/keSpN/7vfHq6enR3d+6Q//7pr/WM888e+j7B7r6dqV3rrTddC5vbv47ZeDZrgPtNsCPSNrlJ3+MUyX7uO/nSyv2eRLsTMlVq9fqlVdfG9LspDMmaNu2Hdq+fac6Ozu1ZMkDmjZ1StXOkpvcpZ6V4vx3MuRuOqeRO8XOseZOsXOsuVPsHGvuFDvHlnv16rV69W1/f9uy5QU9//yLee0MlXs4ZmPNnWLnYuf575TCdwOxKPigpJmdUIoghahvqNOu7O5Dn2fbO1RfX1e1syF3k7u8u0N2LgaPFZ0reTed08idYueQu+mcRu4UO4fcneLf5VJ8rFLsPBzzQxVr55B/HgDlNOhBSTO73czG9N6eaGYvSlprZj83s/PLkvDwufp9Ld+Xocc4G3I3ucu7O2TnYvBYlW825O4Uc6fYOeRuOhc2G3I3nQubDbmbzoXNhtyd4t/lUnysUuw8HPNDFWvnkH8eVIMePt7yUclynSn5EXf/Re/tf5D0J+4+XtJFku4caMjMZplZs5k19/TsH6aov9We7dC4xvpDnzc2jFVHx96qnQ25m9zl3R2yczF4rOhcybvpnEbuFDuH3E3nNHKn2Dnk7hT/LpfiY5Vi5+GYH6pYO4f88wAop1wHJWvNrKb39pHuvl6S3P15SUcMNOTuc9x9ortPzGRGDVPU31rf3KLx409RU9M41dbWasaM6Xpw2cqqnSU3uUs9WyweKzpX8m46p5E7xc6x5k6xc6y5U+wcc+5ixNo5xtwpdh6O+aGKtXPIPw+AcqrJcf/dklaY2e2SHjazr0v6kaQLJbUUs/jee+7W+eedrTFjjteOF5t1622zNW/+orxmu7u7dd31N2vF8oUakclo/oLFam19vmpnyU3uUs9Kcf47GXI3ndPInWLnWHOn2DnW3Cl2jjV3ip1jy33P97+l83r//vbitvW67a/v1KuvvKavfe2vdeKJx+uBpQu08dnN+uhHZ1ZU7uGYjTV3ip2Lnee/UwrfDcTCcr0vgZldIOl/SjpVBw9i7pK0VNI8d+/MtaBmZANvfAAAAAAAwyBj/d9rLl89vCcdUFW6DrQP/Q+EKvYnJ3+MP+z6WPzzpRX7PMl1pqTc/QlJT0iSmZ0raZKkHfkckAQAAAAAAACAtxv0oKSZrXP3Sb23r5Z0rQ6eJXmLmZ3u7reXISMAAAAAAACQU484UTIWOS900+f25yVNdvdbJU2WdGXJUgEAAAAAAACoWrlevp0xs+N08OClufvLkuTu+82sq+TpAAAAAAAAAFSdXAclR0t6WpJJcjOrc/c9ZnZ079cAAAAAAGXCxWoAANVi0IOS7t40wF09ki4d9jQAAAAAAAAAql7Oq28fjru/IWn7MGcBAAAAAAAAhsy50E00cl3oBgAAAAAAAACGFQclAQAAAAAAAJQVByUBAAAAAAAAlFWwg5JTJl+gzZue1JbW1brxhmvLOh/jbMjd5I4nd4qdQ+6mcxq5U+wccjed08idYueQu+mcRu5iZufOuVO7sxvVsuHRguaGYzePVRqdQ+5OsTMQC3Mv7RuA1oxs6Lcgk8mobfMqXXzJ5cpmO7TmqRWaedU1amvbmtfPLGY+xllyk5vOlbebzmnkTrFzrLlT7Bxr7hQ7x5o7xc6x5i6287nnnKl9+/Zr3ry7dNqEC/OaqYTcMf6+U+wca+4YOncdaLe8wiTmj0+expVu+vjRz/+tYp8nQc6UnHTGBG3btkPbt+9UZ2enlix5QNOmTinLfIyz5CZ3qWfJHc8sueOZJXc8s+SOZ5bc8cySO55ZSVq1eq1eefW1vL+/UnLH+PtOsXOsuWPtDMRk0IOSZvaMmd1sZr8znEvrG+q0K7v70OfZ9g7V19eVZT7G2ZC7yV3e3XROI3eKnUPupnMauVPsHHI3ndPInWLnkLtDdi4GjxWdK3l3ip2BmOQ6U/I4ScdKetzM1pnZX5hZfa4famazzKzZzJp7evYf7v5+XyvkZeTFzMc4G3I3ucu7m86FzYbcTefCZkPupnNhsyF307mw2ZC76VzYbMjddC5sNuTukJ2LwWNVvtmQu1PMHWtnICa5Dkq+6u5fdvd3S/pfkn5X0jNm9riZzRpoyN3nuPtEd5+YyYzqd397tkPjGn97bLOxYaw6OvbmHbqY+RhnQ+4md3l30zmN3Cl2DrmbzmnkTrFzyN10TiN3ip1D7g7ZuRg8VnSu5N0pdgZikvd7Srr7Kne/RlKDpDsknT3UpeubWzR+/Clqahqn2tpazZgxXQ8uW1mW+RhnyU3uUs+SO55ZcsczS+54Zskdzyy545kldzyzxeKxonMl706xMxCTmhz3P//2L7h7t6SHez+GpLu7W9ddf7NWLF+oEZmM5i9YrNbWfqtKMh/jLLnJXepZcsczS+54Zskdzyy545kldzyz5I5nVpLuvedunX/e2Roz5njteLFZt942W/PmL6r43DH+vlPsHGvuWDuDl7rHxAp8T4RzJE2StMnd8zpMXzOygWcDAAAAAADAMOo60N7/zSehS989leNQffx454MV+zzJdfXtdX1uf07StyQdI+kWM7upxNkAAAAAAAAAVKFc7ylZ2+f2LEkXufutkiZLurJkqQAAAAAAAABUrVzvKZkxs+N08OClufvLkuTu+82sq+TpAAAAAAAAAFSdXAclR0t6WpJJcjOrc/c9ZnZ079cAAAAAAACAitAj3lIyFoMelHT3pgHu6pF06bCnAQAAAAAAAFD1cp0peVju/oak7cOcBQAAAAAAAEACcl3oBgAAAAAAAACGFQclAQAAAAAAAJTVkF6+DQAAAAAAAFSantABkLdgZ0pOmXyBNm96UltaV+vGG64t63yMsyF3kzue3Cl2DrmbzmnkTrFzyN10TiN3ip1D7qZzGrlT7BxyN53Ll3vunDu1O7tRLRseLXhnMXuLnQ29G4iBuZf2Uuk1Ixv6LchkMmrbvEoXX3K5stkOrXlqhWZedY3a2rbm9TOLmY9xltzkpnPl7aZzGrlT7Bxr7hQ7x5o7xc6x5k6xc6y5U+wca+4UOxc7f+45Z2rfvv2aN+8unTbhwrz2DcfeGB6rrgPtlleYxEx990dLe6ArMg/uXFaxz5MgZ0pOOmOCtm3boe3bd6qzs1NLljygaVOnlGU+xllyk7vUs+SOZ5bc8cySO55ZcsczS+54Zskdzyy545lNNfeq1Wv1yquv5b1ruPbG+lgBMQlyULK+oU67srsPfZ5t71B9fV1Z5mOcDbmb3OXdTec0cqfYOeRuOqeRO8XOIXfTOY3cKXYOuZvOaeROsfNwzA9VrJ1D/b6Achv0oKSZTTSzx83sXjMbZ2Y/NbNfmtl6M5sw1KVm/c8cLeRl5MXMxzgbcje5y7ubzoXNhtxN58JmQ+6mc2GzIXfTubDZkLvpXNhsyN10Lmw25G46FzYbcjedC5sdjvmhirVzqN8XUG65rr79bUm3SDpW0v8n6S/c/SIzu7D3vrMPN2RmsyTNkiQbMVqZzKi33N+e7dC4xvpDnzc2jFVHx968QxczH+NsyN3kLu9uOqeRO8XOIXfTOY3cKXYOuZvOaeROsXPI3XROI3eKnYdjfqhi7Rzq91UtXBzAjUWul2/XuvtD7n6fJHf3H+rgjUclvWOgIXef4+4T3X3i2w9IStL65haNH3+KmprGqba2VjNmTNeDy1bmHbqY+RhnyU3uUs+SO55ZcsczS+54Zskdzyy545kldzyz5I5nNtXcxYi1c6jfF1Buuc6U/I2ZTZY0WpKb2cfcfamZnS+pe6hLu7u7dd31N2vF8oUakclo/oLFam19vizzMc6Sm9ylniV3PLPkjmeW3PHMkjueWXLHM0vueGbJHc9sqrnvvedunX/e2Roz5njteLFZt942W/PmLyr53lgfKyAmNtj7EpjZaZLukNQj6S8k/U9JfyZpt6RZ7v7vuRbUjGzgvFkAAAAAAIBh1HWgvf+bT0IfffdHOA7Vx7Kdyyv2eTLomZLu3iLp0HXnzeyHknZKei6fA5IAAAAAAAAA8HaDHpQ0s3XuPqn39uckXSNpqaRbzOx0d7+9DBkBAAAAAACAnHq40E00cl7ops/tWZImu/utkiZLurJkqQAAAAAAAABUrVwXusmY2XE6ePDS3P1lSXL3/WbWVfJ0AAAAAAAAAKpOroOSoyU9Lcl08Orbde6+x8yO7v0aAAAAAAAAABQk14Vumga4q0fSpcOeBgAAAABQdYo5o4V3hwOA6pTrTMnDcvc3JG0f5iwAAAAAAADAkLnzf2XEIteFbgAAAAAAAABUITMbZ2aPm1mbmW02s+t6v368mf3UzLb2/u9xvV83M/uGmb1gZs+a2elD3c1BSQAAAAAAACBNXZL+l7v/d0lnSbrWzN4r6SZJj7r770p6tPdzSfqwpN/t/Zgl6Z+GupiDkgAAAAAAAECC3L3D3Z/pvf26pDZJDZKmS1rQ+20LJH2s9/Z0Sd/3g9ZIOtbMxg5ld7CDknPn3Knd2Y1q2fDokOanTL5Amzc9qS2tq3XjDddW/WzI3eSOJ3eKnUPupnMauVPsHHI3ndPInWLnkLvpnEbuWDtf9+efU0vLY9qw4VHdc8/dOuKII8q2O8bZkLtTzB1rZ6AvM5tlZs19PmYN8r1NkiZIWivpXe7eIR08cCnppN5va5C0q89YtvdrhWcr9RuA1oxsOOyCc885U/v27de8eXfptAkXFvQzM5mM2jav0sWXXK5stkNrnlqhmVddo7a2rVU5S25y07nydtM5jdwpdo41d4qdY82dYudYc6fYOdbcMXQ+3NW36+vr9MTjP9YfvO+D+s1vfqOFC7+jhx96TN+/Z8lbvm+g/2KN8fcdw2NF7ng6dx1oL+bC9lVryrgPc6WbPn6y66G8nidmdrSkn0n6G3f/kZm95u7H9rn/VXc/zsyWS/o7d1/d+/VHJd3o7k8Xmi3YmZKrVq/VK6++NqTZSWdM0LZtO7R9+051dnZqyZIHNG3qlKqdJTe5Sz1L7nhmyR3PLLnjmSV3PLPkjmeW3PHMht5dU1OjI498h0aMGKGjjjxSuzv2VHzuFB+rFHPH2hkYCjOrlfSvkn7g7j/q/fLeN1+W3fu/L/V+PStpXJ/xRkm7h7I3yveUrG+o067sb/tm2ztUX19XtbMhd5O7vLvpnEbuFDuH3E3nNHKn2DnkbjqnkTvFziF3p9h59+49+trXvqMXt63Trp0b9Ktf/UqPPPJkxedO8bFKMXesnYFCmZlJ+hdJbe7+j33u+jdJn+y9/UlJD/T5+p/1XoX7LEm/fPNl3oUa9KCkmR1tZrf1XhL8l2b2spmtMbNP5Zg79Hr1np79Q8k1qIO/r7fK92XoMc6G3E3u8u6mc2GzIXfTubDZkLvpXNhsyN10Lmw25G46FzYbcjedC5sNuTvFzsceO1pTp07R7556lt598uk6atRRuuKKP85rttjdMc6G3J1i7lg7A0PwAUlXSfqQmbX0flwi6XZJF5nZVkkX9X4uSSskvSjpBUlzJV0z1MU1Oe7/gaQfS5oiaYakUZIWSbrZzE519/9zuCF3nyNpjjTwe0oWoz3boXGN9Yc+b2wYq46OvVU7G3I3ucu7m85p5E6xc8jddE4jd4qdQ+6mcxq5U+wccneKnS+88Fzt2LFTv/jFK5KkpUsf0tlnTdTChT/KMRk2d4qPVYq5Y+0MFKr3vSEHet/JfheB8YNHyIfl6ku5Xr7d5O7z3T3bewrnNHffKunTkvL/v7CG2frmFo0ff4qamsaptrZWM2ZM14PLVlbtLLnJXepZcsczS+54Zskdzyy545kldzyz5I5nNuTuXTvbNenM03Xkke+QJH3og+doy5b8LiISMneKj1WKuWPtDMQk15mS+83sHHdfbWZTJb0iSe7eY4c7n7gA995zt84/72yNGXO8drzYrFtvm6158xflNdvd3a3rrr9ZK5Yv1IhMRvMXLFZr6/NVO0tucpd6ltzxzJI7nllyxzNL7nhmyR3PLLnjmQ25e936DfrRj5Zr3bqfqKurSxtbNmvuP/+g4nOn+FilmDvWzpBcvNQ9FjbY+xKY2ft08PXhp0raJOkz7v68mZ0o6XJ3/0auBaV4+TYAAAAAIB7FnNHCf1ACh9d1oL2ok8Wq1eRxF/PHRh8rdz1csc+TQc+UdPeNkia9+bmZnWNmH5W0KZ8DkgAAAAAAAADwdrmuvr2uz+2rJX1L0jGSbjGzm0qcDQAAAAAAAEAVynWhm9o+tz8v6SJ3v1XSZElXliwVAAAAAAAAgKqV60I3GTM7TgcPXpq7vyxJ7r7fzLpKng4AAAAAAADIUw/vRBuNXAclR0t6Wgffl9jNrM7d95jZ0crzvYp5Q2OgsmRs6P9W9gxyYSwAAABgIMX8LbImM2LIs1093UVsBgCUUq4L3TQNcFePpEuHPQ0AAAAAAACAqpfrTMnDcvc3JG0f5iwAAAAAAAAAEpDrQjcAAAAAAAAAMKyGdKYkAAAAAAAAUGmcayFEI9iZktf9+efU0vKYNmx4VPfcc7eOOOKIguanTL5Amzc9qS2tq3XjDddW/WzI3eSOJ3exnb/whc9qwzOPqGXDo/riFz9btt08Vml0DrmbzmnkTrFzyN10TiN3ip1D7qZz7tnGxrH6yU8WqaXlUT3zzCO69trPSJKOO260li//gTZt+pmWL/+Bjj12dEXlHq7ZYuYbG+v1yMr79dyzT2hjy2P64hfK9/f9YudjnA29G4iBlfoIcu3Ihn4L6uvr9MTjP9YfvO+D+s1vfqOFC7+jhx96TN+/Z8lbvm+gZJlMRm2bV+niSy5XNtuhNU+t0MyrrlFb29aceWKcJTe5h3N2oKtv/4/3/jfde+/dev8HPqoDBzq1bNm9+uIX/49eeOG3bx870NW3eazoXK25U+wca+4UO8eaO8XOseZOsXOsuau9c9+rb9fVnaS6upPU0rJJRx89Sk89tVyf+MTndNVVn9Crr76m2bO/rS9/+Rode+xo3Xzz3w149e1K71yK+bq6kzS27iRt6P3drVv7sD5+2WcqPneMs+Xa3XWg/fD/cZe4Cxsnc6pkH49mV1bs8yTYmZI1NTU68sh3aMSIETrqyCO1u2NP3rOTzpigbdt2aPv2ners7NSSJQ9o2tQpVTtLbnKXelaSfu/3xmvt2g369a9/o+7ubq16co2mT7+44nPH+PtOsXOsuVPsHGvuFDvHmjvFzrHmTrFzrLlT6rxnz0tqadkkSdq3b7+2bHlBDQ11mjr1It177w8lSffe+0NNmza5onIPx2yx83v2vKQNb/ndbVVDfV3F545xNvRuIBZBDkru3r1HX/vad/TitnXatXODfvWrX+mRR57Me76+oU67srsPfZ5t71B9nn+Yxjgbcje5y7s7ZOfNrf+hc889U8cff6yOPPIduvjiD6mxsb7ic8f4+06xc8jddE4jd4qdQ+6mcxq5U+wccjedC8998smNOu20/6F16zbopJPGaM+elyQdPPh24oljKjJ3yMeqr5NPbtRp7/t9rV23oSx7Y/x9x9oZiMmgByXNbLSZ3W5mW8zsP3s/2nq/duxQlx577GhNnTpFv3vqWXr3yafrqFFH6Yor/jjveTvMy0/zfRl6jLMhd5O7vLtDdt6y5QX9w+xv66EV92nZg/fq2eda1dXVVfLdPFaFzYbcnWLuFDuH3E3nwmZD7qZzYbMhd9O5sNmQu+lc2OyoUUfpvvu+qy9/+Va9/vq+vGaGa3esj9WbRo06SksWz9WXvnxL3r+7FJ9jsXYGYpLrTMklkl6VdIG7n+DuJ0j6YO/X7h9oyMxmmVmzmTX39Ozvd/+FF56rHTt26he/eEVdXV1auvQhnX3WxLxDt2c7NK7PGVyNDWPV0bG3amdD7iZ3eXeH7CxJ8+cv0plnfVgX/tFlevWV197yfpKVmjvG33eKnUPupnMauVPsHHI3ndPInWLnkLvpnP9sTU2NFi36rhYt+rEeeOBhSdJLL/1CdXUnSTr43okvv/yListd7OxwzNfU1Oj+xXN1330/1tKlD5Vtb4y/71g7Q+qR89Hno5LlOijZ5O53uPuhN3x09z3ufoekdw805O5z3H2iu0/MZEb1u3/XznZNOvN0HXnkOyRJH/rgOdqyJb83i5Wk9c0tGj/+FDU1jVNtba1mzJiuB5etrNpZcpO71LNvOvHEEyRJ48bV62Mf+7AWL36g4nPH+PtOsXOsuVPsHGvuFDvHmjvFzrHmTrFzrLlT6/zd7/6Dtmx5Qd/4xj8f+tqyZT/VzJmXSZJmzrxMDz7404rLXezscMzPnXOn2ra8oK/fNSfvmdC5Y5wNvRuIRU2O+39uZjdKWuDueyXJzN4l6VOSdg116br1G/SjHy3XunU/UVdXlza2bNbcf/5B3vPd3d267vqbtWL5Qo3IZDR/wWK1tj5ftbPkJnepZ9+0eNEcnXDCcers7NKfX/dXeu21X1Z87hh/3yl2jjV3ip1jzZ1i51hzp9g51twpdo41d0qd3//+M3TllR/Xc8+1ae3ag2f6ffWrf6/Zs7+tH/zgn/SpT/2Jdu3arSuu+H8qKvdwzBY7/4H3n6GrZl6mZ59rVfP6gwe4vvKV2/XQw49VdO4YZ0PvBmJhg70vgZkdJ+kmSdMlvUuSS9or6d8k3eHur+RaUDuyYcjnilb2SaZAnDLW//1J8tXD+5gAAACgzGoyI4Y829XTPYxJgMrSdaB96P9xV8U+2HgR/+Hax+PZn1bs8yTXy7dPlfS37v57khokfUvStt77+NMdAAAAAAAAQMFyHZT8nqQ3r1TzdUnHSLpd0huS5pUwFwAAAAAAAFAQ55+3/FPJcr2nZMbdu3pvT3T303tvrzazlhLmAgAAAAAAAFClcp0pucnMPt17e6OZTZQkMztVUmdJkwEAAAAAAACoSrkOSl4t6Xwz2ybpvZKeMrMXJc3tvQ8AAAAAAAAACjLoy7fd/ZeSPmVmx0h6T+/3Z919b74LKvvV60B6uII2AAAAYsIVtAGgOuV6T0lJkru/LmljibMAAAAAAAAAQ8aJOPHI9fJtAAAAAAAAABhWHJQEAAAAAAAAUFYclAQAAAAAAABQVsEOSk6ZfIE2b3pSW1pX68Ybri3rfIyzIXeTO57cKXYOuZvOaeROsXPI3XROI3eKnUPupnMauVPsHHI3ndPIHWtnIBbmJX4D0JqRDf0WZDIZtW1epYsvuVzZbIfWPLVCM6+6Rm1tW/P6mcXMxzhLbnLTufJ20zmN3Cl2jjV3ip1jzZ1i51hzp9g51twpdo41d4qdY80dQ+euA+2WV5jEnNdwIVe66ePJ9kcr9nkS5EzJSWdM0LZtO7R9+051dnZqyZIHNG3qlLLMxzhLbnKXepbc8cySO55ZcsczS+54Zskdzyy545kldzyz5I5nNvTu1Dkfb/moZEEOStY31GlXdvehz7PtHaqvryvLfIyzIXeTu7y76ZxG7hQ7h9xN5zRyp9g55G46p5E7xc4hd9M5jdwpdg65O8XOQEyGfFDSzB4qYrbf1wp5GXkx8zHOhtxN7vLupnNhsyF307mw2ZC76VzYbMjddC5sNuRuOhc2G3I3nQubDbmbzoXNhtxN58JmQ+5OsTMQk5rB7jSz0we6S9Jpg8zNkjRLkmzEaGUyo95yf3u2Q+Ma6w993tgwVh0de/OMXNx8jLMhd5O7vLvpnEbuFDuH3E3nNHKn2DnkbjqnkTvFziF30zmN3Cl2Drk7xc5ATHKdKble0mxJd77tY7akYwcacvc57j7R3Se+/YCkJK1vbtH48aeoqWmcamtrNWPGdD24bGXeoYuZj3GW3OQu9Sy545kldzyz5I5nltzxzJI7nllyxzNL7nhmyR3PbOjdQCwGPVNSUpukz7t7v8tDmdmuoS7t7u7WddffrBXLF2pEJqP5CxartfX5sszHOEtucpd6ltzxzJI7nllyxzNL7nhmyR3PLLnjmSV3PLPkjmc29O7U9VT85V3wJhvsfQnM7DJJz7n7fxzmvo+5+9JcC2pGNvBsAAAAAAAAGEZdB9r7v/kk9IGGD3Ecqo9/b3+sYp8nuc6U3CWpQ5LM7EhJfylpgqRWSX9b2mgAAAAAAAAAqlGu95T8nqQ3em/fJemdku7o/dq8EuYCAAAAAAAAUKVynSmZcfeu3tsT3f3Nq3GvNrOWEuYCAAAAAAAAUKVyHZTcZGafdvd5kjaa2UR3bzazUyV1liEfAAAAAAAAkBcudBOPXC/fvlrS+Wa2TdJ7JT1lZi9Kmtt7H0Q7nxMAACAASURBVAAAAAAAAAAUZNAzJd39l5I+ZWbHSHpP7/dn3X1vOcIBAAAAAAAAqD65Xr4tSXL31yVtLHEWAAAAAAAAAAnI9fJtAAAAAAAAABhWHJQEAAAAAAAAUFZ5vXwbAAAAAAAAqHTuXH07FkHOlGxsrNcjK+/Xc88+oY0tj+mLX/hswT9jyuQLtHnTk9rSulo33nBt1c+G3E3ueHKn2DnkbjqnkTvFziF30zmN3Cl2DrmbzmnkTrFzyN10TiN3rJ2BWFipjyDXjGzot6Cu7iSNrTtJG1o26eijR2nd2of18cs+o7a2rXn9zEwmo7bNq3TxJZcrm+3QmqdWaOZV1+Q1H+MsuclN58rbTec0cqfYOdbcKXaONXeKnWPNnWLnWHOn2DnW3Cl2jjV3DJ27DrRbXmESc1b9BZwq2cea3U9U7PMkyJmSe/a8pA0tmyRJ+/bt15YtW9VQX5f3/KQzJmjbth3avn2nOjs7tWTJA5o2dUrVzpKb3KWeJXc8s+SOZ5bc8cySO55ZcsczS+54Zskdzyy545kNvRuIxaAHJc3snWb2d2Z2j5ld8bb7vj0cAU4+uVGnve/3tXbdhrxn6hvqtCu7+9Dn2fYO1ed5UDPG2ZC7yV3e3XROI3eKnUPupnMauVPsHHI3ndPInWLnkLvpnEbuFDuH3J1iZyAmuS50M0/SVkn/KukzZvZxSVe4+39JOmugITObJWmWJNmI0cpkRh32+0aNOkpLFs/Vl758i15/fV/eoc36n3ma78vQY5wNuZvc5d1N58JmQ+6mc2GzIXfTubDZkLvpXNhsyN10Lmw25G46FzYbcjedC5sNuZvOhc2G3J1iZ0g94ncVi1wv3/4dd7/J3Ze6+zRJz0h6zMxOGGzI3ee4+0R3nzjQAcmamhrdv3iu7rvvx1q69KGCQrdnOzSusf7Q540NY9XRsbdqZ0PuJnd5d9M5jdwpdg65m85p5E6xc8jddE4jd4qdQ+6mcxq5U+wccneKnYGY5DooeYSZHfoed/8bSXMkPSlp0AOTucydc6fatrygr981p+DZ9c0tGj/+FDU1jVNtba1mzJiuB5etrNpZcpO71LPkjmeW3PHMkjueWXLHM0vueGbJHc8sueOZJXc8s6F3A7HI9fLtByV9SNIjb37B3ReY2V5J3xzq0g+8/wxdNfMyPftcq5rXH/wX6ytfuV0PPfxYXvPd3d267vqbtWL5Qo3IZDR/wWK1tj5ftbPkJnepZ8kdzyy545kldzyz5I5nltzxzJI7nllyxzNL7nhmQ+8GYmGDvS+BmZ0paYu7/9LMjpT0l5ImSGqV9Lfu/stcC2pGNvBifgAAAAAAgGHUdaC9/5tPQpPqz+c4VB/rdv+sYp8nuV6+/T1J+3tv3yXpnZLukPSGDl4EBwAAAAAAAKgIzj9v+aeS5Xr5dsbdu3pvT3T303tvrzazlhLmAgAAAAAAAFClcp0pucnMPt17e6OZTZQkMztVUmdJkwEAAAAAAACoSrkOSl4t6Xwz2ybpvZKeMrMXJc3tvQ8AAAAAAAAACjLoy7d7L2TzKTM7RtJ7er8/6+57yxEOAAAAAAAAQPXJ9Z6SkiR3f13SxhJnAQAAAAAAAIbMvbIv7oLfyvXybQAAAAAAAAAYVhyUBAAAAAAAAFBWHJQEAAAAAAAAUFbBDkpOmXyBNm96UltaV+vGG64t63yMsyF3kzue3Cl2Drk7xc5z59yp3dmNatnwaEFzw7E7xtmQu1PMnWLnkLvpXL7csf7ZG3J3irlT7BxyN53TyB1rZyAWVuo3AK0Z2dBvQSaTUdvmVbr4ksuVzXZozVMrNPOqa9TWtjWvn1nMfIyz5CY3nStvd4qdJencc87Uvn37NW/eXTptwoV5zYTOneJjlWLuFDvHmjvFzsXOx/hnb8jdKeZOsXOsuVPsHGvuGDp3HWi3vMIkZuLYc7nSTR/NHasq9nkS5EzJSWdM0LZtO7R9+051dnZqyZIHNG3qlLLMxzhLbnKXepbc8cyG3r1q9Vq98upreX9/JeRO8bFKMXeKnWPNnWLnYudj/LM35O4Uc6fYOdbcKXaONXesnSH1yPno81HJghyUrG+o067s7kOfZ9s7VF9fV5b5GGdD7iZ3eXfTOY3csXYuVoy/71gfqxRzp9g55G46lzd3MWLtTG46V/JuOqeRO9bOQEwGPShpZnVm9k9mdreZnWBm/9fMnjOzJWY2dqhLzfqfOVrIy8iLmY9xNuRucpd3N50Lmw25O8XOxYrx9x3rY5Vi7hQ7h9xN58Jmh2N+qGLtTO7yzYbcnWLuFDuH3J1iZyAmuc6UnC+pVdIuSY9L+rWkj0haJek7Aw2Z2Swzazaz5p6e/f3ub892aFxj/aHPGxvGqqNjb96hi5mPcTbkbnKXdzed08gda+dixfj7jvWxSjF3ip1D7qZzeXMXI9bO5KZzJe+mcxq5Y+0MxCTXQcl3ufs33f12Sce6+x3uvtPdvynp5IGG3H2Ou09094mZzKh+969vbtH48aeoqWmcamtrNWPGdD24bGXeoYuZj3GW3OQu9Sy545kNvbsYMf6+Y32sUsydYudYc6fYeTjmhyrWzuSmcyXvpnMauWPtDMSkJsf9fQ9afn+Q+wrS3d2t666/WSuWL9SITEbzFyxWa+vzZZmPcZbc5C71LLnjmQ29+9577tb5552tMWOO144Xm3XrbbM1b/6iis6d4mOVYu4UO8eaO8XOxc7H+GdvyN0p5k6xc6y5U+wca+5YO4OXusfEBnuwzOw2SX/v7vve9vXxkm5398tyLagZ2cCzAQAAAAAAYBh1HWjv/+aT0IS6D3Acqo8Ne/69Yp8nuc6UXK7eMyLN7EhJN0k6XQffZ/KzpY0GAAAAAAAAoBrlegn29yS90Xv7LkmjJd3R+7V5JcwFAAAAAAAAoErlfE9Jd+/qvT3R3U/vvb3azFpKmAsAAAAAAABAlcp1UHKTmX3a3edJ2mhmE9292cxOldRZhnwAAAAAAABAXnrEW0rGItfLt6+WdL6ZbZP0XklPmdmLkub23gcAAAAAAAAABRn0TEl3/6WkT5nZMZLe0/v9WXffm++CYi7xw7FtAAAAAAAAoPrkevm2JMndX5e0scRZAAAAAAAAACQg18u3AQAAAAAAAGBYcVASAAAAAAAAQFnl9fJtAAAAAAAAoNI5VyiJRrAzJUePfqcWLZqj5577mZ599gmddeYfFjQ/ZfIF2rzpSW1pXa0bb7i26mdD7iZ3PLlT7BxyN53TyJ1i55C76ZxG7hQ7h9xN5zRyp9g55G46p5E71s5ALMy9tEeQa0c2HHbB9/7l61q9eq2+N+8+1dbW/v/t3Xt03XWZ7/HPs5PdpK1tEcqhTdIrsc4IgxRTrCi2gLaoFHTGU2aGmRFHDmeNKOAwdJyxI96OB0cY0VmytEgpBwbaigr2AhaKYylC20BT6N3ebJOGYkUKtLpIk+f8QSyFptl7J9n7m+/+vl+u31pJ9n76fD7ZlYVf90WDBg3UgQMvveE+x0uWyWS0acNjuvDDf6Xm5lY9+cRS/c3fflqbNv0qZ54YZ8lNbjr3v910TiN3ip1jzZ1i51hzp9g51twpdo41d4qdY82dYudYc8fQ+fCrLZZXmMScMeI9PFXyKM8890S//XsS5JmSQ4a8Re9737s19457JUltbW3HHEh25+xJE7V9+y7t3LlbbW1tWrjwAV08Y3rZzpKb3MWeJXc8s+SOZ5bc8cySO55ZcsczS+54Zskdzyy545kNvRuIRcGHkmb2P3q7dPz4Mdq//7e6/Qff0prVP9P3v/dNDRo0MO/5mtoR2tO898j3zS2tqqkZUbazIXeTu7S76ZxG7hQ7h9xN5zRyp9g55G46p5E7xc4hd9M5jdwpdg65O8XOQEy6PZQ0sxPfdJ0kabWZvdXMTuzp0sqKCk2c+Gf6/vf/nyadPV0HDx7SrFmfyXve7Nhnnub7MvQYZ0PuJndpd9O5sNmQu+lc2GzI3XQubDbkbjoXNhtyN50Lmw25m86FzYbcTefCZkPupnNhsyF3p9gZUoc711FXf5brmZL7JT111NUoqVbS051fd8nMrjSzRjNr7Og4eMztzS2tam5u1eo1ayVJP/rxEk0888/yDt3S3KpRdTVHvq+rHanW1n1lOxtyN7lLu5vOaeROsXPI3XROI3eKnUPupnMauVPsHHI3ndPInWLnkLtT7AzEJNeh5CxJWyRd7O7j3H2cpObOr8cfb8jd57h7g7s3ZDKDj7l9377fqLl5ryZMOFWSdP7579OmTVvzDr2msUn19eM0duwoZbNZzZx5iRYtXla2s+Qmd7FnyR3PLLnjmSV3PLPkjmeW3PHMkjueWXLHM0vueGZD7wZiUdndje5+k5nNl/QtM9sj6QYd/0OxC3Lt5/5N/+/O/9SAAVnt2LlbV1zxj3nPtre365prZ2vpkntUkclo3p0LtHFjfoeaMc6Sm9zFniV3PLPkjmeW3PHMkjueWXLHM0vueGbJHc8sueOZDb0biIUV8J4GMyR9QdJYd8/7HVazA2p7fIjZv1/5DgAAAAAAEMbhV1uOffNJ6PRTJnOcdJT1+57st39Pun2mpJm9W9Imd39J0nJJ50p6xcy+Ienr7n6gBBkBAAAAAACAnJynuEUj13tKzpV0qPPrWyRlJX2p82d3FC8WAAAAAAAAgHLV7TMlJWXc/XDn1w3uflbn1yvNrKmIuQAAAAAAAACUqVzPlFxvZp/s/HqdmTVIkplNkNRW1GQAAAAAAAAAylKuZ0peIenbZjZb0n5JT3R+Cveeztty4pX8AAAAAACURrYi1//M715b++HcdwKAPtDtP606P8jmcjMbIml85/2b3X1fKcIBAAAAAAAAKD95/V8o7v6ypHVFzgIAAAAAAAD0WIfzmt1Y5HpPSQAAAAAAAADoUxxKAgAAAAAAACgpDiUBAAAAAAAAlFSQQ8mqqio98fhiPdX4sNY1PaobvnhdwX/G9GlTtWH9Cm3euFKzrr+q7GdD7iZ3PLlT7BxyN53TyJ1i55C76ZxG7hQ7h9xN5zRyp9g55O5YOtfVjdRDD83X2rXL9dRTD+uqqz4pSfr61/9VTU3LtXr1Q1qw4PsaNmxov8pdDrOhdwNRcPeiXhXZGu/qGnpCvVdka7xq4GhfteopP+e9F3V5v66ubFWdb9u20+snTPbqQWO8ad0GP/2MKWU7S25y07n/7aZzGrlT7Bxr7hQ7x5o7xc6x5k6xc6y5U+wca+5SdK6uHn3kGju2wSdP/rBXV4/24cP/1Ldu3e5nnnmBf+Qjl/ngweO8unq033TTrX7TTbcemeGxiqdzsc9zYr3efnKDc71+hX48uruCvXz74MFDkqRstlKV2azc8/90pLMnTdT27bu0c+dutbW1aeHCB3TxjOllO0tuchd7ltzxzJI7nllyxzNL7nhmyR3PLLnjmSV3PLM9mX/uuefV1LRekvTKKwe1efM21dScouXLH1N7e7skafXqtaqtHdmvcsc+G3o3EItuDyXN7MKjvh5mZreb2TNmdo+ZndKrxZmMGtcsU2vLM1q+fIVWr1mb92xN7Qjtad575PvmllbV1Iwo29mQu8ld2t10TiN3ip1D7qZzGrlT7BxyN53TyJ1i55C76ZxG7pCdR4+u05lnnqY1a5re8PO/+7uZ+tnP/rvf5o5xNvRuIBa5nin59aO+vllSq6QZktZI+v7xhszsSjNrNLPGjo6DXd6no6NDDZOmacy4Bk1qmKjTTnt73qHN7Jif5ftMyxhnQ+4md2l307mw2ZC76VzYbMjddC5sNuRuOhc2G3I3nQubDbmbzoXNhtxN58JmQ+6OsfPgwYN0773f0/XXf0Uvv/zKkZ/PmvUZtbcf1vz5PynK3r6Yj3E29G4gFoW8fLvB3We7+6/d/VuSxh7vju4+x90b3L0hkxnc7R964MBL+sWKX2r6tKl5B2lpbtWoupoj39fVjlRr676ynQ25m9yl3U3nNHKn2DnkbjqnkTvFziF30zmN3Cl2DrmbzmnkDtG5srJS9977PS1YcL8eeOChIz+/7LK/0Ic/fIEuv/yafpk75tnQu4FY5DqU/B9m9o9mdp2kofbG4/oevx/l8OEnHvl0r+rqal1w/rnasmV73vNrGptUXz9OY8eOUjab1cyZl2jR4mVlO0tuchd7ltzxzJI7nllyxzNL7nhmyR3PLLnjmSV3PLM9nf/e9/5dW7Zs03e+84MjP/vgB6fouuv+QR//+Kf0+9//oV/mjnk29O7UdbhzHXX1Z5U5br9N0pDOr++UNFzSb8xshKSm407lMHLkKZp7+y2qqMgok8novvsWacnSR/Keb29v1zXXztbSJfeoIpPRvDsXaOPGrWU7S25yF3uW3PHMkjueWXLHM0vueGbJHc8sueOZJXc8sz2ZP+ecBl122V/o2Wc36cknl0qSbrjhm7r55i+pqmqAFi++W9JrH3Zz9dVf6De5Y58NvRuIhXX3vgRm9m5Jm939gJkNkvR5SRMlbZT0dXc/kGtB5YDa/n0sCwAAAABAmchW5HruUffa2g/3URIU2+FXW45980lowskNnEMdZetvGvvt35NcL8GeK+mPn1Rzi6Shkr4h6ZCkO4qYCwAAAAAAAECZyvV/oWTc/Y//N0mDu5/V+fVKM+vxy7cBAAAAAAAApCvXMyXXm9knO79eZ2YNkmRmEyS1FTUZAAAAAAAAgLKU65mSV0j6tpnNlrRf0hNmtkfSns7bAAAAAAAAgH7BxVtKxqLbQ8nOD7K53MyGSBrfef9md99XinAAAAAAACB/fFANgFjk9bFc7v6ypHVFzgIAAAAAAAAgAbneUxIAAAAAAAAA+hSHkgAAAAAAAABKKq+XbwMAAAAAAAD9XYfzQTexCPJMybq6Gj2y7Id69pn/1rqmR/XZz3yq4D9j+rSp2rB+hTZvXKlZ119V9rMhd5M7ntwpdg65m85p5E6xc8jddE4jd4qdQ+6mcxq5U+wccneKnW+bc7P2Nq9T09rlBc31xe4YZ0PvBqLg7kW9KrI1/uardtSZ3jBpmldka3zYW9/mW7Zu99PPmHLM/Y53ZavqfNu2nV4/YbJXDxrjTes25D0f4yy5yU3n/rebzmnkTrFzrLlT7Bxr7hQ7x5o7xc6x5k6xc6y5Y+1cka3xqed9zBsmTfNn12/KeyZ07nJ/rIp9nhPrNf6kic71+hX68ejuCvJMyeeee15rm9ZLkl555aA2b/6VamtG5D1/9qSJ2r59l3bu3K22tjYtXPiALp4xvWxnyU3uYs+SO55ZcsczS+54Zskdzyy545kldzyz5I5nNvTux1au0gu/ezHv+/eH3Kk+VkAsCj6UNLOT+jLAmDF1OvOdp2vV6rV5z9TUjtCe5r1Hvm9uaVVNnoeaMc6G3E3u0u6mcxq5U+wccjed08idYueQu+mcRu4UO4fcTec0csfaubdi/H2n+lgBpdTtoaSZ3Whmwzu/bjCzHZJWmdmvzWxKb5cPHjxICxfcpn/8pxv08suv5D1nZsf8zD2/NzKNcTbkbnKXdjedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu+lc2GzI3XQubDbk7hQ791aMv+9UH6ty4PznDf/pz3I9U/Ij7r6/8+tvSrrU3eslfVDSzccbMrMrzazRzBo7Og52eZ/Kykr9cMFtuvfen+j++x8sKHRLc6tG1dUc+b6udqRaW/eV7WzI3eQu7W46p5E7xc4hd9M5jdwpdg65m85p5E6xc8jddE4jd6ydeyvG33eqjxVQSrkOJbNmVtn59UB3XyNJ7r5VUtXxhtx9jrs3uHtDJjO4y/vcNudmbdq8Tbd8e07Bodc0Nqm+fpzGjh2lbDarmTMv0aLFy8p2ltzkLvYsueOZJXc8s+SOZ5bc8cySO55ZcsczS+54ZkPv7o0Yf9+pPlZAKVXmuP27kpaa2Y2SHjKzWyT9WNIFkpp6uvS950zS3/7Nx/XMsxvVuOa1/2L927/dqAcfejSv+fb2dl1z7WwtXXKPKjIZzbtzgTZu3Fq2s+Qmd7FnyR3PLLnjmSV3PLPkjmeW3PHMkjueWXLHMxt69913fVdT3v8eDR9+onbtaNSXv3KT7pg3v1/nTvWxAmJhud6XwMymSvoHSRP02iHmHkn3S7rD3dtyLagcUNu/X8AOAAAAAAAQmcOvthz75pPQ+OETOYc6yo79a/vt35NcH3TzbklPu/ulkt4r6SeSOiSdKmlQ8eMBAAAAAAAAKDe5Xr49V9I7O7++RdJBSTfqtZdv3yHpz4sXDQAAAAAAAMife0foCMhTrkPJjLsf7vy6wd3P6vx6pZn1+D0lAQAAAAAAAKQr16dvrzezT3Z+vc7MGiTJzCZIyvl+kgAAAAAAAADwZrkOJa+QNMXMtkt6h6QnzGyHpNs6bwMAAAAAAACAgnT78m13PyDpcjMbIml85/2b3X1fKcIBAAAAAIA49OYjfvm4ZCA9ud5TUpLk7i9LWlfkLAAAAAAAAECPdXDEHY1cL98GAAAAAAAAgD7FoSQAAAAAAACAkuJQEgAAAAAAAEBJBTmUrKqq0hOPL9ZTjQ9rXdOjuuGL1xX8Z0yfNlUb1q/Q5o0rNev6q8p+NuRucseTO8XOIXfTOY3cKXYOuZvOaeROsXPI3XROI3eKnUPupnNhsxMmnKrGNcuOXL/dv1lXf/aKfp871scKiIa7F/WqyNZ4V9fQE+q9IlvjVQNH+6pVT/k5772oy/t1dWWr6nzbtp1eP2GyVw8a403rNvjpZ0wp21lyk5vO/W83ndPInWLnWHOn2DnW3Cl2jjV3ip1jzZ1i51hzl3vnyjyuAVV13tq6z8efOukNP4+1c8jdxT7PifUa9dbTnev1K/Tj0d0V7OXbBw8ekiRls5WqzGblnv+nI509aaK2b9+lnTt3q62tTQsXPqCLZ0wv21lyk7vYs+SOZ5bc8cySO55ZcsczS+54Zskdzyy545mNOffRzj//fdqx49favbulX+eO9bECYhLsUDKTyahxzTK1tjyj5ctXaPWatXnP1tSO0J7mvUe+b25pVU3NiLKdDbmb3KXdTec0cqfYOeRuOqeRO8XOIXfTOY3cKXYOuZvOaeROsfObXTrzEi1YcH/e94+1c3/5fQP9WbeHkmb2tJnNNrNTC/lDzexKM2s0s8aOjoNd3qejo0MNk6ZpzLgGTWqYqNNOe3shf/4xP8v3mZYxzobcTe7S7qZzYbMhd9O5sNmQu+lc2GzI3XQubDbkbjoXNhtyN50Lmw25m86FzYbcTefCZo+WzWZ10UXTdN+PFuc9E2vn/vD7Bvq7XM+UfKukEyT93MxWm9nnzKwm1x/q7nPcvcHdGzKZwd3e98CBl/SLFb/U9GlT8w7d0tyqUXWvx6irHanW1n1lOxtyN7lLu5vOaeROsXPI3XROI3eKnUPupnMauVPsHHI3ndPInWLno1144Xlau/ZZPf/8/rxnYu3cH37fQH+X61Dyd+7+T+4+WtJ1kt4m6Wkz+7mZXdnTpcOHn6hhw4ZKkqqrq3XB+edqy5btec+vaWxSff04jR07StlsVjNnXqJFi5eV7Sy5yV3sWXLHM0vueGbJHc8sueOZJXc8s+SOZ5bc8czGnPuPLr30owW9dDtk7lgfK0gdcq6jrv6sMsftR54z7O6PSXrMzD4r6YOSLpU0pydLR448RXNvv0UVFRllMhndd98iLVn6SN7z7e3tuuba2Vq65B5VZDKad+cCbdy4tWxnyU3uYs+SO55ZcsczS+54Zskdzyy545kldzyz5I5nNubckjRwYLU+cMH79elP/3NBc7F2Dv37BmJg3b0vgZnNd/e/7M2CygG1/ftYFgAAAAAA9Nqx74SYPw4OCnf41Zbe/MrLVt2Jp/PX6SjNL6zvt39Pcr18+1tmNlSSzGygmX3FzBaZ2TfMbFgJ8gEAAAAAAAAoM7kOJedKOtT59bclDZX0jc6f3VHEXAAAAAAAAADKVK73lMy4++HOrxvc/azOr1eaWVMRcwEAAAAAAAAoU7kOJdeb2Sfd/Q5J68yswd0bzWyCpLYS5AMAAAAAAADy0t1np6B/yXUoeYWkb5vZbEn7JT1hZnsk7em8LaeM9fz9NDv4iwQAAAAAQBR687/ghw8a2qvd+w+91Kt5AKXX7aGkux+QdLmZDZE0vvP+ze6+rxThAAAAAAAAAJSfXM+UlCS5+8uS1hU5CwAAAAAAAIAE5Pr0bQAAAAAAAADoU3k9UxIAAAAAAADo7/h8kngEe6bkZz7zKa19+hE1rV2uz372UwXPT582VRvWr9DmjSs16/qrSjJbVVWlJx5frKcaH9a6pkd1wxevK1nm3s6Hmg25O8XcKXYOuZvOaeROsXPI3XROI/dtc27W3uZ1alq7vKC5vtjNY0Xn/rybzmnkTrFzT+aHDhuiH9x5ix5bvUQrVi3WuyadqVlfuFqPPn6/Hnnsx5r/4x/olBEnFzV3rI8VEA13L+qVHVDrb77OPPN8X79+kw8ddqpXDxztjyxf4X/6jvcdc7+KbE2XV7aqzrdt2+n1EyZ79aAx3rRug59+xpTj3r+vZiuyNT70hHqvyNZ41cDRvmrVU37Oey8qyd5QnckdT+4UO8eaO8XOseZOsXOsuVPsHHPuqed9zBsmTfNn12/KeyZ07hQfqxQ7x5o7xc6x5k6xc77zpwz7kzdcC+75iX/uM7P9lGF/4nXD/8zfNnqSn1r3riO3/+usr/m82+898n2MnXs7W+zznFivEcP+1Llev0I/Ht1dQZ4p+Sd/Uq9Vq9bq97//g9rb2/XYiid1ySUX5j1/9qSJ2r59l3bu3K22tjYtXPiALp4xveizknTw4CFJUjZbqcpsVu75PS24t3tDdSZ3PLlT7Bxr7hQ7x5o7xc6x5k6xc8y5H1u5Si/87sW8798fcqf4WKXYOdbcKXaONXeKnXsy/5YhgzX5nAbdFPeRlAAAGdZJREFUc9d9kqS2tja9dOBlvfLywSP3GTRooJTjf47H1LkvdwOxCHIouWHjFp177rt14oknaODAal144fmqq6vJe76mdoT2NO898n1zS6tqakYUfVaSMpmMGtcsU2vLM1q+fIVWr1lbkr2hOpO7tLvpnEbuFDuH3E3nNHKn2Dnk7t7m7o1YO8eYO8XOIXfTOY3cKXbuyfyYsaP02/0v6Nu3fl0Pr/iRbv7OV187hJT0+dnX6Kn1j+ov/ucM/fvXv1O03LE+VkBMuj2UNLMGM/u5md1tZqPM7GEzO2Bma8xsYk+Xbt68Td+86VY9uPReLV50t555dqMOHz6c97yZHfOzfJ+x2JtZSero6FDDpGkaM65Bkxom6rTT3l6SvaE6k7u0u+lc2GzI3XQubDbkbjoXNhtyN50Lmw25u7e5eyPWzjHmTrFzyN10Lmw25G46Fzbbk/nKigr92TvfoXm3z9cH3/8XOnTokD7zuf8lSbrxa9/Wu04/Xz/64SL9/ZWXFS13rI8VJOc/b/hPf5brmZK3Svp3SUsk/VLS9919mKTPd97WJTO70swazayxo/1gl/eZN2++3j35Q7rgAx/X7154Udu27cw7dEtzq0Yd9czKutqRam3dV/TZox048JJ+seKXmj5takn2hupM7tLupnMauVPsHHI3ndPInWLnkLv76t+neiLWzjHmTrFzyN10TiN3ip17Mr937z617t2ntU89I0la/MAynXHGO95wn5/ct0QfmTGtaLljfayAmOQ6lMy6+4Pufq8kd/f79NoXyyVVH2/I3ee4e4O7N2QqBnd5n5NPPkmSNGpUjT760Q9pwYIH8g69prFJ9fXjNHbsKGWzWc2ceYkWLV5W9Nnhw0/UsGFDJUnV1dW64PxztWXL9qLv7e18qFlyxzNL7nhmyR3PLLnjmSV36XP3RqydY8ydYudYc6fYOdbcKXbuyfxvnt+vluZWnVo/VpJ07pTJ2rplm8aNH3PkPtM/dJ62/WpH0XLH+lgBManMcfsfzGyapGGS3Mw+6u73m9kUSe29Wbxg/hyddNJb1dZ2WFdf8wW9+OKBvGfb29t1zbWztXTJParIZDTvzgXauHFr0WdHjjxFc2+/RRUVGWUyGd133yItWfpI0ff2dj7ULLnjmSV3PLPkjmeW3PHMkrv0ue++67ua8v73aPjwE7VrR6O+/JWbdMe8+f06d4qPVYqdY82dYudYc6fYuafzX/jn/6Nbb/umsgOy+vWuPbr201/Qzf/5VdXXj1OHd6h5z17N+tyXipY71scKiIl1974EZvZOvfby7Q5Jn5P0D5L+TtJeSVe6++O5FgyoquvxC9g7eM8EAAAAAADK3vBBQ3s1v//QS32UJB6HX2059s0noREn/CmHSUd57sVN/fbvSa5nSlZLmunuB8xsoKQDkh6XtEHS+mKHAwAAAAAAAFB+ch1KzpX0zs6vvy3poKQbJV0g6Q5Jf168aAAAAAAAAED++KTyeOQ6lMy4++HOrxvc/azOr1eaWVMRcwEAAAAAAAAoU7k+fXu9mX2y8+t1ZtYgSWY2QVJbUZMBAAAAAAAAKEu5DiWvkDTFzLZLeoekJ8xsh6TbOm8DAAAAAAAAgIJ0+/Jtdz8g6XIzGyJpfOf9m919X74L+ARtAAAAAADQnd5+enZvPl6YUwsgjFzvKSlJcveXJa0rchYAAAAAAACgxzo4Zo5GrpdvAwAAAAAAAECf4lASAAAAAAAAQElxKAkAAAAAAACgpIIcSlZVVemJxxfrqcaHta7pUd3wxesK/jOmT5uqDetXaPPGlZp1/VVlPxtyN7njyZ1i55C76ZxG7hQ7h9xN5zRyp9g55G46p5E7xc4hd9M5ntzXXP2/1NT0qNauXa677vquqqqqSrK3t/O93Q1Ewd2LelVka7yra+gJ9V6RrfGqgaN91aqn/Jz3XtTl/bq6slV1vm3bTq+fMNmrB43xpnUb/PQzppTtLLnJTef+t5vOaeROsXOsuVPsHGvuFDvHmjvFzrHmTrFzrLlT7Fyq3ZVdXKPHnOU7dvza3zJkvFdma3zhD3/qf//31x5zv1g7F/s8J9brpCFvc67Xr9CPR3dXsJdvHzx4SJKUzVaqMpuVe/6fjnT2pInavn2Xdu7crba2Ni1c+IAunjG9bGfJTe5iz5I7nllyxzNL7nhmyR3PLLnjmSV3PLPkjmeW3D3bXVlZqYEDq1VRUaFBAwdqb+tzJdkbsjMQi2CHkplMRo1rlqm15RktX75Cq9eszXu2pnaE9jTvPfJ9c0urampGlO1syN3kLu1uOqeRO8XOIXfTOY3cKXYOuZvOaeROsXPI3XROI3eKnUPu3rv3OX3rW9/Tju2rtWf3Wr300kt65JEVRd/b2/ne7gZi0e2hpJm9xcy+YmYbzOyAmf3GzJ40s8t7u7ijo0MNk6ZpzLgGTWqYqNNOe3ves2Z2zM/yfaZljLMhd5O7tLvpXNhsyN10Lmw25G46FzYbcjedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu084YZhmzJiut02YrNFjztKgwYP013/950Xf29v53u4GYpHrmZL/JWmHpOmSvizpO5L+VtJ5Zvb14w2Z2ZVm1mhmjR0dB7tdcODAS/rFil9q+rSpeYduaW7VqLqaI9/X1Y5Ua+u+sp0NuZvcpd1N5zRyp9g55G46p5E7xc4hd9M5jdwpdg65m85p5E6xc8jdF1xwrnbt2q39+1/Q4cOHdf/9D+o9kxuKvre3873dDcQi16HkWHef5+7N7v4fki52919J+qSk4/7fC+4+x90b3L0hkxl8zO3Dh5+oYcOGSpKqq6t1wfnnasuW7XmHXtPYpPr6cRo7dpSy2axmzrxEixYvK9tZcpO72LPkjmeW3PHMkjueWXLHM0vueGbJHc8sueOZJXfhs3t2t+jsd5+lgQOrJUnnn/c+bd78q6Lv7e18b3cDsajMcftBM3ufu680sxmSXpAkd++wrp5PnKeRI0/R3NtvUUVFRplMRvfdt0hLlj6S93x7e7uuuXa2li65RxWZjObduUAbN24t21lyk7vYs+SOZ5bc8cySO55ZcsczS+54Zskdzyy545kld+Gzq9es1Y9/vESrV/9Mhw8f1rqmDbrtB/9V9L29ne/t7tR18FL3aFh370tgZmdI+oGkCZLWS/p7d99qZidL+it3/06uBZUDavnbAAAAAAAAiqbHz5qSFOuhxeFXW3pTu2ydOORtsT6kRfHCy7/qt39Pcj1TcqCkD7r7ATMbJOmfzewsSRslHfc9JQEAAAAAAADgeHK9p+RcSX/8pJpbJA2T9A1JhyTdUcRcAAAAAAAAAMpUrmdKZtz9cOfXDe5+VufXK82sqYi5AAAAAAAAAJSpXIeS683sk+5+h6R1Ztbg7o1mNkFSWwnyAQAAAAAAAHnp7rNT0L/kevn2FZKmmNl2Se+Q9ISZ7ZB0W+dtAAAAAAAAQXkvLuvFBaDnun2mpLsfkHS5mQ2RNL7z/s3uvq8U4QAAAAAAAACUn1wv35YkufvLktYVOQsAAAAAAACABOR6+TYAAAAAAAAA9Km8nikJAAAAAAAA9Hcd4oNuYsEzJQEAAAAAAACUVJBDyaqqKj3x+GI91fiw1jU9qhu+eF3Bf8b0aVO1Yf0Kbd64UrOuv6rsZ0PuJnc8uVPsHHJ3ip1vm3Oz9javU9Pa5QXN9cXuGGdD7k4xd4qdQ+6mcxq5U+wccjed08idYueQu3ub+1dbn9Tapx9R45plevKJpSXb3dvcQBTcvahXRbbGu7qGnlDvFdkarxo42letesrPee9FXd6vqytbVefbtu30+gmTvXrQGG9at8FPP2NK2c6Sm9x07n+7U+xcka3xqed9zBsmTfNn12/KeyZ07hQfqxRzp9g51twpdo41d4qdY82dYudYc6fYOYbcld1cO3fu9lNGnHbc20PmLvZ5TqzX0MHjnev1K/Tj0d0V7OXbBw8ekiRls5WqzGblnv9r/s+eNFHbt+/Szp271dbWpoULH9DFM6aX7Sy5yV3sWXLHMxt692MrV+mF372Y9/37Q+4UH6sUc6fYOdbcKXaONXeKnWPNnWLnWHOn2Dnm3L0Ra26glLo9lDSzYWZ2o5ltNrPfdl6bOn92Qq8WZzJqXLNMrS3PaPnyFVq9Zm3eszW1I7Snee+R75tbWlVTM6JsZ0PuJndpd9M5jdyxdu6tGH/fsT5WKeZOsXPI3XROI3eKnUPupnMauVPsHHJ3X/y7r7vrwaX3atWTD+qKT12W91zo3EAMcn369kJJj0qa6u7PSZKZjZD0CUk/lPTBrobM7EpJV0qSVQxTJjP4mPt0dHSoYdI0DRs2VD/64e067bS3a8OGLXmFNrNjfpbvMy1jnA25m9yl3U3nwmZD7k6xc2/F+PuO9bFKMXeKnUPupnNhsyF307mw2ZC76VzYbMjddC5sNuTuvvh33ylTP6rW1n06+eST9NCD87V5yzatXLmqqLtD/jt7OeB3FY9cL98e6+7f+OOBpCS5+3Pu/g1Jo4835O5z3L3B3Ru6OpA82oEDL+kXK36p6dOm5h26pblVo+pqjnxfVztSra37ynY25G5yl3Y3ndPIHWvn3orx9x3rY5Vi7hQ7h9xN5zRyp9g55G46p5E7xc4hd/fFv/v+8f6/+c1vdf8DD2rSpDOLvjvkv7MDpZTrUPLXZjbLzE754w/M7BQz+2dJe3q6dPjwEzVs2FBJUnV1tS44/1xt2bI97/k1jU2qrx+nsWNHKZvNaubMS7Ro8bKynSU3uYs9S+54ZkPv7o0Yf9+xPlYp5k6xc6y5U+wca+4UO8eaO8XOseZOsXPMuQcNGqi3vGXwka8/+IEpeb/CM9Z/ZwdKKdfLty+V9HlJv+g8mHRJ+yT9VNLMni4dOfIUzb39FlVUZJTJZHTffYu0ZOkjec+3t7frmmtna+mSe1SRyWjenQu0cePWsp0lN7mLPUvueGZD7777ru9qyvvfo+HDT9SuHY368ldu0h3z5vfr3Ck+VinmTrFzrLlT7Bxr7hQ7x5o7xc6x5k6xc8y5TznlZN33w9slSRWVFZo//34tW/bf/T43EAvr7rX2Zna1pJ+4e4+fFVk5oJYX8wMAAAAAgH7p2HdwzF/IA4/Dr7b0JnrZGjp4POdQR3np4I5++/ck16HkAUkHJW2XdI+kH7r7/kIWcCgJAAAAAAD6Kw4ly8tbBo3jHOoorxza2W//nuR6T8kdkuokfVVSg6RNZvaQmX3CzIYUPR0AAAAAAACAspPrUNLdvcPdl7n7pyTVSLpV0oV67cASAAAAAAAAAAqS64Nu3vAUT3dv02sfcvNTMxtYtFQAAAAAAAAAylY+n77dJXf/fR9nAQAAAAAAKCnegBAIo9tDSXfnM+cBAAAAAAAQBeeYORq53lMSAAAAAAAAAPoUh5IAAAAAAAAASopDSQAAAAAAAAAlFexQ8rY5N2tv8zo1rV3eo/np06Zqw/oV2rxxpWZdf1XZz4bcTe54csfamX8exPNYpZg7xc4hd9M5ndyZTEZrVv9MD/zkzoJnY+0cY+4UO4fcTec0cqfYOeTuFDsD0XD3ol4V2Rrv6pp63se8YdI0f3b9pi5v7+7KVtX5tm07vX7CZK8eNMab1m3w08+YUraz5CZ3OXeuyPLPg1geqxRzp9g51twpdo45d0W2xq/7py/5Pff+2BcvfriguVg7x5g7xc6x5k6xc6y5U+wca+4YOhf7PCfWq7p6tHO9foV+PLq7gj1T8rGVq/TC717s0ezZkyZq+/Zd2rlzt9ra2rRw4QO6eMb0sp0lN7mLPRt6N/88iOOxSjF3ip1jzZ1i55hz19aO1Ic/dIHmzr0375nQuVN8rFLsHGvuFDvHmjvFzrHmjrUzEJMo31OypnaE9jTvPfJ9c0urampGlO1syN3kLu3uFDv3Voy/71gfqxRzp9g55G46p5P7P27+sj7/L19TR0dH3jN9sZvHis79eTed08idYueQu1PsDMSkx4eSZvZgXwYpcPcxP3P3sp0NuZvcpd2dYufeivH3HetjlWLuFDuH3E3nwmZD7u7N7Ec+/AE9//x+Pb322bzu35e7eaxKNxtyd4q5U+wccjedC5sNuTvFzkBMKru70czOOt5Nks7sZu5KSVdKklUMUyYzuMcBu9LS3KpRdTVHvq+rHanW1n1lOxtyN7lLuzvFzr0V4+871scqxdwpdg65m85p5D7nnAbNuGiaPnTh+aqurtLQoUN057zv6BOXX92vc6f4WKXYOeRuOqeRO8XOIXen2BmISa5nSq6RdJOkm9903STphOMNufscd29w94a+PpCUpDWNTaqvH6exY0cpm81q5sxLtGjxsrKdJTe5iz0bendvxPj7jvWxSjF3ip1jzZ1i51hzf2H2jRo7vkH1Eybrsr/5tH7+88fzPpAMmTvFxyrFzrHmTrFzrLlT7Bxr7lg7AzHp9pmSkjZJ+t/u/qs332Bme3qz+O67vqsp73+Phg8/Ubt2NOrLX7lJd8ybn9dse3u7rrl2tpYuuUcVmYzm3blAGzduLdtZcpO72LOhd/PPgzgeqxRzp9g51twpdo45d2/E2jnG3Cl2jjV3ip1jzZ1i51hzx9oZvNQ9Jtbdg2VmH5f0rLtv6eK2j7r7/bkWVA6o5W8DAAAAAABAHzr8asuxbz4JVVeP5hzqKH/4w+5++/ck18u3ayQd6uqGfA4kAQAAAAAAAODNch1KflXSKjN7zMw+bWYnlyIUAAAAAAAAgPKV61Byh6Q6vXY4+S5JG83sITP7hJkNKXo6AAAAAAAAAGUn1wfduLt3SFomaZmZZSV9SNJf6bVP4OaZkwAAAAAAAOgXXLylZCxyHUq+4c0w3b1N0k8l/dTMBhYtFQAAAAAAAICylevl25ce7wZ3/30fZwEAAAAAAACQgG4PJd19a6mCAAAAAAAAAEhDrmdKAgAAAAAAAECfyvWekgAAAAAAAEAU3Pmgm1jwTEkAAAAAAAAAJRXsUPK2OTdrb/M6Na1d3qP56dOmasP6Fdq8caVmXX9V2c+G3E3ueHKn2DnkbjqnkTvFziF30zmN3Cl2DrmbzmnkTrFzyN10TiN3yM6SlMlktGb1z/TAT+4seBaIgrsX9arI1nhX19TzPuYNk6b5s+s3dXl7d1e2qs63bdvp9RMme/WgMd60boOffsaUsp0lN7np3P920zmN3Cl2jjV3ip1jzZ1i51hzp9g51twpdo41d4qdY80dsvMfr+v+6Ut+z70/9sWLH+7y9mKf58R6ZQfUOtfrV+jHo7sr2DMlH1u5Si/87sUezZ49aaK2b9+lnTt3q62tTQsXPqCLZ0wv21lyk7vYs+SOZ5bc8cySO55ZcsczS+54Zskdzyy545kldzyzfTFfWztSH/7QBZo79968Z4DYRPmekjW1I7Snee+R75tbWlVTM6JsZ0PuJndpd9M5jdwpdg65m85p5E6xc8jddE4jd4qdQ+6mcxq5U+wccnesnSXpP27+sj7/L19TR0dH3jNAbLo9lDSzoWb2f83sLjP76zfddms3c1eaWaOZNXZ0HOyrrEf/+cf8zD2/T1eKcTbkbnKXdjedC5sNuZvOhc2G3E3nwmZD7qZzYbMhd9O5sNmQu+lc2GzI3XQubDbkbjoXNhtyd6ydP/LhD+j55/fr6bXP5r0Prwv9kuT+dvVnuZ4peYckk/QjSX9pZj8ys6rO2yYfb8jd57h7g7s3ZDKD+yjq61qaWzWqrubI93W1I9Xauq9sZ0PuJndpd9M5jdwpdg65m85p5E6xc8jddE4jd4qdQ+6mcxq5U+wccnesnc85p0EzLpqmbVuf1H/dfavOO++9unPed/LeDcQi16Hkqe7+eXe/390vlvS0pEfN7KQSZDuuNY1Nqq8fp7FjRymbzWrmzEu0aPGysp0lN7mLPUvueGbJHc8sueOZJXc8s+SOZ5bc8cySO55Zcscz29v5L8y+UWPHN6h+wmRd9jef1s9//rg+cfnVee8GYlGZ4/YqM8u4e4ckufv/MbNmSSskvaU3i+++67ua8v73aPjwE7VrR6O+/JWbdMe8+XnNtre365prZ2vpkntUkclo3p0LtHHj1rKdJTe5iz1L7nhmyR3PLLnjmSV3PLPkjmeW3PHMkjueWXLHM9sX80AKrLvXl5vZv0ta5u6PvOnnF0r6T3d/W64FlQNq+/cL2AEAAAAAACJz+NWWY9+4EspyDvUGbf3470muZ0o2S9ry5h+6+0OSch5IAgAAAAAAAKXCiWQ8cr2n5FclrTKzx8zs02Z2cilCAQAAAAAAACg+M7vQzLaY2TYz+3yp9uY6lNwhqU6vHU6+S9JGM3vIzD5hZkOKng4AAAAAAABAUZhZhaTvSvqQpHdI+isze0cpduc6lHR373D3Ze7+KUk1km6VdKFeO7AEAAAAAAAAEKezJW1z9x3u/qqk+ZIuKcXiXO8p+YY3w3T3Nkk/lfRTMxtYtFQAAAAAAAAAiq1W0p6jvm+W9O5SLM51KHnp8W5w99/ns4BPgwIAAAAAAEApcA71RmZ2paQrj/rRHHefc/RduhgryecFdXso6e5bSxECAAAAAAAAQN/qPICc081dmiWNOur7Okl7ixqqU673lAQAAAAAAABQntZIepuZjTOzAZL+Uq+9dWPR5Xr5NgAAAAAAAIAy5O6Hzewzkn4mqULSXHffUIrd5l6Sl4kDAAAAAAAAgCRevg0AAAAAAACgxDiUBAAAAAAAAFBSHEoCAAAAAAAAKCkOJQEAAAAAAACUFIeSAAAAAAAAAEqKQ0kAAAAAAAAAJcWhJAAAAAAAAICS4lASAAAAAAAAQEn9fymVlo281J4BAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import seaborn as sb\n", - "import pandas as pd\n", - "\n", - "cm_plt = pd.DataFrame(cm[:73])\n", - "\n", - "plt.figure(figsize = (25, 25))\n", - "ax = plt.axes()\n", - "\n", - "sb.heatmap(cm_plt, annot=True)\n", - "\n", - "ax.xaxis.set_ticks_position('top')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pipeline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, I took the data from [Coconut - Wikipedia](https://en.wikipedia.org/wiki/Coconut) to check if the classifier is able to **correctly** predict the label(s) or not.\n", - "\n", - "And here is the output:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example labels: [('coconut', 'oilseed')]\n" - ] - } - ], - "source": [ - "example_text = '''The coconut tree (Cocos nucifera) is a member of the family Arecaceae (palm family) and the only species of the genus Cocos.\n", - "The term coconut can refer to the whole coconut palm or the seed, or the fruit, which, botanically, is a drupe, not a nut.\n", - "The spelling cocoanut is an archaic form of the word.\n", - "The term is derived from the 16th-century Portuguese and Spanish word coco meaning \"head\" or \"skull\", from the three indentations on the coconut shell that resemble facial features.\n", - "Coconuts are known for their versatility ranging from food to cosmetics.\n", - "They form a regular part of the diets of many people in the tropics and subtropics.\n", - "Coconuts are distinct from other fruits for their endosperm containing a large quantity of water (also called \"milk\"), and when immature, may be harvested for the potable coconut water.\n", - "When mature, they can be used as seed nuts or processed for oil, charcoal from the hard shell, and coir from the fibrous husk.\n", - "When dried, the coconut flesh is called copra.\n", - "The oil and milk derived from it are commonly used in cooking and frying, as well as in soaps and cosmetics.\n", - "The husks and leaves can be used as material to make a variety of products for furnishing and decorating.\n", - "The coconut also has cultural and religious significance in certain societies, particularly in India, where it is used in Hindu rituals.'''\n", - "\n", - "example_preds = classifier.predict(vectorizer.transform([example_text]))\n", - "example_labels = mlb.inverse_transform(example_preds)\n", - "print(\"Example labels: {}\".format(example_labels))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/neural_network/fully_connected_neural_network.ipynb b/neural_network/fully_connected_neural_network.ipynb deleted file mode 100644 index a8bcf4beeea1..000000000000 --- a/neural_network/fully_connected_neural_network.ipynb +++ /dev/null @@ -1,327 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Standard (Fully Connected) Neural Network" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "#Use in Markup cell type\n", - "#![alt text](imagename.png \"Title\") " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Implementing Fully connected Neural Net" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Loading Required packages and Data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "###1. Load Data and Splot Data\n", - "from keras.datasets import mnist\n", - "from keras.models import Sequential \n", - "from keras.layers.core import Dense, Activation\n", - "from keras.utils import np_utils\n", - "(X_train, Y_train), (X_test, Y_test) = mnist.load_data()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "n = 10 # how many digits we will display\n", - "plt.figure(figsize=(20, 4))\n", - "for i in range(n):\n", - " # display original\n", - " ax = plt.subplot(2, n, i + 1)\n", - " plt.imshow(X_test[i].reshape(28, 28))\n", - " plt.gray()\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Previous X_train shape: (60000, 28, 28) \n", - "Previous Y_train shape:(60000,)\n", - "New X_train shape: (60000, 784) \n", - "New Y_train shape:(60000, 10)\n" - ] - } - ], - "source": [ - "print(\"Previous X_train shape: {} \\nPrevious Y_train shape:{}\".format(X_train.shape, Y_train.shape))\n", - "X_train = X_train.reshape(60000, 784) \n", - "X_test = X_test.reshape(10000, 784)\n", - "X_train = X_train.astype('float32') \n", - "X_test = X_test.astype('float32') \n", - "X_train /= 255 \n", - "X_test /= 255\n", - "classes = 10\n", - "Y_train = np_utils.to_categorical(Y_train, classes) \n", - "Y_test = np_utils.to_categorical(Y_test, classes)\n", - "print(\"New X_train shape: {} \\nNew Y_train shape:{}\".format(X_train.shape, Y_train.shape))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setting up parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "input_size = 784\n", - "batch_size = 200 \n", - "hidden1 = 400\n", - "hidden2 = 20\n", - "epochs = 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Building the FCN Model" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense_1 (Dense) (None, 400) 314000 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 20) 8020 \n", - "_________________________________________________________________\n", - "dense_3 (Dense) (None, 10) 210 \n", - "=================================================================\n", - "Total params: 322,230\n", - "Trainable params: 322,230\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "###4.Build the model\n", - "model = Sequential() \n", - "model.add(Dense(hidden1, input_dim=input_size, activation='relu'))\n", - "# output = relu (dot (W, input) + bias)\n", - "model.add(Dense(hidden2, activation='relu'))\n", - "model.add(Dense(classes, activation='softmax')) \n", - "\n", - "# Compilation\n", - "model.compile(loss='categorical_crossentropy', \n", - " metrics=['accuracy'], optimizer='sgd')\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Training The Model" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - " - 12s - loss: 1.4482 - acc: 0.6251\n", - "Epoch 2/10\n", - " - 3s - loss: 0.6239 - acc: 0.8482\n", - "Epoch 3/10\n", - " - 3s - loss: 0.4582 - acc: 0.8798\n", - "Epoch 4/10\n", - " - 3s - loss: 0.3941 - acc: 0.8936\n", - "Epoch 5/10\n", - " - 3s - loss: 0.3579 - acc: 0.9011\n", - "Epoch 6/10\n", - " - 4s - loss: 0.3328 - acc: 0.9070\n", - "Epoch 7/10\n", - " - 3s - loss: 0.3138 - acc: 0.9118\n", - "Epoch 8/10\n", - " - 3s - loss: 0.2980 - acc: 0.9157\n", - "Epoch 9/10\n", - " - 3s - loss: 0.2849 - acc: 0.9191\n", - "Epoch 10/10\n", - " - 3s - loss: 0.2733 - acc: 0.9223\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Fitting on Data\n", - "model.fit(X_train, Y_train, batch_size=batch_size, epochs=10, verbose=2)\n", - "###5.Test " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "#### Testing The Model" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10000/10000 [==============================] - 1s 121us/step\n", - "\n", - "Test accuracy: 0.9257\n", - "[0 6 9 0 1 5 9 7 3 4]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAABzCAYAAAAfb55ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHPJJREFUeJzt3XeYVNUZx/GzgBAQEAQVLKAuoQkmNJUIrkCKi4jUUESIgLTE8AASejcohhIeJVIEgVCCNAF5gokoIKCIVKVbQFoiCIhU4XHzB+H1Pce9w+zsnZ25M9/PX7/rOdw5OtzZ2et9z5uSkZFhAAAAAAAAEN9yxXoBAAAAAAAAuDZu4gAAAAAAAAQAN3EAAAAAAAACgJs4AAAAAAAAAcBNHAAAAAAAgADgJg4AAAAAAEAAcBMHAAAAAAAgALiJAwAAAAAAEADcxAEAAAAAAAiAPFmZnJKSkhGthSC0jIyMFD/Ow3sYU8czMjJu8uNEvI+xw7WYELgWEwDXYkLgWkwAXIsJgWsxAXAtJoSwrkWexAFyzoFYLwCAMYZrEYgXXItAfOBaBOJDWNciN3EAAAAAAAACgJs4AAAAAAAAAcBNHAAAAAAAgADgJg4AAAAAAEAAcBMHAAAAAAAgALiJAwAAAAAAEADcxAEAAAAAAAiAPLFeAJJTvnz5JK9bt84aq1KliuRly5ZJbtSoUfQXBgAAAABAnOJJHAAAAAAAgADgJg4AAAAAAEAAcBMHAAAAAAAgAAK/J06tWrWs4/fff19yuXLlJDdo0MCa9+ijj0pevny55/nXr18vee3atRGvE/Y+OOPGjZP885//3JqXkZEhedOmTdFfGAAkiaFDh0oeMmSINbZq1SrJderUyaEVIRzVqlWTrPeHa9q0qTVPf+9JSUmxxvTP1s2bN0vetWuXNW/kyJGSd+/eHeGKAcAfBQsWtI5vv/12yd26dfP8c9OmTZO8detW/xcGxBBP4gAAAAAAAAQAN3EAAAAAAAACIDDlVIULF5Y8e/ZsyXXr1rXmnT9/XnLevHklu4/iabVr1/Yc0+c7d+6cNda1a1fJCxYs8DwHrvjjH/8ouVOnTpLfeecda97gwYMlf/DBB9FfGIBMFS1aVLIue0xPT7fm9e7dW/L3339vjenPxgMHDkgeM2aMNe+///1v9haLsKSlpXmOPfzww5lmY+xSK0RO/+wzxpjy5ctLDvVdpGrVqpJ1WVSokqnJkydbY4sXL5b8r3/9K8wVA0DO07+36e8YxhgzcODAsM7RpUsXyfPmzbPGunfvLvnEiRORLBEJ5h//+IfkZcuWWWP63kO84EkcAAAAAACAAOAmDgAAAAAAQAAEppxq1KhRknVnKVf+/Pkl644Lx44ds+adPn3a8xz68WT9WvrcxhgzdepUyXv37rXGtm/f7nn+ZFWiRIlM//nbb79tHVNCBeSc6667TnKvXr2ssd///veSS5Ys6XkOXUKlyzmM+XH3nKuKFy9uHbdv3/7ai0W2uWVS4c6jnMofEydOtI719aJLtt2uUOPHj890zP1uo0umEHvuddSkSRPJ+rPx1ltvtebp7mHz58+3xl544QUfVwjEp379+knu27dvROfInTu35NatW1tjejuOp556SjKlpsklV64fnmfRfyd27twZi+VkCU/iAAAAAAAABAA3cQAAAAAAAAKAmzgAAAAAAAABELd74txzzz3WcbNmzTKdd+jQIeu4bdu2kj/99FPJp06dsuadOXPG87V1fZxud+22tNNtz4cMGWKNdezYUfLJkyc9XyuZFCpUSPKlS5cku3viIDHoltQjRoyQXL9+fWuevt5CtaceMGCA5KNHj1rz6tSpI3nlypXW2Pnz57Oy7KTTuXNnyc8991xE51i9erXkhx56KKw/oz+rjWFPnHgzdOjQWC8hIS1atMg6btSokWS9102NGjVybE3IPr3nn36P77vvPmue3nNRf3/ds2ePNa9UqVKS3c/lAwcOSJ47d26EK04s6enpkt944w3Jes+3a9HfFZYuXeo5T//313tV3X///da848ePS167dm3Y68AV+/fv9xzTe4lNmDDBGtuxY4dk/f4PHz7cmqev2SVLlkjWe7AaY8yLL74oWe9bhsRQpUoVye5ejfGOJ3EAAAAAAAACgJs4AAAAAAAAARC35VS69MYYY4oVKyZZP0bnPvbmRxtUXdKhHynPmzevNe/ZZ5+V3LhxY2ts2rRpkpcvX57tNQWR2zKzQ4cOktevXy9Zt9JEsOhHVdPS0qyx1157TbJuT+22oA63PbV+1PmOO+6w5uk2ru3atbPGZs2a5bn+ZKXLVQcNGpTlP++2+9SPlLuPLPfu3TvL5wcSVdeuXa3jatWqSS5durRkXU5jjDFffvlldBeGLHEfu9ff83Qpsfu+6fLVDRs2SP7mm2+sefpnnC71MMaY5s2bS543b16m/9wYY7Zs2SJ537591pj7szbo9LWTlRIqLX/+/JJbtGgR1p/p0aOH5+vq7zb6vTbGLhXXrYzdEiK3zC6Z6FJT1/z58yV37949rPNt27bNOl68eLHkG2+8UbL7nSg1NVWyW/att4aAf8qWLSt59OjRkp955hlrni5t9NvHH38ctXP7hSdxAAAAAAAAAoCbOAAAAAAAAAHATRwAAAAAAIAAiNs9cfLly+c5NmPGDMlua7lo6t+/v3Wsa2bvuusua6xJkyaSk3VPHLcle6w88MADkt29VDS3Xnbv3r1RW1OiqFq1quQVK1Z4ztMtwf/whz9YY6FaNuo697Nnz0p+6aWXrHnfffddpq+FK/QeOMYY8/zzz0vWezu4+yToeuOGDRtK3rVrlzVP1/4PHjzYGtN157ptq7unxPbt2yXfe++9mfxbwA/Dhg2TPGTIEM95botxWo7749ixY9bx5MmTJetW0u71wZ448cXd60vvg3PkyBHJ5cqVs+bpn1WhHDx4ULK7183Fixcl169fX/KcOXM8z1ewYEHrWO8xlwimTp0qWe9TUqZMGWteqOvoJz/5ieTHH388rNetUKGC5Jtuuskay5Xrh/9PXrNmTWvMPb7qwoUL1vFf/vIXyaE+rxOR/rutv2MYY39Whstt867fY/2dqFatWta81q1be57zqaeeknz58uUsrwmZ07+3NWjQQLL+/d8Yf/bEcT8jrjp8+HC2zx1tPIkDAAAAAAAQANzEAQAAAAAACIC4LacaMWKE55jbqi9W3nrrLcldunSxxvSjYMnq0Ucf9RzTj7764ZVXXvF87aJFi0rWLSRdp0+fto7HjRsnOdTfx2SjS3N0eYxr5cqVkvv16yc5Ky3ldZt63Wa1SJEi1jz9yLF+XVyhy96Msa8P/ci3+6j/3/72N8k7duwI67Xclpsffvih5OnTp0vu1auXNa9y5cqSdYmJMcZ06tQprNfGtSXbI/nxTl9/KSkpknWZhjsWii51DFWqiqxr2bKl5J49e1pjJ06ckKzfu3DLp0L57LPPrOOKFStKnjlzpuef0z8z3TKdRKN/7vjx/VJ//wulUqVKkn/1q195znNLcqpVq5bpPF3SZYzdPnvs2LHWmNuWPtG8/fbbkuvWrWuN6fL6SK1fv17yn/70J8nuFhj6dwj3fVy2bJnk119/PdtrwhXu+31VNEqc9PfLU6dOSc7K7yqxwpM4AAAAAAAAAcBNHAAAAAAAgACIq3Kqu+++W7IuozDGfmzw448/zrE1hfLOO+9IdsupklWBAgUk58lj//XSj8HpsopQ9DnckhDd9aZEiRLWmH5EXXcD0Y9nuucsVaqUNaYfsdOPLPuxG3qQDRo0SLLuoOI+gqofN//0008jei39qHKVKlU854XqjAVj0tPTrWPdhUp3fVi1apU1b8yYMb6uo2/fvp5r0u919erVfX1dIF64HWw6duwoWV+XbhcOXU6l57llVvrn4uzZsz3HkHW6a57+jmGMXW565syZqK7j0KFDYc379ttvJbudB+GPTz75JNPsckv+b7vtNsn652KHDh2seYULF5bsliC7nSATjS4N9SqvyYz+TNXlT5MmTQrrz8+dO9c67tatm+fcn/70p2GvC94KFSpkHderV0+yLlPT5fl+ue666yTr78NB6DbGkzgAAAAAAAABwE0cAAAAAACAAOAmDgAAAAAAQADE1Z44bdq0kaz3xzHGmIULF0rWbeEQX3Qt6i233GKNuW2Dvej9kPS+NAMHDvT8M0eOHLGO//73v0vWbZJD1ZK77bLr168vuWTJkpKTbU+cKVOmWMfNmzeXrNs86rpuYyLbB0fXphpjtybXez+sXr3amucew5hixYpJvu+++8L6M/q6iTb3tUaNGpVjrw3kJL0PjvtZpfdi0y1N9X4Qxhizdu3aTM/99NNPW8e6dXGTJk2sMb0viv5McF+L1uSZS01N9RzLyc+v3/zmN5Lz58/vOY+Wx/HDbfGu28brvzvunjh6X6Nw95JMFB999JHnmN6fym3L/vLLL0vW3ynT0tJ8XN0V+neePXv2SP73v/9tzUv0dvDZVbFiRetY7xm1YcMGyXrPmkgVKVLEOq5QoYJk932LdzyJAwAAAAAAEADcxAEAAAAAAAiAuCqnatmypWT30bPx48fn9HIQgVBtoPft2xfWOXTZVOfOnSW7LTJ1i/cePXpYY7rdZ7jCXV+ycds96/dBt1LduXNnROfXj7uOGDHCGqtdu3amrzt8+PCIXiuZ6LKKO++803Pee++9J9ltEx8rRYsWtY51OePRo0dzejlAtpQrVy7TbIwxixYtkqxLVcPllikXL15csi5RN8aYRo0aSdatWt3Pbr2O3bt3Z3lNiaJAgQLWcePGjT3nuiXdfsqbN691PHLkyEzH3NbmoVpeI348/vjjnmO69XKzZs2ssRdffDFqa4oHb7zxhmS3jEZ//3e3btCla26Jvt90Oey8efMkuyWpemuIJUuWWGOUrxpTq1YtzzG/t0to0aKFday3HlizZo2vrxVtPIkDAAAAAAAQANzEAQAAAAAACIC4KqfS3Ed4vTozIL7ozlLhKlu2rHXsPup2ldslqXv37pK/++67LL/utehOIToje9zSnm7duknu2bOn55/TZTRbt271fV2JRpdThTJkyBDJJ0+ejNZysuSOO+6wjitVqiSZcqqcMXTo0FgvIWHo7y+5c+eO6msdP35c8l//+ldrTB/rx/vdDlf6kfL09HRrbNOmTb6sM4ii/d5pugykbt261pjbvfWqadOmWcfJ1kkzSPR7GOqz9vTp05Ld78CJTv+7z5o1y3OeW0b4xBNPSP7tb38r+cYbb7Tm6Q60fnNLMfX63TLH1q1bS45kK4igypcvn2T9e4Axxpw4cUKyLqd/9dVXrXm6lO7666+X/NBDD3m+ru5063I7ncU7nsQBAAAAAAAIAG7iAAAAAAAABAA3cQAAAAAAAAIgpnvi6Po1Y6LfCg7Rp9shhqo71J555hnruEiRIpLnzJkjuWvXrtlcXWh67cYYc+nSJcnR2HMnKNz2s5UrV5asW/Nt2bIlrPPpFrjG2PsouW3ktZUrV0o+depUWK+VzHRNdqhr0e/2jZHKleuH/6fgthMF4C/dmly3OTfG/kxYvny5NaZ/Di9evDhKq4sPly9fto73798v2d3b7de//rXkbdu2Zfm19L4Pxhjz5JNPSn7++efDOsf06dOz/LqIjccee0yy+7uQpvfBiZc96+Kd/szS2d3Tyv3Of5Xbslx/L/3qq688X3fYsGGS27dvb43p72N6jz9jjBk7dqzkPn36SE70vR/1/jN33XWX57xly5ZJdr8b7tq1S7L+fP7nP//peb569ep5rmPkyJGSv/76a2vezJkzPc8ZKzyJAwAAAAAAEADcxAEAAAAAAAiAmJZT6dZvxhiTmpoqWbfJjFcNGzb0HHMfw00W+rHDUKUxmvsYsf5z7pjfdClPhw4drDH3EfNk1bFjR+u4cOHCknWLRl1mlRX6Omrbtq011rRpU8kTJ06M6PzJqkaNGpLDvRZjST8mG4T1AonC/b6lS6bGjBljjU2aNEly6dKlJbvtzBOBW0adlpYm2S0zHjVqlGRdWrVw4UJrXsWKFSXrco7atWtb83RJh261bIwxN9xwg+Qvv/xS8sGDBzP5t0A8KFOmjHX83HPPZTrv7Nmz1vHUqVOjtqZEpUv2y5YtK3n9+vXWPK+y/EjL9bt37y553rx51tgrr7wi2S2n+uUvfylZl06mp6dHtI6guHjxouR9+/ZZYzfffLNkXeI0Y8YMa16o8jYv+jPTGGNuv/12yXobjc6dO1vzKKcCAAAAAABARLiJAwAAAAAAEADcxAEAAAAAAAiAmO6JEzTVqlWzjhs0aOA5t3///tFeTsJw6w4ffPDBTHO/fv2sebpFqtsKLlx635tz585ZY+5eAMnq/Pnz1rFujfnwww9Lrl69uuc5duzYIdlt/TdhwgTJzZo1s8b27t0r+bPPPgtvwQi8M2fOWMeRXt8Asm7NmjWS3X0ZdPvx0aNHS07EPXFchw4dktymTRtrbMCAAZLr1q2baTbG3nPhiy++kLxq1Spr3ty5cyW/+eab1pjeM2zlypWST5w4EXL9yFl6bxZ9rRjj3VZ88ODB1vHu3bv9X1iC0d9JjbE/i/S+ly1btrTmLVmyJGprcvffqVWrluTNmzdbY3fffbfkmjVrSn7kkUeseStWrPBziTF34cIFyXoPR2OMyZPnh9sTfnyu3XbbbZKLFi1qjW3btk1yu3btJLu/E8YjnsQBAAAAAAAIAG7iAAAAAAAABADlVNegS6h69uxpjRUpUkTyunXrrLG33noruguLE/pRRWMiawnulkpUrVpV8tKlSyWPGDHCmqcfNXRL27799ttMxwYOHGjNq1KlimS35eMHH3xwzbUnO/0IuPs4eLi6dOki2W0tvXHjRsnHjh2L6PyIT247eW3o0KHWsfv4MSKnr1NdDuly3wP3GMnBbT++du1ayeXLl8/p5cQN/d3EGLtM2C2913Tb8lCfa7o1ct68eT3nLViwIOQ6ETt9+/aV3LBhQ895n3/+ueTx48dHdU2JqGDBgtax/r1EXzsLFy605ukSp2h/39e/k7Rq1coae//99yUXKlRIcp8+fax5iVZOpZ0+fTqq59e/L7qljLpcdfv27VFdh994EgcAAAAAACAAuIkDAAAAAAAQADEtp9q/f791rB83i6XcuXNLfvbZZyW3aNHCmnf48OFM5xljzOXLl6O0uvhy5MgR63jfvn2SS5cubY3pLg2TJk2S7O4AfvToUcl6x3K3ZGrXrl2SdWmbMXZnqQ4dOni+li6hcsu1EB133nmn55jblSgZOp5Ei36U230MV3fNmDZtmuT27dtHf2GZrMEYu1xu4sSJObYOAN7ckqlGjRpJ3rlzZ04vJ27prlN+lGbobiqhbNiwIduvBX+43Y969OjhOffs2bOS9TX1/fff+7+wBKc7uRljXzujRo2SnJKSYs3Tv+vlpJ/97GfWsbuuq4JW2hPP3I5UWqRbQcQDnsQBAAAAAAAIAG7iAAAAAAAABAA3cQAAAAAAAAIgpnvivPvuu9ax3mOmcOHC1pjeP8FteRmJe++9V3K3bt2sMd3iunr16p7naNOmjWTqkq/Q+88sX77cGqtfv75k3YJ97Nix1jy9J452//33W8f9+vXzHNM1pnv27JE8YMAAa97ixYszfS1Ez6BBgzzHli1bZh3TWjpyW7duldy7d29rbPr06ZKbN28u+eWXX7bm+f3ff8qUKZJvueUWa2z+/PmSL1y44OvrJjvdSjxUW3FEn7tPht4LatasWTm9nEzp/ez+/Oc/W2MFChSQrD874K9mzZrFegkIQ1pammS916Mx3nudGGPM7373O8mffPKJ7+tKZpMnT5asW0vXqVPHmjdz5kzJq1evlvzCCy9Y8/bu3ZvlNXTv3t067tixo+TU1FRrLNTfE0TfxYsXY72EiPEkDgAAAAAAQABwEwcAAAAAACAAYlpOFUqFChWsY90i16vcJiseeOABycWKFfOcp0u3li5dao1t3Lgx2+tINIcOHZKsH2M0xi6fq1mzpmRdRuHSjxlmZGSEvY7XXntNcp8+fSR//fXXYZ8D/rnnnnskN23a1HOeLrODf9atW2cdz5kzR3Lr1q0l60fDjfGnnEo/wty4cWPJX331lTVv+PDh2X4tZG7IkCGxXkJS03/vR48ebY3pR//9Lqe66aabPNcR6p/rknL3Om3btq3k3bt3Z3eJ+L9SpUpZx61atfKcu2bNGsmnT5+O2pqQuSJFikh+8803JV9//fWef2bChAnWsfv7BPyjrwndvn3btm3WvJIlS0pu166d5CeffNKaF0nb9zx5Ivv1Wv9eyXciXAtP4gAAAAAAAAQAN3EAAAAAAAACgJs4AAAAAAAAARBXe+Lo9s8DBw60xnSNtt/cescTJ05I1u2v3bZzCM3du0jvQ9SiRQvJZcqUseY9/fTTkl999VXJofbEmTp1qnVMrX580ddvoUKFrDH9vtJaOjo+//xz61i3eX/wwQclu3un6D01+vfv73n+smXLSq5Ro4Y1Nm7cOMl6L4ExY8ZY83bu3Ol5fmSN20Y83Lbiev+iVatW+bcgiFy57P931qlTJ8l6v7BFixZZ8/T+cOXLl5es9+0zxt4Dwm1dqz9r9diuXbusebNnz5Y8cuRIa8x9PfjDbTt8ww03eM5dsmSJ5MuXL0dtTbjCvWb1/imh9sHZtGmT5J49e1pjly5d8ml1COXMmTOS3WtMv48tW7aUXKlSJWverbfe6uua1q9fbx3rvSCnTJkimT08/fOLX/xCsvtzUf88Xbt2bY6tyQ88iQMAAAAAABAA3MQBAAAAAAAIgLgqp1q8eLHkDRs2WGO6xbj7qFsk9CNrW7ZsscYmTpyY7fPjx06dOiV50qRJnvN69+6dE8tBDipevLhktyxux44dkhcsWJBja0pm+/fvl6zLqdzPvm7duklOT0/3nKdbYRYrVszzdXU7Vt1aGTln2LBhkocOHRq7hSQR/d3mkUcescZ0+ZPmtv3WpY269ND9PNXXlVv6pNehueXH586dy3Qeoufmm2/2HHPfj5deeinay4GitwIwxi4RDmXUqFGSKZ+KPzNmzMg0lyhRwppXsGBBybr81Rhj3n33Xcm6lHzv3r3WvI8++kjywYMHrbGLFy9mZdmIgN7Gwf2ZefLkyZxejm94EgcAAAAAACAAuIkDAAAAAAAQACmhOv78aHJKSviT4auMjIyUa8+6Nt7DmNqUkZFR3Y8TBe191CWLlStXtsb69u0refTo0Tm2pkgl8rXodkQpV66cZN3RSpdWGfPjTlPawoULJW/evFlyjLuqJO21mEgS+VpMIlyLxpjXX3/dOtadytztBXSnlXiRaNdi4cKFJX/xxRfWWNGiRSXrTjfvvfeeNa9u3bqSA9JFjGsxASTateiHXr16Sa5du7Y11rp1a8lxVEoc1rXIkzgAAAAAAAABwE0cAAAAAACAAOAmDgAAAAAAQADEVYtxAIlJt8R198RB/Pjmm2+s4w8//FDyY489ltPLAYCk0KxZM+tY71ep95RDzqhXr55kvQeOS++D06pVK2ssIPvgAAlP79sYag/HoOFJHAAAAAAAgADgJg4AAAAAAEAAUE4FIOpWrFghOTU11RrbuHFjTi8HAIC4kSsX/081nugS8P/85z/W2L59+yQ/8cQTkg8fPhz9hQHA//FTAwAAAAAAIAC4iQMAAAAAABAA3MQBAAAAAAAIgBTdxvCak1NSwp8MX2VkZKT4cR7ew5jalJGRUd2PE/E+xg7XYkLgWkwAXIsJgWsxAXAtJgSuxQTAtZgQwroWeRIHAAAAAAAgALiJAwAAAAAAEABZbTF+3BhzIBoLQUilfTwX72Hs8D4GH+9hYuB9DD7ew8TA+xh8vIeJgfcx+HgPE0NY72OW9sQBAAAAAABAbFBOBQAAAAAAEADcxAEAAAAAAAgAbuIAAAAAAAAEADdxAAAAAAAAAoCbOAAAAAAAAAHATRwAAAAAAIAA4CYOAAAAAABAAHATBwAAAAAAIAC4iQMAAAAAABAA/wOj6vqySBf1wwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "score = model.evaluate(X_test, Y_test, verbose=1)\n", - "print('\\n''Test accuracy:', score[1])\n", - "mask = range(10,20)\n", - "X_valid = X_test[mask]\n", - "y_pred = model.predict_classes(X_valid)\n", - "print(y_pred)\n", - "plt.figure(figsize=(20, 4))\n", - "for i in range(n):\n", - " # display original\n", - " ax = plt.subplot(2, n, i + 1)\n", - " plt.imshow(X_valid[i].reshape(28, 28))\n", - " plt.gray()\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From ce7faa5a3ae4824ebc89bf7b40b715cb4c898999 Mon Sep 17 00:00:00 2001 From: anubhav-sharma13 <45630457+anubhav-sharma13@users.noreply.github.com> Date: Tue, 22 Oct 2019 13:00:11 +0530 Subject: [PATCH 374/594] Largest subarray sum (#1404) * Insertion_sort * largest subarray sum * updated print command * removed extraspaces * removed sys.maxint * added explaination * Updated function style * Update largest_subarray_sum.py * Update i_sort.py * Delete bogo_bogo_sort.py --- other/largest_subarray_sum.py | 23 +++++++++++++++ sorts/bogo_bogo_sort.py | 54 ----------------------------------- sorts/i_sort.py | 21 ++++++++++++++ 3 files changed, 44 insertions(+), 54 deletions(-) create mode 100644 other/largest_subarray_sum.py delete mode 100644 sorts/bogo_bogo_sort.py create mode 100644 sorts/i_sort.py diff --git a/other/largest_subarray_sum.py b/other/largest_subarray_sum.py new file mode 100644 index 000000000000..0449e72e64e3 --- /dev/null +++ b/other/largest_subarray_sum.py @@ -0,0 +1,23 @@ +from sys import maxsize + + +def max_sub_array_sum(a: list, size: int = 0): + """ + >>> max_sub_array_sum([-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7]) + -3 + """ + size = size or len(a) + max_so_far = -maxsize - 1 + max_ending_here = 0 + for i in range(0, size): + max_ending_here = max_ending_here + a[i] + if max_so_far < max_ending_here: + max_so_far = max_ending_here + if max_ending_here < 0: + max_ending_here = 0 + return max_so_far + + +if __name__ == "__main__": + a = [-13, -3, -25, -20, 1, -16, -23, -12, -5, -22, -15, -4, -7] + print(("Maximum contiguous sum is", max_sub_array_sum(a, len(a)))) diff --git a/sorts/bogo_bogo_sort.py b/sorts/bogo_bogo_sort.py deleted file mode 100644 index f26a46e78645..000000000000 --- a/sorts/bogo_bogo_sort.py +++ /dev/null @@ -1,54 +0,0 @@ -""" -Python implementation of bogobogosort, a "sorting algorithm -designed not to succeed before the heat death of the universe -on any sizable list" - https://en.wikipedia.org/wiki/Bogosort. - -Author: WilliamHYZhang -""" - -import random - - -def bogo_bogo_sort(collection): - """ - returns the collection sorted in ascending order - :param collection: list of comparable items - :return: the list sorted in ascending order - - Examples: - >>> bogo_bogo_sort([0, 5, 3, 2, 2]) - [0, 2, 2, 3, 5] - >>> bogo_bogo_sort([-2, -5, -45]) - [-45, -5, -2] - >>> bogo_bogo_sort([420, 69]) - [69, 420] - """ - - def is_sorted(collection): - if len(collection) == 1: - return True - - clone = collection.copy() - while True: - random.shuffle(clone) - ordered = bogo_bogo_sort(clone[:-1]) - if clone[len(clone) - 1] >= max(ordered): - break - - for i in range(len(ordered)): - clone[i] = ordered[i] - - for i in range(len(collection)): - if clone[i] != collection[i]: - return False - return True - - while not is_sorted(collection): - random.shuffle(collection) - return collection - - -if __name__ == "__main__": - user_input = input("Enter numbers separated by a comma:\n").strip() - unsorted = [int(item) for item in user_input.split(",")] - print(bogo_bogo_sort(unsorted)) diff --git a/sorts/i_sort.py b/sorts/i_sort.py new file mode 100644 index 000000000000..f6100a8d0819 --- /dev/null +++ b/sorts/i_sort.py @@ -0,0 +1,21 @@ +def insertionSort(arr): + """ + >>> a = arr[:] + >>> insertionSort(a) + >>> a == sorted(a) + True + """ + for i in range(1, len(arr)): + key = arr[i] + j = i - 1 + while j >= 0 and key < arr[j]: + arr[j + 1] = arr[j] + j -= 1 + arr[j + 1] = key + + +arr = [12, 11, 13, 5, 6] +insertionSort(arr) +print("Sorted array is:") +for i in range(len(arr)): + print("%d" % arr[i]) From 8b572e6cfd7da8d96443c3e1fd0b013153854265 Mon Sep 17 00:00:00 2001 From: Suad Djelili Date: Tue, 22 Oct 2019 10:31:17 +0300 Subject: [PATCH 375/594] added solution 7 for problem_01 (#1416) * added solution 7 for problem_01 * added solution 5 for problem_02 --- project_euler/problem_01/sol7.py | 32 ++++++++++++++++++++++ project_euler/problem_02/sol5.py | 46 ++++++++++++++++++++++++++++++++ 2 files changed, 78 insertions(+) create mode 100644 project_euler/problem_01/sol7.py create mode 100644 project_euler/problem_02/sol5.py diff --git a/project_euler/problem_01/sol7.py b/project_euler/problem_01/sol7.py new file mode 100644 index 000000000000..a0510b54c409 --- /dev/null +++ b/project_euler/problem_01/sol7.py @@ -0,0 +1,32 @@ +""" +Problem Statement: +If we list all the natural numbers below 10 that are multiples of 3 or 5, +we get 3,5,6 and 9. The sum of these multiples is 23. +Find the sum of all the multiples of 3 or 5 below N. +""" + + +def solution(n): + """Returns the sum of all the multiples of 3 or 5 below n. + + >>> solution(3) + 0 + >>> solution(4) + 3 + >>> solution(10) + 23 + >>> solution(600) + 83700 + """ + + result = 0 + for i in range(n): + if i % 3 == 0: + result += i + elif i % 5 == 0: + result += i + return result + + +if __name__ == "__main__": + print(solution(int(input().strip()))) diff --git a/project_euler/problem_02/sol5.py b/project_euler/problem_02/sol5.py new file mode 100644 index 000000000000..8df2068dd8c3 --- /dev/null +++ b/project_euler/problem_02/sol5.py @@ -0,0 +1,46 @@ +""" +Problem: +Each new term in the Fibonacci sequence is generated by adding the previous two +terms. By starting with 1 and 2, the first 10 terms will be: + + 1,2,3,5,8,13,21,34,55,89,.. + +By considering the terms in the Fibonacci sequence whose values do not exceed +n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is +10. +""" + + +def solution(n): + """Returns the sum of all fibonacci sequence even elements that are lower + or equals to n. + + >>> solution(10) + 10 + >>> solution(15) + 10 + >>> solution(2) + 2 + >>> solution(1) + 0 + >>> solution(34) + 44 + """ + + a = [0,1] + i = 0 + while a[i] <= n: + a.append(a[i] + a[i+1]) + if a[i+2] > n: + break + i += 1 + sum = 0 + for j in range(len(a) - 1): + if a[j] % 2 == 0: + sum += a[j] + + return sum + + +if __name__ == "__main__": + print(solution(int(input().strip()))) From 92268561a54f6f443a71c0e83fdd0a0d69ab24d7 Mon Sep 17 00:00:00 2001 From: Aashay Shingre Date: Tue, 22 Oct 2019 13:12:56 +0530 Subject: [PATCH 376/594] Aho-Corasick String Matching Algorithm (#346) * add aho-corasick algorithm * Add a doctest and format with black --- strings/aho-corasick.py | 92 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 strings/aho-corasick.py diff --git a/strings/aho-corasick.py b/strings/aho-corasick.py new file mode 100644 index 000000000000..6790892a358d --- /dev/null +++ b/strings/aho-corasick.py @@ -0,0 +1,92 @@ +from collections import deque + + +class Automaton: + def __init__(self, keywords): + self.adlist = list() + self.adlist.append( + {"value": "", "next_states": [], "fail_state": 0, "output": []} + ) + + for keyword in keywords: + self.add_keyword(keyword) + self.set_fail_transitions() + + def find_next_state(self, current_state, char): + for state in self.adlist[current_state]["next_states"]: + if char == self.adlist[state]["value"]: + return state + return None + + def add_keyword(self, keyword): + current_state = 0 + for character in keyword: + if self.find_next_state(current_state, character): + current_state = self.find_next_state(current_state, character) + else: + self.adlist.append( + { + "value": character, + "next_states": [], + "fail_state": 0, + "output": [], + } + ) + self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) + current_state = len(self.adlist) - 1 + self.adlist[current_state]["output"].append(keyword) + + def set_fail_transitions(self): + q = deque() + for node in self.adlist[0]["next_states"]: + q.append(node) + self.adlist[node]["fail_state"] = 0 + while q: + r = q.popleft() + for child in self.adlist[r]["next_states"]: + q.append(child) + state = self.adlist[r]["fail_state"] + while ( + self.find_next_state(state, self.adlist[child]["value"]) == None + and state != 0 + ): + state = self.adlist[state]["fail_state"] + self.adlist[child]["fail_state"] = self.find_next_state( + state, self.adlist[child]["value"] + ) + if self.adlist[child]["fail_state"] == None: + self.adlist[child]["fail_state"] = 0 + self.adlist[child]["output"] = ( + self.adlist[child]["output"] + + self.adlist[self.adlist[child]["fail_state"]]["output"] + ) + + def search_in(self, string): + """ + >>> A = Automaton(["what", "hat", "ver", "er"]) + >>> A.search_in("whatever, err ... , wherever") + {'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]} + """ + result = dict() # returns a dict with keywords and list of its occurences + current_state = 0 + for i in range(len(string)): + while ( + self.find_next_state(current_state, string[i]) == None + and current_state != 0 + ): + current_state = self.adlist[current_state]["fail_state"] + current_state = self.find_next_state(current_state, string[i]) + if current_state is None: + current_state = 0 + else: + for key in self.adlist[current_state]["output"]: + if not (key in result): + result[key] = [] + result[key].append((i - len(key) + 1)) + return result + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 54830644a280ee2b8e59497f303220a211422118 Mon Sep 17 00:00:00 2001 From: Anmol Jain <30307833+jainanmol123@users.noreply.github.com> Date: Tue, 22 Oct 2019 13:31:14 +0530 Subject: [PATCH 377/594] Create newton_forward_interpolation.py (#333) * Create newton_forward_interpolation.py This code is for calculating newton forward difference interpolation for fixed difference. * Add doctests and reformat with black --- .../newton_forward_interpolation.py | 55 +++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 arithmetic_analysis/newton_forward_interpolation.py diff --git a/arithmetic_analysis/newton_forward_interpolation.py b/arithmetic_analysis/newton_forward_interpolation.py new file mode 100644 index 000000000000..09adb5113f82 --- /dev/null +++ b/arithmetic_analysis/newton_forward_interpolation.py @@ -0,0 +1,55 @@ +# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/ + +import math + +# for calculating u value +def ucal(u, p): + """ + >>> ucal(1, 2) + 0 + >>> ucal(1.1, 2) + 0.11000000000000011 + >>> ucal(1.2, 2) + 0.23999999999999994 + """ + temp = u + for i in range(1, p): + temp = temp * (u - i) + return temp + + +def main(): + n = int(input("enter the numbers of values")) + y = [] + for i in range(n): + y.append([]) + for i in range(n): + for j in range(n): + y[i].append(j) + y[i][j] = 0 + + print("enter the values of parameters in a list") + x = list(map(int, input().split())) + + print("enter the values of corresponding parameters") + for i in range(n): + y[i][0] = float(input()) + + value = int(input("enter the value to interpolate")) + u = (value - x[0]) / (x[1] - x[0]) + + # for calculating forward difference table + + for i in range(1, n): + for j in range(n - i): + y[j][i] = y[j + 1][i - 1] - y[j][i - 1] + + summ = y[0][0] + for i in range(1, n): + summ += (ucal(u, i) * y[0][i]) / math.factorial(i) + + print("the value at {} is {}".format(value, summ)) + + +if __name__ == "__main__": + main() From 13802fcca154803e1cf619ddfb7f7975d0ca8f59 Mon Sep 17 00:00:00 2001 From: DanishSheikh1999 <43725095+DanishSheikh1999@users.noreply.github.com> Date: Tue, 22 Oct 2019 14:25:01 +0530 Subject: [PATCH 378/594] Create greedy.py (#1359) * Create greedy.py * Update greedy.py * Add a doctest and format with black * Update build_directory_md.py --- other/greedy.py | 63 +++++++++++++++++++++++++++++++++++ scripts/build_directory_md.py | 6 ++-- 2 files changed, 65 insertions(+), 4 deletions(-) create mode 100644 other/greedy.py diff --git a/other/greedy.py b/other/greedy.py new file mode 100644 index 000000000000..d1bc156304b0 --- /dev/null +++ b/other/greedy.py @@ -0,0 +1,63 @@ +class things: + def __init__(self, n, v, w): + self.name = n + self.value = v + self.weight = w + + def __repr__(self): + return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" + + def get_value(self): + return self.value + + def get_name(self): + return self.name + + def get_weight(self): + return self.weight + + def value_Weight(self): + return self.value / self.weight + + +def build_menu(name, value, weight): + menu = [] + for i in range(len(value)): + menu.append(things(name[i], value[i], weight[i])) + return menu + + +def greedy(item, maxCost, keyFunc): + itemsCopy = sorted(item, key=keyFunc, reverse=True) + result = [] + totalValue, total_cost = 0.0, 0.0 + for i in range(len(itemsCopy)): + if (total_cost + itemsCopy[i].get_weight()) <= maxCost: + result.append(itemsCopy[i]) + total_cost += itemsCopy[i].get_weight() + totalValue += itemsCopy[i].get_value() + return (result, totalValue) + + +def test_greedy(): + """ + >>> food = ["Burger", "Pizza", "Coca Cola", "Rice", + ... "Sambhar", "Chicken", "Fries", "Milk"] + >>> value = [80, 100, 60, 70, 50, 110, 90, 60] + >>> weight = [40, 60, 40, 70, 100, 85, 55, 70] + >>> foods = build_menu(food, value, weight) + >>> foods # doctest: +NORMALIZE_WHITESPACE + [things(Burger, 80, 40), things(Pizza, 100, 60), things(Coca Cola, 60, 40), + things(Rice, 70, 70), things(Sambhar, 50, 100), things(Chicken, 110, 85), + things(Fries, 90, 55), things(Milk, 60, 70)] + >>> greedy(foods, 500, things.get_value) # doctest: +NORMALIZE_WHITESPACE + ([things(Chicken, 110, 85), things(Pizza, 100, 60), things(Fries, 90, 55), + things(Burger, 80, 40), things(Rice, 70, 70), things(Coca Cola, 60, 40), + things(Milk, 60, 70)], 570.0) + """ + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py index cae38c13dbf4..2ebd445b3667 100755 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -25,7 +25,7 @@ def print_path(old_path: str, new_path: str) -> str: for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: - print(f"{md_prefix(i-1)} {new_part.replace('_', ' ').title()}") + print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") return new_path @@ -36,9 +36,7 @@ def print_directory_md(top_dir: str = ".") -> None: if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 - url = "/".join((URL_BASE, filepath.split(os.sep)[1], filename)).replace( - " ", "%20" - ) + url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " "))[0] print(f"{md_prefix(indent)} [{filename}]({url})") From 7444a1f0693c5e08d6859d549ce5485db5a988b1 Mon Sep 17 00:00:00 2001 From: Ghulam Mohiyuddin Date: Tue, 22 Oct 2019 14:56:06 +0530 Subject: [PATCH 379/594] Another method added for GCD (#1387) * Another method added for GCD * Now doctest fulfilled for added method. * Update greatest_common_divisor.py * Now unnecessary white spaces removed. * Cycle_Detection_Undirected_Graph Cycle_Detection_Undirected_Graph using Disjoint set DataStructure * Update greatest_common_divisor.py again * Again Updated cycle_detection_undirected_graph.py * Delete cycle_detection_undirected_graph.py * Add doctests and format the code with psf/black * fixup: Typo * Update greatest_common_divisor.py * greatest_common_divisor() --- maths/greatest_common_divisor.py | 38 ++++++++++++++++++++++++++------ 1 file changed, 31 insertions(+), 7 deletions(-) diff --git a/maths/greatest_common_divisor.py b/maths/greatest_common_divisor.py index ebc08f37ffa6..a1b915bc3cfb 100644 --- a/maths/greatest_common_divisor.py +++ b/maths/greatest_common_divisor.py @@ -5,20 +5,44 @@ """ -def gcd(a, b): - """Calculate Greatest Common Divisor (GCD).""" - return b if a == 0 else gcd(b % a, a) +def greatest_common_divisor(a, b): + """ + Calculate Greatest Common Divisor (GCD). + >>> greatest_common_divisor(24, 40) + 8 + """ + return b if a == 0 else greatest_common_divisor(b % a, a) + + +""" +Below method is more memory efficient because it does not use the stack (chunk of memory). +While above method is good, uses more memory for huge numbers because of the recursive calls +required to calculate the greatest common divisor. +""" + + +def gcd_by_iterative(x, y): + """ + >>> gcd_by_iterative(24, 40) + 8 + >>> greatest_common_divisor(24, 40) == gcd_by_iterative(24, 40) + True + """ + while y: # --> when y=0 then loop will terminate and return x as final GCD. + x, y = y, x % y + return x def main(): - """Call GCD Function.""" + """Call Greatest Common Divisor function.""" try: - nums = input("Enter two Integers separated by comma (,): ").split(",") + nums = input("Enter two integers separated by comma (,): ").split(",") num_1 = int(nums[0]) num_2 = int(nums[1]) - print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}") + print(f"greatest_common_divisor({num_1}, {num_2}) = {greatest_common_divisor(num_1, num_2)}") + print(f"By iterative gcd({num_1}, {num_2}) = {gcd_by_iterative(num_1, num_2)}") except (IndexError, UnboundLocalError, ValueError): - print("Wrong Input") + print("Wrong input") if __name__ == "__main__": From 906c985de3b0156ac50a1bd10d0c803f3439cf4e Mon Sep 17 00:00:00 2001 From: Daniel Melo <38673841+danielx285@users.noreply.github.com> Date: Tue, 22 Oct 2019 06:37:43 -0300 Subject: [PATCH 380/594] Create dinic.py (#1396) * Create dinic.py Dinic's algorithm for maximum flow * Update dinic.py Changes made. --- graphs/dinic.py | 93 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 graphs/dinic.py diff --git a/graphs/dinic.py b/graphs/dinic.py new file mode 100644 index 000000000000..38e91e4940e0 --- /dev/null +++ b/graphs/dinic.py @@ -0,0 +1,93 @@ +INF = float("inf") + +class Dinic: + def __init__(self, n): + self.lvl = [0] * n + self.ptr = [0] * n + self.q = [0] * n + self.adj = [[] for _ in range(n)] + + ''' + Here we will add our edges containing with the following parameters: + vertex closest to source, vertex closest to sink and flow capacity + through that edge ... + ''' + def add_edge(self, a, b, c, rcap=0): + self.adj[a].append([b, len(self.adj[b]), c, 0]) + self.adj[b].append([a, len(self.adj[a]) - 1, rcap, 0]) + + #This is a sample depth first search to be used at max_flow + def depth_first_search(self, vertex, sink, flow): + if vertex == sink or not flow: + return flow + + for i in range(self.ptr[vertex], len(self.adj[vertex])): + e = self.adj[vertex][i] + if self.lvl[e[0]] == self.lvl[vertex] + 1: + p = self.depth_first_search(e[0], sink, min(flow, e[2] - e[3])) + if p: + self.adj[vertex][i][3] += p + self.adj[e[0]][e[1]][3] -= p + return p + self.ptr[vertex] = self.ptr[vertex] + 1 + return 0 + + #Here we calculate the flow that reaches the sink + def max_flow(self, source, sink): + flow, self.q[0] = 0, source + for l in range(31): # l = 30 maybe faster for random data + while True: + self.lvl, self.ptr = [0] * len(self.q), [0] * len(self.q) + qi, qe, self.lvl[source] = 0, 1, 1 + while qi < qe and not self.lvl[sink]: + v = self.q[qi] + qi += 1 + for e in self.adj[v]: + if not self.lvl[e[0]] and (e[2] - e[3]) >> (30 - l): + self.q[qe] = e[0] + qe += 1 + self.lvl[e[0]] = self.lvl[v] + 1 + + p = self.depth_first_search(source, sink, INF) + while p: + flow += p + p = self.depth_first_search(source, sink, INF) + + if not self.lvl[sink]: + break + + return flow + +#Example to use + +''' +Will be a bipartite graph, than it has the vertices near the source(4) +and the vertices near the sink(4) +''' +#Here we make a graphs with 10 vertex(source and sink includes) +graph = Dinic(10) +source = 0 +sink = 9 +''' +Now we add the vertices next to the font in the font with 1 capacity in this edge +(source -> source vertices) +''' +for vertex in range(1, 5): + graph.add_edge(source, vertex, 1) +''' +We will do the same thing for the vertices near the sink, but from vertex to sink +(sink vertices -> sink) +''' +for vertex in range(5, 9): + graph.add_edge(vertex, sink, 1) +''' +Finally we add the verices near the sink to the vertices near the source. +(source vertices -> sink vertices) +''' +for vertex in range(1, 5): + graph.add_edge(vertex, vertex+4, 1) + +#Now we can know that is the maximum flow(source -> sink) +print(graph.max_flow(source, sink)) + + From 11e2207182829ee6b1d13c0aec326d5a123d2c9b Mon Sep 17 00:00:00 2001 From: Ankur Chattopadhyay <39518771+chttrjeankr@users.noreply.github.com> Date: Tue, 22 Oct 2019 21:32:03 +0530 Subject: [PATCH 381/594] Project Euler problems 06, 20 (#1419) * added sol3.py for problem_20 * added sol4.py for problem_06 --- project_euler/problem_06/sol4.py | 40 ++++++++++++++++++++++++++++++++ project_euler/problem_20/sol3.py | 39 +++++++++++++++++++++++++++++++ 2 files changed, 79 insertions(+) create mode 100644 project_euler/problem_06/sol4.py create mode 100644 project_euler/problem_20/sol3.py diff --git a/project_euler/problem_06/sol4.py b/project_euler/problem_06/sol4.py new file mode 100644 index 000000000000..1e1de5570e7d --- /dev/null +++ b/project_euler/problem_06/sol4.py @@ -0,0 +1,40 @@ +# -*- coding: utf-8 -*- +""" +Problem: + +The sum of the squares of the first ten natural numbers is, + 1^2 + 2^2 + ... + 10^2 = 385 + +The square of the sum of the first ten natural numbers is, + (1 + 2 + ... + 10)^2 = 552 = 3025 + +Hence the difference between the sum of the squares of the first ten natural +numbers and the square of the sum is 3025 − 385 = 2640. + +Find the difference between the sum of the squares of the first N natural +numbers and the square of the sum. +""" + + +def solution(n): + """Returns the difference between the sum of the squares of the first n + natural numbers and the square of the sum. + + >>> solution(10) + 2640 + >>> solution(15) + 13160 + >>> solution(20) + 41230 + >>> solution(50) + 1582700 + >>> solution(100) + 25164150 + """ + sum_of_squares = n * (n + 1) * (2 * n + 1) / 6 + square_of_sum = (n * (n + 1) / 2) ** 2 + return int(square_of_sum - sum_of_squares) + + +if __name__ == "__main__": + print(solution(int(input("Enter a number: ").strip()))) diff --git a/project_euler/problem_20/sol3.py b/project_euler/problem_20/sol3.py new file mode 100644 index 000000000000..13f9d7831c47 --- /dev/null +++ b/project_euler/problem_20/sol3.py @@ -0,0 +1,39 @@ +""" +n! means n × (n − 1) × ... × 3 × 2 × 1 + +For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, +and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. + +Find the sum of the digits in the number 100! +""" +from math import factorial + + +def solution(n): + """Returns the sum of the digits in the number 100! + >>> solution(1000) + 10539 + >>> solution(200) + 1404 + >>> solution(100) + 648 + >>> solution(50) + 216 + >>> solution(10) + 27 + >>> solution(5) + 3 + >>> solution(3) + 6 + >>> solution(2) + 2 + >>> solution(1) + 1 + >>> solution(0) + 1 + """ + return sum(map(int, str(factorial(n)))) + + +if __name__ == "__main__": + print(solution(int(input("Enter the Number: ").strip()))) From 7592cba417b1766b8c7c5721ffe916f5c14cdc60 Mon Sep 17 00:00:00 2001 From: Ankur Chattopadhyay <39518771+chttrjeankr@users.noreply.github.com> Date: Tue, 22 Oct 2019 22:43:48 +0530 Subject: [PATCH 382/594] psf/black code formatting (#1421) * added sol3.py for problem_20 * added sol4.py for problem_06 * ran `black .` on `\Python` --- ciphers/base64_cipher.py | 2 +- ciphers/caesar_cipher.py | 12 +- data_structures/binary_tree/treap.py | 26 ++-- divide_and_conquer/mergesort.py | 67 ++++++----- dynamic_programming/abbreviation.py | 1 + dynamic_programming/fibonacci.py | 2 +- dynamic_programming/fractional_knapsack.py | 1 + .../longest_common_subsequence.py | 2 +- dynamic_programming/sum_of_subset.py | 1 + fuzzy_logic/fuzzy_operations.py | 80 +++++++------ graphs/dinic.py | 43 +++---- machine_learning/decision_tree.py | 8 +- machine_learning/polymonial_regression.py | 22 ++-- maths/3n+1.py | 113 +++++++++++++++++- maths/explicit_euler.py | 5 +- maths/factorial_python.py | 2 +- maths/greatest_common_divisor.py | 4 +- maths/karatsuba.py | 9 +- maths/prime_sieve_eratosthenes.py | 19 +-- maths/qr_decomposition.py | 12 +- maths/runge_kutta.py | 8 +- other/activity_selection.py | 46 +++---- other/magicdiamondpattern.py | 67 ++++++----- other/password_generator.py | 42 ++++--- project_euler/problem_02/sol5.py | 6 +- searches/fibonacci_search.py | 30 +++-- sorts/bubble_sort.py | 3 +- sorts/double_sort.py | 36 +++--- 28 files changed, 415 insertions(+), 254 deletions(-) diff --git a/ciphers/base64_cipher.py b/ciphers/base64_cipher.py index eea065b94ee0..f95403c7b426 100644 --- a/ciphers/base64_cipher.py +++ b/ciphers/base64_cipher.py @@ -18,7 +18,7 @@ def encode_base64(text): i = 0 while i < len(s): if i > 0 and ((i / 3 * 4) % 76) == 0: - r = r + "\r\n" # for unix newline, put "\n" + r = r + "\r\n" # for unix newline, put "\n" n = (s[i] << 16) + (s[i + 1] << 8) + s[i + 2] diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 52155bbdc49e..200f868051d4 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -1,5 +1,5 @@ def encrypt(input_string: str, key: int) -> str: - result = '' + result = "" for x in input_string: if not x.isalpha(): result += x @@ -11,7 +11,7 @@ def encrypt(input_string: str, key: int) -> str: def decrypt(input_string: str, key: int) -> str: - result = '' + result = "" for x in input_string: if not x.isalpha(): result += x @@ -24,15 +24,15 @@ def decrypt(input_string: str, key: int) -> str: def brute_force(input_string: str) -> None: key = 1 - result = '' + result = "" while key <= 94: for x in input_string: indx = (ord(x) - key) % 256 if indx < 32: indx = indx + 95 result = result + chr(indx) - print(f'Key: {key}\t| Message: {result}') - result = '' + print(f"Key: {key}\t| Message: {result}") + result = "" key += 1 return None @@ -40,7 +40,7 @@ def brute_force(input_string: str) -> None: def main(): while True: print(f'{"-" * 10}\n Menu\n{"-", * 10}') - print(*["1.Encrpyt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep='\n') + print(*["1.Encrpyt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n") choice = input("What would you like to do?: ") if choice not in ["1", "2", "3", "4"]: print("Invalid choice, please enter a valid choice") diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index 0b5947f4cc04..a6ff3c9d798b 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -7,6 +7,7 @@ class Node(object): Treap's node Treap is a binary tree by value and heap by priority """ + def __init__(self, value: int = None): self.value = value self.prior = random() @@ -20,10 +21,7 @@ def __repr__(self): return "'%s: %.5s'" % (self.value, self.prior) else: return pformat( - { - "%s: %.5s" - % (self.value, self.prior): (self.left, self.right) - }, + {"%s: %.5s" % (self.value, self.prior): (self.left, self.right)}, indent=1, ) @@ -33,6 +31,7 @@ def __str__(self): right = str(self.right or "") return value + left + right + def split(root: Node, value: int) -> Tuple[Node, Node]: """ We split current tree into 2 trees with value: @@ -61,12 +60,13 @@ def split(root: Node, value: int) -> Tuple[Node, Node]: root.right, right = split(root.right, value) return (root, right) + def merge(left: Node, right: Node) -> Node: """ We merge 2 trees into one. Note: all left tree's values must be less than all right tree's """ - if (not left) or (not right): # If one node is None, return the other + if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: """ @@ -82,6 +82,7 @@ def merge(left: Node, right: Node) -> Node: right.left = merge(left, right.left) return right + def insert(root: Node, value: int) -> Node: """ Insert element @@ -94,6 +95,7 @@ def insert(root: Node, value: int) -> Node: left, right = split(root, value) return merge(merge(left, node), right) + def erase(root: Node, value: int) -> Node: """ Erase element @@ -102,15 +104,16 @@ def erase(root: Node, value: int) -> Node: Split all nodes with values greater into right. Merge left, right """ - left, right = split(root, value-1) + left, right = split(root, value - 1) _, right = split(right, value) return merge(left, right) + def inorder(root: Node): """ Just recursive print of a tree """ - if not root: # None + if not root: # None return else: inorder(root.left) @@ -154,13 +157,16 @@ def interactTreap(root, args): return root + def main(): """After each command, program prints treap""" root = None - print("enter numbers to creat a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. ") + print( + "enter numbers to creat a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. " + ) args = input() - while args != 'q': + while args != "q": root = interactTreap(root, args) print(root) args = input() @@ -168,7 +174,9 @@ def main(): print("good by!") pass + if __name__ == "__main__": import doctest + doctest.testmod() main() diff --git a/divide_and_conquer/mergesort.py b/divide_and_conquer/mergesort.py index b2a5a4c321ae..d6693eb36a0a 100644 --- a/divide_and_conquer/mergesort.py +++ b/divide_and_conquer/mergesort.py @@ -1,45 +1,48 @@ -def merge(a,b,m,e): - l=a[b:m+1] - r=a[m+1:e+1] - k=b - i=0 - j=0 - while i>> mergesort([3,2,1],0,2) [1, 2, 3] >>> mergesort([3,2,1,0,1,2,3,5,4],0,8) [0, 1, 1, 2, 2, 3, 3, 4, 5] """ - if b capitalize a and c(dABCd) -> remove d (ABC) """ + def abbr(a, b): """ >>> abbr("daBcd", "ABC") diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py index 125686416603..923560b54d30 100644 --- a/dynamic_programming/fibonacci.py +++ b/dynamic_programming/fibonacci.py @@ -58,7 +58,7 @@ def get(self, sequence_no=None): print("\nInvalid input, please try again.") except NameError: print("\n********* Invalid input, good bye!! ************\n") - + import doctest doctest.testmod() diff --git a/dynamic_programming/fractional_knapsack.py b/dynamic_programming/fractional_knapsack.py index 728cdeb009ac..15210146bf66 100644 --- a/dynamic_programming/fractional_knapsack.py +++ b/dynamic_programming/fractional_knapsack.py @@ -20,6 +20,7 @@ def fracKnapsack(vl, wt, W, n): else sum(vl[:k]) ) + if __name__ == "__main__": import doctest diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py index 4bb1db044d3b..a7206b221d96 100644 --- a/dynamic_programming/longest_common_subsequence.py +++ b/dynamic_programming/longest_common_subsequence.py @@ -76,7 +76,7 @@ def longest_common_subsequence(x: str, y: str): expected_subseq = "GTAB" ln, subseq = longest_common_subsequence(a, b) -## print("len =", ln, ", sub-sequence =", subseq) + ## print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod() diff --git a/dynamic_programming/sum_of_subset.py b/dynamic_programming/sum_of_subset.py index 5c7944d5090e..9394d29dabc0 100644 --- a/dynamic_programming/sum_of_subset.py +++ b/dynamic_programming/sum_of_subset.py @@ -29,6 +29,7 @@ def isSumSubset(arr, arrLen, requiredSum): # print(subset[i]) print(subset[arrLen][requiredSum]) + if __name__ == "__main__": import doctest diff --git a/fuzzy_logic/fuzzy_operations.py b/fuzzy_logic/fuzzy_operations.py index e497eabd1690..ba4a8a22a4d1 100644 --- a/fuzzy_logic/fuzzy_operations.py +++ b/fuzzy_logic/fuzzy_operations.py @@ -8,37 +8,39 @@ """ # Create universe of discourse in python using linspace () import numpy as np + X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). import skfuzzy as fuzz -abc1=[0,25,50] -abc2=[25,50,75] -young = fuzz.membership.trimf(X,abc1) -middle_aged = fuzz.membership.trimf(X,abc2) + +abc1 = [0, 25, 50] +abc2 = [25, 50, 75] +young = fuzz.membership.trimf(X, abc1) +middle_aged = fuzz.membership.trimf(X, abc2) # Compute the different operations using inbuilt functions. one = np.ones(75) zero = np.zeros((75,)) -#1. Union = max(µA(x), µB(x)) +# 1. Union = max(µA(x), µB(x)) union = fuzz.fuzzy_or(X, young, X, middle_aged)[1] -#2. Intersection = min(µA(x), µB(x)) +# 2. Intersection = min(µA(x), µB(x)) intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1] -#3. Complement (A) = (1- min(µA(x)) +# 3. Complement (A) = (1- min(µA(x)) complement_a = fuzz.fuzzy_not(young) -#4. Difference (A/B) = min(µA(x),(1- µB(x))) +# 4. Difference (A/B) = min(µA(x),(1- µB(x))) difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] -#5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] -alg_sum = young + middle_aged - (young*middle_aged) -#6. Algebraic Product = (µA(x) * µB(x)) -alg_product = young*middle_aged -#7. Bounded Sum = min[1,(µA(x), µB(x))] -bdd_sum = fuzz.fuzzy_and(X, one, X, young+middle_aged)[1] -#8. Bounded difference = min[0,(µA(x), µB(x))] -bdd_difference = fuzz.fuzzy_or(X, zero, X, young-middle_aged)[1] +# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] +alg_sum = young + middle_aged - (young * middle_aged) +# 6. Algebraic Product = (µA(x) * µB(x)) +alg_product = young * middle_aged +# 7. Bounded Sum = min[1,(µA(x), µB(x))] +bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] +# 8. Bounded difference = min[0,(µA(x), µB(x))] +bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] -#max-min composition -#max-product composition +# max-min composition +# max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). @@ -46,55 +48,55 @@ plt.figure() -plt.subplot(4,3,1) -plt.plot(X,young) +plt.subplot(4, 3, 1) +plt.plot(X, young) plt.title("Young") plt.grid(True) -plt.subplot(4,3,2) -plt.plot(X,middle_aged) +plt.subplot(4, 3, 2) +plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) -plt.subplot(4,3,3) -plt.plot(X,union) +plt.subplot(4, 3, 3) +plt.plot(X, union) plt.title("union") plt.grid(True) -plt.subplot(4,3,4) -plt.plot(X,intersection) +plt.subplot(4, 3, 4) +plt.plot(X, intersection) plt.title("intersection") plt.grid(True) -plt.subplot(4,3,5) -plt.plot(X,complement_a) +plt.subplot(4, 3, 5) +plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) -plt.subplot(4,3,6) -plt.plot(X,difference) +plt.subplot(4, 3, 6) +plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) -plt.subplot(4,3,7) -plt.plot(X,alg_sum) +plt.subplot(4, 3, 7) +plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) -plt.subplot(4,3,8) -plt.plot(X,alg_product) +plt.subplot(4, 3, 8) +plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) -plt.subplot(4,3,9) -plt.plot(X,bdd_sum) +plt.subplot(4, 3, 9) +plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) -plt.subplot(4,3,10) -plt.plot(X,bdd_difference) +plt.subplot(4, 3, 10) +plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) -plt.subplots_adjust(hspace = 0.5) +plt.subplots_adjust(hspace=0.5) plt.show() diff --git a/graphs/dinic.py b/graphs/dinic.py index 38e91e4940e0..4f5e81236984 100644 --- a/graphs/dinic.py +++ b/graphs/dinic.py @@ -1,5 +1,6 @@ INF = float("inf") + class Dinic: def __init__(self, n): self.lvl = [0] * n @@ -7,16 +8,17 @@ def __init__(self, n): self.q = [0] * n self.adj = [[] for _ in range(n)] - ''' + """ Here we will add our edges containing with the following parameters: vertex closest to source, vertex closest to sink and flow capacity through that edge ... - ''' + """ + def add_edge(self, a, b, c, rcap=0): self.adj[a].append([b, len(self.adj[b]), c, 0]) self.adj[b].append([a, len(self.adj[a]) - 1, rcap, 0]) - #This is a sample depth first search to be used at max_flow + # This is a sample depth first search to be used at max_flow def depth_first_search(self, vertex, sink, flow): if vertex == sink or not flow: return flow @@ -31,8 +33,8 @@ def depth_first_search(self, vertex, sink, flow): return p self.ptr[vertex] = self.ptr[vertex] + 1 return 0 - - #Here we calculate the flow that reaches the sink + + # Here we calculate the flow that reaches the sink def max_flow(self, source, sink): flow, self.q[0] = 0, source for l in range(31): # l = 30 maybe faster for random data @@ -58,36 +60,35 @@ def max_flow(self, source, sink): return flow -#Example to use -''' +# Example to use + +""" Will be a bipartite graph, than it has the vertices near the source(4) and the vertices near the sink(4) -''' -#Here we make a graphs with 10 vertex(source and sink includes) +""" +# Here we make a graphs with 10 vertex(source and sink includes) graph = Dinic(10) source = 0 sink = 9 -''' +""" Now we add the vertices next to the font in the font with 1 capacity in this edge (source -> source vertices) -''' +""" for vertex in range(1, 5): - graph.add_edge(source, vertex, 1) -''' + graph.add_edge(source, vertex, 1) +""" We will do the same thing for the vertices near the sink, but from vertex to sink (sink vertices -> sink) -''' +""" for vertex in range(5, 9): - graph.add_edge(vertex, sink, 1) -''' + graph.add_edge(vertex, sink, 1) +""" Finally we add the verices near the sink to the vertices near the source. (source vertices -> sink vertices) -''' +""" for vertex in range(1, 5): - graph.add_edge(vertex, vertex+4, 1) + graph.add_edge(vertex, vertex + 4, 1) -#Now we can know that is the maximum flow(source -> sink) +# Now we can know that is the maximum flow(source -> sink) print(graph.max_flow(source, sink)) - - diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py index 14c02b64df0c..6b121c73f3b4 100644 --- a/machine_learning/decision_tree.py +++ b/machine_learning/decision_tree.py @@ -125,6 +125,7 @@ def predict(self, x): print("Error: Decision tree not yet trained") return None + class Test_Decision_Tree: """Decision Tres test class """ @@ -139,12 +140,9 @@ def helper_mean_squared_error_test(labels, prediction): """ squared_error_sum = np.float(0) for label in labels: - squared_error_sum += ((label-prediction) ** 2) + squared_error_sum += (label - prediction) ** 2 - return np.float(squared_error_sum/labels.size) - - - + return np.float(squared_error_sum / labels.size) def main(): diff --git a/machine_learning/polymonial_regression.py b/machine_learning/polymonial_regression.py index 03f5f0a9713d..0d9db0f7578a 100644 --- a/machine_learning/polymonial_regression.py +++ b/machine_learning/polymonial_regression.py @@ -2,19 +2,23 @@ import pandas as pd # Importing the dataset -dataset = pd.read_csv('https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv') +dataset = pd.read_csv( + "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv" +) X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into the Training set and Test set -from sklearn.model_selection import train_test_split +from sklearn.model_selection import train_test_split + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression + poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() @@ -23,15 +27,17 @@ # Visualizing the Polymonial Regression results def viz_polymonial(): - plt.scatter(X, y, color='red') - plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') - plt.title('Truth or Bluff (Linear Regression)') - plt.xlabel('Position level') - plt.ylabel('Salary') + plt.scatter(X, y, color="red") + plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue") + plt.title("Truth or Bluff (Linear Regression)") + plt.xlabel("Position level") + plt.ylabel("Salary") plt.show() return + + viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) -#output should be 132148.43750003 +# output should be 132148.43750003 diff --git a/maths/3n+1.py b/maths/3n+1.py index ff769550297c..f6fe77b2b3fe 100644 --- a/maths/3n+1.py +++ b/maths/3n+1.py @@ -29,7 +29,118 @@ def test_n31(): """ assert n31(4) == ([4, 2, 1], 3) assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15) - assert n31(31) == ([31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1], 107) + assert n31(31) == ( + [ + 31, + 94, + 47, + 142, + 71, + 214, + 107, + 322, + 161, + 484, + 242, + 121, + 364, + 182, + 91, + 274, + 137, + 412, + 206, + 103, + 310, + 155, + 466, + 233, + 700, + 350, + 175, + 526, + 263, + 790, + 395, + 1186, + 593, + 1780, + 890, + 445, + 1336, + 668, + 334, + 167, + 502, + 251, + 754, + 377, + 1132, + 566, + 283, + 850, + 425, + 1276, + 638, + 319, + 958, + 479, + 1438, + 719, + 2158, + 1079, + 3238, + 1619, + 4858, + 2429, + 7288, + 3644, + 1822, + 911, + 2734, + 1367, + 4102, + 2051, + 6154, + 3077, + 9232, + 4616, + 2308, + 1154, + 577, + 1732, + 866, + 433, + 1300, + 650, + 325, + 976, + 488, + 244, + 122, + 61, + 184, + 92, + 46, + 23, + 70, + 35, + 106, + 53, + 160, + 80, + 40, + 20, + 10, + 5, + 16, + 8, + 4, + 2, + 1, + ], + 107, + ) if __name__ == "__main__": diff --git a/maths/explicit_euler.py b/maths/explicit_euler.py index 9fce4e4185a6..8a43d71fb432 100644 --- a/maths/explicit_euler.py +++ b/maths/explicit_euler.py @@ -22,13 +22,13 @@ def explicit_euler(ode_func, y0, x0, stepsize, x_end): >>> y[-1] 144.77277243257308 """ - N = int(np.ceil((x_end - x0)/stepsize)) + N = int(np.ceil((x_end - x0) / stepsize)) y = np.zeros((N + 1,)) y[0] = y0 x = x0 for k in range(N): - y[k + 1] = y[k] + stepsize*ode_func(x, y[k]) + y[k + 1] = y[k] + stepsize * ode_func(x, y[k]) x += stepsize return y @@ -38,4 +38,3 @@ def explicit_euler(ode_func, y0, x0, stepsize, x_end): import doctest doctest.testmod() - diff --git a/maths/factorial_python.py b/maths/factorial_python.py index 10083af0bef2..ab97cd41e681 100644 --- a/maths/factorial_python.py +++ b/maths/factorial_python.py @@ -11,7 +11,7 @@ def factorial(input_number: int) -> int: """ if input_number < 0: - raise ValueError('Input input_number should be non-negative') + raise ValueError("Input input_number should be non-negative") elif input_number == 0: return 1 else: diff --git a/maths/greatest_common_divisor.py b/maths/greatest_common_divisor.py index a1b915bc3cfb..07dddab9aeff 100644 --- a/maths/greatest_common_divisor.py +++ b/maths/greatest_common_divisor.py @@ -39,7 +39,9 @@ def main(): nums = input("Enter two integers separated by comma (,): ").split(",") num_1 = int(nums[0]) num_2 = int(nums[1]) - print(f"greatest_common_divisor({num_1}, {num_2}) = {greatest_common_divisor(num_1, num_2)}") + print( + f"greatest_common_divisor({num_1}, {num_2}) = {greatest_common_divisor(num_1, num_2)}" + ) print(f"By iterative gcd({num_1}, {num_2}) = {gcd_by_iterative(num_1, num_2)}") except (IndexError, UnboundLocalError, ValueError): print("Wrong input") diff --git a/maths/karatsuba.py b/maths/karatsuba.py index be4630184933..df29c77a5cf2 100644 --- a/maths/karatsuba.py +++ b/maths/karatsuba.py @@ -1,5 +1,6 @@ """ Multiply two numbers using Karatsuba algorithm """ + def karatsuba(a, b): """ >>> karatsuba(15463, 23489) == 15463 * 23489 @@ -8,19 +9,19 @@ def karatsuba(a, b): True """ if len(str(a)) == 1 or len(str(b)) == 1: - return (a * b) + return a * b else: m1 = max(len(str(a)), len(str(b))) m2 = m1 // 2 - a1, a2 = divmod(a, 10**m2) - b1, b2 = divmod(b, 10**m2) + a1, a2 = divmod(a, 10 ** m2) + b1, b2 = divmod(b, 10 ** m2) x = karatsuba(a2, b2) y = karatsuba((a1 + a2), (b1 + b2)) z = karatsuba(a1, b1) - return ((z * 10**(2*m2)) + ((y - z - x) * 10**(m2)) + (x)) + return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x) def main(): diff --git a/maths/prime_sieve_eratosthenes.py b/maths/prime_sieve_eratosthenes.py index 7d039aaadd7d..4fa19d6db220 100644 --- a/maths/prime_sieve_eratosthenes.py +++ b/maths/prime_sieve_eratosthenes.py @@ -1,4 +1,4 @@ -''' +""" Sieve of Eratosthenes Input : n =10 @@ -9,7 +9,8 @@ you can read in detail about this at https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes -''' +""" + def prime_sieve_eratosthenes(num): """ @@ -20,22 +21,22 @@ def prime_sieve_eratosthenes(num): >>> prime_sieve_eratosthenes(20) 2 3 5 7 11 13 17 19 """ - - + primes = [True for i in range(num + 1)] p = 2 - + while p * p <= num: if primes[p] == True: - for i in range(p*p, num+1, p): + for i in range(p * p, num + 1, p): primes[i] = False - p+=1 + p += 1 - for prime in range(2, num+1): + for prime in range(2, num + 1): if primes[prime]: print(prime, end=" ") + if __name__ == "__main__": num = int(input()) - + prime_sieve_eratosthenes(num) diff --git a/maths/qr_decomposition.py b/maths/qr_decomposition.py index 197211f1e694..5e15fede4f2a 100644 --- a/maths/qr_decomposition.py +++ b/maths/qr_decomposition.py @@ -51,21 +51,21 @@ def qr_householder(A): # determine scaling factor alpha = np.linalg.norm(x) # construct vector v for Householder reflection - v = x + np.sign(x[0])*alpha*e1 + v = x + np.sign(x[0]) * alpha * e1 v /= np.linalg.norm(v) # construct the Householder matrix - Q_k = np.eye(m - k) - 2.0*v@v.T + Q_k = np.eye(m - k) - 2.0 * v @ v.T # pad with ones and zeros as necessary - Q_k = np.block([[np.eye(k), np.zeros((k, m - k))], - [np.zeros((m - k, k)), Q_k ]]) + Q_k = np.block([[np.eye(k), np.zeros((k, m - k))], [np.zeros((m - k, k)), Q_k]]) - Q = Q@Q_k.T - R = Q_k@R + Q = Q @ Q_k.T + R = Q_k @ R return Q, R if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/maths/runge_kutta.py b/maths/runge_kutta.py index b0ba9025883f..383797daa5ac 100644 --- a/maths/runge_kutta.py +++ b/maths/runge_kutta.py @@ -22,17 +22,17 @@ def runge_kutta(f, y0, x0, h, x_end): >>> y[-1] 148.41315904125113 """ - N = int(np.ceil((x_end - x0)/h)) + N = int(np.ceil((x_end - x0) / h)) y = np.zeros((N + 1,)) y[0] = y0 x = x0 for k in range(N): k1 = f(x, y[k]) - k2 = f(x + 0.5*h, y[k] + 0.5*h*k1) - k3 = f(x + 0.5*h, y[k] + 0.5*h*k2) + k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1) + k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2) k4 = f(x + h, y[k] + h * k3) - y[k + 1] = y[k] + (1/6)*h*(k1 + 2*k2 + 2*k3 + k4) + y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4) x += h return y diff --git a/other/activity_selection.py b/other/activity_selection.py index 5c14df7d6aa7..4e8e6c78e3f5 100644 --- a/other/activity_selection.py +++ b/other/activity_selection.py @@ -1,12 +1,13 @@ """The following implementation assumes that the activities are already sorted according to their finish time""" - + """Prints a maximum set of activities that can be done by a single person, one at a time""" -# n --> Total number of activities -# start[]--> An array that contains start time of all activities -# finish[] --> An array that contains finish time of all activities - +# n --> Total number of activities +# start[]--> An array that contains start time of all activities +# finish[] --> An array that contains finish time of all activities + + def printMaxActivities(start, finish): """ >>> start = [1, 3, 0, 5, 8, 5] @@ -15,27 +16,28 @@ def printMaxActivities(start, finish): The following activities are selected: 0 1 3 4 """ - n = len(finish) + n = len(finish) print("The following activities are selected:") - - # The first activity is always selected + + # The first activity is always selected i = 0 print(i, end=" ") - - # Consider rest of the activities - for j in range(n): - - # If this activity has start time greater than - # or equal to the finish time of previously - # selected activity, then select it - if start[j] >= finish[i]: + + # Consider rest of the activities + for j in range(n): + + # If this activity has start time greater than + # or equal to the finish time of previously + # selected activity, then select it + if start[j] >= finish[i]: print(j, end=" ") - i = j - -# Driver program to test above function -start = [1, 3, 0, 5, 8, 5] -finish = [2, 4, 6, 7, 9, 9] -printMaxActivities(start, finish) + i = j + + +# Driver program to test above function +start = [1, 3, 0, 5, 8, 5] +finish = [2, 4, 6, 7, 9, 9] +printMaxActivities(start, finish) """ The following activities are selected: diff --git a/other/magicdiamondpattern.py b/other/magicdiamondpattern.py index 024fbd0f569a..9b434a7b6e0b 100644 --- a/other/magicdiamondpattern.py +++ b/other/magicdiamondpattern.py @@ -2,52 +2,53 @@ # Function to print upper half of diamond (pyramid) def floyd(n): - ''' + """ Parameters: n : size of pattern - ''' - for i in range(0, n): - for j in range(0, n-i-1): # printing spaces - print(" ", end = "") - for k in range(0, i + 1): # printing stars - print("* ", end = "") - print() + """ + for i in range(0, n): + for j in range(0, n - i - 1): # printing spaces + print(" ", end="") + for k in range(0, i + 1): # printing stars + print("* ", end="") + print() # Function to print lower half of diamond (pyramid) def reverse_floyd(n): - ''' + """ Parameters: n : size of pattern - ''' - for i in range(n, 0, -1): - for j in range(i, 0, -1): # printing stars - print("* ", end = "") - print() - for k in range(n-i+1, 0, -1): # printing spaces - print(" ", end = "") + """ + for i in range(n, 0, -1): + for j in range(i, 0, -1): # printing stars + print("* ", end="") + print() + for k in range(n - i + 1, 0, -1): # printing spaces + print(" ", end="") + # Function to print complete diamond pattern of "*" def pretty_print(n): - ''' + """ Parameters: n : size of pattern - ''' - if n <= 0: - print(" ... .... nothing printing :(") - return - floyd(n) # upper half - reverse_floyd(n) # lower half + """ + if n <= 0: + print(" ... .... nothing printing :(") + return + floyd(n) # upper half + reverse_floyd(n) # lower half if __name__ == "__main__": - print(r"| /\ | |- | |- |--| |\ /| |-") - print(r"|/ \| |- |_ |_ |__| | \/ | |_") - K = 1 - while(K): - user_number = int(input("enter the number and , and see the magic : ")) - print() - pretty_print(user_number) - K = int(input("press 0 to exit... and 1 to continue...")) - - print("Good Bye...") + print(r"| /\ | |- | |- |--| |\ /| |-") + print(r"|/ \| |- |_ |_ |__| | \/ | |_") + K = 1 + while K: + user_number = int(input("enter the number and , and see the magic : ")) + print() + pretty_print(user_number) + K = int(input("press 0 to exit... and 1 to continue...")) + + print("Good Bye...") diff --git a/other/password_generator.py b/other/password_generator.py index b4c7999ca44a..598f8d0eeade 100644 --- a/other/password_generator.py +++ b/other/password_generator.py @@ -27,21 +27,27 @@ def alternative_password_generator(ctbi, i): # Password generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... - i = i - len(ctbi) - quotient = int(i / 3) - remainder = i % 3 - #chars = ctbi + random_letters(ascii_letters, i / 3 + remainder) + random_number(digits, i / 3) + random_characters(punctuation, i / 3) - chars = ctbi + random(ascii_letters, quotient + remainder) + random(digits, quotient) + random(punctuation, quotient) - chars = list(chars) - shuffle(chars) - return "".join(chars) - - - #random is a generalised function for letters, characters and numbers + i = i - len(ctbi) + quotient = int(i / 3) + remainder = i % 3 + # chars = ctbi + random_letters(ascii_letters, i / 3 + remainder) + random_number(digits, i / 3) + random_characters(punctuation, i / 3) + chars = ( + ctbi + + random(ascii_letters, quotient + remainder) + + random(digits, quotient) + + random(punctuation, quotient) + ) + chars = list(chars) + shuffle(chars) + return "".join(chars) + + # random is a generalised function for letters, characters and numbers + + def random(ctbi, i): - return "".join(choice(ctbi) for x in range(i)) - - + return "".join(choice(ctbi) for x in range(i)) + + def random_number(ctbi, i): pass # Put your code here... @@ -56,9 +62,13 @@ def random_characters(ctbi, i): def main(): length = int(input("Please indicate the max length of your password: ").strip()) - ctbi = input("Please indicate the characters that must be in your password: ").strip() + ctbi = input( + "Please indicate the characters that must be in your password: " + ).strip() print("Password generated:", password_generator(length)) - print("Alternative Password generated:", alternative_password_generator(ctbi, length)) + print( + "Alternative Password generated:", alternative_password_generator(ctbi, length) + ) print("[If you are thinking of using this passsword, You better save it.]") diff --git a/project_euler/problem_02/sol5.py b/project_euler/problem_02/sol5.py index 8df2068dd8c3..180906cf8717 100644 --- a/project_euler/problem_02/sol5.py +++ b/project_euler/problem_02/sol5.py @@ -27,11 +27,11 @@ def solution(n): 44 """ - a = [0,1] + a = [0, 1] i = 0 while a[i] <= n: - a.append(a[i] + a[i+1]) - if a[i+2] > n: + a.append(a[i] + a[i + 1]) + if a[i + 2] > n: break i += 1 sum = 0 diff --git a/searches/fibonacci_search.py b/searches/fibonacci_search.py index f76528b9c283..67f2df505d4e 100644 --- a/searches/fibonacci_search.py +++ b/searches/fibonacci_search.py @@ -1,12 +1,14 @@ -#run using python fibonacci_search.py -v +# run using python fibonacci_search.py -v -''' +""" @params arr: input array val: the value to be searched output: the index of element in the array or -1 if not found return 0 if input array is empty -''' +""" + + def fibonacci_search(arr, val): """ @@ -22,29 +24,31 @@ def fibonacci_search(arr, val): fibNext = fib_N_1 + fib_N_2 length = len(arr) if length == 0: - return 0 - while (fibNext < len(arr)): + return 0 + while fibNext < len(arr): fib_N_2 = fib_N_1 fib_N_1 = fibNext fibNext = fib_N_1 + fib_N_2 - index = -1; - while (fibNext > 1): - i = min(index + fib_N_2, (length-1)) - if (arr[i] < val): + index = -1 + while fibNext > 1: + i = min(index + fib_N_2, (length - 1)) + if arr[i] < val: fibNext = fib_N_1 fib_N_1 = fib_N_2 fib_N_2 = fibNext - fib_N_1 index = i - elif (arr[i] > val): + elif arr[i] > val: fibNext = fib_N_2 fib_N_1 = fib_N_1 - fib_N_2 fib_N_2 = fibNext - fib_N_1 - else : + else: return i - if (fib_N_1 and index < length-1) and (arr[index+1] == val): - return index+1; + if (fib_N_1 and index < length - 1) and (arr[index + 1] == val): + return index + 1 return -1 + if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/sorts/bubble_sort.py b/sorts/bubble_sort.py index 4faa40da1d8e..eb356bc7dcad 100644 --- a/sorts/bubble_sort.py +++ b/sorts/bubble_sort.py @@ -29,12 +29,13 @@ def bubble_sort(collection): swapped = True collection[j], collection[j + 1] = collection[j + 1], collection[j] if not swapped: - break # Stop iteration if the collection is sorted. + break # Stop iteration if the collection is sorted. return collection if __name__ == "__main__": import time + user_input = input("Enter numbers separated by a comma:").strip() unsorted = [int(item) for item in user_input.split(",")] start = time.process_time() diff --git a/sorts/double_sort.py b/sorts/double_sort.py index 011e17d8f035..aca4b97ca775 100644 --- a/sorts/double_sort.py +++ b/sorts/double_sort.py @@ -1,4 +1,4 @@ -def double_sort(lst): +def double_sort(lst): """this sorting algorithm sorts an array using the principle of bubble sort , but does it both from left to right and right to left , hence i decided to call it "double sort" @@ -14,21 +14,29 @@ def double_sort(lst): >>> double_sort([-3, 10, 16, -42, 29]) == sorted([-3, 10, 16, -42, 29]) True """ - no_of_elements=len(lst) - for i in range(0,int(((no_of_elements-1)/2)+1)): # we dont need to traverse to end of list as - for j in range(0,no_of_elements-1): - if (lst[j+1] Date: Tue, 22 Oct 2019 16:19:38 -0300 Subject: [PATCH 383/594] Add algorithm to rotate images (#1420) * Add algorithm to rotate image * Edit function to be compliant in Black and Flake8 formats * Add type hints in get_rotation() and enumerate() in loop --- digital_image_processing/rotation/__init__.py | 0 digital_image_processing/rotation/rotation.py | 52 +++++++++++++++++++ 2 files changed, 52 insertions(+) create mode 100644 digital_image_processing/rotation/__init__.py create mode 100644 digital_image_processing/rotation/rotation.py diff --git a/digital_image_processing/rotation/__init__.py b/digital_image_processing/rotation/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/digital_image_processing/rotation/rotation.py b/digital_image_processing/rotation/rotation.py new file mode 100644 index 000000000000..37b45ca39897 --- /dev/null +++ b/digital_image_processing/rotation/rotation.py @@ -0,0 +1,52 @@ +from matplotlib import pyplot as plt +import numpy as np +import cv2 + + +def get_rotation( + img: np.array, pt1: np.float32, pt2: np.float32, rows: int, cols: int +) -> np.array: + """ + Get image rotation + :param img: np.array + :param pt1: 3x2 list + :param pt2: 3x2 list + :param rows: columns image shape + :param cols: rows image shape + :return: np.array + """ + matrix = cv2.getAffineTransform(pt1, pt2) + return cv2.warpAffine(img, matrix, (rows, cols)) + + +if __name__ == "__main__": + # read original image + image = cv2.imread("lena.jpg") + # turn image in gray scale value + gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) + # get image shape + img_rows, img_cols = gray_img.shape + + # set different points to rotate image + pts1 = np.float32([[50, 50], [200, 50], [50, 200]]) + pts2 = np.float32([[10, 100], [200, 50], [100, 250]]) + pts3 = np.float32([[50, 50], [150, 50], [120, 200]]) + pts4 = np.float32([[10, 100], [80, 50], [180, 250]]) + + # add all rotated images in a list + images = [ + gray_img, + get_rotation(gray_img, pts1, pts2, img_rows, img_cols), + get_rotation(gray_img, pts2, pts3, img_rows, img_cols), + get_rotation(gray_img, pts2, pts4, img_rows, img_cols), + ] + + # plot different image rotations + fig = plt.figure(1) + titles = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] + for i, image in enumerate(images): + plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") + plt.title(titles[i]) + plt.axis("off") + plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) + plt.show() From 56830255ca30b063a300439d8bc070399bc0ed01 Mon Sep 17 00:00:00 2001 From: John Law Date: Wed, 23 Oct 2019 04:07:50 +0800 Subject: [PATCH 384/594] Readability of CONTRIBUTING.md (#1422) * Readability of guidelines * Update README.md --- CONTRIBUTING.md | 69 +++++++++++++++++++++++++++---------------------- README.md | 12 ++++++--- 2 files changed, 47 insertions(+), 34 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 6dd2f6c6ff78..ce2f03886e01 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -30,25 +30,32 @@ Your contribution will be tested by our [automated testing on Travis CI](https:/ We want your work to be readable by others; therefore, we encourage you to note the following: - Please write in Python 3.7+. __print()__ is a function in Python 3 so __print "Hello"__ will _not_ work but __print("Hello")__ will. - - Please focus hard on naming of functions, classes, and variables. Help your reader by using __descriptive names__ that can help you to remove redundant comments. - - Single letter variable names are _old school_ so please avoid them unless their life only spans a few lines. - - Expand acronyms because __gcd()__ is hard to understand but __greatest_common_divisor()__ is not. - - Please follow the [Python Naming Conventions](https://pep8.org/#prescriptive-naming-conventions) so variable_names and function_names should be lower_case, CONSTANTS in UPPERCASE, ClassNames should be CamelCase, etc. + - Single letter variable names are _old school_ so please avoid them unless their life only spans a few lines. + - Expand acronyms because __gcd()__ is hard to understand but __greatest_common_divisor()__ is not. + - Please follow the [Python Naming Conventions](https://pep8.org/#prescriptive-naming-conventions) so variable_names and function_names should be lower_case, CONSTANTS in UPPERCASE, ClassNames should be CamelCase, etc. + + - We encourage the use of Python [f-strings](https://realpython.com/python-f-strings/#f-strings-a-new-and-improved-way-to-format-strings-in-python) where the make the code easier to read. -- Please consider running [__psf/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not yet a requirement but it does make your code more readable and automatically aligns it with much of [PEP 8](https://www.python.org/dev/peps/pep-0008/). There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python Core Team. To use it, - ```bash - pip3 install black # only required the first time - black . - ``` + + +- Please consider running [__psf/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not yet a requirement but it does make your code more readable and automatically aligns it with much of [PEP 8](https://www.python.org/dev/peps/pep-0008/). There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python Core Team. To use it, + + ```bash + pip3 install black # only required the first time + black . + ``` - All submissions will need to pass the test __flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics__ before they will be accepted so if possible, try this test locally on your Python file(s) before submitting your pull request. - ```bash - pip3 install flake8 # only required the first time - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - ``` + + ```bash + pip3 install flake8 # only required the first time + flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + ``` + + - Original code submission require docstrings or comments to describe your work. @@ -93,9 +100,10 @@ We want your work to be readable by others; therefore, we encourage you to note ``` These doctests will be run by pytest as part of our automated testing so please try to run your doctests locally and make sure that they are found and pass: - ```bash - python3 -m doctest -v my_submission.py - ``` + + ```bash + python3 -m doctest -v my_submission.py + ``` The use of the Python builtin __input()__ function is **not** encouraged: @@ -110,44 +118,43 @@ We want your work to be readable by others; therefore, we encourage you to note ```python starting_value = int(input("Please enter a starting value: ").strip()) ``` - + The use of [Python type hints](https://docs.python.org/3/library/typing.html) is encouraged for function parameters and return values. Our automated testing will run [mypy](http://mypy-lang.org) so run that locally before making your submission. -```python -def sumab(a: int, b: int) --> int: + + ```python + def sumab(a: int, b: int) --> int: pass ``` -- [__list comprehensions and generators__](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions) are preferred over the use of `lambda`, `map`, `filter`, `reduce` but the important thing is to demonstrate the power of Python in code that is easy to read and maintain. -- Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. +- [__List comprehensions and generators__](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions) are preferred over the use of `lambda`, `map`, `filter`, `reduce` but the important thing is to demonstrate the power of Python in code that is easy to read and maintain. + + + +- Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. - If you need a third party module that is not in the file __requirements.txt__, please add it to that file as part of your submission. #### Other Standard While Submitting Your Work - File extension for code should be `.py`. Jupiter notebook files are acceptable in machine learning algorithms. - -- Please avoid creating new directories if at all possible. Try to fit your work into the existing directory structue. - - Strictly use snake_case (underscore_separated) in your file_name, as it will be easy to parse in future using scripts. +- Please avoid creating new directories if at all possible. Try to fit your work into the existing directory structure. +- If possible, follow the standard *within* the folder you are submitting to. - If possible, follow the standard *within* the folder you are submitting to. -- If you have modified/added code work, make sure the code compiles before submitting. +- If you have modified/added code work, make sure the code compiles before submitting. - If you have modified/added documentation work, ensure your language is concise and contains no grammar errors. - - Do not update the README.md or DIRECTORY.md file which will be periodically autogenerated by our Travis CI processes. - - Add a corresponding explanation to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). - - All submissions will be tested with [__mypy__](http://www.mypy-lang.org) so we encourage to add [__Python type hints__](https://docs.python.org/3/library/typing.html) where it makes sense to do so. -- Most importantly, + +- Most importantly, - **Be consistent in the use of these guidelines when submitting.** - **Join** [Gitter](https://gitter.im/TheAlgorithms) **now!** - Happy coding! - Writer [@poyea](https://github.com/poyea), Jun 2019. diff --git a/README.md b/README.md index 8ccb789be7e9..51b2cf8c854c 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,5 @@ # The Algorithms - Python + [![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg?logo=paypal&style=flat-square)](https://www.paypal.me/TheAlgorithms/100)  [![Build Status](https://img.shields.io/travis/TheAlgorithms/Python.svg?label=Travis%20CI&logo=travis&style=flat-square)](https://travis-ci.com/TheAlgorithms/Python)  [![LGTM](https://img.shields.io/lgtm/alerts/github/TheAlgorithms/Python.svg?label=LGTM&logo=LGTM&style=flat-square)](https://lgtm.com/projects/g/TheAlgorithms/Python/alerts)  @@ -6,6 +7,7 @@ [![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md)  ![](https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square)  + ### All algorithms implemented in Python (for education) These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. @@ -14,12 +16,16 @@ These implementations are for learning purposes. They may be less efficient than Read our [Contribution Guidelines](CONTRIBUTING.md) before you contribute. -[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg?style=flat-square)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) - ## Community Channel We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. -## Algorithms +## List of Algorithms See our [directory](DIRECTORY.md). + + + + + +[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg?style=flat-square)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) From d477a4ddf2afa0b954f4d283bd73cdfdc44853d7 Mon Sep 17 00:00:00 2001 From: Ankur Chattopadhyay <39518771+chttrjeankr@users.noreply.github.com> Date: Wed, 23 Oct 2019 23:50:38 +0530 Subject: [PATCH 385/594] introduced shuffled_shift_cipher.py in /ciphers (#1424) * introduced shuffled_shift_cipher.py in /ciphers * made requested changes * introduced doctests, type hints removed __make_one_digit() * test_end_to_end() inserted * Make test_end_to_end() a test ;-) --- ciphers/shuffled_shift_cipher.py | 177 +++++++++++++++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 ciphers/shuffled_shift_cipher.py diff --git a/ciphers/shuffled_shift_cipher.py b/ciphers/shuffled_shift_cipher.py new file mode 100644 index 000000000000..bbefe3305fa7 --- /dev/null +++ b/ciphers/shuffled_shift_cipher.py @@ -0,0 +1,177 @@ +import random +import string + + +class ShuffledShiftCipher(object): + """ + This algorithm uses the Caesar Cipher algorithm but removes the option to + use brute force to decrypt the message. + + The passcode is a a random password from the selection buffer of + 1. uppercase letters of the English alphabet + 2. lowercase letters of the English alphabet + 3. digits from 0 to 9 + + Using unique characters from the passcode, the normal list of characters, + that can be allowed in the plaintext, is pivoted and shuffled. Refer to docstring + of __make_key_list() to learn more about the shuffling. + + Then, using the passcode, a number is calculated which is used to encrypt the + plaintext message with the normal shift cipher method, only in this case, the + reference, to look back at while decrypting, is shuffled. + + Each cipher object can possess an optional argument as passcode, without which a + new passcode is generated for that object automatically. + cip1 = ShuffledShiftCipher('d4usr9TWxw9wMD') + cip2 = ShuffledShiftCipher() + """ + + def __init__(self, passcode: str = None): + """ + Initializes a cipher object with a passcode as it's entity + Note: No new passcode is generated if user provides a passcode + while creating the object + """ + self.__passcode = passcode or self.__passcode_creator() + self.__key_list = self.__make_key_list() + self.__shift_key = self.__make_shift_key() + + def __str__(self): + """ + :return: passcode of the cipher object + """ + return "Passcode is: " + "".join(self.__passcode) + + def __neg_pos(self, iterlist: list) -> list: + """ + Mutates the list by changing the sign of each alternate element + + :param iterlist: takes a list iterable + :return: the mutated list + + """ + for i in range(1, len(iterlist), 2): + iterlist[i] *= -1 + return iterlist + + def __passcode_creator(self) -> list: + """ + Creates a random password from the selection buffer of + 1. uppercase letters of the English alphabet + 2. lowercase letters of the English alphabet + 3. digits from 0 to 9 + + :rtype: list + :return: a password of a random length between 10 to 20 + """ + choices = string.ascii_letters + string.digits + password = [random.choice(choices) for i in range(random.randint(10, 20))] + return password + + def __make_key_list(self) -> list: + """ + Shuffles the ordered character choices by pivoting at breakpoints + Breakpoints are the set of characters in the passcode + + eg: + if, ABCDEFGHIJKLMNOPQRSTUVWXYZ are the possible characters + and CAMERA is the passcode + then, breakpoints = [A,C,E,M,R] # sorted set of characters from passcode + shuffled parts: [A,CB,ED,MLKJIHGF,RQPON,ZYXWVUTS] + shuffled __key_list : ACBEDMLKJIHGFRQPONZYXWVUTS + + Shuffling only 26 letters of the english alphabet can generate 26! + combinations for the shuffled list. In the program we consider, a set of + 97 characters (including letters, digits, punctuation and whitespaces), + thereby creating a possibility of 97! combinations (which is a 152 digit number in itself), + thus diminishing the possibility of a brute force approach. Moreover, + shift keys even introduce a multiple of 26 for a brute force approach + for each of the already 97! combinations. + """ + # key_list_options contain nearly all printable except few elements from string.whitespace + key_list_options = ( + string.ascii_letters + string.digits + string.punctuation + " \t\n" + ) + + keys_l = [] + + # creates points known as breakpoints to break the key_list_options at those points and pivot each substring + breakpoints = sorted(set(self.__passcode)) + temp_list = [] + + # algorithm for creating a new shuffled list, keys_l, out of key_list_options + for i in key_list_options: + temp_list.extend(i) + + # checking breakpoints at which to pivot temporary sublist and add it into keys_l + if i in breakpoints or i == key_list_options[-1]: + keys_l.extend(temp_list[::-1]) + temp_list = [] + + # returning a shuffled keys_l to prevent brute force guessing of shift key + return keys_l + + def __make_shift_key(self) -> int: + """ + sum() of the mutated list of ascii values of all characters where the + mutated list is the one returned by __neg_pos() + """ + num = sum(self.__neg_pos([ord(x) for x in self.__passcode])) + return num if num > 0 else len(self.__passcode) + + def decrypt(self, encoded_message: str) -> str: + """ + Performs shifting of the encoded_message w.r.t. the shuffled __key_list + to create the decoded_message + + >>> ssc = ShuffledShiftCipher('4PYIXyqeQZr44') + >>> ssc.decrypt("d>**-1z6&'5z'5z:z+-='$'>=zp:>5:#z<'.&>#") + 'Hello, this is a modified Caesar cipher' + + """ + decoded_message = "" + + # decoding shift like Caesar cipher algorithm implementing negative shift or reverse shift or left shift + for i in encoded_message: + position = self.__key_list.index(i) + decoded_message += self.__key_list[ + (position - self.__shift_key) % -len(self.__key_list) + ] + + return decoded_message + + def encrypt(self, plaintext: str) -> str: + """ + Performs shifting of the plaintext w.r.t. the shuffled __key_list + to create the encoded_message + + >>> ssc = ShuffledShiftCipher('4PYIXyqeQZr44') + >>> ssc.encrypt('Hello, this is a modified Caesar cipher') + "d>**-1z6&'5z'5z:z+-='$'>=zp:>5:#z<'.&>#" + + """ + encoded_message = "" + + # encoding shift like Caesar cipher algorithm implementing positive shift or forward shift or right shift + for i in plaintext: + position = self.__key_list.index(i) + encoded_message += self.__key_list[ + (position + self.__shift_key) % len(self.__key_list) + ] + + return encoded_message + + +def test_end_to_end(msg: str = "Hello, this is a modified Caesar cipher"): + """ + >>> test_end_to_end() + 'Hello, this is a modified Caesar cipher' + """ + cip1 = ShuffledShiftCipher() + return cip1.decrypt(cip1.encrypt(msg)) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 7b3d385ad62a74b7e984c9b5424006566e4f848d Mon Sep 17 00:00:00 2001 From: praisearts <34782930+praisearts@users.noreply.github.com> Date: Thu, 24 Oct 2019 09:31:58 +0100 Subject: [PATCH 386/594] create simple binary search (#1430) * create simnple binary search #A binary search implementation to test if a number is in a list of elements * Add .py, format with psf/black, and add doctests --- searches/simple-binary-search.py | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 searches/simple-binary-search.py diff --git a/searches/simple-binary-search.py b/searches/simple-binary-search.py new file mode 100644 index 000000000000..80e43ea346b2 --- /dev/null +++ b/searches/simple-binary-search.py @@ -0,0 +1,26 @@ +# A binary search implementation to test if a number is in a list of elements + + +def binary_search(a_list, item): + """ + >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] + >>> print(binary_search(test_list, 3)) + False + >>> print(binary_search(test_list, 13)) + True + """ + if len(a_list) == 0: + return False + midpoint = len(a_list) // 2 + if a_list[midpoint] == item: + return True + if item < a_list[midpoint]: + return binary_search(a_list[:midpoint], item) + else: + return binary_search(a_list[midpoint + 1 :], item) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 07483139d14214adaebbd58ee22fd6bb552e1a00 Mon Sep 17 00:00:00 2001 From: Alex Veltman Date: Thu, 24 Oct 2019 11:08:45 +0200 Subject: [PATCH 387/594] Added determinate function (#1429) * Added determinate function * Changed determinate function name * Changed instance of .det() to .determinate() * Added force_test() function * Update tests.py --- linear_algebra/README.md | 3 ++- linear_algebra/src/lib.py | 27 +++++++++++++++++++++++++++ linear_algebra/src/tests.py | 16 +++++++++++++++- 3 files changed, 44 insertions(+), 2 deletions(-) diff --git a/linear_algebra/README.md b/linear_algebra/README.md index f1b554e139de..169cd074d396 100644 --- a/linear_algebra/README.md +++ b/linear_algebra/README.md @@ -45,7 +45,8 @@ This module contains some useful classes and functions for dealing with linear a - changeComponent(x,y,value) : changes the specified component. - component(x,y) : returns the specified component. - width() : returns the width of the matrix - - height() : returns the height of the matrix + - height() : returns the height of the matrix + - determinate() : returns the determinate of the matrix if it is square - operator + : implements the matrix-addition. - operator - _ implements the matrix-subtraction diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index bf9e0d302a89..2f7a1775371f 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -277,6 +277,33 @@ def height(self): """ return self.__height + def determinate(self) -> float: + """ + returns the determinate of an nxn matrix using Laplace expansion + """ + if self.__height == self.__width and self.__width >= 2: + total = 0 + if self.__width > 2: + for x in range(0, self.__width): + for y in range(0, self.__height): + total += ( + self.__matrix[x][y] + * (-1) ** (x + y) + * Matrix( + self.__matrix[0:x] + self.__matrix[x + 1 :], + self.__width - 1, + self.__height - 1, + ).determinate() + ) + else: + return ( + self.__matrix[0][0] * self.__matrix[1][1] + - self.__matrix[0][1] * self.__matrix[1][0] + ) + return total + else: + raise Exception("matrix is not square") + def __mul__(self, other): """ implements the matrix-vector multiplication. diff --git a/linear_algebra/src/tests.py b/linear_algebra/src/tests.py index b63f2ae8c2db..4123a7c9e663 100644 --- a/linear_algebra/src/tests.py +++ b/linear_algebra/src/tests.py @@ -118,6 +118,13 @@ def test_str_matrix(self): A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(A)) + def test_determinate(self): + """ + test for determinate() + """ + A = Matrix([[1, 1, 4, 5], [3, 3, 3, 2], [5, 1, 9, 0], [9, 7, 7, 9]], 4, 4) + self.assertEqual(-376, A.determinate()) + def test__mul__matrix(self): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3) x = Vector([1, 2, 3]) @@ -149,6 +156,13 @@ def test_squareZeroMatrix(self): str(squareZeroMatrix(5)), ) - +def force_test() -> None: + """ + This will ensure that pytest runs the unit tests above. + To explore https://github.com/TheAlgorithms/Python/pull/1124 uncomment the line below. + >>> # unittest.main() + """ + pass + if __name__ == "__main__": unittest.main() From ec85cc81915cda82cec22e6ed9a4177b6dc1103e Mon Sep 17 00:00:00 2001 From: Alex Veltman Date: Thu, 24 Oct 2019 12:39:51 +0200 Subject: [PATCH 388/594] Fixes in methods and tests in Linear Algebra (#1432) * Fixes in methods and tests * Renamed tests.py to test_linear_algebra.py * removed force_test() * Delete test_linear_algebra.py * Format code with psf/black * Rename tests.py to test_linear_algebra.py --- linear_algebra/src/lib.py | 4 ++-- .../src/{tests.py => test_linear_algebra.py} | 11 ++--------- 2 files changed, 4 insertions(+), 11 deletions(-) rename linear_algebra/src/{tests.py => test_linear_algebra.py} (94%) diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index 2f7a1775371f..15d176cc6392 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -119,7 +119,7 @@ def __sub__(self, other): size = len(self) if size == len(other): result = [self.__components[i] - other.component(i) for i in range(size)] - return result + return Vector(result) else: # error case raise Exception("must have the same size") @@ -130,7 +130,7 @@ def __mul__(self, other): """ if isinstance(other, float) or isinstance(other, int): ans = [c * other for c in self.__components] - return ans + return Vector(ans) elif isinstance(other, Vector) and (len(self) == len(other)): size = len(self) summe = 0 diff --git a/linear_algebra/src/tests.py b/linear_algebra/src/test_linear_algebra.py similarity index 94% rename from linear_algebra/src/tests.py rename to linear_algebra/src/test_linear_algebra.py index 4123a7c9e663..f8e7db7de6cc 100644 --- a/linear_algebra/src/tests.py +++ b/linear_algebra/src/test_linear_algebra.py @@ -45,7 +45,7 @@ def test_euclidLength(self): test for the eulidean length """ x = Vector([1, 2]) - self.assertAlmostEqual(x.eulidLength(), 2.236, 3) + self.assertAlmostEqual(x.euclidLength(), 2.236, 3) def test_add(self): """ @@ -156,13 +156,6 @@ def test_squareZeroMatrix(self): str(squareZeroMatrix(5)), ) -def force_test() -> None: - """ - This will ensure that pytest runs the unit tests above. - To explore https://github.com/TheAlgorithms/Python/pull/1124 uncomment the line below. - >>> # unittest.main() - """ - pass - + if __name__ == "__main__": unittest.main() From 03e9a75d69538649df3e05d40a1c8e7d870fd807 Mon Sep 17 00:00:00 2001 From: Isaac Gomes de Oliveira Date: Fri, 25 Oct 2019 00:56:56 -0300 Subject: [PATCH 389/594] Add gaussian_elimination.py for solving linear systems (#1448) --- arithmetic_analysis/gaussian_elimination.py | 83 +++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 arithmetic_analysis/gaussian_elimination.py diff --git a/arithmetic_analysis/gaussian_elimination.py b/arithmetic_analysis/gaussian_elimination.py new file mode 100644 index 000000000000..51207686c12a --- /dev/null +++ b/arithmetic_analysis/gaussian_elimination.py @@ -0,0 +1,83 @@ +""" +Gaussian elimination method for solving a system of linear equations. +Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination +""" + + +import numpy as np + + +def retroactive_resolution(coefficients: np.matrix, vector: np.array) -> np.array: + """ + This function performs a retroactive linear system resolution + for triangular matrix + + Examples: + 2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 + 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 + 0x1 + 0x2 + 5x3 = 15 + >>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) + array([[2.], + [2.], + [3.]]) + >>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]]) + array([[-1. ], + [ 0.5]]) + """ + + rows, columns = np.shape(coefficients) + + x = np.zeros((rows, 1), dtype=float) + for row in reversed(range(rows)): + sum = 0 + for col in range(row + 1, columns): + sum += coefficients[row, col] * x[col] + + x[row, 0] = (vector[row] - sum) / coefficients[row, row] + + return x + + +def gaussian_elimination(coefficients: np.matrix, vector: np.array) -> np.array: + """ + This function performs Gaussian elimination method + + Examples: + 1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 + 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 + 1x1 - 1x2 + 0x3 = 4 + >>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) + array([[ 2.3 ], + [-1.7 ], + [ 5.55]]) + >>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]]) + array([[0. ], + [2.5]]) + """ + # coefficients must to be a square matrix so we need to check first + rows, columns = np.shape(coefficients) + if rows != columns: + return [] + + # augmented matrix + augmented_mat = np.concatenate((coefficients, vector), axis=1) + augmented_mat = augmented_mat.astype("float64") + + # scale the matrix leaving it triangular + for row in range(rows - 1): + pivot = augmented_mat[row, row] + for col in range(row + 1, columns): + factor = augmented_mat[col, row] / pivot + augmented_mat[col, :] -= factor * augmented_mat[row, :] + + x = retroactive_resolution( + augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1] + ) + + return x + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From a2a3ca674f908c29499b78592339d10c44ec8da2 Mon Sep 17 00:00:00 2001 From: Samarth Sehgal Date: Fri, 25 Oct 2019 21:26:27 +0530 Subject: [PATCH 390/594] Update treap.py (#1455) --- data_structures/binary_tree/treap.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index a6ff3c9d798b..b603eec3ef3c 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -172,7 +172,7 @@ def main(): args = input() print("good by!") - pass + if __name__ == "__main__": From 182062d60be1ea6695d22c196ea039bda29a9311 Mon Sep 17 00:00:00 2001 From: bizzfitch <56891892+bizzfitch@users.noreply.github.com> Date: Fri, 25 Oct 2019 13:04:06 -0400 Subject: [PATCH 391/594] Adding deterministic miller rabin primality test (#1453) * Adding deterministic miller rabin primality test * Moved to ciphers directory and renamed for clarity. Changed docstring to add test --- ciphers/deterministic_miller_rabin.py | 135 ++++++++++++++++++++++++++ 1 file changed, 135 insertions(+) create mode 100644 ciphers/deterministic_miller_rabin.py diff --git a/ciphers/deterministic_miller_rabin.py b/ciphers/deterministic_miller_rabin.py new file mode 100644 index 000000000000..37845d6c9b41 --- /dev/null +++ b/ciphers/deterministic_miller_rabin.py @@ -0,0 +1,135 @@ +"""Created by Nathan Damon, @bizzfitch on github +>>> test_miller_rabin() +""" + + +def miller_rabin(n, allow_probable=False): + """Deterministic Miller-Rabin algorithm for primes ~< 3.32e24. + + Uses numerical analysis results to return whether or not the passed number + is prime. If the passed number is above the upper limit, and + allow_probable is True, then a return value of True indicates that n is + probably prime. This test does not allow False negatives- a return value + of False is ALWAYS composite. + + Parameters + ---------- + n : int + The integer to be tested. Since we usually care if a number is prime, + n < 2 returns False instead of raising a ValueError. + allow_probable: bool, default False + Whether or not to test n above the upper bound of the deterministic test. + + Raises + ------ + ValueError + + Reference + --------- + https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test + """ + if n == 2: + return True + if not n % 2 or n < 2: + return False + if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit + return False + if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: + raise ValueError( + "Warning: upper bound of deterministic test is exceeded. " + "Pass allow_probable=True to allow probabilistic test. " + "A return value of True indicates a probable prime." + ) + # array bounds provided by analysis + bounds = [2_047, + 1_373_653, + 25_326_001, + 3_215_031_751, + 2_152_302_898_747, + 3_474_749_660_383, + 341_550_071_728_321, + 1, + 3_825_123_056_546_413_051, + 1, + 1, + 318_665_857_834_031_151_167_461, + 3_317_044_064_679_887_385_961_981] + + primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] + for idx, _p in enumerate(bounds, 1): + if n < _p: + # then we have our last prime to check + plist = primes[:idx] + break + d, s = n - 1, 0 + # break up n -1 into a power of 2 (s) and + # remaining odd component + # essentially, solve for d * 2 ** s == n - 1 + while d % 2 == 0: + d //= 2 + s += 1 + for prime in plist: + pr = False + for r in range(s): + m = pow(prime, d * 2 ** r, n) + # see article for analysis explanation for m + if (r == 0 and m == 1) or ((m + 1) % n == 0): + pr = True + # this loop will not determine compositeness + break + if pr: + continue + # if pr is False, then the above loop never evaluated to true, + # and the n MUST be composite + return False + return True + + +def test_miller_rabin(): + """Testing a nontrivial (ends in 1, 3, 7, 9) composite + and a prime in each range. + """ + assert not miller_rabin(561) + assert miller_rabin(563) + # 2047 + + assert not miller_rabin(838_201) + assert miller_rabin(838_207) + # 1_373_653 + + assert not miller_rabin(17_316_001) + assert miller_rabin(17_316_017) + # 25_326_001 + + assert not miller_rabin(3_078_386_641) + assert miller_rabin(3_078_386_653) + # 3_215_031_751 + + assert not miller_rabin(1_713_045_574_801) + assert miller_rabin(1_713_045_574_819) + # 2_152_302_898_747 + + assert not miller_rabin(2_779_799_728_307) + assert miller_rabin(2_779_799_728_327) + # 3_474_749_660_383 + + assert not miller_rabin(113_850_023_909_441) + assert miller_rabin(113_850_023_909_527) + # 341_550_071_728_321 + + assert not miller_rabin(1_275_041_018_848_804_351) + assert miller_rabin(1_275_041_018_848_804_391) + # 3_825_123_056_546_413_051 + + assert not miller_rabin(79_666_464_458_507_787_791_867) + assert miller_rabin(79_666_464_458_507_787_791_951) + # 318_665_857_834_031_151_167_461 + + assert not miller_rabin(552_840_677_446_647_897_660_333) + assert miller_rabin(552_840_677_446_647_897_660_359) + # 3_317_044_064_679_887_385_961_981 + # upper limit for probabilistic test + + +if __name__ == '__main__': + test_miller_rabin() From 3ea0992dc70e45d17d7f354b101ef3f4ea216bff Mon Sep 17 00:00:00 2001 From: Samarth Sehgal Date: Fri, 25 Oct 2019 22:35:23 +0530 Subject: [PATCH 392/594] Update aho-corasick.py (#1457) --- strings/aho-corasick.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/strings/aho-corasick.py b/strings/aho-corasick.py index 6790892a358d..b2f89450ee7a 100644 --- a/strings/aho-corasick.py +++ b/strings/aho-corasick.py @@ -54,7 +54,7 @@ def set_fail_transitions(self): self.adlist[child]["fail_state"] = self.find_next_state( state, self.adlist[child]["value"] ) - if self.adlist[child]["fail_state"] == None: + if self.adlist[child]["fail_state"] is None: self.adlist[child]["fail_state"] = 0 self.adlist[child]["output"] = ( self.adlist[child]["output"] @@ -71,7 +71,7 @@ def search_in(self, string): current_state = 0 for i in range(len(string)): while ( - self.find_next_state(current_state, string[i]) == None + self.find_next_state(current_state, string[i]) is None and current_state != 0 ): current_state = self.adlist[current_state]["fail_state"] From a61b05b10ca843282b5497ac9367e73906b374b9 Mon Sep 17 00:00:00 2001 From: Ankur Chattopadhyay <39518771+chttrjeankr@users.noreply.github.com> Date: Fri, 25 Oct 2019 23:03:24 +0530 Subject: [PATCH 393/594] minor changes in format of DIRECTORY.md (#1461) --- DIRECTORY.md | 853 ++++++++++++++++++---------------- scripts/build_directory_md.py | 4 +- 2 files changed, 447 insertions(+), 410 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index a4838d24dab7..e2d74d39828f 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,459 +1,496 @@ -## Arithmetic Analysis -- [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) -- [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) -- [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) -- [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) -- [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) -- [newton raphson method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) +## Arithmetic Analysis + * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) + * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) + * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) + * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) + * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) + * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) + * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) + * [Newton Raphson Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) ## Backtracking - -- [all combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) -- [all permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) -- [all subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) -- [minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) -- [n queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) -- [sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) -- [sum of subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) + * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) + * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) + * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) + * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) + * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) + * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + +## Blockchain + * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) + * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) + * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra - -- [quine mc cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) + * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Ciphers - -- [affine cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) -- [atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) -- [base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) -- [base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) -- [base64 cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) -- [base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) -- [brute force caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) -- [caesar cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) -- [cryptomath module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) -- [elgamal key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) -- [hill cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) -- [morse code implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) -- [onepad cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) -- [playfair cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) -- [rabin miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) -- [rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) -- [rsa cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) -- [rsa key generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) -- [simple substitution cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) -- [trafid cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) -- [transposition cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) -- [transposition cipher encrypt decrypt file](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) -- [vigenere cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) -- [xor cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) + * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) + * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) + * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) + * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) + * [Base64 Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) + * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) + * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) + * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) + * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) + * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) + * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) + * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) + * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) + * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) + * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) + * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) + * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) + * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) + * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) + * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) + * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) + * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) + * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) + * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) + * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression - -- [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) -- [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) -- [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) + * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) + * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Conversions - -- [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) -- [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) -- [decimal to octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) + * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) + * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) + * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) ## Data Structures - -- Binary Tree - - [avl tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) - - [basic binary tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) - - [binary search tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) - - [fenwick tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) - - [lazy segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) - - [lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) - - [red black tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) - - [segment tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) - - [treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) -- Hashing - - [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) - - [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) - - [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) -- Number Theory - - [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/number_theory/prime_numbers.py) - - [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/number_theory/quadratic_probing.py) -- Heap - - [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) -- Linked List - - [doubly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) - - [is palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) - - [singly linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) - - [swap nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) -- Queue - - [double ended queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) - - [queue on list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) - - [queue on pseudo stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) -- Stacks - - [balanced parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) - - [infix to postfix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) - - [infix to prefix conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) - - [next greater element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) - - [postfix evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) - - [stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) - - [stock span problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) -- Trie - - [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + * Binary Tree + * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) + * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) + * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) + * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + * [Lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) + * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) + * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) + * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) + * Disjoint Set + * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) + * Hashing + * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) + * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) + * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) + * Number Theory + * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) + * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) + * Heap + * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) + * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) + * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) + * Linked List + * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) + * Queue + * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) + * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) + * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) + * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) + * Stacks + * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) + * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) + * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) + * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) + * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) + * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) + * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) + * Trie + * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing - -- [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) -- Edge Detection - - [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) -- Filters - - [convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) - - [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) - - [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) - - [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) -- [test digital image processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) + * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) + * Edge Detection + * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) + * Filters + * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) + * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) + * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) + * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) + * Rotation + * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) + * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer - -- [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) -- [convex hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) -- [inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) -- [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) + * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) + * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) + * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) ## Dynamic Programming - -- [abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) -- [bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) -- [climbing stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) -- [coin change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) -- [edit distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) -- [factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) -- [fast fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) -- [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) -- [floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) -- [fractional knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) -- [integer partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) -- [k means clustering tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) -- [knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) -- [longest common subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) -- [longest increasing subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) -- [longest increasing subsequence o(nlogn)]() -- [longest sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) -- [matrix chain order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) -- [max sub array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) -- [minimum partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) -- [rod cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) -- [subset generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) -- [sum of subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) + * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) + * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) + * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) + * [Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) + * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) + * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) + * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) + * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) + * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) + * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) + * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) + * [K Means Clustering Tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) + * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) + * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) + * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) + * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) + * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) + * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) + * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) + * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) + * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) + * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) + * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## File Transfer + * [Recieve File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) + * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) -- [recieve file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) -- [send file](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) +## Fuzzy Logic + * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Graphs - -- [a star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) -- [articulation points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) -- [basic graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) -- [bellman ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) -- [bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) -- [bfs shortest path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) -- [breadth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) -- [check bipartite graph bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) -- [check bipartite graph dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) -- [depth first search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) -- [dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) -- [dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) -- [dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) -- [dijkstra algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) -- [directed and undirected (weighted) graph]() -- [edmonds karp multiple source and sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) -- [eulerian path and circuit for undirected graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) -- [even tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) -- [finding bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) -- [graph list](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) -- [graph matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) -- [graphs floyd warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) -- [kahns algorithm long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) -- [kahns algorithm topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) -- [minimum spanning tree kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) -- [minimum spanning tree prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) -- [multi hueristic astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) -- [page rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) -- [prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) -- [scc kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) -- [tarjans scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) + * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) + * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) + * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) + * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) + * [Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) + * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) + * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) + * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) + * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) + * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) + * [Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) + * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) + * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) + * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) + * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) + * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) + * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) + * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) + * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) + * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) + * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) + * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) + * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) + * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) + * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) + * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) + * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) + * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) + * [Multi Hueristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) + * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) + * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) + * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) + * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) ## Hashes - -- [chaos machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) -- [enigma machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) -- [md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) -- [sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) + * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) + * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) + * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) + * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Linear Algebra - -- Src - - [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) - - [polynom-for-points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) - - [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/tests.py) + * Src + * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) + * [Polynom-For-Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) + * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) ## Machine Learning - -- [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) -- [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) -- [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) -- [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) -- [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) -- [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) -- [naive bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/naive_bayes.ipynb) -- Random Forest Classification - - [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py) - - [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb) -- Random Forest Regression - - [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb) - - [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py) -- [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb) -- [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) -- [sorted vector machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sorted_vector_machines.py) + * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) + * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) + * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) + * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) + * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) + * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) + * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) + * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) + * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) + * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) + * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) ## Maths - -- [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) -- [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) -- [abs max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) -- [abs min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) -- [average mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) -- [average median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) -- [basic maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) -- [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) -- [collatz sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) -- [extended euclidean algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) -- [factorial python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) -- [factorial recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) -- [fermat little theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) -- [fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) -- [fibonacci sequence recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) -- [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py) -- [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) -- [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) -- [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) -- [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py) -- [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) -- [largest of very large numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) -- [lucas lehmer primality test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) -- [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) -- [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) -- [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) -- [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) -- [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) -- [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) -- [quadratic equations complex numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) -- [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) -- [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) -- [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) -- [test prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) -- [trapezoidal rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) -- [volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) -- [zellers congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) + * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) + * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) + * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) + * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) + * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) + * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) + * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) + * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) + * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) + * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) + * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) + * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) + * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) + * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) + * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) + * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) + * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) + * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) + * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) + * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) + * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) + * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) + * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) + * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) + * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) + * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) + * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) + * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) + * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) + * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) + * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) + * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) + * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) + * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) + * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) + * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) + * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) + * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) + * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) + * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) + * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) + * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) + * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) + * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) + * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) + * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) + * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) + * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) + * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix - -- [matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) -- [nth fibonacci using matrix exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) -- [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) -- [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) -- [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) -- Tests - - [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) + * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) + * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) + * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) + * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) + * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) + * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) + * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) + * Tests + * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow - -- [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) -- [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) + * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) + * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network - -- [back propagation neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) -- [convolution neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) -- [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb) -- [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) + * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) + * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other - -- [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) -- [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) -- [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) -- [detecting english programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) -- [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) -- [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) -- [food wastage analysis from 1961-2013 fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) -- [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) -- [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) -- [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) -- [nested brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) -- [palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) -- [password generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) -- [primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) -- [sierpinski triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) -- [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) -- [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) -- [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) + * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) + * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/other/autocomplete_using_trie.py) + * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) + * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) + * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) + * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) + * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) + * [Food Wastage Analysis From 1961-2013 Fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) + * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) + * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) + * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) + * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) + * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) + * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) + * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) + * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) + * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) + * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) + * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) + * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) + * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) + * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) ## Project Euler - -- Problem 01 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) - - [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) - - [sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) - - [sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) -- Problem 02 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) - - [sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) -- Problem 03 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) -- Problem 04 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) -- Problem 05 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) -- Problem 06 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) -- Problem 07 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) -- Problem 08 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) -- Problem 09 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) -- Problem 10 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) - - [sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) -- Problem 11 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) -- Problem 12 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) -- Problem 13 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) -- Problem 14 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) -- Problem 15 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) -- Problem 16 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) -- Problem 17 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) -- Problem 18 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_18/sol1.py) -- Problem 19 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) -- Problem 20 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) -- Problem 21 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) -- Problem 22 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) -- Problem 234 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) -- Problem 24 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) -- Problem 25 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) - - [sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) -- Problem 28 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) -- Problem 29 - - [solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/solution.py) -- Problem 31 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) -- Problem 36 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) -- Problem 40 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) -- Problem 48 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) -- Problem 52 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) -- Problem 53 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) -- Problem 56 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_56/sol1.py) -- Problem 76 - - [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) + * Problem 01 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) + * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) + * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) + * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol7.py) + * Problem 02 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) + * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol5.py) + * Problem 03 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) + * Problem 04 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) + * Problem 05 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) + * Problem 06 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol4.py) + * Problem 07 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) + * Problem 08 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) + * Problem 09 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) + * Problem 10 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) + * Problem 11 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) + * Problem 12 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) + * Problem 13 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) + * Problem 14 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) + * Problem 15 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) + * Problem 16 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) + * Problem 17 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) + * Problem 18 + * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_18/solution.py) + * Problem 19 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) + * Problem 20 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol3.py) + * Problem 21 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) + * Problem 22 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) + * Problem 23 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_23/sol1.py) + * Problem 234 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) + * Problem 24 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) + * Problem 25 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) + * Problem 28 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) + * Problem 29 + * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) + * Problem 31 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) + * Problem 32 + * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_32/sol32.py) + * Problem 36 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) + * Problem 40 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) + * Problem 42 + * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_42/solution42.py) + * Problem 48 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) + * Problem 52 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) + * Problem 53 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) + * Problem 551 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) + * Problem 56 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_56/sol1.py) + * Problem 67 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_67/sol1.py) + * Problem 76 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) ## Searches - -- [binary search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) -- [interpolation search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) -- [jump search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) -- [linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) -- [quick select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) -- [sentinel linear search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) -- [tabu search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) -- [ternary search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) + * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) + * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) + * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) + * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) + * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) + * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) + * [Simple-Binary-Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple-binary-search.py) + * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) + * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts - -- [bitonic sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) -- [bogo sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) -- [bubble sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) -- [bucket sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) -- [cocktail shaker sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) -- [comb sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) -- [counting sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) -- [cycle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) -- [external sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) -- [gnome sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) -- [heap sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) -- [insertion sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) -- [merge sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) -- [merge sort fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) -- [odd even transposition parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) -- [odd even transposition single threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) -- [pancake sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) -- [pigeon sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) -- [quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) -- [quick sort 3 partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) -- [radix sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) -- [random normal distribution quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) -- [random pivot quick sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) -- [selection sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) -- [shell sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) -- [tim sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) -- [topological sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) -- [tree sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) -- [wiggle sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) + * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) + * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) + * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) + * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) + * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) + * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) + * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) + * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) + * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) + * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) + * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) + * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) + * [I Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/i_sort.py) + * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) + * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) + * [Merge Sort Fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) + * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) + * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) + * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) + * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) + * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) + * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) + * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) + * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) + * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) + * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) + * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) + * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) + * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) + * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) + * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) + * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings - -- [boyer moore search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) -- [knuth morris pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) -- [levenshtein distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) -- [manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) -- [min cost string conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) -- [naive string search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) -- [rabin karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + * [Aho-Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho-corasick.py) + * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) + * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) + * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) + * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) + * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) + * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) + * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) ## Traversals + * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) -- [binary tree traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) +## Web Programming + * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py index 2ebd445b3667..1043e6ccb696 100755 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -17,7 +17,7 @@ def good_filepaths(top_dir: str = ".") -> Iterator[str]: def md_prefix(i): - return f"{i * ' '}*" if i else "##" + return f"{i * ' '}*" if i else "\n##" def print_path(old_path: str, new_path: str) -> str: @@ -37,7 +37,7 @@ def print_directory_md(top_dir: str = ".") -> None: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") - filename = os.path.splitext(filename.replace("_", " "))[0] + filename = os.path.splitext(filename.replace("_", " ").title())[0] print(f"{md_prefix(indent)} [{filename}]({url})") From a57809af9c7611ae119b44b3279fee6f7ce7049c Mon Sep 17 00:00:00 2001 From: prathmesh1199 <51616294+prathmesh1199@users.noreply.github.com> Date: Sat, 26 Oct 2019 14:48:28 +0530 Subject: [PATCH 394/594] Added binomial coefficient (#1467) * Added binomial coefficient * Format code with psf/black and add a doctest --- maths/binomial_coefficient.py | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 maths/binomial_coefficient.py diff --git a/maths/binomial_coefficient.py b/maths/binomial_coefficient.py new file mode 100644 index 000000000000..4def041492f3 --- /dev/null +++ b/maths/binomial_coefficient.py @@ -0,0 +1,20 @@ +def binomial_coefficient(n, r): + """ + Find binomial coefficient using pascals triangle. + + >>> binomial_coefficient(10, 5) + 252 + """ + C = [0 for i in range(r + 1)] + # nc0 = 1 + C[0] = 1 + for i in range(1, n + 1): + # to compute current row from previous row. + j = min(i, r) + while j > 0: + C[j] += C[j - 1] + j -= 1 + return C[r] + + +print(binomial_coefficient(n=10, r=5)) From bc52aa6d4d5c96322817b5073d5308739f8c188b Mon Sep 17 00:00:00 2001 From: ArjunwadkarAjay <41279300+ArjunwadkarAjay@users.noreply.github.com> Date: Sun, 27 Oct 2019 23:07:25 +0530 Subject: [PATCH 395/594] Some grammatical and spelling corrections (#1475) --- maths/collatz_sequence.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py index c83da3f0f0e8..a5f044a62b18 100644 --- a/maths/collatz_sequence.py +++ b/maths/collatz_sequence.py @@ -1,16 +1,16 @@ def collatz_sequence(n): """ - Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows: - if the previous term is even, the next term is one half the previous term. + Collatz conjecture: start with any positive integer n.Next term is obtained from the previous term as follows: + if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. - The conjecture states the sequence will always reach 1 regaardess of starting n. + The conjecture states the sequence will always reach 1 regaardless of starting value n. Example: >>> collatz_sequence(43) [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] """ sequence = [n] while n != 1: - if n % 2 == 0: # even + if n % 2 == 0: # even number condition n //= 2 else: n = 3 * n + 1 From a7078d7c27df2ee1fd096635c06d599a6b20ade9 Mon Sep 17 00:00:00 2001 From: Suad Djelili Date: Sun, 27 Oct 2019 21:07:04 +0300 Subject: [PATCH 396/594] added solution 4 for problem_20 (#1476) --- project_euler/problem_20/sol4.py | 40 ++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 project_euler/problem_20/sol4.py diff --git a/project_euler/problem_20/sol4.py b/project_euler/problem_20/sol4.py new file mode 100644 index 000000000000..50ebca5a0bf7 --- /dev/null +++ b/project_euler/problem_20/sol4.py @@ -0,0 +1,40 @@ +""" +n! means n × (n − 1) × ... × 3 × 2 × 1 + +For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, +and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. + +Find the sum of the digits in the number 100! +""" + + +def solution(n): + """Returns the sum of the digits in the number 100! + >>> solution(100) + 648 + >>> solution(50) + 216 + >>> solution(10) + 27 + >>> solution(5) + 3 + >>> solution(3) + 6 + >>> solution(2) + 2 + >>> solution(1) + 1 + """ + fact = 1 + result = 0 + for i in range(1,n + 1): + fact *= i + + for j in str(fact): + result += int(j) + + return result + + +if __name__ == "__main__": + print(solution(int(input("Enter the Number: ").strip()))) From 8b52e442307d3d8a6f18468964381e2c2df16b33 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Orkun=20=C4=B0ncili?= Date: Sun, 27 Oct 2019 23:48:38 +0300 Subject: [PATCH 397/594] Python program that listing top 'n' movie in imdb (#1477) * Python program that listing top 'n' movie in imdb * Update get_imdbtop.py --- web_programming/get_imdbtop.py | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 web_programming/get_imdbtop.py diff --git a/web_programming/get_imdbtop.py b/web_programming/get_imdbtop.py new file mode 100644 index 000000000000..95fbeba7a772 --- /dev/null +++ b/web_programming/get_imdbtop.py @@ -0,0 +1,18 @@ +from bs4 import BeautifulSoup +import requests + + +def imdb_top(imdb_top_n): + base_url = (f"https://www.imdb.com/search/title?title_type=" + f"feature&sort=num_votes,desc&count={imdb_top_n}") + source = BeautifulSoup(requests.get(base_url).content, "html.parser") + for m in source.findAll("div", class_="lister-item mode-advanced"): + print("\n" + m.h3.a.text) # movie's name + print(m.find("span", attrs={"class": "genre"}).text) # genre + print(m.strong.text) # movie's rating + print(f"https://www.imdb.com{m.a.get('href')}") # movie's page link + print("*" * 40) + + +if __name__ == "__main__": + imdb_top(input("How many movies would you like to see? ")) From 39c40e7e40b908d31f7cb1dd9d46f1277bb2e343 Mon Sep 17 00:00:00 2001 From: Suad Djelili Date: Mon, 28 Oct 2019 02:52:34 +0300 Subject: [PATCH 398/594] added solution 3 for problem_25 (#1478) * added solution 4 for problem_20 * added solution 3 for problem_25 --- project_euler/problem_25/sol3.py | 57 ++++++++++++++++++++++++++++++++ 1 file changed, 57 insertions(+) create mode 100644 project_euler/problem_25/sol3.py diff --git a/project_euler/problem_25/sol3.py b/project_euler/problem_25/sol3.py new file mode 100644 index 000000000000..4e3084ce5456 --- /dev/null +++ b/project_euler/problem_25/sol3.py @@ -0,0 +1,57 @@ +# -*- coding: utf-8 -*- +""" +The Fibonacci sequence is defined by the recurrence relation: + + Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. + +Hence the first 12 terms will be: + + F1 = 1 + F2 = 1 + F3 = 2 + F4 = 3 + F5 = 5 + F6 = 8 + F7 = 13 + F8 = 21 + F9 = 34 + F10 = 55 + F11 = 89 + F12 = 144 + +The 12th term, F12, is the first term to contain three digits. + +What is the index of the first term in the Fibonacci sequence to contain 1000 +digits? +""" + + +def solution(n): + """Returns the index of the first term in the Fibonacci sequence to contain + n digits. + + >>> solution(1000) + 4782 + >>> solution(100) + 476 + >>> solution(50) + 237 + >>> solution(3) + 12 + """ + f1, f2 = 1, 1 + index = 2 + while True: + i = 0 + f = f1 + f2 + f1, f2 = f2, f + index += 1 + for j in str(f): + i += 1 + if i == n: + break + return index + + +if __name__ == "__main__": + print(solution(int(str(input()).strip()))) From 8a5b1abd0a2a110db80d4a67c0db979ce3c4cf4e Mon Sep 17 00:00:00 2001 From: Deekshaesha <57080015+Deekshaesha@users.noreply.github.com> Date: Mon, 28 Oct 2019 13:44:53 +0530 Subject: [PATCH 399/594] finding max (#1488) * Update find_max.py * Update find_max.py * Format with psf/black and add doctests --- maths/find_max.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/maths/find_max.py b/maths/find_max.py index 7cc82aacfb09..8b5ab48e6185 100644 --- a/maths/find_max.py +++ b/maths/find_max.py @@ -2,15 +2,23 @@ def find_max(nums): + """ + >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): + ... find_max(nums) == max(nums) + True + True + True + True + """ max = nums[0] for x in nums: if x > max: max = x - print(max) + return max def main(): - find_max([2, 4, 9, 7, 19, 94, 5]) + print(find_max([2, 4, 9, 7, 19, 94, 5])) # 94 if __name__ == "__main__": From e36fe34b0b00588d8665b53918d9cdf40d5fee98 Mon Sep 17 00:00:00 2001 From: arjun1299 Date: Mon, 28 Oct 2019 17:36:28 +0530 Subject: [PATCH 400/594] Hard coded inputs to mixed_keyword cypher (#1500) * Update morse_code_implementation.py * Delete porta_cipher.py * Update mixed_keyword_cypher.py * Mixed keyword cypher added * issue with mixed keyword fixed * no math included * hardcoded inputs * porta cypher added * porta cypher added * commented in mixed keyword according to contrib.md --- ciphers/mixed_keyword_cypher.py | 71 +++++++++++++++++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100644 ciphers/mixed_keyword_cypher.py diff --git a/ciphers/mixed_keyword_cypher.py b/ciphers/mixed_keyword_cypher.py new file mode 100644 index 000000000000..c8d3ad6a535f --- /dev/null +++ b/ciphers/mixed_keyword_cypher.py @@ -0,0 +1,71 @@ +def mixed_keyword(key="college", pt="UNIVERSITY"): + """ + + For key:hello + + H E L O + A B C D + F G I J + K M N P + Q R S T + U V W X + Y Z + and map vertically + + >>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE + {'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B', + 'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W', + 'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N', + 'Y': 'T', 'Z': 'Y'} + 'XKJGUFMJST' + """ + key = key.upper() + pt = pt.upper() + temp = [] + for i in key: + if i not in temp: + temp.append(i) + l = len(temp) + # print(temp) + alpha = [] + modalpha = [] + # modalpha.append(temp) + dic = dict() + c = 0 + for i in range(65, 91): + t = chr(i) + alpha.append(t) + if t not in temp: + temp.append(t) + # print(temp) + r = int(26 / 4) + # print(r) + k = 0 + for i in range(r): + t = [] + for j in range(l): + t.append(temp[k]) + if not (k < 25): + break + k += 1 + modalpha.append(t) + # print(modalpha) + d = dict() + j = 0 + k = 0 + for j in range(l): + for i in modalpha: + if not (len(i) - 1 >= j): + break + d[alpha[k]] = i[j] + if not k < 25: + break + k += 1 + print(d) + cypher = "" + for i in pt: + cypher += d[i] + return cypher + + +print(mixed_keyword("college", "UNIVERSITY")) From bf50ea09aea7ab24fe6591b0542c19e4bac0f87a Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 28 Oct 2019 13:38:08 +0100 Subject: [PATCH 401/594] Add Travis_CI_tests_are_failing.md (#1499) * Add Travis_CI_tests_are_failing.md * Update Travis_CI_tests_are_failing.md --- Travis_CI_tests_are_failing.md | 9 +++++++++ images/Travis_CI_fail_1.png | Bin 0 -> 80257 bytes images/Travis_CI_fail_2.png | Bin 0 -> 45660 bytes 3 files changed, 9 insertions(+) create mode 100644 Travis_CI_tests_are_failing.md create mode 100644 images/Travis_CI_fail_1.png create mode 100644 images/Travis_CI_fail_2.png diff --git a/Travis_CI_tests_are_failing.md b/Travis_CI_tests_are_failing.md new file mode 100644 index 000000000000..10bf5a6655d2 --- /dev/null +++ b/Travis_CI_tests_are_failing.md @@ -0,0 +1,9 @@ +# Travis CI test are failing +### How do I find out what is wrong with my pull request? +1. In your PR look for the failing test and click the `Details` link: ![Travis_CI_fail_1.png](images/Travis_CI_fail_1.png) +2. On the next page, click `The build failed` link: ![Travis_CI_fail_2.png](images/Travis_CI_fail_2.png) +3. Now scroll down and look for `red` text describing the error(s) in the test log. + +Pull requests will __not__ be merged if the Travis CI tests are failing. + +If anything is unclear, please read through [CONTRIBUTING.md](CONTRIBUTING.md) and attempt to run the failing tests on your computer before asking for assistance. diff --git a/images/Travis_CI_fail_1.png b/images/Travis_CI_fail_1.png new file mode 100644 index 0000000000000000000000000000000000000000..451e54e4844a0b9f7d501c3d7682869d9acd97fc GIT binary patch literal 80257 zcmeFYg;!lW*Efn5cQ0C6ibL^Y8+Rz~?(XhVqD}1) zN_+bB%6SXUJF62cxL?5thR0v{m2^Ca2q&Gl9|??f94w>*Yrbk89ql6*7bXc~>x(8} z8G5|OZOM#uw*B>0TPUDAwgTLz3+>yE=sX^5y6_dJ`lmPuAAVe1y4aA<4LG_*xRj_H z8*n>PjBcdJEUqDi(EwSrHrQlvAM#2SJtDAAFg@RZMwdUo=1}-s`V;t~ZfN*(FL+?X zY$*8~8ygsWJA>^q8uSkCepDYZaFxUkCEqR7`V4(a{`1GA>hLSD|Gb^-qb6%=H8 zHUTC>uZ*>t(T|jX!OQME)sDoQAh-Lfj6G8$2@j0C#O@1(s8gwQVvbQtKd?Nmh!{MU zQH@~lZRSv>kK2uMJ#As8M#07xLz7t`CqO)9WO{dGNa~IS-^i0`T#iuS$lcx0v7V}b zi&xo~apTX{J}tM1gW3;RUqJ4;PX#2drzMFGjr@I*l42<>tjKdf?>=(16Z&5d1NOm_ z-JqA{E8a%UUxbuv)I!MHBda#|Op=DsLDEb=AUsGQ`8&WhNZt*SVB|njW=i| z!~|A$|09Y`Ump)*{0bM{T9wo)3*v>741_`koP+O&FOW(d z$X~&o*O8w1zQ77_1jB@a!N7E)*$|{aU9S@~K$ZC= zXJB0U1ZAKg`YG!`d4TDoLT!*R3i>jC;2yxO@;@TM8Nj#*;?IPoAQJa;`HA|Ak2(`c z23!FumJcR_Y7eIXtqDpqs43%7hKCudHK477A^}QXmv9~`4YIid@hen>A5JINSA;QN z`;Af?N)2%0?}zIWXHpF?C*QR@vnhP!cqe2YD5zr)hH$U~#d&ixdJ1L=JQU!HAQZow z@z-WrWk1Mt7XVFYlKk?rOUF<4NF11x!pHc_g{}GGGb1w&$4mE?_PnlOA26GcXefge%qCyiF$kNN9|GnaTUf~G-2>VFOg0>ECDS)se zV$ zj}#bTa8~|bAc87VWJJFTnvgD&BBJ;Gpc0hNf?)_r5Z4f)A)7@lMQKV4(nrS1IslCA@7HhzFK}Pn=Ag44(T#jiUuuqsM$@;-P8e>52Ldg#6p79>; zKAKc$LM^IrKvpALrA#G%zVuElIK!Z%M@FqACR-uPL3}@MvVxIsL2yAiF}FpnQKM1z zKJB6aUZ_`zOp;8%Fmy;Z_K=ER!M5mg(Mu7*jK<9OqIg9Z3W|^qz42Xn78wLt8kvZ4 zl?w7y(MjU88ASO`G9uFoGX&Fm({Y8d#i`1N*_kGvnLpE}Dv5H6HA_5Zm1U2~>=s!o zmCK$gy%sP?bgO?ajw+Wep2$8IiZ0tPPt0r7tk$}$#8w;TH}{>DEA>=Ut_d`jHEsmz z0f*8Z?Peh@RhIZU`P~C<_>P^9WeGJ?c?qM&tWt+Lx|^6atydIQ^i~j>1l%yWrMZ2z zDp!SC;~iKyzNdYo&#j*nxvIVXer5OobH#bpk0^|oA|u4^K(={U2#cg>AFs;&ia_IG-EMe|2 z*3dYi`W}kjPkjo#9%0v^v?0f#$r$xiCq^wwEhKFpz~fP)ZNBO{WWIK#BEVn}VqBu1 z(lKh*SWH~^s)bJBq-$r@_}6YLpns-h-8Y$3R>CdzV@Vp3T#e@Hx-mS}Yu|LS4`CP3 zK(Ru*bqx^_mmNY#gRzFO{&Ct%zk!0_0d45VR>)WQD9@7@kgJ#%p5LE0XSB}ri}8Ix zQ5UnWd7jly)d*cwE`{`TJSeV~$y|_t6hPzqDfAPP92Fx??eK^JzTxvi+5%`HJ+6<2 zyH?UL(MI*rE)I3;x(h?JkHF830X^v=?ODHiM?yP}<%^L=h( z3ge5zj3$ud$Lptuw!pibnW zwi{P3i*TIi$B>{A9osbS?9O8MX69{HiK)DgTrF=NuF_Y%>mqx?5!=w(@w}TssXNU> zx5%gJ!rdb29s_q@ZWvypck(}`YXa&$gP$)vEcTU`=O(Rp){@$SJiM9H7yxv7!K%^O zVDPeE$)J7eW5IrIMJ;4vfNgda;A1T$zQ})~ym6AR6dkAuzGnu!e1iegzyMq8+1k=~@9%FXX7Rv6lh)PZ_-McSk;X0Wq<+r@X$M zp`n$%iM7Kwg}BqVl{L4if{KHRlq83~wI!Xdfwi6?or|T-ZxS#r7ml~0rJ;i^iHoI$ zl|6?GH|bwJINr*?tLaHe{_5gj&P}Q!B|{=$ZD&ZrLdQ(^g%ki!LPEl2XJEu3Cn)?M z^0)uENlhFaY&huYot>TOoSEpX?TqOe*xA|XzcA7>GSa^FptX0ka?o|5wX*;CH3=0z+5hLY-d>RYcMClO-52`* z6Pbgl(f@_)cgx>of4$e=;<$b@<509Wv=gwlv^2DG0Q}duTz^UWqw&9b{!J)j>SAc2 zB53+XY5(?405)dk|4{w!mj5HA>VGMj8Cm{K`LC9LQT~1f4rx2nH$8QK+YrFOMgRY* z`%ix^`riirm%;xY&A)2jh7$nKMgKpp0f476nf?F<#tSAU$fw`}ev}I1AwPrDFKucn zp=z0FF|_Lb(S1Nk22)5D&ES+9njowlwt!*)ec>xAIE){O`)O-tO^lo{+sc-=7n|n? zsc2@)DY^9&Ao-xXbNgvCJ^Sslz4Z~g$^dVR=QGmSwhSyR_y-awe;-s-2!38zSl=+x zb=4Z3s;p`7Ts?`Qia@H2(j8w!#?DnRU`;#sLKRt>tSj+nXDAUTvj?+ykkf*bsZ^U12TZX|KCq~pPe>&4AE3m&;I2ZYz{(|$Ym z<5a-bP%Xa0{!pz$Y!q4|3NfeH%PnyNjoYKQ``*jSZ`ze=A$%1>j8@6B4O#mp6?>X&W&i)8zVeUSD6y6W*)RnPkp;T zZ+(&x(Yb9CsL?y7KiJ;L27Az*c~Hn+xVUwCc#iazOQp|dqEWAm_?FuGvm~jZ!9}g{ zMw!FrPNk~h3hJr#nTNxk&ed}^2JU1X1upVO4)NTRWTtK&OxkQr{Df&+0#hVlZzUcA z0@6}TQK`Yp-m`xPhZ-9GFIVhf5?c>Y7|$%|xWFSq<72a4@%n7NTs^tx+|(*ejqO>Q zgb>PT^eN4`vK}a096y#nr+ut5C9%@zPMivGW{@)Ub62X}OK!^e9uzU2*)2jz#WAKX)mEYxxP-TXJ!0_Yv_LN~I?6q+-wUrhk@txxVGu2YSDN_Fq-ZRj3@F5`~dE!_@liQWu zlVg6~?)G+P?IF(OLno;B`Q>D%p-S8{Yhrz|eUeLCpRm1d}f3ooV`u zHBqU?Q}_@h&X2Tbk?|Bf`9c{!6t#9;3`;|!hOrAniOW`eVPxbc5g3r=IsgL=Pwd)k zE<+cRNAA{fexA|;xRw!kZHA#TQ>GezL(Cz3er`KmVk>Ykb*ZU{^DdOB?J4l&o+pE= z(O&ktD0ab&Kv2FfQgrgAaH>70+3RK7`4m8?JC_uoJz6#IjL39*#G_#g^ZMXuCU=Um zDm&r*r8xD-D~2|iyY)ug-K$o9qoTyzbCOI1+3mJ;u0ZiJ2gt7@gX(zj^sce7aWXu) zzQA*d^$K|7T{t0uWcs#mq#)(;bGs(w#i7?Uva;PyVxtcyVh?L-zs@VtA8krExn8^; zSq;_Dup962@-zW!XSG`7x8Ly;Kp{F<{?6g-8Cqow{FeSLRnk(+Dz~dYEL~6}f{5JR z-QBIxQ6lMlfq5vFDW9tTQ2lh0+o|~AX6LZR;$9r9PH#c4NV&d_gVp1EGH}-0@wV19 z`(e8M_L1tnCz&72yZV+EO2CJ-IQo?QNnLF6u!U{lZr`o(CsW`Eo!9I{TyhE#5Mzk4 zA4m%YvR-b9B?=0rL{)X?Yk z#9nK%_~Y>jFqAkI&~)h>bl%EHBM}ksR~T4dAUWe#8^1l_=@HlTG+QWPAmnsa^Uhxf zRM-x$l_ap`P6#|s1+nx!eGkK#?TR_L~A8u}zIOC0zi*xnp3CA+Ftz1)-K^(i`?LAErVN`I{&bykS==g3UCbt~t* zb}6RbZ5A({v(AV(R-*<@zP<<~4G;NO3RWOM#sDaUWcY_;=)~-I1@?a^41F0gSTTiuS>L$=d<6=m;Q|dUm^(@tW8%VlLBa7bD{iEoK$aO&*(rF>KenXRI-P z#bEo`Fs(qLtTdy4hy5NqPve`}Oo6a|5Q>8Mma+C8&0}Q=udoRDb$_5-@SJA5dkv`k zn5)AjGEa&i_Z@8V>tY`L!`}JSbSMly_o`c}Yl>cc{3R9Lk!{0fFh+%+9U$j5=*ldJ z)eIXP#1GhI<;5dl@&Kb&3ZH2eQ4crNNk^IP$e}}l_#E~=D~tA;u={E1bC_KI`YT<% zd^AQraI)aT^GwHPe7HIV6^ELT)Gli#5{3wh;M)v<25G`7NAAuY{9BHZrVh1^-2-tLmP*t(qZc&P)A2%lHW z^IG-}=#utjKA3=h5S5wA^?|emd z%1#SLf~^xk$$&?5$5Y!iiFlgKHi<740uf6Q+KchCVZfuKygyBAmp}2W1zO)upwElV5iC+ zXqXeUi4vb`&H?dzOHP9@d3E>GZMbtLvyKS^O=I8qQfCNg0FNMqRM?fk*mrf zL)6Dhmumiq?cblzYTN>*u6ZIIz(>GoTIvg zqJ8j?VH>`KpOEM1-B(Q?Un|crtj^LrDsjK!y3A~;{@8l={q|^q@X8YdI6*}OCU91= z@t8x7GV+0pD|BLzX?L1owPc?YhfY&*jWEG>%JWnq2L&c9V~ZSkhNx($I9mZuT<9*} zq9S{(p|inpQv2iYwZ8< zO^2eOy`@h&LtgTz7_t-6I8+&RAZHpo`@V)8bFl%Xli~yvPYJm+&plcYf8HRW(!oSu zn?Ro#-vLImEic+!&tYApSuu8CommLX5JghK840%$6v+T&W!?(ahxX1^@GQ;9JOkaL zl_bK}#Y#pf>W@aB*H69|KCGTP8;4q41QRwOn{19<`|VoR#qqNTxQSu( z8J$a`50E$9uAi)DP(z+qP!aREhPZi*tCNY`C+YA`@8!Om&Qg_MY;`6MPrj=x@;=yx zyRvdlB`wZnc@bO-=n#KCfoZ*(sQB~|v5YaPWtx|*qqlLEr}pb{br>H{C-=Pb*$-?X z+!S-awlF-3kqDg(q(Squqh_1*DJWocoG`b!2M^02@Ow;MsRJaKzv`58jj`(EDqp+E ztH|0MrbDUq2LeA;YP8?GM;}y|I=B`acn+HQvyXvGFrTDPmWTY1UpFC$?tfV%8#fdn z^Ry&bv0}=X!3LgF5}FU4bKg+U#)wY`6WhuA5j#BbN~d$ID%1cF#mN@od-?Hkb>0)j zSy32PFq&tn{*3Bpn>gkV9o_>Hu&2cGuq`$vd(O-~wY(k9Q9et4*L_Y3Al6;1#rj5| z(E;Q6+Ld*Zsvzh(lW&d`H-8bQzvR(uiNlXIJgub*)QL?wAcJx4i#Fevx3i& zQE#X3y9q6XfK7iVum6D@KexI3J^9_WbUY!~Uwr)R64a>O7L!=)!pLmmVMGVu(6=oXz<%**996M7+>KaJ%~n9I4PKMiR47Nqa45U);XCY7vs>&q#Rd;d z>a6O#*Q#?AtRPxgmQJ6t*9zN%m+2xcp?iq#NecvUX9}Im_E)}9unetbe0vDCbc7aU zaO}zH8$y+a$VzpncUf_tf~u!+P^=Ic3G8XC+~eY(8iZF+Mz%9vXLf2aN&f~y&YsX+GHLdfoQ~w+<1z!@ zhal6ay}r~d(?a+YpWF^BQ5u4K6)d9gXuPi&z?hv{c|@k-QR}v&aYo~8C0qKsqM+5m zX4w}%=g~k` zJMYqz_iG4OubVW}^2slASMgRla@dl%yYE_oEkmYQOCcegB_JV;vA3)wd*BVtqo1fF zY@R`2qDj&juM2iQ?I@!`y_440wQ%#dhFKs}3#mi^DzDMX9`k$qNw?Q&H`)@O)%TBa zK?X)DbB^WYo$72bm7&0I!LEY$|I#_`s!6mjT$4$q#+p^n(9Zj`Xn_P+J3Xg6UU2te zwY(Q-T^B(nc7XM$Lm}XjbiXB(*|m|v<1vbnn^pvCMaq#|+ui5LpToCR(^ z3l~iF&2qoD$~6W)_-r8{s5hk$twBIHzOZ*#xww;TIiO++ZMhcFxC?Q3`sBNA!aozZ zTBsuetCifS*tqx@Z&ppRSU-v^Mp+-6P6bQ{ZeAAuqCffp#{aPN{NvazK(5R zmlaI|@-$rf@d&o$wLV{do~Tbg(<6g9;4*IUJE3e1?RAZVOasp*PwK&Rnc}YiPc<$8 zPby113`LpQ&8JV8lE2D{JHkXABps?QqKGZ~x+K*v-{6(fArO2u5vm0~Ts^);q3O4< zIRcd>=W%PBH6+ij(HUQxia?>2#jCubrd@CCd&%zp6`675CmcQt3q1s zYaE^U(yL{R<*BbbenKOZa1W-)L?fzO0DYCX(l#a;p1QzVrMvsh%#0tX<7n$%6z$iO zc>Wzsg6jcQ8S3uZ85BwK*yqW{;d&O9nra+(0Cj4a%~H$nlpuoZb&kpGd6gw4`Teli z%xMb3z9Dua%(f>ZG;I{w_;1Hjit(Qi=Pbq9MMzb4&Kb!}s%@L4awRNrZwgod+>2~p&hAU^RcGP! zxpZsi!a(WkO=Takgzmab^z$;3GwNUot0*^+7@P?A2lVrObE#mcFq>DwP@FYNy}RPX3i*bW?3-ygY`z(mD0 zpyH74US84I&vmOU&|ivUEu4Gh1LKB=&6;ocnjAwO@NYc(4eOjnwW+Ajf4bKw)gWxLuj*YE-Yh@i9SS)HenV8EG8-ZM;e+`-o zA6$owMvVZHW2l6YyG_L?kEi@gVaMme+|5T zdUFr8pB{fh$p4*(Ki@$V-tfJeFVS^n$=s!Ax7tc52CrzG!HE1AUi|g5HkrKi56LbY za5;;95#CoR?9Q1GFueryKO)Pu<5oL+Upqfi?L|q~Dz5&oDXK*F+i*A#WGgBe1nFpZmP-gkITDia(kRD{0MH^PmZp#k z3Qc@RN*;U-n!yBZnO{_8pFW^zMM|ev?3^5kDZqDuOaHN7w<5F z=XjBtwz0nQI4NV+)3MI=AqF`8syDbI)&2&_mLOKrvW4*qfbXmempL#VQ%|rW<7SGr zuX$drigmbMBKs;?&0Be!$P&3p6eJ&&`8=r+@%G{Wm#ezmz|C7k?a?Teos$dqK?t?V zH!CsQ$yg^bd7^s)Tw~fp4EA5lDy^26-))mK>al6?J&WiR{ApdvpW z+Nw_#Dczf8a1m%q)9Y(uwGGo=X6lq?aaYqj^{mgSt_XV{9#fXoWIhjlD^58*dq+sG z%(-8z$IY=;Mh$(snm(&Hy5oMe%LB!hF5>;9&pLWZ6orQfkzn7EzC>Yj7_m#3uaW-u zG|chsC=%#ob_yp(Qhx);7?npT(?vP#n3gq|2{#+;ooNp3jF@;J(QMD*F!AGSUt1>g z;5kkP%RGaoiSZJv^70*kM@Mqvx|$xs)canc-Z}0PN-A>+%sKoEFFa*Z0^i2EQt1*a zga8+LIGTrSDg2RXqS&cvK9iS5zs!^46fQ0Y_bGQ0$EXq0_Ls=RaefaS7Y zO_6!RwHOi4S;k=sGQ#HCyK)s{OQy+`lhw&s%=9iv|J<(2Ix}Gwl+%oZ=9e4@?zInH zd*mN{J=$5Tp+EQM3faw+@fqTbk?r<)$4Ds&zaN%T`lbfSnE8Tk5v_)S*flU$5bKNt% z+gMiROBoW|tY_%8k3-3%`sfs&NVPO0KLm~D3n(t!3T&C&N#7Ri<7lZ(TrCaCP_b_$ zQPuCw7hesZqhifD#}czJh|am4SQcI0N7uDJl%hDQJBVmU(4sI3^3A=66(Wqg>Ma@X z0(zV!6pEV$As{-rcD^m{-aF2?U+N2!=0}4@<_N}$)V9~|= z?f@V1{qkU?3fje!3k}FhMmZozyQPGlDeQDKmyIW5>j=WWMb5Knypa?7lsjYd`^$<@ zz8OolyknBQM^ChA8B7ZkN*9pzIAd~!0Kk{pjiQbr0n!`K90D8oYGb z^mu*KAwKq0R7p=tEU2h)TJo6`^7Se<$gjXKAO*8q^`P?NJtmPz@jI;iL~HDv<9z1Sfclugay1-?lTdO znH;I>N2wGC)!WD{Ms&&jF&TLvJ2`Kw%YbItY5#7ztUx!VD``^19vm>74 zy9)UB3DmGypGRb%R}>^NYk(=m>M|jz>KB*kw;f#(UwRhQEQ)g8j*Htp!b_7)>bO8V zdLOBaA+0ShfQXfiC zyzeywIAbaDy0Sb@i!S%vZ)aS^K}PmYpE*TfV#!^kH+6hGw-hxswAW|771=j->CcI| zpwGuxBPm7h?H(R#zvHgnzjO6_S&~rUO++P>f@5e3I)33PohMSLQKrwjGAoiX8+}fs=ez@acY;fWF@}P8g{A-QuxufL?}|`6 z_VlDa6iZ@6qenzoR@_2HgoXz)zS&z)H-D_iX`{)8_JfGUVUmFhx7~k|On|JuAQ-;_ zXlme1$qbUkhOm}}RFEPe1a(zvHld{`vX;)Qy3Lrxe`zaGO1ZMJ$}V> zDRKOhp$fgXFWgG3e(wC6YF3_qx~X0N5Xp*5^UceYuNiv&>U1$82j6m z%@|XYJ)bAqV|oI$sb`Oj+sex2K%<9)0Jccxa46j$0!cBS7Eg(&$9Lt#jTixRej*+v zJ;IL$p-0~16Ft& zTko~p1I!5Kg=-^@6d)rqddy2JobYAX*)(A1$FKI(buPr7$lUZyZcn58d@fa2*%%;)beAaqA-3zw^`6_-K~^$$6#asJsU z=t!>TIOkNk5I3Ol%>WwtUYCYu9k543yjIzM!8aQ#rEMN}_<91I^WQyGZ*R^f;r;;E`+$5N>Lt8~}`FX)#=xQm@? z+$Un{{v;RMXPGo(Yd7B5er@@3L(X}bOt?Mhmhla4vknG^pU0H7~fKwa_El{PS z{W_4#{Gm^559_4m+u=>1TQ}dYft3JmEi(z!Y7tMWN{gd{cwMnntm7xX$smXwk`G{! zSdd$a-{kLB08s40+81j0{(MJ=MG1E>qFU`HKKQE_rrHpXjwn!XcTZF(=vtXCD)<(; zZR>XKC98`7!+Bz2lWX-@I1;EePEUgbuu-85kx5uttYf56^DY6^DwL@Qv0|RxI=PJ~ z*@?ocm&@jTPsV?Bogy@Z3lhTLTr6sQV7?7Br@96iKkWVdE;7wPvx}x&UWfxx)wrGE zvT95O>LY79(m|DT7?Ftu+)7*zhSx(PJsIb7)c2~FHPse$z^q&gsdn$2H-=JqrsaiG zSYP%X;JRC!{0Avg9Y{yzE+@bXY$AeAi?53vbd(QjlDN zG`}nBPkfZDYvcQiuj4GQ6wmC-?3*f`Eac(CI~hmp$1|*9-YLkLaD?0nlV-gt`^IGR zkdV=i*Z3BO>)o@FvFHwhDs8Xnx)Z&{NykkuA2KOntHP+TdGV z-5l*{)}n4onVc@U->;XmV)#DUgBJVn<*T{IFK)Ql5}~Wqk|*qhd*RltlzyHoONwGv zKUh>n-$Tg1?J~{gl8_`UArO)Y*h%79D7Gn!efyF4})0j8byeU24>YMHj{ou zcqG{&E2HOB3YU~lHPBF$MFhahjbw|6GYEOil(zqhHnwHa@i~Oro;dX`isumX5FjXN zxYs()xH0Uv{Yo7Hu3lG!>6%=*Y4U1-Sq$ps?Mbq`tQ)6Hv*8Zbox@dmV1Tuy0~Ic! z+wJ|(a&@+Ttx{?k1RmXAlEKYkYEW#grh7$wLMGq9DVO1*zX~v*SK#$Dv!;usdfR(3S#2A$QSxDJ3zlK1pu>wfjHI!dMShTO68QnL7Yw;vHpWiFGs5 zU3EebbM($$*B|UC0(Mk<*eeCRKo@rX^hxk8dnGgFRS*wbV_;qUlSU;y$i1xL8f9er zGxM==9jB?+E)7+@@9k4%`Z&F|qz)gjKT@n~S9`mA-s}e|7#2UvI`MQujF<_fnx3ig zV5QBnHC)E*@O362y_mi0NQFTnep(+cHNDS1vca;KDdc*vCYibgs-Qes0X z)lGkxXuq3s*{S~S+=(|5Du8oK)pc|s6B+1g%6{p~LNw&&L}b!o`qDKD`*4S~vffj{ zrB0Zy#%DdC#HTXG0wO?~xM3)l%|$QGD=EpyM^PVvJPA{R#Z=TMBV5R+Fdu3(Qj{+I zYJSK}*B@RFpn1Ng328eNF-~@tn{eKx&y=$V%r&llIysQ@xWH|t4%Nk5NOAczVtP?Q z?>5kxef9H|gq&i+xTWJ!x}+=6HAW&b7NnPf`nJ^sRJSV$HPl%N(_szm!yuk{1}U!O zsu^}u$#DgeB6P0jT(P}M#H~if+Pz{OD!N#7ME8D#{c&+F6{iJV;V#DSfcTiU-!@Xx z>KquLI{Xe28BxP#4Uuf|)pw)tKd`b7YR2ff!b(bgTYZgS(VR=tG)$`-R&Fh{qEB50p8u&BfbB_2CvRfYFpNowWVhGc}#Z6EdG2ZC8A_$=7iS!boXq}ja-Aq^ ziVGFrLtZatwmT47*Cxsm0f8?A!PqR&hb!M#fiyU>Kc>_wS3@68ZxrPFJi_hNjF7rS7{Eb zcD%BLNRR8H(#+hu&P-O*eqt@g2rlKJVH*n+4#VHKHiBm8$Ze=Qv*e^?%5HH$6zjGG z?8d;jk(E#5J&q=>=l6#`PtUHP+U*Bmt!KzVq^%D) zjFt_MvWJdGM~@Zo*M4SCc)~FH@bU^&FYH*cHU{^p$RYf*Ro= z3)!f|j>Ah=DZp(w=E*HseR1K?J=d+Q?B46EIQNH+HCA^Zg;7>^dTl6~Y-nH9TBDhp z9gQW!Z%*W0&$kpSp`B~hSI^B5a1Hcskk0}wH7dYe=ZiNrsi_wY8EB*lBgNpOlw9sE zw)3$UE6KsL#MpA#k{L^GKv%p4Z79GBn@c~=BUhv2Ar#^X7Ccb4EUd}t2-)8JiTUE? zNrFX`LA4Ugcea9Zx;@@1qeIDk#ACjBM-khRIwbznKM>6by3eF(NecdFr!lMkkZNCH zOI%Z%Fi)WJ5u6Miz?XS+@J}DHv~r710v)bcBT}6Z~eKdw8qikVCG*RB*IinJP2 zdYR)$%g?&LJrnP%h?ttqaoX}y1WG!EtW7Hvxhz5IN^4hi#H^`so z$OHCEnX-p!n>3eeEA2z{H~joHH6`IRqBdP6#1ZwLyfp*>OuLkzhS|!T@1uL1&ao&Q zlMDPMy5E_dzD1Y~OQ=s%8vYmFR}J-HUtyl1qk9YToAb?2LKsKPdf|R$l$(8k-97}7 zTJMsY9tK)<8Z|1Q0>O*zbmzk$xV%sT;&6eTl#&tEPuk@%Ly5$Yi6GrChNEHcUZQ5= z^pNm#(EeE>lR#;4K`?5kg}9&0<^?Dgo|dYZ+wm3D*bF&;mKQ|sOeMzNUk=Qu%DPGdiTM>X<% z@cZSJS-o!wA3ofp4abxop4)i`g42J4RlB`#WsLCmXfE#X=sPM`sJY;#^d&T*m|YU&^ToYpcT<4P3WszM*e%#O}PxP?RzKa~%r8=FjpgcI~| zx_mV>A(U(QH!#mT`|(ZDwCkjVYc>DpDunCDFWv70tE7$xQ+2V#JO6RPzi=?sz_*hN z(-y2dWzop`<~)Y_dy6}2w;0+#E;^j)p}(De5#F};TtyZRRDkbOd@!9Q6?lx=owgN& z1WEoISziwz)tQ8O4j}zG78)RTysfJ63~6Y=tCJ+&y*7@M&Kz>#xF3`E^h@jyqWcdd z*bey15)`v6H!o6TfW(0zH``(fK{cTC=Yp0xr7>bI55d>t1!)Eb2Bmr!IP29WsgLB6 z+5Z0i3ZUU1Jt7h5S@t+|#)1=xN}tPg2lfUrZ|-dKW)c@eh|W9g#s`Am(y?==jcTbp zh2yOiKfc|pJY?LHTBB7Ix?K~6fGo_j-Hq*dTbxw zsM$5Un<~;ez=8lmfmdcM?Xl|iV?`3JOdp=_+h3UsE4g``K)l5>(Ii8{xQip`3;8iK zMGEcRo0w`NNBo(zmIN$w@671s2p6RqZL0}|bTA(5_Lmo!(L@GCVj~w+0(9})Ct?cd zm55tUAgpTRi84G&WQMON;EO6(%mQ9@`v>|{PK6c~w4~?z{?Aj~2)?*`Jylh4Gtlsc z9v&WnEKJ$M^+Mg23&IsW_LyD3=t_e=CL@h}mfgA*FY|-pJ?1`O+WGA_qm`hT#i$8_ zD!qFQuS;?f7|unWHUlM#v>Gv312~AR4C4;V0oCgF)N9hG#JuMM?hi-MRrU4x-Y+Y$ zf_x~jh@aZsZ<*GMO6e~m%89wXEEe6+@$rYTjZ^v4B4L<;P0S_A$!9}D5M!acz_E(Y zMh^FNCU@22!s;6Njf`pihiqOqG@hpkTY8~qC6mbN8lf>Ce&4wGeYfRO#aK=15t&GF zcHFCVHJgm5EVCm+$IgCKqTTW(S=*cP@DAoVPt4Lb}01FuLNv4} zW}P0FgGXJIp{VY}9q(7j-&y=^t97MGQxPj1x7qJ!sHT3tv<|!_%EvmNU(7hHpD{oL z6~$5)_#z&-JciRzX}M38RSrsAo4#gdD~xx4Z%bha7+EQQy8u%1&T?(!MUvXD??US( zSKLj``=x(T3sPjVXF{M*F2HWv`xSij-U#jfVMV_zV!Fr`!|}NR2U0{b11>vI1{4C? ze~_YoIP$(U*B=qgJ9mDQZ;kR^XW`?)$K4*X=`lDv{u>doWwHUXT4>ZMlips z3C=FG*hgnJe$nIbKCe3HH|hWSqV0FIP+hFid_$CTjn67;VuFiBsqu3thN^S!Qs%na z8k;T~mk2CEOk+MAfaF|84@j0YDc8jpk$#AIl;mrAOU!9nJB*|MG7OC+A}l;n(zu3R zh6L=QKGy!$0)I*D{ZcK!9m&8@sZb_KnbgzF*4y7(+%|RCdNNIVuAM5K%3Yq8Yi;CR zmZsm0E>$~)?Fj~HD4&wOU^uo2SU=e@t3q6+mItcrMp&BOC?mXmDTv$BkrhhC$=-9< z@ZbTr!;|hPXUgTHo7xwIu6-llMds~<yZwYm{e2WobSV0v)9!^zrG@C%x!`(`0MTdC&w4)di=QnRX&efTtNIv zvt#8vvd8O2v*Fv-A_bl0D;HFesVq=BENH_?433WW)2=VbUM)qVOh&}jqj;jFd3K*}&)_yp$GvXK?-Cr(BD1|x>|W_rSR+G0~IO$@kPBih8dlN%?7 zT3gb>hP}%h@v$5oGw5GjczZCy9EY37XE(?OI@3hg#;BLEPdGs#?8Q#lV~09bwDwI{ zIfLzM`KPx~au9QhIT;_H0R>-Uccsxj=!E#(Wh7@^gatiU>&MICCbO9q)Mst|(z06c zU#zt%!~9W*AuKy=6i%Z>iD^y2f~6vx%Axy7kxDzRO|wRWQg7hv>5`Bc$=P|s#ueQu zlJ{GN-{N2hxxw3Ls|GtN5513xMM{3zCT?&qscFk!d?$owNuiWeAzt3PA!4}LBP(7x z(MdoZ{&DDaulfJ5_s-vyE!+Qh$41AtZ9AQ$W7{2dY}-c19ox2T z+qP|fcb|LDz4v^^^Cvt%t+B`6Yp<$WvoLGEU$fvK8S-KCO?nGDiy*86Ie*ybI4DsZeEAyEtEAX6vr)|Wt7BNCj+`UM~o{Gbs|m)w2+5e+OEpGDA? zO~?Dv+4{rpi}f{f^zqHzZO$F}uk%HM+AW`3*%JOOHXgyK@B!vVB4T35@yDT=V>_Fv zE-7Qs#NeDw58h5^1!;72Z@HIc;6M~0ARsmy?pq8p^Y6h-Mn!4FYgHa;si)W>%qUu) za5~69VBjDPNNpI{{tc3<6*E&n?elt9BlV{&kE{Ju*dAew1hnJ+QQ`(c0J)OCG6hCV z))r#FQu-Bk1?qY5jMbXxT@o@6hxz2^j|kszQaTER5l(O#3>4w+)dqWZKiZMR&W2f^ zXg)dDm`88>PQ~{QJs|AhM*#2nIEA}7=#a*BzkIgK2bjY9vCTvZem*JCE!CX}N=SN|O zCO{JY+uwa|Z?Z$qDBD8VcYA9kGL^+c4}bpilHX%UGV@CIj>5_6!G)yFcS!xMPrFg$yZt*#r5qP|jVhNwvrhd~MfbI5ZhS5m+O))b zN>TnhYEiMu;92a=*Pg9a}2+%9U-z7BESSJk;sK_EFc1|qLIBgvM9P@A^K6Fce&Sf6!~w!mLTvH8XUy$ zO^+=RsCA;EqVDiCqY3e=?r~Hw-Z;>xS3(cGIkf|OQ(%nVoF7_)!K$T8jSZ6`%W=;J zkWf)YsFIl(Cp88-*R z<0?l&4j~Dd?`tx!N@f80D+;-x53pv3h3UJ{#;nO?Em%ie2aP>M;!BV%-dKlT45;so z{l^ZfTj^mhWVHn}M*m&o|N?+bjmE#uGN zUtelf7{09CwUkc=+uLt)8wA~}zPEu_!o4IxjK0F-Y%dF}-xj0F0kExnNCN>MUz!f| z>BXzF9v@#Pb}KbmNtvKYQt+3QWV1ow`+sutm^^~g)AOm64lxC9;H?ycw|as(O! z$jy5OIRacmd~aQY1O1&N!jo2fPnb=@iV9bnf&9C%)K+@ADZ=O_4TOVSmj>c?V556T z&51$B>nu?thuSbtjh5+}Phh2KYByBElYWr4WKg%E5f_k##LU}BDTVV6+x($<(&F>$ zO8tzzU#l4_N+ZQI$L7l^AEqYJB+qqmt`^#tYP9I}#cAQtIBW{q&u%lkl3M%vNHTb)cBpva1@7@NQRrGJHqs?;B;4QunJC884=JwY1uJTIl z$#E*}0MQgLKu&m1krC~08H!d&>uqh2ZyWrAq?)MKK$m!M{4p1TF3T$1jmKlA5NqN5 z?!eDsga79^ z)fa=#AwWbjjwxTFL|7_wQ9@~Iyq}nGrI_-NW3Yl_o=UYZ8%YZpWl7UwJIF4wzpTnl zNI%dBE79Fvfx$K=z(p;U(Gea>DNG#IF@jy{w|NEqi$E?2Yy^w=u~+>TW*k7*M!AUH zG>t)pqJhb7JJuF;i>fQkvc@Mqw%f-@QeYUv4 z;$v(KHB&!#pVyCDYt6fnGBgP45_W2;E&ZiIJxl4+6c}fJR>Z`npXYwukz_`2FBxdY zZ>CG15&%}L0?vwk9E&~6h?cCSv_mQkuZK|@sLsOLD|r=T_C}~ zjoQ29G3fSznLN2xG>H$yvm8yB4U7aHoQH)2k985<`T%G2po<)3;tNK_*~ARmtZnkT zXEzfMNIVA)|bC@gjL?@DRA6R^=o3_A-fI+mMY|DT3Qx_O}>*nyg zl=QgFXJIa-V!l1N4>7@h1}sSmAXwa)TN5z8fB(jV+kq+wqVg(FpjkRBgZ?{JTjH)q zAE5r75#$VJP_eVCCXY9g32Qo8+pi&pDRe%(OX(5;=eO11Hg`V({~A)MI-^d?eUN_& zGGxAlruORjhE#O(WUgUb@^;J9g$VWzg~aJ5)Rkqz4;7zllGG*Bu(1=IC%C@y65fSE zJ1ikK7iIG zP^shRUn@_M3$C|x>5w}bs#dlju=yi`?sL`Ny1Ip6n|DiVnNaCR(2~C~q9cgRs$K1d zA3IBDu?UI>0z>-F-v%q6CWJ>D|6Z8Ucn!r@?QOA@PV~5n9IbcgjAN zaM0*4n0(u_2;MI|JdkB_6%Ju^x*DhrM zs2%y#3)5H`sD9jW*?L=H_h3t+Xzxw>?<;35j$)qpThEL#*2(O=gO08XFc{|QJaFh3@{zQT%v-Rq?0es)}O%5J~hvep_pL7|u2 z_!`Ttw9xzOA(Fn>qj&S|10HuC)x9Powqa5)dW_G+*%PqN)2++!6@NbhnwA2?dPO@HYf)h%%kC(e ziZKn3q-nIn+m)bTACdgi^$#vg7;b&q=`xn5z8*%Jx|xTUAa6>vwQ{3O8@1o1wVI%y z9mz2sZ7!pWld_)0!qd{>0+<0DS7x|RXx_C~!G`@^MqfIzxBT$gC?={L%wrYW65%tK zLbu17!zE1pW`YAVfBLf_`pqLR`Z1-p-5HjwRz<`|>65m*y_3BzRH}r11QatXjKq>` z%)AQ;QOq@c1WKwRy`^0{J(WguWwuC@bACK8Ua^U?83+pMCvLBCv7!Vi-GmLlfxaFdPNyx17EzYG@T2_~sR zZqSLoP$`~o1I?3wbYkJoH-2P_eQ8T?hWs;E)?{3HQx*f1IBJ!KfMBR1h}K|qf1y$Q0y za5V`tc14rXNTgsi1Zx)h!Sy0$r8ip7D!_%C)BJb zz86G-odWAU_YtkrAJArH8#t_L3l(2}9GJiC$pL4pnRQ&MMYI93XWV(+zXXUvQ1It> z{2~dTe*d^sTn1if;1$Y!KH4{o?3)V;_F5AeTK5n&m! zicEH$O#Rq|w#X~j(bEe1jBb{;OSG?WgR&|Od`na^pjq5{&*0#LL{{Y-#8 z*|^BKmT$}Qy9;f(EvF&mDo7_n8VeBAsCws^gB+REu2$W*D3r3_hU(MRm3+Ff-|88u zAw+P2A9>eufuC=0v$P*;ja@!t2A47S4ALc;p7gI1qmD;a1sX)2qFR6e2WNH0aKvYtP(yCfaJD@*0Z6=xk| z1s6H6Q6-?LAHqKWS=VZXGnka{t?ns3SCS&XWi)M-Y9r7&mXo76o{LTSa%>T1%26kc zYYReme?VC4VyqG7tCMH57k|pcW<=I|*;%Is@AH^ZEcnncjBr;}xmOF}GmOo!3B6A4 zNy2FR7uA#-(jQoy+@CSqlJi*Iz%)->Sf5LJzJz6GD{Q(0MuhlfM+5g+tKBzIA~wfg z)ufhhc|$ANXteO*u*&0M-+Y4Xv4ou?<9BH5A5l0o-%Jnk_LM=RgjAx_D0ejL zdS4fJsA-{BP?md6BB9^WQphYMMw)lkW9UNA40;Ad$S0~dh31J^OheGvHZ({V(}GN* z$6K0XYOKQN)y_Z4n4PdBEGTg^Tp_^0Fu!V-B>1;AHFEif6sVY0x5$pU>~N1fy<$}- z?$F#@+CPHTLK0?Y4}+sX4q8ZRkn*HB@9vbt-yVF|0N3SPH!8LNs$#)v#98jRM1+r4 z_G7f4NA#RUmCZmNMyr}NFZ*hu#q3qImx0rZ5i)sJy5H~P$J(c%>hBeNe#HeG6ln7V z&V8KggPZMO;(AK~*8#tE5E`fz6Y<|Nlp9SJb*l=l1ILQ?@aD%Qj@WYz;c8+&#inX! zb?dkaiiw;T#grfm#}V;&b<+x)-MlqQPHvT>3SI^x+@xM|2a&g3H&N|n)#x4DV^wJjAnn@=PZZLui8(@0_y9bQ&AJ$ZbI@& z5FoW2cpSb7D^}&Wv%VZ{O^Iubmcr{$N_`qHe=v;MMH_d<``t&Dl?R%IP!YT2?P)Y? zKA1%xM`S=6kn96#9R+s{ei+L{wtvN|1XduEYqP@rGT1U=CI2_HBLJBPh!2AC7Tc?~ zl*EkvBlraPke39AKOK`&JpTi`2=IY}3h}cNPFDCosLOYHfP*wEDR=X)><|CpORxa} zs`Vg-e2RaPIWanbm_}hz*4|&*^#6t|*+>YWTj2C1)Oc_KkK@O^P$>OpsTsrp zZSw#B{Qt9My1EUEKnubJl%_DD+uIYbFwt?Prn`MnSQyFoiaf*tGOYFAStb5s;pphtcfNzpjWLg%^zvQ(%Ek%yit~MeLDTEc;m1OU7btg^bc*66 z|BT#%5d#d4%lfHz)?oN@ODzm8TGn2Cy2H!CbLwZy>-i2#5+UY43?~EOPxsp8d%-`I z6kKe~%MHj=*O%^O_0pK>a!3OtjUFo_X5mOt~lt_xj+fL?`5r0A|z$?5=_~Ty6z#BzeO8$usFZw zDxoJWcu*>{c$<6yz!@?U!%RFn9#gX+7>T!2tM0SOs~!zv*q;Q2Ie~w|+Xu+`h`WtH zIiDvq1>&#z(DC>#P#5X)aZpDKW4O)5Al~XDg&yz=0+!V5F4qWqvE9Aj!Na_9WSUPG z36sncnA;0yP2cg19&?F8m7oJ?($5?dHUzUzVEhz}eR1&sh`0-J(`Fl!k@G{#4 zfV{1UU$vTxmXfno_J4f?3_3iYpk!|cvQh9(b>1GsBb~;KZXbCM>sgv51lVX;&g3blj8j0HzNpMEu4z!n9H9PN{-&vDY*J9-ByU8 z-LNjccuXkPq#X|F`q?FUWTt7A-j;$-r+)jRk$lRhzWce02F>d>V=?aBsh#8GW@|Y+ zV}WJ=6#xSfZZ>Zo=bWDn@tMek!NBA;#mGH4dIy`GeFoQ{Uoj+U_XG+AAzta;BZFCf zM%%F$5kt2?_2~1sOvm3c-F6ZzCMkZNrBbN){WXH3LA9xqBW#n#-a`Tg&=GgPbq%~U zJZrWj10B_yqG!_mtDlK9a1F|R)SuYtP-r5T$MzIEHC86*yL}tX2XY!HcfkN{TG)ur zlz+*4?XQ~s5pjJ$*lYiyJwfDs`k=EIkP&BK{W>A1NxpZQF3E7|VV7|m!(i^Z=2DNIHL$Jth= zsHnY#>_|o^&cEgnLr7o#i6HsOd}oTS)vywercMW4yWk7{5W-fRVd(e~7qnKUaf=?2U3ZM~F+eIPKNotm_>pEJ~WECrT)ai-&78*W4Qw0GI7 z7V~88+-8cj=;h~{5jCr)c54Ws`Ox^fg|BH9S;55P-i3(uIZ!-vo-16AVS{1e-IK%g?Ylexh>75Q=Jh-jQVQLRoVO(v&YP>c8I%sEqor){6W~Ud@Fn^FID#wt^6PO zU{m#c!uMLXaF2;)Q-`d43~i6TpJ#cq^!4)l+k7vdO>E*f@h{WQ@YZru6TDQifP7&d z+U3U|DVcHc+39)>V(Z=&V)yk0xI^YQhw+G!#d1V|1jnk2A?BmI`j-a13k3+^Ft6AUkqn>K_>M}rDDilA z)@(J} z6y+9Z7gk-*A28BBimoOt(ym`)*=>A1Tgb8Bot;sC`R3_Zu$d>OZ(C=lXZw<84)l`b zc^F*go+F0Se3$ITW~Y2DR{&8l-Jd_VpnBjw`w_0sl7#vqf{#j?*@a;?5Z09K198&n z#Gm36MJG-dKqr}i#XG1rc`adyw`WeDpu$0O~1q8?Hd;o^+J>+EpSi- zC$)I@5sP^N6Ih@|w;lI~^#BroUQeXPBVy*;N9*SwFDy~I?eo1<;A?x_dhVx|Bi(9R z2oPu=vnHRU@qcrIhrhd8lzyrCLk&EIe9!06mmCIAiY(2S-0`(Al^x?oq;zKcY}*(( zIq&$01s|-wJ%!Dn1T-V7!EIz-5(#W&3gTtO_%QsHZJWB@+Il|bt*i$IblgEV0C7R7 zj3*fY4enobD`J7auu}T*V%Yyh0=Mk0N#+Si43O%MulC@V8UC5jBStXL6Nh}JzsiF4zzAu zP8~-QXGP$c6i&pZoiBNhP1d~b5|UpLlwTt@>70(UFG!bH}^?E^xCc7NNrY?;|P**z*ACF&8RC?Yik3fZ^1G>m{J%JSRRp?DeuFQ4{ zc=!7h$$`Gl55#?YRhU@WzZTQtz*Rbr?}W#Xq}K)Z4;HxWiT>sjq`Zho(|#9f<7kJ53KLe`}gXiq(IXjmalGes{u4h1&CA8F>-Jfio|2(sZt zY#K2TJl{QX!CIxubR#vceipmoHoT?E$OI-0HE3w~(+&7((6WPpQ zlaws@45-mKoROzm>r8^~&0%YFDlfj+H&C)WP}1h2LjWvVbrc=Yx&cZ+`EzE7qJ?4J z5;_VTFJqcU01z-uou9y7p5LMxr8qq;tmFz9Bjv&hxVG6T4vo+~^T9!%TiXl#s@32n zSo%_4tfO|FYKdTsS{Fijm0r()M%Jq`MlKs|e!t9ZAnoiP&#bm5*unSLo#=K_81dK) zS}B9aAFPl+Dnx>;LWbo@CP<*zF&szusi)}|dAWvb) zIx3^=LUrOqd9ED*i&4DVFDg5_lfswOG1*9GC=SSi>J=+sO<$x0I~Tpm zd+bmoyhSzW2xf9V`<{-{Lf$KHi43Fwa_eg2YRpF4d}^;YC>(G5>pZTAQ*oJ9sl8u$>-Xs^U0uu$R}wzZbZPcn5VCtx@<8`&xQF-$lK5#aME;YDUFs z(jwsxg!81d(Wa9=n)=5(Bj5!siJ!Mb7IK zzN@Y=(IoO0|Al>aqd!6gkNwq2$QIurbR?ohVtn}qJ~W!WT)6mqZX>eJ@ak-iA56Oj zZxWx;@LP*7C@>Y8lfw3P8IPt}DLR5iNUHqe*2)N~O&)+4yW1D7p2vex|5`zL7^2m` z@Gv#xV#a)n)_h$Lr|m5ZCv=Bt>5_$wv{cn~*jzN&(SonBYu@K4rwC99ACILAPy5X) zU2f>bToKY!+?SQ5UaxhG%Ns}B99_11|iq&6o&GP_`UOf1hUS!Ihg$o4~V?UhXM z)y6;5zAf2h(j8Z@qB*imc?}HPYTVfkq8@eGCiEP(zK*798nSW9)RQEScWxpi&>iy+ z9(e~F;qN1~)@kPkDGUEvmKB`NQN9zg*&}n(v%XTVFao;+gK#9x>7qhFm^f-cs*ZdH zzO&NO%+=4@^&{$K+d6Z-SD3Okq)y3u&eA%e^QrHbTe#OUn0@?@^l|matWwao1MWj^ zqxt|MoxlY0vl^gbutq{OSU~L6HR;CLQ<>5O%>5W#f@BQPBF|x%uD_mfN&^eYNT;(H)=VW%LB4ynHR2A$`k?gUO!57 z(w4406?-0`5_Jw0NF5HzHh2r86wiBQ*km&L6OeGnR-J$7<;`0bv-vNM`{Z)w~U%a6&`P1LOq$+8f(n=dOc7TqcVWhY+qo*Xt9BGgp~k6Unh{wtjW z4;(P+G7&sL0@7Fzuft*!T&$q<*y?gWdb9V7`elRj&0;=E zF|6hH9+|&6%HgG))ug3Lk>uWJ#Y`7DF0>2k17;&h;tCdovL6IdRZU~bQBIhzGEN0m zC%Ri{#X0&)n4i@# zJa)ebSUMy0bo!6R#5;+OiZ+|Mz6rXoZKslEU>ESpOFb~=js&vxz4%zrPzBTP-fHD* z#(Mg}dlb4Vx@`(`*-hO@6AM4l{b?~-Np%#tVumwlYb2Is^Fb5PLQ(R;} z6}acTMX{a^PC%XsVjnGo1qj(u)NCUAr}fCO)Vk(-lvSpXT^y{W-}Q2vhe-6hn4zuC zHL+C-wm&$l$0PBE%xHG=l(hJfun&p-t%Z$6aV@Od|LN zK_ZF+>=BDCjh2APzD$VhOa%!n;}-Lg*aFp2QSa?;HE7b;CN}+6xwfpPq%_X{lm57c zHBHtm;lMSS_)4e?avj98=E~4~uLvN#w}b5zKRe}REvsxk{31&P-i-^1XqQbdiX$8I z8IQ^8b&|CPhFZeELN!y;olY?X-n4l zZPr5HN0aVp((;~H79ykCs&4UGL+^|i)>9J zOVLD!;gs_M>)!H06o6fKh0EJhg5iP$MIg#gDGIXEku4dTS>z|{*cK~w8-A@WOH-$o zlk#&qR~)`=pOH}ytTuqvQPX;Q8gqr#!#~{lG`Zy3%BASIYJ>uXjFAu$KWcx}$!8Y< zrCtI- zPhhgFT4YN3Zay}@=f)|L7wS=)$VZ&`>p^`bE&vD)7N=BMyhHsua;!EvppK2byH zw>6c?uLw?Sl%4O=SOHZ|ss4KEFLuYf^zxbD)Irx-q{A)^WVQoAk4AeNWN;KmJc%Nv z;9fjKxtOqMSjKytI}d6t3MQLmsF2t~#U$!AeUJ1$#wly=4$A&4UOLHHn;IQx*{O}b z=wEluVE|#caU@$_(`9Y92iR~JC`Pt@ZA3&+P+uBCy}?dO!%%CpRvRyF8kb5Gou_lG z6i?4z@WAOOocg?AziUvl2!`wNlLQ}iE3zg`SYX6eQrb>(DP5TJ+c(z0W}O4F5Wtjc zSW6V-<_mwbCR=bDf!%R>>%gV*Q|5xh(snfGNyOhy1aIneuwyW2i=4#Go}PB%C#o!~ zyG1@KlONLljAr$h%r7}Ay%4F2uDiON`I7sfy3bG+&fTGl7hoC+LtRhSES)((S3FVM zALS0)hgQ$K{raJaVfE8=qRE<7=!J>xecyp7>50oOub4db@qC7vcw?Dwku zTe|G;exG}rq2C-7Un`^HeciS3py2W-hLRE1~v2elj3wEQ^z^;=(r}H59h+W zT;m%_f1mZT_b@`GIR0*m_WPSA6WJ>{#jH37m_@7v*aW4Yf^dO~G}rmg5w!R!CHqO@ z2*QI|uqbI!!`P~%s}9IbSn6V`if*&FSg4JdB6zBrMD5RwPE%u$FBg+$5}iLWB+Y{q zyQoKfcwi2*!4e~g8@$o|tlXvW)gsS04U0hw+jkut*ePni=|mIljo*upAa$#2FG;|E zBBF0#<}fwdlze+Q!6MNy^2(N?QD>dl>1lCDgnWYi)X3jAm}HJaVSAv`sM&ef$+cIZ zU~;Nc7vqrIGynlsmIox5QmRdzerOMFj}G?_q7pLhA;^qXvGK>7e2|(KdAO)C3~Aq! z>Qc|?vRv2b&}er_m~9i`9TslUPCuQSLxD{xAzJA+W%!*{tD5Gx_$-m6)URe{cNiPJ zazLQf+ZL>#yZQNz_Mw*&>9(m!?#nf%BOe4#fl>cUCv=pN9wl5M$DS0w2c4t=hpv~X zZT+06XeMzZ-TAy;Q0<=0iGX#OsorsL^Yxegg)r8WlqGka7;p*ye)fQD}b zMmF84&t}U8B6%h-84FSRc!&?xsCIXf9m&#EbeCrVxkRCvOoK%E;|h&RTox)h z6vuh60yz_MNNWqE8|&++@bt5hCGJ03)>opFpEii7!h{9x)nq2a-X_2B|-tPJB~ zPidFX4VAqv=TXunb*lU11qJs3_ADnjo3UbuhtEEXGCE>K9;rz)B*Ip5S}jZN$_{6N zJ@Xs;bvR9Rc?6$W#on(2bxbxg0G%k+mPyKtTJV;~vK)35ixcknvi4~fZestH^qEqy z7IUDDX0ab6KA!6$Vr_LMw?hs@e0GaPi5H}8yv0WNA>r3y(M?)$Ni+|n5z%;eewleC zho#@mRT3Vf7B2!1hQT{0vYXe08e0G7=F(W9+k8|XzbNk8uhYiS!x#sd8Ec6h=E@uI z-QkdVO5Xh72BqxJ2RhJ(?WT+tfyRK_=D?){b4=OIU_9gj{VR<3MMz%t9Q zC`Rv0?x~7cCeFn?)}kZp$6g2VVKnHWq_H|x#;hVJW$Aq+!J(4P`% zE?7$Y)UMVm(+ZrDuT9>7|Di;z$-6<+q>7vO#B_@~IwkYHphe!Ui(oyFnz>D)EU$Yi z9#P;;6C|@{j5ZX^C?1)PidfTpIJ3`G>Z;C{_^InQ`BifGLe7{VDxU#?N4g~HW$byJ zQ-{F1dM;%=&kl`kjrO*AI1)k+&ngEc&l8#8)T`}#wKl17R?zxy-2eq8Xe5rgH(YFfAE{mPZf&ExD!S!;b4I9F1Btsk zU48Kd5#y{4_qUhEfWfq->i?Fo|!bfzcsBysNKj2#Ls_yiE??M3j)ns^`fnLmv7AV;`va`G( zyBlcoZRH0pJ}1%N)dSSBD>n+zG8SvwIdFx&V#X*2{ z;ApvR-Dd4RX}hq= z{js9{huNozZge-W#&P_4(&k4Om4;us<$`Yb)%d5E!YaaP=F^jl2ZskJ-7IwU0u67Q zU9Y1?YXe04=9_D^k?w-kQbZ=XbfZy%Lek%F=W2?801JSiLNDaqQa{a61Z1R!2XOET z*V|>-%jEx*6c3NSRQ7m%cljo^DcC4;KJ^%=gZ9c~zaga6wCBIU+tR(UvGD`bfILns zJ(1Fc+xr^n>`ZF6B_IIw>QtZYLRUZ!v4=80pL7&br+J%;R(rL#YVuEMyeo8Wdz)dB zEY$Po{@p1EAbD6IAq5+^%k`|eI)4a76ZV)?xJ7qj2Q4wo0*iu`C<);e3Q@?_*Ju#V zErcU7>OZ@&xbB3b2YQc1vQ(bE^^g8sE#YiI3YDGgz<+M;C#rn(+}Qb8t6|P{*?%}4 zqkR;9q5SV_BLkS_VOLz2DeCQfaeCXq#xVauU*S}hjYIYsJ$>gAb|pN9MLiVXKuuIV zc7xvT0&X&^Be2uiMzF}J3ek}m1$2@oA(jZtd#R>VOF zm;nHqk*qX{f9%7Z(dld@cxbh8Td4_=&!sVwDoKai`J!*joBu;7<72cW{UUv}uw-@V zmwX$OeY)uS8=mJOJa`*FEN|wSAFBC>h?Epf82WABR5yrxSy6D$8A4B)ME?zk%N|FI zgGG3f>43q<&i+!95kyW-u6*A*s&)GcM7^1kva&AG8=2HIF1w#qj)3o*Sxmj{sm$10 zq_H&8s`+%?SEq~R=o~yejMw!fz$pTd2Z$Mse!^R4X923ZZfMfj^Q!mnt)|!?I&TOV z?6T2BF6Ec@MVh7HJwFGwgRkShV>u*T7~##8>7e4bvwulRbR*Ti7;Oseq!d@q;CVQC zd)#zoHZ>-r;laW8U=q4-E;9Mrw(%I4cPd_L&12ttpTXmaW@~#*ajXoS3G0e(RY6yB zIgr`Z#1WA-?_w<`;tvt0TA?%eq+3Wx!U7w3ynMX&0mXBxgr3{f_MednffqPO(EG?* zet>(a$Sa*hC~ZL<(Ejpyr6RLITb5)@il52hBdFAReTDehc)!j%(dZOkn=`ILzJL3+ zA){>M@-2YK&cg=^FR9gT9wF1?i7thuES&YzD#%+Pi|ewr8X0BT{dGKv@n_emnN62} zz|zu^(*4Db1m53~nvMwxkgis*#kFx;E5-qoL22PV>na{=7A9|gt)n2m;O83~@ zOkt|V6|+UDo9bu|k5)KnpS4(?8Q!9BOg+8C*ZV{GN{k(ekUeA33_pZcn?141)H|U7 zXrx$h1MU1)|9n4~f!7PFFT3Ad)=4TOzkE9s#zVKjomWe14+j~U=)6f?W2)U5Gn7~3 zr+HYJOfrxEg{7+p>zlArxsqW2R~rvt$C zEx3pmI}ARIC4|9G?m$QE#v-S&PlixDz8@?^$Ip7epF)>~wg5c$s;jpOnS3(KF`Vp# z1Nj`Y_Mli;DzE%L5+>r=6sg`_LmP&lnWyW??T#Z?<9^~Ad5!P!epHrEfDZx!OHHc4 zHxhfm^AXj>r{O76x#2pSN|Y+3D8=Oh5X-1~`N>l%7 zF-cCl0Px%a3RYZdDgQ|8!3YS5W2^yYL@-?3`N8p3=WOU-KMfjk+~y@*@;~+V!RQrB z@`#Rgy>7BwoE?v0@xD|yuCHylJU^499ggV&LlBjV()3X8@tOd)UvB9W9Tf1bx1g4_ zT?>ckVGr1XOLh1Q3l9_PAlDX3v%r(OoBT$cjPiJ#CuiZ7Q^KWI9MN>Wjr2>PidU?K zeEV$zMkbq?ztMQUVqR~pL)t<$$+wd?XJ)FTY{-Emhl^i z#N4WDr*6NfZ+#bAWM2guX1=Y#QcD_+rho+p?1;s(X%RicrV^GiK(^F7`B`l!_($A? z`or@z3O(1n87tNC)j?etX0$}CEc;4 zn*^cmO|C0sdBDRS5Ui3?+Qhy2T`k%E`V67aF5`0CoH5cn2Ev3#QdO7<#fVUl-1Ny| zTVhr#T0i1)SgsoPy-FT)llUS|aKhD_HLRY2J#hl#K)Ee>#jsgc!?V_bJ{G}0{Uk7n}YZ+P9JCRo{`^$WMH9CFrY-oL~Re#(m1vCY)BJM?QP6>AZSJ6A#v z+91hPaBU*`H zBB8a;=jrp}aNA1kSDWN;{{j}mj2?hH@y#bX+dp7Q!C4!=L507N9!+5>5$leVr}`cb z!mn<3C-M215O92S9Y>Y?G*tbmbbucvsApg|)_mFdycunl3i9n%ajPod<9Ur7p2+B& zKh9$z0^#`%8`UOFrSnNm!*f?1C$Vm<@QVsOlF=F8=Yjj%)975DnR>@ulc4s@jx(|6 zn~I}l*{Sz?I>IrgT7fYh;0U&Yk=j8WslQjgL$rX=jJI*EnC4DVa!l3gSZUUx({v=0 zbt9Dm84_Z#dY&K@EY8fUdil5I?P1?~7Sfyi@9N1Xi#BXW8@b&)Q|9VeG|rJYa)cMY zO=@+5Z262$bsa`OKcL@7)qsrC!+FKBW~wFpqTHDXxDl12k;+`wbaOT8#QA}Xb$5d~ z3s)m!js+(e=Ud%SCRO?de($JY%o?p|3mFg_P2#@s-jsG@n2sDv^H-wLFJ>48W69;< zgg62tfV>@wdX%ZtvLG-UgP3+o#>u3k$^w*^<_k@}H)PCTD>a%GVns8>ufr$#%0p;7 znK8X~(+NGoMz{=IivBo}Y2}Bjlfge&zTRc)Mku+fkIY@(^NIJD@nW0aN6LPr0S9n$ zj~3yR6}3R4(uBxT4iM(sMt}_BRW-Z^|I*D8Yn)JPauAvE)42bs5|Rn>pH)0TBSF^m zU0sGISL(VK9={`AeM!E|aniaQe!?y1l5C+jPM4|qu0s@E{7xkR^C~fW*kjVi=Rd#} z`JkyER2NO2V#=N@tCk98T}_+c6~uhp9{0sBJ|j8<9H`upJuO=)`?eX&e3+bc=-~HR zrXhwD&n5BF>u7Vc^)k3{xEYHbu>ABQQvb{IVJ?7@x0xSm|yc9SFSum4CJfF^Zg`TMy?eG z5c|oWCi8A1k~$(_@ik zwX=`(xBK>Q&)0X&58!33*%jtx{@pbH@-m~rfQ6>;!&hn0|7Ud%_(_cBA7@wdBK}VC z?>_dI1HDx(AOQJdV4J#6^w$p5f4yoL;MhMskn*_jZwKkGwFW@uJ(c4X(%xITCfJD$ za~1wb+BZuLH1#Z^yfkfg)HcFV*GK zF&ay~`ZLN}qa~(umm=LuxnpTDl|229c1yJ1^ZvGoW}*!foP0Gd)gWd=_@~o=cdY0Ya{TY z-}jPOKPlu(Q7@vQs62f7qwkjh_Bd0AL|i{qLjT6;kX|4bZ6Q$+b0K}R-8{Cn>Wq{L z=fyI1xG&}{FrQ(1nk1c2_RVr7D#s4o6(Ir?_)%z6f}T8fXs!aTTm<4LEB2Q??L{@b z-Wp8oWJCvS9}4AvzRx8{pxDYIpv5eFLZUWTRGU4DUq&}SQ#FBz_9noNMOJK7W7Ay{ zz$Fri)g?@Sl1luFT8qo0_?E1$I}yOcYhcOMINEaWb2|0@oz8wd*pL}L8)E%S&vyl6 zEckD7oEH)tUmtNHvTsYJzWyxd1{z-l*{6#0YX8{~+Jbm@XO)bD{;y4*Aw*y-^&n^o z!c^j{xaBs5VmZX7O~@E@&9Aqft67y#*c|S^+t!Su+2ZV+iS{nOg^a3#mn;UVG$)#- zvTkD%?krSREYyxdBH$yF7$6BWU_nsHrpKTzJHj9iG zj`u_pWGc>g{ck=q1Sjm@FFo}j?(%DWkWDU4N0*<^h3pc3e9I`E1I4QIQK>AZ)MG{% zmbz#ZkrPd39+dXvZHeYN;}bx1T~vp$jv(cM7CK#s8+w_Y;^>NJJyCf>UuY^uynFRD z$mjiQc)^ngJej`r6l`Bcn4pl;m%wDXhkz zg%adn>tsA+XUDDxHDW;nB^gk)h~#iwq~ zD7*gn$BmG^TQ823X>vbxlQUMK7fH_lW9uEmD~r;t?Mf=PQx)5+*tTs~Y-h))*!E5; zwyR>>wr$(r?tZ(^=|0!@Yya8T@*Hcf=Nb2yRn-P??@vZERf%TnaR+<#K@W2(Q=T2N zPIwt$TZU>Z^#gK*JjgBZ(CA_R64oWWfSHZ{grAx0)w(pY=wO@HU;}%e8T)&=L|2ML zD1@=RAN*8JX8d>@6#;tRAoUZDMa_2GcpXCn>GN0kqMP!NxtKNDJ02xk(WBp>8@nB6 z1spiv3D1P3@`0R3VU=pA@sn*aY1(peh7Gr5 z5*N!01*UI+&Xa`@rS8=0q&@R(6Gq{jl4fm1o&1TQK+suY;kV9ChCY6Y8!+Fg=PA- zA+rAOEC4(-&T^Sz{esil3VHOvj}l%OC;We1!T+an6);cwL|UVq77|peu+z#(Jj}m2>3B%<5F@9oab-eOsR!GfLGdwovghBpDghXhuv4>s5H>4aNUf z<^FlpODF-KNbwCO{Fc?Ea>*%V_D-F#0amW`3~MI6DTEzma6BS@0F=8Fg}4o1zDYn& zXpGQi9S#h<)PlivE@hAi|NoI^h=3sni%~P7+h+OhI8~GFHc5|bdg=V7tLaowO?fK& z#{%yrvgdsns~~YDJR@(5#b0eX%&dKi>0i0Hl0&Wk^+xqSM_Fpb#Hp?TglbYbDz&o# zVszZWvUF`0#qBCeJ^7B-fnOuIGd(Y{p?qd(j=F`UG)N)%VBwbkXPWWPc})#0_;e%n zpDh7F!J1O;*ubRIH^{F1Uvg!W_sI=jaGvxeCrRTWat58?SM4x;iSjwJGjufH2-*c6 zlKf^TCR}FgJzcMp>RE}qoqQ)M7N`&ZB?P=c&}c(g!4`9#X@ z#7D6^EIoZ|Sy`t^5C*%yo_^{yo(pPT0s8va^L*YAe?q_VPE4KgDOKB{dw6-3JH3TU z@kfFv8cHD&+GPTm-x+*LN?ZN5z87{3o2RbxhsYF z{&Mb^EU2=SuP3V0D2}*G?!v{J^tnp(h+;oVVmJ@;cjw4Qb~Ip1l-YNY${iw1*IY#< zcv0^UT-ln;Yuf3$ZX|Q^&Nrdx!|Ygfe)CRcHYzyp%c^t_p4s=NgwZRZAqgen^2vvG zSfjh#R9J)5d>p!4v_fvtEY4X#K)`0b1uyv+zS@Jhr=*RL0>& zR?Wp?lNt6K&v*=#=gpje6ttA^9`|gSSWkeMN+0&_jpi+Ut2}!s8BvcO9{P$)39~4x~=>6Nr?YTWY z2Y33gv{hyp_t9AW&(i?AY#O7_0C>$7R*XsBTf9nsugTjFCSr82M+TRSps_*c*ng`K zGCla&y?&$0;N-1q69%|A;+GYUKO)2u8Pk-OH$W5agQ{s}=RZ&yl=$sDMHHJ1@;E>% zkr~|^Oh8j1|HqX6+wNNJX@?*TVA2vxSZlqA?AXC43$@nsTq)V=E3`$@2m~KRfK#5q zFZK2g6qoWaK5%G{GNu?&zg9N}@k2LLHHiD=dfzLC?O#J3_o(&zXg6xNqQNa2Fo*~u zQ_&8p<;q#CUW+x>lXk53D^VRNvyVW7ma`z|Lq<(eI!1cIsVZCC$icdndfQNj0)?o4 zAij>Fz5NJjMtVz6Pfu;AItvfrhOA7jGH@Uow|jj4t{?UL_i#`sOkPqWc9|M!r7qT3 zNiSzIbBVkwCawD1Qu4(sv`EO#imL#fJ`*xD5>eMhgquYKO2O2M{_Q6{^6p_h1P zVEDng8lD=BM$sR_G12USZi%z?NdbQ#pHpLD4Ng)=Sr||AamCWwv&@#)J`O)2`?pgL z+wSMvRHmbIj@r*Dr8iJwhPdxNEF5OR^TX>;cgeKZ$2?O`#~aoSkA3pF5_K*K?G98I zbT4E)VFw4Q6VMcJg-z;|iUMYj2%O)So1Jhf8S1V5kj=$TNI*9HKQV~;xdTQ1eqaXep+f7> zDfo!Ck7^JtXSJ{MNxRAZtdKFyASg1i3~SGw1R5tfoLw(cL_cvaw0d#nPuj%The66s z%|K4?g66J$;)BIDezdPbGAe;*^9X3^uvADMbd<<-Y?v+4^5b)Vs6zOqq8#x;P;!;< z&XngG=G#K!H*Qr|(d>Bsv^QlXR$7H_G%iDC@{y?^8E%^MmI$w|ednoslHlCKFAK|=R+*kszc$==N;;!eTKKH&|Izd9~O5mKC&whv?pxTq4Mu5M*VM&<8gvnSuaBe@Mf~sPg;|ByMT`{I*nf@ptzO?0V2|2?SH_mb@ETN&H$FlEvtW>L!2n`Gno;|*CyPo)8n{+CuGvpISaVw|TuNGnY zrZWLMR4?8I3+YU}`CVTS-o9F7MADJ5%HGowF->u1oxKOeh7{pQUbE2y1&}dmk`&Y* zj9$AQNr1li2V+_Bg;nPpUMRE+6_lk|@8D_6tM(lU6haEQ-@p0R>a||P-eNPB+XC4l zM!RxVG5>DooVPw0p2n;nO;@sj`cA5Bek?B%4VKFYl{yKB!%%J)Jz`M=Jg7)_el5BA zr0n*q;SYDR9W#eoxN{7k@2M12L;B|q6`U51#pxRHlS}>&ZW|?q{7YwaDOo*G9Cd^5 zXwQ8MN&KWcxODPV7x#6g=v%4{Np^E}QJ70J8d>7;7Z)o#Eslx3x25m+qwKe5Ojq8N zh<|8wtfpP)Wm_5(rFSdr!R2Q(AfU6@t1T0D<|-^sSp1?Pls-SmVJAHk`fF@L_j#hr zPLE{Yx13~09;aoyM?h%TigTpQ-y@F}wkvf;IVty;ocY>_7($}9rfg*(H#gh-R8{z~ zwz7A>78FmUS1*Zw`=A`oX9gx1hk0}dDOIH8!MnkuCyEDRm^|5h%pTnh9dN(x@b*!{ z@W%6I0N3F5ZC;M3V}1fL-wUgG(F{jNCRWsV?K}o-Vp!qF5_T)@arP~}KblHJ8NkTxz zQSa06P$5uUJdJxAY6k)N`;#X~H6T^r1IYWTV7OZ(_vF=0a_4g|hqux=`ZBD=sa$EL z)^Lnvb zzz#C;bVB^$vBwXTaT-{=8Ljv=qttI~fC3KZ@>ZCUL}Gx^-~lJHeYBGyy|I5(-RS-$ zTI%uopwci3?-qSLX}v!QHXWCWkk1!Q;Qa>IOg=l#YHNTmll5Ey=SrU(uS0r%I_X_f zjp!?nZ_Yb*Ob%x-tciqauFDOH`*8HjK^O6p#}!YB8tLPtU5$DAur-F|;3!JzUo0D~ zUldHsiNK#2C{}jNwJmUX`<{8mtS=M(B=w0{$I_D@PUeZlUhwh92H4ECbJMiJsv(nH zPTGSFu8k)kVqHZXI+Y}LA(%jv5Y`K6UV$nbaU2vqCF9E}UaRC$Uku%k_@#F2H8-B#F zimX1Ef2}16Ja5_v^E%{pC6RvNa_jr8aJyOF3*-+jQ9ADMGWn4zuIWjvLJ5|83RGm@r8;1<~wT0D-nms0?ESI0u01>dMuCm1T~4B z{0yR#@8KPnLwXk3QD`ilu*DPs?`l5H!$oTtH(T4*i8_qAfl6#5pjj2FV2?u z_Rxki405z+Aadl0JCltzgX^{1%K})X{gLD@#=n0~7ij}G3RNhR z=vB1OUoZRwP?ilMQw@A!{U)-4UR+NNM+(BzxV(^3-s-`zhwBdy4njB#{2;44U*I|j zU(r*lHN&q3KKuuwamu(o1va6DL~A%IbP9)DROdio=dR=mvu{teX2VZvP3@k7r);oy zx)G}ntqx%+6HmTd){dt$bT#`~is-JsY*P|CFGt5BdpTUKVdae@*&u9RwK7dGLc~`L z9=9`9h<1}y%I)p#06_hxVr8XvJ68VSn}4;0cRK^pkrpg(omisahW2o8!b9rvVV(H}dj+yw(ma+cXF6?jfran>OKL{|Y&g&Gl&sR+a*s!(>Jwtiu^PD8#$0 zZ7j3#GLQPGRWze)=e$wBkope%r0u)vC(s8vIjI6vaA@-3!C@=c5V{1GLT|P{oDI%k zmZQ3`X!a}czW+3jc(p)&NHQq!>VG)sLT0`T3J_%~o-X~u#cL~B+?CrdhNa?-u4!| z$m*4mvf@2$i6PpC!4w}Rn=!tY>#?=H6%-W^`f_l#rXv~nIXOX1Z{>!C@JYBYB2@<$Jv`NI(1C~Y` zI@3$fqIGa6K9c>%p#wZc-&Wb#&pE1wQ!eS)JWs!8$dyRee`yWaU$rnZt`EW4N1KX& z(Q1sKR!rH2LKv2BId=xi68O|O5{%OgDalb5f9MpZef>Dm0H^nB64t-gk%Gu>-^-zE z4q!?s;pAR6(Y05&t1|euS=k&6d$-e&4h)*y-L10wwlIt@f(^Z0{l4Ag#Y6B6ziP6f z(?4AoNP02j-)}txpd;7|R>wTf8@Jiqw`gPSB}D!0IHWN|@O8CmYnI`T$ZQc#k>^av z+~mx{YJlAiT_yR312q7y-dE&&At9@T~Y(bixSnB zk1B4N8!So%4G7V-{%9V@t1}hkex0OZ!cd(WXLoTJzP65}$l3n>co%>hmBDhR_@vpU zlh)bQ_?AvY*!#^X2CL;7%6KM6f6G1YRd3UE($__>OJtl9W$u{wYx5i4Y(bD6R`of# ze6a+}$ESL0?szt0@5l1p?PDnMqh_lc-$xc3F5=02|4?-&ne90}Nl$M#_id8f-I3#; z(`EhP@X=T@)8$rY+;@u%sISzM_5J3ryhXJ&@pTFNv>zY7Qfi?Rzsjv+jN^?#%W;H# z8ARfoNhR6+V>oRb{0Dm60^#|}=U2$DopbliuU^#v#oG~F`)z@l-A4OOEOJYVy~FTC zRRa=qzwMdR)4^YlGp3`|uL?SC>!0*^{GJ$-?Nh03y6*7{@5f73_&(;VSb7Ov^aBY5Gzl(;*m~L$%rhaHQ8-8r%Jj(d*6Mmio)3K{@^Qr1I}m`v6?Ixlt?Dz zPlo#VgBtB7-8=iz9dn=29aM5b&BkJUSIbk~TLI_hgq;d~JjfYrmj2r!vi1CDnEWD- zXW72hr2$Yf>J+lTs*DI?iav-r#w#eO2S0rLmA}%b`ssX`DEBJQ)L!jD;pnG~Pq)wtHQI1s~s~JJ()z z8Mz!Usk8OgvU)S_9IrEVY&a}%#c8$Xr22Sw6P(YGw_7+|Gi)0mnOF9We!IVEy{5bN zasyHl;K}C&Ks3HCPd!?O)bWCBAmOKE<;EsX6G8PH)E9vC+%D;OScDqyQRHXhBSIkeFpJ#A=d{8flx5vuQ~6m_1#XS^>LK5!zmv( zM}uz^S3!m*UX|Z{+{Gw~vh*pd`nS$E-=~sXc4YYP#GOf2K#P$MQg?o9o9}^SY%IbR z*3*_7)VDqe><=YjvetnKad+$ue3a>_%;od^G<%UdxFku*5Y6<3OSpeYr}m{f&cI&n zpbA1>X*K3WM3H}`3{0!|Ng;5>8Um(7;5sR6=@GC3n!G=%E>idl(`5Np?}N9HAGFiD7a-$2aZ-L&^Jgi}JsoNfN5lc7xRF zm*F~?0T~AMFOk9OJiW{^82IAP-|Tgco3Y}H46N8v0~_6Xs~oi8!vYQ0bE#5^#b`>r z!Pr1A^>~?wp_mslhz0wl+zG&gR>~?_W7ujDp~b}Og#KGH+3^KT)Kspy~YlD~ExPJlExIS91-zxHk_RZlld_!@iR+ zlHaC}c6wL6pB*auP)ImYm8+K-{o z@KNwGx*^D~ob5#w1c%*2JVA0SB)Va2A0YMXi~W2R&+Y{}xN~S!X#N30<@4X^Ha2Ld z7Jg;qdzD42T^ECJ`V7cF+GzgjmU!5vog5)mhw)(1d4D01QkMIj+MIlIi_w?DN5S>D z1cvId*rOQ z&KB3N<84o*kdcF5$18`=9+d$VU^-)A=L7VDakV|9s(?jKFz{a3!#EPzxD}CzG5Opk^~iuKIOFn5DTt}mW>wM~$r0#GI4qd&Tyv=) z;*!@IK^3{tL-KDhlg(SMA2%`4pveI`8d4>iOoUF@ejDh{tT5+j#1(Z&wdHW^&#U4l zv3#3=NF<1K8Bg~WAM=xb!t-@}5yN4ev8O?Il^*oa==HqGBP7OeHu7Ez9WXlEKQvTl zAN1yy#+sMhwS5`$6Df_+*~XD_cafz;?krj_CuK^@o}!RK=E<+L?9n3WO?S|=OZ;AL zAT|iE#|gR5H>P>6zM#{axzQEL>UFgVz#nb=5_x?8O0%-a5B6>em8*K~b*O1G8{fsk zEh{e__p^6Fy%Hk&ZD;~wz;O7tqy-XAhu?t6Iqu@>*FUjhhR4&A-qZ8=rjcn!cD+A} zphNgh-*(I|u>eyBmM6cMNA1eM3d_1i2=j1Y!XqT+)*-y-y5-s{Fviy|U|IlYE#|ur zkazEt5bF@3M|m4=Jrvt;7NC?k z>eo}dYds|(Y?82CO6CB2U4thg1T5dq^wyqssj*fWB$n5QJE9aBohiMYMKVhHI(ID< zZahn56mNMw90dUUCI{15%!eZzh2DqwrdwR=>fW|XDO*k80oj_H%)<$w1Q-c~jVq^wZQgvj0Y@*ydMFg34KEC! z%-sHu?HiZ-g>cbDtfRi!<}=_sho|U_Wymj+`4&V?Av9D9FWHGSJlaV~<>4q>4^J#9 znj@{gY%>S&xx=_A#X0s_SeA6w0!ArHGCPOXGbujFy)lo0=Qz}oj5_a;Ng)pV(vEs@ z&tZY`MEn@}xBEluy{*YRo8=L<5uS;F1~nQrS@pH~`Mb}+PeMnZ;3o<8X;pQi^{1bn zopM2~0tau|-sVvJ^JHsToWUXKj+wK*--{n=vJP{St>@{)`fv7U5T4k|N#-e#sWcgS z7mdFSjy^p@;}EK}uigM|3NLZp#J!o$Mt`0^L9Y>&CLRM*^1q|^j-=9>*zo_jWaWzF z6@6Kv9ZSGoU@2}m-FwfL#W_0_B10!e_V66oOKqP%)A;?V?cyhA?$AZi*d1FsjpTKG z8t;;C#D?hgN&5YO0bgz8i)*=+)S;Gj>^>gUV1p_}3^;7M%JrF`lG9WQO-kG4e!D*! zkgS|2!8iMjTh@1(%gWB1KT(tbfeFBY3{9hSVC?R1?bunTAcrd6?)TIxO>F~H$ZOAY?1{$wj-FjVGbyY|IP*7J;CbK z7l4QSw=Sro2)=4Jo6vxs(n&5TYb7Vs_cDroLTftPfHHi@f~Lz={5fTa&v0q0@R zx}Vul{!5FuU$7n3m9jH-l-~r)x;b?;jgdqQ8()&RNjNdDc6=U9t~!jTcFFQi+H<{q zhizobY)S8ED{J86Yd+0!hTUH}*kUI!r7p@Z=W8Rs^~asUitPhv7wwH7KU6H{D&Xvr z9D-!@dG2!UV`0#G_3n_xeI+#R&UuKU)$4pM?!F}?qi_*k@0*iFTSz3N`Y~JGJxXEL zAq2y|yah)(KAdsEsh|HYdP{@@J!v#;$10Sx_|G5j(9GA1!zXPq_$zrvK~TdHi^S(V zi5?5avG~sRTi4GT1}5Jvw~OD|sr3+FveG+g^%|8Nw}peF$5k(Fwg2=TU3RD)BdHXf znf&Mxn1a%RmkeSmC|l}5BKRVk{YGo2oUITC^n%wjpBm4+qEdz+kHDs^eqh7f=nVD6 zlSL**7pEZ6jX7`AD(kt$W}vVpuI%sx%rbt}>V3Jt9*o+Y`zsWPn2@^hZuBhd7B#Ff zk`$38@35VKNp^1$Z7zj8fpZ!_h%hP7QaZ8E&ZtuJ+lVgM@Un?~*HCtWq*I`VP!oRA zlx2oc1kF^JP=>fJaejYOPAB}Xs{a(DV534xL`H9Xj-O(=Q-L6-)cJ>U8uVBEl|MxY ze4jmsBbel$+qZ$1hL>WNqRTy!JO)HLmj0z~nolZovns7^lg zU`#!gT#sFQ?O%;EOt4&~V)&VFh6kgS@FM|_7ZOhZdX6$r*1%6{K=f+qyYyF|3`v&m zu7Ffov)LaHbu7n^q{0eDgfzw6sfTSRZMmq$@;1ODDf8;*`g1nkb@|>lwJyfUu!2jn zXILNCbg#NutH~8+O6lXH1JPqN_#^4^_c`=O-@SA?XtdIO>wSM^B*i~JtM1TyTvch| z+oo0W>xz_lubMEWC%x0;oxanL2M9w-3u*mMDqLY{jD_apW$7Ma&N*!vF|3bfec**x ziuqV=zeU)up``czUhTDL`3F)zNfPnun1pHwTO*uPqgrOe=(ICk{j|=3C}rrZI#VRs zZH*Xt92{db)P&6Wnoy@(_;{{$BOBWveh;w8)P`Y|Iu^SOT7C0c_w=iKK9qc`houWw z^1SIw4AWc71D3WbRc_n0c=}k!VY_2?k+Sf`eiWk`0ghuMhDr07I_-WXah$R8mL!2G1e|4C^-D1|uFQGS{Iyl9xP?J68pCE(QCCu66Do>yH|=43=*L$zI~`o? zzBn9Lr46;~uDBMG zV5NFF!2zRYL7kz)7I`KJBJ&iORY6^tw_Y&n>Jmz0b0^sNydo8wNZ(?&o>?kcIN?Fp zuSNsmdGciDb!N|Sdm3Pt)WckD3sg9N(c z4w0Ij_0W`2M4X?bC7JcSb%D#S>*<_wJyL}V;p6NiMhQ0--7a%u!^;SP4)8md!x0LF zTzUi|E=MBeyO!GLeEDMB#yhosUK7rh?31Z-T{`UTLw((N5Hh>3`FA9*Xj1#l328O; zNz2t1$U^fr(Ulv(Qk^Y!$D3Q!d|i})4uR8Pu(EewL8+fMy)_<{tn;bFCr_!%i8p?s zWbwyhULnSsrx@aec+B_M-#LEP7z&R*hZjCuZX1+8r!}2z{$TMc<59`oZnnlr zQI_tj=f^0Kihy2_yX7gy{#osYFf5uezpy2yzjs&R0-HhpuppHw*Wy$bJL~}Q{&>(3 z*{N)ns?rC!{5oFLw$(5`lf;gAtd^<{Tli&`{%)sR$SulsFDv`t0UxorR8FL*muu1; zfBJe_p~3S+dG=o0da(7IVgMBUp+$w?NnTak>{;_c_dr8GH&iT}WoKo!edN3Bm{wJ< z=My=u3j%JAf46}0)d~NNB>E=)C-JaO$KPImbGD@7ZvW>mqgJnlqayBk$BBKbrP*BK z9N8|iT5NeFuReLTug0vtYbX^?iJ`yN`qwz*zCP&R!xQtn$hQmLEm zIMjy6Zaso1T#{fW?NCH`%obwi^G)QidOJAgp88znOU#@5ce_2uFxerIl@^a*ahgmC zd88xQlf{9|dh2{Y*2Ls5hs?~!xU{)$-`$~iuHsE-T4B7jbBOrpt<%TPwPrqIKA*9Z zw+r1WwGToQ{=PnXeWeWRdtZZ6w*twKu z_`!WmDRvN5$Mrtp=`aB{u{frGhJn6Y!Sz~ptedl*7*YIU-j#ctx9$Dn z70!=8l&$d-_ntn!D?#$|0|9T!0Pn?wTu|*+iUZpXP2yQXKC+z zxq4B@6-H|*;af^mx{IedTwIpKuZ(@viqg-dKs~PeEsgwvvLC!xub_w&E1vykspK@< zw?CkCtOk=s{;N?YB>zg4@{pIbI)Z#ZaV^>!a{P%Cs7(o=+=~+i7ZzG{`|Z2IW#%5U zdF2C%w9)Hv*yYjpQJJ8f^U%PH7ir`uB_WdXW76$xJ)8ZCqUpjkTBpSPgziUZA;o!SoJ0yZ`RDTQZL;{T zgFkXFj!4RDQZL83iip)N!Eive_P znSH$^^v`^D2AG7DMtg=jN2M}Wi8}C;5QqH7;{wU21u34S%@JcsPvE0qZYa==| z{iK8zYV}0=HlknSD{#2t@DygFk&syCx3s=xU~h}p2jKwd?>rR&p_ovXrlpksi)4V9#a)d9zCc*impk~PxXjlS~&oPIAT#}^EV=4~{VgF6o7 zTUc@$Vlxef2)-}59PDR2(WX2Kxpc5coYbA@^g3=AD~Q?&%kfy!4nm#XIVxR+u8fXu zjQ&Bm=@wKz*6cL9E`b%W2h`_L-%f=Y^;%@XJPI+X$A`GMltNT^TUz1{HXR=KL`lP4 zZ~R>CV$H!2Vsin`-NeMwnV*k=!P0hpU@dg?Kj_*!ZuqwR4ctivsp;Ead%tr#fqz~2 zQGeFAJWOqxTKE18@qYCL`IN8HN~x-6w7uX#4z*4447dJ8(X>@T#!XuFhB#n!m}j%TQalI( zec1GQz(7<~WA-DJ8m5j?%0Suo-ANq7E_U{%Q~2DG-+|pTipd=luu1K@gUi=Y;II0y zGpQx_id-w&r)sb+&HduST@E>qXm&>)$8%~? zM%)Z@>~!>u9oa5r`b@k_P8wV4dBb{YN4hQ0@~>^bLCtG4)cT^_#`Z5p3B|Is4fe!l z%~L`~8r3oC*!}=93_g+Po3+^&=#atQ`DrA&#NjAM+%vJsA^#uao{ZT-XHy(;pMg0v zMfYb=wp->?(n)B6Kne#f-V!XDJl?}IE`{{UexhRn#=|vXF@Pmbw%-t^q~pE7t>aan zW#9DS+a0}90tr7H#)QK39zZeQiCVV<>(}leLr-BC%bH~e0~Kf1hY5Gr^fLOq)toq} zu68Ul@=d`E6@`mlgZOIk4H661v#KTRb!u5eBGv?apPW$$9sv;7aKs9^{sR?{O6PMtNSO zni?5TXh|f@^<=4h%XmzqLTTRo&=zLHUfEJ#JZkzQhH_(f>N&O_XiW}c>gw*9q1x`UhdUx}8(DV{6lCGhGI!Nkg# z#6;(!oG9eGM{CH#V9v4-oXk8cmQl|>4rHq z4v>Z&>^*Em3qQ66ZwcQ9R-)nM&Nl1z1zQA0zpQ-SvZST4#gK@5;HnKdqrgJ z-jpPkJN>pKJ@J!-AITiM814{2 z>tE-<=bGfOmytZk+IA5UGH*5*Jx~5ZhK#Q(eg6sl48ehOOKIOh?J-Z<=Vh&|+)uG9 z!T~dr=EW2+y37lA);y4^OFUf&8-hDkm_n#M9;$fudHsG9Htdim>cx9ZC3at1cryXo zEyd)e=li?!{!lNvj`hVa)&C@C)h6W%;5~x&VffwDh;HSP>aSp~(3Dc)&#%X$5_2aE z2eI>jAvN)x3`7p#C;Q3j?24BA%4@3sr;VrU;M33>HBq##qqQ1D|4rI%%@@bXyyWi!&?1Z(E85Sh^>Y zNJ@La`U%_IXj9)}bTq~#8cGH@$}`pfnxdCQ{P%EQR2UNy9pJXSM5K7md~?De^zTdX z3vXTX??Fphi&J>%{XJf$v*z*wUrAz~iis!4QTA|JzJ=G1bG{P}jU(;5e0UCjyy>b(<&47)wN7c-rd+{acQF^0{`_3JMHh znf)+u|GSg@TkUm70Qir`?xGp=f#ub!Vq4ayqiTWF9I z+DybpSc36-|8fZb>xW(3zb@&hx(yjcYw_b5_bPurJ8$>*_(x>e3D?midO-E^7l$IX zj5EoP1RZ*cjH+{*1~z!=Y!W?6(;6l9E&@-|n=IsSNUBv*!xNV2TC@}p>u^kUAaLwI zVpF;XV3?#XUm0BV>7DnzEwG1!@MHq=d8DA6!qtCXEJJ&a$_pODHRMs4X0{TJmad$j zQOgk6#SeURicDdBN|l!o{Qe%)C(CB{{F}oP={=gbC>?xZv)D*@YW9l+(*Kfi|FqP9 z3wRT4Gx+wU-Gkac{H)fb%XY+R2OG-v=I2(I8yt-fY>7T$l2eQ_EB~Hob~s>2ZsgGy zb!A|GYN3)SPhQ`JeS+b5AFAD1;i#Qj44P3qDL^O`#U&W{hWa08B#6>v4^so(Z0mls zQ5YcRC%9T49Vj6pYx(W*Q=&Z9S3V#KG1vXrHX+C(B{$d`PC$1i^_%v3e0cLFrnZL# ze#8B!99WIGr+aZ*gOe2`$wBpWpj>u9&&2l-jr@Kaf=toHe*i!rI^+jJ3yd3s+TF42T=u%;hq6EK^ck>Yav%~>Oc5(1 zPN!?Xe#*^0@UIE_@fhjleLA?1QXb6R!8sN58!g#lsidd#DE~DG5&5mo#trPDOO;oW z{6Dw?3^-SypwLZ}fY{2dHX<0w@lq@1iYXyUPc4Pd3)oG`Ec`}Q1C6E1(S4>0RMJS1 zSd8Q>62AbWinjEjh4t>de15*aB#tN(Gx8Q>DiYW$70+mCJ52zy_^>CQO4vi3-10(!l2^;*R@tY(}Ci&4Bingy%% zaZ9v89*%i`5-~6dlHLjpP@1A?gpfY8irqbeMTh0Fi?(1GG{jwt$ayI?>g|ceCVe=@#vx)lX4w4TF< z7jbv+pRmMDFDb{AInL(Wor6L(;^vAui4MdE44n(x6Hg)vSY5*1JQ;`qPr;_BFn^Y@ z-&#mIjD&i)yRTJh;=AMg5t1DrkTi_-6^DWd9|{c#j_eDrrP6O0>V0LBp8Rhek%hr{ zgvj`t8$}f`k{R=rC)a=%@f^wrsW3Q(1XLTHu<=}m7N0uBxY<^9y0e&<$DpwH40zj9 zqs)_Mq?ppiGmSQ~=jtRGQkfv*4L0Egh~0(%*_VgRZH(L1<+RGME{-}W71U)CJ|sgOlsJ@67#Jgb6Y`&>&s0bQQg}I5>Dqvai*F_((n}puZKtMc=T*%_LXZH8D$k-s)9A zc*-`mbnZXY9wcpX=rD1=An#^)9>}UWDyO8H2k+s{bM@L`bZ>v#(14IM>U?Qg1lC>= z-_*AK3T6#Pk~2E%TA8HQn!R8Ze(tFG|{k^nPhVzK{O_{T=Q}*2+3_Jxjg5@HY`SZG{ z6g;|%yqBa<0XKA_6W;_w(Oopd1%`w4434>HV*<{#FA*ukyKgR??f-f3dBL-s;tdK% z$gOF^yC_#*uY8F*JN_G1{f7YZ(t$F7{4_6q-TeeV0#SUUCjS%u@vqJEivHvO zVRj)dV*hn2AfPyqVem0Y8%Kkk$_{YH^e*@(^ zAwNOwiQZbqJ3mB#f(>^;L6ujqVT~@5|L2hcsll>y{efU;f%Gb|q5MF!EyYfX{#u#R zfcGk#eWM;_VG$Vw2`OpfdQidFI^zGG5X54FKNuwPF=*g@!$3fGUzGT8LPTz9)>vDL zA(aD6MdQN2!;6TDLV%Ke;y0(`?@lOo?EFoV4ky3IH`%PTVfuc2P^r}wD2bIl3R*pG z`f(WJxA*k)ZYveQ+#D8@yA31Z^GEGc%I|>s_oe!%sM}Qf72jeActY|AKZEdx-F5XW zrSw_gVG;ZPp7S{FpMXrlDl2D_6L#WaV)=tCliM?4 z)~R%hy_7hd-!(&mgY#gFZ0+rH_C1mDc*A_ZZm2bZy7t7Q_e(c@CY17}hb3XHne^q! zEoi7$_w8jLozGJ|oyM0N!SM9K<7h2efB)g$ozQ!oDo}dQvKyheuhwn^J7u>K+6}q4 zQ8sX+Y4%+wlu4;B`mhlmHIu7TNtT-gt>*w#knj#|b#yGz?5LP;Y5p{bc_T=sNeRw8 z&HwbW#f0IC`_+~1uUWx~6HcmOJVzVzvynXO){F}jMQTio3xWg`-II{Zl7~WX2mngv z1;|!_LlLRQHuZ_2jf>1iVa2&#J~eU@M=40Di%nE?+{pG-_pW?RCDn2z5j{mt)ScXN z4HRrw+-cFV-4X;H0%+)8*lvM*@haPkpyy1cZeyq0Z3BGZ&ezN>e7F2N9 zG{4q){+8UTd^|fZ*hIZwAO38GS9<31n-Bz!>DExCr`eO z)~SH*_sYqx;WpmHTacYpurh;f++Am_18|G=((wSb(&z(Di2N*=3=4~>vIroh8rtDP zHa_g5o}C6YnN+JZKZIC6hZ?!uyV0`v{FL5vc9z*FG=t%>dyc9Fg6k7iV)XsId0|h{ zoMId7K!x?YPY!eDVVEuNoR0SoN(`E#umd?9^Sz{3ZP2>g0usks-rl_96h#`+F#-%Q zW1EBl!>9J^I?bVk#5d?||Iac%jDqkVhIxeKPTWbUAF{~52@z4=dUt-f0O{ciC);e6 zS4`A3bdwl`=gV081Hy-1wY}K0Ah!< zSIbVMlXW~^td{7NV`0(h2fChqh<&<48Lb}pF+a7tqkj8V;_z~k8DDl5#>lUdBjb@Q z`LOpU5fn~Ld+pj=TiK#0U%UbJ`xU2ZiPWp~qxrlZcj<5Z zFE`uy)=!KruLho8^qUjxmZ8;%(t!J|?z@WZ()-Z!!4e&M1{u*-bGZyqh#n$(r=U=Z ztJ~_?8nbnZwkO?5y!MZPcm2`n7h64mpdkw26?ds+MRu_f#0-JL-n!H5JN>Qm>d9x5 z_ohJUSzHgT)iagrqvf2w@5g?}DT&~*-@#eIyiJVBU8m2KKHc`^#+JTCp)ovsyAyq3 zq5r3!dulID7MaU_k+YYw|3 zrfb)&A+9dI-91%TcQbQtZm=&&rL&k3o3RApReIdz=OF*}4!dO)GCqGGJT^nFX{4Ey zq#uhF>&?Ei;HCb8R96R&;|NTlchnzQXxTESp>k-pwVj#J`7CT?*|`HYU7qQQ==iy zn~UGccM#)933$@7`{6JJeY8E3Ou6O{i_{ZDXx*Hm$aq>?be4 zi)*qKx1)-cyZiRQewkFG;Tb=sn@m)T#lO+q=3BYlWYJtPgo8eyo>m%^I0(m7Jfwf} zvQusc0}D8M_a@BZb4QBCSr{B7^z|=OD=*pgdc^N)%JEfaA-1!#JDMpa<$vEZA(wgq zx!?`&GyZ&glJ}DZ{*aR@_q;y~PzdpbfX?V2uE^$f70(7i9j3Yu*Zn1gzUn`nEIlme7ZP zZf}mS9xZF;kMP7}Ki_NUi@tOJQGExcnKAj!us*#)(+sQU9C{jo3?fG}we;M7t%IsN zaf{o!Wp|#mGJb4(;k@bg&TX0pnNw&U+~2^rPuDeD6181?p6Nk*M=#>~qQV->kcfoH zo$0k!DyiyJs!7{wtBEN^taxGmQM1J#FeqKdQS(yqLJ!9bJd1nVJY4hUFsSmfw<95& zetdtwXy0^y08DUgK4v|(9j*zuPn~?e|L!q!bt$OIUQu3FCRbe=1}%p?p4m9ZpP)=0 zp)@(kqaqG;pltk-dUXYJLvQCnO!9tXD($FaN;Zf6!+Y$fll!EM-b$m=;~|4?LHOn* zs97dHtA}J#DK{VooX{LpBzk;(4M2u5lMZ@$%;Rl#E`7BRi7GJq`kGK&4DEWl94qa> zlf&<|p;%-rR&uGa4nWHRl91+G9JB?y+!*wp=!~DJ!I+sV0B#n_B{b9+-WQ8(S1r#k zan-m%exp1E9k${VHQI8bg&SD!tGJ?ZUBN~B4OJufYtFZqa*&PoV9aIo^Y08?>K(oG z>hhQ!Vq-SYFec~bYw)jMN|%hS355?|p=QnBOJ<h?`s%&&obz~S-g6|?>I^EB zTEqupjlQULcF+00`t*9*mt!y(v`d>%$QM_8`A)#4dEKq9+_Rp(g5I1r$j;bKufNLK z2Rw9ZJhfPn``orfievLYbr;9t40O91b>1n- zso&(EW^9>Pb>Y$}XWuQ9S+K3tiE*PhzDdqL^$yO&k7{6-+UKv$eP;8{+0XN7J6dEQkH&pb<>o`#TmjGXTDjom??`<^aO)I(sS7tqaRh+twOo@0M9H6H;2dN5EZSyDqX(!c09EZh; z6J10jja*h&Sod=-|^jK|$c3H}h#p=`T5Ig{9Cmz+aZ+V$rtxKZPtFH0jZx|G_jl)XPR2e^em>vHYT0&m#q@C~!|dRf+|c`* zKVSU*4Zd*+v))wARpL6@7$qN3`&e3g2Y~$(xEfFA&gZ2YXtFrZwwG`Z7o%P0zSqfZ z^6@;k`!&xscjS?Pv(L3wv*AniR$})Hxh6}J-6U62@g<>H!2yBtAhc(a;!k3vJtHa= z3Wt>R)n?hb(nw0KJ2@W$gfBb^*)FqSu54}v2(Q2s6S8!~!PH?efPV=W1vrPzbafFC z=KVS3RKp4Q-O5j(0dd{$TB)pYnGoFXS&B1qBYgx5n> zN2pr*H;)Jo>-(eTS3vjX%_1Bn_A6}f+H0_)r<^vlXa>%`vy^l?XUVTL;?!Z%8M1x4 zD{a)iCN)4GsBT~mwt|$(OG)h2eQ6^7?97^L4m?iyfm5ck+4+#~cC9$?*V7sIv*H2+ zYQbbXm)h~fo`G}$dQ{%FGK&rJ zeSrw`#xb3eE2zh0c$|9dq2YYjg&GB)`!@D{yX^jzc3op=4u>;8N}KDbHDZZVOmy_# zxi{AMv8x(HBL&By4rc(BZRLWRF;Sw6q*7d+Er|!IzE27vGqLJX)mRQmIw6naPtyN!j{FO15PCp%dr5-&)f1s`3wx~ zW9MKZ=@$Z}vmoUCHJ2U}Qo7i*@nqY_VAtx`^pr{nZnqKCZn3_bvRh&cS1i=%Fy;up zXLF8kWYj5m*ZXlg5T18Ayh=1l$;$U*BD2Y+&hHdHV-F&-`(HSUtgPm$nYLg3Uzb#d z#Y!T%vU;2GrhI}L4-?bVWo5*dfK?| z+1~>A!IKF;OUxz_rwwhZN*;5oNwnB}jGDRJ= zyz_WYHBQ6DL#42r0yVFj3KOwVQn_t-%Cw%F8CKhL?z5jtIqH;}98G0BpAa+4mfvz= zcZVXr>CR)Te#kJmZ6!1mcf? zp8d367#x31UHOp+Dq#1d%JH9N(ewo=nwXH&G(EjG2r+%(vHxtf2y$Q?IM}Qfiso_27!Na_xXN4b zv)v{Wh13HbZ;0uxFdc2RaCf$2Fi|JZ0;*kvAS^3a0I6%nsfPml=fkyYITjF5VQ65nONp8La!m-lR zUa~sSwS4;H8DbLdXZ)3n+S5qI{5ZPA{a7O7iRv|7DGt0l9k00<@x&XYOOf#30uyU> zF9#ogt`~ZJ6%vrXAUlk03z~(_h5LREVs9>@e-K#jB@ZVj61A9IF%#xJ1t*!wV0jEd zE+t5^E}c{UMkbY77TaYA@#Uwfp~ZY@Fwd8sH_2lmXbKB)YL5q&R@jNRp)q z?=3+ghIT(I-UYs5j;EHBS!3xy`wyb3ber>t8VvZX6_4D51TiIBnu71#aV?WR=#!GM zQ88sc(nhaK7=@S!Zu&vaP{MfeTfQ%}%vwIb+H@PUPy`r%{~k5GVwnPd9cR!lGr8Py zxsu={lJC-|FaKmbYOYA%jwmBvZ{HNd?DRkoNZzHJ2j+>ZUtU3lxT^A@B8jjSaowU& z6P2>$6V+F1JKO?9QYi%6L#D4^O5iAEG`3uEj>vibg`n zfqO3W@YZp`SKqM@tVuIQC=r;CAGnOTH3%#wc*|0L_m#C)q<@<009AklXN`Yjrc7xo zPt@=%4fIClB|M<>)256#9-jF7H}$i~s~6%`@<%M!gx8jPp)nQHf!tp;MTK z#rN_RWW26svFz&Z?w)x)oHjAtS-31N9U{DgyJbL6>j3uyMH5*4LSQ6S_{#OX5&b6K zrt5&FgYrjnt-+z{Ic_XpzMBV_F%FTv57k=SbdPWxeH3`5Np0YJKJQ66CG`JH*Sb%1 zgxi)ecKVfy{xF$mHq#Xx%<4%GRlUVAdC4(M3}WZCZ%;}L-E)S$0fR&&Y ztxjW~XTON6Z)W2KiE64T|M!Rxey}^<@o|J-!ee&7{n=UsL(wS;y>4~r6`p<%(ocO@ zOH$2>G$prqB;ZnJpsh5<`YG(vL!+HrDgH)@Ds!rc!gWqRr`P2OklM|>{K}Xa1#43D zYP*C2v83N>7^>A+jV6PSF|V4}sT#0|xq~Z{L~qw&C<0h%bhz3HN_u%=6-=LVF|CHNtL`UI?HOQ z6rs(_08vvxz66pf?xxXjR7bUV*p zFj5PFNyjpnHa%B}WNS$IBFaX3?rcYOH>@nU-u~Y{${inZn3=`^LPHyXbSrA)fM6hE}AdgAWVW6Ltcd>;UoQAy6f)mZOx=*|01v$N#GqJacq@ z_@rg`<25BLq7iB$%H!c(pamL$Hpl}OZ6^nFJ0l`}<|^L6;TN~%Gki^4!f2}8$GMlS z>2g8LE~+|B*N>CcES@bNmTS#&m@nyzI`S3HRkuuN;iGqubNb}@S+&%Fx(Ke7t4^n! z=NI;^R>Sh#ZAUpk7Kw+RWc?NjyNyi3(#KUZTB^Y3)LL^&K+L+AMp+m0{NmL8`Lf2M z9{zVHzXV#HPLaXW-SzmHqwT%RsqR76RJKwDx*rRpGLK%IskPyIZNH05`L>6Jnu>`I^QNYg)m^Y9qCh3=RAriuS91nsoGgO3xN36NW_3VLB()}qVifWwgMO;$iNo7wU+O^vl0 zrDJHXEbuNd{`u69%s=e?aA3#ju@exJsnh16l&s)WDPT)NJmQ%dFI_0*1GDsL8!OvP zN}_5GZJ~p!(2ltK$A=xvB}FOb(KfoMD6JJ6Lg;v=f^2Fqvt z>C%-QBc23IwrKzL>)WizhKV$F?{ww-R@$ByB86gy$g6(uM|DFf9~x*|FMOF@!=?FJ z+of{~)~^D1^zPFnS=CRKk2uPrbC*B9rFpY_cayXxAeF!(Lrgdd2tiRM*IkZ^SAkXz zuQp=gYDci+?Ma81R0TP;JvDK`6xPt7`h28chP~T}%l>hv4Xs+7lzT^fH8uN2HD9vOWe zWwfl!;)mi0HiJDGEL)7k5x;zKK31lQCl+-|9Q&GqnCSqsw<|kf;1!eJZY#DJM-D7f z#MIK-67q;hoK|^z2@|p}?=@ST;%mX6(A{!xXBjpF8knIBTcHv%ESF4^5qu#`MITVE1{pdY< zl4ZIHF0S#3&2)ts3}*a%J8$)iH-CB-@~5n&kyJ?jC0j}u=3Fa{T3wtCB%{8~;nY`V zFv5>9FF!{)f9?<@oMP6LF|$Gl)I393%<+pB)CBz`2Xuq2N64F*rU<0rYyTpra~m87 z47M)@J%L;JFf3w?>@luafBoKPxli{r5m3Yw5AQJP2N|)TH*NN8twS-5y>mRI{+vj< z01^6D-Vb&gzyUqL+~X^T0_?8r4N@B=S!;o%P;b!nv+}!}WZwCeVw`Z) zx|C1SY+;{r&#BuL!l2L=t_L{lIX9V#)N(gHLUf2vmg-!Hr>8;i5)^}#iU8o<>9wn^B=9E7ZUW;TMl=ZWVA(`ltHTEtZ{zV+g&RbLcO&pdmW0qQ}VQ% zKl2QTCrkrdza4HH3h!3uimyC_BNKiKkuhWa1n#wf7RJr6&;fTH!`ec)sHrngnnycc zRTP8zZUe3C!(64T95C7URZ>s=>IbwT&K2Ex;s;~;uhZm1NJQUGD)tbD;Yj62o zotiU5p2TnMUCBA^9=NPlUOcb#B6^s z@18n@v>7R2C0aTuCJu6vFvp^L!Jz1r-Jvi(RFH+_pslX06|x4Hv+hr%`KPs?7-0A| z3Wu(6w+=+HXkdfC9CW4g!jM58o-$tfFHe}&Fom_dn6kBBFe>29UF13pi=3s~eF5|U z@wJZ@unH5kb#8T0w9_!gGDg2_#2lfaTG|J6v}`{QqTY7S*5<1*-F9S9n1Nf_%#Zy( z=n90pQ9h||+B10y+s5KGyRD+sXa`%b-V2kdv9s47-QRZMXBpWjjLZsG;(>p+j$V=t z-Nxs4$+F^cdU0uKc&eT)R90I2ZE!Vll7kqrxwd2Pb+h>iXne}KG`b`Q4Lr5tG3#B* ze#pnm5&oQ4;dW0PhY60Fh;11fkoTA=^72WcRO@Qr;b=6Zje75erG9TTb?N~IfDTrs zQxUmWIuhJ=uoi(qr&j)QJRfpB&Em_zMO)d3kNlH*C$a8bP#`V|r zgFb{IBk~+1uL#Hbo-7>kuAK+={K#V|5&`@UG|Q7Ndw40aiPM?v3Y;;cpX6%v8U4xy^?nH$a+7bH6Ml09DrMoI4XZan9l)V)je#ILdzevu#pXrsmud z#DhWXjkSMM-&DF@8O0Jkj!oNY+i}a$_oM(_|2)cIX@9Q}mU|u#4{C_iB;Va3o%x9& zB@38T6*-L8K_*H9Z}gpaOb{vqX;Tr!1C%jQ(au{SIVLKAnY1{%eFR#+Wf9f4wm(Wo z@Fx9eygXz(`(=Rfq>ewq4jh(wIN_;@mO~q|K^mlD6IdFLZpXm?AuCu+ z-rp@q?E4CXF}HzC8t9c=_L#8-<$IBZl2bZM&1aY3Taew;#P4$u*ObVKNoS%;LEd0u z1#_TJ3Nhm+Yp%%Ay zH0E0+sYOz!-KXx#@3P3mj<}(}iAI#QZqizEKl~sn6IRGr9uc zqu<9kXES1RdOLTJ0SMEBl%l)|FAV%*@P4zuPF_CyYTcD!B$dWdt7(4a4{3Q{xGEr8 zSLlzDt()H)%Aq$wl&Z0y4JT!rK}SWN-p}FT>O+^7?)1WQAfuXFLNuU38z*P7vY<)l z@phP(P1D^KOzla51E{iD7}c_r^~}I*6H<6b#wT%E($oh?yh3k)kefBjm#Us^rCBiy zI~@t1mxzzY47}Qn#boFKV&MdcrjxafD5&$yCyQ_@g+LpRUZk#HP^)M~^EW(*7U2$8 zgM?A4?&w|KuXxxS6=VF)hVtnwD%L}TI3e1-R2aD^AT?LQyHdMeatgo1YMLF7x2_D+ zqkAYCa^M}i$*LmXh3%FfjlLPSJZrTOtv^!_SHAFy)c zbZcm&9Xo?2kjU!T7Nl`;EUOr%VpY3WzVHwH)Ox`Fk%FIkP ztRS%JCQMA*KGtE!psX}uNbe{;iBkLgls#km%L=GciOCdb>(^} zhHT+VLdxx6_ru>BA)finSlZuOowQaV`MHQDmy3htAb;0o^$Y~#`0)@&sT3<^W1hEk zB(-P2{@b+{Vn1z}Q%$rszN$)>KH1h#!^>uEAVCvl=sm0iU>$B)s-^^qfW9LyaF+JHX!^Z}X2lhGFcMmGOZ7Kr@>CIPXE0cm~}$0sj_4xJS1fHstt zs;s(qP4rJZX$2Apy;Fg7q7sk(HpbmZ!b$cxC0@=b#`*W3wTwZl*5!Ktws=jMr%}gF zx^8#Mm#}fdtf83=-oxEliB6zlAPN6FD9De`{*Q7Fhpc3vnUAUnz$wLqk~$Mj>>rS& z4r*}yEqx3OyMF>Eks#!uKo3RX-@HTl7Xs*C&yys?2i>Hm+Vf8o7ax)+HVC#<@cAsZ z*4t0|MI-82yn-U~G^m|NA)qK&;e2Eu{tu;r^3u8^Sk^pAXt? zXoI%#pOnzh;Goh4KkNVNAbj6fctfC88Z#J0|Ns5KL%-}pHzkT_3Ul}w83@QvN+}qEI?-9Qo+&r zaC~QDR}3T<60J~kPx0H|f02FbpQy)+bpZmc&%@q%L*(O{xl?U{fZC?XEImi(UK_{M zkjLp~Uor9JF$%=SpJpPo8O)g3=_C-Ov43CUW{6-CD~ikqbPEafnABwN*w@LGNMruFmZw<3tHqd$PVY~!wQ$&90tXv;+}{r!6jOT4+9T~Prap73 z=W~KUM@R9B=b9zbj->)tu-p!`Vvj9#wlS8C9ugk^ut6|C0p9*= zMd$U|Ve*_>`!Ow5EjY2#ncd=%QPFhHa0nEeU!;yVVB9-ixgs9owS&lW9=Y=H8cZ6$ z4oPiTNJ%W)l#GpXPQ^9rk&w0itFsLyVuI8ks38xl=q0fp>Js|Zp-s*iR<$Y$YX})6 zWa=%IlP!lgmuH@Ft;R|@&#f6MI2BTKx+wMzD~hm>_oY`unz;nK$Iqm@g-TkhI#1bj z+>7qfS67qKQEzJ!gyhn4cg69AAhesuE8Qv<2Y;_rBH>34&l|i9Q3Dy@l6i&n{PURk z4KK&t5->_U>5|J0$J(2fCTD%7IM17h4&>|uQ&0~`=xPriGqBG~uL3Fh;=KeF*CyrU zAhM%wY$DSo5!TXoo_ViJ;K|oL64SZe1R%YWL>Eg`2p2SU&NzJh5Wgw`@ZINI;#!qi zuJAa0rWQ?@1Bur>7j{b=TcuQB_jQ^zIn}I>VMk;Jr}GSZr#VJV z837dxqaBy#D#H>FaZzP0WdnIhPEH`378=RX-*3s^6!NCf4xJ@pG~clu#KLgC;$=;7 z%{MXi{`hi|WWWy3f~=bzc|-K^bKM1U{fpAez_PQ_le(K1z*}}Rj`)h(J7xpQFT`W4 z&QfMGvD|zuRF{hBYrK=s0qfArud5Te7Z~eEx zbWXwjWhW;65T`zlN0n!Uy$d-Hp0`iqq@H>6eEw40^H~SL#?UkaBHPzy21?5(>SP!k zb^aHb_IHN(wJKjm!*St-%#!nF_LBFj#McZ79o)ao?JhDBYT^$d7;|3&tM(CKuzN{s z{U;TLU|p%3$xnE;2SP~!6l_}!vm#VjlQH}++5_93!O$s=q8%$jM{LeH&NCHn$3yd$ zm}3F+RgN&lwof0F*d3y)m5K@nwrf?dOg@k2E?S6sQ+ivnSu~kYGL{W+ppIlq?8){z z1P|oQ?_Y}6Gn5CynRX6;eNDYC%@lxmZJfS%o~I?|a6W%b7RPbrn@-2_z0-_wh}>y* zgNa{z{DiK>no+ydOYtI(`&b`Gwp2Ef4yp!USdVLTK}M(69qVGZw?esmny4Bgb*~+Q z9k&;8k_$@XKqFIeW%*#A_wG!|^QMRKwkva%Woe@*?*&$aQK<7ePm>PRo&NUAV=}|I zxVrm&DSDC;EAoKaTOVDAUYK5pe=D#CmI$ z&J}k@2Ke$3`VHvki)PT-)jaG)=il1~^WKLk@QFbs6N}ku1Y| zLm{AROx`QvG#+Lxj@Y)I;BSvPD(kQMi$$`M0figkAv?FLY(p~7Ze4pK<^mlEkol1e z8zb{iEhqLnvZqi?7^6VahXK1+6huexj7x4%s%STuK3{(X{&Nbvr`nSt4s(Gbbi2n|xi|d%_{JY6o5Q0ezB? z9s`~IRNA&lKBjvVz7}jqJZ`=jUft$ofCqYXUjnPvjxp>#0vMQ+au&Obu>vhh8V<`g z!X(=RQio0O8(Y8{>88a(rw%@6&@iY1k`|h7pm;oqFs?+8y9CCNLT=>Xd}G(F1%cZk zz1kp;pS)9@S5K;5D}6;6e_>8g_Y7r_jO-!M^sE6YW_&gifp$Bj4i>yW{AIi*1?yTr z7$--c93h4Ly^D-n@w+%+7%(~8dyv}8RxT|p()d?>m@gVg>&J~Kh2Tg#Q!0z!MM{j5 zsOwCXct1tUQ2=HsrJ&I<(L9CQw5R_C`fe@( zBIT|UE>SfVM<*3`bKiy{bo6ZEfOn}jn8*gQCk)kz!Atv+i)MwL#YVt&%|`Uz75vI{ zpSMNtXH<1a`;;@Zl8-PRmTELKSrbA!-q5|-#z%v~5i$UZiy^J%#KySGmP~jhh~as) z9%ZZ_4-`>55YcQO^dyd??*AcNRBh@Gh6G|BTvUEjn;@>G%N$uNGyf^fOF?;e-L-!d z?JHBsaK}Q6DCtR0;rnCdLZSWYKcdah;6-p?40d8a+)09{El9ow;P!A)?BEJXNT!b~ z1%?oaQb4F1M01U@t};^tSEI=-<^2@oFFK2e*a2FvgaGubP*gzz{^fV&g1(NlKJO*V zRNy{kc6`N273(6sYvb*!rBSgzzzom&ZCbo^zqRu6h7$D>CxRtQpGTUvPij)u zk?B7~#1*qpS&l5EkJ#L6DO=Q>W5h8_uor-^zEX{36A2bp!3ug4PEn6DU;E|T)RB11 z$j7)o74-l5tF(phNDw4yN!KW)uWC^g@}}eB9rSQd!Cy3FnD{);LNnPo|pEAl%E?6Y-FkNK~Nd$ERrOJyk`0YT~X z{10Re58uQLm+sE2L2kLQ629s9*Wvg*c;F{^u`18+FJ&;w(2)xSSpySnelhluYFPhe-4{2i6P2x01cIBr+?6iwGbh#xq`MreJgJb=1zElN( zlZKL$yl`;+_j|UeE5r}~^k1w42e>BBsj|$kL9(WkEK*H}eUkxGVv^~XQ=zji+thZ6 zb@(L)D68&{5ttBchf_EsoP4aULGZGy6ZGVrG2zi%_^kOa+Yb$bqD>2D`q@(bP}1wO z!!zvxpvwP9t6aM+SYYF24|CgLD-WVp59maSRR}|*Fwi#fk6=xleZ7usLW0q>N1wzC zG?tM|RkuSK@0MDQYlJ=-^i-i?$l#-9z3Ay1b;LgTOp7*k7MwU3^EIck_+$j|bc;pbXgbMYTT3H-hz8PtWO-`@B0JQ7 z7kX-AgC{f;xw;3dD3=1`k>5)DG5pGr?WW_Ip?7M22ZTg*}PLCOLQHgIB(Z%K|ZWDlKn} zMxJoZzv~}HDXK6Qy4iqi5r&oeCj9TO`ID=!I#tjYd8B-E|+TtiujOMKiXQR zi_mpv^pG%`XZ!6RuWJ3)`CTZAqWbTH|6eB{!6-4PVHl}jOpRL2but2y%h?20JA_1k zO*kl&bFnT6Iw4V(ao<})c(cWxb~8Lb9gZ}@83SB9 z-jy3Y=Xr1F4`S5bF@L@|EwDcs-Ja8>NQU;b+uw5D;?c*wBU0SHRhZhaXrlt^JzMoF<1JeYx>p^&ix9_z>R8->wu z2SP}=wgr&moqEUg?(?0_sw=$eA+A4{EMIl)=DGkbvD|bG=1sfV3&3-H3qSg7hJCuy z%GP;N#KGt2$h-+iA*G39VA&=&LWP*(1a~rP1ux2bImE>scm(Vnq1wNoLB6$x2uT0l z^PXvuk-_Iu>ZW>4Bz_r0{MYZ~Q%r)%U`Y$oH}*Wk#ht~_1^hPQ1( zr01a9^?c*fU3?}pPAy{xq@Byo=3BGwJzg`u3_QgaQ@tZzLo}rgw|dJbFulVz(JVhn zYMCj(2GZ5$tl!wFx}5LJ8tf&n^I5)*@@sj*I;apqf!`@O!Q~;d%~%5>pJ}=7U5YR( zD~`$p;mJ>?i9)XBTVSxrL>&I!WFs8rAqY3Ov$-ek-~JeCZ#Z6lbb&gbrI{QHbU)`; zs^F|GQCL<^7*7=ORIYgT&(2Pl-}HMt)L5%L*0re^f&lpDQK`rg$TZmR3`n1R<9+B+%#t)^FbY-iImtXMv#F&mxWSH^m%tBfmy@Z4;AX*>dLk zedSr<(L#IA+W*}$i27>ua^ zzSO7JQb@=BGwz`@4pb#d9p%Q<=ju7(Y4(V3XThR4eoY-SrZ2zvfx4Hltn-YecOFZ% z1xGmF90YFbY9r@{W;d_b(2$Y&E#__VX}r&}A(_Z~kJrDIo@sI@A(^&B;eO|zCXWoogfy0pr;5vqO7+Zq`cXjF zmcKN+p6QeUl-+Eye>YppW!N424agsVi@_NGElk`m1|^*3T^P;{!?N=%q|GM|6N`XRC;c28hPIcU)&{MGC3vEH>HI{_nRq zUd0vqwH5~*6_0AszsbgvN+hirje$A#c@pxV;vu_bAxbOneW$V_<626}H$B}!mysmq zl;xkOTCGlkw-mWyUg04dx2g4LZ#1cGHsPOYa?Nnh&sv|0E84Y6IA1}~D0OC&BM15< zDuXQWHRFsL7i~SEt^`IRVu|sLM!3XD8tv9E3=J8Sh)W=dL3khhyYgyO2B!k|^V7{i z@!9U5oAMMCC_@p;xda@CPc?ux!-0^;nblYSpd?t%XXOAe?Pi|Jw$QxV*T7BYY!pFugiuD-TE?B#&5je%kD8b~s)Vj}NrtrPUS-gngQ*_jG5pqxb<*DXHO<_|#uGTqS^>k}@=?>Xmls^*DW15$C)S!(xRuSKlLkw zcZnZW5@^3WG6=Z0e9?5#_gEuXoi?G9?F8qc)B<9X1tV>+d90wF-A@ixV9R)1eD2&C zO-o9cTpsqP<~Bi95VjZ(*B62w!{fGYx(7}KJ+-ivbFVtB#h0h?e!2uyyBF{$W?q^o_08Pe zUAWuMR}9lhi>6Lyng$j6&D1v1Er`#X=)-iv8FSm%2l)Kpq^Ix^#+EPs!Eh@t$7bC2 zrf-F=Es#Q1=2F!a`VxFCQSF}Sgq!mf(DY5HFARhBM`hXUuup|M5-@4tQ;H)}!ybNH z0iu3O&|R71;MNh(!6fn1&r!FZtzj_VnBA-z-lApH+`SGCV1(kXT$9#$Kj@!yvu-1q zzPzpI5$McKb%{gf8Z0LWr`er%<;z72ND>h&(8GdrL>~u4bX;m;Zq)qT3b9!P$lRIv~&(|o9%Bd;pxeXTE9AwA#xTH ziC5Qocj>2rrh{r1s_GUt7)A7YSkuix|Lapj6(U8{4-d6&MTx$t1|MEqtd(}Q_k5M@ zi<`#lp|#gC^;t#7QZ&7AfyzXvT$4@o?(DA}S<(Kc=+ZL*QC44v-|{nqGnD~WC4Fx)0qG&!{ccm4 z=@+yog-T7jz3Xe_77<|XMF53_#M{z9K+o&zQX{N@YPwPyQsaP^!zM|>?B^F@=j!sP zMF*-2X_0i-I5%t&R+D(dU|Q?mfdIfjC+uCK2tNX6ebX$xvSC*E#t4gfBGndlx@CE3 z!rxRX%qTau%Z5JJz?oWSu{>vw*FS9pG^wI+S5bAS@-v0sRg%&qrK$of*j}LZfSkmo z1;NdXDpOm#kt|A+XP2n}6?|qe4hKUn=D}Ff8X~TSesKs^&!gk87VC#q`4kaNiyhoe z2D{216R76IJ@rbKMfGJrJ!0(DjsdD6NnD-?s5>~t>gqUVuj}$!>lTVKi>^6z-6Zg* zVdy9dzSy87^~u8E^h_-InuXW8=(B2=*UL`(WnZY7=Ja!EWTY^;ra`Y9`*N5kP(fQFP-CcXM-6oY&hpZ78bbZz8!OdEiVCIH(5V1}sgFkB7Zuma zQZ%M5>$n`%*ynm=pTH2Ykeu6KFO`ueyNWh%eyZ0O3gwOr*l9$!~FMJNC!=Jhyp zDcDgQsPk#Y)ij1oPm_JGx;-urLKMWe*Bd=8SYmunIncn3Bp%gEvL8UqEPRwg1ky?| z;&9)3#lL_P@XW3k7FyP4QS{~uw(==JSv^c;s1)UCM(1Ybkjqur1ReQfSMV!lB|lo7 zLe+M{l3_6IzZ%}ijPz=>>_oxKuSYQA8U#z3&;7z4fvk){mzXEWssv?MoftcNgotIo z;Y&(KUYL>75sBhREGK!qRJ(oEWAp{``&IIzr~c5RLYxM-)C_2?BJG4j3BXquO1ej* z(d2`a5?9Z6RV>q#Gi$DL^QrUKqLz#%OY3K zM4@VqTu=Uk-Nqo6WV7;H-5hgM?=#zC+{b(odZog9WtyRFFg2 zV*bTxdLUml<%zuCQy_^5QDPh1iy&@#AB)xStuw_oTdSgx3hPt-`J=TDauv`AXEKcna@N4i4r2~v|j=qg~a2AajD6PuY8NZ>n{ zJzBIAw0b@urrU}SWbd{kfijbEl$~@~*ZuWbcoVra+Ha{u1TGZLdNjzudeB8t_jHHx zXw5y-O-*nc67}P+Moz4i?Mhj&pE?Vr1)G~EaT-<~0c_GmzOS$2l1uzSgq4s`a!lkM zofI;7PsRhLyYLYvpqFexT|$D1Zo+nE%9y!U;ubE|!}12=akp0?#F)pEP~6rjidgIlsIBcP*x8CBjCk0>Mz(ot90Lx> z1^XrCy(t47CkiT$beHlk{0~-fF7Y5Fz4$-tNmz@~Z)$goG=e)rON(?Jg@*wEcBJAN zv|UO1Fl;p_?Gj0dU9X*KBmopdhGv=s+&6S-TsKM}@l0BRefoKYF1y>G0-holc*%BL z$a7DGl7qG=@njvy<1Ch(eN4gtm+e6kEdwm4eg|u`_hzQCEuFXHFSI(+KZoGS5RH2! z)#uV{M7t9h)!mH=;7;b?2gq^@3RH<$=Vo(d{ zUQCWsl0vJ=ID=}tVT2d!w$HKF_>4dIr{pF@Eqmjk+CG<0jwZmp`z$lGmucbCjhE}( zg>5<{lnI-h>VBs4<;8?LEA@@)w6TZA=f$qD%s0D&=rGr|4Es7=Ea;3LA(Qk=uPng~ zrSCaliV+HE-$|aOdg;kPHwTs4t0{qg>PrtJCScWrBV#auI100saxD?*My^P!eHfx= zRoAFb!PdhzPreD`yw+mLP|ktK^CS~N!E?Wsb`RIA)^!z#I!CGtGab+exqRAxgUv3P z7f{#B4pe$rnD`M`&!PpyPgnAAi)Vm+e>VSIv1Nk#{^0{vkk}7?#dPd*tJca}j#ODU zF;8RNv}~&%pmZ<6PeR?0)KDmHc*$&SCuFPI;TE^k{A%|=3_!-U`6F72-YXf6#!x7L z19+WRB?+%#j;nXCR`8^pBj_G$ikt&PBKWrw3G_Q#-^{-K%#7x|YB~jsTX>@hOHa9wM1UZb` zjS!6}>n6T1_MjvTCaZw9l8S&nA^m0L<&pHXTR!!POapY3d?t1Zm_0+)%}HquaY?Ve zCtLk33q8QoNQWv0h>Oq{=+DPFLOdmHr&F5y|G|B9sAJw;EG=ESjdM-wYyxQPbDn;d zqF_nbcJAStL~g6Lw|E2)yuAoMqY_KlO@)4!w5$YL4!)3<%?J)Xnj_P{Agf@dX19nX zGjg;njp*=O!$iO>gm(A9-AxyXT?AV{;6t5UcJ#EO;47IA((hn{s_0J$6&L{ud;wRz(CtZ19RqtX^@p5}A_X{9}}0{2h$o{84zRw`i!CHI=_|{_#(c_r~~V_OVw; zRsQ>L)F3mCb`eGXS7&@ff1oQywuzemG%o~L4X7nHxG?tr20l{wgXTZ3Q_CLxZ&v)X zQbs_*_f=}@{{p*#w!F`O?gvoLgG&D}Fdq_qm=BWU|8s-THJMYwr6ICC-IIcabrXn@ zi^1sr6-*GFfK*vuPrlFPI?zpHqfS{D_n+aoSb?yh>A&(JIS>&Lh;3}>z>AQPA!6Zt zr%lFWVRY7a#A)RYe+Uc5wzu>4$};adI7ldJ!hi?>LAcX@*>5n)C#iu1e7fTqaiF_f zYrvI=9*|jt4<^aFy1Gh1f1!6oR~je#@7a4m{9`iYh!<*3b-Z$=FAHn`wKlFd>3ZkL< ztMUJNYKo{o3&G|ih3|hYLfs!AxGpm6-@pU^)0#XU=nbVvJ)# zudgp1#V0XkB>Je1-yjN)^Hui|_co|!oGl{(n?o^rJiO6fckmB8ycK?H;*TNsY zlb^hhuEJ^8-Fdv^hq7hnmu_o2zCE2@pjz;2H?1G#$c)TA=b5C9VB>PQ#es-K;zx?w z(g(k`BTFC5=cC+)n<7NzTohu#M*hklT*fQ3n6?#b^`2x%nehOioEt?x=f;t<^dS4a z!KxE-aixKn_l1txEM?nMLCS#eIB%KF_h+qsD^|lq%*+9_T5UZLtK)UhbQEaNoI}1L z;i5-^x|`XgigjB!HxG8WgN=6EWRD57G8*qMRJZ8t$fTT3FC_5ToLtBZ^3D_3-|?mr znCt>PVB25FEm?WXp(>hXi09Vp8wF&NRX;zT(!Sb1RE^pJeUeCA;2R`+pLFtzyUSyT z6ERJPGVFGz5_dUKkJ5S9XS1h*6bN^ww*4-(n@zdbGt8wMvR2h!R=rr`+)5h^CUwp) z7q7nWT=hb3_nT}O9W^|#`YN{mx>0ovu1iB;O@%lL)}*(5!PNPavZl#TbJB-u~=JOVGuv8hfT=7;cWe_2|1lFpM<45Aa%P4}Y1` zPjNDU>2|XU>Sy}l;LXtH0n^)%j9qvWGrp2m}K`gis-^D zbq)w3E=!?zg^l>aqnJf+cmPeQRg5-Up|Q^!Dt=UY7xm7S-PDVF_;sBc=Kpl{)lqRg z&Dwz=0RkjJf&@vhKyY_=3GVLh5FCONERe+(*+s(Q?z#aI+}#Q8uym@xR^zv^p<5zOQpBgN?X8sL z$Ae7;e4x0q0D+_>(5fSd;m702uFU=<-TMi&{M<^FAzPYLVN!w@K=`WIXchn->6@Ua zR^~>GosoRaVT~2`Gf_Rre@XA~X}9IoExf|Wf7hyoH%N59FR0cEMn?Mq?SYQZ!pp1v z!)`w$@WvyBqhP%&i^q|-wU6u^24km@;LFIko|r099q8+e28jeHK0cyomFcL=>WM-& z`&8A|yCaL`lRuPBr?Z(tJaVo^5pklomi+c~Q_LWK`Ch%KU6Ab{dErab~nn*yq@HyWt zcb)B+gl?sg`f8z4Iz1*Prr@A=Tzst7jdqzq>e2CW>XUQtCbFXb9JVf{%`g@S(yFz> z+QzJl>WRh!G&S*|qoYrB++7uW6e@0=oKQN#H~WrZ@$K_s^tV8V?~4tN>a*qgSk3_( zzp=1im{pKjf`xoone>ql&miy~pGyRf(a+h|R?brH`%k=_Hua_1iap}Fhw)^Zdh-=B z?Q*1blS$?Ud-stzTY$A_4E#M+Z6@7~OQ=T% zCZ;CTwX-nf@}$5i-m}Rir^Gl*RV(A-@F^GQxjRu|_^6fA*ELM4$ygPKkS~L4DFY5Ig;xzSiP;_FLn9;W^N9h&cqQ9Q#erB+2$2D>w6?2n`Kl+ydn zl!pPn8nV48aPN*~uT+GvJD22ZuL@?c)`0AYEi9Ijz&aiD*3KxdeJfjJU3d1HCA5BD z>*Mj!Vaa6lY)4=0l9#iS1aenB!`cTbu8p_fP|k7KV!z#IJ35|BHpCOUIP><&jTHqJ z?`w%IhVaCf689^Ic8!sg8F~${Wpi46RxJ>7gCy42i$C$_G9ZDCK;hb4P_e{A>-pSe4tHGN z;en}6@ij%87tPwnpAuKF$$cVrVbcL`u6J2T&VK-L59P***3zl(P|=?
PRXcf+TwXz$0(Yxn3eVg#EKAXWAFTM+Ql^q|1Q>K>FVk#UMbM;x) zU|}I)@XVK&$T>dER?Kl9cvx1zCz?yw*8J3)2<_>CPeDSY>_k=X!5lVCs2}!!XP|0* z+2RSVY|$K%#E=pH!!cK4*>E)dFk*zp#T)-UF5a{?et)m7$zuw3g-B}I1@NAny$sWH zuoV{KvXYkzAPFC57%SFDW2gr&tdDRSN^MEkA>VOMdvlU?|5cZMw;xy1Kgb3mn4l zn{)g5P=zh?V?4T#PdeISe_4KTKbW>}9oFl{KX$)3AewB#+&Ec+nzk&Q{Ty0Y_%`r> zeEPzUOUbE~yo-7hG>y~50&p7(JgN7ZKxHz8y!1Yq zH3oWwCSi(jwhK43q81ei-*BXYI-oX3Rg+;Yb;WnP#`gCS16~<-yo=t~dmPh`Q@r)Q z>%tA`mfb%~m;@(pqrdruqTcNH`PDJ*ozY~9_;lJ&>P(Genl!nHWEC7k)^u14IB25F z>e&a-N~*Qwf&z^~>TW5W%>y>ESd8ps4fz%W-p4Pp;i+|3US8XuFw)G$$Bp^_+ zXdbq0af)m6Q(M_cDO%Moy<|!4!7UBJgqN}P8qgn{0j{uxko~6cS0GJ%6%!gzYO=rH`V;+ z?M-o5`g3m^P0A58j10ExLzINa{%??=14V|)C=EFmA>?7MZ5~>8v#|dW{|HDRr&O!t z9h-jw*^J#%BlIKZ#Sp6%5BghG&jtK&X`R?K>*v+w8baW>OMt|2<` zWh%LX^mPW@tS3ZwVYD1utCHV*~~-kd)vuHsF*pRmka zRU|ORN`B zbM|a@MR?ox+1aZt-4uVy-_pI~E}&xO2VttzOSfDUCuEVMsEX}!z6RyxIk_tTGD#7} z8bW$D-p-P6?5)zid3NSu8F*$i4@BjgXm;PS+h4r+x3}U2(=Y%WdB5yoQEowU1#4cH z!*5v^-g?^`Z8z#|gIB^U{wg!$(BG_3qyt^c;~1t?BIg^y;%q<~S1@g+>13 zCWu-)zz}R~ldG8e8LNy&!@6clCr|O3xF|dtk5T3J@j0f}I)XivRTIL!Jq*-bF>Uu% zf0!*-4<7(=h3cIww|r73x-hF?lP_-KOEaCC;Gl<6r&b?E(Z3-RY{X=u6S@_V~vIe>AR##{R_vZM<*WA0h%PAf< z#{*;rj3s6)<$f5Klsd#?@s-r5G7*_wwSrK@Pe}DLg#?2JxIoko0hdSSA8d*b>1Icz zO0_D>>o@u>H+xl-o2xYTCkx{j<~bOvhUm%0Ur1aYuN4J5&Xvme!MD^GFOG%2eB=uZ zeYI*nB1~_3!A}XBJ@6TNA|_(h>L133}s zQRRVOnT%D40_P-eiRb5Yr81_ z76h%&OMEO3b?#n-84_$O zn)>OoJ+lG48eB*0yxbmX(B$x%%}8rnGuVVu%aXVZ2~BZ-$VAzPSt5ggY#nV$%YCO} z_*j-J(sw{czl4cT331R~i%BPT`C??oITYl|RYhiPQQ=5o;%D#+jXCAcO41U0(bZY` zp?SAv^1QLaLGOWdjBLG5SiM^j-%31u`JlC0Nw!qZ;?Oq4gmDOkPlK`(!0qZ{D#PZdS&v()eKxvXwk-;E5uq+tVCWmNN5(;EPmof7kb zQO!Hv+GrvX3he?4AH{yxjM=$z8@iioqP_B(|0@+1_L5B7mCDr{A3^mK3+|-y?udd= zK#nBkE!xV$06Tvu`4(vwSRD06=9xt2?wG0C+yuu&?AH1gnTi^3LiT0~h22Ine!l=3 zK}mU{{!A(ANrOuHy19ApH$ojTYJ5wC79ZQ063yS@EE5x60XY-aWz{t^mDcq1^a*L4 zPvS1Z5@-U^W|OE>c}nS3^UC9{tLK{TIQ#VcJf+&&E_MKO8rdl%lzKc_2XX7d)7D{hsQ;pO#f%`yi~Br?p~1+RS0cv}rKq`85TV4M!Q%)CV}I+nU`ZSx;UH*%H9Sg6&g&w5b_-H-soErT-zqs7?b0MQ# zw(5L}1lz8wocfv1Q3*wsRJ<*M$mzaJjh1WVX*vO3!~3Q-Zp1~r*AW44rxO^U7h^vi zAGYx2PsSmD0D|4ES;hdUDq2q#$E78DhjnBUK9dO)L4on>NU-5_w`vKjH4CrfTW|j+ zb*Z3N7oS6=4jU;pT1;(m1%KL%9K^;;31}3JX5F6*a>%*=w|3^k$JflI{>;9y%qtNB2gCQR&cE? zKvGkSQfa=dZ@x8c=T@d0Wl4MZjo}+ral}kLXTUATs~`IN&w9EzbBPuuZ=kt72`U#k zi^wrw`ZpCQ?f{)Y45I=P6UXQi^P=WjCkO-@%Te~)9d(Ao&)K7TJlbfgG=yV}M!*JZYLcJuG(Fd}{m|%K4c@ zC^HI=^k>?2^h&n?UnqdJ4|31oSF z3RfO*$Iw}nHG((4V=QTW9LijdE5QD!8Jp~cDR$Hp;A9KRfphK$tE1TKxAMtTFk)Iv z(|kcJ+yc7Vtz6qMmJI}88KHhL^eEpq-E>@p8M_piNiEAfqZu?3lzKDA?2?)9yUQ_b zUhn{?3B5Ryil7+&eTIeO`JcCDFz3Zx@A)!XYbm_MO!oB#lpc~A%Td<+=_3w8LIA8B zvt(G&VA*Fi*l+$61@3L10E)_k;+Mqz6?~MpiO$*R^B_MmL>09xyPqvK$=P{oP9oxZ&+Wb8+mP92Ik(nsdhjwx z%sOARxV2aGVeX|I&dtiz)Qi=I^`+X_ZWY zaXJ_L2Bz-0xznuku821^8{ciw+}ApUL>_5p6jRVT$}eWnXgt$wTc zQI5IMXo;?<wV*Vqr*gX?8V0{`|S1nUxLCMjq12ygqT5DJ@ZngN2(F z&};~9yXW6t9C&2-q!LqP2H0H?e8SqcRq~$?#Kbad^L*Wi?1x6g0VusUoNxG)}qbcQh}KofW83pO6dm^(;+uA>|zqZ>=m(2uaPS z4`#Rb8?a%)nkn%r`B4g1$>Pv-CNr#cLO+#g9va#rN?l>vVAF3jN=8uGjBsSVh~-#M#T-s0C4%Z-^hXqOQ? zKC2o2K2kP&V3+CYY?28c;qB&sPWlBTrJrSx$VcjciinYMDoaSPa}If_wuKGBRq<7L z*SImh+Ev-OlK+f}?;w+SWXF_2PH6E@eTuC zZmwhr#CK=M^OQCiu)OosmWBYs0g-NA}!NXT^NZku=hX2wARt5+atx57N~Zh24_clU{45 z_V}Hh?WY}AMz@QOr&kJ#OPyEQ2oSjMSht|;GG8n`jSv=$w%34 zJD&Cnzo69w&k@CJ2af8`xxfIVnNc)TBvlLOh#d@QZ3yD#PwKqTV|%a3l~KtS&k(ii zU*3M4O?92~rtBgcSmBdL$1ivZW72o{GWUxjML8DAtDI@$$*PFj&2~TXl^UVL)A0f#~Ggl6y7EoL6Pzb~r1<+-h5GnunF zoVp4etY~v$XI&cb3K_iO?^|iZ`+L)2F*9=MN5~T;xk8WQ-z^sv`!3bB)%<>UMt8&x zq8~w&oaTu=#j3Ga*MZr&n#Jo}8@%PL<`kweQD!&E_rRk^HNUfaymniNT)<5(_|3OB zJUAcDO8O8pFpp7dGi_~-k+>>WbWd=h$eRz;5LA+h{%{UyssA&~HJk}2z9$gt@hy3F z*L=QJi{GlpuGWAhn&Oqk|5DUyY&y-0EtVkdA@}AvVsU3=c1)OG-y)|L&gq!Ci{|90 z320zyXgsM6tp<#Oy{0P|DjzymPnh?ERw`8k>dQsEo;qxZ!sMue?%BR<`0XAyExeR+ zvVDEuP37xW@c^9QXKCD*dsW`(Hlg7;aSm)84*ZCoFhy1_c5MoNXtTG=j{Nxeey6)c zGm*6_ntbzylFkS;R+!L|KFl%4Y~tYASx15KXSBU}0>lUGC0X7j(4EbUYFx3|$q||J z$7QYzkuobHc!a_ic@}R~o%_pXEhviU4Aj>Ne9_Y6 zEQtwyfIA!(k*#7@^q*%z-z^xq08Ooz-vl)q!JcmPWTDTys^+>?q9sFSd|ngoS-mid zxD z1omvj<9OyXNoC-y&g7)Zc2omuYaPZz&?X*M%~{lb`$lF-R2e2FfIMn6UQgY&9G23h z*}E)J9r3&d=}gVIiRG)-0?sVms18M-Oi3d&dp)OvR;{dJ5|d#@R;y#Xi$rDmb*zcZ zkNx3Sz{t4tg<)l8H^xdTrkxazck{Mxa-%v1Zq$FXmrGt;#pr=k&iFm&3n}MM2m`q`g^o8`vU zoetu*qDY1pY9rCmf&ySnOr0Yh^JaLGEtl&tZgUQD$%-A=ChAv~LcU*cfzd9@cRr_! zHJ0Fo>oMKG8a!ei8g@cjU!fRX4hvi>jK4-Nywg{MU5f+|3`M&uN90SZ((If1s~7fu zOW2N*shE7e5*hrm$@euEuA$U$)W^A zTW%go9!!=fu(r0APmbaEK&~`RLK@M6>8i7R@SKV@o7+8%+tR;)QI7a|=hwmQ=3PDC za0pSBJ#A3rP=~Eb#$Uq<)uB3kfPZ*zVv~7ie+>RkH9I+42+255BIedH1MAN^!2HRnoq$eo*LjHTGv|p z!BV&{tn~o~xbt~z?>b(1gjj=t+}E#ECHDe?VP&k%7b!N*ptNptn8M{gj%GV<__n9s z*8n%UdOLhJ3a6m#@Fm1e*4@Trhi8_%bM@NrR{-{J+~(5_QNLxsPPCuHO}z7rnBU^NbVl>8_C_WZa{a`(%o~avVm=g!djSVEl2zI)jwU@5 zRp8yn6}{}R(Jy;%rWU?w#do-HR61WN$fTnne;n(@BBE^slqegmz%Gq0-&PVlf}N{X zyh+Lj>mE{B9E08mi2}~ zFwUeE<9cq_$ludX=jU4R-2y*auVERehjF{dfDLC~i+2chT>- z{68XO2VFrN+h2l`*jo`zTKqpPR}V{Gf^C+j%02Gu3#9sgH$qwz#yxaDy=lhRuTcKe zLM`a1(N{M6x&FNOG*OZ^%Y9w#x2IGGWw*&qFx-6o?{T4$wEr4Z9A8?}oh5WNpMK!0 zrK$eW9Co;;gKX z!&*}Rndg5^_zev;x(G+TgWf-+_ec+1*+R(vp&*F_>49%~+CBe}BGqEIigC^SuTzk- z4*mT?UPAR{1sU=Gxawb>5M-PlfF)7?vG~7yODl_vfrZ^n^*^N71W92hW6C`L8y2Lw z)Er0!1X5*DGXE1SWak(7E1_42P3imp4)wpy`}R613`AnU!~75FBU-GY1REo%MQdBz z1LOZ^$@zPfgP+qX1wV@k&y!0$Jaad5Q_hRIB$ocK5uI<5VT1CIn=^gVNWLSFK$Wr9 zcsxR|4L@GuP0h>@VM&w!!#ZjOR6063NGWF|IJSRZW|rp76Svg`8w g-y2C&r~P_DxiLxqJYbt7@eFw>$b6Qrlr#(be=t97vH$=8 literal 0 HcmV?d00001 diff --git a/images/Travis_CI_fail_2.png b/images/Travis_CI_fail_2.png new file mode 100644 index 0000000000000000000000000000000000000000..caa406099da12215efb783b13ae780c4c052fe7d GIT binary patch literal 45660 zcmeEtWk8%gvo>02p*SrL#a#=9#ogUqx46sVF2&s)3KUx?#a)YgaW8HQ#hq{ayzhA* zIp_TT{v5brvq>h&OmZhP*G$5d6eM52B6tM@1M^y1N=yX?1|9%SUn9SO{-0raCkg}e zYTQy(R7qM?luXIV{-dQ05C%pnJUJCfP1W*^|MT^fsE91GxXhk>oIz1AiI6bhlZ=!I zmJBl8mw8-A1W6oBOhyU-dBM7t1(z5ON|1kn7Lu8g^7pR5*U3JeSRdWSAvtZk%jbSg zP0vgx56`^UutKv&;bQyM>@fHurQGBbVI*&Jh5BE^kWauwbmGp}%wu6v@bTf0v9~?x z3oIi}^m;B?k`2YyBj-w7@aj^g!1;^d;V~yiP&d9cF2ke4 z*w}cvBhT(hj>hQ`QJN^AjMA!RF>>W(uds-5&@2!h7y@N6b9r-bB*umKsnap3ua7n$jMA9`FCvK}Dg@mED7& zjAclK!`7!{uk-O!R>u?BevEGnDuf`CL-KC|w{-F<(p) zKIf=jxZl?MNDhjvCY9dyD9exG=4V4w1>0@{sdTZqJ+TqlJ2t{250)vP#Y0DKZibFc zw1ZoH!K@SJ)b{?Z*QkSrcet$EUPTXI$UIIe((jr?zRSr;XSH&n&5iqgr_q71B-{-+ zhfnovKP_JfHR&f1)2%Uxqiv0>I^1%|0TII#IX=O8lfjF0!s?N|7$n2~3{RH_FGvQ1 zMJD3=6~-y+^D=NMe8-zZe7Fye#8AeZtRY6${MEwjw|zIRdN7RK@cVs&%0jqYCu&3h z2WIABU-*aRp`!+B8XM~odG|_!?-ANU+B<2}5LAtc=Mi$?TRKs>5n=-0cJXne zj0HGvR65YM!NY~JBS<=)bs?*;N5Z)nuy zcP*1;RyjGM&@kUVeMu|=fG=t(kC&0wsC6N*^7~+E8<4 z^QLi=@u6H-r&)MgttAm&5wDOd;bXUBWn%qoA>#NkyX;{=PxE_y`xUhnlNFR^QBNFx zMg9PTudCv1sVas@&^>*RzB_2>7@t37YYW@!k;D z4!bFy)K*x5RwbSrZtaN=@Oa9Z8;9uGOdg4FbFXE1!9 z>35Aj?jB6am+n{#0XLGqj6NnVgJ#=?{MZyw!LoSSq*E;k6r^;z-Oyyd#je}H>DdjveFKNda?Kjb3d zA)LaM!Armq!)qdNAsGjX1lA+1m>#e$jL`2$RXd-St;`(s$5xG2vi5hdsThe4+{P~X&)wN5NZ7>K z=U6Aq?E1Aflb3xuk<)K;4GU_6>$cResOh-&Ev7Uz@X7-@Ge+cA6ZyKYfF~v$Ki!=p zctrKk?J%!BA|z#$hfs2m?2+t0o%FG6prd#r0s}vk3YXri3KoYHsTW6=^cT;4T<1t& zCkQF)es64DY`0T0!W>^jtN0^zJEe}pT8xNXfH8nFlJd0*Jv(FF@Q4{9@Npq$VS6Dr z6P%o$`2 zKS!c1sh3(0nY-jVjGXOQ!)VE;)1(2}LOQ>9M$dRec>HYj%3S_%{0#dTv>p~SdX)*X zf65sj>`*pRRZ=;1Me!PrCbjire021-9-562De3lEs$L3Sg4kUz`hJ!wqAjs7>Te}> z?YsE-@bj8C^{Cb0r&5jITgOxzO+!ly%O1PJl_fVnrp?sLr2C{f$mHrbkMaJtthSZ= z*6W$0xdp@O=V8UbTu*cak}u_~rL;Vs_|tq&7xL3YZ3SB%^jx(L9lAE`le>r7DKI5< z%CpMLVysA+DniSFGot-iv92W7ysJv4>dtv78oCZ}S#jC!x3W_#AjQxu8=h^avYpyr z`~2p#=4Xd_&D*XNmk)RCp*Nx6@9W=FsIQAT%qzz=a;60}eGQJiHxPe@ETe3`b!Lv? zip&UO`NjOYmeJC~odd3@y$f#9w{P8WDts!Q9&L8( zzvAcsJb4!Plomo#&MQL|=EjP_P5N(}+nQNcu3CI9(ay(4b8h+dL4_w*tFoS zj)IR*nMe!h-$}qe!5&G^TDOja*vB-u9qG>+OS?Zn?Q2yXkCt20Vem%*njNyf&w#Z1 zsE3NJrq%PZw{9$BuMtsQ+x2doPLua$<{ef^>HUs8Y_IMva##K8V|$}f+c7)v{aUuO zcUp$7(N1(FdL(nb2X0ue*q#%2N+@#m1sZ(9AJ4pP_BEI1rtEjtGTOtu{od!W2{4<4 zYbO@Myi(?-LiBG)hKbvZU&zOX`Pp5H@1>GgdJ-rN_Z(ibb1Ll!mp4V|zgGtnOwKVR zAQp{D{qC?g4QKnck(XD~lPV?Mm7D5Use#(?+xG%b3P><|*f49oo13Oy{rw%pA`xxq zLe8^4Yy{tFZAF$0sL2~%9!1y6omQQpcVpn&)^wt5K{Z?xpqBJUd3hLmXc`#?4i*ar z9-4xM{=$S=!XW&ShJm4menJ)FgishH=qDERPbm-Xze?c&dGP<0hPnP-QCL+}S{nMP zYU%_8+BsX;yC{5K!i0f=!On*f>JZ5@7-!0@>Pph;Vxi!qtI zt&N>Cz@4A`j~W1I`gb-9IoTgoT&(%Ywd9q^MD3k`WSq?JnOVsNUXhWJ@j01&1gMBf z{F@y5ji21Y#l-=@!U6(;m_Z!O_D<$3Y&<+XEUfG-?Cea?8cfa}b}q*5Om@x`|7zsF z+7Safn>txKxLDfTk^OGh*u>t|g`b@KcSryE`PVps?v{V{Was>EwxA5M{4QZ(V`gRf zpU7M+KmIRdzf1l__6J}8>W=SsV*qt$pp&S*tu4^bMc_~2^8L}%-wOX6=f4P*EZu=N zT4I(^N@plf0^ICe|EBt9$^S^H{U;^+`wxGm{7cDSD1Wm6P;|0{j??(J3KJr+^vd0}nU1L&6Lu8G%N12)E0q{+CE zgB!(>WX5X43tMMbW(LyEh3D*-<07B+Qc(A&kR>#`Bae6;wA>)845YJF*afNHk9W~z z6lXc~Fd@hqx$eJydJbI;L3q6&fqcGaS}G+nw<`LZ+kRC8Cw?QTp02C$?vC&vd$3^# z#M~<&`83~(<(C1y0hnI3?ISUd%gv{9eE^g0EF(K;*52;gYw_3In)!BkO;WLR;^I3( zU%!sAG`c#gc8Zq9L9WnizX>xs1ONbUYmAtHxGsU!-^F z8&rMWd4HFea)E!d;>^H{90Ty3dQYd`T5UF%Bs^=sSmvi&B#Yzfu_{CrI_qJ$O38 zmsdr@slbW#e3b&NNq<^^s$V)7cT|WD09i!H!Q5qjppeF*NwPS|sKk1cL#pJo{Cagm zABaO_KctYDa=Z;$$(tRIC1_{4J>N=5ww^sSr^Cq(k<}O~?2o1VjGH|HsH&5{X=%6F z*15eu;_1N2)~u_%8;-e^URNi>P!jLg{J`la^wU@nQesGHy@RT*|hKS6-Mt{_FX}7s9U2gLF(3?b*8C&B8sv|9tOC@f(woLJ9 zc2&!+zCqJtTf|M-Inrx>s2a)oCd7(`OqV7Y+p1YuMyZfAvC*t&i%QI+P;awFl{}Oh z-yoA3XE9kYbf$i22I($xI-g~-yi$hO3=6T)DRQ#6>btGG;Tj$^^vg|LI8PnOq>4n0 zEHL$6%x1BgPYZY2n$JZWELEXS9Xl3umFki5)v{obNN1A`i#&BM)LeUl6EA!;uPn0K zj=++CT-{~SqJ)3(8dD1#PmTRU}hx!eO&j+6!qPMnn zIjXv^bx)cd+^jvCHj;#daEUeTtlAqtdo;gwXQP%$6Ka7;8-xI5a8-#5EzUN#_N}&d zTJz3bp1Q^HfAxs*6iF-SMO9pzK> ze|}!yP${&c3fQK~0IZ?+w8w|YY7Rv$oL@eqm`Nu}F#)6LG#dSxpKrod*>6+Vw#O4o zl2HuAih6+wEQ|GV9m$8&nm!$q9>t?+6dmQ8G>@lkBihwsDPTPc(@?aDdp`a0QpGj^ zCor@IRajUi>6CN-!NXcQXQTn0rl4>`K_Q!`FgXhull)VO{dhrCwb4vK0=#AtF9;$N zg~xTco^hF3Hx79!SRF5$GIAe_eW>MBb+r@6B zy)rqgnDj%+n^D29&i+(L#}0jEGgDxB2CuvJN2INDmX?9R#1cy25DvS^o>4$K(bmZ~ z^CHdMry9reH~j0T3eg8=9!usjQ%%mhMdrCxz@FmKMH4l!4gUVzJwuzFVAnJ*t+w+n zQ(P|f0~x*=FX5N^=QIw*hHVw9NZAs!b#{{km}Yu$Y4wikvyzHTufjRIlVB z&nlj+pkB>FzdbJ;GH=Bg@AgHp$l-laf8ADv(dk)9N> zA85o3s!a$|0M4z#Cl@#vFmUum;wWX01T{OGpRINH8G^_+UMLlbXdkC=8c(r!f;5V7 zHmJOxyWrcR!)|AZTV_zmE0@)Yuk3u<WO0O!ypqcvIM&B`-Q4)K-EvOgEo6dTx`3UDt zVb2WGc4;nQ=Oe-E<~1KN$m2~tnfXF47(-C-Tpfc(bLEjx*srj+0zDvKCLC`{kXlgT zv)CJ+EZBeBIjB#k69rUStS66`KxPA{U+?&KNbWP91FYs6NpFS=0ZCMm z3pnVsPn=2YAy=zjogh#Dygr&}gu-k<|eNA$Vb?tk6ZMGU1GSzNsu3GEE zYKxiO{18c!jv)CS>-hx5ENEh0~G8Wjwrtm7Y=ck3Ael3 zKpNs?C{e32Y4PP_$?lu^HRfTkV@u21D9A!y9kodUh-?61y_lc))$axAxvSe=zKy&x zmyD}PI@D`eT^leQnn8ioi@(}QeMCZ+?GUc#3Vm>|%F%GP{iP>Y`hq^sJNHZk83(qm4~*PPXs`L)BtcTPv+iHps8+B2Y#vvuymor;xK5A2pY zxM1P_fp`jOeolXc6IgegqZL1?lV|nU!C<{_!c!&kg@<80tzoewbNAkl<1;O<>LA~gwZjHyG zg8mf<-cy==TLmWI=U1!a7Xj$?@e)>Iq|735+g4BTpJ!X_4>8Zl5!d2;$_n%D5_OD& zis*^e&q>zU!=Kd3gP3u8%}5XrlwSwGxqaXNB-%>$y{wLf{DovxUJn)$B_@b zl3byD&Ii_OqoyUCrB(b1Mpf(&{vlw_K*7jUx9YLv>sir59_GPx!(k#}GkP_-$t6ys zzxacCaC>UbYqs&}zWH&c!a$vX)4Grs_v6+@sLIU;o7Ekq_KsUeRye9o@|Wc^Q0+iw ziZZ;e9B27M9!xT$hSsyNhqIfs3wIN+XQl1ClsQ6jm1^vh%wR|1ShAE(`5LJNFuPA5 zf9zJoc_~@EpH^_}GLW+zcvwGGq$)X>!&Ke_2`Zy_IT%M$IKEmW+QM}<8TQ&$A_|O7 z$fE-yo3ouK!;3a-F$t$s%#l0kD9!;TmMA1XbKZ;1+RxMOCUbg@jTj!g`eS{w>5~ad zRLFWSo_c%i@2m3Fo2Tt$V6t#10#EnA@3dV^{mmJ9$g9$^W9hI>KHJ9TTnqafjvD#b z)WWPcTa4fs(AYV2jnbUG>IR!@xnI3}mHF^q9)R9M-u)lx9WDdU88hX3 zT_{?baXT`3wL<9!3){~3K2nKyt_uZI(PXFN4Uf$XK#Cd?DVrZh9NNXp&Y29d%3Tj0 z$=6~Zk9A@ms!1*%cf7j3v4yGll0jBm@LGehLOf?RPGpdAj8L2L()smzad0};{Xv{Yy9=0EdhD49&$_6-22ZAB#>P78U|o|K0$ zC6=NPk$IgMsD`9|bt58T|8TV3SEDS#5=W8ga{^uj5qPizbO^3h$`k6I;^- zjfWf>F5D`qx#0sj@dk4^zqui?E{%WdMP@JnIBdfy+DD9?XHnF~gcCFDIA;?SPGi(6 z_N=H2x36+!E`{v5VR1;HN*g*Sjm z-ge=iYBmZP0P)+ZB#pyp-=?kV^EUEs6)Aj>iPkQtp;MvM6c(`>7+G*Wa+UP5n7A<| zE~*Ssahqi{v{?&Fp351tY;oKSbvlXKs2-n@c=Gl*9zm zCbI`lT10(5S^cJ&YOh{v)vl_4YHrp)wo+qxu2K59+M-f;#{ujpZZ5|E_EEMyuYh%rahgJrp2n31^)5;$J3hJ?ZQw&s4#VUndrI(d!iCKA6lX^#QbrcX};(760T zSb;o33+#bL{O%f_ha71S?TngbPn|iBNIl-Vm)kn&VF(6@aPPo-Mh5=sBPg(wmaO(L zKOu~ZV^v1A8|6Sc8)(1Ai~N##XZiI}m&r}&#JhMr6F3a* zcToo)XRo+CAIw&o!VcfTVF<0?1-zx*S?x?7&NfqqWhXmj2?O@hSI4cR6T=&xq}RRH z9(HPg*!zOE$$XU7AT>sVue7VEBPgsepPJolOi7b3T`J120v}!<&Z?dFV3oz_5%}DE z7<&6$>lE-6vHa7H($?^@ft+}>c)yLgI>myZ;+^uirPcD60EK#bp6X9gBmzIo8d#jo z#*63BN%`pq8HX6LCO@8{c1yZPrIYZm87OUK^j#9~qic)5B8YIweCBl2meR67XJ&wylfP(NY_NmODX*?d-#YF7=-6F*PAk!`*~qU}daP%A zJFbl}IC{IXpVfcI+$CV`+vw0k2zPRDF;ru#9w^5%yIFZX!`Csfv+{D0CMSO6mocE9)iRKTOUzGfKM}h?ip&0+>JKI)!}fk7Glltk z6Qb4oVofJ`8G_b)sB;-IGF`Lm`y#K~bQAHT1g59&*%rZX^ur*@mtjc;{ zLCl$W#m>xjVwFiSBcU7ELV(bI$pzxd{J9BUwNyjGmN~6mGe1<8KL084RCR|o)xLvF zjfr(VqEF0UM7ZXnMO|gk2KKpNvqvhdaVSauW>l&efd(KLJ4PHDsn7PJGK3JhiT5{& znp9?%_{@6eH$iL$q4t{P=|=yeI8*ZHT3x5Stp`5Kz!l(#&dJ68locZI6x8!sE&ONM zCf;QGyS4pk;^3kPejh}5$u9!-9D;2!+fw^$lv*;r=+2uc~7ykbG-b` zu%o4Q#_zVQjtf**B7*}*X5?GWVp1XH5Y82Vbh=tkFHkzearK#C&u02(dP2Zqr_j3> zml#I~Z;GJS=@-TDU5p*V{KtEG@G6Mgt>NcsMP>cfgoa^;U2;|Gh&Sb_3^wu}%hW+J zm+w|Xv$Orq0$y3MbF6LQQJN1pC2jmHsvkTbBX0p)I~C$N`a*D88jiNrK0a6Ku$LG1?yQ(9&u1{TS=%@0XXoPPFC@ zAOg0V^x;o+%ZQPwhfy1?BHP-xX{-1#bloBbe{zE24ilJW zQMupfNHOjC^sOCe0mzruuKb-%<(hO=OgzOTH*w3_mrfNrUn^ARRnpAvv4Fvd0Vb$L z*b!(rB*=_BO8!w(M-ae-uTPSe>ZHN>-SDxw-!q) z=;!xvifP|R{ZmZE;1r3LU({3)Z&kCazMM_cJSUQ@0IWaEqZzu*P^_Lm-RMWWWhm31 z6L@HB($KJ@Pi-Ds@!D$=mY56(p>0>Opnm4ou$nEUA)dKJC1jTZxE+)&=UxrQno3Gz z0V|hV>~l57e)dP6RO)zklye2Rg~S?(ObqH*yN4J^{$Sf(r#7zS-$Qws|J>S^_@Y!Q zT1gL3YniWK^Q%SF%Zc*?T9+{OGrOqg6=^|_o+-u&4K5ziiGm@5U6m4}+ZT(N>grAr zNclQ{CXcD7t!=m7!k$c*1O{Tc5eydQ+6&(gDw16MPrEOVo$M-(k5o2)md zQ5{k*`w16jHFBF4Hy&)tXIna5v5<8U;L7&!K5#acbOi=r+6V7lQm!Tu-@r7euZ`nZ zk$>I@ut7i{P{?hV%4AIi?N8|NWAwii*%HZHzc{#SGWhVU&5K@4YAnxCBBEO`9pR54 zp~Tg08Z^LyOz}DZSgPu^)FjU{8<)cQV-L$amrc>U;GxWreeXiVGC=ngwYi9LCn*l2 z+5=8DNSzP`=f@oE;jAI;%ReD$_PQ&A!e zDTX*XJ0)U&z%jA*5Gh8q#bSy4OF0&RfW^xzAaikpLh?BEc{(W+cXr=&R8`rHq6L#4>_hrd19b?aqr!WA@ z&Suoj>JHX}&chA6?U0z|3b^o*XkKtAgjXM&#q-%Km8EEW4u1PX5!vNkS^0bW%k&?m z=J)bK_yoLGjX|>6<$(0}nznGvY9Dj(yR!&+{C*__6=1(v3@U9Yzb)yqUU7Vg-fV@Q zuay}-l!ku1BTwytGlg|dn87G%--MLA%yC1bZn~Zxy3b+l${~~@2$6^?;b=*A0j6Z1;__~Cm#EpNrgi`a(wCn7BXNsaMbrv?OUK4{4u_QmCcDQ)~%nT$w|C6 z6u^teNWCKt@vaPLHy_(QuZ`wH)*pIEIkoU#LIDiiv?q2rJ>I#d9wWwgO$<6+@>bWq zT?&(X?oLI4sS_v!@FuEY;VsK*!&= zTpN1rafui4=s$%p2orAY){YKMh2vFxnHk|&lw$4$9a4vYmx!)YaLBn z@{$a^1qTSiM~Q;Wv2pA)$Eo>-9ondcqIkaN7Ii?KClBEBFoyF4At`KRz-MfK0tAsk zVa{I|=T~Is{U7GmWMj((AUm<^!h2=TVeAuh;RG{2Na*P2Qt^S!H(KMQ1J->WdDY9x zLuoTLru-e}0E0N=4T}7+OEj?UCS#@m^N)}%@UJB z?9DotY_#>HZo%SU+~ZB`-8xOMF*3v1A|snl9#U@BG1dB-IWK0M;?t{LSu<`Bu*Di1 zeAYpK+%;2&NIyEw`_frU&Vj&i3|)NN15u-RH@=8r_Dk3B@S^P-VHDO5r15-}J`^On zu|(eNW1oW?J`@%IR0O|O(8i;I#C;telQL1-lLe$Qz%AT;85$q#lzE25HAzRyco zoU7JYbXI)fZv^nb9| z2JO4j0>-e|WDvr0OY`sU)yO5nPg*mV{&~o!iH6?Wi3yw5qhO*e#9q^>4^0A*WJGZfp2V5*rg7B=CJuS9|nc>N9mQypk6w? z&P|UK109A`H&7DNTvgLZ7!0CiIgwLSZ1{g04GU~+#8{KD>DKb;SLWg1gv85TM=Ux! zqSX6r>|DN9YQHM*p2mW7TwDGtg^AJIYE56>zy!@F@)<+{MZELV&X75&zla$F4~}Ga zPcQ2xa`@X_`Bol=H!sahrtFU}F?~PL-Nmn^%;SAxf7zJ+5cz4UzpnW1PRjAwjmAW5 zz)u7R&GVTA(@Kn_>|PHf?Zl%)MUtnIor|Nd_F+3i^Wmz%ZnG2PTG4MYd=2Jsyl%(I z@uq$WqLMKlV*_n}Ww448wjp9n9XGf$ne5cRfrsb!Db0qJnt&HRl_npyJ*wKS?FxmN zDM-D4sDRfRHyj=&;x}FHsyKE5pYL0s2)TszSI@TbFeZa`9qPxkmgRQm{$0~Fwj1Q5 zRWG4)LEoQAZ4*$J_|Toa?)Jb}!DGv+gQ4H?D9a&{PMaSm0>W=2H3vfcn2|1~u8H}` zGaHVlb{pLuLq`m%)s$#n{W+h()UXZ8a}W~1&l-bI;Hv^G8e37^@JjnQlZU!JK993p zQG6?sfoa=sF7w3I(M>2R12fihMa!8~R2m~`u)OFfZt_MwJGMHd(Ac*~pj_^(Yq2Kf zrFzbEpNC$R6va01-@!JWvLc<81?PJb6O+b2@ZWtlRKrkMOy=|5v&eT$?$53L9Sy-r z$R(Q%T1zQnm>c@-!Rtn-lD4hWFLTG#$HBqT3Vh=8&>@$MVRW^gL3WBrEEykQ=@?BZ z?0-%QLnoCk2(FTD(HN!F&-gKQa1PcP>=ItNLrr2#XO}6t$~|B&9#5kvpRT}y3e477=jtszH^RC*d+_)LfTb)vwnyVz-M+j1nzJ#Eg$|!%6R*xz{`*a8VN(G zm?CySE8aFi=yCZ3#RLbd*#w84g2J{}+wK$IOOuygjxDLQN(r~E)#hGXsr}Y620Aps zWnNFsKg!R+TMp;Eto@DF&cw}EDZ|eO$ya5MP+(d*5cQBy*XUoiVeCLeAc-9}Q`Lx?<|zX~c2t+ZTU1Y{I*bT4KRIOU2uaa+~x@Vew}~ zckuKS6fq|Np8VZR_HS0ykhB{{-?;NImeQ%G^ zE0H$@a=Be4#vj?Xd09r;Ad7m7KdKI!tJGgL#*Z$!?bUiWIcHEZOaDdnF^KcmjT}Qs zxmO`3`JiBff2r>`^Dc(c=LOn~Mi8PEMC7sz7ePk0_Y)?tcis0)=fNG00Tl;_0-aPK z={E?&Buo{FJ3E-`y(kR&K3?vDxps9gqf>uafty|hs7pC&8r<6Z8MQ@W`mo;s`Zoh&mGT*YJIjK2xAJo6_erq zQ1H`^Ii_V|n#HsIgY27WVx1(_rod6xBdGIeYyMYav&G1ve*%1|M&G0>Ei^o;+1Us3 zfVe;Fl~;SREDKp~D?cYd30kdwK$@d>iFntBgc{F9+%kA0EqG{4E18ssV4#>T!oV}H zTDqJG=o!^*s0)M(c>%>s-P)q_;H$wnOc$XF*B6EX4<0TCwBH<@gR=Pj46aB46>}Uw zsq$nZ8#VXxT7~=jWskP^&$#q)id7QoZv<(je#g2^$%3Anteq{a*-XSzbsOxh4}U_p zSQpIi`eXVY8~nr(s5k`X`3akH!GG!oq0m!=#%Xz;I=1I5CX);iExpxdxubp#7$c=@ zGZZ?Uog&sqD-142R@7iqE`i40Sjnf*D(B#X3%+=8$MwgOG61&%3>qN)e8lBsHM)`Y z*)vklSir|yO+>;^`AkByd}D_W<$-z5*{s5F_lC10_*5-~h*M2br}egNNb4^Gtlz;Y zB++Y#F);jg@6K|IT@0mA73QdJN2^{~j4z7Rei@%7U2a&pABZoUkMt*p_js6RGr`lt ziWZBpvG)47v@+$%Kg$*NAdZ4N5mvcYE6*zVQsq}^LeYntTv@oWA+%(o)U>q!oVTY* zzc~)g9GrcAVmk@hSmERB1L8w=Al&8(=bkdzwMtD~_`*uCBb)wPqsc3jhg5nwQE5Ev zrAdhIRKH&UZg0Y;1Dm+xE(seBif-*U5|W#HvS~EYZjI+Zc#5>vVOyUWhbwy`OFT|$ zOG>txF1?v5boSc664x#L!ibwZoI2xilS>hxI>b2|yvvpCCsy6_KuAlLwi_&jG3}dM ziO#55oMZ}Xb(m5Eb4xF=(W}QaG8tgAYGq9`II~P@i1_M!&77D?sG0GDE!sW3;A<&Z z>#?Tuw{@JD=h3vQFY$n3GBF^H5#fI;7#rFCg}2=z6!8%Xmrw;R1!w7Cl!+IC6x(Oj zet)^GRwE=ufcUc>Wv}#7C$QO>TrUbk$Y|v|lS~s&{!S;Q+L|m6xbl74VVuEeY4xie z;o8TVFf<8&WUIKEqDYh-10#0c9jRK#guDv1V%ZRnG5-$%d${-}3}Tcups;Vb5!y?f z%B~*2IC|Wn0}t}svn?F&S}d>~G>$;inH_C!5R#^6Utp^}jC^vagy(=h)tV!-rh7_z z^BzDjJDkc?G>u7&E@PJe!3JVBpQ=q)kyaS=$@){&mG-b=+>x@w_|Lw`^2$I9!qVik zsFPnpLmjwk;ZB-(1z+BM>I%C&oY#lM&FN?M2#oY~5s_>K;IQaOvE1g`BXE=Ue^3|^ z|5Hl3k!S_w;t|J-KF3iJ8kbt5qQ5kApt@YDo8QJ+^{04>PgQS-N6al28*_3%K?>AK z7*SUxN)bbGPyB&Nxq|l0{G@O)Xn?_)a%82k(mE6*e_8|0 zSkfWzSK?4-M_Y43Bg(sMGA~i6>YK?T&a>6kivQ46M;8HPMr41j{3gYg_j>Q-Yo{%0 ze9b8_v1VZSN!s{^Ug#joT>ZV30g}Ye73g*^7G-fLmdV!{8Gaa!P35$gmHAlKLtIN^ z=hiMVOgH@z!P2~XiU{DOr#)0G1t!uik`3bu|5}DT72=VZuB)in?_i@Le5B?liiS;LHp2g-}JYEbohop zkJU~>*aomQH>>65os-87pT{~*$g6v(x=9~K_&)iEKCip0X;2FRBM&4gYk-YHAT=S# zbN!y?=A3$hhR@YZUUEjC2k$G0qz*K8SQZq0?(`J07dJW9IzmKe?b+JsSefZbOzN^y z>Dlc8dWffy&Us%fOTv$0c&ey>wcUdU_31R@)K66h@<317k zMo=+qGStUZPhiU^Ux1q5m#UwBa+#`z zc!6tL-&?LO5`lRv6U1b`%8<>_r-I6B+upzJjrg~w48*bQX&Dn<=hT z7NQB9R^6F+JIG|cFUna0GI1Yv)ku+5VC1o5Xh3id|6{9SEdDknl?GkbE>bK?RT^I_ zte=DggJfei`eMr8by59kGWTQy<_U|i)VGyZvY34W)NIJ8!wCKt* zkM#Z)PXC*yYOGV;Nj7uIy?vXvei4j><_kbllhw#3&mxSaRPQV zT;xI^M116_=A-Hx#jyj0gbiDejY2qa8mrbDEIJv!N6ZOsOTwE6HYHW&)IU{{e_=PL ztq2BMlOC(s=iL7^{-BM23ZPHh{%_;7z|1Sa*4gqf_&Y^_|L=U(TE?`$!wO`z$V!th zna=oF{wAR~q0Zm=csg(7{$i&7h7fcRzU&3R@yJR2M>|H)d<0Y`6zadI^1p?^^c#?h zhrTIlEN^Ja|?`V>f_?u}s zaTs{+QdR2LYQGr&BLy;4jJ!h~yhiDYzu&ls^Y?=a=B7Wg=^q_-!$27_UZ?&V@sANc zK__aHlx63if`tDq_<+n_`hReGBk3Oz$rkim=r}g!B9yh1Tc%9vU%tq(11nPSJsSZx;u>Bq3E&XSt^Q zhRJ|l^u_BqD|LpYbDpXT&Fw6HF9iYnx$nlBj}r1`hgZaCmb1~uYd#Fg3@HuNZKrn| z6#c(r&w(=;byIl;E4%b3_Zx+^1;N(@lq#R4RPNhA+vVVFDjA%m!>QEk92S}n+i9)b zn!nwNy1OitiV!{Og-s`Dc>39kVV(Tu=u=u%n3F#o}x?FuMx5LOUHsj)pa-ocY zE7-u$H8~2OBW)|yx5=kpVWHlqq*eV&elUx!aQN=$^*CiDhOXK1jzyu2FcCMf$_k z3G7YR&0ggL&^YbivE()8&%$)7HD4Nz46aWW{G=4JZ*{HIUaqcH&tW5x^+eWqd`XJ1 z4~tIj7}u|!gIq#EA<=S0N~f*22PR9y_rULZ3)LPiKD-(ucvD~HoiAJKFI!?s1nCN? z<;(Cw`r1M31^|G;%>506Uu?dPn8$1N$8baOv*A%Q&Q>Np+@4GK+>!2Wf=(6~?ypGWYAvUv2C@2FbiR^@Tm}tg8Flwc3*%(J#HPty zIm^A1gd#%7{BV0V#WLwrKtxtJ{YE9>)cbCo0+w;`dV4W6P;R(6S(Zu%Y9SVFF>2TA z>G)hVfi*50%B4~m(}Bm$uLJK@z*9>#j>j_LxE#f8i+haCiGI&*1<6Gsh^uj5lnc1c zyh^?=HQP`!Yt@Q@^_s}>)@4$eD`hYT)81tpyx8?q8mIw|l9w7PUh4H-K|Tl-Kk&(S zRGliwq_GA(+}+EiKP{p1IR5#?X(HJyHmmBsH9!>K6<>(TeXl>3(?Kgw@FQiJ z=i6X&v@URGxsTmv$J_Gsi5Gl&n_Ta)#9XfaMRke2`iTNB9|0{9`XHVdee328StF6FH$krPs6{+_9HBCCAr6Squ9F;OLNBsABRT2oP6)&PQWvDrS z3OFv~mFDZsL3MqVk8-(X*UxO`IjDqeI%9^7c~h#=Ax^*|(fe^dfgsPz{i@jg${a7! zRzuyY&Gh98ackR`=^UW;ALWNjwCh7N))&8U8Iq=D5B=)a$}QKRQ1}01@14T)>bAJ= zMvcujw%I0WY}+;)+eTwHwt2^m&Bk`_sIhImce|hcY`pv6JNUk{?6s?Wlx&t3uIteeMl!)ybfd@#iNt??6(- z>_%()b%a-0<_y{sK1=em1s}O&2odAKJJM^%X7w79=@x6~u_mRTw=Lhf&R5Qi$J?MB zblNHP>AUMU3BJH63^1+Fgf1eeB{RIdfxV}NWiShuz3^jdm@nB{%WEjyz(kc zt>@+|n3L1g>Z*5hSianimx=5yKOPU&V4Yd=nqG+!aw8|!<(qOJ(HDU$_UQ7YjYRmO zQobEbmpcCgXAHO26F8KFnTJXzZNcQs zzjqn@JBfzkL!Pyx4ib`PwQ=F8c~2&_%dxs5ku8HY@uN?d8iQ~0{%Da*rli()JMP1k zDo^NU&pQIPz`>3{G2>&oneB?{{%iM*vIJrsi&79t7WwqGWut8>k2<(PL1zfGW!7QS zROx-8;pom|;_z@hqT2$|CPb}fS0A4Dp2lLKgbpP7iS@iY9l_>#KlpT}I=AxWA#RJ( zxNmW2T7Wvx?ttrMK|`l_Uhg^~;K5NUzlC)tvi94{mmBuN0-d>}NI>fJ$XnWM;{yJv z@4i>>q2E!tdP712!{+jn>C)j%t)#{jC>T^aLQ^oV&^i98up4*1b39AUCbaXgMK~Ns z0kMrdnQaW$lHwMQM@JyNy7u6cc~ct}UzWpFtEnv|NU9c(%va6hm=P1QQ=wcVc=@g6 zCuoZ)d?*8IjE&)U?w1Qj#I{AzTl8UADJ3|II61cYKb&^Pe-vY z{4@N6l&d_mdZ5|Vx2W_&@y!47aV^ekGe7nHzBVYTXYAZ&axDkr;G5=er*K0&-YDWf4=I)z z+kfA74&xLW=2g*cBhVkx&nhmVO~@jXKs&;I`+URw=CRS}a5?*xx)KB1>BlBXC=&A; zxxP_58-TPzznk634EN}*EKU=6Wg1|u@<57PhVc3$)P}9=Jvrfh2MRD^2M^kja+(T z-^UyYN^W$?PfBMK+?`w_Uiflv=o5>yhTmlFw@d${%=7DIJDtIp&x53M7dqv1$b(w@ zQQRJcyDS1(C1wbm1Fmx%ksDv|VvtxD$yMiNslqW6Z(#St%)AB%VJ$WuiV|pa#aRmF zNaY78Ub%&^!4}Fup-BmvLiKrossb%z=Y$4TiqH<7e3|KlUfESw3l#0FsENRGgJaeB zVHD%()&}aUPg!vT=c@7qU!_Xj z)=Eqh$LI2nNW2nwV4Ybu!^cWUQ7jtx@y+~(A#d@KWcHW@YMtTZ+ZJiiRIorYQF3=& zkBTRuklZv9hsFMKVz~+r|J#SUEFSetc-$)OH6omYCy?44D!&4=Ts7Gm6ka1dYa;ZW z<~zO3uKz7+RUlPy-5zVC`I?Nx9TdgCq}l8g_c+Cu#0?d0v11BMLA^9Bjkkcb2#tKR zk3U|n6SGkEUBT-ihYi979|(sKf%X+0l6 zX32qo8JQ>=(@G@45Yq~qYzEdiCc9i|m5JUFpS2%-VMqOHisq3hiFqT=0ggcATU#Je zvm$^*4G#;cN@&)NC*^uYmw9D~n@KQ=+?_#S8z@~F&HmNSQnyyWvaHG)#quhtB26Zh zT}on_Ou~37-ekH+2f7f$CjP7gzl5v7?t%pjqdI!rW~wJRLBz0~T9wftHROlVd_-fp za?(K5M{~;;Z`S1#I?uahj7&O<*bxoIVjrFJy$HV%{F~Ei$sguZCs&?;gL!8sy4?Go zL+I`sNXZ;-!3$9{tHj#j)H_^YKXVN9yl7JlW7b8R5{KT=uBFAEA+BFA_z>KFt<9_GVvWZuIRAKS z_fTE0!-y*joJhltCP?<^xI{n47e7kHcVDxq!kP@I6d z8!iuRh2FALM69+@j?qNES+&%=XB|2MSBwe;ImgScT>}0KALe|+X6s;vg*t#s^|cU3 z!dlMO`-4LMR|BqFSl0&xlI2BFKUm>+dRXn+(;RQk5-oX~&kSs2Vr1FM-G&UI3fCJ+ z6N8PvFK|f6^NU4i1NI!}6dl_E)AhZ@;3F~wJ8SP7g|*?ANehhbUWXkladT=2wk%$_ z3gv$_T1JZysLyr~ut-9$G5ze)G}XqOpk8PR9j;Y*$}Br{{~(gd71KglEHkg>^MOf( za$JdTAss6Ue;#Rcg85SR#=?i1^Gl_D{^Rl?i;{-cbfHu^7cBm)u(~a&_EVN-N*Nz( z)D~2$%^V9xsY!C}J%5>69jokpX(wm_%!3v+4ynCL1T`19%0|svd&-o->8%M@;w~E7 z=I(Gr{*fyfvWFJTby(I-#lf)LEJVR!l7gi`u2?S!2a1r>tH7bWB{x0%ppEn$JVs{W zh?=BqAq=r5IflRVhfm8~_eIu;zU6@H2alWvUedvL@4XJG8X1~;IN%S#nqAK-uNXQT zFQkRNFCx8AsdWJ*Izs{+BFfNwiUorKIqyQfTuw8r1J0~jnS#f~3gLFH`4HZp5EOZcA{c5|A`@L2$5@Yo4dB68tJg<)C9$=V8-)IX^06DZz4n_cRw$SKI zAfwuZ%J#Os6bg`FA0Z(hNl|GZ&1S4>D+HE7kT=<;#27gSTUa=v2w1Ukp2$tua@%ILNtd6`JvOw-Vgz?}L_Y>gk|{st(?7y_ay$e4^wbo4 z>dpv;8rFfyKfOC$M_0Gl@Yt@(Y5%}ZjF&DyhS>rF#Tj-lcW8%yU8I4YmIU~766}tw zy2SfMMQn9Eu4=*W>?Ay(bxS`nV1vLgD`O5k0hHzFGIu{m=vZb- zz{iZk=kkZ_N4^8Kr^=&n=me?j5J~D0Y~YywjXx`uUKSoWIpU2AmecrInb~ZNk}r0X z?rP^7zZvs{n5|b#=9j{3Xnh;VBn&FfCuID%>3(Zfq`HYYG-sw6Wc`}nmyT`nTC#+* zs*uRp8|#HjqgGtf;h&)8FOfV`g%rSOeN0QBLW?thr;~c-ZIZzrCLAmnAKX&2vzxSj zTK%9x5lv4c%f7;L-Zrl3&^5fRX;)&#RPw3PyI!Tjy!+W^^*w#Dr-^D{2Y$f8wDfFB z`;%1?J_eW9eq*hKj7zZG7qT(Od*~!uEm1kF;Nab##R4$rhIbUm2}78_7~sAwA?vA- zn!aS2Kr-b;5Sl__GioTkPbNblfaPE6=Ef)8R2k~N>17?GsRkyLYs*X+w3R(~WmYim zj4X*tBv+_YAF(fTX4P9Pi@pMO^m&@Y2ZO?nQdYoSf&Eg+Qs0Z{jr;ZqGwKfAQN)8* zAhaU^;A%A*b$iS7!t>sh^9t-R7!}y4O~e{dSQj2qywg_}llI~XRJqQL4gz)dek&QJ z5Ws0|*kwGx367tj@t3Af175g1XAY@TZMHWLb;=B=hwk_DNVWmZpZ4#y-V|G_b2LW$ z4Fkn6^C<}FL{Q4%)0g(n&?Mn@U2o1-Mtn*>0D6H);@Ue%rgRz` zYR!sJa~$=}LI$1o_`RHv`F-P;`v+Xu2Qh>zYn|%s5dKuX84yw#5Lc$euRtzuKjgP= z^3uB64WhJ9%VfQd-YtJoN>e>X6^MSlM5y zE0xQ&Wm{LARRv)6@wE%JDTwXlju(qkRiksb4YNLC9GsJY)$JQkB&mD~(s;g0ty2yi zPxHVK=YdLq^(tLcYtk3!HFvB_Lswu-_=)?U|*AY3=$aC0wK`7Sm!=un=FEPZLY zP`O}Za=+Pdwx}Veh|lE_Vuu_N8f2}EoPLH@pR+SSY6W>(^j*!%e0sLZ{B9e zqWaULEDeW5Yl@`po(Y!thgNh1rf*ktxo%qoTgdBp0sVIOC4>c6*x5&SM8nc4Ou4^h zM%c&^NSFEq7A&kSQ7(`pNNXntGlg?-IrhH2V5089jS$ONbcn4kE4ym?e1Pxr4t8=m zR^6W9N7d7*p}rk!Tt*@S&1=R}mvfr-=5Gg-WxZx~rux&~cJP9)hAiCLKbiOth7bIE z#a6T4pIYN6x0isEsrLubvYm>}d;4p%qhiQqzOMLu6n=ETDxZ#epb~rIrbaw$vvf`F z$-t7{4~Y-tps619n%?);LFiE;P3eI%5n(yCEqZphIEAAl5_)o7@MfnP$aXz4bD@Qr z`?QWQtQgE8kOGL2c#75Wv`*^5liRaif`>0k%=Sqw-QCET3Ku2H%dlRrSL=d0!GeoY zk?w*Ug{p&le-p)uux=7C2eUa$3}X`AEDJMiP%o_+dhH7IC1f~7kbK;w)3 z+z8HDh^$UWJOT~m4G6EsM-qT8(VV04sO5G^kwgDt?9sx!k=~s~2+WZz>3Z*0DTFfH ztufgx`eU?G?`E3ND3jYc4TM5UYej9aDAfwvuMWBLGEA<3RGCTeG-dmgZyHf?!e3o(%*TWTP)`;PVBo~`6q3=*(xX)iUY=5knfF>37EHDcV)8tb7 z4@&c(C?KjeEZj%Iq`mRf8G$%4U18mz;0n_dv^+*#ZjXsb)?4}ykaNGy+zPby4c>Zl|l(FGLED|92f z&vu=H)&6|Dj0#vmf}Bn_XeNap?q6{5D-bJ-KJC#>qn~vitZIPxKjQR;lY}yh4n*Mm zC=lQ4ZAfFo$93};xpTHEZQ++1-VoLp_70H*Ev&-;KghYnV2G<41uQx|J0W-*f$bk4 zBE%euG4G>tNIe`ld80bk$)jpLnsI>>KSxj=C2(x=aoA}W^J zoeeIC+9k_h5=OL_>h_gLFm6D+a=v~0U4r3vaqp|WHd)^>v`K!-w!Al}h@+39;G1>U zuhod%LC>c;9kbsNFE)e+<=grssXCAKe6s+U2x{7yV_v4Xj2tk}{ucp(oeft%1)|m) zK73$7uDPVyrXl#oto#n5Z98{6=M$65tep;p^e#+uc=H!iK7z|mx%52Tl+r+IJ;Lql z?65l9OU{#B3XqzER<Go@A-tBsX;|sw>Lf`iIn9GQufZpO#ps2w-5x)gb+p6 z^BGpOP%k{VbILb!_2dP|_y`W!vrYlazGy9+nDFwT0-)sIp+Z6jTHn)wVGJ%GP9*9R z?s^WyV9TKtq9@@~ao9!Sa#^Uy3IP_-jf)9kvxX1WZlq4KO1LbC(ZK~UbF@FIkvfj; zI_=^gWJJGIPBTrsPr_GM?jU5Aj4604S{rj?|3!cR%JUI5tT(q=vZ?w0V7;*zDIQGZ zePq|7o83ObA)k7wyqufP#uYM*;X7vME@(;SMmU9?Z)Fck@($;`XJr_Sp^cu<$r7`u z+WLi#_%yw>QLmihsqR?o*6DPTg43_Bi_M0e2hEzpmJ%HTskA|q zqtetf(!nbPNvC^!+8oV+?Mv76MMZc@u(?I`wv*NB=#Igz)3~z>V5QD1Si;rGx$f9k zGl#lLx8m?p-Mzgl+z-ZFL%GB}l*9JxO*^45a&KFf-dhS|*lb2Y%;Cbcz&obK_rxU^ z6;*O7{O`oa4l$jLzl_Ela+wE38-BAJh552U2V;p?2<;^!)rk#{R>zLN7 z0A_%ho!lprbaIl>ZpE4Xz%)+DESYYCvIi2h^qL&jukvE+j6huBY$2T~QB+kPZgEJc z$*I)O{Ay9Cxl+jtrIVSdCyeLsGKY2PC>{osqPjFTqWx@PiK3fnyF<=@QL&>K^*ASn zd<8|h85#XQnK4QpCUo<8U}vaBMjHz6z(+^FM8I*DftKb8ePQTN&%mCmi%~t_(iqpG z1ql9*`CO5shJY?;TC53I%deO9bgmB@AA=tl_P5(gfbE`YOxSQ&sX%9nj0u0+Mq)ZT zaIvN|rjrc5$(8$YWbF)nYFKLjc<2REbkvE5HhC5lZwzOa^?~%epJ%tWKw`cxhFOVR zBZMu4^55cVuu0WGS%tZpa`F+>esV4>SoLN?-_3K{uOGullMA8~^4UwG(2vf-JIbO2 zc-*t|@MMA8XxjNpmhT=Bm06jOfaC+^ROT0}uSm?O1Ogb50a1@6$}9;)d(B~sA>)rG zb3>wEtZcz)ap=gZBh~u}JM0L9oZ)U@kptMiogbvm0;$v_5l$D{J&}(UpnD4uR=eDTNUN134erV$ zd5%J~zOjj;E18>zu6z0!RM8$(5bLqIZ+fNp7k$!&2)1(U!_JlZUsw-FWfunmW~$v5 z)Xn~r3jvD(aVKtly_x@osr>)v{{<-hzh)o)ZBT#w*6&d_{@c_jWsvvB2rAFq9DjjX zZsflyBwa^lh~EW4#NhIRipA0&zgdiy{Y?ZxvV*l$La{3({kQz@@Hag4NUsm|FF@!I zJ{6D-YV{3@;miLj7t92e%XdNn{*%s%<+nozQAI#u4TAr|#Y%pcA2#}7{Tn?% zy~mF|MTaChErtr-C+&su#}ySasie_bm(}-6wa)1Y<<}ryqE*qbKk{o8djj>p$-jO# zE&n3vIk3_)7_N<2&-tX_Epjej_#*H2hoMM>_$Hdk_SPkT;NWTsFI_wN%S~H_A<*fGn z8i=A5i@{$Amn;yED{!kJaoC?k{S)#dUNz=lUwce(hsTn9>);`G*dDZ4r^!tEB*t3U z#XWVj3rsP(64|ps`(%nxsVSExUwI9(yeD3L^0ib1b9m?l$| zPw+cVen|cXdTGHRfR)F8%F(m!CWIVDT3rP1%_#iW`<5KVPJ~kQdLPLwc&A8v$6~qv z_;Air007$YYcITF)T&VgWw|R^u$=Q+$VI4&<927!`0SeWo5mpE_9BW%W=N)x(Hab$ z;!B~sHKEuUf8T6(LHJwU#)D5wDVI5)$z(+AusHM^l*@+wLdyZNp3u3N$xpMO(Z8`y z6lqAoKIbvb1?H`Rqp{pTXvw+Z#O-XUWXP$>Nc|3(()j)xVAhb5&(zTPm9_L52+$b3 z!DZh*;^nDd!QFi%s_w4p9E(+@PfNG*2y5m@X?4^NE;?P>vt)%XNtXTD=)Uap8jPo0 zX}x}ZMhjZ?I(&)71-+eL(fte|pnisG{LIKyqfXo8WW{k5;t9+EC5>KO=3!UJ3mR{I zUKWkTg4Aoy2dt2G5Rz0COP20^WKam?j1`1}7vGf@s92r<-c^WwML_J<(QUGr*wl(; zxdvM19&oD9a98w_#GGZBh-a&cB0b4Y#0f7~u6kY@*p{EaTx|7UDF>}T>2G$ro@EgT z(}Jj=&X_&0e~cPcNd72lPSeFwl(_8HaR#KKM_rJ0vq2_i{!br!c#SHN1XYV=Us@co z+S|>C6kq5G+xGda)b&Eb29QSI?8(QlH`SWS5 zo3vhyL%oOU$*j9+*`DeOTlR2`k*{P`M*~be{&M|A*?tC(D~QUH*b=qD#J61tkaRk^ z4*qPTyl#|P!9^*XMN=%BJ?|@Tb3Ru40FOO%Pe^%S^>Dch>mpLD6|;7Ee_=Eh93FjR zW0(1R80;bR*LT*r+JVTTe_K!n*?|^xi+Ba2fdkYb5S+*v%Xnq_mFF^~Pm?t}3a&h6 z@5{F3Vh$)ho4hQov`*(Cx#J$=?64FgChu~hvC8_`2T;Nk)r|AYOdi*)(*pe<$EBWT zG<-GMU6S%0dNd!WBWaxsI$I1Ji{3AH%t>1bDaM)B`A<62Mo!(VPAgX&HzPH~=X? z;>qE62P?E1$v~RQN2qAqWp#3k1S$u&Y-@}ej#W*Hab~Z5eI5_co`VP`0cXvIx*T|8 z6K2HT5sbCj>!TElsW>CEVV~U>!Sq!jpIcMxotNM#`CF6J#q2NI}dA=x)itXzE<2IloknS68L;q~5) z6jqx*2X!mS#9>VQ!zTSHLyc8wWyQ59HAjSVn!H0nSpMOevtk<)b%^@+1OGe8}Wd#VsD@?2r7LX0ss~_5_dx z0@XOAcCfgM@a3W0zSlmq`*SfWA$yI7wSM{O8%H zw@I76b!5UqozzXu<8mSv?TQw}<8Y}LTm1 zdY*?-S@;wv+_IGpro9StujJ6lfe`M6z2mhVshwLjxhnP&H8sh06^RAk0RRWM$X-?F zYXfbZyn`x(4pCKqOw|>;<&*DxC3OEij{F%$Ln@9M<62U1gW0;Z93?NB*XFj*QtQIdCXJZ$AkG zK;N`#mU=l+?bZQlN|UfpOx9J`-!8-&${ivzI_(6+wm+{ht5oBZd<{(qJImVS;ucLS zA^IXZB(RK)zpOCDZ1d9U{h4!j3+RI=Kcs#-W%M0BB|_3~Kg?HUfg&u9U-miJ zk!Ty~Nk4otW-9kc1r7Wm)_QCd&rCGp4eB*kmFBLeK$Y;BclhJ$oMIG%U_N9-l9?b8 zC4QZ?P8O%LCK6%2Zn;rT@ZO7V+zp;K<)4*-n={O0-qj&cN*DHbx)$MgsDmEVu53+F z#2K%k{N?x-u5Yj2At$YOryN#Kb#ZhWip;8+Qpt=`z$W|SkT=JJc<V6=YN#u7{uzxl-EF9g{obyQmNZ+ zy1LEzXZ6MZ<@X9CgZ-T@FKC{m52M}jT-6K28Krc;-p_q8K4M?)Xf;A>uvxKDebL<= z&gJ!Z{>-_eh?&(aawT_cLZ@j3e`Y1;){XfI8JZAWr_L};ILy#93gIL7b+eQYsjn_R z#YZS2Y3DWW<`WZqZYK~*&Y9n6^fQ{A!_m0$OsgOdkov$aE?n~UpK~%C(4r0j_Kz%m z0}AGN+4_l}g^m?8dVc4)!djG)%07KN(Sdfu5W#(AOTZv1nDk_nR1%PvFM|uGQiLpA zekXte28Id=uZRJKArBBog%a^?r3#oXz!oUDliklee(P{#PacbtIu!?(NI7%Ab+NSt zeMlv9wf!u!N}4$)F*qm$i$K#u7v~F(#?on`39ag&^r(bmp<>11SeB4j6ag)9F0tZ= zApe6T-}FxlS6Y%*`?oXJQ6E-m)GDbQUsGraeOL~{%gt!4=`&kyV`J6`Lmqr3ho6HZ zX8Xz`p@*~iveSx-tx~6ZnrE794{CSddQD{rW9ic zo(VZZf&Sx5zI%qeaCb&C~v07 zw=^1$)2g8O+xF~HXto!a30MVNZtT482F`0C#*jeu=pxcbX|h3uX|bsSYB&A)S6l=#9Fv|#=Hogo zpEo=08aF57t*@@;XUnqCC|>X8S`*{h(1jZ{x%tnTJW+i6*6pgnalbT1q!@3p$N750 z#Osv@v^fdoGIBaS4$qIp^+~CFSd1s%vHBO+X;-Y+e&4KW$5Tsh)k*5Bmuu9j(pa4G za&I&8bkDW5CAN{JR<6#GemXY#3K>wilhyihaKoPwW)FV4=X#+{RWl(t26BuH;KIbd^B29pHHA$gMQ8b z2n9^Ysj^p=J=qFna37`sI`8|`Q z@4sTx;Qng+-!}h!)$dzdM)?tQF0??8KKze^7-C&0nHV9n%I5z(|F`S><8p0FNQ9~8 zc^>_7+yDDu!58pv`vqSLiUj{Y|8Ki(Xo5U%y#5r-(dYj@NYsxyIQl^GFDw6hT_c0| zcZV4Xhr}0*D*OLD!(f?!!h5KHyG^AdB+F0TFFu(<`V8x!QwH5&3V5eD-0sZ>0>`xD z{x%K^3V3Qiivj0{627s*-&IqC^#@L&svSu0e*V)x{(4AQ@Kk!*t3*7rXy$(y>|X}> zebrYiFm)%E!li-KZy$b}^FNQi_oo#A8IV?B4A1C)*ytcIcF8jMt5 zUA8MW72@04;AapO{s#g1$^hpE}1{TATdhWw?(35zO%Oz}+*^zkkdw5rs*3 zj|R+I_8)bR4}Lc^6nsUpHy)nBN6FUMoU!+qVd;%p@a<_l3-#%mI&OwiMAm>K(E83k zi}g_c#!g1DU?@g&OPfrTZJvysj6S^24KSI(vMBHBKpM9 zD?&ojAKukhsV+56RpV%gpDG0?0g`Yyga-vs#a-LM!eU0O3kf8d6SI&F>MhD}{Bbio zo!{Q;y!x{H3)Er!Ed$=I_KgR&Wq`Zq&IMy(YwF7qU_Wi>#>HLjQ-LubvJhdCJfw{PRY zr1-vv#xb4wW4i)4a3|_O_*Cyp8~_7lH6G^EJD9P`3KFiy@ODqG2G?*rZlr}zg@;cI zk#zcG8Uk)+>?|z-Q>+LP(NXp`y-;Jne2QB?G^!vV9@_t0bOX*hsmcyKnXmoT6gm7=R6F8PST_nOJ?Yk#xnXxBaP~W$3&9bE1tA68NjAIwzjB0W1 z@(Auvy1A&XcFcKs5b%S;M5R{NKJMx7r;*2)&oNIXr}Au4=g?<{Lvq%UYs(+Q{;PX8 zW&L(Yk3(z63Q#}mniKFFejP$L?5&rMHsbi9cWjL-!uCdcyNgJo)#!iBKP4AAGg*cf znUW$;bxTY{N^G|Y7kr7t&S0aZyj`~^Z=;8XbOf!_S=~@8Ff{QVo3X{6nc=-9CZW&* zWBf-7WO4ch#)0eD(Jl)kOWH);Uc*9w8YTa2bnjU7V$+3!jfc~OkX4-JCR@@cA`vt3 zcszd8M)Yczmqy%o^vW+^XIK&maT4h0Rl^(%lWF!y_)v-XIQ%8PR1^E8HI?R%hWyoB z#!jHu=+HioRpsxV+{6hZ-)sg%*fQ6zsA2C#tMN%(JW}n|bbOZtA5wd2g$gS}H7MqS z0&-wd18shJenY@M_pr589%>^R6z%&hwLH|Hf_L--HItm*lY)eMtm$hPc^Nkgbs4&X znI*`0BKdj@30*2AP%x98WysYg8GJ(ZIETm(Y@`p^8sSY`Ug&RuopaR3FtIJug?%)7 z8pjTaeE~aSe%U=ps)UL9o0kJAJb%6AV*NqwK?&hp)QkaYp$!_+u46MYwh)7wr5X|A z6P6k^2CSv(58)iZsy*7ZXOi9FE1OiA=tL;c_}>6wGW!!QC1!7j+j z*i}2gE8XG|{UT_m7udp>6W;1QQ}vS%MIgbRZ>P9$Q#^6`f<)A1TXbl$eY;R^?^2@A)f zWdwW*{h$EHIj@?V7mDd`nWj*rRBQI@5d1;GJIIX+_d>qbzG9K9ky!Nbo%XMNRhVS< zlhdLYnph>kN7v9<0Hdk|N-21-PGulPmKdq={6DI&N&>Q7%L(U<-S6Ir4NfiT6l*_P zl-K4QxOin2@v?F^nDE|}bs$(?+@{B%ekiKzj@w;@sSWtf63kEtkVmdF|50VqOB)>$ zi8Sh_$T>7o^B_DmZ)F9n?-ft<8&^^5JR01{6g_){vl@C+lZvwj5Qo-8yi|1X9}`yo z7NM@D%EDHLPl#;4=Q|(4VFDT({WeA)WRJ5u{GVo~nv@4Kj>wULrEo;^fd#uoE5bDV z3Zm2R(D!}jJg5%PiE|;obE?lBHPv=ozsMb{h^zal)8JOx)M7L9F^8UTK&Ul!CWW`- z*sIR*E1y~W^HzYt%b}_Pl&8&D$p0D@iK2-0={UavgrproCH~u_u~rdCtFug(wr>x0 zi=X&JG|j1cIs5I&YTYq~YyB=0h09i{Rp&G-`@mB22gErA-(9^f;>H5>F9?S*6&n1m zj{`kdI8X@SST;2fH^%3i64evSNao>ALkBX)f}vM*_yr@YT>pEAf=d)yA`oqIiPLOI2Kckgfi7aHWsg-K%ex{CmhlZ?OFL~pA@cqH)%W^1HAtZ$f8@G11 z8*lhfI~-1LR-iCv=MHcw&<<*SynWeII{Hzh`@7ps7P^#dBTNw7b1)ecwqG-bdEc=% zF%!#t{^Y{!lK;8Zfz^UWAm%P1r+LE zkSm7D@wo-?Jl)x}E!3{raiXKFqjvWcYr*y*?`Y}^ewMuMt4C>&ll8W5`&@XiB=(Qy zRcq8Ta%AP9+>Ui`qaMj$-S!tx+wVHwcypT0TV}pv3}>rkfpxc@sgCBx`3K+qLIq-L zBSkSXMtn<1n0GCz>S(c8b-V~z9N7)rM!?jFwz3!D+G_d7l2~ce zDq|;`^hZ{AaoH@$2fs+KD{FVNXHR=5aNu&|n_nC6FPVp3UvVaZAyi@kL_)OkGrO8) zSAkK?c!{75-xJ8wC^b)fH{A{-=yju34k6*0OEhrNoBRf7v)Z7u_I7UMo4)7T4B8YZ_lW81BXf&%~~i89@ym#A#_ zdaGs)iUv$={*Y3VwDe4n#8{xVr5P^x()`VF$ej7XZCw|ostp|qT@`PNmIvz)zPO4{ z^4Kww&|>vj8{L|R=(uiZV!A%&#~Dt&77{Mk)mR-}AEL(V62e9A19thZ1w?0Y&2O1W z^XRT4SMr>UT`l*gq)lQ|W}?4Hy9yv`vZFCIpo7z^@MM{m@}ksv^stWRmn(lvMhgXu zBz~Wi#58%^pK=KEy&fGGVS7iuDAcmtR-!}Ir-usP?WD@Mxx*7*^`jWKH)6;ZYzV(n?<4{Em#;G zX|te0z&a}_r&tfAR2T7}=;Bvz>+>}<;n4nj)$w3@ljx`6f7f)rx@5Me0-;3@k zz?F);iEX3Ye+tdx70Wn%m)vPZUrYX=HzxT*+v4s1F20b(=^nS#I}M}at$FWBD%oaY zIIrJ#uis@bkAjM*>|=JZe5F- z+6o%l>h?tH{$+1;f}f=s~U znAZu>7!nNRM>)GQEylkoP48xAf<7!x=4))wApY!bl%SV`EgPFO|8?)9M&@jNHBgVb^+yM5aa-8byelDX4xMt~#nYW{t7ulI zS3@X9#5jqZSIb>^`t(6vd#%NHOJl2B`2HO%{nc8{Ca>ENOJzg-D{jS3FBfXCk;V5- zU1OT|f@?3#veYD%GPZEZ`^Txqq(1AByZ{iaNI}m{VU)`~MyM@VQo!ET?)1DbLLBY8 zL9j);+mNhH+DUIIBCe$lM~j6J=Z$lt>(}9KqX=YuIBaEbCf(6szvzG^^IFS6W7#-@ zxZL}=Ky`r`7%z%U*1*T;c=K|oW45!f7e1U>*lRo!UDxyEtG@*dC%WQr-zODJ&M_$H`g$raWHw$1$C%d7iI97D_T567^1AU)Jk0BlO zYE>B6e7(PCPtH5OB3t+s;s_)ChBZt*7$(Vy5_}&uA0s6{(~yEp=^8*^%VL%^xI0F^ zJHoirl~NPmD&{(rfu3a91}R&mO)gd>owVOzE%1#-$L0A7(NThyJ3k>?0B5bMj`Q>) zK#|i{wZ7`}n(cAp4>FO9@x^n|4`JiG1SjIATP1k-JTB5Sfpp{dUbTAlFPFXShbf@o z<)aF(MsPrEWX`+}8l+nN;-UeGFJrQN+Z`9?2>BT2U2?P$UlQ=)a%hARQN9>)%3c1$jpZ8A?9G6|aR~MmDF3@Y?YfKP&9=`3xo_!E+dT*HB zXcxpy2Ct4(u!6B*PTDxpQ+ov|J})J2ycd$-;_u($Nb8YRuj2jBP%SUnP&> z0&aJ}hs0qw2kAw$Qbg-V7$;US5y8>uu%}K`1Om)W4yPwgc-#?^7=LM&%2#6u^UYG@ zQp7-5-U<=Bw%QI70?v_KTZL+Ehw}&*u@j&L>?pe0Yg9{_SVMKu7M5yEgUpi$`W_kN z+)N7#>IgJTBsbN)2~I}_6)`Kr6QZEUY2mlFDd9@bdVM+RI5zS=Aqo$G&v%gVWfiB} zSAEBb!$V__zuy2OVymV zU^8=!dB@{Tkn1}!){4Nx`aAD!XxWYwqEl{<^1X?VCQzfTR%ViLEJuwwBCuWhkzF=# z^gN~Y>Xy z$<}R;vu zQ%CM!Z|!hLUsCOGT~5|24lA_lzX6>rW!!g{bOl|J=xO=+wHi-K4m^;Z z_Ny*$*x$Z$9j+BFU!Uinn4GqCa(BAh0^jrRS{ZxlWe5YJD({dn=@UQ2Ih&%TkDK8>?v6F>p)?`YCmN ziPump`A1ODsf^Vdc~g9}yII>ZF9_hQMhw(*msxgl6U-E9{aBmn%4(5!%W6AEp{wV` z@-@7Lq9NFNx2I$4MdPG_YmPal!BaZ4zVUZ5r_A&xJ&y-gl{F0tX1ceGPX0wKL;H1z zvF#^9Uk8GZw&@EZYPCKP@7+%$Hf6CTV~J?5gRXNqXO+$%8j+_Jb_WfRjMAF#7H zn=bh4LQM9n<1W_+WE9`B25LPg2qw?P{NSzD(Y;pH<%i{j<$>nZd?-Kh5uoGJR`y{#wPmrmR!tuR-vuOGIbB23&z zpM&qu9K;QsIl_kyX3Uhi?g<{wx8ziCm&Vs#-os?0)BBD-&0JM(p2@kMeK_OYbCkz^ zOSM8iqvq{gzU;r_yx6jB+ueKWqzXYIex0H(y%?W&K5_8a~TUIU573<`6VMLl=l9EZ2gWRH*v!2n1J6RYz`H~lXH zBAJ4&&0OECzl)amf{#1DBb{06X(E724EB~M$*i?or8db-s~hHv0NWA^-voM06^v>W zJ95F10_bKSB`}uf?V`{af0}z+NH%)JO%q}PH0)#mA|L1DigQXzLL$m{wU+wYXHzMxv0YNH_yy7_>O0;4WH}2K}fK@3IK7!-s{Agx09$E z5K%#x;m1}b5hgcom|}duBCFTeAhkE6i_tAhcD-S)@`gICxZQH`0JutQPFWA@n%EZ{ zY1^4fS@ix&neWr>ghLl^(d$^M3srgZsky`wZ%MUrWo;=AUR4%BYU7ZM9#0`wIME*} zRadZT#MPR{d|+V43nY`V9VWJB9&|togj+3cey=E-5tXXPcw0r$NFg8)b4#Vh9~PC_0R9lf@bLgC^UGX%i?n&5~B zDR*G2g4|wfej)5K7v#%{RITY4O|C(ut0_g(gNUdwQL2V1)hq<}#s3K+Bi-B|RWW(z zjvYItd(Yl#&AN8%*riC$1t<#Ma{TxSY1z7+ip8jK!wpgt#N(%5Wtz#EFxNjCj|R(08k510*ZB0i!uCLN9Ak$EEo1dFOG9|6Za;wa@LQ$G9Z^@z=id4teM8HzixPY%V3j9fRboliLTOAe=biBBH(fz97q2 ztdbG0zal-lb&;80e%r}Opcnnal0<^adobGk>X1RmYF|K}?bR3kzS8>?>N~HCu4L>xVq5!;n)1O% zpL(#N@=BaJn9!_g6Y1H#Yod4t2V+pQL~#{Ir%$+f%T^U9cH3>$6`5dt=g(hIKPQDD zT~1?;#^|cl`oMvMa?Bm)7|1=%gLxnJANZ2AZ2piu-T6sbuxPP7_GA~;cb6{3D(mlQ zM@$ym>1wa**>yfo&PK7%yFb@QvS!I5yvGV+Isp=8f2DlcvWmFqL6)CkQRI1l|6`u2 zf&(lZtf_e8jh-qw7;;~ud!*abos=8f$Wfy`zd74UQq2AVEa^PR0u;Qojk=6CK*#CHK8exfOv+O82o(Pa_sA&2VK`F#HAX9+hI?A0irG~#EiFML zN1rb~CPlpx5c~z#EV`RNV;QrDTu2@{OoQGoa#?Nt#S?^EDwI+(X&UqV8%g7%O%gs=dbsW!7DAlil z3~5&vT5Kp~^SKD*TfZJw?oK42#F~~Jf2D%k>edE*+`yrP^Z4o@oq_b7zvoP^e9>UFN)bCAdThb*M!mluUUV#DUKdg$W#|Vz7k+ zDzuo`ASFyVp`We$PhOHwkTG&p%e+3%N_R!N6jGRkr0R>Cgzm5X14v@xUHRurjwzD# z{qx1-_L43F(;XH)?aJz1zUc$^OMd*Rw(a<&+zDlD{Mffuk$diHAa!fsAx$4>BAMYD z$oL&5D_8{L;Ix={*T?Ta|2kWdnbr@tfIFG%Pq;gN7)2E=z zEa~_}XZdTv!i1`ezb^#uCQck0h9otx`q@VgN>)2o+;>d;viKGT5;yI$Pb5p0%pd|y zrQ*%E%D3PBD7~I_S+Vp1R3a#kb!aCgiWgH@(4~(Sp`_%$|29fBkiq*JHB?1wRKHaz z?g<^&t;MW8a;SP*M2{7KFWf_sKUir^^lH%c(MDN|%yffBQXN z`48V8FWgU|<%G&n$98QbIyxHH{;^c4TuJre{rBCguK({P%Y@{Wk~>!}`C!7kst@Yd zts{5TyBqb-LBHQGpTcrd2gGmWuvb;t2bwg7<*1(8=EtA&=YuF7ka@rTEcx^2Q~Qq| zJqCh24aDmSPdRSn%o#3JuzDdzhv(+DmV9~h$QM&5!Slm4-plx>TDRXOqec!>Mc9^F zb?#Cmb=Ye!>%(Nqq>m&5M7dhkTcj~8Y(1WNTJ;|b(0ahpbZ^NH0_$uCNtaW6VM&5a zx3EbcPsBg~^qQs*NbLp9{Vo@zK@~%W;s14?mt151SFMzv{t) z&rM=@wgk~70im^p0}`~L@Ejzf-ia~%#W10Eb6+6$w625K!uJNHSkWSi2=aL^T*&o~ z)8ztLGhThoSD}T(LCv>;{WA2~IeUh3sk!tsYxKDe6{BnSy zr2Buz-@2Uj@*T{!a$tehB9a*nD)7F0W$-|`@rLs1-ARH*%M9bQC?q zRvnP`c=0lQ;Ud+~{fEtj1xGMqN#AlUA7jLmM2GG)t=$>7e*WiVygGE*pO>AGj-Tw2 zZm=FyE)=5TP#B9+qeQ4D#z&W3h{OYwESW?q;*Wlf`#bmDgAsN9`7yb$8aBl1016_}RtJD7D7v+r>d6i{l z?uOF}!%)Y0bP%;p91%-}5TbK1Ty*@IpZAf1I~!b~DBjAkPUNul@Oi}NxXeNNJnVDg z?{D9!6J+3zc}Pak2idZ!g1j(3rxz6G{!{m16yJ4Ul^(E34&xr8M8l;@C*pWz#(^YJ z(U!Opxw6W-6KABj*I)rF&}EXW>{=EG4vCu|1*4vV$t0CeWKu*0mI7!>h{;(AceSaK z>zQtHe#;iwKk^O9)AL!$#F!m75xUaLW2~E&yWn<9qQhs8WS-LYLzf!{xA_b(evm|n z*1Cj5#|H7Yl8Cp;0*mn9Ai~KJW?&OMs+#1mu18^A_C<7jovTs9yJa^1U>Q7q7}g6- z1pLXA#Zhbu-9%QeL97*I`;MJzy?V_WkDD4te>DMpq*Y7*h|Z;pFeShuuWx4DFP8-S zd`LNr=#u16xaLUa&Yin1D_t9;j(`4CEJ*lBS{}InKBZh-R@iGtD-b$nVWaET-B9#6 znyQJ3S5YZjrVK0*^FVIK%V8)gR0KI1o{*4ek*GQAdg#F>!bJ;}A5C(&@78L!$d@y| zRzFiQKb!xoygUAVbsolH@m#0*T)Bl-9^D5VMdtbF!a{c=x*pZ5TU!@ZiY7^l4%S}1 z+SRvo0n@U1>sECfkM~v#bs6tDlEaZ_lDj7#>)es6yzs;Ge zlvZ8G%{Nuno01fscQ>e~?nf%Ve0Hd)lC-hiPVpB*=P};ff!x#jSdwBbw2V?{kx35G zp~a=@%{QrgPuG3VUG@DYIwVJYJ{E$|lrLXaS(e@$@wzS= zoy`-tB}IsiH_6e72fPy$q!!uH7sIu-G;oBnFJfhw*7~Ckt``!2X8<-WB=n1?wT3e7 z?}W(*<9!&D&~y4er8vLxa9(vxJtRKx7P_m^eIo*{KNH&(kUDQ{Q}H=;0UD2361oJ9 zf(66%SKxhg+;=J|I@msLZ{k~Yr_;#@yi3wrMd4`vc#sp4FvbTYSLoNzWCV3lZ)3P3 z^+4RsTfZEZ1#m~xdfkYh4k;@D6Gyax(sRTU1iejPvOh_Zq*-mL~=K8U$LvSGh#P-6%(*iD61wD&!6Rv>?lPb+1t zA|=JnkwauJ;yL!ls0l-@Qa2#ouuG{)u${coL2}MOiH^YtU{u>S5?Y~xT4K*aVH-0B z#OE2wj8V|!2%iHjPKzFn9UF1yw|xpVnEWr&vrAgena{skz>T7s;&YflPK-lHU*wAj&#vu*o! z89wx7U6p6;FNTR(D+9Tw^@*L&Ru=btNW!bd=~+YQ7zHqx)N?cYP?xR)p$8Sl3#wlwn-G#Z((%G#`C;92SuaQpwefj=}pOwXv zR!_RwemU(k5BW}wcQ)ImCGKw5d#+%u35_!*$2(?+$qBB8Fvyxhw>8cwL(<_bUpRtf z>2FTUO+s>C#T>#+YCrZUD%0TJ(-=PRlr_8KUVP5uI#1pMKXsw`!?z>ouo~Hj-`_(lwD1B(NJZdy~4isq0S5FsK zbL=cY7Onx9GpJz&*T^)<359V7d&ZWNRp_T|!SR(c#zj#EfxP^OOizQo(q+$Z_gPb$a_QTq9di82KJZX|dKGNEiU5$UFxJbtA1Y=bH z&^zzAQctJC1uN?bpro7Hv?mLyg{i||#Iu%Iat)@1*22M=)3D~mFjXVQ+zU$WIYKKppQBg zO)3PlW_&JReKA$}%+rl4F`@ECqHvTXSZzvnArj0i0>^XJYMx_os<{E#vMALOl_?#1iZgVQYn0|XrU$3AK|-#gv3dVXq^c}>fBjNS)_mZ z~DV=^`07<}I~(Z5qR+yX$5=Zsvi8LE24ApC_TZ{MqMEJuf4WnQkS# zURs;BD_5_Js(K!;gN$`u8e_foZpQ^EffU_#D!Mb=sf#aqS z?c6Rlug*Lm)0Z4q?lqxMEDs^BfL1oAbb+hYZlsl_Fpcq_hykK#&ylx~F8l4-M^rF1 z`GH?q6SRsY)pyI`&cy^22cYETMHV(a60S~?fj+7Y+${azrly4?CJNcRXzirX zwWw_G|0F*aCS@4mwvOrY-s`3aIPZixd7RSiqdk)QX=MFEVu@Nqwy3#bXgwmvoGV7V z!m(d?Zhw<z(uxfDIsOc$$?R>7k^4$12aa_U99G?ZSo5ep71#=)qkVhhvXiK z2~+0}MGE)-!J1lg_*SL7w}<7MmK_TN7Sk3T6(;%kWWiB+`Ro0ORpt5Zp__B4w%jp% zo6KB(Ld~@^;v1Kx)l(>m4Q+*?^21|j)Ap6t@ipTj(5 zo`$80@l?zN#mQisHg6p-<6Etow<~3d{YPb#ZLHt$e(BodIZqu|veBY>Q+2;F83HX( zeQ^JgOfuO*N(spnU4V34LsIoNYx`i}R@r?3F}5|Y#|-Fhfu!a1UN zkJBB}m-vI{9d69u8TXz%gg7Bzk`#s&ZoENVJ2TiZPNj3#?w+awxu-n`VWTTD&GC8V z^31cn6=5w8qC=|(Nx|f4(}fw-_}mY9b*S@DpW6>U&{(-b_UzLS)|VB+ENVR7Dg4eD zLSMo`2wIzH5vlKX#pFAP6O+=?%y_3Ok%wD0R|5fjHrTel0|u$AgGqT=Cv~n?Z8`|E zS~hCZOp#BLJ(A-R#fz&$nT&z+e>H3QNW7|k{P`E*v8~&7Q1>>89fij;IR<}g)TF5} z?&(`3H6h94`-Rt^;_vKuEsOgSXK#+%7w{J2PJG3lknGfXWlO+yIu95)eZO#V$~KJn zQ;G5x?x%7`Ve$bgSKh*TS*UP%3*FD0buu+{i?>}$1Kq2&+k+sxNzQ=LXlZy zGvaH!+wi~}+Y>r8;C=qo!*e%+@`wL77jEhplps#T`5nynqtop2Kw29r^xdek$uVxp8$*^Ef=L&-a3WU5m^jP$(|27Q zu??*6dKTi9Tyf%`+`6vC@j-R(lUSyio&hD|AgmsLESA_4$Hi*(q*zsJi4_fnF;m_xhsUb-Z>b`IV{Jr$19f9+|ky6Ehfz z!Igy`y zEx)&dvcwd_2?-StCKGt3XCFlpS%xFz<8VHIAt`tdKyP}j}?aSGe_&gfCj>Mq-Mp4Yjp3-Vsz z2s9NsDr3BN1`m8esN_?0`*eBz-Pxb~Eup&gG0e{P+OUzzwQu7(S4^4yEur=82x?~= zn9^EL6w5fSZe2PjR9x+2T+tp7G?IBr-P(7m%wgP)YjfOF><^y2FBzA^Hqb)qEkSM& zlESce&mJH+OMt-$RRt4GFpiGx3gn*F=jS`34H7PNLke;dB@&4D-W{W|rLoMYk;A3K z6P;8BHGY4*V|$hHPvgLS&TW3DFz$!XA;|=jFYr81J>D^18gvp!XIgF7k#V2IjIlN( z&9stI*cX)AchpkrKt6OkY5hHfI5tj{%v9Zcp6Rm6bLkkJKW~V{mDk4Cl^C*-m9b0u3Pi;<>0TEa=C`yVH%p35P*$4ND z{nc-bb~sLwC%afpT8LGnP`&@>lj^l3m6i zCM29UtUv@36kAUOg@NfQ&|%0vXwP--r_ZXXBIwT{UY=rR+i(6WFIM2tzcfDYxHAeUgeXM7KZ zE=@ISH&7$Q6DPbAuP*j8U6ih*eeo)CeBt@%R+CzjU{WC`kqWfUoO>iPl4;m|Ka`xi zg_cpeZSorED&`$);<(hyHd6}Eq%dULIKi&3d)D83T3-M$J$dq!Pxrh72M?;tCF&kYN5R<9U5))z&K-E^B+g^MFrBQl1g5`x?mR5V+Fss>t^z|D>;kk!p_imnc?D#Z)m98{V)F7MBGj-308sXz63mmyIJl;p6E zgp_UXx}D#z#5F3V@JtHBq}moJ{=_t~wqNP9#p_52cMclRt+5^w4qPko)wblc#}|oV zok=~<>;um82dDRvftaGTU9@Tw*o2 zSAw4GB~}I86IsyLMp6|4&QC*Y9y3!dUA|mpZF>Z`N(_q>g5S2gwbRT(&$ccr7I8&W0}QU4{a} zT#P}$AYc%k5ICB037R^XD+)KVR%$XNkRLIo#Qhc;ggC{59dB z*I0=HNLYZN<;u6ht*r#??63snghePjTz?!146dtANGlh64sL13VU0U_1aVi0!2)>| zWYe=(pf8UijlHKIF)~YnQ@n&&weA+{t_NI62LhZ^CaqkyX@^0;AYc$M2w>dNBqK1l zfkD6^kkJrGQKF;4IeQw)@nW&({vh^0D+N>CBaQsdAH0zW_0Ir0b`^Y|dT;#+tk>i+3VE1-RrUA>`nq^r3i~Vqq z)#Qd}4+B%pi#{t>(q)~i-B7FoMGQer*`6`A83YUh27zmWfFU~91a@;$gMdLGH4#V^ zqN5v(3@HuBW_0*a<4<7M3*QmR@n+7r7`(mQ7F?6X zT#+6t8;DP6m{F>|VDsxMNe!%Roae|sjSOFmn*zD9_wG_j1%&CL*Z%`64)#0AC@V*X zI*CRf2#62K4`Y22NhO<>AW7A>kkBCQvoJH-8CcL@SyPj^ zg4oyxG2hQFSZtV3VB01ToGri}oT&H97SF?{CL`JsNaFJRnvSF>*`!Vru3`oxr zxKW*gyHrBTH|t_{ue>?o@>UcsQ-xt=D1`3?#mbWpsg1Fp#0T@F=*8kT74s}v)7*SM zzMx5RKdfYO0R)9^XIQxQEN5V`QON^e?obMhpT50fT@+AVVWyh)#y?UUP8_!y=^1XRR1ReH!GV8 zJp<-XfcTs`jRoZAEC_-x%a3=RRPM7wxsRY?57L7POf61gnjKaky1_B=fm&yC#RJhD zPR;p4@&guy2_%IX#nhSvh!tYtS}*#XBruHNS44)J?rqGXjj6P;xYr~z%FPUx8CYUO z#m*pp25~fM`y{UQ#8HqM&QF8|Go;H=T>E*}@2AlHFAUd^4J3~DJ0P|Vh}J07z7Lg*DV772ls00w*hZ^f&c&j07*qoM6N<$f|Ya Date: Mon, 28 Oct 2019 20:50:36 +0800 Subject: [PATCH 402/594] rename and add doctest (#1501) --- maths/find_max.py | 8 ++++---- maths/find_min.py | 30 +++++++++++++++++++----------- 2 files changed, 23 insertions(+), 15 deletions(-) diff --git a/maths/find_max.py b/maths/find_max.py index 8b5ab48e6185..4d92e37eb2e1 100644 --- a/maths/find_max.py +++ b/maths/find_max.py @@ -10,11 +10,11 @@ def find_max(nums): True True """ - max = nums[0] + max_num = nums[0] for x in nums: - if x > max: - max = x - return max + if x > max_num: + max_num = x + return max_num def main(): diff --git a/maths/find_min.py b/maths/find_min.py index e24982a9369b..4d721ce82194 100644 --- a/maths/find_min.py +++ b/maths/find_min.py @@ -1,17 +1,25 @@ -"""Find Minimum Number in a List.""" +def find_min(nums): + """ + Find Minimum Number in a List + :param nums: contains elements + :return: max number in list + >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): + ... find_min(nums) == min(nums) + True + True + True + True + """ + min_num = nums[0] + for num in nums: + if min_num > num: + min_num = num + return min_num -def main(): - """Find Minimum Number in a List.""" - - def find_min(x): - min_num = x[0] - for i in x: - if min_num > i: - min_num = i - return min_num - print(find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])) # = -56 +def main(): + assert find_min([0, 1, 2, 3, 4, 5, -3, 24, -56]) == -56 if __name__ == "__main__": From 1da1ab0773e8cb74693dc53b29a0511f83c94098 Mon Sep 17 00:00:00 2001 From: John Law Date: Tue, 29 Oct 2019 00:44:57 +0800 Subject: [PATCH 403/594] Improve doctest and comment for maximum sub-array problem (#1503) * Doctest and comment for maximum sub-array problem More examples and description for max_sub_array.py * Update max_sub_array.py * Update max_sub_array.py * Fix doctest --- dynamic_programming/max_sub_array.py | 25 ++++++++++++++++++------- 1 file changed, 18 insertions(+), 7 deletions(-) diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index eb6ab41bf52d..f7c8209718ef 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -2,9 +2,6 @@ author : Mayank Kumar Jha (mk9440) """ from typing import List -import time -import matplotlib.pyplot as plt -from random import randint def find_max_sub_array(A, low, high): @@ -43,15 +40,23 @@ def find_max_cross_sum(A, low, mid, high): def max_sub_array(nums: List[int]) -> int: """ - Finds the contiguous subarray (can be empty array) - which has the largest sum and return its sum. + Finds the contiguous subarray which has the largest sum and return its sum. - >>> max_sub_array([-2,1,-3,4,-1,2,1,-5,4]) + >>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4]) 6 + + An empty (sub)array has sum 0. >>> max_sub_array([]) 0 - >>> max_sub_array([-1,-2,-3]) + + If all elements are negative, the largest subarray would be the empty array, + having the sum 0. + >>> max_sub_array([-1, -2, -3]) 0 + >>> max_sub_array([5, -2, -3]) + 5 + >>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84]) + 187 """ best = 0 current = 0 @@ -64,6 +69,12 @@ def max_sub_array(nums: List[int]) -> int: if __name__ == "__main__": + """ + A random simulation of this algorithm. + """ + import time + import matplotlib.pyplot as plt + from random import randint inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] tim = [] for i in inputs: From 3ada8bb580d64a06d88a3613ba31e41b010f2a45 Mon Sep 17 00:00:00 2001 From: Phileas Date: Mon, 28 Oct 2019 14:04:26 -0400 Subject: [PATCH 404/594] Page replacement algorithm, LRU (#871) * Page replacement algorithm, LRU * small rectifications * Rename paging/LRU.py to other/least_recently_used.py --- other/least_recently_used.py | 62 ++++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 other/least_recently_used.py diff --git a/other/least_recently_used.py b/other/least_recently_used.py new file mode 100644 index 000000000000..2932e9c185e8 --- /dev/null +++ b/other/least_recently_used.py @@ -0,0 +1,62 @@ +from abc import abstractmethod +import sys +from collections import deque + +class LRUCache: + """ Page Replacement Algorithm, Least Recently Used (LRU) Caching.""" + + dq_store = object() # Cache store of keys + key_reference_map = object() # References of the keys in cache + _MAX_CAPACITY: int = 10 # Maximum capacity of cache + + @abstractmethod + def __init__(self, n: int): + """ Creates an empty store and map for the keys. + The LRUCache is set the size n. + """ + self.dq_store = deque() + self.key_reference_map = set() + if not n: + LRUCache._MAX_CAPACITY = sys.maxsize + elif n < 0: + raise ValueError('n should be an integer greater than 0.') + else: + LRUCache._MAX_CAPACITY = n + + def refer(self, x): + """ + Looks for a page in the cache store and adds reference to the set. + Remove the least recently used key if the store is full. + Update store to reflect recent access. + """ + if x not in self.key_reference_map: + if len(self.dq_store) == LRUCache._MAX_CAPACITY: + last_element = self.dq_store.pop() + self.key_reference_map.remove(last_element) + else: + index_remove = 0 + for idx, key in enumerate(self.dq_store): + if key == x: + index_remove = idx + break + self.dq_store.remove(index_remove) + + self.dq_store.appendleft(x) + self.key_reference_map.add(x) + + def display(self): + """ + Prints all the elements in the store. + """ + for k in self.dq_store: + print(k) + +if __name__ == "__main__": + lru_cache = LRUCache(4) + lru_cache.refer(1) + lru_cache.refer(2) + lru_cache.refer(3) + lru_cache.refer(1) + lru_cache.refer(4) + lru_cache.refer(5) + lru_cache.display() From f8a30b42cea154d190544216b92d204c832de784 Mon Sep 17 00:00:00 2001 From: dimgrichr <32580033+dimgrichr@users.noreply.github.com> Date: Mon, 28 Oct 2019 20:27:00 +0200 Subject: [PATCH 405/594] Addition of Secant Method (#876) * Add files via upload * Update secant_method.py * Remove unused import * Remove unused import --- arithmetic_analysis/secant_method.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 arithmetic_analysis/secant_method.py diff --git a/arithmetic_analysis/secant_method.py b/arithmetic_analysis/secant_method.py new file mode 100644 index 000000000000..b05d44c627d8 --- /dev/null +++ b/arithmetic_analysis/secant_method.py @@ -0,0 +1,28 @@ +# Implementing Secant method in Python +# Author: dimgrichr + + +from math import exp + + +def f(x): + """ + >>> f(5) + 39.98652410600183 + """ + return 8 * x - 2 * exp(-x) + + +def SecantMethod(lower_bound, upper_bound, repeats): + """ + >>> SecantMethod(1, 3, 2) + 0.2139409276214589 + """ + x0 = lower_bound + x1 = upper_bound + for i in range(0, repeats): + x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0)) + return x1 + + +print(f"The solution is: {SecantMethod(1, 3, 2)}") From 4f86f5848275bf87437a698531b6069f8e4938b8 Mon Sep 17 00:00:00 2001 From: Devil Lord <46564519+DevilLord9967@users.noreply.github.com> Date: Mon, 28 Oct 2019 23:59:08 +0530 Subject: [PATCH 406/594] Create GAN.py (#1445) * Create GAN.py * gan update * Delete train-labels-idx1-ubyte.gz * Update GAN.py * Update GAN.py * Delete GAN.py * Create gan.py * Update gan.py * input_data import file --- neural_network/gan.py | 391 +++++++++++++++++++++++++++++++++++ neural_network/input_data.py | 332 +++++++++++++++++++++++++++++ 2 files changed, 723 insertions(+) create mode 100644 neural_network/gan.py create mode 100644 neural_network/input_data.py diff --git a/neural_network/gan.py b/neural_network/gan.py new file mode 100644 index 000000000000..edfff420547b --- /dev/null +++ b/neural_network/gan.py @@ -0,0 +1,391 @@ +import matplotlib.gridspec as gridspec +import matplotlib.pyplot as plt +import numpy as np +from sklearn.utils import shuffle +import input_data + +random_numer = 42 + +np.random.seed(random_numer) +def ReLu(x): + mask = (x>0) * 1.0 + return mask *x +def d_ReLu(x): + mask = (x>0) * 1.0 + return mask + +def arctan(x): + return np.arctan(x) +def d_arctan(x): + return 1 / (1 + x ** 2) + +def log(x): + return 1 / ( 1+ np.exp(-1*x)) +def d_log(x): + return log(x) * (1 - log(x)) + +def tanh(x): + return np.tanh(x) +def d_tanh(x): + return 1 - np.tanh(x) ** 2 + +def plot(samples): + fig = plt.figure(figsize=(4, 4)) + gs = gridspec.GridSpec(4, 4) + gs.update(wspace=0.05, hspace=0.05) + + for i, sample in enumerate(samples): + ax = plt.subplot(gs[i]) + plt.axis('off') + ax.set_xticklabels([]) + ax.set_yticklabels([]) + ax.set_aspect('equal') + plt.imshow(sample.reshape(28, 28), cmap='Greys_r') + + return fig + + + +# 1. Load Data and declare hyper +print('--------- Load Data ----------') +mnist = input_data.read_data_sets('MNIST_data', one_hot=False) +temp = mnist.test +images, labels = temp.images, temp.labels +images, labels = shuffle(np.asarray(images),np.asarray(labels)) +num_epoch = 10 +learing_rate = 0.00009 +G_input = 100 +hidden_input,hidden_input2,hidden_input3 = 128,256,346 +hidden_input4,hidden_input5,hidden_input6 = 480,560,686 + + + +print('--------- Declare Hyper Parameters ----------') +# 2. Declare Weights +D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002 +# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +D_b1 = np.zeros(hidden_input) + +D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 +# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 +D_b2 = np.zeros(1) + + +G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b1 = np.zeros(hidden_input) + +G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b2 = np.zeros(hidden_input2) + +G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b3 = np.zeros(hidden_input3) + +G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b4 = np.zeros(hidden_input4) + +G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b5 = np.zeros(hidden_input5) + +G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002 +# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 +G_b6 = np.zeros(hidden_input6) + +G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002 +# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 +G_b7 = np.zeros(784) + +# 3. For Adam Optimzier +v1,m1 = 0,0 +v2,m2 = 0,0 +v3,m3 = 0,0 +v4,m4 = 0,0 + +v5,m5 = 0,0 +v6,m6 = 0,0 +v7,m7 = 0,0 +v8,m8 = 0,0 +v9,m9 = 0,0 +v10,m10 = 0,0 +v11,m11 = 0,0 +v12,m12 = 0,0 + +v13,m13 = 0,0 +v14,m14 = 0,0 + +v15,m15 = 0,0 +v16,m16 = 0,0 + +v17,m17 = 0,0 +v18,m18 = 0,0 + + +beta_1,beta_2,eps = 0.9,0.999,0.00000001 + +print('--------- Started Training ----------') +for iter in range(num_epoch): + + random_int = np.random.randint(len(images) - 5) + current_image = np.expand_dims(images[random_int],axis=0) + + # Func: Generate The first Fake Data + Z = np.random.uniform(-1., 1., size=[1, G_input]) + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) + + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 + + current_fake_data = log(Gl7) + + # Func: Forward Feed for Real data + Dl1_r = current_image.dot(D_W1) + D_b1 + Dl1_rA = ReLu(Dl1_r) + Dl2_r = Dl1_rA.dot(D_W2) + D_b2 + Dl2_rA = log(Dl2_r) + + # Func: Forward Feed for Fake Data + Dl1_f = current_fake_data.dot(D_W1) + D_b1 + Dl1_fA = ReLu(Dl1_f) + Dl2_f = Dl1_fA.dot(D_W2) + D_b2 + Dl2_fA = log(Dl2_f) + + # Func: Cost D + D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA) + + # Func: Gradient + grad_f_w2_part_1 = 1/(1.0- Dl2_fA) + grad_f_w2_part_2 = d_log(Dl2_f) + grad_f_w2_part_3 = Dl1_fA + grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) + grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 + + grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) + grad_f_w1_part_2 = d_ReLu(Dl1_f) + grad_f_w1_part_3 = current_fake_data + grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) + grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 + + grad_r_w2_part_1 = - 1/Dl2_rA + grad_r_w2_part_2 = d_log(Dl2_r) + grad_r_w2_part_3 = Dl1_rA + grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) + grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 + + grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) + grad_r_w1_part_2 = d_ReLu(Dl1_r) + grad_r_w1_part_3 = current_image + grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) + grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 + + grad_w1 =grad_f_w1 + grad_r_w1 + grad_b1 =grad_f_b1 + grad_r_b1 + + grad_w2 =grad_f_w2 + grad_r_w2 + grad_b2 =grad_f_b2 + grad_r_b2 + + # ---- Update Gradient ---- + m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 + v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2 + + m2 = beta_1 * m2 + (1 - beta_1) * grad_b1 + v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2 + + m3 = beta_1 * m3 + (1 - beta_1) * grad_w2 + v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2 + + m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 + v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 + + D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1)) + D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1)) + + D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1)) + D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1)) + + # Func: Forward Feed for G + Z = np.random.uniform(-1., 1., size=[1, G_input]) + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) + + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 + + current_fake_data = log(Gl7) + + Dl1 = current_fake_data.dot(D_W1) + D_b1 + Dl1_A = ReLu(Dl1) + Dl2 = Dl1_A.dot(D_W2) + D_b2 + Dl2_A = log(Dl2) + + # Func: Cost G + G_cost = -np.log(Dl2_A) + + # Func: Gradient + grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T) + grad_G_w7_part_2 = d_log(Gl7) + grad_G_w7_part_3 = Gl6A + grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) + grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2 + + grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T) + grad_G_w6_part_2 = d_ReLu(Gl6) + grad_G_w6_part_3 = Gl5A + grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) + grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2) + + grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) + grad_G_w5_part_2 = d_tanh(Gl5) + grad_G_w5_part_3 = Gl4A + grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) + grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2) + + grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) + grad_G_w4_part_2 = d_ReLu(Gl4) + grad_G_w4_part_3 = Gl3A + grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) + grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2) + + grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) + grad_G_w3_part_2 = d_arctan(Gl3) + grad_G_w3_part_3 = Gl2A + grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) + grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2) + + grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) + grad_G_w2_part_2 = d_ReLu(Gl2) + grad_G_w2_part_3 = Gl1A + grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) + grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2) + + grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) + grad_G_w1_part_2 = d_arctan(Gl1) + grad_G_w1_part_3 = Z + grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2) + grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2 + + # ---- Update Gradient ---- + m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1 + v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2 + + m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1 + v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2 + + m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2 + v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2 + + m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2 + v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2 + + m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3 + v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2 + + m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3 + v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2 + + m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4 + v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2 + + m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4 + v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2 + + m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5 + v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2 + + m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5 + v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2 + + m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6 + v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2 + + m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6 + v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2 + + m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7 + v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2 + + m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 + v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 + + G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1)) + G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1)) + + G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1)) + G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1)) + + G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1)) + G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1)) + + G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1)) + G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1)) + + G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1)) + G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1)) + + G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1)) + G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1)) + + G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1)) + G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1)) + + # --- Print Error ---- + #print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') + + if iter == 0: + learing_rate = learing_rate * 0.01 + if iter == 40: + learing_rate = learing_rate * 0.01 + + # ---- Print to Out put ---- + if iter%10 == 0: + + print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') + print('--------- Show Example Result See Tab Above ----------') + print('--------- Wait for the image to load ---------') + Z = np.random.uniform(-1., 1., size=[16, G_input]) + + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) + + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 + + current_fake_data = log(Gl7) + + fig = plot(current_fake_data) + fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \ + "_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate) + ), bbox_inches='tight') +#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 +# -- end code -- diff --git a/neural_network/input_data.py b/neural_network/input_data.py new file mode 100644 index 000000000000..983063f0b72d --- /dev/null +++ b/neural_network/input_data.py @@ -0,0 +1,332 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Functions for downloading and reading MNIST data (deprecated). + +This module and all its submodules are deprecated. +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import gzip +import os + +import numpy +from six.moves import urllib +from six.moves import xrange # pylint: disable=redefined-builtin + +from tensorflow.python.framework import dtypes +from tensorflow.python.framework import random_seed +from tensorflow.python.platform import gfile +from tensorflow.python.util.deprecation import deprecated + +_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) + +# CVDF mirror of http://yann.lecun.com/exdb/mnist/ +DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' + + +def _read32(bytestream): + dt = numpy.dtype(numpy.uint32).newbyteorder('>') + return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] + + +@deprecated(None, 'Please use tf.data to implement this functionality.') +def _extract_images(f): + """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. + + Args: + f: A file object that can be passed into a gzip reader. + + Returns: + data: A 4D uint8 numpy array [index, y, x, depth]. + + Raises: + ValueError: If the bytestream does not start with 2051. + + """ + print('Extracting', f.name) + with gzip.GzipFile(fileobj=f) as bytestream: + magic = _read32(bytestream) + if magic != 2051: + raise ValueError('Invalid magic number %d in MNIST image file: %s' % + (magic, f.name)) + num_images = _read32(bytestream) + rows = _read32(bytestream) + cols = _read32(bytestream) + buf = bytestream.read(rows * cols * num_images) + data = numpy.frombuffer(buf, dtype=numpy.uint8) + data = data.reshape(num_images, rows, cols, 1) + return data + + +@deprecated(None, 'Please use tf.one_hot on tensors.') +def _dense_to_one_hot(labels_dense, num_classes): + """Convert class labels from scalars to one-hot vectors.""" + num_labels = labels_dense.shape[0] + index_offset = numpy.arange(num_labels) * num_classes + labels_one_hot = numpy.zeros((num_labels, num_classes)) + labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 + return labels_one_hot + + +@deprecated(None, 'Please use tf.data to implement this functionality.') +def _extract_labels(f, one_hot=False, num_classes=10): + """Extract the labels into a 1D uint8 numpy array [index]. + + Args: + f: A file object that can be passed into a gzip reader. + one_hot: Does one hot encoding for the result. + num_classes: Number of classes for the one hot encoding. + + Returns: + labels: a 1D uint8 numpy array. + + Raises: + ValueError: If the bystream doesn't start with 2049. + """ + print('Extracting', f.name) + with gzip.GzipFile(fileobj=f) as bytestream: + magic = _read32(bytestream) + if magic != 2049: + raise ValueError('Invalid magic number %d in MNIST label file: %s' % + (magic, f.name)) + num_items = _read32(bytestream) + buf = bytestream.read(num_items) + labels = numpy.frombuffer(buf, dtype=numpy.uint8) + if one_hot: + return _dense_to_one_hot(labels, num_classes) + return labels + + +class _DataSet(object): + """Container class for a _DataSet (deprecated). + + THIS CLASS IS DEPRECATED. + """ + + @deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py' + ' from tensorflow/models.') + def __init__(self, + images, + labels, + fake_data=False, + one_hot=False, + dtype=dtypes.float32, + reshape=True, + seed=None): + """Construct a _DataSet. + + one_hot arg is used only if fake_data is true. `dtype` can be either + `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into + `[0, 1]`. Seed arg provides for convenient deterministic testing. + + Args: + images: The images + labels: The labels + fake_data: Ignore inages and labels, use fake data. + one_hot: Bool, return the labels as one hot vectors (if True) or ints (if + False). + dtype: Output image dtype. One of [uint8, float32]. `uint8` output has + range [0,255]. float32 output has range [0,1]. + reshape: Bool. If True returned images are returned flattened to vectors. + seed: The random seed to use. + """ + seed1, seed2 = random_seed.get_seed(seed) + # If op level seed is not set, use whatever graph level seed is returned + numpy.random.seed(seed1 if seed is None else seed2) + dtype = dtypes.as_dtype(dtype).base_dtype + if dtype not in (dtypes.uint8, dtypes.float32): + raise TypeError('Invalid image dtype %r, expected uint8 or float32' % + dtype) + if fake_data: + self._num_examples = 10000 + self.one_hot = one_hot + else: + assert images.shape[0] == labels.shape[0], ( + 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) + self._num_examples = images.shape[0] + + # Convert shape from [num examples, rows, columns, depth] + # to [num examples, rows*columns] (assuming depth == 1) + if reshape: + assert images.shape[3] == 1 + images = images.reshape(images.shape[0], + images.shape[1] * images.shape[2]) + if dtype == dtypes.float32: + # Convert from [0, 255] -> [0.0, 1.0]. + images = images.astype(numpy.float32) + images = numpy.multiply(images, 1.0 / 255.0) + self._images = images + self._labels = labels + self._epochs_completed = 0 + self._index_in_epoch = 0 + + @property + def images(self): + return self._images + + @property + def labels(self): + return self._labels + + @property + def num_examples(self): + return self._num_examples + + @property + def epochs_completed(self): + return self._epochs_completed + + def next_batch(self, batch_size, fake_data=False, shuffle=True): + """Return the next `batch_size` examples from this data set.""" + if fake_data: + fake_image = [1] * 784 + if self.one_hot: + fake_label = [1] + [0] * 9 + else: + fake_label = 0 + return [fake_image for _ in xrange(batch_size) + ], [fake_label for _ in xrange(batch_size)] + start = self._index_in_epoch + # Shuffle for the first epoch + if self._epochs_completed == 0 and start == 0 and shuffle: + perm0 = numpy.arange(self._num_examples) + numpy.random.shuffle(perm0) + self._images = self.images[perm0] + self._labels = self.labels[perm0] + # Go to the next epoch + if start + batch_size > self._num_examples: + # Finished epoch + self._epochs_completed += 1 + # Get the rest examples in this epoch + rest_num_examples = self._num_examples - start + images_rest_part = self._images[start:self._num_examples] + labels_rest_part = self._labels[start:self._num_examples] + # Shuffle the data + if shuffle: + perm = numpy.arange(self._num_examples) + numpy.random.shuffle(perm) + self._images = self.images[perm] + self._labels = self.labels[perm] + # Start next epoch + start = 0 + self._index_in_epoch = batch_size - rest_num_examples + end = self._index_in_epoch + images_new_part = self._images[start:end] + labels_new_part = self._labels[start:end] + return numpy.concatenate((images_rest_part, images_new_part), + axis=0), numpy.concatenate( + (labels_rest_part, labels_new_part), axis=0) + else: + self._index_in_epoch += batch_size + end = self._index_in_epoch + return self._images[start:end], self._labels[start:end] + + +@deprecated(None, 'Please write your own downloading logic.') +def _maybe_download(filename, work_directory, source_url): + """Download the data from source url, unless it's already here. + + Args: + filename: string, name of the file in the directory. + work_directory: string, path to working directory. + source_url: url to download from if file doesn't exist. + + Returns: + Path to resulting file. + """ + if not gfile.Exists(work_directory): + gfile.MakeDirs(work_directory) + filepath = os.path.join(work_directory, filename) + if not gfile.Exists(filepath): + urllib.request.urlretrieve(source_url, filepath) + with gfile.GFile(filepath) as f: + size = f.size() + print('Successfully downloaded', filename, size, 'bytes.') + return filepath + + +@deprecated(None, 'Please use alternatives such as:' + ' tensorflow_datasets.load(\'mnist\')') +def read_data_sets(train_dir, + fake_data=False, + one_hot=False, + dtype=dtypes.float32, + reshape=True, + validation_size=5000, + seed=None, + source_url=DEFAULT_SOURCE_URL): + if fake_data: + + def fake(): + return _DataSet([], [], + fake_data=True, + one_hot=one_hot, + dtype=dtype, + seed=seed) + + train = fake() + validation = fake() + test = fake() + return _Datasets(train=train, validation=validation, test=test) + + if not source_url: # empty string check + source_url = DEFAULT_SOURCE_URL + + train_images_file = 'train-images-idx3-ubyte.gz' + train_labels_file = 'train-labels-idx1-ubyte.gz' + test_images_file = 't10k-images-idx3-ubyte.gz' + test_labels_file = 't10k-labels-idx1-ubyte.gz' + + local_file = _maybe_download(train_images_file, train_dir, + source_url + train_images_file) + with gfile.Open(local_file, 'rb') as f: + train_images = _extract_images(f) + + local_file = _maybe_download(train_labels_file, train_dir, + source_url + train_labels_file) + with gfile.Open(local_file, 'rb') as f: + train_labels = _extract_labels(f, one_hot=one_hot) + + local_file = _maybe_download(test_images_file, train_dir, + source_url + test_images_file) + with gfile.Open(local_file, 'rb') as f: + test_images = _extract_images(f) + + local_file = _maybe_download(test_labels_file, train_dir, + source_url + test_labels_file) + with gfile.Open(local_file, 'rb') as f: + test_labels = _extract_labels(f, one_hot=one_hot) + + if not 0 <= validation_size <= len(train_images): + raise ValueError( + 'Validation size should be between 0 and {}. Received: {}.'.format( + len(train_images), validation_size)) + + validation_images = train_images[:validation_size] + validation_labels = train_labels[:validation_size] + train_images = train_images[validation_size:] + train_labels = train_labels[validation_size:] + + options = dict(dtype=dtype, reshape=reshape, seed=seed) + + train = _DataSet(train_images, train_labels, **options) + validation = _DataSet(validation_images, validation_labels, **options) + test = _DataSet(test_images, test_labels, **options) + + return _Datasets(train=train, validation=validation, test=test) From e463c0b5739ccabe2694829d410ef095d794b91c Mon Sep 17 00:00:00 2001 From: Kumar-Nishchay <56668486+Kumar-Nishchay@users.noreply.github.com> Date: Tue, 29 Oct 2019 12:16:29 +0530 Subject: [PATCH 407/594] Update dictionary.txt (#1507) Added a new word Microfinance. This is one of the recently added word in oxford dictionary --- other/dictionary.txt | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/other/dictionary.txt b/other/dictionary.txt index 14528efe844f..75838996ba08 100644 --- a/other/dictionary.txt +++ b/other/dictionary.txt @@ -26131,6 +26131,7 @@ MICROECONOMICS MICROELECTRONICS MICROFILM MICROFILMS +MICROFINANCE MICROGRAMMING MICROINSTRUCTION MICROINSTRUCTIONS @@ -45330,4 +45331,4 @@ ZOROASTER ZOROASTRIAN ZULU ZULUS -ZURICH \ No newline at end of file +ZURICH From e3d4d2bb57ac3d5dabe93cac3957981782bd7d96 Mon Sep 17 00:00:00 2001 From: percy07 <56677891+percy07@users.noreply.github.com> Date: Tue, 29 Oct 2019 15:36:37 +0530 Subject: [PATCH 408/594] Update greatest_common_divisor.py (#1513) Add Doctests. --- maths/greatest_common_divisor.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/maths/greatest_common_divisor.py b/maths/greatest_common_divisor.py index 07dddab9aeff..21c427d5b227 100644 --- a/maths/greatest_common_divisor.py +++ b/maths/greatest_common_divisor.py @@ -10,6 +10,16 @@ def greatest_common_divisor(a, b): Calculate Greatest Common Divisor (GCD). >>> greatest_common_divisor(24, 40) 8 + >>> greatest_common_divisor(1, 1) + 1 + >>> greatest_common_divisor(1, 800) + 1 + >>> greatest_common_divisor(11, 37) + 1 + >>> greatest_common_divisor(3, 5) + 1 + >>> greatest_common_divisor(16, 4) + 4 """ return b if a == 0 else greatest_common_divisor(b % a, a) From 1ed47ad6f4b1f38d4d0a52b7f69d43c4a4294cc9 Mon Sep 17 00:00:00 2001 From: percy07 <56677891+percy07@users.noreply.github.com> Date: Tue, 29 Oct 2019 15:52:49 +0530 Subject: [PATCH 409/594] Update palindrome.py (#1509) * Update palindrome.py Add Doctests. * Use test_data to drive the testing --- other/palindrome.py | 63 +++++++++++++++++++++++++++++++++++---------- 1 file changed, 49 insertions(+), 14 deletions(-) diff --git a/other/palindrome.py b/other/palindrome.py index 2ca453b64702..dd1fe316f479 100644 --- a/other/palindrome.py +++ b/other/palindrome.py @@ -1,9 +1,31 @@ -# Program to find whether given string is palindrome or not -def is_palindrome(str): +# Algorithms to determine if a string is palindrome + +test_data = { + "MALAYALAM": True, + "String": False, + "rotor": True, + "level": True, + "A": True, + "BB": True, + "ABC": False, + "amanaplanacanalpanama": True, # "a man a plan a canal panama" +} +# Ensure our test data is valid +assert all((key == key[::-1]) is value for key, value in test_data.items()) + + +def is_palindrome(s: str) -> bool: + """ + Return True if s is a palindrome otherwise return False. + + >>> all(is_palindrome(key) is value for key, value in test_data.items()) + True + """ + start_i = 0 - end_i = len(str) - 1 + end_i = len(s) - 1 while start_i < end_i: - if str[start_i] == str[end_i]: + if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: @@ -11,21 +33,34 @@ def is_palindrome(str): return True -# Recursive method -def recursive_palindrome(str): - if len(str) <= 1: +def is_palindrome_recursive(s: str) -> bool: + """ + Return True if s is a palindrome otherwise return False. + + >>> all(is_palindrome_recursive(key) is value for key, value in test_data.items()) + True + """ + if len(s) <= 1: return True - if str[0] == str[len(str) - 1]: - return recursive_palindrome(str[1:-1]) + if s[0] == s[len(s) - 1]: + return is_palindrome_recursive(s[1:-1]) else: return False -def main(): - str = "ama" - print(recursive_palindrome(str.lower())) - print(is_palindrome(str.lower())) +def is_palindrome_slice(s: str) -> bool: + """ + Return True if s is a palindrome otherwise return False. + + >>> all(is_palindrome_slice(key) is value for key, value in test_data.items()) + True + """ + return s == s[::-1] if __name__ == "__main__": - main() + for key, value in test_data.items(): + assert is_palindrome(key) is is_palindrome_recursive(key) + assert is_palindrome(key) is is_palindrome_slice(key) + print(f"{key:21} {value}") + print("a man a plan a canal panama") From dfea6f3f0b0dc3ad834c45b1c3a322827b9e1bbf Mon Sep 17 00:00:00 2001 From: Janith Wanniarachchi Date: Tue, 29 Oct 2019 16:23:29 +0530 Subject: [PATCH 410/594] :white_check_mark: added tests for Perceptron in Neural Networks (#1506) * :white_check_mark: added tests for Perceptron in Neural Networks * Space * Format code with psf/black --- neural_network/perceptron.py | 113 +++++++++++++++++++++++++++-------- 1 file changed, 88 insertions(+), 25 deletions(-) diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 5feb8610a911..d64c0a5c4341 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -1,29 +1,53 @@ """ - Perceptron w = w + N * (d(k) - y) * x(k) - Using perceptron network for oil analysis, - with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 + Using perceptron network for oil analysis, with Measuring of 3 parameters + that represent chemical characteristics we can classify the oil, in p1 or p2 p1 = -1 p2 = 1 - """ import random class Perceptron: - def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1): + def __init__(self, sample, target, learning_rate=0.01, epoch_number=1000, bias=-1): + """ + Initializes a Perceptron network for oil analysis + :param sample: sample dataset of 3 parameters with shape [30,3] + :param target: variable for classification with two possible states -1 or 1 + :param learning_rate: learning rate used in optimizing. + :param epoch_number: number of epochs to train network on. + :param bias: bias value for the network. + """ self.sample = sample - self.exit = exit - self.learn_rate = learn_rate + if len(self.sample) == 0: + raise AttributeError("Sample data can not be empty") + self.target = target + if len(self.target) == 0: + raise AttributeError("Target data can not be empty") + if len(self.sample) != len(self.target): + raise AttributeError( + "Sample data and Target data do not have matching lengths" + ) + self.learning_rate = learning_rate self.epoch_number = epoch_number self.bias = bias self.number_sample = len(sample) - self.col_sample = len(sample[0]) + self.col_sample = len(sample[0]) # number of columns in dataset self.weight = [] - def training(self): + def training(self) -> None: + """ + Trains perceptron for epochs <= given number of epochs + :return: None + >>> data = [[2.0149, 0.6192, 10.9263]] + >>> targets = [-1] + >>> perceptron = Perceptron(data,targets) + >>> perceptron.training() # doctest: +ELLIPSIS + ('\\nEpoch:\\n', ...) + ... + """ for sample in self.sample: sample.insert(0, self.bias) @@ -35,31 +59,47 @@ def training(self): epoch_count = 0 while True: - erro = False + has_misclassified = False for i in range(self.number_sample): u = 0 for j in range(self.col_sample + 1): u = u + self.weight[j] * self.sample[i][j] y = self.sign(u) - if y != self.exit[i]: - + if y != self.target[i]: for j in range(self.col_sample + 1): - self.weight[j] = ( self.weight[j] - + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] + + self.learning_rate + * (self.target[i] - y) + * self.sample[i][j] ) - erro = True + has_misclassified = True # print('Epoch: \n',epoch_count) epoch_count = epoch_count + 1 # if you want controle the epoch or just by erro - if erro == False: + if not has_misclassified: print(("\nEpoch:\n", epoch_count)) print("------------------------\n") # if epoch_count > self.epoch_number or not erro: break - def sort(self, sample): + def sort(self, sample) -> None: + """ + :param sample: example row to classify as P1 or P2 + :return: None + >>> data = [[2.0149, 0.6192, 10.9263]] + >>> targets = [-1] + >>> perceptron = Perceptron(data,targets) + >>> perceptron.training() # doctest:+ELLIPSIS + ('\\nEpoch:\\n', ...) + ... + >>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS + ('Sample: ', ...) + classification: P1 + + """ + if len(self.sample) == 0: + raise AttributeError("Sample data can not be empty") sample.insert(0, self.bias) u = 0 for i in range(self.col_sample + 1): @@ -74,7 +114,21 @@ def sort(self, sample): print(("Sample: ", sample)) print("classification: P2") - def sign(self, u): + def sign(self, u: float) -> int: + """ + threshold function for classification + :param u: input number + :return: 1 if the input is greater than 0, otherwise -1 + >>> data = [[0],[-0.5],[0.5]] + >>> targets = [1,-1,1] + >>> perceptron = Perceptron(data,targets) + >>> perceptron.sign(0) + 1 + >>> perceptron.sign(-0.5) + -1 + >>> perceptron.sign(0.5) + 1 + """ return 1 if u >= 0 else -1 @@ -144,15 +198,24 @@ def sign(self, u): 1, ] -network = Perceptron( - sample=samples, exit=exit, learn_rate=0.01, epoch_number=1000, bias=-1 -) - -network.training() if __name__ == "__main__": + import doctest + + doctest.testmod() + + network = Perceptron( + sample=samples, target=exit, learning_rate=0.01, epoch_number=1000, bias=-1 + ) + network.training() + print("Finished training perceptron") + print("Enter values to predict or q to exit") while True: sample = [] - for i in range(3): - sample.insert(i, float(input("value: "))) + for i in range(len(samples[0])): + observation = input("value: ").strip() + if observation == "q": + break + observation = float(observation) + sample.insert(i, observation) network.sort(sample) From bfac867e27328eeedf28b3cd4d8f8195d15e44a4 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 29 Oct 2019 21:05:36 +0100 Subject: [PATCH 411/594] Add doctests to other/word_patterns.py (#1518) --- other/word_patterns.py | 63 ++++++++++++++++++++++-------------------- 1 file changed, 33 insertions(+), 30 deletions(-) diff --git a/other/word_patterns.py b/other/word_patterns.py index 16089019704b..d229954dea93 100644 --- a/other/word_patterns.py +++ b/other/word_patterns.py @@ -1,41 +1,44 @@ -import pprint, time - - -def getWordPattern(word): +def get_word_pattern(word: str) -> str: + """ + >>> get_word_pattern("pattern") + '0.1.2.2.3.4.5' + >>> get_word_pattern("word pattern") + '0.1.2.3.4.5.6.7.7.8.2.9' + >>> get_word_pattern("get word pattern") + '0.1.2.3.4.5.6.7.3.8.9.2.2.1.6.10' + """ word = word.upper() - nextNum = 0 - letterNums = {} - wordPattern = [] + next_num = 0 + letter_nums = {} + word_pattern = [] for letter in word: - if letter not in letterNums: - letterNums[letter] = str(nextNum) - nextNum += 1 - wordPattern.append(letterNums[letter]) - return ".".join(wordPattern) + if letter not in letter_nums: + letter_nums[letter] = str(next_num) + next_num += 1 + word_pattern.append(letter_nums[letter]) + return ".".join(word_pattern) -def main(): - startTime = time.time() - allPatterns = {} +if __name__ == "__main__": + import pprint + import time - with open("Dictionary.txt") as fo: - wordList = fo.read().split("\n") + start_time = time.time() + with open("dictionary.txt") as in_file: + wordList = in_file.read().splitlines() + all_patterns = {} for word in wordList: - pattern = getWordPattern(word) - - if pattern not in allPatterns: - allPatterns[pattern] = [word] + pattern = get_word_pattern(word) + if pattern in all_patterns: + all_patterns[pattern].append(word) else: - allPatterns[pattern].append(word) + all_patterns[pattern] = [word] - with open("Word Patterns.txt", "w") as fo: - fo.write(pprint.pformat(allPatterns)) + with open("word_patterns.txt", "w") as out_file: + out_file.write(pprint.pformat(all_patterns)) - totalTime = round(time.time() - startTime, 2) - print(("Done! [", totalTime, "seconds ]")) - - -if __name__ == "__main__": - main() + totalTime = round(time.time() - start_time, 2) + print(f"Done! {len(all_patterns):,} word patterns found in {totalTime} seconds.") + # Done! 9,581 word patterns found in 0.58 seconds. From 4880e5479a85fd106d2b2f9c06755a3350c3db2a Mon Sep 17 00:00:00 2001 From: 5ur3 <43802815+5ur3@users.noreply.github.com> Date: Wed, 30 Oct 2019 00:28:51 +0400 Subject: [PATCH 412/594] Create prime_numbers.py (#1519) * Create prime_numbers.py * Update prime_numbers.py --- maths/prime_numbers.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 maths/prime_numbers.py diff --git a/maths/prime_numbers.py b/maths/prime_numbers.py new file mode 100644 index 000000000000..aafbebe07be9 --- /dev/null +++ b/maths/prime_numbers.py @@ -0,0 +1,28 @@ +"""Prime numbers calculation.""" + + +def primes(max: int) -> int: + """ + Return a list of all primes up to max. + >>> primes(10) + [2, 3, 5, 7] + >>> primes(11) + [2, 3, 5, 7, 11] + >>> primes(25) + [2, 3, 5, 7, 11, 13, 17, 19, 23] + >>> primes(1_000_000)[-1] + 999983 + """ + max += 1 + numbers = [False] * max + ret = [] + for i in range(2, max): + if not numbers[i]: + for j in range(i, max, i): + numbers[j] = True + ret.append(i) + return ret + + +if __name__ == "__main__": + print(primes(int(input("Calculate primes up to:\n>> ")))) From f8e97aa597e71ed7f9d4683d00cc910cdaab3a99 Mon Sep 17 00:00:00 2001 From: percy07 <56677891+percy07@users.noreply.github.com> Date: Wed, 30 Oct 2019 02:24:31 +0530 Subject: [PATCH 413/594] Update basic_maths.py (#1517) * Update basic_maths.py Add Doctests. * Update basic_maths.py * Add a space to fix the doctest --- maths/basic_maths.py | 52 +++++++++++++++++------------------- neural_network/perceptron.py | 2 +- 2 files changed, 26 insertions(+), 28 deletions(-) diff --git a/maths/basic_maths.py b/maths/basic_maths.py index 34ffd1031527..d493ca7eb6c9 100644 --- a/maths/basic_maths.py +++ b/maths/basic_maths.py @@ -2,55 +2,56 @@ import math -def prime_factors(n): - """Find Prime Factors.""" +def prime_factors(n: int) -> list: + """Find Prime Factors. + >>> prime_factors(100) + [2, 2, 5, 5] + """ pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) - for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) - if n > 2: pf.append(n) - return pf -def number_of_divisors(n): - """Calculate Number of Divisors of an Integer.""" +def number_of_divisors(n: int) -> int: + """Calculate Number of Divisors of an Integer. + >>> number_of_divisors(100) + 9 + """ div = 1 - temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) - div = div * (temp) - + div *= temp for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) - div = div * (temp) - + div *= temp return div -def sum_of_divisors(n): - """Calculate Sum of Divisors.""" +def sum_of_divisors(n: int) -> int: + """Calculate Sum of Divisors. + >>> sum_of_divisors(100) + 217 + """ s = 1 - temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: s *= (2 ** temp - 1) / (2 - 1) - for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: @@ -58,27 +59,24 @@ def sum_of_divisors(n): n = int(n / i) if temp > 1: s *= (i ** temp - 1) / (i - 1) - - return s + return int(s) -def euler_phi(n): - """Calculte Euler's Phi Function.""" +def euler_phi(n: int) -> int: + """Calculte Euler's Phi Function. + >>> euler_phi(100) + 40 + """ l = prime_factors(n) l = set(l) s = n for x in l: s *= (x - 1) / x - return s + return int(s) -def main(): - """Print the Results of Basic Math Operations.""" +if __name__ == "__main__": print(prime_factors(100)) print(number_of_divisors(100)) print(sum_of_divisors(100)) print(euler_phi(100)) - - -if __name__ == "__main__": - main() diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index d64c0a5c4341..26d48506254b 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -90,7 +90,7 @@ def sort(self, sample) -> None: >>> data = [[2.0149, 0.6192, 10.9263]] >>> targets = [-1] >>> perceptron = Perceptron(data,targets) - >>> perceptron.training() # doctest:+ELLIPSIS + >>> perceptron.training() # doctest: +ELLIPSIS ('\\nEpoch:\\n', ...) ... >>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS From 53ff735701db42d2609416ff6772db17383c3f10 Mon Sep 17 00:00:00 2001 From: himanshujain171 <43314193+himanshujain171@users.noreply.github.com> Date: Wed, 30 Oct 2019 04:24:31 +0530 Subject: [PATCH 414/594] Factors of a number (#1493) * Factors of a number * Update factors.py * Fix mypy issue in basic_maths.py * Fix mypy error in perceptron.py * def primes(max: int) -> List[int]: * Update binomial_heap.py * Add a space * Remove a space * Add a space --- data_structures/heap/binomial_heap.py | 177 +++++++++++++------------- maths/basic_maths.py | 4 +- maths/factors.py | 18 +++ maths/prime_numbers.py | 6 +- neural_network/perceptron.py | 3 +- 5 files changed, 109 insertions(+), 99 deletions(-) create mode 100644 maths/factors.py diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py index e1a005487e34..7f570f1c755b 100644 --- a/data_structures/heap/binomial_heap.py +++ b/data_structures/heap/binomial_heap.py @@ -1,7 +1,6 @@ """ - Binomial Heap - - Reference: Advanced Data Structures, Peter Brass +Binomial Heap +Reference: Advanced Data Structures, Peter Brass """ @@ -10,7 +9,7 @@ class Node: Node in a doubly-linked binomial tree, containing: - value - size of left subtree - - link to left, right and parent nodes + - link to left, right and parent nodes """ def __init__(self, val): @@ -23,8 +22,8 @@ def __init__(self, val): def mergeTrees(self, other): """ - In-place merge of two binomial trees of equal size. - Returns the root of the resulting tree + In-place merge of two binomial trees of equal size. + Returns the root of the resulting tree """ assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks" @@ -47,83 +46,79 @@ def mergeTrees(self, other): class BinomialHeap: - """ - Min-oriented priority queue implemented with the Binomial Heap data - structure implemented with the BinomialHeap class. It supports: - + r""" + Min-oriented priority queue implemented with the Binomial Heap data + structure implemented with the BinomialHeap class. It supports: - Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - - Delete Min: O(logn) + - Delete Min: O(logn) - Peek (return min without deleting it): O(1) - - Example: - - Create a random permutation of 30 integers to be inserted and - 19 of them deleted - >>> import numpy as np - >>> permutation = np.random.permutation(list(range(30))) - - Create a Heap and insert the 30 integers - - __init__() test - >>> first_heap = BinomialHeap() - - 30 inserts - insert() test - >>> for number in permutation: - ... first_heap.insert(number) - - Size test - >>> print(first_heap.size) - 30 - - Deleting - delete() test - >>> for i in range(25): - ... print(first_heap.deleteMin(), end=" ") - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 - - Create a new Heap - >>> second_heap = BinomialHeap() - >>> vals = [17, 20, 31, 34] - >>> for value in vals: - ... second_heap.insert(value) - - - The heap should have the following structure: - - 17 - / \ - # 31 - / \ - 20 34 - / \ / \ - # # # # - - preOrder() test - >>> print(second_heap.preOrder()) - [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] - - printing Heap - __str__() test - >>> print(second_heap) - 17 - -# - -31 - --20 - ---# - ---# - --34 - ---# - ---# - - mergeHeaps() test - >>> merged = second_heap.mergeHeaps(first_heap) - >>> merged.peek() - 17 - - values in merged heap; (merge is inplace) - >>> while not first_heap.isEmpty(): - ... print(first_heap.deleteMin(), end=" ") - 17 20 25 26 27 28 29 31 34 - + + Example: + + Create a random permutation of 30 integers to be inserted and 19 of them deleted + >>> import numpy as np + >>> permutation = np.random.permutation(list(range(30))) + + Create a Heap and insert the 30 integers + __init__() test + >>> first_heap = BinomialHeap() + + 30 inserts - insert() test + >>> for number in permutation: + ... first_heap.insert(number) + + Size test + >>> print(first_heap.size) + 30 + + Deleting - delete() test + >>> for i in range(25): + ... print(first_heap.deleteMin(), end=" ") + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 + + Create a new Heap + >>> second_heap = BinomialHeap() + >>> vals = [17, 20, 31, 34] + >>> for value in vals: + ... second_heap.insert(value) + + + The heap should have the following structure: + + 17 + / \ + # 31 + / \ + 20 34 + / \ / \ + # # # # + + preOrder() test + >>> print(second_heap.preOrder()) + [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] + + printing Heap - __str__() test + >>> print(second_heap) + 17 + -# + -31 + --20 + ---# + ---# + --34 + ---# + ---# + + mergeHeaps() test + >>> merged = second_heap.mergeHeaps(first_heap) + >>> merged.peek() + 17 + + values in merged heap; (merge is inplace) + >>> while not first_heap.isEmpty(): + ... print(first_heap.deleteMin(), end=" ") + 17 20 25 26 27 28 29 31 34 """ def __init__(self, bottom_root=None, min_node=None, heap_size=0): @@ -133,8 +128,8 @@ def __init__(self, bottom_root=None, min_node=None, heap_size=0): def mergeHeaps(self, other): """ - In-place merge of two binomial heaps. - Both of them become the resulting merged heap + In-place merge of two binomial heaps. + Both of them become the resulting merged heap """ # Empty heaps corner cases @@ -209,7 +204,7 @@ def mergeHeaps(self, other): def insert(self, val): """ - insert a value in the heap + insert a value in the heap """ if self.size == 0: self.bottom_root = Node(val) @@ -251,7 +246,7 @@ def insert(self, val): def peek(self): """ - return min element without deleting it + return min element without deleting it """ return self.min_node.val @@ -260,7 +255,7 @@ def isEmpty(self): def deleteMin(self): """ - delete min element and return it + delete min element and return it """ # assert not self.isEmpty(), "Empty Heap" @@ -363,9 +358,9 @@ def deleteMin(self): def preOrder(self): """ - Returns the Pre-order representation of the heap including - values of nodes plus their level distance from the root; - Empty nodes appear as # + Returns the Pre-order representation of the heap including + values of nodes plus their level distance from the root; + Empty nodes appear as # """ # Find top root top_root = self.bottom_root @@ -378,7 +373,7 @@ def preOrder(self): def __traversal(self, curr_node, preorder, level=0): """ - Pre-order traversal of nodes + Pre-order traversal of nodes """ if curr_node: preorder.append((curr_node.val, level)) @@ -389,8 +384,8 @@ def __traversal(self, curr_node, preorder, level=0): def __str__(self): """ - Overwriting str for a pre-order print of nodes in heap; - Performance is poor, so use only for small examples + Overwriting str for a pre-order print of nodes in heap; + Performance is poor, so use only for small examples """ if self.isEmpty(): return "" diff --git a/maths/basic_maths.py b/maths/basic_maths.py index d493ca7eb6c9..5dbfd250d308 100644 --- a/maths/basic_maths.py +++ b/maths/basic_maths.py @@ -67,10 +67,8 @@ def euler_phi(n: int) -> int: >>> euler_phi(100) 40 """ - l = prime_factors(n) - l = set(l) s = n - for x in l: + for x in set(prime_factors(n)): s *= (x - 1) / x return int(s) diff --git a/maths/factors.py b/maths/factors.py new file mode 100644 index 000000000000..e2fdc4063a13 --- /dev/null +++ b/maths/factors.py @@ -0,0 +1,18 @@ +def factors_of_a_number(num: int) -> list: + """ + >>> factors_of_a_number(1) + [1] + >>> factors_of_a_number(5) + [1, 5] + >>> factors_of_a_number(24) + [1, 2, 3, 4, 6, 8, 12, 24] + >>> factors_of_a_number(-24) + [] + """ + return [i for i in range(1, num + 1) if num % i == 0] + + +if __name__ == "__main__": + num = int(input("Enter a number to find its factors: ")) + factors = factors_of_a_number(num) + print(f"{num} has {len(factors)} factors: {', '.join(str(f) for f in factors)}") diff --git a/maths/prime_numbers.py b/maths/prime_numbers.py index aafbebe07be9..a29a95ea2280 100644 --- a/maths/prime_numbers.py +++ b/maths/prime_numbers.py @@ -1,9 +1,9 @@ -"""Prime numbers calculation.""" +from typing import List -def primes(max: int) -> int: +def primes(max: int) -> List[int]: """ - Return a list of all primes up to max. + Return a list of all primes numbers up to max. >>> primes(10) [2, 3, 5, 7] >>> primes(11) diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 26d48506254b..3610dd2ab227 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -95,8 +95,7 @@ def sort(self, sample) -> None: ... >>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS ('Sample: ', ...) - classification: P1 - + classification: P... """ if len(self.sample) == 0: raise AttributeError("Sample data can not be empty") From 63433616c9a8f690e416c32dc01ff00bc515d9e2 Mon Sep 17 00:00:00 2001 From: LokiUvaraj <54948079+LokiUvaraj@users.noreply.github.com> Date: Wed, 30 Oct 2019 04:56:28 +0530 Subject: [PATCH 415/594] average_mode.py (#1491) * Add files via upload Finds the mode in the input data. * Update average_mode.py * Update average_mode.py * Update average_mode.py * Update average_mode.py * Update average_mode.py * Update average_mode.py * Tabs do not belong in Python files! --- maths/average_mode.py | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 maths/average_mode.py diff --git a/maths/average_mode.py b/maths/average_mode.py new file mode 100644 index 000000000000..c1a4b3521448 --- /dev/null +++ b/maths/average_mode.py @@ -0,0 +1,31 @@ +import statistics + + +def mode(input_list): # Defining function "mode." + """This function returns the mode(Mode as in the measures of + central tendency) of the input data. + + The input list may contain any Datastructure or any Datatype. + + >>> input_list = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2] + >>> mode(input_list) + 2 + >>> input_list = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2] + >>> mode(input_list) == statistics.mode(input_list) + True + """ + # Copying inputlist to check with the index number later. + check_list = input_list.copy() + result = list() # Empty list to store the counts of elements in input_list + for x in input_list: + result.append(input_list.count(x)) + input_list.remove(x) + y = max(result) # Gets the maximum value in the result list. + # Returns the value with the maximum number of repetitions. + return check_list[result.index(y)] + + +if __name__ == "__main__": + data = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2] + print(mode(data)) + print(statistics.mode(data)) From fc533a759878f90f38c4d8226a9e828724fc2a2e Mon Sep 17 00:00:00 2001 From: Sri Suma <41474384+srisumapasumarthi@users.noreply.github.com> Date: Wed, 30 Oct 2019 17:22:20 +0530 Subject: [PATCH 416/594] Simplified DES (#1382) * Simplified DES * Add files via upload Diffie Hellman algorithm to generate a secret key. * Update sdes.py * Format code with psf/black and add doctests --- ciphers/diffie.py | 26 +++++++++++++ other/sdes.py | 97 +++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 123 insertions(+) create mode 100644 ciphers/diffie.py create mode 100644 other/sdes.py diff --git a/ciphers/diffie.py b/ciphers/diffie.py new file mode 100644 index 000000000000..6b0cca1f45e6 --- /dev/null +++ b/ciphers/diffie.py @@ -0,0 +1,26 @@ +def find_primitive(n): + for r in range(1, n): + li = [] + for x in range(n-1): + val = pow(r,x,n) + if val in li: + break + li.append(val) + else: + return r + + +if __name__ == "__main__": + q = int(input('Enter a prime number q: ')) + a = find_primitive(q) + a_private = int(input('Enter private key of A: ')) + a_public = pow(a, a_private, q) + b_private = int(input('Enter private key of B: ')) + b_public = pow(a, b_private, q) + + a_secret = pow(b_public, a_private, q) + b_secret = pow(a_public, b_private, q) + + print('The key value generated by A is: ', a_secret) + print('The key value generated by B is: ', b_secret) + diff --git a/other/sdes.py b/other/sdes.py new file mode 100644 index 000000000000..3038ff193ae9 --- /dev/null +++ b/other/sdes.py @@ -0,0 +1,97 @@ +def apply_table(inp, table): + """ + >>> apply_table("0123456789", list(range(10))) + '9012345678' + >>> apply_table("0123456789", list(range(9, -1, -1))) + '8765432109' + """ + res = "" + for i in table: + res += inp[i - 1] + return res + + +def left_shift(data): + """ + >>> left_shift("0123456789") + '1234567890' + """ + return data[1:] + data[0] + + +def XOR(a, b): + """ + >>> XOR("01010101", "00001111") + '01011010' + """ + res = "" + for i in range(len(a)): + if a[i] == b[i]: + res += "0" + else: + res += "1" + return res + + +def apply_sbox(s, data): + row = int("0b" + data[0] + data[-1], 2) + col = int("0b" + data[1:3], 2) + return bin(s[row][col])[2:] + + +def function(expansion, s0, s1, key, message): + left = message[:4] + right = message[4:] + temp = apply_table(right, expansion) + temp = XOR(temp, key) + l = apply_sbox(s0, temp[:4]) + r = apply_sbox(s1, temp[4:]) + l = "0" * (2 - len(l)) + l + r = "0" * (2 - len(r)) + r + temp = apply_table(l + r, p4_table) + temp = XOR(left, temp) + return temp + right + + +if __name__ == "__main__": + + key = input("Enter 10 bit key: ") + message = input("Enter 8 bit message: ") + + p8_table = [6, 3, 7, 4, 8, 5, 10, 9] + p10_table = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] + p4_table = [2, 4, 3, 1] + IP = [2, 6, 3, 1, 4, 8, 5, 7] + IP_inv = [4, 1, 3, 5, 7, 2, 8, 6] + expansion = [4, 1, 2, 3, 2, 3, 4, 1] + s0 = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] + s1 = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] + + # key generation + temp = apply_table(key, p10_table) + left = temp[:5] + right = temp[5:] + left = left_shift(left) + right = left_shift(right) + key1 = apply_table(left + right, p8_table) + left = left_shift(left) + right = left_shift(right) + left = left_shift(left) + right = left_shift(right) + key2 = apply_table(left + right, p8_table) + + # encryption + temp = apply_table(message, IP) + temp = function(expansion, s0, s1, key1, temp) + temp = temp[4:] + temp[:4] + temp = function(expansion, s0, s1, key2, temp) + CT = apply_table(temp, IP_inv) + print("Cipher text is:", CT) + + # decryption + temp = apply_table(CT, IP) + temp = function(expansion, s0, s1, key2, temp) + temp = temp[4:] + temp[:4] + temp = function(expansion, s0, s1, key1, temp) + PT = apply_table(temp, IP_inv) + print("Plain text after decypting is:", PT) From df95f439072fc055f0611a5006bf2006c62536e7 Mon Sep 17 00:00:00 2001 From: percy07 <56677891+percy07@users.noreply.github.com> Date: Wed, 30 Oct 2019 20:40:30 +0530 Subject: [PATCH 417/594] Update quick_select.py (#1523) * Update quick_select.py Add Doctests. * Add typehints * Don't pre-allocate "smaller" and "larger" --- searches/quick_select.py | 44 ++++++++++++++++++++++++---------------- 1 file changed, 27 insertions(+), 17 deletions(-) diff --git a/searches/quick_select.py b/searches/quick_select.py index 6b70562bd78f..17dca395f73c 100644 --- a/searches/quick_select.py +++ b/searches/quick_select.py @@ -1,12 +1,13 @@ -import random - """ -A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted +A Python implementation of the quick select algorithm, which is efficient for +calculating the value that would appear in the index of a list if it would be +sorted, even if it is not already sorted https://en.wikipedia.org/wiki/Quickselect """ +import random -def _partition(data, pivot): +def _partition(data: list, pivot) -> tuple: """ Three way partition the data into smaller, equal and greater lists, in relationship to the pivot @@ -25,28 +26,37 @@ def _partition(data, pivot): return less, equal, greater -def quickSelect(list, k): - # k = len(list) // 2 when trying to find the median (index that value would be when list is sorted) +def quick_select(items: list, index: int): + """ + >>> quick_select([2, 4, 5, 7, 899, 54, 32], 5) + 54 + >>> quick_select([2, 4, 5, 7, 899, 54, 32], 1) + 4 + >>> quick_select([5, 4, 3, 2], 2) + 4 + >>> quick_select([3, 5, 7, 10, 2, 12], 3) + 7 + """ + # index = len(items) // 2 when trying to find the median + # (value of index when items is sorted) # invalid input - if k >= len(list) or k < 0: + if index >= len(items) or index < 0: return None - smaller = [] - larger = [] - pivot = random.randint(0, len(list) - 1) - pivot = list[pivot] + pivot = random.randint(0, len(items) - 1) + pivot = items[pivot] count = 0 - smaller, equal, larger = _partition(list, pivot) + smaller, equal, larger = _partition(items, pivot) count = len(equal) m = len(smaller) - # k is the pivot - if m <= k < m + count: + # index is the pivot + if m <= index < m + count: return pivot # must be in smaller - elif m > k: - return quickSelect(smaller, k) + elif m > index: + return quick_select(smaller, index) # must be in larger else: - return quickSelect(larger, k - (m + count)) + return quick_select(larger, index - (m + count)) From 357dbd4ada738ed9d4b814eeec99bcc833e94aff Mon Sep 17 00:00:00 2001 From: John Law Date: Thu, 31 Oct 2019 01:06:07 +0800 Subject: [PATCH 418/594] Doctest, type hints and bug in LIS_O(nlogn) (#1525) * Update longest_increasing_subsequence_o(nlogn).py * Update longest_increasing_subsequence_o(nlogn).py --- ...longest_increasing_subsequence_o(nlogn).py | 21 ++++++++++++++----- 1 file changed, 16 insertions(+), 5 deletions(-) diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py index f7b2c6915bcb..4b06e0d885f2 100644 --- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py @@ -4,18 +4,29 @@ # comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN) # Where N is the Number of elements in the list ############################# +from typing import List + def CeilIndex(v, l, r, key): while r - l > 1: - m = (l + r) / 2 + m = (l + r) // 2 if v[m] >= key: r = m else: l = m - return r -def LongestIncreasingSubsequenceLength(v): +def LongestIncreasingSubsequenceLength(v: List[int]) -> int: + """ + >>> LongestIncreasingSubsequenceLength([2, 5, 3, 7, 11, 8, 10, 13, 6]) + 6 + >>> LongestIncreasingSubsequenceLength([]) + 0 + >>> LongestIncreasingSubsequenceLength([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]) + 6 + >>> LongestIncreasingSubsequenceLength([5, 4, 3, 2, 1]) + 1 + """ if len(v) == 0: return 0 @@ -37,5 +48,5 @@ def LongestIncreasingSubsequenceLength(v): if __name__ == "__main__": - v = [2, 5, 3, 7, 11, 8, 10, 13, 6] - print(LongestIncreasingSubsequenceLength(v)) + import doctest + doctest.testmod() From 8a5633a23376d2eb16f48f583890fde4c1b27e3b Mon Sep 17 00:00:00 2001 From: RitwickGhosh <56272528+RitwickGhosh@users.noreply.github.com> Date: Thu, 31 Oct 2019 12:49:10 +0530 Subject: [PATCH 419/594] Euler Problem 27 solution script Added (#1466) * Add files via upload * Update DIRECTORY.md * Create sol1.py * Update sol1.py * Create __init__.py * Update DIRECTORY.md * Delete isotonic.py * Update sol1.py * Problem_27_project_euler * project_euler/Problem_27/sol1.py * project_euler/Problem_27/sol1.py * project_euler/problem_27/ * project_euler/problem_27 * project_euler/problem_27 * update sol1 of Euler Problem 27 solution script Added * Remove slow test, wrap long comments, format with psf/black * Delete __init__.py * Add type hints * Add doctests to function is_prime() * Rename project_euler/problem_27/project_euler/problem_27/sol1.pysol1.py to project_euler/problem_27/problem_27_sol1.py --- project_euler/problem_27/problem_27_sol1.py | 69 +++++++++++++++++++++ 1 file changed, 69 insertions(+) create mode 100644 project_euler/problem_27/problem_27_sol1.py diff --git a/project_euler/problem_27/problem_27_sol1.py b/project_euler/problem_27/problem_27_sol1.py new file mode 100644 index 000000000000..dbd07f81b713 --- /dev/null +++ b/project_euler/problem_27/problem_27_sol1.py @@ -0,0 +1,69 @@ +""" +Euler discovered the remarkable quadratic formula: +n2 + n + 41 +It turns out that the formula will produce 40 primes for the consecutive values +n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible +by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41. +The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes +for the consecutive values n = 0 to 79. The product of the coefficients, −79 and +1601, is −126479. +Considering quadratics of the form: +n² + an + b, where |a| < 1000 and |b| < 1000 +where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4 +Find the product of the coefficients, a and b, for the quadratic expression that +produces the maximum number of primes for consecutive values of n, starting with +n = 0. +""" + +import math + + +def is_prime(k: int) -> bool: + """ + Determine if a number is prime + >>> is_prime(10) + False + >>> is_prime(11) + True + """ + if k < 2 or k % 2 == 0: + return False + elif k == 2: + return True + else: + for x in range(3, int(math.sqrt(k) + 1), 2): + if k % x == 0: + return False + return True + + +def solution(a_limit: int, b_limit: int) -> int: + """ + >>> solution(1000, 1000) + -59231 + >>> solution(200, 1000) + -59231 + >>> solution(200, 200) + -4925 + >>> solution(-1000, 1000) + 0 + >>> solution(-1000, -1000) + 0 + """ + longest = [0, 0, 0] # length, a, b + for a in range((a_limit * -1) + 1, a_limit): + for b in range(2, b_limit): + if is_prime(b): + count = 0 + n = 0 + while is_prime((n ** 2) + (a * n) + b): + count += 1 + n += 1 + if count > longest[0]: + longest = [count, a, b] + ans = longest[1] * longest[2] + return ans + + +if __name__ == "__main__": + print(solution(1000, 1000)) From 6d44cdd315e1fbff10fb03d9d8b4645183a6a8e5 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Thu, 31 Oct 2019 19:33:40 +0800 Subject: [PATCH 420/594] perfect square (#1534) * perfect square * perfect square --- maths/perfect_square.py | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 maths/perfect_square.py diff --git a/maths/perfect_square.py b/maths/perfect_square.py new file mode 100644 index 000000000000..9b868c5de98a --- /dev/null +++ b/maths/perfect_square.py @@ -0,0 +1,27 @@ +import math + + +def perfect_square(num: int) -> bool: + """ + Check if a number is perfect square number or not + :param num: the number to be checked + :return: True if number is square number, otherwise False + + >>> perfect_square(9) + True + >>> perfect_square(16) + True + >>> perfect_square(1) + True + >>> perfect_square(0) + True + >>> perfect_square(10) + False + """ + return math.sqrt(num) * math.sqrt(num) == num + + +if __name__ == '__main__': + import doctest + + doctest.testmod() From 80e1c8748a947cd2818aa3d8cdf2d224fd13bda1 Mon Sep 17 00:00:00 2001 From: Charley <56961474+pingings@users.noreply.github.com> Date: Thu, 31 Oct 2019 12:20:39 +0000 Subject: [PATCH 421/594] Added Problem 33 (#1440) * Create sol1.py * Create __init__.py * Update sol1.py * corrected range * Update sol1.py --- project_euler/problem_33/__init__.py | 1 + project_euler/problem_33/sol1.py | 55 ++++++++++++++++++++++++++++ 2 files changed, 56 insertions(+) create mode 100644 project_euler/problem_33/__init__.py create mode 100644 project_euler/problem_33/sol1.py diff --git a/project_euler/problem_33/__init__.py b/project_euler/problem_33/__init__.py new file mode 100644 index 000000000000..8b137891791f --- /dev/null +++ b/project_euler/problem_33/__init__.py @@ -0,0 +1 @@ + diff --git a/project_euler/problem_33/sol1.py b/project_euler/problem_33/sol1.py new file mode 100644 index 000000000000..0992c96935f5 --- /dev/null +++ b/project_euler/problem_33/sol1.py @@ -0,0 +1,55 @@ +""" +Problem: + +The fraction 49/98 is a curious fraction, as an inexperienced +mathematician in attempting to simplify it may incorrectly believe +that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s. + +We shall consider fractions like, 30/50 = 3/5, to be trivial examples. + +There are exactly four non-trivial examples of this type of fraction, +less than one in value, and containing two digits in the numerator +and denominator. + +If the product of these four fractions is given in its lowest common +terms, find the value of the denominator. +""" + + +def isDigitCancelling(num, den): + if num != den: + if num % 10 == den // 10: + if (num // 10) / (den % 10) == num / den: + return True + + +def solve(digit_len: int) -> str: + """ + >>> solve(2) + '16/64 , 19/95 , 26/65 , 49/98' + >>> solve(3) + '16/64 , 19/95 , 26/65 , 49/98' + >>> solve(4) + '16/64 , 19/95 , 26/65 , 49/98' + >>> solve(0) + '' + >>> solve(5) + '16/64 , 19/95 , 26/65 , 49/98' + """ + solutions = [] + den = 11 + last_digit = int("1" + "0" * digit_len) + for num in range(den, last_digit): + while den <= 99: + if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): + if isDigitCancelling(num, den): + solutions.append("{}/{}".format(num, den)) + den += 1 + num += 1 + den = 10 + solutions = " , ".join(solutions) + return solutions + + +if __name__ == "__main__": + print(solve(2)) From 814750e637ff3a28442808dc10b2c23170abc85b Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Thu, 31 Oct 2019 20:45:32 +0800 Subject: [PATCH 422/594] update factorial (#1535) * update factorial * update factorial --- maths/factorial_python.py | 43 +++++++++++++++++++++++------------- maths/factorial_recursive.py | 36 +++++++++++++++++++++--------- 2 files changed, 54 insertions(+), 25 deletions(-) diff --git a/maths/factorial_python.py b/maths/factorial_python.py index ab97cd41e681..b9adfdbaeaff 100644 --- a/maths/factorial_python.py +++ b/maths/factorial_python.py @@ -1,21 +1,34 @@ def factorial(input_number: int) -> int: """ - Non-recursive algorithm of finding factorial of the - input number. - >>> factorial(1) - 1 - >>> factorial(6) - 720 - >>> factorial(0) - 1 + Calculate the factorial of specified number + + >>> factorial(1) + 1 + >>> factorial(6) + 720 + >>> factorial(0) + 1 + >>> factorial(-1) + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values + >>> factorial(0.1) + Traceback (most recent call last): + ... + ValueError: factorial() only accepts integral values """ if input_number < 0: - raise ValueError("Input input_number should be non-negative") - elif input_number == 0: - return 1 - else: - result = 1 - for i in range(input_number): - result = result * (i + 1) + raise ValueError("factorial() not defined for negative values") + if not isinstance(input_number, int): + raise ValueError("factorial() only accepts integral values") + result = 1 + for i in range(1, input_number): + result = result * (i + 1) return result + + +if __name__ == '__main__': + import doctest + + doctest.testmod() diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py index f346c65f1962..013560b28b42 100644 --- a/maths/factorial_recursive.py +++ b/maths/factorial_recursive.py @@ -1,14 +1,30 @@ -def fact(n): +def factorial(n: int) -> int: """ - Return 1, if n is 1 or below, - otherwise, return n * fact(n-1). + Calculate the factorial of specified number + + >>> factorial(1) + 1 + >>> factorial(6) + 720 + >>> factorial(0) + 1 + >>> factorial(-1) + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values + >>> factorial(0.1) + Traceback (most recent call last): + ... + ValueError: factorial() only accepts integral values """ - return 1 if n <= 1 else n * fact(n - 1) + if n < 0: + raise ValueError("factorial() not defined for negative values") + if not isinstance(n, int): + raise ValueError("factorial() only accepts integral values") + return 1 if n == 0 or n == 1 else n * factorial(n - 1) + +if __name__ == '__main__': + import doctest -""" -Show factorial for i, -where i ranges from 1 to 20. -""" -for i in range(1, 21): - print(i, ": ", fact(i), sep="") + doctest.testmod() From c717f8d86091011013d4731a91161143fa61b7d7 Mon Sep 17 00:00:00 2001 From: Taufik Algi F <43858377+taufikalgi@users.noreply.github.com> Date: Fri, 1 Nov 2019 00:45:01 +0700 Subject: [PATCH 423/594] add max sum contigous subsequence (#1537) * add max sum contigous subsequence * fix typo * Add doctest and type hints * Create autoblack.yml --- .github/workflows/autoblack.yml | 34 +++++++++++++++++++ .../max_sum_contigous_subsequence.py | 20 +++++++++++ 2 files changed, 54 insertions(+) create mode 100644 .github/workflows/autoblack.yml create mode 100644 dynamic_programming/max_sum_contigous_subsequence.py diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml new file mode 100644 index 000000000000..98310ac80b11 --- /dev/null +++ b/.github/workflows/autoblack.yml @@ -0,0 +1,34 @@ +# GitHub Action that uses Black to reformat the Python code in an incoming pull request. +# If all Python code in the pull request is complient with Black then this Action does nothing. +# Othewrwise, Black is run and its changes are committed back to the incoming pull request. +# https://github.com/cclauss/autoblack + +name: autoblack +on: [pull_request] +jobs: + build: + runs-on: ubuntu-latest + strategy: + max-parallel: 1 + matrix: + python-version: [3.7] + steps: + - uses: actions/checkout@v1 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} + - name: Install psf/black + run: pip install black + - name: Run black --check . + run: black --check . + - name: If needed, commit black changes to the pull request + if: failure() + run: | + black . + git config --global user.name 'autoblack' + git config --global user.email 'cclauss@users.noreply.github.com' + git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY + git checkout $GITHUB_HEAD_REF + git commit -am "fixup: Format Python code with psf/black" + git push diff --git a/dynamic_programming/max_sum_contigous_subsequence.py b/dynamic_programming/max_sum_contigous_subsequence.py new file mode 100644 index 000000000000..2cbdb97a1759 --- /dev/null +++ b/dynamic_programming/max_sum_contigous_subsequence.py @@ -0,0 +1,20 @@ +def max_subarray_sum(nums: list) -> int: + """ + >>> max_subarray_sum([6 , 9, -1, 3, -7, -5, 10]) + 17 + """ + if not nums: + return 0 + n = len(nums) + s = [0] * n + res, s, s_pre = nums[0], nums[0], nums[0] + for i in range(1, n): + s = max(nums[i], s_pre + nums[i]) + s_pre = s + res = max(res, s) + return res + + +if __name__ == "__main__": + nums = [6, 9, -1, 3, -7, -5, 10] + print(max_subarray_sum(nums)) From 62e51fe48753a93a6c38834fd0b22eda1941644f Mon Sep 17 00:00:00 2001 From: Metehan Date: Thu, 31 Oct 2019 21:49:25 +0300 Subject: [PATCH 424/594] recursive quick sort (#1536) * recursive quick sort * recursive quick sort * Delete recursive-quick-sort * Update recursive-quick-sort.py --- sorts/recursive-quick-sort.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100644 sorts/recursive-quick-sort.py diff --git a/sorts/recursive-quick-sort.py b/sorts/recursive-quick-sort.py new file mode 100644 index 000000000000..c28a14e37ebd --- /dev/null +++ b/sorts/recursive-quick-sort.py @@ -0,0 +1,22 @@ +def quick_sort(data: list) -> list: + """ + >>> for data in ([2, 1, 0], [2.2, 1.1, 0], "quick_sort"): + ... quick_sort(data) == sorted(data) + True + True + True + """ + if len(data) <= 1: + return data + else: + return ( + quick_sort([e for e in data[1:] if e <= data[0]]) + + [data[0]] + + quick_sort([e for e in data[1:] if e > data[0]]) + ) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 7bc0462e7936675d9c4f6435d42afa915eef0248 Mon Sep 17 00:00:00 2001 From: Jonathan Alberth Quispe Fuentes Date: Thu, 31 Oct 2019 22:00:46 -0500 Subject: [PATCH 425/594] Non-recursive Segment Tree implementation (#1543) * Non-recursive Segment Tree implementation * Added type hints and explanations links --- .../binary_tree/non_recursive_segment_tree.py | 153 ++++++++++++++++++ 1 file changed, 153 insertions(+) create mode 100644 data_structures/binary_tree/non_recursive_segment_tree.py diff --git a/data_structures/binary_tree/non_recursive_segment_tree.py b/data_structures/binary_tree/non_recursive_segment_tree.py new file mode 100644 index 000000000000..877ee45b5baa --- /dev/null +++ b/data_structures/binary_tree/non_recursive_segment_tree.py @@ -0,0 +1,153 @@ +""" +A non-recursive Segment Tree implementation with range query and single element update, +works virtually with any list of the same type of elements with a "commutative" combiner. + +Explanation: +https://www.geeksforgeeks.org/iterative-segment-tree-range-minimum-query/ +https://www.geeksforgeeks.org/segment-tree-efficient-implementation/ + +>>> SegmentTree([1, 2, 3], lambda a, b: a + b).query(0, 2) +6 +>>> SegmentTree([3, 1, 2], min).query(0, 2) +1 +>>> SegmentTree([2, 3, 1], max).query(0, 2) +3 +>>> st = SegmentTree([1, 5, 7, -1, 6], lambda a, b: a + b) +>>> st.update(1, -1) +>>> st.update(2, 3) +>>> st.query(1, 2) +2 +>>> st.query(1, 1) +-1 +>>> st.update(4, 1) +>>> st.query(3, 4) +0 +>>> st = SegmentTree([[1, 2, 3], [3, 2, 1], [1, 1, 1]], lambda a, b: [a[i] + b[i] for i in range(len(a))]) +>>> st.query(0, 1) +[4, 4, 4] +>>> st.query(1, 2) +[4, 3, 2] +>>> st.update(1, [-1, -1, -1]) +>>> st.query(1, 2) +[0, 0, 0] +>>> st.query(0, 2) +[1, 2, 3] +""" +from typing import List, Callable, TypeVar + +T = TypeVar("T") + + +class SegmentTree: + def __init__(self, arr: List[T], fnc: Callable[[T, T], T]) -> None: + """ + Segment Tree constructor, it works just with commutative combiner. + :param arr: list of elements for the segment tree + :param fnc: commutative function for combine two elements + + >>> SegmentTree(['a', 'b', 'c'], lambda a, b: '{}{}'.format(a, b)).query(0, 2) + 'abc' + >>> SegmentTree([(1, 2), (2, 3), (3, 4)], lambda a, b: (a[0] + b[0], a[1] + b[1])).query(0, 2) + (6, 9) + """ + self.N = len(arr) + self.st = [None for _ in range(len(arr))] + arr + self.fn = fnc + self.build() + + def build(self) -> None: + for p in range(self.N - 1, 0, -1): + self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1]) + + def update(self, p: int, v: T) -> None: + """ + Update an element in log(N) time + :param p: position to be update + :param v: new value + + >>> st = SegmentTree([3, 1, 2, 4], min) + >>> st.query(0, 3) + 1 + >>> st.update(2, -1) + >>> st.query(0, 3) + -1 + """ + p += self.N + self.st[p] = v + while p > 1: + p = p // 2 + self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1]) + + def query(self, l: int, r: int) -> T: + """ + Get range query value in log(N) time + :param l: left element index + :param r: right element index + :return: element combined in the range [l, r] + + >>> st = SegmentTree([1, 2, 3, 4], lambda a, b: a + b) + >>> st.query(0, 2) + 6 + >>> st.query(1, 2) + 5 + >>> st.query(0, 3) + 10 + >>> st.query(2, 3) + 7 + """ + l, r = l + self.N, r + self.N + res = None + while l <= r: + if l % 2 == 1: + res = self.st[l] if res is None else self.fn(res, self.st[l]) + if r % 2 == 0: + res = self.st[r] if res is None else self.fn(res, self.st[r]) + l, r = (l + 1) // 2, (r - 1) // 2 + return res + + +if __name__ == "__main__": + from functools import reduce + + test_array = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] + + test_updates = { + 0: 7, + 1: 2, + 2: 6, + 3: -14, + 4: 5, + 5: 4, + 6: 7, + 7: -10, + 8: 9, + 9: 10, + 10: 12, + 11: 1, + } + + min_segment_tree = SegmentTree(test_array, min) + max_segment_tree = SegmentTree(test_array, max) + sum_segment_tree = SegmentTree(test_array, lambda a, b: a + b) + + def test_all_segments(): + """ + Test all possible segments + """ + for i in range(len(test_array)): + for j in range(i, len(test_array)): + min_range = reduce(min, test_array[i : j + 1]) + max_range = reduce(max, test_array[i : j + 1]) + sum_range = reduce(lambda a, b: a + b, test_array[i : j + 1]) + assert min_range == min_segment_tree.query(i, j) + assert max_range == max_segment_tree.query(i, j) + assert sum_range == sum_segment_tree.query(i, j) + + test_all_segments() + + for index, value in test_updates.items(): + test_array[index] = value + min_segment_tree.update(index, value) + max_segment_tree.update(index, value) + sum_segment_tree.update(index, value) + test_all_segments() From 8107548cc11d226d35a343bb14f8b8a9cc2fb32b Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" <11682032+mrvnmchm@users.noreply.github.com> Date: Thu, 31 Oct 2019 23:06:20 -0400 Subject: [PATCH 426/594] Travis CI: Write & print DIRECTORY.md on one line (#1542) * travis test * travis pull ID test * get pr branch test * retry pr build * test pushing back - probable git error for origin 'not found' * github auth? * add .sh * chmod * add index update for permission fix * run sh for script * add all * add pull directory * fetch pr branch * swap placement of adding commits * rotate * quit trying to update Travis * formatting leftovers * Travis CI: Write & print DIRECTORY.md on one line --- .travis.yml | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/.travis.yml b/.travis.yml index 877dbee9ade2..0c7c9fd0e1c7 100644 --- a/.travis.yml +++ b/.travis.yml @@ -11,5 +11,4 @@ script: - mypy --ignore-missing-imports . - pytest . --doctest-modules after_success: - - scripts/build_directory_md.py > DIRECTORY.md - - cat DIRECTORY.md + - scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md From 0e3357ae35314740e9f5e5515dca924b20d39492 Mon Sep 17 00:00:00 2001 From: vinayak Date: Fri, 1 Nov 2019 13:57:16 +0530 Subject: [PATCH 427/594] added solution 1 for problem_99 in project_euler (#1545) * Create sol1.py * Create __init__.py * Update sol1.py * corrected range * Add files via upload * Update DIRECTORY.md * Create sol1.py * Update sol1.py * Create __init__.py * Update DIRECTORY.md * Delete isotonic.py * Update sol1.py * Problem_27_project_euler * project_euler/Problem_27/sol1.py * project_euler/Problem_27/sol1.py * project_euler/problem_27/ * project_euler/problem_27 * project_euler/problem_27 * update sol1 of Euler Problem 27 solution script Added * Remove slow test, wrap long comments, format with psf/black * Delete __init__.py * Add type hints * Add doctests to function is_prime() * Rename project_euler/problem_27/project_euler/problem_27/sol1.pysol1.py to project_euler/problem_27/problem_27_sol1.py * Added Problem 33 * added solution 1 for problem_99 * update added solution 1 for problem_99 * update * Update sol1.py --- project_euler/problem_99/__init__.py | 0 project_euler/problem_99/base_exp.txt | 1000 +++++++++++++++++++++++++ project_euler/problem_99/sol1.py | 33 + 3 files changed, 1033 insertions(+) create mode 100644 project_euler/problem_99/__init__.py create mode 100644 project_euler/problem_99/base_exp.txt create mode 100644 project_euler/problem_99/sol1.py diff --git a/project_euler/problem_99/__init__.py b/project_euler/problem_99/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_99/base_exp.txt b/project_euler/problem_99/base_exp.txt new file mode 100644 index 000000000000..abe95aa86036 --- /dev/null +++ b/project_euler/problem_99/base_exp.txt @@ -0,0 +1,1000 @@ +519432,525806 +632382,518061 +78864,613712 +466580,530130 +780495,510032 +525895,525320 +15991,714883 +960290,502358 +760018,511029 +166800,575487 +210884,564478 +555151,523163 +681146,515199 +563395,522587 +738250,512126 +923525,503780 +595148,520429 +177108,572629 +750923,511482 +440902,532446 +881418,505504 +422489,534197 +979858,501616 +685893,514935 +747477,511661 +167214,575367 +234140,559696 +940238,503122 +728969,512609 +232083,560102 +900971,504694 +688801,514772 +189664,569402 +891022,505104 +445689,531996 +119570,591871 +821453,508118 +371084,539600 +911745,504251 +623655,518600 +144361,582486 +352442,541775 +420726,534367 +295298,549387 +6530,787777 +468397,529976 +672336,515696 +431861,533289 +84228,610150 +805376,508857 +444409,532117 +33833,663511 +381850,538396 +402931,536157 +92901,604930 +304825,548004 +731917,512452 +753734,511344 +51894,637373 +151578,580103 +295075,549421 +303590,548183 +333594,544123 +683952,515042 +60090,628880 +951420,502692 +28335,674991 +714940,513349 +343858,542826 +549279,523586 +804571,508887 +260653,554881 +291399,549966 +402342,536213 +408889,535550 +40328,652524 +375856,539061 +768907,510590 +165993,575715 +976327,501755 +898500,504795 +360404,540830 +478714,529095 +694144,514472 +488726,528258 +841380,507226 +328012,544839 +22389,690868 +604053,519852 +329514,544641 +772965,510390 +492798,527927 +30125,670983 +895603,504906 +450785,531539 +840237,507276 +380711,538522 +63577,625673 +76801,615157 +502694,527123 +597706,520257 +310484,547206 +944468,502959 +121283,591152 +451131,531507 +566499,522367 +425373,533918 +40240,652665 +39130,654392 +714926,513355 +469219,529903 +806929,508783 +287970,550487 +92189,605332 +103841,599094 +671839,515725 +452048,531421 +987837,501323 +935192,503321 +88585,607450 +613883,519216 +144551,582413 +647359,517155 +213902,563816 +184120,570789 +258126,555322 +502546,527130 +407655,535678 +401528,536306 +477490,529193 +841085,507237 +732831,512408 +833000,507595 +904694,504542 +581435,521348 +455545,531110 +873558,505829 +94916,603796 +720176,513068 +545034,523891 +246348,557409 +556452,523079 +832015,507634 +173663,573564 +502634,527125 +250732,556611 +569786,522139 +216919,563178 +521815,525623 +92304,605270 +164446,576167 +753413,511364 +11410,740712 +448845,531712 +925072,503725 +564888,522477 +7062,780812 +641155,517535 +738878,512100 +636204,517828 +372540,539436 +443162,532237 +571192,522042 +655350,516680 +299741,548735 +581914,521307 +965471,502156 +513441,526277 +808682,508700 +237589,559034 +543300,524025 +804712,508889 +247511,557192 +543486,524008 +504383,526992 +326529,545039 +792493,509458 +86033,609017 +126554,589005 +579379,521481 +948026,502823 +404777,535969 +265767,554022 +266876,553840 +46631,643714 +492397,527958 +856106,506581 +795757,509305 +748946,511584 +294694,549480 +409781,535463 +775887,510253 +543747,523991 +210592,564536 +517119,525990 +520253,525751 +247926,557124 +592141,520626 +346580,542492 +544969,523902 +506501,526817 +244520,557738 +144745,582349 +69274,620858 +292620,549784 +926027,503687 +736320,512225 +515528,526113 +407549,535688 +848089,506927 +24141,685711 +9224,757964 +980684,501586 +175259,573121 +489160,528216 +878970,505604 +969546,502002 +525207,525365 +690461,514675 +156510,578551 +659778,516426 +468739,529945 +765252,510770 +76703,615230 +165151,575959 +29779,671736 +928865,503569 +577538,521605 +927555,503618 +185377,570477 +974756,501809 +800130,509093 +217016,563153 +365709,540216 +774508,510320 +588716,520851 +631673,518104 +954076,502590 +777828,510161 +990659,501222 +597799,520254 +786905,509727 +512547,526348 +756449,511212 +869787,505988 +653747,516779 +84623,609900 +839698,507295 +30159,670909 +797275,509234 +678136,515373 +897144,504851 +989554,501263 +413292,535106 +55297,633667 +788650,509637 +486748,528417 +150724,580377 +56434,632490 +77207,614869 +588631,520859 +611619,519367 +100006,601055 +528924,525093 +190225,569257 +851155,506789 +682593,515114 +613043,519275 +514673,526183 +877634,505655 +878905,505602 +1926,914951 +613245,519259 +152481,579816 +841774,507203 +71060,619442 +865335,506175 +90244,606469 +302156,548388 +399059,536557 +478465,529113 +558601,522925 +69132,620966 +267663,553700 +988276,501310 +378354,538787 +529909,525014 +161733,576968 +758541,511109 +823425,508024 +149821,580667 +269258,553438 +481152,528891 +120871,591322 +972322,501901 +981350,501567 +676129,515483 +950860,502717 +119000,592114 +392252,537272 +191618,568919 +946699,502874 +289555,550247 +799322,509139 +703886,513942 +194812,568143 +261823,554685 +203052,566221 +217330,563093 +734748,512313 +391759,537328 +807052,508777 +564467,522510 +59186,629748 +113447,594545 +518063,525916 +905944,504492 +613922,519213 +439093,532607 +445946,531981 +230530,560399 +297887,549007 +459029,530797 +403692,536075 +855118,506616 +963127,502245 +841711,507208 +407411,535699 +924729,503735 +914823,504132 +333725,544101 +176345,572832 +912507,504225 +411273,535308 +259774,555036 +632853,518038 +119723,591801 +163902,576321 +22691,689944 +402427,536212 +175769,572988 +837260,507402 +603432,519893 +313679,546767 +538165,524394 +549026,523608 +61083,627945 +898345,504798 +992556,501153 +369999,539727 +32847,665404 +891292,505088 +152715,579732 +824104,507997 +234057,559711 +730507,512532 +960529,502340 +388395,537687 +958170,502437 +57105,631806 +186025,570311 +993043,501133 +576770,521664 +215319,563513 +927342,503628 +521353,525666 +39563,653705 +752516,511408 +110755,595770 +309749,547305 +374379,539224 +919184,503952 +990652,501226 +647780,517135 +187177,570017 +168938,574877 +649558,517023 +278126,552016 +162039,576868 +658512,516499 +498115,527486 +896583,504868 +561170,522740 +747772,511647 +775093,510294 +652081,516882 +724905,512824 +499707,527365 +47388,642755 +646668,517204 +571700,522007 +180430,571747 +710015,513617 +435522,532941 +98137,602041 +759176,511070 +486124,528467 +526942,525236 +878921,505604 +408313,535602 +926980,503640 +882353,505459 +566887,522345 +3326,853312 +911981,504248 +416309,534800 +392991,537199 +622829,518651 +148647,581055 +496483,527624 +666314,516044 +48562,641293 +672618,515684 +443676,532187 +274065,552661 +265386,554079 +347668,542358 +31816,667448 +181575,571446 +961289,502320 +365689,540214 +987950,501317 +932299,503440 +27388,677243 +746701,511701 +492258,527969 +147823,581323 +57918,630985 +838849,507333 +678038,515375 +27852,676130 +850241,506828 +818403,508253 +131717,587014 +850216,506834 +904848,504529 +189758,569380 +392845,537217 +470876,529761 +925353,503711 +285431,550877 +454098,531234 +823910,508003 +318493,546112 +766067,510730 +261277,554775 +421530,534289 +694130,514478 +120439,591498 +213308,563949 +854063,506662 +365255,540263 +165437,575872 +662240,516281 +289970,550181 +847977,506933 +546083,523816 +413252,535113 +975829,501767 +361540,540701 +235522,559435 +224643,561577 +736350,512229 +328303,544808 +35022,661330 +307838,547578 +474366,529458 +873755,505819 +73978,617220 +827387,507845 +670830,515791 +326511,545034 +309909,547285 +400970,536363 +884827,505352 +718307,513175 +28462,674699 +599384,520150 +253565,556111 +284009,551093 +343403,542876 +446557,531921 +992372,501160 +961601,502308 +696629,514342 +919537,503945 +894709,504944 +892201,505051 +358160,541097 +448503,531745 +832156,507636 +920045,503924 +926137,503675 +416754,534757 +254422,555966 +92498,605151 +826833,507873 +660716,516371 +689335,514746 +160045,577467 +814642,508425 +969939,501993 +242856,558047 +76302,615517 +472083,529653 +587101,520964 +99066,601543 +498005,527503 +709800,513624 +708000,513716 +20171,698134 +285020,550936 +266564,553891 +981563,501557 +846502,506991 +334,1190800 +209268,564829 +9844,752610 +996519,501007 +410059,535426 +432931,533188 +848012,506929 +966803,502110 +983434,501486 +160700,577267 +504374,526989 +832061,507640 +392825,537214 +443842,532165 +440352,532492 +745125,511776 +13718,726392 +661753,516312 +70500,619875 +436952,532814 +424724,533973 +21954,692224 +262490,554567 +716622,513264 +907584,504425 +60086,628882 +837123,507412 +971345,501940 +947162,502855 +139920,584021 +68330,621624 +666452,516038 +731446,512481 +953350,502619 +183157,571042 +845400,507045 +651548,516910 +20399,697344 +861779,506331 +629771,518229 +801706,509026 +189207,569512 +737501,512168 +719272,513115 +479285,529045 +136046,585401 +896746,504860 +891735,505067 +684771,514999 +865309,506184 +379066,538702 +503117,527090 +621780,518717 +209518,564775 +677135,515423 +987500,501340 +197049,567613 +329315,544673 +236756,559196 +357092,541226 +520440,525733 +213471,563911 +956852,502490 +702223,514032 +404943,535955 +178880,572152 +689477,514734 +691351,514630 +866669,506128 +370561,539656 +739805,512051 +71060,619441 +624861,518534 +261660,554714 +366137,540160 +166054,575698 +601878,519990 +153445,579501 +279899,551729 +379166,538691 +423209,534125 +675310,515526 +145641,582050 +691353,514627 +917468,504026 +284778,550976 +81040,612235 +161699,576978 +616394,519057 +767490,510661 +156896,578431 +427408,533714 +254849,555884 +737217,512182 +897133,504851 +203815,566051 +270822,553189 +135854,585475 +778805,510111 +784373,509847 +305426,547921 +733418,512375 +732087,512448 +540668,524215 +702898,513996 +628057,518328 +640280,517587 +422405,534204 +10604,746569 +746038,511733 +839808,507293 +457417,530938 +479030,529064 +341758,543090 +620223,518824 +251661,556451 +561790,522696 +497733,527521 +724201,512863 +489217,528217 +415623,534867 +624610,518548 +847541,506953 +432295,533249 +400391,536421 +961158,502319 +139173,584284 +421225,534315 +579083,521501 +74274,617000 +701142,514087 +374465,539219 +217814,562985 +358972,540995 +88629,607424 +288597,550389 +285819,550812 +538400,524385 +809930,508645 +738326,512126 +955461,502535 +163829,576343 +826475,507891 +376488,538987 +102234,599905 +114650,594002 +52815,636341 +434037,533082 +804744,508880 +98385,601905 +856620,506559 +220057,562517 +844734,507078 +150677,580387 +558697,522917 +621751,518719 +207067,565321 +135297,585677 +932968,503404 +604456,519822 +579728,521462 +244138,557813 +706487,513800 +711627,513523 +853833,506674 +497220,527562 +59428,629511 +564845,522486 +623621,518603 +242689,558077 +125091,589591 +363819,540432 +686453,514901 +656813,516594 +489901,528155 +386380,537905 +542819,524052 +243987,557841 +693412,514514 +488484,528271 +896331,504881 +336730,543721 +728298,512647 +604215,519840 +153729,579413 +595687,520398 +540360,524240 +245779,557511 +924873,503730 +509628,526577 +528523,525122 +3509,847707 +522756,525555 +895447,504922 +44840,646067 +45860,644715 +463487,530404 +398164,536654 +894483,504959 +619415,518874 +966306,502129 +990922,501212 +835756,507474 +548881,523618 +453578,531282 +474993,529410 +80085,612879 +737091,512193 +50789,638638 +979768,501620 +792018,509483 +665001,516122 +86552,608694 +462772,530469 +589233,520821 +891694,505072 +592605,520594 +209645,564741 +42531,649269 +554376,523226 +803814,508929 +334157,544042 +175836,572970 +868379,506051 +658166,516520 +278203,551995 +966198,502126 +627162,518387 +296774,549165 +311803,547027 +843797,507118 +702304,514032 +563875,522553 +33103,664910 +191932,568841 +543514,524006 +506835,526794 +868368,506052 +847025,506971 +678623,515342 +876139,505726 +571997,521984 +598632,520198 +213590,563892 +625404,518497 +726508,512738 +689426,514738 +332495,544264 +411366,535302 +242546,558110 +315209,546555 +797544,509219 +93889,604371 +858879,506454 +124906,589666 +449072,531693 +235960,559345 +642403,517454 +720567,513047 +705534,513858 +603692,519870 +488137,528302 +157370,578285 +63515,625730 +666326,516041 +619226,518883 +443613,532186 +597717,520257 +96225,603069 +86940,608450 +40725,651929 +460976,530625 +268875,553508 +270671,553214 +363254,540500 +384248,538137 +762889,510892 +377941,538833 +278878,551890 +176615,572755 +860008,506412 +944392,502967 +608395,519571 +225283,561450 +45095,645728 +333798,544090 +625733,518476 +995584,501037 +506135,526853 +238050,558952 +557943,522972 +530978,524938 +634244,517949 +177168,572616 +85200,609541 +953043,502630 +523661,525484 +999295,500902 +840803,507246 +961490,502312 +471747,529685 +380705,538523 +911180,504275 +334149,544046 +478992,529065 +325789,545133 +335884,543826 +426976,533760 +749007,511582 +667067,516000 +607586,519623 +674054,515599 +188534,569675 +565185,522464 +172090,573988 +87592,608052 +907432,504424 +8912,760841 +928318,503590 +757917,511138 +718693,513153 +315141,546566 +728326,512645 +353492,541647 +638429,517695 +628892,518280 +877286,505672 +620895,518778 +385878,537959 +423311,534113 +633501,517997 +884833,505360 +883402,505416 +999665,500894 +708395,513697 +548142,523667 +756491,511205 +987352,501340 +766520,510705 +591775,520647 +833758,507563 +843890,507108 +925551,503698 +74816,616598 +646942,517187 +354923,541481 +256291,555638 +634470,517942 +930904,503494 +134221,586071 +282663,551304 +986070,501394 +123636,590176 +123678,590164 +481717,528841 +423076,534137 +866246,506145 +93313,604697 +783632,509880 +317066,546304 +502977,527103 +141272,583545 +71708,618938 +617748,518975 +581190,521362 +193824,568382 +682368,515131 +352956,541712 +351375,541905 +505362,526909 +905165,504518 +128645,588188 +267143,553787 +158409,577965 +482776,528754 +628896,518282 +485233,528547 +563606,522574 +111001,595655 +115920,593445 +365510,540237 +959724,502374 +938763,503184 +930044,503520 +970959,501956 +913658,504176 +68117,621790 +989729,501253 +567697,522288 +820427,508163 +54236,634794 +291557,549938 +124961,589646 +403177,536130 +405421,535899 +410233,535417 +815111,508403 +213176,563974 +83099,610879 +998588,500934 +513640,526263 +129817,587733 +1820,921851 +287584,550539 +299160,548820 +860621,506386 +529258,525059 +586297,521017 +953406,502616 +441234,532410 +986217,501386 +781938,509957 +461247,530595 +735424,512277 +146623,581722 +839838,507288 +510667,526494 +935085,503327 +737523,512167 +303455,548204 +992779,501145 +60240,628739 +939095,503174 +794368,509370 +501825,527189 +459028,530798 +884641,505363 +512287,526364 +835165,507499 +307723,547590 +160587,577304 +735043,512300 +493289,527887 +110717,595785 +306480,547772 +318593,546089 +179810,571911 +200531,566799 +314999,546580 +197020,567622 +301465,548487 +237808,559000 +131944,586923 +882527,505449 +468117,530003 +711319,513541 +156240,578628 +965452,502162 +992756,501148 +437959,532715 +739938,512046 +614249,519196 +391496,537356 +62746,626418 +688215,514806 +75501,616091 +883573,505412 +558824,522910 +759371,511061 +173913,573489 +891351,505089 +727464,512693 +164833,576051 +812317,508529 +540320,524243 +698061,514257 +69149,620952 +471673,529694 +159092,577753 +428134,533653 +89997,606608 +711061,513557 +779403,510081 +203327,566155 +798176,509187 +667688,515963 +636120,517833 +137410,584913 +217615,563034 +556887,523038 +667229,515991 +672276,515708 +325361,545187 +172115,573985 +13846,725685 \ No newline at end of file diff --git a/project_euler/problem_99/sol1.py b/project_euler/problem_99/sol1.py new file mode 100644 index 000000000000..6729927dfa63 --- /dev/null +++ b/project_euler/problem_99/sol1.py @@ -0,0 +1,33 @@ +""" +Problem: + +Comparing two numbers written in index form like 2'11 and 3'7 is not difficult, as any calculator would confirm that 2^11 = 2048 < 3^7 = 2187. + +However, confirming that 632382^518061 > 519432^525806 would be much more difficult, as both numbers contain over three million digits. + +Using base_exp.txt, a 22K text file containing one thousand lines with a base/exponent pair on each line, determine which line number has the greatest numerical value. + +NOTE: The first two lines in the file represent the numbers in the example given above. +""" + +import os +from math import log10 + + +def find_largest(data_file: str="base_exp.txt") -> int: + """ + >>> find_largest() + 709 + """ + largest = [0, 0] + for i, line in enumerate( + open(os.path.join(os.path.dirname(__file__), data_file)) + ): + a, x = list(map(int, line.split(","))) + if x * log10(a) > largest[0]: + largest = [x * log10(a), i + 1] + return largest[1] + + +if __name__ == "__main__": + print(find_largest()) From 8c443ccfad7ff98d72e017d2c7cb0482e981d184 Mon Sep 17 00:00:00 2001 From: Du YuanChao Date: Mon, 4 Nov 2019 15:28:51 +0800 Subject: [PATCH 428/594] add floor() (#1551) * ceil and floor * ceil and floor --- maths/ceil.py | 18 ++++++++++++++++++ maths/floor.py | 18 ++++++++++++++++++ 2 files changed, 36 insertions(+) create mode 100644 maths/ceil.py create mode 100644 maths/floor.py diff --git a/maths/ceil.py b/maths/ceil.py new file mode 100644 index 000000000000..3e46f1474dcf --- /dev/null +++ b/maths/ceil.py @@ -0,0 +1,18 @@ +def ceil(x) -> int: + """ + Return the ceiling of x as an Integral. + + :param x: the number + :return: the smallest integer >= x. + + >>> import math + >>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) + True + """ + return x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x) + + +if __name__ == '__main__': + import doctest + + doctest.testmod() diff --git a/maths/floor.py b/maths/floor.py new file mode 100644 index 000000000000..a9b680b37b97 --- /dev/null +++ b/maths/floor.py @@ -0,0 +1,18 @@ +def floor(x) -> int: + """ + Return the floor of x as an Integral. + + :param x: the number + :return: the largest integer <= x. + + >>> import math + >>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) + True + """ + return x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1) + + +if __name__ == '__main__': + import doctest + + doctest.testmod() From 5452e94528ea357746f275c55bcdfd2e4604e19c Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" <11682032+mrvnmchm@users.noreply.github.com> Date: Mon, 4 Nov 2019 02:45:29 -0500 Subject: [PATCH 429/594] Porta cipher (#1550) * directory_writer * add porta cipher for #1492 * formatting and one line comprehensions * remove directory_writer * indentions * Wrap long lines --- ciphers/porta_cipher.py | 110 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 110 insertions(+) create mode 100644 ciphers/porta_cipher.py diff --git a/ciphers/porta_cipher.py b/ciphers/porta_cipher.py new file mode 100644 index 000000000000..a8e79415958d --- /dev/null +++ b/ciphers/porta_cipher.py @@ -0,0 +1,110 @@ +alphabet = { + "A": ("ABCDEFGHIJKLM", "NOPQRSTUVWXYZ"), + "B": ("ABCDEFGHIJKLM", "NOPQRSTUVWXYZ"), + "C": ("ABCDEFGHIJKLM", "ZNOPQRSTUVWXY"), + "D": ("ABCDEFGHIJKLM", "ZNOPQRSTUVWXY"), + "E": ("ABCDEFGHIJKLM", "YZNOPQRSTUVWX"), + "F": ("ABCDEFGHIJKLM", "YZNOPQRSTUVWX"), + "G": ("ABCDEFGHIJKLM", "XYZNOPQRSTUVW"), + "H": ("ABCDEFGHIJKLM", "XYZNOPQRSTUVW"), + "I": ("ABCDEFGHIJKLM", "WXYZNOPQRSTUV"), + "J": ("ABCDEFGHIJKLM", "WXYZNOPQRSTUV"), + "K": ("ABCDEFGHIJKLM", "VWXYZNOPQRSTU"), + "L": ("ABCDEFGHIJKLM", "VWXYZNOPQRSTU"), + "M": ("ABCDEFGHIJKLM", "UVWXYZNOPQRST"), + "N": ("ABCDEFGHIJKLM", "UVWXYZNOPQRST"), + "O": ("ABCDEFGHIJKLM", "TUVWXYZNOPQRS"), + "P": ("ABCDEFGHIJKLM", "TUVWXYZNOPQRS"), + "Q": ("ABCDEFGHIJKLM", "STUVWXYZNOPQR"), + "R": ("ABCDEFGHIJKLM", "STUVWXYZNOPQR"), + "S": ("ABCDEFGHIJKLM", "RSTUVWXYZNOPQ"), + "T": ("ABCDEFGHIJKLM", "RSTUVWXYZNOPQ"), + "U": ("ABCDEFGHIJKLM", "QRSTUVWXYZNOP"), + "V": ("ABCDEFGHIJKLM", "QRSTUVWXYZNOP"), + "W": ("ABCDEFGHIJKLM", "PQRSTUVWXYZNO"), + "X": ("ABCDEFGHIJKLM", "PQRSTUVWXYZNO"), + "Y": ("ABCDEFGHIJKLM", "OPQRSTUVWXYZN"), + "Z": ("ABCDEFGHIJKLM", "OPQRSTUVWXYZN"), +} + + +def generate_table(key): + """ + >>> generate_table('marvin') # doctest: +NORMALIZE_WHITESPACE + [('ABCDEFGHIJKLM', 'UVWXYZNOPQRST'), ('ABCDEFGHIJKLM', 'NOPQRSTUVWXYZ'), + ('ABCDEFGHIJKLM', 'STUVWXYZNOPQR'), ('ABCDEFGHIJKLM', 'QRSTUVWXYZNOP'), + ('ABCDEFGHIJKLM', 'WXYZNOPQRSTUV'), ('ABCDEFGHIJKLM', 'UVWXYZNOPQRST')] + """ + return [alphabet[char] for char in key.upper()] + + +def encrypt(key, words): + """ + >>> encrypt('marvin', 'jessica') + 'QRACRWU' + """ + cipher = "" + count = 0 + table = generate_table(key) + for char in words.upper(): + cipher += get_opponent(table[count], char) + count = (count + 1) % len(table) + return cipher + + +def decrypt(key, words): + """ + >>> decrypt('marvin', 'QRACRWU') + 'JESSICA' + """ + return encrypt(key, words) + + +def get_position(table, char): + """ + >>> table = [ + ... ('ABCDEFGHIJKLM', 'UVWXYZNOPQRST'), ('ABCDEFGHIJKLM', 'NOPQRSTUVWXYZ'), + ... ('ABCDEFGHIJKLM', 'STUVWXYZNOPQR'), ('ABCDEFGHIJKLM', 'QRSTUVWXYZNOP'), + ... ('ABCDEFGHIJKLM', 'WXYZNOPQRSTUV'), ('ABCDEFGHIJKLM', 'UVWXYZNOPQRST')] + >>> get_position(table, 'A') + (None, None) + """ + if char in table[0]: + row = 0 + else: + row = 1 if char in table[1] else -1 + return (None, None) if row == -1 else (row, table[row].index(char)) + + +def get_opponent(table, char): + """ + >>> table = [ + ... ('ABCDEFGHIJKLM', 'UVWXYZNOPQRST'), ('ABCDEFGHIJKLM', 'NOPQRSTUVWXYZ'), + ... ('ABCDEFGHIJKLM', 'STUVWXYZNOPQR'), ('ABCDEFGHIJKLM', 'QRSTUVWXYZNOP'), + ... ('ABCDEFGHIJKLM', 'WXYZNOPQRSTUV'), ('ABCDEFGHIJKLM', 'UVWXYZNOPQRST')] + >>> get_opponent(table, 'A') + 'A' + """ + row, col = get_position(table, char.upper()) + if row == 1: + return table[0][col] + else: + return table[1][col] if row == 0 else char + + +if __name__ == "__main__": + import doctest + + doctest.testmod() # Fist ensure that all our tests are passing... + """ + ENTER KEY: marvin + ENTER TEXT TO ENCRYPT: jessica + ENCRYPTED: QRACRWU + DECRYPTED WITH KEY: JESSICA + """ + key = input("ENTER KEY: ").strip() + text = input("ENTER TEXT TO ENCRYPT: ").strip() + cipher_text = encrypt(key, text) + + print(f"ENCRYPTED: {cipher_text}") + print(f"DECRYPTED WITH KEY: {decrypt(key, cipher_text)}") From a9d5378ce2251b43d4f2541283ff6f1a558a3bfa Mon Sep 17 00:00:00 2001 From: John Law Date: Tue, 5 Nov 2019 02:06:16 +0800 Subject: [PATCH 430/594] Doctest and typing for longest_increasing_subsequence.py (#1526) * Update longest_increasing_subsequence.py * Update longest_increasing_subsequence.py * Format longest_increasing_subsequence.py to PEP8 * Update longest_increasing_subsequence.py --- .../longest_increasing_subsequence.py | 62 +++++++++++-------- 1 file changed, 36 insertions(+), 26 deletions(-) diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index 3cb57806e06f..6d12f1c7caf0 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -4,42 +4,52 @@ This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence. The problem is : -Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it. +Given an array, to find the longest and increasing sub-array in that given array and return it. Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output """ - - -def longestSub(ARRAY): # This function is recursive - - ARRAY_LENGTH = len(ARRAY) +from typing import List + + +def longest_subsequence(array: List[int]) -> List[int]: # This function is recursive + """ + Some examples + >>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80]) + [10, 22, 33, 41, 60, 80] + >>> longest_subsequence([4, 8, 7, 5, 1, 12, 2, 3, 9]) + [1, 2, 3, 9] + >>> longest_subsequence([9, 8, 7, 6, 5, 7]) + [8] + >>> longest_subsequence([1, 1, 1]) + [1, 1, 1] + """ + array_length = len(array) if ( - ARRAY_LENGTH <= 1 + array_length <= 1 ): # If the array contains only one element, we return it (it's the stop condition of recursion) - return ARRAY + return array # Else - PIVOT = ARRAY[0] + pivot = array[0] isFound = False i = 1 - LONGEST_SUB = [] - while not isFound and i < ARRAY_LENGTH: - if ARRAY[i] < PIVOT: + longest_subseq = [] + while not isFound and i < array_length: + if array[i] < pivot: isFound = True - TEMPORARY_ARRAY = [element for element in ARRAY[i:] if element >= ARRAY[i]] - TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY) - if len(TEMPORARY_ARRAY) > len(LONGEST_SUB): - LONGEST_SUB = TEMPORARY_ARRAY + temp_array = [element for element in array[i:] if element >= array[i]] + temp_array = longest_subsequence(temp_array) + if len(temp_array) > len(longest_subseq): + longest_subseq = temp_array else: i += 1 - TEMPORARY_ARRAY = [element for element in ARRAY[1:] if element >= PIVOT] - TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY) - if len(TEMPORARY_ARRAY) > len(LONGEST_SUB): - return TEMPORARY_ARRAY + temp_array = [element for element in array[1:] if element >= pivot] + temp_array = [pivot] + longest_subsequence(temp_array) + if len(temp_array) > len(longest_subseq): + return temp_array else: - return LONGEST_SUB - - -# Some examples + return longest_subseq + -print(longestSub([4, 8, 7, 5, 1, 12, 2, 3, 9])) -print(longestSub([9, 8, 7, 6, 5, 7])) +if __name__ == "__main__": + import doctest + doctest.testmod() From ad2db80f8aeba7fe407eccd69327cfb3bdfaacd2 Mon Sep 17 00:00:00 2001 From: jwmneu Date: Thu, 7 Nov 2019 16:37:28 +0800 Subject: [PATCH 431/594] Add sol3 for project_euler problem_03 (#1553) * Add sol3 for project_euler proble_03 * Update sol3.py add type hint remove unused variable * Format code with psf/black --- project_euler/problem_03/sol3.py | 63 ++++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) create mode 100644 project_euler/problem_03/sol3.py diff --git a/project_euler/problem_03/sol3.py b/project_euler/problem_03/sol3.py new file mode 100644 index 000000000000..5fe45df59984 --- /dev/null +++ b/project_euler/problem_03/sol3.py @@ -0,0 +1,63 @@ +""" +Problem: +The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor +of a given number N? + +e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17. +""" + + +def solution(n: int) -> int: + """Returns the largest prime factor of a given number n. + + >>> solution(13195) + 29 + >>> solution(10) + 5 + >>> solution(17) + 17 + >>> solution(3.4) + 3 + >>> solution(0) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution(-17) + Traceback (most recent call last): + ... + ValueError: Parameter n must be greater or equal to one. + >>> solution([]) + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + >>> solution("asd") + Traceback (most recent call last): + ... + TypeError: Parameter n must be int or passive of cast to int. + """ + try: + n = int(n) + except (TypeError, ValueError): + raise TypeError("Parameter n must be int or passive of cast to int.") + if n <= 0: + raise ValueError("Parameter n must be greater or equal to one.") + i = 2 + ans = 0 + if n == 2: + return 2 + while n > 2: + while n % i != 0: + i += 1 + ans = i + while n % i == 0: + n = n / i + i += 1 + + return int(ans) + + +if __name__ == "__main__": + # print(solution(int(input().strip()))) + import doctest + + doctest.testmod() From db515e585e3e53c47b090dbe135598c74c1e0f59 Mon Sep 17 00:00:00 2001 From: Zizhou Zhang Date: Sun, 10 Nov 2019 01:02:30 +1100 Subject: [PATCH 432/594] added rsa_factorization.py (#1556) * added RSA_factorization.py This algorithm can effectively factor RSA large prime N given public key e and private key d. * Rename RSA_factorization.py to rsa_factorization.py * Add definitions for d, e, and N --- ciphers/rsa_factorization.py | 51 ++++++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 ciphers/rsa_factorization.py diff --git a/ciphers/rsa_factorization.py b/ciphers/rsa_factorization.py new file mode 100644 index 000000000000..58bdc554a861 --- /dev/null +++ b/ciphers/rsa_factorization.py @@ -0,0 +1,51 @@ +""" +An RSA prime factor algorithm. + +The program can efficiently factor RSA prime number given the private key d and +public key e. +Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf +large number can take minutes to factor, therefore are not included in doctest. +""" +import math +import random +from typing import List + + +def rsafactor(d: int, e: int, N: int) -> List[int]: + """ + This function returns the factors of N, where p*q=N + Return: [p, q] + + We call N the RSA modulus, e the encryption exponent, and d the decryption exponent. + The pair (N, e) is the public key. As its name suggests, it is public and is used to + encrypt messages. + The pair (N, d) is the secret key or private key and is known only to the recipient + of encrypted messages. + + >>> rsafactor(3, 16971, 25777) + [149, 173] + >>> rsafactor(7331, 11, 27233) + [113, 241] + >>> rsafactor(4021, 13, 17711) + [89, 199] + """ + k = d * e - 1 + p = 0 + q = 0 + while p == 0: + g = random.randint(2, N - 1) + t = k + if t % 2 == 0: + t = t // 2 + x = (g ** t) % N + y = math.gcd(x - 1, N) + if x > 1 and y > 1: + p = y + q = N // y + return sorted([p, q]) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 4c37eb7d07b62efb84b535712972a1fa5e657218 Mon Sep 17 00:00:00 2001 From: Hanif Ali Date: Sun, 10 Nov 2019 13:47:04 +0500 Subject: [PATCH 433/594] Improved on Singly Linked List Programs (#1558) * Improved Singly Linked List Added String Representations of Nodes and Linked Lists Added support for indexing and changing of Node data using indices. * Added a few comments to Linked Lists * Reformatted to conform to PEP8 * Added from_sequence.py Convert a Python List to Linked List comprising of Nodes and return head. * Added print_reverse.py Recursive program to print the elements of a Linked List in reverse. * Change 'is not None' for more Pythonicness --- data_structures/linked_list/from_sequence.py | 45 +++++++++++++ data_structures/linked_list/print_reverse.py | 55 ++++++++++++++++ .../linked_list/singly_linked_list.py | 65 ++++++++++++++++--- 3 files changed, 157 insertions(+), 8 deletions(-) create mode 100644 data_structures/linked_list/from_sequence.py create mode 100644 data_structures/linked_list/print_reverse.py diff --git a/data_structures/linked_list/from_sequence.py b/data_structures/linked_list/from_sequence.py new file mode 100644 index 000000000000..e6d335e81326 --- /dev/null +++ b/data_structures/linked_list/from_sequence.py @@ -0,0 +1,45 @@ +# Recursive Prorgam to create a Linked List from a sequence and +# print a string representation of it. + +class Node: + def __init__(self, data=None): + self.data = data + self.next = None + + def __repr__(self): + """Returns a visual representation of the node and all its following nodes.""" + string_rep = "" + temp = self + while temp: + string_rep += f"<{temp.data}> ---> " + temp = temp.next + string_rep += "" + return string_rep + + + +def make_linked_list(elements_list): + """Creates a Linked List from the elements of the given sequence + (list/tuple) and returns the head of the Linked List.""" + + # if elements_list is empty + if not elements_list: + raise Exception("The Elements List is empty") + + # Set first element as Head + head = Node(elements_list[0]) + current = head + # Loop through elements from position 1 + for data in elements_list[1:]: + current.next = Node(data) + current = current.next + return head + + + +list_data = [1,3,5,32,44,12,43] +print(f"List: {list_data}") +print("Creating Linked List from List.") +linked_list = make_linked_list(list_data) +print("Linked List:") +print(linked_list) diff --git a/data_structures/linked_list/print_reverse.py b/data_structures/linked_list/print_reverse.py new file mode 100644 index 000000000000..6572ccd8f4a9 --- /dev/null +++ b/data_structures/linked_list/print_reverse.py @@ -0,0 +1,55 @@ +# Program to print the elements of a linked list in reverse + +class Node: + def __init__(self, data=None): + self.data = data + self.next = None + + def __repr__(self): + """Returns a visual representation of the node and all its following nodes.""" + string_rep = "" + temp = self + while temp: + string_rep += f"<{temp.data}> ---> " + temp = temp.next + string_rep += "" + return string_rep + + + +def make_linked_list(elements_list): + """Creates a Linked List from the elements of the given sequence + (list/tuple) and returns the head of the Linked List.""" + + # if elements_list is empty + if not elements_list: + raise Exception("The Elements List is empty") + + # Set first element as Head + head = Node(elements_list[0]) + current = head + # Loop through elements from position 1 + for data in elements_list[1:]: + current.next = Node(data) + current = current.next + return head + +def print_reverse(head_node): + """Prints the elements of the given Linked List in reverse order""" + + # If reached end of the List + if head_node is None: + return None + else: + # Recurse + print_reverse(head_node.next) + print(head_node.data) + + + +list_data = [14,52,14,12,43] +linked_list = make_linked_list(list_data) +print("Linked List:") +print(linked_list) +print("Elements in Reverse:") +print_reverse(linked_list) diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 73b982316e76..7137f4e66deb 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -3,8 +3,11 @@ def __init__(self, data): self.data = data # given data self.next = None # given next to None + def __repr__(self): # String Representation of a Node + return f"" -class Linked_List: + +class LinkedList: def __init__(self): self.head = None # Initialize head to None @@ -13,36 +16,36 @@ def insert_tail(self, data): self.insert_head(data) # If this is first node, call insert_head else: temp = self.head - while temp.next != None: # traverse to last node + while temp.next: # traverse to last node temp = temp.next temp.next = Node(data) # create node & link to tail def insert_head(self, data): newNod = Node(data) # create a new node - if self.head != None: + if self.head: newNod.next = self.head # link newNode to head self.head = newNod # make NewNode as head def printList(self): # print every node data temp = self.head - while temp is not None: + while temp: print(temp.data) temp = temp.next def delete_head(self): # delete from head temp = self.head - if self.head != None: + if self.head: self.head = self.head.next temp.next = None return temp def delete_tail(self): # delete from tail temp = self.head - if self.head != None: + if self.head: if self.head.next is None: # if head is the only Node in the Linked List self.head = None else: - while temp.next.next is not None: # find the 2nd last element + while temp.next.next: # find the 2nd last element temp = temp.next temp.next, temp = ( None, @@ -69,9 +72,47 @@ def reverse(self): # Return prev in order to put the head at the end self.head = prev + def __repr__(self): # String representation/visualization of a Linked Lists + current = self.head + string_repr = "" + while current: + string_repr += f"{current} ---> " + current = current.next + # END represents end of the LinkedList + string_repr += "END" + return string_repr + + # Indexing Support. Used to get a node at particaular position + def __getitem__(self, index): + current = self.head + + # If LinkedList is Empty + if current is None: + raise IndexError("The Linked List is empty") + + # Move Forward 'index' times + for _ in range(index): + # If the LinkedList ends before reaching specified node + if current.next is None: + raise IndexError("Index out of range.") + current = current.next + return current + + # Used to change the data of a particular node + def __setitem__(self, index, data): + current = self.head + # If list is empty + if current is None: + raise IndexError("The Linked List is empty") + for i in range(index): + if current.next is None: + raise IndexError("Index out of range.") + current = current.next + current.data = data + def main(): - A = Linked_List() + A = LinkedList() print("Inserting 1st at head") a1 = input() A.insert_head(a1) @@ -98,6 +139,14 @@ def main(): A.reverse() print("\nPrint List : ") A.printList() + print("\nString Representation of Linked List:") + print(A) + print("\n Reading/Changing Node Data using Indexing:") + print(f"Element at Position 1: {A[1]}") + p1 = input("Enter New Value: ") + A[1] = p1 + print("New List:") + print(A) if __name__ == "__main__": From 82a11d7f31d06f781e3902984fa2902c0676816a Mon Sep 17 00:00:00 2001 From: JakobZhao <52325554+JakobMusik@users.noreply.github.com> Date: Sun, 10 Nov 2019 17:01:38 +0800 Subject: [PATCH 434/594] Fix bug in bellman_ford.py (#1544) --- graphs/bellman_ford.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index b782a899fda9..5c36468e79de 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -13,14 +13,14 @@ def BellmanFord(graph, V, E, src): mdist[src] = 0.0 for i in range(V - 1): - for j in range(V): + for j in range(E): u = graph[j]["src"] v = graph[j]["dst"] w = graph[j]["weight"] if mdist[u] != float("inf") and mdist[u] + w < mdist[v]: mdist[v] = mdist[u] + w - for j in range(V): + for j in range(E): u = graph[j]["src"] v = graph[j]["dst"] w = graph[j]["weight"] From 5ac4391420991d010a1af7bc4a6b04084bd13c27 Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Tue, 12 Nov 2019 13:57:38 +0530 Subject: [PATCH 435/594] Python Program that fetches top trending news (#1559) * Python Program that fetches top trending news * Python Program that fetches top trending news * Revisions in Fetch BBC News --- web_programming/fetch_bbc_news.py | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 web_programming/fetch_bbc_news.py diff --git a/web_programming/fetch_bbc_news.py b/web_programming/fetch_bbc_news.py new file mode 100644 index 000000000000..43ffc305ea48 --- /dev/null +++ b/web_programming/fetch_bbc_news.py @@ -0,0 +1,18 @@ +# Created by sarathkaul on 12/11/19 + +import requests + +# Enter Your API Key in following URL +_NEWS_API = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" + + +def fetch_bbc_news(bbc_news_api_key: str) -> None: + # fetching a list of articles in json format + bbc_news_page = requests.get(_NEWS_API + bbc_news_api_key).json() + # each article in the list is a dict + for i, article in enumerate(bbc_news_page["articles"], 1): + print(f"{i}.) {article['title']}") + + +if __name__ == '__main__': + fetch_bbc_news(bbc_news_api_key="") From b7e37a856ff2aaa8d2ccc20936cb0b787c0376ef Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Tue, 12 Nov 2019 16:41:54 +0530 Subject: [PATCH 436/594] Added a new Python script and some changes in existing one (#1560) * Python Program that fetches top trending news * Python Program that fetches top trending news * Revisions in Fetch BBC News * psf/black Changes * Python Program to send slack message to a channel * Slack Message Revision Changes --- web_programming/fetch_bbc_news.py | 3 +-- web_programming/slack_message.py | 18 ++++++++++++++++++ 2 files changed, 19 insertions(+), 2 deletions(-) create mode 100644 web_programming/slack_message.py diff --git a/web_programming/fetch_bbc_news.py b/web_programming/fetch_bbc_news.py index 43ffc305ea48..7f8bc57b69f5 100644 --- a/web_programming/fetch_bbc_news.py +++ b/web_programming/fetch_bbc_news.py @@ -2,7 +2,6 @@ import requests -# Enter Your API Key in following URL _NEWS_API = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" @@ -14,5 +13,5 @@ def fetch_bbc_news(bbc_news_api_key: str) -> None: print(f"{i}.) {article['title']}") -if __name__ == '__main__': +if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="") diff --git a/web_programming/slack_message.py b/web_programming/slack_message.py new file mode 100644 index 000000000000..8dd0462d48e3 --- /dev/null +++ b/web_programming/slack_message.py @@ -0,0 +1,18 @@ +# Created by sarathkaul on 12/11/19 + +import requests + + +def send_slack_message(message_body: str, slack_url: str) -> None: + headers = {"Content-Type": "application/json"} + response = requests.post(slack_url, json={"text": message_body}, headers=headers) + if response.status_code != 200: + raise ValueError( + f"Request to slack returned an error {response.status_code}, " + f"the response is:\n{response.text}" + ) + + +if __name__ == "main": + # Set the slack url to the one provided by Slack when you create the webhook at https://my.slack.com/services/new/incoming-webhook/ + send_slack_message("", "") From fa6331aa82dd18d949b7be60c85277e41f018ab5 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 14 Nov 2019 06:26:29 +0100 Subject: [PATCH 437/594] Moved to TheAlgorithms/Jupyter (#1563) https://github.com/TheAlgorithms/Jupyter/tree/master/other --- ..._wastage_analysis_from_1961-2013_fao.ipynb | 5916 ----------------- 1 file changed, 5916 deletions(-) delete mode 100644 other/food_wastage_analysis_from_1961-2013_fao.ipynb diff --git a/other/food_wastage_analysis_from_1961-2013_fao.ipynb b/other/food_wastage_analysis_from_1961-2013_fao.ipynb deleted file mode 100644 index 384314c7e8f1..000000000000 --- a/other/food_wastage_analysis_from_1961-2013_fao.ipynb +++ /dev/null @@ -1,5916 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "1eecdb4a-89ca-4a1e-9c4c-7c44b2e628a1", - "_uuid": "110a8132a8179a9bed2fc8f1096592dc791f1661" - }, - "source": [ - "# About the dataset\n", - "\n", - "Context\n", - "Our world population is expected to grow from 7.3 billion today to 9.7 billion in the year 2050. Finding solutions for feeding the growing world population has become a hot topic for food and agriculture organizations, entrepreneurs and philanthropists. These solutions range from changing the way we grow our food to changing the way we eat. To make things harder, the world's climate is changing and it is both affecting and affected by the way we grow our food – agriculture. This dataset provides an insight on our worldwide food production - focusing on a comparison between food produced for human consumption and feed produced for animals.\n", - "\n", - "Content\n", - "The Food and Agriculture Organization of the United Nations provides free access to food and agriculture data for over 245 countries and territories, from the year 1961 to the most recent update (depends on the dataset). One dataset from the FAO's database is the Food Balance Sheets. It presents a comprehensive picture of the pattern of a country's food supply during a specified reference period, the last time an update was loaded to the FAO database was in 2013. The food balance sheet shows for each food item the sources of supply and its utilization. This chunk of the dataset is focused on two utilizations of each food item available:\n", - "\n", - "Food - refers to the total amount of the food item available as human food during the reference period.\n", - "Feed - refers to the quantity of the food item available for feeding to the livestock and poultry during the reference period.\n", - "Dataset's attributes:\n", - "\n", - "Area code - Country name abbreviation\n", - "Area - County name\n", - "Item - Food item\n", - "Element - Food or Feed\n", - "Latitude - geographic coordinate that specifies the north–south position of a point on the Earth's surface\n", - "Longitude - geographic coordinate that specifies the east-west position of a point on the Earth's surface\n", - "Production per year - Amount of food item produced in 1000 tonnes\n", - "\n", - "This is a simple exploratory notebook that heavily expolits pandas and seaborn" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", - "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" - }, - "outputs": [], - "source": [ - "# Importing libraries\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "%matplotlib inline\n", - "# importing data\n", - "df = pd.read_csv(\"FAO.csv\", encoding = \"ISO-8859-1\")\n", - "pd.options.mode.chained_assignment = None\n", - "from sklearn.linear_model import LinearRegression" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Area AbbreviationArea CodeAreaItem CodeItemElement CodeElementUnitlatitudelongitude...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0AFG2Afghanistan2511Wheat and products5142Food1000 tonnes33.9467.71...3249.03486.03704.04164.04252.04538.04605.04711.048104895
1AFG2Afghanistan2805Rice (Milled Equivalent)5142Food1000 tonnes33.9467.71...419.0445.0546.0455.0490.0415.0442.0476.0425422
2AFG2Afghanistan2513Barley and products5521Feed1000 tonnes33.9467.71...58.0236.0262.0263.0230.0379.0315.0203.0367360
3AFG2Afghanistan2513Barley and products5142Food1000 tonnes33.9467.71...185.043.044.048.062.055.060.072.07889
4AFG2Afghanistan2514Maize and products5521Feed1000 tonnes33.9467.71...120.0208.0233.0249.0247.0195.0178.0191.0200200
5AFG2Afghanistan2514Maize and products5142Food1000 tonnes33.9467.71...231.067.082.067.069.071.082.073.07776
6AFG2Afghanistan2517Millet and products5142Food1000 tonnes33.9467.71...15.021.011.019.021.018.014.014.01412
7AFG2Afghanistan2520Cereals, Other5142Food1000 tonnes33.9467.71...2.01.01.00.00.00.00.00.000
8AFG2Afghanistan2531Potatoes and products5142Food1000 tonnes33.9467.71...276.0294.0294.0260.0242.0250.0192.0169.0196230
9AFG2Afghanistan2536Sugar cane5521Feed1000 tonnes33.9467.71...50.029.061.065.054.0114.083.083.06981
10AFG2Afghanistan2537Sugar beet5521Feed1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
11AFG2Afghanistan2542Sugar (Raw Equivalent)5142Food1000 tonnes33.9467.71...124.0152.0169.0192.0217.0231.0240.0240.0250255
12AFG2Afghanistan2543Sweeteners, Other5142Food1000 tonnes33.9467.71...9.015.012.06.011.02.09.021.02416
13AFG2Afghanistan2745Honey5142Food1000 tonnes33.9467.71...3.03.03.03.03.03.03.02.022
14AFG2Afghanistan2549Pulses, Other and products5521Feed1000 tonnes33.9467.71...3.02.03.03.03.05.04.05.044
15AFG2Afghanistan2549Pulses, Other and products5142Food1000 tonnes33.9467.71...17.035.037.040.054.080.066.081.06374
16AFG2Afghanistan2551Nuts and products5142Food1000 tonnes33.9467.71...11.013.024.034.042.028.066.071.07044
17AFG2Afghanistan2560Coconuts - Incl Copra5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
18AFG2Afghanistan2561Sesame seed5142Food1000 tonnes33.9467.71...16.016.013.016.016.016.019.017.01616
19AFG2Afghanistan2563Olives (including preserved)5142Food1000 tonnes33.9467.71...1.01.00.00.02.03.02.02.022
20AFG2Afghanistan2571Soyabean Oil5142Food1000 tonnes33.9467.71...6.035.018.021.011.06.015.016.01616
21AFG2Afghanistan2572Groundnut Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
22AFG2Afghanistan2573Sunflowerseed Oil5142Food1000 tonnes33.9467.71...4.06.05.09.03.08.015.016.01723
23AFG2Afghanistan2574Rape and Mustard Oil5142Food1000 tonnes33.9467.71...0.01.03.05.06.06.01.02.022
24AFG2Afghanistan2575Cottonseed Oil5142Food1000 tonnes33.9467.71...2.03.03.03.03.04.03.03.034
25AFG2Afghanistan2577Palm Oil5142Food1000 tonnes33.9467.71...71.069.056.051.036.053.059.051.06164
26AFG2Afghanistan2579Sesameseed Oil5142Food1000 tonnes33.9467.71...1.01.01.02.02.01.01.02.011
27AFG2Afghanistan2580Olive Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.01.01.01.011
28AFG2Afghanistan2586Oilcrops Oil, Other5142Food1000 tonnes33.9467.71...0.01.00.00.03.01.02.02.022
29AFG2Afghanistan2601Tomatoes and products5142Food1000 tonnes33.9467.71...2.02.08.01.00.00.00.00.000
..................................................................
21447ZWE181Zimbabwe2765Crustaceans5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21448ZWE181Zimbabwe2766Cephalopods5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21449ZWE181Zimbabwe2767Molluscs, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.01.00.000
21450ZWE181Zimbabwe2775Aquatic Plants5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21451ZWE181Zimbabwe2680Infant food5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21452ZWE181Zimbabwe2905Cereals - Excluding Beer5521Feed1000 tonnes-19.0229.15...75.054.075.055.063.062.055.055.05555
21453ZWE181Zimbabwe2905Cereals - Excluding Beer5142Food1000 tonnes-19.0229.15...1844.01842.01944.01962.01918.01980.02011.02094.020712016
21454ZWE181Zimbabwe2907Starchy Roots5142Food1000 tonnes-19.0229.15...223.0236.0238.0228.0245.0258.0258.0269.0272276
21455ZWE181Zimbabwe2908Sugar Crops5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21456ZWE181Zimbabwe2909Sugar & Sweeteners5142Food1000 tonnes-19.0229.15...335.0313.0339.0302.0285.0287.0314.0336.0396416
21457ZWE181Zimbabwe2911Pulses5142Food1000 tonnes-19.0229.15...63.059.061.057.069.078.068.056.05255
21458ZWE181Zimbabwe2912Treenuts5142Food1000 tonnes-19.0229.15...1.02.01.02.02.03.04.02.043
21459ZWE181Zimbabwe2913Oilcrops5521Feed1000 tonnes-19.0229.15...36.046.041.033.031.019.024.017.02730
21460ZWE181Zimbabwe2913Oilcrops5142Food1000 tonnes-19.0229.15...60.059.061.062.048.044.041.040.03838
21461ZWE181Zimbabwe2914Vegetable Oils5142Food1000 tonnes-19.0229.15...111.0114.0112.0114.0134.0135.0137.0147.0159160
21462ZWE181Zimbabwe2918Vegetables5142Food1000 tonnes-19.0229.15...161.0166.0208.0185.0137.0179.0215.0217.0227227
21463ZWE181Zimbabwe2919Fruits - Excluding Wine5142Food1000 tonnes-19.0229.15...191.0134.0167.0177.0185.0184.0211.0230.0246217
21464ZWE181Zimbabwe2922Stimulants5142Food1000 tonnes-19.0229.15...7.021.014.024.016.011.023.011.01010
21465ZWE181Zimbabwe2923Spices5142Food1000 tonnes-19.0229.15...7.011.07.012.016.016.014.011.01212
21466ZWE181Zimbabwe2924Alcoholic Beverages5142Food1000 tonnes-19.0229.15...294.0290.0316.0355.0398.0437.0448.0476.0525516
21467ZWE181Zimbabwe2943Meat5142Food1000 tonnes-19.0229.15...222.0228.0233.0238.0242.0265.0262.0277.0280258
21468ZWE181Zimbabwe2945Offals5142Food1000 tonnes-19.0229.15...20.020.021.021.021.021.021.021.02222
21469ZWE181Zimbabwe2946Animal fats5142Food1000 tonnes-19.0229.15...26.026.029.029.027.031.030.025.02620
21470ZWE181Zimbabwe2949Eggs5142Food1000 tonnes-19.0229.15...15.018.018.021.022.027.027.024.02425
21471ZWE181Zimbabwe2948Milk - Excluding Butter5521Feed1000 tonnes-19.0229.15...21.021.021.021.021.023.025.025.03031
21472ZWE181Zimbabwe2948Milk - Excluding Butter5142Food1000 tonnes-19.0229.15...373.0357.0359.0356.0341.0385.0418.0457.0426451
21473ZWE181Zimbabwe2960Fish, Seafood5521Feed1000 tonnes-19.0229.15...5.04.09.06.09.05.015.015.01515
21474ZWE181Zimbabwe2960Fish, Seafood5142Food1000 tonnes-19.0229.15...18.014.017.014.015.018.029.040.04040
21475ZWE181Zimbabwe2961Aquatic Products, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21476ZWE181Zimbabwe2928Miscellaneous5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
\n", - "

21477 rows × 63 columns

\n", - "
" - ], - "text/plain": [ - " Area Abbreviation Area Code Area Item Code \\\n", - "0 AFG 2 Afghanistan 2511 \n", - "1 AFG 2 Afghanistan 2805 \n", - "2 AFG 2 Afghanistan 2513 \n", - "3 AFG 2 Afghanistan 2513 \n", - "4 AFG 2 Afghanistan 2514 \n", - "5 AFG 2 Afghanistan 2514 \n", - "6 AFG 2 Afghanistan 2517 \n", - "7 AFG 2 Afghanistan 2520 \n", - "8 AFG 2 Afghanistan 2531 \n", - "9 AFG 2 Afghanistan 2536 \n", - "10 AFG 2 Afghanistan 2537 \n", - "11 AFG 2 Afghanistan 2542 \n", - "12 AFG 2 Afghanistan 2543 \n", - "13 AFG 2 Afghanistan 2745 \n", - "14 AFG 2 Afghanistan 2549 \n", - "15 AFG 2 Afghanistan 2549 \n", - "16 AFG 2 Afghanistan 2551 \n", - "17 AFG 2 Afghanistan 2560 \n", - "18 AFG 2 Afghanistan 2561 \n", - "19 AFG 2 Afghanistan 2563 \n", - "20 AFG 2 Afghanistan 2571 \n", - "21 AFG 2 Afghanistan 2572 \n", - "22 AFG 2 Afghanistan 2573 \n", - "23 AFG 2 Afghanistan 2574 \n", - "24 AFG 2 Afghanistan 2575 \n", - "25 AFG 2 Afghanistan 2577 \n", - "26 AFG 2 Afghanistan 2579 \n", - "27 AFG 2 Afghanistan 2580 \n", - "28 AFG 2 Afghanistan 2586 \n", - "29 AFG 2 Afghanistan 2601 \n", - "... ... ... ... ... \n", - "21447 ZWE 181 Zimbabwe 2765 \n", - "21448 ZWE 181 Zimbabwe 2766 \n", - "21449 ZWE 181 Zimbabwe 2767 \n", - "21450 ZWE 181 Zimbabwe 2775 \n", - "21451 ZWE 181 Zimbabwe 2680 \n", - "21452 ZWE 181 Zimbabwe 2905 \n", - "21453 ZWE 181 Zimbabwe 2905 \n", - "21454 ZWE 181 Zimbabwe 2907 \n", - "21455 ZWE 181 Zimbabwe 2908 \n", - "21456 ZWE 181 Zimbabwe 2909 \n", - "21457 ZWE 181 Zimbabwe 2911 \n", - "21458 ZWE 181 Zimbabwe 2912 \n", - "21459 ZWE 181 Zimbabwe 2913 \n", - "21460 ZWE 181 Zimbabwe 2913 \n", - "21461 ZWE 181 Zimbabwe 2914 \n", - "21462 ZWE 181 Zimbabwe 2918 \n", - "21463 ZWE 181 Zimbabwe 2919 \n", - "21464 ZWE 181 Zimbabwe 2922 \n", - "21465 ZWE 181 Zimbabwe 2923 \n", - "21466 ZWE 181 Zimbabwe 2924 \n", - "21467 ZWE 181 Zimbabwe 2943 \n", - "21468 ZWE 181 Zimbabwe 2945 \n", - "21469 ZWE 181 Zimbabwe 2946 \n", - "21470 ZWE 181 Zimbabwe 2949 \n", - "21471 ZWE 181 Zimbabwe 2948 \n", - "21472 ZWE 181 Zimbabwe 2948 \n", - "21473 ZWE 181 Zimbabwe 2960 \n", - "21474 ZWE 181 Zimbabwe 2960 \n", - "21475 ZWE 181 Zimbabwe 2961 \n", - "21476 ZWE 181 Zimbabwe 2928 \n", - "\n", - " Item Element Code Element Unit \\\n", - "0 Wheat and products 5142 Food 1000 tonnes \n", - "1 Rice (Milled Equivalent) 5142 Food 1000 tonnes \n", - "2 Barley and products 5521 Feed 1000 tonnes \n", - "3 Barley and products 5142 Food 1000 tonnes \n", - "4 Maize and products 5521 Feed 1000 tonnes \n", - "5 Maize and products 5142 Food 1000 tonnes \n", - "6 Millet and products 5142 Food 1000 tonnes \n", - "7 Cereals, Other 5142 Food 1000 tonnes \n", - "8 Potatoes and products 5142 Food 1000 tonnes \n", - "9 Sugar cane 5521 Feed 1000 tonnes \n", - "10 Sugar beet 5521 Feed 1000 tonnes \n", - "11 Sugar (Raw Equivalent) 5142 Food 1000 tonnes \n", - "12 Sweeteners, Other 5142 Food 1000 tonnes \n", - "13 Honey 5142 Food 1000 tonnes \n", - "14 Pulses, Other and products 5521 Feed 1000 tonnes \n", - "15 Pulses, Other and products 5142 Food 1000 tonnes \n", - "16 Nuts and products 5142 Food 1000 tonnes \n", - "17 Coconuts - Incl Copra 5142 Food 1000 tonnes \n", - "18 Sesame seed 5142 Food 1000 tonnes \n", - "19 Olives (including preserved) 5142 Food 1000 tonnes \n", - "20 Soyabean Oil 5142 Food 1000 tonnes \n", - "21 Groundnut Oil 5142 Food 1000 tonnes \n", - "22 Sunflowerseed Oil 5142 Food 1000 tonnes \n", - "23 Rape and Mustard Oil 5142 Food 1000 tonnes \n", - "24 Cottonseed Oil 5142 Food 1000 tonnes \n", - "25 Palm Oil 5142 Food 1000 tonnes \n", - "26 Sesameseed Oil 5142 Food 1000 tonnes \n", - "27 Olive Oil 5142 Food 1000 tonnes \n", - "28 Oilcrops Oil, Other 5142 Food 1000 tonnes \n", - "29 Tomatoes and products 5142 Food 1000 tonnes \n", - "... ... ... ... ... \n", - "21447 Crustaceans 5142 Food 1000 tonnes \n", - "21448 Cephalopods 5142 Food 1000 tonnes \n", - "21449 Molluscs, Other 5142 Food 1000 tonnes \n", - "21450 Aquatic Plants 5142 Food 1000 tonnes \n", - "21451 Infant food 5142 Food 1000 tonnes \n", - "21452 Cereals - Excluding Beer 5521 Feed 1000 tonnes \n", - "21453 Cereals - Excluding Beer 5142 Food 1000 tonnes \n", - "21454 Starchy Roots 5142 Food 1000 tonnes \n", - "21455 Sugar Crops 5142 Food 1000 tonnes \n", - "21456 Sugar & Sweeteners 5142 Food 1000 tonnes \n", - "21457 Pulses 5142 Food 1000 tonnes \n", - "21458 Treenuts 5142 Food 1000 tonnes \n", - "21459 Oilcrops 5521 Feed 1000 tonnes \n", - "21460 Oilcrops 5142 Food 1000 tonnes \n", - "21461 Vegetable Oils 5142 Food 1000 tonnes \n", - "21462 Vegetables 5142 Food 1000 tonnes \n", - "21463 Fruits - Excluding Wine 5142 Food 1000 tonnes \n", - "21464 Stimulants 5142 Food 1000 tonnes \n", - "21465 Spices 5142 Food 1000 tonnes \n", - "21466 Alcoholic Beverages 5142 Food 1000 tonnes \n", - "21467 Meat 5142 Food 1000 tonnes \n", - "21468 Offals 5142 Food 1000 tonnes \n", - "21469 Animal fats 5142 Food 1000 tonnes \n", - "21470 Eggs 5142 Food 1000 tonnes \n", - "21471 Milk - Excluding Butter 5521 Feed 1000 tonnes \n", - "21472 Milk - Excluding Butter 5142 Food 1000 tonnes \n", - "21473 Fish, Seafood 5521 Feed 1000 tonnes \n", - "21474 Fish, Seafood 5142 Food 1000 tonnes \n", - "21475 Aquatic Products, Other 5142 Food 1000 tonnes \n", - "21476 Miscellaneous 5142 Food 1000 tonnes \n", - "\n", - " latitude longitude ... Y2004 Y2005 Y2006 Y2007 Y2008 \\\n", - "0 33.94 67.71 ... 3249.0 3486.0 3704.0 4164.0 4252.0 \n", - "1 33.94 67.71 ... 419.0 445.0 546.0 455.0 490.0 \n", - "2 33.94 67.71 ... 58.0 236.0 262.0 263.0 230.0 \n", - "3 33.94 67.71 ... 185.0 43.0 44.0 48.0 62.0 \n", - "4 33.94 67.71 ... 120.0 208.0 233.0 249.0 247.0 \n", - "5 33.94 67.71 ... 231.0 67.0 82.0 67.0 69.0 \n", - "6 33.94 67.71 ... 15.0 21.0 11.0 19.0 21.0 \n", - "7 33.94 67.71 ... 2.0 1.0 1.0 0.0 0.0 \n", - "8 33.94 67.71 ... 276.0 294.0 294.0 260.0 242.0 \n", - "9 33.94 67.71 ... 50.0 29.0 61.0 65.0 54.0 \n", - "10 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "11 33.94 67.71 ... 124.0 152.0 169.0 192.0 217.0 \n", - "12 33.94 67.71 ... 9.0 15.0 12.0 6.0 11.0 \n", - "13 33.94 67.71 ... 3.0 3.0 3.0 3.0 3.0 \n", - "14 33.94 67.71 ... 3.0 2.0 3.0 3.0 3.0 \n", - "15 33.94 67.71 ... 17.0 35.0 37.0 40.0 54.0 \n", - "16 33.94 67.71 ... 11.0 13.0 24.0 34.0 42.0 \n", - "17 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "18 33.94 67.71 ... 16.0 16.0 13.0 16.0 16.0 \n", - "19 33.94 67.71 ... 1.0 1.0 0.0 0.0 2.0 \n", - "20 33.94 67.71 ... 6.0 35.0 18.0 21.0 11.0 \n", - "21 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "22 33.94 67.71 ... 4.0 6.0 5.0 9.0 3.0 \n", - "23 33.94 67.71 ... 0.0 1.0 3.0 5.0 6.0 \n", - "24 33.94 67.71 ... 2.0 3.0 3.0 3.0 3.0 \n", - "25 33.94 67.71 ... 71.0 69.0 56.0 51.0 36.0 \n", - "26 33.94 67.71 ... 1.0 1.0 1.0 2.0 2.0 \n", - "27 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "28 33.94 67.71 ... 0.0 1.0 0.0 0.0 3.0 \n", - "29 33.94 67.71 ... 2.0 2.0 8.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... \n", - "21447 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21448 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21449 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21450 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21451 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21452 -19.02 29.15 ... 75.0 54.0 75.0 55.0 63.0 \n", - "21453 -19.02 29.15 ... 1844.0 1842.0 1944.0 1962.0 1918.0 \n", - "21454 -19.02 29.15 ... 223.0 236.0 238.0 228.0 245.0 \n", - "21455 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21456 -19.02 29.15 ... 335.0 313.0 339.0 302.0 285.0 \n", - "21457 -19.02 29.15 ... 63.0 59.0 61.0 57.0 69.0 \n", - "21458 -19.02 29.15 ... 1.0 2.0 1.0 2.0 2.0 \n", - "21459 -19.02 29.15 ... 36.0 46.0 41.0 33.0 31.0 \n", - "21460 -19.02 29.15 ... 60.0 59.0 61.0 62.0 48.0 \n", - "21461 -19.02 29.15 ... 111.0 114.0 112.0 114.0 134.0 \n", - "21462 -19.02 29.15 ... 161.0 166.0 208.0 185.0 137.0 \n", - "21463 -19.02 29.15 ... 191.0 134.0 167.0 177.0 185.0 \n", - "21464 -19.02 29.15 ... 7.0 21.0 14.0 24.0 16.0 \n", - "21465 -19.02 29.15 ... 7.0 11.0 7.0 12.0 16.0 \n", - "21466 -19.02 29.15 ... 294.0 290.0 316.0 355.0 398.0 \n", - "21467 -19.02 29.15 ... 222.0 228.0 233.0 238.0 242.0 \n", - "21468 -19.02 29.15 ... 20.0 20.0 21.0 21.0 21.0 \n", - "21469 -19.02 29.15 ... 26.0 26.0 29.0 29.0 27.0 \n", - "21470 -19.02 29.15 ... 15.0 18.0 18.0 21.0 22.0 \n", - "21471 -19.02 29.15 ... 21.0 21.0 21.0 21.0 21.0 \n", - "21472 -19.02 29.15 ... 373.0 357.0 359.0 356.0 341.0 \n", - "21473 -19.02 29.15 ... 5.0 4.0 9.0 6.0 9.0 \n", - "21474 -19.02 29.15 ... 18.0 14.0 17.0 14.0 15.0 \n", - "21475 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21476 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " Y2009 Y2010 Y2011 Y2012 Y2013 \n", - "0 4538.0 4605.0 4711.0 4810 4895 \n", - "1 415.0 442.0 476.0 425 422 \n", - "2 379.0 315.0 203.0 367 360 \n", - "3 55.0 60.0 72.0 78 89 \n", - "4 195.0 178.0 191.0 200 200 \n", - "5 71.0 82.0 73.0 77 76 \n", - "6 18.0 14.0 14.0 14 12 \n", - "7 0.0 0.0 0.0 0 0 \n", - "8 250.0 192.0 169.0 196 230 \n", - "9 114.0 83.0 83.0 69 81 \n", - "10 0.0 0.0 0.0 0 0 \n", - "11 231.0 240.0 240.0 250 255 \n", - "12 2.0 9.0 21.0 24 16 \n", - "13 3.0 3.0 2.0 2 2 \n", - "14 5.0 4.0 5.0 4 4 \n", - "15 80.0 66.0 81.0 63 74 \n", - "16 28.0 66.0 71.0 70 44 \n", - "17 0.0 0.0 0.0 0 0 \n", - "18 16.0 19.0 17.0 16 16 \n", - "19 3.0 2.0 2.0 2 2 \n", - "20 6.0 15.0 16.0 16 16 \n", - "21 0.0 0.0 0.0 0 0 \n", - "22 8.0 15.0 16.0 17 23 \n", - "23 6.0 1.0 2.0 2 2 \n", - "24 4.0 3.0 3.0 3 4 \n", - "25 53.0 59.0 51.0 61 64 \n", - "26 1.0 1.0 2.0 1 1 \n", - "27 1.0 1.0 1.0 1 1 \n", - "28 1.0 2.0 2.0 2 2 \n", - "29 0.0 0.0 0.0 0 0 \n", - "... ... ... ... ... ... \n", - "21447 0.0 0.0 0.0 0 0 \n", - "21448 0.0 0.0 0.0 0 0 \n", - "21449 0.0 1.0 0.0 0 0 \n", - "21450 0.0 0.0 0.0 0 0 \n", - "21451 0.0 0.0 0.0 0 0 \n", - "21452 62.0 55.0 55.0 55 55 \n", - "21453 1980.0 2011.0 2094.0 2071 2016 \n", - "21454 258.0 258.0 269.0 272 276 \n", - "21455 0.0 0.0 0.0 0 0 \n", - "21456 287.0 314.0 336.0 396 416 \n", - "21457 78.0 68.0 56.0 52 55 \n", - "21458 3.0 4.0 2.0 4 3 \n", - "21459 19.0 24.0 17.0 27 30 \n", - "21460 44.0 41.0 40.0 38 38 \n", - "21461 135.0 137.0 147.0 159 160 \n", - "21462 179.0 215.0 217.0 227 227 \n", - "21463 184.0 211.0 230.0 246 217 \n", - "21464 11.0 23.0 11.0 10 10 \n", - "21465 16.0 14.0 11.0 12 12 \n", - "21466 437.0 448.0 476.0 525 516 \n", - "21467 265.0 262.0 277.0 280 258 \n", - "21468 21.0 21.0 21.0 22 22 \n", - "21469 31.0 30.0 25.0 26 20 \n", - "21470 27.0 27.0 24.0 24 25 \n", - "21471 23.0 25.0 25.0 30 31 \n", - "21472 385.0 418.0 457.0 426 451 \n", - "21473 5.0 15.0 15.0 15 15 \n", - "21474 18.0 29.0 40.0 40 40 \n", - "21475 0.0 0.0 0.0 0 0 \n", - "21476 0.0 0.0 0.0 0 0 \n", - "\n", - "[21477 rows x 63 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "731a952c-b292-46e3-be7a-4afffe2b4ff1", - "_uuid": "5d165c279ce22afc0a874e32931d7b0ebb0717f9" - }, - "source": [ - "Let's see what the data looks like..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", - "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a", - "scrolled": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "25c3f986-fd14-4a3f-baff-02571ad665eb", - "_uuid": "5a7da58320ab35ab1bcf83a62209afbe40b672fe" - }, - "source": [ - "# Plot for annual produce of different countries with quantity in y-axis and years in x-axis" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Area AbbreviationArea CodeAreaItem CodeItemElement CodeElementUnitlatitudelongitude...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0AFG2Afghanistan2511Wheat and products5142Food1000 tonnes33.9467.71...3249.03486.03704.04164.04252.04538.04605.04711.048104895
1AFG2Afghanistan2805Rice (Milled Equivalent)5142Food1000 tonnes33.9467.71...419.0445.0546.0455.0490.0415.0442.0476.0425422
2AFG2Afghanistan2513Barley and products5521Feed1000 tonnes33.9467.71...58.0236.0262.0263.0230.0379.0315.0203.0367360
3AFG2Afghanistan2513Barley and products5142Food1000 tonnes33.9467.71...185.043.044.048.062.055.060.072.07889
4AFG2Afghanistan2514Maize and products5521Feed1000 tonnes33.9467.71...120.0208.0233.0249.0247.0195.0178.0191.0200200
5AFG2Afghanistan2514Maize and products5142Food1000 tonnes33.9467.71...231.067.082.067.069.071.082.073.07776
6AFG2Afghanistan2517Millet and products5142Food1000 tonnes33.9467.71...15.021.011.019.021.018.014.014.01412
7AFG2Afghanistan2520Cereals, Other5142Food1000 tonnes33.9467.71...2.01.01.00.00.00.00.00.000
8AFG2Afghanistan2531Potatoes and products5142Food1000 tonnes33.9467.71...276.0294.0294.0260.0242.0250.0192.0169.0196230
9AFG2Afghanistan2536Sugar cane5521Feed1000 tonnes33.9467.71...50.029.061.065.054.0114.083.083.06981
10AFG2Afghanistan2537Sugar beet5521Feed1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
11AFG2Afghanistan2542Sugar (Raw Equivalent)5142Food1000 tonnes33.9467.71...124.0152.0169.0192.0217.0231.0240.0240.0250255
12AFG2Afghanistan2543Sweeteners, Other5142Food1000 tonnes33.9467.71...9.015.012.06.011.02.09.021.02416
13AFG2Afghanistan2745Honey5142Food1000 tonnes33.9467.71...3.03.03.03.03.03.03.02.022
14AFG2Afghanistan2549Pulses, Other and products5521Feed1000 tonnes33.9467.71...3.02.03.03.03.05.04.05.044
15AFG2Afghanistan2549Pulses, Other and products5142Food1000 tonnes33.9467.71...17.035.037.040.054.080.066.081.06374
16AFG2Afghanistan2551Nuts and products5142Food1000 tonnes33.9467.71...11.013.024.034.042.028.066.071.07044
17AFG2Afghanistan2560Coconuts - Incl Copra5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
18AFG2Afghanistan2561Sesame seed5142Food1000 tonnes33.9467.71...16.016.013.016.016.016.019.017.01616
19AFG2Afghanistan2563Olives (including preserved)5142Food1000 tonnes33.9467.71...1.01.00.00.02.03.02.02.022
20AFG2Afghanistan2571Soyabean Oil5142Food1000 tonnes33.9467.71...6.035.018.021.011.06.015.016.01616
21AFG2Afghanistan2572Groundnut Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.00.00.00.000
22AFG2Afghanistan2573Sunflowerseed Oil5142Food1000 tonnes33.9467.71...4.06.05.09.03.08.015.016.01723
23AFG2Afghanistan2574Rape and Mustard Oil5142Food1000 tonnes33.9467.71...0.01.03.05.06.06.01.02.022
24AFG2Afghanistan2575Cottonseed Oil5142Food1000 tonnes33.9467.71...2.03.03.03.03.04.03.03.034
25AFG2Afghanistan2577Palm Oil5142Food1000 tonnes33.9467.71...71.069.056.051.036.053.059.051.06164
26AFG2Afghanistan2579Sesameseed Oil5142Food1000 tonnes33.9467.71...1.01.01.02.02.01.01.02.011
27AFG2Afghanistan2580Olive Oil5142Food1000 tonnes33.9467.71...0.00.00.00.00.01.01.01.011
28AFG2Afghanistan2586Oilcrops Oil, Other5142Food1000 tonnes33.9467.71...0.01.00.00.03.01.02.02.022
29AFG2Afghanistan2601Tomatoes and products5142Food1000 tonnes33.9467.71...2.02.08.01.00.00.00.00.000
..................................................................
21447ZWE181Zimbabwe2765Crustaceans5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21448ZWE181Zimbabwe2766Cephalopods5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21449ZWE181Zimbabwe2767Molluscs, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.01.00.000
21450ZWE181Zimbabwe2775Aquatic Plants5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21451ZWE181Zimbabwe2680Infant food5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21452ZWE181Zimbabwe2905Cereals - Excluding Beer5521Feed1000 tonnes-19.0229.15...75.054.075.055.063.062.055.055.05555
21453ZWE181Zimbabwe2905Cereals - Excluding Beer5142Food1000 tonnes-19.0229.15...1844.01842.01944.01962.01918.01980.02011.02094.020712016
21454ZWE181Zimbabwe2907Starchy Roots5142Food1000 tonnes-19.0229.15...223.0236.0238.0228.0245.0258.0258.0269.0272276
21455ZWE181Zimbabwe2908Sugar Crops5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21456ZWE181Zimbabwe2909Sugar & Sweeteners5142Food1000 tonnes-19.0229.15...335.0313.0339.0302.0285.0287.0314.0336.0396416
21457ZWE181Zimbabwe2911Pulses5142Food1000 tonnes-19.0229.15...63.059.061.057.069.078.068.056.05255
21458ZWE181Zimbabwe2912Treenuts5142Food1000 tonnes-19.0229.15...1.02.01.02.02.03.04.02.043
21459ZWE181Zimbabwe2913Oilcrops5521Feed1000 tonnes-19.0229.15...36.046.041.033.031.019.024.017.02730
21460ZWE181Zimbabwe2913Oilcrops5142Food1000 tonnes-19.0229.15...60.059.061.062.048.044.041.040.03838
21461ZWE181Zimbabwe2914Vegetable Oils5142Food1000 tonnes-19.0229.15...111.0114.0112.0114.0134.0135.0137.0147.0159160
21462ZWE181Zimbabwe2918Vegetables5142Food1000 tonnes-19.0229.15...161.0166.0208.0185.0137.0179.0215.0217.0227227
21463ZWE181Zimbabwe2919Fruits - Excluding Wine5142Food1000 tonnes-19.0229.15...191.0134.0167.0177.0185.0184.0211.0230.0246217
21464ZWE181Zimbabwe2922Stimulants5142Food1000 tonnes-19.0229.15...7.021.014.024.016.011.023.011.01010
21465ZWE181Zimbabwe2923Spices5142Food1000 tonnes-19.0229.15...7.011.07.012.016.016.014.011.01212
21466ZWE181Zimbabwe2924Alcoholic Beverages5142Food1000 tonnes-19.0229.15...294.0290.0316.0355.0398.0437.0448.0476.0525516
21467ZWE181Zimbabwe2943Meat5142Food1000 tonnes-19.0229.15...222.0228.0233.0238.0242.0265.0262.0277.0280258
21468ZWE181Zimbabwe2945Offals5142Food1000 tonnes-19.0229.15...20.020.021.021.021.021.021.021.02222
21469ZWE181Zimbabwe2946Animal fats5142Food1000 tonnes-19.0229.15...26.026.029.029.027.031.030.025.02620
21470ZWE181Zimbabwe2949Eggs5142Food1000 tonnes-19.0229.15...15.018.018.021.022.027.027.024.02425
21471ZWE181Zimbabwe2948Milk - Excluding Butter5521Feed1000 tonnes-19.0229.15...21.021.021.021.021.023.025.025.03031
21472ZWE181Zimbabwe2948Milk - Excluding Butter5142Food1000 tonnes-19.0229.15...373.0357.0359.0356.0341.0385.0418.0457.0426451
21473ZWE181Zimbabwe2960Fish, Seafood5521Feed1000 tonnes-19.0229.15...5.04.09.06.09.05.015.015.01515
21474ZWE181Zimbabwe2960Fish, Seafood5142Food1000 tonnes-19.0229.15...18.014.017.014.015.018.029.040.04040
21475ZWE181Zimbabwe2961Aquatic Products, Other5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
21476ZWE181Zimbabwe2928Miscellaneous5142Food1000 tonnes-19.0229.15...0.00.00.00.00.00.00.00.000
\n", - "

21477 rows × 63 columns

\n", - "
" - ], - "text/plain": [ - " Area Abbreviation Area Code Area Item Code \\\n", - "0 AFG 2 Afghanistan 2511 \n", - "1 AFG 2 Afghanistan 2805 \n", - "2 AFG 2 Afghanistan 2513 \n", - "3 AFG 2 Afghanistan 2513 \n", - "4 AFG 2 Afghanistan 2514 \n", - "5 AFG 2 Afghanistan 2514 \n", - "6 AFG 2 Afghanistan 2517 \n", - "7 AFG 2 Afghanistan 2520 \n", - "8 AFG 2 Afghanistan 2531 \n", - "9 AFG 2 Afghanistan 2536 \n", - "10 AFG 2 Afghanistan 2537 \n", - "11 AFG 2 Afghanistan 2542 \n", - "12 AFG 2 Afghanistan 2543 \n", - "13 AFG 2 Afghanistan 2745 \n", - "14 AFG 2 Afghanistan 2549 \n", - "15 AFG 2 Afghanistan 2549 \n", - "16 AFG 2 Afghanistan 2551 \n", - "17 AFG 2 Afghanistan 2560 \n", - "18 AFG 2 Afghanistan 2561 \n", - "19 AFG 2 Afghanistan 2563 \n", - "20 AFG 2 Afghanistan 2571 \n", - "21 AFG 2 Afghanistan 2572 \n", - "22 AFG 2 Afghanistan 2573 \n", - "23 AFG 2 Afghanistan 2574 \n", - "24 AFG 2 Afghanistan 2575 \n", - "25 AFG 2 Afghanistan 2577 \n", - "26 AFG 2 Afghanistan 2579 \n", - "27 AFG 2 Afghanistan 2580 \n", - "28 AFG 2 Afghanistan 2586 \n", - "29 AFG 2 Afghanistan 2601 \n", - "... ... ... ... ... \n", - "21447 ZWE 181 Zimbabwe 2765 \n", - "21448 ZWE 181 Zimbabwe 2766 \n", - "21449 ZWE 181 Zimbabwe 2767 \n", - "21450 ZWE 181 Zimbabwe 2775 \n", - "21451 ZWE 181 Zimbabwe 2680 \n", - "21452 ZWE 181 Zimbabwe 2905 \n", - "21453 ZWE 181 Zimbabwe 2905 \n", - "21454 ZWE 181 Zimbabwe 2907 \n", - "21455 ZWE 181 Zimbabwe 2908 \n", - "21456 ZWE 181 Zimbabwe 2909 \n", - "21457 ZWE 181 Zimbabwe 2911 \n", - "21458 ZWE 181 Zimbabwe 2912 \n", - "21459 ZWE 181 Zimbabwe 2913 \n", - "21460 ZWE 181 Zimbabwe 2913 \n", - "21461 ZWE 181 Zimbabwe 2914 \n", - "21462 ZWE 181 Zimbabwe 2918 \n", - "21463 ZWE 181 Zimbabwe 2919 \n", - "21464 ZWE 181 Zimbabwe 2922 \n", - "21465 ZWE 181 Zimbabwe 2923 \n", - "21466 ZWE 181 Zimbabwe 2924 \n", - "21467 ZWE 181 Zimbabwe 2943 \n", - "21468 ZWE 181 Zimbabwe 2945 \n", - "21469 ZWE 181 Zimbabwe 2946 \n", - "21470 ZWE 181 Zimbabwe 2949 \n", - "21471 ZWE 181 Zimbabwe 2948 \n", - "21472 ZWE 181 Zimbabwe 2948 \n", - "21473 ZWE 181 Zimbabwe 2960 \n", - "21474 ZWE 181 Zimbabwe 2960 \n", - "21475 ZWE 181 Zimbabwe 2961 \n", - "21476 ZWE 181 Zimbabwe 2928 \n", - "\n", - " Item Element Code Element Unit \\\n", - "0 Wheat and products 5142 Food 1000 tonnes \n", - "1 Rice (Milled Equivalent) 5142 Food 1000 tonnes \n", - "2 Barley and products 5521 Feed 1000 tonnes \n", - "3 Barley and products 5142 Food 1000 tonnes \n", - "4 Maize and products 5521 Feed 1000 tonnes \n", - "5 Maize and products 5142 Food 1000 tonnes \n", - "6 Millet and products 5142 Food 1000 tonnes \n", - "7 Cereals, Other 5142 Food 1000 tonnes \n", - "8 Potatoes and products 5142 Food 1000 tonnes \n", - "9 Sugar cane 5521 Feed 1000 tonnes \n", - "10 Sugar beet 5521 Feed 1000 tonnes \n", - "11 Sugar (Raw Equivalent) 5142 Food 1000 tonnes \n", - "12 Sweeteners, Other 5142 Food 1000 tonnes \n", - "13 Honey 5142 Food 1000 tonnes \n", - "14 Pulses, Other and products 5521 Feed 1000 tonnes \n", - "15 Pulses, Other and products 5142 Food 1000 tonnes \n", - "16 Nuts and products 5142 Food 1000 tonnes \n", - "17 Coconuts - Incl Copra 5142 Food 1000 tonnes \n", - "18 Sesame seed 5142 Food 1000 tonnes \n", - "19 Olives (including preserved) 5142 Food 1000 tonnes \n", - "20 Soyabean Oil 5142 Food 1000 tonnes \n", - "21 Groundnut Oil 5142 Food 1000 tonnes \n", - "22 Sunflowerseed Oil 5142 Food 1000 tonnes \n", - "23 Rape and Mustard Oil 5142 Food 1000 tonnes \n", - "24 Cottonseed Oil 5142 Food 1000 tonnes \n", - "25 Palm Oil 5142 Food 1000 tonnes \n", - "26 Sesameseed Oil 5142 Food 1000 tonnes \n", - "27 Olive Oil 5142 Food 1000 tonnes \n", - "28 Oilcrops Oil, Other 5142 Food 1000 tonnes \n", - "29 Tomatoes and products 5142 Food 1000 tonnes \n", - "... ... ... ... ... \n", - "21447 Crustaceans 5142 Food 1000 tonnes \n", - "21448 Cephalopods 5142 Food 1000 tonnes \n", - "21449 Molluscs, Other 5142 Food 1000 tonnes \n", - "21450 Aquatic Plants 5142 Food 1000 tonnes \n", - "21451 Infant food 5142 Food 1000 tonnes \n", - "21452 Cereals - Excluding Beer 5521 Feed 1000 tonnes \n", - "21453 Cereals - Excluding Beer 5142 Food 1000 tonnes \n", - "21454 Starchy Roots 5142 Food 1000 tonnes \n", - "21455 Sugar Crops 5142 Food 1000 tonnes \n", - "21456 Sugar & Sweeteners 5142 Food 1000 tonnes \n", - "21457 Pulses 5142 Food 1000 tonnes \n", - "21458 Treenuts 5142 Food 1000 tonnes \n", - "21459 Oilcrops 5521 Feed 1000 tonnes \n", - "21460 Oilcrops 5142 Food 1000 tonnes \n", - "21461 Vegetable Oils 5142 Food 1000 tonnes \n", - "21462 Vegetables 5142 Food 1000 tonnes \n", - "21463 Fruits - Excluding Wine 5142 Food 1000 tonnes \n", - "21464 Stimulants 5142 Food 1000 tonnes \n", - "21465 Spices 5142 Food 1000 tonnes \n", - "21466 Alcoholic Beverages 5142 Food 1000 tonnes \n", - "21467 Meat 5142 Food 1000 tonnes \n", - "21468 Offals 5142 Food 1000 tonnes \n", - "21469 Animal fats 5142 Food 1000 tonnes \n", - "21470 Eggs 5142 Food 1000 tonnes \n", - "21471 Milk - Excluding Butter 5521 Feed 1000 tonnes \n", - "21472 Milk - Excluding Butter 5142 Food 1000 tonnes \n", - "21473 Fish, Seafood 5521 Feed 1000 tonnes \n", - "21474 Fish, Seafood 5142 Food 1000 tonnes \n", - "21475 Aquatic Products, Other 5142 Food 1000 tonnes \n", - "21476 Miscellaneous 5142 Food 1000 tonnes \n", - "\n", - " latitude longitude ... Y2004 Y2005 Y2006 Y2007 Y2008 \\\n", - "0 33.94 67.71 ... 3249.0 3486.0 3704.0 4164.0 4252.0 \n", - "1 33.94 67.71 ... 419.0 445.0 546.0 455.0 490.0 \n", - "2 33.94 67.71 ... 58.0 236.0 262.0 263.0 230.0 \n", - "3 33.94 67.71 ... 185.0 43.0 44.0 48.0 62.0 \n", - "4 33.94 67.71 ... 120.0 208.0 233.0 249.0 247.0 \n", - "5 33.94 67.71 ... 231.0 67.0 82.0 67.0 69.0 \n", - "6 33.94 67.71 ... 15.0 21.0 11.0 19.0 21.0 \n", - "7 33.94 67.71 ... 2.0 1.0 1.0 0.0 0.0 \n", - "8 33.94 67.71 ... 276.0 294.0 294.0 260.0 242.0 \n", - "9 33.94 67.71 ... 50.0 29.0 61.0 65.0 54.0 \n", - "10 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "11 33.94 67.71 ... 124.0 152.0 169.0 192.0 217.0 \n", - "12 33.94 67.71 ... 9.0 15.0 12.0 6.0 11.0 \n", - "13 33.94 67.71 ... 3.0 3.0 3.0 3.0 3.0 \n", - "14 33.94 67.71 ... 3.0 2.0 3.0 3.0 3.0 \n", - "15 33.94 67.71 ... 17.0 35.0 37.0 40.0 54.0 \n", - "16 33.94 67.71 ... 11.0 13.0 24.0 34.0 42.0 \n", - "17 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "18 33.94 67.71 ... 16.0 16.0 13.0 16.0 16.0 \n", - "19 33.94 67.71 ... 1.0 1.0 0.0 0.0 2.0 \n", - "20 33.94 67.71 ... 6.0 35.0 18.0 21.0 11.0 \n", - "21 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "22 33.94 67.71 ... 4.0 6.0 5.0 9.0 3.0 \n", - "23 33.94 67.71 ... 0.0 1.0 3.0 5.0 6.0 \n", - "24 33.94 67.71 ... 2.0 3.0 3.0 3.0 3.0 \n", - "25 33.94 67.71 ... 71.0 69.0 56.0 51.0 36.0 \n", - "26 33.94 67.71 ... 1.0 1.0 1.0 2.0 2.0 \n", - "27 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 \n", - "28 33.94 67.71 ... 0.0 1.0 0.0 0.0 3.0 \n", - "29 33.94 67.71 ... 2.0 2.0 8.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... \n", - "21447 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21448 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21449 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21450 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21451 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21452 -19.02 29.15 ... 75.0 54.0 75.0 55.0 63.0 \n", - "21453 -19.02 29.15 ... 1844.0 1842.0 1944.0 1962.0 1918.0 \n", - "21454 -19.02 29.15 ... 223.0 236.0 238.0 228.0 245.0 \n", - "21455 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21456 -19.02 29.15 ... 335.0 313.0 339.0 302.0 285.0 \n", - "21457 -19.02 29.15 ... 63.0 59.0 61.0 57.0 69.0 \n", - "21458 -19.02 29.15 ... 1.0 2.0 1.0 2.0 2.0 \n", - "21459 -19.02 29.15 ... 36.0 46.0 41.0 33.0 31.0 \n", - "21460 -19.02 29.15 ... 60.0 59.0 61.0 62.0 48.0 \n", - "21461 -19.02 29.15 ... 111.0 114.0 112.0 114.0 134.0 \n", - "21462 -19.02 29.15 ... 161.0 166.0 208.0 185.0 137.0 \n", - "21463 -19.02 29.15 ... 191.0 134.0 167.0 177.0 185.0 \n", - "21464 -19.02 29.15 ... 7.0 21.0 14.0 24.0 16.0 \n", - "21465 -19.02 29.15 ... 7.0 11.0 7.0 12.0 16.0 \n", - "21466 -19.02 29.15 ... 294.0 290.0 316.0 355.0 398.0 \n", - "21467 -19.02 29.15 ... 222.0 228.0 233.0 238.0 242.0 \n", - "21468 -19.02 29.15 ... 20.0 20.0 21.0 21.0 21.0 \n", - "21469 -19.02 29.15 ... 26.0 26.0 29.0 29.0 27.0 \n", - "21470 -19.02 29.15 ... 15.0 18.0 18.0 21.0 22.0 \n", - "21471 -19.02 29.15 ... 21.0 21.0 21.0 21.0 21.0 \n", - "21472 -19.02 29.15 ... 373.0 357.0 359.0 356.0 341.0 \n", - "21473 -19.02 29.15 ... 5.0 4.0 9.0 6.0 9.0 \n", - "21474 -19.02 29.15 ... 18.0 14.0 17.0 14.0 15.0 \n", - "21475 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "21476 -19.02 29.15 ... 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " Y2009 Y2010 Y2011 Y2012 Y2013 \n", - "0 4538.0 4605.0 4711.0 4810 4895 \n", - "1 415.0 442.0 476.0 425 422 \n", - "2 379.0 315.0 203.0 367 360 \n", - "3 55.0 60.0 72.0 78 89 \n", - "4 195.0 178.0 191.0 200 200 \n", - "5 71.0 82.0 73.0 77 76 \n", - "6 18.0 14.0 14.0 14 12 \n", - "7 0.0 0.0 0.0 0 0 \n", - "8 250.0 192.0 169.0 196 230 \n", - "9 114.0 83.0 83.0 69 81 \n", - "10 0.0 0.0 0.0 0 0 \n", - "11 231.0 240.0 240.0 250 255 \n", - "12 2.0 9.0 21.0 24 16 \n", - "13 3.0 3.0 2.0 2 2 \n", - "14 5.0 4.0 5.0 4 4 \n", - "15 80.0 66.0 81.0 63 74 \n", - "16 28.0 66.0 71.0 70 44 \n", - "17 0.0 0.0 0.0 0 0 \n", - "18 16.0 19.0 17.0 16 16 \n", - "19 3.0 2.0 2.0 2 2 \n", - "20 6.0 15.0 16.0 16 16 \n", - "21 0.0 0.0 0.0 0 0 \n", - "22 8.0 15.0 16.0 17 23 \n", - "23 6.0 1.0 2.0 2 2 \n", - "24 4.0 3.0 3.0 3 4 \n", - "25 53.0 59.0 51.0 61 64 \n", - "26 1.0 1.0 2.0 1 1 \n", - "27 1.0 1.0 1.0 1 1 \n", - "28 1.0 2.0 2.0 2 2 \n", - "29 0.0 0.0 0.0 0 0 \n", - "... ... ... ... ... ... \n", - "21447 0.0 0.0 0.0 0 0 \n", - "21448 0.0 0.0 0.0 0 0 \n", - "21449 0.0 1.0 0.0 0 0 \n", - "21450 0.0 0.0 0.0 0 0 \n", - "21451 0.0 0.0 0.0 0 0 \n", - "21452 62.0 55.0 55.0 55 55 \n", - "21453 1980.0 2011.0 2094.0 2071 2016 \n", - "21454 258.0 258.0 269.0 272 276 \n", - "21455 0.0 0.0 0.0 0 0 \n", - "21456 287.0 314.0 336.0 396 416 \n", - "21457 78.0 68.0 56.0 52 55 \n", - "21458 3.0 4.0 2.0 4 3 \n", - "21459 19.0 24.0 17.0 27 30 \n", - "21460 44.0 41.0 40.0 38 38 \n", - "21461 135.0 137.0 147.0 159 160 \n", - "21462 179.0 215.0 217.0 227 227 \n", - "21463 184.0 211.0 230.0 246 217 \n", - "21464 11.0 23.0 11.0 10 10 \n", - "21465 16.0 14.0 11.0 12 12 \n", - "21466 437.0 448.0 476.0 525 516 \n", - "21467 265.0 262.0 277.0 280 258 \n", - "21468 21.0 21.0 21.0 22 22 \n", - "21469 31.0 30.0 25.0 26 20 \n", - "21470 27.0 27.0 24.0 24 25 \n", - "21471 23.0 25.0 25.0 30 31 \n", - "21472 385.0 418.0 457.0 426 451 \n", - "21473 5.0 15.0 15.0 15 15 \n", - "21474 18.0 29.0 40.0 40 40 \n", - "21475 0.0 0.0 0.0 0 0 \n", - "21476 0.0 0.0 0.0 0 0 \n", - "\n", - "[21477 rows x 63 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "_cell_guid": "347e620f-b0e4-448e-81c7-e164f560c5a3", - "_uuid": "0acdd759950f5df3298224b0804562973663a11d", - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABYAAAAQcCAYAAAAsgj+iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdcU1ffAPBfbkICgYAMWWEECJmEIQiCuCdVqhVxVqtWHDxU3LtqXcVZS52PvmqhKipaFdxWZWhFURTIBBRFtoBhhRGS9w8anoAkoKK29Xz/8SO5uffce84994zfucEplUpAEARBEARBEARBEARBEARB/n2wT50ABEEQBEEQBEEQBEEQBEEQ5MNAA8AIgiAIgiAIgiAIgiAIgiD/UmgAGEEQBEEQBEEQBEEQBEEQ5F8KDQAjCIIgCIIgCIIgCIIgCIL8S6EBYARBEARBEARBEARBEARBkH8pNACMIAiCIAiCIAiCIAiCIAjyL0X41An4WB4+fGhOIBAOAYALoIFvBEEQBEEQBEEQBEEQBEH+eRQAkCmXy2d6enqWdOYLn80AMIFAOGRpacnu3r17BYZhyk+dHgRBEARBEARBEARBEARBkLehUChwpaWlnKKiokMA8GVnvvM5RcK6dO/evRIN/iIIgiAIgiAIgiAIgiAI8k+EYZiye/fuUmh+y0HnvvMB0/N3g6HBXwRBEARBEARBEARBEARB/sn+GuPs9Lju5zQA/LcQFRXVDYfDeaalpemq/jZ79mwbOp3OnT17to2m78XHx1MGDBhA74o0JCYmkqdNm2ar6XOxWEzcv3+/SVccC/l08Hi8J4vF4jCZTA6Hw2Ffv35d/0MfMzc3V2f48OGObf8uFouJurq6PdhsNsfR0ZHL4/HYv/zyi+mHTs/bEIvFRGdnZ+6nTsfHoiofdDqdy2QyOevWrbNoamr61MnSav369eZVVVUtz61+/frRX716he/MdyMjI02NjY3dWCwWx8nJibtjxw6zrk4fmUz26GgbKpXK6+z+vL29mTQazYXJZHJcXFzYd+/e1Xu/FL5J27OFSqXyCgsLCQAAHh4erPc9VkFBAcHV1ZXFZrM5V65cMVD/zNvbm5mYmEgGaL4X7e3tXc6cOWP4vsd8V3l5eYTAwEAHGxsbHpfLZbu7u7OioqK6afvO25RH5J+jM/f124iPj6dQKBR31fNw0aJFVl25f4DW9662bTq7v6CgIBqVSuUxmUwOjUZz+eqrr2jPnj3Tef+Ufjjx8fEU9XbP1q1bu+/evbvT7Q7VM9LZ2Zk7cODAD3JvL1y40HrNmjUWbf+u3h7pqM2uDQ6H8wwJCWnpW6xZs8Zi4cKF1u+e4vZ19T2CACxbtsySTqdzGQwGh8VicW7evKm1DT9//nzrc+fOUbRt0/aeUBcZGWk6depUu/dJM0DXtBWQf66ioiI8i8XisFgsjpmZmZu5ubkri8XiUCgUdycnp3fuY8lkMpyfnx+DxWJxDh48aNyVaX4X27dvNxsxYkRLf7e8vByztbV1EYlExA997FGjRjlER0drbY92dj9UKpWnGiuIi4vTWn+8i8zMTBKLxeK095mnpydT1a/x9/d3rqioeK9xyerqalyvXr0YLBaLc+TIkVZlZNSoUQ5kMtmjsrKy5RhTpkyxw+Fwnh+y3a5+jm/rxx9/7L5v374PMh6HBoA/spiYGJMePXpUR0dHt2TosWPHumdkZAgOHDjw8mOkoW/fvrVHjx7N0/R5VlYW6eTJk2gA+B+ORCIpRCKRQCwWCzZs2JC/cuXKNyYY5HJ5lx6TRqM1Xrly5Wl7n9na2tYLhULB06dP+SdPnszZs2ePxc8//9zpzlhjY2PXJRRpKR/Z2dn8mzdvSq5du2a0ePHiLu8Yvg2FQgHaBqEPHDhgUV1d3fLcSkhIyDYzM+v0qHVgYGCFSCQSJCYmijdu3EjNy8v7278HPyoq6qlYLBaEhISULF68WOMk4YeWlpYmet99xMfHU+h0ep1QKBQMHz68ur1tcnJydIYNG8bYvHlzXlBQUGVn9tvVdYNCoYDAwEB6nz59ql++fJnB5/OFp06depqXl6e1Yf+25RH5fHl5eVULhULB48ePhbGxsaZJSUnkT52mjmzcuPGlWCwWPH36NNPd3b12wIABzLq6OtynTJO2e//mzZuUpKSklommpUuXloaFhZV1dt+qZ2RWVha/W7du8m3btnV/z+S+k47a7NoQiUTlpUuXjDuaDED+Xm7cuKF/9erVbhkZGQKJRCK4deuWxNHRsUHbd3bt2lUwevToKm3btL0nPoSuaCsg/1yWlpZNIpFIIBKJBFOnTi2dM2dOsUgkEqSmpgow7N2Hne7evUtubGzEiUQiQUhISEVnvtPVfVz1/S1cuPBVYWEhUTXpsnjxYuqkSZNesVgsrffp301ERESeSCQSREREvAwPD3/vCaB3lZycnGVsbKx4n33cuXNHH4fDgUgkEkyfPv2NMmJjY1MfExNjBNCclykpKQZmZmZ/28GFFStWlM6dO7f8Q+wbDQB/RFKpFEtNTTU4cuRI7u+//24MADBw4EC6TCbDPDw82AcPHjTm8/kkNzc3louLC3v+/PnW6rPqNTU1+OHDhzs6ODhwv/zySweFovk+Wbx4sZWLiwvb2dmZO3HiRHvV3729vZlz586l8ng8No1Gc1FFXKlHfF28eNFANVPHZrM5FRUV2KpVq6ipqakGLBaL88MPP5iLxWKip6cnk8PhsNUjSePj4yne3t7M9tKE/L1IpVK8kZGRHKA533x8fBiBgYEOTCaT2zbyVT1CRFMZksvlMHv2bBsXFxc2g8HgbNu2zQyg81G0HA6nYevWrXn79++3AAC4desW2cPDg8VmszkeHh6sJ0+ekACaIxICAgIcBw4cSO/Tpw+jbbTi1KlT7SIjI00BAEJDQ6lOTk5cBoPBmTVrlg0AwOHDh42dnZ25TCaT4+XlxVSlsb3yrE5bme/Zsyfziy++cKTRaC6hoaHUffv2mfB4PDaDweDw+XzSu+XQp0WlUuWHDh3KPXLkiLlCodCYv509f4lEQvT19WUwGAyOr68vIysriwjQHFU5ZMgQJyaTyWEymZzr16/ri8VioqOjI/frr7+243K5nJycHOLkyZPtXFxc2HQ6nbtgwQJrAICNGzeal5SU6PTr14/h4+PD+CvdLVFuu3fvNmUwGBwmk8kZPXq0Q0fna2dnV5+dnU2srKzEgoODaS4uLmw2m8357bffugEA1NbW4saOHUtjMBgcNpvdMjMeGRlpOmjQIKc+ffo402g0F03Re99//72F6vqpzgEAwNjYWA4A8Pz5cx0vLy+mKsKsbURsW3379q0pLi5uGYA8e/asobu7O4vD4bADAgIcpVIppromqnuWx+OxMzMzSQDNEXzqM+Lqz5aqqir8kCFDnJycnLiTJk2ya28QXn371atXW6iudWhoKLXttu3l/927d/XWrl1rc+vWLSMWi8Wprq5+Y+AoPz9fZ+jQoYw1a9bkT548WdpRPqjXDdqu+eDBg524XC6bTqdzt2/f3mHkd1xcHEVHR0e5dOnSUtXfGAxGw6pVq0raRkkNGDCAHh8fT1Fd+8LCQoKqTE+YMMGeTqdze/fu7aw6Xz6fT+rTp48zl8tle3p6MlWrgY4fP26kio728/Nj/BMmJz5nmvKruLgYP3jwYCcGg8Fxc3NjpaSkaI38MDQ0VPB4vFqxWEzSVO8qFAqYPXu2jbOzM5fBYLREP8XHx1O8vLyYHd27e/fuNeHxeGwWi8WZNGmSvaoTq6qLKisrsf79+9OZTCbH2dmZ21F0FYZhsHbt2hIzM7PG2NhYIwDt9VFYWBjV3d2d5eLiwk5OTib7+/s729raumzdurW7tvMDaL+u8fb2ZoaFhVF79uzJ3Lhxo0V7eSEWi4lRUVHd9+/fb8FisThXrlwxUI+2zczMJPn5+TFUK6Q6enb36tWrJj8/v6X+ba+uEYvFRAcHB+6YMWNoDAaDM3z4cEfVihX1Z1ViYiLZ29ubqdpXeno6uVevXgx7e3uX9lamqLd7pFIppqoPGQwG5+jRo1qjwPB4vHLq1KmlmzdvfiPKuKCggDBs2DAnFxcXtouLC/vatWv6AM1RyaNHj3ZomyapVIr5+voyOBwOm8FgtDwrka6Xn5+vY2JiItfT01MCAFhZWclpNFojgOY+n/oznkql8hYsWGCtyqu0tDTd9u6JzqRF/dl/5MgR46CgIBpA++059e1ReUHaampqgrdpF6nk5+cTpk+f7iASifRYLBaHz+eTzp8/T2Gz2RwGg8EJDg6myWQyHEBz2V+8eLGVp6cn8/Dhw8be3t7Mb7/91tbLy4vp6OjITUhIIA8dOtTJ3t7eZd68eS3tRE3PSTKZ7DF//nxrV1dX1h9//NFyz2AYBvv27Xu+ZMkSu8TERHJycjLlhx9+KAZoHfX54sULgp2dnQtA87N22LBhTkwmkxMYGOigvrJv7969JgwGg+Ps7MwNCwujAjRPcI4ePdpB9feNGzeat72mCxYssFbVB5MmTbJTKBRw//59PfVI/MzMTBKbzW43Cldl4MCB1SUlJS3PuISEBHLPnj2ZXC6X3bdvX2dVG8fT05M5Y8YMW3d3dxaDweCoVu7NmzfPev369S3pc3Bw4Obk5OgAAMjlcpzqPL744gvH9tr/FhYWrqpI3J9//rmlPzd27Fha220LCwsJAwcOpDMYDI6HhwfrwYMHurm5uTohISG0zMxMMovF4ojF4jcCNoKCgspPnz5tAgBw4cIFQ19f3yr1SYmBAwfSVX2FnTt3tjyLY2JijDgcDpvJZHJ69+7tDNBcvwUFBdF4PB6bzWZzjh8/bgQAUFVVhQUEBDgyGAzOyJEjHevr61sOoCmPKRSKe2hoKJXJZHLc3d1Z+fn5hLbXdOvWrd1dXFzYTCaTExAQ0O41fBtoAPgjOnbsWLf+/ftLXV1d67t169aUnJxMvnnzZrYqyiAkJKQiLCzMNjQ0tCQzM1NobW3dalZCKBTq7dmzJy87O5v/4sUL0vXr1w0AAJYsWVKSmZkpzMrK4stkMkw1uwHQfNNlZGQIt2zZkrd+/fo3ovt27NhhGRkZ+VwkEgnu3bsnMjAwUGzatCnfy8urWiQSCdauXVtibW0tT0pKkggEAuHJkyefLliwwK6jNCGfXn19PcZisTgODg7c8PBw+7Vr1xaqPktPT9fftm1bfk5ODr+j/bRXhnbt2mVmZGTUlJmZKXzy5Inw119/7f62y178/Pxqnz17pgsA4ObmVnf//n2RUCgUrF27Nn/p0qUtkY6PHj0yOHHixLN79+5JNO2ruLgYf+nSJeOsrCy+RCIRbN68uRAAICIiwuratWsSsVgsuHLlSjYAgLbyrKJtG5FIpLdv3748oVDIj42NNZVIJLoZGRnCKVOmvNqxY8cbD+d/Cg6H06BQKCA/P5+gLX87c/5z5syxmzRpUplEIhGMHz++bO7cubaqv/fp06dKLBYL+Hy+oEePHnUAALm5ubrTp08vEwqFAgaD0bBz5878zMxMoUgk4t+5c4eSkpKit3r16hJzc/PGhIQESUpKSquykJqaqrt9+3arhIQEiVgsFhw4cOCFtnMVCATEvLw8EofDqV+5cqXVgAEDKjMzM4VJSUni1atX21RWVmJbtmwxBwCQSCSC48ePP501axattrYWB9B8/5w+ffppZmYm/8KFCyaqBpDK2bNnDbOzs3XT09OFf0X5kS9fvmwAAJCZmSkEADh8+LDJoEGDpCKRSCAUCvk+Pj612tIcFxdnGBAQ8BqgufGzefNmq8TERIlAIBD26NGjdsOGDS0dfENDw6aMjAzh7NmzS7777rsOlw5nZGTo//zzz3lisZifm5tLioqK0jgAdOrUKcOLFy8aP3z4UCQWiwVr164tartNe/nv5+cnW7FiRYEqCtvAwOCNd/LPmTPHISQkpGTGjBktM/fa8kG9btB2zY8dO5bL5/OFjx8/Fhw4cMCiqKhI63KvjIwMPVdXV6350ZEXL17ozps3ryQ7O5tvZGTUpLqmM2fOtN+7d+8LPp8v3LZt28u5c+faAQAMGTKk+vHjxyKhUCgYO3Zs+fr16y3f5/jIh6Upv5YuXWrt5uZWK5FIBBs2bMj/5ptvtE5GFRUV4dPS0vTd3d1lmurdqKiobhkZGXpCoZD/xx9/SNasWWPz/PlzHYCO791Hjx7pxsbGmqSmpopEIpEAwzDl/v37TQH+VxedPXvW0NLSslEsFguysrL4Y8aM6VTkvaura61QKNTtqD6ytbVtePz4scjHx6d6xowZtLi4uJyUlBRRRESENUDzq9HaOz9tdc3r16/xDx48EP/www/F7eUFk8lsUI8+a7viYNKkSQ5z5swpEYvFgtTUVJGdnZ3GKCC5XA63bt2ijB49+rXqemmqa3Jzc3XnzJlTKpFIBBQKRdGZqGGhUKh348aNrHv37om2bdtmnZubq/HVGsuXL7cyNDRskkgkAolEIhgxYoTWiE+A5j7C2bNnTcrKylrVe7Nnz7ZduHBhcWZmpvD333/PmTNnDk1bmshksuLixYvZAoFAmJCQIFm5cqUNCvr4MEaPHl1ZUFBApNFoLl9//bXdxYsXW/pW2vp86szMzOQCgUA4Y8aM0oiICIuO7om3pak9p4LKC9LW27aLVKhUqnzv3r3PVWMTDg4ODbNnz3Y4efJkjkQiEcjlclCva3V1dRUPHz4Uz5o1qwIAgEgkKlJTU8XTp08vDQ4Oph88ePCFSCTinzx50qyoqAiv7Tkpk8kwFxcXWXp6umjYsGGt7hkfHx9Z//79pSNGjGDs2LEjT1dXV+tvTUVERJibm5s3isViwcqVK4uEQiEZoHnl26ZNm6gJCQmSzMxMQUpKisGJEyeMkpKS9MvLywkSiUSQlZXFnzNnzhsrWJYvX16cmZkpFIvF/KqqKnxsbKyht7e3rLq6Gq8KvomOjjb+6quvtEaSnj171mjIkCEVf50zbv78+XYXLlzI4fP5wokTJ5YtXbq0Jdijvr4e9/jxY9H27dvzZs2aRdO237/OT/e7774rkUgkAhKJpNi5c6fG5+Kff/6pt2vXLsukpCSxWCwW7Nmz543VL4sXL7bu2bNntUQiEXz//fcF06dPd6DRaI2RkZHPfXx8qkQikYDJZL4Ric3hcOqKioqIZWVl+OPHj5tMnjy51TU5ceLEMz6fL0xLSxPu2bPHorS0FP/ixQvCggUL7M6dO5cjFosFZ8+efQoAsGzZMuthw4ZJMzIyhImJieKVK1fa1tbW4rZs2dK9W7duTRKJRLBixYrCjvIYAKC6uhrfv3//KrFYLPDy8qres2fPGxPBU6dOLf8rnwUODg717W3zNj7LCJMlsU9sJUVVXbrcjmFJqd021k3rEq1Tp06ZhIeHlwA0z0JER0eb+Pv7t+pkpqWlGVy7di0bAGDmzJll69ataxkI4/F4NU5OTo0AAFwutzYnJ4cIAHD58mXKzp07Levq6rDXr18TOByODACkAADBwcEVAAB+fn41S5YseWOArlevXtWLFy+2HTduXPnEiRMrnJyc3ng6NzQ04L799lt7gUCgh2EYPH/+vCVSQlOakP/5/s73ttkV2V1a3ujG9NoNvTdoLW+qiQWA5uVk06dPd5BIJHwAAFdX15rOLlNprwzduHHDUCQSkS9cuGAM0BxBKBAIdLlcbp22falTKv/3nCwvL8ePHz/eITc3VxeHwykbGxtbZrb69OlTaWFhoXVZtYmJSROJRFJMmDDBfsSIEdLx48dLAZqX2U6ePJkWFBRUMXny5AoA7eVZpaMyb29v3wgAYGdnVx8QECAFAHBzc5MlJCS89fuT/ogS2pbnV3dp+TChGtQOmsp+6yWjqjzRlL9EIlHZmfNPS0vTv3z5cg4AwNy5c8t/+OEHGwCAu3fvUmJjY58BABAIBDA1NW169eoV3srKqmHQoEE1qnT8+uuvJkePHjWTy+W40tJSnSdPnuj6+PjINKX76tWrhoGBgRVWVlZyAABN5SUuLs6YxWIZEIlExa5du55bWFg03b592/Dq1avdIiMjLQGaGzbZ2dnEu3fvGnz33XclAAAeHh511tbWDRkZGboAAP7+/pWWlpZNAAAjRoyouH37tkHfvn1b6vIrV64YJiYmGnI4HA4AQG1tLSYSiXQDAgJaGo+9evWqmT17Nq2xsREbO3ZshZ+fX7vnN3XqVEeZTIYpFApITU0VAgDcvn1bPycnR9fb25sFANDY2Ijz9PRs2fc333xTDgAQEhJSvnr16g4HgHk8Xg2Hw2kAABg3blx5UlKSQXvLpwAArl+/bvj111+/olAoCk3XWlP+d6R3796VMTExpv/5z3/KVPt3zDPsPtH9P4ri3WlMawA4+uWP+KJfHrH6VTtj7hN+xsHpAnoxFIDlMyVpom5/wpVZR0wAABY6TMRZ3QXd4py0xtwXz4kPy8sIAABbei3AXp0W2Vt+Z9nuq2raM2XKFLv79+8b6OjoKGfNmlXSme9QqdR6VZ56eHjU5ubmkqRSKZaWlmYQHBzspNquoaEBBwDw7Nkz4ujRo21KS0t1GhoaMFtb2/rOpu9zIRAus62plnRpXalvwKjlsLe8dV2pKb/u379POXPmTDYAwJdfflk1a9YsQllZGd7U1LTVfZKammrAZrM5GIYpw8PDi7y8vOpWr15t3V69m5SURBk3blw5gUAAW1tbuY+PT3VycjLZyMhI0dG9e+XKFUpmZibZzc2NDQBQV1eHmZubt1oX26NHD9mqVats586dSx01apS0swNDqudFR/XRuHHjXgMA8Hi82pqaGszY2FhhbGysIJFIilevXuE1nd/t27cpmuqaiRMntnTc3vbeqaiowIqLi4lTp059DQBAJpOVAPBGx101iZ6fn090cXGpHT16dOVf17Td+t3R0bHB0tKyYejQoTUAAFOmTCmLjIw0B4BizGs8/tsYEV1HJ0dZXV2DVfSYRhq1O5mZR/Ak6o/yhMlHHzMAAEzHbcJN+fUxg6xv0CTvG0YctTuZKZUCvpA9gThqdzIzQ84h09ks2ajdyczO9DsAAExMTBTBwcFlERER5np6ei1t/Dt37hhmZWW1RKhXV1fjVe9gDAgIeG1gYKA0MDCQ+/r6ViYlJemPGzdOOn/+fJt79+4ZYBgGJSUlxJcvXxLs7Oy6dp3138ynaMMbGRkpMjMzBVeuXKH88ccflG+++cZpzZo1L+fNm1emrc+nbtKkSRUAAN7e3rWqOqUrtdeeU/9coVDgPsfy8ndSsHKVbX1WVpeWXZKzc6315k3v9Eqat20XafLkyRNdGxubeldX13oAgGnTppXt2bPHHABKAACmTp3aqv361VdfvQZo7qfQ6XSZqg9ja2tb//TpU+Lt27cNND0n8Xg8TJs2TeMrJxYsWFBy8+ZNo8DAwA4n4/7880+DZcuWFQEA+Pr6ypycnGQAAElJSfp+fn5Vqj7MuHHjyhISEijr1q0rfPr0qe706dNtR44cKf3qq6/emJy9ePGi4U8//WRZX1+Pe/36NcHDw6N23LhxlaNGjSqPjo42Xr9+ffHvv/9ucu7cuez20rR8+XLb5cuX275+/ZqQlJQkBABIS0vTzc7O1h0wYAADoHmVjqWlZcsk6ddff10O0NzGmTlzJkG14kcTKpXa0sebMmVK+X//+18z+Cuv2rp27Rpl9OjRFarnfXt9jAcPHhisW7cuGwBgzJgxlXPmzKGpv9tXmxEjRlQcPnzYOCMjgzx48OAa9c82b95sceXKlW4AAMXFxUShUEjKzc0l+vr6VjEYjAb19Ny+fdvw5s2bhjt37rQC+F/f8c6dO5SlS5cWAQD07t27wzweO3asVFdXVzFu3LhKAABPT8/a9l7T8+DBA/K6deusq6qq8DU1NfhBgwa9Uee/jc9yAPhTKCoqwt+7d89QIpHohYWFQVNTEw6Hwyn37dvX6ff+kkiklgYqHo8HuVyOq62txS1atMg+JSVFQKfTGxcuXGhdV1fXchOoZqMIBAI0NTW9UaFu3ry5aPTo0dLz588b+fn5sa9cufJGlOWmTZsszM3NG8+cOfNMoVCAnp6ep7Y0dfZ8kI9n8ODBNRUVFQTVEkQymdzSCSAQCEr1WXn18gPQfhlSKpW4HTt2vGj7js72llxo8ueff5IdHR1lAADLli2j9uvXr+r69es5YrGYOHDgwJblkepp1dHRaZXW+vp63F9/h8ePHwsvXLhgGBMTY7xv3z7ze/fuSY4fP/7i5s2b+hcuXDByd3fnPn78mL9161aN5Vmls2Uew7CW64NhWLv32D+FQCAg4vF4oFKpck35Gx8fT/kQ56+exyKRiLh7926Lhw8fCrt3794UFBREa1sm21IqlYDD4bTOvAM0vwM4KiqqVXSwUqmE2NjYbDc3t/q2f9cEh8Np/b9SqYT58+cXLlmy5JWmfQQEBFQnJiaKz5w5YzRt2jSHefPmFbf3fsqoqKinPj4+srCwMGpISIjdtWvXcpRKJfj7+1fGxcU9a2/f6kuaVNeFQCAoVcvDFQoFqE+ydHQ+bc9N2+fvY/ny5UVHjx41DQwMdLx+/Xq2jo7Om6MyajAM3+pjW6ptg7WlVatIvtfS1/jX0td4D1f3WgzD4Elmup5crv01vTweT3b+/PmWDnN0dPSLwsJCgpeXF7ttfam+vEsdkUhUfzYqZTIZ1tTUBBQKRa6amFMXFhZmFx4eXjR58mRpfHw8pb0VO8jfh6b8aq/eaK9u8vLyqr5161arDpmWerfdCL+/9q31/0qlEhccHFy2Z8+efE37cHV1rX/06JHgzJkzRqtWraLeuHGjcvv27YWatlf5qwNV1FF9pP6MUL8vMAyDxsZGnKa6VltdoxoUBnj7e0db3a5ONYleVlaGHzp0KD0iIsJ89erVJZrqd7FYTNSUHxiGtdRlCoWigwq06+vXFStWFPfo0YMzYcKEljQrlUpITU0Vtrcao73zOHDggElZWRkhIyNDSCKRlFQqlSeTydBK0g+EQCDAyJEjq0aOHFnl6uoqi46ONp05c2a5tj6fOrW2u/J9+mbqZUG1zL4zUHlB2nrbdpEmHdXh6s8HgNbPoLaQi/5hAAAgAElEQVR9GLlcjtP2nCQSiQoCQfNwGR6Ph7bvNsbj8S31vHqZ1/Ksa/e+srS0bOLz+fwzZ84Y/fLLL+axsbHGJ06ceK76vKqqCluyZIldamqqwMHBoXHevHkt9cGUKVPKv/76a8dRo0ZJdXV1FaqJ4rYiIiLyJk6c+Hr9+vUW06ZNo6Wnp4uUSiUwGAzZw4cPxe19p73nA4FAaPVsa2howNQ+V7bdXhOlUonrqI/R9np19pkO0BxJ6+fnx5k4cWKper6dO3eOcvfuXcrDhw+FBgYGSk9PT6ZMJsM0tUOUSiX8/vvvOVwu940JZw3bazwpAoHQ6r5ory8dEhLiEBcXJ+nZs2fdzp07zVJSUrT+KGhHPssB4M7MmHe16Oho4zFjxpQdP3685cbt2bMn89q1a61G+d3d3auPHj1qHBISUnH48OEOf4ittrYWAwCwtLSUS6VSLC4uzjgwMLBTL0cHaH7vjre3t8zb21uWkpKin5mZqUuj0Rqqq6tblopJpVK8jY1NAx6Ph927d5tq+5Em5E0dRep+DGlpaboKhQIsLCzemHm3sbGRl5eXE4qKivBGRkaKq1evGg0aNEjrEtAhQ4ZI9+3b133kyJFVJBJJmZ6eTlK9n6wzxGIxcfny5TazZ88uAQCorKzE29jYNAAAHDhwQOOyBicnp/rs7Gw9mUyGq62txZKTkw179+5dLZVKserqamz8+PHS/v37VzMYDB5Ac/keOHBgzcCBA2uuXr3a7enTp8TOlOePWebfJVK3qxUUFBBCQkLsp0+fXoJh2Hvnr4eHR82hQ4eM//Of/5QfOHDAxMvLqxoAoHfv3lXbtm3rvmbNmhK5XA7tzdhWVFTg9fT0FCYmJk15eXmE27dvG/Xr168KAEBfX79JKpViVlatX7s7fPjwyrFjx9JXrlxZbGlp2VRcXIzvKGpcZcCAAZU7duywOHr06AsMw+DOnTt6vXv3lvn7+1f/9ttvJl9++WVVeno6qbCwkOjq6lqXkpJCTk5ONiwuLsbr6+srLl261O3QoUO56vsMCAioXLdunfWsWbPKjYyMFM+ePdMhEolKKpXacv9JJBKig4NDw6JFi17V1NRgjx49IgNAuz9QRCKRlD/99FO+o6Mj79GjR7r9+/evWbRokV1mZibJxcWlvqqqCnv27JmOKhoiKirKZPPmzUX/93//Z+zh4VEDAGBvb9/w8OFD8syZMyuOHTvWTb1DmJGRoS8SiYjOzs4NsbGxJjNnzixtLx2qa71p0ybrkJCQcgqFomjvWmvK/844dOhQ3qhRoxzGjx9Pi42Nzc21qyq9lL5P99SpU8/T09NJ0zevZOTk5IjiDx40SX2eqh/1U/OA/p2zzwzXrVtunZSUlKV+zR/c4hsc/iPK7OaBm9lpaWm6gYtmcc6cOVPqriUNgYGBVd9//z1uy5Yt3ZctW1YKAKD68UEnJ6eGgwcPkpuamuDZs2c66enpnW6EmZiYKGxsbBoOHz5sPGPGjAqFQgEpKSl6vr6+sqqqKrxqGfrRo0c7/eOYn5N3idT9UDTlV69evaqOHDlium3btsL4+HiKsbGx3MTEpFPrnjXVu/369as6ePBg97CwsLKSkhLC/fv3DSIjI/PS09P1Orp3hw8fXjlmzBj6ypUri6lUqry4uBgvlUrxqmgWAIDc3Fwdc3NzeWhoaDmFQlH8+uuvWsufQqGAzZs3m5eWluoEBQVVlpeX47XVRx3RdH4kEknZUV0DoDkvKBRKU2Vl5RuvezExMVFYWlo2REdHd5syZcprmUyGk8vluLaDBiqmpqZNkZGRL8aOHUtfsmRJqab6HQCgsLCQeOPGDf3BgwfXHD9+3MTPz68aAIBafLd2OtW7aNy4cZXffvutbU1GBvn8/vvihQvPWl+6dKnbiUePJJWVlZiHRzDn4p9/Surr63EjD8x1Pv9/WeL4+HjKjhsxFuf33soODT1OrROmYYcPH84DACgtLcV37969w2edhYVFU2BgYMXx48fNJk6cWAbQvJJly5Yt5hs2bCgGALh7966eKjrv8uXL3TZt2lRYWVmJ3bt3j/LTTz/lR0dHG5uZmTWSSCRlXFwcpaCg4LNY8fcp2vBPnjwhYRgGPB6vHgAgLS1Nz8bGpuF9+3ya7gltTE1NGx89eqTr5uZWd/78eWMDA4MmgPbbc+p1nVQqxX+O5eXv5F0jdT8mbe0iTd9xd3evy8/PJ6qeOVFRUaZ9+vTpMAJXk848J9+Gra1tfUpKCtnf37/22LFjLcEEvr6+1SdOnDAePnx49f379/WePn2qBwDQt2/f6tWrV9sUFRXhTU1Nm2JjY00WLFhQXFBQQNDT01PMmDGjgk6n14eGhtqrH6empgaHYZjS0tJSXlFRgcXHxxuPHTu2HADAzc2tvqmpCdavX281ZswYrXUEgUCAdevWFcfExJieP3+eMnTo0Ori4mLirVu3yAMGDKitq6vDZWZmkry8vOoAAI4fP24yfPjw6vj4eIqpqanc0NBQQaPR6m/cuGEI0Py7PkVFRS33e35+PikhIYHcr1+/WvXnYnsCAgIqJ0yY4Lhs2bJiCwuLdvtzPj4+VYcPHzb58ccfi86dO0exsLBoNDQ07FQ7i8PhNKxYsSJ/1KhRrSJoX79+je/WrZvcwMBAmZqaqpuRkaEP0Pxu5OXLl9tKJBIig8FoUKVnwIABldu3bzc/cuRIHgC09B179+5dFRUVZTJ8+PDqP//8Uy8nJ0drHncmzQDNEwk2Njby+vp63KlTp0zs7e3fa5XgZzkA/CmcPn3adOnSpa0iKkaNGlURHR3dapD3l19+yZs8ebJDZGSk5dChQ1+rHrSamJmZNU2ePLmUw+FwbWxsGtzc3Gq0bd/W1q1bze/evWuIYZiSwWDIxo4dK8UwDAgEgpLJZHImTZr0av78+SVBQUFO586dM/b3969SX0KG/H2pli8CNM9U7du3L7e9WUwSiaRctGhRobe3N9vGxqaeTqd3+BqHBQsWvMrNzSXxeDy2UqnEmZiYNF66dClH23fy8vJIbDabU19fj9PX11fMnj27JDw8vAwAYNmyZUUzZ850iIyMtOzTp4/GwWc6nd4YGBhYwWazuQ4ODnVcLrcWoLniHjlyJF0VEbxx48a8v9Jpk5ubS1IqlTh/f//KXr16ySgUSofl+XMo86ryIZfLcXg8Xjl+/PiytWvXFgO8W/6q27dv34tvvvmG9vPPP1uamprKo6KiclV/nzZtmj2DwTDDMAx279793NbWttXAsq+vr8zFxaXW2dmZa2dnV9/m1QavAgICnM3NzRvV3wPs5eVVt2jRosI+ffqwMAxTuri41J45cya3M2mNiIgomDVrlh2LxeIolUqcjY1N/a1bt7KXLl1aMmXKFHsGg8HB4/Fw4MCBXNUPsnh5eVWrXlkSFBRUpv76B4DmJUl8Pl+3Z8+eLIDmCOdjx449Ux8Avnr1KiUyMtKSQCAoyWRy07Fjx9qNnlMxMDBQzp07tzgiIsLi1KlTzw8cOJA7YcIER9VSubVr1+arBlzq6+txrq6uLIVCgYuJiXkKAPDdd9+Vjhw5ks7j8dh9+/atVC/T7u7u1YsWLbIRiUR6Pj4+VVOmTHmtKR1jx46tfPToEdnd3Z2to6OjHDx4sHT37t2toiY05X9nYBgGp0+fzh00aBB97ty5Nj/99FO+pnxQp+maBwUFSf/73/92ZzAYHCcnp7rOPCMxDIO4uLic//znP7aRkZGWJiYmcjKZ3LRu3bqXQ4YMqd6zZ089k8nkMplMGYfDeat3BZ84ceJpSEiI/ZYtW6zkcjnuq6++Kvf19ZWtWrWqYOLEiU4WFhYNXl5eNS9evPhH/qDkv1FdXR1mYWHhqvr/3LlzizXl15YtWwomTZpEYzAYHD09PcXRo0e13tfqNNW7U6ZMeX337l0DNpvNxeFwyh9++OGlnZ2dPD09vcN719PTs2716tX5gwYNYigUCtDR0VFGRka+UO/YPnz4UG/FihU2qrbf3r17n7+ZOoDVq1fbREREWNXV1WEeHh41N2/eFOvq6iqtra3l2uqjjmg6Pzs7uw7rGgAATXkRFBT0euzYsU6XL1/utmvXrlYrP3777bdnISEh9hs2bLDW0dFRnj59OkdThBRA81JONpstU01stVfXEAgEpaOjY93hw4dNQ0ND7R0cHOoXL15cCgCwZs2agjlz5tC2bNnS6Onp2aoO8vDwqBk0aJBzQUEBcfHixYU0Gq1R02qqH3/8sXD69Ol2zs7OXAzDlCtXriz45ptvNNbXba5T0a+//try7sX//ve/eTNnzrRjMBicpqYmnI+PT5Wfn98LTWmaOXNmeUBAAN3FxYXN5XJrHRwcOv3KL+TtVFZW4ufNm2dXWVmJx+PxShqNVv/rr78+f98+X9t7ou3rXmJjY02vXr3a8mNtd+/eFf7www/5o0aNoltZWTWyWCxZTU0NBtB+e059STUqL0hnaWoXadqeTCYr9+/fnxscHOzU1NQEbm5utaq69l105jn5NlasWFE0ceJEp99++83M39+/ZWB6+fLlJcHBwQ4MBoPD4/Fq6XS6zMTEpMnJyalx5cqV+X379mUqlUrc0KFDX0+YMEGanJxMDgkJoamiUDdt2tRq1bilpWVTcHBwGYvF4lKp1AZVwIfK6NGjKyIiIqg7duzocLU5hmGwZMmSwm3btlmOGjUqKyYmJic8PNy2uroa39TUhAsLCytSDQAbGho2eXh4sGpqajBVAMy0adMqYmJiTP/6MfcaGxubluc/nU6X7d+/v3tISIg+nU6vW7Bggca88vHxkYWHhxf5+/uz8Hi80tXVtebUqVOt2iTbtm0rmDx5Mo3BYHD09fUVR44c6XQ7CwBAFdihbty4cdJDhw51ZzKZHDqdXufq6loDAGBrayv/6aefXnz55Zd0pVIJFhYWjYmJiVlbt24tmDVrli2DweAoFAqcvb193R9//JGzbNmy0nHjxtFUeczlcmsAADTlcWNj52Krli1blt+zZ0+2tbV1A4vFkqnGO96VxqVX/zZPnjzJdXNz07gc9++iqqoK09fXV2AYBv/973+NT548afLHH390euAFQRAE+XAiIyNNU1NT9du+SuLvgkql8lJTU4Wq90whCPLvFB8fT9mxY4dF21dJIJ+GWCwmjhw50jkrK6vDH9f9O1u4cKG1gYFB0/r16zsdnYQgCIJo19jYCI2NjTgymazMyMggDR8+nJGbm5uho6Pxdz//djw9PZm//PLLC02/W4J8Ok+ePDFzc3OjdWZbFAH8N3Pnzh1yeHi4nVKpBENDw6ajR4/mfuo0IQiCIAiCIAiCIAiCIG9HKpXi+/Xrx/jrvcPwyy+/PP8nDf4i/x4oAhhBEARBEARBEARBEARBEOQf5G0igNGvcSIIgiAIgiAIgiAIgiAIgvxLoQFgBEEQBEEQBEEQBEEQBEGQfyk0AIwgCIIgCIIgCIIgCIIgCPIvhQaAEQRBEARBEARBEARBEARB/qXQAPBHFhUV1Q2Hw3mmpaXpAgCIxWKis7MzFwAgMjLSdOrUqXZdcZytW7d23717t2lX7Av5Z8Lj8Z4sFovDZDI5HA6Hff36df2OvuPt7c1MTEwkd8XxExMTydOmTbPtin0hXU9VPuh0OpfJZHLWrVtn0dTU9KmT1YJMJnt86jQgn6+8vDxCYGCgg42NDY/L5bLd3d1ZUVFR3bR9p1+/fvRXr17hP2S6vL29mTQazYXFYnEcHR2527dvN/uYx/8cvU1dFB8fT+nMs3b+/PnW586do7xfyhBEOxwO5xkSEmKj+v+aNWssFi5caK3tO23LcFBQEO3IkSPG75MOKpXKKywsJLzPPlQ+l7bBsmXLLOl0OpfBYHBYLBbn5s2bWuuVztQpmuonsVhMtLCwcG3bBmSxWJxbt26RP2af8u7du3onT540+hD7jo+PpwwYMIDe0TEXLlxovWbNGot3PU5jYyOEhYVR7e3tXVgsFofFYnGWLVtm+a77e1fqfbqP1T4oKirCq87ZzMzMzdzc3FX1fw8PD9aHPj5A1/Rlly9f/tHzC0E+li55GCOdFxMTY9KjR4/q6OhoEw8Pj4IPdZylS5eWfqh9I/8MJBJJIRKJBAAAZ86cMVy5cqXNkCFDxB/j2I2NjdC3b9/avn371n6M4yFvT7185OfnE4KDgx2lUin+p59++mD1UmcoFApQKpWfMgnIZ06hUEBgYCB90qRJZXFxcc8AACQSCfH06dNaB4ATEhKyP0b6oqKinvbt27e2uLgY7+zszAsLCyvT1dVVfqzjI5rdvHmTYmBg0DRkyJAabdvt2rXrk9azyOeBSCQqL126ZFxYWFhkZWUl78x3OluGOwM9z9/NjRs39K9evdotIyNDoKenpywsLCTU19fjtH2nM3WKprxlMpkNVlZWDVeuXDEYMWJENQBAWlqabk1NDTZgwIDaAQMGfLS2fGpqKjk1NVV//Pjx0n/qMcPDw6nFxcU6QqGQTyaTlRUVFdiGDRveGFBU3R94/Ieft/1Y7QNLS8smVd9i4cKF1gYGBk3r168v/lDHa2xsBB0dnS7fb2RkpFVERERRl+8YQf4GUATwRySVSrHU1FSDI0eO5P7+++/tzqbn5+fr9OnTx5lGo7ksWrTISvX3wYMHO3G5XDadTm8V8UMmkz2+++47KpPJ5Li5ubHy8vIIAK1nL3fs2GHm4uLCZjKZnGHDhjlVVVWhfP/MSKVSvJGRkRzgzRnwqVOn2kVGRr4xs//TTz+Z0Wg0F29vb+aECRPsVdHpx48fN3J1dWWx2WyOn58fQ73MTZw40b53797OY8aMcVA/zq1bt8geHh4sNpvN8fDwYD158oT0cc4c6QwqlSo/dOhQ7pEjR8wVCgXI5XKYPXu2jYuLC5vBYHC2bdtmBtBcdry9vZnDhw93dHBw4H755ZcOCoVCtQ9eWFgY1d3dneXi4sJOTk4m+/v7O9va2rps3bq1O0BzHejr68vgcDhsBoPB+e2337oBNEefODo6cr/++ms7LpfLycnJIarSVlhYSHB3d2fFxMR8kIgQBGkrLi6OoqOjo1SfSGUwGA2rVq0qabtSZ8CAAfT4+HgKwP+i3FTlecKECfZ0Op3bu3dv5+rqahwAAJ/PJ/Xp08eZy+WyPT09marVQJrqVW0qKyvxenp6CgKBoFQ/fmVlJda/f386k8nkODs7cw8ePGgMABAaGkp1cnLiMhgMzqxZs2y0HbdtBJSzszNXLBYT20vH56i96yYWi4lRUVHd9+/fb8FisTgXL140oFKpPFVUXVVVFWZpaelaX1+PU4+qXLx4sZWLiwvb2dmZO3HiRHtVnYog7wuPxyunTp1aunnz5jeiGQsKCgjDhg1zcnFxYbu4uLCvXbum37YMX7lyxQAAICEhwcDDw4NlY2PDU48G/v777y1U7YQFCxZYA2h/ngO8fX9GJBIRVe2K8PDwlujl58+f63h5eTFZLBbH2dmZq0rrv0F+fr6OiYmJXE9PTwkAYGVlJafRaI0AmusL9TqFSqXyFixYYK1qa6WlpelqyluVsWPHlh8/ftxE9f/o6GiTr776qhyg9fPA29ubOXfuXCqPx2PTaDQX1X7kcjnMmjXLhsFgcBgMBmfTpk3mAABJSUnknj17MrlcLtvf39/5+fPnOpr2U1dXh/vxxx+t4+LijFksFkf17FIRi8VET09PJofDYauvbNTWNo2NjTV0cHDgenp6MmNjY9+YxNV0TKFQqOft7c20sbHhbdy40Vy1/d69e014PB6bxWJxJk2aZC+Xt55Xqaqqwo4fP9790KFDL8hkshIAwNjYWLFz584C1Tm0vT/Onj1r6O7uzuJwOOyAgABHqVSKacpHAM19qurqatzIkSMdGQwGZ8SIEY51dXUtkwbv0z45fPiwsbOzM5fJZHK8vLyYWoquVqro/fj4eErPnj2ZX3zxhSONRnMJDQ2l7tu3z4TH47EZDAaHz+eTAJon3n19fRkMBoPj6+vLyMrKIgI0l/WZM2fa+Pj4MEJDQ220HVNFU7+mvXokNDSUWl9fj7FYLM6XX37pANBxviPIPwkaCPyIjh071q1///5SV1fX+m7dujUlJye/sTwhPT1d//Tp008zMzP5Fy5cMFEtYTh27Fgun88XPn78WHDgwAGLoqIiPACATCbDfH19q8ViscDX17f6l19+6d52n5MnT67IzMwUisViAZPJlEVGRpq13Qb591E9vBwcHLjh4eH2a9euLezsd3Nzc3W2b99ulZKSIkxKSpJkZWXpqj4bMmRI9ePHj0VCoVAwduzY8vXr17fMaqenp5OvXr2arYqaU3Fzc6u7f/++SCgUCtauXZu/dOnSTj2wkY+Hw+E0KBQKyM/PJ+zatcvMyMioKTMzU/jkyRPhr7/+2l0kEhEBmhvFe/bsycvOzua/ePGCdP369ZZOhK2tbcPjx49FPj4+1TNmzKDFxcXlpKSkiCIiIqwBAMhksuLixYvZAoFAmJCQIFm5cqWNqpGem5urO3369DKhUChgMBgNAM3L8IcNG0Zfu3ZtwYQJEz5aNAjyecvIyNBzdXV9r4inFy9e6M6bN68kOzubb2Rk1BQVFWUMADBz5kz7vXv3vuDz+cJt27a9nDt3rh2A9nq1ralTpzoyGAwOj8dzWbx4cQGB0Hqs+OzZs4aWlpaNYrFYkJWVxR8zZkxlcXEx/tKlS8ZZWVl8iUQi2Lx5c+HbHhf5n/auG5PJbJg6dWrpnDlzikUikWDEiBHVLBar9tKlSxQAgJiYGKN+/fpJSSRSq5DIJUuWlGRmZgqzsrL4MpkMQ5NdSFdasmRJydmzZ03KyspahRnOnj3bduHChcWZmZnC33//PWfOnDm0tmV4+PDh1QAAxcXFOqmpqaLz589nrV27lgrQXM9kZ2frpqenC4VCoeDx48fky5cvGwC0/zxXedv+TGhoqN3MmTNLMzMzhZaWlo2q/Rw+fNhk0KBBUpFIJBAKhXwfH59/zYqz0aNHVxYUFBBpNJrL119/bXfx4sWWdlZn6wszMzO5QCAQzpgxozQiIsJCU96qTJ06tfzatWvdGhubL/G5c+eMp0yZUt7evuVyOS4jI0O4ZcuWvPXr11sDAOzYsaP78+fPSXw+XyCRSAQzZ84sq6+vx82bN8/u/PnzOXw+X/jNN9+8Wrx4MVXTfnR1dZUrVqwoCAwMrBCJRIKQkJAK9eNaW1vLk5KSJAKBQHjy5MmnCxYsaJmMba9tWltbiwsLC6NduHAh+8GDB+KSkpI3QkU1HTM7O1s3ISFB8uDBA+H27dut6+vrcY8ePdKNjY01SU1NFYlEIgGGYcr9+/e3CqARCAQkKyurBmNjY40zeer3B4VCUWzevNkqMTFRIhAIhD169KjdsGFDy4RN23wE0Nyn2r59u7menp5CIpEI1qxZUygQCNp9bcjbtk8iIiKsrl27JhGLxYIrV650SSSxSCTS27dvX55QKOTHxsaaSiQS3YyMDOGUKVNe7dixwxwAYM6cOXaTJk0qk0gkgvHjx5fNnTu35bWCOTk5unfu3JEcPHjwZWeOp6lf0149snfv3nzVKskLFy4860y+I8g/yef5Cohz/7GFEkGXvOe0hTmnFkbvydO2yalTp0zCw8NLAACCgoLKo6OjTRYuXFiivo2/v3+lpaVlEwDAiBEjKm7fvm3Qt2/f2i1btlhcvHixGwBAUVGRDp/P17W0tKzR0dFRqgZGPD09a27cuGHY9rgPHz7UW7NmDbWqqgpfU1OD79evHxpI+YgKVq6yrc/K6tLyRnJ2rrXevElreVNf4n/jxg396dOnO0gkEn5n9p+UlKTv4+NTZWFh0QQA8NVXX1VIJBJdAIBnz54RR48ebVNaWqrT0NCA2dra1qu+N3z48NcGBgZvrPcrLy/Hjx8/3iE3N1cXh8MpGxsbtS5l+5xc3bfL9lXe8y4tH2a29rXD5s7XWj7ao1qqeePGDUORSES+cOGCMQBAVVUVXiAQ6BKJRCWPx6txcnJqBADgcrm16tE948aNew0AwOPxamtqajBjY2OFsbGxgkQiKV69eoWnUCiK+fPn29y7d88AwzAoKSkhvnz5kgAAYGVl1TBo0KCWZYlyuRw3cOBA5q5du56rliQin59z587ZlpSUdOn9YW5uXjt69OhO3x9Tpkyxu3//voGOjo5y1qxZJR1/A4BKpdb7+fnJAAA8PDxqc3NzSVKpFEtLSzMIDg52Um3X0NCAA9Ber7alegVEQUEBwdfXlzVq1KhK9UGWHj16yFatWmU7d+5c6qhRo6TDhw+vbmxsBBKJpJgwYYL9iBEjpKqlrm9z3E9tvvCFraimrkvLAktft3YX2+6t68rOXrfg4OCKEydOGAcGBladOnXKJDQ09I3Xc12+fJmyc+dOy7q6Ouz169cEDocjAwDUTvs3+UT9DgAAExMTRXBwcFlERIS5np5ey6DUnTt3DLOysvRU/6+ursZXVFS0Gxj05Zdfvsbj8eDp6VlXVlamAwBw5coVw8TEREMOh8MBAKitrcVEIpGuo6NjQ9vnubq37c88evTI4PLlyzkAALNnzy7bsGGDDQBAr169ambPnk1rbGzExo4dW6Gqb7vap2jDGxkZKTIzMwVXrlyh/PHHH5RvvvnGac2aNS/nzZtX1tn6YtKkSRUAAN7e3rWqtpw2dnZ2cmdn57oLFy4YWllZNRIIBGXPnj3r2ts2ODi4AgDAz8+vZsmSJUQAgJs3bxrOmTOnVLUc38LCounBgwe6WVlZegMHDmQANL/yoHv37o3a9qNNQ0MD7ttvv7UXCAR6GIbB8+fPW1YTttc2pVAoTTY2NvU8Hq8eAGDy5Mllhw4deiNQqj1Dhw59raenp9TT05ObmJg0vnz5knDlyhVKZmYm2c3NjQ0AUFdXh5mbm2sNBf35559N9+3bZ/H69WtCcnKyEKB1e/f27YXofYoAACAASURBVNv6OTk5ut7e3iwAgMbGRpynp2dLm7e9fNTUp0pOTjaYN29eCQCAj4+P7NuAlfLsq3L74jsPFF/7rdK5degZvampCRaP+UWZn6BjdzrhAQxxnEmU8ZX6MRvvde9lMd7gxKa7nBNwFwAABthNg9M/PmBO77uOcHTNLa6ZaYbckW1TOWK22YvOXENteDxejb29fSMAgJ2dXX1AQIAUAMDNzU2WkJBAAQBIS0vTV937c+fOLf/hhx9agofGjBlT0XbyWxtN/ZrO1CPvku8I8nf2eQ4AfwJFRUX4e/fuGUokEr2wsDBoamrC4XA45YIFC1p1JnG41uNiOBwO4uPjKQkJCZTU1FQRhUJReHt7M2UyGQYAQCAQlBjW3F4jEAggl8vfGFibNWuWQ2xsbLavr68sMjLSVFWxIp+PwYMH11RUVBAKCwsJOjo6SvUlpu29V0zbO9vCwsLswsPDiyZPniyNj4+nqGb/AQD09fXbnfFetmwZtV+/flXXr1/PEYvFxIEDB77zEiLkwxAIBEQ8Hg9UKlWuVCpxO3bseBEUFFSpvk18fDxFPXoNj8e3qnN0dXWVAAAYhgGRSGzZDsMwaGxsxB04cMCkrKyMkJGRISSRSEoqlcpT1WVkMrlV2cHj8Uoej1dz+fJlIzQAjHxMPB5Pdv78+ZYOc3R09IvCwkKCl5cXm0AgtK0/2x0wUS//eDxeKZPJsKamJqBQKHLVxJw6TfWqv7+/86tXr3Tc3NxqTp48+Vz9O9bW1nIXF5faxMREffUBYFdX1/pHjx4Jzpw5Y7Rq1SrqjRs3Krdv3174+PFj4YULFwxjYmKM9+3bZ37v3j2JpuO2c55o0k6NtueguokTJ75ev349tbi4GJ+ZmUkODAxsVafW1tbiFi1aZJ+SkiKg0+mNCxcutK6rq0Or85AutWLFiuIePXpwJkyY8Er1N6VSCampqcL2Ju3bUj3bVd9T/Tt//vzCJUuWvFLfViwWE9s+z1XetT+DYdgbaQwICKhOTEwUnzlzxmjatGkO8+bNKw4LCyvr6Fz+KQgEAowcObJq5MiRVa6urrLo6GjTmTNnlne2vlDlGYFAULbXN2xPcHBw+YkTJ0zMzc0bg4KC2o3+bbNvaGpqwgE0lwccDtcqn5RKJY5Op8seP34s6ux+tNm0aZOFubl545kzZ54pFArQ09PzVH2mqW3atl/dWe3tT6lU4oKDg8v27NmTr+l7HA6nvrCwkFhRUYEZGxsrwsPDy8LDw8ucnZ25qnNUvz+USiX4+/tXtl05qdJePmrrU3XmfFvlEw6nVCoUOCUAEPAEpYdbjzci6elOzvWVVVVYRUU54VRsjKnnKOt8VbDau1K/vhiGteo/dKYsGBgYtFxDbe0kFU39GgCAjuqRzuQ7gvyTfJ4DwJ2YMe9q0dHRxmPGjCk7fvx4S8XUs2dPZm5ubqsZz+TkZMPi4mK8vr6+4tKlS90OHTqU++LFC6KRkVEThUJRpKWl6T558qTDX5hWV1tbi9nZ2TXW19fjYmJiTKysrBo7/hbSVTqK1P0Y0tLSdBUKBVhYWMhlMll9dna2nkwmw9XW1mLJycmGvXv3bjXA1qdPn5oVK1bYlpaW4rt169Z0/vx5YzabLQNonjW1s7NrBAA4evRop5bAVFZW4m1sbBoAAA4cOIBeQaLmXSJ1u1pBQQEhJCTEfvr06SUYhsGQIUOk+/bt6z5y5MgqEomkTE9PJ6neP/c+pFIp3szMrJFEIinj4uIoBQUFGiM+cDgcnDp1KveLL75wWrlypeXmzZvRjzF8ht4mUrerBAYGVn3//fe4LVu2dF+2bFkpAEB1dTUGAODk5NRw8OBBclNTEzx79kwnPT29089jExMThY2NTcPhw4eNZ8yYUaFQKCAlJUXP19dXpqleTU5OztK0v6qqKozP55OXL1/e6t7Izc3VMTc3l4eGhpZTKBTFr7/+aiqVSrHq6mps/Pjx0v79+1czGAzeX/to97g0Gq3+0qVL3f5KAzk/P/+Tv7f9XSJ1PxRN141CoTRVVla2LLU3MjJSuLm51cyePdtu0KBB0rYRS7W1tRgAgKWlpVwqlWJxcXHGgYGBrZY9I/8Cn6Dfoc7CwqIpMDCw4vjx42YTJ04sA2hecbhlyxbzDRs2FAMA3L17V8/Pz0/WtgxrEhAQULlu3TrrWbNmlRsZGSmePXumoz7x1Z7Xr1/j37Y/06NHj+qDBw+ahIaGlh88eLDlXpNIJEQHB4eGRYsWvaqpqcEePXpEBoAuHwD+FG34J0+ekDAMA1Xkalpamp6NjU3D+9YXHeXtlClTKjZu3EjV1dVV/PHHH2/1o9GDBw+u3L9/f/cRI0ZU6ejoQHFxMd7V1bWuvLyccOPGDf3BgwfX1NfX4zIyMkheXl7tRhYDABgaGjapnrdtSaVSvI2NTQMej4fdu3ebqt6vrom7u3vdy5cviXw+n8TlcutjYmJM2ttO2zHVDR8+vHLMmDH0lStXFlOpVHlxcTFeKpXi1SdgKRSKYsKECa++/fZbu99+++05mUxWyuVy0LTysX///jWLFi2yy8zMJLm4uNRXVVVhz54903F1ddW4GkdTn8rf37/6t99+MwkMDKx68OCB7v9d3kyYvGRwVt++PWvnU0fz5kemZldWVmLrR85w/vFklhgAYM2aOIvq6mr84tU7C7Z6zGWxR5BL2rZPmq9fz3oAADb7e87Tp6OJlpaWHyTiXp2Hh0fNoUP/z96dRzVx9Q8D/2aBAAbZ9y2BZJJMAmETBbWuPGoVa0VQQakrqLUK1q3YItW6UNeHaq3aFgVxadWqYNVKbVHrT1sssiUhQkWQRWQPBEK29w+f4aVIEBX3+znHc2QyuTOZuTN3me+9863Zhx9+WLd3715zX1/fboNBeqonEXS1a6qqqqjd3UeoVKpWoVCQaDSatjfnHUFeJyjK4AX58ccfLSZPnvyvQvq9996r37hxo13nZb6+vs1Tp05lCgQCflBQUP0777wjDw4OblSpVCQMw/DY2Fh7oVD4RG/mXb16dYWfnx9v6NChGJvN1lnoIm8WYg5gLpeLT5s2zXXPnj0lVCoVWCyWMigoqJ7H4/GnTJnC5PP5jzztZTKZypiYmMoBAwbwBg8ezMEwrNXExEQNALBmzZqK6dOnu/n4+HAsLCx6NQRm1apVVfHx8Y7e3t7cx1XYkBeDyB8sFos/YsQIbNSoUU1bt26tAACIiYmp4XK5be7u7jw2m82fP3++S19M2zFv3ry6nJycfgKBgHfo0CFzJpPZ4/2ISqXCmTNn/rl8+bLx5s2bezVsD0GeFZlMhrS0tOIrV64YOzg4uLu7u/NmzJjBiI+PvxcYGNjs5OSk4HA4/KVLlzrhOP5E804eOXLkn6SkJEviBW0nTpwwBXiy+2pERIQrl8vFhUIhb9q0aTVDhw791z7cvHnT0NPTk8flcvGEhAS7uLi4yoaGBsrYsWPZGIbhQ4cO5XzxxRdlPW03IiKivr6+nsLlcvFdu3ZZubi4vLV1h7a2NrKNjY0H8S8+Pt5G13ELDg5uOHv2rGnnlyyFhobWnz592nz69OmPRNRZWlqqw8PDH+A4zh83bhzrSet3CNJba9asqWpoaOh4ArFv376yv//+ux+GYbibmxt/165dVgDd5+HuTJ48uSkkJKRuwIABXAzD8Pfff9+toaGhx47jp2nPfP3116X79u2zFggEvMbGxo70L1y4YIzjOJ/H4+GnT582W7ly5f3eHYlXX1NTEyUiIoJJvLRTIpEYJiQkVDzr/eJx59bS0lLt6enZbGlpqeRyuU/UuRUTE/PA0dGxncvl8jkcDv7dd9+ZGxgYaI8ePVq8evVqRw6Hg/P5fDwzM7PHl/WNGzdOJpVKDbt7CVx0dHT1kSNHLIRCIVcqlRp0ntKkO0ZGRtqvvvrq7oQJE1g+Pj4cJyenbn9TT9vszMfHp+3TTz8tHzVqFIZhGD5y5EisrKzskXmF//vf/5bb2toquVwun8fj4QMGDOBOnTq1hpjyoDN7e3vV3r17S6ZNm+aKYRju4+PDzcvLM+i6Xme62lTLly+vbmlpoWAYhm/cuNHW3d39ifKHrvpJTEyMI4ZhOJvN5g8aNEg2aNCg5975CwCwZ8+e0pSUFEsMw/AjR45YfP31171+GPP++++ziTJ73LhxrrraNbruI+Hh4Q94PB4+ceJEZm/PO4K8Lkg9DfV+k+Tk5JQIhcKax6+JIAgAQGNjI9nExESjVCphzJgxrFmzZtVEREQ0vOz9QhAEQRAEQRAEQRAEedvl5ORYCoVCRm/WRRHACIJ0a8WKFfZcLhfHMIzv7OysmDFjBur8RRAEQRAEQRAEQRAEec28nXMAIwjyWPv27bv3svcBQRAEQRAEQRAEQRAEeTYoAhhBEARBEARBEARBEARBEOQNhTqAEQRBEARBEARBEARBEARB3lCoAxhBEARBEARBEARBEARBEOQNhTqAEQRBEARBEARBEARBEARB3lCoA/gFS05ONiWRSD7Z2dkGAACFhYX6bDab31fpR0dH2586dcq4r9JDXl8UCsWHy+XiHA4Hx3Gcd/HixX5Pmoafnx/n8uXLRl2XDxs2jFVTU0N51n1MTEy0MDMzE3K5XJzL5eLvv/8+41nTRHqHyB8sFovP4XDw+Ph4G7VaDQAAly9fNpo1a5YTAEBqaqpJbGysLQBAcHAwIykpyawvtr969Wrbzn97eXlx+yJdBOkLZWVl1KCgIKajo6M7n8/neXp6cpOTk01f9n4hL56RkZFXb9ddtmyZfVxcnM3z3B8E6S0SieQzf/58R+LvuLg4m2XLltn35TZyc3Npw4YNYzk7OwtcXV357777rmtZWZnOl4w/TbvnWeoeneswr5NVq1bZslgsPoZhOJfLxS9duvTEdXgEedGqqqooRJvO0tJSaG1t7UH83dbWRnrZ+4cgCIDOAhp5Po4ePWru7e3dnJKSYu7l5VXRl2mrVCrYuXNnn6aJvL5oNJpGIpGIAABOnDjRPzY21jEwMLCwt99XqVQ6P8vMzCzqg10EAICgoKD65OTk0r5KD+mdzvmjvLycGhIS4trY2EjZsWNHxTvvvCN/55135AAA4eHhjQDQ2NfbT0xMtNu8eXMV8Xd2drakr7eBIE9Do9FAUFAQKywsrDYtLe0OAIBUKtX/8ccfUQcwgiCvDX19fe3PP/9sVllZWWVnZ6e7UveU5HI5KSgoiL1p06aysLCwRgCAtLQ046qqKqqTk1Ofb+9pPK86zPOUkZHR78KFC6Z5eXkiQ0NDbWVlJVWhUKDOM+SVZ2trqybaFsuWLbOn0+nqdevW3X/Z+4UgyP+HIoBfoMbGRnJWVhY9KSmp5KeffnrkSbZMJiO/++67rhiG4ePHj3f18PDgEtGXJ0+e7O/p6cnFcZw3btw418bGRjIAgIODg/vy5cvtfHx8ON9//71Z56fky5cvtxMIBDw2m82fPn26i0ajebE/GHllNDY2UkxMTFQAAOnp6cYjRoxgEZ9FREQ4JyYmWgA8mp+IddRqNUyePJmxZMkSe2K9yspKamFhob6rqyt/2rRpLiwWiz948GB2c3MzCQBg27ZtlgKBgMfhcPAxY8a4yWSyXt9vdH33+++/N2Oz2XwOh4P7+vpyAB42QKZMmcLAMAzn8Xh4WloaioB/Qg4ODqpvv/22JCkpyVqj0fwrjyQmJlpEREQ4E+tevHjR2MfHh8NgMARHjhwxAdB9Drp+d8SIEaz09HTjRYsWOSgUCjKXy8UnTpzIBHiyKDsEeZ7S0tKM9fT0tCtXrnxALMMwrH3NmjXVuvL0jh07LOfOnetELN+2bZvlvHnzHAEARo8e7cbn83ksFou/detWS2IdIyMjr48++siBw+HgQqGQS0TNHT582MTDw4PL4/HwgIAArKdoOuTlqKiooI4ZM8ZNIBDwBAIB75dffumIzsvNzTUaNGgQ5uLiIti2bZslwMP6n7+/P4bjOA/DMPzQoUOmAA+jIXWVodeuXTMUCoVcDMPwwMBAtwcPHlAAHo7MWbhwoYO7uzuPwWAIzp8/T38ZxwB59VEoFG1ERMSDjRs3PhKVrisPYxiG19TUUDQaDZiamnru2rXLAgBg0qRJzK4jDPft22fu7e3dTHT+AgAEBQXJBgwY0FZYWKjv4+PDwXGcp2sUmkqlgqioKEeBQMDDMAzfsmWLJcDDh3ARERHObm5u/OHDh7Nqamo67oGnT5825vF4OIZheEhICKO1tZUE8LBeGhMTY09cY8RIy8737Nfl3lpeXq5nbm6uMjQ01AIA2NnZqRgMhlJXu87Pz48zd+5cJ19fX46rqys/MzPT6D//+Y+bi4uLgKi3AwDEx8fbsNlsPpvN5q9bt86aWK6rjEKQvvTpp5925L8NGzZ05L+YmBh7JpPJDwgIYI8fP96VyJtXr1418vDw4GIYho8ZM8attrb2mUeeIgiCOoBfqNTUVNPhw4c3enh4KExNTdVXr17919D6LVu2WJmamqqlUqkoPj6+QiQS9QMAqKyspG7cuNHu8uXLUpFIJPb29pavX7++ozJnYGCguXnzZmFkZGR95/RWrFhRnZ+fL759+3ZBa2sr+ejRoyYv5pcirwKig43JZPKXLl3qsnbt2srefK9rflIqlaRJkyYx2Wx2W2Ji4iMR5qWlpQZLliypLioqKjAxMVEnJyebAQCEh4fX5+fniwsLC0UcDqc1MTGx20plWlqaGTE86L///a9FT9/dvHmz3S+//CItLCwUnT9/vggAICEhwRoAQCqVig4fPvxPZGQkQy6Xo0iJJ4TjeLtGo4Hy8vIeG0RlZWW0P//8szAtLe12dHS0i1wuJz3pOfj666/LiQjkM2fO3Onr34IgzyIvL8/Qw8ND/iTfmTt3bt0vv/xiQkRpHTp0yDIyMrIWACA1NbWkoKBAfOvWLdHevXttqqqqKAAAra2tZH9//+bCwkKRv79/81dffWUFABAYGNh869YtiVgsFk2ZMqVu3bp1r93w5TddVFSU07Jly+7n5+eLf/rpp+IFCxYwiM/EYrFhRkbG7evXr0u2bNliX1JSomdkZKQ5e/ZskUgkEmdmZkpjY2Mdic4bXWXorFmzmBs3brwnlUpFfD6/ddWqVR0dOSqVipSXlydOSEgoW7duXZ8O6UfeLCtWrKg+efKkedfOE1152NfXtzkjI4N+8+ZNA0dHR8XVq1fpAADZ2dn9RowY0dI5jfz8fENvb+9u75X29vaqK1euSEUikfjYsWP/xMTEOHddZ+fOnZYmJibq/Px8cU5OjvjgwYNWEolEPyUlxbSoqIhWWFhYcODAgbt///03HeDhw+aoqCjmsWPHiqVSqUilUsGWLVusiPQsLS1VIpFIPGfOnAebN29+pNP7dbm3Tpo0qamiokKfwWAIZsyY4Xz27Fk6QM/tOn19fU1WVlbh7NmzH4SEhLD2799fKpFICo4dO2ZZVVVFuXLlitHhw4ctbt68Kc7KyhInJydb/fHHH4YAussoBOkrv/32m9GPP/5o8ffff4v//PNP8XfffWd148YNw19//bXfL7/8YiISiUTp6enFOTk5HQ+KPvjgA+aWLVvuSaVSEZvNbvvkk0/sXuZvQJA3xSv55PN5++yPz5yK6osemdf0WbDMWPL1g9eX9bTODz/8YL506dJqAIDg4OC6lJQU82XLllUTn1+7do1OfD5gwIA2DMPkAAC///57v+LiYgM/Pz8uwMMOOR8fn2biexEREfXQjXPnzhlv377dtq2tjdzQ0EDFcbwVXrNhUG+CX5PFTnXlzX2a38wd6PJREbwe81vnIf4ZGRn9Zs+ezZRKpQWPS7trflq0aJHLpEmT6hISEqq6W9/BwUEREBDQCgDg5eUlLykpoQEA3Lx50zAuLs5BJpNRWlpaKMOGDes273U3BYSu7/r6+jaHh4czgoOD68PDw+sBHl43H330UfX/tt9mb2/fnpeXZzBw4MDWx/3WV0HdcamTsqqlT/OHnm0/ufkUrMf80R2tVvvYdYKDg+soFAq4u7srnJycFLdu3TLQdQ6eYtcR5F9E4lVOLc3SPr0++tExOc5L6PX1MXPmTOc///yTrqenp42MjKzubp3+/ftrBg8eLDt27JiJu7t7m1KpJPn5+bUCACQkJNicPXvWFACgqqpKr6CgwMDW1rZFT09PO23atEYAAB8fn5aMjIz+AAB37tzRnzRpkuODBw/02tvbyU5OTopn/9WvvxXHc5ykVbI+zQuYrbF8yxThE98r//jjj/63b982JP5ubm6m1NfXkwEAxo0b10Cn07V0Ol3l7+/fdOXKlX6hoaGN0dHRjtevX6eTyWSorq7Wv3fvHhWg+zK0traWIpPJKOPHj28GAJg/f35tSEiIK7G9kJCQegCAgICAlhUrVug/21FAnreX1e4AADA3N9eEhITUbt682drQ0LBjKKCuPDx06NDmzMxMeklJif68efOqk5KSrO7cuaNnYmKiMjEx6fVQwvb2dtLcuXNdRCKRIZlMhrt379K6rpORkdFfIpEYnTlzxgwAQCaTUUQikUFmZqZxaGhoHZVKBQaDofT395cBAOTk5Bg4OjoqPDw8FAAAs2bNqt29e7c1AFQDAISFhdUDAPj5+cmJNDt7mnvry6jDm5iYaPLz80Xnz583/vXXX40/+OADt7i4uHv9+/dX62rXvf/++w0AAEKhsJXFYrW6uLgoAQCcnJwU//zzj/7vv/9Of/fddxv69++vAQAYP358/W+//WY8ePDgVl1lVF/+ZuTFu7Bnp1NN2d0+zbuWTi7yMQujn7jM/P33342DgoLqjY2NNQAPy8nffvuNLpfLye+++26DoaGh1tDQUDt69OgGgIdzCSsUCvKYMWOIMrBmxowZrj1tA0GQ3nkrO4BfhqqqKsr169f7S6VSw8WLF4NarSaRSCRtTExMR2NSV+eLVquFIUOGNBFzEXZF3Ew7k8vlpI8//tjlxo0bIhaLpVy2bJl9W1sbivh+S40ePbqlvr6eWllZSdXT09N2ng6k67xiXfOTr69v85UrV/rL5fL7RkZGj2RSfX39jmUUCkXb2tpKBgCIjIxkHj9+vMjf3781MTHRIjMzs9dTM+j67uHDh0svXbrU78yZMyaenp78W7duFfSm0xJ5PJFIpE+hUMDBwUGVk5Ojcz0SifTI37rOAZVK7ZrX0D0IeeW5u7u3nj59uqPzICUlpbSyspLq6+vL6ylPR0ZG1mzYsMEWw7C2GTNm1AA8nHInMzPTOCsrS2JsbKzx8/PjEPdIKpWqJZMffp1KpYJKpSIBACxevNh56dKlVeHh4Y3p6enGKMLz1aPVaiErK0tMp9Mfufl1d4/cu3eveW1tLTUvL09Mo9G0Dg4O7kQ+0FWG9sTAwEAL8DDfqNVqNOIF6dEnn3xy39vbG582bVoNsUxXHg4MDJTt27fP+t69e4qEhITyM2fOmB06dMhs0KBBzV3T5fP5bZcvX+52CpINGzbYWFtbK0+cOHFHo9GAoaGhT9d1tFotadu2baXBwcFNnZenp6ebdL2OiH3uSafrQkvcTzt7ne6tVCoVJkyYIJswYYLMw8Ojdf/+/ZaFhYVGutp1xG8nk8lAo9E6DhSZTAaVSkXSdex6KqMQpK/01MehYzkq1xDkOXkrO4B788S8r6WkpJhNnjy59vDhw3eJZQMGDOCUlJR0RG4EBAQ0Hz161CwoKEh28+ZNA6lUaggAMHz48JaPP/7YOT8/nyYQCBQymYx8584dPeIJeHfkcjkZAMDW1lbV2NhITktLMwsKCuo2Uhh5vh4XqfsiZGdnG2g0GrCxsVG1trYqioqKDFtbW0lyuZx89erV/oMHD36kYk+IioqquXTpkvGECRPcLly4UKSnp9erbcrlcrKzs7NSoVCQjh49am5nZ6fs7f7q+m5BQQFt5MiRLSNHjmy5cOGC6T///KM/ZMiQ5kOHDplPnDhRlpubS6usrNT38PBo6+22XranidTtaxUVFdT58+e7zJ49u5rokNLl5MmTZosXL66VSCS0srIymlAobNN1DhoaGij79+83UqvVcOfOHb3c3NyOoV1UKlWrUChInRsqCNLVk0Tq9pWgoCDZZ599RkpISLBatWrVAwCA5uZmMgCAm5tbu648PXLkyJbFixfrFxQU9MvLyysAAGhoaKCYmJiojY2NNdnZ2QadhzfqIpPJKM7OzkoAgAMHDlg8n1/5+nmaSN3nZciQIU0JCQnW69evvw/wcL5eIor33Llzphs2bKhsamoiX79+3XjHjh3lKSkpZpaWlkoajaZNS0szrqio6DFq18LCQt2/f3/1+fPn6WPHjm3+7rvvLPz9/XWW08ir7WW0OzqzsbFRBwUF1R8+fNhy+vTptQC68zCLxVLW19dTlUolCcfxdn9//+bdu3fbbt269ZGX9c6fP792x44dtkePHjUhRjMcP368v7Ozs7KxsZHi6OjYTqFQYNeuXRZqtfqR/QoMDGzcs2eP1YQJE2Q0Gk2bm5tLYzAYymHDhsn2799v9eGHH9aWl5frXb9+3Xj69Ol1np6ebeXl5fpEeyg5Odli6NChst4eh6e5t76MOnxOTg6NTCaDu7u7AgAgOzvbkMViKQoLC42etl03cuTI5jlz5jDWr19fpdVq4eeffzY7cODAP3fu3KE9aRmFvB6eJlL3eRkxYoRs0aJFjPj4+Cq1Wk06f/686ZEjR/5pamoiR0dHO69bt66qra2NdOnSJRNXV9dqOzs7lYGBgebixYv9AgMDW7777juLgICAXl/rCILo9lZ2AL8MP/74o8XKlSv/NQfre++9V79x48aO+WxWrFjxIDQ0lIFhGC4QCOQcDqfVzMxMbW9vr9q7d2/JtGnTXNvb20kAAGvXri3vqQPY0tJSHR4e/gDHcb6jo2O7UChEQ3neMsQcwAAPn7Du2bOnhEqlAovFUgYFKxNutwAAIABJREFUBdXzeDw+k8ls4/P5j53rMj4+/n5MTAxl8uTJzFOnTvVqztbVq1dX+Pn58RwcHNp5PJ68ubm513OK6fpuTEyMY0lJCU2r1ZKGDBnSNGjQoFZPT8+2mTNnumAYhlMoFNi7d28J8eIMRDcif6hUKhKFQtFOnTq1du3atR1v6u0u+gYAgMViKfz8/Di1tbV6O3fuvGtkZKRduXJldXfnIDAwsHn37t0KDofD53A4rTiOd+S18PDwBzweDxcIBHI0DzDyKiGTyZCWllb84YcfOiUmJtqam5urjIyM1PHx8fd6ytMAAJMmTarPzc01srKyUgMABAcHN+7bt88KwzDczc2trTdl8Zo1ayqmT5/uZmNj0+7r69tSWlr6yNBp5MVpa2sj29jYeBB/L1y48P6+ffvK5s2b54xhGK5Wq0kDBw6UBQQElAIAeHl5tYwaNYpdUVGhv3z58koGg6GcN29e3bhx41gCgYDH5/PlTCbzsQ8pk5KS7ixcuNBlyZIlZGdnZ8WRI0dKnt+vRN50a9asqTp48GDHfLk95WFPT88WosN2+PDhsk2bNjmMHj36kc4XOp2uPX36dNGSJUucVq1a5USlUrU8Hq91z549pdHR0dXBwcFup06dMhsyZIis8/QThJiYmJqSkhKau7s7T6vVkszNzZU///xz8cyZMxt+/fXX/hwOh89kMtv8/PxkAABGRkbab775piQkJMRNrVaDUCiUL1++/EHXdHs4Bq/FvbWpqYmyZMkS56amJgqFQtEyGAzFwYMH75qamqqetl03ZMgQeVhYWK23tzcPAGDmzJkPBg8e3Ort7d32pGUUgjypESNGyIODg2u9vLxwAIA5c+Y8IKbJGjVqVCOPx+M7OjoqhEJhi4mJiRoA4MCBA3cWLVrk3NbWRmYwGKgMRJA+onNIyJsmJyenRCgU1jx+zZdHpVJBe3s7ycjISFtQUED7z3/+gxUXF+cTw3oQBEFehAMHDpieOXPG9OTJkyUve18Q5HUyYsQIVnR09P333nsPRaogCIIgCIL0oLGxkWxiYqJpamoiDxw4kHvgwIE7r8t7XBDkVZGTk2MpFAoZvVkXRQC/QmQyGXno0KEcpVJJ0mq1sGPHjruo8xdBkBcpNTXV5PPPP3fYt29fycveFwR5XdTU1FB8fX15PB5Pjjp/EQRBEARBHi8sLIxRXFxsoFAoSOHh4TWo8xdBni8UAYwgCIIgCIIgCIIgCIIgCPIaeZIIYPSWTwRBEARBEARBEARBEARBkDcU6gBGEARBEARBEARBEARBEAR5Q6EOYARBEARBEARBEARBEARBkDcU6gBGEARBEARBEARBEARBEAR5Q6EO4BcsOTnZlEQi+WRnZxv0ddqJiYkWERERzn2dLvJ6Ki0tpU6YMMHVyclJ4Obmxh82bBgrNzeXpmv9wsJCfTabzX+abSUmJloEBQUxOy+rrKykmpmZCVtbW0lPkyYAgJGRkdfTfhfpGYVC8eFyuTiLxeJzOBw8Pj7eRq1W90na0dHR9qdOnTLuaZ3U1FST2NhY2z7ZIIL0sa73nt6Ur53zdEpKiunNmzc7yvneXBPIq+l5lUOFhYX633zzjTnxN6rDIX2NRCL5zJ8/35H4Oy4uzmbZsmX2fZX+pk2brLhcLk78Y7PZfBKJ5PP3338/VRunr661Z6nPvipWrVply2Kx+BiG4VwuF7906VK/Z02POE9E/Y/L5eJffPGFdV/t8/P03nvvMVNSUky7W+7g4ODO5XJxPp/P03WcNm3aZLVnzx7z7j57nClTpjBycnJ0tp+Q/6+qqopC5C1LS0uhtbW1B/F3W1vbv9qDQ4YMYdfX1/fYF/XRRx85pKWlPVJ3OnXqlPHo0aPdnmTffHx8ONeuXTN8ku88bbojR45kcblc3NnZWWBsbOxJHIOermNLS0thY2Mj6ptDnjvqy96Bt83Ro0fNvb29m1NSUsy9vLwqXvb+IG8mjUYDEydOZIWFhdWmp6f/AwBw7do1w4qKCj0PDw9FX29vxowZ9WvXrnWUyWRkY2NjDQBASkqKWWBgYIOhoaG2N2kolUrQ09Pr611DdKDRaBqJRCICACgvL6eGhIS4NjY2Unbs2PHM96WdO3c+No3w8PBGAGh81m0hyKuic54+deqUqUqlavTx8WkD6N01gbxdbt++TTt27Jj5ggUL6l72viBvJn19fe3PP/9sVllZWWVnZ6fq6/Q/+eSTB5988skD4u/Fixc74Diu7+3t3dbX23qbZGRk9Ltw4YJpXl6eyNDQUFtZWUlVKBRPHUwBAJCQkFCVkJBQBfCwo52o/70JNm/eXDZz5syGY8eOmSxevNhZJBKJO3+uVCqhcz59UsePHy955p18S9ja2qqJvLVs2TJ7Op2uXrdu3f3O62g0GtBqtXD16tXbj0vvq6++Kn9e+/o8Xbp0qQjgYUf1rl27rDMyMopf9j4hCAE9ZXiBGhsbyVlZWfSkpKSSn376yQwAID093djPz48zduxYVyaTyZ84cSJTo9EAAMCxY8dMmEwm38fHhzNr1iynESNGsAAA7t+/Txk9erQbhmG4UCjk3rhx45GnWYcPHzbx8PDg8ng8PCAgACsrK0Od/W+R9PR0YyqVql25cmVHhScgIKB17NixzY2NjWR/f38Mx3EehmH4oUOHOp6oq1QqmDx5MgPDMHzs2LGuMpmMDABw+vRpYx6Ph2MYhoeEhDC6RvWam5trBgwY0Hz06FETYtnx48fNw8LC6gAArly5YjRgwAAOn8/nDRkyhH337l09AAA/Pz/O4sWLHQYMGMD54osvbCQSib6npydXIBDwli5d+q8olc8++8xGIBDwMAzDY2Ji+iyCBQFwcHBQffvttyVJSUnWGo0G5HI5acqUKQwMw3Aej4cTT98TExMtRo8e7TZy5EiWg4OD+8aNG63i4+NteDweLhQKuffv36cAAAQHBzOSkpLM/pe2e0xMjD2R34jRD52j3crKyqiBgYFuHA4H53A4+MWLF/sBAIwePdqNz+fzWCwWf+vWrZYv5+ggyL/pKl+JPH3x4sV+GRkZpp9++qkjl8vFCwoKaJ2vCeT1V1FRQR0zZoybQCDgCQQC3i+//NIPAODs2bN0ItKHx+Ph9fX1ZI1GA1FRUY5sNpuPYRi+f/9+MwCANWvWOGRlZdG5XC7++eefWwMAVFVV6Q0dOpTt4uIiWLBgQUfk5t69e80xDMPZbDZ/4cKFDi/nVyOvGwqFoo2IiHiwceNGm66f6crDGIbhNTU1FI1GA6ampp67du2yAACYNGkSs6dRDOfOnaOfOXPGLCkp6S7Aw/pkVFSUI1Fv27JliyXAw7aQrjooQdc6hYWF+q6urvxp06a5sFgs/uDBg9nNzc0kgIf1TA6Hg3t6enK3b9/+WkS16lJeXq5nbm6uIgIo7OzsVAwGQwkAsHz5cjuBQMBjs9n86dOnuxBtxmvXrhkKhUIuhmF4YGCg24MHDyi93Z5EItEfOHAghmEYHhAQwC4uLtYDeBhdO3PmTOeBAwdiTk5OgnPnztEnT57MYDKZ/NDQUBfi+z/88EN/T09PLo7jvPHjx7s2NTU90r/w5ZdfWgkEAh6Hw8HHjRvnSpy39957jzl79mwnLy8vrqOjo3tycrIpAIBarYYZM2Y4u7m58UeOHMmqq6t7bDt27NixstLSUgOAh1GZH330kYOvry9n06ZN1kuWLLFft26dNfHZokWLHNzd3XkMBkNA1DmVSiXMnTvXibhXb9682YpY/9q1a4ZKpRKMjY09586d64TjOC8gIIBdVVVFAQDIy8ujDRkyhM3n83m+vr6cnkZcvo3y8/NpbDabHxYW5szn8/HS0lI9Gxsbj5qaGgrxWWhoqAuLxeK/8847bLlc3pE/iMjvo0ePmjAYDIGPjw/np59+6rhv/Prrr/08PT25PB4P9/b25ubl5dEAAGQyGXncuHGuGIbhEyZMcFUoFN32e8XExNgT11RYWJgzcU3pyie9TVeX48eP9+dyuTiGYXhYWJhL54c7sbGxdgKBgCcUCrmFhYX6AAAHDx409fDw4HK5XHzo0KHsyspKKsDDkb4DBw7E+Hw+LyIiwrlzBPEnn3xiy2az+Ww2m0/kYwQhoA7gFyg1NdV0+PDhjR4eHgpTU1P11atXjQAAxGKx4e7du8uKiooKSktLaRcvXqTL5XLS0qVLXc6dO3f75s2bhbW1tR0F38qVK+2FQqFcKpWK1q9fX/7BBx8wu24rMDCw+datWxKxWCyaMmVK3bp169BQ67dIbm6uoVAolHf3mZGRkebs2bNFIpFInJmZKY2NjXUkCruSkhKDBQsWPJBKpSJjY2PNli1brORyOSkqKop57NixYqlUKlKpVLBly5ZHCpNp06bV/fDDD+b/S0evpKSENmHCBJlCoSAtWbLE+fTp08UFBQXiDz74oGb58uUdDdiGhgbKX3/9Vfj555/fX7RokfO8efMe5Ofni21tbZXEOidPnuxfVFRkkJubKxaLxaJbt24ZnTt3jt7nB+4thuN4u0ajgfLycmpCQoI1AIBUKhUdPnz4n8jISAZRGZNKpYYnTpz456+//hJv2rTJwcjISCMWi0W+vr4te/futegubUtLS5VIJBLPmTPnwebNmx9piC5YsMB56NChssLCQlFBQYGIiB5KTU0tKSgoEN+6dUu0d+9eG6KijSDPm0KhIHce2rxp06aOh06PK18DAwNbRo8e3fDFF1/ck0gkIj6f3+ejLpCXKyoqymnZsmX38/PzxT/99FPxggULGAAA27Zts01MTLwrkUhE169fl9DpdE1ycrJpXl6eoVgsLvj111+lcXFxjnfv3tXbsGFDua+vb7NEIhGtXbu2GgBAJBIZnTp16h+xWFxw5swZs6KiIr2SkhK9+Ph4h99//10qEokKsrOz+3U3FBpBurNixYrqkydPmtfW1v6r/NSVh319fZszMjLoN2/eNHB0dFRcvXqVDgCQnZ3db8SIES3dbaOmpoYSGRnJ+Pbbb++Ym5trAAB27txpaWJios7Pzxfn5OSIDx48aCWRSPR7qoMSelqntLTUYMmSJdVFRUUFJiYm6uTkZDMAgLlz5zK2b99eeuvWLUkfH8IXbtKkSU0VFRX6DAZDMGPGDOezZ8921HdXrFhRnZ+fL759+3ZBa2srmQi8mDVrFnPjxo33pFKpiM/nt65atarXgRKRkZEus2bNqpFKpaLJkyfXf/jhh07EZ01NTZQbN25I169ffy80NJS1Zs2aqqKiooLc3Nx+f/31l0F5eTl1y5YtdleuXJGKRCKxQCCQb9y48ZEO+IiIiLr8/HxxYWGhiMlkKnbv3t3xUL+mpoZ68+ZNyYkTJ4rWrl3rAACQlJRkVlpaSpNKpQX79++/m52d/dg6/9GjR00xDGvttO/krKyswri4uOqu62q1WsjLyxNv2LChbN26dfYAAF9++aV1VVWVnlgsLpBKpaLZs2c/MjqjubmZMmjQoGaRSCT28/NriY2NtQcAmDdvnsvevXtLCwoKxBs3bry3cOFCNJ1PF8XFxQZRUVE1YrFYxGQylZ0/u3PnDm358uXVRUVFBQYGBpquD4ZkMhl56dKlLmfPnr39119/FVZVVekTn3l6erZlZWVJxGKxKDY2tmL16tUOAAAJCQlWpqamaqlUKvrkk08qxWKxUXf7tXr16vv/y5sFMpmMcvz48f7EZ93lk96m253Gxkbyhx9+yDh16lSRRCIRNTY2Uv773/92XAuWlpaq/Px88cyZM2uWLl3qCPDwwcatW7ckEolENG7cuAbigd6KFSsc3n333YaCggJxYGBgE9FXdPHixX6nT582y87OFt24cUP8zTff2HSekgxB3sqo0IrYNU6K27d7fbH2Bo3Nlttv3FDW0zo//PCD+dKlS6sBAIKDg+tSUlLMg4KCGt3d3Vvc3NyUAAB8Pl9eXFysb2xsrHZyclJwudx2gIeda99++60VAMCff/5pfOLEiSIAgIkTJ8oiIyOpXSt2d+7c0Z80aZLjgwcP9Nrb28lOTk6oAfqSXNiz06mm7G6f5jdLJxf5mIXRPeY3XTQaDSk6Otrx+vXrdDKZDNXV1fr37t2jAgDY2tq2/+c//2kBAJg5c2ZtYmKidU5OTpOjo6OCmDpi1qxZtbt377YGgH9VqEJDQxs+/vhj57q6OnJycrLZu+++W0+lUiE7O5t2+/Ztw5EjR2L/2z5YWVl1FPzTp0/vqGD9/fff9HPnzhUDAERFRdWuX7/eEQDg/Pnz/S9fvtwfx3EcAEAul5MlEonBuHHjmp/mGLxKTp065VRdXd2n+cPa2lo+adKkJ84fWu3D2TquXbtG/+ijj6oBALy8vNrs7e3b8/LyDAAAAgICZGZmZhozMzMNnU5Xh4SENAAAuLu7y3Nzc7v9HWFhYfUAAH5+fvIzZ848EgV57do14+PHj98BAKBSqWBhYaEGAEhISLA5e/asKcDDyLiCggIDW1vbbhugyJspWlzqJGlp69Prg9vPQL6T59zj9dF5ihSAh9G9WVlZ/QBQ+frSnPrQCapFfZoXwBqXw6TdT3yv/OOPP/rfvn27Y/RVc3Mzpb6+njxo0KDm5cuXO4WGhtZNnz693s3NTXPlyhXj0NDQOiqVCk5OTqqBAwc2X7161cjExETTNd0hQ4Y0Efc/FovVVlxcTHvw4AF10KBBMnt7exUAwNSpU+syMzPpM2fObHiWn468OC+r3QHwcIRWSEhI7ebNm60NDQ078pyuPDx06NDmzMxMeklJif68efOqk5KSrO7cuaNnYmKi6i7PAgDMnj3becqUKXVE/REAICMjo79EIjEiynyZTEYRiUQGTCZT2V0d1NnZuWOKip7qqQ4ODoqAgIBWAAAvLy95SUkJrba2liKTySjjx49vBgCYM2dO7aVLl0ygD7yMOryJiYkmPz9fdP78eeNff/3V+IMPPnCLi4u7t2TJktpz584Zb9++3batrY3c0NBAxXG8tba2trnz758/f35tSEiIa2/3Jycnp9+lS5duAwAsWrSodtOmTR1BGhMmTGgAAPD29m61srJSEtMasdns1qKiIppEIjEoKioyGDBgABcAQKlUkvz8/B6pm//1119G8fHx9jKZjNLS0kIZNWpUxxRgEydObCCTyTBw4MDW6upqfQCAy5cvG4eGhtZRKBRwc3NT+vn5yXTt/+rVq502bNhgb2Fhody/f38JsTw8PFzn9DpE3TUgIED+6aef6gMAXLp0yTg6OrqaSn3YPWJjY/PIizEoFIp2zpw59QAP81lYWJhrTU0NJScnhx4cHNwxJ61arX6mKTv6Qt1xqZOyqqVP866ebT+5+RTsqdqfTk5OimHDhnUbnOTs7Kzw8/MjruuWkpKSf0VQZ2dnGzCZzDbigXpYWFhtSkqKBQBAbW0tJTQ0lEFEfxP++OMP45UrV1YBAAwePLjVzc2tFbpx9uzZ/jt27LBVKBSkhoYGqpeXlzw0NLQJoPt80tt0u3Pz5k1DFovVSvTvzJw5szY1NdWcGLFLPHSIjIysS0hIsAcAKCoq0n///fedampqqAqFgsxms1sBAP7880/6l19+WfG/dBoiIyM1AAC///678cSJE+vpdLoWALRjxoxp+O233+jEtYsgb2UH8MtQVVVFuX79en+pVGq4ePFiUKvVJBKJpJ0wYUIjjUbrmCOVQqGASqUiER0x3enuMxKJ9K+Fixcvdl66dGlVeHh4Y3p6ujHx1Ap5O7i7u7eeOnWq2+HGe/fuNa+traXm5eWJaTSa1sHBwb21tZUMAEAi/bu+QiKRus1v3aHT6dphw4Y1paammp04ccJ827ZtZQAAWq2WxGKxWnVFZRBzBhPIZPIjG9RqtRAdHV25YsWKml7tDPLERCKRPoVCAQcHB1VP51xfX7/jQzKZDAYGBlri/yqVqtsKL7EOlUrV6lqnq/T0dOPMzEzjrKwsibGxscbPz49D5FMEeZlQ+YpotVrIysoS/6+B1WHjxo1VkyZNajx9+rRJQEAA7/z589LelqEA/76/UigUrVKp7LE+iCC98cknn9z39vbGp02b1lGH0pWHAwMDZfv27bO+d++eIiEhofzMmTNmhw4dMhs0aFC3D9y/+uori7KyMtrJkyfvdF6u1WpJ27ZtKw0ODm7qvDwxMdFCVx2U0FM9tes10traStZqtY/UX193VCoVJkyYIJswYYLMw8OjNSUlxWLevHl1H3/8scuNGzdELBZLuWzZMvu2trbnWi/qXMfrWv8j2qvDhg1rOnXq1B3dqQDMnz+fmZaWJh0wYEDb9u3bLW/cuNHxMixiGwD/buN2bdvqQswB3HU5nU7v9oHF/7apAXiYh4jOWq1WS3pcPuruc61WC6ampqo3aV7l56HzA6iuulzX3bYndJ2bFStWOAQGBjatXr26OD8/n/buu++yH/cdgkwmI69YscI5KytLxGQylUuWLPnXNdVdPulNuro8rjwn0iWRSB3/X7RokcvatWsrJk+e3HT8+PH+//3vf23+l1a3O4HqDMjjvJUdwL15Yt7XUlJSzCZPnlx7+PDhu8SyAQMGcC5fvtztkBahUNhWVlZGKyws1OdwOO3Hjh3reHPpoEGDZElJSRZbtmypTE9PNzYzM1MRQ64IMpmM4uzsrAQAOHDgQLfDspEX42kjdZ9FUFCQ7LPPPiNt27bN8uOPP64BAMjMzDRqbm4mNzY2UiwtLZU0Gk2blpZmXFFR0TGMprKyUj8jI6Pf6NGjWw4fPmweEBDQ7Onp2VZeXq6fn59PEwgEiuTkZIuhQ4d2+yR++vTpdXFxcQ7Nzc2UkSNHtgAAeHh4tNXV1VGJdBUKBSkvL4/m6+v7yJNIb2/v5v3795svWrSobv/+/R35dty4cU3x8fH2kZGRdSYmJpo7d+7o6evrax0cHPr8pSYv2tNE6va1iooK6vz5811mz55dTSaTYciQIc2HDh0ynzhxoiw3N5dWWVmp7+Hh0Xbjxo2+jb77n8GDB8u2bNliFRcXV61SqaCpqYnc0NBAMTExURsbG2uys7MNcnJynukN2Mjr6XGRui9Db8pXOp2u7m4eROQZPEWk7vMyZMiQpoSEBOv169ffB3g4/2ZAQEBrQUEBzc/Pr9XPz6/1xo0b/fLz8w2GDRsm279/v9XixYtrq6urqX/++Sc9MTGx7O7du/rNzc2PndbmnXfeaVm1apVTZWUl1crKSvXjjz+aL1q06JEhzcir62W0OzqzsbFRBwUF1R8+fNhy+vTptQC68zCLxVLW19dTlUolCcfxdn9//+bdu3fbbt26tbRruiKRSP+LL75w+O233yRdX+IbGBjYuGfPHqsJEybIaDSaNjc3l8ZgMJQ91UEJvVmnM0tLSzWdTldfuHCBPmbMmOYDBw6Y97T+k3gZdficnBwamUwGd3d3BQBAdna2oaOjY7tcLicDANja2qoaGxvJaWlpZkFBQfUWFhbq/v37q8+fP08fO3Zs83fffWfh7+/f6xFynp6ezd999515VFRU3TfffGPRU7RtVyNGjGhetWqVk0gk0sdxvL2pqYl89+5dPWLfCa2trWRHR0eVQqEg/fDDD+YuLi49jpx55513ZIcOHbJYsGBBXWlpqd5ff/1Fnz179nMNAhk9enTjnj17rMaOHSujUqlw//59StcoYJVKRUpOTjabPXt2/YEDBywGDhzYbGVlpbayslImJyebRkRENKjVavjzzz8N/f39ex0Z+jw8baTuq8jLy6vtzp07BhKJRB/DsPajR492XOMymYzi6OioBADYt29fR51s8ODBsuTkZPOxY8c2/9///Z9hcXHxI+9MamlpIZHJZK2tra2qvr6enJ6ebjZlypQeX8zam3R18fX1bS0uLjaUSqX6GIa1p6ammr/zzjsd19vBgwfN4uLiqvfv32/u4+PTTPw+Z2fndo1GAwcPHuz4fX5+frLk5GSzzz77rDo1NdWE6LgeMWKELDo62jkuLu6+QqEg/fLLLyaRkZEogArp8FZ2AL8MP/74o8XKlSsrOy9777336r///nur7gpBOp2u3b59+92xY8eyzc3NVV5eXh3DqhISEirCwsIYGIbhhoaGmgMHDjzy1HXNmjUV06dPd7OxsWn39fVtKS0tRZPRv0XIZDKcOXOmeNGiRU47d+60pdFoWkdHR8VXX31V5u3tXTdu3DiWQCDg8fl8OZPJ7OiIdXV1bfv+++8tFi1a5MJkMhXLly9/YGRkpP3mm29KQkJC3NRqNQiFQvny5cu7fZvu5MmTGxcsWMCYPn16DZn8sO/DwMBAe/To0eIlS5Y4y2QyilqtJi1cuPB+dx3AX3/9dem0adNcv/76a5uJEyfWd0q3qaCgoGOImZGRkSY1NfXOm9AB/LIQc5yqVCoShULRTp06tXbt2rX3AQBWrlxZPXPmTBcMw3AKhQJ79+4tIV5G8jzs2bOndNasWS4YhlmSyWTYtWvX3eDg4MZ9+/ZZYRiGu7m5tQmFQjT1A/JK6E35Gh4eXrdw4ULGN998Y3P8+HH09ufXWFtbG9nGxsaD+HvhwoX39+3bVzZv3jxnDMNwtVpNGjhwoCwgIKD0yy+/tL527Vp/MpmsxTCsdcqUKY00Gk177do1Oo/H45NIJO3nn39+z9nZWWVjY6OmUqlaDoeDh4WF1ZiZmT0y3BgAwMXFRRkXF1c+bNgwTKvVkkaNGtU4Y8YMNP0D8kTWrFlTdfDgwY73N+jKwwAAnp6eLWr1w+w4fPhw2aZNmxxGjx79SKfgF198Ydfa2kqePHkyq/PynTt3lsbExNSUlJTQ3N3deVqtlmRubq78+eefi+fNm6ezDkrozTpdfffddyXz5s1jGBoaakaOHNn0uPVfZU1NTZQlS5Y4NzU1USgUipbBYCgOHjx419LSUh0eHv4Ax3G+o6Nje+d6UVJS0p2FCxe6LFmyhOzs7Kw4cuRISW9lg4IbAAAgAElEQVS3t2fPntLZs2cztm3bZmtpaalMSUnp9XednJxUX3/99d3Q0FA3pVJJAgD4/PPPy7t2AK9atap8wIABPHt7+3Yul9va+cVX3Zk9e3b9b7/9ZoxhGN/V1bVtwIABz33Kt48//rjm9u3bBlwul0+hULRz58590Pll2gAPH+7evHnTaMuWLbampqbqkydPFgMAHDt2rDgyMtJlw4YN9kqlkhQSElL7sjuA3yTGxsaanTt33h03bhzb3Nxc5efn13z79m0DAIBVq1ZVRUVFMbZv3247ZMiQjmt/1apVD0JDQxkYhuHu7u5yPp//SDvC1tZWHRISUsvlcvkODg7tnftbdOlNurqYmJhoEhMTSyZOnMjSaDTg6+vbsmTJklric5lMRnF3d+eRyWTtDz/88A8AwKefflrx3nvvse3s7Nq9vLxaGhoaqAAAX375ZUVoaKjr0aNHLYYOHSozMzNT9evXTxMYGNgyceLEeqFQiAMAREVFVaPpH5DO3pqhZTk5OSVCofC1evrR2NhINjEx0Wg0GoiIiHBms9ltxItCEARBEARBEARBEAR5vpRKJZibm3vKZLJbL3tfEEQul5P09fW1VCoV0tPTjWNjYx1yc3Nf+5dgIk8nJyfHUigUMnqzLooAfoXt3LnT8siRI5ZKpZLE5/Ply5Yte606sBEEQRAEQRAEQRAEQZC+IRKJaDNnznRVq9VAo9G033zzTcnL3ifk9YAigBEEQRAEQRAEQRAEQRAEQV4jTxIBjF5QgiAIgiAIgiAIgiAIgiAI8oZCHcAIgiAIgiAIgiAIgiAIgiBvKNQBjCAIgiAIgiAIgiAIgiAI8oZCHcAIgiAIgiAIgiAIgiAIgiBvKNQB/IIlJyebkkgkn+zsbIPerL9u3TprmUzWcZ6GDRvGqqmpoTy/PXx2RkZGXt0tp1AoPlwuF+dwODiO47yLFy/266u0e8vPz49z+fJlo2dJ43VSWlpKnTBhgquTk5PAzc2NP2zYMFZubi7tWdJctmyZfVxcnM3Tfj84OJiRlJRkBgAwdepUl5s3b/bqWkD6FnE9slgsPofDwePj423UanWfpB0dHW1/6tQp457WSU1NNYmNjbXtkw12IzEx0cLMzEzI5XJxJpPJ//zzz62fx3YcHBzcKysrqV2Xd75OenM8kFdL17ImMTHRIiIiwrkv0u58D0Refd3VO7788kurXbt2WQA8e72ipKREb+zYsa7Pso8I0h0SieQzf/58R+LvuLg4m2XLltkD/DsPI6+eVatW2bJYLD6GYTiXy8UvXbr0xG2m7nS+X/XUpvzjjz8MSSSSz4kTJ/o/zXZ01Y1QvnuzVVVVUbhcLs7lcnFLS0uhtbW1B/F3W1sb6UnSunTpUr+5c+c66fq8qKhIb/z48ajsRJAn9MiNGXm+jh49au7t7d2ckpJi7uXlVfG49ffu3Wszf/78OmNjYw0AQGZmZtHz38vng0ajaSQSiQgA4MSJE/1jY2MdAwMDC3vzXY1GA1qt9vnu4BtGo9HAxIkTWWFhYbXp6en/AABcu3bNsKKiQs/Dw0PxsvcPAODYsWN3X/Y+vK06X4/l5eXUkJAQ18bGRsqOHTsee196nJ07dz42jfDw8EYAaHzWbfUkKCioPjk5ubSqqorC4/EE4eHh9SwWS/k8t9md3hwPBNFFqVSCnp7ey94NpJOVK1c+6It0lEolMBgM5fnz5//pi/QQpDN9fX3tzz//bFZZWVllZ2en6vxZX+Rhom5OobzScSmvnYyMjH4XLlwwzcvLExkaGmorKyupCoXiiTrPeqOnNmVKSoqFt7d38+HDh82Dg4Obun7+tOe+r+6dyKvJ1tZWTbQtli1bZk+n09Xr1q27/zRpjRw5smXkyJEtuj5nsVjKs2fPorITQZ4QigB+gRobG8lZWVn0pKSkkp9++qkj+ic9Pd3Yz8+PM3bsWFcmk8mfOHEiU6PRwBdffGFdXV2tN2zYMGzgwIEYwL+fqK5YscKOyWTyAwIC2EFBQUwi2qzz093Kykqqg4ODOwBAYWGhvo+PDwfHcV5PEbijR4924/P5PBaLxd+6daslsdzIyMjro48+cuBwOLhQKOSWlZVRAQAkEom+p6cnVyAQ8JYuXWrfy2NBMTExURHHxd/fH8NxnIdhGH7o0CFTYn9dXV35M2bMcObz+XhxcbE+AMD8+fMdcRzn+fv7YxUVFdSefnNzczNpwoQJrhiG4ePHj3ft/PQxPDzcWSAQ8FgsFj8mJqZX+/06SU9PN6ZSqdrOla2AgIBWf39/ua7jzWQy+VOnTnVhs9n8iRMnMk+dOmXs7e3NdXFxEfz2228dEU65ublGgwYNwlxcXATbtm2zBHhYGYyKinJks9l8DMPw/fv3mxHLIyIinN3c3PjDhw9n1dTUdDx46nze3vTz8SpzcHBQffvttyVJSUnWGo0G5HI5acqUKQwMw3Aej4enpaUZAzyMghw9erTbyJEjWQ4ODu4bN260io+Pt+HxeLhQKOTev3+fAvDvCEcHBwf3mJgYeyK/EaMfOkdUlpWVUQMDA904HA7O4XBw4t70pPciXWxtbdXOzs6KsrIyPQCAiooK6pgxY9wEAgFPIBDwfvnll34ADyurkyZNYnbN2+np6cYjRoxgEelFREQ4JyYmdkSwrFu3zsbd3Z3n7u7Oy8/PfyTCvvPxyMzMNPLy8uJyOBzc3d2dV19fj8rh14xUKtX39/fHMAzD/f39sdu3b+sDPDzPs2bNcvLy8uI6Ojq6E+e8p3tg5zL98uXLRn5+fhyAh3lx+vTpLoMHD2ZPnjyZqav8vnv3rp6vry+Hy+XibDabf/78efqLPyJvn64jYQ4cOGDh5eXFZbPZfKKsbGpqIoeEhDAEAgGPx+N1lLWJiYkW48aNcx05ciRr6NChWGFhoT6bzeYD9L6ehiC9QaFQtBEREQ82btz4yKitznk4Pz+fFhAQgBEj9AoKCmhPUjfXVX87duyYCZPJ5Pv4+HBmzZrlRJSjXa8fNpvNLyws1AfQXe6/TcrLy/XMzc1VhoaGWgAAOzs7FYPBUAIALF++3E4gEPDYbDZ/+vTpLhqNBgCerh2kK0pXo9FAenq6WXJycsmVK1f6y+VyEsCTnXuA7utGnc/9tm3bLAUCAY/D4eBjxoxx6zziFXmz5Ofn07hcLk78HRsba7ty5Uo7AAAfHx/OokWLHNzd3XkMBkNAlHunTp0yHj16tBsAwJkzZ4w5HA7O5XJxHMd5TU1N5M5pFhQU0Hx8fDg8Hg/n8/m8voqYR5A3EbrRvkCpqammw4cPb/Tw8FCYmpqqr1692tGhJhaLDXfv3l1WVFRUUFpaSrt48SL9008/rba2tlZmZmZKb9y4Ie2c1uXLl43S0tLM8vLyRGfPni3Ozc197I3O3t5edeXKFalIJBIfO3bsn5iYmG6Hs6amppYUFBSIb926Jdq7d69NVVUVBQCgtbWV7O/v31xYWCjy9/dv/uqrr6wAABYtWuQ8b968B/n5+WJbW1ud0XUKhYJMDMdeunSpy9q1aysBAIyMjDRnz54tEolE4szMTGlsbKwjUaEpKSkxmD17dq1YLBZhGNbe2tpK9vb2lotEIvHgwYNlq1ev7rGjcOvWrdaGhoYaqVQqiouLqxSJRB3Hafv27eX5+fliiURS8McffxjfuHHD8HHH8HWSm5trKBQK5V2X93S8y8rKDD7++ONqiURSUFxcbJCammqRlZUl2bBhw70NGzbYEWmIxWLDjIyM29evX5ds2bLFvqSkRC85Odk0Ly/PUCwWF/z666/SuLg4x7t37+qlpKSYFhUV0QoLCwsOHDhw9++//+62g+JNPx+vOhzH2zUaDZSXl1MTEhKsAQCkUqno8OHD/0RGRjKIBoBUKjU8ceLEP3/99Zd406ZNDkZGRhqxWCzy9fVt2bt3b7fD+iwtLVUikUg8Z86cB5s3b36kIbpgwQLnoUOHygoLC0UFBQUib2/vNoAnvxfpcvv2bX2FQkEeOHBgKwBAVFSU07Jly+7n5+eLf/rpp+IFCxYwiHW7y9uPO3b9+/dX5+XliaOioqo/+ugjncPV2traSOHh4W47d+4sLSwsFGVmZhbS6XTN49JHXjyivCL+bdq0qaOsWbBggXNYWFitVCoVTZ06tXbhwoUd5/z+/ft6WVlZktOnT99eu3atAwBAb++BXeXm5hpduHChKC0t7Y6u8vv77783HzVqVKNEIhGJxeKCgQMHPnLPR54/uVxOzs7OliQmJt6NjIxkAgDExsbajRgxoik/P1985cqVwk8//dSxqamJDADw999/048cOXLn+vXr/6rb9baehiC9tWLFiuqTJ0+a19bW6gzVDAsLYy5YsKC6sLBQlJWVJXF2dlY+Sd28u/qbXC4nLV261OXcuXO3b968WVhbW9urUae6yv23yaRJk5oqKir0GQyGYMaMGc5nz57tKDNWrFhRnZ+fL759+3ZBa2sr+ejRoyY9pdVTO0iXixcv0p2cnBR8Pl8xcOBA2Y8//tixjd6ce2Ldx9WNwsPD6/Pz88WFhYUiDofTmpiY+FZ2+CMAWq0W8vLyxBs2bChbt27dI237rVu32u7Zs+euRCIR/d///V+hkZHRv+rOzs7OyitXrkjFYrHo0KFDd6Kjo3XWxRHkbfdWTgHxa7LYqa68uU/ngTV3oMtHRfDKelrnhx9+MF+6dGk1AEBwcHBdSkqK+ZAhQ+QAAO7u7i1ubm5KAAA+ny8nol11+f333+njxo1roNPpWgDQBgYGNjxuH9vb20lz5851EYlEhmQyGe7evdvtXLAJCQk2Z8+eNQUAqKqq0isoKDCwtbVt0dPT006bNq0RAMDHx6clIyOjP8DDhsy5c+eKAQCioqJq169f79hdup2HnGdkZPSbPXs2UyqVFmg0GlJ0dLTj9evX6WQyGaqrq/Xv3btHBQCws7NrHzVqVMfwDzKZDPPmzasDAJgzZ07t5MmTWd1ti3D16lX6kiVLqgEABg4c2Iph2P9j777Dmrz6xoF/MyAkJAJhm0GQkAlEQLGISrH6FFugVtwDbR8cWBXF1doWX+uo1uLjSx1F+taBKFpqUXFVrcX1c0CRmYBQGTJkJ0BIIOP3B+/Ni0gYFsVxPtfldUnunfvknO859znn7qgcHz58mH7o0CErjUaDq66uNsrIyDDBGogGUl1iPqutsnlA05uRnamSPpXXY3ozpKfvm8FgqL28vFoAAHg8Xsv48eMVeDwePDw8lFu2bOkokLG0R6VSNd7e3oobN26Y3rhxgzZ9+vQ6IpEILBZLM2rUqKabN29SUlJSOj7ncDht3t7ejd2d18u6H6+aXOl6VnNT/oCmD1MqTykS7uh3+sCmWbl9+zZ1+fLlVQAA7u7uqqFDh7ZmZWWZAACMHj260cLCQmdhYaGjUqnaadOmNQAAuLq6KjMzM7u9jtmzZ9cDAHh5eSnPnDnzzNynt2/fpiUmJj4CACASiWBpaakF6H9e1NXZs2ctuFwuraioyCQqKqqIQqHoAQBu3bo15OHDhx2VlKamJgLWE7e7tG1hYdHj5Mjz58+vAwBYuHBh3VdffWUw6MzMzDSxsbFp8/X1VQIA0Ol01Pjbi7WJGaz8ysYB/X3w7GjKnVMlPf4+OpdXAO29NlNTU00BANLT002xMi8sLKxu06ZNHWVeUFBQA4FAAE9PT1Vtba0RAEBf88Cu/P39sTLeYPn9zjvvNC9evJjT1taGnzp1av3o0aPf2Dzz61tfswrqCwY0LXAtuMrNPpufqyztbPbs2XUAAJMmTWpqamrC19TUEP78888hly5dMo+OjrYDAFCr1biCggJjAICxY8cqbG1tn8lX+hqnIa+Xwap3ALSXM9OmTavdvn27DZlMfqbMqa+vxz958sQ4JCSkAQDgf8tJvVqt7nNs3l38ptVqgcViqQUCQSsAwMyZM+t++umnHh/WAhgu9/v8xQywwYjhzczMdNnZ2bkXL16kXb16lTZ//nynyMjIxytWrKi9cOECbdeuXXYqlQrf0NBAFIlELdDDdFo91YMMOXr0KH3q1Kl1AO337ejRo5bz589vAOjbvcdi995io7S0NHJkZCSjsbGR0NzcTPD19X2h04K9bZKSklhVVVUDmnZtbGyUkydP/sdlZldYXWL06NHKr7766pk2kHfeeacpIiKCNW3atLo5c+bUm5mZPZWXqVQq3L///W8HqVRKIRAI+tLSUlR2IogBb2UD8GCorKwk3LlzZ0h+fj552bJloNVqcTgcTr9///7HAAAkEqljglsCgQAajabHuZ56mg+XSCTqsZc5Yb32AAC2bt1qa2Nj0/brr78+0ul0QCaTPbtum5ycTEtJSaGlpqbKaDSazsvLi9/S0oLH9ovH47FjPHWOeDy+XxP0Tpgwobm+vp5YUVFB/PXXX81qa2uJWVlZUhKJpGcwGK7YMbs+4esKh8P1eM2d1+lMJpMZ79mzxzYtLU1qbW2tDQ4O5qhUqjeqR7yrq2tLUlLSM41tMTExdEPft7Gxccd9xOPxYGJiogdoT5Narbbji+z6neJwuB7TZHf3oLO34X686nJzc40JBAIwGAxNT/fSUBrB4/EG8y1sHSKRqO8tb8M8b17UGTYH8JUrV0yDg4OdP/74Yzmbzdbo9XpITU2VYo1rnXWXto2MjPRYzyeA9oaczutg5/K/6xv88vR6fY/LkdcfltYBni6nDeWBBAKhI21h6RtjamrakegMld+TJk1qun79et6vv/5qtmDBAscVK1Y8WbZsWe2AXhTSK0NlYmJiYoFEInlqzv2bN2+aGopt+hKnIUh/ffHFF088PDxEM2fOrOm6zFB531Os2Dn9GorfequndFem9lTuv22IRCIEBAQ0BgQENLq5ubXExcVZhoaG1q1evdrh7t27uVwuty0iImIoFiv3tx5kiEajgQsXLlhcvnzZfNeuXfZ6vR4aGhqI2EPyvtx7bHlvsdGiRYscExMTC7y9vVuio6MtU1JS0Mty31Bd42iVSoUnEokdacLExEQH0B4Tda5vYr777ruK4ODghqSkJDMvLy/h1atX8zqn682bN9symczWpKSkR62trTgajfaPXhqPIG+yt7IBuC9PzAdaXFycxZQpU2qPHTvW8dKrkSNH8n///fceh4Kamppq5XI53t7e/qnP33333aawsDAHpVJZ0dbWhrty5Yp5SEhINQAAi8VS37t3z9TPz08ZHx/f0QAol8sJTCazlUAgwJ49eyyxQKGzhoYGgpmZmZZGo+nS09NNMjIyeh0q5OHh0RQbG0tfunRpXWxsbJ/e7Jqenm6i0+nA1tZWI5fLCVZWVm0kEkl/9uxZWnl5ucHezzqdDg4ePGixaNGi+kOHDll6eXk19nTNY8aMaTp69Cg9MDCw8f79+yb5+e09Levr6wlkMllHp9O1paWlxD///NPM19e3T72y+ut5e+r+U4GBgY1ff/01Lioqymr16tU1AO3zjxYXFxv39fs25MKFC+Zbt26tUCgU+Dt37tD+85//lGm1WoiNjbVetmxZbVVVFfHevXvU6OjoUo1Gg4uNjbX+7LPPasvKyozu3LlDmzVrVl3n/b3M+/GqeZ6eugOtvLycuHDhQodPPvmkCo/Hd/xugoKCGjMzM0kVFRXGbm5uqrt37w5oTwKMj49P486dO60jIyOrNBoNKBQK/PPkRYZMmDChecqUKbU7duyw3bt3b9mYMWMUO3bssNm8efMTgPaXI2I9J7tL2xqNBgoKCsgtLS04pVKJv3nz5hAfH58mbP9Hjhyhb9u2rfJ//ud/LNzd3Q32VJJIJKonT54Yp6SkUHx9fZX19fV4KpWqQy/4Mqy3nrqDwd3dvfmnn36y+Oyzz+piYmLoI0aMaOppfV9f30ZDeSCTyWy9desWZfr06YqTJ08+88AOY6j8zs/PN3Z0dGxdvXp1TXNzM/6vv/6iAMAb2QA8ED11X5Tjx49bBAYGNl66dIlKo9G0lpaWWj8/P0VUVJTtoUOHSvB4PNy6dYvs4+PTYw/tvsRpyOtnMOodndna2moDAwPrjx07ZjVr1qyn8gc6na6zs7NrjYuLM583b15DS0sLTqPR4PoamxuK3yQSiaq0tJSUl5dnzOfzW0+cOEHHtuFwOOrz58+bAwDcvHmTUlZWRgJ4vjrIizYYMXxGRgYJj8eDq6urGgAgPT2dzGQyW5VKJR4AwM7OTiOXy/Fnz561CAwMrAfofz3IkNOnTw8RCATKmzdvPsQ+mzJlCufYsWPmEyZMeKqs6y127y02UiqVeDab3aZWq3EJCQl0e3v7l/6S3jfZi+ip+7xYLFZbdXW1UXV1NcHU1FT3+++/m33wwQe9jl7G5OTkkEaNGtUyatSoljt37lCzs7NNXF1dVdhyuVxO4HK5ajweD3v37rVEL45HEMPeygbgwfDLL79Yrlu3rqLzZx999FF9XFwcfdasWfWGtps/f37NpEmTnG1sbNo6zwPs6+ur9Pf3l4tEIjGDwVC7ubk1m5mZaQEAPv/88yczZswYlpCQYDl27NiON7euXLmyKjg42CkpKclizJgxjd0NBQsODpYfOHDAmsfjiZycnFQSiaTXYVf79u0rmTlz5rB9+/bZBgUFGbwWbE5FgPYeB/v37y8iEokQGhpaN2nSJK6Li4tQLBYrHR0dVYb2QSaTdTk5OWSxWGxHo9G0p06d+runa16zZk3VzJkzHXk8nkgsFitdXV2bAQC8vb1bXFxclM7OzmI2m6329PTssQL/OsLj8XDmzJnCpUuXsnbv3m1HIpH0TCZTvWnTpvLw8HB2X75vQ9zd3Zvfe+895/LycuM1a9ZUcDicNjab3XD79m2qUCgU43A4/aZNmx6z2WzNvHnzGq5evTqEz+eLHR0dVVijfWdvw/141WC/R41GgyMQCPoZM2bUbty48QkAwLp166rmzZvnwOPxRAQCAWJiYoqwl5G8CPv37y9ZsGCBA4/Hs8Lj8bBnz57i58mLerJx48bKESNGiLZs2VJx4MCB0tDQUDaPxxNptVrcqFGjGkePHl0C0H3aBmjvTSwUCsWOjo4qsVj81BBKtVqNc3NzE+h0OlxCQoLBNxKbmJjo4+PjC1esWMFWqVR4ExMT3fXr1/O7DmVDXm379+8vmT9/Pue///u/7SwtLTVHjhwp6mn9nvLAyMjI8iVLlnB27NjR5unpaTCNGyq/L126RIuOjrYjEol6CoWijY+PfzRgF4oAQHtPJVtbWzfs77CwsGfeaG5hYaF1d3cXNDU1EQ4cOPAIAGD79u3lixYtYgsEApFer8cxmUz1tWvXCno6Vl/iNAR5Hl9++WXl4cOHu52C4ejRo48WLlzosHnz5qFGRkb6X375pbCvsbmh+I1Kpep37dpV7O/v70yn0zWdGwBDQkLq4+PjLQUCgWj48OHNDg4OKoDnq4O8iRQKBWHFihVshUJBIBAIeg6Hoz58+HCxlZWVds6cOdUikUjMZDJbO38//a0HGXLs2DF6UFDQUw1zwcHB9TExMTZdG4B7i917i40+//zzci8vLyGDwWgVCoXKpqamt26+57cFhULRh4eHV3p6egpZLJaax+P1a7qqbdu22d67d4+Gw+H0QqGw5eOPP1ZgUyoBAERERFRNmzbNKTExke7r66voPFoRQZCn4d6WJyQZGRlFEonkmaFPrzO5XI43MzPTNTY24r29vfk//vhjMTanMIIgCNI/ERERQ6lUqvabb755poEHQRAEQZC+w+opOp0OQkJC2M7OzqqNGzdWDfZ5IQiCIMibJCMjw0oikXD6si7qAfwamzt3rsPDhw/JarUaN3PmzFrU+IsgCIIgCIIgyGDbvXu31fHjx63a2tpwYrFYGRER8UZ1xEEQBEGQ1w3qAYwgCIIgCIIgCIIgCIIgCPIa6U8P4LfyzaoIgiAIgiAIgiAIgiAIgiBvA9QAjCAIgiAIgiAIgiAIgiAI8oZCDcAIgiAIgiAIgiAIgiAIgiBvKNQAjCAIgiAIgiAIgiAIgiAI8oZCDcAv2ZEjR8xxOJxnenq6yYs+Vl5envGPP/5Ix/6+fv06ZcGCBawXfVzk1VFSUkIMCAgYxmKxXJycnMS+vr7czMxM0mCfFzL4CASCp0AgEGH/NmzYYPeijpWcnEzz8/Pjvqj9I8hAo1Ao7p3/jo6OtgwJCWEP1vkgg6drWgAA+O6776z37NljCdCeNoqKioywZQwGw7WiooL4Is+p8/ERxBAcDue5cOFCJvZ3ZGSkbURExFAAlIZedevXr7fjcrliHo8nEggEoj/++MN0MM8nODiYc/DgQYvBPAfk1VdZWUnA6hVWVlYSGxsbN+xvlUqF68s+PvroI8e4uDjzF32uCPK2eqEBKvKshIQEuoeHR1NcXBzd3d29vPMyjUYDROLA3ZKHDx+STpw4QV+yZEkdAMC4ceOU48aNUw7YAZBXmk6ng6CgIO7s2bNrk5OT/wYAuH37Nrm8vNzIzc1N/SKP3dbWBkZGRr2viAwaEomkk8lkuYN9Ht1B6QdB/g/6Pbx61q1bV439/+jRo1bDhw9v4XA4bYNxfAQxxNjYWH/+/HmLioqKSnt7e03nZQOVhga67oIAXLlyxfTSpUvmWVlZuWQyWV9RUUFUq9V9ajxDkMFkZ2enxeoWERERQ6lUqvabb7550tft29peWjGKIG8t1AP4JZLL5fjU1FTqwYMHi3777TcLgPaecaNGjeIFBgY68vl8MQDA2rVr7R0dHcWjR492DgwMdIyMjLQFAMjJySGNHTvWWSwWCz09PflYL+Lg4GDOggULWO7u7gImk+mKPaH98ssvGampqVSBQCDatGmTTedeeBEREUOnTZvG8fLy4jOZTNctW7bYYOc5YcIEJ7FYLORyueLvv//e6mV/T8jASE5OphGJRH3nIH/06NEt3t7eSm9vb55IJBLyeDzR0aNHzQHae4w7OjqKZ4LYd/MAACAASURBVMyY4eDs7CwOCgpyTEpKonl4eAgcHBxcrl27RgEAUCgU+GnTpnFcXFyEQqGwY/vo6GjLSZMmDRs/fjx37NixPJ1OB4sXL2Y6OzuLeTyeKDY21gKgvWG6u8+Tk5NpXl5efH9//2GOjo7ioKAgR51O9/K/uLdcSkoKxd3dXcDn80Wurq7C+vp6fNfej35+ftzk5GQaAMCcOXPYLi4uQi6XK161atVQbJ3ExMQhjo6OYk9PT35iYmLHk/wnT54QJkyY4MTj8UQSiURw9+5dMkB7njRr1iwHHx8f5ylTpji+zGtGkP7o2hMK6yHaUx524sQJM+z3sGDBAhZWFl+7do3i7u4uEAqFInd3d0FGRgYJ4Nn8dPLkyY5YXgsAEBQU5BgfH2/2Ui8c6RARETE0MjLS9uDBgxbZ2dmUkJCQYQKBQNTU1IQDAPjuu+9ssDIWi9WwbbB9ODs7i/Py8owBDMddFArFffny5Qw+ny+SSCSC0tJSYtd9RUVFWbm4uAj5fL7o/fffd2psbESxPQIAAAQCQR8SElK9bds2267LOqehlJQUCo/HEw0fPlyAxWcA7Y27ixcvZrq4uAh5PJ5o586dVgDd112QgVNWVmZEp9M1ZDJZDwBgb2+v4XA4bTdu3KCMHDmSLxaLhWPGjHEuLi42AgDw8vLih4WFMVxdXYUcDsfl4sWLVADD90+r1cLcuXPZXC5X7Ofnx/X19eViZdqaNWvsXVxchM7OzuJZs2Y5oDgcGQjZ2dkkgUAgwv7esGGD3bp16+wBADw9PfnLly9njBgxgv/tt9/adN7us88+Y0yfPt1Bq9VCSkpKR/ofN26cc2lpKTEjI4Pk6uoqxNb/66+/TDr/jSDIs1CQ+BLFx8ebv/vuu3I3Nze1ubm59ubNmxQAgMzMTNOdO3eWFRYW5ly/fp1y9uxZi6ysrNxz584VZmZmdgz5CQ0Nddi3b19JTk6OdOfOnY/DwsI6GmSePHlilJqaKjt9+vTDjRs3MgAAtm7dWjZixIgmmUyWu3Hjxqqu51NQUGCSkpKSf//+fen3338/FHu6HB8fX5STkyN98OBBbkxMjG1lZSXhxX87yEDLzMwkSySSZ3p8UygU3blz5wpyc3OlKSkp+Rs2bGBiAV5paanJ6tWrq2QyWU5hYaFJfHy8ZWpqqmzr1q2Pt27dag8AsGHDBns/Pz9Fdna29MaNG3lfffUVU6FQ4AEA/vrrL+rx48cf3blzJ//IkSPmWVlZZKlUmnP16tX8yMhIZnFxsZGhzwEApFIpee/evaUFBQU5JSUlpMuXL1Nf4lf2VlGr1fjOU0DExsZaqFQq3Jw5c5x2795dkpeXl5uSkpJHpVJ7jP537dpVlp2dLZXJZDm3bt2i3b17l6xUKnHLli3jnDlzpuD+/ft5VVVVHd0X161bN1QikSjz8/NzN2/eXDZ//vyOxt7MzEzKpUuXCs6ePfvoRV47gvSm6+/j22+/Hdr7Vt3nYUqlEhceHu5w4cKFh2lpaXm1tbUd3eUkEonq3r17MqlUmrtx48aydevWdQzX7pyfLly4sPrQoUOWAAC1tbWEtLQ06vTp0+UDf+VIf3zyySf1Li4uyiNHjvwtk8lyqVSqHgDAyspKk5ubK/3000+rt2/f/kzjW1eG4q6Wlha8t7d3U15eXq63t3fTDz/8YN112zlz5tRnZ2dL8/Lycvl8fkt0dDR6cI90WLt2bdWpU6fotbW1BmP50NBQx7179xY/ePBARiAQ9Njnu3fvtjIzM9NmZ2dLMzIypIcPH7aWyWTGAE/XXV7GdbxNJk+erCgvLzfmcDguc+fOZZ87d46qVqtxK1asYJ8+fbowJydHOn/+/Jo1a9YwsG00Gg0uKytLumPHjtJvvvlmKIDh+3fkyBGL0tJS47y8vJzDhw8Xpaend8Taa9eurcrOzpY+fPgwp6WlBZ+QkIAeNCIvnEKhwKempuZFRkZ2tFeEhoYyFQoFISEhobi1tRW3cuVK9pkzZwpzcnKks2bNql23bh1DIpGoSSSS7v79+yYAAAcOHLCaO3duzeBdCYK8+t7KMTuX9u9m1ZQWUwZyn1YsB+X7YStLe1rn5MmT9PDw8CoAgODg4Lq4uDh6YGCg3M3NrVkgELQCAPz555/USZMmNfxvJUI/ceLEBoD23sPp6enUadOmOWH7a21t7RgOFBQU1EAgEMDT01NVW1vbp7Gi//rXvxrIZLKeTCZr6HR62+PHj4lOTk5tO3bssD137pw5AEBlZaVRTk6OiZ2dXXO/vxQEAACSkpJYVVVVA5rebGxslJMnT+4xvRmi0+lwK1euZN65c4eKx+OhqqrK+PHjx0QAAAaDofby8moBAODxeC3jx49X4PF48PDwUG7ZsmUoAMCff/455NKlS+bR0dF2AABqtRpXUFBgDAAwduxYha2trRYA4MaNG7Tp06fXEYlEYLFYmlGjRjXdvHmTYuhzMzMznaura7OTk1MbAIBYLFYWFhYa//Nv69W2UlrCkjWrBjR9CExNlLuF7B7TR3dTQNy7d49sY2PT5uvrqwQAoNPpvXb9OHz4MP3QoUNWGo0GV11dbZSRkWGi1WqByWSqXV1d1QAAc+bMqf3pp5+s//cYtF9//bUAACAoKKhx0aJFRKxi6u/vj+V9CNIu6TMWVOUO6O8DbERKmLy3X7+P6Ohoy9TU1F7nYOwuD6PRaFoWi6XGyvmZM2fWYb+Huro6wowZMxyLiopMcDicvq2traNc75yffvjhh00rV650KCsrI8bHx1t8+OGH9W/btBDlG75kqR8+HNC0QHJ2Vg7dtvW5ytKezJ49ux4AwMvLS3nmzJle5800FHcZGRnpZ86cKQcA8PT0bL5y5cqQrtumpaWRIyMjGY2NjYTm5maCr68vejDwihmsegdAezk+bdq02u3bt9uQyeRnyvSamhpCc3MzfuLEic0AAPPnz6+7fPmyOQDAlStXhshkMgqWhhsbGwm5ubkmxsbG+s51lzfZYMTwZmZmuuzs7NyLFy/Srl69Sps/f75TRERE+cOHD8njx4/nAbSPprO2tu4YLz9t2rR6AIDRo0c3r1271hjA8P27ceMGdcqUKfUEAgHYbLbmnXfeacT2c+HCBdquXbvsVCoVvqGhgSgSiVoAAOUpr6Fc6XpWc1P+gKZdUypPKRLuGPAyc86cOXWd/96yZcvQESNGNMXHx5cAAKSnp5sUFBSY+Pn5daR/Ozu7NgCA+fPn1xw4cMBq+PDhj8+ePWuRkZHxSk5vhyCvireyAXgwVFZWEu7cuTMkPz+fvGzZMtBqtTgcDqcPCAiQUyiUjoBMr+++7UOr1QKNRtMYmrPTxMSkY0ND++iKRCJ1rEggEECj0eCSk5NpKSkptNTUVBmNRtN5eXnxW1paUE/x15Crq2tLUlLSMxXPmJgYem1tLTErK0tKIpH0DAbDFbvHxsbGHWkCj8d3pCsCgQBarRYH0J6+EhMTCyQSyVPzCN+8edO0L2m5p/TZXZrs6/Ui/5xerwccDvfMDSISifrOwwDVajUeAEAmkxnv2bPHNi0tTWptba0NDg7mqFQqPAAADtf9revu/mPHNDU1RWMNkVcekUjUa7VaAGivhHRutO0uD+spz1u/fj3D19e38fLly4V5eXnG48eP52PLOuenAADTp0+v/emnn+i//vor/eeffy4awEtCBhhWdhKJRD1WjnWTj+IA2ofTG4q7iESiHo9vD8GIRGK3ZeKiRYscExMTC7y9vVuio6MtU1JSaC/+CpHXyRdffPHEw8NDNHPmzGd6xvWUP+n1elxUVFRJcHCwovPnycnJtK75EzKwiEQiBAQENAYEBDS6ubm1/Pjjj9ZcLrflwYMHsu7W75TndI7Xu71/Z8+e7bZXr1KpxK1evdrh7t27uVwuty0iImIoFtMhyD9hZGT0VPmnUqnwRCKxI/PpOtrQ3d29OSMjw7S6uppgbW2t1ev1wOPxWtLS0vK67nvBggX1rq6u9seOHWvy8PBosrKy0r7Qi0GQ19xb2QDclyfmAy0uLs5iypQptceOHSvGPhs5ciT/+vXrTw1xf/fdd5vCwsIclEplRVtbG+7KlSvmISEh1XQ6XcdkMlt//vlni08//bRep9PB3bt3yd7e3i2GjmlmZqZtamrq1/QNDQ0NBDMzMy2NRtOlp6ebZGRkDOpbZ98Ez9tT958KDAxs/Prrr3FRUVFWq1evrgFon+etuLjY2MrKqo1EIunPnj1LKy8v71cvWz8/P0VUVJTtoUOHSvB4PNy6dYvs4+PzTDr09fVtjI2NtV62bFltVVUV8d69e9To6OhSjUaD6+7zzMxM8kBd++ukt566L5NEIlE9efLEOCUlheLr66usr6/HU6lUnZOTU2tsbCxFq9XCo0ePjLCpaerr6wlkMllHp9O1paWlxD///NPM19e3cfjw4arHjx8b5+TkkMRisTohIYGOHeOdd95pPHjwoOXOnTsrkpOTaRYWFpq+9DRG3lK99NQdDA4ODq1paWmU0NDQ+vj4ePPeHlRJJBJVaWkpKS8vz5jP57eeOHGi4/egUCgITCazFQAgJiamx6H7S5YsqRk1apTQysqqbcSIEaqBuZrXx4voqTsQqFSqVi6X9xprcTgc9fnz580BAG7evEkpKysjAfzzuEupVOLZbHabWq3GJSQk0O3t7dFbdF4xg1Hv6MzW1lYbGBhYf+zYMatZs2bVdl5mbW2tNTU11V29etX0vffea46Li+vInyZOnCjfv3+/dUBAQCOJRNJnZmaSXubLDl8FgxHDZ2RkkPB4PGCjqNLT08nOzs6q69evD7ly5YrphAkTmtVqNS4rK4vUU1lg6P6NHTu2KS4uznLZsmW15eXlxLt379JmzZpVp1Qq8QAAdnZ2Grlcjj979qxFYGBg/cu6bmRgvYieus+LxWK1VVdXG1VXVxNMTU11v//+u9kHH3zQYGj9Dz/8UD5+/HjF+++/73zt2rV8Dw8P1ZMnT4yvXbtG8fPzU6pUKlx2djZpxIgRKhqNpvPx8VGsXbuWHRMTU/QSLwtBXktvZQPwYPjll18s161bV9H5s48++qj+559/tnZwcOjoSenr66v09/eXi0QiMYPBULu5uTWbmZlpAQCOHz/+98KFCx127Nhhr9FocB9//HFdTw3AXl5eLUQiUc/n80WzZ8+u8fT0NLguJjg4WH7gwAFrHo8ncnJyUkkkEjT1w2sKj8fDmTNnCpcuXcravXu3HYlE0jOZTPWmTZvKw8PD2S4uLkKxWKx0dHTsV0PC9u3byxctWsQWCAQivV6PYzKZ6mvXrhV0XW/evHkNt2/fpgqFQjEOh9Nv2rTpMZvN1hj6PDMzc+AuHukVNscp9vf48ePl+/btK4uPjy9csWIFW6VS4U1MTHTXr1/PnzhxYtPevXvVfD5fzOfzW0QikRIAwNvbu8XFxUXp7OwsZrPZak9PzyYAAAqFov/hhx+KAwICuHQ6XTNq1KgmqVRKBgDYsWNH+ezZszk8Hk9EJpN1hw4dQvP9Iq+V5cuXVwcEBHBdXV2F48aNU3Q3rLozKpWq37VrV7G/v78znU7XuLu7d5Sr69evrwwNDXWMjo62Gzt2rKKn/bBYLI2Tk5MqMDDQYKUJGXgqlQpva2vrhv0dFhb21BvNQ0JCapYvX+6wdu1aXWpqqtTQfkJCQurj4+MtBQKBaPjw4c0ODg4qgH8ed33++eflXl5eQgaD0SoUCpX9ffCPvB2+/PLLysOHDz8zhzQAQExMTNGSJUscKBSKzsfHp5FGo2kBAFatWlVTVFREcnV1Fer1ehydTm87f/584cs987ePQqEgrFixgq1QKAgEAkHP4XDUhw8fLn706FH1ihUr2I2NjQStVosLCwt70lMDsKH7N3/+/PorV67QeDye2NHRUSWRSJrNzc21VlZW2jlz5lSLRCIxk8lsRXVAZKBQKBR9eHh4paenp5DFYql5PF6vbRKLFi2qb2xsJPj7+3OvXr36MCEhoTA8PJzV1NRE0Gq1uGXLllVi6T8kJKTu2rVrZkFBQT3GUQiCAPQ4NPFNkpGRUSSRSF6LScHlcjnezMxM19jYiPf29ub/+OOPxWPGjHnmZV4IgiAIgrz6sHJdp9NBSEgI29nZWdXdy1l70tjYiBeJRKIHDx5ILS0t0RBHBEEGBJY/AQBs2LDBrqKiwujgwYOvTO9BZOBh97yyspIwcuRI4a1bt2RsNlsz2OeFIM9jw4YNdmq1GhcVFVXR+9oI8ubJyMiwkkgknL6si3oAv4Lmzp3r8PDhQ7JarcbNnDmzFjX+IgiCIMjra/fu3VbHjx+3amtrw4nFYmVERES/HkgnJSXRwsLCOGFhYU9Q4y+CIAPp5MmTZlFRUfZarRbHYDDUx44dKxrsc0JerIkTJzorFApCW1sbbu3atRWo8Rd5XY0fP55bXl5unJKS8sz8wAiCPAv1AEYQBEEQBEEQBEEQBEEQBHmN9KcHMHqzJ4IgCIIgCIIgCIIgCIIgyBsKNQAjCIIgCIIgCIIgCIIgCIK8oVADMIIgCIIgCIIgCIIgCIIgyBsKNQAjCIIgCIIgCIIgCIIgCIK8oVAD8Et25MgRcxwO55menm7yso/t6+vLrampIbzs4yKDp6SkhBgQEDCMxWK5ODk5iX19fbmZmZmkF3U8CoXi/qL2jQwsAoHgKRAIRNi/DRs22A3k/m/fvk0+ceKE2UDuE0FelufNyyIiIoZGRkbaDsQ5BAcHcw4ePGgxEPtCnt+rUK6htIA8DxwO57lw4UIm9ndkZKRtRETEUACA7777znrPnj2WA3Usd3d3wUDtCwFYv369HZfLFfN4PJFAIBD98ccfpn3d1lB+cf36dcqCBQtYA3umCPJ/KisrCVi9wsrKSmJjY+OG/a1SqXB92cdHH33kGBcXZ/6izxWzfPlyxtmzZ2mGlh8+fNh8MNptEORFIQ72CbxtEhIS6B4eHk1xcXF0d3f38s7LNBoNEIkv7pakpKQUvLCdI68cnU4HQUFB3NmzZ9cmJyf/DdDeKFdeXm7k5uamHuzzQwYXiUTSyWSy3Be1/9TUVEpqaqrpjBkz5C/qGAiCIMjze9FxJzK4jI2N9efPn7eoqKiotLe313Retm7duuqBOAaWhtLT02UDsT8E4MqVK6aXLl0yz8rKyiWTyfqKigqiWq3uU+NZW1ubwWXjxo1Tjhs3TjlgJ4ogXdjZ2WmxukVERMRQKpWq/eabb570dfue0u+L8sMPP5T1tPzUqVMWeDy+3t3dXfWyzglBXiTUA/glksvl+NTUVOrBgweLfvvtNwsAgOTkZNqoUaN4gYGBjnw+X5yXl2fs6OgonjFjhoOzs7M4KCjIMSkpiebh4SFwcHBwuXbtGgUAQKFQ4KdNm8ZxcXERCoVC0dGjR80BAKKjoy3/9a9/OY0dO9bZwcHBZcmSJR1P/hkMhmtFRQURAGDChAlOYrFYyOVyxd9//73VYHwfyIuVnJxMIxKJ+s5B/ujRo1u8vb2V3t7ePJFIJOTxeB1pJy8vz3jYsGHimTNnOnC5XLGPj49zU1MTDgAgKirKysXFRcjn80Xvv/++U2NjIx4AQCaTGQ8fPlzg4uIiDA8PH4odRy6X47s7BvLqO3HihJmjo6PY09OTv2DBApafnx9Xq9WCg4ODS3l5OREAQKvVApvNdqmoqCAGBwdzZs+ezfb09ORzOByX48ePm6lUKty333479OzZsxYCgUAUGxuLeq4hr62vvvrKlsfjifh8vmjp0qUMAICcnBzS2LFjncVisdDT05PfXe8QQ/lmcHAwZ8GCBSx3d3cBk8l0xXpq6XQ6CAkJYTs5OYnfffddbk1NDWqZe0V17WGH9RI+cuSI+ejRo3k6nQ6Ki4uNOByOS0lJCVGj0cDixYuZLi4uQh6PJ9q5c6cVQHs5PXLkSP4HH3wwjMPhuCxdupSxf/9+uqurq5DH44lycnI6RuxcvnyZ1jmfBQBQKpW4qVOncng8nkgoFIqwXkzR0dGWISEhbGxbPz8/bnJyMg0715UrVw51c3MTXL16ldpdnv9yvkXkRSMQCPqQkJDqbdu2PTMqofNohZSUFAqPxxMNHz5csHjxYqazs7MYoL1x11C67Vx3Afi/3wCK//65srIyIzqdriGTyXoAAHt7ew2Hw2m7ceMGZeTIkXyxWCwcM2aMc3FxsREAgJeXF3/ZsmWMkSNH8rds2WIL0H1+kZycTMN+39euXaO4u7sLhEKhyN3dXZCRkfHCRgciSHZ2NkkgEIiwvzds2GC3bt06ewAAT09P/vLlyxkjRozgf/vttzadt/vss88Y06dPd9BqtWBra+u2fPlyhkQiEbi4uAhv3rxJ8fHxcWaxWC5RUVFWnfeNlaFr1qyxx47v7Owsnj59ugOXyxWPGzfOWalU4gCe7nG8ePFippOTk5jH44nCwsIYFy9epP75559mn3/+OUsgEIjy8vKMv/vuO2sstps0adIwrK780UcfOX7yyScdsd2RI0dQ3oe8klAD8EsUHx9v/u6778rd3NzU5ubm2ps3b1IAADIzM0137txZVlhYmAMAUFpaarJ69eoqmUyWU1hYaBIfH2+Zmpoq27p16+OtW7faAwBs2LDB3s/PT5GdnS29ceNG3ldffcVUKBR4AIDc3FxKUlLS31KpNOfMmTMWBQUFRt2cS1FOTo70wYMHuTExMbaVlZVoaog3TGZmJlkikTzzpJ9CoejOnTtXkJubK01JScnfsGEDU6fTAQBASUmJyYoVK6oKCgpyzMzMtEeOHLEAAJgzZ059dna2NC8vL5fP57dER0dbAQAsXbqUHRoaWp2dnS21s7Nr68sxkFeDWq3Gd54CIjY21kKpVOLCw8MdLly48DAtLS2vtraWCABAIBBg6tSptT/99BMdAOD06dNDhEJhC9ajqLS0lHTv3r28s2fPPly5cqWDTqeDL774ojwwMLBeJpPlLly4sH4wrxVBntfJkyeHnDt3ziItLU2Wl5eXu3HjxkoAgNDQUId9+/aV5OTkSHfu3Pk4LCyM3XVbQ/kmAMCTJ0+MUlNTZadPn364ceNGBgBAXFyceUFBASkvLy/n0KFDxX/99Rf15V0pMhBCQkIarK2t27Zv3269YMEChy+++KKczWZrdu/ebWVmZqbNzs6WZmRkSA8fPmwtk8mMAQBkMhl5//79pVKpNCcxMdEyPz/fJCsrSzpv3ryaqKiojspw13xWqVTiduzYYQMAkJ+fn3vs2LG/Fy1axMEqtYa0tLTgXVxcWjIzM2Vjx45t7i7PR94ca9eurTp16hS9trbWYJwfGhrquHfv3uIHDx7ICASCHvu8p3Tbte6CQfHfPzd58mRFeXm5MYfDcZk7dy773LlzVLVajVuxYgX79OnThTk5OdL58+fXrFmzhoFt09DQQLh//37epk2bngB0n190PoZEIlHdu3dPJpVKczdu3Fi2bt06ZtfzQJCXRaFQ4FNTU/MiIyOrsM9CQ0OZCoWCkJCQUEwgtGdfHA5HnZGRIfP09GxauHAh58KFC4W3b9+WffvttwyA9k4sJSUlxhkZGVKpVJp79+5d6uXLl00BAB49ekRas2ZNVUFBQY6JiYmu68Op0tJS4tWrV80ePnyYk5+fn7t58+ZKf3//pnfffVe+ffv2UplMlsvn81tDQkLqsNjO0dFRvXfv3o7YrqamhpiWlib79ddfC7DYDkFeNW9loFeXmM9qq2ymDOQ+jexMlfSpvNKe1jl58iQ9PDy8CgAgODi4Li4ujh4YGCh3c3NrFggErdh6DAZD7eXl1QIAwOPxWsaPH6/A4/Hg4eGh3LJly1AAgD///HPIpUuXzKOjo+0AANRqNa6goMAYAGDMmDEKS0tLLQAAl8tVFRYWkrhc7lNjKnbs2GF77tw5cwCAyspKo5ycHBM7O7vmgftGEEyudD2ruSl/QNObKZWnFAl39JjeDNHpdLiVK1cy79y5Q8Xj8VBVVWX8+PFjIkB72hs9enQLAIC7u7uyqKiIBACQlpZGjoyMZDQ2NhKam5sJvr6+cgCAv/76i3rhwoVCAIDFixfXbt68mdnTMdhstqb7s3p7rU3MYOVXNg5o+uDZ0ZQ7p0p6TB/dTQFx+/ZtMovFUmP50cyZM+t++uknawCAsLCwmqCgIG5kZGTVzz//bLVgwYIabLvg4OA6AoEArq6uahaLpX7w4AGaKwsZEF/f+ppVUF8woL8PrgVXudlnc5/yz8uXLw+ZO3duDY1G0wEA2NraauVyOT49PZ06bdo0J2y91tbWZxrdDOWbAABBQUENBAIBPD09VbW1tUYAACkpKbTp06fXEYlE4HA4bd7e3o3//GrfHFePSFl1ZU0DmhboDKryvRDhc5Wlhvz0008lYrFY7O7u3rx48eI6AIArV64MkclklDNnzlgAADQ2NhJyc3NNjI2N9a6urs0ODg5tAABsNls9adIkOQCARCJpSUlJ6ZiXsLt89vbt29Tly5dXAQC4u7urhg4d2pqVldVj/ksgEGDBggX1AAAPHjwwMZTnIwNnsOodAAB0Ol03bdq02u3bt9uQyeRnWmJramoIzc3N+IkTJzYDAMyfP7/u8uXL5gA9p9uudRfMmxb/DUYMb2ZmpsvOzs69ePEi7erVq7T58+c7RURElD98+JA8fvx4HkD7iBFra+uOut2sWbPqOu+jt7isrq6OMGPGDMeioiITHA6nb2tr69MUE8jrY6W0hCVrVg1o2hWYmih3C9kDWmYCAMyZM+ep9Ltly5ahI0aMaIqPjy/p/Pn06dMbAABcXV1bNBoNbsiQIbohQ4bo8Hi8Xi6X4y9dujTk2rVrZiKRSAQAoFQq8VKp1MTe3r6JzWZ3tK+4u7s3Y3VcjI2NjRaPx+tnzZrl8OGHH8oNTWF3//59yn/9138NxWK7995776nYDo/Hw6hRo1qqqqqMB+bbQZCB9VY2FXhn4QAAIABJREFUAA+GyspKwp07d4bk5+eTly1bBlqtFofD4fQBAQFyCoXyVEBmbGzc8fQdj8eDiYmJHqA9aNdqtTgAAL1eD4mJiQUSieSpuVxv3rxp2nl7AoHwTKGenJxMS0lJoaWmpspoNJrOy8uL39LSgnqDv2FcXV1bkpKSnhl6HxMTQ6+trSVmZWVJSSSSnsFguGL3v2vawT5ftGiRY2JiYoG3t3dLdHS0ZedKKR6P1/fnGMirS69/5lZ24HK5bVZWVpozZ87Q0tPTTZOSkv7GluFwT9cbuv6NIK8rvV7/THrWarVAo9E0vc2h3VO+iZXr2DEw6LfzeiASiXqtVgsA7Q0xneOsoqIiIzweDzU1NUStVgsEAgH0ej0uKiqqJDg4WNF5P8nJyTQSidRtzIfH4ztiPoDu81lDeTaRSNR37nWpVqs7yl9jY2MdNu9vT3k+8ub44osvnnh4eIhmzpxZ03VZT2mgp3Tbte6CQfHfwCASiRAQENAYEBDQ6Obm1vLjjz9ac7nclgcPHnQ71zL2kBLTW1y2fv16hq+vb+Ply5cL8/LyjMePH88f6GtAEIyRkdFTZZJKpcITicSOzIdKpT6Vft3d3ZszMjJMq6urCdbW1lrsc2xaFDweD53LThwOB21tbTi9Xg9r1qypWLVq1VN5XXZ2NqlLHRc0Gs1TPwoSiaTPyMiQJiUlDUlISKDHxMRY37p162HXa1m4cKHj2bNn80eOHKnatWuX1d27dzte0GgotkOQV8lb2QDclyfmAy0uLs5iypQptceOHSvGPhs5ciT/+vXrzzXE08/PTxEVFWV76NChEjweD7du3SL7+Pi09GXbhoYGgpmZmZZGo+nS09NNMjIy+vxmWaT/nren7j8VGBjY+PXXX+OioqKsVq9eXQPQPs9bcXGxsZWVVRuJRNKfPXuWVl5e3usTSqVSiWez2W1qtRqXkJBAt7e3bwMA8PDwaIqNjaUvXbq0LjY2tuNt0nK5nNDfY7yteuup+zJJJBJVaWkpKS8vz5jP57eeOHGC3nn5p59+Wh0aGuoYHBxc2/nFQadOnbJYtmxZrUwmI5WWlpIkEokqLy+P1NTUhCp9yD/S1566L4q/v79i69atQxcuXFhHo9F0T548Idja2mqZTGbrzz//bPHpp5/W63Q6uHv3Ltnb2/upMthQvmmIr69vY2xsrPVnn31WW1ZWZnTnzh1a115db7OB7qn7Tzg4OLSmpaVRQkND6+Pj482ximRbWxt88sknjocOHfr70KFDlps2bbL95ptvnkycOFG+f/9+64CAgEYSiaTPzMwkcTicfr3tprt8dsyYMU1Hjx6lBwUFNWZmZpIqKiqM3dzcVA0NDYTY2FiKVquFR48eGWVmZnYb5/WW5yMDYzDqHZ3Z2tpqAwMD648dO2Y1a9as2s7LrK2ttaamprqrV6+avvfee81xcXEdaeB50u2bFv8NRgyfkZFBwuPx4OrqqgYASE9PJzs7O6uuX78+5MqVK6YTJkxoVqvVuKysLNKIESO6fTFVd/nFH3/80VHnVCgUBCaT2QoAEBMTg94F8wZ6ET11nxeLxWqrrq42qq6uJpiamup+//13sw8++KDB0PoffvihfPz48Yr333/f+dq1a/lmZmZ9mkfG399fsX37dvt///vfdUOGDNEVFhYaUSiUPrXE1tfX41taWvCzZs2S+/r6NovFYjEAAJVK1WLTbAK0T6PEZDI1arUad/LkSbqDgwN6sTryWnkrG4AHwy+//GK5bt26is6fffTRR/U///yz9fNkHNu3by9ftGgRWyAQiPR6PY7JZKqvXbtW0Jdtg4OD5QcOHLDm8XgiJycnlUQiQVM/vIHweDycOXOmcOnSpazdu3fbkUgkPZPJVG/atKk8PDyc7eLiIhSLxUpHR8de32r6+eefl3t5eQkZDEarUChUNjU1EQAA9u3bVzJz5sxh+/btsw0KCuqY5zU0NLRu0qRJ3P4cA3m5sDmAsb/Hjx8v37dvX9muXbuK/f39nel0usbd3f2pvGHWrFnyZcuWERYtWvRUBZLL5aq9vLz4tbW1Rrt37y6mUCj6SZMmNX7//ff2AoFAtHr16go0DzDyOpo6darir7/+ogwfPlxoZGSknzBhgnzPnj1lx48f/3vhwoUOO3bssNdoNLiPP/64rmsDsKF805B58+Y1XL16dQifzxc7OjqqvLy80BQQrwCVSoW3tbV1w/4OCwt7snz58uqAgACuq6urcNy4cQpsaP0XX3xh/8477zT6+/s3jRo1Sunh4SGcPHmyfNWqVTVFRUUkV1dXoV6vx9Hp9Lbz588X9uc8ustn161bVzVv3jwHHo8nIhAIEBMTU0Qmk/UTJ05s2rt3r5rP54v5fH6LSCR65n0AAABUKlXfU56PvDm+/PLLysOHD3c7vUdMTEzRkiVLHCgUis7Hx6eRRqNpAQCeJ92i+O+fUygUhBUrVrAVCgWBQCDoORyO+vDhw8WPHj2qXrFiBbuxsZGg1WpxYWFhTww1AHeXX3Revn79+srQ0FDH6Ohou7Fjxyq62weCDBQKhaIPDw+v9PT0FLJYLDWPx+u109qiRYvqGxsbCf7+/tyrV68+0xO3OzNmzJBLpVKTESNGCAAATE1NdQkJCX/3th1A+7QokydP5ra2tuL0ej1s2bKlFABg7ty5dZ999pnDDz/8YHf69OmC9evXl40cOVI4dOjQVoFA0KJWq9HQLeS1gntbuqdnZGQUSSSSZ4Y+IQiCIP9HLpfjzczMdDqdDkJCQtjOzs6qjRs3VgEAXL9+nbJq1SpWWlpaHrZ+cHAwJyAgQP7JJ5+gBl4EQZDXTE95PvJ2wNIAAMCGDRvsKioqjA4ePPjK9B5EEARBEMSwjIwMK4lEwunLuqgHMIIgCNJh9+7dVsePH7dqa2vDicViZURERA1Ae6Xw0KFD1gcPHnw02OeIIAiCDAxDeT7y9jh58qRZVFSUvVarxTEYDPWxY8eKBvucEARBEAQZeKgHMIIgCIIgCIIgCIIgCIIgyGukPz2A0Qt6EARBEARBEARBEARBEARB3lCoARhBEARBEARBEARBEARBEOQNhRqAEQRBEARBEARBEARBEARB3lCoARhBEARBEARBEARBEARBEOQNhRqAX7IjR46Y43A4z/T0dJPn2T4uLs48LS2t39tGR0dbhoSEsAEAvvvuO+s9e/ZYPs/xkddHSUkJMSAgYBiLxXJxcnIS+/r6cjMzM0nPs6/o6GjLoqIio/5uFxERMTQyMtLW0HI+ny8KDAx07PxZenq6iUAgEAmFQlFOTs4z5+vr68utqakh9Pdc+orBYLjyeDwRj8cTjRw5kp+fn2880Mfo/HvsikKhuAMAFBUVGfn7+w8b6GNjCASCp0AgEGH/NmzYYAcA4OXlxb9+/Tql6/rHjx83EwqFIj6fL3JychLv3LnTqqf993SN/YV9JwjysvQ3zSUnJ9P8/Py4AADx8fFm2O8Jef3hcDjPyZMnd5RTbW1tYGFhIcHud18ZylsR5EXB4XCeCxcuZGJ/R0ZG2kZERAwdzHNC+mb9+vV2XC5XzOPxRAKBQPTHH3+YAgDMmDHD4Xnqgf3VuUxDkP7Iy8szdnZ2Fnf+rLf64D+F0iuC9B1xsE/gbZOQkED38PBoiouLo7u7u5f3d/ukpCRzjUYj9/T0VHVd1tbWBkZGvbfRrVu3rrq/x0VeLzqdDoKCgrizZ8+uTU5O/hsA4Pbt2+Ty8nIjNzc3dX/3d/ToUavhw4e3cDictq7LNBoNEIn9z0r++usvE71eD3fv3qUpFAr8kCFDdAAAv/zyi/mkSZMa/vOf/zz1+9DpdKDX6yElJaWg3wfrp5SUlHx7e3vNqlWrhkZGRtonJCQUv+hjdsXhcNouXrz494vaP4lE0slksty+rKtWq3Hh4eEO/+///T+pk5NTW0tLC+5FNIwPhOdNjwgyUObMmSMHAPlgnwcyMMhksi4vL4/c1NSEo1Kp+t9++22Ira3tM2Xhm6CvcSTyejA2NtafP3/eoqKiotLe3l7T3+1RehgcV65cMb106ZJ5VlZWLplM1ldUVBDVajUOAODEiRP9ike7xkToniIIgrzdUA/gl0gul+NTU1OpBw8eLPrtt98sAJ59YhUSEsKOjo62BABYunQpw8nJSczj8USLFi1iXr582fTKlSvmX331FVMgEIhycnJIXl5e/GXLljFGjhzJ37Jli+2xY8fM3NzcBEKhUDR69GheaWnpMy0hnZ/CRUVFWbm4uAj5fL7o/fffd2psbERp4g2QnJxMIxKJ+s6N/aNHj27x9/dvAgD4+uuvbV1cXIQ8Hk+0atWqoQDtT2yHDRsmnjlzpgOXyxX7+Pg4NzU14Q4ePGiRnZ1NCQkJGSYQCERNTU04BoPhumbNGntPT0/+zz//bPE86ejw4cP06dOn144bN05x/PhxcwCAEydOmB04cMA2Pj7eatSoUTzsnObOncsWi8WiwsJCYwaD4VpRUUEEANizZ48lj8cT8fl8EdZDy9BvICIiYui0adM4Xl5efCaT6bplyxab3s7Rx8enqaKioiNS3rdvH93V1VUoEAhEs2fPdtBo2utTFArFfeHChUyRSCT09vbmlZeXEwGe7vFVUVFBZDAYrti+ysrKjMaOHevM4XBcVq9ebd/12J2foGs0Gli0aBET65m8devWXs99IDU0NOA1Gg3O1tZWAwBAJpP1EolEDWD4+8bU1tYSGAyGq1arBQCAxsZGvJ2dnZtarcYZSjcymcx4+PDhAhcXF2F4eHhHbyWdTgeLFy9mOjs7i3k8nig2NrYjHx01ahQvMDDQkc/nP9XrAEH+ieTkZJqXlxff399/mKOjozgoKMhRp9MBAEBiYuIQR0dHsaenJz8xMdEc26Zz7/e+lMnIq++9996T//LLL+YAAMePH6cHBwfXYcuuXbtGcXd3FwiFQpG7u7sgIyODBADQ1NSECwgIGMbj8UQffvjhMJVKhcO2mTNnDtvFxUXI5XLFWBkM0F4GYmlqwYIFLCw+NHSM1NRUE6xM4vF4oqysLBJA/8vGWbNmOfj4+DhPmTLlqRE5yOuNQCDoQ0JCqrdt2/ZMz7v8/Hxjb29vHo/HE3l7e/MePnxoDAAQHBzMCQ0NZY4aNYq3dOlSJo/HE9XU1BB0Oh2Ym5sPx0YQTp482TEpKYmWl5dn7OnpyReJREKRSCS8fPmyKbb86NGjHfliUFCQY3x8vNnLuvbXWVlZmRGdTteQyWQ9AIC9vb0G64DROa48derUkOHDhwtEIpFw0qRJw+RyOR6gfSRb5xj9eeqKhty4cYMycuRIvlgsFo4ZM8a5uLjYCKC9k4lEIhHweDzRxIkTnaqrqwnY+YaFhTFcXV2FHA7H5eLFi1SA9rh28eLFTKwu0tuoMuTNkJKSQuHxeKLhw4cLsHgeoL3O010+8jwxmKHyEkGQdqix7yWKj483f/fdd+Vubm5qc3Nz7c2bNw0OBXzy5Anh/PnzFg8fPszJz8/P3bZtW8XEiRObJ0yY0LBly5bHMpksVywWqwEAGhoaCPfv38/btGnTk4kTJzY9ePBAJpVKc6dOnVr3zTff9DgMdc6cOfXZ2dnSvLy8XD6f3xIdHY0K4DdAZmYmWSKRKLtbdurUqSEFBQUmmZmZUqlUmvvgwQPKhQsXqAAAJSUlJitWrKgqKCjIMTMz0x45csTik08+qXdxcVEeOXLkb5lMlkulUvUAACYmJrq0tLS8RYsW1T9POjp9+jQ9JCSkfvbs2XUnTpygAwDMmDFDHhISUr1kyZInd+/ezQcAKCoqMvnkk09qpVJpLo/Ha8W2T01NNfn+++/tU1JS8vPy8nJjYmJKAAB6+g0UFBSYpKSk5N+/f1/6/fffD8V6VBhy/vx5s8DAwAaA9h7LiYmJ9NTUVJlMJsvF4/H6H3/80RIAoKWlBe/h4aHMzc2V+vj4NH7++ee9DrHMzMw0/eWXX/7Ozs7OOXPmDL2nocFRUVHWxcXFpJycnNz8/Pzc0NDQ2t723xu1Wo3vPAUE1pjaHVtbW+3EiRMb2Gy2W2BgoOP+/fvpWINub3mOpaWlViAQKM+fP08DAEhISDDz9fWVk0gkvaF0s3TpUnZoaGh1dna21M7OrqOn3ZEjR8yzsrLIUqk05+rVq/mRkZFMrPKRmZlpunPnzrLCwsKcf/rdIEhnUqmUvHfv3tKCgoKckpIS0uXLl6lKpRK3bNkyzpkzZwru37+fV1VV1W2Xqv6Wycirad68eXUnTpywUCqVOKlUSvH29m7GlkkkEtW9e/dkUqk0d+PGjWXr1q1jAgB8//33NmQyWZefn58bGRlZkZuba4pts2vXrrLs7GypTCbLuXXrFu3u3btkpVKJCw8Pd7hw4cLDtLS0vNraWmJvx/jhhx+sly5d+kQmk+VmZmZKHR0dW5+nbMzMzKRcunSp4OzZs49exveJvDxr166tOnXqFL22tvapqbOWLFnCnj17dm1+fn7ujBkzasPCwljYssLCQpNbt27lx8bGPh4xYkTTlStXqGlpaSZMJlN98+ZNKgBAenq6qZ+fX/PQoUM1N27cyM/NzZWeOHHi71WrVrEBABYuXFh96NAhS4D2B8FpaWnU6dOno5ERfTB58mRFeXm5MYfDcZk7dy773Llz1K7rVFRUELdt22Z//fr1/NzcXKmHh4dy8+bNHQ39nWN0gH9WV8So1WrcihUr2KdPny7MycmRzp8/v2bNmjUMAIAFCxY4btu27XF+fn6uWCxuWb9+fUccrNFocFlZWdIdO3aUfvPNN0MBAHbv3m1lZmamzc7OlmZkZEgPHz5sLZPJXsmRZcjACQ0Nddy7d2/xgwcPZAQCQY99bigfAeh/DGaovEQQpN1b2RMlKSmJVVVVNaDzsNnY2CgnT55c2tM6J0+epIeHh1cBAAQHB9fFxcXRAwMDuw2G6HS6lkQi6WbOnOnw4YcfymfMmGEwaJo1a1ZHT5RHjx4ZT548mVldXW3U2tqKZ7FYPQ73T0tLI0dGRjIaGxsJzc3NBF9fXxScDbCV0hKWrFk1oOlNYGqi3C1k95jeDLl48eKQ69evDxGJRCIAAKVSiZfJZCbDhg1rZTAY6tGjR7cAALi7uyuLiooMPjUNCQmpx/7f33SUkpJCodPpGh6P1zps2LDWsLAwTnV1NcHa2lrbdV17e/vW9957r7nr55cuXRoSGBhYjw1rtLW11QL0/Bv417/+1UAmk/VkMllDp9PbHj9+THRycnpmKK+vry+vpqbGyNLSUvOf//yn7H+/N1p2djZFIpEIAQBUKhXexsZGAwCAx+MhNDS0DgDg008/rZ0yZUqv81D9f/buO66pc38c+CcDQiAx7B2GkJNNRBQERUREsQq1IEVxtr0qjtZVpT+qotZysYrXS6kt13oduKVVESvWPautVllJCKDIBmWEhLBC8vvDG76ICUMR1/N+vXy95OSsnDzn84zzPM8ZNWpUg7W1dTucWEw/GwF4vYsLBoPYuu3sNAIe/uPPdGhpwR0YV6cP//FnTqrKN5gXYNmmt3s8EwCgx0m0LDkKmPJDt+mjL1NAADwddvjnn39WnzlzhpqYmGh9/vz5Qb/88ktRb2JOeHh43aFDh0yCg4NlR48eNV20aNFjAN3p5u+//6acOXOmEABgwYIFNd988409AMC1a9eoH3/8cS2RSAQ6na708vKSX79+3ZBGo6nc3NwaWSxWa9djI2+38piv6S35+f0aP0kMhsI27ttex08+n9+oiRNcLldRWFioT6VS2+3t7Vv4fH4LAMCMGTNqfv75Z4uu2/Y1T0Z0O/vjdvqTkkf9mhbM6Y6KCQuX9ZgWvLy8mkpLS0k7d+40HTdu3DP5W21tLSEiIsK5qKjIAIfDqdva2nAAANevX6d88cUX1ZrtMQzreCi7d+9e0z179pgrlUrc48eP9TIzMw3a29uBTqe3aOLYtGnTajVpStcxvL29G7du3WpTWlqqP23atDo+n9/yInljUFBQvebhLtL/Xle9AwDA1NRUFR4eXhMfH29JJpNVmuX37t0z0uSzCxcurN2wYUNHI0loaGidZtoAX19f+ZUrVyhFRUX6//jHP6p3795t8fDhQz0ajaak0WiqmpoawmeffeYoFArJeDweHj16RAIAmDRpknzZsmWOZWVlxAMHDphMmjSp7m2ceuB1lOFpNJoqJydHmJGRQb1w4QJ1zpw5LuvWrSv94osvOh7+X7582aiwsNDA09OTBQDQ1taG8/DwkGs+71xGB3i5uqJGVlYWKT8/nzx27FgM4OmoLAsLi7aamhqCTCYjTJo0SQ4AMG/evJrw8PCOd1iEh4fXAQD4+Pg0rlq1Sh8A4Pz584PEYrFhWlqaCQCATCYjCIVCA1SO6z+rUjPpkkpZv6ZdzJqq2DJV0G3cweG0963B4XDQ2NiIDwwMbAQAmDNnTu25c+eMAQBaW1tx2uIIQN/LYLrySwRBnkI9gAdIZWUl4datW4MWL17saGdnx09KSrJOS0szIRKJas1QBoCnT1cBAPT09OD+/fuisLCw+hMnThiPGTOGoWvfVCq1YwdLlixxWLRoUbVEIhEmJSU9amlp6fY3nj9/vnNSUlKxRCIRRkdHl/e0PvJ24PP5TZmZmVozfbVaDcuWLasQi8VCsVgsLC4uzlm+fPkTgKfzxWnWIxAIaqVSqTPT7Jzu+pqOUlJSTB88eGBgZ2fHd3R05Dc2NhJSUlK09kA1NDRUaVuuVqsBh8M9V2Ht7h4gkUidvx/o+n5XrlyRFBcXZ2EY1rRy5Urb/x0PFx4eXqO5bkVFRTnbtm3TOo+3pvBDJBLVmp6yCoUCp22d3nhTauWenp5NsbGx1RcvXpRkZGSYAPQu5kyfPr3+8uXLtKqqKkJOTo5hcHBwA0D36QaPxz/3tdVq3VdCVzpBkJelK2705h7ua56MvLmCgoLqY2Nj6bNnz67tvDw6OtrOz89Plp+fn3vq1KmC1tbWjt9YWxoRi8X6SUlJVleuXJFIJBLh2LFjpc3Nzfju4puuY0RFRdWePHmygEwmqyZOnIilpaVRXyRvNDIyQvHzHfb//t//qzp48KB5Y2Njr+IPhULpSA+BgYGyW7duUW/cuEEZP368zMzMTLl//36TESNGyAEAvv32WytLS8s2kUgkzM7OFra1tXUc4+OPP675+eefTffv3282f/78J/3/zd5dRCIRJk+eLPvXv/5VvmXLluITJ048U0ZWq9UwatSoBk2ZtLCwMPfo0aMd8wN3LqN3/ftF8yW1Wo1zdXVt0hxTIpEIb9y4kd/TdgYGBmrNd2pvb8dp9pWQkFCs2VdZWVl2aGhoQ2/OA3mzWVlZKaVS6TMjDmprawnm5uY65yHvLo70tQzWXZ6MIMh72gO4N0/M+1tKSopJaGhozcGDBzsy5+HDhzMBAAoKCshNTU04hUKBv379+qCRI0fKpVIpXi6X4yMiIqRjxoyRYxjGBwCgUCjtDQ0NOgOZTCYjODg4tAEAaIZedUehUOAdHBzaWlpacIcPHza1sbF5J19s8jq9aE/dlxEcHCxbu3YtLiEhwXzlypVPAJ72upXL5fiJEyc2rF+/3nb+/Pm1NBpN9fDhQ73ODb/aUCiU9q6ZeWd9SUft7e2Qnp5ueu/evVxnZ+c2AIBTp05R4+LibFasWNHrCkJQUFDD1KlTXWNiYqqsra3bq6qqCFZWVu19vQd0oVAo6h07dpQMGTKE8+2331YEBQU1hIaGusbExFTZ2dkpq6qqCFKplIBhWKtKpYLdu3ebzJ8/v27Pnj1mnp6eMgAAOp3e8ueffxr5+/srDhw48Ezh/fr164OqqqoIRuM2lwatPkf9+efkIvro0YoJywzdFf+9lFecl6c/I3EyI//HS3lnvvvO4uLFi9RTp0490NPTA813fdHv1ldSqRR/7do1o8mTJ8sAAG7fvk22tbVtBehdzKHRaCqBQNC4YMECh4CAAKmmZ5GudDN06FD5zp07TRctWlS7c+fOjn36+fnJdu7cabFkyZKa6upq4p9//klJTEwsycrKIr/iS4C8Jn3pqTuQhgwZ0lxaWqqfm5tL4nK5LYcPHzbVtl5/xSMEoDc9dV+lhQsXPqHRaO2enp5N6enpVM3yhoYGgr29fSsAQHJycsf0R6NGjZLv37/fNDg4WPbXX38ZSCQSQwCAuro6AplMVpmamraXlJQQL1++TPPz85MJBILmkpISUl5enj6TyWzVTI3U3TGEQqE+m81u4XK51Q8ePCDdv3+f/MEHH7zSvBHpu9dR7+jMysqqPTg4uO7gwYPm06dPrwEAcHd3b/z5559NFi9eXJucnGw6bNgwubZtXV1d2+rq6ohtbW04DofT6u3tLf/hhx+st27dWgwAIJVKCfb29q0EAgGSkpLMNA+9AQCioqKeeHl5sc3NzduGDRv23Mur3wavowyfmZlJwuPxoOndeO/ePbLm/tcYM2ZM48qVKx1ycnJIPB6vRSaT4R8+fNirFz2/aCxwc3Nrrq2tJZ4/f95o3LhxjS0tLbjs7GzSsGHDmgcNGtSekZFBCQoKku/atcvM29tba3rSCAwMlP74448WkydPlpFIJHVWVhbJycmpTfNCaOTl9dRT91Wh0WgqS0vLtpMnT1I//PBDWVVVFeHy5cu0VatWVScmJqouXLhgFBAQ0JiSktKRx3UXR7TprgymK79EEOQp9ERkgBw7dswsNDT0meE4H374Yd3/poGoY7PZ3KlTpzpzuVwFwNO5moKCghgYhnF8fX2ZmzZtKgEAmDFjRm1iYqI1m83m5ObmPjc8/+uvvy6fPn26i4eHB9PMzKzHN/5+9dVX5Z6enmxfX1+MwWC8lYUz5Hl4PB7S0tIKL1y4MIhOp/NcXV25sbGxtg4ODm2hoaEN4eHhtcOHD2dhGMb56KOPXOrr63U27gIAzJ49+8nnn3/uqHkJXNegp4IyAAAgAElEQVTP+5KOzpw5Q7WysmrVNP4CAEycOFFWUFBgoJnPtTeGDRvWvHLlygpfX18Wk8nkLFq0iA7Q93ugO46Ojm0hISG1W7dutfTw8Ghes2ZNWUBAAIZhGGfs2LFYSUmJHsDTt8Tn5uaSuVwu++rVq9R//vOfFQAAX331VdWuXbss3N3dWU+ePHnmgduwYcPkERERzjwejxscHFw3evRorXM2AwAsX778sb29fSuLxeIymUzOrl27tDY29UXXOYAXLVpkp2tdlUoFW7ZssXJycuKxWCzOxo0b7Xbt2vUQoPfX++OPP647efKkaedhiLrSzY4dO4r/85//WPJ4PHbnBw+zZs2q53K5TWw2mztmzBhsw4YNpQ4ODi/1GyPIizA0NFR///33jyZPnuzq4eHBpNPpWoet9mc8Ql4vFxeXtrVr11Z3XR4dHV25fv16+6FDh7I6V1q//PLL6sbGRgKGYZy4uDhrPp/fCADg7e3dxOPxFAwGgztr1iwnzbBtCoWi3rZt26OgoCCGh4cH09LSso1KpbZ3d4yUlBRTDMO4LBaLk5+fb7BgwYKagcgbkbfP119/XVlfX99RDvnxxx+LU1JSzDEM4xw6dMhsx44dOhuLhgwZ0ujs7NwMADBmzBhZdXW13rhx42QAAMuWLas+dOiQmUAgYEkkEoPO00zQ6XSli4tL88yZM1/6vQXvk4aGBsLs2bOdNS8CF4vF5M2bNz8z4szW1laZnJxcNG3atMEYhnE8PDxY2dnZBr3Zf29jwR9//DHIysrKTfPv+vXrhocPHy786quv7JlMJofL5XKuXLlCAQDYvXv3w+joaHsMwzhZWVnk+Ph4rSPkNJYvX/6ExWI18/l8NoPB4M6bN88RDdV/d+zdu/dhXFycDYvF4vj5+TGjo6PLuVxuS3JyctHChQsdhwwZwlKr1aDJ47qLI9p0VwbTlV8iCPIUrrshZ++SzMzMIoFAgIYfIQjS7wwNDd0VCsW9130eCIIgyNtLKpXiaTSaSqVSwezZsx0YDEZzbGzsc43OCPI2kMlkeA6Hw7l//77IzMwMtcQgyHtOk8cBAMTExFhXVFTo7d69+40c6YUgb5PMzExzgUDg1Jt1UQ9gBEEQBEEQBHnNtm/fbs5isTgMBoPb0NBA6Mu0SAjyJjlx4gQVwzDuvHnzqlHjL4IgAABHjx6lafK4mzdvUr799tuK131OCPK+QT2AEQRBEARBEARBEARBEARB3iKoBzCCIAiCIAiCIAiCIAiCIAiCGoARBEEQBEEQBEEQBEEQBEHeVagBGEEQBEEQBEEQBEEQBEEQ5B2FGoARBEEQBEEQBEEQBEEQBEHeUagBeIDt27fPGIfDedy7d8/gRbZPSUkxvnv3rs5tv/vuO4ukpCSzFz9D5F1SXFxMnDx58mA6nc5zcXHh+vn5uW7dutXc39/f9UX3mZeXp89gMLj9eZ7IwCMQCB4sFouj+RcTE2Ota92e4k5Prl69ajh37lz6i26PIAPN0NDQvS/rp6enU18mrvbFsmXLbE+cOEEdiGMhADgczmPKlCnOmr/b2trAxMRE0NPv3R9poqioSC8oKGjwy+wDeb8VFhbqBQQEuDg6OvLodDrvk08+oTc3N+Ne93kh3YuOjrZ2dXXlYhjGYbFYnIsXLxp5enoyr169atifx9GW16G4g7wMbfXEFStW2K5bt87qZdMwKv8gyMsjvu4TeN8cPnzYdOjQofKUlBRTd3f38r5uf+LECWOlUin18PBo7vpZW1sbrF69+nH/nCnytlOpVBASEuIaGRlZk56e/gAA4ObNm+Tjx48bv+5zQ14/EomkEovFwt6s213c6Y3Ro0crRo8erXiRbREEedb27dv7XHZAXhyZTFbl5eWR5XI5jkKhqI8fPz7IysqqbSCO7eTk1JaRkfFgII6FvHtUKhVMmTLF9R//+Ef10qVLC5VKJURGRjouXbrULjk5ufR1nx+i3fnz543Onj1rnJ2dLSSTyeqKigpiS0vLgDXao7iDvE5KpRKIRO1NVKj8gyAvD/UAHkBSqRR/584dyu7du4uOHz9uAvB8D5HZs2c7JCYmmgEALFq0yM7FxYWLYRhn/vz59ufOnTM6f/688Zo1a+xZLBYnNzeX5OnpyVyyZInd8OHDmZs2bbLSPGEDAEhISDDn8XhsJpPJmTBhgotMJkO/93skPT2dSiQS1Z0fCvj4+DT5+fnJGxsbCUFBQYOdnZ25ISEhziqVCgAAvvzySxsej8dmMBjc6dOnO2qWX7t2zZDJZHKGDBnC2rZtm+Xr+UbIQOhN3Ll58yZZIBCwMAzjBAYGujx+/JgAAODp6clcuHChHZ/PZzs5OfEyMjIoAM/GuUuXLhm6u7uz2Gw2x93dnZWZmUl6nd8XQbqTnp5O9fT0ZGqLl6mpqYOcnZ25Hh4ezNTU1I4Ha1VVVYRx48a5YBjGEQgErNu3b5MBnvaACQ8Pd/L09GTa29vzN23a1BFLd+zYYcrn89ksFosTGRnpqFQqQalUQlhYmBODweBiGMbZsGGDJQBAWFiY0+7du00AdMdspH8FBARIjx07ZgwAcOjQIdOwsLBazWe9iWm61vHz83PVpA82m8358ssvbQAAli5dartt2zZzNOIGeRmnTp2ikkgk1dKlS2sAAIhEIvz0008lR44cMY+Pj7cYN26cy9ixY13t7Oz4cXFxFuvXr7dis9kcgUDAqqqqIgDorkuEhYU5zZ07l+7u7s6yt7fna2IS8vLKysr0TE1NlWQyWQ0AYGNjo3RycnrmoVNycrIphmEcBoPBXbhwoR0AwObNmy2ioqLsNeskJiaazZkzhw4AMG7cOBcul8t2dXXlbt261bzrMSsqKohDhgxhHT58mNY57uTl5el7eHgwORwOm8PhsM+dO2f0Kr878n5ob2+H0NBQpy+++MIW4GlP9GXLltm6ubmxLly4QNFVtulc/rGzs+MvX77clsPhsDEM42hGVzc0NODDw8OdeDwem81mc/bv3486PiFIJ6hBcAAdOHDAeMyYMVI3N7cWY2Pj9uvXr+scAlFVVUX47bffTPLz83MlEokwLi6uIjAwsHHcuHH1mzZtKhWLxUIul9sCAFBfX0/466+/8jZs2FDVeR8zZsyoy8nJEeXl5QmZTGZTYmLicxk+8u7KysoiCwQCrb0uRSIR+YcffigpKCjILS4uJp07d44CALBq1arqnJwcUX5+fm5TUxP+8OHDNACAzz77zGnbtm3F9+/fFw/kd0BenZaWFnznKSB27txp0tu4M3fuXOe4uLhSiUQi5HK5TdHR0baa/SqVSlx2drZo8+bNJRs3brTtelyBQND8559/ikUikTA2NrZs9erV9l3XQZA3ibZ4qVAocEuWLHFKS0sr+Ouvv/Kqq6v1NOuvXr3aViAQKCQSifCbb74pmzNnTsf0AQUFBQZXrlyR/PXXX6KtW7fatrS04P7++2+D1NRU0zt37ojFYrEQj8erf/rpJ7M//vjDsKKiQk9zPy5evLim67npitlI/5o1a1btkSNHTBQKBU4kEhl6e3s3aj7rTUzTtc7IkSPlFy9epNTW1uIJBIL61q1bFACAW7duUQICAmQD9w2Rd1F2dvZz5UBTU1OVjY1Nq1KpxEkkEvIvv/zy4K+//hL985//tDM0NFSJRCLhsGHDGpOTk80Auq9LVFVV6d25c0d88uTJ/NjYWLuB/n7vqilTpjSUl5frOzk58WbOnOlw+vRpSufPi4qK9NavX293+fJliVAozL13755RSkqK8axZs+p+++23jsau1NRU08jIyDoAgAMHDhTl5uaK7t+/L0xOTraqrKwkaNYrKSkhTpgwwTU2NrZ82rRp0s7HsrW1VV67dk0iFApFR44cebB8+XKHV/39kXdbW1sbbsqUKc4MBqM5MTGxHACgqakJz+PxmrKyssQTJkyQ97ZsY25urhQKhaJPP/30cXx8vBUAQExMjI2/v39DTk6O6Nq1a3lr1qyxb2hoQG1eCPI/7+UUEEJRNL1RLunXOZSMKJiCw95c0t06R48eNV26dGk1AEBYWFhtSkqKaXBwsFTbuqampu0kEkk1bdo0x0mTJkkjIiK0rgcAMH369Fpty+/evUtet26dnUwmIzQ2NhL8/Px07gN5dValZtIllbJ+TW+YNVWxZaqg2/TWHT6f3+ji4tIGAMDlchWFhYX6AABnzpyhbtu2zbq5uRlfX19P5HA4TTU1NXKZTEaYNGmSHADg008/rbl48SJqZOgna2+spRfUFfRr+nA1cVV8M/KbbtOHtikg2traoKe4U1NTQ+icHubNm1cTHh7eMVdceHh4HQCAj49P46pVq/S7bl9bW0uIiIhwLioqMsDhcOq2tjY0FyGi04V9Inptmbxf7w9TO4oiYDa71/FTW7ykUqnt9vb2LXw+vwUAYMaMGTU///yzBQDAn3/+Sf3ll18KAABCQkJk8+fPJ9bU1BAAAMaPH19PJpPVZDJZaWpq2lZaWkrMyMig5uTkGAoEAjYAQHNzM97S0lIZERFRX1JSQpozZw49ODhY+tFHHzV0PTdtMRsA3sm8vjZVQm+rbOzXtKBnbaQwnYr1mBa8vLyaSktLSTt37jQdN27cM9e3NzFN1zpjxoyR/fvf/7YaPHhw6/jx46WXL18eJJPJ8KWlpSSBQNCSl5f3XAxF3j6vq96hVqsBh8OpdSwHHx8fmYmJicrExERFoVDaw8PD6wEA+Hy+IisryxCg+7pESEhIPYFAAA8Pj+aamhq9rsd5F7yOMjyNRlPl5OQIMzIyqBcuXKDOmTPHZd26dR1Tdly/ft1oxIgRMltbWyUAQERERO2VK1cos2bNqqfT6S0XLlww4nK5zQ8ePDAIDAyUAwBs3rzZ6vTp08YAAJWVlXq5ubkG1tbWjUqlEjd27Fjm9u3bH2nKdZ21trbiPvvsM0ehUEjG4/Hw6NEjNGrrbXFiMR2qhf2adsGSo4ApP3Qbd3A47cV6zfJFixY5TpkypXbz5s2Vms8IBALMnTu3TvN3b8s2mgccnp6eirS0NBMAgMuXLw86e/ascWJiojUAQEtLC66goEB/6NChLzSNHYK8a9DTkAFSWVlJuHXr1qDFixc72tnZ8ZOSkqzT0tJMiESiuvOQTc0cT3p6enD//n1RWFhY/YkTJ4zHjBnD0LVvKpWqdczn/PnznZOSkoolEokwOjq6vKWlBf3e7xE+n9+UmZmpNeMnkUgdFQICgQBKpRKnUChwK1eudPz1118LJRKJcObMmU+am5vxmooC8u7rS9zRxcDAQA3wdKhpe3v7cwknOjrazs/PT5afn5976tSpgtbWVhSXkDeatngJoLuSo1Y/197S0QijbV9qtRoXHh5eIxaLhWKxWFhUVJSzbdu2cgsLi/acnByhv7+/bMeOHZbTpk1z6rxPXTG7X7408pygoKD62NhY+uzZs5956N6bmKZrndGjRyuysrIMr169ShkzZoyMx+Mptm/fbs7n8xu77gNB+orP5zfdv3//mSH7tbW1+MrKSn0CgaDW19fviEd4PL4j/8bj8R1xrru6hGZ9AO1xD3lxRCIRJk+eLPvXv/5VvmXLluITJ050TLHR3bWeOnVq3aFDh0z2799vMnHixDo8Hg/p6enUK1euUO/cuSPOy8sTstnspqamJjwAAIFAUPP5/MYzZ85o7djx7bffWllaWraJRCJhdna2sK2tDeUxSLesrKyUUqmU0HlZbW0twdzcXAkAMGzYMPm1a9cGKRSKjkKUvr6+SjPvb1/KNp3qHGpNzFKr1ZCamlqgKVNVVFRko8ZfBPk/72UP4J6emL8KKSkpJqGhoTUHDx58pFk2fPhwJgBAQUEBuampCadQKPDXr18fNHLkSLlUKsXL5XJ8RESEdMyYMXIMw/gAABQKpb23wxgUCgXewcGhraWlBXf48GFTGxubAXlpCfKsl+mp+zKCg4Nla9euxSUkJJivXLnyCQDAlStXDC9dukTRtr5CocADAFhbWyulUin+1KlTJsHBwXXm5ubtFAql/ezZs5QJEybI9+zZYzqQ3+Nd11NP3YHUm7hjZmbWPmjQoPaMjAxKUFCQfNeuXWbe3t7P9RrRpaGhgWBvb98KAJCcnIympUG61ZeeugNpyJAhzaWlpfq5ubkkLpfbcvjw4Y64OGLECNnu3bvNtmzZUpGenk41MTFRmpqa6pycNygoqCE0NNQ1Jiamys7OTllVVUWQSqUEKpWqIpFIqrlz59ZjGNby6aefOnfeTlfMfnXf+vXqTU/dV2nhwoVPaDRau6enZ1N6enrHW8h7E9N0rWNgYKC2sbFpS0tLM4mPj6+oqqoirl27lr548eJKbftB3k6vo94B8HQEwpo1a/BJSUlmS5YsqVEqlbBo0SJ6eHj4E0NDw15NGP6+1yVeRxk+MzOThMfjQTPC5N69e2R7e/tWsVhMBgAYPXp0Y3R0NL2iooJoYWGhPHbsmOmiRYuqAQBmzpxZ5+7uzsnOzm6Jj48vBXg6VSCNRmunUqmqe/fuGWRmZnY8FMDhcHD06NGiDz74wCUmJsY6Li7umdgjlUoJ9vb2rQQCAZKSksza29sH7kIgL6eHnrqvCo1GU1laWradPHmS+uGHH8qqqqoIly9fpq1atao6JSXFfMGCBU8uXrxInTx5ssvZs2cL9PSeHTzwsmUbf3//hoSEBKs9e/YU4/F4uHHjBnnkyJFN/fw1EeSthZ7iDZBjx46ZhYaGPhO8Pvzww7r/TQNRx2azuVOnTnXmcrkKgKeZdVBQEAPDMI6vry9z06ZNJQAAM2bMqE1MTLRms9mc3NzcbofhfPXVV+Wenp5sX19fjMFgoCdf7xk8Hg9paWmFFy5cGESn03murq7c2NhYW1tbW62Fd3Nz8/YZM2Y85nA43IkTJ7oKBIKOHki7du0q+uKLLxyGDBnC0ryUAnm7dZ0DeNGiRXa9jTu7d+9+GB0dbY9hGCcrK4scHx/f67fyRkdHV65fv95+6NChLFSRQN5WhoaG6u+///7R5MmTXT08PJh0Or1V89nmzZvL//77b0MMwzhff/213Z49ex52ty8PD4/mNWvWlAUEBGAYhnHGjh2LlZSU6BUVFemNGjWKyWKxOJ9++qnzxo0bSztv113MRvqfi4tL29q1a6u7Lu9NTOtuHW9vb5m5ubmSSqWqAgMD5VVVVXr+/v69fqiGILrg8Xg4ceJEwa+//mri6OjIc3Z25pFIJFViYmJZb/eB6hIDr6GhgTB79mxnzQt5xWIxefPmzR3lLEdHx7Z169aV+fn5YWw2m+vm5qaYOXNmPQCAhYVFO4PBaCorKyP5+/srAADCwsKkSqUSh2EYJyYmxrZrXkEkEiEtLe3B1atXqfHx8RadP1u2bFn1oUOHzAQCAUsikRiQyWT0plGkR3v37n0YFxdnw2KxOH5+fszo6OhyzbuLAADWr19fJRAIFKGhoc5d88SXLdvEx8eXK5VKHIvF4jAYDO6aNWvQ/OQI0gnufRmyk5mZWSQQCJ687vNAEARBEARBEARBEARBEAR5GZmZmeYCgcCpN+uiHsAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcAIgiAIgiAIgiAIgiAIgiDvKNQAjCAIgiAIgiAIgiAIgiAI8o5CDcADbN++fcY4HM7j3r17Bv2xPzs7O35FRQWxt+sfOHCAFhMTYw0A8N1331kkJSWZ9cd5IG+m4uJi4uTJkwfT6XSei4sL18/Pz3Xr1q3m/v7+rtrWj4iIcLx7964BQN/TFvJ2IRAIHiwWi6P5p4kLGzdutJTJZB15g6Ghobu27V8mfnSOQwjyJtKV7vtDSkqK8ZdffmkDALBixQrbdevWWelaNzEx0Wz27NkO/XHczvG9J+np6VQqlTqEzWZznJ2dufPnz7fvj3PoytPTk3n16lXDrss7f+/+Kqts2rTJcvDgwdyQkBDnQ4cO0ZYvX27bm+1wOJzHlClTnDV/t7W1gYmJiUBXPqqRnp5O7WmdvigqKtILCgoa3F/7Q959mnyewWBwJ06cOLhz3q6NtrjXU7p78uQJIT4+3qI/zhf5P9HR0daurq5cDMM4LBaLc/HiRSNd8fJVQHVE5EXk5eXpMxgMbudlPZVzAACuXr1qOHfuXDrA07zz3LlzRn09dnf11hs3bpBxOJzHL7/8Mqiv++1p3xqJiYlmJiYmgs51q96WuQBe7J570WuFvN9Q484AO3z4sOnQoUPlKSkppu7u7uUvsy+lUtnnbWbMmCEFACkAwOrVqx+/zPGRN5tKpYKQkBDXyMjImvT09AcAADdv3iQfP37cWNc2R44ceTRwZ4i8TiQSSSUWi4VdlycnJ1vNmzevlkqlqrrb/mXiR+c4hCBvC6VSCUTiyxebtm3bZv3bb78V9MMp9Ulf4/uwYcPkly5dKpDL5Tg+n8/5/fff68aPH9/4qs5Pl/4qq+zatcvizJkz+SwWq1WlUsHGjRvtNm7cWNlTrCOTyaq8vDyyXC7HUSgU9fHjxwdZWVm19cc59YWTk1NbRkbGg4E+LvL26pzPh4SEOCckJFisX7++qi/76Cnd1dTUEHbt2mX51VdfoTpFPzl//rzR2bNnjbOzs4VkMlldUVFBbGlpwQ3kOaA6IjKQRo8erRg9erQCAODixYtUCoXSHhgY2G/ljZSUFLOhQ4fKDx48aBoWFtbQ9XOVSgVqtRoIBMJLHSc4OLhu3759xS+yra57rq2tDfT09LRu8yquFfLuQz2AB5BUKsXfuXOHsnv37qLjx4+bAAAsW7bMVvOUyNLS0m3q1KlOAAA7duww5fP5bBaLxYmMjHTUNPYaGhq6L1u2zNbNzY114cIFCgDAxo0brfh8PpvP57NzcnJIAAAHDx6kubm5sdhsNsfHxwcrKSkhAjzbq6bzE7mEhARzHo/HZjKZnAkTJrhoegmEhYU5zZ07l+7u7s6yt7fn796922RgrxryotLT06lEIlHdOUPx8fFp8vPzkzc2NhKCgoIGOzs7c0NCQpxVqqf1X129C3SlR+TdsmnTJsvq6mo9Pz8/zMvLC9Ms//zzz+2YTCZHIBCwNLGkc/y4efMmWSAQsDAM4wQGBro8fvyYAPA0PX366ad0d3d3FoPB4F66dMkQ4Nk4pCtWIcibID09nerl5YUFBwc7M5lMLgDAuHHjXLhcLtvV1ZW7detWc826hoaG7trulc6ysrJI+vr6Khsbm+eC6KZNmyxdXFy4GIZxJk+e/FyPO133yooVK2xDQ0OdRo4cybCzs+Pv3bvXOCoqyh7DMI6vry9D03DQOb6npqYO4nA4bCaTyfH29sa6HqszCoWi5nK5TcXFxfoAAA0NDfjw8HAnHo/HZrPZnP379xsDPL2vAwICXHx9fRlOTk68lStX2gA83yNo3bp1VitWrOjofbtnzx6zrjGis86xJicnh+Tj44MxmUwOh8Nh5+bmkrquv379eisGg8FlMBjcjRs3WgIAREZGOpSWlpJCQkJcN2zYYInH48HHx0d25MgRWnffXSMgIEB67NgxYwCAQ4cOmYaFhdVqPrt06ZKhu7s7i81mc9zd3VmZmZnPnZOudTw8PJg3b94ka9YbOnQo6/bt2+TTp09TNGVDNpvNqaurw3e+jnl5efoeHh5MDofD5nA4bNQDCOnJqFGj5AUFBSQA3TFMo6KigjhkyBDW4cOHaZ3T3Z07dww0ZUEMwzjZ2dmklStX2peUlJBYLBZnwYIF9lKpFO/t7Y1xOBw2hmEd8SEvL09/8ODB3GnTpjm6urpyR44cyZDL5QPaqPm2KCsr0zM1NVWSyWQ1AICNjY3SycnpmYdOycnJphiGcRgMBnfhwoV2AACbN2+2iIqK6hitkZiYaDZnzhw6QPf1yp7KeLrqiAjSV56ensyFCxfa8fl8tpOTEy8jI4MC8H8jZvLy8vT37dtn8dNPP1mxWCxORkYGpby8nDhhwgQXHo/H5vF47N9//90IAKCyspIwcuRIBpvN5kRGRjqq1Wqtx1SpVJCenm6yb9++omvXrg1SKBQ4gP+LSTNnznTgcrmcwsJC/RkzZjjweDy2q6srt+soIW3tLb2Rnp5OHT58OPODDz4Y7OTkxFu0aJHdjz/+aMrn89kYhnE05ZjO95ynpydzyZIldsOHD2du2rTJSlv5ry/XSluZ4gV+PuQdgX78AXTgwAHjMWPGSN3c3FqMjY3br1+/brh9+/ZysVgsvHHjRp6xsbFy6dKl1X///bdBamqq6Z07d8RisViIx+PVP/30kxkAQFNTE57H4zVlZWWJJ0yYIAcAGDRoUHt2drZowYIF1Z9//jkdACAwMFB+//59sUgkEk6dOrV248aN3Q63njFjRl1OTo4oLy9PyGQymxITEzsKhFVVVXp37twRnzx5Mj82NtbuVV4jpP9kZWWRBQKBQttnIpGI/MMPP5QUFBTkFhcXk86dO0fRtZ/u0iPy9mppacF3Hqa0c+dOkzVr1lRbWlq2XblyRXL79m0JwNOY4+3tLc/LyxN6e3vLv//+++eGes6dO9c5Li6uVCKRCLlcblN0dHRHoUmhUODv3bsnTkxMfDR//nznrtv2NVYhyEDLysoy2rJlS1lhYWEuAMCBAweKcnNzRffv3xcmJydbVVZWEgB6d69cunSJ4ubmpjUuJyYmWufk5AglEolwz549z/XW7e5eefToEenixYsFqampBVFRUc5jx45tkEgkQgMDA9XRo0efaeQsLy8nLlmyxOnXX38tzMvLE544caKwu+//+PFjwsOHD0njx4+XAQDExMTY+Pv7N+Tk5IiuXbuWt2bNGvuGhga85lodO3bsQU5OTm5aWpppb4Yr9xQjOouMjHSOioqqzsvLE965c0fs4ODwTKPItWvXDF8LPYIAACAASURBVA8ePGh29+5d0Z07d0T79u2zuHHjBvngwYPFmtgWGxtbDQAwbNiwxmvXrunM+zqbNWtW7ZEjR0wUCgVOJBIZent7d/S2EQgEzX/++adYJBIJY2Njy1avXv3cdBm61pk7d+6Tn3/+2fx/147U2tqK8/LyakpISLBOTEx8JBaLhbdu3RJTKJRneinb2toqr127JhEKhaIjR448WL58eb9ME4K8m9ra2uDs2bOD+Hx+E4DuGAYAUFJSQpwwYYJrbGxs+bRp054ZqfP9999bLFq0qEosFguzsrJEzs7OrQkJCaV0Or1FLBYLk5OTSw0NDVWnT58uEAqFoitXrkhiYmLsNZ0MiouLDb744ovqgoKCXBqN1r5v3z7UqUSLKVOmNJSXl+s7OTnxZs6c6XD69Oln4lRRUZHe+vXr7S5fviwRCoW59+7dM0pJSTGeNWtW3W+//dYxyi81NdU0MjKyrqd6ZU/5Vnd1RATpK6VSicvOzhZt3ry5ZOPGjc80sjKZzNbZs2c/joqKqhKLxcKgoCD5ggUL6CtWrKjKyckRHT9+vDAqKsoJAOCrr76y9fb2lotEImFISEh9RUWFvrbjnTt3jkKn01u4XG6Ll5eX7NixYx1loqKiIoNPPvmkRiQSCTEMa922bVtZTk6OSCwW5964cYN6+/btjge02tpbujp16pRJ57qV5iGXWCwm//jjjyUikSg3NTXVTCKRGGRnZ4tmzZr1JCEhwVLbvurr6wl//fVX3oYNG6q0lf/6cq16KlMg75f3sqfVMlExXdzY3K9zKLGMDBTb2Q4l3a1z9OhR06VLl1YDAISFhdWmpKSYjho1SqFSqWDq1KnOixcvrvL19VXExcVZ5OTkGAoEAjYAQHNzM97S0lIJAEAgEGDu3Ll1nfc7Z86cWgCAefPm1a5Zs4YOAPDw4UP9KVOm2D9+/FivtbUVT6fTW7o7t7t375LXrVtnJ5PJCI2NjQQ/P7+OQl9ISEg9gUAADw+P5pqaGu1jEBDdTiymQ7Wwf+fssuQoYMoP3aa37vD5/EYXF5c2AAAul6soLCzUmmkCAGRkZFB1pUfk5ZXHfE1vyc/v1/RBYjAUtnHfdps+dE0B0ZWenp5aUwn08PBoPH/+/DPzZ9XU1BBkMhlh0qRJcgCAefPm1YSHh3f0XoyMjKwFAJg4caJcLpfjnzx58sz4qr7GKuT9cvbH7fQnJY/69f4wpzsqJixc1uv46ebm1shisVo1f2/evNnq9OnTxgAAlZWVerm5uQbW1taNPd0rAAAVFRV6FhYWWuMnk8ls+uijj5xDQkLqZ8yYUd/18+7ulXHjxklJJJLa09Ozqb29HTd16tQGAAAul9v08OHDZ+L75cuXjTw9PWWa72RlZdWu7Xzu3LlDwTCMU1RUZLB48eJKBwcH5f+2H3T27FnjxMREawCAlpYWXEFBgT4AwKhRoxqsra3bAQAmTZpUd/nyZUpERMRz36WznmKExtGjRx1GjBhh2NzcbPWf//xH63yC5eXleh9//DHu8OHDDACAadOm4c+dO+eSm5vbNnnyZL1ff/3VVU9PTw0AIJPJCGQyGQ8APaYFLy+vptLSUtLOnTtNx40b90yjWG1tLSEiIsK5qKjIAIfDqdva2p7r1ahrnblz59Zt2bLFpqWlpfSnn34yj4yMfAIAMGLECPmXX35J//jjj2unT59e5+Li8kxlrbW1FffZZ585CoVCMh6Ph0ePHvW6NxIy8F5XvUPzoBcAwMvLS7Z06dInALpjmFKpxI0dO5a5ffv2R5o8vTNvb+/GrVu32pSWlupPmzatjs/nP5dfq1Qq3LJly+xv3bpFwePxUF1drV9aWkoEALCzs2vx8fFpAgBwd3dXFBUVvfnp9jWU4Wk0mionJ0eYkZFBvXDhAnXOnDku69atK9V8fv36daMRI0bIbG1tlQAAERERtVeuXKHMmjWrnk6nt1y4cMGIy+U2P3jwwCAwMFAeHx+vs17Zm3yruzoi8uZae2MtvaCuoF/TrquJq+Kbkd/oTLs4nPZO/Z2Xh4eH1wEA+Pj4NK5atUpn/VPjxo0bg/Lz8zsaYuVyOaGurg5/69Yt6q+//loAADBt2jTpggULtJZl9u/fbzp16tTa/61Xu3//frM5c+bUAwDY2Ni0BgQEdDzQ3bt3r+mePXvMlUol7vHjx3qZmZkGXl5eTQDa21u60jUFBJ/Pb3R0dGwDAHBwcGiZOHGiFABAIBA0XblyhaptX9OnT+8YadTbupKua9VTmQJ5v7yXDcCvQ2VlJeHWrVuDJBIJecmSJdDe3o7D4XDqH3/8sXTlypW2NjY2rUuXLq0BAFCr1bjw8PCaH374oazrfvT19VVd5yDE4/+vIzcOh1MDACxZssRh6dKllTNmzJCmp6dTuz5h62r+/PnOqampBd7e3k2JiYlmnYORgYFBx5gKXcMrkDcPn89vOnHihNbeFSQSqeOHJBAIoFQqdQ7D6y49Iu8+IpGo1sQYIpHYbVrRpmthsOvffY1VCDLQDA0NOwrK6enp1CtXrlDv3LkjplKpKk9PT2ZTUxMeoHf3CplMVkmlUq1lr0uXLuWfOXOGeuLECePvvvvONj8/P6fz593dK5qYTiAQnjkPPB7/3Hmo1WqdlbTONHMAZ2VlkcaMGcMKDw+v8/HxaVKr1ZCamlogEAieqYBcv37dSNv9TiQS1ZoegABPGx+6rtPd36+KSqUCAoHQ60JNUFBQfWxsLP3333/Pq66u7vgNo6Oj7fz8/GTnzp0rzMvL0x87diyz67a61qFSqSpfX9+GgwcPGqelpZnevXtXCAAQFxdXOWXKFOnJkydpPj4+7IyMDEnndPjtt99aWVpatv3yyy8PVSoVkMlkj5e7Gsi7SNuD3u5iGIFAUPP5/MYzZ87QtDUAR0VF1fr6+jYeP36cNnHiRGzHjh1FTCbzmTiQnJxsWlNTQ8zOzhaRSCS1nZ0dX7N/fX39zmVPtWY58jwikQiTJ0+WTZ48Webm5taUkpLSMfKuu7rY1KlT6w4dOmTCYrGaJ06cWIfH47stx/cm3+qujoggnVlZWSmlUukzD3Fra2sJzs7OHXFC065AJBKhvb29xwxfrVbDnTt3RBQK5bmE37kNRBulUglnzpwxOXfunPG2bdts1Go11NfXEzVTIHTOV8VisX5SUpLV3bt3RRYWFu1hYWFOncsr2tpbeqtzvRuPx3dcAzwer/MadH4/QW/rSrqulbYyhbu7e3NfvgPy7ngvG4B7emL+KqSkpJiEhobWHDx4sGNY5/Dhw5nR0dE2ly9fHvTHH3/kaZYHBQU1hIaGusbExFTZ2dkpq6qqCFKplIBhWKu2fe/bt880Li6ucteuXSbu7u6NAE97tmiGRu7Zs6fH4foKhQLv4ODQ1tLSgjt8+LCpjY3NgL/g5J31Ej11X0ZwcLBs7dq1uISEBPOVK1c+AQC4cuWK4aVLl3o15FWjr+kR6ZueeuoONCMjo3apVIq3sbHp1fpmZmbtgwYNas/IyKAEBQXJd+3aZebt7d1RcTx06JBJcHCw7OzZsxQqldpuZmb2zBP6vsYq5P3Sl566A6G+vp5Ao9HaqVSq6t69ewaZmZl9mnuVy+U2d67Ia7S3t0NhYaF+cHCwbPz48XJbW1vTrpWo/rpX/P39G1euXOkoFov1WSxWa1VVFUFXL2AAADc3t5alS5dW/POf/7Q+derUQ39//4aEhASrPXv2FOPxeLhx4wZ55MiRTQAA169fH1RVVUUwMjJS/fbbb8Y///xzkb29vbK2tpZYWVlJoNFoqrNnz9ICAgI6XsLSU4zQ+Pjjj4u//fZbQ19f36pZs2bVNzU14ZRKJa5zJen69euGn376qdPdu3fz1Wo1eHh4sPfs2fNg5MiRTXZ2dvz169cXaOZfjo2NtaLRaL1ubV64cOETGo3W7unp2ZSent7RANLQ0ECwt7dvBQBITk7WOjS6u3WioqKehIWFuQ4fPlyu+R1yc3NJnp6eTZ6enk23b982ysnJMfD09OyYOkQqlRLs7e1bCQQCJCUlmbW36/z5kDfA66h36NJdDMPhcHD06NGiDz74wCUmJsY6Li6usvO2QqFQn81mt3C53OoHDx6Q7t+/T/b09FQ0NjZ2tIxIpVKCubl5G4lEUp86dYpaXl7eYw+/N9prKMNnZmaS8Hg8aHpY37t3j2xvb98qFovJAACjR49ujI6OpldUVBAtLCyUx44dM120aFE1AMDMmTPr3N3dOdnZ2S3x8fGlAC9fjkd1xLdTdz11XxUajaaytLRsO3nyJPXDDz+UVVVVES5fvkxbtWpVdW/3QaVS2xsaGjrKP6NGjWrYvHmz5TfffFMF8PS9Iz4+Pk0jRoyQ/fe//zX77rvvKo4ePTqo8zYaJ0+eHMRisRTXr1/P1ywLDQ11OnjwoPG4ceOeechVV1dHIJPJKlNT0/aSkhLi5cuXaX5+fjLN59raWwaKrvJfb6+VtjIFagB+f6EnrwPk2LFjZqGhoc9M3fDhhx/WXb16lVpdXa03ZMgQNovF4ixbtszWw8Ojec2aNWUBAQEYhmGcsWPHYiUlJTqnXmhpacG5ubmxduzYYZWYmFgCAPD111+XT58+3cXDw4NpZmamc7i+pqfNV199Ve7p6cn29fXFGAwGCgjvADweD2lpaYUXLlwYRKfTea6urtzY2FhbW1vbPhXc+poekbdD1zmAFy1aZAcAMGfOnCcTJ05kdH4JXE927979MDo62h7DME5WVhY5Pj6+XPOZiYlJu7u7O2vJkiWOycnJRV237W2sQpA3QVhYmFSpVOIwDOPExMTYCgSCPlUCJkyYIM/NzTXs3CMW4OmceJGRkc4YhnF4PB5nwYIFVebm5s+06vXXvWJra6tMTEws+uijj1yZTCbno48+eu6Fc12tXLny8e3bt6lisVg/Pj6+XKlU4lgsFofBYHDXrFnT8W6AYcOGySMiIpx5PB43ODi4bvTo0QoSiaReuXJlhaenJzsgIMDV1dX1mTJGTzGis/379z/84YcfLDEM4wwbNuy5F+2NGjVKERkZWTN06FC2h4cHe9asWY81jdNdXb16lTplypReD2V2cXFpW7t27XOV2Ojo6Mr169fbDx06lKWrIba7dXx9fRVGRkbtn3zyyRPNsu+++86SwWBwmUwmh0wmq6ZOnfrMeS5btqz60KFDZgKBgCWRSAzIZDIazon0Sk8xjEgkQlpa2oOrV69S4+Pjn5kPNiUlxRTDMC6LxeLk5+cbLFiwoMba2rrdw8NDzmAwuAsWLLD/xz/+UZuZmWnE4/HY+/fvN3V2dkZ1ij5qaGggzJ4921nzUlCxWEzevHlzR7nK0dGxbd26dWV+fn4Ym83murm5KWbOnFkPAGBhYdHOYDCaysrKSP7+/gqAly/Hozoi0hd79+59GBcXZ8NisTh+fn7M6Ojoci6X2+vp3cLCwupPnz5trHmx2X/+85+Sv//+2wjDMI6Liws3KSnJAgAgPj6+/MaNGxQOh8M+e/YszcbG5rkHGgcPHjQNCQmp77L/uiNHjjz3EN3b27uJx+MpGAwGd9asWU4eHh7PNBBra2/pquscwP31glZd5b/eXqueyhTI+wX3vgzpz8zMLBIIBE96XvP9MWfOHPrQoUMVmqknEARB+pOnpydz69atJaNHj9b60isEeR998skn9A8//LB+ypQpsp7XfnskJiaa3blzx0jb/HdvmpKSEuLHH388+I8//pC87nMpKirSGzNmDLOwsDCHQNA6/TGCIAiCIAiCaJWZmWkuEAicerMu6gH8nlq6dKnt33//3ePLWRAEQRAE6T8bN26s6DxkGhl4Dx480E9ISHjtw/KTkpLMRowYwV63bl0ZavxFEARBEARBXiXUAxhBEARBEARBEARBEARBEOQtgnoAIwiCIAiCIAiCIAiCIAiCIKgBGEEQBEEQBEEQBEEQBEEQ5F2FGoARBEEQBEEQBEEQBEEQBEHeUagBGEEQBEEQBEEQBEEQBEEQ5B2FGoAHEIFA8GCxWBwmk8nhcDjsc+fOGXW3fl5enj6DweAO1Pkh75bi4mLi5MmTB9PpdJ6LiwvXz8/PNSsri5Senk719/d31bZNRESE4927dw368zy0peMVK1bYrlu3zqo/j9OVp6cn8+rVq4aac3B0dOT98ssvg17V8UpKSoj+/v6uTCaTo7nenT/fsGGDJYlEGlpTU9Pxqvf09HQqlUodwmazOc7Oztz58+fbv6rz60oTjzT/8vLy9K9evWo4d+5cOgDAgQMHaDExMdYAAN99951FUlKS2UCdG4K8boaGhu6v+xyQNwMOh/OYMmWKs+bvtrY2MDExEejKRzW6y2vt7Oz4FRUVRAAAd3d3Vv+eMYI8pcnnGQwGd+LEiYNlMhmq970loqOjrV1dXbkYhnFYLBbn4sWL3dYZO5d5X6eeziMsLMxp9+7dJgNxLGTgvWidr3P9Iz09ndpTG4k2nfNVXcuvXbtmaGdnx79x4wa5cz3nZXWX3yPIm+a5mwR5dUgkkkosFgsBAH755ZdBMTEx9oGBgXmv+7yQd49KpYKQkBDXyMjImvT09AcAADdv3iSXl5frdbfdkSNHHg3MGQ6cwsJCvQkTJmBxcXElYWFhDa/qONHR0XZjx45tWLt2bTUAwO3bt8mdP09NTTXj8XiNBw4cMP7iiy9qNMuHDRsmv3TpUoFcLsfx+XzO77//Xjd+/PjGV3WeGp3jkQaTyWwdPXq0AgBgxowZUgCQAgCsXr368as+HwR50ymVSiASUbHpfUMmk1V5eXlkuVyOo1Ao6uPHjw+ysrJq66/937t3T9xf+0KQzjrn8yEhIc4JCQkW69evr3rd54V07/z580Znz541zs7OFpLJZHVFRQWxpaUF97rPC0FeldGjRys09Y+LFy9SKRRKe2BgYL/WhW7fvk2eNm2ay/79+wtHjhzZNHLkyCb4Xz0HQd4n6EnwayKVSgk0Gk35v//jvb29MQ6Hw8YwjLN//35jzXrt7e0wbdo0R1dXV+7IkSMZcrkcBwCQkJBgzuPx2EwmkzNhwgQXzVP9sLAwpxkzZjh4eXlh9vb2/NOnT1PCw8OdBg8ezA0LC3PS7HfGjBkOPB6P7erqyl2+fLmtZvmiRYvsXFxcuBiGcQayNyLSv9LT06lEIlHdueHOx8enKSgoSA4A0NjYSAgKChrs7OzMDQkJcVapVADw7NN0Q0ND988//9yOyWRyBAIBq6SkhAgAcPDgQZqbmxuLzWZzfHx8MM3yF3Xz5k2yQCBgYRjGCQwMdHn8+DFBcy4LFy604/P5bCcnJ15GRgYFAEAmk+E/+OCDwRiGcSZNmjTYzc2NpasHQFlZmd748eOxdevWlf2vQRMUCgVu6tSpThiGcdhsNufUqVNUAIDExESz8ePHu/j6+jIcHR15UVFRHen/X//6l7mTkxPP09OTOW3aNMfZs2c7dD1WZWWlHp1Ob9X87eXl1aT5f25uLkmhUOA3btxYdvToUVNt50qhUNRcLrepuLhY/8Wu5Mvr/AQ7MTHRTPM9B6LHNoK8idLT06leXl5YcHCwM5PJ5AIAjBs3zoXL5bJdXV25W7duNdes++9//9vMycmJN3z4cJ1xAnk7BQQESI8dO2YMAHDo0CHTsLCwWs1nly5dMnR3d2ex2WyOu7s7KzMzk9R1+8rKSsLIkSMZbDabExkZ6ahWqzs+0/Q2nzRp0uAjR47QNMvDwsKc9uzZY6xUKmHBggX2PB6PjWEYZ8uWLeYAAI8ePdIbNmwYU9PDU5NHIog2o0aNkhcUFJAAdMewvpb7VqxYYRsaGuo0cuRIhp2dHX/v3r3GUVFR9hiGcXx9fRmaRssvv/zShsfjsRkMBnf69OmOmjInol1ZWZmeqampkkwmqwEAbGxslE5OTm0AACdPnqSy2WwOhmGc8PBwp6ampucahpOTk00xDOMwGAzuwoUL7TTLDQ0N3RcuXGjH5XLZPj4+2KVLlww9PT2Z9vb2/AMHDtAAXqyMrI1SqYSwsDAnBoPBxTCMs2HDBsuu6+hKF7rK/3K5HDd58uSO8n9zczOut8dC3gy6fltN/SMvL09/3759Fj/99JMVi8XiZGRkUMrLy4kTJkxw4fF4bB6Px/7999+NALrPV7vKzMw0CAsLc/3vf//70N/fXwHwbD0nLCzMae7cuXR3d3eWvb09X9NLvb29HWbOnOng6urK9ff3d/Xz83PVfJaamjrI2dmZ6+HhwUxNTe1ou6mqqiKMGzfOBcMwjkAgYGk6BPU2XiLIq4YagAdQS0sLnsVicZydnblLly51jI2NrQAAMDQ0VJ0+fbpAKBSKrly5IomJibHXZILFxcUGX3zxRXVBQUEujUZr37dvnwkAwIwZM+pycnJEeXl5QiaT2ZSYmNhRgJNKpcQ//vhDEh8fXxIREcFYtWpVVX5+fq5YLCbfvHmTDACwbdu2spycHJFYLM69ceMG9fbt2+SqqirCb7/9ZpKfn58rkUiEcXFxFa/hMiH9ICsriywQCBS6PheJROQffvihpKCgILe4uJh07ty55yqOTU1NeG9vb3leXp7Q29tb/v3331sAAAQGBsrv378vFolEwqlTp9Zu3Lixx+EzJSUlpM7TDezbt89C89ncuXOd4+LiSiUSiZDL5TZFR0d3PJBQKpW47Oxs0ebNm0s2btxoCwCwZcsWC2Nj43aJRCJcv359uVAo1DlMKCoqynnevHnVn376aZ1m2ebNmy0BACQSifDgwYMP5s+f76RQKHAAAEKh0PDEiRMPRCJRblpamklBQYFeUVGR3tatW21u374tunbtmiQ/P1/rFBmLFy+u/vzzz528vLyw6Oho66Kioo7e1nv37jUNDQ2tDQoKkj98+NCgrKzsuUbzx48fEx4+fEgaP368rKfr2R808YjFYnECAwNdBuKYCPI2ysrKMtqyZUtZYWFhLgDAgQMHinJzc0X3798XJicnW1VWVhIePXqkFx8fb3vz5k3xtWvXJBKJhNzTfpG3x6xZs2qPHDliolAocCKRyNDb27ujZ5JAIGj+888/xSKRSBgbG1u2evXq5xpGvvrqK1tvb2+5SCQShoSE1FdUVDz3oC8iIqL2yJEjJgAAzc3NuBs3bgyaOnWqdPv27eY0Gq09JydHlJmZKdq7d6+FWCzW/+9//2saEBAgFYvFQpFIlOvl5aUzz0feb21tbXD27NlBfD6/CUB7DAN4sXLfo0ePSBcvXixITU0tiIqKch47dmyDRCIRGhgYqI4ePUoDAFi1alV1Tk6OKD8/P7epqQl/+PBhmrbzRJ6aMmVKQ3l5ub6TkxNv5syZDqdPn6YAPG2cXbBggfORI0cKJRKJUKlUwpYtWyw6b1tUVKS3fv16u8uXL0uEQmHuvXv3jFJSUowBnv6+/v7+stzcXJGRkVH7mjVr7K5duyY5duxYwTfffGMH0Pcysq7v8McffxhWVFToaeqUixcvrum6TnfpQlv5f+vWrZZkMlklkUiE69atq9CU/3tzLOTNoe231WAyma2zZ89+HBUVVSUWi4VBQUHyBQsW0FesWFGVk5MjOn78eGFUVJQTQO/yVY2IiAjXhISE4gkTJsh1rVNVVaV3584d8cmTJ/NjY2PtAAD27dtnUlJSop+Xl5e7d+/eonv37nXci0uWLHFKS0sr+Ouvv/Kqq6s77oXVq1fbCgQChUQiEX7zzTdlc+bM6ZhCqjfxEkFetfdyLOOq1Ey6pFLWr3MGYdZUxZapgpLu1uk8FOv8+fNGn3zyibNEIslVqVS4ZcuW2d+6dYuCx+Ohurpav7T0/7N352FNHWvAwN8sEBIIkbCTsITlJDkJmygIYqkLCp9CVbTghktV1Ou+4fVetbf22lqr9aFulLqh1n3Hqq1aoeqnLS5sSYhQERQEZAmEBMj2/eE9fCmyKu7ze54+lZOzTJLJzDtzZuY8ogIAcDicppCQEDUAgL+/v6qoqIgGAHD79m366tWrOfX19ZSGhgZKWFhYyxSG4cOH15LJZOjdu7fK2tpaExgYqAYAwDBMXVhYSAsJCVHv3buXvWfPHhutVkuqrKw0ycrKMuvdu7eaRqPp4+LiXIcPH66IjY1F0yJ6wKrrq5wLagp6NL95Wnmq1vZf22F+64i3t3eDh4eHBgBAJBKpCgsLn6s0TUxMDHFxcQoAgICAgIZLly5ZAgA8ePDAdOTIkdzKykqT5uZmsrOzc1Nn13N2dm4yXm5g8eLFTgAAVVVVlPr6esrw4cOVAAAzZsyoGjt2rDux39ixY2sAAEJCQhqWLVtmCgBw48YNiwULFlQAAPTt27cRw7B2G739+/evO3TokPU//vGPKiaTqSeOnzdvXgUAgL+/f6OTk1NzTk6OGQBAaGhonbW1tQ4AwNPTs7GwsJBWUVFBDQoKqre3t9cBAIwaNapGLpc/1wkcExNTFxoamnPy5EnWhQsXWAEBAXhOTk6ek5OT9uTJk+wTJ04UUCgUiIyMrElNTbX65z//WQkA4Gjws1wZm+yvblSTp4b9p/nWgXKPW/ByMzTZHAvV4Hhhl8sjBHlbVR+TO2ueNPRo+WniYK5ij8G6XH76+Pg0CASCltH969evtz937lwvgGcj//Py8sxKS0tN+vXrV+/k5KQFABg9enR1W+UE8uIk0kTnBqW8R/OCuQWmwoXrO80LQUFB6kePHtFSUlLYQ4YM+VtsVF1dTYmNjeUVFRWZkUgkg0ajeW4Uz82bN5knTpwoAACIi4tTJCQk6FrvM2bMGMXy5ctd1Go16fjx46zAwMB6CwsLw6VLlyxlMhnjzJkzVgAA9fX1FIlEYtavX7+GhIQEN41GQx4zZkwNESsib5831e4gbvQCAAQFBdUvWLDgKUDbZZiDg0PDi8R9Q4YMUdBoNENgYKBap9ORxowZUwcAIBKJ1A8ePDAFADh//jxz06ZNDo2NjeTa2loqT9ev9AAAIABJREFUjuPvzNTrNxHDs1gsfW5uruTChQvMy5cvMydPnuyxevXqR3379lVxudwmHx+fJgCAKVOmVG3dutUOACqIY69du2ZuXBfFxsZWp6enW0yaNKnWxMTEYPz90Gg0PfHdPX78uCXG7k6M7Onp2eZyOAKBoKmkpIQ2efJk56ioKMWoUaOeW4Kto3zRVvx/7do1i/nz51cAPCuTifi/K9f6EJWu/Jdz0/37PZp3aV5eKqd1/20375JIbQ9iNd7e1nfbkevXr1vev3+/5aa6Uqmk1NTUkLtSrxL69+9ft3PnTpuYmBhFe0t5RUdH11IoFAgICGisqqoyAQD4/fffLUaPHl1DoVDAxcVF269fv3oAgHv37plxudwmb2/vJgCACRMmVP3444+2AAB//PEH8/jx4wX/O2f9zJkzqcTzX7pSXiLIq4ZGAL8hQ4YMaaipqaGWlZVRk5OT2VVVVdScnBypTCaTWFtba9RqNRkAwNTUtGU+A4VCMWi1WhIAwMyZM3lbtmwplsvlksTExNKmpqaW79LMzMzwv/3/djyZTAatVkuSyWSmW7ZssU9PT5fL5XLJoEGDFI2NjWQTExO4d++eNCYmpvbUqVO9Pv74Y6/X94kgPcnb21udlZXVbqVPo9GM8xUQ+coYlUo1kMlk4t8t+8ydO9dlzpw5FXK5XLJly5aHxnmvpxF5mUqlgk6nIwEAdDTFp7UVK1Y86d27d0NUVJS7RvMsRu3o+Na/N41GQ+rO9ezt7XWzZs2qPnXq1AMfH5+GX375xeLWrVv0hw8f0iIiIjAOh+N95swZ9rFjx9j//xgHjb9fb5W/b++GJ0/KTJQNSlQuI8hbhMFgtMxXTktLY6anpzMzMzNl+fn5EqFQqCbq6/YaPsj7ISIionbNmjXO8fHx1cbbExMTOWFhYfX379/PO3v2bEFzc3ObZThRn7aHwWAY+vXrV3/ixAnLw4cPW8XFxVUDABgMBtLGjRuLZTKZRCaTSR4/fpwzevTousjISGVGRkY+h8NpnjJlCg89qBNpjbjRK5PJJHv37i0xMzMzdFSGvUjcR8STFArlb8cTbQ6VSkVasmSJ64kTJwrlcrlk4sSJTxsbG1Gc0wkqlQojRoyo/+6770o3bNhQfOrUKauuxKMd7dP6+zH+7roSY7cVI7e3r62trS43N1cycODA+m3bttnFxcW5Gb/eWb5oK/4HaLue7exayOtjb2+vVSgUFONt1dXVFBsbGy3xd3vfbXsMBgNkZmZKibKsoqIi28rKSg/Qeb1KSElJKQYAiI+Pd21vHyJdxDWN/9+W9mK+to4hkUgGgM7Ly07fCIL0gA9yBHBnd8xfh7t375rp9fqWgtLGxkZDo9EMZ8+eZZaWlnZ6B0ilUpFdXFw0TU1NpEOHDrEdHR27/ECSmpoaCp1O17PZbF1JSQn16tWrrLCwsHqFQkFWKpXk2NhYxccff6zEMMz75d4lAgDwMiN1X1RUVFT9qlWrSBs3brRZsmTJUwCA9PR0hlL58p2L9fX1FBcXFw0AwJ49e1oanL/99hsjKSnJ7uTJk0VdPZe1tbXO0tJSd+HCBYuIiAjlzp07rYODg9udngMAEBISojx06JBVVFRU/e3bt806m2r9448/lnzyySe82NhYt2PHjhWFhoYq9+/fz46Ojq7Pzs6mlZWVmfr4+DTeunWrzQ7zAQMGNPzzn/90rqyspPTq1Ut3+vRpK6FQ+NxIqzNnzjAHDhzYwGQy9TU1NeSHDx/SeDxec2pqKnvJkiWlX3311RNiXw6H4y2Xy00BAO5VXFB/98/EAgCA//znN7sTmZvMz549+6Arnx+CvO+6M1L3daitraWwWCwdk8nU37171ywrK8scAOCjjz5qSExMdH7y5AnFyspKf/LkSSuRSIRGZPagrozUfZVmz579lMVi6QIDA9VpaWlMYntdXR2Fy+U2AwAkJyfbtHVsv3796nft2mX9zTfflB05csSyrq6O0tZ+cXFx1Tt37rTJyckxP3r0aBEAQHh4uGL79u22I0aMqKfRaIbs7Gyam5ub5smTJ1Qej9e8ZMmSpw0NDeQ7d+4wAABNfX4LvQ3tDkJ7ZVhH2ov7ukKlUpEBABwcHLQKhYJ89uxZq6ioqJrOjntbvIkYPisri0Ymk4EYXXj37l06l8tt9vPza3z8+LFpbm4uTSwWN6WmploPGDDgb8uGEXVRWVkZ1dbWVnv06FH2nDlzKtq+0vO6GyO3p6ysjEqj0fRTpkypxTCsadq0aTzj118kXxBpi4qKqv/zzz/N5PJnM0I6u9aHqqORuq8Ki8XS29nZaU6fPs385JNP6svLyylXr15lLVu2rMt5kMlk6ozryNDQ0Lr169fbrV27thzg2bNjQkJC1F2tVwGedbCePn36r7CwMGzhwoVOmzdvLu1KWgYMGKDct2+f9dy5c6tKS0upt27dYo4bN67az8+v8dGjR6Z5eXk0kUjUdOjQoZaBPf369avfvXu39YYNG8rS0tKYVlZWWjabjRY+R94aH2QH8JtiPBXLYDDA9u3bi6hUKkyfPr06MjLSUywWC0UikYrH4zV2dq4VK1aUBgYGCjkcTrNQKFQplcp2C73WgoOD1WKxWOXl5SVycXFpCggIUAI8CwpHjBjhSSxC/uWXX741ASvSPWQyGc6cOVM4Z84c582bNzvQaDQDl8tt+v7770sePnz4UlNM/vWvf5WOGzfOw97evrlPnz4NxcXFNACAoqIiGvHAiu7YvXv3g9mzZ7vOnz+f7OLi0nTw4MGijvZftmxZ5aeffuqGYRguFotVfD5fbWVl1e60HzKZDEePHi0aPHiw5+zZs7nffffd40mTJrliGIZTKBRITk4u6ijdPB5Ps2jRorK+ffsK7ezsNBiGqVks1nPX+/PPPxmLFi1yoVAoBoPBQJo0adLTsLAw1fjx4z3S0tLuG+8bGRlZs3fvXrbxOpIAAEuWLKl0d3d3kMlkpsZTzt8U4o41giDPxMTEKH744QdbDMNwDw+PRl9f3wYAAFdXV01iYmJpv379hLa2thofHx9VV0a2IO8ODw8PzapVq55rxCYmJj6ZPn06LykpyWHAgAFtTj3++uuvS2NiYtxxHBcGBwcrHR0d2yzfR40aVTdr1izekCFDaonRSIsWLXpaVFRE8/b2FhoMBhKbzdb8/PPPhRcvXmQmJSU5UKlUA4PB0B04cADdOEQ61V4Z1pH24r6usLGx0U2YMKESx3ERl8tt7sr1PnR1dXWU+fPnu9TV1VEoFIrBzc2tae/evQ8ZDIZhx44dRWPHjvXQ6XTg6+urWrp0aaXxsa6urprVq1c/DgsLwwwGA2nw4MGKiRMn1nb12suXL6/oTozcnqKiIpPPPvvMTa/XkwAAvvjii0fGr79Ivli6dGlFXFwcD8MwXCQSqby9vRu6ci3k9dq7d++DOXPmuCQmJjoDACQmJpaKRKJOlwskxMTE1I4ZM8bj/PnzvTZv3lz8ww8/lEyfPt0FwzBcp9ORgoKC6kNCQoq7Wq8S6HS64fz58wX9+/fnf/XVVxpzc/NOO2UnT55cc+nSJSaGYSIej9fo6+vb0KtXLx2DwTB8//33D0eMGOHJZrO1QUFBSqlUSgcAWL9+fen48ePdMAzD6XS6fs+ePahuRt4q3Zre/C7Lysoq8vX1ffqm04Eg76uEhATutGnTqoKCgl7pqDetVgvNzc0kBoNhyMvLow0dOhQrLCzMNZ6609MUCgWZxWLpNRoNDBs2zHPKlClP4+PjuxxQv4vWrFljX1dXR/nuu++6dJccQZD/LykpyTozM9M8NTW1+E2nBUEQBEEQBOk+og345MkTSt++fYXXr1+Xubi4aDs/EkFen6ysLBtfX1+3ruyLRgAjCNIjkpOTX8sd9/r6evKAAQP4xPq833333cNX2fkLALBs2TKnjIwMy6amJlJYWFhdd0ZTvIu++eYb24MHD1ofP3688E2nBUEQBEEQBEEQ5HULDw/3qquro2g0GtKyZcvKUOcv8q5DI4ARBEEQBEEQBEEQBEEQBEHeId0ZAYyewoogCIIgCIIgCIIgCIIgCPKeQh3ACIIgCIIgCIIgCIIgCIIg7ynUAYwgCIIgCIIgCIIgCIIgCPKeQh3ACIIgCIIgCIIgCIIgCIIg7ynUAfwaUSiUAIFAgPP5fBzHceGvv/5q3tPXSEtLYw4cONCzO8cEBgbyMzIyGN29VkxMjNvu3butunsc8noUFxdTR4wY4e7s7Cz28PAQhYWFeWZnZ9M6yiOxsbGut2/fNuvJdOTn55uSSKSABQsWOBHbysrKqFQqtXd8fLxLT16rKy5fvmzu4+MjEAgEuLu7u2jx4sVOxq8PHjzYw8/PT2C8bfHixU52dnY+AoEA9/DwECUnJ7Nfb6p7HlEeEf/l5+ebZmRkMKZMmeLc2bEMBsO/J9KQn59v6uXlJeqJcyFIT3qRPM7hcLzLysqob+r6yKtBIpECRo4cySP+1mg0YGVl5dtZrGVc1x44cIC1cuVKh1edVgQxRtTzXl5eosjISPf6+nrU7ntHJCYmOnh6eoowDMMFAgF+5cqVF2ozpqWlMY3bm91pu6WmpvYikUgBd+/e/Vu7ICEhgevp6SlKSEjgtj4GlXUftrbi+sWLFzutXr3avqPjjNsfrfNsV7UXg3E4HG8Mw3AMw/C+ffvy5XK5aXfP3ZmkpCTr9tq0RDxXVFRkEhER4f6y17p7966ZQCDAhUIhnpeXRyO2E21bR0dHbysrK1/j9t3LXvNFjRkzxi0rK4vW+Z7I69QjDRWka2g0ml4mk0kAAI4fP265cuVKbnh4eP6bThfy/tHr9RAdHe05fvz4qrS0tL8AAG7cuEEvLS016ei4w4cPP3wV6eFyuU2//PJLLwAoBQBITU218vT0bHwV1+rMZ599xjt48GBhcHCwWqvVQlZWVktg+/TpU0peXp45g8HQyWQyU4FA0Ey8NmvWrPIvvviiPCcnhxYcHIxPmTKlhkajGd7Ee+gJxuURgc/nN3/00UeqN5UmBHmbabVaoFJR2PShodPp+vz8fLpSqSRZWFgYTp48aWlvb6/pzjkmTJigAADFK0oigrTJuJ6Pjo7mbdy40fbzzz8v78qxqLx7cy5dumR+8eLFXjk5ORI6nW4oKyujNjU1kV7kXFeuXGFaWFjowsPDG7p77KFDh9i9e/dW7tu3j+3v719KbD9w4IBtZWXlPTqd/rcYWKPRoLIOeSEfffSRimh/vEyebU96errc0dFRu2jRIqfVq1c7Hjp06JW0dzvi5uamuXDhwl8ve56jR4/2ioyMrP3uu+9KjbdnZ2fLAJ51RmdmZpqnpqYWv+y1XtaxY8eK3nQakOehO8FviEKhoLBYLO3//k0ODg7GcBwXYhiG79+/vxfAs7to7u7uori4OFdPT09R//79vZRKJQkAID09nYFhGO7n5ydISEjgtjWK7rfffmP4+/sLhEIh7u/vLyDuwCiVStKIESPcMQzDhw8f7t7Y2NgSVJw4ccLSz89PgOO4MDIy0l2hUJABAObMmcPx8PAQYRiGz5w5s+WOb3p6uoW/v7+Ay+V6o9HAb4+0tDQmlUo1LF++vJLYFhISoo6IiFACADQ0NFAiIiLceTyeKDo6mqfX6wHg76PBGQyG/7x58zh8Ph/39fUVlJSUUAEAfvrpJ5aPj49AKBTiISEhGLG9I2ZmZgZPT081ce7jx4+zR44cWU283t45FQoFecyYMW7Ends9e/b0AgCYMGGCi1gsFnp6eooWLVrUMoL39OnTTKFQiGMYho8dO9ZNrVY/FzBXV1dTXVxcNAAAVCoVAgICWjqi9+3bZzVkyJDaUaNGVe/du7fNUb7e3t5NZmZm+qdPn1I6e9/vGuMRa4sXL3YaO3asW2BgIJ/L5Xp/+eWXdq33f5Gy6/fff2fw+Xzcz89PsGnTpufOiSBvk7S0NGZQUBAWFRXF4/P5IgCAbdu2sb29vYUCgQAfP368q1arfe64IUOGeIhEIqGnp6fo22+/tSG2t1euymQyUz8/P4FYLBYaz5ZA3g6DBw9WHD16tBcAwMGDB9kxMTEt9Vd7sZaxjkYHIcjrEBoaqiwoKKABdFw+LVy40MnHx0dw+fJli6VLlzqKxWKhl5eXaNy4ca5ErNheG6R1Ph84cKBnWloaE6DtuO306dPM8PBwD2L/kydPWg4dOrTl7w/V48ePTdhstpboYHV0dNS6ublpANqPc41HP2ZkZDACAwP5+fn5pqmpqbY7duywFwgE+IULFywAutZ2UygU5MzMTIvdu3cXnTx5smWfQYMGearVarK/v78wJSXFKiYmxm369OncoKAgbM6cOVzjPFBSUkINDw/34PP5OJ/Px4lRne3lP+T9FxgYyJ89ezbH29tb6ObmJibyJNH+aCvPlpaWUocNG+YhFouFYrFY+Msvv5gDADx58oTSv39/L6FQiI8fP97VYOh8TE7//v2VZWVlLYOh2ovnGAyG/4wZM7g4jguDg4Ox0tJSKpF+oi1bVlZG5XA43sS5Hj9+bDJgwAAvNzc38ZIlSxxbX9t4dLRWq4WZM2dyifbtf//73+faQzdu3KD7+voKMAzDw8PDPSorKymHDx9m/fDDD/YHDhywCQoKwrr6uY8bN86VKH+XLl3akjZ7e3ufxYsXOxFlSnZ2Ng0AIDQ01IsYQWxhYeG/fft2dl5eHi0gIIAvFApxkUgkJGYlnDp1ihkcHIwNHTrUw83NTTxq1Cg34vwBAQH8Gzdu0DtKA/L6oQ7g16ipqYksEAhwHo8nWrBggeuaNWvKAAAYDIb+3LlzBRKJRJqeni5fuXIllwiyiouLzebPn19RUFCQx2KxdKmpqVYAANOnT+dt3br14b1792QUCqXNEs/X17fxjz/+kEmlUsmaNWseL1++nAsA8O2339rR6XS9XC6XrF69ukwikZgDPCvI1q1b55iRkSGXSCTS3r17q9auXWtfXl5O+fnnn63u37+fJ5fLJevWrSsjrlFeXm6SmZkpO3369P01a9ZwXvFHiHRRdnY23dfXt92RnFKplL5169aSgoKCvOLiYtqvv/5q0XoftVpNDg4OVubn50uCg4OV33//vS0AQHh4uPLevXsyqVQqGTNmTPUXX3zRpalecXFx1fv372cXFhaaUCgUg5OTU8sIqvbOuWLFCkdLS0udXC6XyOVyyfDhw+sBADZt2vQ4NzdXKpPJ8q5fv868desWXaVSkRISEniHDx8ulMvlEq1WCxs2bLBtnY6ZM2eWC4VCcXh4uMeGDRtsVCpVSyfx0aNH2RMnTqyePHly9fHjx9vsAL527RrD1dW1kcPhPN/r8w4hyiOBQIAbN8CMFRQUmKWnp8v//PNP6bfffuvUegTKi5Rdn332mdumTZuK7927J3vlbxJBekB2drb5hg0bHhcWFubduXPH7NixY+zMzEyZTCaTkMlkw44dO6xbH3PgwIGivLw86b179yTJycn2T548oQC0X67OmTPHZfr06ZW5ublSBweHbo0uRV69SZMmVR8+fNhKpVKRpFIpIzg4uGVkUnuxFoK8LTQaDVy8eNHS29tbDdBx+SQWi9XZ2dmyYcOGKZctW1aRm5srvX//fp5arSYfOnSIBdC1NkhrbcVtUVFR9QUFBWZE58quXbusp0yZ8vRVfQ7vipEjR9aVlpaaurm5iSdOnOhy7tw5CwCArsa5BD6f3xwfH185a9ascplMJiEGgXSl7XbgwIFeH3/8scLHx6epV69eumvXrjEAAK5cuVJAjCyfMWNGDQBAYWGh2fXr1+UpKSmPjM8xa9YslwEDBtTn5+dL8vLyJL17927837nbzH/Ih0Gr1ZJycnKk69evL/niiy/+dsO7rTybkJDgvHjx4vLc3FzpyZMnC2fNmuUGALBixQqn4OBgpVQqlURHR9eWlZV1utTBzz//zIqKiqoFAOgonlOr1eTevXurJBKJtH///vUrVqzo9MZ8dna2+dGjR//Kzc3NO3PmDLuj5TU3btxo+/DhQ1peXp5ELpdLpk+fXtV6nylTpvDWrVv3SC6XS0QikToxMdEpNjZWQXw+t27dkneWJsLmzZsf5ebmSqVSad5vv/1mabzco729vUYqlUri4+Offv311/YAANeuXbsvk8kk27dvL+JwOE2xsbG1Li4umt9//10ulUol+/fvf7Bw4cKWJQPz8vIYKSkpxQUFBbn379+nX758+bklPDpKA/J6fZhze079wxkqJN1e87ZDdrgKRm4t6WgX46lYly5dMp86dSpPLpfn6fV60sKFC7k3b960IJPJUFFRYfro0SMqAACHw2kKCQlRAwD4+/urioqKaE+fPqU0NDSQiakRkydPrv711197tb5edXU1JTY2lldUVGRGIpEMGo2GBABw7do1i/nz51cAAAQFBakxDFMBAFy9etW8sLDQLDAwUAAAoNFoSAEBAUo2m62j0Wj6uLg41+HDhytiY2NbpvZER0fXUigUCAgIaKyqqupweYEPVenKfzk33b/fo/mN5uWlclr33w7zW0e8vb0bPDw8NAAAIpFIVVhY+FylaWJiYoiLi1MAAAQEBDRcunTJEgDgwYMHpiNHjuRWVlaaNDc3k52dnZu6cs2YmJi6L774gmNvb68xHj3V0TkzMjIsDx061DJdxtbWVgcAsHfvXvaePXtstFotqbKy0iQrK8tMr9cDl8tt8vHxaQIAmDJlStXWrVvtAKDC+Frffvtt2dSpU6vT0tIsjxw5Yn306FHrP/74I7+kpIT68OFD2tChQ5VkMhmoVKrhzz//NOvbt28jAMCOHTvsU1NTbR89emR6/Pjx+13+sDtxcftm56clD3s0f9g4u6qGzV7Y5fKoPUOHDq2l0+kGOp2uZbPZmkePHlGJfAMA0N2yq6qqilJfX08ZPny4EgBg2rRpVVeuXGG9/DtG3lenTp1yrqio6NHfh52dnWrkyJFdLj99fHwaiOVgLly4wMzNzWX4+voKAQAaGxvJdnZ2z90MWr9+vf25c+d6AQA8efLEJC8vz8zBwaGhvXL1zp07FufPny8EAEhISKhau3Yt6kRsZaG02FnW0NijeUFgbqbaLHTpNC8EBQWpHz16REtJSWEPGTLkb9Ob24u1EKTFG2p3EDd6AQCCgoLqFyxY8BSg/fKJQqHAlClTaojjz58/z9y0aZNDY2Mjuba2lorjuPrp06fKrrRBWmsrbgsKClJ/+umnVSkpKex//OMfVXfu3LE4ceLEg5f5WHram4jhWSyWPjc3V3LhwgXm5cuXmZMnT/ZYvXr1o759+6q6Eud2pitttyNHjrAXLFhQAQAQExNTvW/fPnZoaGibA0tGjx5d09ZyITdu3GAeO3bsAcCzGXfW1tY6gPbzX3feA9K5y6lS5+rHyh7Nu2yOhWpwvLDdvEsitV39GW8fO3ZsDQBASEhIw7JlyzrttL1+/brl/fv36cTfSqWSUlNTQ7558ybzxIkTBQAAcXFxioSEBF175wgLC8OePn1qYm1trf3uu+8eA3Qcz5HJZJg+fXo1wLO2yujRozt9vlJoaGidg4ODDgBg+PDhNVevXrVob1m9K1euWM6aNavSxOTZz8/e3v5vaW/dXpoxY0bV2LFjX3j94F27drH37dvXUv5mZ2fTiRmw48ePrwEACAwMbLh48WJLm+zx48fUzz77jHf06NFCNputr6yspHz22WeuUqmUQaFQDCUlJS2znfz8/BpcXV01AABisVhVWFhoOnjw4IaupgF5vT7MDuC3wJAhQxpqamqoZWVl1OPHj7OqqqqoOTk5UhqNZuBwON5qtZoMAGBqatpyZ51CoRjUajW5K1McAAASExM5YWFh9b/++mthfn6+6aBBg/jEa20V0AaDAUJDQ+vOnj37XPB179496ZkzZywPHTpktX37drubN2/KAZ5N7Tc+Hnk7eHt7q0+dOtXukhzGa9dSKBTQarXPZQgqlWogk8nEv1v2mTt3rsuCBQueTJgwQZGWlsZsffe2PWZmZgYfHx/V9u3bHXJzc3OPHDnS0mBo75wGg+G5vCqTyUy3bNlif/v2bamtra0uJibGrbGxscu/CwAAkUjUJBKJKhcvXlxpbW3t9+TJE8revXvZdXV1FGdnZ2+AZwHGvn372H379i0F+P9rAO/du7fXjBkzeOHh4TkMBuO9zvSd5ZPk5GR2d8uu9oJDBHlbMRgMPfFvg8FAGjt2bNXWrVsft7d/WloaMz09nZmZmSljMpn6wMBAPvG7aK9cBQAgk8nvdXnyrouIiKhds2aN8y+//JJfUVHREj93FGshyJvU1o3ejsonU1NTPdGRp1KpSEuWLHG9deuWxNPTU7N48WKnzmItKpVqIGYBATzrgAZoP24DAJg9e3bV8OHDPc3MzAxRUVE1RIfIh45KpcKIESPqR4wYUe/j46Pet2+fdZ8+fdqd2UehUFo+e+L7bE9nbbcnT55Qbt68aSmXy+lz584FnU5HIpFIhu3btz8i6i9jFhYW+uc2tqOj/Ie8++zt7bUKheJvI7qrq6spPB6vZbAQkf+oVCrodLpOGwUGgwEyMzOlFhYWz2XWtvJjW9LT0+VMJlMXGxvLW7JkidOPP/74qCvxHIFou1CpVINO96yv1ngGqfE+7f1t7H/todcS8+Xk5NCSk5PtMzMzpTY2NrpPPvmEZ7xEIrHUDIVCafk+NBoNjB492n3VqlWlRCft2rVr7blcbvOpU6ceNDc3k5hMZsvDik1NTVvKADKZbGjdXuwsDcjr9WF2AHdyx/x1uHv3rpler28pKG1sbDQ0Gs1w9uxZZmlpaYd3w2xtbXXm5ub6y5cvmw8ePLhh3759bU5Vr6uro3C53GYAgOTk5JY1lkJDQ5X79+9nR0VF1f/5559mcrmcAQDw8ccfNyxZssQlNzeXJhaLm+rr68kPHjwwcXV11SiVSnJsbKzi448/VmJevJXHAAAgAElEQVQY5t3W9ZC2vcxI3RcVFRVVv2rVKtLGjRttlixZ8hTg2ZptSqXypYOs+vp6CrGG7p49e1qmPv/222+MpKQku5MnTxa1d2xiYuKTjz76qJ64Q9rZOT/++OO6TZs22e3atasEAKCyspJSU1NDodPpejabrSspKaFevXqVFRYWVu/n59f4+PFjUyL/pqamWg8YMKC+dRoOHTrE+vTTTxVkMhlycnLMKBSKwcbGRnfs2DH2yZMn7w8ZMqQB4FmDZejQoVhSUtLfFtmfPHlybWpqqvXWrVutly1b9tJTFTsbqfs2627ZZWNjo7OwsNBdvHjRYtiwYco9e/a0WXYhCKE7I3Vfh4iIiLrRo0d7rly5spzD4WjLy8spCoWCgmFYywMja2trKSwWS8dkMvV37941y8rK6vRp1r1791ampKSw58yZU52SkvLckhIIQFdG6r5Ks2fPfspisXSBgYFqYl1TgPZjLQRp8Ra0OwhdLZ9UKhUZAMDBwUGrUCjIZ8+etYqKiqrpqA3i4eHRnJKSwtDpdPDgwQOT7OxscwCA9uI2gGcPRrK3t9ds3LjR8fz5812e0vy6vIkYPisri0Ymk8Hb27sJAODu3bt0Lpfb3FGcy+Vym69fv8749NNP644cOdIyAITJZOrq6uq6tcTCvn37rEaPHl31008/tTwoq2/fvvxffvnFglhGoiv69+9fv2HDBtvVq1dXaLVaqKurI79I/Yi8mI5G6r4qLBZLb2dnpzl9+jTzk08+qS8vL6dcvXqVtWzZsi6PUm+dZ0NDQ+vWr19vt3bt2nKAZ2vjhoSEqPv161e/a9cu62+++absyJEjlp3lcwsLC8O2bdtK/Pz88P/+979lHcVzer0edu/ebTVz5syaPXv2WAcGBtYDADg7Ozf98ccf5gMHDlQdOHDgbwOtrl27ZlleXk4xNzfX//zzz71+/PHHovbSMmTIkLodO3bYDh8+vN7ExATKy8spxqOAra2tdZaWlroLFy5YREREKHfu3GkdHBzc5d+esdraWoq5ubnOyspK9/DhQ5OMjAzLYcOGdfigxlmzZjn7+/urpk6d2jIjRKFQUDw9PZvIZDJs3brVujsDr14kDcirg+64vUbGa27GxcW5b9++vYhKpcL06dOrs7KyzMVisXD//v1sHo/X6XD45OTkotmzZ7v6+fkJDAYDMJnM56Y9JCYmPvn888+5vXv3FhB3qwAAli5dWtHQ0EDBMAxft26dg7e3dwMAgJOTkzY5ObkoLi7OHcMwPCAgQJCTk2NWW1tLiYiI8MIwDB8wYAD/yy+/fGsCWaRtZDIZzpw5U3j58mVLZ2dnsaenp2jNmjVORCfry/jXv/5VOm7cOI+AgAC+tbV1y9TnoqIiWusnArfWp0+fxnnz5j23zlF75/zqq6/KamtrKV5eXiI+n4///PPPzODgYLVYLFZ5eXmJJk2a5BYQEKAEAGAwGIYdO3YUjR071gPDMJxMJsPSpUsrW19r//791u7u7mKBQIDHx8fzfvzxxweFhYWmpaWlpoMGDWqZriIQCJotLCx0xCL3xj7//POyrVu3Ohj/rj5EL1J27dy5s2j+/Pkufn5+gs7yC4K8bQICAhr//e9/Px48eDCGYRg+aNAgrKSk5G9D1mJiYhRarZaEYRi+cuVKJ19f306ntm7btq34hx9+sBOLxcLWo2eQt4OHh4dm1apVzzVi24u1EORt1NXyycbGRjdhwoRKHMdFkZGRnsb7tdcGCQ8PVzo7Ozfx+XzRggULnHEcVwEAtBe3EeLi4qocHR2b0XTgZ+rq6ijx8fE84uHbMpmMvn79+tKO4tzVq1eXLl++3CUgIIBvvC5zTExM7blz53oZPwSuM0ePHrUePXp0jfG2Tz75pKa9AUft2b59e3F6ejoTwzBcLBbjd+7cob9I/Yi8W/bu3ftg3bp1jgKBAA8LC+MnJiaWikSiLi0XCPB8nv3hhx9K7ty5Y45hGO7h4SHasmWLLQDA119/XXr9+nULHMeFFy9eZDk6OjZ3dm5XV1dNdHR09bfffmvXUTxHp9P1eXl5dJFIJMzIyGB+9dVXZQAAK1asKN+5c6etv7+/4OnTp38bSNmnTx9lbGwsTywWi6KiomraW/4BAGDRokWVXC63WSAQiPh8Pr5z587nflu7d+9+kJiYyP3fw9noX3/9dWlb5+pM//79VV5eXo0YhommTJni2rr8bU2r1cKuXbvsrly5Ykn0Wx0+fJi1ePHiin379tn4+voKHj58aGo807On04C8WqQPZdp+VlZWka+v73vzYAGFQkFmsVh6AICVK1c6lJWVmezevRt1zCJvTEJCAnfatGlVQUFB6jedFgRBEARBEKTn9XQbJD4+3sXf31+1aNGi96adhiDIu4vBYPirVKq7bzodCNJVWVlZNr6+vm5d2ffDXALiPXDkyBHWxo0bHXU6HYnD4TT99NNPRW86TciHLTk5+VHneyEIgiAIgiDvqp5sg4hEIiGdTtcnJyejQSwIgiAI8oqhEcAIgiAIgiAIgiAIgiAIgiDvkO6MAEZrACMIgiAIgiAIgiAIgiAIgrynUAcwgiAIgiAIgiAIgiAIgiDIewp1ACMIgiAIgiAIgiAIgiAIgrynUAcwgiAIgiAIgiAIgiAIgiDIewp1AL9GFAolQCAQ4Hw+H8dxXPjrr7+ad/ccDAbD/2XS8LLHI++O4uJi6ogRI9ydnZ3FHh4eorCwMM/s7GxaWloac+DAgZ5tHRMbG+t6+/Zts9ed1o4cOHCAtXLlSoeO9snPzzf18vIS9cT1Ovp83idEeUT8l5+fb/qm04Qgb4tXXVcuXrzYafXq1fav8hpIzyCRSAEjR47kEX9rNBqwsrLy7ayeMK5L0tLSmC8S8yHIyyDqeS8vL1FkZKR7fX09ave9IxITEx08PT1FGIbhAoEAv3LlSrfLj67EzwjSk9pqj3Ul3snIyGBMmTLFGeDF60sOh+NdVlZGbb198+bN1hiG4RiG4V5eXqL9+/f3AgBISkqyLioqMunsvF3d72VERUXxMAzD//Of/9i19Tqfz8ejoqJ4bb3WU97GPgDk1XjuR4K8OjQaTS+TySQAAMePH7dcuXIlNzw8PL8rx+r1ejAYDK82gch7Q6/XQ3R0tOf48eOr0tLS/gIAuHHjBr20tLTDCuzw4cMPX08Ku27ChAkKAFC86XS8b4zLo7ZoNBowMXml8Q6CvBe0Wi1QqSicel/R6XR9fn4+XalUkiwsLAwnT560tLe313TnHFeuXGFaWFjowsPDG15VOhGkNeN6Pjo6mrdx40bbzz//vLwrx6Jy7c25dOmS+cWLF3vl5ORI6HS6oaysjNrU1ETq7nlQ/Iy8Kz766CPVRx99pALo2fqysLDQZOPGjY737t2TWltb6xQKBZnoJN6/f7+Nn5+f2s3NrcP6vKv7vaji4mLq7du3LUpLS3Paev3OnTtmBoMBbt26xayrqyNbWlrqezoNWq32rewDQF4NdCf4DVEoFBQWi6X937/JwcHBGI7jQgzDcOLOVH5+vqm7u7to4sSJLiKRCC8sLDQFAJgxYwYXx3FhcHAwVlpaSgUA2Lhxo41YLBby+Xx82LBhHsRdfplMZurn5ycQi8XCBQsWOBHX1+v1kJCQwPXy8hJhGIanpKRYAQA8fPjQpE+fPnxixMCFCxcsXvdng7y8tLQ0JpVKNSxfvryS2BYSEqKOiIhQAgA0NDRQIiIi3Hk8nig6Opqn1z+rSwIDA/kZGRkMgGcj4ObNm8fh8/m4r6+voKSkhAoA8NNPP7F8fHwEQqEQDwkJwYjtHaWlb9++/P/zf/6Pu5ubm3jOnDmc7du3s729vYUYhuF5eXm0js6blJRkHR8f7wIAEBMT4zZlyhRnf39/AZfL9d69e7dV6+vl5+ebBgQE8HEcFxqPtE9LS2MGBgby23rfx44ds+TxeKKAgAD+sWPHer3s5/+uSkpKso6MjHQfNGiQ54ABA7DOyqa4uDhXT09PUf/+/b2USiUJACA3N5cWEhKCETMdiO931apV9mKxWIhhGL5o0SKnjtKBIG+L9upEBoPhv3DhQicfHx/B5cuXLZYuXeooFouFXl5eonHjxrkSZUteXh5twIABXiKRSBgQEMC/e/cuGl3xDho8eLDi6NGjvQAADh48yI6JiakmXvvtt98Y/v7+AqFQiPv7+wuysrJoxsfm5+ebpqam2u7YscNeIBDgFy5csOhuPYogLys0NFRZUFBAAwDYtm0b29vbWygQCPDx48e7arVaAHi+XDMeUZeRkcEIDAzkv8G38MF4/PixCZvN1tLpdAMAgKOjo9bNzU3D4XC8Z8+ezfH29hZ6e3sLc3NzezR+RpBXLTAwkE/kYTc3NzERUxEzZtqqL0tLS6nDhg3zEIvFQrFYLPzll1/MAQCePHlC6d+/v5dQKMTHjx/v2tZAubKyMhNzc3M9i8XSAQCwWCy9QCBo3r17t1Vubi4jPj7eXSAQ4EqlktRWHNfWfr///jujb9++fJFIJAwNDfV6+PChCQDAl19+aefh4SHCMAwfMWKEe+u0qFQq0pgxY9wwDMOFQiF+9uxZJgDAkCFDsOrqahPi/bY+bu/evexPP/206qOPPqo7ePBgSxs1MDCQ/9lnnzn36dOH7+7uLkpPT2cMHTrUw9XVVTx//vyWdlZXy3vjPoBjx45Z4jgu5PP5eHBwMAbQeayDvDtQB/Br1NTURBYIBDiPxxMtWLDAdc2aNWUAAAwGQ3/u3LkCiUQiTU9Pl69cuZJLNB6LiorMpk6dWiWVSiUYhjWr1Wpy7969VRKJRNq/f//6FStWOAEATJgwoSY3N1ean58v4fP56qSkJBsAgDlz5rhMnz69Mjc3V+rg4NBy5yo1NbVXTk4OXSqV5l2+fFm+evVq7sOHD0127drFHjx4sEImk0mkUmleUFCQ6g18VMhLys7Opvv6+rb73UmlUvrWrVtLCgoK8oqLi2m//vrrcxWOWq0mBwcHK/Pz8yXBwcHK77//3hYAIDw8XHnv3j2ZVCqVjBkzpvqLL77odHqZTCajb9++vUQqleYdO3bMWi6Xm+Xk5EgnTZr0dOPGjXbdOW95eblJZmam7PTp0/fXrFnDaf26k5OT9vfff5dLJBLp4cOH/1q0aJFLR+9bpVKR5s6d63bmzJmCP//8M7+iouKDGPZKlEcCgQAPDw/3ILbfuXPH4uDBgw9u3rwp76hsKi4uNps/f35FQUFBHovF0qWmploBAIwfP543a9asivz8fElmZqbMxcVFc+LECcuCggKz7OxsqVQqldy7d49x/vx5dHMJeeu1Vyeq1WqyWCxWZ2dny4YNG6ZctmxZRW5urvT+/ft5arWafOjQIRYAwPTp0123bdtWnJeXJ92wYcOj2bNnu3R8ReRtNGnSpOrDhw9bqVQqklQqZQQHB7eMTPL19W38448/ZFKpVLJmzZrHy5cv5xofy+fzm+Pj4ytnzZpVLpPJJBEREcoXqUcR5EVpNBq4ePGipbe3t/rOnTtmx44dY2dmZspkMpmETCYbduzYYQ3wfLn2ptP9oRo5cmRdaWmpqZubm3jixIku586da4mXLC0tdTk5OdKEhISKefPmOQP0XPyMIK+DVqsl5eTkSNevX1/yxRdf/G1ASFv1ZUJCgvPixYvLc3NzpSdPniycNWuWGwDAihUrnIKDg5VSqVQSHR1dW1ZW9txSdv369VPZ2NhonJ2dvceMGeP2008/sQAApk6dWiMWi1Wpqal/yWQyiYWFhaGtOK71fiYmJjB//nyX06dPF+bl5UknT578dOnSpRwAgKSkJIfc3FyJXC6X7Nmz57nRtOvXr7cDAJDL5ZKffvrpr5kzZ7qpVCrS2bNnC5ydnZuI99v6uNOnT7Pj4+Nrxo8fX3348GG28Wumpqb6zMzM/KlTp1aOHTvWMyUlpVgmk+UdPnzY5smTJ5QXKe9LS0upc+fOdTtx4kRhfn6+5NSpU4UAncc6yLvjgxxxsOr6KueCmgJGT57T08pTtbb/2pKO9jGeinXp0iXzqVOn8uRyeZ5eryctXLiQe/PmTQsymQwVFRWmjx49ogIAODo6Ng8ePLiloUEmk2H69OnVAADTpk2rGj16tCcAwO3bt+mrV6/m1NfXUxoaGihhYWEKgGedOefPny8EAEhISKhau3YtFwDg999/Z3766afVVCoVnJ2dtUFBQcpr164x+vXr15CQkOCm0WjIY8aMqQkJCVH35Of0IbqcKnWufqzs0fzG5lioBscLO8xvHfH29m7w8PDQAACIRCIVMbrcmImJiSEuLk4BABAQENBw6dIlSwCABw8emI4cOZJbWVlp0tzcTHZ2dm7qyvVcXV01AAAuLi5NkZGRCgAAX19fdXp6OrM7542Ojq6lUCgQEBDQWFVV9VxnbXNzM+mzzz5zlUgkdDKZDA8fPmy5Q9nW+2YymToul9vk7e3dBAAwYcKEqh9//NG2s/fUU6qPyZ01Txp6NH+YOJir2GOwLpdHxgYMGFBnb2+vAwDoqGzicDhNRPng7++vKioqotXU1JDLy8tN4+PjawEAGAyGAQAMFy5csMzIyLDEcRwHAFCpVGSZTGYWGRmJGphIhyTSROcGpbxHfx/mFpgKF67vUvnZXp1IoVBgypQpNcR+58+fZ27atMmhsbGRXFtbS8VxXK1QKOrv3r1rMXbs2JYbLM3Nzd2exos8s+xYlrP8SX2P5gXMganaMMa307wQFBSkfvToES0lJYU9ZMiQv02prq6upsTGxvKKiorMSCSSQaPRdPodv0g9iry73lS7g7jRCwAQFBRUv2DBgqebNm2yyc3NZfj6+goBABobG8l2dnZagOfLNeTNxPAsFkufm5sruXDhAvPy5cvMyZMne6xevfoRAMDkyZOrAQBmzJhR/e9//9sZoOfiZ+T9cnH7ZuenJQ97NO/aOLuqhs1e2G7eJZHarv6Mt48dO7YGACAkJKRh2bJlnT5/5Pr165b379+nE38rlUpKTU0N+ebNm8wTJ04UAADExcUpEhISdK2PpVKpkJGRcT89PZ3xyy+/WK5YscI5MzPTfNOmTaWt920rjoNWS6hkZ2fT7t+/Tx80aBAG8GxGta2trQYAgM/nq0eNGsWLjo6unTBhQm3r89+4ccNi3rx5FQAA/v7+jU5OTs05OTlmvXr1ei7dhPT0dAabzdZiGNbs7u7ePHv2bLfKykqKra2tDgBg1KhRtQDP2tOenp5qoq3t7Ozc9Ndff5levXrVorvl/dWrV80DAwPrBQJBMwAA0SZ8kVgHeTuhEcBvyJAhQxpqamqoZWVl1OTkZHZVVRU1JydHKpPJJNbW1hq1Wk0GeDY6uKPzEAXqzJkzeVu2bCmWy+WSxMTE0qamppbvlkwmPzcnor31hCMjI5UZGRn5HA6necqUKbwtW7ZYv8z7RN4Mb29vdVZWVruVPo1Ga8kAFAoFtFrtc4U4lUo1kMlk4t8t+8ydO9dlzpw5FXK5XLJly5aHxnmtK9cjk8lgZmZmIP6t0+m6dV7iWIC28/F///tfezs7O41UKpXk5ORINBpNy3nae9/tBSwfIuMyp6OyydTU1PizNGi1WlJ75YrBYICFCxeWyWQyiUwmkxQXF+cuWrTo6St/MwjyktqrE01NTfXE+pgqlYq0ZMkS1xMnThTK5XLJxIkTnzY2NpJ1Oh0wmUwtke9lMpnkr7/+ynujbwh5YREREbVr1qxxjo+PrzbenpiYyAkLC6u/f/9+3tmzZwuam5s7rRNfpB5FkO4ibvTKZDLJ3r17S8zMzAwGg4E0duzYKmJ7UVFRLtEZYlyuATyr24lZP0Tdj7weVCoVRowYUf/dd9+VbtiwofjUqVNWAM/iZgKJRDIA9Fz8jCAvy97eXqtQKCjG26qrqyk2NjZa4m8iH1Kp1JY2YEcMBgNkZmZKiTKroqIi28rKSg/w999De8hkMgwcOFD11VdfPdm/f/9faWlpzy31114c10ZaSJ6enmoiLXK5XHL9+vX7AAC//fbb/X/84x+Vt2/fNvf19cU1Gk3rYztNa2v79u1j//XXX2YcDsfb1dXVu6GhgbJv376W5VuM29Ot29r/a5d1ubw3Tmdb7eIXiXWQt9MHOQK4szvmr8Pdu3fN9Hp9S0FpY2OjodFohrNnzzJLS0vbvRtGrEczc+bMmj179lgHBgbWAzwbUefi4qJpamoiHTp0iO3o6KgBAOjdu7cyJSWFPWfOnOqUlJSWztywsLD6lJQU27lz51ZVVFRQ//jjD4ukpKQSuVxuyuPxmpcsWfK0oaGBfOfOHQYAVL3yD+Q99jIjdV9UVFRU/apVq0gbN260WbJkyVOAZ3cRlUrlSxfW9fX1FBcXFw0AwJ49e1ry1G+//cZISkqyO3nyZFFPnre7FAoFhcvlNlMoFNiyZYu1TtfujVUAAPDz82t89OiRaV5eHk0kEjUdOnSI3eEBPayzkbpvUnfKJgAANputd3BwaN63b1+vSZMm1arVapJWqyVFRkbWff75504zZ86sZrFY+gcPHpiYmpoaOByOtqPzIUhXR+q+Kl2pE1UqFRkAwMHBQatQKMhnz561ioqKqmGz2Xoul9u8a9cuq2nTptXo9Xq4desWPTg4GM2seQFdGan7Ks2ePfspi8XSBQYGqtPS0pjE9rq6OgqXy20GAEhOTrZp61gmk6mrq6traRT3VH2HvBvehnYHISIiom706NGeK1euLOdwONry8nKKQqGgYBjW3HpfLpfbfP36dcann35ad+TIkQ9yzdg3EcNnZWXRyGQyEDPT7t69S+dyuc35+fn01NRU9rp1657s3LnTyt/fvwEAlSdI2zoaqfuqsFgsvZ2dneb06dPMTz75pL68vJxy9epV1rJlyyq6eo7W9WVoaGjd+vXr7dauXVsO8Oyh5iEhIep+/frV79q1y/qbb74pO3LkiKXxMYSioiKTR48emYSGhqoAADIzMxkcDqcZAMDCwkJHdFa3F8e13s/Hx6exurqaeunSJfMhQ4Y0NDU1kXJycmj+/v6NhYWFplFRUfVDhw5VOjk5sf/XhmpphIaGhir379/Pjo6Ors/OzqaVlZWZ+vj4NBYXF7c5Gl+n00FaWhr77t27eTweTwMAcPbsWea6descFy9e3KVBNN0p7wkDBw5sWLJkiatMJjMVCATN5eXlFHt7e11XYh3k3YB67l8j4zU34+Li3Ldv315EpVJh+vTp1VlZWeZisVi4f/9+No/Ha2zvHHQ6XZ+Xl0cXiUTCjIwM5ldffVUGALBixYrSwMBA4YABAzAvL6+W47dt21b8ww8/2InFYqHxHblJkybVikQitVAoFH388cfYf/7zn0cuLi7aixcvMnEcFwmFQvz06dNWy5cv79LTgpG3C5lMhjNnzhRevnzZ0tnZWezp6Slas2aNExEgvox//etfpePGjfMICAjgW1tbt3TgFRUV0YgHVvTkebtr4cKFFQcPHrT29fUVyOVyMzqd3uEoegaDYfj+++8fjhgxwjMgIIDv7OzcbqX4oelO2UTYv3//g61bt9phGIb36dNHUFJSQh09enTd2LFjq/v27SvAMAwfNWqUR21t7XOBGoK8bbpSJ9rY2OgmTJhQieO4KDIy0tPX17dl2aaDBw/+tXv3bhs+n497eXmJjh8//sE+ZPJd5+HhoVm1atVzjdjExMQnn3/+Obd3796C9m44xsTE1J47d64X8ZCXnqrvEKS7AgICGv/9738/Hjx4MIZhGD5o0CCspKSkzQ6I1atXly5fvtwlICCAT6FQ0JDR16Suro4SHx/PIx4oJZPJ6OvXry8FAGhqaiL5+PgItm3bZp+UlFQC0HPxM4L0hL179z5Yt26do0AgwMPCwviJiYmlIpGoy8scta4vf/jhh5I7d+6YYxiGe3h4iLZs2WILAPD111+XXr9+3QLHceHFixdZjo6Oz7XfmpubSUuXLuXyeDyRQCDAjx07ZrVly5YSAID4+Pin8+bNcxUIBLiZmZm+vTjOeD+tVguHDh0qXLFiBZfP5+MikQhPT0+30Gq1pPHjx/MwDMPFYjGekJBQbtz5CwCwfPnyCp1OR8IwDI+NjfVITk4u6qjdfP78eaa9vX0z0fkLABAZGVlfUFBgRjx4rjPdKe8JTk5O2qSkpKJRo0Z58vl8fNSoUe4AXYt1kHdDu1N23zdZWVlFvr6+aMoxgrwiCQkJ3GnTplUFBQWh0W0IgiAIgiAI0kM4HI53Zmam1NHREXXyIgiCIC2ysrJsfH193bqy7we5BASCID0vOTn50ZtOA4IgCIIgCIIgCIIgCPJ3qAMYQRAEQRAEQRAEQd5Sjx8/znnTaUAQBEHebWgNYARBEARBEARBEARBEARBkPcU6gBGEARBEARBEARBEARBEAR5T6EOYARBEARBEARBEARBEARBkPcU6gBGEARBEARBEARBEARBEAR5T6EO4NeIQqEECAQCnM/n4ziOC3/99Vfzzo5hMBj+ryNtyPunuLiYOmLECHdnZ2exh4eHKCwszDM7O5uWlpbGHDhwoGdbx8TGxrrevn3brKfS8Mcff9AFAgEuEAhwFovlx+FwvAUCAR4SEoK1d4xWq4WAgAB+T6WhI5s2bbKxsrLyFQgEuLu7u2jz5s3WPXHe1NTUXqtWrbLviXN1h1KpJPXr1w8TCAT47t27rTralyiPiP/y8/NNX1W6OspzxmJiYtyIPILjuPDSpUsdlpExMTFunb3PnlBUVGQSERHh/qqvg7w9iLo3Pz/fdMeOHezO9s/Pzzf18vISvfqUIa8biUQKGDlyJI/4W6PRgJWVlW9XyrSuMq57V6xY4fAy5/rmm29st2zZ0iN1GfJuI+p5Ly8vUWRkpHt9fT25o7Jq4cKFTqdOnWICAAQGBvIzMjIYAABhYWGeT58+pbxIGlB+fDGJiYkOnp6eIgzDcIFAgF+5cqXNeIMv6LsAACAASURBVMj4OzPWU/GRcT5AkK5oq4xZvHix0+rVq197uwhBkOdR33QCPiQ0Gk0vk8kkAADHjx+3XLlyJTc8PDy/p86v1+vBYDAAhfJCMRryHtHr9RAdHe05fvz4qrS0tL8AAG7cuEEvLS016ei4w4cPP+zJdAQGBqqJPB8TE+M2YsQIxdSpU2s6OoZKpcLt27d77HfRmVGjRlXv2rWrpLi4mOrr6yuKjY1VODo6aonXNRoNmJh0+LE9Jz4+vrbHE9oF169fNyeRSEB85h0xLo/a8iLvuyd8+eWXj6ZOnVpz4sQJyzlz5rjK5fJO38ur5ubmprlw4cJfbzodyOt3//592uHDh9mzZs2qftNpQd4MOp2uz8/PpyuVSpKFhYXh5MmTlvb29pqeOr9Wq/1b3ZuUlOT49ddfP3nR8y1fvryyZ1KGvOuM6/no6Gjexo0bbceNG9duDLZ58+bStranp6cXvGgaUH7svkuXLplfvHixV05OjoROpxvKysqoTU1NpNb7abXadr8zBHnbval2BoJ86NAI4DdEoVBQWCxWSyfTqlWr7MVisRDDMHzRokVObexPDg4OxnAcF2IYhu/fv78XwLO7bO7u7qKJEye6iEQivLCw0NR41PDu3butYmJi3AAAdu3aZeXl5SXi8/l4nz59XssIS+TNSEtLY1KpVINx4B0SEqKOiIhQAgA0NDRQIiIi3Hk8nig6Opqn1+sB4O93+hkMhv+8efM4fD4f9/X1FZSUlFABAH766SeWj4+PQCgU4iEhIRixvbuqq6vJ/fr1a8nTBw8eZAE8CwiYTKYfAMC4ceNcDx8+zAIAGDRokOe4ceNcAQA2bNhgs3jxYidiu0gkEnp6eoo2bdpkY3yOOXPmcPh8Pu7n5yd4/Phxh+l0cXHRcjic5sLCQtP58+c7jR8/3jUkJMRr7NixPKVSSRo9erQbhmE4juPC8+fPWwAAiMViYVZWFo04R0BAAP///t//S9+0aZPNtGnTnAEAPvnkE97UqVOd/f39BVwu1zs1NbUXsf+KFSscMAzD+Xw+Pm/ePA4AQE5ODi00NNRLJBIJ+/Tpw8/Ozqa1TmtZWRl10KBBnhiG4f7+/oI///zTrKioyGTGjBluubm5jBcd0ZuUlGQdGRnpPmjQIM8BAwZgAG2XTUS5ExcX5+rp6Snq37+/l1KpJAEA5Obm0kJCQjBipkNeXh4NoP08156IiIj6kpISGsCzmxe+vr4CDMPw8PBwj8rKyr/d5Tp9+jQzPDzcg/j75MmTlkOHDvUAaD8fl5aWUocNG+YhFouFYrFY+Mv/Y+/Ow5o61seBv1kgJBAiYZcACSQnGyEiGAS3qli1AuWKO+LSWrdad8Wf1n0rRbx+qdZLbV2warVqEbAFd7RatSqyZUEsIAqIAgIhAUKS3x/ew0UEREVRnM/z+DwmOWfOCZnMvDPnPZNTp8wBAE6ePGmBZ0ULhUJRRUXFMxlTKpXK1Nvbmy8SiYTtvZMDeX+tWLHC6caNGxYCgUC0du1au/Z8/t7e3vwrV65Q8cc9e/YUXLt2jdp8O+T9MXjw4Mpff/21GwDAoUOHmKGhoY0XBM6fP0/z8vISCIVCkZeXlwDvE2JiYqwnTZrkgm83cOBAblJSEh3gabs0f/787p6enoKzZ89a4H3v7Nmznerq6ogCgUAUHBzMAQAICAhwx/u4LVu22ODltda2Nc20io6OtvHw8BDy+XzR0KFD3aurq1Hc/4Hq27evOjc3lwIAoNfroaX+u7WsUScnJ0lxcTFZpVKZcjgcMR4PDRs2zA2vU05OTpJZs2Y5SSQSoUQiEWZlZVEAnq2PMpmMj2/DZrM9kpOTLQCeTmTOmDGDhccaUVFRNgAABQUFJj4+Pnw8ixnfvqt78OCBCZPJbKBSqUYAAEdHxwY2m60DePp3Xrx4saO3tzd/9+7dVi+T6fuisWRLdQKn1+th5MiR7Llz53YHAAgLC3Px8PAQcrlccUvjVgRpiUwm48+ZM8epV69e/A0bNtg3r7/4HIZer4eJEye6cLlc8cCBA7kDBgzg4tvh7REAwMWLF2kymYwP0HpfjGIyBHkWCgTfIjyo53A44nnz5rmuXr26GADg+PHjlrm5uWYZGRkKhUIhv337Ng2fYMLRaDTDyZMnc+VyuSI1NTVn+fLlLHwCJT8/32zq1KllCoVCjmFYfWvH/+abbxxPnTqVo1Kp5MnJya98NR9592VkZFClUqmmtdcVCgV1x44dhbm5udn37t2jnD59+rmgWqvVEv38/NQqlUru5+en/u6772wBAIYMGaK+ffu2UqFQyEeNGlW+bt26V7pd1dzc3PjHH3/kyuVyxfnz53OWLVvm3Hybfv36VV+8eNHCYDDAo0ePTBQKBRUA4PLly/QBAwZUAwAcOnQoLzs7W5GWlqbYsWOHPT45qFarSR999FG1SqWS+/j4qHfs2GHTvPymsrKyKA8ePDAVCAR1AACZmZm0M2fO5MbHx+dt3rzZ3tTU1JiTkyOPi4vL+/zzzzm1tbWEf/3rX+U///wzEwDg7t27JhUVFWQ/Pz9t87IfP35MvnnzpvLYsWO5q1evdgJ4OpF++vRpxq1btxQqlUr+9ddflwAATJs2zTU2NvZedna2YtOmTfdnzZrl0ry8xYsXd+/Vq5c6JydHvnLlyqKpU6dy2Gy2LiYmpsDX17daqVTK+Xx+q20BwP/aI4FAIGo6eXrr1i2LQ4cO5V29ejWnrbbp3r17ZnPnzi3Nzc3NZjAY+ri4OCsAgAkTJnBmzpxZqlKp5Ddu3FC6uLjoANpX55r65ZdfuvF4PC0AwJQpUzibNm26n5OTIxeLxdqIiIhnBhtBQUHVubm5ZkVFRWQAgN27d1tPmTLlMUDr9XjGjBnOCxcufJiVlaX47bff7s6cOZMNABAdHe0QExNToFQq5VevXlVaWFg8M1PdvXv3hkuXLuXI5XLF4cOH/1mwYMFznw/SdWzcuPGBj4+PWqlUylevXl3ans9/ypQpj3/88UcbAICMjAxKfX09wdfX97l2AXl/hIeHlx8+fNhKo9EQFAoFzc/PrwZ/TSqV1l6/fl2pUCjkq1evfrB06VLWi8rTarVEDw8PbUZGhnLo0KFq/Pnvv//+AZ61mZCQkAcAcODAgfzs7GzF7du35bGxsfYlJSUkvIyW2ramwsLCKrKyshQqlUrO5/O1MTExbfaDSNek0+kgJSXFUiKRaAFa77/bIz8/32zmzJmPcnJy5HQ63RAVFdVY7ywtLfWZmZmKGTNmlH711VfPxXQAAA0NDYTMzExFZGRk4bp167oDAGzbts2GwWDos7KyFOnp6Yp9+/bZKpVK0927dzMHDx5cqVQq5QqFItvX17fVuLYrCQkJqSoqKjJls9keEydOdDl58uQz8ZKZmZnh5s2bqunTp7d5R11zbY0l26oTOp2OEBISwuHxeLUxMTFFAABbt259kJWVpVAqldmXL1+mowk1pL2ePHlC+vvvv1Vr16592No2cXFxVoWFhaYqlSp73759+WlpaS+8+NNaX4xiMgR51ge5BETR8hXOdXfudOh6RhQeT9N908bCNrdpcivWmTNnzKdOncrJycnJTk5Otrx48aKlSCQSAQBoNBqiUqk0Gz58eOOgwGAwEObPn8+6evWqBZFIhNLSUtP79++TAQAcHR3rBw8eXNPyUf/Hx8dHHRYWxg4NDa0ICwt7qaABeXUpO7c5Py4s6ND6ZuPsqhk6a36b9a0tEomkxt3dXQcAIBaLNXfv3n0uW9TExMQ4bty4SgAAb2/vmjNnzlgCAOTl5ZmGhISwHj16ZFJfX090dnaue5VzMBqN8NVXX7GuX79uQSQSoaSkxLS4uJhsY2PTmBkfEBCg/vHHH+3+/vtvqkgk0pSWlpo8ePCAnJaWZh4XF1cAALBp0yb75OTkbgAADx8+NFUoFBQ/Pz+NmZmZYcyYMVX/PX/NpUuXWgwefvvtN+Zff/1FNzExMXz33XcFNjY2egCATz75pIJGoxkBAP766y+LJUuWlAAA+Pj41NrZ2emys7Mp4eHhFYGBgdyoqKjiuLg45qefftri9yo4OPgJkUgEX19fbWlpqSkAwOnTpy0nTZr0+MyZM6zS0lIawNMsGLFYbLFjxw4Rvq+npyf88MMPz2TsMxgMGovF0v7www8MAAA/Pz/qf/7zH35VVRVJIpGYxMfHO4eEhLS7PWqqX79+Vfb29noAgNbaJjc3t3onJ6c6f39/LQCAl5eXJj8/n1JRUUF8+PChKb4Exn//fkaA9tU5AICvv/6aFRkZ6chkMnU//fRTfllZGam6upo0YsQINQDAF198UTZ69Ohn1uMlEokwZsyYsl27djG//PLLslu3blkcP348D6D1enz58mXLO3fuNA5Y1Go1qaKigti7d2/14sWLnceMGVM+fvz4Cnd392cmgOvr6wmff/65q1wupxKJRCgoKHguQxvpOPMV95yVNbUd2n4KzM0024Qur9R+tufznzJlSkVUVJRjXV3d/f/85z82EyZMePz6Z41A/JfOUCrv2LUo7UQaCNnxwrrg6+urvX//PmXXrl3MgICAyqavlZeXk8aOHcvJz883IxAIRp1O99yt2s2RSCSYMmVKu+KwyMhI+5MnT3YDACgpKTHJzs42c3BwqGmtbWvq5s2b1FWrVjlVV1eTampqSAMGDKhsvg3y5nXWuAO/0AsA4OvrWz1v3rzHBQUFJi313+09roODQ/3HH39cAwAQHh5eFhMTYwcADwEAJk+eXA4A8MUXX5R//fXXLU4Ajx49ugIAwN/fv2bJkiWmAABnzpyxVCqVtISEBCsAgOrqapJcLjfr3bt3zYwZM9g6nY44atSoCvyc36bOiOEZDIYhKytLnpycTD979ix98uTJ7qtWrbo/d+7cMgCASZMmvdIYrq2xZFt1Yvbs2a4hISHlkZGRjUvT7Nu3j7l3716bhoYGwqNHj0zS09PN0KTau6X8aI6zrqSmQ+uuiYO5hjkKa7PdIRBa7gLx58ePH//CJbUuXbpkMXLkyAoSiQQuLi4NvXv3rn7RPq31xSgmQ5BnfZATwO+CgICAmoqKCnJxcTHZaDTC/Pnzi5csWdJqgxQbG8ssKysjZ2ZmKigUitHJyUmi1WqJAE+v6DbdtmnDq9VqGx8cPHjw3rlz58wTEhIYPXr0EN++fTvbwcFB/wbeHtLJJBKJNj4+vtWMDgqFYsT/TyKRoKGh4bnemkwmG4lEIv7/xm3mzJnjMm/evJKwsLDKpKQkOp7B8bK+//5766qqKlJ2drbcxMQE7O3tPTUazTPngWFYfVlZGfnkyZOW/fr1UxcVFZns2bOH2a1btwZLS0tDfHw8/cqVK/SbN28qLCwsjN7e3nz8e0Emk5u+R6Ner28xIsHXAG7+vLm5eeP3ymg0Nn+58fzMzc0NN2/eNDt+/Dhz7969eS1tZ2Zm1lgAXpbRaGwxSCKTycYePXq0meXS2vl0hKbtSWttk0qlMjU1NX3m76vVaoltnVd76hzA/9YAxh+XlZW1a1HzWbNmlY0YMYJrZmZmDAoKqsDXFWutHhuNRrhx44bCwsLimZPetGlTSUhISOWJEycY/v7+wuTk5Jymf5ONGzfa29nZ6Y4dO5ZnMBiASqV6t+f8kK6hPZ8/nU439OvXr+rgwYPdEhISmDdv3uz0dayR1zds2LAnq1evdj516pSqtLS0MX6OiIhwGjBgQPXp06fvqlQq00GDBvEBnrY9TZe6qaura7zrztTU1EAmvzgET0pKoqemptJv3LihpNPpBplM9kwf11Lb1tT06dM5R48ezfXz89PGxMRYp6amPvdjUUjX1dqF3pb67/aW2TxuafoYr4//fb7FgACPh8hkMuBxmdFoJERHR98LDQ2tar79xYsXVceOHWNMmTKFM3fu3Idz5swpa++5vs/IZDIEBgZWBwYGVnt6emr3799vjU8A0+n0ttfQakVbY8m26oSPj4/60qVLlhqN5iGNRjMqlUrT7du329+8eVNha2urDw0NZdfW1qK7ihEAALC3t2+orKx8JnYvLy8ncTicOoBn6y+ZTDbq9U+nIgwGA+CTtm2NJ0gkUmPf2rSettYXo5gMQZ71QU4Av+iK+duQlpZmZjAYwN7evmH48OFVa9as6T59+vRyBoNhyMvLMzE1NTU6OTk1ZkJWVlaSbGxsdBQKxZiYmEgvKipqdX1Pa2tr3a1bt8ykUmntiRMnrCwsLPQAANnZ2ZRBgwbVDBo0qCYlJaXbP//8Y+rg4ICu1r5hr5Op+6qCgoKqV65cSYiOjrZZtGjRYwCA1NRUmlqtfu0Arbq6moTf1r93797GX3Y+f/48LSYmxu63337Lb085lZWVJFtb2wYTExP47bffLEtLS1v8JYAePXrU7Nq1y+7ChQuqgoICk0mTJrl/+umn5QBPbyPq1q1bg4WFhfHGjRtmmZmZb2Q91j59+lTv37/fevjw4epbt26ZPXr0yEQsFtcBAIwcObJ8/fr1jvX19QRvb+/a9pY5dOjQqi1btjikpqbmWFhYGB8+fEiyt7fXSyQSYd++fR9OmjTpiV6vh+vXr1ObLysxceJEl6KiovrNmzeXxMfH0//66y/Wrl27VPHx8fRTp07Z/fvf/+6QOtda29Ta9kwm0+Dg4FC/f//+buHh4U+0Wi2htYne9rK2ttZbWlrqk5OTLYYNG6b+6aefrP38/NTNt2Oz2Tp7e3tddHS04x9//JHzonL79u1bFRkZabd+/fqHAE/XGfb399dmZ2dTZDKZViaTaa9du2aelZVlJpPJGifkKysrSSwWq55EIsH27dut8cAVeTNeNVO3ozAYDL1arW4cyLT38585c+bj0NBQbq9evdR4Rj3ymtqRqfsmzZo16zGDwdDLZDItvpYvAEBVVRWJxWLVAwDExsY2LrHg7u5ev2vXLpper4e8vDyTjIyMdvVPZDLZWFdXR6BQKMYnT56QGAyGnk6nG9LS0szS09Nfqo/TaDREFxcXXV1dHeGXX35hOjo6dtiP1yHt9y6MOzpKcXGx6ZkzZ8wDAgJqDh48yPT392/sj+Pi4pibNm0q+emnn6y8vLxeeGcibsiQIZU7d+60DQwMrKZQKMaMjAwKm83WlZSUkDkcTv2iRYse19TUEG/dukUDgLc6AdwZMXx6ejqFSCSCRCKpAwBIS0uj4m3M63iZsWRTM2bMeHzu3Dl6YGCge0pKSm5FRQWJSqUamEymvrCwkHzhwgUGviwb8u54Uabum8JgMAx2dna6EydO0D/99NPqhw8fki5cuMBYsmRJ6f79+59ZhsjV1bX+5s2btGnTplUcOHCgGz5m6Nevn3r//v3Wc+bMKSsqKiJfu3aNjmcOs1is+suXL9PGjBlTdeTIkcZkp9b6YgAUkyFIU+hq3VvUdM3NcePGue3cuTOfTCbDyJEjq0aPHl3eq1cvAYZhon/961/uT548eebK2bRp08rT09PNPTw8hD///DOTw+G0OtG0du3aB59++inXz8+P3/SXqhcsWMDCMEzE4/HEvXv3ru7duzea/O2iiEQiJCQk3D179qyls7OzB5fLFa9evbo7PnH7OlasWFE0fvx4d29vb761tXXjRYr8/HwK/oMV7TF9+vSyv//+29zDw0N45MgRK1dX1xaXkujbt281AACfz6/v37+/5smTJ+T+/ftXAwCMGTOmUqvVEvl8vmj16tXdPT092z3geBnLli0r1Wq1BAzDRBMnTuT8+OOPeXgWS3h4eEViYiIzJCTkhbc0NTV+/PjKgICAyh49eogEAoFo06ZN9gAAhw8fvvvDDz/Y8vl8EY/HE8fHxzOa7xsVFVV07do1CwzDRGvXrnXas2dPi5nHr6s9bVNzP//8c96OHTvsMAwT+fj4CF71RwKb2rNnT15ERAQLwzBRRkYG9ZtvvmnxV6/HjRtX5ujoWN+eifgffvih8NatW+YYhonc3d3F27dvtwUA+Pbbb+3wH8ukUqmGUaNGPXPL9Pz580sPHTpkLZVKBTk5OWZUKvWVMnGQ94NMJtOSyWQjn88XrV271q69n3+/fv005ubm+qlTp6JbDbsId3d33cqVK0ubPx8REVGyZs0aVs+ePQVNLwgMGTJE7ezsXMfn88Xz5s1zFolE7Vq/NCws7JFQKBQFBwdzQkNDKxsaGggYhomWL1/eXSqVvlQft2zZsiKZTCbs168fxuPx2n2BEkFa4+bmVrt7925rDMNEFRUV5MWLFzf+2HBdXR3B09NT8P3339vHxMS0e/JpwYIFjwUCQa1EIhHyeDzxF1984arT6QgpKSl0kUgkFgqFohMnTlgtXbq01TVDu5KqqirSpEmTOO7u7mIMw0RKpZIaGRnZYtzTlgULFrja29t72tvbe/bo0UPwMmPJ5tasWfNQKpVqRo4cyZHJZFoPDw8Nj8cTh4eHs729vZ+7KI982Pbt25e3adMmR4FAIBowYAA/IiKiCE+caeqrr756dOXKFbpEIhFevXrVHI+pJk+eXOHo6FiPYZh46tSprlKptKZbt256AIBVq1YVLV261MXb25tPIpEax52t9cUAKCZDkKYIb/JW4ndJenp6vlQqRV96BHlDZsyYwfrss8/K0BpgSGeZNGmSi5eXl2bBggWorUc6VX5+vslHH33Ev3v3bhaJ1K5VTBAEQd5pKpXKNDAwkHfnzp3s5q85OTlJbty4oXB0dGxoaV8EQZCXUVlZSWQwGIaSkhJSr169hJcvX1a6uLi8UvuCYjKkq0tPT7eRSqXs9mz7QS4BgSBIx4uNjb3f2eeAfLjEYrGQSqUaYmNju8yttsj7afv27dYbNmxw2rRpUyEaaCAIgiAIgrycIUOG8Kqqqkg6nY6wZMmS4led/EUxGYI8C2UAIwiCIAiCIAiCIAiCIAiCvEdeJgMYrQGMIAiCIAiCIAiCIAiCIAjSRaEJYARBEARBEARBEARBEARBkC4KTQAjCIIgCIIgCIIgCIIgCIJ0UWgCGEEQBEEQBEEQBEEQBEEQpItCE8BvEYlE8hYIBCI+ny8SiUTC06dPm79oHxqN5vWibcaOHet68+ZNs445S6QruXfvHjkwMNDN2dnZw93dXTxgwABuRkYGpaVtVSqVKY/HE3fEcWUyGf/ixYu05s8fOHCAsXz5coeOOAbyegoLC8lBQUEcFoslEYvFwh49egji4uK6tbZ9UlISfeDAgdy3eY4I0lna0/e+qosXL9KmTJni/KbKRzoWgUDwDgkJ4eCPdTodWFlZSTuyPWwaxy1btuyZPtLLy0vQUcdBPiz4uIPH44mHDx/uVl1d3ea4r6PavY6MJz9UERERDlwuV4xhmEggEIjOnTv3wjEjzsnJSVJcXEx+k+eHIK1p6fu/cOHC7qtWrbJvafvQ0FD2nj17rNpbfmvjkReNMa9cuUI9fPgwo73HQZCuCnUObxGFQjEolUo5AMCxY8csly9fzhoyZIjqdcs9fPhwweufHdLVGAwGCA4O5k6YMKEsKSnpH4CnnV9RUZGJp6dnXWecU1hYWCUAVHbGsZH/MRgMEBQUxJ0wYUJZYmJiHgBATk6O6a+//trqBDCCIB2jf//+mv79+2s6+zyQ9qFSqQaVSkVVq9UECwsL42+//WZpb2+v66jyGxoanonjYmJiHL/55psS/HFaWpqyo46FfFiajjuCg4M50dHRtmvWrHnY2eeFtO3MmTPmKSkp3TIzM+VUKtVYXFxMrqurI3T2eSHIu+xFY8wbN27Qbty4YT527Fg0DkU+aCgDuJNUVlaSGAxGA/545cqV9h4eHkIMw0QLFizo3nx7vV4PEydOdOFyueKBAwdyBwwYwMWvljXNtmx69X7Pnj1WoaGhbICnV9fCwsJcfH19MRaLJTl58qTF6NGj2W5ubmJ8G6RrSUpKopPJZOPSpUsf4c/5+/trP/74Y/WMGTNYPB5PjGGYaNeuXc9dddVoNIRRo0axMQwTCYVCUWJiIh0AICYmxjogIMB90KBBXCcnJ8mmTZts16xZYy8UCkVSqVTw8OFDEl7G3r17rb28vAQ8Hk98/vx5Gr7/pEmTXAAADh48yPD09BQIhUKRv78/VlhYiC5IvSWJiYl0ExOTZ+oGhmH1K1asKFWpVKbe3t58kUgkbH6nQnV1NWnIkCHu7u7u4gkTJrjo9XoAAIiNjWViGCbi8XjiWbNmOeHb02g0r6+++sqJz+eLpFKpAH3GyPuksrKS6Ofnh4lEIiGGYaKff/65G8DT7BYOhyMeO3asK4/HEwcHB3Pi4+PpPXv2FLi6unrg7d358+dpXl5eAqFQKPLy8hKkp6dTAJ7NXqmsrCTibS2GYaK9e/d2AwAICwtz8fDwEHK5XHFLMQHydg0ePLgSv0B26NAhZmhoaDn+Wmufc9P+DgBg4MCB3KSkJDrA07Zx/vz53T09PQVnz561wOO42bNnO9XV1REFAoEoODiYg28L8HzW06RJk1xiYmKsAQBmz57t5O7uLsYwTDR9+nTW2/ibIO+Xvn37qnNzcykAAGvWrLHn8XhiHo8nXrdunV3zbdtq+9zc3MTjxo1z5XK54j59+vDUajUBAODSpUs0Pp8v6tGjh2Dr1q3PlYm034MHD0yYTGYDlUo1AgA4Ojo2sNlsXdPM3osXL9JkMhkfAKCkpITUp08fnlAoFE2YMMHVaDQ2lhUQEOAuFouFXC5XvGXLFhv8eRSfIW+bRqMhCgQCEf6PRCJ55+TkmAIAnD59mu7t7c1ns9kehw4dYgA8vTg6Y8YMFj4/EhUVZdO8zNTUVJpQKBTJ5XLTpn3u7t27rXg8npjP54t8fHz4tbW1hM2bN3dPTEy0EggEol27dlm11Xd//PHH7v369eO5urp6zJw5E/WpSJeCJoDfIjyo53A44nnz5rmuXr26GADg+PHjlrm5uWYZGRkKhUIhv337Nu2PP/6waLpvXFycVWFhoalKWv9T6gAAIABJREFUpcret29fflpamkXLR2ldZWUl+a+//sr55ptvCseOHctbsmTJwzt37mQrlUrqlStXqB31PpF3Q0ZGBlUqlT6XZRYXF9ctMzOTqlAoss+ePZuzatUqVkFBgUnTbSIjI+0AAHJycuQHDx78Z/r06WyNRkP473PUY8eO/fP3338rNm/e7ESj0QwKhULu4+NTExsba42XodFoiGlpacqYmJiC6dOnc6CZIUOGqG/fvq1UKBTyUaNGla9btw4tDfGWZGZmUj09PVvMQOzevXvDpUuXcuRyueLw4cP/LFiwwKXJfub/93//V6hSqbLz8/MpcXFxVvn5+SZr1qxxunDhQo5cLs9OS0sz379/fzcAAK1WS/Tz81OrVCq5n5+f+rvvvrN9W+8RQV4XjUYznDx5MlculytSU1Nzli9fzjIYDAAAUFhYaLZo0aJSpVKZfffuXbMDBw5Y37hxQ7lx48b7GzdudAQAkEqltdevX1cqFAr56tWrHyxduvS5QcSyZcscLS0t9Tk5OfKcnBz5iBEjqgEAtm7d+iArK0uhVCqzL1++TL927RrqoztReHh4+eHDh600Gg1BoVDQ/Pz8avDX2vM5N6fVaokeHh7ajIwM5dChQ9X4899///0DPGszISEhrz3n9vDhQ9Lvv/9udefOneycnBz5pk2bil/tXSJdlU6ng5SUFEuJRKK9dOkS7eDBg9Y3b95U3LhxQxEXF2d7+fLlZ9qXttq+e/fumc2dO7c0Nzc3m8Fg6OPi4qwAAD7//HP21q1b792+fRtlrL+mkJCQqqKiIlM2m+0xceJEl5MnT7Y55lu2bFl3Pz8/tUKhkAcHBz8pLi42xV87cOBAfnZ2tuL27dvy2NhY+5KSEhIAis+Qt49GoxmUSqVcqVTKJ0+e/Gjo0KEVGIbVAwAUFhZSrl+/rkpMTLwzf/58V41GQ9i2bZsNg8HQZ2VlKdLT0xX79u2zVSqVjXX79OnT5rNnz3ZNSEjIFYlE9U2P9c033zieOnUqR6VSyZOTk3PNzMyM/+///b+ioKCgCqVSKf/iiy8q2uq75XI5LT4+/h+FQpGdkJBglZub+8w4GUHeZx/k1b6zcQrn8gfq59YnfR1MJwvN4EnCwra2aXor1pkzZ8ynTp3KycnJyU5OTra8ePGipUgkEgE8nThTKpVmw4cPbxwUXLp0yWLkyJEVJBIJXFxcGnr37l39suc4YsSIJ0QiEXr27KmxtrbWyWQyLQAAhmHau3fvUvz9/bUvWybyYuVHc5x1JTUdWt9MHMw1zFFYm/WtNZcuXaKPGTOmnEwmg7Ozc4Ovr6/6zz//pPn4+DR+/leuXLH46quvSgEAvLy8art3716fmZlpBgDg7+9fbWVlZbCysjJYWFjoR48e/QQAQCKRaDIyMhrf54QJE8oBAIYPH65Wq9XEx48fk5qeR15enmlISAjr0aNHJvX19URnZ+dOWZais8kVEc416pwOrR/mFphGJIxsd/0IDw93uX79uoWJiYkxNTU15/PPP3eVy+VUIpEIBQUFjWtGSySSGjzIGjNmTPmlS5csTExMjL17967u3r17AwDA2LFjy1NTUy3Cw8OfmJiYGMeNG1cJAODt7V1z5swZy458n0jXt+RounNOSXWHfj8wB7omapT0hd8Pg8FAmD9/Puvq1asWRCIRSktLTe/fv08GAHBycqpr2ocOGjSoCu9fN2zY0B0AoLy8nDR27FhOfn6+GYFAMOp0uudu4b148aLlL7/88g/+2NbWVg8AsG/fPubevXttGhoaCI8ePTJJT0838/X1/aD76JWXVzrnVuR2aF3gWnE16/usf2Fd8PX11d6/f5+ya9cuZkBAwDO3j7bnc26ORCLBlClTKl7n3HFMJlNPoVAM48aNcx0xYkQlur313dNZ4w488QQAwNfXt3revHmPo6KibD/55JMnlpaWBgCAESNGVJw/f57ep0+fxvblRW0fPl7w8vLS5OfnU8rKykjV1dWkESNGqAEAPvvss7Jz5851ibU2OyOGZzAYhqysLHlycjL97Nmz9MmTJ7uvWrXqfmvbX716lX78+PFcAIBx48ZVzpgxQ4+/FhkZaX/y5MluAAAlJSUm2dnZZg4ODjUoPuv64uPjnUtLSzu07trZ2WlCQkLabHcIhJa7QPz5U6dOmcfFxdlevXq18WJRaGhoOYlEAolEUufs7Fx3+/ZtszNnzlgqlUpaQkKCFcDTuxDlcrmZqampMTc312z27Nns06dP57DZ7OeWZPLx8VGHhYWxQ0NDK8LCwlrsa9vqu/v27VtlbW2tBwDgcrm1d+/epXC53A5b+glBOtMHOQH8LggICKipqKggFxcXk41GI8yfP794yZIlj1vbvuntPG1p2uhqtdpnWmAzMzMjwNOBh6mpaWOBRCIRGhoa0NpSXYxEItHGx8c/t7xDe+pSW9s0rzt4vWpej5oHAM0fz5kzx2XevHklYWFhlUlJSfR169ah25zfEolEoj1x4kRj3di/f/+94uJiso+Pj3Djxo32dnZ2umPHjuUZDAagUqne+HYtfaZt1RUymWwkEon4/1E7g7xXYmNjmWVlZeTMzEwFhUIxOjk5SbRaLRGg9XaQRCKBXq8nAABEREQ4DRgwoPr06dN3VSqV6aBBg/jNj2E0Gp/7XimVStPt27fb37x5U2Fra6sPDQ1l19bWoju2OtmwYcOerF692vnUqVOq0tLSxvi5tc+ZTCYb8axJgKeTcfj/TU1NDWTyy4XgJiYmzcsj/Pd5uH37tiIhIcHyl19+sdq5c6fd1atXc175jSJdRtPEE1x7YsD2tn0kEsmo1WqJLbVjyOshk8kQGBhYHRgYWO3p6andv3+/NYlEamwD8M8Dh8daTSUlJdFTU1PpN27cUNLpdINMJuPj+6H4DHlT7O3tGyorK59J+ikvLydxOJy6goICkxkzZrBPnDiRy2AwGju0VsYXhOjo6HuhoaFVTV9LSkqi29nZ6erq6ohXr16lsdns5y56Hjx48N65c+fMExISGD169BDfvn07u/k2bcVozdu59lzYRZD3xQc5AfyiK+ZvQ1pampnBYAB7e/uG4cOHV61Zs6b79OnTyxkMhiEvL8/E1NTU6OTk1LhGcL9+/dT79++3njNnTllRURH52rVr9PHjx5c3L9fa2lp369YtM6lUWnvixAkrCwsLffNtkLfrVTN1X1dQUFD1ypUrCdHR0TaLFi16DPB0rSQrK6uGo0ePMufMmVNWWlpKvn79ukVMTExh02Cyb9++6p9//pkZHBxcnZGRQSkuLjb19PSsvXbtWruvJB86dMgqKCioOiUlxYJOp+vxK6m46upqkouLiw7g6XrBHfW+3zcvk6nbUfC6ERkZaRsREfEIAECtVhMBnq5PzmKx6kkkEmzfvt0aX+cX4OkSEEql0pTH49UfPXqUOW3atEf9+/eviYiIcC4uLibb2to2/Prrr8zZs2eXvu33hHRN7cnUfVMqKytJNjY2OgqFYkxMTKQXFRWZvniv/6mqqiKxWKx6AIDY2Njn1q4DAPjoo4+qtm7dard79+5CAIBHjx6RKioqSFQq1cBkMvWFhYXkCxcuMAYMGPDSd/10Ne3J1H2TZs2a9ZjBYOhlMpkWX8sXoPXP2d3dvX7Xrl00vV4PeXl5JhkZGeYtldscmUw21tXVESgUyjMzde7u7nW5ublUrVZL0Gg0xD///NOyT58+6srKSqJarSaOHTu28qOPPlJjGCbpqPeMdIx3YdyBGzRokPqzzz5jr1+/vsRoNMLvv/9utXfv3n+abvOybZ+NjY3ewsJCn5KSYjF06FD13r17mW/2Xbw9nRHDp6enU4hEIkgkkjoAgLS0NCqLxaqvra0lXr58mTZmzJiqI0eONF7E7927d/Xu3butv/322+IjR45YVlVVkQAAnjx5QmIwGHo6nW5IS0szS09Pb1cbhHQNL8rUfVMYDIbBzs5Od+LECfqnn35a/fDhQ9KFCxcYCxYsKB05cqTb+vXrHzT/MfLjx49bzZkzp0ypVFIKCwspUqm0dsiQIZU7d+60DQwMrKZQKMaMjAwKnu1raWmpj4uLuxsQEIBZWFgYAgMDn4mRsrOzKYMGDaoZNGhQTUpKSrd//vnH1NLSUo+PdQDaF6MhSFf0QU4Ad5amt2IZjUbYuXNnPplMhpEjR1ZlZ2eb9erVSwDwdI2cAwcO5DWdAJ48eXLFmTNn6BiGiTkcTq1UKq3p1q3bc5O7a9euffDpp59yHR0ddQKBQFtTU4Oyhj5QRCIREhIS7s6ePdt527ZtDhQKxchiseq+++67QrVaTRIKhWICgWBcu3btfRcXlwaVStUY4C9durQ0PDzcFcMwEYlEgtjY2Hz8xyjay8rKSu/l5SVQq9WkH3744bm1DFesWFE0fvx4d3t7+3ofH5+ae/fuUVoqB+l4RCIREhMT73755ZfOMTExDkwms4FGo+nXrFlzv3fv3prQ0FD3+Ph4q759+1ZTqdTGK/Q9evRQL1q0iKVUKqm+vr7V4eHhT0gkEqxaterBgAEDMKPRSBg8eHDlxIkTn3Tm+0OQ16HT6cDU1NQ4bdq08uHDh3M9PDyEYrFYw+Fwal+mnIiIiJJp06ZxYmJiHPr161fV0jabN28unjp1qguPxxMTiUTj8uXLiyZPnvzEw8NDw+PxxC4uLnXe3t7qlvZF3i53d3fdypUrn7u41drnPGTIEPWOHTvq+Hy+mM/na0UiUYvrrjcXFhb2SCgUijw8PDRN1wHmcrm6oKCgCqFQKOZwOLVisVgD8HSSJzAwkItnBG/YsOGdmWxE3j19+/bVTJgwoaxnz55CAIDw8PBHTZd/AAB4lbbvp59+yp82bRqbSqUaBg0a1GJ7h7RPVVUVae7cuS5VVVUkEolkZLPZdfv27StIT083mzlzJjsyMlLn7e3duA75N998UxQaGuomEomEfn5+akdHx3oAgNDQ0MoffvjBFsMwkbu7e61UKq1p/agI0nH27duXN3v2bJeIiAhnAICIiIii+/fvm2RlZZlv2LChO75UVnJy8h0AAC6XWyeTyfhlZWUm27ZtK6DRaMYFCxY8zs/Pp0gkEqHRaCQwmUzd77//fhc/hrOzc0NSUlLu8OHDeTQaLb/p8RcsWMDKz8+nGI1GQt++fat69+6tdXd3r9+yZYujQCAQLVq0qLg9MRqCdEWE9i4t8L5LT0/Pl0qlrS6x8D6orKwkMhgMQ0lJCalXr17Cy5cvK11cXBpevCeCIAiCIO3x119/UadPn87OzMxUdPa5IAiCIAiCIAiCtCY9Pd1GKpWy27MtygB+jwwZMoRXVVVF0ul0hCVLlhSjyV8EQRAE6TjffvutbWxsrF1UVBTKokQQBEEQBEEQpMtAGcAIgiAIgiAIgiAIgiAIgiDvkZfJAEbrwyIIgiAIgiAIgiAIgiAIgnRRaAIYQRAEQRAEQRAEQRAEQRCki0ITwAiCIAiCIAiCIAiCIAiCIF0UmgBGEARBEARBEARBEARBEATpotAE8FtEIpG8BQKBiM/ni0QikfD06dPmL9qHRqN5AQDk5+ebDBs2zO3NnyXSldy7d48cGBjo5uzs7OHu7i4eMGAANyMjg9LZ54V0vsLCQnJQUBCHxWJJxGKxsEePHoK4uLhur1tuaGgoe8+ePVbNn7948SJtypQpzq9bPoK8DXjfiyAEAsE7JCSEgz/W6XRgZWUlHThwIPdVyjtw4ABj+fLlDh13hgjSMnzcwePxxMOHD3errq5+qXHfsmXL3kg9ValUpjweT/wmyu4qIiIiHLhcrhjDMJFAIBCdO3fuhWNGHIq3kM4ik8n4x44ds2z63Lp16+wmTpzo8qaPrVKpTP/zn/8w3/RxEOR9hyaA3yIKhWJQKpVylUolX79+/YPly5ez2rsvm83WJScn//Mmzw/pWgwGAwQHB3P79+9fXVhYmHX37t3szZs3PygqKjLp7HNDOpfBYICgoCBuv3791Pfv38/Mzs5WHDly5J/CwkLTN3XM/v37a/bu3Vv4pspHEAR5E6hUqkGlUlHVajUBAOC3336ztLe3171qeWFhYZWbNm0q6bgzRJCW4eOOO3fuZJuYmBijo6Nt27OfwWAAvV4PMTExjm/6HJHnnTlzxjwlJaVbZmamPCcnR37+/PkcNze3+vbsq9PpULyFdJrRo0eXHTp06JlJ2GPHjjEnTpxY/qaPfefOHcrhw4fRBDCCvACaAO4klZWVJAaD0YA/Xrlypb2Hh4cQwzDRggULujffvunV8rFjx7oKBAKRQCAQWVlZSRctWuTYnjKQD0tSUhKdTCYbly5d+gh/zt/fX/vxxx+rZ8yYweLxeGIMw0S7du2ywreXyWT8YcOGuXE4HHFwcDDHYDAAAMDhw4cZHA5H7O3tzZ8yZYoznvn08OFDUkBAgDuGYSKpVCq4du0atVPeLPJSEhMT6SYmJs/UDQzD6lesWFGqUqlMvb29+SKRSNj0ToWkpCR6r169+J988okbm832mD17ttPOnTuZEolEiGGYKDs7uzGz/PTp03Rvb28+m832OHToEAPfH68358+fp3l5eQmEQqHIy8tLkJ6ejrLSkXdOZWUl0c/PDxOJREIMw0Q///xzN4Cn/TGHwxGPHDmSjWGYaNiwYY2ZdYsXL3b08PAQ8ng88fjx413xNlQmk/FnzZrlJJFIhGw22yM5OdmiE98a8pIGDx5c+euvv3YDADh06BAzNDS0cTBbVVVFHD16NNvDw0MoFAob68maNWvsR48ezQYAuH79OpXH44mrq6uJMTEx1pMmTXIBeHonxpAhQ9z5fL6Iz+eL8PZ2zZo19jweT8zj8cTr1q2ze+tvGOly+vbtq87NzaUAtFy/VCqVqZubm3jixIkuYrFYNHbsWHZdXR1RIBCIgoODOc2zdletWmW/cOHC7gAAqampNAzDRD169BDg8SVeZkvxBNK2Bw8emDCZzAYqlWoEAHB0dGxgs9k6JycnSXFxMRngaZavTCbjAwAsXLiw+/jx41379OnDGzlyJKdpvLVw4cLuo0ePZstkMj6LxZJs2LChsT0JCAhwF4vFQi6XK96yZYsN/jyNRvOaNWuWk1gsFvr7+2Pnz5+n4fsfOHCAAQDQ0NAAM2bMYOHjzqioKBtAPnjh4eEVZ8+eZWi1WgLA0zagtLTUxNfXV9NaPOXm5iYeN26cK5fLFffp04eHX2yVyWT8ixcv0gAAiouLyU5OThJ8n5balRUrVjjduHHDQiAQiNauXWvXtK8FABg4cCA3KSmJ/rb/JgjyrkETwG8RHkhxOBzxvHnzXFevXl0MAHD8+HHL3Nxcs4yMDIVCoZDfvn2b9scff7Q6ODx8+HCBUqmUJyQk5Hbr1q1hxowZZS9bBtL1ZWRkUKVSqab583Fxcd0yMzOpCoUi++zZszmrVq1iFRQUmAAAKBQK6o4dOwpzc3Oz7927Rzl9+rSFRqMhzJs3z/WPP/64c/PmTVVZWRkZL2vp0qXdpVKpJicnR75+/foHkydP5jQ/HvLuyczMpHp6ej5XNwAAunfv3nDp0qUcuVyuOHz48D8LFixoDJ6USiV1586dhQqFIvvo0aPWOTk5ZpmZmYrw8PDH0dHRjYOKwsJCyvXr11WJiYl35s+f76rRaAhNjyGVSmuvX7+uVCgU8tWrVz9YunRpu++GQJC3hUajGU6ePJkrl8sVqampOcuXL2fhE7r5+flmM2fOfJSTkyOn0+mGqKgoWwCAJUuWlGZlZSnu3LmTrdVqib/88gsDL6+hoYGQmZmpiIyMLFy3bh26SPseCQ8PLz98+LCVRqMhKBQKmp+fXw3+2vLlyx0HDhxYlZWVpbh06ZLq66+/ZlVVVRFXrlz5MC8vjxIXF9fts88+Y+/YsSOfTqcbmpY7c+ZMl379+lWrVCp5dna2vGfPnrWXLl2iHTx40PrmzZuKGzduKOLi4mwvX76MLq4ir0yn00FKSoqlRCLRtlW/8vPzzaZOnVqmUCjkR48ezccziBMSEvLaKn/atGmcHTt2FNy+fVtJIpGM+PNtxRNI60JCQqqKiopM2Wy2x8SJE11Onjz5wvFcRkYGLSUlJTcxMfG5zyo3N9csNTU15++//1Zs2bKle11dHQEA4MCBA/nZ2dmK27dvy2NjY+1LSkpIAABarZY4cODA6uzsbIW5ubn+66+/drp06VLOr7/+mrt+/XonAIBt27bZMBgMfVZWliI9PV2xb98+W6VS+cbuIkPeDw4ODnqpVFpz7NgxBgDAvn37mMHBwRUWFhatxlP37t0zmzt3bmlubm42g8HQx8XFPbeMXFOttSsbN2584OPjo1YqlfLVq1eXvvE3iyDvKfKLN+l6UnZuc35cWEDryDJtnF01Q2fNb/N2GzyQAnh6e8/UqVM5OTk52cnJyZYXL160FIlEIgAAjUZDVCqVZsOHD1e3VpZGoyGEhoa6//vf/76HYVj9li1b7F62DOTtiI+Pdy4tLe3Q+mZnZ6cJCQl5pdu7Ll26RB8zZkw5mUwGZ2fnBl9fX/Wff/5JYzAYBolEUuPu7q4DABCLxZq7d++a0ul0vbOzc51AIKgHABg3blz5jz/+aAsAcP36dfqxY8dyAQCCg4Orp0+fTi4rKyNZW1vrO+q9dnXzFfeclTW1HVo/BOZmmm1Cl3bXj/DwcJfr169bmJiYGFNTU3M+//xzV7lcTiUSiVBQUNCYnSuRSGpcXV11AAAuLi51w4cPrwQAkEql2tTU1Mar6qGhoeUkEgkkEkmds7Nz3e3bt82aHq+8vJw0duxYTn5+vhmBQDDqdLpnJogRpFH8l85QKu/Q7wfYiTQQsuOF3w+DwUCYP38+6+rVqxZEIhFKS0tN79+/TwYAcHBwqP/4449rAADCw8PLYmJi7ADg4R9//EHfunWrQ21tLfHJkydkkUikBYBKAIDRo0dXAAD4+/vXLFmyBA2UX1LR8hXOdXfudGhdoPB4mu6bNr6wLvj6+mrv379P2bVrFzMgIKCy6WsXLlywTElJ6RYTE+MAAFBXV0fIzc017dmzZ21cXFyej4+POCws7BFeX5q6cuUK/ejRo3kAAGQyGaytrfUXLlyw+OSTT55YWloaAABGjBhRcf78eXqfPn20HfOukbets8YdeOIJAICvr2/1vHnzHkdFRdm2VL9Gjx79xNHRsX7w4MHP1dO2PH78mFRTU0McMmRIDQDA5MmTy0+fPt0NAKC+vp7QWjzxvuiMGJ7BYBiysrLkycnJ9LNnz9InT57svmrVqvttlTls2LAnFhYWxpZe+/jjj59QqVQjlUptYDKZuvv375Pd3d11kZGR9idPnuwGAFBSUmKSnZ1t5uDgUGNiYmIcNWpUFQCAWCzWUigUA4VCMcpkMu2DBw9MAQDOnDljqVQqaQkJCVYAANXV1SS5XG6GjxWQzidXRDjXqHM6tO6aW2AakTCyzXZnzJgx5YcPH7aaOHHik+PHjzN//PHH/LbiKScnpzp/f38tAICXl5cmPz+/zXaiK7QrCNKZPsgJ4HdBQEBATUVFBbm4uJhsNBph/vz5xUuWLHnc3v3Dw8Ndg4KCKkJCQqoBAF6lDKRrk0gk2vj4+OeuohqNLcaHAABAoVAaXySRSNDQ0EBoa/uWXiMQCK3vgLwTJBKJ9sSJE411Y//+/feKi4vJPj4+wo0bN9rb2dnpjh07lmcwGIBKpXrj2zWtH0QiEczMzIz4//V6feMkLoHw7Hxu88cRERFOAwYMqD59+vRdlUplOmjQIH7Hv0sEeT2xsbHMsrIycmZmpoJCoRidnJwkWq2WCNByHddoNIRFixa5Xrt2Tc7lcnULFy7sXltb23inFf59IZPJz3xfkPfDsGHDnqxevdr51KlTqtLS0sb42Wg0wtGjR3OlUmld830UCoUZjUYzlJSUtHvt/bb6XAR5GU0TT3Bt1S8ajWZo7TUymWzEM/YAAPC2ra3y2oonkLaRyWQIDAysDgwMrPb09NTu37/fmkQiNX4GeF+EMzc3b/Wzaym2T0pKoqemptJv3LihpNPpBplMxsfLJJPJRiLxafFEIrFxfxKJ1Nh3GY1GQnR09L3Q0NCqjn7vyPstLCzsyddff+38559/0mpra4l9+/bVxMTEWLcWT5mamjatn8am9VCvf5pP1PROwva2K83brLq6OnTnO4LABzoB/KIr5m9DWlqamcFgAHt7+4bhw4dXrVmzpvv06dPLGQyGIS8vz8TU1NTo5OTU0NK+mzdvtlWr1aSmPyLysmUgb8+rZuq+rqCgoOqVK1cSoqOjbRYtWvQY4Ok6bVZWVg1Hjx5lzpkzp6y0tJR8/fp1i5iYmMKMjIwWbzGVSqW1hYWFFJVKZcrn8+ubLrDfu3fv6j179lhHRUUVJyUl0a2srBqYTGarQSjyvJfJ1O0oeN2IjIy0jYiIeAQAoFariQBP1ydnsVj1JBIJtm/fbo0HXy/j+PHjVnPmzClTKpWUwsJCilQqrT137lzjLYxVVVUkFotVDwAQGxuL1o1DWteOTN03pbKykmRjY6OjUCjGxMREelFRUWPWbnFxsemZM2fMAwICag4ePMj09/dXazQaIgCAg4NDQ2VlJTExMdEqKCioorPOv6tpT6bumzRr1qzHDAZDL5PJtE3XERw4cGBVdHS0/d69e+8RiUS4fPkytU+fPtqysjLS4sWLnc+dO6ecNWuWy549e6ymTp36TH3o06dPdVRUlO2qVatKGxoaoKqqijho0CD1Z599xl6/fn2J0WiE33//3Wrv3r3oR4DfY+/CuAP3MvWLTCYb6+rqCBQKxchisRrKy8vJJSUlJAaDYUhJSWEMHjy4ytbWVm9ubm44e/as+eDBg2v279/fGCN2RDzR2Tojhk9PT6cQiUSQSCR1AABpaWlUFotVX1tbS7x8+TJtzJgxVUeOHGnzNvkXefLkCYnBYOjpdLohLS3NLD09/aWCDMHcAAAgAElEQVTWZx4yZEjlzp07bQMDA6spFIoxIyODwmazdXhmOdL5XpSp+6YwGAxD7969q6dNm8YeOXJkOUDb8VRrnJ2d665fv24+cOBAzYEDBxrre2vtCoPB0KvVahK+nbu7e/2uXbtoer0e8vLyTDIyMtAa5AgCH+gEcGdpeiuW0WiEnTt35pPJZBg5cmRVdna2Wa9evQQAT6/AHzhwIK+1ydvt27c7mJiYGPGyPvvss0dLly599DJlIF0fkUiEhISEu7Nnz3betm2bw38D+LrvvvuuUK1Wk4RCoZhAIBjXrl1738XFpSEjI6PFciwsLIxbt24tGDZsGI/JZDZ4eXk13h4YGRlZNGHCBDaGYSIqlWrYu3dvm+vEIe8GIpEIiYmJd7/88kvnmJgYByaT2UCj0fRr1qy537t3b01oaKh7fHy8Vd++faupVOpLB/NcLrdOJpPxy8rKTLZt21ZAo9GeSRGKiIgomTZtGicmJsahX79+KHsEeafodDowNTU1Tps2rXz48OFcDw8PoVgs1nA4nFp8Gzc3t9rdu3dbz54925XD4dQtXrz4EZ1ON4SFhT0SiURiFotVL5VKX+pWauTd5u7urlu5cuVz6wp+8803RdOnT3cRCAQio9FIYLFYdefPn8+dOXOm8+eff/7I09Ozbt++ffmDBg3if/zxx9VN9925c+e9KVOmuGIYZkMkEmH79u0FAQEBNRMmTCjr2bOnEAAgPDz8EVr+Aekoffv21bRUv1Qq1XMTMmFhYY+EQqHIw8NDk5CQkLdo0aJimUwmZLFYdVwut7E9jI2NzZ85c6YrjUYz9OnTp5pOp+sBAObPn1/6uvHEh6iqqoo0d+5cl6qqKhKJRDKy2ey6ffv2FaSnp5vNnDmTHRkZqfP29n6t/iU0NLTyhx9+sMUwTOTu7l77sv3VggULHufn51MkEonQaDQSmEym7vfff7/7OueEdB3jxo0rnzx5svuhQ4f+AQBoK55qzbJlyx6OHTvW7ZdffrFuOlZorV2RyWRaMpls5PP5ogkTJjxeuXJl6Y4dO+r4fL6Yz+drRSJRi799giAfmjZv7+5K0tPT86VSKVoeAUFeQWVlJZHBYBgMBgNMmjTJhcfj1aIF9hEE6Yr++usv6vTp09mZmZmKll5XqVSmgYGBvDt37mS/7XNDEAR51+AxIgDA8uXLHYqLi0327NnzzmQ9IwiCIEhXlp6ebiOVStnt2RZlACMI8kLbtm2zOXTokI1OpyOIxWLNwoUL0cUUBEG6nG+//dY2NjbWLioqCk1eIAiCtMORI0cY0dHRjnq9nuDk5FR38ODB/M4+JwRBEARBnocygBEEQRAEQRAEQRAEQRAEQd4jL5MBjH4NEUEQBEEQBEEQBEEQBEEQpItCE8AIgiAIgiAIgiAIgiAIgiBdFJoARhAEQRAEQRAEQRAEQRAE6aLQBDCCIAiCIAiCIAiCIAiCIEgXhSaA3yISieQtEAhEfD5fJBKJhKdPnzZ/1bLmz5/fPT4+nt6R54d0Lffu3SMHBga6OTs7e7i7u4sHDBjAzcjIoLxsOcuWLXN42X1kMhmfzWZ78Pl8kYeHh/DKlStU/LUBAwZwHz9+THrZMpGOVVhYSA4KCuKwWCyJWCwW9ujRQxAXF9ftTR4TtVvI+4JGo3m96r4LFy7svmrVKvuOPB+k8xAIBO+QkBAO/lin04GVlZV04MCB3Ld1DqGhoew9e/ZYAQCMHTvW9ebNm2Zv69jI+wsfd/B4PPGgQYPeSOzVWnunUqlMeTyeGADg4sWLtClTpji/7rGSk5MtuFyuWCAQiNRqNaHpa03b7MOHDzNcXV097ty5Y/q6x+wsERERDlwuV4xhmEggEIjOnTv3ymPGlhw4cICxfPlyB4CO7bOatlXIh0cmk/GPHTtm2fS5devW2U2cONGls86pLU5OTpLi4mLyy+wzbNgwN7lcborvj39HMQwT/fzzzy8cR+FtVX5+vsmwYcPcXu3Mn9WRZYWGhrKdnJwk+JzViRMnOnzc1rR/aE4mk/EvXrxIA+iYOQOtVkvw9/fHBAKBaNeuXVaBgYFumZmZLz0f0pWgCeC3iEKhGJRKpVylUsnXr1//YPny5axXLWvbtm1FISEh1R15fkjXYTAYIDg4mNu/f//qwsLCrLt372Zv3rz5QVFRkcnLlhUTE+P4KucQFxf3j0qlkn/xxRelixcvbqzrqampuTY2NvpXKRPpGAaDAYKCgrj9+vVT379/PzM7O1tx5MiRfwoLC19rsNTQ0NDm66jdQrqaF9V55P1HpVINKpWKik84/fbbb5b29va6zjqfw4cPF3h7e9d21vGR9wc+7rhz5052t27dGqKiomw74zz69++v2bt3b+HrlhMXF8f86quvSpRKpdzCwsLY0jYnTpygL1682Pn333+/w+Px6ttTrk7XaV/nFp05c8Y8JSWlW2ZmpjwnJ0d+/vz5HDc3t3a9l/YKCwur3LRpU0lHlokgo0ePLjt06BCz6XPHjh1jTpw4sbyzzqkj3bhxw0yv1xNEIlHj9zE1NTVHqVTKf/3117tLly5t94UuNputS05O/ud1z0mn03VYWbgNGzbcVyqV8i1bthTOnTvXtaPKfVkdMWdw5coVmk6nIyiVSvkXX3xRMWvWrNKNGze+dHJbV4ImgDtJZWUlicFgNI4cV65cae/h4SHEMEy0YMGC7gBPr464ubmJx40b58rlcsV9+vTh4QOQpldYnZycJAsWLOguEomEGIaJ0tLSUGbIBy4pKYlOJpONS5cufYQ/5+/vrx02bJjaYDDAjBkzWDweT4xhmGjXrl1WAAAFBQUmPj4+fDxbJDk52WL27NlOdXV1RIFAIAoODuYAAAQEBLiLxWIhl8sVb9myxeZF59K/f/+ahw8fNk4sNr3aun37dmsMw0R8Pl+EZ1gdPHiQ4enpKRAKhSJ/f3+ssLDwpa7MIi+WmJhINzExeaZ+YBhWv2LFitKGhgaYMWMGC2+PoqKibACeThq3VG+SkpLovr6+WFBQEIfP54sBAJYsWeLI4XDE/v7+vKCgIA6eWdK03Vq8eLGjh4eHkMfjicePH+9qMBje/h8CQdrwMnU+IiLCgc1me/j7+2N37txpzCyIjo628fDwEPL5fNHQoUPdq6uriQBPvwtTpkxx9vLyErBYLAnKmHq3DR48uPLXX3/tBgBw6NAhZmhoaONg9uHDh6SAgAB3DMNEUqlUcO3aNSrA06y60aNHs2UyGZ/FYkk2bNhgh+/TWht55coVqlQqFWAYJhoyZIj7o0ePnst8aZodExYW5uLh4SHkcrliPHZEkJb07t275sGDB42xWGvjDg6HIx45ciQbwzDRsGHD3PA2q2nsdvHiRZpMJuPjZWVkZNB69+6Nubq6ekRHRz8XFyYlJdHxjPnKykriqFGj2BiGiTAME+3du/e5jLkTJ07QhUKhCMMw0ejRo9larZawdetWm5MnTzK//fbb7ng82lxycrLFl19+yU5ISMgVi8V1AAA5OTmmfn5+GIZhIj8/PwzPCg4NDWVPmzaN5evri82ePZtVVVVFHD16NNvDw0MoFAobM/lUKpWpt7c3XyQSCV/37s32evDggQmTyWygUqlGAABHR8eGvLy8/8/efYc1de4PAP9mAQmESJhCgABJyGCIKAiIOJALrksFtAURtRYVraNa8TrQOm61qG2pdZRei7Rq6RWriErrQKBYtYgyMgigyFT2CIGQ9fuDG35ow9A66/t5Hp9HkpP3nJzznned7/uGEBAQ4AAA8MMPP4zQ09Mb3d3djZFKpRgajeYMMHB9w2azuZp/enp6o8+fP2+QkJBgPH/+/D9FZT5tnaVSqWD+/Pk2Dg4OvIkTJzIaGxtRm/0tFhkZ2XLlyhVKV1cXBqD3/qmvrycEBARIAJ5+vIPP5+v6+voyeTwex93d3VEzxqEtTz8Zyc5kMnklJSU6AAAHDx6kOjs7c9hsNjc8PNxW28P74fRvk5KSjGfOnNmq7b3W1lacoaFh32Dltm3bzJlMJo/JZPK2b99u9uT2/aNgXVxc2Hl5eX3jNx4eHo45OTmkzMxMkpubG5vD4XDd3NzYBQUFugAACQkJxkFBQfaTJ09m+Pr6svqnNVCZlZ6eTvbw8HAMDAy0t7Oz482aNctuqL7XlClTJPX19X3BYzk5OaSxY8c68ng8zvjx45kPHjwgaI530aJF1m5ubmwmk8nLzMwkAfx5dkH/a6JQKEBbXdPfUGMG/Wlri9XU1OAXLlxoJxKJiGw2m8vn83UDAwMlOTk5hq/bg7+XCQ0Av0SagTQ7OzveqlWrbLdu3VoHAHD69GnDsrIyvcLCQqFQKBTcvXuXdPHiRQMAgMrKSr2VK1fWl5WV8SkUijI5OVlrJ9HExEQhEAiEixYtati9ezeaevqWKywsJLq6ukq1vZecnDyiqKiIKBQK+VeuXBHHxcXRHjx4QDh69Ch1ypQpbSKRSCAUCvmenp7SgwcP1mgiSNLS0u4DABw/fryCz+cL7969Kzhy5Ij5w4cPB52ace7cOcOgoKA/VZZ5eXl6e/fuHZmVlSUuKSkRHDlypBIAYOrUqZK7d++KhEKhIDQ0tHn79u1v9VO6F6GoqIjo4uKiNX988cUXJhQKRVlcXCwsKCgQHjt2zFQkEukMlG8AAAoLC/Xj4+NrysvL+dnZ2aRz584ZFRUVCc6fP19eWFiotbP08ccf1xcXFwtLS0v5XV1d2B9//JHyIr8zgjyt4eb5nJwc0s8//0wtKioSpKenlxUUFPTl+YiIiJbi4mJhSUmJwNHRsSshIaGvU/Ho0SNCXl6e6OzZs6Vbt261ehXfERmeyMjI5pSUFCOpVIoRCoUkLy+vTs1769evt3R1dZWKxWLBjh07aqKiovo6JmVlZXpZWVniP/74Q7h3715LmUyGGayMXLBggd2///3varFYLODxeF2xsbGDDuru37+/pri4WCgSifi5ublkzeAzgvSnUCggMzOTHBwc3AoweL+joqJCb+nSpQ1isVhAJpNVw4kaFgqFxMuXL5feuHFDFB8fb1lRUTHgbLMNGzaMNDQ0VIrFYoFYLBZMnz79sVlBUqkUs2TJEruUlJRysVgsUCgUEB8fb/rRRx81+vv7t+7cubNa0x7tr6enBzN37lxGampqmZubW1+E/NKlS23Cw8ObxGKxYO7cuU3Lli3ri9ArLy/Xy83NFScmJlZv3Lhx5KRJk9qLi4uFOTk5JZs3b6a1t7djLS0tFTk5OWKBQCBMSUm5t2bNmhc+lT04OLi9trZWh06nO82bN8/m/PnzBuPHj5fy+XwSAEB2drYBg8Hoys7OJmVmZuq7ublJAAaub0QikUAkEgni4uJqeDxep7+/f+dA+37aOuv7778fUVZWpltSUsJPSkp6kJ+fb/Bizw7yOrOwsFC6urp2pqamUgAAjh07Rp01a1YLFot9pvGOxYsX2x48eLCSz+cL4+Pjq5ctW2YD8HR5Oj8/X+/UqVPUvLw8kUgkEmCxWPXhw4eNn9xuOP3bmzdvGowbN+6x/pOfnx+LyWTyAgMDHbdu3VoD0DtQeuLECePbt28L8/LyhMnJyaa5ubkD1s8hISHNx48fpwL0BmTV19cTfH19pa6urt23bt0SCYVCwdatW2vWr1/fN6M2Pz/f4OTJk/dv3Lgh7p/WYGWWUCgkfv3111VlZWX8yspK3UuXLg16v6amplL8/f1bAQBkMhlm5cqVNmfPni3n8/nCqKioxnXr1vW1XaVSKfbOnTuihISEB9HR0Vof0vX3NHXNQGMG/Wlri1lZWSkOHjz4YMyYMRKRSCTg8XgyHA4Htra23Tdu3CANdYx/V2/lU7rmU2Jr+cPO53rRCRb6Umooa9DpTZqBNIDe6T0LFy60E4vF/IyMDMPs7GxDLpfLBei9gUQikZ69vX2PlZWVzNvbuwsAwM3NTVpRUaF1zZLw8PAWAAAPDw9pWloaiiR6jQiEsdadEvFzzW/6Biwpl7PnmabT5eTkkOfMmdOMx+PB2tpa4enpKfntt99I48aN61yyZAldLpdjQ0NDWzT57kl79uwxP3/+/AgAgIcPHxL4fL6ehYXFnyre+fPn23d1dWFVKhXk5eUJn3z/l19+MZw5c2bLyJEjFQAA5ubmSgCA+/fv6wQHB9MaGhoIPT09WGtra9mzfM83xcenCqzFDzuea/5gWZCl8aGuw84fkZGRNrdu3TIgEAhqGo0mE4lEJE050tHRgRMIBHoD5RsKhaJycXHpZLPZPQAA165dMwgKCmr93/RM9dSpU7U+Kb948SJ5//79Ft3d3djW1lY8l8vtAoC25/H9kb+PLblbrMtayp7r/cEwYkh3+OwY8v4Ybp7PzMw0mDZtWiuZTFYBAAQEBPTl+du3bxPj4uKsOjo6cJ2dnTg/P7++PD5r1qxWHA4H7u7u3U1NTU+9PM/b5kqy0Lq5RvJc8wLVykA6ZT5nyLzg6enZVV1drZuYmEj19/d/rJy6desWOTU1tQwAYNasWR3R0dH4pqYmHEBvXiASiWoikaigUqny6upq/EBlZFNTE66jowM3ffp0CQDABx980BQWFjbomn7Hjh2jJiUlmSgUCkxDQwOhoKBAz9PTU2vdjbw6r6rfoQk8qamp0XFycpIGBwe3AwAM1u+wsLDoCQgI6AQAiIyMbEpISDADgEeD7UeTnw0MDBReXl7tOTk5+h4eHlofMmdnZxv++OOPfVOVTU1NH5veW1BQoEej0WQuLi4yAIAFCxY0ff3112YAUD/o+SAQ1KNHj5YcPnzYxNPTs++83LlzR//ixYvlAADLli1r/uSTT/oGUGbPnt2Cx/d2ha9du2b4yy+/jEhISLD437nDlJWV6WCwyWbFxVeMOjulWAAMLP6gG/vHH+84wl8wVBueQqGoiouLBRkZGeQrV66Qo6KiHOLi4qptbW278/Pz9fLz8/U//PDDR5mZmWSlUonx8fGRAAxe3xQVFelu2rSJlpmZKdbV1dW6fMZQaWirs7KysvrqSTqdLvfy8kLLfL0mVgsrrUWd3c+13GHr60m/4NgMWu7MmTOnOSUlxWjevHmtp0+fpn777bcVAIOXO9rGO9ra2rB37twxCAsLc9Ck3dPT07f293DzdEZGBrm4uJjk6urKAQDo7u7GmpmZ/SkEeDj924aGBoKFhcVjoaNZWVnikSNHKvh8vm5AQABr2rRp/GvXrhlMmzat1dDQUAUAMH369JbMzEyyj4+P1vp5/vz5Lf7+/qzPP/+8Njk52WjmzJktAADNzc24uXPn2lVUVOhhMBi1XC7v+/6+vr7tmr5zfz09PZj333/fViAQELFYLDx48KBv7MjZ2bnTwcFBDgDA4/Gk5eXlWpf+27x5M23Lli205uZmfFZWlhAAoLCwULe0tJQ4efJkFkBv9L+pqWnfuQgPD28GAAgKCpJIJBLsUGv3Pk1dM9CYQX+DtcWeZGJioqiqqnpr290oAvgV8ff372xpacHX1dXh1Wo1rF69uk7zNKuysrJ4zZo1jQAAOjo6fQUaDodTKxQKjLb09PT01AAAeDx+wG2Qt4ezs3NXQUGB1kpfrdZeRwYFBUmys7NLrKysehYsWGB34MCBPz0dTU9PJ2dlZZHz8vJEJSUlAg6H09XV1aW1HElOTr5XWVlZFBwc3PzBBx/8KWJCrVYDBoP508GsWLHCJiYmpl4sFgsOHDjwQCaToXLqOXN2du4qLCzsyx/ff/995bVr18QtLS14tVqN2bdvX6WmPKqpqSmaPXt2+0D5BgCARCL1zSEabDsNqVSKWbt2re3p06fLxWKxYN68eY3d3d3oOiOvleHmeQAADEZ7tRsdHW134MCBSrFYLIiNja3tX55p6u2h9oW8HgIDA1u3bt1qPX/+/MfWMtR27TR1W/9OKQ6HA4VCgXle11okEukcOHDAPCsrSywWiwWTJ09uQ+Uo0p8m8KSioqKop6cHs3v3bjOA3jw7UL/jybJM8zcOh1Nrpgs/2e4b6DPa/K/tN+j7zwKDwUBaWtq9u3fv6g/3x4sNDAwea7ucOnWqTHNO6urqikaPHt19J7+I1Du47Cwd7eYkValeTlmNx+NhxowZHZ9//nltfHx85ZkzZ4y8vb0laWlpFAKBoJ45c2b777//bvD7778bTJkypQNg4Pqmvb0dO2fOHIdDhw49oNPpg857fpY6a7Dribx9IiIiWnNzcw1/++03Und3N3b8+PFSgMHLHW3jHUqlEshkskKzvUgkEty7d48PoD1P4/F4df8lDWQyGeZ/+8WEhYU1adKoqKgo3r9/f23/Yx5u/1ZXV1c1UL+Xx+PJjI2N5fn5+XpPW47Z2dnJR4wYobh58ybx9OnT1MjIyGYAgNjYWCs/P7+O0tJS/rlz58p6enr69v1kO1Rj165d5mZmZnKhUCgoKioSyOXyvs9oa5NoS2Pnzp3VDx48KNqwYUPNggUL7AB6zyODwejSnEexWCzIzc0t1XxGWz0w0DUZaPuBDDRm8OQ2TxroMzKZDDvQ+XsbvJURwEM9MX8Z7ty5o6dSqcDc3FwRFBTUvm3bNsvo6OhmCoWiun//PqF/QYi82Z41UvevmDlzZseWLVsw+/btM1m7dm0jAEBWVhZJIpFg/fz8OhITE01XrFjRVF9fj79165ZBQkJClVgs1rGzs+tZu3ZtY2dnJzY/P58EAE14PF4tk8kwurq66tbWVhyFQlGSyWTVnTt39PpPddZGV1dX/fnnn9fY29s75+fn640ePbpvWl5gYGB7aGgoY+PGjY8sLCyUjx49wpmbmys7OjpwNjY2coDetZZe6Il6DTxNpO7zoskfe/bsMY2NjW0AAJBIJFgAgKlTp7YdOnTIdMaMGR26urrqwsJCXTqdLh8o3xQWFj42pWnixImSZcuW2Uql0jq5XI65fPnyiPnz5zf030YqlWIBACwsLBRtbW3Yc+fO9T3tRpD+hhOp+6IMN89PnjxZsmjRIvqOHTvq5HI55tKlSyOioqIaAHrzuo2NjVwmk2F+/PFH6siRI9/eRcf+ouFE6r5Iy5Yta6RQKEoPD4+u9PT0vl/FHjduXMd3331nHB8fX5eenk42MjJSUKnUATsWA5WRxsbGSkNDQ2VGRoZBYGCg5D//+Y+xl5eXZKB0WlpacEQiUUWlUpVVVVX4a9euUfz8/FD03WvoVfc7jI2NlQkJCZWhoaGMjz/+uGGwfkddXZ3O5cuX9f39/TtPnDhB9fb2lgAA0Gi0ntzcXNKcOXPaf/rpp8dmGl68eHHErl276trb27E3btwgf/755zX9O/r9TZw4sX3//v1mR48erQIAaGhowPWPAh41alR3TU2NTnFxsa6Tk5MsOTnZ2NfXd1j5mkwmqzIyMkp9fHzY5ubmijVr1jS6ubl1fvvtt0bLly9vPnLkCHXMmDFa76lJkya179u3zzwpKakSi8VCbm4u0cfHpys3l95Jo41veXfuJ4++/PJL47UfnTVQq38uGd6ZfzYFBQW6WCwWnJ2dZQAAd+7cIdJotJ6JEydKPvjgA3pYWFiTpaWloqWlBd/Y2EjQ/CjkQPXNu+++S4+IiGgMDAwcsDzReNo6S1NPLl++vKmmpoZw48YN8nvvvfe3+MGvN91QkbovCoVCUY0bN65j8eLF9NmzZ/flhacd76BSqSoajdZz9OhRo0WLFrWoVCq4efMm0cvLq0tbnqbT6bILFy6MAAD47bffSDU1NboAvf3N2bNnMzZu3PjIyspK8ejRI1xbWxuOxWL1/ZDbcPu3TCazWygU6jo6Ov7pRxlramrw1dXVugwGo4dAIGjahQ/VajVcuHDBKCkpadAfaQsNDW3+97//bdHR0YHz8PDoAgBob2/H0Wi0HgCAI0eODPm7OwC9vzNFo9F6cDgcHDhwwFipfLbfUMPhcLB58+b6kydPmqSmphpOnz69o7m5Ga+pH2QyGaaoqEh3zJgx3QAAJ0+eNJo5c2bHL7/8YkAmk5XGxsbKga4JwMB1jTYDjRn03+Zp2mL379/X7b9U0NvmrRwAflU0U7EAep9SHDp0qAKPx8Ps2bPb+Xy+3tixY9kAvU90jh8/fh+Px6NBYOSZYLFYSEtLK4+JibH+4osvLHR1ddU0Gk321VdfVQUFBUmuX79uwOFweBgMRv3JJ59U29jYKL766ivjhIQECzweryaRSMrjx4/fBwCIiIho4HA4XCcnJ2lKSkrFN998Y8pisbgODg7drq6uA665pGFgYKBetmzZo927d5v/9NNPDzSvjxkzpnvt2rV1vr6+bCwWq3ZycpKmpqZWbNq0qfa9995zMDc37xkzZkxnZWWl1mVPkGeHxWLh3Llz5cuXL7dOSEiwoFKpChKJpNy2bVv1okWLWioqKnSdnZ05arUaQ6VS5RcuXCiPjIxs1ZZvCgsLH0vbz89PGhgY2MblcnlWVlYyFxeXTgqF8lglbWJiooyIiGjgcrk8Go3WM5x8hCAvi1wuBx0dHfVw8/z48eOl77zzTrOTkxPPyspK5uHh0deI3bBhQ62HhwfHysqqh8PhSCUSyaBT4pDXl4ODg3zLli1/moa+Z8+e2vDwcDqLxeISiURVUlLSn9Yn7W+wMvK77767v2zZMtuVK1dibWxsZCdPnqwYKB0vL68uJycnKZPJ5NnY2Mjc3d2HHNxB3l4+Pj5dHA6nSzMYOlC/w97evvvo0aPGMTExtnZ2drJ169Y1AADExcXVLl26lL5nzx65u7v7Y3W2m5tb55QpU5i1tbU669atq6PT6XLND/086dNPP61buHChDZPJ5GGxWPXGjRtro6Ki+pbNIZFI6sOHD1eEhYU5KJVKcHV1lWqOYTjMzc2VGRkZYj8/P7apqani0KFDlVFRUfQvv/zSwtjYWJGcnFyh7XO7d++ujY6OtmGz2Vy1Wo2h0WiyzMzMstWrV9eHhIQ4nDlzxmj8+PEdRCLxheQGvEgAACAASURBVEeNtbe341auXGnT3t6Ow+FwajqdLjt27NgDMpmsbGpqIkycOFECAMDlcrsePXqkwGJ7A/y01TdisVgnIyPD6N69e3o//PCDCQDAN998o/UcDJTGYMcaGRnZeuXKFUNHR0eenZ1dt4eHB3oIhcC7777bHBUV5XDy5Mm+Qc9nGe84efLkvQ8++MB2z549IxUKBeadd95pNjY2VmrL0/Pnz285fvy4MZvN5o4aNarT1ta2GwDA3d29e/PmzTVTpkxhqVQqIBAI6oSEhMr+A8AhISFtw+nfBgUFtV69epUcHBzcl8/9/PxYWCwWFAoFJi4urtra2lphbW2tCA8Pbxo9ejQHACAyMrJhoOUfNObNm9eyZcsWm1WrVvVFJ8fGxj5cvHixXUJCgoWvr2/7UOcdAOB5lllYLBZiY2Nr9+7daxESEtL+448/lq9cudKmo6MDp1QqMcuWLXukGQA2MjJSurm5sSUSCe6bb765D9C7tIW2awIAMFBdo81AYwb9txluW6yqqgqvq6urtrW1fWsDMp7bVLTXXUFBQYWrq2vjqz4OBEGQv7u2tjYshUJRdXR0YL28vBwPHz78QDMFDEFed7///jsxOjqaXlRU9Ke1yxHkeUBlJPI6Kikp0ZkxYwaztLSU/6qPBUEQ5HUjkUgwPj4+jrdv3xZp1g9HADw8PBz37t1bNWHChNe+HfPJJ5+YGRoaqjTLj/xdFBQUmLi6utKHsy3KuQiCIMhzNW/ePNvS0lKiTCbDvPvuu01oYAN5U3z22WemR44cMYuPj3/lS0Uhf1+ojEQQBEGQN4uBgYE6Li6u9v79+zpMJvNPy0Agr78RI0YoY2Jiml71cbxKKAIYQRAEQRAEQRAEQRAEQRDkDfI0EcDo14IRBEEQBEEQBEEQBEEQBEH+ptAAMIIgCIIgCIIgCIIgCIIgyN8UGgBGEARBEARBEARBEARBEAT5m0IDwAjylkpMTDS6evWq/qs+DgRBEARBEARBEARBEOTFQQPALxEOh3Nns9lcR0dHLpfL5Vy6dOmVDr4lJCQYz58/3+ZVHgPy4lRWVuJnzJhhb21t7eTg4MDz8/NjFBYW6gIAnDp1yrCmpkbn22+/NSkvLycAAJSUlOgcPnyY+lf2+dFHH1nGxcWZAwCEhITQ09PTyQAAHh4ejtnZ2aRnSdPNzY39V44J0a6qqgo/c+ZMOxqN5szj8TijRo1iJycnj3jVx4UgrwMSieSm+X9KSgrF1tbWqbS0VOd5pJ2enk6eNGkS48nX+5efw7F9+3azjo4O1I57wTAYjHtwcLCd5m+5XA5GRkau2q7hcDQ2NuJ2795t+vyOEEG00/Q7mEwmb/LkyYzGxkbc897HQOVWSUmJDpPJ5AEAZGdnkxYsWGD9V/eVkZFhwGAweGw2myuRSDD933vW+3SwvlD/euBli42NtWAwGDwWi8Vls9nc5xmw8Sq/F/L35uHh4ZiammrY/7Xt27ebzZs3z6aiooIQGBhoP9jnB+uLlpSU6GAwGPddu3aZaV6bP3++TUJCgvHzOXoEeTugjsNLpKurqxKJRIKSkhLBjh07ajZu3Egb7mdVKhUolcoXeXjI34hKpYJZs2YxJkyY0FFVVVVcXl7O//TTT2tqa2sJAAChoaHt27Zte3TixIkHDg4OcgCA0tJS3ZSUlL80APwi3LlzR/TkawqF4lUcyt+GSqWCmTNnMnx9fSXV1dVFfD5f+NNPP92rqqoa1gAXOv/I2+Ls2bPkdevWWV+4cKGUyWT2vOrj6e/IkSPmEokEteNeMCKRqCopKSFqBpx+/vlnQ3Nzc/mzptfU1IT7z3/+Yzb0li8GKr/fHpp+R2lpKX/EiBGK+Pj4V/LgYcKECdKkpKSqv5pOcnIy9cMPP3woEokEBgYG6v7vPe/79FW6fPmy/i+//DKiqKhIIBaLBZmZmWJ7e/vXqv5BEG3CwsKaTp48+VhfMjU1lTpv3rxmOp0uz8jIuDfY54fqi1KpVMWRI0fMuru7MQNtgyDI4FDH4RVpa2vDUSiUvlb4li1bzJ2cnDgsFou7Zs0aS4DeJ1329va8efPm2fB4PG55ebkOiURyW7ZsmRWPx+N4e3uzMjMzSR4eHo40Gs35+PHjFIA/P82eNGkSQxOJ+eWXXxrT6XSnsWPHOl6/ft1As82JEycoLi4ubA6Hw/X29mZVVVXhX97ZQJ639PR0Mh6PV69fv75B85q3t3dXYGCgRKVSwZIlS2hMJpPHYrG4iYmJRgAAmzZtssrLyzNgs9ncTz75xEyhUMCSJUtomnwZHx9vom1fsbGxFnQ63cnb25tVWlqqq3nd0NBQqaurq+q/7Z49e0yXLl3a9+AjISHBOCoqyhoAYNu2beZMJpPHZDJ527dv7+scayIV0tPTyZ6enqyZM2faOTo68gAADh48SHV2duaw2WxueHi4LerYDs+5c+fIBALhsfzBYrF6Nm3aVD/QdX/y/JeUlOjY2dnx5s6da8tkMnmzZs2yO3PmDHn06NFsW1tbp8zMTBIAQGZmJsnNzY3N4XC4bm5u7IKCAl2A3msfEBDg4Ovry7S1tXXS5IvPP//c5P333++LFNq3b5/J4sWLh/2wDEGel4yMDIPly5fT09LSyng8ngxg4LrSz8+PwWazuWw2m0smk0d99dVXxiUlJTru7u6OXC6XM9Csn6ysLBKHw+EKBAIdAAChUEjU1Ok7d+40AwBob2/HTpw4keHo6MhlMpm8xMREo507d5rV19cT/Pz8WJ6eniwAgIiICBsnJycOg8HgadoRAABWVlbOa9asseRyuRwWi8W9c+eO3ss4f38nU6ZMafvvf/87AgDg5MmT1JCQkGbNe48ePcL5+/s7sFgsrqurK/vmzZtEgN7IyLCwMPqT13Pt2rW0qqoqXTabzV2yZAkNYPA24LvvvmvLYDB4Pj4+TM3gFp/P1/X19WXyeDyOu7u7o+aa8vl8XVdXV7aTkxNn9erVloPVnwPVucjf07hx4zpramr6HvIOlOfs7Ox4s2fPprNYLG5gYKC9ZpaBlZWVc11dHR6gN6LXw8PDUZNWYWEhady4cSxbW1unffv2/amt2H/WQ1tbGzY0NJTOYrG4LBaLm5SU9KeZR2fPniVzOBwui8XihoWF0bu6ujD79+83OX/+PPWzzz6znDVrlt2TnwF4tvu0P5FIpDNq1Ci2k5MTZ9WqVX1l6EDt5unTp9unpKRQNNuFhITQk5KSRgyn7B9MTU0NgUqlKohEohoAYOTIkYr79+8TAgICHAAAfvjhhxF6enqju7u7MVKpFEOj0ZwBBi4XBvpeAE9f9iDIYCIjI1uuXLlC6erqwgD05qX6+npCQECApP+sgIH6Gk/2RZ9Mn0qlKsaPH9/x9ddf/ynqd9++fSZOTk4cR0dH7j/+8Q8HTdkVEhJCj4iIsPH09GTRaDTn8+fPG4SFhdHt7e15ISEh9Bd6QhDkNYQGgF8imUyGZbPZXDs7O96qVatst27dWgcAcPr0acOysjK9wsJCoVAoFNy9e5d08eJFAwCAiooKvYULFzYJhUIBi8Xq6erqwk6aNKmDz+cL9fX1lZs3b7bKyckR//e//y3bsWOH1WD7f/DgAWH37t2W169fF+Xk5IjFYnFf42fq1KmSu3fvioRCoSA0NLR5+/btFi/2bCAvUmFhIdHV1VWq7b3k5OQRRUVFRKFQyL9y5Yo4Li6O9uDBA8KuXbtqxowZIxGJRIKtW7fWf/HFFyYUCkVZXFwsLCgoEB47dsxUJBI9FiGak5ND+vnnn6lFRUWC9PT0soKCgr5G7nfffVc1derUzv7bR0ZGtly4cKGvsX/q1ClqeHh4S05ODunEiRPGt2/fFubl5QmTk5NNc3Nz/9Q4Lyws1I+Pj68pLy/n5+fn6506dYqal5cnEolEAiwWqz58+DCaBjQMRUVFRBcXF635Y7Dr3v/8AwBUVVXprV27tl4kEvHLy8v1jh8/bpyXlyfatWtX9a5du0YCALi6unbfunVLJBQKBVu3bq1Zv35932CuQCAgnTlz5p5QKOSnpaUZlZWVEd5///3mX3/9lSKTyTAAAD/88INJdHR004s/Kwjy/3p6ejBz585lpKamlrm5uXVrXh+orszKyioTiUSCxMTEipEjR/aEh4e3WlpaKnJycsQCgUCYkpJyb82aNY9NM7506ZJ+TEyMbVpaWhmXy+0BACgrK9PLysoS//HHH8K9e/daymQyzOnTpw0tLCzkJSUlgtLSUv7s2bPbN2/eXG9mZibPysoS37x5UwwAsH///pri4mKhSCTi5+bmkvsPcJiYmCgEAoFw0aJFDbt37x72MhNIr8jIyOaUlBQjqVSKEQqFJC8vr766bf369Zaurq5SsVgs2LFjR01UVFTf4JS267lv375qa2trmUgkEhw5cqR6sDZgZWWl3sqVK+vLysr4FApFmZycbAQAsHjxYtuDBw9W8vl8YXx8fPWyZctsAABWrFhhHRMTU19cXCy0tLR8LPqxf/k93DoX+XtQKBSQmZlJDg4ObgUYut+xdOnSBrFYLCCTyarhRA0LhULi5cuXS2/cuCGKj4+3rKioIAy07YYNG0YaGhoqxWKxQCwWC6ZPn97R/32pVIpZsmSJXUpKSrlYLBYoFAqIj483/eijjxr9/f1bd+7cWZ2WlnZfW9rPep9qxMTE2CxevLihuLhYaGFh0Xf/DNRunjt3bnNKSooRAEB3dzcmNzfXMDQ0tG2osn8owcHB7bW1tTp0Ot1p3rx5NufPnzcYP368lM/nkwAAsrOzDRgMRld2djYpMzNT383NTQIwcLkw0Pd6lrIHQQZjYWGhdHV17UxNTaUAABw7dow6a9asFiz28SGngfoaT/ZFte0jLi6u7sCBA+ZPBv1ERES0FBcXC0tKSgSOjo5dCQkJfQ+j2tra8L///rt49+7dVXPnzmV+/PHHj0pLS/kikYh4/fp1VPchb5W3MsrzzJkz1vX19c+0HulAzMzMpMHBwYNOb9JMxQLond6zcOFCO7FYzM/IyDDMzs425HK5XAAAqVSKFYlEevb29j0jR47smTJlSl8DhkAgqENDQ9sBAHg8Xpeurq5KV1dX7eHh0dX/yb422dnZ+uPGjeuwtLRUAADMnj27WSwW6wEA3L9/Xyc4OJjW0NBA6OnpwVpbW8v+2hlBNFYLK61Fnd3PNb+x9fWkX3Bsnmk6XU5ODnnOnDnNeDwerK2tFZ6enpLffvuNRKFQHovWvXz5sqFIJCKlpaUZAQB0dHTgBAKBHpvN7puGlpmZaTBt2rRWMpmsAgAICAhoHWzflpaWCmtra9mVK1f0eTxe97179/SmTp0q2bVrl9m0adNaDQ0NVQAA06dPb8nMzCT7+Ph09f+8i4tLp2b/GRkZ5OLiYpKrqysHAKC7uxtrZmb25oUAn1luDfWC55o/wIwrheCvh50/IiMjbW7dumVAIBDUNBpNpu266+joqPuffwAAKysrmYeHRxcAAIvF6po8eXI7FouF0aNHS3fu3GkJANDc3IybO3euXUVFhR4Gg1HL5fK+KJLx48e3GxsbKwEAGAxGd3l5uS6DwZD4+Ph0pKSkUJydnbvlcjlGsw/k7VO7cZO1rLT0ud4fukym1PLfuwa9PwgEgnr06NGSw4cPm3h6evZtO1hdWVdXh1+wYIHdjz/+WG5sbKxsamrCvf/++7YCgYCIxWLhwYMHfTMkysrK9GJiYuiXLl0S0+n0vg55QEBAK5FIVBOJRAWVSpVXV1fjR48e3bVp0ybrZcuWWf3zn/9sCwwMlGg75mPHjlGTkpJMFAoFpqGhgVBQUKDn6enZBQAQHh7eAgDg4eEh1dzbb5pfDn1h3Vj14LnmBRNrW+k/lq0esqz09PTsqq6u1k1MTKT6+/u39X/v1q1b5NTU1DIAgFmzZnVER0fjm5qacADar+eTaQ/WBrSyspJ5e3t3AQC4ublJKyoqdNva2rB37twxCAsLc9Ck0dPTgwEAuHPnjsGvv/5aBgCwePHipm3btvU9cOtffl+7ds1gOHUu8ny8qn6HJvCkpqZGx8nJSRocHNwOMHies7Cw6AkICOgEAIiMjGxKSEgwA4BHg+0nKCio1cDAQG1gYKDw8vJqz8nJ0ffw8ND6kDk7O9vwxx9/7JsGbmpq+tj6dgUFBXo0Gk3m4uIiAwBYsGBB09dff20GAFoHg/p71vtUIz8/3+DixYvlAABLlixp2rFjB221sNL6F6KZEWnjp8oZd+85AgAYxB/GzhHVMClsD2XhFNAPuCXSbWtuxhvsPYIJFdWylAoFVJSV6kk7O7GAwYDsg4+wgXnivojpodrwFApFVVxcLMjIyCBfuXKFHBUV5RAXF1dta2vbnZ+fr5efn6//4YcfPsrMzCQrlUqMj4+PZLByQdv3Anj6smeo84+8Xj4+VWAtftjxXMsdlgVZGh/qOmi5M2fOnOaUlBSjefPmtZ4+fZr67bffVjy5zUB9TB0dHfWfEnwCm83uGTVqVOeRI0ceWyri9u3bxLi4OKuOjg5cZ2cnzs/Pr68MmD59equmf2JsbCzv33cpLy/X1eR1BHkbvJUDwK8Df3//zpaWFnxdXR1erVbD6tWr6z7++OPG/tuUlJTokEikxwbl8Hi8WvMUDYvFgq6urhoAAIfDgVKpxGi2Uan+/2MymazvsRsGo30Gz4oVK2xWrVr1MCIioi09PZ28fft2S60bIm8EZ2fnrjNnzmjt5KvVQ9atmu0w+/btqwwJCWkfbLuB8tRAQkNDW06ePGnEZrO7g4KCWrBY7LCPqf/9oFarMWFhYU1ff/11zVMdAALOzs5dZ8+e7csf33//fWVdXR1+zJgxHCsrqx5t1z09PZ38ZHnUv6GGxWJBT0/vT+VRbGyslZ+fX8elS5fKS0pKdCZPnuyo7fM4HK5vcDg6Orpx165dFiwWq3vevHmPlYsI8jJgMBhIS0u7N2HCBNaGDRssdu/e/RBg4LpSoVBASEiIfWxsbO3YsWO7AQB27dplbmZmJk9NTb2vUqmASCS6a9I3MzOTy2Qy7I0bN0h0Or2vk6Kp0wF67yOFQoFxcXGR5efnC1JTUymbNm2yunz5cvvevXvr+h+vSCTSOXDggPnt27eFpqamypCQEHp3d3df3a+5N/F4vFqhUKCpvM8gMDCwdevWrda//vprSX19fV/7WVv9hcFg1ADar+eT2w7WBnyyjOzq6sIqlUogk8kKTUDBcD1Rfz7NR5E3lCbwpKmpCRcQEMDYvXu32ebNm+sHy3NPtuk0f+NwuL6+RVdXF1bbNgP93Z9arR7y/b/iWe7T/rBY7LAPAIvFAplCUba1NOOaGhvwxqamcgCAuppqHYKOjtqZzZaq1QB5ub8ZDJXWk/B4PMyYMaNjxowZHS4uLl3ff/+9sbe3tyQtLY1CIBDUM2fObA8PD6crlUrM/v37q4YqF7R9r6cte572OyBvp4iIiNbNmzdb//bbb6Tu7m7s+PHj//QwaKA+pmbJyqHExcU9nDNnjoOnp2ffDILo6Gi7U6dOlXl5eXUlJCQYZ2Vl9aXVv3/yZN8FtYmQt81bOQA81BPzl+HOnTt6KpUKzM3NFUFBQe3btm2zjI6ObqZQKKr79+8ThvMEbCAODg49iYmJJKVSCffv3ycUFhbqAwBMmDChMzY21vrhw4c4IyMj1c8//2zE4/G6AHqfvNnY2MgBAJKSktA0+ufoWSN1/4qZM2d2bNmyBbNv3z6TtWvXNgL0rjUpkUiwfn5+HYmJiaYrVqxoqq+vx9+6dcsgISGh6sGDBzoSiaQvGmLq1Klthw4dMp0xY0aHrq6uurCwUJdOp8s1EUMAAJMnT5YsWrSIvmPHjjq5XI65dOnSiKioqAZtx6Qxb968Fjc3N25RUZFs9+7d1U+k81CtVsOFCxeMkpKSBv2hgMDAwPbZs2czNm7c+MjKykrx6NEjXFtbG47FYr1ZP5TxFJG6z4smf+zZs8c0Nja2AQBA82NSA133Z91Xe3s7jkaj9QAAHDlyROs60k+aPHly54oVK3T4fL5+UVER/1n3jbz5horUfZHIZLIqIyOj1MfHh21ubq5Ys2ZN40B15fLly2lcLlcaHR3donmtra0NR6PRenA4HBw4cMC4/w+5GhoaKpOTk8v9/f1ZBgYGqhkzZjw2Dbq/iooKgpmZmSImJqaZTCarjh07ZgwAoK+vr2xra8OOHDkSWlpacEQiUUWlUpVVVVX4a9euUfz8/AZM8000nEjdF2nZsmWNFApF6eHh0dW/kzpu3LiO7777zjg+Pr4uPT2dbGRkpKBSqaqB0qFQKMrOzs6+wZSnbQNSqVQVjUbrOXr0qNGiRYtaVCoV3Lx5k+jl5dU1atQoSVJSktEHH3zQcvTo0QF/SOdZ6lzk2b3qfoexsbEyISGhMjQ0lPHxxx83DJbn6urqdC5fvqzv7+/feeLECaq3t7cEAIBGo/Xk5uaS5syZ0/7TTz89FmBw8eLFEbt27aprb2/H3rhxg/z555/XaJZxetLEiRPb9+/fb3b06NEqAICGhgZc/yjgUaNGddfU1OgUFxfrOjk5yZKTk419fX2HXZb9lft09OjRksTERGpMTExzYmKiMUBvG/7YrcyOxK/+bZp+7VppfX09fsysZZwrN26IbWxsFD+W5VP+s3eryYOiInxxRYVQT09P/f6hPdY0Gq3nkzlBj7788kvjX9esNshQq0uG+x0KCgp0sVgsODs7ywAA7ty5Q6TRaD0TJ06UfPDBB/SwsLAmS0tLRUtLC76xsZHg7u7ejcViYaByQdv3Anj6sgd5swwVqfuiUCgU1bhx4zoWL15Mnz17drO2bQbqa1AoFGX/vuhA3NzcuplMZteVK1coHh4enQC9Eew2NjZymUyG+fHHH6kjR458I38EEkFetLdyAPhV0UzFAuh96nro0KEKPB4Ps2fPbufz+Xpjx45lA/RGaRw/fvw+Ho9/pkp46tSpkq+//lrm6OjIc3R07OJyuVIAAFtbW3lsbGztuHHjOKampnIXFxepJkpv06ZNte+9956Dubl5z5gxYzorKyvRVJ83GBaLhbS0tPKYmBjrL774wkJXV1dNo9FkX331VVVQUJDk+vXrBhwOh4fBYNSffPJJtY2NjcLc3FyJx+PVjo6O3PDw8MbNmzfXV1RU6Do7O3PUajWGSqXKL1y4UN5/P+PHj5e+8847zU5OTrz/LQegdWpyf6ampkomk9lVWlpKnDRpklSTTnh4eNPo0aM5AACRkZENQ01FdXd37968eXPNlClTWCqVCggEgjohIaHyjRsAfgWwWCycO3eufPny5dYJCQkWVCpVQSKRlNu2batetGhRy1DX/WnExsY+XLx4sV1CQoKFr6/voNHk/QUHB7cUFhaSnpweiiAvk7m5uTIjI0Ps5+fHNjU1VQxUV37zzTfmDAajm81mGwIAbNmypWb16tX1ISEhDmfOnDEaP358B5FIfGywwdraWpGenl4WFBTEJJFIFQMdw+3bt4n/+te/aFgsFvB4vPrgwYMPAACioqIag4KCmGZmZvKbN2+KnZycpEwmk2djYyNzd3cfsixGno6Dg4N8y5Ytf5qGvmfPntrw8HA6i8XiEolEVVJSktb1STUsLCyU7u7uEiaTyZs8eXLbkSNHqp+2DXjy5Ml7H3zwge2ePXtGKhQKzDvvvNPs5eXV9dVXX1VFRETYJSQkWAQEBLQaGBhoLT+fpc5F3mw+Pj5dHA6n69tvvzVavnx580B5zt7evvvo0aPGMTExtnZ2drJ169Y1AADExcXVLl26lL5nzx65u7v7Y7/v4Obm1jllyhRmbW2tzrp16+rodLq8pKRE67J0n376ad3ChQttmEwmD4vFqjdu3FgbFRXVt3wYiURSHz58uCIsLMxBqVSCq6urVHMMw/FX7tODBw9Wvvvuu/YHDx40nzVrVt/DvMjIyFZt7WYAgHfeead96dKldv7+/q2aKMOhyv6htLe341auXGnT3t6Ow+FwajqdLjt27NgDMpmsbGpqIkycOFECAMDlcrsePXqk0MwMHahcGOh7Pe/+J4JovPvuu81RUVEOJ0+e1Ppgcc2aNY3a+hoeHh5d/fuiA60DDACwZcuWOh8fH67m7w0bNtR6eHhwrKysejgcjnQ4A8kI8jbCvC3TwAoKCipcXV3RVGIEQZA3wKRJkxirV69+9M9//vNvFcWIIAjyonR0dGD19fVVWCwWvvnmG6OUlBTqlStXnvkBHvJ2KSkp0ZkxYwaztLQUzbxBEARBkDdEQUGBiaurK30426IIYARBEOS10djYiBszZgyHw+FI0eAvgiDI8OXm5pJWrVplo1arwdDQUJmUlFTxqo8JQRAEQRAEeT2gCGAEQRAEQRAEQRAEQRAEQZA3yNNEAKNf9EQQBEEQBEEQBEEQBEEQBPmbQgPACIIgCIIgCIIgCIIgCIIgf1NoABhBEARBEARBEARBEARBEORvCg0AIwiCIAiCIAiCIAiCIAiC/E2hAWAE+RurrKzEz5gxw97a2trJwcGB5+fnxygsLNT9q+lu2LDBov/fbm5u7L+aJvJyVVVV4WfOnGlHo9GceTweZ9SoUezk5OQRCQkJxvPnz7d51ceHIK8SiURy0/w/JSWFYmtr61RaWqrzKo8JeTUwGIx7cHCwneZvuVwORkZGrpMmTWK8yuNCkKHgcDh3NpvNZTKZvMmTJzMaGxtxr+pYUDvx6cTGxlowGAwei8Xistls7tWrV/WH+szq1astz5w5QwYA2L59u1lHR8dz6ed/9NFHlnFxcebPI62QkBD6d999Z/Q80kJePyqVCtzd3R1/+uknQ81r3377rZGvry/zVR4XgiD/Dw0Av0SahpijoyOXy+VyLl26NGhlXlJSosNkMnkAANnZ2aQFCxZYD7b9Z599ZnrgwAHjpzmm77//fsS6detGAvRW8GZmZi6aUMNlHwAAIABJREFUxuLx48cpmteftuKvqKggBAYG2j/NZ/p7suHi5+f33BuuA32vgoICXQ8PD0c2m821t7fnvffee7YAANevXyempKRQhkp3uNsN15IlS2gMBoO3ZMkS2r///W/TL7/8cljXWKVSwaxZsxgTJkzoqKqqKi4vL+d/+umnNbW1tQTNNgqF4pmOKSEhYWT/v+/cuSN6poSQV0KlUsHMmTMZvr6+kurq6iI+ny/86aef7lVVVaEBLgTp5+zZs+R169ZZX7hwoZTJZPa86uNBXj4ikagqKSkhSiQSDADAzz//bGhubi5/mjTk8qfaHEGeC11dXZVIJBKUlpbyR4wYoYiPjzd9VceC2onDd/nyZf1ffvllRFFRkUAsFgsyMzPF9vb2Q9Y/X3zxRW1wcHAHAMCRI0fMJRLJX+7no7ILeRpYLBYOHz78YMOGDdZSqRTT3t6O3bFjh9Xhw4crX/WxIQjSCw0Av0SahlhJSYlgx44dNRs3bqQN97MTJkyQJiUlVQ22zfr16xtWrFjR9DTHtH//fou1a9c2aP5eunTpI5FIJEhJSSlfsWIFXalUPk1yANDbWKDT6fKMjIx7T/3h/3my4ZKVlVVmYmLy9AfzDJYvX26zcuXKRyKRSHDv3j3+mjVr6gEA8vLySOfPnx9yYHe42w3X8ePHTYuKigRHjhyp/vDDD5sOHz48rMH49PR0Mh6PV69fv77v+np7e3cpFAqMp6cna+bMmXaOjo48AIBt27aZM5lMHpPJ5G3fvt1Ms72/v78Dj8fjMBgM3t69e00AAGJiYqxkMhmWzWZzZ82aZQfw/9FybW1tWC8vLxaXy+WwWCzuDz/8MOJ5nQfk+Tl37hyZQCA8ljdYLFbPpk2b6gEAHj58SPD19WXa2to6LV26tK+cioiIsHFycuIwGAzemjVrLDWvW1lZOa9Zs8ZSc93v3LmjBwCQmZlJcnNzY3M4HK6bmxu7oKDgL0efI8jLkpGRYbB8+XJ6WlpaGY/HkwEA1NbW4v/xj384ODk5cZycnDi//vqrPkDvA8WwsDC6h4eHI41Gc965c6cZAMCqVassd+zY0Vemfvjhh1Y7d+40Q2Xlm2XKlClt//3vf0cAAJw8eZIaEhLSrHnv0aNHOH9/fwcWi8V1dXVl37x5kwjQmyfee+89Wx8fH+bs2bPtpFIpJjQ0lM5isbgcDod77tw5MkDvg9jo6Ggai8Xislgs7q5du8wAALKyskhubm5sR0dHrrOzM6elpQU7UBoIMpRx48Z11tTU6AD0PgResmQJjclk8lgsFjcxMdEIoLfdOHbsWMdp06bZ0+l0p5iYGKtDhw5RnZ2dOSwWi8vn83UBAE6cOEFxcXFhczgcrre3N6uqqgoPMHA5CIDaiU+jpqaGQKVSFUQiUQ0AMHLkSMX9+/cJAQEBDgAAP/zwwwg9Pb3R3d3dGKlUiqHRaM4A/x9du3PnTrP6+nqCn58fy9PTk3X8+HEKm83mstlsLp1Od7KysnIGAMjJySGNHTvWkcfjccaPH8988OABAQDAw8PDccWKFVZjx4513Llz52N9jn379pk4OTlxHB0duf/4xz8cNME6ISEh9AULFli7ubmxaTSasybKV6VSwfz5820cHBx4EydOZDQ2NuJf3plEXoWxY8d2BwQEtG3ZssVi/fr1lnPmzGni8Xiyr776ytjZ2ZnDZrO58+bNs1EqlSCXy4FMJo9asmQJjcvlcsaPH8+8evWq/tixYx1pNJqzJqBKLpfD4sWLaZqyaP/+/SYAAGfOnCF7eXmxAgICHOh0utM777xDf6VfHkHeAGgA+BVpa2vDUSgUBcDADbH+0tPTyZMmTWIolUqwsrJy7h8Na2Nj41RVVYXvH9E6UAXdX2Fhoa6Ojo5q5MiRfwoDHT16dDcOh4OHDx8+VlF7eHg4ZmdnkwAA6urq8JpGREJCgnFQUJD95MmTGb6+vqz+0csJCQnGAQEBDsMdUHqy4QLQO8BUV1eHB9A+WFlSUqJjb2/Pe/fdd20ZDAbPx8eHqYnWGc656K++vp5ga2vb96Tdw8Ojq7u7G/Ppp59anjt3zojNZnMTExONtA1uaduuvb0dGxYWRndycuJwOBytjd2B8sDkyZMZXV1dWDc3N05iYqIRmUxW0Wg0WWZmJmmw7/C/60t0dXWVDvCefnx8fE15eTk/JyeHdOLECePbt28L8/LyhMnJyaa5ublEAIDjx49X8Pl84d27dwVHjhwxf/jwIe7gwYM1mocZaWlp9/unSyKRVOfPny8TCATCrKws8caNG2kqlWqoQ0VesqKiIqKLi4vWvAEAIBAISGfOnLknFAr5aWlpRmVlZQQAgP3799cUFxcLRSIRPzc3l6wZ6AAAMDExUQgEAuGiRYsadu/ebQ4A4Orq2n3r1i2RUCgUbN26tWb9+vXDfuiFIK9ST08PZu7cuYzU1NQyNze3bs3rS5Yssf7oo48eFRcXC3/++efypUuX0jXvlZWV6WVlZYn/+OMP4d69ey1lMhkmJiam8eTJk8YAAEqlEs6cOWO0ePHiJlRWvlkiIyObU1JSjKRSKUYoFJK8vLw6Ne+tX7/e0tXVVSoWiwU7duyoiYqK6lsuorCwkPTLL7+UnTt37v6ePXvMAADEYrHgxIkT96Kjo+lSqRSzb98+0wcPHujy+XyBWCwWLF68uKm7uxsTERHh8MUXX1SWlJQIsrKySgwMDFQDpfHyzwjyJlEoFJCZmUkODg5uBQBITk4eUVRURBQKhfwrV66I4+LiaJrBP5FIRDx06FCVUCjknzp1ylgsFusVFRUJIyMjG/ft22cGADB16lTJ3bt3RUKhUBAaGtq8ffv2vmXBtJWD/Y8FlX1DCw4Obq+trdWh0+lO8+bNszl//rzB+PHjpXw+nwQAkJ2dbcBgMLqys7NJmZmZ+m5ubpL+n9+8eXO9mZmZPCsrS3zz5k1xREREm0gkEohEIgGXy5WuWLHioUwmw6xcudLm7Nmz5Xw+XxgVFdW4bt06K00ara2tuD/++KPkk08+edQ/7YiIiJbi4mJhSUmJwNHRsSshIcFE896jR48IeXl5orNnz5Zu3brVCqB3pmlZWZluSUkJPykp6UF+fr7Biz17yOvgs88+q01NTTW+evWq4fbt2x/+8ccfemfPnh2Rn58vFIlEAqVSiUlMTKQCAEgkElxgYGC7QCAQ6ujoqLdt22Z5/fr1kpMnT5bv2LHDEgBg3759pmZmZoqioiJhQUGBMDEx0UyzLBefzyclJiZWlpWVFZeWlhKvXLky5HIpCPI2eyufwgmEsdadEvGQA2hPQ9+AJeVy9gwaoauJmpTJZJjGxkbChQsXxACPN8Tq6urwHh4enICAAIm2NHA4HAQEBLQeP358xKpVq5quXr2qT6PReqytrR8bxI2IiGhZu3ZtIwDAypUrLRMSEkw00X0amZmZBgMNAl29elUfi8WqtQ0ODyQ/P9+gsLCQb25uriwpKXlsKrlAICAVFBQIiESiisFgOK1bt+4Rg8GQ79+/v8bc3FypUCjA29vb8ebNm8TNmzfXHzp0yDwrK0v85P77D1aq1Wpwd3fnTJkypcPExERZWVmp98MPP9zz9vZ+MG3aNPvk5GSjmJiY5uGci/6WL1/+aNq0aSw3N7fOKVOmtC1fvrzJxMRE+a9//as2Ly9PPzk5uRIAoLm5GXvr1i0RgUCAM2fOkNevX0/75Zdfyp/czm/tQY6c8x7Wwc9MoVAoYPPVu/Y/NmV14nD/v6JFU2Mjvh47isBZOa9LLpdjduTetTvdcdWcPHu72tzyOjiO81amy8As/cBvZs2jF+p8eum+9aRJk0qGe22e5OLi0slms3sAAK5du2Ywbdq0VkNDQxUAwPTp01syMzPJPj4+XXv27DE/f/78CIDeqFA+n69nYWHROVC6KpUKs3r1atqNGzcMsFgs1NfX61RXV+NtbGyeba2Jt8CW3C3WZS1lz7U8YhgxpDt8dgxaHvUXGRlpc+vWLQMCgaCOjo6uHz9+fLuxsbESAIDBYHSXl5frMhgM+bFjx6hJSUkmCoUC09DQQCgoKNDz9PTsAgAIDw9vAQDw8PCQpqWlGQEANDc34+bOnWtXUVGhh8Fg1HK5HA1UIE/lSrLQurlG8lzvD6qVgXTKfM6g9weBQFCPHj1acvjwYRNPT8++bXNzcw1LS0v7HnxIJBJcS0sLFgAgICCglUgkqolEooJKpcqrq6vxjo6OPSNGjFDk5uYS6+rqCDweT2phYaGUyWSorHxKzafE1vKHnc81LxAs9KXUUNaQZaWnp2dXdXW1bmJiItXf37+t/3u3bt0ip6amlgEAzJo1qyM6Ohrf1NSEAwAIDAxsNTAwUAMAXL9+3eDDDz+sBwBwc3PrtrS07CkqKtK7evWq4dKlSxsIhN7VmczNzZW3bt0impmZyf38/KQAAFQqVTVYGppyGHk9vep+R01NjY6Tk5M0ODi4HQAgJyeHPGfOnGY8Hg/W1tYKT09PyW+//UaiUCgqZ2fnTltbWzkAgI2NjSwoKKgNAMDV1bUrKyuLDABw//59neDgYFpDQwOhp6cHa21tLdPsU1s56ODg0LeOwJvWTvz4VIG1+GHHc712LAuyND7UdcBrR6FQVMXFxYKMjAzylStXyFFRUQ5xcXHVtra23fn5+Xr5+fn6H3744aPMzEyyUqnE+Pj4aO0zPmnz5s3menp6qn/9618Nf/zxh15paSlx8uTJLIDeQBRTU9O+6/Tee+81a0vj9u3bxLi4OKuOjg5cZ2cnzs/Pr688nDVrVisOhwN3d/fupqYmAgBAVlZWX16j0+lyLy+vjuGeJ+QvOrPcGuoFzzXvghlXCsFfD1lnGhoaqoKDg5sNDAyURCJRffHiRcPCwkJ9Z2dnLgBAd3c3lkaj9QAA6Onpqd555512AAAul9tFoVCUBAIBxo4d26WZtXD58mXDsrIy4unTp6kAAB0dHTiBQKALADBq1Ki+MsvJyUlaXl6uM2XKlAH7qgjytnsrB4BfFU3UJEDv+k4LFy60E4vF/IEaYmPGjNHaoA8PD2/evn275apVq5qOHz/+2FREjcEqaI26ujqCqanpYw2uw4cPm//000/G+vr6yuTk5HtY7PCDxH19fdvNzc21LtPwLANK2gw0WBkWFtZqZWUl8/b27gIAcHNzk1ZUVOgO91z0t2rVqqZ//vOf7WfOnDE8d+7ciKSkJFOBQCB4crvhDm7VVlfrKAzk2Lra6r6pdzKZDEsikfpCHjo62nDGJqZyDAYDOjo6arIhRSnp6MBS/3fO+iMQCGqppGnIC+Ps7Nx15swZrT+00H/farVa6+fT09PJWVlZ5Ly8PBGZTFZ5eHg4dnV1DbrfI0eOUJuamvBFRUVCXV1dtZWVlfNQn0FePmdn566zZ8/25Y3vv/++sq6uDj9mzBgOAICOjk5fpsDhcGq5XI4RiUQ6Bw4cML99+7bQ1NRUGRISQu/u7u67tnp6emoAADwer1YoFBgAgNjYWCs/P7+OS5culZeUlOhMnjzZ8eV9SwR5dhgMBtLS0u5NmDCBtWHDBovdu3c/BOgtL/Py8oSaQb3+dHV1+983oLkPFi5c2Pjtt9+a1NfXExYuXNgEgMrKN1FgYGDr1q1brX/99deS+vr6vvaztjoUg8GoAQD09fWHrGvVanXf9oO9NlgaCKKNpt/R1NSECwgIYOzevdts8+bN9YPlo/7lGBaL7avbsVgsKJVKDADAihUrbFatWvUwIiKiLT09nbx9+3ZLbZ/vXw5qoLJvePB4PMyYMaNjxowZHS4uLl3ff/+9sbe3tyQtLY1CIBDUM2fObA8PD6crlUrM/v37hxyQO3v2LPnMmTPUGzduiAAA1Go1hsFgdN29e1fr2sxkMllrWHZ0dPT/sXffcU1e++PAP1mEFZAZIIQh2QkgwyBLFPRWWqFeUVFQbmsVF7UiKn61TtRCHbeNthW1ar3iaNEqoMXWVkHtTy0WWUkIoAiyNwkjJCS/P7jhIgIuFMd5v16+XpI84yQ5z1nP55zHPjk5udjT07NDIBCYaG4KAPyvHfjf4/fug8Gge//vIiwWC5pxBLVaDXPmzKn/+uuvK/tuo1AoAI/H9y1z1EQiUQXQ0//QlB9qtRq+/vrrBx9++OEjNxDOnTtH0tLSUvXdv3+ZgyDIo97JAeAn3TF/FSZNmtTW1NSEr6qqwj9rgz4gIKDtk08+IVZWVuLT09NHbd++vbL/NkNV0Bo6OjqqlpaWR/LA4sWLa7Zu3VrTf1sNPB6v1qwL3H/aYd9Bxf6eZ0BpIEN9V/3PoWlQPs130Z+dnZ1ixYoVDStWrGig0+ncrKwsnf7bPO3gllb++a7kEyfuOTs7ywd6HwBg/vzDVCeqU/uKqBkNAADTpu2yn+kxszE8/MMW3TX/cDl/vL032nf79u3mNa01T7x2g4KCpBs2bMDs3r3bVBMBnZGRoXvlypVHpl/5+/vL5s+fbxcXF1etVqvh4sWLRkePHr13//59oqGhYTeJRFJlZ2dr5+Tk9E6pwePxarlcjunb0AfoWdrE1NRUQSQS1ampqaTKykr0ULEneJZI3eGiyRsJCQlmsbGxdQAAT3pYSFNTE05HR0dlbGzcXV5ejr969aqhn5/fkJEcra2tOM0d/sTERNOhtkWQgTwpUvdlIpFIqvT09CJvb28WmUxWRkdH1/v4+LQmJCSYx8XF1QD0PPRTc+NxMPPmzWvevn07RalUYkJCQu4BoLLyeTxNpO7LtGTJknpDQ8NuPp/fkZaW1tuOGDdunPTIkSMmO3furEpLSyMZGRkpNRG7ffn4+MiOHz9uHBwcLM3NzSVWVVVpOTk5dU6aNKl1//79Zh988IGUQCBATU0NztnZubOmpkYrIyND18/Pr72pqQmrr6+vGuwYr/abQJ7VSPc7TExMugUCQdmMGTNoq1evrvPz85MePHjQLCoqqqG2thZ/+/ZtfYFAUJ6bm/tYW3cgUqkUZ2NjowAAOHr06DM9fPpNK/uGitR9WXJycohYLBYcHR3lAADZ2dk61tbWXRMmTJAtXLjQbubMmQ1WVlbKpqYmfH19PcHNze2xMkBPT6+7paUFa2lpCRKJROuzzz6zTU9Pl2huXjo5OXU2NjbiL1++rDdp0qQ2uVyOycvLI7q7uw9ZnrS3t2NtbGwUcrkcc+rUKWNLS8shnxKnyWvLli1rqKioINy8eZM0WHQxMsyeIlL3VQkMDJTOmjXLYe3atbWWlpbK6upqnFQqxdnZ2T3Vw3UnT57c+u2335q///77UgKBADk5OUQHBwf0YF4EeQ7ojusIyc7O1lapVEAmk5V+fn7S5ORkY6VSCZWVlfjbt2/r+/r6Djp1AYvFQmBgYPPSpUupNBqtw8LC4rEo0f4V9EDH4XK5nSUlJc/0UCYqlSq/ffu2HgBAUlLSgNGlT2ugASXNe5qGS/99/P39ZRcvXhwllUqxra2t2IsXLxpNnDhxyEGop/ku+kpOTjbQrFlWVlaGb25uxtna2nYZGBh09x0kG2xwq/92EydObN29ezdZs8aZZn3dvp4lD0gkEiKPx3vidE8sFgspKSklv//+uwGVSuXRaDTupk2brKysrB5prPn4+LSHhYU1uLq6st3c3Njz5s2r8/b27ggJCWlRKpUYBoPBWbdunZWzs3NvesLDw+vYbHbvQ+A0FixY0JiTk6PH4/HYx48fN7a3t0cd09cQFouF1NTUkmvXrpEoFIqjo6Mje+7cuXabN29+ONg+np6eHTwer51Op3PnzZtn5+bm9sQph7GxsdWbN2+2dnV1ZT3PAyURZKSRyeTu9PR0ya5duyyPHz8+6sCBA+V///23HoPB4Dg4OHD37dtn9qRjaGtrq728vFqDg4Mb8fiee3eorHzzODg4KDZs2PDY8lEJCQmVf//9ty6DweCsX7+ecvTo0fsD7b9mzZra7u5uDIPB4ISGhjokJiaW6ujoqKOjo+usra27WCwWl8lkcr7//ntjbW1tdVJSUsny5cttmEwmZ8KECYz29nbsYMd4+Z8eedN5e3t3sNnsjkOHDhnNmzevmcvldrDZbO6ECRMYW7ZsefgsSzCsX7++cs6cOQ5ubm5MExOTZ1q6AZV9T9ba2oqLiIiwd3Bw4DIYDI5YLNZJSEionDBhgqyhoYEwYcIEGUDPdHkmk9kx0GzNf/3rX/WBgYF0Dw8PRmJioklLSwtu2rRpNBaLxfHz86Npa2urT506VbJ27VprJpPJ4XK5nIyMjCeuz7t27dpKPp/P9vX1ZdDp9Cf+dvPmzWsePXq0nMlkcj/55BMbPp+PloB4B/H5/I61a9dWTpw4kcFgMDgBAQGMysrKpw5EXLVqVZ2Dg0Mnh8Ph0ul07qJFi2zRsnII8nww78p0spycnFJnZ+f6kUwDDodzo9PpHQA9kaxbtmypmD17dotKpYIlS5ZY//HHH4YYDEa9evXqqoULFzYVFhZqTZ06lV5UVFSQlpZG2r17N/nKlSvFAACZmZm6fn5+bIFAUPrpp582APQ8fVdfX79769atNQkJCWYCgcCCQqF0sdnsdplMhjtz5kxp3/RIpVKsi4sLWyKRFGCx2Ef277td39ezs7O1Q0NDR+vp6al8fX1bz5w5Y1JRUZEnEAhM+q572zft/d+bOHEiLSYmpmbq1KnSkJAQu+zsbD0bGxu5lpaWeurUqc3Lly9v2L59u/mhQ4fMzM3NFbdu3ZJQKBTHrKwskaWlpXLz5s3kpKQkUwCAefPm1W3cuLG27/kAADZu3EiWyWS4PXv2VA72XQz2eRcsWGB9+fLlUZopKJ999ln10qVLG2tqanABAQEMpVKJiYmJqbK3t+9asGCBvbGxsdLX17c1OTnZpKKiIq//dnPmzGmOjIy0ycrK0lOr1Zj/PsStuO85B8sDAD1PTm5vb8/WbMvhcNi///570bOsz4wgCIKMjO7ubuByuZyffvqpRBPRhSAIgiAIgiAI8qJycnJMnZ2d7Z5mWzQA/I77+OOPqR9++GHztGnT0B3ZN8CNGzd0du7caXHu3LkBI4wQBEGQ18edO3e0P/zwQ3pgYGDTwYMHB42wRxAEQRAEQRAEeVbPMgD8Tq4BjPzP1q1bqzIzM/WevCXyOqitrSUkJCRUjHQ6EARBkCdzc3PrfPjwYd5IpwNBEARBEARBkHcbGgB+x1GpVGV4eHjLSKcDeTr//Oc/W0c6DQiCIAiCIAiCIAiCIMibAz0EDkEQBEEQBEEQBEEQBEEQ5C2FBoARBEEQBEEQBEEQBEEQBEHeUmgAGEEQBEEQBEEQBEEQBEEQ5C2FBoBfIRwO58ZisThMJpPD4XDYv/3227A+fO3LL78027dvn8lwHnMoAoHAJCIiwuZpXufz+czMzEzdV5W251VaWkqYMmXK6JFOx3ApKyvDT506dTSVSuU5ODhw/fz8aLm5ucTBtqdQKI5VVVVobfB3QHl5OT4oKMje2trakcvlsseMGcM6duzYqJFOF4K8DnR1dV00/z99+rShra0tr6ioSGuoerbve89a5/355586p0+fNtT8nZSUZLhu3TqLF/kMyPDAYDBu06ZNs9f8rVAowMjIyHnixIm0V52WkJAQuyNHjhj1fz0zM1P3o48+or7q9CCvN02/g06nc/39/Wn19fW44Tr2cOY5Pp/PtLOz47FYLA6LxeIMlMcHM1hf5HkUFhZq7d+/31jz90hdV9XV1TjNd2Fqaupsbm7upPm7s7MTM9A+Pj4+9KamJqxSqQQ3NzcmAMC5c+dIkyZNcui/7bFjx0Zt2LCBPNj5r1+/rpucnGwwfJ8IeVccO3ZslCavav5hsVi3H3/88YXy08qVK602btz4WJ592/rtCPIqoIGeV4hIJKrEYrEQAODMmTMG69ats548eXLhcB1/zZo1dcN1rJGmVCoBj3/12dPOzk6Rnp5+75Wf+CVQqVQQHBxMCwsLa0hLS7sH0DPIUFlZSXBycpKPdPqQkaNSqSAoKIgWFhbWkJqaeh8AQCKRaP3000+PDAArFAogEAgjk0gEeQ2cP3+etGrVKmp6enoRnU7vGqyeVSgUL1QHZ2Vl6WZlZemFhoa2AAD89+Gs6AGtrwEdHR1VYWGhjkwmw+jr66t//vlnAzKZrBjpdPU1fvz49vHjx7ePdDqQ10vffsf06dPtdu7caZaQkFA9HMce7jx37Nixe68iDw/VrikqKiKePn3aePHixY0AI3ddWVhYdGt+t5UrV1rp6+t3b926tWaofa5fv16k+f+dO3eG7FtGREQ0D/X+7du3dfPz83VmzJiBHjyNPJOIiIjmvvlr165dpqdPnzYJCQl5KXnpbeq3I8irgiKAR0hLSwvO0NBQCdAzGLNo0SJrOp3OZTAYnIMHDxoBADx48IDg7u7O1Ny9T09P1wfoiUz69NNPKUwmk+Ps7MwqLy/HAzx6d2z37t2mPB6PzWQyOe+9956DVCp97Le+cuWKrouLC4vNZnNcXFxYOTk5RICeu+n/+Mc/HHx9fem2tra8xYsXW2v2+frrr03s7Ox4Y8eOZf7555/6z/PZz549azBmzBgWh8NhBwYGjm5pacEC9ESfrlq1ytLNzY156NAh4753D3E4nJtEItGqrKzEv/feew48Ho/N4/HYv/76qx4AQGVlJd7Ly4vO4XDYYWFhtlZWVr2RrJs3bybT6XQunU7nbt261RwAYMmSJZT4+HgzTZpWrlxptWnTJnJhYaEWnU7nPul7CA8Pt+HxeGwajcaNjo62ep7v4WVLS0sj4fF4dd9BCS8vrw6lUonpG7kUERFhIxAIeiPatm7dSnZ0dGQ7Ojqy8/PziQAAJ06cMHRycmKx2WyOl5cXQ5PnkDdTamoqiUAgPJI3GAxG1/r162sFAoFJYGDgaH9/f5qvry8DAGDDhg1kHo/HZjAYnL75/dtvvzV2dHRks1gsTlhYmK1SqQQAgOQ1N/GWAAAgAElEQVTkZAMOh8NmMpkcT09PBgBAa2srdubMmXY8Ho/NZrM5x48fR9HGyGstPT1df9myZXYpKSnFXC5XDvBoPcvn85lRUVGUsWPHMrdt20buH6Fy9OhRExcXFxadTudeuXJFF2DgerezsxPzxRdfWKWmphqxWCzOwYMHjYYzqg15cQEBAS2aG2QnT540DgkJadS8V1NTg5s0aZIDg8HgODs7s27duqUDAODn50fTtGFIJNKYvXv3mhQWFmq5ubkxORwOu+9MsLS0NNLYsWOZ77///mg7Ozve0qVLKd99952xo6Mjm8FgcAoKCnpn7vz2228kNzc3pp2dHe/kyZOGmv019Xp1dTXO29ubzmazOX3bQ33bNwAAGzduJK9cudIKAKCgoIDo6+tL53K5bDc3N2Z2drb2q/hekVdn3LhxbRUVFVoAj+YXgEfbgUuXLqU4ODhwGQwGJzIy0hoA4PDhw0Z0Op3LZDI57u7uzP7HeJ7+xNMYrI0xWF9ksD7CypUrrebMmWPr7e1Nnz59uv1g1+H69espWVlZ+iwWi7Nlyxbzvp9xsOt85cqVVjNnzrTj8/lMa2trx23btpk/1w/0lPz9/WlcLpdNo9G4e/bsMdW8TiaTnerr63EKhQJIJNKY/vv98ccfehwOh11YWKi1Z88e0/nz51MBAA4cOND723p4eDBkMhlm586dlj///LOxJhr7999/1xszZgyLzWZzXF1dWXl5eUQAgD179phOmTJltI+PD93W1pa3bNkyysv87MibJTc3l7hz506rEydO3JfJZFhPT08Gh8NhMxiM3j5AYWGhlr29PTc0NNSWTqdzg4OD7c+dO0dydXVl2dra8jRtp/8eT3fcuHEMW1tb3u7du001+2vqtcGuawRBHoUGcV4huVyOZbFYHLlcjqmvrydcvHhRAtAzXSIvL09HJBIVVFVV4fl8Pvsf//iH7PDhw8YBAQEtCQkJ1UqlEjSDuB0dHVhPT0/Z3r17KxYvXmy9d+9esy+//LKq77nCw8ObYmJi6gEAli9fbiUQCEzXr19f23cbZ2fnztu3b4sJBAKcO3eOtGbNGutLly6VAAAIhULdnJwcoY6OjopGo/FWrVpVQyAQID4+3urOnTsiY2Pjbi8vLyaPxxvwzvh/O7K9jbKysjIiAEBVVRV+x44dlpmZmRIDAwPV+vXrLeLi4si7du2qAgDQ1tZWae5ca+7Af/HFF2bXrl0jMRiMrqCgIPuVK1fWvPfee7KioiKt9957j37v3r2CtWvXWvn5+Um/+OKL6uTkZIOTJ0+aAgBcu3ZN98SJEyZ37twRqdVqcHNzYwcEBEjnzp3buGLFCpu1a9fWAQCcP3/eKD09vUilUj3yOQb6Hmg0mmLPnj0VZDK5W6lUgpeXF/PWrVs6Hh4eHc+ZNV6K3NxcHWdn52eOXDAwMOjOy8sT7du3z+TTTz+lXrlypXjy5Mmy2bNni7FYLOzZs8d069atFgcPHnz4MtKNvHx5eXk6Tk5Og+aNv//+Wz83N7eATCZ3nz171qC4uFg7NzdXpFarYdKkSbRffvlFn0wmK5OTk42zsrLERCJRPXfuXJv9+/ebTJ8+vSUqKsru6tWrYhaL1VVTU4MDAFi3bp3lxIkTW3/66afS+vp6nLu7Ozs4OLjVwMBANVg6EGSkdHV1YUJDQ2m//vproYuLS+dg2zU3N+P++uuvQoCegYC+77W3t2Ozs7PFv/zyi35kZKR9UVFRwWD17v/93/9VZmVl6R07dqwMoGfg5OV+QuRZzJs3r3HTpk2WoaGhzSKRSPeTTz5p0Aw8rVmzxsrZ2bn98uXLJSkpKaR//etf9mKxWJiRkVEM0NMO+eSTT+zCwsKatbS01NeuXZPo6uqq8/LyiHPmzBmdn58vAgAQi8U6ycnJ98zNzZW2traORCKxPi8vTxQXF2e+e/du88OHD5cDAJSXlxNv375dKBQKiZMmTWJ++OGHeX3TunbtWitPT0/Zrl27qk6dOmWoaQ8NZcGCBbYHDhx44OjoKP/jjz/0lixZYnPz5k3J8H+TyEhQKpVw5coV0ieffFI/1HY1NTW4ixcvGt27dy8fi8WCZsmI+Ph4y19//VVib2+vGGgZiWftT9BotMci6CMiIkZra2urAACuXr1aWFlZSRiojREUFNQ6WF9k0aJF1IH6CAA9g0e3bt0S6+vrq6VSKXag63D79u0Vu3fvJl+5cqUYoGeQW5O+wa5zAIDi4mLtP//8s7C5uRnHZrN5q1evriMSiern/b2GcvLkyftkMrlbKpVix4wZw543b16TmZlZ91D7pKen669atYqamppa7ODgoLhw4ULve/Hx8VYZGRmFVCpVWV9fj9PX11evXr26Kj8/X0dT5jQ0NOCysrLEeDwekpOTDdauXUu5cOHCPQAAkUike/fuXSGBQFDTaDTH1atX19rZ2b1WMySQV08ul2PCwsJGx8XFldPp9C6FQgEXLlwoNjY2VlVVVeE9PDxYYWFhzQAA5eXl2qdPn77n5ub2wMnJiZ2UlGSSlZUlPnHixKjt27dbTpw4sQQAQCQS6dy5c0cklUpxLi4unJCQkEdmSVlZWSkHq18RBPmfd3IAeIWojCpu6xzW9WhZetrtX7Ftyofapu9UrMuXL+t9/PHH9hKJpODatWukWbNmNeLxeKBSqUoPDw/Z9evXdceNG9e2aNEiO4VCgZ0xY0aTl5dXBwAAgUBQz549uwUAwM3Nre3y5cuPratz584dnY0bN1KkUimura0N5+fn99hU0sbGRlxoaKh9aWmpNgaDUSsUit51pXx8fFpNTEy6AQBoNFpnSUkJsba2Fj9u3DiplZWVEgBg+vTpjRKJZMAokaCgoCZNRxagJ1IKAODq1at6JSUl2nw+nwUAoFAoMG5ubjLNdhEREU19j/Prr7/qHTt2zOzmzZtiAIAbN24YFBUV6Wjel8lkuKamJuzt27f1z507VwwAMGPGjFYDA4Pu/55P//3332/WDDJ98MEHTVeuXCF9/vnntQ0NDfjS0lJCVVUV3tDQsJtOp3cVFhZq9T3/QN8DjUZT/PDDD8ZHjx41VSqVmLq6OkJOTo72oAPA55ZRoVY4vOsfm3PaYdo3Q+a35/Wvf/2rEQBg4cKFjZ9//jkVAOD+/fta06ZNs66rqyN0dXVhqVQqWkJimFSuW0+VFxUNa/4g0untVju2P3X+mDdvns3t27f1CQSCOjIystbX17eVTCZ3AwCkp6cbZGZmGnA4HA5Az6CWWCzWzs7OxuTn5+s6OzuzAQA6Ozux5ubmyqtXr+rx+Xwpi8XqAgDQHOfq1asGly5dGiUQCCwAehqHxcXFWq6uroMOriHIpe++otaXPxjW68OUatv+3pIVQ14fBAJB7erqKtu/f7+ph4fHoNvOmTOncbD3wsLCGgEAAgMDZTKZDFtfX49rbm7GDlbvIkM7d+4ctba2dljzgrm5efu0adOeWFZ6eHh0PHz4kHjw4EHjSZMmPdKeun37NunMmTPFAADBwcHSyMhIfENDA87ExKS7qqoK/9FHH9mfOnWqxMTEpLuhoQH3ySef2AqFQh0sFgsPHjzojex1dHRss7W1VQAA2NjYyAMDA1sAAJydnTsyMjJ6B6JCQkIacTgcODo6yqlUqvzu3buPtMNu3rxJOnv2bDEAwOzZs1sWLVo05OBQS0sLNjs7W3/mzJm9a4V2dXWhfDmMRqrfoQk8qaio0OLxeO3Tpk0bchq2sbFxN5FIVM2ePdv2gw8+aNEsSePu7i4LDw+3CwkJaQoPD2/qv9+z9icGGgDuvwTE4cOHjQdqY2RmZuoN1hcZrI8AADBlypRmfX19NUBP/h7sOuxvOa1cBw5MZEbp5etybWkdcGCiQTAAmI2v0VZ8N575qW6V1vKpGND5z/sMHQC4NAeHUR/wZwJRa/AB4Bdow+/YsYOcnp4+CgCgpqZGSyQSEc3MzAa9oS+RSHSWL19uc/nyZYmNjY2y//tjx46VzZkzx3769OkD/rYAPQPAs2bNsisrK3usz+fj49NqZGSkAgAYPXp0R0lJiRYaAH49bLixgVrcVDys5Q7NiNYe5x33xLwbHR1txWAwOiIjI5sAAFQqFWbFihXWN2/e1MdisVBbW6v18OFDPAAAhUKR8/n8DgAABoPR4e/v34rFYsHV1bV927ZtvTfWAwMDm/X19dX6+vpKT0/P1mvXrunx+fzevP8s1zWCvMvQEhAjZNKkSW1NTU34qqoqvFo9cBshMDBQlpmZWUihULo++ugje83DZfB4vBqL7fnp8Hg8KJXKxxrqkZGR9vv27SuTSCTC2NjYSrlc/thvHRsbS/Hz85MWFRUVpKamFnd1dfVuo6X1v4YLDofrbcxhMC/WJ1Cr1eDj49MqFouFYrFYWFJSUvDjjz8+0LxPIpF6owEfPHhAWLRokd3p06dLDA0NVZr9s7KyRJr9a2trc42MjFSDfYeDvQ7QM0h9/Phxo6SkpEemc/Y10PcgFou19u3bR87IyJBIJBKhv79/S2dn52t3LTk6Onbk5OQ8VvETCAR130hnuVz+yI+qyVsAABgMRg0AEBUVZbN06dJaiUQi3Ldv34OB8hPy5nB0dOzIzc3tzRv/+c9/yq5evSppamrCAwDo6ur2ZhC1Wg0rVqyo0lxzZWVl+dHR0fVqtRozc+bMBs3rpaWl+Xv27KlUq9UDlhNqtRqSk5OLNdtXVVXlocFf5HWFwWAgJSXl3t27d/XWrl076MPY+tZZAx2j/99D1bvI623KlCnNmzZtokZERDzSXhionYHBYNRKpRJCQkJGx8bGVo4dO7YTAGD79u1kc3NzhUgkEubl5QkVCkXv7983YhCLxYK2trZa8//u7m5Mn2P3P9dj5+9bj2vg8fhH6n5Nu6W7uxtIJJJSUzaLxWKhJmoSebNpAk9KS0vzurq6MPHx8eYAg7cDCQQC3L17VxQSEtJ87ty5URMmTKADAJw4caJs27ZtleXl5VpjxozhVldXPxIF/Dz9iScZrI0BMHhfZLA+AgCAnp5e7wce6jp8FppUYLFY9f9ew4AaXkrwL5w7d470559/ku7cuSMqLCwUMpnM9o6OjiHTbm5uriAQCOrbt28POBB48uTJB1u2bKksLS3VcnZ25tbV1T0W4b169WrK5MmTW4uKigp+/vnn4r79hr7lFg6HG7BPirxb0tLSSBcuXDD6/vvvewPBEhMTjRsaGvB5eXkisVgsNDExUWjybt8yom/dh8PhnqnuG67rGkHedu9kBPCT7pi/CtnZ2doqlQrIZLLSz89PevDgQbOoqKiG2tpa/O3bt/UFAkG5RCLRsre374qJialva2vD/v3337oA0PA0x29vb8fa2Ngo5HI55tSpU8aWlpaP3Y1tbW3FWVtbdwEAJCYmPnGK4Pjx49tiY2Op1dXVOCMjI9XPP/9sxOVyn2nZgwkTJrTFxMTY5OfnE3k8nlwqlWLv37//2EPJ5HI5Zvr06aPj4uIq+r7n4+PTmpCQYB4XF1cD0PNQMy8vrw4+ny/7z3/+Y7x9+/bqs2fPGrS2tuIAAPz9/WXz58+3i4uLq1ar1XDx4kWjo0eP3gPomdK5cOFCu6amJnxGRsZTP4yvqakJp6OjozI2Nu4uLy/HX7161dDPz0866A4vKVL3SYKCgqQbNmzA7N6921SzHEhGRoauUqmE4uJinY6ODkx7ezv2+vXrBt7e3r1R2MeOHTPesWNH9ffff2/k4uLSBgAglUpxNjY2CoCedS1H4vO8rZ4lUne4aPJGQkKCWWxsbB0AgEwmG7ChFBgY2Lp582aryMjIRkNDQ9X9+/cJWlpa6ilTprROnz6dtm7duhoKhaKsqanBtbS04CZOnNgWExNjKxaLtTRLQJDJ5O6JEye27t69m3z06NEyLBYLN27c0PH29n6tlk1BXj9PitR9mUgkkio9Pb3I29ubRSaTldHR0UNOn+7v5MmTRkFBQdJLly7pk0ikbhMTk+7B6l0DA4Puwa5BpMfTROq+TEuWLKk3NDTs5vP5HX2nho8bN0565MgRk507d1alpaWRjIyMlMbGxqpFixZZczicdk0EFEDP8x+sra27cDgc7Nu3z6S7e8jg3AGdPXvWKCoqqkEsFhPLy8uJzs7OnX/88Ufvklvjxo2THj582OTLL7+s+vHHH3vbQ9bW1srGxkZ8dXU1ztDQUHXp0iXDgICAVmNjY5W1tXXX4cOHjebPn9+kUqng1q1bOp6enqh8HiYj3e8wMTHpFggEZTNmzKCtXr26zsHBQT5QO7ClpQUrk8mwoaGhLRMmTJAxGAxHgJ41ov39/dv8/f3bLl26NOrevXuPzJZ71v7E0xisjTFUX2SwPkL/Yw92HRoaGnbLZLJHBkAFxdSOfx68UvzNRx9RzcrNlJrrfPW11VTRgczCvZqHtEX2PKQtnE7npq04co/JZHYNx/fQV3NzM27UqFFKfX19dVZWlnZeXt4T1zgdNWqU8syZM2WTJ0+m6+vrl02ZMkXW932RSEQMCAhomzhxYlt6evqo0tJSAolEeqQ+kkqlOGtrawUAwIEDB1Af4A3xNJG6w62urg63aNEiux9++OGe5uYLQM81Z2pqqiASierU1FRSZWWl1lDHGcgvv/wyavv27VWtra3Ymzdvkv79739X9L0ZMRz1K4K8C97JAeCRopmKBdBzl/q7774rxePxMG/evOY///xTn81mczEYjHrLli0PbWxslHv37jURCAQWeDxeraur252UlHT/ac+1du3aSj6fz6ZQKF1sNru9f4MGACA2NrZ6wYIF9gKBwMLX1/eJT+e0tbVVxMbGVo4bN45tZmamcHJyau97Z+5pWFlZKRMTE0tnz549WjPFcNOmTRX9B4AvX76sl5+fr7dt2zYrzfSP9PT0ogMHDpQvWLDAhsFgcLq7uzEeHh5SLy+vsvj4+MoZM2aM5nA4Rp6enjIzMzPFqFGjun18fNrDwsIaXF1d2QAA8+bNq9MMOrm7u3e2tbVhyWRyl2ba5dPw9PTs4PF47XQ6nWtjYyPvu4TF6wSLxUJKSkrJ0qVLqV999ZUFkUhUW1tby/fu3VseFBTUxGazufb29p1cLveRqWNyuRzj5OTEUqlUmFOnTt0DAFi/fn3lnDlzHMhkcpe7u3ubZk1n5M2ExWIhNTW1ZNmyZVSBQGBhbGys1NXV7d68efPD/tEk06dPby0oKNAeO3YsC6AnOjgpKem+m5tb5+eff14REBDAUKlUQCAQ1AKBoCwgIKBNIBCU/vOf/6SpVCowMTFR/Pnnn0Xx8fGVkZGRNiwWi6NWqzHW1tZyzTp7CPK6IpPJ3enp6RI/Pz+WmZnZY9Nnh2JkZNTt4uLCkslkuAMHDtwHGLzeDQwMlO7atcuSxWJxYmJiqgY/KjJSHBwcFBs2bKjt/3pCQkJlWFiYHYPB4Ojo6KiOHj16HwDgwIEDZBqN1slisQwAADZs2FCxYsWK2pCQEIdz584Z+fj4SHV0dJ55DXQajSbn8/nMhoYGwldfffVAV1f3kXDD+Pj4ypCQkNEcDoft6ekps7S07ALoidSLiYmp4vP5bGtrazmNRuudgXHy5Ml7CxcutE1ISLBUKpWYf/7zn41oAPjt4u3t3cFmszsOHTpktGzZssaB2oHNzc24qVOn0jSDKtu2bSsHAIiOjrYuLS0lqtVqjI+PT+u4ceM6Ll682HsT5Fn7E09jqDbGYH2RwfoI/Y892HXI5/M78Hi8mslkcsLCwurd3Nx6r4HBrvNXadasWS2HDh0yYzKZHBqN1unk5NTW9/3BIqNtbW0Vqampxe+//z79yJEjj6T7008/pT58+FBLrVZj/Pz8WsaOHdtJoVCUX3/9tQWbzeasWbOmKjY2tnrRokV2e/bssfDx8RmW3xd5O+3Zs8essbERHxUVZdv39ZiYmKozZ84Y83g8NpfLbbe3t3/mGYAuLi5tAQEB9MrKSq1Vq1ZV2dnZKfou3Tgc9SuCvAswQ02Rf5vk5OSUOjs7P1P0DvLm6OjowODxeDWBQIDLly/rRUVF2WrWW0YQBEEQBHkXUSgUx6ysLJGlpeUz3cBAEOTNoFAowNTUdExDQ8NdPB7FdiEIgrxrcnJyTJ2dne2eZltUSyBvheLiYq1Zs2Y5aKIEEhMTS0c6TQiCIAiCIAiCIC+DUqkEBoPBjYiIqEODvwiCIMiToJoCeSs4OjrKRSIRivhFEARBEAT5r4qKiryRTgOCIC8HHo+H+/fvo4c2IgiCIE8FPXAEQRAEQRAEQRAEQRAEQRDkLYUGgBEEQRAEQRAEQRAEQRAEQd5SaAAYQRAEQRAEQRAEQRAEQRDkLYUGgBEEQRAEQRAEQRAEQRAEQd5SaAD4FcLhcG4sFovDZDI5HA6H/dtvv+kNtX1hYaHW/v37jV9V+pC3T1lZGX7q1KmjqVQqz8HBgevn50fLzc0ljnS6kJFXXl6ODwoKsre2tnbkcrnsMWPGsI4dOzbqVaZBV1fX5VWeD0GeVt+8efr0aUNbW1teUVGR1ss4l5+fH62+vh5XX1+Pi4+PN3sZ50CeHwaDcZs2bZq95m+FQgFGRkbOEydOpI1kuhDkSTT9DjqdzvX396fV19fjXtW5Uf3+/Kqrq3EsFovDYrE4pqamzubm5k4sFotDIpHGODg4cJ/lWF9++aXZvn37TAAAQkJC7I4cOWI0HGnk8/nMzMxM3eE4FvL2OHbs2ChN3tX8w2Kxbt99953xlClTRj/LsZ41jwkEApOIiAibZ081grxb0ADwK0QkElVisVhYWFgojIuLq1i3bp31UNsXFRURT58+jQaAkeeiUqkgODiYNn78eGl5eXl+SUlJwRdffFFRWVlJeJFjdnd3D2cykRGgUqkgKCiI5uvrK3v48GFeQUGB6Mcff7xXXl7+yACXQqEYqSQiyGvh/PnzpFWrVlEvXrxYRKfTu17GOTIyMopNTU27GxoacN9//735yzgH8vx0dHRUhYWFOjKZDAMA8PPPPxuQyeTXunBEZTcC8L9+R1FRUcGoUaOUO3fuRDeY3gAWFhbdYrFYKBaLhREREXWLFy+uEYvFwqysLCEW+2xd9zVr1tRFRUU1vKSkIsgjIiIimjV5VywWCxcsWFDr5uYmi4yMbExPT7830ulDEAQNAI+YlpYWnKGhoRKgZzBm0aJF1nQ6nctgMDgHDx40AgBYv349JSsrS5/FYnG2bNlinpWVpe3o6MhmsVgcBoPBycvLI37++efkbdu2mQMAfPLJJ9Rx48YxAHo6rR9++KE9AEB4eLgNj8dj02g0bnR0tJUmDRQKxTE6OtqKw+GwGQwGJzs7WxsA4MqVK7ouLi4sNpvNcXFxYeXk5KCI0TdQWloaCY/Hq9esWVOnec3Ly6tj//79ZsePH++N9AwODrZPSkoyFAgEJgEBAQ6+vr50Ozs7XkxMjCVATyT66NGjuXPnzrXhcrmckpISrb6RHUeOHDEKCQmxAwA4fPiwEZ1O5zKZTI67uzvzFX5c5BmkpqaSCATCI3mDwWB0rV+/vlYgEJgEBgaO9vf3p/n6+jIAADZs2EDm8XhsBoPB0ZQhmnwxe/ZsWxqNxvX29qZrBkh2795tyuPx2Ewmk/Pee+85SKVSLACAWCzWGjNmDIvH47E/++yz3rKopaUF6+npydCURX3zJ4KMlPT0dP1ly5bZpaSkFHO5XDnA4xFUmrJw7ty5NklJSYYAAJMnT3aYOXOmHQDAv//9b9Ply5dbAQBMmjTJgcvlsmk0GnfXrl2mmmNQKBTHqqoqfExMjHV5eTmRxWJxFi1aNOQNYuTVCggIaPnpp59GAQCcPHnSOCQkpBEAoLu7G2xtbXmVlZV4zd82Nja8qqoq/IkTJwydnJxYbDab4+XlxSgvL8cDAKxcudJq5syZdnw+n2ltbe2oacMVFhZq2dvbc0NDQ23pdDo3ODjY/ty5cyRXV1eWra0t78qVK7oAg7fRBiq7EURj3LhxbRUVFVoAL1Ze6erqunz66acUJpPJcXZ2ZmnyNarfX43u7m54lnbXypUrrTZu3Ejuf5xVq1ZZ8ng8Np1O586ZM8dWpVIBQE/U5ZIlSyiOjo5sOzs7Xnp6uj4AgEwmw0ydOnU0g8HgfPDBB6M7Ozsxr/BjI2+g3Nxc4s6dO61OnDhxv7i4WItOp3MBeuqqSZMmOfj7+9MoFIrjjh07zDZv3kxms9kcZ2dnVk1NTe9MhaNHj5q4uLiw6HQ690l1IABARUUFoX8/9mnGSs6ePWswZswYFofDYQcGBo5uaWlBY2TIWwtl7ldILpdjWSwWx97envvZZ5/Zbtq0qQqgZ7pEXl6ejkgkKvj9998lGzdutH7w4AFh+/btFe7u7jKxWCzctGlT7d69e82WLl1aIxaLhbm5uSJ7e/uuiRMnym7cuKEPAHD37l3dtrY2nFwux2RmZur7+PhIAQD27NlTkZ+fLxKLxQU3btwg3bp1S0eTJlNTU6VQKBTNnz+/Lj4+ngwA4Ozs3Hn79m2xSCQSbtq0qWLNmjWoI/oGys3N1XF2dm7v//rChQvrjh49agIA0NDQgLtz547+rFmzWv67j95PP/10Lz8/vyAlJcVYM/WmtLRU++OPP24QiURCBoMxaBRcfHy85a+//iopLCwUpqenF7+sz4a8mLy8PB0nJ6fH8obG33//rX/y5Mn7N2/elJw9e9aguLhYOzc3VyQSiYR3797V/eWXX/QBAMrKyrSXL19eW1xcXGBoaNh97NgxIwCA8PDwpvz8fFFhYaGQyWR2CAQCUwCApUuX2ixYsKAuPz9fZGFh0Ruipqurq7pw4UKxUCgUZWRkSNatW2et6YwgyEjo6urChIaG0s6cOVPs4uLS+aTtx48fL83MzCQBAFRXV2tJJBJtAIAbN27o+/n5yQAAkpKSSgsKCkR3794VJiYmkqurqx+Zjr179+6HVCpVLhaLhVozKfEAACAASURBVImJiQ9fxudCns+8efMaT58+bdTe3o4RiUS6np6ebQAAOBwOZsyY0XDo0CFjAIDz588bsNnsDktLS+XkyZNld+/eFYtEIuGMGTMat27daqE5XnFxsXZGRobkr7/+Eu3atctKLpdjAADKy8u1Y2JiasVicUFJSYl2UlKSSVZWlnj79u0Pt2/fbgkwdButb9n9ar8h5HWmVCrhypUrpGnTpjUDvFh51dHRgfX09JQVFhYKPT09ZXv37jUDQPX7q/Ks7a7BrF69ujY/P19UVFRU0NHRgT116pSh5j2lUonJy8sTJSQklG/dutUKAGDXrl3mOjo6KolEIty4cWOVUCgcchlD5N0ml8sxYWFho+Pi4soHmj0lkUh0zpw5c++vv/4SffHFFxRdXV2VSCQSuru7tyUmJppotmtvb8dmZ2eLBQLBg8jISHuAoevAgfqxTxorqaqqwu/YscMyMzNTIhQKRa6uru1xcXGP3TRBkLcFfqQTMBJWJ+dQJdXSYV23iGFBat85w7l8qG00U7EAAC5fvqz38ccf20skkoJr166RZs2a1YjH44FKpSo9PDxk169f1zU0NHykheTp6dm2a9cuy4cPH2rNnj27ydHRUe7j49P+r3/9S6+pqQlLJBLVTk5OsmvXrun+v//3/0h79+4tAwD44YcfjI8ePWqqVCoxdXV1hJycHG0PD48OAICwsLAmAAA+n9+ekpJiBADQ2NiICw0NtS8tLdXGYDBqhUKB7vK+gA03NlCLm4qHNb/RjGjtcd5xQ+a3wXzwwQeyFStW2FZUVOCTkpKMPvjggyYCoWdVCB8fn1YLC4vu/27XdPXqVf3Q0NBmS0vLroCAgLYnHdvd3V0WHh5uFxIS0hQeHt70POl71/x+TERtrJANa/4wpui3B0Swnzp/zJs3z+b27dv6BAJBHRkZWevr69tKJpO7AQDS09MNMjMzDTgcDgegpzEmFou1R48e3UWhUOReXl4dAAAuLi7tpaWlRACAO3fu6GzcuJEilUpxbW1tOD8/vxaAnsGJX375pQQAYNGiRQ1xcXHWAAAqlQqzYsUK65s3b+pjsViora3VevjwId7GxkY5nN8L8uZpTJZQFdVtw3p9ECz02o1nMIa8PggEgtrV1VW2f/9+Uw8PjydeS5MnT5Z988035Dt37mgzGIyO5uZm3IMHDwh37tzRO3jwYBkAQEJCAvnChQujAACqq6sJBQUF2hYWFk8sV5EeQlEstU0mGda8oKfPaOewE574+3p4eHQ8fPiQePDgQeNJkya19H1vyZIl9cHBwbSNGzfWHj582PSjjz6qBwC4f/++1rRp06zr6uoIXV1dWCqVKtfs849//KNZR0dHraOjozQ2NlY8fPgQDwBAoVDkfD6/AwCAwWB0+Pv7t2KxWHB1dW3ftm2bFcDQbbS+ZTfy+hipfocm8KSiokKLx+O1T5s2rRXgxcorAoGgnj17dgsAgJubW9vly5cNAN7e+v11a8M/a7trML/88gtpz549Fp2dndjm5mY8h8PpAIAWAICZM2c2AQB4eXm1rV69WgsA4Pr16/rLly+vBegpDxkMxqBBBMjroXLdeqq8qGhY8y6RTm+32rH9iXk3OjraisFgdERGRg7YF/Ty8pIaGRmpjIyMVPr6+t0zZ85sBgBwdHRsz83N7U1zWFhYIwBAYGCgTCaTYevr63HNzc3YwerAgfqxsbGxdUONlVy9elWvpKREm8/nswAAFAoFxs3NTfZi3xSCvL5QBPAImTRpUltTUxO+qqoKr1arn2qfxYsXN54/f75YR0dHFRgYyEhJSSERiUS1tbW1/JtvvjHl8/my8ePHyy5fvkx68OAB0cXFpVMsFmvt27ePnJGRIZFIJEJ/f/+Wzs7O3t9dW1tbDQCAx+PVSqUSAwAQGxtL8fPzkxYVFRWkpqYWd3V1oXzyBnJ0dOzIyckZsOKfNWtWw6FDh4yPHz9uEhkZWa95HYN5dKxf87eurq5qoNcBADo6Onr/OHHiRNm2bdsqy8vLtcaMGcPtH+GGvB4cHR07+jaw/vOf/5RdvXpV0tTUhAd49PdWq9WwYsWKKs16XmVlZfnR0dH1AABaWlq9hRcOh+stQyIjI+337dtXJpFIhLGxsZVyuby3DMFisY8VeImJicYNDQ34vLw8kVgsFpqYmCg6OjpQuYOMGAwGAykpKffu3r2rt3bt2t7ITTwer9asg65SqUDT8bC3t1e0tLTgU1NTDX19faXe3t6yY8eOGenp6amMjIxUaWlppIyMDFJWVpa4sLBQyGazO1Aef7NMmTKledOmTdSIiIjGvq/TaDSFqampMiUlhZSdna03c+bMFgCAqKgom6VLl9ZKJBLhvn37HvQtB4lEYt+yEzRlZ98yFYvF9rbRcDgcdHd3P7GN1r+uRt5tmsCT0tLSvK6uLkx8fLw5wIuVV3g8Xq1ZhxaPx/fmXQBUv78Kz9Pu6q+9vR0TExNje/bs2RKJRCKcO3du/SB9w95yB+DxPgKCDCQtLY104cIFo++//75ssG0Gq+uwWOwjZcpA/dKh6sCBtn/SWIlarQYfH59WTT+npKSk4Mcff3zw4t8Egrye3skI4CfdMX8VsrOztVUqFZDJZKWfn5/04MGDZlFRUQ21tbX427dv6wsEgvIHDx5oyWSy3gE0oVCoxWaz5Vwut/bevXvEu3fv6gQHB0u9vLxk33zzDfm7774rdXNz61i3bp01j8drx2Kx0NTUhNPR0VEZGxt3l5eX469evWro5+cnHSptra2tOGtr6y4AgMTExCGnECFP9rx3+V9UUFCQdMOGDZjdu3ebxsTE1AMAZGRk6MpkMuzixYvrPTw82Kampgp3d/fe6c3Xr183qKmpwenp6akuXrw46tChQ6UDHdvExETx999/azs7O3eeP3/eSF9fvxsAoKCggOjv79/m7+/fdunSpVH37t3TsrCw6HglH/gN9SyRusNFkzcSEhLMYmNj6wAAZDLZgJ2FwMDA1s2bN1tFRkY2Ghoaqu7fv0/o23AbSHt7O9bGxkYhl8sxp06dMra0tFQAALi6usoOHjxovHTp0saDBw/2TvFqaWnBmZqaKohEojo1NZVUWVmpNfjRkXfJkyJ1XyYSiaRKT08v8vb2ZpHJZGV0dHS9ra1t1507d3QXLFjQlJSUNKpvR8XNzU2WmJho/ttvv0lqa2vxYWFhDh988EETAEBzczPO0NCwm0QiqbKzs7VzcnIemz5raGjY3dbWhgZGBvE0kbov05IlS+oNDQ27+Xx+R1paGqnve/Pnz69bsGCBfUhISAMe39O0lkqlOBsbGwVAzzqGw5UO1EZ784x0v8PExKRbIBCUzZgxg7Z69eo6IpGoftHyqr+3tX4fqTb8sxqs3TXYtgAAFhYWypaWFmxqaqpRUFDQkLP2fHx8ZMePHzcOCgqS/vXXX9oSyfDOxkCG39NE6g63uro63KJFi+x++OGHe0ZGRi98Q/LkyZNGQUFB0kuXLumTSKRuExOT7qHqwMH6sUONlUyYMKEtJibGJj8/n8jj8eRSqRR7//59gpOTk3yAJCHIG++dHAAeKZqpWAA9UXXfffddKR6Ph3nz5jX/+eef+mw2m4vBYNRbtmx5aGNjoySTyd14PF7NZDI5YWFh9Z2dndiffvrJBI/Hq83MzBRffPFFJQCAn5+fVCAQWPj7+7cZGBioiESi2tvbWwYA4Onp2cHj8drpdDrXxsZG/jRTGmJjY6sXLFhgLxAILHx9fVtf7reCvCxYLBZSUlJKli5dSv3qq68sNHdA9+7dW06lUpUODg6dQUFBzX33cXd3l2mm1YSEhDSMHz++vbCw8LHG+pYtWyo+/PBDmqWlpYLFYnVoBi2io6OtS0tLiWq1GuPj49M6btw4NPj7GsJisZCamlqybNkyqkAgsDA2Nlbq6up2b968+WH/yJzp06e3FhQUaI8dO5YF0BNhlpSUdB+Pxw86CLx27dpKPp/PplAoXWw2u11zI+vbb78tmz179uhvv/2WHBwc3NvZWLBgQWNgYCCNx+OxuVxuu729/RPXXEWQV4FMJnenp6dL/Pz8WGZmZspPP/20burUqTRHR0f2+PHjW3V0dHo7OD4+PrJr164Z8Hg8uVwu72ppacGNHz9eCgAQEhLScuDAATMGg8FxcHDodHZ2fmzpBwsLi243NzcZnU7n+vv7t6B1gF8vDg4Oig0bNtQO9N6cOXNaoqKicJGRkQ2a19avX185Z84cBzKZ3OXu7t5WVlY2LA/URW005Hl4e3t3sNnsjkOHDhktW7as8UXLq/5Q/T6yBmt3DcTU1LQ7PDy8jsPhcK2trbue5vddtWpV7ezZs+0ZDAaHy+W2Ozo6ouWLkMfs2bPHrLGxER8VFWXb93XNg1OflZGRUbeLiwtLJpPhDhw4cB9g6DpwoH4swNBjJVZWVsrExMTS2bNnj+7q6sIAAGzatKkCDQAjbyvM0y4/8KbLyckpdXZ2rn/ylgjy9pNKpVgOh8O5e/euyMTEpBug56msWVlZeseOHRt0yg6CIAiCII/KzMzUjY6Opt65c6dwpNOCIAiCIAiCvDtycnJMnZ2d7Z5mWzTVEEHeMefOnSMxGAzuwoULazWDvwiCIAiCPLt169ZZzJ4922HHjh0VI50WBEEQBEEQBBkMigBGEARBEARBEARBEARBEAR5g6AIYARBEARBEARBEARBEARBEAQNACMIgiAIgiAIgiAIgiAIgryt0AAwgiAIgiAIgiAIgiAIgiDIWwoNACMIgiAIgiAIgiAIgiAIgryl0ADwK4TD4dxYLBaHyWRyOBwO+7ffftMbjuOGhoba3rlzRxsAgEKhOFZVVeGH47jIm6+srAw/derU0VQqlefg4MD18/Oj5ebmEl/0uCtXrrTauHEjeaD3XFxcWC96fOTlKy8vxwcFBdlbW1s7crlc9pgxY1jHjh0b9TzH2rp1q7lUKn3p9Ymurq7Lyz4HggA8mtdOnz5taGtryysqKtIayTRprF271mKk0/AuwWAwbgsXLrTW/L1x40byypUrrYbj2H3bb4OVbytWrLA6d+4caTjOh7xbYmNjLWg0GpfBYHBYLBbnjz/+GLLf8TR5LS0tjTRY/0UgEJhERETYAAB0d3fD9OnT7WbOnGmnUqnAz8+PVl9fj6uvr8fFx8ebafYpLCzU2r9/v/HzfL7nNVhfiUKhOL733nsOmr+PHDliFBISYvc850hKSjJct24dKqsRBEGQ1woaAH6FiESiSiwWCwsLC4VxcXEV69ats+6/jVKpfObjnj59+oGbm1vnsCQSeWuoVCoIDg6mjR8/XlpeXp5fUlJS8MUXX1RUVlYSXuZ5s7OzxS/z+MiLU6lUEBQURPP19ZU9fPgwr6CgQPTjjz/eKy8vf64BrsTERLJMJkP1CfLWOX/+PGnVqlXUixcvFtHp9K6n2UehULzUNAkEAsuXegLkEVpaWuqLFy8avYyb60/Tfvvqq68qp02bJh3ucyNvt8uXL+tdunRpVF5enlAikQivXLkiGT169JBl2NPktT/++IN07do1/aG2UalUMHfuXFuFQoE5depUKRaLhYyMjGJTU9PuhoYG3Pfff2+u2baoqIh4+vTpVzoAPJS8vDzdrKws7Rc9Tnh4eMuOHTuqhyNNCIIgCDJcUId9hLS0tOAMDQ2VAD130z08PBhBQUH2TCaTCwAwadIkBy6Xy6bRaNxdu3aZAvTcTWaxWBwWi8Wxs7PjUSgURwAAPp/PzMzM1B25T4O8jtLS0kh4PF69Zs2aOs1rXl5eHenp6QaafGRubu40Y8YMOwCAb7/91tjR0ZHNYrE4YWFhtpqbEcnJyQYcDofNZDI5np6eDM2xRCKRDp/PZ1pbWztu27attzGviWJqaWnBenp6MjgcDpvBYHCOHz/+XNGlyPBLTU0lEQiER/IGg8HoWr9+fW3fCB4AgIkTJ9LS0tJIAADh4eE2PB6PTaPRuNHR0VYAANu2bTOvra0l+Pn5MTw8PBgAAGfPnjUYM2YMi8PhsAMDA0e3tLRgAXqia6Kioihjxoxh8Xg89vXr13V9fHzoVCqV9+WXX5oBPF2+QXkLeRXS09P1ly1bZpeSklLM5XLlTU1NWAqF4iiXyzEAAI2Njb1/8/l8ZlRUFGXs2LHMbdu2kQsKCojOzs4sHo/HXrFihZWmXJw2bZp93/waHBxsn5SUZBgaGmqrKZeNjIycY2JiLB88eEBwd3dnslgsDp1O56anp+svXbqUIpfLsSwWixMcHGwPMHB7AaCnLP70008pTCaT4+zszCovL0ezg54DDodTR0RE1O3YseOxWS8nTpwwdHJyYrHZbI6XlxdD8x2vXLnSavr06Xbe3t50CoXi+MMPP4xavHixNYPB4Pj6+tI1eah/+23hwoXWHA6H7enpyaisrMQDAISEhNgdOXLECABg1apVljwej02n07lz5syxValUr+ZLQN44FRUVBGNjY6WOjo4aAMDS0lJpZ2enABg8H/XNaxQKxTE6OtpKU89mZ2drFxYWah07dsxs//79ZBaLxUlPTx9wIHj+/PnUxsZG/NmzZ+/jcDjQHK+qqgofExNjXV5eTmSxWJxFixZZr1+/npKVlaXPYrE4W7ZsMc/KytLWtEUZDAYnLy/vsVlrA7VFBkszAEB1dTXO29ubzmazOWFhYbZqtXrQ723ZsmU1W7dufewmW2trK3bmzJl2PB6PzWaze9sdTk5OrL4Dxnw+n3nt2jXdvm2pw4cPG9HpdC6TyeS4u7szn/DTIQiCIMhLgwaAXyFNp83e3p772Wef2W7atKlK815ubq7ezp07K0pKSgoAAJKSkkoLCgpEd+/eFSYmJpKrq6tx4eHhLWKxWCgWi4UcDqc9KioK3VlGBpWbm6vj7Ozc3v/1r776qlIsFgtv3LhROGrUKOVnn31W+/fff2snJycbZ2VlicVisRCLxar3799vUllZiY+KirI7e/ZsSWFhofDcuXMlmuMUFxdrZ2RkSP766y/Rrl27rDQdWg1dXV3VhQsXioVCoSgjI0Oybt06a9RZfT3k5eXpODk5PZY3nmTPnj0V+fn5IrFYXHDjxg3SrVu3dD7//PNac3NzRUZGhuTWrVuSqqoq/I4dOywzMzMlQqFQ5Orq2h4XF9c7cEKlUrvu3r0r9vDwkM2fP98uNTW15NatW+L4+HgrgKfLNyhvIS9bV1cXJjQ0lHbmzJliFxeXTgAAIyMjlaenp/THH380BAA4fPiw8fvvv99EJBLVAADNzc24v/76q3DLli01UVFR1KVLl9bm5+eLrKysekOCFy5cWHf06FETAICGhgbcnTt39GfNmtVy+vTpB2KxWJiSklI8atQo5aJFixoOHz5sHBAQ0CIWi4UikajAw8Oj/dtvv63QzCZKSUm5DzBwewEAoKOjA+vp6SkrLCwUenp6yvbu3WvW/3MiT2f16tW1Z8+eNW5oaMD1fX3y5Mmyu3fvikUikXDGjBmNW7du7Z3y/eDBA+Iff/xRnJycXLx48WJ7f3//VolEItTW1lZp8lBfHR0dWFdX13ahUCjy9vaWrl279rFlJlavXl2bn58vKioqKujo6MCeOnXqseMgCADAtGnTWisrK7Xs7Ox4c+fOtblw4ULvYO3T5iNTU1OlUCgUzZ8/vy4+Pp7MZDK7IiIi6hYvXlwjFouFU6ZMkfXf5/z588a5ubl6KSkp9wiExyec7d69+yGVSpWLxWJhYmLiw+3bt1e4u7vLxGKxcNOmTbV79+41W7p0aY1YLBbm5uaK7O3tH4taHqgtMliaAQDWrl1r5enpKROJRMLg4ODmqqqqQWc7RURENObn5+vm5+c/MvC8bt06y4kTJ7bm5+eLrl27Vvj5559bt7a2YkNCQhqTkpKMAQAePHhAqK2tJfj6+j7SvoqPj7f89ddfJYWFhcL09PTiwc6NIAiCIC/buxkNcm4ZFWqFwxsxa85ph2nflA+1iabTBtAzNevjjz+2l0gkBQAATk5ObSwWq7eRk5CQQL5w4cIoAIDq6mpCQUGBtoWFRRsAwOeff07W1tZW/d///V/dQOdBXi+V69ZT5UVFw5rfiHR6u9WO7UPmt6GoVCqYMWOG/bJly2p8fX3bd+zYYZafn6/r7OzMBgDo7Oz8/+zdeXiV5aHu//tZa2VOCBkgAZKQyEyYiYCiRREQEERFe3CgtGpRrBU99Jzu7r2729/ePbu6d6uW6rG1VsGpaluLoALKEBwQlCkMIYRAgISEIZB5zlrP7w9WOKgMYXyTle/nunJl5XmnO8m7Mtx58r6uzp07N2VmZkaMGDGisvncTEhI8DbvY8KECWVhYWE2LCysKTY2trGwsNDTo0ePxlOOYR5//PGkdevWRbpcLh05ciS4sLDQk5KScv7XOQlgy194NrmkYP8lPT/ik7vX3Dzn8RafHzNnzkz58ssvI4OCguzs2bOPnGm9hQsXxi5YsCC+qanJHD16NCgrKyt05MiRtaeuk5mZGbFnz57QESNG9JWkxsZGM3z48JO/JH73u98tk6SBAwfWVFdXu2JiYnwxMTG+kJAQX0lJiTsqKsp3rvOGc6v9WLRoUfKRI0cu6fOjc+fONbfddttZnx9BQUF22LBhVX/4wx/iR44ceXLd2bNnH33qqacSZ86cWfb666/H/+lPf9rXvOzuu+8+3vx48+bNkR999FGeJD344IPHfvnLXyZJ0i233FL1+OOPdz948KDnjTfeiLnllltKm0uSmpoaM3369B7PPPPMgd69ezeMGjWq+qGHHkptbGx03XnnnaXXXnvt155rzc7080JQUJCdMWNGuSQNHz68esWKFR0u9GPWGjy+80ByTnXdJT0X+kaE1jzbL+WcXytjY2N9d91117Enn3yyc1hY2Mm/NuXn5wffdtttSUePHg1qaGhwJScn1zcvGzduXHlISIgdMWJErdfrNXfeeWeFJKWnp9fm5+d/q4ByuVx68MEHj0vS/ffff+yOO+7o+c11li5dGvX0008n1tXVucrKyjz9+/evlVR+ge8+rhQHfu+Ijo72bd++PXvZsmVRK1eujJo1a1aPf/u3fyt87LHHjrX0PLrnnntKJWnEiBE1ixcvjmlJrPT09Jo9e/aErlmzJnzChAnV5/tuXXPNNdW/+c1vuhQWFgbPmDGjdODAgfXfXOdsP4ucLvO6deui3n333TxJmjFjRvlDDz3k/eY+m3k8Hj322GOH/v3f/z1x0qRJFc3jmZmZHZYvX95x/vz5iZJUX19v8vLygr/3ve+Vjhs3rvczzzxT9Oqrr8ZMnTq19Jv7zMjIqLr33ntTp0+fXnrvvfd+azkAAFcKM4AdMm7cuOrS0lJP8zXlwsPDT/5C8f7770etWbMmasOGDTm7du3K7tevX21tba1LOnE9wkWLFsW++uqr+53KjrZh4MCBtVlZWaf9hWPevHldu3Tp0jB37txjkmStNXfdddex5hnm+/bt2/70008XWWtljDndLtQ8602S3G63mpqavrbiH//4x9hjx455tm3btjMnJyc7Li6usfk8hrMGDhxYu3Xr1pPnxmuvvXYgMzMzt7S01OPxeOyps2nr6+tdkpSTkxP83HPPJaxZsyY3Nzc3e+zYseV1dXXf+nxaa3XddddVNJ9Le/bs2fHOO++c/HoVGhpqpRNlR3Bw8MlzyOVyqbGx0bTkvOHcwuVmjNHixYv3btmyJeLUm65NmDChurCwMOSDDz6I9Hq95uqrrz55/daoqKgWTUP/7ne/e+yll16Kff311+Nmz55d0jw+c+bM7lOnTi1tvgbnpEmTqj755JNd3bp1a/j+97+f9txzz8V9c19n+3nB4/FYl+vE08Lj8XzrazTOz89+9rPDb775Znx1dfXJrzWPPvpoyiOPPHIkNzc3+7nnntvf/PVS+n/fI91u99c+Fy6Xq0Wfi29+762pqTHz5s3r/u677+7Jzc3Nvu+++0pO9zUYaObxeDRlypTKZ555pui///u/DyxatCjmfM6j5u/XHo/HtvTrR8+ePetef/31PTNnzuxxIdfSffjhh4+/9957eWFhYb5Jkyb1Xrx48dduSneun0XOlLn5+dcSc+bMOb5+/fqo/fv3n/xDjbVWf/vb3/Kaf7YpLi7eNmzYsLq0tLTGjh07Nq1fvz7s3XffjZ05c+bxb+7vzTffPPCrX/2qqKCgIHjIkCHpzf+lAQDAldY+ZwCfY6bulbB58+ZQn8+nhISEb81YKysrc0dHR3ujoqJ8mzdvDs3KyoqQpNzc3OC5c+d2X7ZsWW5kZOSZL2CFVuViZupejKlTp1b+/Oc/N7/97W/j582bVyJJa9asCV+8eHF0ZmZmhy+++GJX87oTJ06suOOOO3r+8z//8+Fu3bo1HT582F1eXu6+8cYbq+fNm9c9JycnuG/fvg2HDx92nzoL+GzKy8vd8fHxjSEhIXbJkiVRRUVFF3SDsUB3PjN1L5Xmc+Opp57q9NOf/vSoJDXfxK1Hjx4Nf/rTn8K9Xq/y8/ODtm7dGiFJpaWl7rCwMF9sbKy3oKDAk5mZGT1mzJhKSYqIiPCWl5e7unTpohtuuKF63rx5Kdu3bw8ZMGBAfWVlpSs/Pz9o0KBB35rFczotOW84t9qPc83UvZyioqJ8y5Yt2z169Oi+CQkJTU888USJJM2YMePYD37wg6vmzZtXfKZthwwZUrVgwYKYH/7wh6Uvv/zy125w9PDDD5eMHDmyX3x8fGNGRkadJP3617/uVFVV5T71pkG5ubnBaWlpDfPmzSuprq52bdq0KVzSMY/HY+vr601ISIg9088LgaglM3Uvp4SEBO/UqVNL33zzzfi77777mCRVVla6U1JSGiWp+dIeF8rn8+mVV16JmT17dumCBQviRowY8bWbcdXU1LgkKTExsam8vNy1ZMmS0842RCvkwO8dWVlZIS6XS80zaDdv3hyW1cPc5AAAIABJREFUlJTUcLHnUVRUlLeiouKsBeb48eOrn3322f3Tpk3rlZmZuevUG2hGR0d7T/0jSnR0tLeqqurk/rKzs4P79etXn56efmTv3r0hW7ZsCbv11ltPPhfO9rPImYwaNary5Zdfjvuv//qv4nfeeafDufKHhITYOXPmHP7d736XeO2111ZK0o033ljx29/+NmHBggUHXC6XPv/887DRo0fXStKdd955/D//8z8TKysr3SNGjPjWf2rs2LEjZOzYsdVjx46tXr58ece9e/cGJyYmnvY/OgAAuJzaZwHskOZrAEsn/pL8wgsv7PN4vv0pmD59evmLL77YqXfv3v179OhRN3jw4GpJ+uMf/xhXXl7uvu2223pKUkJCQsOaNWu4lhROy+VyafHixXseeeSR5GeffTYxJCTEJiUl1dfW1rqOHDkSNGTIkH6SNHHixLJnn3226F//9V8P3nTTTb19Pp+CgoLs/PnzD9x0003V8+fP33f77bf39Pl8iouLa1y7du3ulhz/wQcfPD5p0qSeAwYM6Jeenl6TlpZ21jud48pxuVxasmTJnh/96EfJ8+fPT4yNjW0KDw/3/vKXvywcP3581fPPP1/fp0+f9D59+tT279+/RpKuueaa2gEDBtT06tUrPSUlpf7UyzrMmjWrZNKkSb06d+7cuH79+tw//vGP+2bMmHFVQ0ODkaRf/OIXB1taALfkvOHcwpWSkJDgXbZsWe6YMWP6durUqem+++4re+CBB4499dRT3R544IFvzfRq9vvf/77g3nvvTZs/f37ihAkTyiIjI0/+4Sw5ObmpR48edVOnTi1rHnvuuecSg4KCbPPPCPfff//RsLAw3/z58xM9Ho8NDw/3vvHGG/mSdO+99x7t169f/wEDBtS8/fbb+0738wIuj3/5l385tHDhwk6nvF10991390hISGjIyMioPnDgwLduWNVSYWFhvh07doSlp6cnRkVFed999929py6Pj4/33nvvvUf79++fnpSU1MDnGmdTUVHhfuyxx1IqKircbrfbpqam1i9cuHD/xZ5H06dPL7vzzjt7LF26tOOzzz574HTXAZaku+++u/zIkSNFEydO7PX555/nNI8nJiZ6hw8fXtWrV6/0sWPHls+fP/+gx+Oxffr06X/PPfeU1NXVuf7617/GeTwe26lTp8Zf//rXRafu92w/i5zJk08+WTR9+vSr/DdYrOrSpcu3riv8TXPnzi15+umnT94M7sknnyyaPXt2St++fftba01SUlL96tWr8yTpvvvuK/35z3+eMnfu3KLT7euJJ55I2rdvX4i11lx33XUVo0aNovwFADjCnO1OqIEkKytr3+DBg0vOvSYAAMDpvfLKKzHvvfdex0WLFuWfaZ3KykpXRESEz+Vy6cUXX4x5++23Y1euXLmneVn//v37b9myZWdcXFyL/qMCAAAAAL4pKysrfvDgwaktWZcZwAAAAC0wa9as5NWrV0e///77Z/1PiM8//zx87ty5KdZadejQwbtgwYJ9krRo0aKoOXPmpM6ZM+cw5S8AAACAK4UZwAAAAAAAAADQhpzPDGDuHgwAAAAAAAAAAao9FcA+n89nnA4BAAAAAAAAABfK33H6Wrp+eyqAtx89ejSaEhgAAAAAAABAW+Tz+czRo0ejJW1v6Tbt5iZwTU1NDx46dOilQ4cODVD7Kr4BAAAAAAAABAafpO1NTU0PtnSDdnMTOAAAAAAAAABob5gJCwAAAAAAAAABigIYAAAAAAAAAAIUBTAAAAAAAAAABCgKYAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAIEBRAAMAAAAAAABAgKIABgAAAAAAAIAARQEMAAAAAAAAAAGKAhgAAAAAAAAAAhQFMAAAAAAAAAAEKI/TAa6U+Ph4m5qa6nQMAAAAAAAAALgoGzduLLHWdmrJuu2mAE5NTdWGDRucjgEAAAAAAAAAF8UYs7+l63IJCAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAIEBRAAMAAAAAAABAgKIABgAAAAAAAIAARQEMAAAAAAAAAAGKAhgAAAAAAAAAAhQFMAAAAAAAAAAEKApgAAAAAAAAAAhQFMAAAAAAAAAAEKAogAEAAAAAAAAgQFEAAwAAAAAAAECAogAGAAAAAAAAgABFAQwAAAAAAAAAAYoCGAAAAAAAAAACFAUwAAAAAAAAAAQoCmAAAAAAAAAACFAUwAAAAAAAAAAQoCiAAQAAAAAAACBAUQADAAAAAAAAQICiAAYAAAAAAACAAEUBDAAAAAAAAAABigIYAAAAAAAAAAIUBTAAAAAAAAAABCgKYAAAAAAAAAAIUBTAAAAAAAAAABCgKIABAAAAAAAAtFmNDV6nI7RqFMAAAAAAAAAA2hxrrXauLdarP1urw/sqnI7TanmcDgAAAAAAAAAA56PiWK3WvLFLB7KPq0vPaIWEU3OeCR8ZAAAAAAAAAG2C9Vnt+PSg1r67R1bSd2b01oDvdJNxGaejtVoUwAAAAAAAAABavbIjNVr9Wo6KdpcpqW+MbryvrzrEhzkdq9WjAAYAAAAAAADQavl8VltXFWj9e3vl8rh048y+6ndtFxnDrN+WoAAGAAAAAAAA0CodL6rWqtd26nB+hVIHxmnMPX0VGRPidKw2hQIYAAAAAAAAQKvi9fq0+aMD+uqDfAWHeDT+/v7qdXUCs34vAAUwAAAAAAAAgFbjaEGlVr26UyUFVeoxrLO+M6O3wjsEOx2rzaIABgAAAAAAAOA4b6NPG5bu06Zl+xUSGaSJDw1Qj6GdnY7V5lEAAwAAAAAAAHDUofxyrXo1R6XF1eozKlHX3dVLoRFBTscKCBTAAAAAAAAAABzR2ODVl0vylbXigCI6hmjKo4PVfUCc07ECCgUwAAAAAAAAgCuuaHepVr2ao/KjtUq/vquuvaOngsOoKy81PqIAAAAAAAAArpiGuiat+8cebVtzUB3iQzXt8SFK6hvrdKyARQEMAAAAAAAA4IooyD6u1a/nqLK0ToPGJmnUtB4KCnE7HSugUQADAAAAAAAAuKzqaxr1+d/ytHNtsTomhOuOnwxXlx7RTsdqFyiAAQAAAAAAAFw2BTuPa+WCbNVUNmrYzd119ZRUeYKY9XulUAADAAAAAAAAuCx2rSvWqldz1DExXJMfGaTO3Ts4HandoQAGAAAAAAAAcMlt/uiA1r6bp259YjT54YEKDqOKdAIfdQAAAAAAAACXjPVZff5unrJWFKjn8M4a9/3+cge5nI7VblEAAwAAAAAAALgkvE0+rVy4U7u/OqyBNybp+rt6ybiM07HaNQpgAAAAAAAAABetoa5Jy17croLs4xp121UadnN3GUP56zQKYAAAAAAAAAAXpaaiQR88n6WjBVUa+72+6ndtV6cjwY8CGAAAAAAAAMAFKz9aqyXzt6i6rF6THx6o1EHxTkfCKSiAAQAAAAAAAFyQowcqteS5LPm8Pk17YqgSr4p2OhK+gQIYAAAAAAAAwHkrzDmuD/+wTSFhHt32xHDFdolwOhJOgwIYAAAAAAAAwHnZveGwVizIVsfO4Zr648GKjAl1OhLOgAIYAAAAAAAAQIttXV2oT9/JVZce0Zo8Z5BCI4KcjoSzoAAGAAAAAAAAcE7WWq1/b682LtuvtMHxmvBAujzBbqdj4RwogAEAAAAAAACclc/rU+Ybu7RzbbH6X99VY2b0lsvtcjoWWoACGAAAAAAAAMAZNTZ49dGftmvftmPKuCVVI6akyRjjdCy0EAUwAAAAAAAAgNOqq27UB89n6VB+hcbc3VsDxiQ5HQnniQIYAAAAAAAAwLdUHq/TkvlbVF5Sq4k/HKAewzo7HQkX4JwX6jDGhBpjvjTGZBljdhhj/j//eJoxZr0xZrcx5m1jTLB/PMT/dp5/eeop+/qZf3yXMebmU8Yn+sfyjDH/dMr4eR8DAAAAAAAAwMU5VlSlv//XRlWX1evWx4ZQ/rZhLblSc72ksdbawZKGSJpojBkl6SlJz1hre0kqlfSAf/0HJJVaa3tKesa/nowx/SXNkJQuaaKk/2uMcRtj3JKelzRJUn9Jd/vX1fkeAwAAAAAAAMDFKc4r0z9+s0nWWt3+k+Hq1jvG6Ui4COcsgO0JVf43g/wvVtJYSX/zjy+UdJv/8TT/2/Ivv8mcuCr0NElvWWvrrbX5kvIkjfC/5Flr91prGyS9JWmaf5vzPQYAAAAAAACAC5SfdVTv/W6LwqKCNf1/DVd8UqTTkXCRWjIDWP6ZulskHZH0saQ9ksqstU3+VQoldfM/7iapQJL8y8slxZ06/o1tzjQedwHHAAAAAAAAAHABsj8r0tI/bFNct0jd8ZNh6hAf5nQkXAItugmctdYraYgxpqOkf0jqd7rV/K9PNxPXnmX8dCX02dY/2zG+xhgzW9JsSUpJSTnNJgAAAAAAAED7Zq3VxqX7tX7xXqWkx2ri7IEKCnE7HQuXSItmADez1pZJypQ0SlJHY0xzgZwkqcj/uFBSsiT5l0dLOn7q+De2OdN4yQUc45t5X7TWZlhrMzp16nQ+7yoAAAAAAADQLnz1wT6tX7xXfUYmavIjgyh/A8w5C2BjTCf/zF8ZY8IkjZO0U9JqSXf6V5sl6T3/48X+t+Vfvspaa/3jM4wxIcaYNEm9JH0p6StJvYwxacaYYJ24Udxi/zbnewwAAAAAAAAALbRx2T599X6++l6TqJtm9ZPbfV7zRdEGtOQSEF0kLTTGuHWiMH7HWvu+MSZb0lvGmF9J2izpz/71/yzpNWNMnk7Myp0hSdbaHcaYdyRlS2qS9CP/pSVkjHlU0nJJbkkvW2t3+Pf10/M5BgAAAAAAAICW2bLigNYt2qteVyfoxpn9ZFynu+oq2jrTXibOZmRk2A0bNjgdAwAAAAAAAHDctsxCffJWrnoM66QJD6TLxczfNsUYs9Fam9GSdfnMAgAAAAAAAO1I9mdF+uStXKUOitd4yt+Ax2cXAAAAAAAAaCdy1hVr9Rs5SkmP08QfDuCav+0An2EAAAAAAACgHdi94bBWLdyppD4xmvTQALmDqAbbAz7LAAAAAAAAQIDbu/moPn45W4k9ojV5ziB5gt1OR8IVQgEMAAAAAAAABLB9W0u0/KXtSkiN0pRHBysohPK3PaEABgAAAAAAAALUgexjWvriNsUnRWrKj4coONTjdCRcYRTAAAAAAAAAQAAq3FWqD1/YppjECE19bIhCwih/2yMKYAAAAAAAACDAFOWV6YPnsxTdKUzT5g5RaESQ05HgEApgAAAAAAAAIIAcyi/X+89lKTImVLfOHaKwqGCnI8FBFMAAAAAAAABAgDh6oFJL5mcpLCpY0x4fqojoEKcjwWEUwAAAAAAAAEAAKCms0nu/26yQMI9ue2KoImMof0EBDAAAAAAAALR5x4uqtfh3m+UJcmvaE0MVFRvqdCS0EhTAAAAAAAAAQBtWdrhG7z27WcYY3fbEUEV3CnM6EloRCmAAAAAAAACgjaooqdV7z26WtVbTHh+qjgnhTkdCK0MBDAAAAAAAALRBlcfrtOjpzWps8OrWuUMV2zXC6UhohSiAAQAAAAAAgDamqrRei57ZrPraJt362BDFJ0U6HQmtFAUwAAAAAAAA0IbUVDTovWc3q7aiQVN/PFidu3dwOhJaMQpgAAAAAAAAoI2orTpR/laV1mnKjwcr8apopyOhlaMABgAAAAAAANqAuupGLf7dFpUfrdUtjwxS154dnY6ENoACGAAAAAAAAGjl6mubtGT+Fh0vrtbkhwcqqW+s05HQRnicDgAAAAAAAADgzOqqGrXk91tUUlClSQ8PVEp6nNOR0IZQAAMAAAAAAACtVHV5/YnLPhyp1aSHByp1ULzTkdDGUAADAAAAAAAArVDl8Tot/t0WVZXW6ZZHBymZyz7gAlAAAwAAAAAAAK1M+dEavffMFtXXNOrWx4aoCzd8wwWiAAYAAAAAAABakePF1Vr87GY1Nfk07Ymh6ty9g9OR0IZRAAMAAAAAAACtxNGCSi2Zv0UyRrf/z2GK6xbpdCS0cRTAAAAAAAAAQCtwKL9c7/8+S0Ehbk17fKg6JoQ7HQkBgAIYAAAAAAAAcNjB3FJ98PxWhXUI1rTHh6hDXJjTkRAgKIABAAAAAAAAB+3fcUxL/7BNHeLDNO3xIYqIDnE6EgIIBTAAAAAAAADgkL2bj2r5S9sV2zVCtz42RGFRwU5HQoChAAYAAAAAAAAcsGv9Ia1cuFMJqVGa8uhghYQHOR0JAYgCGAAAAAAAALjCdnx6UJlv7lK33h01ec4gBYdS0+Hy4MwCAAAAAAAArqCslQX67K+71X1AnCbOHiBPsNvpSAhgFMAAAAAAAADAFbLhw31av3ivegztpPEPpMvtcTkdCQGOAhgAAAAAAAC4zKy1WvfeXm1atl+9Rybopu/1k8tN+YvLjwIYAAAAAAAAuIysz+qzv+7W1tWFSr++q8bc3UfGZZyOhXaCAhgAAAAAAAC4THw+q8w3crTz82INHpes0dN7yhjKX1w5FMAAAAAAAADAZeD1+rRywU7t/uqwMm5J1YgpaZS/uOIogAEAAAAAAIBLrKnRq49e2qH8rBJdc3sPDbu5u9OR0E5RAAMAAAAAAACXUGODV0tf2KqCnaX6zozeGnhDktOR0I5RAAMAAAAAAACXSENtk95/PkuH9pRr7Pf6qd+1XZyOhHaOAhgAAAAAAAC4BOqqG7Vk/haVFFRp/APp6pWR4HQkgAIYAAAAAAAAuFjHDlZp+Z+2q7ykVhMfHqi0QfFORwIkUQADAAAAAAAAF8xaqx2fHNRnf8tTcJhHU388REl9YpyOBZxEAQwAAAAAAABcgLrqRq16dafys0qUkh6rm2b1V3iHYKdjAV9DAQwAAAAAAACcp4O5pVrxSrZqKho0+s6eGjw2WcZlnI4FfAsFMAAAAAAAANBCPq9PX324Txs/3KcOncI0/X8PV+fuHZyOBZwRBTAAAAAAAADQAhXHarXi5WwV7ylX31GJun5GbwWHUq+hdeMMBQAAAAAAAM4hb+MRZb6RI5/Pavz9/dV7RKLTkYAWoQAGAAAAAAAAzqCxwavP3tmt7M+K1Dm1gyY8kK7oTmFOxwJajAIYAAAAAAAAOI2Swkp99NIOlR6u0bCbu2vErWlyu11OxwLOCwUwAAAAAAAAcAprrbZlHtTav+cpJNyjWx8bouR+sU7HAi4IBTAAAAAAAADgV1vVoFWv5mjf1hJ1HxCnm2b1U1hUsNOxgAtGAQwAAAAAAABIKtxVqhUv71BtdaOuu6uXBo1NkjHG6VjARaEABgAAAAAAQLvm9fr01ZJ8bVy+Xx07h+uWRwerU3KU07GAS4ICGAAAAAAAAO1WRUmtPvrzDh3Or1C/0V10/Xd7KyjE7XQs4JKhAAYAAAAAAEC7tHvDYWW+niNJmvBgunplJDicCLj0KIABAAAAAADQrjTWe/Xp27naubZYCWkdNOGBdHWID3M6FnBZUAADAAAAAACg3Th6oFIf/XmHyo7UaPik7rp6SprcbpfTsYDLhgIYAAAAAAAA7ULexiP6+JUdCosI0rTHhyqpT4zTkYDLjgIYAAAAAAAAAS9v4xF99OcdSkjtoMmPDFRYZLDTkYArggIYAAAAAAAAAW33hsP6+OVsJaZ10JQfD1ZwKJUY2g/OdgAAAAAAAASsk+XvVR005VHKX7Q/XOEaAAAAAAAAAWn3V4f18Z93UP6iXeOsBwAAAAAAQMDJ/eqQVrycrS49O+qWHw2i/EW7xZkPAAAAAACAgJL75SGteIXyF5AogAEAAAAAABBAdq0/pJULTpS/Ux4drKAQt9ORAEdRAAMAAAAAACAgNJe/XXt11C0/ovwFJApgAAAAAAAABICT5W/vjrrlEcpfoBkFMAAAAAAAANq0XeuKtWLhTnXr7Z/5G0z5CzSjAAYAAAAAAECblbOuWCsX7lS33jG65UeDKH+Bb6AABgAAAAAAQJuU80WxVr66U0l9YjT5Ecpf4HQogAEAAAAAANDm7FxbrFWvUf4C50IBDAAAAAAAgDZl59oirXotR8l9YzR5ziB5KH+BM6IABgAAAAAAQJuR/XmRVr+eo+R+sZr88EDKX+AcKIABAAAAAADQJjSXvyn9YjWJ8hdoEQpgAAAAAAAAtHrZn/nL3/6xmjRnoDxBlL9AS1AAAwAAAAAAoFXb8elBZb6xSynp/pm/lL9Ai1EAAwAAAAAAoNX6f+VvnCY9PIDyFzhPFMAAAAAAAABolbZ/clBr3tyl7gPiNPEhyl/gQlAAAwAAAAAAoNU5Wf4OjNOk2QPlDnI5HQlokyiAAQAAAAAA0KpsX1OoNX/JVerAOE2k/AUuCgUwAAAAAAAAWgXrs9qyokBr381T6qB4TfzhAMpf4CJRAAMAAAAAAMBx1WX1WvnqThVkH1ePoZ00/v50yl/gEjjns8gYk2yMWW2M2WmM2WGMmesf/6Ux5qAxZov/ZfIp2/zMGJNnjNlljLn5lPGJ/rE8Y8w/nTKeZoxZb4zZbYx52xgT7B8P8b+d51+eeq5jAAAAAAAAoG3J23hEf/mP9SrOK9OYe/ro5tnM/AUulZbMAG6SNM9au8kYEyVpozHmY/+yZ6y1vzl1ZWNMf0kzJKVL6ipphTGmt3/x85LGSyqU9JUxZrG1NlvSU/59vWWM+YOkByS94H9daq3taYyZ4V/vf5zpGNZa74V+IAAAAAAAAHBl1dc26dO3c7Vr3SF17h6l8fenq2NCuNOxgIByzgLYWlssqdj/uNIYs1NSt7NsMk3SW9baekn5xpg8SSP8y/KstXslyRjzlqRp/v2NlXSPf52Fkn6pEwXwNP9jSfqbpOeMMeYsx/iiJe80AAAAAAAAnFW0u0wrXslWVVm9Mm5JVcbkVLndzPoFLrXzelb5L8EwVNJ6/9CjxpitxpiXjTEx/rFukgpO2azQP3am8ThJZdbapm+Mf21f/uXl/vXPtC8AAAAAAAC0Yt4mn774R57+8fQmGbfRHT8ZppFTr6L8BS6TFt8EzhgTKenvkh631lYYY16Q9B+SrP/1byXdL8mcZnOr05fN9izr6yzLzrbNqZlnS5otSSkpKafZBAAAAAAAAFfK8aJqffzKDpUUVKn/6C4afVcvBYe2uJ4CcAFa9AwzxgTpRPn7hrX2XUmy1h4+ZfmfJL3vf7NQUvIpmydJKvI/Pt14iaSOxhiPf5bvqes376vQGOORFC3p+DmOcZK19kVJL0pSRkbGtwpiAAAAAAAAXH7WZ7U1s1Bf/GOPgkPdmjxnoNIGd3I6FtAunHNuvf+au3+WtNNa+/Qp411OWe12Sdv9jxdLmmGMCTHGpEnqJelLSV9J6mWMSTPGBOvETdwWW2utpNWS7vRvP0vSe6fsa5b/8Z2SVvnXP9MxAAAAAAAA0IpUldZrye+36LN3diupb4xm/Hwk5S9wBbVkBvBoSTMlbTPGbPGP/bOku40xQ3Ti0gv7JD0kSdbaHcaYdyRlS2qS9CNrrVeSjDGPSlouyS3pZWvtDv/+firpLWPMryRt1onCWf7Xr/lv8nZcJ0rjsx4DAAAAAAAArUPexiPKfCNH3iafxtzTR+nXd9WJuYYArhRzYkJt4MvIyLAbNmxwOgYAAAAAAEDAq69t0qdv5WrX+kPq3D1K4+9PV8eEcKdjAQHDGLPRWpvRknW5yjYAAAAAAAAumaLdZVrxSraqyuqVcUuqMianyu0+51VIAVwmFMAAAAAAAAC4aN4mn75cslebPjqgDvFhuuMnw5R4VbTTsYB2jwIYAAAAAAAAF+VYUZVWvJKtkoIq9R/dRaPv6qXgUGonoDXgmQgAAAAAAIALYn1WW1cX6ot/7FFwmFuT5wxU2uBOTscCcAoKYAAAAAAAAJy3qtJ6rXo1WwU7S9V9YJzGzuyn8A7BTscC8A0UwAAAAAAAADgrb5NPDbVNqq9tUkNtk44drNLnf8uTt8mnMff0Ufr1XWWMcTomgNOgAAYAAAAAAAhgXu+J8vbEi/dkidtQ26T6miY11DV9bexE0ev92ttNjb5v7bdz9yiNvz9dHRPCHXivALQUBTAAAAAAAEAAOXawSls+PqADO4+roeb05e03eYJdCg7zKCTMo+Awj0LDPeoQF6pg/9shYe6Tj4NDPQqNDFJCWge53a4r8B4BuBgUwAAAAAAAAG2ctVaFu0pPFL87jssT7NJVQzspPCpYIeGer5W3zSVvc+EbFOamyAUCGAUwAAAAAABAG+Xz+pS36Yi2fFygowcqFdYhWCNvvUoDxnRTaESQ0/EAtAIUwAAAAAAAAG1MQ12Tdn5erKyVBao8XqeOCeG68b6+6j0yQZ4gt9PxALQiFMAAAAAAAABtRHV5vbauLtSOTw6qvqZJXXpG6/r/0UupA+NlXMbpeABaIQpgAAAAAACAVu54cbW2fHxAu748JJ/XqseQThoyIUWJadFORwPQylEAAwAAAAAAtELWWhXnlWnzRwe0b9sxuYNc6n9tVw0el6yOncOdjgegjaAABgAAAAAAaEV8Pqu9m49q80f7dWR/pUIjg3T1lDQNHNNNYVHBTscD0MZQAAMAAAAAALQCjQ1e5awt1pYVB1RRUqfoTmEac3dv9bmmi4KCubEbgAtDAQwAAAAAAOCgmooGbcss1PY1B1VX3aiEtA66dnpPpQ3uJBc3dgNwkSiAAQAAAAAAHFB2uEZbVhxQzrpD8jb6lDooXkMnpKhLj2gZQ/EL4NKgAAYAAAAAALiCSgortXHpfuVtOiK326U+oxI1ZFyyYhIjnI4GIABRAAMAAAAAAFwBh/aWa8PSfdq/7ZiCQt0aNqG7Bo1NUkR0iNPRAAQwCmAAAAAAAIDLxFqrwpxSbVy6TwdzyxQaEaSRt6ZpwJgkhUYEOR0PQDtAAQwAAAAAAHCJWZ9V/tYSbVy2X0f2VSgiOlij7+xaKkBJAAAgAElEQVSp/td1VXAodQyAK4evOAAAAAAAAJeIz+tT3sYj2rhsv44XVatDfKhuuLeP+o7qIneQy+l4ANohCmAAAAAAAICL5G30KWddsTZ9dEAVR2sV0yVC437QX70yOsvlpvgF4BwKYAAAAAAAgAvUWO9V9mdF2vzxAVWX1atz9yiNfnig0gbFy7iM0/EAgAIYAAAAAADgfNXXNGpb5kFlrSpQXVWjuvbqqLHf66vkfrEyhuIXQOtBAQwAAAAAANBCtZUN2rKyQNszC9VQ51X3AXEaPrG7uvTs6HQ0ADgtCmAAAAAAAIBzqCqt0+aPDyj70yI1NfnUY2hnDZ/YXZ1SopyOBgBnRQEMAAAAAABwBmVHarR5+X7lrDskWan3yAQNu7m7YhIjnI4GAC1CAQwAAAAAANol67OqqWxQ1fF6VZXWqfJ4napK61V1vE6VpSfGasob5Pa4lH5dVw2ZkKIOcWFOxwaA80IBDAAAAAAAAo61Vg21TaoqrT9Z7J54XXey8K0qrZfPa7+2nSfYpciYUEXFhiiua5yiO4ep7zVdFBEd4tB7AgAXhwIYAAAAAAC0WWVHanRoT/m3Z+8er1Njvfdr67pcRhEdQxQZG6KEtGj1HB6iyJhQRcaGKjImRFGxoQoJ98gY49B7AwCXHgUwAAAAAABoc7yNPm1Yuk+blu8/OYs3LCpIUbGhikkIV3K/mBPlrr/YjYwJVXh0sFwuyl0A7QsFMAAAAAAAaFOKdpdp9es5Kjtco94jEpQxOVVRcaHyBLmdjgYArQ4FMAAAAAAAaBPqaxq19h97lP1pkaLiQjXlx4PVPT3O6VgA0KpRAAMAAAAAgFbNWqu9m4/qk7dzVVvRoMHjkjVy6lUKCmHGLwCcCwUwAAAAAABotapK6/TJW7nKzypRfHKkbnlkkDp37+B0LABoMyiAAQAAAABAq2N9Vts/OagvFu2R9Vpdc0cPDbkpWS63y+loANCmUAADAAAAAIBW5VhRlTJfz9GhvRVK6hujG+7to+hO4U7HAoA2iQIYAAAAAAC0Ck2NXm1cul+blu9XcKhH477fT71HJsoY43Q0AGizKIABAAAAAIDjinaXafXrOSo7XKPeIxN03Z29FBYV7HQsAGjzKIABAAAAAIBj6msatfYfe5T9aZGi4kI19ceDlZIe53QsAAgYFMAAAAAAAOCKs9Zqz6aj+vTtXNVWNmjI+BSNmJKmoBC309EAIKBQAAMAAAAAgCuqqrROa/6Sq31bSxSfHKkpjw5Wp5Qop2MBQECiAAYAAAAAAFeE9Vlt/+Sgvli0R9Zrde0dPTX4piS53C6nowFAwKIABgAAAAAAl92xoiplvp6jQ3srlNwvRmPu6avoTmFOxwKAgEcBDAAAAAAALpv6mkZtWVGgTcv3KzjUo3E/6K/eIxJkjHE6GgC0CxTAAAAAAADgkis/WqOsVYXaubZYTfVe9RmZqNF39VRYZLDT0QCgXaEABgAAAAAAl4S1VsV55dqy4oDyt5bI5TLqdXWCBt+UrE7J3OQNAJxAAQwAAAAAAC6K1+vTno1HtGVFgY4eqFRIhEfDJ3bXwBuSFBEd4nQ8AGjXKIABAAAAAMAFqatu1I5PD2pb5kFVl9UrJjFcY+7poz6jEhUU7HY6HgBAFMAAAAAAAOA8lR2uUdaqAuV8UaymBp+S+sbohnv7qHt6nIyLm7sBQGtCAQwAAAAAAM7JWquDuWXKWlmgfdtK5HIb9R6RqMFjkxWfFOl0PADAGVAAAwAAAACAM/I2+bR7w2FlrSxQSUGVQiODlDE5VQO+043r+wJAG0ABDAAAAAAAvqWuqlHbPzmobWsKVVPeoJguEbrxvr7qPSJBHq7vCwBtBgUwAAAAAAA4qfRQtbJWFmjXukNqavQpuX+sbvpespL7x8oYru8LAG0NBTAAAAAAAO2ctVaFOaXKWlmg/duPye1xqffIBA0em6y4blzfFwDaMgpgAAAAAADaMWutVr26UzlfHFJYVJCunpKmAd/ppvAOwU5HAwBcAhTAAAAAAAC0Y1krC5TzxSENHZ+iEbemyRPE9X0BIJBQAAMAAAAA0E4VZB/X2r/nqcfQTrrm9h4yLq7xCwCBxuV0AAAAAAAAcOWVHanR8pe2K7ZrhMbO6kf5CwABigIYAAAAAIB2pqGuSR++sE0y0qSHByk4lH8QBoBARQEMAAAAAEA7Yn1WK17JVtnhGt38wwGK7hTmdCQAwGVEAQwAAAAAQDvy1Qf5ys8q0ejpPZXcN9bpOACAy4wCGAAAAACAdmLP5iP66oN96ntNogaNTXI6DgDgCqAABgAAAACgHTh2sEorFuxUQloHjbmnj4zhpm8A0B5QAAMAAAAAEODqqhr14QtbFRzq1qSHBsoT5HY6EgDgCqEABgAAAAAggPm8Pi1/abuqyuo16aGBiugY4nQkAMAVRAEMAAAAAEAAW/vuHhXmlOqGe/oo8apop+MAAK4wCmAAAAAAAAJUzhfFylpZoEFjk9Tv2q5OxwEAOIACGAAAAACAAHQ4v0KZb+xStz4xGj29p9NxAAAOoQAGAAAAACDAVJfXa+kftiqiY7Am/nCAXG5+/QeA9orvAAAAAAAABBBvo09L/7BN9XVeTZ4zSKGRQU5HAgA4iAIYAAAAAIAAYa3Vmr/s0uH8Co2b1U9x3SKdjgQAcBgFMAAAAAAAAWJb5kHtXFusjMmp6jGss9NxAACtAAUwAAAAAAABoHBXqT77626lDorXiClpTscBALQSFMAAAAAAALRxFSW1Wv7idnVMCNf4H/SXcRmnIwEAWgkKYAAAAAAA2rDGeq8+fGGbrLWaPGeggsM8TkcCALQiFMAAAAAAALRR1lqtXJit40VVmvBAujp2Dnc6EgCglaEABgAAAACgjdq4dL/2bDqqa+7oqZT0OKfjAABaIQpgAAAAAADaoPytJVq/ZK96j0zQkHHJTscBALRSFMAAAAAAALQxx4ur9fHLO9QpOUo33ttXxnDTNwDA6VEAAwAAAADQhtTXNOrDF7bKE+zW5DkD5Ql2Ox0JANCKUQADAAAAANBG+HxWH/15hyqP1WnS7AGKjAl1OhIAoJU7ZwFsjEk2xqw2xuw0xuwwxsz1j8caYz42xuz2v47xjxtjzHxjTJ4xZqsxZtgp+5rlX3+3MWbWKePDjTHb/NvMN/7/XbmQYwAAAAAAEKjWLdqjAzuO6zszeqtLz45OxwEAtAEtmQHcJGmetbafpFGSfmSM6S/pnySttNb2krTS/7YkTZLUy/8yW9IL0okyV9IvJI2UNELSL5oLXf86s0/ZbqJ//LyOAQAAAABAoMr98pA2f3RAA8Z0U/r13ZyOAwBoI85ZAFtri621m/yPKyXtlNRN0jRJC/2rLZR0m//xNEmv2hPWSepojOki6WZJH1trj1trSyV9LGmif1kHa+0X1lor6dVv7Ot8jgEAAAAAQECxPqtNy/dr5cKd6tqro677bi+nIwEA2hDP+axsjEmVNFTSekkJ1tpi6URJbIzp7F+tm6SCUzYr9I+dbbzwNOO6gGMUn8/7AwAAAABAa1ZVWqcVC7J1cFeZegztpBvu6yu3m9v5AABarsUFsDEmUtLfJT1ura3wX6b3tKueZsxewPhZ47RkG2PMbJ24RIRSUlLOsUsAAAAAAFqPvI1HlPlGjrxeqxtn9lW/a7voLL+LAwBwWi0qgI0xQTpR/r5hrX3XP3zYGNPFPzO3i6Qj/vFCScmnbJ4kqcg/fsM3xjP940mnWf9CjvE11toXJb0oSRkZGecqlQEAAAAAcFxDXZM+fWe3ctYWq3P3KI2/P10dE8KdjgUAaKPO+X8j5sSfF/8saae19ulTFi2WNMv/eJak904Z/545YZSkcv9lHJZLmmCMifHf/G2CpOX+ZZXGmFH+Y33vG/s6n2MAAAAAANBmHc6v0Dv/5yvlfFGs4ZO6647/PZzyFwBwUVoyA3i0pJmSthljtvjH/lnSk5LeMcY8IOmApLv8yz6UNFlSnqQaST+QJGvtcWPMf0j6yr/ev1trj/sfz5G0QFKYpKX+F53vMQAAAAAAaIt8PqtNy/bry/fzFREdrNv/51B17RXjdCwAQAAw1raPKyNkZGTYDRs2OB0DAAAAAICvqThWqxWvZKs4r1w9Mzrrhnv6KCQ8yOlYAIBWzBiz0Vqb0ZJ1W3wTOAAAAAAAcGnt/uqwMt/cJWutxn2/n3qPTORGbwCAS4oCGAAAAACAK6yhtkmfvJWrXesPKfGqDhr3g3RFdwpzOhYAIABRAAMAAAAAcAUV7ynXild2qPJYna6+JVUZk1Plcp/zHu0AAFwQCmAAAAAAAK4An9enDUv3a8OH+xQZE6LbfzJcXXpEOx0LABDgKIABAAAAALjMyo/WasUrO3Rob4X6jEzU9TN6KySMX8kBAJcf320AAAAAALhMrLXKXX9Ia97KlTFG4x/or95XJzodCwDQjlAAAwAAAABwGdTXNGrNX3K1+6vD6tIzWuN+0F8d4rjRGwDgyqIABgAAAADgEivaXaaPX9mh6rIGjbz1Kg2b2F0ul3E6FgCgHaIABgAAAADgEvF6ffrq/XxtWrZfUfFhuuN/DVNiGjd6AwA4hwIYAAAAAIBL4NjBKq16LUdH9lWo37VddN13eyk4lF+7AQDO4jsRAAAAAAAXoeJYrb5ckq9d6w8pJMyjm384QD2Hd3Y6FgAAkiiAAQAAAAC4ILVVDdq4dL+2rSmUkdHQcSkaNrG7QiOCnI4GAMBJFMAAAAAAAJyHxnqvslYVaPPy/Wqs96rvNV109ZQ0RcWGOh0NAIBvoQAGAAD/P3v3HR3XfZh5/7nTgRlg0DvABvYCiqRIyqpWIalC2XIUW5LXdhzbUuK1nJOsT9rmjZOzG++bPUm8ryWvYyW24xK3FNsSLYmiREqkJIsUG1hAkCDRey9TMPW+f8wIJCVSLAJ5Ub6fc+bMzG/u3PsMRIozD37zuwAA4DIkE0mdeLNL+7Y1KTQS1dxVBdr40fnKL/NZHQ0AgIuiAAYAAAAA4H2YpqnGQ31661eNGu4JqWS+X5u/sEJl1TlWRwMA4JIogAEAAAAAuIiOk0N68xdn1Ns8qtxSr+77/ZWau6pAhmFYHQ0AgMtCAQwAAAAAwLv0twf0m1+cUevxAfly3frwp5ZoycYS2ew2q6MBAHBFKIABAAAAAEgb7Q9r33NNOrmvW+4Mh2762AKtuqNCDpfd6mgAAFwVCmAAAAAAwKwXDkR14PkWHd3dLsMwdMM9VVqzeY48XqfV0QAA+EAogAEAAAAAs1YsklDtK2069FKLYpGElnyoVOsfmCdfrsfqaAAATAoKYAAAAADArJNIJHXijS69va1JodGo5tUUaONHFiivzGt1NAAAJhUFMAAAAABg1jBNU2cO9mnvs40a7gmptNqvLU+sVOkCv9XRAAC4JiiAAQAAAAAzWjyWUGfDsFrrBtV6bEBD3SHllnp13xdXae7KfBmGYXVEAACuGQpgAAAAAMCMYpqmhrpDaqsbVGvdgDpPDSseS8rmMFRWnaM1m+do0YYS2WwUvwCAmY8CGAAAAAAw7Y0HY2qvH1Jb3YBa6wYVGIpIknKKM7XsljJVLstT+aJcOd12i5MCAHB9UQADAAAAAKadZNJUb8uoWo8Pqq1uQD1NozJNyZXhUMWSXK27L0+Vy/KUnZ9hdVQAACxFAQwAAAAAmBYCQxG11g2orW5QbfWDigTjkiEVzcnW2nvnqmpZnornZctmt1kdFQCAKYMCGAAAAAAwJZ178ra2ukENdgYlSV6/S/NWFahqeb4ql+TJ43NanBQAgKmLAhgAAAAAMGXEYwnVvd6plmMD6jg1rEQsKbvDptJqv5ZsLFXV8jzllXllGJzADQCAy0EBDAAAAACYEkb7w3rxmWPqax1Tbkmmlt9apqpl+SpblCOni5O3AQBwNSiAAQAAAACWazk+oB3fPS4zKd33+ys1r6bQ6kgAAMwIFMAAAAAAAMuYSVP7X2jWvm1Nyi/zacsTK5RTlGl1LAAAZgwKYAAAAACAJcaDMb38vTq1HBvQ4g0luv2Ti1nqAQCASUYBDAAAAAC47vpax/TiM0cVGIro9kcXaflt5ZzYDQCAa4ACGAAAAABwXZ14s1Ov/eSUMnxOPfSVNSqZ57c6EgAAMxYFMAAAAADguojHEtrz8wbV7elU+eJcbf78cmVkuayOBQDAjEYBDAAAAAC45kYHwtr+zDH1toxpzeY52vDgPNnsNqtjAQAw41EAAwAAAACuqda6Ae34Tp2SiaTu/b2Vmr+60OpIAADMGhTAAAAAAIBrwkyaOvBis/Y+16S8Uq/ufWKlcoozrY4FAMCsQgEMAAAAAJh0kVBML3+vTs1HB7RofbHu+OQSOd12q2MBADDrUAADAAAAACZVf/uYXvjHowoMRnTbI4u04vZyGYZhdSwAAGYlCmAAAAAAwKSpf6tLr/7rSXkyHXroK2tUMt9vdSQAAGY1CmAAAAAAwAeWiCX1+r816NjuDpUvytGmz69QZrbL6lgAAMx6FMAAAAAAgA9kbHBcLz5zTL3No7rhnipt/Oh82ew2q2MBAABRAAMAAAAAPoC2+kG99M/HlYgnteWJFVpwQ5HVkQAAwDkogAEAAAAAV8xMmjr4Uov2/qpROSVe3fvECuWWeK2OBQAA3oUCGAAAAABwRSLhuF75lzo11fZr4boi3fFflsjl4eMlAABTEf9CAwAAAAAu29jguJ77xmGN9IZ1y8cXatWHK2QYhtWxAADARVAAAwAAAAAuy0BHQM89VavYeFxb/2C1KhbnWh0JAABcAgUwAAAAAOCSOk4N6flvHZXTZdNDX1mrggqf1ZEAAMBloAAGAAAAALyv0wd6teN7x+UvyNDWL69WVp7H6kgAAOAyUQADAAAAAC7qyK427fl5g0rn+3XfF1fJ43VaHQkAAFwBCmAAAAAAwHuYSVNv/eqMDm5v1byaAm363HI5XHarYwEAgCtEAQwAAAAAOE8intTOH57Qqb09WnFbuW59ZJFsNsPqWAAA4CpQAAMAAAAAJkTH43rxmWNqqxvUhgfna+29c2QYlL8AAExXFMAAAAAAAElSaDSqbU/Xqr89oA9/aomW3VxmdSQAAPABUQADAAAAADTcE9JzTx1WaDSq+35/peauLLA6EgAAmAQUwAAAAAAwy/U0jWrbN2slSR/9wzUqnpdtcSIAADBZKIABAAAAYBZrOTagF585qsxsl7Y+uVo5xZlWRwIAAJOIAhgAAAAAZqkTb3Zq149OqqDCpwe+VKPMbJfVkQAAwCSjAAYAAACAWcY0TR14oVl7n21S5dJcbXlipVwePh4CADAT8S88AAAAAMwiyaSpPT89pWO7O7RoQ7Hu/NRS2R02q2MBAIBrhAIYAAAAAGaJeDShHd+tU+PhPt2wqUo3fXSBDJthdSwAAHANUQADAAAAwCwwHozp+f97RF2NI7rl4wtVc2el1ZEAAMB1QAEMAAAAADPc2OC4nvvGYY30h7Xpc8u1cF2x1ZEAAMB1QgEMAAAAADPYQEdAzz1Vq1gkoQefXK3yxblWRwIAANcRBTAAAAAAzFAdJ4f0/LeOyOm262NfWaP8cp/VkQAAwHVGAQwAAAAAM9DpA73a8b3j8hdkaOuXVysrz2N1JAAAYAEKYAAAAACYQSLhuN78j9Oqe71TpQv8uu+Lq+TxOq2OBQAALEIBDAAAAAAzRMvxAb36o3oFhyNafU+VNjw4Tw6n3epYAADAQhTAAAAAADDNjQdjeuPfG1T/m27llnr1sT9eoZJ5fqtjAQCAKYACGAAAAACmsaYj/Xr1X+sVHotp7ZY5uvH+ebI7bVbHAgAAUwQFMAAAAABMQ+OBmPb8/JRO7etRfrlX939xlYrmZFsdCwAATDEUwAAAAAAwzZw51KvXfnJKkUBMN94/V2vvnSu7g1m/AADgvSiAAQAAAGCaCI9Ftfunp3T6QK8KKn168Ms1KqjIsjoWAACYwiiAAQAAAGCKM01Tpw/0avdPTykajmvDg/N1w+Yq2e3M+gUAAO+PAhgAAAAAprDgSES7f3JKjYf7VDQnS3d+Zqnyy3xWxwIAANMEBTAAAAAATEGmaerUvh7t+fkpxSNJ3fTQAq2+u1I2Zv0CAIArQAEMAAAAAFNMYCii135cr+ajAyqZn607P71UuSVeq2MBAIBpiAIYAAAAAKYI0zRV/5suvf5vp5WMJ3Xzw9VadWelbDbD6mgAAGCaogAGAAAAgClgbHBcr/5rvVqPD6q02q87P71UOUWZVscCAADTHAUwAAAAAFjINE3Vvd6pN/7jtExTuvUTi7Ty9nIZzPoFAACTgAIYAAAAACwy2h/Wrh/Vq71+SOWLc3Xnp5YouyDD6lgAAGAGoQAGAAAAAAs0Hu7Tju/VyTCk2x9brOW3lskwmPULAAAml+1SGxiG8V3DMHoNwzh2zthfGYbRYRjG4fTlvnMe+zPDME4bhnHSMIzN54xvSY+dNgzjT88Zn2cYxl7DMBoMw/iZYRiu9Lg7ff90+vG5lzoGAAAAAEwHXaeH9dJ3jiuvJFOP/uUGrbitnPIXAABcE5csgCX9i6QtFxj/ummaq9OX5yXJMIxlkh6RtDz9nP9rGIbdMAy7pG9KulfSMkmPpreVpL9N72uhpCFJn0uPf07SkGma1ZK+nt7uose4spcNAAAAANYY6g7q1986Il+uWw88WaOsPI/VkQAAwAx2yQLYNM3dkgYvc38fkfRT0zQjpmk2STotaX36cto0zUbTNKOSfirpI0bqV9x3Svr39PO/L+mj5+zr++nb/y7prvT2FzsGAAAAAExpodGotj1dK5vN0NYna5Thc1kdCQAAzHCXMwP4Yr5kGMaR9BIRuemxcklt52zTnh672Hi+pGHTNOPvGj9vX+nHR9LbX2xfAAAAADBlxSIJ/fqbtQqNRHX/F2vkL8y0OhIAAJgFrrYA/pakBZJWS+qS9Pfp8QstWmVexfjV7Os9DMN43DCM/YZh7O/r67vQJgAAAABwzSUTSb30z8fU1zqmTZ9fruJ52VZHAgAAs8RVFcCmafaYppkwTTMp6Z90dgmGdkmV52xaIanzfcb7JeUYhuF41/h5+0o/7ldqKYqL7etCOZ8xTXOdaZrrCgsLr+alAgAAAMAHYpqmdv/0lJqPDui2RxZpXg2fTQAAwPVzVQWwYRil59x9SNKx9O1nJT1iGIbbMIx5khZK2ifpbUkLDcOYZxiGS6mTuD1rmqYpaZekh9PP/4ykX52zr8+kbz8saWd6+4sdAwAAAACmnIPbW3R8T6fWbK7SitsrrI4DAABmGcelNjAM4yeS7pBUYBhGu6SvSrrDMIzVSi290CzpCUkyTfO4YRg/l1QnKS7pv5qmmUjv50uStkuyS/quaZrH04f4E0k/NQzjf0o6JOk76fHvSPqhYRinlZr5+8iljgEAAAAAU8nJvd1665eNWnhjsTZ+ZIHVcQAAwCxkpCbVznzr1q0z9+/fb3UMAAAAALNEe/2gnnuqVqUL/Nr65GrZnR/kHNwAAABnGYZxwDTNdZezLe9AAAAAAGCSDXQE9MI/HlVOcabu/b2VlL8AAMAyvAsBAAAAgEkUGBrXtqdr5XTb9cCXauTOdFodCQAAzGIUwAAAAAAwSaLhuLY9fUSRcFwPPFmjrDyP1ZEAAMAsRwEMAAAAAJMgEU/qhW8f1VBXUPc+vlIFFVlWRwIAAKAABgAAAIAPyjRN7fpRvdrrh/ThTy1R5bI8qyMBAABIogAGAAAAgA9s33NNOvlWt9ZvnaclN5VaHQcAAGACBTAAAAAAfADH93Ro//PNWnZzqdbdN9fqOAAAAOehAAYAAACAq9R8tF+v/eSUqpbn67bHFsswDKsjAQAAnIcCGAAAAACuQm/LqLb/83EVVPi0+QvLZbfz8QoAAEw9vEMBAAAAgCs02h/Wtm8eUYbXqfv/6yq5PA6rIwEAAFwQBTAAAAAAXIHxYEzPPVWrZDypB56skdfvtjoSAADARVEAAwAAAMBliscSev5bRzQ6ENZ9v79KeaVeqyMBAAC8LwpgAAAAALgMZtLUy987oa7TI7r7d5apbGGO1ZEAAAAuiQIYAAAAAC7DG/95WmcO9upDv1WtheuKrY4DAABwWSiAAQAAAOASane2qfblNq36cIVW311pdRwAAIDLRgEMAAAAAO/jzKFevf5vDZq/ulA3//ZCGYZhdSQAAIDLRgEMAAAAABfRdWZEO75bp5J52brnd5fJZqP8BQAA04vD6gAAAAAAMNWYSVPHdnfozV+ckS/Xrfu+uEoOl93qWAAAAFeMAhgAAAAAzjHSF9LOH9Srs2FYVcvy9OFPLVWGz2V1LAAAgKtCAQwAAAAASs36PfJqu9765RnZ7Dbd+eklWnJTKWv+AgCAaY0CGAAAAMCsN9wT0s4fnlDX6RHNWZGvOz65WL5cj9WxAAAAPjAKYAAAAACzVjJp6sjONu39VaNsDpvu+sxSLd5YwqxfAAAwY1AAAwAAAJiVhrqD2vmDenU3jmjuynzd/tgS+XLdVscCAACYVBTAAAAAAGaVZNJU7Stt2vtsoxxOm+7+7DItWl/MrF8AADAjUQADAAAAmDWGuoN65fsn1NM0qrmrCnTHJxfL62fWLwAA01UyGlXwzTfl3bBBtowMq+NMSRTAAAAAAGa8ZNLU4Zdbte/ZJjncNt3zu8u08EZm/QIAMB0lx8cVfOMNjW7frsDOXUoGAip/6hvKvuceq6NNSRTAAAAAAGa0wc6gXvnBCfU2j2r+6kLd9ugiZv0CADDNJMNhBXbv0dj27Qq8+qqSoZDsfr+ytmxW9ubN8m7YYHXEKYsCGAAAAMCMlEwkdWhHq/Zta5LL7dCmzy9X9doiZv0CADBNJINBBXbv1uj2lxR47TWZ4bDseXnKfuABZW3eJO/69TKcTqtjTnkUwAAAAABmnIeD7KUAACAASURBVIGOgHb+4IR6W8a04IZC3fboYmVmu6yOBQAALiERCCiw61WNvbRdgd17ZEYishcUKOehjypr02Zlrlsrw0GleSX4aQEAAACYMRKJpA5tb9XbzzfJ5XFo8xdWqHptkdWxAADA+0iMjmps506NbX9JwddflxmLyVFUpJzf/m1lb96kjDVrZNjtVsectiiAAQAAAMwIAx0BvfL9E+prHVP12iLd9sgiZWQx6xcAgKkoMTyssVd2avSl7Qq++RspFpOjtFS5jz2mrM2blbG6RobNZnXMGYECGAAAAMC0lkgkdfDFFu1/vlnuTIe2PL5CC9Yw6xcAgKkmPjiosZdfTs303btXisflLC9X3qc+pewtm+VZuZK1+q8BCmAAAAAA04ppmgqNRtXfFlBf25hOH+jVQHtAC28s1q2fWKgMH7N+AQCYCpLhsMaPH1e49ogCe/YotG+flEzKWVWl/M9+VlmbN8uzfBml7zVGAQwAAABgykomTQ33hNTfPqb+toD62wPqbxtTeCw2sU1OcabufWKl5t9QaGFSAABmN9M0FW1u1viRIwrX1ip8uFbjJ09KiYQkyTV/vvIf/4Kyt2yRe/FiSt/riAIYAAAAwJQQiyQ00HG25O1rC2iwI6B4LClJsjkM5Zf5NHdlgQoqfSqoyFJ+hU/uDD7WAABwvSVGRhQ+clThI7UK19ZqvPaIEiMjkiSb1yvPqpXK/8LnlbGqRhk1q+TIz7c48ezFOyUAAAAA111qCYcx9benlnHobwtouDckmanH3ZkOFVT6tPy28omyN7c0U3Y7J4MBAOB6M+NxRRoaFK5Nz+6trVW0sTH1oGHIXV2trE33KKOmRp5Vq+ResECG3W5taEygAAYAAABwTQWHI+o8PZxewiFV9oZGoxOPZ+V7VFDh06L1xSqo8KmgMku+XDdfDQUAwCKx3t7zlnIIHzsmMxyWJNnz8pRRUyP/gw8qY3WNPCtWyO7zWZwY74cCGAAAAMCkGw/GdOZgrxre7lFHw7BkSja7obwyr6qW56mgIis9s9cnd6bT6rgAAMxqsY4Ojb2yU6FDBxWurVW8syv1gNMpz9Klynn4YWXUpJZycFZU8EvaaYYCGAAAAMCkiEUTaj7Sr1P7etR6fEDJhKmc4kytf2Ce5q4sUF6ZV3YHSzgAADAVRJubNfrSDo299JLGjx2TJDnLypS5erUyPvMZeVatkmfZMtncbouT4oOiAAYAAABw1RKJpNrqBtXwdo8aa/sVjyTkzXFr1YcrtGh9iQoqfcwSAgBgCjBNU5GGBo2lS9/IqVOSJM+qVSr6yn9T1j33yDVnjsUpcS1QAAMAAAC4ImbSVFfjiBr29ej0gV6NB2NyZzq0aH2xFt1YrLLqHBk2Sl8AAKxmmqbGj9dp7KWXNPbSS4o2N0uGoYy1a1T853+mrHvukbO01OqYuMYogAEAAABckmmaGugIqOHtHp16u0eBwYgcTpvm1RRo4foSVS3LY3kHAACmADOZVPhwbar03bFDsY4OyW5X5voblfc7n1HWXXfJUVhodUxcRxTAAAAAAC5qpC88UfoOdQVlsxmqXJ6njR9ZoHk1BXJ5+EgBAIDVzERCof0HJkrfeG+v5HTK+6GbVPDF35fvzjvlyM21OiYswrs1AAAAAOcJjUZ1+kCPTu3rUU/TqCSptNqv2x9brAVrCpXhc1mcEAAAmLGYgm/tTZW+r7yixOCgDI9HvltvUdamTfLdcYfsWVlWx8QUQAEMAAAAQJFwXI2H+tSwv0ftJwZlmlJ+hU83PbRAC28sVlaex+qIAADMeslIRME33tDY9pc0tmuXkqOjsmVmynfHHanS97ZbZcvMtDomphgKYAAAAGAWMU1TweGoBjoC6m8f00BHUAMdAQ11h2QmTWUXeLRmyxwtvLFY+WU+q+MCAABJsY4ODXznuxr55S+VDIVky85W1p13KmvTJnlv/pBsbrfVETGFUQADAAAAM1Q8ltBgZzBd9gY00BHQQHtQ48HYxDa+PLcKKrI0r6ZAc1cVqHhutgzDsDA1AAB4R6SxUQPP/JNGtm2TDEP+++9X9gMPyLthvQyn0+p4mCYogAEAAIBpLjWrNzJR8va3BzTQHtBwb1hm0pQkOVw25ZX5NP+GQuWX+1RQ4VN+uVfuTD48AgAw1YSPHdfAM89obMcOGW638j75mPI++1k5S0qsjoZpiAIYAAAAmEbi0YQGu4ITJe9AR0D9HQFFgvGJbbLyPcov92nBmqKJsje7MEM2GzN7AQCYykJvv63+bz+j4Ouvy5aVpfwnHlfepz8tR16e1dEwjVEAAwAAAFOQaZoaGxxPrdH7zvINHQEN94Rkpib1yuG2K7/MqwVrilRQ7lN+hU/55T65M3ibDwDAdGGapoJ79qj/288ofOCA7Hl5KvyjP1Luo4/InpVldTzMALwzBAAAACwWHY9rsDN4dp3ejtTs3uh4YmKb7IL0rN61Z8tef0GGDGb1AgAwLZmJhMZ27FD/t59R5MQJOUpLVfwXf6Gc3/qYbBkZVsfDDEIBDAAAAFwnyaSp0b7wxLIN78zsHe0fn9jG5bErv8KnRRtKJpZvyCvzyuXhrTsAADOBGY1q5LltGvinf1K0uVmuuXNV+rWvyf/A/TJcLqvjYQbiXSQAAABwDYwHYxpoTxe96bJ3sDOoeCwpSTIMKac4U0VzsrX0Q2Xp5Ru8ysrzyDCY1QsAwEyTDIc1/O//oYHvflfxri65ly1V+f/5P8q6524ZdrvV8TCDUQADAAAAkyA4ElHd653qbhzVQEdAweHIxGMen1P55T4tv7Vc+RVe5Zf7lFfqlcPFhz0AAGa6xNiYhn78Ew1+//tKDA4qY80alf71X8l766380hfXBQUwAAAA8AH0t4+p9uU2nXq7R8mkqfwynyoW5yq/3DdR9mZmu/iABwDALBMfHNTgD36goX/9sZJjY/LeeqsKnnhcmevWWR0NswwFMAAAAHCFzKSplmMDOvxKmzpODsnhsmn5reVadWeFcooyrY4HAAAsFOvq0sD3vqfhn/+bzEhEWZs2Kf/xLyhj+XKro2GWogAGAAAALlMsktDJt7pUu7Ndwz0h+XLduumhBVp2S5k8XqfV8QAAwCUkhocV3LtPZmRcZjwhMxGXEgmZ8YSUiKfHzr199nEzEZfSj597+9znmePjCu7bJ5mm/Fu3Kv8Ln5d7/nyrXzZmOQpgAAAA4BKCwxEdebVdx/d0KBKMq2hOlu753DItWFMku91mdTwAAPA+kuGwArt2aWTbrxXYs0eKxS7/yXZ76gRtDoeM97vtsEv21O3cj39c+b/7WTnLy6/diwKuAAUwAAAAcBF9rWM6/EqrTu/vVTJpan5NoWrurlTpAj9r+gIAMIWZ8biCb+3V6HPPaWzHDiVDITmKi5X3qU8pe9M9sufmpgpbx8VLXdnt/HuPGYECGAAAADiHmTTVfLRfta+0qePUsJxuu1bcllrf11/I+r4AAExVpmlq/OhRjTy3TaMvvKBEf79sWVnKuu9e+R/Yqswb16WKXWCWoQAGAAAAlFrft/43Xard2aaR3rB8uW596GPVWnZLqdyZrO8LAMBUFWlq0uhz2zTy622KtbTKcLnku+MOZW99QL7bbpPN7bY6ImApCmAAAADMaoGhcR19tV3H93QqEoqraG62Nn1+vhbcUCgb6/sCADAlxfv6NPr88xp5bpvGjx2TDEOZGzao4PHHlXXPPbJnZ1sdEZgyKIABAAAwK/W2jOrwy206c6BXpmlq/g2FqrmrSiXzs1nvDwCAKSgRCGjspR0a3facgm/tlZJJeZYtU9Gf/Imy77tPzuIiqyMCUxIFMAAAAGaNRCKpliMDOvxKq7pOj8jpsWvlhyu06sMVyi7IsDoeAAB4l2Q0quDu3RrZ9msFdu2SGYnIWVmp/Ccel3/rVrnnz7c6IjDlUQADAABgRkskkuqoH9Lpg71qOtyv8WBMWXke3fxwtZbdXCZXBm+JAQCYSsxkUqG392t02zaNbt+u5Oio7Hl5ynn4Yfm3PiBPTQ3f1gGuAO92AQAAMOMk4km1T5S+fYqE4nJ67Jq7skDVa4s0d2U+6/sCADDFmImERl94Uf3f/KaiTU0yMjOVdfdd8j/wgLw33STDyUlZgatBAQwAAIAZIRFLqu3EoM4c7FXTkX5FQnG5PHbNrSlQ9ZoiVS7Lk8NptzomAAB4FzOZ1Nj27ep7+puKnjkj98KFKvvff6usu++WLTPT6njAtEcBDAAAgGkrHkuorW5QZw72qelIv6LhuFwZDs17p/Rdmie7k5m+AABMRWYyqbEdL6v/6acVaWiQa8EClX/9H5S1ebMMG/9+A5OFAhgAAADTSjyWUOvxszN9Y+MJuTMdmr+6QAveKX0dfGgEAGCqMk1TgZ071ffU04rU18s1b57K/u7vlH3vFhl2vq0DTDYKYAAAAFyW6HhcLUcHdOZQr9rrh+TyOOTNccuX65Y31y1fjjt1Pyd13+t3T1oRG48m1HJ8QGcO9qn5SL9ikYTcXoeq1xRpwdoiVSzOpfQFAGCKM01TgVdfVf9TT2u8rk7OOVUq+99/q+z776f4Ba4hCmAAAABc1Hgwpuaj/TpzsE9tdYNKxJPKyHZp3upCmQlTgeFx9bWNqflov+LR5Huen5HtOlsM577rOj3u8lz4LWksmpgonJuPDigeScjjdWrhulTpW744V3ZO5AYAwJRnmqaCe/ao76mnNX70qJyVlSr92tfkf3CrDAfVFHCt8bcMAAAA5wmPRdVU25+a6XtiSMmkKV+uW8tvK9OCG4pUssAvm8047zmmaSoSiis4HFFgOJK6HoooODSuwHBUYwNhdZ0ZViQYf8/xXBmO95TCQ90htRxLlcoen1OL1herek2RyhflyEbpCwDAtGCapoJvvKn+p55SuLZWzvJylf7P/yH/Rz4iw+m0Oh4wa1AAAwAAQMGRiBoP9enMoV51nhqWaUrZBR7V3FWp+WsKVTwnW8a7St9zGYYhj9cpj9ep/HLfRbeLRRMKDkcUHHpXUTwcUWBoXIMdAQVHo8rwObV4Y6mq1xSqbCGlLwAA04lpmgrt3au+bzyl8MGDcpSWquSv/1o5D31UhstldTxg1qEABgAAmKXGBsd15mCvGg/1qatxRDKl3JJMrdkyRwtuKFJBpU+GcfHS92o4XXblFGUqpyjzotskE0kZhvG+hTMAAJiagvv2qf+ppxV6+205iotV8tW/lP+3fks2il/AMhTAAAAAs8hwbyg10/dgr3pbxiRJ+eU+rX9gnhbcUKS8Mq/FCcVsXwAApqHQgQPqe+pphd56S47CQhX/9/+unI//tmxut9XRgFmPAhgAAGCGG+wM6syhXp051KeB9oAkqWhOlm56aIHm31D4vrNxAQAA3k/o0CH1P/W0gm++KXtBgYr/7E+V84lPyObxWB0NQBoFMAAAwAw0OhDWiTe6dOZgr4a6Q5Kk0gV+3fxwtebfUKjs/AyLEwIAgOksfPSo+p56SsHde2TPy1PRH/+xch99RLYM3mMAUw0FMAAAwAySTJo6srNNe59tVCKWVNmiHK28o0LzVxfKm8NXMAEAwAcTaWxS39e/rrEdO2TPyVHhf/sj5T32mGxe65eRAnBhFMAAAAAzRH97QLt+eEK9LWOaszJftz2yiJm+AABgUsR6etX/zW9q+D/+Qza3WwVPfkl5n/kd2X0Uv8BURwEMAAAwzcVjCe1/vlmHtrfK7XVo0+eWq3pdkQzDsDoaAACY5hJjYxr45+9o8Pvfl5lIKPexx1Twe0/IkZ9vdTQAl4kCGAAAYBrrbBjWrh/Va7gnpMUbS3TLwwvl8TmtjgUAAKa5ZCSioR//RAP/+I9KjIwo+4EHVPgHX5arstLqaACuEAUwAADANBQNx/XmL87o+O4OZeV7tPXLNapaxkwcAADwwZiJhEaee0593/iG4p1d8t5yi4r+6A/lWbbM6mgArhIFMAAAwDTTVNun135ySqGRiGruqtT6rfPk8vC2DgAAXD3TNBV47TX1/f0/KNLQIM/y5Sr7m7+R96abrI4G4APikwIAAMA0ERqNas/PTun0gV7llXl17xMrVTwv2+pYAABgmgsfPqzev/t7hfbvl3NOlcq//g/K2rxZhs1mdTQAk+CSf5MNw/iuYRi9hmEcO2cszzCMHYZhNKSvc9PjhmEY3zAM47RhGEcMw1hzznM+k96+wTCMz5wzvtYwjKPp53zDSJ+t5GqOAQAAMBOZpqkTb3bpx3/1lhpr+7Thwfn6+J/fSPkLAAA+kEhjo9qffFLNjzyqSHOzSr76l1qwbZuy772X8heYQS7nb/O/SNryrrE/lfSKaZoLJb2Svi9J90pamL48LulbUqrMlfRVSRskrZf01XcK3fQ2j5/zvC1XcwwAAICZaKQvrGf/v8Pa+YMTyivz6pG/WK91982V3cGHMgAAcHViPT3q+n/+Uo1bH1TwjTdV8OUnVb39ReU++qgMJyeTBWaaSy4BYZrmbsMw5r5r+COS7kjf/r6kVyX9SXr8B6ZpmpLeMgwjxzCM0vS2O0zTHJQkwzB2SNpiGMarkrJN0/xNevwHkj4q6YUrPYZpml1X9tIBAACmrmQiqdqd7dr3bKMMu6HbH12k5beWy7AZVkcDAADTVGJ0VAP/9M8a/OEPZSYSyv3kYyr4vd+TIy/P6mgArqGrXQO4+J3C1TTNLsMwitLj5ZLaztmuPT32fuPtFxi/mmNQAAMAgBmhv31Mu35Yr96WMc1dVaDbH10kX67H6lgAAGASmcmk+ttbZUjKLiySKyPzmh0rGYlo6F9/rP5vf1vJkRFlb92qwj/4slwVFdfsmACmjsk+CdyFpqSYVzF+Ncd474aG8bhSy0SoqqrqErsFAACwVjyW0P5fN+vQS61yex3a9Pnlql5bpPQpEgAAwDQXHB5Sy5FDaq49qJajhxUaGZ54zOP1KauwSP7CImUXFCn73OvCInl8WVf8nsBMJDTy7HPq+8Y3FO/qkveWW1T0R38oz7Jlk/3SAExhV1sA97yz7EJ6iYfe9Hi7pMpztquQ1Jkev+Nd46+mxysusP3VHOM9TNN8RtIzkrRu3bpLFcsAAACW6WwY0q4fndRwT0hLbirRzQ8vlMfLGnwAAExn8VhMnSfr1Fx7UM1HDqmvuVGSlJHt15yVqzW3Zo3sDodG+/s02ter0f5eDXV1quXIYcUi4+fty+n2pEvhQmUXFp9zu0jZhcXy+nNk2GwyEwmN19crfOCAhv/t3xVpaJBnxQqV/a+vybtxoxU/BgAWu9oC+FlJn5H0/6avf3XO+JcMw/ipUid8G0kXuNslfe2cE79tkvRnpmkOGoYxZhjGRkl7JX1a0lNXc4yrfB0AAACWioTj+s1/ntbxPZ3KLvDowT9YrcqlrMMHAMB0ZJqmhro6UoVv7UG11R1VPBKRzW5X2eKluuWRT2tuzRoVzZ0vw3bxE7qapqnxwNhEKTza13vO7T51NZzUeDBw3nNshk2ZMuQJhuQJR5QRjcufm6fF/+tvVPzRh/hGETCLGalzqb3PBobxE6Vm7xZI6pH0VUm/lPRzSVWSWiX9drrMNSQ9LWmLpJCkz5qmuT+9n9+V9Ofp3f6NaZrfS4+vk/QvkjKUOvnbk6ZpmoZh5F/pMd7PunXrzP37L7kZAADAdWGappoO92v3T08qNBpVzV2VWr91vpxuu9XRAADAFRgPBtR6rDa1rMORQxrtS32BObe0THNW3aC5NWtUuWzlpK3xmwgEFD50SCNvvaX+Qwc13HRGYZuhsMuhSF6uxn1ehWQqPB6aeE5B1VzNWVmjqhWrVbF0+TVdbxjA9WEYxgHTNNdd1raXKoBnCgpgAAAwVXScHNJbv2pUd+OI8st9+vCnlqh4brbVsQAAwGVIJhLqPnNKzbWH1HzkoLobTsk0k3JlZKpqRY3m1qRKX39RyaQcL97fr9D+AwodOKDQgf2K1J+UkknJbpdn+XJlrl2rzHVrlbFmjRy5uWefF42qv7VZLcdq1Xr0sDpO1ikRi8lmt6ukenG6EK5R6cLFsjtYdgqYbiiAL4ACGAAAWK2neVR7f3VGbSeG5PW7tO7+eVp6c6ns9ot/BRQAgOshNDKs8NiofHn5cmVkslxAWjIaVbSpWcFQQG0tjWptqFfriaOKBIOSYahkwULNrVmjOatuUGn1YtkdV7vSZoppmoq1t6cL3/0K7z+gaHOzJMnweJRRU3O28K2pkc3rvex9x6IRdZ48odajh9V6rFbdjacl05TT7VHF0uWqWrlac1auVkHlnPddnuJaMpNJBYeHNNLbI7vDocK58z/wzxSYqSiAL4ACGAAAWGWgI6C9zzaqqbZfHp9Ta7fM0YrbyuVwsdwDAOD6C42OqLfxtLobT6unsUE9jWc0NtA38bjT7ZEvv0BZefnKyi+QL69AWfn56esC+fLylZGVPSNLYjMW0+jBg+rY9Yq6jh1Rf1+PhjxOBT0uSZInGldBIKyiWFJFhkOeTK9sPq/sXq9sXq9smelrny91/c7l3G2852yTkaHImcZ02btfof0HFO9NLSFh8/uVuWaNMtetVebatfIsWybD5Zq01zoeCKit7ohajtaq9VithjrbJaVOUFe1IjU7eM7K1fIXFU/aMSUpGg5ppLdHw73dGu3t0XBPt0Z6uzXS26PR3h7FY9GJbR0ut0qrF6l8yTKVL16m0kVL5M68/NIbmMkogC+AAhgAAFxvw70hvb2tSafe7pHLbdfqe6pUc1elXB5msgAAro9wYEw9jafVc6ZBPU2n1dN4emKNWim1Tm3x/IUqnrdA3rx8BQcHNDY4oMBAv8YG+zU2OKDg4KBMM3nefu1Op7LyCuTLz09fpwrj1HWqJPb6cyybSXq5xsdG1b77NXW+9aZ6mk5rMDCqgMshpcttj8OpwuJSlRWXqdSfp2ybQ2YopGQwpGQgoGQweN4lEQykHgsGpXj8irI4iouVuXatMtatVebadXIvrL6uP7+xgX61HqtVS3qGcHBoUJLkLy7RnBWrVbVytSqXr1Rmtv9995NMJDQ20K+R3m4N93RrtO/8kjc8OnLe9q6MTPmLS5RTVCJ/cYn8hcXyF5coNh5Wx8kT6qivU2/zGZnJpGQYKqyaq/Ily1S2OFUKZxcUXrOfCTCVUQBfAAUwAAC4XgJD43r7+WbVv9Elm93QqjsrdMM9c+Txsb4eAODqmMmkxo/XSTZDzrIy2XNy3jMDdzwYUG/TGXWfaUiVvo0NGuntmXg8p7hUxfOr05eFKpo3Xx6v75LHTiYSCo4MKTAwoMDgQKoYHuhP3R7oV2CwX2MDA0omzi88DcNQpsutDNOQJxaXN9MnX2GRsisqlVNdrZyly5RdViHHJM5qfT/hsVH1NJ1R5763UrN7e7sUOCezJ2mqwJ+rourFKr/pQypdWSNfbv5VzXQ2TVNmNHrhknhiLFUUO8vLlXnjOjnLy6fMrGrTNDXY0TZRBrcdP6JoOCxJKpq7QFUra1SxdIXi0Uiq5E3P6B3p7dZYf5+SicTEvmx2u7ILis4rd/1FJfIXpW57vL5Lvu7oeFhdDSfVefKEOk7WqfNUvWLjqTxZBYUqT5fB5UuWKb+ySjYb37LCzEcBfAEUwAAA4FoLj0V14MUWHXutQ6Zpavmt5Vp77xx5/W6rowEApiEzkVD44EGNvrhdYy+9pHjf2WUa4t5MBctKNJaTrRG3XYPxqMbCoYnH/YXFqaJ3wcLU9bxqeXyXLnsvK1cyqXhfn6ItLYq1tSna0qpIS4sCbS0a6+5WKB7VuNORurgcingzNe5yKmwmlLhA0eeSoUy3R97sHGUVFim7okLZlXPkSy83kfXOkhNXMBs2ODyk3qYz6mk6ra5jR9XbdFqBUHDi8YxITDmGXYWlZSqtWaPKu+6Rv3rhpPx8ZqLUie8aJtYP7jx1QolzZjhnZPvPzuAtKk4XvCXKKS6RLy9fNvvkFrLJREJ9rc3qqK9LFcL1xxVIz1h2ZWSqbPHSdCm8VCXVi+R0eyb1+MBUQAF8ARTAAADgWomEYjr8cpsOv9KmRDShxTeV6sb75iq7IMPqaACAacaMxxXaf0Cj21/U2I6XFR0YUNiXqeQNqxRdMF8DI0Pq6+7QaDAw8ZyMeFLZgZD84Yj8oYj84YhcSVOOwkI5S0vlKCuVs7RMztJSOctK5SxL3bb5/RedeWnG44p1d59X8kZbWxVrbVG0rV3m+PjZjR0OucrL5ZxTJVdllVxzquSsqpKrao6cFeWypWf4mqap8OCghuqOa+TUSY22Nmu0u1OBoSGFQgGFDSnidCjisE8swfAOm80mb5ZfvsJCZeUXypeXf94lEgqpN73ERc/pBgVHhyeemxmJyh+KKMfhUkn1IpVvvEW5t90mV0X5JP6Xm11ikXH1NJ6W2+uTv6hYLo+173lM09RoX686Ttapo/64Ok+eUH9bi6TUDOTiedWpUji9lnCmP8fSvJhcgcEBdTbUq2p5zaT9oms6oAC+AApgAAAw2WKRhI7satOhl1oVCcVVvbZI67fOU24JJycBAFy+WCik7ld2qHvXTvUfP6qxeEyhDLfCWT6Fkucvq5CVX6ji+QtS6/aml3PIzPYrOT6ueHe3Yp2dinV1KdbZlbru6lSss1Pxzi6Zsdh5+zIyM1OlcGmqFDacTkXbWhVrbVO0o0M6Z3vD7ZarqlLOqjlyVVaeU/JWyVlaKsPxwda3N01Tif5+RZqaNH76jEYaTmmktVlj3V0Kjo5o3GHTuMORKogzXBp3OBTXe/sMX8JU9khA/nBEOU63SlbVKPemm+XduEHOOXOmzBILuPbCgTF1napXR/1xdZw8oe4zp5RI/5n2FxUrIytbrowMuTIy5fJkyJmRmbrvyTg7fu59T2rMmb5t/4B/5nF1EvGY+pqb1HnqhDpP1auzoV5j/alvR3zkK3+h6hs3WpzwCT+iKgAAIABJREFU+qEAvgAKYAAAMFkSsaSOv96h/S+0KDwa1ZyV+dqwdb4Kq7KsjgYAmKJi0YhGero11N2p4e4uDXW0a6DhpIa7OxWKRc+b8ep2e5RXUamcsgrllpQpp6Q0fV121bPbzGRSicHBs+VwZ6diXZ2Kn1MWm5HI2Vm8VVXnlbyOoiLLTuiWjEYVa2lRpKlJ0aZmRZuaFGlqVLC5ReHxkMadDtmTSfmdbmXfeKO8GzYqc8N6uRcupPDFhHgspp7G0+o8WaeepjOKhIKKhsOKhUOKhMOKjqduJy7z5H0OpytVBl+gJPblFyi/vFJ55ZXKL6+cVbNSJ1tweGii7O1qqFfPmdOKx6KSUr8QK120RGULl6hs0RIVzZsvu2P2nHODAvgCKIABAMAHlUwkVf9Wt97+dZMCgxGVLczRxo8uUOmC9z8bNgBg5jOTSY2HggoODmiop0vDXemiN134jg32S+d8/nYlksocj8qbSCq3okqFa9ep5PY7lFc5l7LoMpmmqcTgoKJNTTIyMuRZskTGJK81i9knEY8pGg6nL6HU9Xj6/nhI0VD6OhxWbGI8rGgolN4upNH+vonZxpKU6c9RXnnFRCn8TjHsy7u6kwzOVIl4XH0tTRNlb+epeo32pU5kaXc4VDS/eqLsLV20RFl5BRYnttaVFMDMVwcAALgEM2nq9MFe7XuuScM9IRXNydKd/2WpKpbm8qYdAGYo0zQVDYcUGh1RaGREodFhhc+7ParQSHosfTGTyfP28c6JsUryCzU3Ychx6rQyhkeV5XQp9447lL1li7w33yybm5OFXg3DMOTIz5cjP9/qKJhB7A6nMrKcysjKvup9JJMJjfb2aqCjTYMdbanrznbVv7lbkeDZkxG6MjKUV1ZxXimcV16pnOKSST9x3lQUGhmeWMah61S9us80KB6NSJJ8efkqW7hEN2x5ID27t1oO5+yZ3TvZmAEMAACmteh4XNFw4prtv69tTHufbdRAe0B5ZV5teHC+5tUUUPwCmNJGert17NVXVLKgWvPXrJ/V/88yTVPxWFTxaFTxSETxaETjwYBCIyNny9tzi9yREYXGRhQeGb7oV8FdGZnK9PuVmZ2jjGz/xO3M7Gxl5uTKn1cgZ1OzIrteVWDnLiUDAdmys5V1553K2rJZ3g99aOLEaABmD9M0FRoZ1kD7OcVw+hIYGpzYzu5wKKekLFUIV1SeLYnLyuV0eyx8BVcvEY+pv7VlouztbKjXSE+3JMlmd6ho3nyVLVqamt27cImyCwotTjz1sQTEBVAAAwAwvY0HYxrqCmqwK6ihrpAGu4Ma6goqMBS55sfOLszQhq3zVL2uWDbb7C1RAEx9wz3d2vuLn6tu9ytKJlK/HCuau0AbP/YJVd+40bI1XK9EIh5TW90xRYJBxaOpwjYWiaQK3PT9eDT6nrFz78cmyt7oxGyy9+NwudMlrl+Z/hxlZPnPv599/u0LzUIzk0kFf/Mbjfzilwrs2qVkMCi73y/f3Xcpe/NmeTdulEHpC+AiIqGgBjvaz5813NGmkZ4emWb62wWGoeyCQuUUl8hfXKqc4lL5i0qUU1yinJJSuTOtPRFxIh7XaF9Paumbrk4NdXdqqKtTw92dGu3rm3gd3tw8lS1cMrF+b/H8ajn4/+MVowC+AApgAACmh/BYNF3yBjXYFZq4HRqNTmzjcNqUW+pVbmmmcku8yvBdu6+DebxOza0pkN0+9UsTALNXqvj9mY6/9opsdrtW3b1F6+5/SG11R7X3Fz/TUFenCirnaMPHPqFFG2+WzTb1vlocHB7SkZdfVO2O5xUcHrrgNoZhk8PtlsPlktPtlsPpksPlfu+Y2y2Hy52673KlTtaUHnO4XHJ7fWcL3uwcOT1XP6MuPjSkkf/8hYZ+/jPFWlpl9/uVtekeZW3eIu+G9TL4yjKADyAei2m4q0MDHe2p2cKd7Rrp6dZwb7fCoyPnbevxZZ1fDhcXKyd925ebNym/BEwmEhrp60kXvF0a7u6cKHxH+nrOWwrHlZGp3NLUCSxzS0qVX1GlskVLlVVQOKu/mTJZKIAvgAIYAICpwzRNhUbPL3rfmd07Hjh7wgyn267cUq/ySjPT16lLVp5HBjNxAUDD3V166xc/U93unRPF7/oHH5Yv7+yaqMlkQiff3KO3/vNnGuxoU25ZhTY+9HEtufn2KbHGZE/TGR164VnVv/GaEvG45q5eq5p77lNOUfF7yl2b3TElSgPTNBU+fFjDP/2pRl94UWY0qoy1a5X7yCPK2ryJ5R0AXBeRUEgjvd2pQrinS8M9XRrp7dFwT5dG+3rPK2PtTqf8hcXKKTk7azhVFJcou6hYTtfZtciTiYRG+/s03NUxcSLL1HWnRv5/9u47OM77zvP8++mckHMgQBBMYARJUJREUXJSloNseSyvd+wJuzu3tVd1V3VXd7tXV7Vbe1d3++eFP7Zu7iasZz2WLVuesWcd5BmPJFIiKWaCAQwAkTPQCJ27n+e5P55GAyAhSpQIguHzqnrqSb9++tctqoH+4Pd8f+NjhTtMALyBIGW19ZTW1VNWW+8EvjV1lNXVEywuuS8+sx9WCoBXoABYRERkZZZpcenIMMPXZ3G5DFxuA8NtONv5fZfbwFi277ppP39+4XFuFy7X4nVsy2ZmPLEY9o7GSScW6yr6Qx7KapcHvWV1YSJlfv3SKCKygujoMMff+jGXDv8Ot9vDri+9wP6vfGNZ8Hsz27K4evwDjr/1BhP9vZTW1PHY177Jtqc/j9tzb0epWqbJ9RNHOf2rnzPUdQmvP8C2Z77InhdeoaJh3T3ty50wY3Hm/u4XRN/4EemuLlzhMCVf/Qql33qdwJbNa909EZECM5djfmrSCYXHRpgZWxoUj5JNJZe1j5RXUFxZTTI2z+zYKJa5+Lu61x9wAt6aukLQu7AOlZTq9/U1ogB4BQqARUREbjXaM8u7P7zC5EDMCVvzYa1l2lhL1vbC2vpsvzcEIt5CuLs07A0V+/SLo4jIJ+AEvz/i0uF/dILfZ190gt+y8k98Dduy6D71IcfeeoOxnusUV1Xz2FdfY/vnnl31GdaTsXk6/+E3nH37vzA/OUFxVQ17XniFHZ9/lkA4sqrP/Vmkrlwl+sYPmfv5L7DicfxtbZS9/jolr7yMK7y2NTdFRO6Ubdsk5+eYGR1hdnw0HxKPMjcxTqCoKF+yYTHoDZeW6Xf1+5AC4BUoABYREVmUnM9w9GfdXP5ghEiZn4OvbaJ178fX4rItG8teDIQt01lsa+m+VQiLFwJkbCipChIs0i2xIiKfRnRkiGNv/YjLh9/B7fWy+9kX2P+V1wiXln3qa9q2zY2zJzn20zcYuXaFSHkF+7/yDXZ+8flltwLfDZMDfZz51S+4dPgfyWXSrNu2kz0vfYXWfY/dl/WIAax0mvm33yb6wzdInj6N4fNR/OKLlH37dQK7dysMERGRNaUAeAUKgEVERMCybC4dGebY33STTZns/tI6Ol5ajy/gWeuuiYjICqaHhzj+1htcPvJuPvh1Rvx+luD3ZrZt0995jmNvvcHg5QuESkrZ/+Wvs/vZlz7T5Gi2ZdFz5iSnf/Vz+jvP4vH62PrU59j74pepam65a/2/2zL9/UR/9CNm3/oZZjSKt7mJsm+9TsmrX8NTdvfedxERkc9CAfAKFACLiMijbqx3jvd+eIXxvnkaNpfy9OtbKK/XbasiIvej6eFBjr31I7oWgt/nXmL/l79+V4PflQxc6uTYT9+g/8I5gkXF7Hv5a7Q//wr+UOgTXyOdSHDx3b/nzK9/wczoCJHyCtqfe5mdX3yeUHHJKvb+07NzOWLvvEP0jR8RP3IE3G6KvvB5Sl9/nfATT2C4XGvdRRERkWUUAK9AAbCIiDyqUvEsx/6mm4tHhgkV+Tj42kY27a/RrasiIrdh2zYzo8MMXOzEMk0i5RUUVVQSKa8gVFyyaoHg1NAAx9/6EV3vv4fb66X9+ZfpeOXVVQ9+bzZ89TLHfvoGN86eIhCOsPelr7LnxS/ftk7vzOgIZ379Cy6881syySR1m7ey98WvsOmxJ3F77s87TbJj48z85E1m3vwJudFRPNXVlP7e71H6zdfw1tSsdfdEREQ+kgLgFSgAFhGRR41t2Vw+OsLRn3WTTuTY9blGHvtyC77g/fklXERkrcVnovRfOEf/hXP0dZ5lfnJixXYut4dIeTmR8kqKyiuWhMOV+e0KwqXldxR6Tg0NcOynb9D1wXt4fD7an3uZ/V/+OqGS0rv18j6V0etXOfazH9F98ji+YIg9L3yZfS9/lWBRMbBYPuL0r/6WnjMncbncbHniKfa++BVqN25e075/FNu2SRw7RvSHbzD/D/8Apkn4yScp/fbrFH3+8xj3aVgtIiKylALgFSgAFhGRR8nEwDzv/fAKoz1z1G0s4enXt1DZeP/Ori4ishYyqSSDly/Q33mWvs5zTPb3AuAPh2navpumne007diNLxgkNj3F/PQksanJ/PaUsx2dYn5qilwmvfzihkG4pNQJiSuckNjZriRSVlE4NjcxwbG3FoPfPc+/Qscrr6558Huz8d4ejr31BteOf4DXH2D3cy9RWlPLmV//HVOD/YRKStn1pRfZ/eyLRMrK17q7t8iOjZE4doz4sePEjx0jNzKCu6SEkq9/nbJv/R6+9evXuosiIiJ3RAHwChQAi4jIoyCdzHH85z1ceGeQQMTLk1/fyJbHa1XuQUQEMHM5Rq9fpa/zLP0XzjJy7QqWaeL2emnYso2mne0072ynumUDLpf7E1/Xtm1S8RixfCg8P50PiaemiC1sT0+SjsdXfLzXH6D9hXzwe5/WyF0wOdDH8Z/9mK4P3gPbpnp9K3tf+gpbnnwaj9e71t0ryEWjJD48QfzYURLHjpO5cQMAd0kJoQMHKPriFyh6/nlcn2GSOxERkbWkAHgFCoBFRORhZts2Vz8c4/2fXic1n2HH0w089pUNBML3z5dxEZF7zbZtpgb6CiUdBi5dIJtKgmFQ07KRpp27ad7RTv3WNrw+/6r3J5tKOSOHpyeZz48kxjDY+YXn7vvg92bR0WHS8Tg1GzbeF39kNGNxkqdOEj96jPjx46S7usC2cYVCBPd3ED7wOOHHD+DfulUTuomIyENBAfAKFACLiMjDamooxntvXGX42gzV64v53D/ZQlVT0Vp3S0SkIBadJjY1icfvx+sP4PX7nW2f/66HcXOTE04d386z9F84R3wmCkBpbR3NO9tp2tnOuu27CEb0Ofkgs9JpkmfOEj9+jMTRYyQ7O8E0Mbxegnv2EH7icUIHHie4cwfGfTQyWURE5G65kwBY1e1FREQeUJlUjhN/d4NzvxvEF3Tzue9sYdvBegzX2o/EEnmUpOIxosNDTA8PMjM2SuPW7TTval/rbq0p27aZ7O+l++Rxrp88zljPtY9s6/H68AQCeH35UDi/eHyLYbHXH1hyLuCcC/gLj7FMk8HLF+jrPEd0eBCAYHFJPvB1RvkWV1Xfq5cvq8DO5UhduODU8D1+jOTpM9jpNLhcBHbuoOKf/TPCjx8guGePyjqIiIjcRAGwiIjIA8a2ba6fGuf9N68Rn82w7al6nvhaK4GIRjiJrBbLNJkdH2U6H/RGhweZHh4iOjJEYnbmlvYtezp45vf/mIqGdWvQ27Vh5rIMXrpI96njdJ86ztzEOAB1m7bw1OvfpbKpmVwmQzadJptOkUunF7czabKpNNlMmlw6RTadJpNIEI9O54857bKpNLZtrfj8Xn+Axm072PXF52ne2U7lumbd6v8Asy2L9LVrxI86NXwTJ05g5Wso+7dsoez1bxF6/HFCHR24izSaW0RE5HZUAkJEROQBEh2N894bVxnsilLVVMTT395MbcuDVTdS5H6WnJ9zgt3hQaZHhpgecsLembFRLDNXaBcsKqasvpHy+gbK6xsL25HyCs69/UuOvfUjsukU7c+9zBOvfZtgUfEavqrVk4rHuHH2FN0nj9N79hTpRByP10fTrnZa9x2gdd9jhEvL7trz2baNmcs5gXDGCYRzmTS2ZVHZ1Izboz+EPUjMWIzs0DDZ4SGyw8P57fzS14c5OwuAr7mZ0ONODd/QgQN4ysvXuOciIiJrTzWAV6AAWEREHmQz4wkuHh7m/O8G8PjcPP7VDWx/ugGXyj2I3DEzl2NmbKRQtsEZ0TvE9MgQqfm5QjuX20Npbd0tIW9ZfePH1o9NzM7wwZs/4Pzf/wZ/KMTj3/g27c+/9FAElLPjo3SfdEb5Dl6+iGWahEpK2bD3MVo7DtC8czdev27Bf9TZto0ZjS4PdYeGFreHh7Hm5pY9xvB68dbX422ox9vQSHDvXsKPH8BbV7dGr0JEROT+pQB4BQqARUTkQROLprh2cpxrJ8aY6J8HA7YeqOWJr28kVOxb6+6JPDAyqSTDXZcYuNTJwOULjHVfwzLNwvlQSSnl9Y35kLehsC6pqsHldn+m557o7+Xdv/oz+s6foayugWd+/4/YsPcxDOPB+eONbVmM9lyj++SHdJ86zmR/LwAVjU207nNC39qNm3G5Ptt7JQ8W27LIjY8vjty9KdzNjoxgJ5PLHuMKh52AdyHkrV9cPPX1eCorVbZDRETkE1IAvAIFwCIi8iBIzmfoPj3O1RNjjFx3bn2tbi5i0/4aNu6rJlKmUXUiH2dZ4Hupk7Ge61imicvtprZ1Mw1t26lsbCqEvf5QeFX7Y9s2N86c5J2/+jOiw4M07djN5777z6hqblnV5/0sspk0AxfOc/3kMXpOfUh8JorhctG4dTutHQfYsO8xymrr17qbcg+ZMzMkOztJnj1H8uxZkufPY83PL2vjLitbFuoWQt6GBrz19biKix+oP36IiIjczxQAr0ABsIiI3K/SyRw9Zya4fnKMga4otmVTVhdm8/5qNnbUUFodWusuitzXMskEQ1cuM3Cpk8FLnYx2X8O2LCfw3biFddt2sm7bTuo3b8UbWLs/opi5HOd++0uOvvnXpBMJdn7hOQ5+658SKildsz4tlZidoef0CbpPHaf3/Bly6TTeQJCW9n20dhygpX3fQ1vLWJazcznS1687Qe/ZcyTPnSNz44Zz0uXCv3kzwd27CbRtLYS73ro6XCH9vBIREblXFACvQAGwiIjcT7IZk97zk1w/OU7fhSnMnEVxZYCNHTVs3l9DeX1Yo6REPsKywPdiJ6M9C4Gvh9qNm++bwPejJGPzHP3JX3Pu7V/i8fk48Oq32PvSV/F47219YNuyGO/toef0CW6cOclI91WwbYoqqmjteIzWfQdo3LbznvdL7r3c5CTJc+cKYW/ywgXsRAIAd3k5wfZ2grt3O6Hvjh24I6s7al5EREQ+ngLgFSgAFhGRtWbmLAYuTXP1xBg3zk+SS5uESnxs3FfNpv011KzXrbEiK3nQA9+PMj08yLt/9Wf0nD5BSXUNT3/nD9l04OCqfg6kE3H6zp+h58xJes+eIj4TBcOgrnUzLXs62LDvMarXb9Bn0UPMzmRIdXUthr3nzpEdHHROejwE2toKYW9wTzvehgb9exAREbkPKQBegQJgEZFHh2VaxKJp5qZSzE0mmZ9KMTeVZH4yxfx0CpfbIFIWIFzqJ1LqJ1y2fB0q9uFy351JaCzLZuhqlOsnxug+M0E6kcMf9tC6t5pNHTXUbyrF5dIXa5EFtm2TnJtlrOf6shq+D0Pg+1F6z5/h3e//f0wO9NGwdTuf/94/p2bDxrtybdu2mR4aKIzyHbpyCcs08YfDrN+1lw1797N+9977pgyF3H3Z0dFlpRxSFy9iZzIAeGprF8Pe9nYC29pwPQT/T4mIiDwKFACvQAGwiMjDw7Zs4rNOwDs/mXSC3oXtyRSxmTS2tfjzzTAgXOanuCJIcUUA07SJz6SJRVPEZzKYOWvZ9Q0DQiV+JyBeCIfz20vXHu/KM97bts3YjTmunRjj+qlxEnMZvH43Le2VbOqoYV1bOW6PZjmXR49t26Ri88xPTTI/NcH81FR+PUlsatI5Pj2Jmc0CPLSB70os06Tzd2/z/o//M8n5ObY//QWeev27RMor7vha2XSKgYud9Jw5yY0zJ5mbGAOgqmk9LXs6aNm7n/pNW3G5V/4MkweTlUiQ7u4mffUa6Wv55epVchMTABh+P4EdOxYD39278NbWrnGvRURE5NNSALwCBcAiIg8O27ZJzmcLo3bnppLLwt756RRWbvnPr1CJzwl4KwMUVQQornTC3qKKIJFyP+6PGNFr2zapeJZYNJ0PhfPrmTTxaIrYTIZ4NEUmZd7y2EDYe8vo4Wza5PrJceanU7g9Lpp3VrCpo4bmnRV4fQpb5OHl/L8UWwxylwS8semFY1PkMulljzNcLiLlFRSVV1JUUUlRZRVF5RVUNDY/1IHvR0kn4hz/2Y85/cu/xXC7eeyrr9Hxyqt4/bd/H2bHR53A9/QJBi52kstm8Pj9NO9sZ8Oe/axv30dxZdU9ehWymuxMhvSN3sWQN79kBwch/93OCATwt7bi37iRwM6dTu3eLZsxfL417r2IiIjcLQqAV6AAWERkdZlZi2zaJJPKkU2bzpIyyaRzhe2F44U2KXPFx6STOczs8lG5gYi3EOgWVzoBb1FFIH8s8JGjce+WTCq3PCCO5kPiwkjiNMn5LIbLYF1bGZv219Cyuwp/0LOq/RK51yzTZPhaFwMXzjM7PuYEvdNO0JtL3xTuGi7C5eVOsFvhBLtFFVUUVSysKwmVluJy6Y8jN5sZG+W9H/w5145/QKSikqe//T22HnwGw+X8McvMZRnqukzPGae0w/TQAABldfW0tDujfBvbdmgCtweYbZpkBwZI3RT0Znr7IJdzGnk8+FvW49+0adnibWzE0AhvERGRh5oC4BUoABYRuTsyqRzH/qaHwStRskuCW8v8hD9PDPD53Xj9brwBj7P2u/EFFo/5Am6KFsLefMDrC9z/QaqZtTBN64Hoq8idSMzN0nv2FD1nTtJ37jSpeAwMg0hZ+ZKRu5VEyisLwW5RRSXh0jKVGfiMBi9d4B+///8yfqObuo1baDv0OQYudtLXeYZMMonb46Fx20427OmgZU8HZXUNa91luUO2bZMbHV1StiG/7u7GXvijimHgXbcuH/BuXAx716/XqF4REZFHlALgFSgAFhH57MZ65/jtn19kdiLJ+h0VBMLexRA3sDTI9RT2bz7m8bo0m7jIfc62LMZ7ewoTh410XwXbJlRS6owu3dNB8652AuHIWnf1kWBbFhff+x1H3vg+8eg0kYpKNuRH+Tbt2IUvEFzrLgrOfycrFsOcm8OcncWan8ecncOcm8Wam3eOr7Cdm5jAisUK1/HU1NwyotffugFXKLSGr05ERETuNwqAV6AAWETk07MsmzNv9/Hhz28QKvHxpT/YRsOWsrXulsgDy8zlGLl+haHLF/EGglQ0rqOisYlwadma/YEknYjT13mWntMn6D17ivhMFAyD2tZNtLR3sGHvfmpaWgslCOTey6ZSxKJTlNbW6w9p94gVj5M4dYrs0FA+zJ3Dmp9b3J6by4e5c1jz84UavCtyu3EXF+MqLsJdXFLY9pRXLI7q3bgRd0nJvXuBIiIi8sC6kwBY96iKiMhtzU+n+Pu/uMTwtRla91bzue9sIRBWTUmRO2HbNlOD/fR3nqWv8ywDly6QTSVvaecPh6loaCoEwhUN6yhvbKKoovKuB362bTM9NFioITvUdRHLNPGHw6zftZeWPR20tO8jVFJ6V59XPj1vIKASD6vMNk1SFy8S/+AD4kfeJ3HuHGSzhfOG3+8EtyXFuIuK8VRV4dvYiruoGHdJMa7i4ny4W+Rsl5TgLirCVVyCKxxScC8iIiJrQiOARUTkI10/Nc47P+jCNG2e/tZmtj5Rqy+vIp9QbHqKvs6zTuh74Rzx6DTgTNLVtKOd5p3trNu+i1w2w9RgP1ODA0wPOevJwX5S83OFa/mCQcob1i0PhxvXUVxZfUcjcrOZNAMXz9Nz+iQ3zpxkbmIMgMqm9bTs6WDDng7qN7epbq88UjKDg8Tf/8AJfY8dw5qdBSCwbRvhg08SfvJJ/Bs34iouxuX3r3FvRURERBwqAbECBcAiIp9cJpXj8I+u0nV0lOr1xTz7R9sorVbtQZHbySQTDFy6QF/nGfo7zzE12A9AsKiYph27ad61h+ad7RRXVX+i6yXmZgvB8NRgfyEcjs9EC208fj/l9Y2F0cILwXBJTS0ulxPizo6PFUb5Dlw4Ty6bweP307RjNxv27Kdlzz6KKz9Zn0QeBubcHPHjx53A9/0PyPY7/696amsLgW/4iSfwlJevcU9FREREPpoC4BUoABYR+WRGb8zy2z+/xPxkkn0vrqfj5fW43ar5KXcmk0oSHR5iemSI6PAQsegUVU3raWzbQeW65oeijqyZyzF6/Sp9+bIOo9evYJkmHq+PhrbtNO9sp3nXHqqa1t/V15uMzTM9OMDU0GI4PDU0QGxqstDG7fVSXteAaZpMDw0AUFpTR8veDja0d9C4bScen++u9UnkfmZnsyTPny+M8k2ePw+WhSsUInTggBP4HnwSX0uL7nIRERGRB4YC4BUoABYRuT3Lsjn9614+/LtewqU+nv3D7dRvUu1P+WiWZTI3MUF0eJDp4SGiI4NER4aYHh4iNj212NAwCIQjpGLzgFPntmHLNhq2bqexbQc1Gzbi9tz/0xIs1Mx1At8zDF7qJJNMgmFQ07KR5l1OWYf6zW1rEq6mEwmmhxYD4emhASzTZP3uvbTs2U9ZnSYOk0eDbdtkensLgW/i+HGseBxcLgI7dxA5eJDwk08S3L0bw6ua9iIiIvJgUgC8AgXAIiIfbW4qyd//xSVGrs+yqaOaZ/7JFvwhfSkWRzI2vxjyFsLeIWbGRjCXTI7kD4cpr2ukrL6B8vr8uq6B0tp6PD4fcxPjDF6+4Cxdl4gODwJOGYP6TVto2LqDxrbt1G3agtcfWKu3z/dTAAAgAElEQVSXW5BNpZgZH2Wi70Zh8raFYLu0po6mnU5Zh3XbdxGMFK1xb0UebblolMTRo8Q+cELf3PAIAN516wojfMMHDuAuKVnjnoqIiIjcHQqAV6AAWERkZddOjPHOX1/Btm2e+fYWNj9Wo1GCjyDLNImODDM9MuiUbhgeLJRwWDoZmcvtpqSmjvL6BsrqlgS99Y0Ei4rv6N9OfCbK0JVL+VD4IhN9N8C2cbk91GxopbFtB41tO6jf0kYgHFmNl006EWdmdITo6DCzY6NER4eZGR1hZmykMGkbQGChju/O3TTvbKekunZV+iMin4ydyzllHY4cIXb4CKkLF5zPj+JiwgcOFGr5+pqa1rqrIiIiIqtCAfAKFACLiCyXSeZ4742rXDk+Su2GYr70h9spqQqudbfkHkrMzXLjzEl6zpyk79xp0ol44VyopHTZKN6y+kbK6xsoqa7F5XavSn9S8RjDVy8zdPkig5cvMtp9DcvMgWFQ1bS+UDKisW074dKyT3RN27ZJzs8VQt2Z0WFmxkad9egIySXhNkC4rJzSmjpKa+sK6/L6xrtex1dE7lx2dLQQ+MY/+ABrfh5cLoK7dxN+6iCRgwcJ7NiB8QCUlBERERH5rBQAr0ABsIjIopHuWf7+Ly4yP5Wi4+UWOl5sxqWJ3h56tm0zfqObnjMnuHH6JCPdV8G2CZWU0rKng6btuwqhrz8UXuvuks2kGb12hcHLFxnsusjw1cvk0mkAyurqCyUjGrZux+PzFULdmbERoqNO2Ds7Nros2MYwKKqopKy2jtKaeifoXQh7a+rwBta+9ISIOKx0muSpU07ge+Qw6WvXAfDU1BA+9BSRpw4RfuJxlXUQERGRR5IC4BUoABYRAcu0OPmrPk7+spdImZ9n/2g7da364vwwyyQT9J0/64S+Z085ZQ0Mg9rWTWzYs5+WPR3UtLQ+EKNbzVyO8d5uJxC+fIHhrkuk4rFb2hkuFyXVNZTW1heC3YWgt6S6Fo8mfRK5LxUmbzvyPrEjh0kc/xA7lcLwegnt7yD81CEih57Ct3GjShWJiIjII08B8AoUAIvIo8CyTBKzs8RnoiRnZ/D4/PjDYfzhMJmkm3f+uoexG/NsOVDLodc34w/qNtmH0fTwEDfOnKDn9AkGL1/EMnP4giHW797Lhr37aWnfR6ikdK27+ZnZlsXkYD9DXZewbYuyfOBbVFmFW7eAi9wRK50mdfEihseDu7QUd1kZrkhk1YNWMxYncfwYsSNHiB8+QnbQmRzS19xM+JAT+Ib278cVCq1qP0REREQeNAqAV6AAWETuNwufv5/ky3U2nSIejRKfiRKfmSYWjZKYjRKLTpOYiRKbiRKPTpOcm8O2rdtcycAbCBIqLsIXChMIOeGwPxTJr8MEwmH84Qj+wrkwgbBz3hcIPhAjRR81uWyWwcsXuHH6BD1nTjAzOgJARWMTLXs62LCng/ot2xSKisgy2eFhYu8dJvbee8SPHsVOJpc38Hhwl5XiKS0rhMLOUoqn7OZjZbhLy3CFQ7f9uWbbNumurkLgmzhzBrJZjFCI8OOPEzn0FOGnnsK3bt0qv3oRERGRB9udBMD6JigicpdYlk06niU5nyUVz5Ccz5KMZUnFMiRjC8ezJOczpGJZEvMZrGwCXyCNx5fG7UniMhLYdhzLjJPLzJNNzZGOz5LLpG55PsPlIlxSSrisnKLyCmo3bCRcWka4tJxwWRnB4hJS8RRnfnON4WtjFFcYNG8vwrbTpBNx0vEY6UScmdERUok46XicbCq5witb+qQG/mAIfzhM7cYtHPy9f0p5fcMqvaNyO/PTk9w4c4obZ07Qd/4s2XQKj9fHuu072fvSV9mwp4OS6tq17qaI3EfsbJbk2bPE3nuP2Dvvkr52DQBvQwOlr75K+OCTGB4PuWgUMzqDGY06y0yUXDRKuqfbOT4zA6a58pN4vXhuCYZLcJeVkRsZJfb+EcyJSQD8W7dS8QffI/zUIUJ72jF8vnv1VoiIiIg8UhQAi4jcRjKWYX4q5QS58/kgN5YlFcsHuQuBbyxLKpGFj7ipwhtwE4x48fgSWNl+zFQvuVg3meQst0S7hhfDCIMrjGGUYLjq8QTy+64w3kARoaJSgiUlhIr9BMNeAkU+ghEvgYiXYH47nczxwU+vEJup4eA3D7D3hfW4XLcfbWyZJulkgnR8MSBOx+OkEjHnWH4/OT9H96kPuf7hB+x+9iUe/8brhIpVS3g1ZZIJxvtu0Hv2ND1nTjDR2wNAUWUV257+Ahv27mfd9p14/ZrETEQW5SYniR0+Quy9d4kfeR9rfh48HkIdHVS/+iqRZ57Gt2HDHZV6sC0La34eM+oEw+bMzGJgnA+LF/bTV6/mj8/gLi4mfPAg4UOHCB98Em919Sq+chERERFZoBIQIiI3mZ9O0XNmgu4z44x0z94S6houwwla80sgkg9fixaO+fJBrBczF2ey7zKDlzsZuHSe2bFRAILFJazbvov6TVuIlFfkR+6WES4rxxcIOqOJEwtBc34dyyzfXhJEJ2NZzOytpR+KKwM8+8fbqW25++FsfCbKB2/+gM5/eBtfMMiBV3+PPS98GY9GcH0mlmkSHRlmcqCXyf5eJvqd9ez4GOCM/K7f3MaGvfvZsKeDinXNmgxJRApsyyJ14QKxd98j9u67pC5cAMBTVUX4maeJPP004SefxB2J3Nt+mSYYhsoIiYiIiNwlqgG8AgXAInI7sxMJuk9P0H16nPG+eQAqGiK07q2isjGyGPJGvPhDno8M3JLzcwxc6qT/wnkGLpxjetiZzMYfDtPYtpOmHbto2r7rrod2tm2Ty1iFMDgVy5JNmzRtL8cXWN2bPaYG+3nvB39Bz+kTFFfVcOjb32XLk08rlPwYtm2TmJ1hou8Gk/29TA70MdHXy9RQP2Y2Czhhb1ldA1VN66nML41btxO4x8GNiNzfzNlZ4u+/74S+hw9jTk+Dy0Vw924i+dDX39amz2URERGRh4gC4BUoABaRm02PxOk5M8710xNMDcYAqG4uYsOeKlr3VFNa8/EzjqcTcQYvX2Tg4jn6L5xnou8GAF5/gMa27azbvoumHbupWt+Cy+Ve1dez1vo6z/LuX/0ZE303qN24mWd+/49p3Lp9rbt1X8imU0wN9BdG804O9DLR10tyfq7QJlxWTuW6ZqqaW6hc10xl03oqGtZpRLWI3MK2bdJXrxZG+SbPngXTxF1aSvjQIWeU71MH8ZSVrXVXRURERGSVKABegQJgEbFtm6mhWGGkb3Q0AUDthhJa91axYU8VxRXB214jm04xdOUyAxfO0X/xPGPd17FtC7fXS8OWNtZt38267buobd2E2/PolVm3LJPLh9/hyBvfJzY9xabHnuTQP/keZXWPxkRxuUyG+akJJvv7mOi/wWR/H5MDvURHRyD/89bj9zsB77r1VDWvp3LdeiqbmlVDWURuKzc5SeLkSeIfHCX23nvkRp2SQoFt2wqlHYK7dmG4H+4/NoqIiIiIQwHwChQAizx8zFyW2fEx5ied2cQNlwvD5dQXdLlcGIYLDIPoaJKhKzMMXpkhFs1gGAY1LSU0ba+keXsloZKA037pYhi48nUKx250M3DxPP0XzjNy7QqWmcPldlO7cQtNO3axbtsu6jdv1UjNJbLpFKf+7m/48G9/gpnLsvu5l3jiG98mWFS81l37xGzLIhmbJzk/R3Ju1lnPz5GcmyM5P0tybo5EYd9pk00vmdLPMCirrXNKNyyEvU3rKa2uVQ1MEflY2dFREidOkPjwBImTJ8nccO4wcYXDhA8eJPLM04SfOoS3RhOpiYiIiDyKFACvQAGwyIPJtm3i0Wmmh4eIjgwRHRkkOjLM9PAgs+Nj2NatE5+tBsNwUd3SWqjhW791G77A7UcLywoTxX39W+x5/pU1C8tty2J6eIi5yfFloW5ibnZZkJucnyMVi2HbK//78voDBItLCBYVEywuJpRfB4tKCJeWOeUbGtfh9Qfu8SsUkQeRbdtkBwcLYW/ixAmyg04NeVdREaG9ewk9tp/Q/v0E2towvN417rGIiIiIrDUFwCtQACxyf0snEvmA11kWA99hsqlkoZ3H56esto6y+kbK6hoor2+guLIay7aZHJhn6Mo0I9dnSCUyuFxQ1RShpqWIqqYwXp8Ly7KwbRvbsgqLZVlg2845y1x23rIsyhvW0di2nUBYE299WpMDfbz3g7/gxpmT93SiuGw6xWj3NYavXGboyiWGr14mHY8va2O4XE6QW1RMaEmoWwh4ixa3Q8UlBIqK8Pr8q9pvEXm42bZN5saNZYFvbmwMAHdpKaH9HYT27yfU0YF/yxaVdRARERGRWygAXoECYJG1Z+ZyzI6POaN4h4eYXgh8h4eIz0QXGxoGJVXV+ZC3nvI6J+wtq2+gqLwCG4PYdIrZ8SSzEwnG++e5cW6SVCyLx+eieXsFrXurad5ZgS/w6NXhvZ/1nT/Lu//ZmSiubuMWnv79P7qrE8XFZ6JO0HvlEkNXLjN+oxvLNAEob1hHw5Y26rdso6yugVB+xK4/FFJJBhFZVbZlkb52jcQJJ+xNnDyJOTUFgLuqkvD+/QQ7Ogjv34+vtVWfSSIiIiLysRQAr0ABsMi9lZibZbznOqM91xnruc7UYD+z46OFMA4gWFS8GPLm12V1DZTW1OFye5ifTjEzniwEvbMTzvbcZBLLXPzs8gXcNO+spHVvFU3bK/D6NFLqfmZZJpfe+0fef+P7xKLTzkRx3/kDymrr7+g6tmUxNTSwOLr3ymVmxkYAcHu91LZuLgS+9Zu3PlD1h0XkwWbncqS6rhTC3uTJk5izswB46uuWBb7e5uZVvxtCRERERB4+CoBXoABYZPWkYjHGeq4z2nOtEPrOTYwVzpfVNVDZ1JwPeRsKo3l9gTDzUylmxhfD3dmJBLPjSeanUljW4ueTx++mpCpIaVWQkuoQJdVBSqqClFSFCJf4MFz68vygWT5RXI72517i8W+8/pFB7c3lHEaudpGKxwAIFpcUwt6GLduo2dCK26MamSKyuuxMhszgEJm+XjJ9fWT7+8n09pI8dx4rX27G29xEqGOhpMN+fI0Na9xrEREREXkYKABegQJgedjZto2Vs8lmTMystXydWdzPZUyyGevWNlkLwzBwuQxcbgPDvWTbtbhtZlPEpgeYn+xjdqKfufE+ErMThX6Ey6opq2uhvH495Y0bqGhsIRAOk4xlmV0IeieSzI4nmJ9KsfQjyBtwU1odyge7QSfkze+Hin0aIfWQis9E+eDHP6Dzd2/jCwV5/NVv0f7Cl0nHY/mw9+Jtyzk0bGmjtLZe/z5EZFXY2SzZoSEyfX3O0ptf9/eTHRqCJZORuoqL8TU3E9i+rVDD11tTs4a9FxEREZGHlQLgFSgAlgfZ9EicK8dGmOifJ5e5NbjNZizMjMmn+d/ZMMDtc+PxuLCxsU0by7SxLBszl8bOjWOZY1i5UWxzHNtarNVruIox3DW4PDXO2l2N4Qre9vn8IU8+3A0thrxVIUqrgwQiXoV4j7DJgT7e+89/zo2zp/AGgoXJ/zxeHzWtm1TOQURWjZ3LOSFvf/9iwJtfskNDsKR8kSsSwdfc7Czrmwvb3uZm3KWl+jkmIiIiIveEAuAVKACWB00qluXayTG6jo4w3jeP4TKoWhfBF/Tg8brw+NyLa9+StXdh7Rxze114fW7cPme9vI0bl8fAMAyyqRTjvT2M9VzLl3O4zvTwIAupcqSikur1G6lq2kBlUyuVTRvwh4qwTBvbWgyNC9umhWU5xyzTxh/0UFodIhDRbflye73nz3Dlg/eoaFhHvco5iMhdYOdy5KamyY2PkRsfJzsySqY/H/D29pEZGoJcrtDeFQrhXRLu+prXFwJfd1mZQl4RERERWXMKgFegAFgeBKZp0X9hiq5jo/Sen8QybSoaImx9opbNj9USKvbd8hjbtsllM2QSCdKJeH5JkEk6+4vHl+wnE2RuOpbLZgrXjJSVU9O6iZqWjdS0bqSmZSPh0rJ7+VaIiIh8LNuyMGdmyI2PF5bs2Bi58Yllx3JTU8tKNQAYoZAT6jY13TKi111RoZBXRERERO5rdxIAe1a7MyKyMtu2MbNZMskEIz0TXP9wgN4LI6TjCbwBk+p1fsrrfXj9JlP9p3n3SsIJdheC2+RCuJvAMnMf+3zeQBB/KIQ/FMYXDBKIFFFcXVs4FghHqGxqpqZlI5HyinvwDoiIiKzMtm2sWIzcWH7E7vj48lB3bIzsxDi5iUnIZm95vLu8HE91NZ7qKvxtW/FWV+f3a/BUV+OtqcZdWamQV0REREQeCQqARe6S+EyUgUudJGaizgjbZHJxtO3Cfn47nT/3UcFtNg69U9B7FgyXC38whC8UwhcM4Q+FiJSXUx5sxB8K4QuF8QedELewX2gbdgLfUBCXy32P3xEREXnY2JkM6e5uUpe7SF+/jp1KYudM7FwOO5eFXA47m3P2zdzy/fxCbvm+nctCNodtmottVgh1AVxFRYVgN7x/fyHQXTjmra7GXVWFy3frHTMiIiIiIo8qBcAin1ImlWTw8gX6zp+lv/MskwN9y857fH58wWAhjPUFQxRVVpNJuTCiFrmsjcvro6iymIbN1azbXkuktDjfPph/TBCPz68RSiIics+Zs7Okuq6Q7rpM6nIXqa4u0t3dhXDW8PlwBYPg9WJ4PIUFjxvDs/yYEfDjcoedba8HPJ4lbdw37TttXOEInpoaJ9itqcFTVYUrFFrjd0VERERE5MGjAFjkE7JMk9Huq/SdP0tf51lGrnVhmSYer4+Gtu20Hfo8zTvbKamuxRcM4nI7I25t22asd44rR0e5dnKMdCJHuMTHY1+rZcvjdZTXhdf4lYmIyKPMtm1yw8OkurryQe9l0pe7yA4NFdq4KysJtLUROXSIQNtW/Fvb8DU3Ybh1d4mIiIiIyP1OAbDIR7Btm+nhQWeE74WzDFzsJJNMgGFQ09JKxyuv0rSznYYt2/CscKtpLJriyvFRuo6OMjOWwON10dJexdYnamncWo7LpVG9IiJyb9mZDOmeHqeEw5KRvdbcnNPAMPCtX09w9y5Kv/UtAm1bCWzdiqeqam07LiIiIiIin5oCYJEl4jNR+judEb59nWeJTU8BUFJTy9aDT9O8s51123cRLCpe8fHZjEnPmQm6jo4weCUKNtRtLGHPc1vZuLcaX1D/y4mIyL1hpVKkOjsLIW+q6zKZa9exF0o4BAL4t2ym+MUXC0Gvf/NmlVkQEREREXnIKI2SR9pCHd/+zrP0nV+s4xuIFNG0YzfNu9pp2tFOaU3tba+TmMtw/ncDdL47RCaZo6giwP6X1rPl8VpKqvRFWkRE7p3UlSvM/PhNZn/xi8LIXnd5uVPC4Q++h3/rVgJtbfiam1XCQURERETkEaAA+CH1j3/5pwxcPI/L48Xt8eD2eHDl126vF3f+eOGYx4Pb413W3jnvxe313Nre7cXt8+LxeHH7fLg9Xjw+b37t7Lu93jWdvMy2LMxcLr9ksfLbseg0/RecwHehjq/b66Vh63YO5ev4Vq/fgOFyfexzzE0mOfvbfi59MIKZs2jdU8XOzzVSv7EUQyUeRETkHjFjceZ+9Utm3vwJqfPnMbxeip57juKXXyawYzueqipNKCoiIiIi8ohSAPyQCpeVU1JTWwhArVyOTCKxGIaaucVwNJvNt3HWd5MTOPuc0NnrxeNdHhIvhMYLbTxeH26v889yoW9WLodp5gp9zGUX+7rw2hZel5nLFo5ZpvnRHcvX8d33yqs072infmsbXp//E7+uqaEYp9/u49qJcQwDtjxey55nmyir1YRuIiJyb9i2Taqzk5k332Tuv/wSK5HAt7GVmn/zryn+ylfwlJWtdRdFREREROQ+oAD4IfXYV1/7VI+zbRvLNLFyOXKFUbPZ5UFrNlsIjXPZjHM+kyGXy2JmnBA2l3GO5xbaZjNLtrPO47JO23Qi6VxjSRsgHwwvjExeHJXs8XpwB4O3jG72eBfa5UcruxdGOy8d4ezBHw7TsGUboeKSO35/RntmOfXrPnrPT+Lxu9n1hUbav7iOSFngU73fIiIid8qcnWX2579g5ic/IX3lCkYwSPGLL1L6zdcItrdrpK+IiIiIiCyjAFiWMQyjEJh6UagJTijef2ma07/uY/jaDP6wh/2vtLDrc40EIt617p6IiDwCbNsmefIk0TffZP43b2On0wS2b6f23/07il95GXckstZdFBERERGR+5QCYJGPYFk23afHOf2bPiYHYkTK/Dz1zU1se6oer1+T5oiIyOrLTU0x+zd/w8ybPyHT24srEqHk669S9s1vEti2ba27JyIiIiIiDwAFwCI3MbMWXcdGOPN2P7MTSUprQnzhu1vZ/Fgtbs/HTwwnIiLyWdiWRfz9D5j5yU+Y/93vIJsluHcvdX/yJxS/8DyuYHCtuygiIiIiIg8QBcAieZlUjouHhzn39/3EZzNUNRXxwr/YQUt7FS6X6imKiMjqyo6OMvPWW8z+5Kdkh4dxl5ZS/p3vUPrN1/C3tq5190RERERE5AGlAFgeeclYhvO/G6TznUHSiRwNW8r44h9so3FrmSbSERGRVWXncsTefZeZH79J7PBhsCzCTz5B9X//3xH50pdw+Xxr3UUREREREXnAfaYA2DCMXmAeMIGcbdsdhmGUAz8C1gO9wO/Zth01nCTt/wReAhLAH9i2fTp/ne8B/3P+sv+rbdv/KX98H/CXQBD4JfDf2LZtf9RzfJbXIo+e+ekUZ3/bz6Ujw+SyFhvaq9j7fDM1LcVr3TUREbmP2baNnclgxeOLSyKxfH/JYha2b21jzs1hJ5N4qqqo+Of/nNLXvoFv3bq1fokiIiIiIvIQuRsjgD9v2/bkkv1/DfyDbdv/wTCMf53f/x+BF4FN+eUA8B+BA/kw998CHYANnDIM4+f5QPc/Av8COIYTAL8A/Oo2zyHysaZH4pz5TR9XPxwDYPNjNex5vpnyuvAa90xERO4Htm2TGx4mcfo0iVOnSF+5ihWbzwe5TohLLveJrmX4fLjC4WWLu7QUb0MDrlAIVyRM+MABIs88g+HRjVkiIiIiInL3rcY3ja8Cn8tv/yfgHZxw9qvA923btoFjhmGUGoZRl2/7W9u2pwEMw/gt8IJhGO8AxbZtH80f/z7wNZwA+KOeQx4Qtm1jWzaWaWMtrAuLhZmzyGUsclmLXNZ0tjMmZtZZ57JW4ZjTxsLMmGQzFmZ24fySdgvXyFrk0iYer4sdzzTQ/mwTReWBtX47RERkDdmmSfrqVRKnTpM8fYrE6TPkRkcBcEUiBNra8K1fjysUviXMXb6EnIB3YT8UwlAJBxERERERWWOfNQC2gbcNw7CB/8e27T8FamzbHgGwbXvEMIzqfNsGYGDJYwfzx253fHCF49zmOWSV5LIm0ZEEU8MxpobizIwlMLPmCuGtE+AuO27lj5k29pJjd4NhgMfnxuNz4fE6a7fXhdfnxuNzE4j48HhdhfNun4twsZ+tT9QSLNKXchGRR5GVTJI83+mEvadOkzx7FisWA8BTU0No3z6C+/YS2rcP/6ZNGG73GvdYRERERETk0/usAfBB27aH8wHsbw3D6LpN25Vm07I/xfFPzDCMf4FTQoKmpqY7eegjy7Zs5qZSTA3F8kuc6eEYM+NJ7Hxo6/a4KKkO4vW7cbkNXG4Dj8+Ny2UU9p1tFy63geE2cOf3DffNbfLtlj7WbeD25gNdr6sQ8BaO+fLHvPnra6I2ERG5jdz0NMnTp0mcOk3i9ClSFy8VSjj4N22i+JWXCe3bR2jvXjz19fq5IiIiIiIiD5XPFADbtj2cX48bhvEz4DFgzDCMuvzI3DpgPN98EFg6q0kjMJw//rmbjr+TP964Qntu8xw39+9PgT8F6OjouDtDTh8iyViGqaE4U0MxpodiTA3HmRqOk0ubhTbFlQEqGiK07q2mvD5MRUOE0uogLrdrDXsuIiJ3i5VOk7lxg/T1bszZGVyBIK5gACMQxBXwO+tgACMQwBUM4go424bff18GpbZtk+3vL4S9yVOnydy4AYDh9RLYtYuKP/xDZ4Tvnj24S0rWuMciIiIiIiKr61MHwIZhhAGXbdvz+e3ngH8P/Bz4HvAf8uu/zT/k58B/bRjGGziTwM3mA9zfAP+bYRhl+XbPAf/Gtu1pwzDmDcN4HDgOfBf4v5dca6XnkBUUyjcsjOoddkLfxGym0CYQ9lLREKbtyToq6sNUNEYorwvjC2hCGhGRh4GVSJDuuUGm+zrp692ku7tJd18nOzAIlnXnFzQMJxQOBDCCAVyBIEbA7wTIgQDGQlgcDODyBzACfgy3B9wuDMPlrN1ucLkx3C4wXM7a5XbOudzgMm7fxu12+uFykentzYe+pzEnnblpXSUlhPbupeTrrxLat4/A9u24/P67/M6KiIiIiIjc3z5LulcD/Cw/+scD/LVt2782DOME8GPDMP4Y6Ae+mW//S+Al4DqQAP4QIB/0/i/AiXy7f78wIRzwL4G/BII4k7/9Kn/8P3zEc0jepfeH6b84zdRQjNnxBHZ+/LPb46KsLkRTWznlDREqGpxRvaFi3305kktERO6MGYuR6e5eFvJmrneTHRpabOT14l/fTKBtGyWvfBn/xlZ8ra14KiqwUymsVAormcJOJbFSaWedTGGlkthJ5/ztzlnxONb0NHYy6eynUtjJJLZlgWlS+KF0l3kbG4kcfJLg3n2E9u3Ft2EDhkt3rIiIiIiIyKPNsFfpS9j9pqOjwz558uRad+Oe+Ye/vMRw96wzmrchkl/ClFSpfIOIyMPAnJkh3dND+vr1ZYFvbnS00Mbw+fBt2IC/tbUQ8vo3bsS3bh2G17tmfbdt2xl1bJpOKGxZhXC4sG+at7YxLbBMZ20vb+Opq8NbU7Nmr0lEREREROReMgzjlG3bHZ+kre7vf0h94bttGHqmRwkAACAASURBVC6N6BUReRhYiQTxDz8kcfQoqStXSXdfx5yYLJw3gkH8GzYQPvAYvtaN+De24m9txdvY6JRJuM8YhgFuN7jdK874KiIiIiIiInePAuCHlMJfEZEHl23bZLq7iR0+QvzwYRInT2JnMhiBAP4tm4kcenrJqN6NeOvrVOpAREREREREVqQAWERE5D5gzs8TP3qU+OEjxI4cITcyAoB/00bKvvMdIoeeIrhvnyYxExG5x96enCVhWjxfWUJQpdRERETkAaQAWEREZA3YlkW6q2txlO/Zs5DL4YpECD/xBOF/+V8ReeopvPX1a91VEZFHVsq0+JOLvSQtmyK3i1eqS/lmTTmPl4ZxaQJlERF5WKRmYeIqTF0HtxfClRCqdNbBcvD41rqH8hkpABYREblHctEo8fc/IH74MLH338ecdOr4+re1UfFHf+SM8m1vX9MJ2kREZNHx2ThJy+Z/aKmlN5nm5+Mz/HBkmsaAl9dqynmttoyNocBad1NEROTj2TbEJ2DiCkx0weTV/PYViI3e/rH+EghXQKgiHwwv3c6HxaGK/PFK8IVBfyi9rygAFhGRR4ZtmqS7u7HTGVzhMK5IGHc4jBEKOROTrcLzpTo7iR0+QuzIYVLnO8G2cZeUED54kPDTh4gcPIinququP7eIiHx2/zg9h88w+JN1VYTdbv73zSa/npjlzdEo/1ffGP9H3xh7i0O8VlPG12rKKPfq65WIiKwxy4K5QWdE70QXTF5Z3E7NLLbzRaByM7R+Aao2Q+UWqNwEVg4SUxCfhMQkxKec/cSkc2x2EEbOOttWduU+uP35YDgfFC+ExL4wYDthtG3lty1nHxa3bz5X2L95+6a2B/9bqN2xmu/uA0u/oYiIyEMrNzVF8tw5kmfPkTx3jlRnJ1YicWtDl8sJhAuhcCS/vWSdD4sLx8LOMVc4jDsSKRw35+YKo3zj77+POTsLhkFw1y4q/9W/InLoKQI7dmC43ff+DRERkTvyzvQ8B0rDhPOf2WG3m2/UlvON2nJG01neGovy49Fp/qdrQ/zb68N8qaKY12rL+FJFMX5NzikiIqvJzEH0hhPsTlzJj+jtgslrkF3ynSdUCVVbYPurzrpqixP2Ftd/tlG6tg3p+ZVD4sTUkhB5yulnfAqyccAAw+U8t+Favl/Y5tZzhf2bH7ekbXru07+eh5wCYBEReSjYmQyprq5C2Js8d47s4KBz0uMhsHUrJa++SnD3LlyRIqx4HCsew4rFMONxrFgcKxZzjsdimPEY2fEx53j+WOEv05+Au7KSyOc/T/jQU4SffBJPWdkqvXIREVkNI+kMXfH/n703j5Utue/7PlVn6737bm/fhsPZODOcMTWihuIiilRMyqJiO5LgSIkER7aFeEGCBEHiBAjyR2AYMRA4QYAYthPKsmPEtmJDiKiIkq0hOSQlLiOJywzJmeHMvHnvvvWuvXefpSp/1Dl9Tvfte999673vvfoAhV9VnTrdp7tPn+V7fvX7jfiFY/NjsR8LPP7GmSP89dMrvNYb8pvXtvg317b43fU2Ldfhzx9p8QvHFvmRxt2ZZWKxWCyWh4TBJmy8ZeLzbvwQNt40gu/GW9MeuI1TxpP3Az8+LfRWl+7OdgkBpYYpi++5O+9huWNYAdhisVgs9x1aa+KrV6e9e197DR2GALhHj1J+/nkWfumXKD//HKX3vQ9Zur0YjVpr9GCQi8X9glg8EY77CNel+qEXCZ58EmG9vywWi+W+5UubXQB+crG+5zghBM/UKzxTr/Dfv+cEL291+c2rm/zLq5v8xuUNHin7/MKxRX7u6AJny8G92HSLxWKx7Ma4B2/9AVz4OpRbUD9uSiO15YWDiV0bDWHz7YLIWxB8Bxv5OOHAwjkj7j7x00bgXXnchHII9j5fWR5uhL4Jb6b7mRdeeEG/8sorB70ZFovFYrkF1HDI6LXXpgTf+Pp1AEQQUHr6acrPPWfK88/hHTt2wFtssVgslvud//S18/zhdo9v//jTt+TB240TPre2zW9e3eIPt3sAvNis8gvHFvnZIy0arg0FZLFYLPeE3hq88bvwg9+Bt74AydjEqE3GO8e6ZagfM+ER6sen65O+4+D6N78dKoHtCzPevKnY274IFPS5+nFYei8sPQpLj6X198LCWXBswmiLQQjxx1rrF/Y11grAFovFYtkPOo6Jrl4luniR8OJFVLeHcB1wXGOlRGT1iXUQacn6TH3vPh2OGX33uxPBd/T665AkAHhnzuRi73PPUXricYR/CxdgFovFYrHsQqI1z371VT651OB/e+rsbb/exVHIv7m6xW9e2+SHgzGBFHxquckvHF3g44sNPGlDRFgsFssdZfMdI/j+4HNw4WuAhuYZeOoz8OTPwOkXQSfQvQKdK8Z2r0DncqHvsrHzhOLK8rTn8JRIfMzExi0KvOtvmji4SZi/RtDIhd3lx1Kx970mnIL15rXsAysAz8EKwBaLxXJjkm43FXhXiVYvEl64aNqrq0SXL0Mc39PtkdUqpfc/OyX4uouL93QbLBaLxfLw8aedAT/9x2/wv7/vLP/B0TsXw11rzbe6Q37z6ia/dX2LzShhxXf5yyeW+ZWTS6z41qvLYrFYbgmt4ep34PufM8Lv9ddM/9FnjeD75M/AsWdvPryD1jDc2ikKF233KvTX5q/v+EbQzYTeYqkuH0y4CcsDgxWA52AFYIvFYgGdJMRXr04LvKup4HvxIsn29tR4p9XCO30a//Tp1J7CO30G//QpZKMJKkEnCcQxWiljkwQdJ5Ck9SSBPfp0Ept6oU84kuCppwgefdR4BVssFovFcg/5++ev8vfeucp3P/wMy/7dSZsSKsVLG13+6eV1XtrsEkjBzx1d4K+dWuGpWvmuvKfFYrE8UCQxXPjD1NP3d0wYBSHhzIfgyc/Ak3/OxMu9F8Qh9K7monBQNyJv8zRIez9juTtYAXgOVgC2WCwPIjpJUMMRatBHD4eowQA1HKL6A1S/R3T5CuHFC0SpwBtevgxRIVOs6+KdOJEKvKeMPXUa/8xpvFOncOp26pHFYrFYHj7+/J+8yVApfv+FJ+7J+73RH/F/rK7xm1c3GSrNxxZq/NrpI3xisY603mEWi8WSEw7grZeM4PvG7xrvXLcEj37CePk+/mnjWWuxPATcjAB8dx5nWywWy32IGo+JLl1OPWIvGtH00iV0FCE8F1wX4XoIN41vO9V2wXXSetrnuSau7by2l66jtRFsB5l4O0ANBuhBQcwdDCbL9GBQGDtEj0Y3/Fyy2cQ/dYrgqaeo/9k/mwu9p8/gHTtqtsNisVgsFgtgkre90unzt84cvWfv+Xi1xN974jR/+z3H+b8ub/DZ1XX+4++8zXsrAX/t1Ao/f2yBqp0RY7FYHlYGm/B6lsTtJYiHUGoZsffJn4H3fhL86r5eqh8nfGGzy7e6A56tl/lIq87SXZrpYbEcJuxebrFYHhq01sRra0Srq4U4t6uEq0bsja9dmxovggDv5ElEKYAoRk/CG0R5O+0jitBxbGJE3S5CICsVRKWMrFSQ5QqyUsGp1ZFHjiIrZUShX5bLyKqxU/3VCt6xYzjN5u1vk8VisVgsDwlf2eqSaPiJhXs/C2bRc/nPzh7lr58+wm+vbfMPL17nv3ljlb/79hV++cQSv3pqmeOBTXxqsVgeQLSGaACjNow6MO7ApT82ou+7XwWtoHESPvDLJrzD2R8HZ39x06+NI35/o83n1zp8ZbvLWGkEkN25PVsr89GFOj+xWOeDzSplR961j2mxHBQ2BITFYnmgUP0+4eolotWLRtzNQh+sGrFXj6czuLpHjxqP2FNpCIRTp/BOm/AH7vIyQt7cyd8IxLGJhVssUWzi3xbbcQRCIMplZKWKTAVfEQQIO93TYrFYLJYD4b9+/SL/+toW3//IM/g3eR1wp9Fa8412n3+0usbvrrWRAv79Iwv82qkVnm9UDnTbLBaLZYo4NKLtqG3KpN6Zrk8ty+ppWyc7X/fI+/Ikbsef31fSNK01bw7GfH69zefX2/xJZwDA6ZLPTy83+dRygx9pVHmtN+TlrS4vb3V5pT0g0ppACn60UeVji3U+ulDn/fUyzkN0bxYrjSOw96P3CTYG8BysAGyx3P9opUg2NoiuXiO+djW3l68YL97VSyQbG1PryEoF74xJWuadPDUV59Y7eQIZBAf0aSwWi8VisRw2tNb82Ne+z1O1Er/x7HsOenOmeHc45rOr6/zzKxv0EsUHm1V+7dQKP73SfKjECYvFckAMNmHjh7D+Jmy8mdq3YLhpBNx4eOPXCBqmlJpQSm3Q2KXehKX3wOL+jsWJ1rzS7vP59Ta/t97h7aFx/Hl/vcynl5t8ernJU9XSrsJmP074WrvPy1tdvrzZ5Xt9E2qv6Tp8ZKFmPIQX6pwr+w+kOPrt7oDPrq7zW9e3WHBdXmxVebFV48VWlccrJRuP/pBiBeA5WAHYYjnc6CQhXt9Ihd2rxFdTgffqVaJrqb1+fTqBGYDn4R09infqlBF5T51OrfHkdVqtB/IEbbFYLBaL5c7z9mDMj3/9+/zdx0/xn5w8nEmEunHCv7iyyT9eXePCKOR0yeevnlrml44vUXdtnGCLxXIbJDFsnc8F3vU3ctF3sJ6Pkx5q8VF6y09RqzSQmaAbNHNxtyj0Bg0I6iDv7DFqkChe3uzy+fU2/3ajw0YU4wnBh1s1PrXS5FNLDU6Ubi1szloY8ZWtnvEQ3uxyaWzuQ0+VPD62UOdjC3U+vFBjxd9fGIrDSKgUv7PW5v9cXeOVzoCKI/mLR1oMEsUfbfe5GprPvOg5/FizNhGFn66WceXB32NvRzGv9oa81hsa2x3y9586w3P1h2eGjBWA52AFYIvl4NBxTLy+noq6mcB7jehaaq9eJb5+HZLpKT/C93GPHcM7etTYY5k9hnvUtJ3FxZsO02CxWCwWi8Uyj8+urvHfvXmJr734FOfKh3uWUKI1v7fe5h9dXONr7T41R/KLxxf5q6dWOHvIt91isRwwg82CJ+8b6PUf0tu6yGZviw2nyqbXZNNrsVk9wWb9HJuV42yWlth0G2yIEptKsBUlKMATguOBx4nA41TJ52TJ52TgGVvyOBX41O7gw6n1MObfbrT5vfU2X9rsMlSauiP55FKDTy83+cRSg8Ydfhimtebt4ZiXt3p8ebPLV7a7dGIFwNO1Eh9NBeEfa1Xvi4Sd18YR//TyOv/s8gbXw5hHyj6/enKFv3R8cfLdaa25MAr5o+0eX9vu87V2j/PDEICaI/nRZpUPtWq82KzyXKNCcBfvybXWrI4jXusO+W5vMBF8V0e5c9gx3+PpWpn/6pFj/JmHKESSFYDnYAVgi+XuoOOY+Pr1PBzDlat5eIZM7F1bA6Wm1hOlUkHYPZYLvKmw6x4/br13LRaLxWKx3FN+5Ttv88ZgxNdefN9Bb8pN8e3ugH98cY3fur5FouHTy01+7fQKLzar9lrKYjmkrIcxb/RHvDkYMUgUUoBEGCsEEqb7JhYcIRACpNZIFSFVjKNiRBIhdYRMIpy0Pxp32WpfZ7O/zcZwwGYUs0mQiryp0Os3iYQ7dztdYRJU5sVh0XNZ8lwarsNmFHNpHHF5FLI6DrkyjkhmZKam63AiE4XnCMXHfG9Pj9K303i+v7fe5pvtPgo4EXh8Kg3t8KFW9Z7GbI+V5ju9AV/e7PGlrS6vtPuEWuMLwQvNKh9bqPGxhTrvr1cOhacsGBH1lc6Az66u8dtr28QaPrnY4K+cWubji/V9hXi4Mg75+nbfiMLtPq+nYTJKUvCBRpUXW1U+1KzxgWblloXwSGneHIwmHr3fTT1827FxFhPAeysBT9fKPFMr80y9zNO18n3tiX07WAF4DlYAtlhuHh1FRty9do3oypXca/dKHpYhXl/fKe6Wy6moexTv2HFjM7H3+HG8o0eRzaa9IbFYLBaLxXJoCJXiqa+8ys8fXeB/euL0QW/OLXF1HPHrl9b5p5fW2YoT3l8r86GFGqdLPmdK/sRWbagIi+WesRZGvNEf8Xp/xBuDMa/3hrzRH7AR33stRmpFi5AlqYyYW6qwWKmz6HtTAu+S57Lom3bdkTd135ZozbVxxKVxxKVRyOooNALxOOTSyPRtxdMzPyWkXsTGazgTh6+OIz6/3uGNgREan66VJqLvs7Xyobmf7CcJ39hO4wdv9Xi1Z+IhN1zJh1t1PrpQ42OLdR4t3/tk38NE8VvXt/j11XW+0xvScCW/eGyJv3xymUcqtzdbZCOM+UbbeAj/UbvHq90hCvPQ4Ll6xcQQblb5YLNK09v5gKEbJ3n4hlTw/UF/RJjqlGUpeCoVep+ulXm2VuaJWum+8LK+V1gBeA5WALZYcnSSkGxuEm9sEK+tE2+sk6yvTyVXi65eIVnfgJljhKxUcFMRN/fePZqHZTh+DFmvH5qTscVisVgsFst++OpWl5/71lv8k2ce4dMrzYPenNtikCj+9bVN/tnlDd7sjxiq6eu5Rc/hdCoIZ+VMOeB0yedUybM315Y7zlgpvtcbseg5nAz8Q+MVeafQWrMexUbkzcTeTpfXB2M2Vf5ZG8mAx/vv8ET/HR7vn+eJwTs8Fl6n6fkoN0A5JRI3QLkB2imh3IDEKaFcH+UEaMdHuSUS6Zs+GaBdj8QJUNJHOT5aeign6/Nw/AqLS2dYrC/QdJ1DkTSyHycTgTi3qUA8Drk8igi1xhHwYrPGp5ebfGq5wZn7JLzNWhjx1a0eX97q8qWt7iRUwYnAS8NFmKRyR4K757W6Ogr5jUsmcehmlPBEtcSvnlzm548u3LWHgN044ZvtPl9LPYT/tDMg0hoBPF0r82KrypLnTgTfLKQEmPPSs7UKz9RzwffRSnAo9tfDjBWA52AFYMuDzpSou75BvL5GMqmvk2ys5/WtrR3CLoCs1Wa8do2gOwnLcOwYTr1+AJ/OYrFYLBaL5e7yd966zD+4eJ3vf+TZByqZWiZMXRyGXBiFXJxTxjMC8bLnGmG47E95DxuB2Kfs2PwLlhuzOgp5aaPDS5sdXt7qMUjMrEFXwOmSz7lywLlywCNlUz9bDjhb8ikd4v2rKPS+3h/xervNG90ub4wSNnXu4diIezzRf4cn+ud5fHCeJ4YXedzXHGsuI5YehcVHYem9ptSPgRW5plBasx7GBFLM9Ry9n9Ba8+4o5OXNLi9vdfnKVo/t1AP6yWqJn1io89HFOh9qVm9bmNVa89XtHp9dXefz623AhAT61VPLfLhVOxDv4z/p9CcxhF9pDxgqxSNlfxLC4elamWfrFY76rnUiuwWsADwHKwBb7jd0HJN0uyTb26hOh6TdJtnaMiLuRirwTuqpqDsTigFMrF13aQl3eRlneblQX8JdWsZdMX3O0jJOrXoAn9RisVgsFovl4Pmz33ydiiP5rQ88dtCbck9RWrMWxhMx+MJwWhxeHYWT6bgZR3x3Igw/Ugl4pJyXRc85tDfxsdJcCSNWRyHHfO+2pz9bpgmV4hvtPn+w0eGlze4kPuipkscnFht8ZKFOL044PxzzzjDk3eGYd4Zjukl+DyMwoQCMOOzzSCoMZ/U7/nBGa7RKGMQR7fGYdhSyHUa0o5jtOLOK9TDkzf6I1yPJFv5k9WbU5YlBJvS+yxNiwONlj6MLRxFL74VM7G2eBuf+FjItd4ZEa17tDXl5s8uXt7p8vd1nrDSugBcaVeMhvFjn+XoFb5+e8v044f+5tsVnL63zet942v9Hx5f4lZPLnC75N36Be0SkNKFSNgzRHcQKwHOwArDlINBao/oDVHubJBNx2x2SdkHUbae20yZpt1HbbZJOB9Xr7fq6IgiMaLuybETcpSXclWWcpRlRd3kZWbXJPywWi8VisVj2Yi2MeParr/HfPnKc//zc0YPenEOF0pprYbTDg/jCMOTdUcilUUjRBaHhSs6VA96TicKpQHyu7LPs3V0Pr0zgvTic7+l8eRxOJad6X7XEZ460+MxKi8erpbu2XYeacADrr8Pa63D9+zDcgsoSVJeNrSxDNbPL4JWnVr88Cnlps8tLGx2+tNWlnyg8IXixVeUTiw0+udTgscrucU+11mxGyUQMPj8MeWc45t1hyPnRmLUwnhq/6GgekRHn6HMu3uZceI1Hhquc7bxFZbzNtvBpiyC1JbZlibYs05YltmWFtlNh26nSdiq03Rrbbo22WyeSu0/FF1qxEHV4bHjBhG1INnncUzxRK3Nk4SRiOfXmXTgHrn2oYLk5honim20TP/jlrS7f7Q7RQM2R/HjLxA7+6EKdx+f8j94ZjPn1S+v8i6sbdGLFs7Uyv3pqmb9wZMHO1HhIsALwHKwA/HCjlUKl3rRJp4uOInQcGZsW4rjQjqeW7To2jNDx9FjV7aaCboek04E43n3DPA+n2cRpNHLbaiIbzam202wiGw2cVgt3ZcWKuhaLxWKxWCx3kH99dZO/+f0LfP5HHuf5RuWgN+e+YqwUF1LR7vxwzNvDkPMDI+ZdnBGH6440YnDFCMTnyr4RiivBvsThWGkuj3cKu6ujaK7AK4Bjgbcj3vHJkseb/TGfW9vmG+0+Gni8UuIzR5r87EqLJ6ulB+9ae9yD9Tdg7QemXE/t9gUg/dKkB+WWEYHV/HuYyG/wzZUX+YPFF3mp/gzf98wDk5OM+ITf55NVwUcWatRqqYgcNOaHN9DavE9/HfrXob9m6r2sbkpv2OXd2OUdt8X58knOl05yvnyC8+UTXAqOosX+RC6pFU1CmjqiSUSLiCYxLRHTFAlNmdASiqbUtCQ0paLpCFoS6q6D9AJYeAQW3wNB7VZ+AYtlX2xG8SR+8Mtb3Umc3KO+O/EObroOv3FpnZc2u7gCPrPS4q+cWuGFRuXBO3ZZ9sQKwHOwAvCdwXi09lGdDrgu0vcRvo8IAsQ9Shahw5B4e9uIuVOlnde3tqaXtdtzwyPcFFIiPC8vrjup47kIz0d4Hk6timw2cTIRt2nE3UlfKxd8RfnwZC61WCwWi8VieVj5W997l5c2O7z64WeQ9trsjhEqxcVRyNuD3LMzKxdH02JtLROH05iwJ0o+a2E0JfReGUc7BN7jcwTeLH7xicDDl3sLhFfHEf/f2jafW2vzte0eCni0HKSewU2eqd1n1+vjnvHmXfsBrH0/9ez9AbQv5GMcH5Yeg5Un4MhTxq48BYuPgOMZcXa0Df0NGKxztbPJS92EPxgHvKxadIWPqxN+bPgWn9j6Yz557Ys80f0Bc78lx889icstGLVzgXeuyCzM+NoRIyBXV6Ca1mtHptrj8hIXlcs7gzHvprGsW65D03VoecaaukvNkfa/bbkveXc45itbPV7eMiEjNiMTP/iI7/LLJ5b4lRPLHL2LyeQshxsrAM/BCsA7UePxTuE0FUt3bbfbu3u0Og4iCJCel4vCE+shvZ19wveR/s4+PRrPEXhNUf3+rp9JBAFOqzVdFmbajcZErBWeO1fUpdiX9dtsyBaLxWKxWCwPHEprnvvD1/hIq8Y/ePrcQW/OQ0OkNBdHBVF4kIcAuDAaE+s7I/DeDGthxO+utfnc2jZf3e6RaDhb8idhIp6vHyIxeNQxHr3Xv5+Kvano276Yj3ECWH48FXifhCNPGrvwyJ7xaGOleaWTxfLt8FrPxPI9Hnh8YrHOJ5cafHShPh2PN+wbD97Beiocb6T1Qt9oG0rNGWF3BWoraXvFiL/S3ndZLPNQWvO93pCrYczHFmp39PhnuT+xAvAcHjYBuPeVrzJ+881UtJ0ReVNBVw+Hu64vSiUjljabOwXVZhOnUUfHCToco8MQNR6bcAhhiB6P0VGhbzye9Kso3NGnwxCV1oteulnIA1N2bofbauEsLEz1yXJ5189ksVgsFovFYrHM8mp3wE+98gb/65Nn+EvHFw96cw43WkPnElz5Nlz+lvHmbJ6E5ilonDK2fuy2BbxIadajiCXPPTCBYyOM+b31Nr+9ts2Xt7rEGk4GHp850uJnV1p8oFG58x6lSpmwCFPC6boRUyftNdh4Gzqr+XpuCZYfM168E7H3KWidvWHisX6ccH5kErKdH4b8aWfAl7Y6dGKFI+CDzTyW71MPYmgMi8ViuY+5GQHYpqF8QNn+V/+K7u//PjhOLuI2m3jHj1N66qn54u5C3idLB5MEQccxOgyNR7Brd0+LxWKxWCwWy93li5tdAD6+WD/gLTlkaG3iw175Vi74Xvm2ESEBhASvCmF3ej3hQOMENFJhuHkSmqcL7VNQXpgfFzbFk4LjwW1mrk9iI1APt4zn6XALhtt5WyUmYVdWnMAIqa4Pboklx+eX3BK/tOyzvRLwe32Hz3UUv766xj+8uMZx3+VnVlp85kiLH21WceZ9niSe7wm7W3u4CXqXsHVBM0/Gdu7DRuRdedIIvgvndhXdtdashTHnh2POj0LOpwnWMsF3PZqe3XnM9/iZlRafXGzwscU6Ddd641osFsuDgPUAfkCJt7YQjoOs1RB2WoDFYrFYLBaLxTKXn//TH7IRxXzhg08e9KYcHFrD5ttG4M0E3yvfNmIpgHSNd+mJ5+D486YcfRr8ihFZ25eMZ3D7oqm3V/N25zIk4fT7eZW9BeLGSfPaWkPY2yne7tUebpu+ceeufFUdp8q/XfoQn1v5OC8tfpCxDDgSbvLntr7OZzp/woujt3HRRvgdbe/+QuUFI+ZW01KZtUt5u7JkhOldCJVidRQZUXci8hqB991hyLAwy1IAJwKPc+WAs2V/2pZ8Wp51wrFYLDdGKw1KT2yxrpWGpNgmH5ModKwhUehEo2Nlxqb9OlGQWp1oiNNxxf60j3R9nahJvfXn30twtnHQX889w4aAmMPDJgBbLBaLxWKxWCyWveknCU99+VX+yqll/of3njzozbk3KAWbb6UevZnY+x0Yt81yx4cj74Pjz8GJ54098jR4tzhDUCkTtqCzaoThiUBcaPeuATP3pUEDosEuicJSpGeELrtGrAAAIABJREFU1PKCSTBWXoBS68btUtOI2kkI8Si3cdYeQ1woU+18fC9O+HdJi89xnD+QxxkKlyU14CfCC1RcB+kGOG6A45WQXgnplnH8Co5XwpEOUoBE4AhwhEAKgYOpi7Qva8u0LTCJ6y6kQu/5YcilUUjRb7gsBWdSQXdW6D1d8gmsg5DFYgFUmBCvDYmvD4iuD4xdH6LDZFrQTdgh9t4zHIFwJcIR4EiEKxCO3LW/8VNn8E89PDN6bAgIi8VisVgsFovFYrkBf7jVI9San1x8QL2FVGIShRVDOFz9jvGqBRP24Ngz8OzP54LvylN7epveNFJC/agpJ39k/pg4hO7lXBDurELvOvjVvQVdr7JnKIkbb1vp1oVtoAb8hbT0k4QvbHT53No2X283ibQm0SZpUxJpVIhp0yfRJsHc7Ugoi57DuXLAjzar/PzRhSmh96jv2li9FotlQtKPiNcykXc4EXuT7XE+SIK7WMZdKSNLLkhhxFUpENLYvI6xzrxlBbvL+sLNRNtUwE2tSIVcnEzYFfZYdgexArDFYrFYLBaLxWJ5KPniZpeyFHywWT3oTbk1tIbBJmyfh613YftdE7d3Ur9ovFfBiKXHnoXnfykN4/CciR/reAf6EQAjOC+cM+U+peo4fOaIiQm8X7TWKCApisWkVoPCWLNcozEi8orvUrexeS0WSwGtNUknnPbmvT4kXhugelE+0JV4K2X8sw28H63gHinjHangLpURrp0d8CBjBWCLxWKxWCwWi8XyUPKlrS4fatUoOdJ4yw63TSKuwWZqN0xcWeGYsAGlpvE8zeqlJvh14+V6txh1jJg7V+C9kHvzZpQXoXXGxOh94s8Ze/x5WH5s10RhloNBFEI8WCwWy37QiSbeGs0IvQPitSF6nEzGiZKLd6RM6clFI/AeqeCtlHEWSsYj1/LQYQVgi8VisVgsFovF8mARh7mAOxFzC4LuYJOLYcwPj/xNfuWH/wQ+/y+N+Hsrk/KFNPFqi6LwRChu7eyf7RPSJEubiLoFsXfr3Z2JxPwatM4ab9lHfsKIvQtnTV/rDJQe0HAWFovF8pCgY2VE3o0R8caQeH1IvDEi2RgSb42nYvDKuo93pEzlA0dyofdIBVnzbPgEyxRWALZYLBaLxWKxWCyHG61h1DZxYXvXZsp1U4pi76xXbBGvApUlvnjsZwD4eDmCZ34OKkvGe7aymNvKook3q5V5/1HbCMVZfVJm+jbeyutR/+Y+qxNA67QRdE/+SCr2ZgLvWbNN9qbeYrFYptBaQ6xQwzgvowQ1jNFTfcbqSCHLLk7VQ1Y9ZM3bURcl9655y+pYEW9mAm9qN1Khd3tEMbOjCBzcpRLeyRrl96/gLpVSj94KsmxlPcv+sHuKxWKxWCwWi+Xm0BrCPiShmTavYlN0Mt1Wcdqe6Zs7Tk2353pizrkJmyuEib3HCAeCmvHaDBrGYzKom7pXfvDFtXicJttaNZ6n7VUTK7Z7GRzfeJgG9fw7mrTn9dVMCATnFm8r4nEu4PauFgTd1Hav5u1kvHN9x4faMaitQO0IrDxphNzKwoyYu5TX06RfX3z1HU52Bjz2F//n/f3m5YVb+4xJNF8ozoRkFUGz4MVbO3p3Q0pYLBbLPtGJImmHxFsjku0xydaIeGtMsj0i3h6TtM1xWbgOwhMmqZcrEZ7cUcfbfdmszcai9ES0NSJuMhFwJ8JuoU2y9ywO4UtkyUWUXYTvkGyOGPUi9Ciev4IEWS0Kw35er3o4ten6rGCsI0W8uVPgjdeH5rsrbK4oObjLZfzTddznV3CXyrjLZdylErJqvXktt48VgC0Wi8VisdwaWhthQ0WpjXdvK2UEDemC9Ix13L3bD7oAojVEA/N5Xf+gt8YIsoNN6F+H/hr01mbqWXvdCHLzxLgHAenmYvCsOBzUp9ul5pxlqYjsBAe3Dw+3p4Xddlq2077e1ZkVBNSPQeOE+d+OuzDuGRsP9/eeXuXGwrFKjJBbFHVnwxtkVJZSYfcILL3X2NpRs51ZvXbEhFO4hZviWGm+vNXlZ1dad/+m2vGgumyKxWKxHCJ0lBghd2s8LfKmNumEO57HyrqPuxDgn6rjPL1kjsGRQscKPWtjhepFk/rsuJuOuiNBll1k2UOUHGTZxVsIkCUXWTbCriy7k7Ysu5NxsuTumuRMxwo1iEh6Eapvyrx6dKl3Y8G4YgRhPUpIOtMir6y4uEtlgnMNnILA6y6VkRX3vhN5tdYkkWI8jAmHMeNBbOqpHQ8i0z9MCAcR42FMHCpz2hYCIcjrzOlLvw4hp5cjmHxXQoIg73/+p86wdLJ277+M+wArAFsslv2TxGYaY5iV3kx9MKc/bas4FXQcY4WT1tP2vD7h5CLQVHveGMcc/Sf1eetm68j57zH1WoVtEcULhewsJKbb8/qmTuC7rKeV8aBLQiOUTeqFvng8s3w8PTaeXb+wXKdzh7RmcvWR1XV2NaILFyZ6H2PTunTBr5ibfq8yp141IohfTftn6jYRzZ0n88rM/oPjbqHdM4LOjnZhbDwqCLjxLsJuoV8nN96m22Hyn85EYccIKZM+N2+7QbrvpfudV033w93qe+yrbrC7oKSUOQ5m4ljYnRbLwtTO1iftmXEU/09VI5hln6NYvKxe2ee4tGi9t4jbX8vLYCM/ZhSRHlRXjHiVeVhWl6GyDG5p57F8x3G40DfXzh7f3TnHXgrHoanOOV2zfXPGqDj9LTrmdxh10nqx3TXtUQc6l2H8g3yZina+5jyka4Rg15+xgfFcnWtvMF565sHBuJt6km4Zwbe/AYN181tGg5nt8KFxHJon4T0fg+Y5WEzjxTZPQ+Pk7g8hknjOfl7Yr3f7L4y70Fmd7hMS6keNeLvyBDzysVzIrR3Nl1VXzH/7LvKn3QGdWPHxRRsv12KxPJhopY2o2Y2MmLs9Jt4eTYm9qjdzPpPgNAOcVong0RZOK8BdKOEsBLitEk4r2FVEvent0xqUnhKLdVQQh2MFCCOMZgKuL++KSCpcidMIcBrB/rZ9H4KxTMM2GJE39eSt3N1z262itWY8iOlvj+ltjxn3ozlibkw4Sm0q7o6HMSreW8WXjiCouPhll6Ds4voOSpl7THPZqdGTW1A9uYzTWV3vb7m5TdU8+aHjd+lbuv+xArDFctjRGqKhEWjiYUGMCaeFmSTc6X23W3239aN5Am6hHo/2v93SNQKFXzOChXTz6b6Tqb/Fdryzb54QYbkxTioUOF76SLQgOu+oF4Xpmfrk2mqXsSoyon80vPn4hmCEo93EY7c0Lf7suNCbJ7zP9O+1bJ4AlQmMcwWrTGx0Z5bPGSPE9FT2HVPdC/u73mMK/Nz1IvN9T4TbWVG3z75dKdxSLiT6NeOd55aMp5700s/qpQLrbNvdpX+PcdI1nyk77mTlltrpd1FcHo/NMaxzOd0n0+NZNLx5T1Uh8/3RK5vPEPbz730/33F2DAwa6RT5mvFUbJ4y37GfekX61fy/FPYLD9nSdu964dhceKB2u/j1XNBdfA+c/jEjutWOpJ6KR9L2yi17WD6waG32t3HHCK9b501pX4D2ZePVGg/ThyVxvq9m/+e4a7xes/98dr6bFJ2e/2YeyN0OKsyTixUR0pwvsv+sG5h9oHk6F4dbZ0w82mZaHpB94QubHSTw0QXrJWSxWO4PdKxI+hGqF6EGO0VH1Y/M8qwM452nEFfitgKchQD/eA1nIcBZKE36nHqAcO7NcV4IAY5AOPffjK+bFYwPEqU0w25Ib2tsBN7Mbo/obxnBt781Jo7m33s7niQopwJuxaVUcWkslwjStun3psZkNii7ON7dEe0tN48VgC2W20XrXIxIUnEm7M3csPfTdm+Xm/w54yfr3ISgc1OIXCSUbhrzr+A1FtTNNEu/VujfpT7rcebX7sx05sl3u4dIXOzTs8uK/ZngpqZvxHWSi25T66u8PuUNy5z2vL7Csh3rTf8M5ncIzG/h+KmXl5/XHW9a1J27PH0N6RzMzXn2oCITg8OBsdFwpp7u13vVB5vmYcO87zJ7r7yxS/9ey/T075vMiDOZYHNgiBmBueAFK5zUAzQVFOvHYWlGxJ0Vdf2qEfv8ai5E+tW77l13qEjidP9KS7hXfc5+m4Tp9zcT93RHHNSC4OuW7t5/MQ53nkPmnWfCntmG6sq0oFtZNvuRZW+UMh617VXoXIL2JePR2r6Ut7tXdnrCe5X0QcrMA6KJt/RuXs+7PFSaeEOnD+McL/earSybUAmOa/bzbGaIKtSz/skD4TB/MDzbH4+gcwXW34Af/sHO8A9+LRWFT8/YVCy+j2LXfnGzy59pVGh59nbIYrEcDFprI9puj0m6YSrcxlMibrGux7vMvBKYOLRp6AHvWDWPS1tx05ANxntX1mws2QeJJFYTr92JuJuJutsjeltjBu0w9bjNkY6g2gyoLQSsnK5z7v3L1FoB1VZArRVQqnkEFQ+/7OB6dtbmg4K94rEcXpQyXlvZ9PfJNPhwpm+cToEfF6bLF/omNpsWP56Z2hzN3BztY9rzrFftreCWC9N5C1N5K0u7TPlNBQWn6GlXsDdbvx+m3wthbmpvNbGM5d4hRLqfVoClg96aO8NsQqq5ZZdkV3tNd5+aFj8vDMr9IZ7cVzguOGks1wcBN30IdKsJqSzmodBg0wi5nUszIm/a7l4x1wZFnMCEUWichEc+amzWzuoPise01iYsyPaFQvzgzF6Ai9/YGb/X8c330DptkprNCsXNU4fi4dNWFPOtzoD/4tzRg94Ui8XyAKNjRdIep0nTConT0hJvj9MwBzO4YirRmJcmAZuIuoW6rHomzq18AM47DyhZnNw4UsRhQhwq4ii1k3ZWT6bHzY5Nl42HJlzDsLtTi3ADZyLmnnxiIRd2FzJbolzz7D7zEGJVFcvNkWWN7l4xXlHx2HiLFG0mtk76i+39jEmX34kprhnCSePnZZ6Ue0xhnsTgu9G054LnbHHZJMbkbFzGzGsvnVZ8PwiwFsvDjJQmbiaHIDmXxfIwoDVs/BAu/BFc+JpJFJaFR1BZeIQk9+CftPVMO1uu85kdU8tUGu96JjSI9Eyc3MYpOP3BVNA9lYq7J0y9svRgiLv7QYg8cdnJD8wfM+4WhOEZofiH/25nsjnpmoRuy4+bWNIrT5iy9Bh4pbv/mVJe3uqigJ+08X8tFsstorVGD+M9xN0Rao44J+s+bivAO1Gl9L5F3DTertPwU0HXRfiO9dI9hGilGQ0iRr2IYS9i1I0Y9kJG/Yhht9DfCxn2IqJRLujeCkIKXF/i+g6uZ6znSxxPUm0GHDnbyEXdVkB1wVi/fP8lk7PcG6wAbJlm1J7x8Jip967t/7WkZzxW3aBQSgVbMl4yU/1Z8pM5CVJumCRlNmFKIXGKFVstFovFYjlcxCFc+bYRfC9+3djBhllWWYKFc+YB7iRxpwPCy0MiFJcJOVPPls0blyYTbJyY9uCtHrEe+DdLUIej7zNlHpnjQHYtufk2rL0O116DH3wuj/UvJLTOpqJwQRxefty8xx3mi5tdmq7D83UbCsViseToRKGGMWoYo0fJpK6GsQnH0B6nIq9JoKbDGWHPlbgLAU4roPTEYhpX14RecFsBTvPOJVCz3B5aa6JRzKgXMuqOGXbHjLpGuB31QyPo9uO0HTPsJ4wHyfx8tIDrQbkiKVUE5YqgdVzgV3zcShW3Uk5FXCcXdGeEXdeXO5Y792FsZMvhxgrADxNKmczf84Td7YvmAn3cnl7H8Y3HS/M0vPffy6fwNU6kIQl2EXedwN5EWSwWi+XOk0Qm8dZo29jhlnl4iS7MtqjurLtle146aEZtuPjN3MP30it5ctHF98Djn4YzL8KZDxkvUeu9YlBqOunhbsniJvV5y25irMjijjtpWJpCqJpi3OLiuN1C2LgBLD1qyizRCDbfgrUfwNobxq6/YTyHi+G1GqdmROHUa7iyeEtfp9aaL212+ehCDXd2+qvWhbjwacLJrC3E/MSX9rhieRBQiQmLM1g3ceSzpJBznXD8u3t8VskuuVFukD8lGqBx0MEKyltBu0so0UKJBkpXUbqCij30SKNG8ZS4q9P2DkF3BlnzcFoB3kqF0uOLubCbFlm9xfi6k+N8IafJ7GyXucsK/ZPZMrNjk73Tyczd3F0+w26fLTtXTFk53S4+iN0xdn6/QhKPQqJ+j7jfJxoMiPsDouGIaDgiHo6JRhHRKCIex0TjhChMiCNNFEIcQxRJolgSJw5R4hIrj0j5xHr35G2ChJLsUpYdSqLDouxQkh3KlU7a3zZt2aUk25RkF0+kIaM00E9LhuPnsfvnWecolFZM3T/8SeVuG63zBM6TvAThTInmLB9Pj43D+ctf+FVYfuygP+WhxArADypv/D5c/pNpsbe9ujOWXdA0Am/rNJz98eksz63T1hvGYrFYLHeeJM4F3Cm7NadvZlnUv/Hr70YmCO8mEu8qHqdT0/cU3ebVC+sUxbapOiY528I5WDhrEvs9KLNW2pdysffC1+Daq4A2N3fH328u0M+8CKdfhPo9jMWqlEluNptjIAtBVbzp2LVvXk6CQt+seJiVfbWTacH3riSCvYvsSHDnzBEBZO61PVuWH09zLaTfZTQw+89bXwQK4oz0phPXemXTvyMxbCEZrFa84R/j8jP/C//l1/8O/L+/O50EVu8t/sxFyFQIdneKw7uFEZPOnLwMqbAyEVj2at/MWGYS4sbTMe6LCXCLce11YczcBLzp66ALn8UvfOa07vi756Vw/DycmpBme4sJD4WcDt+WjSt+D8XPPPe72WOsWzKJO0uNaRs07v/8E3FoZlQM1qG/bur99UJ7HfqF5cMtbupYI2cF4sLMy+w3y/qKyx3X/K+zRKXzkmPPJp9M0dol0UskLBurl0n0MrE4RqIfJ9GLKFUHZs+hGuilBQR9pDNCOiHSi3F9jSwL5KKDLPvIahlZryDqdWSziWwtImsVE2fXk+mDohDGvfQzbJttv9otfK6+CZEzaffS8bu0o8Et/MiHg1h7RLpEpEvEOiDWQdoOiHWJSAXEmL5YBZNxuU3HFaxZ5pOwlxgqgFJaDJIYV4zxZIgrIzwnwnMSAiekVlK4rsbzBK4Pni/xfEmppCmXYkolRbmkKJUUQQDCyWYNlUFUQJycM9topsz2j7tmBnXvGvSuG7t9AVa/af538/5zfn0XoXimr9SanxOpeF1SDL05e82y17IsZ9JuCdJ3nF/3mVy9eP6444j8mPT4p6wAvAv3+ZnNsivf+ufwvd8yB4fmaTj+HDz5mZ2Zm0vNg95Si8VisdzvhAPor5mL2f5aoRTag/XUY3cbwu7er+dVzIVtuWVs66w5jxX7yi2TBC2rIwoeQXO8g/aqDzZ3rntQopvjm3P0wlkjCrfOTtfLC4fTM1Yp48FZFHzbF8wyrwqnfxQ+/reN4HvyBQhq+3tdrU3OgbBv9pvsd5vceBdupm+0LLvZvp2HCLNId34oqon45xbEwTRPwJRY6O7SzgTCOe1MRBUFwWuHeLZLG24wlpmbvNkbvniPm74ZsXVeO4vZPPFinld2Wa7UzH+3b/aN7lWTuG+ffPHkRwD4+PUvpf/1W0Q4eR6IyW9VSPApCkKAVjsTBxc9s4sPj8zC/GFRNrbYp9MxxXWK60LhIVTm1Z2FQxEz+5Ccsy8IQKbCXYlckMXUi2KrVrlgnyVMjoYw7swX4ud5sB9GnOLsRj8Xsice7zL/vrLfY+KpGaffe/GhwExSWFHwpBdu4aFI5jmZ/Sdn/utg6tnDkbDoBds1gtOoC/FugqJIz5+Lxot+4RE49QJUVtKY3yvmgYrKEmQnMwm3Q6YTbc8k3Z5NyD3u7RSVvFKeL6XUgMZxtNskUYvEaoEkbpLENZJxhWQckAw9kqGDGu0894nAMd63zQCv4ePUfGTZRfoKIYdI+kjdRuptZLKJiNYRww0YbqYC+WZetvc4Hvh1871E6TXCfgUsIc26ftWc9/yqmUXbODXd9qvpPjbPM1bM6btJD9vs+D5DkijCMYRjTTjSjKcsxo414RjGo0J9Ms7sIjeD62pcV+FNrMJ1FBVX4boJnpPgOiM8p4/rxHiexgtc3JKLF/i45QCvHOBVyrjlEl61ilup4tWqOOX6DR/e6ChCDYeowQA9GiGrVWSjgQzusedtEpt9sCgOZ/X+dWOvfw/e/kI60+1ukImmc8JoOm6+D8lC3fVn+s3+poWDCiEZKZKhIhkmJKOEZJCQDGKSYUTSj0gGISr1tNc6fyg3OeVpAeh8mdaFZVlbz9Q1KD1pn/rJEtX33KWv7D5H6N2CmDxgvPDCC/qVV1456M24dww2zQ30PUyoYbFYLJYHhCRKvYXmCLmT9npe301Q86r5DWV1uSDYLkwLuVOCbtNcjB4kWpvQBJkYHI9mvNJmRLfd6nPXmRHe0EbA2n4Xts7D1rvT9eHm9LYFDSMIt1JReCISn4PWmZs/72fT8KY8UYsefnEuwGZiQ5R6aI3aJpbrte/B+uu5B5Nfh4Uz5ga3fsxss4oLCWAL4kA8muONEuaJY8Pe/r0yhZPeUNcLnqG1/OZ6ylZ25gvYy2ttXq4Bx7ezpA4DOv0PbZ3PBeZZ4bRQ/8XrNVZjyZePb6f9kxeaI8AW6tn+OPWQYY6n38SrL+2bnX33IDIRSwv/p0nIgLTfLeUhBKbqBfEhCyOXefuCOdaEw9RDdGCOR1F/5pg0NPWoUA8HTHmMW24JrQHho4UHMjAWDy09IO0XPlq4pl94gIsWHhrPiNu4aOGicUH7JKqeiryNSVFqZzxuIYe4XhfH7eJ4PRwvsz0cr4/j9ZFONH3uldmDGX/6uD0JaeHlx+/ZMBcTYX2Y/t8L4SXGXbNfeVUIsvNLI7dBvVCyds3s07s8tNVKE4WJCVswTkgihUo0KtEkSVZPbTynLxsb5/3JpF+h4nxsHCnCYcx4GE/Z+AYhLwC8wMEvuwQVF7/kmnrZwa94xpZdvMAxCcoy60vcwMEr9Lm+xPMdxGzonbn7nYY4NmLteIzqD1CDPnowQM2W/py+gRmvBgOzTmGMDucfk4XvIxsNnHod2ajj1Bs4jTqy3sCp14zN2o06sl7HaTQmVgTBvsN/aKXQw+FEiFbDodnGYbqNWf8gtb0OqrOJ7myZer+LDscIz0P4HtL3zfsHxko/QJTKiKCEKJWRpbJpl6uIUgVZqSLKNUSpggh8ZBCY9f0AGfgI30f1+yTb2yTb28SpnS7t6Xa7bWJu7IJsNnFaTZxWC1mpIGT2EANE9pByR1uYuhAgpdl3RGFc9uBMmuvrbL2FX/wPCR6dE3rqAUUI8cda6xf2NdYKwBaLxWJ5aNDaiFZTgt48T7obedOJXS/oDyVJbITETLTNpn5O6sUpoWvpVNA5SDcXc6srhbI8Xa8sG+tX7+3nPKxkIQeiUS5sRmkIgh2hCKLpKXnZ9MFsCu9wy4TEGHXmi6PZ1OvMCwgBOs7jAs56Vd4LMlFnL3Foqj8d61UKom06zT+rF0Vev2ZutO92XErLfc8wUTz1le/yyyeW+B8fO3Vv3jQO53iid6eF5OycNOuZOzWduJjscHbq8W7LZr0HZ6cpz0mkWPQe3PeyQ/i/07rgJdufsYP8weWs+OzOHosK9aJnYRwaL+dRO7WdaRv2C2E/it6/Ba/+rO0UPYvT7xeN1goS0IlGxxqdaIg1OlJoWUbLChofHSfoKC1hjI4UxMqMi7Oi85JodOq4rxPMe8QCrQQ6EWglQaXeefruPOSSzsAIuW4nFXi7eT21UoRMe77fyKYzBTJP5Yk3cpT33SM0Ao3x4FZINBKlzXertSRRAq3lpCgljNi1i7OuuJGnvMiXCzJv/bSdeu4r6aPTMvVA0w2QXoDwSkY4DEo4QQknSIVDx0NFEhVp1BiSUKHGCSpUJpbyKEZFETqKCyVK98ud/SqKd1lWXC8uPITbH6JSQd6oVPO6qFSQvo8aDEg6XVS3Q9LpknQ7qE6XpNtFdTokvR6q3UZH0d7v73m5gFyv49TrgM5F3ImoawTem/pspZLZ7nI53fYywvPM9zUO0eMxejxGhXl9N6H7dhG+j9Nq7b8stIxA7jwg4c0OITcjANsQEBaLxWJ5cIhGZipwe9WUzqU0BvqlvH07U35nmRKIsyfU7rQwVRSwpsSsPZYV1/MqO70Mi4JuJtpOYvmtFeL9rd0gtp8wU0AzwXblSXjkY0bILS/kgptXMTfAQqbeoLNx+wbQ+950DL/ZZC3xKL+Y3zVu5by+3doz4yc307tMn5+6EZ+96S70z5uWj5gWazPvoHiUirqz4u6M0Kv2vmnYH2LaUymoQ2Upv1PMpupn03Gz7Zp6CZnH28w+YxajM/O4m/KcKhXEkEKiV69skur5FbPP1I7sIZh4h1McsjyUfKPdZ6Q0H19s3Ls3dX1wF285aZ3lFhEiDTVQuivfvRYeiiaaKkofRekYncSoJEbFqRAb64IAm4qyEzG22D/dNgWYONMVwj9MSIAbhFMCcByE6yE8iXDT4plCWSK9Ql9mHQGOMN51jjBed44w/dLYybKsbzJGTsZM1p20zWs7Nd+8/11Eaz3xrA2HMeFgTLjZIdreItraRnXaxJ02qttF9broQQ+GffRwAOMBjEaIcIQIx4goRMQhMoknYrNIp52LqUSbOtVhp0OziGy6+n5xBMIt/jYO0je/jfSciZV+Zh1EoS69dB1PmmWuBKERwxFqMEb1xqjhmGTURY0i1DhGjRLUOEnFXW3C0IegYoGKb+K3EhrhaHPZKjVS6lTU1qakddOvzaWzrxGl2WXFdTTS00i3WJT5rOUyslJGlMuIoJw+OK7szPlQ7J/Uq+Z6xlkhj1svC+EOpuPYq0ih+gOS/gjV65P0ByS9gal3e6heLxWSjXicdNoIIZGVCs7yUirgVnIht1pBpILuZFm1IPKWy8hKFVku3ZJ4qpVKBeKnSyjuAAAgAElEQVRUHB6H6DAXh9V4bMTjsLB8PEaHY9R4jKxWcecIuqJc3t3TWSVzYhKvw9ql6T6V5DHhd8TPz6/RlXAJpUssXCIcIukQIYm0JlLaWK2JlSYs2OfrFZZ8K3XOw34rFovlzhOPTSzIq99Ny6vG2yWL95WddOfV/Vp+Yp5XnyeGWR4OVGI8IdupqFsUerMyWN+5XvUINE+aLPKPfsLUvQpMXbRn8Rdn4k9O9emdYyiMzfpUPJO5umfE2O13p6cI65sImjaZbu7kQuSuY/0ZobBmwivMiwUnyKf7d6+YKdTZdt+UaCl2Jk7LhOza0TyRWhbyAHbGq5zXV5yaPXd5cYq2YteEWvFolwRb2dhd2nO/27L5fr2SqXulXBStLKbiZzlf7gapYJqNm+2fmQ49m3E9q0v35oXUOPUgzrbxQUkuZ7HcIl/Y7OALwYstOzvhYUbr1It2lEw8GPUw9WQcJahhnC8bxuisfzIuQYf7OIdLgXDFRHglE2ALfaLi7eybjBXToq0jIRVoi0LulICbrZu19zHd/k6itTZTx9fXia+vE69vEK+vE2+sm77NLUjmf3caExZBKeOlrIr1RJmJLCoNd6BAJWoyXiUarTQ6ipDRCBmNcJKxKfEIR+88p+8mhCg3QPlltF+CUgUaTUS5giyVEJ6LdB1TvMy6SM/F8STScxGONNPbHWmEcumY307IuX2Z1XGMGg3RwxFqNEKPhqjhCD0eoYYjVNpWoxF6e2gEvGEHNRqlCRlvAcdB1mo41SqyVkMumrpXq+JUa6nHbAlZDnDKgUmSV/KQJRcZuDilVHAOPITrmM+WseOaZc6+OPe6ZqZPRXn4qVkv/sxGw7w+6piwQLOhq24z3ngakXsPAU2A48CiC0tOLmwWH65PPXAPIPFg4MPYg04hXElxrDunL4tJroux9rMY+6YudIKYJF8rJGGbSsim0FoRohl4goEnGWrBQEtCrQlHCeFlTbiqCJUi0ppQQUhqtSDC2BBJKCSh9ImESyg9QuERSnduXyxcIuEZUVd4RMIlki6RMMtC6aLErV23/t/HRvzkUy/e0roPOlYAtlgst0d/A66lIm8m+K6/nosnXgWOPm1EoHBgBLrtmYy/Nzslq/j0NvOSLDV3xhMttUz/bF9Qtx5ph4V4bKZPTsq2sYPNgsCb2u7lnaKcX4PmKVOOP2eSZzVPmnbjpCmHLRa6UkYQbl80MV7bF8xn7F6F/rXcY3e0nWfWSNKn6RMK04NnM83PS0ZU9HCd8o6dWe74hYcx1fThTPFhTHWn0OtVjJD5oP2ntJ5OhOUG95+A6vrgLh30Vlgsh4Yvbnb5sVaVqp2Kel+hE4UeJ6gwMXZsBFidTkPX4xg9VqhxjA73GmusDpMba0FSIMsOsuQiSi6y7OLVyoiya8SvkjPpN2OcSV2WHETgGq/X+wyttQn/UPRGHieEW13G19cIr10nWtsg3tgg2dxAbW2g2pvo7ja6uwW9bUS887peC4EKGsRBHS1k/vw9fc80n9O+yHIRZn7REnBIL0Oki/ZLiFrLxDetlKFahXoVt9nAW6jjrTQJFut4rTp+s45Tq6bhA6rGm/QuOZpordGjhKQfoYplEJH0zfWt64ppb+0dov7MQwHXeGJrbZL16SiEcGxE4uEQNRqhhkNQClmtmYRntSpOrYas1RCl0r7j1t7XZAlld4jIA/JEpWqPhKfx9DXhVLuQ6HKqnToeZOFIkrBQT0OTjLtzwpWEqCQiVJpQK0KtiVLR1NhMRPUYOCUGsszAKTF0SgxkaUd94JQZykqhnvebsQHJLQqtRVyt8IXCR+Oh8YXGF0yKJwS+FFSkpCnAR+Gi8bTCQ+GR4OkET4/xGODpBFcn+Do2Vo3x1IiAAa4a4Okhnh7iqhGOHuLoMZIRjh7zWPlv3IGd5sHECsAWi2V/KAVb7xS8er8L116dzrxdPw7HnoXHP2XssffD4iM3Fk2SePep41F/2ptyKgP4IE/M0F+HjbdyAXGv2JZC7i4Yl1s7l0l3Jm7mDTKYTzxL98pyPvM62dPZHcvn9E/Gzr7H7FidPjkuzUzNnpnWPYnDGUz3z1s2G2MzicyT9ux7L4q4xTKc0zdq7+3JKl1onDCi7pkXU6H3ZCrypgJvqXnvhcdJ0qww9zjNLuwy79/eNeNR201tsd27Nt+7ttSE2jHzuU7+iEmeVTsG9aPmv1U7aor1gr83CJF6bthLpbuB8dRKjGhTEGV2CDSZF5yTe85RvDF2zM0yxeVS3LEbWp1mls6mbJOkU7WTYn3OsqKQMRuuhP04PYld+smnW8vpKdnTtjB1O5uy7Yh0eiuH7oZfaw2JzsW6sCjcqXzfKIp+RVEvTNCRQvgOMnAQQWpL7qR93YMf9Ef8RW+B8HKvMM4F987sM1rpfLvGhc8xU58VJYlUPn3eyX4vOfEgnfpNncIU/cK0eiHT/0Zhun7x9Wb3i+K6k31qt8+U/VfH8WT7h5sj+mtDomGMeVmBFAIpUk+5TKBT+X+IJP2/JIV69t9J28X/FYk5PhDv33NP+IXfPzBT4526j1iSyMBF+HJ6edonPQd8cxyRrkALYXLIJWp6exNtQjmk20yiSbpj9Jbe8TmgkL0eneekK4QE0IU6U/XpZVopolgTxYowUiSxIlFMEoAlaQKwJNEkqUdsotLEYYq0T6HiEMa5x6SIRohogIiHyGiIjIc40QA37OCNO/hhBy/q4k49hM42URB5VUK/YUpwlrD2LGO/QeTXGWf9fgPlV3EcB0eA60g8R+A6Ai8trivxHWGWuWk7tZ4n8QrWcQUyTQKV7WhCGKtDRdINJ0X1wvx7j4DroK/DOHCIGy7jWoLTGOHUEpzGGFnzcRo+Tt1H1n1kxd312KBjtVPM7UembxDPtCNUPwa1y76c/i91PHP+uBVk5iGeicW1XED2EoTXR7hDhLeRe5GnoSWmPMr3XDbTlx4/duSX2uuz6F0asy+hjMe+ChOiKCEMTRlFCWGsCKOE8aSuCBNFGCfGJjq3SqXFhA8ItSDWVZQE7QhTpLEUrJKmHwkqPYfqtE+7ApXuh1qaBx1aZn1ml8tCFYSpHSs1p08TaZVulzaHj9vA/f/Ze5PXy7Yt3+szZrGKXfyKKE516zIzyZv5MhHFJ2LHh6B2HoImomBDbSkkwkNEsOMfIDbEhh0bIoJNO4ogD0QhESHTVLPy1vfcU0bEr9p7r2oWNuZcxd7xizgnzj23jhHMGGMWe//W3nsVc37nd4whsFKKlVbUSlhpzUorNlrzWOe6UtQLe6UVtZ5fUypFoYRCBKsUpZIJxE3tqX9sU4vrJEaPc3u83+HcDu/3J3qH9w3eH+YSlvUG7/fzmHAghHb+gPcsg3I4cwZAbV/P3V8kr5PAvZbX8lqel/4AH/01fPCXM9D7wf8zJ8wQDY9/B978TgZ6c1k/+uUe9yghpJATE+h4ne2FnkDJe9o+l3idn7McJXs5SfhympxslHGH2g8vdmk/kRAVXVzThS1t2NDGDV3Y0oX1ZLdhQxe3+GgRQioSZpt4VFci+RDluGS3N1Ea0RqlNejkWifaoq3C6IDRDqM8WnmM8nNdHEY5tBowymHUgBGHktEF6iXg+xgrNQxpA2Jph3GX/gV2cMQoBDQ+GgKaEA0RhccgRErZYaVNP0d9mYHcRTkFdrdvJRbtL1jGGHntTcf+SYNvHNpqjE0LrNlWaDtm3wVEMgNnQcHJ9ekUHMGEPB7Ir8+LtV+wW+rnIRO404cZdDoFpI7Aq7lt2R+6BFbFLiXtQSlUqWbgohiBiwxSjPH9JnvRPo7LoIYUeVH2KcCsEXSLI0Azgi8hzO0j4BEy2JHHTX0TaBueA3BncC4cA3X58//cRMisqFO36gV4rGQGcNwM2iQwKsfozH2/kfIS8HgC0Mdre7yuZb7+l4DLsl0WgMy9rwvHIO/yvOBVTgmzuGby9YBWGahcgK7d7Gr+P7xj+E//oOa/+9/3fGt38se0HAPHpTkCCVWpE373IlD3M5zXYhfXrFHzNZavuQl0DCOY+AuS5TQi3uu0/akkxEgg4V15a/yoAMRM5YyLvytLW4775mOUSc2nWEQhCJIB6BSPVWIefh/gGl4xNuuriJoPMMQZmBhCCu2bYlcm24VkD3G0YxoXI4OPOD8Q3YAKczGuxfgG4xqMa9GuOaqbqT7b2jWoT0j+GRFCuSLU54TVBXFzAZsLOHuAnF0ilw/Qlw/RDx5iHj3E1BZTGUypk640utTYUqONwliF0r+8TesYYmLY3vaEXdL+ricsQeKsY3/Pd6MFvbEJDK4NoXEJ3N0NLw4DIiQ2+NqmsrLpPVYWtZ7b9SppWRluVCQgWIEigvURGZP/jfGjl0n9jhL8BRjyM+yk/bmEgMOy+OfaP604gUFBr2AQodXQKaFb6Fbl9hf0vaie3gs6LXQKei0M+e/Fn8Pmpc73OYmgiJM9tU126lNH4xdjT/oEMDFio2CBIv++lgSaliJYlUqhEshaaEWphUIrrFaURmOtotSKwirKQlPYVEqjqJVKQC5CLcJKhJr0NwhM8zvCYq53osdx0Qd8aPHuFjc8wWtHMA1BWrw64KXBsyfQ4OM+gbkTwLtbAL57Qvh0Se5ENErVaL1alPp+W4319cmY09ekIp8Dq/nXRV4ngXstr+XXXWJMLvB37ye38Lv3km5vUr/kx8yr6qPXctwX3By39+l3ZwZteZaA3j/+NzPQ+x14/Hu/em71S1Ejw/f81V8bY2IWL0Hh4O8BYBfA60vbXzRGzaDtlLE7g7rBnTBnr1NIgOZZOi9Gu7nO9dzm2qOPcQiXtOGCNmYAN2zp4iYBuGGbAd0E5qa2DX1cvfTrKdSBSh8o1QGj3ZTZOEY1ZTxOGY0lFSSDpSotnsdxcRwri9dljRD57A9thUerHiMOLUMChpXDyIBWCTQGIZDBWwwh6gzkjkUt9FiEEHIW5/jJE1CloFxbKiylWCoMZbBUg6XsDGVjqfYmjbkZKNeRam0paoP6DOBo8IHu4Gj3A81Nz+FZQ/Oso73paG572t1Aux/oGkfXhcyWiK+EuYzxz7Scanlpu5LERrjQwgOdJrvTG0q6D8mpncHiCVBSCzApj50A6fH9lov6XJ82upf+pdmOL3jNUV9mgIY+LaJeRaRYAFQjWFtqzLaYkraI1c+BYqHzhJsuAc2L9k8NVAgzOKxkmujPAG/Mro6v9HE+ndwDzEmhUWuLzWy8CeReAt6FRvLrVKnT96JIrMGjxEgjMPt8MqUpkZJ/UWKlDKhl9p5Yhar0DBSP7MiRWWyWdZVYosuxC2by8nUpxmP+Pu75zY64F/cRMe77nZfjYl7ULcDBCaRf1GMIJ8D+qb4f6CeOrMUMjoWT+ml/1jHGNHXw978HkcQ+LjV6Y5Gymq+N5e9/tLExsziXGyCfdgNpYq+2nj//7rs83h/4p//k96ALx2zcziXdLuqHAX/VTuMQSef2YnNGrcp0Xpf6xZs3SyC50GDT8zA2LoNJQ4ot298DzGTWWxzCtPk09fX+GND5LMzBzBIOKv1sLkZ6D50PtC7QuZgAyoxBayMUNgERlVXUNjE5Qx4zgpkuZDZWiOm1ISXn8WNfrrvMXJ36fHwhQfJnEaVI7GQ1FlB5o2MJOE+IMiPGfM8m5zh+BKIkAUPKd5j+DtPeYfo7dLsjti2h66DvUGFA+2MQV4cB5XvK4FjFAT2WMCBhQLkBcf0IkX+yiMB6jaw3cLEhbjawfRO/2RLWG7r1GrdeM6zX9Ks1/XpNV69oV2va1YpDvaYpS5TSnFvNhdFcWM25MVyY1HZuNPpXzIPgZSIqJZ3Tm+ITx4bOH4PDt4lB7G97/G4gNA61stjHK9TKoDKoq0egd21T+8pO96id83zQD3zQzeXDfuCDruHDjwc+eDfVu3tOfCNQKEUpI0AolCPrcmEXpVDUgkXQIgRinlNrHAoX4tEZNG3A5LlO2qBIrNPp2jxhqXaZmdrHSE/kFbJYPP+5IpRAhVAhR/YaeEQCR6vcXiCUKoGiEzCqhcIoCpOA0EKrBIrapK3JoOl97NXcVoigx83MT5AY8nzi9L57cr++t3258T9ufA4hJYqciAOvBsADaS68eEkgcqdbrs2BYBu8ORDMAW+TXto+jwnmAHLHurtm1e442w1sd46zxuOMcLcx3K01u43hbmM4rDQEi/J1LhU6rFCxpogXaFYoWSFxBayAmsAKH1e4WNPHmi5UDKHCxBotFoWa1hdzkQyuR0DyuSqEPLdI05bFJl+MqLiDcIdEuPgXv0bxpe2rfZ+/JfIaAH4tr+UXLd1dBnXfh9v3nwd5x/p9cXFtBuemZFSfoF9Vzr+cQN7f/1cS0PvWH8DFV+ZJ7m+DiKRQCeUmha4w1cLVf8gxmtpPYI7eExZg+frJdhlszgDuIQO7/e7Fx6dsSjRVXxKrBxzWv89N/Q7Xw5vcdA+43m+42ZXc3GjcC4jMSgnl2lCtLOXasFpbHmS7WlvKlaFc2WQvxpW1+YWxOKIPaWE4BFwfcIM/st0Q8H3AOY/rw/1942vG0qf6IU+wlJapGK2SrcY2tehf2Pf064UtSiCSgNjDQLcfaPeO7jCwv+l5+t6ebj/Qty+ZOgsUlaGqTfotKk1ZJ10Umv7gaHd9et/G0bWOrg8ML2GICTkGlxIKI6yt5sG6TH9jbam2lvqswJQGH7JrqcuLczfXJxfTI3t0O016GF1Ql+6oLiVpGeXirODxw5LHDyoePyhZVyZlzh6BpAxCTXaYAabJHgGlcez0YeW5xbzAMSP5tO+e1wAzyKRkZtkeAZeL+ikL93NOvjMlLbrPBf5et/m8oPDhU4cGEMWxS/hSa3WSzT0z+ZcAl9W/ljEvX8tvrogSpDT4QvO/HQ78g8dn1N968OpvNDSw//hoszYixAFC4wltJLQh245w0+KaQGjCzBgcwd7GfbopmhHE5gRLo8v1GKJgZe930S5OXLMX7W0f2N323Nx0XD9tuXrScP1hw+2TNt1Ps9Rby8UbKy7ezCXb549rtP35zwGCT8/zofe43qdQBi6HL8jPnJCfQcHHuW3qPxmbE4il9vy6/Ew73YCZajEiQ4s63KL3N+jmNtmHG9SJrZtb9OEW8S/3HosiRFsQi5JQFISyJKxKQlniyzWuKGiKgt4WdEVBbyytLWitpTEFjTEcjGVvLTtjuS0qbquKm2rFVVmzq2uasiJ+lhBRA3Dj4ObmUw0/M2oChS8yKHxhzAtB4wuTytboIzfxXzVRpUaVNTz6ZI+sxgc+6gfen0Ddjg9ud3z4xKV6N/BBP7D3z4N6G614q7S8WVj+yfM1bxaWN0uDFaHzgX0I3LnAnfPcec/eBw4+cAiB1gf2PtANIYcNyIBt/NlA2ZeJkMBoLZI28wUKlWK8VirFeVWiE3lDNCIqbbggyz37iZ0/rivjGCKF2TPARbglHnkKCCl+rBHBKjASsQJGBQqJmJDAbxME24EVRyEeS0+BwzJgxWFw2DhgZMDEAYND4xByGD3ipIUcVo/wnJaxftqnAhS55DZFREskfTsRJSHHrA4oSXSXTKWB6HOSQ582soMnek8IqT1t2npiTHaMA172BNnjZUdgD/JyENkOlrOd5sEusrnq2e721M1h6u/KLbvt13n21pfR7YHN7bt88b130TGRjDyWG/M1nsnXueIbXIevcuu/Sggl2kdMiBRxBvQroCSxks2RK0cA9i891iFvNHjS5mK3qKeSNihP2zzw8Efn/P3XAPC98joExGv51ZEYobtNyZGGZgGi9ceA2QiivRBUO+07AeliuCdh0n12kZMifZJt5wyfyiyYuwtw93YEdz9IoQlOpdgkV/DtW0mfvZ3rby/a30oxWF/09Y07kwtXHsadynEX0vnjHUm32LH0EdHmCBi4N87gC+pHgMJ9rz35qY+e+CzqOQB/HIPo+9Pg+2NmU0ecgvMPSOyQ0CCxhdAm2zfgG8S34A/I0BD7A77rCH1L6Dt83xP6ntAP+KEnDI4QYnbtN4RoMNJRyJ5K7SjVHk3/6pi4qHyuFMfnn6kmQJf6wcK+JNYPiOUF++Gcm9sV1zeGm6eBmycNN89abp91uMVusVLCZms521q2G8t2ZagKndg6RlFYoTAak/GtJYB2BLKNgFrIbK7RHsG2ECcXyiMG5qm77xFjM4NtS1fho9ce9yHMzLWJwRaeZzGOsfbuc19fMOJO+9IXdsI8VSe2LNuXn0mmAIey/GzjtQDHLvOnLvR5AdoPMcUoczkGWCAlegjQx+QemnRuz7YGCkViMAiURXIJK2tDtTZU64L6zFJdlKwuK+qHFeWDCrMpkEr/0mJ/Dp3nwx/e8sH3rnn/ezd88L2bCQhfnRe8/Y1z3vr6OW9945xHX9pMmw2nt4ijtgWKokU+F1ZSCJG7pw1XHxy4+uDA9YcHmrue7cOKizdWnL9Rc/HGis2D6jMxtX9dJOaYdG0Ik27Huk92FwJmigc3x4obY8KVSmWWUnZzlM8vNu+riB8CXePoGzfpIYcGELUIUZPvQy+2T/TCHlmCAQEVUZKYkeoo7E36OyrfQ9R4H/wlScxMmvF+Ptan41S/nN/r00jI52e3OD/7DIKE3J9uu2kx+Le7hn/0d+/yp195g3/mYos/GpfHhog6ONR+QB8c+jBg957VzXv84ff/XUr/0Wc61uw0nL1+Fh5AahHKyVSwfgybN+AshQiS7Vupvhn1m1CsiCHSt27aXOz2ecPxcE99nzw/bp60uEU4DG1VBnbrGejNYG+1tp/DL/S8+BjZOc+dz8DWwt75wO3gaK9v8E8/Jj55ijx9grm+Rsc43d9VBqDGulaCRnIMYoWe+hRGkfrGcSJowCg1AVlhv8dfXRGePSNeXSFXV6jra/TVFWq4P0HxUJYczi/Yb8/ZnZ1xuz3nZrvlenPGs80ZTzdbnqy3PFmtuTUFfQZzB2M+FaHCilBroVY5HmfWY320SyWZ1Zjs0/tuMd17FVbSdyECJrOY0/eZpza5Lx2dIJLuCR5wIXAIkRvnuR48184tbM/NSVv/EmxBAVuT4gDD8w4Q97FUk30C1N8zHxglTdUysxPJHkkj03M+J1Ruz0sYTHRUNNTSUMWGioZi1DSUsUHHhoP37JyjDymwiWSoUgBDoNaKSjExTq3EdM6SwpIAhBjwMeBiYtq6XB9CwAVPJKBySDU1hlOb7EgpOcGWSkColTgVQ8RITD5uWadwKAmUjDEQYgIRAxlMjCElkYshwWcxwgkAKhnw/LRsdE/yrItZB9H5E4z2oj/3xdO+EVQmIrFHxQEVHYoBHfusBzQOw4BmwPLJ4e5G0T5ih0Bbqs+N7BSOfrH5l0v20tNxLmHRNnlKTh6UMntZTvXU76PmEFe5rDmEFQfWHGLNIa6xQ+SLhyd8rXmfbx/e5feaH/KV/oPpWH9SvMlfrr7F/736Fn+5+hZ/uf42T4tLRifHkZihvecbzY/5g8N3+U7zPb7TfI/fb77Lpb/Ln1n4SfVFvrv6Jt/ffpsfb77Nu+e/S7d6RKUVtdHUJsUWXmvFShJgHyWHWWfxzB5B3uxR5GOOaZ61jzFBBTESvMcOd6y6K1bdNav+ivVww6q/5nf//r/OH337O5/Lb/rrIK8SAuI1APxaPndJMQUDcXdNvH1K3F8ne3dLPNzC4Y7Y7InNgdg2xK5LpR+I0RCjZY7sncAtkXEf8Pkikz2Oz7aAiJrd61UuSAa9wvPgVp4GxTg5OhMXzgj32vF4DPmmnRGhnECrzgm4xsRaJXFMyqVzZvklyhFnM63Kxo8XjwDepf5cosXHxLwYvUB9nvwlHRd1T4gdkY5AT2DAR4fHp0kN6UbtouDzA2o+uuVvFvNPlW3hpO1Y5ra4aMs/J+YoHmuIBp8B3BSr1U4TjZ9VlEQKHShMpNBQGLA6MSsLnRNVaJ1tg9WGQuuU6CIDCVMMuhAJg6ftPHetZ9d6dn1gNwT2LrDzHO3oC7BSsFHCWglrPdt1BhTulSVI+yLAc+lmf8/Y5/pkZGQyszWP3H0XoPGL+havj4v3IcYTpqE6SWQjEyNxyUZ8IXvxlPnI4m+Ox3PEKD0Bwo/A7/tfM9kxHifqOWVQniTkeenx3/M+qrbJ7XBtUbX53AGkIUT23k9sk0NmmxwW5bT/uG9kqvijehPCUX4bCZFHt54vPXGpfOy4OKR7fq/hpw8N7z4y/OSR4d2Hhq74ZFZTWvymBXCV9Wm9yIvmlYP1zcDqylFd9xTPBvRVjzzrj+6namUwG8Nw1R+554kWqocl9aOa1aOK9eOazeOa7eOa9UWB0QqTF6ET8DABGHlROrJg8sQ3bQDkjM/hOEHIqOf28Fx7f6TT+/QZJGtDpPFhAerOgG7rxzHHYC8xUg2Ruo9UudR9yDpSDpEo4LTgFTglOA1eCV6n+qRVGqe0oIygjJqKsYlVb41QKD0lGJH83eghotuA6gOm9+g+1XUfMH3WXbJNH5POddsH9M+LFvU5SZS5IJJ1Ygwu44gexdxezBnmKdJ8gS0Z9cS5Pj5m5VNOGSIQp+fAyTEdPR/mtinWd7bHDTRRAlYRSoWrFK5UDKWiLxRtITSlorFwsIqdhVY4AniXgO/LQKal6BC57NPYJ6XwDz5wvNMGHnSRB33kYR8n+6K/b4Yw8Kj4j7DqR/yd/rc5aEOrI60OOW5lpNOBTkV6HelVoNcRLwGjkptzIYmlVpDKlPU8RkxwFG6g6hvWwzWb4Rnb/hmb4Qp1T4yWRlZcyyU3i3LLA26zfccFO/WArniAKYsUL7LUVFvL+rxkdV5Qn5eUKzNNh5enTxihtrjsi8tTKY+dGXp9iBnE9Ym16DO46wI772maDn31jPr6GQ9urnl4e83lzTUPbm94eHvNg5trHtymevEi16WfozRFyfX2jOvNGTfbLVfbc242CdC93qay255zOD+nO7tArSoqpd0nbasAACAASURBVHIZny+KSsvUVilFuUiqlJIwzeDtaqmzrQQ6H9mHwPWQANWrwXPjXNYJcB37JvanT0xAYg+xy0BZB6FHxx6JPYaegiExIemxDBT0kz23JVuIdJS0VHRUOKlA1Si9wqgaY1ZYs6Y0K0q9ZmU3rOyatV1R6iIBnVHS2iHAENMc4NYFbpw/muGfzmCW9eWUVmJIACA9KvYJCIxDthMYmOwWCQdUOKDcHdodkGGHGXaY4YAeDtjhQDE0WNdifYt1LcalCbd4kEwrFC/gUhtuQa4cp5GytPNqZuFtFFHzvT27HKUYtot7ucj0QQWFeEF5STrMWnlBeZAg6Rj94hh9nOp4EBdz34ji5wt4SdxRCnKiydnDJ6+Vx3n3OEarPA9X2VtIH7dpPT8HVEzPjElDVJGo0oMn2SE/TwJRRQIBJ4G8ksTnf0ESSB2IhGAIXuODJniF97P2XvBe4UbtBOcEPXjqoaV2LSvXsgktW9+wjS1n/kAZB4gwKMOH+oL39EN+qh/zI/0GH+pLerE4pRnE4JQhKA2mAGvBFIixYC3KlkRrMbZAFwXaWlRhMVajjM7r1JDP+wgS8v0z5CVQrudE4iGGHMYjEsd6WLRnQDRtYybvrcv+hm8cfsg3Dj/g64cf8PX993mjf8K4vv6gfosfbr7J97ff5Ifbb/LDs2+xL87zRq+aNrW1UsS8UT1ubovEdH5HcOPGhfectx/zleu/46u33+Wru+/x9Zvv8Xb3IePHfGIv+Jv11/jr1df529VX+ev113m3epMoCu0D1g0UbsA6hx16Lro7HrQ3XHR3XHS3nHd3nPU7tt2ezXBg3Tes+oZq6KiGntL10z5F9EIMkvOhCzf//p/yh3/yp5/2MfBrL68B4HvkNQD8vES/SMpykjDjuSQXnSd0A3G3JxwOxKab2aP5YRO9ygCuYQZwP6PIuIj5fIGNVzsGTliM6biet9MDTcYVlUqJrETbzO6QxfstbFJdTurH/em/sTkoCCJ4nYDVoEgAq2SQNmsX4qwDOB9STCcXk8v84PCDS+51Q8ANcSohfLbvXDFgpMdIl1xrlMfogNYRrWNmyi2KjOw+lT9nBudlCaCPX0IOyT/VT8elB5YohVIKpTRKaURplDLJFQk5guhV/ulUXjyPWkLMcYTSZErybmMCVXIm15D0lEXW53af2j5JrBaKXCLCrve4BeAkApuVYbuxnG0Lzs4Lzi5Kzi4rNhcFenQvHzPvGpUTG8lRmxh1zK79lBLjnJF2ueA+1UBa/OgEstV5wbME3n6VXf1+EyXEyM6nBdbtooz1m8Fz6xftJ/U7l0DFV5FVZiit9FzWo63GuqZS9zN0j26RdwP63Qb10wb17gH5qJ0eB/FxSfziivjFFeELNXJu8z00vYGL8XmwyHvCrUM96yiuBsqrntWVS8DvYQZXgsDVRvFkq3l6prNWPN1qmjI/z2Jk00Ye3nke3Hke7ELSd4HLvccuQMZBw9VG82yjeLbVPM362Vazq5aLvcQ88gtg/POWAthGOHPC2QCbIbIeYNXPwG7ZB8oRNO1CAltbD1146VNYtMwbH5+ThAwgBy1IiNg+fuJMwGvBFYIrFa5Q+CLrMtvlaAu+0PhSEWwG4eP8bFBxTgajYmZsLeoqzuNkYR8lhMnPkhgTcyX4mBduib0SQ6r7nHQlxLEtg2pT21xntJcbUwug+MieQIa57xisOAYepp9OTn7GSIq9N/7N5QZdrssiVEt6dqYxEhbf0fiMzW3WLTYVhpefON4IvlL4UhMrBZVGaoNUGr3S6CplNd/6yLYLbDvPxkfK1mMPDnNwmCZdmP/OP1XTKeG/+bPk6hqsIq4NYW2JawNrCxtLXNkEUBcabxRv/cV/wqMf/vf87R/957z34J/nMAT2ztG4wGHwDM2B4bAjHPbQ7KDZI+0B1e4x7QHTHbDdgaJrqLo9VddQdQ11d2DVHqi7FnXfPVciVAIbkBXoVUTXAVMFbOUoSkdROErbU5jndzhCFA6hYhdq7uKKJlY0lHORij1V0lKz0zUHqdirFXtVMeiCoBReabxSeKXmulYEUXitCUpRDAMPbq95++6GN+9ueHR3w4Oba85vrtleX1Hv7vF8A8LFBTx8iHr0GPv4EdUbb1A9fox9/Bjz+DHm8SP05SVicsTC5+iic92PDHCg94E+JJAiscJD3iiDwfuJKd6HgNQ15Xo9zWGqPJ9ZAryVVi/1LgkxcnAdzXBHM+xohjtad0c77NkPLQfXsXctrWtpfEfvOrrQMfiOwfe40ONDh2SXdMuAyWDtWLcMlDgKcdjFGB375JX2M96EoxQgBagyaYQYGggNKrYng4EBVA/SgXSSNagOfGfwnSH0htgZQqugU0gvqE7QPagQUDGgQkiJtWJI94qwsMeS5+WEcSPruMgyw2DI9QnI/Q2bg4ogRoMxiLFIUSDGTAWb262d261J45VOnpM5tMCknZ9DC0w693sHLiUgxDuiT56Z0ftMpIoL/cv+cl7Lb4tEFUFlBrESghK8pOeUk1Qe/6P/kN/91/7kl32ovzB5DQDfI79tAPDuz96n/8ndnNSiD7OdQd9Pn9k6INKh4h6RBqFBSYvQIeJSjDIzxiYz6WFUlim5R10j9TqV9RZWW2S1TWOXANZCo49dDo+y9Z7Y8d72l/VlY+niPTEbZQJ8XxUwe1WJMeL6QLsfUmKm3UCz72l3Obbnrqe9a2jvupTQae9oD/GFMV1fJloGjHRY6TB0GGmwE1Db5r6x3s0grgqY0mDKAlMVmKrC1BVmtUKvNpj1BrM+w2zPMdsL1CqFLaA6TyEOfkYJeeI+MthGtluX7bF9ZLv5mONf5UX3qT26hY5xslLCkvteE6dEKKktnRI2uxvazNwzmcU3FZXcCRVgM1tNOo9qPdIFJIMpNDnJTOsIjUeA4kGFfVRiHpboByXqvMDnhCzL4z89TpfrS3v6rJE5cUNcALf+uN6HOLlyj99tG06d7T67jC6KpTplyxyzZu5jbC6vwNPjOX12Pdf/0teSd9QT2ynE2f0okkGbRd+RO3FmQvmxb/ke+byKxMndUJ+4WursbqgyI1SdtM9J02a3xdP2vU+A7t0S2F0AuJ/026214jzH4js3mrOF3izBW61nMPcE4B1LYi39/O6Vfety2Igb3v/uNR/84JYhh41YX5QpbMQ3znn7G+coLVPIhhS+Yc/1hwfcIqt3URsu31px+eaKi7dWXL655uKtFNtSacFFJmbscsOjDaNXw3wdetJ1F2Jk8IHuZqB/2tI/aRmedvhnHf5pR7g+ZhRHq4iXlnBZEC4L/DYt6DQKHcCEiPLJNVEFUD6icjZwCVmPGZnG8CJ+ToYWfCS4SHApzqXrw1H85VMZY4KXqzn+d7laxgM/jg0+xQVfGUyR+JJjfM0pXvSwiBs9xZBO7eG0zQX8cF9bQGlFuTIUVTqOok6xyItV1rn+i4hL+ouQ4ANDHxhaz9ClMBXPldYz5Hjm4/fkXCBkfdQ+nPwe4xiX4qvHl5wXALbS1BtLtSmyTqXeWOpNcVSvNpYqJz6K+V44hVaIs0unAFVm4hMifeNzvPQUvuDYdimMwW6gve1o73JYg87jX3DsAqysYl1pVitDXRv81vBv/Z7wr+40/8bO0rhI13u6xqdwIPuGcHNDuLtB9nfYYY8Z9nzz8v/gD7/2v/KDH/0uP/n/voZxB4xrcmkxvslu1S+WqDSxXBGrNcP6Ae32TdrVG3TVA9rinFZvaalxaGrrWNuBTdGzKTrWqqFmTxX24HrCMBD7nugcoe+Jw0AcBhgO6LhHyQEjB7RqMbpF2x5je4wd0NajbECbwKdJjB4GwQ9CGFS2kw6DmtpnDSEoXBCCLeHiIXL5EHl0iXp4jlxuUZcb5HyNOlsjZzWyLoniCaEnxD7p0BNDd9QWgwMxgElEE68hGKJThCDEQRGDIjgheMApghf8EIleCC4S3SKKmAvEYbw/RoJ3hNgRwkCIPTH2xDgQYw9xSIxaBmRkntKjs6u5iT2GFE9UywKEHzdYIjMQecTWzPUAeCF6hQQFXiFeIUFQQR0zQPP4+X3Imzk5QaWoibGZ2Jk61xMZQnQCAKe6MrnNIFrPr1OJCRp9IBwOhOZA2B8Ih30qTUM8tClc26eUYIVYKkIlhAJiEYlaEqNQKaIkxmHSuZ7tICpdQ6IISuc2TVQ69YkmqDlsQHqtBVWBKhGpUFIiYpGoE8M2aog6nR9R473CO8E5GAaFRxHETO8dxWSdSr6ygQxM5/oLbSJr9ZRH+oc8ND/kofkRD8yPsdIA4GPBs+ELPHNfIoil1DsqvacyOyp9y0rfYU07/tzH3y0aZy7x9gJfPSRWDwjVJb44w5s1g6lpKbjtFbs2oEKD9g3KH9DugPYHjDtg3Y7C7ynCnjLsqMKeKu7QL4kq3MWSXdywDxvauKJgoOZALXsq9pjoc4ghIEr2npMpTY0Llt7X9KGetAslQ6xwscRR4GNJwKKVp5QdldxSyQ2V3FDLdbruFqSsPtYc4iX7cMkhPGQfHrCLD9iHR+zCQ7q4nc4vkKxBYkCiR8WBC/VTHtsf89D8mHN5lzP5KSo4CDCEir16mz1vs4+P2HNJO5RE3xH6Zi7dgTB0qOjIPhRZ5/8lTq0QiTJaKa5xZQZq7aiMo9YDtZmLkTjfY4jshoKbvuZmqLjtS+6GEhfV0ql25pUt1k5z/7zJfvya5VpwMc9fbBaLCMpYtDVJG4M2Fm2TrWyyjVZUcqAOd5T+hqJ/ho4dsawJRU0oVsRija/WxGKDrza4YouvzvDlOb5Yg7VEbYg5fkw6tyKujwydMPTgOhh6hevhn/iX/pAvfPvLLzx/f9PkNQB8j/y2AcDv/rd/zfDDG6rKoCszZ1DWDmGP+FuUu0KGJ6j2Q6R9Dzm8i4o7hAOKBpEW2ZwhF28hD76SkoFdfBkuvwLnX0qxysrtTN/6GSX4wOG2Z3/d03cuT8xy0oYwTtTmhA5T8oepnpM+jK/LiSGCC3NfjhuaXFBVSt5kFkmcjEIv9ek4k8YlD5iAloBSEa0iSgWUePp9Q3uzp71rp0RNzcHTNtC2Qttq2t7iw4tn4KXsKNUdtbqlUndUckel7ijVHiNtAnMXgK21grGCKRS2TItyU1lMWaCKGopVSiBnV1Css10v7FUaU13k+LMXRFPRx+Qy3PhA23W0TUPbdHRdR9+0dF3L0HapdB2u6/CLErqe0HeEvgfn0u+Sg9iHXKL3KUZrDmgfEi0q/U4xTiyBiZUbA2pi6SZ78SgCRler0c1qtuNRv8xjMtA2MrIlu2OpkS0VsxtOnsnERUnP4Xj8UM3t4yRQGJlUsy2jf+VSxuNeHtvi001JE5afa/H5xmOXPDbtZ8gUc1KUQolKicyyK7rKAN6sU+w8PY7R6qiulcqx9BRRa7zWOK0ZtGZQGmcMvUr1Xik6pem1odOaVlK9U4pGaVqlaJSiEc1BZ41in9sHY3DGMGhDUOq5TRnhtH7ydcpL+iZgdQZZl3qMFTfaU98ExM7x9KYxuW/8XUZA2McZNPYxeV8o16N6h7gBNfSYYUANDuUG1DCghwEz2s5hXI8eHNoN1ETqka0kkmwRakmM7EqESpF1qpfZLmNECdO5PPn95hl5Yn/ka9AHCD7HWk5x4ibGyNgWQmZ/+OPXLcZPbTEiVYmqalRdIVWNqipkVS/aKlS9mvvrClXXk01ZcXXl+eBHDR98/4b3v3fD7qp77jo6e1hx8eYM8F6+teLyrTX11n7um3sxRmLT4G9v8Te3hNsb/N3dZLvrG9qPr+k+fkb/7AZ/c0Pc3UGzQ3d7dEg7e0EUQRUEZQjK4pUlaEvUlqALorZEUxBtCcYSbZFcEYsSbIEUJRRZlxWqTJuxurRYKxRWsAUYI1gLmRSEVpnB41JM9fT7ueQl5N3MAvIhs3788VglC3fQE61HIOKedjVqnQCMpTapn0hmILnkdfQi27lcf4HtPXEY2Usu2fcCGHFanI6M23FDeY6T+yJ7dJ3P7N0QCC4ncsnf3ZTYxY/XVzhmXuVnHNMzIkcNjCPYsOgDlq7Doy2LevJSUvOm9jgmuyiPMcxnN8/UH2NikMaYw/KPemQqh/n7kuyyOj7XVF6IKwl5Pz1HPYw5cY4AyhCNSVqPxRJ1AXaN0ivErNF6lUuFMinPgijLoBRNVOzQ3IjhNhjuoqWNBh06VBiQ4KY18g/eEP6Xv1fwD//shi9/eE3Z31B1V1TdM6rmCWV7RdHfYsK8y25WjvOvNPQ7y93HF4gtEsGhKFBlgSpLpCxnXVXEosRJSY+l85reRbp+oGt7+q7DBwc6gPaIDqgyUKyEogZlI66JDIeAawLRSXJN8IIEwRqNtYbSGmyhKayhKA2FVRijExvbx+Nr1/mJsYc1qKJEqgoxQpQB6IgyILRAB7TZbpHYouhSfoXYoelyrM0ei8eIz/Gvx/sgRCcELwmMdYLzgosKF+biQ3LRnsb5BN7GQYgOGBSxF+gF6UEGkKXr/W+ARMnA5ggyZpAz5YfQRG2SJ6HJzM0jhqdF2WwLx/eREPMze75oYwzjxZtDWOV7yPhsz3ViQELI89qQQDJbEYuKaEtiWROLGqoKijqdR9UK6tGuoVpBVSNlnXRVI3WVgeY5BjqQ1m3DnKx33AhMm1j+uQ2sF9lpU7FnJdes9VPW6hkATTjnEC44hEuGWDHOApUSitpQ1DrpymS9rOu5/aTPlvreZe8STpHdB6gP/hz14V/k8n8hzdM0TlnC498nvPn3CG/+Ef7NPyI+/B1QiTgzdJ7u4OgPjmbXsb/ep3J1xXDzERyeYrorrL+jDLdUsqOWXV4v3lLnUqmXJJM+kT5UdHFLG7a0YUMXNrRxQ5frbdymtrCli5tpjIua7AJMmuH2EHtiSKFINAcKuaVUd2ldK3tKtaeQA6Vqculy6Sl1T6kcpXZU2qHviVO0c5bboeJuKLkdKm6Hktuh5Gao6cwlUp9R1GvK1Zqi3lJUa0y1wZY1tlxhihXGVhhboWyFsSWgae4OHG4PNLsD7a6lO/T07cDQOkI/sOV9Hqkf80bxLm8UP+GRfRcj6XnRhRUfD1/no+GbfOy+wUfDN7j1b/H8yiOJkZYz/SFn+iO2+qPJPtMfstUfUarD0fgurtnFN9nzFnt5i716m4N6i0a/Q6Pfwks1bzgdseHSvGQGcuN0osaFPbZPQX3G9a6ANgpbpuvBVoaiKjJJoKTaVJR1gS01ptTYQid70s+v214mIcS08TsS43bDTJS7Rze7lGj7RVDmv/zv/SFf/YNHn/rv/7rLawD4HvltA4D/p//sH/O9v0uZJmt7YK2vWMUPWctTVvoZa3XFWl2xWgfWlxvqx49QD76UQd6vZJD3iwkkXEgMgbDbEXa7e5gjJ/U433z6xtPcdhxuew63Pc1dP9tZt/t+3nXKCwWJfrEr51M9nLYFFA4dPUpSm8bl2FAOhZ+DxufkYXO8zngUy1NGUG9ya4zHx0LMxxSnYyMmgHIMkJ8mcyYv4k1e5IKoiOiISmsezJgDrFSYSmErjV0ZinWZAI96jVRr1HpLrDe4as1gV/RB0wdF74UuCH0fccOA6zrcMOD7fiqhHwhDn+IrDz2MbJF+QNwAQwKY1DCgXAadptJTDAOFc59rTLYwLjBPdvzJdloxjjGbl/bIbpAptrOoxHyQDNLmTeC0kM2LchHy75hOLsnn5qjTSSfzgzDGIzsSE9AopyWBiHH6POndo6St0RTzS3LbiZ3HRZiAWvLfkfzQHYHj8ZiXx3+6k/v8zu587R0BfHGc/B+3TQ/+cE9bhOybvGjPr3cuASzOvRIb5DOJSHJpu68UNi3OF3VeNDaPA46Ay3sBzBNwcxpzCtqcjnE+MbP6ntj3i2swteE+fYKKX7gotWAOjfHdcuK4iSV03LaMEzcziOaYcCPoBxC7ntg2hENDaFti0xCahhfO4F4kIkidAGTKCq8KMAZTWkxpEaNn8FGrtJhWKrtB5uPXC1DSZFaUWQCS2kyAJDHi724JN7cJ3L29SfZtqjO8/B6ptlv0dos6P0efnaHPzlBnW9T2DGdW6TwaunRf7rv0fkM3xcgPXZu/u5S8MrZje0ds21f//j6r6OX3mkHa0+shu4b+0kRrospASmbAJeaWWiShSUla4HQN9Dl+j+OmY36uTddUvmYkA+FJJ1uZVFdGo8zcpnIcwdlW03NjUuP9fQTwF+Bf9Mf2sYvvEvj3M0ieAXScy69Pba/y+45PqMS4EqLKyaVIz08ByC7fv9Rz5iUSx3BKVi8Atzg/F6dcEnzquMo/0/FIBJ3mGDl9fIqzqbMe43BqmWJ5ohW4AL1HcjZRGTK4+hnDfkE+7fK5KO4Vfz+JKDMXMQGlT9siooWgRkamyfNrixdNUJYgBq8sPs+5vTI4bQja4owhWEuwBm8NvigIRuNLg7caLHhv8Z3FNQX9oSC4ijiUBJdKHApAkcizOWna6EEYSXOGSArd4j3Bx6P78cgaDYv70HM0zteCKEFnoo2xKoFINlLbHRv9jLV6Ri3PWPGUOj6hCk8o/RMK/4TCPXvpewdd4evHuFUqQ/WIrnpIWz6iLR5xKB9ysA/Y24e0UtH7wOADgwsptJsPOJ88fYacywDS86Lur3j78De8vfsr3t79v7zT/C3bfDwBxcfmC7xnvsx76ku8L+/wkX+UiC6+R1wPbkjaJx27Bro9uk9eBi8Sj6LRFa2qaHWFM2vEnmHKM0yxoSoqLmzgwgycqZYzOVCKYzBnBHOGs1tieUYstlhjMSZS2HSb02pM+OaJeARHjJ4YXWbHJ0p98APeObxzBOdQWifW58gEtSMj1KCMwRi7YImmfjXaxuaSxmqt0eLR/oAe9oQodPaCrg90hx3d4UB/2NMdDnSH/VT6sb7PfU3W+90LNn3vF1OUrM4vWJ2fJ32W7PX5BfX5BavNmrPwhNX+B9hnfwPv/QXy8V8hPiWODMUZ/cV3aM++Q4gRc/gpdv8utnkXMxyfr15VdMU7dMUX6OzbNPYdGvM2jX6Hg36bgc0cSioT2sZQUsGP6z2AeWN6PD8Zm3P/cqk74zTH45eb4H4IKVxk9kB6pSmSkK7jQk3AsCkU3ir2Bg7e0zSOQ+No2+zZw5wELkj2wCSFBlOFQhWJ0Dh6jmOEnBWUqFMoiCjpWfgf/Avf5jtfuHiFA/71llcBgH92P+3X8ispf7D+H3ln++O0S6S/yCE+5s7/Dh+0FcOdz+5ryZXNugPGN6x0T6W/R8VfUcQG61vMcED1B6TZEfd3xP3+Z15oCrDK5RcmeQ12lJBkSkySEivNbTme6jh5zoDGbCfXo6gsUVI8tCganyd20z7byGjNbrhxcMTBE4ee0PS4oZ8AIR8C3cs/wb1S5PIi8SIMJk2CnbF4Y1KxlmBsmhgbQyxL4maDLwp8UdCVZQLKygJVJKaLrkp0UaaQEGWJrSpsVWKLkrKuKMqSqiqpVjU6v2YKB1Jk0G3JTnotv1ESQ0hgQd5kiAtwOPY5fthzbe64fRjSdeLyRsXUtigjkLoEVU9KaFri7d29fRMICwvgUs+g4CnweQpuvmCMKJ2YOSPDsUjXzpI1lsDpRb2wU5t60RhbzAD32K/V8WbE+FmO2kb236JtDKvx3GbGL/e6jDEmsLxJoHBommO7bTNg3BCbNrcfsp3bmib9tlM8uwxuOZfi2IeQzqcws1snYGwJhB0BZIvXQAZwz9BnCcS177wz2fr8DJWB3QTunqPPz9JrttsElv4cvz+GIYHBXUdoO2KfgOHQdWnDYQSzJ60z+KifB3Wn68FMwGQUlXHFiOsG3KHFNz2+7fD9kDYb+8SUiYObNyC7Ph1L3xO7IbmwDwP02Z3dpQ3J6fp3Kd5gAiAT4Bgm756QAJbsuk1I6aoS6BZyOH6fgZm8SUycmKhaAiJTnnEMMSe00Sf3gFSfrm2TN3LN/J2Jyf3GJNDW5O/KaJRJLtUJLMoM3uUm0cimPj3vQnj+/PMDsfcpdFD2mHHjeZvB/9D3kx0/YSPiE8Xa9MxfrVDrdSpLe1FkVcPGMNSBwfQ43TJIwxB3DHKLizcMXOPjNU5dE/T9cWAnGeN2OiZwEgcySGrL7YyM0NzOON6BOCHqSEwRA4i5YDhu15yMiVM7KvJHf33Lph34P//4Ifu1Ycw3EL0luILoC4JPWqTC6BpjV1hbU5RrqnJFuUpaqwpNiUiBpkRJiaJAZy0UaEnJj6NEog5E8amoQMClUAnaEUnFDS2Huz2H3Z52d6DdN7TNgb5p6LsG73tEOZQaEO1Q2hOcwbuKMFQEN5aS0BXQWRQWoQCxyYUek9zxVfpRAo7IgI8DIQ5E3xPdgHQdQwg8NQVXxtKUJW1R0pQVbVHSliVqVbPebNhuNpxv11xutzxc17xlFW/T8EZoeOj3nLs90t4Sm1vc3RXu7gq/vyG0e2K3g+4A7oAMB5RvUGGfXNpji4kppNlLJabzh3yZhKiSq3kscbHA6QKnSnxR4iWVICVBVURVEXSVbF0SdU3UFdHURJsSPItZQVFnD7sasSuiXYNZgUreV0hioS4ZsSKS2dTH7Sq5GCUgpg9zGJg+MHQubaKoDEyrBFJL1iqHclBa0DnxrNIKncdESOHUfKBzkdYFOu/pfKB1gT6HiInjGiaHG4oua5/awuDT/TiHHmLsc/N4fMz3rxyyyAUKd8s6Pk2EJP2MtUrs3bW+Yq2eseIZa3+FOgHtYhR2nHMdH/BefMCz+GWehTOehDM+8hs+dit8dJypGy7khku54VLd8WC/41I940J+wqXe8bZq7j1F2mC48SvuQsWdz8VV7HzJ3heEqPiifcqXymd8obzmwrb5uOBZX/PjZsuH7df5sN3yUbvOLFmAnwI/pVycik5ZnKrxqiKomqBKnNniVxfwsMasNhTrDdVmS709Y3t+ztnFOReX51yeNBzg9AAAIABJREFUbzlfFZzXlrPKUpjf7E0FRQKt1p/x9TFGXNdloPgYNHZdR7XZZrD3ktX5OUVVf/Kbnorr4aO/gvf/AvXen1O99xdU3/+vU9/5F+HRV+DijxPJbkG40+vHrER+sbjIZ5AYkxe26xIoPHQe18/hqe72PR/ddXx42/Fk3/HxoedpM/C0HbjqO657z3Xj70/gmp/Hnyj5/l1oIaW/EawCoyJGwKqAFo8Rx+FZDb9FAPCryGsG8G+oPPuv/gsOf/lX+H1DuL3D390RRqaSf3k6bG9KnKkZ9Cppk7TLmkKjTKSPdXarWYgICkepRleP2eUjhTXYUxUDhXFoq0GXRFMQdIFTlkEV9MridUEoCoIt8aYk2hJfVPiiwpkSX9Z4W+NtxVDUuKLGFyuGcsVQ1AzlGm8qvEmu4zFPdmJM7thjaINlQqs2HGdHP8063Z5o/xkvHQVUOXZmrZMb9zpGNsGn4gfW3rPybiqVc9RuoCRiyxJTWGxRYsuCsiopipKisJRVRVla6qqiKksqa7CvQdfX8lpey2v5RIkhJKB5vyPs95O3i9/tiE3DFIBP5s1DJq8FOQLhZ/v+8ZIB+QmEjzGDf2FmY4Ylc/O0fe53ncO1Dt8NCZztku17j8vA7HLDhLz5mBK7OGTowc/Aq3iH+CHp4CadvGjcHH7gVb5bItFCrCGsINaRUENYxbmtioQVhDr359WQtIL0grSC6hXSaaRXSK9Qg0E5jRoM2huUMyhv0bFAh8Q2klNgO7O9Uep+4HXcFHDP9wWfUsMH8QQ1ECUQVAbolCcYwRlNMELMcS8xgBWwECdNYm+abJsRnIxEHVMmumxHHWDSIWVPF5BgkGAgWAgWiQUsSowl5BKnUhFjQQwlIVTEUOB9SfAl3hWEweA6DbIDfYWYW5S5QdlbpLhFl7eo8hZd3iVb3+/N4LsVrjvDd1tcu8V3Z5MOQ0UcKTqoyZ51prRGmezIsu90fH6vaZwc20gaM/XJUV8C0TLzWoR/bvVf8jv2f+Yf9/8xP47/bNqgyuEvREBbhTYKbRXGqJkNOm26ZSBvcteRxV6bzG1j/luRqS8CQXKcccBlJpSLKbmZJyUyc8SpbYiRgRSPvI8ZIvYB6SPSB0wfsC7iNLSFoimEQynsK8WuUtzWwq5WdFbRWcFppo3FUU7j84/1Isf432jNm4XlcWF4s7S8URjeKJJ+XFiKyOTS2+x62rvn7XbX57bk4vtJ8amVEYrSYCtNUWlsaShKoSoHqmKgsj2F7SlNT6F7Ct1hVYeVNuXDoMXQoEKHhBblW8Q1MLTgGhiyPRzAtbnepL5XFVFQbFLYvFGXm2yfJfuob7ZjsaHTa3ZU3IWaW1+w6z13rWPfOQ6Dp+kGuq7BN3uGbk/o9v8/e28Sq1uy5Xf9VjR7f825N2++Jl9jv1IVr8CUDVUlJFtCFhJVAxCNGCLhEVg0Mki2jBgwQ0gMPUI08tASAyMxQYCNClsgIQtLpZIRpmyQKdxAFVUv82Xee0/zfXtHxFoMVuz97XNuk3nzZdZ7lXXiKu6K7mvP/nZE/OO//gudb7H5DpsdMJd6R6iu/5rqicEm9ng+yMSemT1n9jJzYGKguNcj1sMw92MQedjmZR6MW3wsLmMu9Ugjv0bT40b3vNSnXLen3OpTbtt73Ol73Nb3Oen7nOrXOevXMPYIGWR0j8BPSWYKFFjYq1YInNnJJxzCcw7pOYfwgkNyvd1juOYQbzjEG/bhjn14lYn70p7wQ/sWP5Tv8LF8j0/ke7T4FHC9Yb8HZ8+aME1oi7TqWtq1QHvLeV0eA/snid1VZPcksr8K7HrePwmMR9hdCbsryLslCp5Lfpg1jO7RtimDEMJAiDti2BHCjhDGXh8JYYdI+tL3jKqV1u5o7Xa18/mWm+cnbp7fcfeicPeycnqpnK+F802kFXEP2misailJ3NEsOXs8JL8nL5KNMUVijqS17GzjlD3HnEg5k/JAjHtiPBBCv55WfsUlEPsqkwSv3PO9bdPXvUTRQoiRkBMh9UOgz/WlNWy6hrsX2N0n2O0L7O45nG9x9xP/bXX3VriICdLdVPp7XurL0EV2UX2ZWRdJTaM1gR5A86NJ+HASPjwFPpwiP5gTH86ZH5TEh/PAh3XkpeZX3vZI5YNwxwfhjm9yywdyyze54Zt2w3t2R7aZLIXMzGAzySZvox/q2USUE6SCjYqNig5Q98I8CmUXmMees9A2ByG/+I0/zdd//s98vu/792B6ZAA/JqZf+6tMv/4bxAxxaAy5Ej8ohO/OxEEJ2YiDErMSButWidmcKSsRHZ5yit/hNmQXVOd9btvXuKvvcW4H3tsrx6NxfCIcn0T2TxP2JDPvR67DyHMZeC47/j6Zj2zgQxn5qAWeV+XjWnleGs9r5eW7uo29KW1O9eG257enhwGplsi/yyL3GzmvAarGB2Pe9Jh99L7DWna775GEh0dA9jE9psf0mL7Q1G5uac+fvxa81Ztev31Qv7mh3Xq9Xd9gdz+6h8tPUhIg49uAmnaUdPCD07SnJj9AbemA5q/R9js0jWgcaWlA44jGAY0ZjQEdDBsUcoVcsVQgzZBm4nAi5BNxuCPkEyHfEfOJMHh5aZPw9sNn04TVA9qOWD1g7eBAWjwT0hmJJwieRd7+XJfvYE+QIyEciOFIjEdivCLGHTHuaHWmtYnWiruz6oSZB6EymzEmzGaQGaMgYf7R/zCAqWDagYGWVoBgqatm0Ihqwkp+pR8EiYUQZyQWJM6EUJE4I/G0tq82XZCGZb+6bJNe3bK95v22BPNTbH6KlPfg5U8h+oygzxCeEXmfGN4n5m+Q8vukcUd8mghjvLAPg8dQWD0T3pA+dXX0tgHG6ha7uMj+Tx++4L/+7U/493/62zwLsbvq28alVte2Dz76r/iHf/tX+Hvv/6vo+/8Sf2AzZq5KVaNpDxarcLZL3eMaLEFEe5BQvZRtadd+INL7u4oAi+a0wEXeaZVFW9ov9dBlo7LByObv+srYLodVDd4S0Gn7/eYFUO3g6rBLDLtA3gWGMZJ394FXoIO5t5xuC+frmb93U/jbN16ez294XYHdoQcSfJJ59sGBb/9DPcjgk0uQQX/9uNGijMQvifFoZqjOtHZDa7fUeuu23dDqLa3e0Obn6PScNr9Ezy9ody9p52v0dItOdzCfnJU/F6gBaR7MM85KOj8n6cdkbWRrjFYYqOwoxNccrgmw6/kbuDb3yTInG4mijBRGKa/VS31jilAJFBJVIoVEk0ANqUtrdI1icx326tplmMlFMnjJ+qpVtfWa1rZxMac/B8JdzdzUgds6rHZhy0oQUtcVTcOJNMyk8SP24//Nk+HiSh6GREwDIgMSdiADZgOqYROY1Gg9AKDbQKuhs/gP3LZnXNfR6wsjXu/DI4HKPrxgH56T5czH9aeY7Mlrv1q/B8+ENBHiTEjXyFIeZnKcvC/NSHQb4oSkmZBmtIz94OwpbXrKzd0TXnzy1OvzVT84e/iilbTzQ7k325fE4dbni1Av9pX7aXDN9QUcDuO9euyAcQgLiDwSoo9TnRzQrRdwd54mzjcw3SSm24Hpdke5O1JPz6jnZ9TTe9TzM3ReuL0bHmyo5N1L0v4lIc/YOWIa0RaxFjfzYtzMo6+b0Qzo7iI/xtToh3U0KkqVRkGpKGXNPmYWo4hRELokOpMIJQQmkR5jJVDlyXqwApv7/iazyC2tbbKWt7UNlr3akxin11xyweDKhCsVrhR+tpePKpd2E0YD4cFvxZSPMT4xdXLBkheSgZZ7dW+7Xw9aEbtfjlTEQzgSgzL/me/Dz/+If7SvaHoEgL+i6fqf/0Psf+Elcz5yykfO+ciUjsz5yDkdmfKh2yvO6cApHTnnA+d48LFhh0o/JzLXY1nkRD0SOrzoIO4ntfG8VK6bvhF3Dcw8y41nKfF+jnwzZ/6Rw45nOfIsJZ7lyPsp8n5OPEuRXQzrzSfI5aYUZOFrsMiw9rIHX7q097osry/r+CjOWHgEYh/TY3pMj+nLTdo8YEudPdiLswv09XYJ6Fn1snmbC/XFDeXFNeX6hnp9R725o96daHcT9TTTprnLh1pfKLb7C0drHsF5Zd4mjK9h8g2UQDsG9EnukcQzGlO3Ay0M1DQiOfvG1myzwL5ESF60u/G34eW1E98BvzLfXB6wjUjtUkKdHbxoxYZwkSpKSghAUCRYR3wuIeJNOqOjB2dR+mY0OZAa8qacJkL++FJOZ1IfE/N53bh+pmQj6BHs6Fa/4dTecoTpCO2I6RFrR0wPXm9HrPWyDmwDr2kPpNb6tbEG/akNbRPKCeMO5A7CiZCXz3cmdhu2Np0J+Tkh/bZ/B3HurKzcN4/ZXfw19ff1DDN3i5fuwh/CQJABWTfCvjmOaSQltznviHlHjCNC9iwZERdtErpUTL8E1q3Z9vqpis4NK+oSEEWxWdHS1rpMihRFSkOm5vquUyOo0RWvVjlY8MBjlgscFfaKHBT2Dds1GCuMFRsqNih5fI/x8E3Gq2+xe/IB6fgeIf7edDH+j/63O3749af89C9+h+vaeFmVm9Z4WT1fV+W6Nd7//36Vf+vX/xz/67f+OP/hH/tTPG/wsvfdVOVCVdhuk9+e9kEuRIAQ2HWvr5UY0AkD3mYcY+AYU7eRY4xcpcgxBg4xrOXj5yATmBplasznRpmq2/MDOzXme211tXcvz729USZdtSe3KUTYXQXGozAe4P3vGMPPKsO+MewL+VDI+5lhN5H2Z+JwBplR9Wzdqrm9axMvbwr2UheimssILOB5owcR7pLMDVSVUgNzDcwlMhcvlyKUGigtUGqg9iB1rRpaFrmZ5lrJzVybuhmiIOoBiaVpDz6sRFWPPXLv0HARZvs8bsdGEiWHxhgaQ2gMsbq9l3tbbKgJRSPFAlUjRQNFI9XcFg0Ui9TeXnp7VddBf9f3t8QwCYke08RW3WaJruEsWQlRkTU3QuptfbxEJWQl5jsO+Yar3AlJS36rYlKHsFbq5VK/9IWQifGKlK7cxiMxHUnxqtsjMWVSPBDjsY87ruODHFwLuo3U2VwDdVbq1GhViUPYBLwKm6BXkRAE1YrZjOrUr+2tfX259TqASPRdrIS1LNIwu2G+i8x3gfNtZL4NTLdenm7eZ7r9GudbOL8wbn4T9DPgnavudtRuW//7VUJoSFzA4uJWHLhGJiTMmJyR8ByTCZ3fo01fp51+inp+Srl7Qp12r7ymBGO8auyfGM++K+zfixyeRsanO9JhJA5dWkmEaWqcbs+UReLqdItNXRJsuqZNJ9p0xmaXQ2rTjNZKK7UHGoTazINOKjQNqApqEbWAWaQRqRKoIVIl0kLwoNYSqCFQJVJDoPS+KoESQj806ePWsd1uykUiU0jU8PA3J7gr0KsXfDBjMHPPX4PB/M6yN3iKkE0YqvRg1F16UpYAsc4ItjXSgfY4NbZmYwkOZyA96NuDfsO4ssqzNvEes2eZeBYm9uKHBy5Z1J1r0I4d9ecUQ5fn67F/3PnGj6DNwuYQPGOaEfaY7dxzSfc0GyjWGfQW/XDHQreC2pvnwD84fPDpP4Dfp+lRAuIrmv7k3/y7/KWPXgDbTcASsf4+YLpErpcHY7YR7Zfy8jxB4L0UeZYd0H2/g7jPNiDu+73vWYo8SdG1rB7TY3pMj+ktycyoRSnnJcK4a9hJkPu6eY/3k8+VTP37rcU3NG1TdqD2En27LpueTX+b26XvlXFKLWfUTqjeYjhbcwUf48w7R0l6sLgTc6FQWYM1Wsda5bKwDODImq37Q1ncTaU/pluWBfOm/rB/rYsioflzibrtdZHmgOza15CwGXev3p8j9MeJIstjw+Wx6+OW5/wUBu27p7Bhxh58o5yP5NQ3wmnTHnt52USv5SMpPSWlJ4TwNkX6LzeZ+kFCq7aJKK8X4PgVENkBrDxE0hi69SjWvpkPpDES3xH0XDQzrSg2NfRc0VPFzhU9PaxX9Nwe1F2z+tNUNmSMhEMiHDJhny75kAj7vJZlbfc2eUtU7qLG81r5pDRmVZcaMKNolxvouWzairlcQTGjqtfXcZsxS92lDTojth+gLNsQj6VmbLehapdDlpWEsCEkLI/XPqqZcb0BeF+Uxvkz7HO+N3/EX/61f4NTOvCn/6m/QNg942mKPEnBbfR17DFuPLs6uOvAbrcbwHfXD5xau2Oafodp+gHT9DvM84den3+wafsBrd19yrtc/navA70e9i1zZGABy3y/p90dvm/KTXvbw75PT9qS6wgXB3jieE1IDmBZE9oc0BJoc6SVgM5hYyNtDsxTpkyZVjJtTrQSsCI9G9QFwPjyU5NAlYRKpIW4BnLWmDD3N8fSgMQMaUCSa/SHlJE0EHIm5sHz4DbnzH5MHIbMYYi9nDiOicOYOYyRIUWWQMPyQJNfXmmTPp+FT2XSvy7JO3ybEgJpGNYc4ueXBrhcX23NnwbiPux/XPN9ttTUg9VNtXG6q7x8MXHzYuL6eub2tvg6rXaPhtrXbf2gvtS+3qut9zVaMy/3QHitSwU0dS+I1iFHA6oYEhoWCiYVM+e6VmtUU6opxYwZYZbEJJFJMlNIzDGjP6HBEQPKgJJFyWLk4BImOSop+KFNCo0UlRQrMVSiVGIoxFAZYmFM8yXHmTFODOnMGM8M4Y4h3jHILWM6M8aZJK9jZ3/5ySVAYrcBkbw5+M6EkDdtubdt+te2TLPI2YRJcVlNg6kpJ20upSmRMb3HmJ8y5mcM6QkpJGKIRInEEElyqaeQXmkPBIJGVzhpAWkCTUADX/v6E/aH8VM/81clvYsExCMA/BVNaotW0+OE+Zge02P68tMSLXY6Vcq5s4hOlfm0MIoe1pvXz71tKZ/bp2r/AT2Y4yWYygoOr+W39XlQlJC6lmOSi67jtq3rPG7bwnZM3ozb5BClu0Daai9ukffbX9evat110lZ2UyuNWqyDrR4EZinXoito25ZyD9yygF6LrpdpZ3T04EASKmHrEhjnDTP0vGGOThdWZTzf65N1zIzELxqk/ElKztSQxcrFymL7whm5tIewWVCHSLhne3mp31t8xwf54cL84dg3tIfcQVsHcVNyGYQQxq/0GsFaZ83Ozpq1ya3Ozqq1WR2sXXJRD8pWljZb+1hA3bYBeJs6M3fzHBua6FuT7CJh5+CsdBt28UE9EfbR65sxskvOBH9DUjOuq3tnfVwc0H1e6r36J8U9uD6ul/pN+4LkuDYpi5CkB2np5bghFzz02FrcUxePL5a6LDDn5TEXD7BLPQpcdbD2aQq8rI3/5sMX/Ilvf40/9ux4D8xdAV4q41/4F+HD/wP+9b8CH/zcZ/psrZ2ZNyCuA7q/w7zWHeit5aZLfiwZhB05fYMcvkGMXyOl94lyteB7/b/u0iudrdXbrLd5uug9iG0ZYL0sHSkXn2Na6S761QN2aQMt3dYl2KK7zddizLNRC5TlsG85YFkOUbq3hpaKzh4EljKvEhZvS4owh8wsAyVk5jB4lku5hEyRjIZASpmUIrlreOaUGHIi58Q4ZI+DkRO7ITOMmV1O7MeB3ZjZjZnDOLAfM4fdwGHn9rgbOOw8uHF4O+30Mf0+SrZQyhdN+K65r7UyT4XpPDOdJ6bzxHwuTNPMPFfmaWaeC9NcKXNhKo1SKlNpzD2XLiezWjXm5gdks0JBujyHUBBat4VARSgSvL+zTktnrxZx+5MAoiat5FYYtDBYIWshU8g2k6hkCkkcHE3igGmIjRgbIVRCaoTYkKSQFssawNYD1iYP0BrTWqcHY/e1mWDSRVVWvRIA9ybYtonALkR2MbGPmX0aOMaBQx44ppFDGhnDjjEMjGnHLozsYm+LI7s0Msh40YNfJ7Plhu7plfXWttr7jIZppdnM3M40K8ztRLWZohNV3RYtVJ1orWIqSAtYE6wJ0vpcUw00QAPrMig0PGBjF5q3ewEetQdwdKtNmWTmFCZOcer2zEkmTuHMXZg4d3uSs/fLec31M0p1fVnpP/7Df45f+qP/7I/1PfxupkcN4Mf0yLZ9TI/pMb0xLSzQNaL0Esn13NbIrm9rn+4czC3n6u293z4DfhDiA7A1B2IUhkNi9yQ7MBtDD5CzcbK3DS/JV3QXudaFDLpsfFdyqC1DfUHf3UapzkKwRd9xAV7bw6xvkITVrqvpWm4X0NRd7SWUzvTsDFPRDZO0l5d2bDNWN22vf5yIOli7ALZDRfbunjeEi6teWNz1Ql2BXknVWaifJ80Q3OsPmQS56fWz19e+c0QmCGdgDoSWkZYJOhIYCU+fIV/7GunrXyd9/RukD77J8ME3GL71DYZvfhMZtizSdzmgdt0FkdW3ZWUPrW2ySAuFte0SQGYZv2XSPWx7TF9UMo/IihVF50qdbijna9r5hjpd06Y76nTX5Q4CVHERvCJeL3Jpq163bV8JiL7738xCl0oIDYsNYsVC9YBvoWJhRsOMxRlNM7o/02RijpVzNKZoqy2pUtNETTM1TrSsHq8tBYgjhB2EHSYjhBFkxMLgVkZMBtABO2XsPGAvMiYDRmIm8klVnlfjeTVeVOF5C7xokWtNtDcw/QTjKGeecMcTueWKW36Ga/5xe8lRXnA0z5mZSCO5cywBJVHpzrJrX+h1H3fpi12Hb8Up2+X9+OFEZw3dYxMNvZzvsY0uzKKl7SHzKCOrTV3+xDBr/Kc//C6Rb/Mnx7/E4VygB0TS1pimmZvTjPyNX2H8rb/F3/r+L/M7//N/RjkX6uQyCfVcqVPzqOdTo5VCq56tLbIE8iBHUEF1wPR7n3Ibu+v5/33na/V3IylCk+4WLa4T28QlcoZ4ZBcPjPFACCN1jMy7SIsRjRnLzoyVYSCMI2Ecyfsdabdjd9gz7EcOQ2bcRfZDYtcZsvtdXNmxh73bcYiX4EyP6Z2TA5q+5nnFdg1s1Ki1cjPd8HJ+wbmcCRZIFokEQoPUAkGFqIHYAlGF0GUyrPVDseYSGh5A0/rvZGnbvn4D7X3aH7vWL32mjdoK1QrVKsUKVSvFZqpVqlVmq9yYcmuLMJAxGUyrFWZgMpx9Slhz6Xnud6/S73RVEpVElUzrsGWTz6KYvqTFtf/NnjFi6vfLoMTQiC5KRUTXe+jSFmRe6ztRDqjX+7ox9rqIEsQIogjqdqmLBxFVMQz1eU4U7dn7mpe79YCnSpMe/FQaGioVRaWiodJoNKnUMGFhXg+oFDj3/HmSmJBJJBLRwspgX+eVis/3XQ99fdxr5j+xbf/9kmHMoTBLYQ5vicz3Ke91sMSoA4Pl1Q6WEROaNJoojUZdytLL6NpflyCz7+ot93lT4p3RwEziIHv27NizZy87rrjiA77Z23bsbcdh6bcdB9uxt3Et72xHtogGo/XrrIn598Byvam34d+NsnxvevnOvPX+4/D+n/nm97+Ur+yrkB4B4Mf0mB7TY/qSUqvaQVTtrM3mm8lZV0B1cUW2h0Dkprz0qb4KWt6rvwbQrA8A3dJ1zN4p9UPsDcb6uZMDq43yhmA0IXjAIOkvaB28Xexnfn2pPbjGvOqYSg+2EdJMyBOyn4hxJqfpEqTjHqg7berTCvCG9MUEgvpMyYAFyOrC7NJACkgFmQ0KyNzrPc6F94vXl7EFREbComUaRkLaeQTovCekPTHtO1P0SEwHUn5CSleEcU8YR+TpiAwjMvqmXsYRhgHJARsCMgQsg6XgmwsrrnNnBdPCAr468LqUIxAwUczmzqaVDcNW1jGXx746xkxX/Ui7p7t30ZRcNSZ1prUZbTPWCtZmtBZUK9pKb6tom1GtvqnVhFh0UFsTWEQ0eVmDl1u41FtENHYGRkA09HJ0cLKFPk4gGWTFskJSyA3LBrn1rFhq3p8bpIqtth8UdOCr01v671VBAmEF3IYVLFvqIQwgA0ETQUekZWgJqdk/T0tIjQ601gAVrBhWukZtaehcaPOElhmdZ6xU16stC3sWZ57UgLTgz/9Wd+Sx5wc/B6lonNZscULT2evDhO4nzqlwSo0pF6aknGPjnJRzVOZoTBGmaExBmEJkluhMxLCjyEiVHUV2FHbMDMyMzOyZyT0nZvM8EZktYG/9LA+S8pmZwm9Lo5244pYrrrnihm9zzc9ywxXXPJE7nsqZJzLxXph5GivvxcqTYOQ49Ijvm7wG+XnPr5HN53n1lnu/xZoy3xWm25npdma+nZluZqbbwnw7c+rl6WZmvitobatHhgRxbe4IsgoX0w/RZte3XqKahX6dBz8ss55dBxsQsCDoHNAiaAn89//kv8N3yt/nL//F/66DBf1e2PVrf+HZb/Hz3/kN/vpH3+Ov/e0C/N17n62FQIuJGhM1Dmg4oBIxSWjoNkVUUs8dhpHQ4XHXiWxIh8dlba+d6dcIVJN7oL3YJYL7Yh+2AyvbV3ofmzoYKXT2dRBCTMS8SBVkUs6kwWUKdnnkaRx4GjJPJPGExJHAsQn7aoxFGWclT0o6N2L5jBewAVPPa1I+a6DmU8/rk22leV4n17MKtF8kfx7K+awHsEs59GsvdZ31JNC9fSQHJEdIgTBEZEjeNiRkSIQxIWNCUkZyQmJ0VmLKSIpIjB38bCvQ6TreFZtq90Ro6KTeNrt3gRb3LnBr7o1QOkuvdO3jzuSjexB1XRVUjYnKTbzjOpy4jnfcLDbecR1ve5uXve2Om3jLbThjnwN4ShaJFogWiRZJXOpBA8EysQ2IDYhm0IFqQqHrEhOplqgWad2qJZRMkwRhwHQAGzAyMGB27G3Z88MkD+wrSUFKv9c8sGFCpCBSCVKQ0BilEnpGKoQKNCzUzQKrYVJhkUDofS71VHFJp9oXcXXD5L/3rlA2Mc3fMYkt3hGBy5F3WNsc0Pd/CQf3k0VCr6d7fcu/TLLdpU3631n6WItECWQyWZPbDtwOa9nt0GuDeD33nrzWM1m8PcpFHgUBWX6jMUAPLsorbcF/w0s5CsTlt3153Do+hYu7SQ/mObeJc52YdOLo+8QiAAAgAElEQVRczm7bmXM9M7WJU/O2qU1M7cx5sToxtZmzXvrP6vB3Ev/2kvjnStJlDSRt+i5tUfrfYy0/eByJJJEgAUnRiTM9h/45Q4r+nYX+XSzSMl1S5V74t3seN5f2XdpxTEcO+cAxHzmkAzm+y0HIY/pJTI8A8GN6TI/p92RSrdT6kjI/p5RrWtuAoD0wyAKEtraAo75obltwdWlXt6qGVi5u+Y1LEKtF53Sy7o4PrRi1CG3GbRHaLB5l+HMw0F6XxMmLPmF3XcFVDk4MCT2L9k20IngbsEZu9gWBEo0ewEWgR2R2rVXp+0dh2Cd2h8x4ldgdI+MhMOxh2EPeK8NOiYMRwvLeDInNg34seqehcdEzXbRMnYVqNFb9U3G/JJPmIJZ17TA909odOt1Ryy1a72jlhNYz2s4XgI+5x86tqFQsNAcJ3umCAikBKdJtQGpAzpcyJSNlRGpESs81ICVBb3MLYZ6RMiPThMwzcp7hPCOLm/iyH73IMbKQf9H+ZxgC7AK2E2zEY2wNiu0FGwPsFhv7uOjlQ4Rdgl3C9hHZZdhHZMjuKtclBZCArTyThJDABG1nTF86AGqlA6AFNQdH0YbeVfS6YloxK51dsVxD3am7X0teF7CwAqaiueeEWF5BVbF0aX+NDWv5wXN0cBYLiAUHZy34a2/rBH8NuwQmufB9v/jkLJvOIpXq2nhrbpg4s1Q0E9pIaDtCHQntSLDPvkTTsAFC44SlMxpnNJ0xaYQmHole3UoLhA4+h+ZsWcGocuYcz5yicIpwF4XzUk5uz1G4i3COjTnNaPBAHyqgItio2N51i7XrGKtYvzdJz31jFqJvxEIiLG6cMRFiRmKm9YjXZ4xZcA05Nc49Txs7qbO9fpS0F3H91h6caxcCYxCOIjyTHtJNhEwnzpgLgqSOSwY1v/Wo0Y8sNjEWLvUoF5mDuJEvWPrWoLYoaCFYBZvdqrNzc8iIvI/IB0jIiCSCZJDUD0T6NdjtS+CFX5TuGsoDKLdXtFXON9dM1y+Ybq4pNy+pd9e0uxv0dA2nW5huCNMtcbolltMbMZZzGDnFHaew5xSfcYo76pgIpkTrAbVqI5TOYLMeWKuXgy3t7fKY143bfBID5jDw/PCMHzz7Lr/4a/8L/8/0BylhwIY97HYQd3x/+B1+6dlf43+ff46/OPzbpJ/aMcSBIWaGODCGxFUI7BFGhB2QkB6M+H48jUsQ4u3fjnXsKmux6bsnYWEd4Fh/H/TfhYMVYQNmhOgyQyEKHi6yEcX6d9H699EIruuAVT/Mstk2+roBmwW7i1gNoHHz7RUu8JNBqIiUDnDNXh5msI7s2oTVCSsFmwp1nqilMNeJ0mZmLZRWKFooVqkRSpRuoT7IJZrbYLQINZgfYhEIFv0Q0ALBAkH8vi5EgrgepM9vgYAHzwqLFI84yLXMf0tdLVBxffsijSqV2pl5D8tLf+PBWCpVCoVKk0qh+jhR/J34a3n2f9GWzyTdPmz3TyAq/b5ibpcyyinP3KQzN2niOru9yTMlvhmgDypclcyx7DmUA7vTgT9Qvs3Y9uS2I+mOqCNmacOWlZUt6zZ20DZcGLOWmEhUS90/INN6+fPMromZLBOjzAwyMXQ7yg2jTOxizzJxkIk9E3vOHKSwl8I+KPuoHIKxi8Yh+n39ECP7FNmFgZh2RBkJsiPGHSIjMewJMiJxBzK4J4YMmGRYcnSQ37WgM3RdaLoeNClD3kFKINIZtaxBsUyss3AN6/Onc3KbA3ghumRZ9Pg5S1tYgsKKEEO8B+QFefRU+qLSyBVPftxv4ktK2hplOjOfT5TzRDmfKOdzb3Nbzifm85k6nbmRwCn5+iymTEyJkNJ9G92ubfHSt+1/+DgM6jxRpulip4kyP7Db/nminL29ToU2z+hUqKXQpkKbC1oqbS7803/q3+R7v/DzP+6v/CcyPQLAj+n3VTJzUPBheu2U+ZqJ9PXjHj7sxzMBL+zILVvSdFPXS7/qg7Fdc3QbKEc35SX4U5lfEyxq3ozZBt0pzmxtVWmtR4zevCbraytq2t+D9vdtfdz9ACXrDrWzOwRYXeVD8wBNoXbQsfZ6631vaV+Byjc9ZhPMCUVGhZ27VkVRBtGVTXIJArUwTfRBm3+Oh22v9r1JOuDBY77Ui+p+VXEA5gzO5luoOctO9stM6/7TQdpQwgrCxhpJdUDK0YHEmpE2EKwzTmwk6A5hR7AdwQ5Iy0hNSImEFqBJJw/1620JOY6u5fvtnXFpinTL0i+GJYFRsGfORLDsJ/IkwVYbkBghuZbZomcmMbu+WQdlV41ZYgc55UIT6eC+OPoGk/jfRTuor90VvofpXVmotgCywZ/zC0yGYvECdK7u81IRTR3E7bkNDsi+7gIKBnHJQFRsqSeDqN4W3DqTKyAhOMDYN0uIg4wSIiFGBx17WYKztkLMEKIHugnhAsJIZygG/5s5u+TCHLnHKklhbVtYKUvk5VOrnFrjrIVTa9zViXO54VRvmcodzbRj/4LfTQKt+UGNVai1H1BVo1U2MiXQmtFa9qBMevSo9q0HaOn31zLMlDjROkDcwg3WNTxMZoKcCcwkJgYmRs6MzL285DNfZ177Eq8PMd7hpwWaWp1ZL4cNcZM9Gn2TXm8BbVtH2ESTAWVcrS6WkcaAMXiIFnHbbKDqgLZM1UStHoSqzsJcAswNKxXmGZtnbC7YPMNcsOqHHFor2hq0SrBGtNZ/542GH1Q1a1RrxBWM3JRNmbv7/JLrpry401dJbxmztL06BoRk1bMWBqscrHFlxsGMI8bejAPGAWEPHcgM7ETYERgkMBIZZMmJLIkk2WUSrNGsodZQds7M4xlVhDoIdecRzltMtJRoOWF5wIYBG0dktyOkSIyQgpJESSjBnH3pwJcg5kCmk3s7e00dNA3qrr2b6fRSNrvfroqo+a2gGb/yvoNOf1Z/nj/83X9sJYUCBD7iW+N/jtq3eV//A/694erSuegk9rtZp653yuWFZXt/gnxDWR72vaW/r4voU8n6Ussh7Qohd6BHoud+P1veqefmuozhzF3XbJzDzMREaTdM7YaiN8ztllnvmO1EsROznSlMTDJRKJTQXFElCjXBnNyWCGWx94Bco37FlBqcyRpIixxCL0cLJPW2ZJGk3jdacrakOtjbHZTdLVka6nCzuzx3IFnFD8VVFP/XpTcsoCHSQsZwMLVaQi2jZFIb2bUr0nkg3w481cx7NiDqjFm1gaojxUZmGzmb371/ix32jqBspjBSGSkMVEZxe5TKQGNgYhBlkEru6+KE2yzmQbMCZDGSwD4HjmPi2LWYrw4jTw57nlzteXJ1ZLx6xrB/QtodPPCe+EHh/fygTaK3/YQm39cUzCqqpXtILdYP00FWaRwJ5tI2ssQS8IO+z7LPrPPMdHfL+faG6faW6e6WOk33B22fZsP6fNj2oHjvgdv3oqpYa6g2tPWsrevJNrTV3qZrvy1jX9fWdH0uq86i16ad9W5dOoQuH7LE0+gkCzXfZ6pt6pe98FJfiAoxJ9I4EIdM2o2e9yN559I1+bBn2O/Jxz3D4cBwPDBeHRm7TfvdjyRTY6a0dqbMN8zna8p0zTxdU+YbynxDLbfUcue53tHqidZOtDqhrdJKpbVKq5VWyqWtVrRWat2sa+DVaektXj9bMn0Iy8GaH66F7okX+iGdyNLXy5u2tU/pB3fWPYH6/jngE3oEQvfeWNr8ZJ0UjLyzlWRgfS9tuGzJskgwUa4//nXgEQB+XXoEgB/T72p6CP5hdK02VnAQu+86v7jNr+Dj3O73Lf1FN+MaZdL7AZO6nunvStxDWQJQ9clRlknyEshjvaOuK32/gV1ogL7ZuLi997ag90DLC1Cp9wDMBQxFetAnud8uoV5AU7nYS3T7V4FL79+Clw68SFLYe11EycGjpd4HMu+Dm2/UQF3q78rg/CKTxo2Lt4NuznBc2IVhZTTSWYXOcnTO14Xr5Rt1Vvf1ixv7EiSK0BkrHbRiYfcG3MUVBSug3YW+uns6tWDVLa1gpUCtUGq3DaqCOoNEbAEC8TYzBwmXYAir7Rln3RC7b254NYtEBxRt+Y4iWOplZ3NCQrq24yUPCJcyDITu1ickAu7WF9oBaQeC7givc/H7LCmKu2yOF3dOyf49sy4W+0Jx0cnr9dW1cvlejEt9eyax7t8VzXe0dIe7Al4WJIvWGqE5YNmzdd01gq6MUMJ8Gbt5jHU25Xo/6eDkgg0s9xrWqOFwoaFt6stjt4/pz2N0VmpnVavMGDNG2TCtnXVttrT5GO31DXrymVOQrTu62xh2LlEQd/fc1b19vMhYLP09+No2ANsiNVE7oNjs4npdTTqDKVDM62VxS1VhRtw91YRJldJO1Haine/QdofqCW13mJ4QPSF6RvREtPOas53InBmZ2HU7Ok9q/eyfQ4LtwZfX84/olecqrztURlR2KDtMdhhHVL4ONmLs/BO0TKxGqBVrs2ed+32qghYw/6bdNsQaWdxCRWR2uFs8jvgyf0h32w59U2B9M0A0JHZvh/gp84Nw+VIfSDBqE6wKWgXT4PUmq/XyJaCKqo83DaAJLIFlxDKQCYwEc43awIDDqiNi4lqXpi7LYo2gFVGH8xZwM0ggLhsjZGUyBnG+sEgg9rljYTWKJEx3/tqMJLm6zE1bu85Z95nwuhy8djDKaO55IQ04E4K/ZpTc3Yf7RdYPnS6gZJ8Di0uFXMQeja3z/o+SbHHFUY9kY2vZrdmlbtqgX49//Y//LM9OX+P7v/o/MLd5bUdP/IGf+ytIuuY3f+2PMF//eW9f+tuMqXuqSApI7u78yYMP+bpVOl7b5wlbDgQv88dyKGhmb7TrobcYTeB2FG5H4W4U7ka4HeE0wGkQzqPb02BMg7dPGaZsbge3czJq+nzrJzGITVzbVYWo2c/Z2lK/5HwSdoseLNKB0djLi2t56O7kYXU3z72UiURJJCJZvJwlkcJyEOE2SuigxkwtZ7ScaWWitQmt/jdr/e+2SD4EWTygjBCcfSnBaOIHThpcmkNDlxPqvxcRIVjAFnaxJCwkVIJLfIR+gNWtayL3cg/GtRx4tT7v1D6/lL4+LJb7MVv2bG5nLvbzpkxjlJ435avQ2KEMcmKQG0aUQRrZj8wYUC+L9nLDlW+VbIumN/16xa9fHl7PrIDb0ne5zq3/lntdG/PpxEd3d/x2ebukloTAeLxidzgyHA7sjkfGwxXj8ch46HkpH68YDwdSHtbX83T5Pag21CZMz6hNqJ3XbDpt7KXPetnt5Os7a257hC2jYX2+M+rqyaYd8PX8eYUdHqTu7WQWQAWzZf5agjkunoz39ckx+rrvArZJl9hZ2tzTsKsirNb3rtux6+nbAtSJQYvQ4z7QiRjSuq1+MCF1ILQRaQNRR/d8Uvd8iurl2HYEfeK2jcS2v+wBbAFZfU9tsfiaNRc0bL2s6gO7ISO8bgznlXCzWNuWz3A+K+dPYDlNtFfGdxku0fWxJgZrHIF5JUdomL0u/v6hIQuxY+H+KNA25WUr3fdu0mEB0VUpzPsbl+dqspalbZ6nbZ5vKTd5bV930uxWHtQ/Y79u6hs95rde5oCJoCFQU7/vRs8WIi32e3m3GuNqWxjQf+ZvwC/9K5/5Z/X7KT0CwF/R9A9+/Ye8+PC06otq084KUneVv1e+MDXvj33d47SXOxtOLwDuEq2eDV55kSTrs847J3VgMpYOXJZ7AOYSzT6kHs0+VUIPdhSGSjhUdrGxX6PdO0C63h373UhWYMX5V0v5AnpurW76Fjd33TxH12hbwM/lLr3VHFvZmz9eoNM0YOYalbYsJriwBQFWbcP1hn0Br2VBvzbHg+tfuWNMi3UXvNEz47pRvpQHhME30vgCwrU0WSOaSp/MnOLSN6Muw+XBf2Zx93xLHbh1y1r3tpAHQh6JPThJHEfiuCPsRs9DQEaQ7tdrtWLnGZ1q12mrPZr8ooGpHg2+9cjxXZvN+mRqKwNzQWo+H+Pysrkt9zerbXYQeN28Fvza0u6ONnowljhAd60muBubrKBZ8ve1ALxbdsiWWvSuSXjAmAwbJqVc6mnRr7qwJ2Xo+lXZtWUlxQ7iPswP23u9a1993mTWKOUT5vljSvmYuXxMmbf2h8zzD71v/phanvtm4PdwMoRmA00yrW8NW2dhNjJVBhojTZ5QyT1AyuBlhh445VIv4lvJQqYRe5iVmWSFxNTt7Nk8x+pt2eY+9uX9MZvHZ2YWHcwvIi1hW3afNvA1qTBQGCnsO09qR2VHta9zZyMv2VF1R7WRqiNVM1r9/ltb1wHt4Nw2GI41Z5xizqQR7VIpqgStmDoLnebgqiyu9bhrvKjRakBLQKtnq6DF9Xy1BHItPJEzT8KZp+HEVThzFa+5Ch9xjFPPM4dYOMTCLhZe99Py/fZ9R3frdbP1ZMvb7snPOJCoy8Ea/l2IJYwMmlAbMMsYGdVIiwmLDrq0ELDoVqP4hiAGWgSNgkZDI1g0LCoaFYv9YCV40DcNDcsNGxvWg795X+2bzMk3i/H1zOfPk36UW+sXkrYbzteU1zYLri25OQhdwGlW7wTrLFxFWkVqB7ulH0DGHZKPSMjQFKmV0Bq0gtRNbn49S3Nvi9C9h9all2SQwQ8Sw+i2u2uLDBCgSuVXv/fv8k9c/yrP/+ivcJbKROVM5Y/MH7Evt/zVw/v8nX/u/2IKylmMSRZdaDiJMIlwEuHMUg5sOcCe5cFZoNzrd5hAFiLvPe7w6/fAmxPFN6SRwI7IXgJ7AlcifBNhL3AA9tiaDyh7tIN/QpZIlkCWSJLQgVYhd5A2dHa5If3cU1ATmipNxT0OzCXRq5r3N2gmNPXfbFPxe5n6PU0t9HLw/t62rc8G1Xqwn2ZUU5pVB1XND+8KO0o8UmOi7BLFPPyg68i6DEGxRCFRLNEs3ut7V8brZ0oP/lwuzdKI0kiiRGkMoTHERo7KEJQhKjkqh6TkODPEMzmZ56gMoZJjJYVGDoUUKkNweDjJRO45MnFIyjEHjjlyzJkx74jxQAqHruN/JMUjMV2R4hNiOhLzU1J+SkzvEdLo8gUh+ZowRF7n/fi2pFpQPdPaudvTpn661970hLYJ1TNmzSGz5rIhrc7UMtHK7GB/nXvQxdnZjvWF6/S3SmuFU6vclYp+0pDn9P2H70dCNEIyQlZCMiQpIbVu9VM/0yt/5pqgplUfn0Xbf7VhUx/B9g/aNuU+r/UJ6T55gujsV+s6wcHX8cR+81vJA+Z7WQEP9OZrAsGD5wnVvdPcRcjXD/3wkQ0hxD3C/NDDwT+57zHWul28zjrIf2+Dv4k9YKuU2yJSfdsPwrbZHysrE9fzwsXYApzLfX97Q10dH5c/430M9pX8+vF+Mw7bsWwsb2hjeT5565j7N/r7n+Myp644MpeV5483WWff2rJNDetZAwRBg9BCZE5dF18SNSRqiNSc0BypMaIhdhA2dlD2Um4p0WKkdqsh9L4O4oYF1PW+d70fbdMvh6df1FfzlUuPAPBXNP3q//hfMs//YAUn77mhh0WTU/sE0tt2DmAu7Uku9XsAaNDNXWsBO7dA4EPX9ctd+GEwhntu7Ss4ahu26rtP1G9LDlT7pGudFWMLi3NbZtt+YXnayvzM3tYD+mDu7ipL7i7DIYT7OUZiXGxac4hpjWotkpCQiT3i9arXiawu4MISeCi6TuTGOjAqSPNFhzTpp7LBo6a32NsC1M5WqdqZSlwYPg8m3XsqDEpnvSxtdmFLLlF+uxvOwpDhc/8p+yy9njLreo2sR4rWgNIZaDO0M9YmqC+xesLmO2y6xeZbt6VQ55lS3PXXHtgvPOWMDNkDhQxdN2zYIbs95D1hf4XsD4TRswwHwrBH8ojkHcRhBW0lZGB00Nb6pmY53W94kJBqHkykttVlfQVSUwdY1/rG9sxal8tCIAJBsOCaZSaLYlmjtcKklblVJi2UNjNpY64zcy3MtVJqYS6FUitzbWtbqzNzqbSpUFulaqVpRbVd7jMGdMf4yzYbZzEvq7suvbAu9sS8v1+0W+cmwYhDYxgLw1jI48yQJ8ZhYkhnhnxmjCeGeHrj2mPSPSe74mxPONkVd/aPcscT7njKiaM7yItvTmcSRSKz+OZ0lsQkkVk8oNTCHlrc47du86+LB/0uAadCd7mOG/3MaEraaGou5WR1dcVegg0J1ss9GwQzssLQYDDITbqF3IxdVcZmjMV4osZQfWw2Q82j82p3oTdTGhU1b5u00FS7i2Tr8jDOngmqPZvbpgR19/woxVlfdBEF0fUgbp1bUERYmRnLZyI4v5EgBOm6muLnIFE8onbCSDPkWUhVSLOQi5BKIBXINTpTDjpHs9+26Kx+k/7ezsAM3ECXSVi9AhYPgCA4FafTb5ayDP00LWDLeHp52y79eeWSAxetQNcQ97lsCYSyuh0sj3to1YHZUwucuLye70AXz4UvAWBZLvVP2xv1TdVyq0pd/xStnZH8uvIypnm79bwwTa33m7v/my3tG+ZQnJ3NEx00JlY0FixqPwzS/jiXVFg2w2oN9+5wrySTPsdiflXe218uAOLlqEPESFnJSUmpkVJjSK0fWgKd7VjEo9sXAkXc6iJI3B1UfIljLk0TpIPkAh089x99nws6K9vXloXLQbqte/Ym4qxIke7K3jUwuUHlxmOx2RqTjYKXF0Z+7Sz9YlBtafdy6eOaQbFGtZNnXni/+eNmE8IP/ix/E/jXvnW5TP7ll9f8C7e3/PlnT/lP3r+v8pjFGASGrQ0wCuzF+EDMfyrrX4SLQ8Xmcr2UBe1rTdPUyxHThOFBrkwjahHVCKSVORs7WzZY16+1flcxH98s0tRt1Ui1yHOL/LCXl77tuKahPzbQLHZg1uva27x8adMvWB7o01IQB0+jKDEs5UYKjRSq10MjrbYSw8zwYEwKjSiVGJQkDqYus2ymErtK7Wqll7uNm/eR+vgV1F3KbMYus/NyT7Tgt9TuGSb3DlGsSzZZX84aMgMnlzARdYRdVFcrnVUutmHzmflvTMTVn4IfWHjoic0N5AEYJZu6/5SN0OjzascZO+twIY1auKy+VnxwvU+94bV49fXuWbHLj2d7ZthZqIP4664eS4HLvLN6MfkcaSzzZ+igaOwkkkxoCZpLT6GJ0HqsgU4yCS3CNpZAS4S+v/I219pVFDVb79trUBHdHNAuIOfGQ2Hpk76OES1gU59r6gUsXR+z8SRY9lK2IKQPnvf3QLLFjd+32evfcfnbLryjbb9bWeen5dqw0Ffz6/lyJyrdu44WhlKfz5byerPelmHxjuuKzKzs3Q1WYSthi7VdFlmCh8vx19W3/J+w+UzR59718z8c82C8BVwuK4RVEkpD9OCjEtY+907oe4eWXB6sZ2uZpn3u0R5sUeN6vzfc+ko6oEEuHhOrG+G7XADW9xVLfIS+teuxQS6HyUIUIXccJbTgsSpWbCX6QcUqhdfjeeiCUsf1UMXn2QA/M33au/t9mx4B4K9oOnz3v+XZs//zlXZTv5Ms4KZ1VuJ9sHPjWsL9NrcD7t5+CWtxqYX1Bx1MVncqkdB/uLIZvbgo9tPF1U1R2EZXv5ctupvhMim3bjV7xPVeR7u+5zKmbYIEfcWSPrCvJoPV3fgCsj9Ac7mnbbowzNaFjF7cLhdG2rJpbg1rfUPdtgueS7Z++vx69mqXMGjThsV6YbM6uPvm1ESYh4GaB0oeqDlRU6bmREuZmhIl+WljjZG6P1KfBErM1BC8LQRKjJTOJqsx3LM+8bEutBVfdJsILbg1ubQ9tLZSoS+LlzWW9zrWF7WXx4CJgwsxerC1GJSYlNRZASkoIbRudd38BFFiL/cpnMXVOnRwbGkLmzFBLlbMI31v27papz//Uu59y3JhgSoDSoiNEJU4ev9x85j0E8SUVYQbnnDNUz7kGdc85SVPecl7vOQp16t9yq1dcacHzAJRO9NSHYjc2tQqURupNZJWYmtkrWQtjDpxpYXRZkad2fXyzmZ27cxRJ3b1zKF53uuZQ5vYtzP7NjHoTG6NrIWkDWlK1OjudToglnHt44wx9rzDGDBGkN4mS95hMkLwgCfSA0kRPOCJhM4QkuUQ4sdzH3X3SnenXCQG1rJ218quiYnE/j67hIls2lbdzE9ZAm03tPhTsf9yPtsrL23LffTBCdxWa3pTv7Bs7MG91/pGdXuv9w+myxxgywaHvvFhBRzXvf2yixfbbJ6sb5wckFzYV9DdRfvYVR+9P345CA597NY7JqwUnw7Qr944nScbGtKtsXj0VM+xgThw627fl82b4JpwwsU1E5QQ8fur0O9x1u+NrmAsaGdVO7NarIIpsmzcW/FyD5T4afMVOIh5FwJ3ItwF4U4Cd0E4hcCtCHchcHrQd7uO977zdi4ioZJoHZZssszscgFl39Knr5xyvaa+sJa2KM2XmMSMbJBNuoWkkLvEQNLA3uJGYkC6/EAg2cBvxu/yG/Gn+eXT3+FgkGTg2dz4Q9e/xX+RnvHD9n3+xEej3+sso5ZoGpgtdtmXQLHIrF0iRgOntZ1VGmaxtdt5DYwVutP8l5OiuXt+QknWLdbL9+2ul5dDwKhGsskPALWRtBHVta6XuSqaz19RnaUdrZG0eFn7uD7fJa2r9nVSXwPk/v6C+VyfzMHUrOog6+b9xy41ENEHMkYbu5Fl2ubFE3EhGVzk+deL+3Lre1fg4jOnjuS89pRqu/7+op7zdy991ivYQbb+DW+/5ocN8vBBdplnt3Pt61+By57li0/bt/AjrU6XeS+wkVVwsHA5z2XTvtYX8vUS1Hn7eD9NXttXZuYaH+FStwSW+kFeEsy3zC6lFP2TOp7+/7d33vGyZFW9/67qPufeO8MwM8AAA8PMADOACAI6KkEUUEAUEBQEDBhAghh5gGQFFFAQUAQVkIwEH0gQUETJOUhOQ3YeOQ5MuKe7ar0/1tpVu6q7T+juuvd03/X73HOrakNqJUwAACAASURBVNeuX63etePaa6/t43FJY/N8FJ9qel+/k4wAtDEISH7xBdt8UjSZJ1SZu7FGHzsPVG1UYSrElH2adRbNRJzWv2tRWJViKwjGbDDSTVvdpQcYscFYN+3IBiPdYCQbturAV8SNZMiYofvwtlUKycCjzEZIaeTlvYzsz9tnt4jWMk3E6IxVI3v9gZjyNOlg6k2b08oeqc/BlLADb2ul3lw5uc1pH6eFU+uK5ketCxcoxBXKom6g4WNan7QrZMyguJhiOOa4cjluqNYRoQBeU1zrW7+Hvm/ohXhQF/alw2fpJM3SFlDvYpwsmbzUNpvpYHEHTVia8U07hEvt19L9Vg7Ecqu071kjm8XN7yXOzMelZPdqbpnNZ41XUtiBbaA2phqNqEZblFuHqUYjytEWo9EWW6PD6GiMbB1GDm8hWyOktix1v62jEbrlflrH7rd1XDa+W8sSGY99jZ0t32lVnbUVU/KHN64Vs7VVk2ZWTcnKacrAVH0WtvaZMxiaUnNQoEVBWbj1TpEseWywOAbGIijq95M/NVNcloXNFKajFgVbgwFbhw6wtbHB4Y0DbG0e4vDmSRze2GRrxt9oY5Ot4QajzU22hnY9Gm7Yn5+XwwUdX84J0ZID9YZIh1vHg9mmSc1f7gO0OW6y5Qvk7W/ImA217sSQMRuyJJ9hGaqsU+U2oagm69LmqK4OUb+uLRa1QBkCm2b1p6kTac10Id6NdMtD84EMiC0DV2y5p/dpzQql8ka9UopakVWrgXxWWjL5LbzS2o7TZ7Cpw81wwtxymEsO+6uqCt0SuLhgcNEGGxcNGJRwylg5dawMKv8rz2eg5zMoz3M/h0Vdp6YZadHkb9aW74n4jtedMU+3q4rLj5hStl4qLAXmN6yo0wyoJwUqES4YFJTDAeMDVlbHw4KxlIzqHcvHE9cT9xgx4gJGfMfPtxgzppSyTvs0QDM9WjY6axk9pKkMId+U0KrZRgGYFIID8V3PtRlspF3QbYxkVlKF+NE7ona/2S1d1HdU93sDhlSi9S7sY/8bif2mfDf3sijN82mhjAullIpxUTFGKAv35FcoY1HGaK00OygDNhlwUIYclCGHiiEHiw2OG2xycLDBJQabHBpucIgBh0Q4VAw4DuG4ouAQwvEiFq7KAYVBOYaxT4LVfnPdUqgq8d3e0GpMWZWU1ZhxZRtzjcuSUseMq4pxNWasyrgcU2rllpFjykoptaJUbazJ07LrSry8SDNlU4kvz/ZBirrNnNqGRKoDxjSW6KUvza6kUSyWtd5Fvc3Q+n6V7ovdz+OWIrVXn/wZFWnKnGYjXx+8aDkA3QAGMOrUU7j1JYN2faaDup6r65Fm6JrVKU09k5SmtjS+uZ+pqlvnpGdT38Gtdxtla0dLolPCrOD7gMzLGLTOtRs/u98toRPcM++3B9r5CgA616br8JSatmqg3vDNn/c4ilmrp3RXvK9A4ZZMwmEZ+KSr35vDwvzlnDMZOGKme+JhOfaJujRhN2bo58M6rOS4aszQw/LwYSfesDLl50Zp8Te07DzTcKS4+fmgFV65stXcatTalfw807pIsupPSrh6IkxsAixbIdC656sLNLO2VCnqyWp1/nSuslFvdok0E0y1kUHSwCYlbrYMHJo6Kl9SjqYVPGmCKrWN1p9UKdyC0OUqGvksCZTktzRZrYskxZra0nox/8CmOGrGA0YhTfJOnDeKJmvjpCn1AlZTpGSX2m2SuUbaZCwH2JJNxthxSw5QUqBe77X+0OaIeetWMUVQpRXZav06br2ATzTpwOt00eaHeDUhnbCUj+z+YGPIYNBsnloMbNNUW5FW2Ga1Hq5iqxubSdjC9rZIG7OJoOITspgVvwJlpVSq5mZQrX9WlrYxdFVWVG4UUu9/UZVoOUJ8szB1N0h27q6TsD5UU+emCa+irsur/KjNden9y9L7kmXqT6b2gcIVcql+n3IkO0q3ndiu3XDkynCvY9th2uSxug42pBVcaReSQoVipAxG1pYMNK1Q8r6TZuEqtvKAdJ6FqbTDEQaaFMnixrCZ8rh7XYfn2oislfXVxoXXI+KrDG2jL/tqmjb4Ih2VtBFYPrGrkvJAbW6acWRHf05bcbR+z5SmcW408xzeT5Hklsb7JpIZLKQ+jLtYUt9ArVnZ5f4ZZIDiPenCVxhgK9lsZVm6hnolGNJ2o1zXF7TqBUtf8F639blVvD1v8l46TwbR1keoAPOFDbYBNIxQsZVTFGOQLbQYUxVjKtmikjHjYkTJ2EYkMmIkW2xh7psOUzJG6/qtlJR7mjqvNmsTC7/rBZeb1gMIEArgtcVnvv1Fvv3N/7XG19espR3RrT5J/jbNXUExLLxRFxgMKIbWkBdD97s5GFAMBxTDod3bsKwjSbFbdzYzpWrlTVqZOnNpOZN18MT9HNb3q8qUnZWaf9VyTFVWjMqKkVZsldZJ3KqUUVWZ21eFLVVKTcsDhTHKiMK8HeBhUtjO1WLnFubnImYJKua7ZuRWoWVhFqOjZDk6SNduVToYMh4O2docMj50EC2Oa30D0cp2zdWLOaAXc7C6mIN62K8Ps6mHOYgdbbf1i90LrmLbYo3ZYItN2WJDRmywxVBKauVR3TCl89R4NJ23ukPXRK2fT1CP33RFatapx8TYvW7iWJcJ0qyd8R5opGpxds8Td1I7Sn1suCS71wwUGilkyrl0r7NBdPMnjYFb+lNQKUm7Nlfim+bIXm0EhIINCt/wrMD8FRZsIAyBA6TN5sSVYFRFveQv+eCS1p8pTKV0xWmpmQ/GioEvkZeqZFCO3Dp1xKAqKXRsf9WIQi+qrwfVqN7Rfi8ogZEkX37C4UoYUXC4LNhCGFdw2K2kDqtZWh3Wgi0xi6vDMmBL05JlO44Ks84uJZVLYVxYeR0VMB6IHes/24F8VKgp9Opj5cq/ilFRUg0qs+Q8BJy8x8+4JrD9G135WmGz/FVyjTNEdeiTBH5uZiVUmMLNjkNXpm3Y0Z9Dh7bMWYcotpSyPk+9TNKatlpllN0T2uv+psUpsh5r85zOeJbus0cVqZsKmaadydGGzDiHXn7DkUiW/Of2gnFWQZptTX1N49LKKlP36FpbHJNdu2IoH57XA+3ucN7a+0KaOAWm9ByquW8cKG55qQwrP6/s3lDNunVYTd4r0kBf2y23ub/xa+9z1TZSHqlWSEn6tFIXhYL0jG3+WohtFDtghEjpdpmblHqAfJuo1oRcqyV2lw9q/cGkLOkq0t0xi6vpfQVFUkhgx2TUZhOE+RC5CbM4yYFKc28AiCivPG2TH/heyfW/NWZTSi536X/juOHXOf8bt4fxpdlUYUNgiLCJ7Z84TAPmWqHqyqLvfIny6x9l/LVPwPgioIDB0FZF5H9J8TUY2rEo0GKIFgNXoNpyXR0MqTY20cKW7VaDol4xVKlSFZYNbYs+ZVSILQmvB7+upCBtOaS+NL0Jw++k8AplXAhbA2E0sH5yldSK7pKkqtt8X7Lu+Sz1g+o8hfeVBFvlR1Iaavrn0O68Ie27zqiDGfeac6kzen3ROspEuNTXtSFIuld/Y+OsqpLxeERVlnuqnwYbmwwPHGC4ecCPmww2D5p7r80DsHkIHQwZlcpWWTEula1xxaiqGJewVVaMSmVcKaNSzbK8NN/KtfuTytyflDRLvtN5lSZQ0oSU7HysaMpnUpCa8ikpppp4ilBtpYmxgipN5M+FZLW7135zgXnk38Yrv5f7ocKGVGyqKROrQqnE1eaibinoZg/pPK36kCwMbawK6zrGveYI7lLLflNT/6fxQmNFKWp9qmE1ZFgN2aiGDDVd272BFnaupogdaGcMotloJgvvXufls5joK0xLskzR6QrTRiGalK6+ibHfr9KmxVKZS59a8dqcp7Y2KVVrRW3jt4R6IENV/xgFxsWAsihsrF0U5lt2YP5hx/5XJv+w7vffjIw27DmxuGaMNMjOLe9WKX62AWRZGzplnZ98DO1pmo+Mp51Ou6/SPKtAucB+JIH58LlPfepoi7BvEQrgNcX5V3wPoyt+KfPtVdR+v9KGCra8YeAbJZiXqzFDX74w8OUMQ0ayYeG6wVa5wbjaYDQaumGAN5qFN5RFOs/C66MimzassIa3rJeVi2+WkOwREaiK1LR1lYbMCGuHTwszL2u2McZQx/XfIC1Rw/1JJt9eyWdmvqydioGkeWDvTJSm6G5+18ic8ifh9qBzMIusDcY69GOT/pUvB0tpkAabaTYYXCnYSgfNBo+azRZn8fJeeuJpkm46snsTzVrnOcE6TcnP6MCXHg4qWx44qNLywZIiyTJFPzLVl9jEAKOxuqrDJBvey2TciXBpFONgfZVipBTj7lEoRmK+ikaFXxcU4yHiu6IX44JiNDRlrvg6LDELtOTHt57xra/dis1nf82SzTvsOoDU4VcfgCcFmZuCKKYsTtYNzUBL6iTbKiouHI65aDj2Y9mcb4y5cOBHj9O6Nxxz0XDE4UFF6QrWaql9mzSXO0YUNqqCYWXLfoelNOeV1H8bY+FACcdXthJ8WLpSpRSGZcGwLEyxUtr9okqD6PTdvUusTe7Auq8dX7zeqfQlYlXysyW+iFUG2ILbunYgzfirFO1waVtZV9LErS0SszjGnQ1J1Gq1Zkok55eaLx3L+lrcP5jUneVlQbRisxqz4ZZ0m+WIjapk091VDKqqrpPML1imKmpZFlat+qttZTjdhmag5h94oJkVd6UM3aq8aPkia7jTeaqjknqr8IFkPdmU/KBKfrSMXxXCeACjoStY/M/OC0aFXxfirmXwiQyb1KhV4pq8yatbyvjkl2bW8tmxyO4ltXetUNMmzNowdVctnsPcv3Gy6W3C05Bf3b1LM1Cu1w6ILw2VkoG6Ak29jdWKQmHDv4mp/o3bzhsu00mOpwwM7br2iK1ja6PVlrybL8+SIoVR+soBaW1GW6rV7aZEEf9rXCIU4guMRBgOzFJmKMLQffhL2gq9LndpgiG77pw3qe51SeHHQbfhyvsx7bD8WlrX/vHTefKDrlM4pJry/LTGM5/8TTL5vhFHAeZ/MP0N62Optvx2rJu+8aQpqMdsUlZp08oh7z/xLL589VvzK594LVfZ+BqX5lxO4v9xnvwoxeUOU/J1DhdDLio2qGSIFhuobFAOChBbUbTxxc+z+ZmPc+DrX2FQllQibJ16FuWJJyLus1NUofJl0FXpE68WXtXWiSU6rqAqqUrcop965VSlmdsnUr+jqJWYmikz0/S4gPcNmjh5mFl/mTHAIOPYQDjoVl2l2KovHQ4ohwOq4RAdDqmGAxgUVMOhregqfCUXthps7JZVpWbWmsmyV5J/8VpkfHFxvZKukAJkSFEMKHx/i8k/W9MhRbOqqHJ3D1rZCg3Vyr1AaO0ZArQJy1uI3FrZw8isMiuKem/hSsQ9d/vqN2+dqvw8/Wl7YqPaEmTLlc5M9otndacnwou8Z2J+6IfS1M1NvW31cJq0sgkfL++1j3vv73uHPsUBTOFXCLjlsRbN2Eu9Dyxp740iWWmqzUwBaV8OTRbRye1OGjxItmQ9KfAl9UMLNkploxI2xsqwFDZKGI6FjbJgYywMxwM2RtbnG5RD27S6GtifDqjqzat3138RlIFoWnRqdX999Mkn8SNSx0tKYRvfWXqbz3JbyTZWdb/mVR1WiinxS6S27HabDs+PbtldVFRFSeHOUSvSPjtZOvpOZbU1u+e42mo1U9iirpzFlN/q14hxV1JZXq+/s+ffepVF8indTEolF3Xd+9aPHNredmIrRMfFwPo77lpvXAxsw6+kwB0MGBdD2/SrGFL6X7WTO66d4H6WSRvipn1nkqlo2sxupNk9NX/MbCGMaGarcs1uk4GlbSLbyllgynptXbfPB5qabs2aY39nlY7NON3mTLSZO6mf06YL0Fqtl/G1mvMsrM5W0+L5Sc6Xo67UpPn59bE9vp4ab9azOXZdSWaB2zwzLmbdDIQCeE3x5RO/weUOfdkHT82GB/sZtgLMOwcqSNdtVqbktGs7SOtamwquGye/nyrCKjtXV56mcahqfT+dt57Jr5OWTaEYKzK2FQ7FGGSs2bndL8bASMxYqRQ/978SYETFCNWL/WckhZ+f+yA3P9bKPdfEmX7Ll7MqbtlnFbR2w8CfV0CoKgVpltyrCFqJt0lWk1ubVNQWPVWSy5VL5WBA6bO35WDAaGAzreNh4T53C9uHrigYD00JUhauMHGlSFXg5zZ7avvYiZ/7cm1Jm8xklkaS2wrbdW6N1LIhlilhWde5Spr7qQrOrHFJfrgOTInWzZDTIuS38lbU87N6Z6IZXkzG67as6gOXJr0alx7p9yXFMOk311aS1qGRUijG4svxbYdg8fw2uTS50ylqyQxJ1WGdqUbVkMsrnkoCtXKuQn2HcGWkjRIwV9wlhaEtR6pqBWOt6GvFr9xiwHevlQEj38l2VAxb1+NFO6Y7IG3ENvtPXfFlyrQNP5oViivvVN1qe9y+V8fxc7Jw2vdT+FDNgmZDSzb9fZtVyYYqB9SOm/WxYgOLv+nPDdDM4ipbEYIfJzYOy7UFRSuOtOKnP19a2grzOIPJZc1SNOeKZEub7Tn1iUYb2Hhdl/nX1bT5ChUwrCdlxCdxbOMzc/uR3H9I+m0kVyheViSVBsv/lFa+RMQt/NxyJrPmI7s2S73mnnrZqKjcV17b6k81PZvKmvsEJmlMlNpPsC/TrhUP2TLt5n4jT70BjVbN92lVks3Sc5VG6boF/r3I4qe8kuohas5UrVXibVamuLGl0PlUANnkn2Qp2ChUbMyUqVdSlZdqnuydzWBF6jiV52d7V4qbvzsp46T9LTW939+dvks9hrHrSm1lw1hgVJgrhDRJMC58NVNhchSl1XeDsbr/cUEqZVBqvWl8M+mX1fFZfduENd+huZejXbdrHp4q7QlMNpqpbk9LhpujlY18MqOYcr0rfBvu+fnz+T434j27e2IKToXTb4CeUbK18V22Nr/D1uZ3qQZj8D4F3h/L875P19T5om5b67yRq+WwsqA0daRaYhZuCQi44sEnhOowvA0mswSUzKhOvL0T30s1y6N5/vXy0pw3yr/Z91LfglZZwH+zahbu+SNv2/Py1JR1E64VLlk+y7pI+WaIzQT+ZNw2V91Fr+VJcSux/mXlfaPa7ZnQvi6kVpyl+Om6StdJGeb9V3Nh46UsjTM65+l7tu5h/Z8mD2SWptmqgErydzcyWzjZb3HZsvM6z60ApFJ3gVIxLCs2KnVXKcqgKtko3Rd22Uwym/sLy1PJnVDym66pTanb/cnwvJw0kzQy9boOy651hdJ3mZBqjOjIVhfWf2OK6mKKcsxwtMVmNaYoRwyqsa9OHDEo7dzC/LwT1mwEXDLwDRKLqmzcT7TGJl4ve1jJJof1ECMOsqUH2ZJDbHGALQ4yYjNJ32m2ZPq5ZBXSRPuZrq216zaNE82l5gedaHvT+BwaXXB6R6N6KKZwNfHyFcMTL67brunPWB2ks2K17ue9jQLlWnKAn5BD/HhxHCfKgIu14v3VBbyn+j4f0wup6l/dHifWEmZlqGlDpBVLO+dk9eqVD3yFwHSEAnhNceA5Q77y/Ws0jZSmjkGzo6MOyJZESB1uHQcL14KWf9eWPzaf/aYqXMloysZSm3v1zDjt69ZRktKuuU4dTOh29trnQFPdpGecpzlSW0Y0ncrOO1rvajql7fd24nbj5R1ess5qLQOwAboxOcBqFGHd8LxhoT7vVsETA+9jETrjfCaSdVS21FeanJnf2xv22unLuwP50UcBU+/RjPo8l2gnvqkfaCweS5t4GKr73tVk8eiWglVjAVmoLUM2K8N2jq8VqnXnIFcpNIPP/H/VTNGHD1Sph6yt8Nx9R7NE0TvYJKtWqycQcatW+2K1lU7qzHtYKu91GMmuKFeOmsXi8YBQegfTfqdZjjYuSJrzpMxowmvldB63HqBDmlIwS9MmNVJXcbJrk6VmGgGizaCSynVzKe8mxUE9Mq6/XauGcaXeWIxy7JwFyoVaIKIMWl8qfZ/0m5vvlX/JonVdeL1YZEtu7d1pgF46oX2nyicn6j57PXDTgnqgVg/kxH5nmQwz06/0Ot94PL8UzQ7GyaKlru+LtrVL6/7EYC4ttG9SpXWdlDna5O1Wrtc8r6ecjrt+GVi6Vo1lb1IMFAhpF+VGQcCEsmAy3N5Revo1SoxM8ZHfmxrPwrVWKORKk+yd9bt1phz1/Rmyznq29ds1pU0Tt1BLN8HdJmgn/dI783DS79gmXaakQ5Wnw4zwWhE0wCc3oRz4JGY2odmEpTTea/uxPUwZrLYqwo9mGU+tKE4rI4raaj6dWxrbdWojmmOKV7iriiZOwyHu/iKPB43bnnLglmMD6kndlA/TJHA7PCm2kuKtybfq16PBABU4pBdxueJrXCDH8RVO8X2Gs4keaVs71uGFNopOEVQuTVUco/2qYxSFr0YrqirrF9n1IDuvw7ViqMrmOE3AmqJKMoVOS/Ge2imatqV93/JzPlapxyzZWMP6ZGnliylGbWKomip763oXcRpf3t7fqK+7Yale123CAO9vAb6MPy3792Naup+dJ0vS+jpzC5DuX7zpbvuKAzZ2FZmQh1ze/Hf55KZZ8lvfjSm/l6zNwcPJfmdjpNS8g5QGGSd1/HTdbseSWxf1iWHqGNnEpSpJCZk4qOWi/a783ep9z8p+b+F/khSrKd96XpCqrPOXHVO5sBUPA0oOHNri0CUv5OAlDtsKXxXKqvA9BrI/D1MKu4+H4eGanw+odIPaT7/6ZP0GZiE/kHpf+jLtI+R9FPPTQW3mrWLHdD0o8D0avI4vDiNyGM+eNdI3qpElM97nbt1L6Z6IvO/d5JuqKa+1kUp+rOpVcc2xuV+vTstWzaWwfK1y8q2fXMQk9y31Nt5pJWCK04lvqwV9taEIWtn+EFVVoKVQVf49Sqndz9SdWYTNwXEcGp7AoeEJlDLgDVrxmvICLiy/w+HyAk9GBQ5YDZaGKl63NZPwTf8a7+unCbUUVX0FQ73NTBoLiBmffPXTHycwHaEAXlP89TVvwfcuPm1JbJmpa3aUuqbzv/x8yj2ZqCFnPUszWmwpQFo1cyZfXitXWVh6sBs3v99c1+9ovTvJ1312Miz9PnMin5QD0Myyt4b7WVDXZ+1kGEhrsl5bv3mi5bEYCiLdeN3f0O441P6AU2WbKnbJZS78d3qYV9h15YzQWPKlcFfAJ8f1FJj7A2+1fRMy8UXK9q6BuzuwsLQwy57XpvHNG+HkhyBvnLvnVboWfMewLDnUDP+S5YVf74TGgmzijiXZ1HvT49Lpc0xk4WmRsmDpXLfKwl51C9o8JjRTC7nT/1y5Y0qqJjx/betPu2FdZVjmc01tOd7Az4d1eBNmxtdiSoduWDrXbJmfNou082TJLalSWGYQXXdEkjKzmiAoXMlgCqBayVMfG4VP2bFsnxa/mnEvKULxvlDbqovMcov24HEivHk2/dYURn6kHacJmxYvhcnUeGZhA60KLbC/oeorX7TuAtTWaVVev+Sd9ZRH22Epz05dMrhqeSK1H6k+Tm1Gdt5qR5JSoML8tmf3RM1fsGTXtNIZd++E76Pgyst8MJwmSnwz3cYa0PyzWyXux6HYhHRqp+vNb/G2Oz+y/75Nns7d9Ac2dMxZo29xvg44d3g5xhRZd6dpP0WVA+MRx5WHOb48zHHjwwx8lcnFxQYXyAEuGBzgguJA3UsE6ucRzTJxR8RWxIQZ/QTNb0k72o7hNN9Hs8nZVp+ZWiHVEkuzgHb09r3sMO1erfTwQ1v55WFkeT6lZkuB1shsbXFVv0/rSiR7lsnUrNPcFYATkfJ0lkbuumy5Yq0576RJRpJP/eVfu0Tblnp5+1f3qbVul8lcJVh51KbOrOtLrZ+tCnuviqWXVra6olC3ka8UoWh/A4V6/Z532CRzE4FPcifFZvpOTTsu7b5C1t9vWYprknnSkMfC0/iBetTUTNba/ZovjS/qtG+Ux+KTS42StmSgY1/ZlKdbk+b+ZCaL5zDxcPIxTCNf3bbl36+l1PZ8m+rthq0uC02Wy5Tjdb2V/S4PT8r9OhdJkwrdyfy8HJFkko5srbLVlqd1j3bZbb2vw5HLizZtWqNQp50Gkr2/cJkH3bqikacJp1bKA7afedXkrbwKTr85ry5SrVGnJU0cSc/TjG+a9G2X+VZ6ZvfS6sNBti62UK33BBjUtUH6WoU/l+el9Jp2mitNPZavaEq/K6978rAizzs5/0R4CWTLrbXz22hcoA3S76rVxPUW4giNK7HGCV0Tp9nTJ20/nuqedn3eTl/dIYzOs9pKDwE+WpxKYDpWWgEsIj8L/A02vn+Gqj72KIu0b3DC8GscOuFL5NZG9dHLT4HgPQjSzpG11ZJiHQgvbsn3jfjWkbV1l6bKTEgb79RLLzT5zPElbnU8accju5e32gmtESITxb/bLWvF0+lxc7vDlpP9/J7WUraum3id+1Oe60oo+Z9ucy/j7MbbC3TnKBOYJnd+U/BskxpdkSaM+vN6/KJFlH+Ouh8uUp9PjKMmskPq9Ep9Pim4NM+m6/T+FMeFbSsfvJM67Ga5vIPbPpKHTYTnM5tMnNcNeSPujpBtrqbemcadpVF9qu1IkhHkadx0qLMw2emezPmcWdCNBA43VUpmqdVYhLaW92XhVRa3id/5nlk+aV0fTYWHK9ySBZ1UaudK46ZGs7h5ZeedwLYiyr9C97n6sdRJTxSaovix6UU3FM0GP1rH1Zy+Pk/vSXINupE0+02qyc1dW3mg7d/fDC4ay1hzV5AEbZbaJxlFtfWbmt+fZKvqNlJorEaR9D7vuvuDrQXdWec7rz6SQaeQvSw7FxpnD1U2sWD509cgSHOe6ilFmvmufFWL0JwjdXzbHNJ/o6djUkjaPb+ukvWSh6XNXF3mRonUhLW66ZLfycOyOGR1c/rsWV3TTDZk7YcUzcSB9qXIqAAAIABJREFUNL+rrt+lmPjNtQITO2/apuy6XkOpzXnljVuu5M6PtbJqCUiD3iw1mmN+b1ocO2+uOhV563pyaSmdmDnyPFwPusTyc1UUuTcWVx5LneEbyxzMh3JSMNfLzl3hkfJaleW77Y6eR82ysi1n/ks2GfHk4ZM4Q77CvUb3o+Ki7HdVnCCHOUku4uTiYk6UixmI1Qvf002+o4f4TnWQ7+pBNig4CThp2xSadd0v9v62Jv9IXX8lro5CiPZ3z/NcN/8J0xXOk0qU7a7z90y5lm7aLxft2mq6DCmsez39mZRWrjyRFKbehiRFUTd+dsyUs81zU+JN1KyT3yHJOFm/pN89+S2m/Z76fEqbNq1emn4++x3T7+/EN/28LftknSpT4+jEb+4qqXLZ+kJ6hzYBdt1OxPZx4jzV2dZHSf3s7u9GaBTG/jvdxKZW0jUyeV5W9fhMpFuRKQlry1aS1Wu+x0K2z0KuUEyKdXdtlpSIQqMk7+anFDaZDNPC2mmcx6u3RNTmN9WKStXmfvabB/SfHwLz4/PVjY+2CPsWK6sAFpEB8BTg5sB5wHtE5JWq+rGjK9n+wMkn/CQXnzh919RWRagzwvP429Rv2ymHWsowIPfnta1SaYIjHximgXF2vZs49XVHaQjTq+9d9q4nnt0Nd35/h/gT13V8mXh+Ih2nXE+L37xH6vhdC8F9Z/0T2D1qBaGhVgTW1x4nXZvWrLmv+bndk1YUbXNop3NVuzrI5dBWvPodOT/US9Mk+f3Nj6UvmfKll+LLLYsqj6ceR1vXtrzNO7TadPDSMr4is0bKlws291IY2buor1EYVuavbFCaO4miso0PLcx9mFXuaqLKr6usozul3GWJL1ma1pu/5Okq7TSfVpTr1J541YwyL9vcY8oLdvWuzjuTFULGlfxgpngiU/Ix+ORUGkBpPejJhGhNcNj/2vpdtfWFNO9Mt6dZIKRzJbfaac6b13UGLt3rLmT6RW3sN/XpzluFJj0z2YraGme6LNK9jw+QsvTUllSaEiGzVppUonR/Q7uFklbY5Ni2O8CXZhDbeSb/pu0B7/ZyNVLNGllPhnXb3G4+aike6vKZymNWl+TlmiastqjqcKWXd5USLcm0SbtpUnfrh3YaTP/NyRozLwlVfZX18zLGqhPWLUc6EVYL3pK/I0rnLXZ+BudxGb7Npzidu/HqifftVjGQ5FKoXZ81mdziautbuMWq5lx5L7irsKNVNqf3F7vpmretzVPdHNAuSbRiNfeaPKWt8KZ8TZNmuhJMsz5A1u7U7SR1XtU8fepw5+48167j899uh6J+d/tG7rCjPYbpKPJa36pbPrK8VZfRyft1n6nb1rRFbeWG+lracXIpvZhNPjPlHbgcE20deX7cJn7n2ZT2U790Z+AyPc70+zNrmabi7gg55TwTekelKO30b8mQpf1k+rfPZ6X5tId2FXd7isnwKf2qCZln/e4pmdK6uN7K1HJLNnHv+a+ORx23KaIZsQdW2bMT41VAOyWocWfSxLU4g/ZvSBxZpdAu8jo5vs1Y22WpnXINj3Q48/Zu8gFtBGoT1fGlVbdNEbq2Pp7aHarDJuvCVp25zXUet7twOuesi05e33YLwaweU7d+SUJk4a26fTaFnc/Ix/Pc/+r1NglMx8oqgIEfAz6tqp8FEJEXAb8AhAIYuPkXnsLx539tSsHsdBMna6Xp4TM6EF10Ox+T9ycDZ3F2Zag7MZ0OWzsuWcWnUyu47hKHPE22q4RlohVgSqW8TQ03paMnOhmWkc3m8gavW+Fnr2k9P1mRT8qQR5iebtOfq5v2GfHzQc5usVM+m5U0U9/diT87H0x//7S0k2m/1+9LN1733pTzWbJNvH9bmbKAWcm9Q8M5LY9OXE/pv89Kr5nn057NlnvNgx3zTI4ZskzwdPP8lHvbdtymPDgrzbv3Zqwq3vFVO71/Z8zI22zTOdzhela+z893vcFTIBAIbIOL2eA8LssBLuayXHy0xQnMhWntwf5vI3bqBuz/X9DGqskbWDVsO9roCbvN1TvLUnlHVqFldJaOSW/a7ttno7W8/98af0n2XDOzNHEvDxcbvQtT3iv1yL5ZrQvkhnktTs3uTVHk0w5qTlpKifbvtFXDk2kvbaL21ayxSCdRJ1h9fHHBN0+ZeF/AsMoK4CsC/5tdnwf8+FGSZd/hqp/6MGd9endxa19VHeXPxCzLDOXQstGaLdurTDvF34FnGtd2z20nw26xS73RZPxp32MbWVphuv1vnvs68W2TvrtB3phmr9nxmb3K0LUemDmz2GlkJ5/v7Co/45lZ59PeNStsu288jXuWgrKttNUpoe1JjwnlZ92ge9BEusjk783uT6RXfn4k6ppOOgvZb8gqoWluSbow41Sdck+ayQKZoiSdQTkr3sQ92TmNpJPRZsZP+aVbN2xTJnZVL3Q7xdPi+4vb3JqdT3+ndjrGe61nuvK0wvfINW3iYvs2oQkU1blk3wtylwvT72XwH7OdxXbf8u4J08Ye28Tb6+08fKd2adanntpOT0neqRZtZIO2zn37zXsQakpULSaj7ZhWUyuSrL2Y8nxXjDq2ToZNza6dZkqmJeoseXOaHX7b9NawHhNvSy4z0nrq/Z2eZ0Z+lsnL7ueYmn57ybszBt7duOm9yTVOXQ97f6perSDNfTpheXjeBtfWflPamvzd3fI0TVDNLnZq0y3Nd0iAzr287unyt10m1D8Z6x9k95ykYDJ+V5TkcaUem3Tkb7WLmUz1Mcvkmj2vneek+xtbv0Vb37ebdyfyskwmp3R+QNfQJylymHptwjfuozrPZoLPKpbC7PTt3t/ut03c3zFgel9MuytxsvNiygMy5Wrq5Hv20olvljJSagekfbREkHadkiVMzTErTZbUkc+dGNXH9G07xXXmsVMW03ly9VVzdn/TxAM7ZICW3MvGdoy9jpoWwnTJpq98WdavuPx7drGJzzGKVVYATyt97e6gyD2AewCcfvrpR0KmfYMv3PbyfP2g+z2baHFT090J3uM7phbQXbR6uynYe25HpnSILf7uftWOmWmbeN2GYLu+peyh0QjsDZGy82C+VMs7mIs01Ef6m81637Q+3l6e7wdNLTYxuJsSa1bIXr+Pdh7aYax81Mrd0S7vs98/z50MPfXft2+ljn567hV7kXfVftskjvQv2FaNvq+hCN8dnIwWmwy0YFCZi6BhZX/peuB/tgt5mqyc1A7UEyc7KXy69yfK8ZLSdD9/lt120OdCfz98lvON3SGXawbPruhlb3X/NM3v0UbrE+0jweYRZW7x93MBdSyl/77rEfKSsWNFOxV9FZfpv3iK3mMfFYdZmCViRekunnTHuLtj7GK+fLMb9s9zwVzcxwJWWQF8HnCl7Po04Et5BFV9GvA0gHPOOWcFit/y8Hv3eMPRFiEQCAQCgUAgEAgEAoFAIBAIHGUUO0fZt3gPcLaIXFlENoE7A688yjIFAoFAIBAIBAKBQCAQCAQCgcC+wcpaAKvqWER+D/gPbLvIZ6rqR4+yWIFAIBAIBAKBQCAQCAQCgUAgsG+wsgpgAFV9DfCaoy1HIBAIBAKBQCAQCAQCgUAgEAjsR6yyC4hAIBAIBAKBQCAQCAQCgUAgEAhsg1AABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAABwKBQCAQCAQCgUAgEAgEAoHAmiIUwIFAIBAIBAKBQCAQCAQCgUAgsKYIBXAgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrClHVoy3DEYGIfB34wtGW4wjjMsA3VpC7b/6Q/ejwryp33/wh+5Hn7ps/ZD/y3H3zh+xHh39VufvmD9mPPHff/CH70eFfVe6++UP2I8/dN3/IfuS5++YP2Y8e/37DGap6ym4iHjMK4GMRIvJeVT1n1bj75g/Zjw7/qnL3zR+yH3nuvvlD9iPP3Td/yH50+FeVu2/+kP3Ic/fNH7IfHf5V5e6bP2Q/8tx984fsR567b/6Q/ejxrzLCBUQgEAgEAoFAIBAIBAKBQCAQCKwpQgEcCAQCgUAgEAgEAoFAIBAIBAJrilAArzeetqLcffOH7EeHf1W5++YP2Y88d9/8IfuR5+6bP2Q/Ovyryt03f8h+5Ln75g/Zjw7/qnL3zR+yH3nuvvlD9iPP3Td/yH70+FcW4QM4EAgEAoFAIBAIBAKBQCAQCATWFGEBHAgEAoFAIBAIBAKBQCAQCAQCa4pQAAeOeYiIHG0Z9goR2eiR+4S+uAOBeRHldII7ymlg32FFy2lvMovIob64A4F5saLltLf21PmjTQ0E9jlSPbCKdVggsF8QCuBjBCIyEJGlf28RuZSIXFZELrtsbuc/VUTO6oNfRK4HoKoqjiVy32JZXDNwHxG5Rh/fFHiciPwiQE955toicgsRuVoP3KeIyMkicnoP3JcVkUv3wZ29I8rpJHeU0+mIcjqb/5L5sQf+oo/Bh4gcLyLDvhQdInKS/y2dX0TOhn7KqfP/qB/7GPT9uohcQUQGPXA/VESuDf3ILiJnisgPicgpPXCf4Me+ylGvbWpf7alz99amrmp76vx9tql9tqfQY5u64u3pwT54M/6l58OMu89J+OP64nb+K2Tnyy6n11omX4f71t6X6auc/r6InKQ9+DD1Ov1yIjJcNrfzH+iD17lXst/r3L31ffvs964yQgG85hCRG4vItVS1VNXKO8RLKcAicnvgucDzgLvLki1dROSXgWcDjwd+Y8nctwXeKyLPEJFrqmNJ3L8BPLwTtrSBpYj8DnAnVf2EqlYedvKSuH8V+DXgXiJy7cS/LIjIXYCnA3cC7uxhS2kQveP+NOCxwMNE5OEicqUlcd8ReAHwDOBPReRxInLlZXA7f5TT6dxRTqdzRzmdzX874Jki8nrggSLy+yJy6pK4zxGRs1W1cgXKMvPLbbB0eQNw12XxZvy3x+qvf8W+6zK57wi8XkQeKSJXWWY5df7fBJ4AprhaFq9z3x24j6p+SVVLD1vKwF5Efg14EPD3InJWD7L/Mla3PwK4vYctpV/v+fHJIvIi4AEi8pvLVEj22ab22Z46f29t6qq2p87fW5vaZ3vqXL21qSvenv4c8Lci8kYR+UMRue0S+zHXFJErpXy4bIWhiNwSeKKIvENEbr1k7ltj9eO7ReTmy+R2/rsALxaRe4vIFZZcTn8NeOSy+DrcdwP+TFUvyMrp0pSpIvLrWN34MhE5bVm8zn0HrE5/EfDzy+R2/p8FHisi/+r90pvJkpS1q9rvdf7e+r599ntXHbEJ3BrDO7wXAAexjva9VfX7fm+QBjsLcH8E+G1gCDwA+JiqPkhEZNHGyvnfB/wuUAJ/Avw7UAEXAi9ZpIMmIjfCBmafAn4aeAXwKuA6qvoMESnm4Xe53wHcV1XfLiI/AVwHOAH4HPAvi3YsReQ1wONV9b9F5K7ANYEfAT4IPERVD8/JK8CbgN8DboJVlr+vqu9fNL9k/B/DBjVfAp4KvAu4EnAu8LeqOlqA+1zgl4HvYoPhOwFfBP5JVV8zb7507i8AdwDOB04Gbg1cC/hnVX3xInk+yum2/FFOp8se5XQ2/5ec9yBwBeC6wCEsL75lwXrgS8Bh4CXYIOdCvzdXPuxwfxS4J3AKVo5eqqp/NS/nFP73YXnmspgS4iVYvXORqr55Qf7bAH+ElanrYmX07cDZqvqyRdIny+8PUNV3ilnTXhfYAr6kqm9ZUPY3AQ9X1Te5MuUHgTOwMvDkBfP6G4H7ALcFrgH8iap+edH8kvF/HPh1YADcH/hv4BJYeXrJvHWBc38GK6cbwK9iddc7gOeq6geWUE57aVP7bE8z/l7a1FVtTzPZe2tT+2pPM9l7aVPXoD39inNeFrgacCngy8C/quqnFyynH3f+lwP/oKoX+71l1Y8fBu4HXBlrnx6jqs9ehDfj/h/gD4BrAz+KTdp8G7hgkXTJ3vFbWB3zeuDywKuBTwJXVNU3Ltj3fQPWFr1LzGr8esDXga+q6mcW/KbvBO7nfa2fwdLneODTWB2waFl6I/ZNfwEYA49S1XJJde8nMAXkacAvYnUjwJe9f7BoWfo01l5fGrgHcEngZcCLVPWrC8q+cv3ejL+Xvm/f/d5VR1gArzd+AXgOcBzWUT1PRB4M4BXmT4rIVefkvg/wSVV9l6q+Dbg3cA3xZRliSxIXmX36P8BHVfWdWOfpJsBVgJOwmbkfWoAbl/ntwPuxSuGKwH9hnWIWqNTuAZwI/I/YLPwTgTP93q2wweVc8MoM4G3+DoD7Yp3JB2GV/q/Oyw88ChtQfwjrpP4XboGy6KDJcVXsm74b+Crww8D3sQ7O9YBFZtGvAnxAVd+vqp8B/g7r/P07cAvvxM/bOTgRGxx8RFU/gXVwngg8C7iZiJy6oCJ11cvpx1awnN7TZVzVcvrlnsvpx3ospx/sqZwCnAq8TVXfqapvBF4MPB9TeNxRRA4swH9X7BveDLgc8DYRuQdYPvSydLk5ue+L1Y1vUdWXAb8F/Ij40lsRubIsZinycOBcVX07ll9uCdwU+FngrrKgJY2qvgobnH4J+6bXAf7T37FIOQUbEJzmyt/jMUuRmwI/CfzavPVXVk7fjg3cAR4GfAPLj9fB65k58UisPf0I8M+YEu+PYeH0SPgRrG5/j9e/N8QUBSVwC0z+efHDwIdU9b2q+g4sXb4AfAe3olmwnJ6IDeT7aFP7bE+h3zZ1Vfu90FPf9wi0p9Bv33dV+70AVwfeqapvVNWXAH8F/AfW/v0OLFQP/D5WnzwMyxsvEJFfcs5KzLXN8QvI/kDgw6r676r691j+vLG4lbGY65l5LRn/FOsjvRmbZPoFzHr8ocAficjxC6Y7wL9g+eUC4ANYGf0PrN1bpKw+Griaqr7Lr5+HKSX/BPgDETm0gKKwwMrlhzyd/xJTcl4IJGXwIngE8L+q+h7gtVhaPAiWsjLo5jT1+kuxNvTGwI2AXxGR0xZ8x89g7d3bvb/0u9ikzQ9i45FF0He/95300++Ffvu+vfZ7Vx6qGn9r+gdcBrh+dv3DwHuwGeNfBT4EnDkn9zWwCnIAHPCwV2AdvQHWub/CArKfAZzq57+FzToBbGKNykMW4B748SrA3/v5rbHZv9cBbwGOm5P7ytgA9eVYR/shmdyPBx60hO96a6xCflTO59/j+cDmnLzXBU7Krk/DKs1XYbPOi8p9CeDfsAH2qzFLonTvXp5uwzm5j3fOlwI/BzwEm1UFeCVw8wVlf4qXnRtlYQc8/MH4aoo5uU8GbphdL7OcnoU1dn2V09NS3lh2Oc3eceUeyumVgH/quZzetqdyem3gUp1vsMxyehB4TU/l9CA2OO2rnB7AOr+vBq6bhZ+MLQG7+wLcl++U/1thSs7/wAaA7503/bFBxk2y37Dh3/QH/fx1wCkLyH7NVM4xS6gn+vmJmLLsngtwF378QeDRfn534LP+LZ4DHFyA/+r++9+OKYEenMn+gkW+qfP8LvBubGD8gCz87sDfL5DXbwmcnF2fhVlIPtFln7vNcL6TvJx+ysvUMzz8IPDnmLKmWID7tcBfA9fHLK6e43nzv4AfXlD2Ams73wv8RBa+cJuKWSj20p4639Vo2tSDHraUNhU4naY9/W2W2+9NKz6vgllbwpLaU+c6A2tTX+H5fKltKtaevsvz9tLaU+e4Dj21qdhExGuAb/pxme3pcV72X4ZNECy7PT3eZf5HbDVHnj5vBG69APdp2ATHAc87v4EpPf8eU3a+A7jsvHkduA1w4ywPngi8GesLHML6CCfPyf+TWTn9E+Bv/PxU/x6/uGC6p7J6feD/+PlDgPM8ff503vyOrbL4AGY5/06a9vTyXg/8woKyP87T4DGYJTBYm/QID5u3TRpiyshTsrDrYX2C+2BtylzcznUZrO56rf891cNPAp4J3H/BdLmM1ye/i/Vp/gibbLq01zVXXoB7g/76vZelp36v892Anvq+mJ4q6ZGW2u9dh7+wAF5TiMgVVfUbalYz4jPB71fVH8XM4Z8HvElVPz8H9xXUrDb+S212fMtvvQlrsP4Ssx750gKyf0FVvwygqs/C/RWp6hZWSczlU8gtS0pPj88C3xORx2D+BX9XVW+BNYgXzin351T1HthM/IewhiPJvYF1ROZCsipR1X8D/gbrvP+xiCRLn9tgVgxbMyh2kv0DqvodcUfvqnoecDtsgLmQPyTPM99X1VsDv4L5KxtkM3BXA76uquM5uS8A7oJ1Bh6JdQbu71G+gTW488h9AwBVvQ+2xOuhIvIEETlDbcnhEFOszjW7KiI3UtVvqy2ZHCy5nN5IVT+tZgHRRzm9kaqep6r/D+py+gg/X7Sc3iCdq+rngPNF5NGYQmLRcnojVf1fVb0bpmz4EDZwXVY5TXnmlcDfYuX0D0UkWW8tUk5vpKofVtVveX5Zdjm9oaperKo/hylLHmPBckWPskg5vaHaEs/bYMq85IPufn6cu5w6v6jqYVW9E/BWLM3v63Xbt7EljnNtlOXl8itqFnQAqOprsWWC/4R1st+dysIccifLPIAttSXBH8GsFR6NWaZ8fQHZP5bKuao+CbO6QFW/i1mhzOXT0WVPlkifBU4XkXtj3/QPMIvG5/l3n1f2T3p5fwLwLZo29buY5e6l55XdeZ6KKWF+HPhtEUl58NrAt+bM66Kq/6Gq3xbb2KRQ1U9jSuUTgJ+at81w/kJVv4PVLQ/FLGcHInKKp/Vx2BLHeZYIJ+4/wiwV/w5T1jzc27zzsIH33FDzJXgf4B+AB4nIk0TkzGW0qar6LTWLn/QdltKeZvyfSm1qlq8XblNd1i9m7ekzscnDhdtT51A/fhb4tog8liX0ezPZv+Bt6hOw5fHPymRfqE11nldiyqVbsaR+b8b9QVX9Vna9tDZVVS/09vQOmPJ6sIz2NHFjSpg3YErBpfR7M/4LMIv/rwG/KSJ3FJHLevp8FpvUmpf7PDXL4sOq+gVsafajMOv0l2Pl6GtzcqualeX7/XrL24uvYsrlRwCf9X7BPPxvztr6J2N1JWpj1s9iBgZzI6v7zgVuIiK3wsZN98Umz983b35X1Y+o6nWxSZkBTd/3Ky77GQvKfn9s0uDqwO1E5HSvJy8JHJ6nTXLesao+V1W/nvV9/wf4C6yfdP15uZ3/G1h/5f9iSsexiFzS28LvYfXv3HD+p2ArAp6GuQ15nKp+E1s5df0FuEfe730TZsX9x8vo9zr31/ro92Z4N6ZEhqbv+2GW0PdV8xef9EhL6/euDXQfaKHjb7l/2Iz4+4FLzLh/GayiP7QA9/FT7l0eW7b2PtzasAfZb+r3lyI7VgE8D/OXtYw0P3HG/ZvMK3eH/5JZ2EmYlc8XMaui1y77m/r9X8SUZBvLTBtsidb/YLP+H1hQ9hNm3P9JbKZ7Hu6fxpbtPjYLO8fT/HOY1cm7mN8KNfH/RSd86MdLL1BOE/efT7l3KuZzaZFyOlX27P7c+X2a7JhV1/9dQjmd+Kad+z+1YDlN/I+hseI4CRskfBEbHM9bTqd+0+w9t1+wnNZpkzg9/M+8fL54gXKauB894/6N5y2n/vx1vQ58rufvk4Ff8u/wQZf9g/OU1Yz72bg1Qef+NYHPz5kuifufutyY9cJHvI6Zt5wm/mfNkP2GC5TTCW7MuvAVwLPnkXcG//OYYlHpsr9vQdmfS2MZfT1ss5BzMcuctywrXTr37+n5ZV6rv6n5EVNqvMzz0ocWlP2ZwOU9bJPGyvum83L782dhrgf+HHNhcSo2EH40C7apGfcjMKvfUzr3L8Wc7WmH/8+6/CzYpk7hvnzn/k0WKKdd7oOeFi8CnjlPWuzwTaVzf+42NeN+lHMPsLr9CSzYns5Im8t07s/dpk5Jl0t6+ENZvD1N3I90uY/r3F+0PT0TU7Q/BBvX/RimHHs8phx7PtY2zVNOE/eDvdxsdu7/FDbJtKjs93f+YXbvhtiY413MsSol436gc2907p/DnG1Sh/9BNG3q9TEF//Pn4ZzC/TCmt0tzy55xP9TT5TQvOy/GrIyfhin65h0rtdJlSro/GPMnvec2NeN+AE2bt4FN5j0eMzpZRlm6H+ZC4cpYHXZClt/nba+75f40rN/7OJf5Rczf7+1yF53rH2DOfu80/s69hfq+U2RPY+o0Vpq737tOf7EJ3BpCRN6MLZl+ofviOhNQ4Buq+gkRuRnW+L1midzfVtWPishLMV80T1i27NimJA8AvqaqT18C91Uxf3lnYBsaXCBzbvjQ4T4dGwiPadL8/sD5qvqPe+WewX9lzCn7B7FO8Yn+rj1vhLFNmn9TVT/ucQ7q/FZcs2SvgBHWkLxbzUJqUdmv6pzf9HS/CzBW1X+Zg/uVWOflLOCVqvpyn3VWETkF64h8XlXP3yv3dvxgFgAiclOsgZrq37dgAAAQBUlEQVSnnM7iHmDp/hLg7QuU0+3S5hDm6/Lrc5bTnPtVqvqvYv7Eks/L8xcopxPcHi7YssH7At9boJxO5fd7J2JLKr85Zzmd9U1rK8wFy+mstDkRs1Q6C3ivqp67APfZwCtU9eUenvLMnYFynnLqPO/FFG7Xx6w1HuO3LoFZMV4N8we4Z4uiDvf3MaXD94FKVb8q5rdwQ1VftERuwayV3ohtnPK3e+Xegb8ELsIGVF9U1X9YkPsCTHF4Eabsf7ma9esim0p1+f8Gs/itMEvghwFfUfPvuCj34/z4fczS5wpY3f69BbnzNFc1KytE5IR5uGfI/iQsXX4AG1heAXiHqr5/Ae4bYJuzPQmzlFFV/ZqI3Ae4WFX/aU7Z34ctvTwT8yn4PmxJ/JvE/AheHvjcPG1qxn0Glgc/ADzLucXfd2Ce9nSG7B/A0uotmOXlS4C3ztOm7iD78ZiF4bz93i73h7FJgu8Bn1Fb9TX3Rmcd/p9x/qe77EOsTf3uPG3qFO4PYe4r3iYiJ2OW7nP1e6fwt9I9izNXm9rJLz+dZPfjNbH29N1ztqfdvPgR4Gmq+mbvK90ZGC3Qnn4Ic9d2NuaW5J+xZd+HMUvOszAr1M8uwH0WNhZ4OfDCxCUid8Pc9D1tCbKfmfN7WXo38Hdzthtd2V+BbVr5WRG5DKYA/eQ83FP4r+Ky/yu2HP7NqvqVedvUKdyvwurez3m6/BlW9z51Ae6zsbL0Epf9i1idfibwcZ1/FdO2ecbjXE7n2Egt476ay/4qbILj8lg7eBDTabxxQdmvjilok+yf9/rxAZhu4O/m4H4K5sLnP9VWZeOcaaxxNuZ3eJ50SdyvU9VPZuGpz34HTLG6537vLNkz+cEmPebq+86S3e9dEpvAmavfu1bYTjscf6v3h1n3vji7fh1W+TwLGxTP5fNoF9x/yQyr3SXwP9tlv3QP3M/ArAv6SpfHkPnVXTL/c7EZyqnWr0uSfW6/k7vgf/QieWYX+WWqNfYuue8N/Juf/w62ROVmi6TFLvhvst+5j5LsN93vch9t2TGF4SL+z1bymzrnbbCOXrr+BDZYfSWZT9clcX8c8332ahb3CTeL+9+wHbqhY5G2RNnvh1m5zGuRM437ddhg9Q97+KatdMcUbvP6iJ2WX17n3A/sWe5BT/yvWjTdZ6TLUvK6890a+PfO9dswZcFte+B+K7a66Od6kv2tLvvcflD7ln0b7hcCt/CwRfYvOBqyvxT3U9qj7D/vYXOV1x3yy632a35xvpsDr8+ufwgbJ72OxX0Kd7mvjVmHviHlxx75b+Vhc/kv343sLOZbfBr/0zEL95/ysHnbvN3Ifvklcj8d8+P6sz1/01v2xP2fZL7pe+B/46L5HfMffiGmv3gsNukzYdm9JO47AZdbBvdu+ZlTb7ITNzZWmmtF3br9hQ/gNYOan5mhiDxKRP4Q86N0a0xReA1seUAf3FfDd4fugf9xLvvteuD+G8wp/u174E5pfgdo7Wa8LP6/xCxef7lH2W8zL/cO/H+NWSzduQfulF/uCHtPd7eguAo2S4ia1c2zgEeIyE96nLl98W3D/6iMf2O/ce+Bf16/v7O4HykiN/E4c+3afBTT5ZE9pkstO6b8ndfScjv+n/I4y86Pj1xGujv+F/MRfS8ReRq26+/NMVctvywid1wi96dV9ZbY5NWdRGTuuncb7sdgOzf/otdxfch+Z+A2OqfPzxncyU/vr7tV9CLYNt2B26v35pfAfa7L/hjgDm7Z0pfcc/dhduD/Kyzdl5nXz11iXgdb1n2hiPy4X1fYCqbnAw8Qkbl8OW/D/SHMfciD3TpvEczifz7wwJ5l74P7xcDDReRSC5Sj7fiXke6zuJ8D3L9n2R/k/HNZRW/D/QLgIT2ly7Ly+hcBFZGbi1k/f0hV745ZAT9aRK68RO4Pq+2Z8mzgL0TkKkuWPed/pJhf1D2vjNil7KfpAr7FZ/D/DjZp8HixfUfmze87yX4l9dUpS5T7eVgfcpH8spPsfy4iZ/bA/c/Ak3qU/Vksnt/Px/bpeAHm5/cGwD1E5KYisiHmV/+4JXHfELiXiNxkCdy74f9rbLXBsrnThqRzjSPXDaEAXhN0lFz3xDYaOScFqGryT3ZGj9xzVZZ74D+zB+4PM6fse03zvTbeRzld+v6mH6H//LjndBepNzV6rKp+REQO+q2nYlZWd/WGfK5NO/bAP9pP3Hvkn3fTpO24f82553H7sM7pctd502WX/L++X/Njgqp+AHg95r/0kpj1Bqr6VmwzkkU2qpnF/TbnvmqP3NeYl3uX/HNvELQN91uc+2o9yz43/y7yy9n7Ue4d+FO678u87viw/91VRF6CuR95vtrmXh8DrrPdwwty/9B2Dy+Bv0/Z++B+uXNfdwHu7fiXke47cfct+yL8s7hfQf/pslBeV1sy/WLMsvh6InKSmNuBZ2MuMs7Z7vk5uZ/j3D/Sk+yJ/0Y9ct+wJ9mf5fw/1qPsN9iWYD7uZ7Ngftml7D/aA/ezMF/Rfcu+5/yejX9fjLtPUNW/xvz/F5if/jcC19U9TvDvgvtm83Lvkf8cVb2oB+43OPe8hg/rBd0HZsjxt/gftlHHEPhBv74mZgn5HuAfgftgm5tceT9xr7LskS7rJzvm/7EArpaFpQ1wTsQUV69n/k2ZeuMP2SNd9hP/EZB9E3NjcGYWdja20/LtsNULH5uzHlhJ7pB9/bjXSPbT/fpGmE/UH/brUzEfplfaT9yrLHuky/rJfgTS5YD/XdWv74W5gHkwcFdsJeMXmL9f3Qt3yL5+3CH7jtybZP3qzv17YnsCnL6fuFdd9nX8i03g1gQi8o+YyfzlsMH1H6vqx0XkxzCrkCtiG4O8dT9xr7LskS7rJ7tzbwGnYD6GH6DZkjGxjUd+SLNNQvYLf8h+5LlD9n0h++WxeuAhqvoeEbk3Zo2zAbxFVZ9yrHCH7OvHvWayHwQepLYCKLmIeTw2MfRH+4l7lWWPdFk/2Y9AujwTK+vJ5cgfYgqTuwMnefhbVPW5+4k7ZF8/7pB9V9wnY6tf/0RV35ndT3s93Ws/ca+67GuJo6l9jr/l/NFsAnAZbOne6zAn2H8LHNqv3Ksse6TL+sk+hfvfsV3W/xE4vod0WRp/yB7psp/4j6LsT8L8ey2yedpKcofs68e9hrK/zvmfjm9AyJyb+/bJvcqyR7qsn+xHIF1+FltBdwqmoLof8A3gySy4YVKf3CH7+nGH7Hvi/mPga5i/5RM8zlz96z65V132df0LH8DrgasAr1TVb6jq+ZiPxYdiJvG/tY+5++ZfVe6++UP23XH/A/AwbJON31iQu2/+kP3Ic/fNH7Lvnf844B662OZpq8odsq8f97rJ/lTnH+P1gKp+cx9yr7LskS7rJ3vf6XIitony14HzVfXxwGnA8cBfyWIbtfbJHbKvH3fIvnvuJwKnAxdhm8oNVfWCfci96rKvJ3QfaKHjb7E/4McxH213wTYZeQdwK+AHgBdiZu/7jnuVZY90WT/ZI13WT/ZIl2NS9hf1KPu+5Q7Z1497zWV/IXCp/ci9yrJHuqyf7EcgXS7jPL/VCT/Jw6+1H7lD9vXjDtkX4r72fuReddnX9e+oCxB/C37AZlOdXwI+ii2xfXh2/13M78i8N+5Vlj3SZf1kj3RZP9kjXUL2Y4U7ZF8/7pA9ZN9P3CH7+nF33vMTwCcwVxPX9rCDwMeB6+1X7pB9/bhD9vXjXnXZ1/EvNoFbYYjIQFXLTthBVb3Yz/8SOEtVf2k/ca+y7JEu6yd7pMv6yR7pErIfK9wh+/pxh+wh+37iDtnXj9ufvxHwI8BHVfW/POxPMbcSb8U2q/p/qnqP/cQdsq8fd8i+ftyrLvvaQ/eBFjr+9v4HXA/4H+BunfChHy8DPJA5Ngbok3uVZY90WT/ZI13WT/ZIl5D9WOEO2dePO2QP2fcTd8i+ftz+/DnA+7GN5F4DPCa7dwngpsAVgYP7iTtkXz/ukH39uFdd9mPhLyyAVxQi8jKgxEzcDwJ/rqpvyu5vAJV2Zo+PNvcqyx7psn6yR7qsn+yRLiH7scIdsq8fd8gesu8n7pB9/bj9+ZcCr1LVZ4vI2cBzgHur6gf9/lBVxyIiukdFQZ/cIfv6cYfs68e96rIfE9B9oIWOv739ATcHngacje3W/HvA+4DnAgeAawD322/cqyx7pMv6yR7psn6yR7qE7McKd8i+ftwhe8i+n7hD9vXjdv6fB14LnJqFPRF4nJ/fELjLfuMO2dePO2RfP+5Vl/1Y+SsIrCJuALxeVc9V1QtV9e+A2wFfBd4JfAj40j7kXmXZI13WT/ZIl/WTPdIlZD9WuEP29eMO2UP2/cQdsq8fN5h7iVer6pezsKcCV/XzxwJb+5C7b/6Q/chz980fsh957r75+5b92IDuAy10/O3+DxDgLsAHgLM9rMjuPxn47/3GvcqyR7qsn+yRLusne6RLyH6scIfs68cdsofs+4k7ZF8/7oz/zpgS+aoedsCPTwf+GXjBfuMO2dePO2RfP+5Vl/1Y+hsSWCmo5fIXishVgWsC56pqBSAim8C1gPvuN+5Vlj3SZf1kj3RZP9kjXUL2Y4U7ZF8/7pA9ZN9P3CH7+nFn/C9y/msDn1HVw377m8Dd/B37ijtkXz/ukH39uFdd9mMKug+00PG3uz8sU/8m8BPAi4DPAbck2+UQuPp+415l2SNd1k/2SJf1kz3SJWQ/VrhD9vXjDtlD9v3EHbKvH/du+IFLA7+637hD9vXjDtnXj3vVZT/W/sQTLbDPISKnA88HzsVM4D+PzX58Epv1eKuqvme/ca+y7JEu6yd7pMv6yR7pErIfK9wh+/pxh+wh+37iDtnXj3uX/G9X1XftN+6Qff24Q/b141512Y9FhAJ4hSAix6nqhSKyoaojEbkkcAvgHGzm40mq+tH9xr3Kske6rJ/skS7rJ3ukS8h+rHCH7OvHHbKH7PuJO2RfP+5d8F8GeIKqfmy/cYfs68cdsq8f96rLfsxB94EZcvzt/o9GaZ9vCnAmcKf9zL3Kske6rJ/skS7rJ3ukS8h+rHCH7OvHHbKH7PuJO2RfP+6QPWTfT9wh+/pxr7rsx9JfWACvMEREtKcP2Cd33/yryt03f8h+5Ln75g/Zjzx33/wh+9HhX1XuvvlD9iPP3Td/yH50+FeVu2/+kP3Ic/fNH7IfHf5V5e6bP2Q/8tx98/ct+7ojFMCBQCAQCAQCgUAgEAgEAoFAILCmKI62AIFAIBAIBAKBQCAQCAQCgUAgEOgHoQAOBAKBQCAQCAQCgUAgEAgEAoE1RSiAA4FAIBAIBAKBQCAQCAQCgUBgTREK4EAgEAgEAoFAIBAIBAKBQCAQWFOEAjgQCAQCgUAgEAgEAoFAIBAIBNYUoQAOBAKBQCAQCAQCgUAgEAgEAoE1RSiAA4FAIBAIBAKBQCAQCAQCgUBgTREK4EAgEAgEAoFAIBAIBAKBQCAQWFP8f7wRytf7SWmFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "area_list = list(df['Area'].unique())\n", - "year_list = list(df.iloc[:,10:].columns)\n", - "\n", - "plt.figure(figsize=(24,12))\n", - "for ar in area_list:\n", - " yearly_produce = []\n", - " for yr in year_list:\n", - " yearly_produce.append(df[yr][df['Area'] == ar].sum())\n", - " plt.plot(yearly_produce, label=ar)\n", - "plt.xticks(np.arange(53), tuple(year_list), rotation=60)\n", - "plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=8, mode=\"expand\", borderaxespad=0.)\n", - "plt.savefig('p.png')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(24,12))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "2ebe07e3-739b-4f39-8736-a512426c05bf", - "_uuid": "70900ec0ff5e248cd382ee53b5927cb671efa80e", - "collapsed": true - }, - "source": [ - "Clearly, China, India and US stand out here. So, these are the countries with most food and feed production.\n", - "\n", - "Now, let's have a close look at their food and feed data\n", - "\n", - "# Food and feed plot for the whole dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "_cell_guid": "ec0c911d-e154-4f8a-a79f-ced4896d5115", - "_uuid": "683dc56125b3a4c66b1e140098ec91490cbbe96f", - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", - " warnings.warn(msg)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFgCAYAAACbqJP/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFudJREFUeJzt3X+wZ3V93/Hny0UIRikQFossDsQutkjoKlsktTpGIqxOImDVwMSwKjOrDGTq2GbEplOsltZGrRMcgsW4AhkFiYS6zSCwMon0B0YuuOWHSrggwpUtXMQoCZbMknf/+H5u/bLce/cC+/1+7+fu8zFz5nvO+3zO+X7Ozp3XnP2c8z0nVYUkqR/Pm3QHJEnPjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6sxek+7AuG3YsKGuvfbaSXdDkuaTpTTa4864H3nkkUl3QZKekz0uuCWpdwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1ZmTBnWRzkoeT3DFU+1KSbW26L8m2Vj88yU+H1n1maJtjk9yeZDrJBUnS6gcm2Zrk7vZ5wKiORZKWk1GecV8CbBguVNVvVNW6qloHXAX8ydDqe+bWVdX7huoXAZuAtW2a2+e5wA1VtRa4oS1L0oo3sqcDVtWNSQ6fb107a34H8IbF9pHkEGC/qrqpLV8GnAJ8FTgZeH1reinw58AHn3vPF3bs71w2yt1rQm75+BmT7oL0jExqjPu1wENVdfdQ7Ygk30ry9SSvbbVDgZmhNjOtBvDiqtoO0D4PXujLkmxKMpVkanZ2dvcdhSRNwKSC+3Tg8qHl7cBLq+qVwAeALybZj/mfTVvP9Muq6uKqWl9V61evXv2sOixJy8XYX6SQZC/grcCxc7WqegJ4os3fkuQe4EgGZ9hrhjZfAzzY5h9KckhVbW9DKg+Po/+SNGmTOOP+VeC7VfX/h0CSrE6yqs3/IoOLkPe2IZDHkhzfxsXPAL7SNtsCbGzzG4fqkrSijfJ2wMuBm4CXJ5lJcmZbdRpPHSYBeB1wW5L/DXwZeF9VPdrWnQX8ITAN3MPgwiTAx4A3JrkbeGNblqQVb5R3lZy+QP1d89SuYnB74Hztp4Cj56n/EDjhufVSkvrjLyclqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnRlZcCfZnOThJHcM1T6c5AdJtrXpzUPrPpRkOsldSU4aqm9otekk5w7Vj0jyF0nuTvKlJHuP6lgkaTkZ5Rn3JcCGeeqfqqp1bboGIMlRwGnAK9o2f5BkVZJVwIXAm4CjgNNbW4D/1Pa1FvgRcOYIj0WSlo2RBXdV3Qg8usTmJwNXVNUTVfU9YBo4rk3TVXVvVf0tcAVwcpIAbwC+3La/FDhltx6AJC1TkxjjPifJbW0o5YBWOxR4YKjNTKstVP8F4K+qasdO9Xkl2ZRkKsnU7Ozs7joOSZqIcQf3RcDLgHXAduCTrZ552tazqM+rqi6uqvVVtX716tXPrMeStMzsNc4vq6qH5uaTfBb407Y4Axw21HQN8GCbn6/+CLB/kr3aWfdwe0la0cZ6xp3kkKHFU4G5O062AKcl2SfJEcBa4JvAzcDadgfJ3gwuYG6pqgL+DHhb234j8JVxHIMkTdrIzriTXA68HjgoyQxwHvD6JOsYDGvcB7wXoKruTHIl8G1gB3B2VT3Z9nMOcB2wCthcVXe2r/ggcEWSfw98C/jcqI5FkpaTkQV3VZ0+T3nBcK2q84Hz56lfA1wzT/1eBnedSNIexV9OSlJnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjozsuBOsjnJw0nuGKp9PMl3k9yW5Ook+7f64Ul+mmRbmz4ztM2xSW5PMp3kgiRp9QOTbE1yd/s8YFTHIknLySjPuC8BNuxU2wocXVXHAH8JfGho3T1Vta5N7xuqXwRsAta2aW6f5wI3VNVa4Ia2LEkr3siCu6puBB7dqXZ9Ve1oi98A1iy2jySHAPtV1U1VVcBlwClt9cnApW3+0qG6JK1okxzjfg/w1aHlI5J8K8nXk7y21Q4FZobazLQawIurajtA+zx4oS9KsinJVJKp2dnZ3XcEkjQBEwnuJL8L7AC+0ErbgZdW1SuBDwBfTLIfkHk2r2f6fVV1cVWtr6r1q1evfrbdlqRlYa9xf2GSjcCvASe04Q+q6gngiTZ/S5J7gCMZnGEPD6esAR5s8w8lOaSqtrchlYfHdQySNEljPeNOsgH4IPCWqnp8qL46yao2/4sMLkLe24ZAHktyfLub5AzgK22zLcDGNr9xqC5JK9rIzriTXA68HjgoyQxwHoO7SPYBtra7+r7R7iB5HfCRJDuAJ4H3VdXchc2zGNyhsi+DMfG5cfGPAVcmORO4H3j7qI5FkpaTkQV3VZ0+T/lzC7S9CrhqgXVTwNHz1H8InPBc+ihJPfKXk5LUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOjDS4k2xO8nCSO4ZqBybZmuTu9nlAqyfJBUmmk9yW5FVD22xs7e9OsnGofmyS29s2FyTJKI9HkpaDUZ9xXwJs2Kl2LnBDVa0FbmjLAG8C1rZpE3ARDIIeOA94NXAccN5c2Lc2m4a22/m7JGnFGWlwV9WNwKM7lU8GLm3zlwKnDNUvq4FvAPsnOQQ4CdhaVY9W1Y+ArcCGtm6/qrqpqgq4bGhfkrRiTWKM+8VVtR2gfR7c6ocCDwy1m2m1xeoz89QlaUVbThcn5xufrmdRf/qOk01JppJMzc7OPocuStLkTSK4H2rDHLTPh1t9BjhsqN0a4MFd1NfMU3+aqrq4qtZX1frVq1fvloOQpElZUnAnuWEptSXaAszdGbIR+MpQ/Yx2d8nxwI/bUMp1wIlJDmgXJU8ErmvrHktyfLub5IyhfUnSirXXYiuT/BzwAuCgFppzwxP7AS/Z1c6TXA68vm0/w+DukI8BVyY5E7gfeHtrfg3wZmAaeBx4N0BVPZrko8DNrd1HqmrugudZDO5c2Rf4apskaUVbNLiB9wLvZxDSt/Cz4P4JcOGudl5Vpy+w6oR52hZw9gL72Qxsnqc+BRy9q35I0kqyaHBX1e8Dv5/kt6vq02PqkyRpEbs64wagqj6d5J8Chw9vU1WXjahfkqQFLCm4k/wR8DJgG/BkK8/96EWSNEZLCm5gPXBUG4eWJE3QUu/jvgP4+6PsiCRpaZZ6xn0Q8O0k3wSemCtW1VtG0itJ0oKWGtwfHmUnJElLt9S7Sr4+6o5IkpZmqXeVPMbPHuC0N/B84G+qar9RdUySNL+lnnG/aHg5ySkMXmogSRqzZ/V0wKr6r8AbdnNfJElLsNShkrcOLT6PwX3d3tMtSROw1LtKfn1ofgdwH4NXjUmSxmypY9zvHnVHJElLs9QXKaxJcnWSh5M8lOSqJGt2vaUkaXdb6sXJzzN4Q81LGLyQ97+1miRpzJYa3Kur6vNVtaNNlwC+vFGSJmCpwf1IkncmWdWmdwI/HGXHJEnzW2pwvwd4B/B/gO3A22jvhJQkjddSbwf8KLCxqn4EkORA4BMMAl2SNEZLPeM+Zi60YfDmdeCVo+mSJGkxSw3u5yU5YG6hnXEv9WxdkrQbLTV8Pwn8ryRfZvBT93cA54+sV5KkBS31l5OXJZli8GCpAG+tqm+PtGeSpHktebijBbVhLUkT9qwe6ypJmhyDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4Jakzow9uJO8PMm2oeknSd6f5MNJfjBUf/PQNh9KMp3kriQnDdU3tNp0knPHfSySNAljf1BUVd0FrANIsgr4AXA1g+d7f6qqPjHcPslRwGnAKxi8Ou1rSY5sqy8E3gjMADcn2eJP8SWtdJN+wt8JwD1V9f0kC7U5Gbiiqp4AvpdkGjiurZuuqnsBklzR2hrckla0SY9xnwZcPrR8TpLbkmweeozsocADQ21mWm2h+tMk2ZRkKsnU7Ozs7uu9JE3AxII7yd7AW4A/bqWLgJcxGEbZzuBRsjB4GuHOapH604tVF1fV+qpav3q17ziW1LdJDpW8Cbi1qh4CmPsESPJZ4E/b4gxw2NB2a4AH2/xCdUlasSY5VHI6Q8MkSQ4ZWncqcEeb3wKclmSfJEcAa4FvAjcDa5Mc0c7eT2ttJWlFm8gZd5IXMLgb5L1D5d9Lso7BcMd9c+uq6s4kVzK46LgDOLuqnmz7OQe4DlgFbK6qO8d2EJI0IRMJ7qp6HPiFnWq/tUj785nnVWlVdQ1wzW7voCQtY5O+q0SS9AwZ3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdWZiwZ3kviS3J9mWZKrVDkyyNcnd7fOAVk+SC5JMJ7ktyauG9rOxtb87ycZJHY8kjcukz7h/parWVdX6tnwucENVrQVuaMsAbwLWtmkTcBEMgh44D3g1cBxw3lzYS9JKNeng3tnJwKVt/lLglKH6ZTXwDWD/JIcAJwFbq+rRqvoRsBXYMO5OS9I4TTK4C7g+yS1JNrXai6tqO0D7PLjVDwUeGNp2ptUWqj9Fkk1JppJMzc7O7ubDkKTx2muC3/2aqnowycHA1iTfXaRt5qnVIvWnFqouBi4GWL9+/dPWS1JPJnbGXVUPts+HgasZjFE/1IZAaJ8Pt+YzwGFDm68BHlykLkkr1kSCO8nPJ3nR3DxwInAHsAWYuzNkI/CVNr8FOKPdXXI88OM2lHIdcGKSA9pFyRNbTZJWrEkNlbwYuDrJXB++WFXXJrkZuDLJmcD9wNtb+2uANwPTwOPAuwGq6tEkHwVubu0+UlWPju8wJGn8JhLcVXUv8I/nqf8QOGGeegFnL7CvzcDm3d1HSVqultvtgJKkXTC4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzkzyRQrSHu3+j/zSpLugEXjpv7195N/hGbckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUmbEHd5LDkvxZku8kuTPJv2j1Dyf5QZJtbXrz0DYfSjKd5K4kJw3VN7TadJJzx30skjQJk3hZ8A7gX1bVrUleBNySZGtb96mq+sRw4yRHAacBrwBeAnwtyZFt9YXAG4EZ4OYkW6rq22M5CkmakLEHd1VtB7a3+ceSfAc4dJFNTgauqKongO8lmQaOa+umq+pegCRXtLYGt6QVbaJj3EkOB14J/EUrnZPktiSbkxzQaocCDwxtNtNqC9UlaUWbWHAneSFwFfD+qvoJcBHwMmAdgzPyT841nWfzWqQ+33dtSjKVZGp2dvY5912SJmkiwZ3k+QxC+wtV9ScAVfVQVT1ZVX8HfJafDYfMAIcNbb4GeHCR+tNU1cVVtb6q1q9evXr3Howkjdkk7ioJ8DngO1X1n4fqhww1OxW4o81vAU5Lsk+SI4C1wDeBm4G1SY5IsjeDC5hbxnEMkjRJk7ir5DXAbwG3J9nWav8aOD3JOgbDHfcB7wWoqjuTXMngouMO4OyqehIgyTnAdcAqYHNV3TnOA5GkSZjEXSX/g/nHp69ZZJvzgfPnqV+z2HaStBL5y0lJ6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1JnTG4JakzBrckdcbglqTOGNyS1BmDW5I6Y3BLUmcMbknqjMEtSZ0xuCWpMwa3JHXG4JakzhjcktQZg1uSOmNwS1JnDG5J6ozBLUmdMbglqTMGtyR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSepM98GdZEOSu5JMJzl30v2RpFHrOriTrAIuBN4EHAWcnuSoyfZKkkar6+AGjgOmq+reqvpb4Arg5An3SZJGaq9Jd+A5OhR4YGh5Bnj1zo2SbAI2tcW/TnLXGPrWu4OARybdiXHIJzZOugt7gj3m74nz8ly2vraqNuyqUe/BPd+/UD2tUHUxcPHou7NyJJmqqvWT7odWBv+edq/eh0pmgMOGltcAD06oL5I0Fr0H983A2iRHJNkbOA3YMuE+SdJIdT1UUlU7kpwDXAesAjZX1Z0T7tZK4dCSdif/nnajVD1tSFiStIz1PlQiSXscg1uSOmNw70GSPJlk29B0+G7Y558n8TavPdCI/p4+nORfPfferWxdX5zUM/bTqlo36U5oxfDvaUI8497DJfm5JJ9PcnuSbyX5lV3U901yRZLbknwJ2HeiB6BlJcmqJB9PcnP7G3nv0LrfGar/u6H677YHxX0NePlEOt4Zz7j3LPsm2dbmv1dVpwJnA1TVLyX5h8D1SY5cpH4W8HhVHZPkGODW8R+Glon5/p7OBH5cVf8kyT7A/0xyPbC2Tccx+MXzliSvA/6Gwe8vXskgj24FbhnzcXTH4N6zzPdf238GfBqgqr6b5PvAkYvUXwdc0Oq3JbltXJ3XsjPf39OJwDFJ3taW/x6DwD6xTd9q9Re2+ouAq6vqcYAk/oBuCQxuLfREnMWelOPN/1pIgN+uquueUkxOAv5jVf2Xnervx7+nZ8wxbt0I/CZAGwp5KXDXEutHA8eMv8taxq4DzkryfBj87ST5+VZ/T5IXtvqhSQ5m8Pd0art28iLg1yfV8Z54xq0/AD6T5HZgB/CuqnoiyUL1i4DPtyGSbcA3J9ZzLUd/CBwO3JokwCxwSlVdn+QfATcNyvw18M6qurVd5N4GfB/475Ppdl/8ybskdcahEknqjMEtSZ0xuCWpMwa3JHXG4Jakzhjc2qPM80S7c1t9Yk85TPKuJC+ZxHerT97HrT3Ncnyi3buAO/BF11oiz7ilnSQ5MclNSW5N8sdDv/a7L8l/aOumkrwqyXVJ7knyvqHtn/YUvCSHJ/lOks8muTPJ9e3Xgm8D1gNfaP8D8GmL2iWDW3uafXcaKvmN4ZVJDgL+DfCrVfUqYAr4wFCTB6rqlxn8wu8S4G3A8cBH2vYn8rOn4K0Djm1PwaPVL6yqVwB/Bfzzqvpy+47frKp1VfXTkRy1VhSHSrSn2dVQyfHAUQweRwqwN3DT0Pq5p9fdDrywqh4DHkvyf5Psz8JPwbufwaNP5x6DeguDn4ZLz5jBLT1VgK1VdfoC659on383ND+3vFfbfr6n4B2+U/sn8SUUepYcKpGe6hvAa5L8A4AkL2hPR1yqhZ6Ct5jHGDyXWloSz7i1pxl+awvAtVV17txCVc0meRdweXuDCwzGvP9yKTtf6Cl4DM6wF3IJgycx/hT4Zce5tSs+HVCSOuNQiSR1xuCWpM4Y3JLUGYNbkjpjcEtSZwxuSeqMwS1Jnfl/+L4Y6b2CQ0EAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.factorplot(\"Element\", data=df, kind=\"count\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "189c74af-e6e4-4ddd-a73c-3725f3aa8124", - "_uuid": "bfd404fb5dbb48c3e3bd1dcd45fb27a5fb475a00" - }, - "source": [ - "So, there is a huge difference in food and feed production. Now, we have obvious assumptions about the following plots after looking at this huge difference.\n", - "\n", - "# Food and feed plot for the largest producers(India, USA, China)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "_cell_guid": "0bf44e4e-d4c4-4f74-ae9f-82f52139d182", - "_uuid": "be1bc3d49c8cee62f48a09ada0db3170adcedc17" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", - " warnings.warn(msg)\n", - "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3672: UserWarning: The `size` paramter has been renamed to `height`; please update your code.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAI4CAYAAAA7/9DSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHzNJREFUeJzt3Xm4ZHdd5/HPlwRIICAEGoQETJwJS4TI0jBsg0GQCTqYoEFBkERxoj4qiAKi8CjgOIriILtGliSIECQsEX0gGIgge2chGzuBEMhAI2sUUOA3f9TpUOnc213fTt9btzuv1/PUc6tOnarzu/dWV7/vOafOqTFGAAA6rrPsAQAAex4BAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACAtn2XPYBr4qijjhpvfvOblz0MAK49atkD2Cj26DUQX/ziF5c9BAC4VtqjAwIAWA4BAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANr2XfYAgPV36TPvvOwhrJnb/v4Fyx4CXCtYAwEAtAkIAKBNQAAAbfaB2MvYtg3AerAGAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQ4kBcCKHJiOHbEGAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2tYsIKrqZVX1haq6cG7agVX11qr62PT1ptP0qqrnVdXHq+r8qrrbWo0LALjm1nINxElJjtpu2lOSnDnGOCzJmdPtJHlIksOmywlJXryG4wIArqE1C4gxxjuSfGm7yUcnOXm6fnKSY+amnzJm3pvkJlV1q7UaGwBwzaz3PhC3HGNcniTT11tM0w9K8pm5+S6bpl1NVZ1QVVuqasvWrVvXdLAAwMo2yk6UtcK0sdKMY4wTxxibxxibN23atMbDAgBWst4B8fltmyamr1+Ypl+W5DZz8x2c5HPrPDYAYEHrHRCnJzluun5ckjfOTX/M9GmMeyX56rZNHQDAxrPvWj1xVb0qyZFJbl5VlyX5gyR/kuQ1VfXYJJcmefg0+z8m+fEkH0/y70l+Ya3GBQBcc2sWEGOMR65y1wNXmHck+bW1GgsAsHttlJ0oAYA9iIAAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANC2lICoqidU1UVVdWFVvaqq9quqQ6vqfVX1sao6taqut4yxAQA7t+4BUVUHJXlcks1jjDsl2SfJI5I8K8lzxhiHJflykseu99gAgMUsaxPGvkn2r6p9k9wgyeVJfjTJa6f7T05yzJLGBgDsxLoHxBjjs0meneTSzMLhq0nOTvKVMca3p9kuS3LQSo+vqhOqaktVbdm6det6DBkA2M4yNmHcNMnRSQ5NcuskN0zykBVmHSs9foxx4hhj8xhj86ZNm9ZuoADAqpaxCeNBSS4ZY2wdY/xnktcluU+Sm0ybNJLk4CSfW8LYAIAFLCMgLk1yr6q6QVVVkgcmuTjJ25McO81zXJI3LmFsAMAClrEPxPsy21nynCQXTGM4McnvJPmtqvp4kpsleel6jw0AWMy+O59l9xtj/EGSP9hu8ieT3HMJwwEAmhyJEgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANqWEhBVdZOqem1VfbiqPlRV966qA6vqrVX1senrTZcxNgBg55a1BuK5Sd48xrhDkh9O8qEkT0ly5hjjsCRnTrcBgA1o3QOiqm6c5P5JXpokY4z/GGN8JcnRSU6eZjs5yTHrPTYAYDHLWAPxg0m2Jnl5VZ1bVS+pqhsmueUY4/Ikmb7eYqUHV9UJVbWlqrZs3bp1/UYNAFxpGQGxb5K7JXnxGOOuSf4tjc0VY4wTxxibxxibN23atFZjBAB2YBkBcVmSy8YY75tuvzazoPh8Vd0qSaavX1jC2ACABax7QIwx/l+Sz1TV7adJD0xycZLTkxw3TTsuyRvXe2wAwGL2XWSmqjpzjPHAnU1r+I0kr6yq6yX5ZJJfyCxmXlNVj01yaZKH7+JzAwBrbIcBUVX7JblBkptPx2Wo6a4bJ7n1ri50jHFeks0r3LWrQQIArKOdrYH45SS/mVksnJ3vBcTXkrxwDccFAGxgOwyIMcZzkzy3qn5jjPH8dRoTALDBLbQPxBjj+VV1nySHzD9mjHHKGo0LANjAFvoURlW9Ismzk9wvyT2my0r7MAAAc6rqO1V13tzlKdP0s6pqKf+XVtXxVbXL+zImC66ByCwWDh9jjGuyMAC4FvrGGOMuyx7Edo5PcmGSz+3qEyx6HIgLk3z/ri4EAFhdVT24qt5TVedU1d9V1QHT9E9V1f+Z7ttSVXerqrdU1Seq6lfmHv+kqvpAVZ1fVc+Yph0ynfH6r6vqoqo6o6r2r6pjM1sx8Mppjcj+uzLmRQPi5kkungZ9+rbLriwQAK5l9t9uE8bPzt9ZVTdP8rQkDxpj3C3JliS/NTfLZ8YY907yziQnJTk2yb2SPHN6/IOTHJbknknukuTuVXX/6bGHJXnhGOOHknwlyU+PMV47LeNRY4y7jDG+sSvf1KKbMJ6+K08OAOx0E8a9khye5F1VlSTXS/Keufu3/cF+QZIDxhhfT/L1qvpmVd0kyYOny7nTfAdkFg6XJrlkOvZSMjscwyHX/NuZWfRTGP+8uxYIAFxFJXnrGOORq9z/renrd+eub7u97/T4Px5j/NVVnrTqkO3m/06SXdpcsZJFP4Xx9ar62nT55rRH6dd21yAA4FrsvUnuW1X/NUmq6gZVdbvG49+S5Bfn9ps4qKpusZPHfD3JjXZptJNF10BcZSFVdUxm21oAgB3bv6rOm7v95jHGU7bdGGNsrarjk7yqqq4/TX5ako8u8uRjjDOq6o5J3jNtArkiyaMzW+OwmpOS/GVVfSPJvXdlP4hF94G4ijHGG7Z9jhUAWN0YY59Vph85d/1tmR1jaft5Dpm7flJm//GvdN9zkzx3hcXcaW6eZ89dPy3JaYuMfzWLno3zp+ZuXiezj384JgQAXEstugbioXPXv53kU0mO3u2jAQD2CIvuA/ELaz0QAGDPseinMA6uqtdX1Req6vNVdVpVHbzWgwMANqZFj0T58swOZHHrJAcl+ftpGgBwLbRoQGwaY7x8jPHt6XJSkk1rOC4AYANbNCC+WFWPrqp9psujk/zrWg4MANixFU4VfshueM6nV9UTdzbfop/C+MUkL0jynMw+vvnuJHasBIDJ3Z90ym49vMHZf/aYWmC2pZ0qfNE1EH+Y5LgxxqYxxi0yC4qnr9moAIBdMm0p+LO503v/8tx9Vzvt9zT9qVX1kar6pyS3X2Q5i66BOGKM8eVtN8YYX6qquy76zQAAa2L+MNmXjDEeluSxSb46xrjHdGjsd1XVGZmdoXPbab8ryenTab//Lckjktw1sy44J7Mzd+7QogFxnaq66baIqKoDG48FANbGSpswHpzkiKo6drr9fZmFw2qn/b5RktePMf49Sarq9Cxg0Qj48yTvrqrXZrYPxM8k+aMFHwsArJ9K8htjjLdcZWLV/8jKp/3+zezC6SkW2gdijHFKkp9O8vkkW5P81BjjFd2FAQBr7i1JfrWqrpskVXW7qrphVj/t9zuSPKyq9q+qG+Wqp69Y1cKbIcYYFye5uPlNAADr6yVJDklyTs3O7701yTGrnfZ7jHFOVZ2a5Lwkn07yzkUWYj8GANgNFvzY5W41xjhghWnfTfJ702X7+1Y87fcY44/S3DVh0Y9xAgBcSUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAGAPtUan8z6rqjbvbD7HgQCA3eDSZ955t57O+7a/f8FecTpvAGAPUFX7VdXLq+qCqjq3qh6wk+n7V9Wrp1N8n5pk/0WWYw0EAOy5Vjqd968lyRjjzlV1hyRnVNXtdjD9V5P8+xjjiKo6IrPTee+UgACAPddKmzDul+T5STLG+HBVfTrJ7XYw/f5JnjdNP7+qzl9kwTZhAMDeZbV9J3a0T8XanM4bANhjvCPJo5LZqbyT3DbJRxacfqckRyyyEAEBAHuXFyXZp6ouSHJqkuPHGN/awfQXJzlg2nTx5CTvX2Qh9oEAgN1gwY9d7larnM77m0mOb0z/RpJHdJdtDQQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2pYWEFW1T1WdW1Vvmm4fWlXvq6qPVdWpVXW9ZY0NANixZa6BeHySD83dflaS54wxDkvy5SSPXcqoAICdWkpAVNXBSX4iyUum25XkR5O8dprl5CTHLGNsAMDOLWsNxF8keXKS7063b5bkK2OMb0+3L0ty0EoPrKoTqmpLVW3ZunXr2o8UALiadQ+IqvqfSb4wxjh7fvIKs46VHj/GOHGMsXmMsXnTpk1rMkYAYMf2XcIy75vkJ6vqx5Psl+TGma2RuElV7TuthTg4yeeWMDYAYAHrvgZijPG7Y4yDxxiHJHlEkreNMR6V5O1Jjp1mOy7JG9d7bADAYjbScSB+J8lvVdXHM9sn4qVLHg8AsIplbMK40hjjrCRnTdc/meSe67Hcuz/plPVYzFK8/kbLHgEA1wYbaQ0EALCHEBAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgLalno0TYE/n7L5cW1kDAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABA277LHgBsVHd/0inLHsKaef2Nlj0CYE9nDQQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQNu6B0RV3aaq3l5VH6qqi6rq8dP0A6vqrVX1senrTdd7bADAYpaxBuLbSX57jHHHJPdK8mtVdXiSpyQ5c4xxWJIzp9sAwAa07gExxrh8jHHOdP3rST6U5KAkRyc5eZrt5CTHrPfYAIDFLHUfiKo6JMldk7wvyS3HGJcns8hIcotVHnNCVW2pqi1bt25dr6ECAHOWFhBVdUCS05L85hjja4s+boxx4hhj8xhj86ZNm9ZugADAqpYSEFV13czi4ZVjjNdNkz9fVbea7r9Vki8sY2wAwM4t41MYleSlST40xvi/c3ednuS46fpxSd643mMDABaz7xKWed8kP5/kgqo6b5r2e0n+JMlrquqxSS5N8vAljA0AWMC6B8QY41+S1Cp3P3A9xwIA7BpHogQA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIA2AQEAtAkIAKBNQAAAbQICAGgTEABAm4AAANoEBADQJiAAgDYBAQC0CQgAoE1AAABtAgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACgTUAAAG0CAgBoExAAQJuAAADaBAQA0CYgAIC2DRUQVXVUVX2kqj5eVU9Z9ngAgJVtmICoqn2SvDDJQ5IcnuSRVXX4ckcFAKxkwwREknsm+fgY45NjjP9I8uokRy95TADACmqMsewxJEmq6tgkR40xfmm6/fNJ/tsY49e3m++EJCdMN2+f5CPrOtCN7+ZJvrjsQbDheZ2wCK+Tq/viGOOoZQ9iI9h32QOYUytMu1rdjDFOTHLi2g9nz1RVW8YYm5c9DjY2rxMW4XXCjmykTRiXJbnN3O2Dk3xuSWMBAHZgIwXEB5IcVlWHVtX1kjwiyelLHhMAsIINswljjPHtqvr1JG9Jsk+Sl40xLlrysPZENu+wCK8TFuF1wqo2zE6UAMCeYyNtwgAA9hACAgBoExBNVfX9VfXqqvpEVV1cVf9YVberqiOr6k2rPOYlG+2omlX1kzs7XHhVHVJVF+6m5a3682H3qKormvNf+TtZ5PVwbbbSv4WqenpVPXEnj9tcVc+brh9ZVffZhWV/qqpuvsL0X6yqC6rq/Kq6sKqOnqYfX1W3XuB5F5rvmqiqV03je8Iq93+wql61xmPYcO+/e4sNsxPlnqCqKsnrk5w8xnjENO0uSW65o8dtOzjWRjLGOD0+5cLE62FtjDG2JNky3TwyyRVJ3n1Nn7eqDk7y1CR3G2N8taoOSLJpuvv4JBdm5x+DX3S+XR3j9ye5zxjjB1a5/46Z/RF7/6q64Rjj39ZgDPtsxPffvYU1ED0PSPKfY4y/3DZhjHHeGOOd080Dquq1VfXhqnrlFBypqrOqavN0/Yqq+qOpvN9bVbecpj+0qt5XVedW1T9tm76a6a+Zf66q11TVR6vqT6rqUVX1/umvkv+yo+ed/vp4wXT9pKp6XlW9u6o+OR0VdPvlHVJV76yqc6bLfebGcdYq3/dR07R/SfJT1+gnz8J25Xey3euh9Vrkyn/jz5r+/X20qv77NP3IqnpTVR2S5FeSPKGqzquq/15Vm6rqtKr6wHS57/SYm1XVGdPP/6+y8kH2bpHk65kFScYYV4wxLpn+7W5O8sppOftX1e9Pz39hVZ1YMyvNd/fpPeXsqnpLVd1qGs/jara29fyqevUK3/t+VfXy6X3n3Kp6wHTXGUluse37XeF7+Lkkr5jm+8ntfpbPqap3VNWHquoeVfW6qvpYVf3vufkePf28z6uqv6rZ+ZS2vcc+s6rel+TeddX336Om968PVtWZ07R7Tu99505fb7/Ar5wkGWO4LHhJ8rgkz1nlviOTfDWzA2BdJ8l7ktxvuu+sJJun6yPJQ6frf5rkadP1m+Z7n4r5pSR/vpOxHJnkK0luleT6ST6b5BnTfY9P8hc7et7M/vp4wXT9pCR/N4378MzOSZIkhyS5cLp+gyT7TdcPS7JlR993kv2SfGaat5K8Jsmblv073JsvSa7Y1d/Jdq+H1mvx2nCZ/7cwN+3pSZ44XT9r7t/Wjyf5p7nfxZu2n3+6/bdz7xG3TfKh6frzkvz+dP0npveMm2+37H0y+8j7pUlenuk9ZW4sm+duHzh3/RX53vvPlfMluW5ma0Y2Tbd/NrOP0iezNRTXn67fZIWfzW8nefl0/Q7TmPZb6We23eM+muQHkjw4yenbjf9Z0/XHT8vf9j53WZKbJbljkr9Pct1pvhclecx0fST5me1/HpmtoflMkkPnfy5Jbpxk3+n6g5KctuzX255ysQlj93r/GOOyJKmq8zL7B/Qv283zH0m27QtwdpIfm64fnOTUqfqvl+SSBZb3gTHG5dPyPpFZySfJBZmtLek87xvGGN9NcvEqf3FeN8kLarbJ5jtJbjd330rf9xVJLhljfGya/jf53jlMWHvX5HeyK6/Fvd1qn3efn/666evZmf28d+ZBSQ6fVg4lyY2r6kZJ7p9p7dAY4x+q6stXW+gY36mqo5LcI8kDkzynqu4+xnj6Cst5QFU9ObM/Ag5MclFm//nOu32SOyV56zSefZJcPt13fmZrKt6Q5A0rPP/9kjx/GteHq+rTmb0/fG21b7yq7pFk6xjj01V1WZKXVdVNxxjbvtdtm9MuSHLR3PvcJzM7YvH9ktw9yQem8e6f5AvTY76T5LQVFnuvJO8YY1wyjfVL0/TvS3JyVR2W2e/zuquNm6uyCaPnosxetKv51tz172TlfUz+c0ypu908z8/sL8A7J/nlzAp+Z+aX992529/dheedf66VVpk+Icnnk/xwZjV/vVUeO/89OcjI8lyT38muvBb3dv+a2ZqZeQfmqiea2vYzX+3f/vauk+TeY4y7TJeDxhhfn+7b6e9pzLx/jPHHmR2596e3n6eq9svsr/Njp9/nX2fl32dl9h/1trHceYzx4Om+n0jywsze+86uqu2/t5XeL3bmkUnuUFWfSvKJzNYCzI9//r1s+/e5fadlnjw33tvPxdM3xxjfWeV7XOnn+odJ3j7GuFOSh8brfWECoudtSa5fVf9r24Rp+9yP7Ibn/r7MNkMkyXFzz3/Pqjpldz/vLj7P5dNaip/P7C+UHflwkkNr2hcjszcMlmvR38nues3sNcYYVyS5vKoemCRVdWCSo3L1NYw78vUkN5q7fUaSK882PK3dS5J3JHnUNO0huXq4pKpuXVV3m5t0lySfXmE52/4z/GLNdrSc379pfr6PJNlUVfeenv+6VfVDVXWdJLcZY7w9yZOT3CTJAdsNZ368t8tsc8yqZ0menvPhSY4YYxwyxjgkydHpvUecmeTYqrrF9JwHVtWKO2vOeU+SH6mqQ7c9Zpo+/3o/vjGGaz0B0TCtOXhYkh+r2cc4L8psu+bu2Iv56Un+rqremav+VXPbJN9Yg+ftelGS46rqvZmtntzhHtNjjG9mtnr8H2q2w96ndzQ/a6/xO3l6ds9rZm/zmCRPmzYJvS2zfY4+0Xj83yd52NxOhY9LsnnaOfHizHayTJJnZPbJhHMy2z/g0hWe67pJnl2zHWLPy2yfhcdP952U5C+n6d/KbK3DBZltfvjA3HPMz7dPZnHxrKr6YJLzktxnmv43VXVBknMz2wfsK9uN5UVJ9pnmOTXJ8WOMb2V190/y2THGZ+emvSOzzTm32sHjrjTGuDjJ05KcUVXnJ3lrZvtJ7OgxWzN7/b9u+h5Pne760yR/XFXvys7/MGKOQ1lvcFX1Z0leMcY4f9ljAYBtBAQA0GYTBgDQJiAAgDYBAQC0CQgAoE1AwF6mqh5WVaOq7rDssQB7LwEBe59HZnaAo0dsf8e2Ew4BXFMCAvYi09EG75vksZkComZnhHx7Vf1tZgcU2tGZDF9cVVuq6qKqesayvg9g4xMQsHc5JsmbxxgfTfKlucMd3zPJU8cYh1fVHTM7cuF9xxjbTo72qGm+p44xNic5IrPD/h6xzuMH9hACAvYuj0zy6un6q/O98wu8f9tZCDM7e+O2MxmeN93+wem+n5kOoXxukh/K7PTuAFfjdN6wl6iqmyX50SR3qqqR2XH9R5J/zFXPXbLtTIa/u93jD03yxCT3GGN8uapOijMTAquwBgL2HscmOWWM8QPTWQ5vk+SSJPfbbr7VzmR448xC46tVdcskD1nHsQN7GAEBe49HJnn9dtNOS/Jz8xNWO5PhGOODmW26uCjJy5K8a81HDOyxnEwLAGizBgIAaBMQAECbgAAA2gQEANAmIACANgEBALQJCACg7f8DZCwYK+UFz1AAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.factorplot(\"Area\", data=df[(df['Area'] == \"India\") | (df['Area'] == \"China, mainland\") | (df['Area'] == \"United States of America\")], kind=\"count\", hue=\"Element\", size=8, aspect=.8)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "94c19dc8-b1e7-4b61-b81f-422c27184c4e", - "_uuid": "0d1cfc7acc74847dbc5813b9b3bd0eb9db450985" - }, - "source": [ - "Though, there is a huge difference between feed and food production, these countries' total production and their ranks depend on feed production." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "9dba87b4-fa51-43ef-95ae-f31396c20146", - "_uuid": "43e0f00abf706ab1782ebb78cefc38aca17316e6" - }, - "source": [ - "Now, we create a dataframe with countries as index and their annual produce as columns from 1961 to 2013." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "_cell_guid": "c4a5f859-0384-4c8e-b894-3f747aec8cf9", - "_uuid": "84dd7a2b601479728dd172d3100951553c2daff5", - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AfghanistanAlbaniaAlgeriaAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijan...United Republic of TanzaniaUnited States of AmericaUruguayUzbekistanVanuatuVenezuela (Bolivarian Republic of)Viet NamYemenZambiaZimbabwe
09481.01706.07488.04834.092.043402.00.025795.022542.00.0...12367.0559347.04631.00.097.09523.023856.02982.02976.03260.0
19414.01749.07235.04775.094.040784.00.027618.022627.00.0...12810.0556319.04448.00.0101.09369.025220.03038.03057.03503.0
29194.01767.06861.05240.0105.040219.00.028902.023637.00.0...13109.0552630.04682.00.0103.09788.026053.03147.03069.03479.0
310170.01889.07255.05286.095.041638.00.029107.024099.00.0...12965.0555677.04723.00.0102.010539.026377.03224.03121.03738.0
410473.01884.07509.05527.084.044936.00.028961.022664.00.0...13742.0589288.04581.00.0107.010641.026961.03328.03236.03940.0
\n", - "

5 rows × 174 columns

\n", - "
" - ], - "text/plain": [ - " Afghanistan Albania Algeria Angola Antigua and Barbuda Argentina \\\n", - "0 9481.0 1706.0 7488.0 4834.0 92.0 43402.0 \n", - "1 9414.0 1749.0 7235.0 4775.0 94.0 40784.0 \n", - "2 9194.0 1767.0 6861.0 5240.0 105.0 40219.0 \n", - "3 10170.0 1889.0 7255.0 5286.0 95.0 41638.0 \n", - "4 10473.0 1884.0 7509.0 5527.0 84.0 44936.0 \n", - "\n", - " Armenia Australia Austria Azerbaijan ... \\\n", - "0 0.0 25795.0 22542.0 0.0 ... \n", - "1 0.0 27618.0 22627.0 0.0 ... \n", - "2 0.0 28902.0 23637.0 0.0 ... \n", - "3 0.0 29107.0 24099.0 0.0 ... \n", - "4 0.0 28961.0 22664.0 0.0 ... \n", - "\n", - " United Republic of Tanzania United States of America Uruguay Uzbekistan \\\n", - "0 12367.0 559347.0 4631.0 0.0 \n", - "1 12810.0 556319.0 4448.0 0.0 \n", - "2 13109.0 552630.0 4682.0 0.0 \n", - "3 12965.0 555677.0 4723.0 0.0 \n", - "4 13742.0 589288.0 4581.0 0.0 \n", - "\n", - " Vanuatu Venezuela (Bolivarian Republic of) Viet Nam Yemen Zambia \\\n", - "0 97.0 9523.0 23856.0 2982.0 2976.0 \n", - "1 101.0 9369.0 25220.0 3038.0 3057.0 \n", - "2 103.0 9788.0 26053.0 3147.0 3069.0 \n", - "3 102.0 10539.0 26377.0 3224.0 3121.0 \n", - "4 107.0 10641.0 26961.0 3328.0 3236.0 \n", - "\n", - " Zimbabwe \n", - "0 3260.0 \n", - "1 3503.0 \n", - "2 3479.0 \n", - "3 3738.0 \n", - "4 3940.0 \n", - "\n", - "[5 rows x 174 columns]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "new_df_dict = {}\n", - "for ar in area_list:\n", - " yearly_produce = []\n", - " for yr in year_list:\n", - " yearly_produce.append(df[yr][df['Area']==ar].sum())\n", - " new_df_dict[ar] = yearly_produce\n", - "new_df = pd.DataFrame(new_df_dict)\n", - "\n", - "new_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "15fbe29c-5cea-4ac3-9b95-f92acd89b336", - "_uuid": "ea48f75e9824a0c4c1a5f19cbd63e59a6cb44fe1" - }, - "source": [ - "Now, this is not perfect so we transpose this dataframe and add column names." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "_cell_guid": "145f751e-4f5b-4811-a68c-9d20b3c36e10", - "_uuid": "28e765d82bb4ebec3be49200a30fc4e0eabb24d7" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...16542.017658.018317.019248.019381.020661.021030.021100.022706.023007.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6637.06719.06911.06744.07168.07316.07907.08114.08221.08271.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...48619.049562.051067.049933.050916.057505.060071.065852.069365.072161.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...25541.026696.028247.029877.032053.036985.038400.040573.038064.048639.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...92.0115.0110.0122.0115.0114.0115.0118.0113.0119.0
\n", - "

5 rows × 53 columns

\n", - "
" - ], - "text/plain": [ - " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", - "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", - "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", - "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", - "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", - "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", - "\n", - " Y1967 Y1968 Y1969 Y1970 ... Y2004 \\\n", - "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 16542.0 \n", - "Albania 2046.0 2169.0 2230.0 2395.0 ... 6637.0 \n", - "Algeria 7986.0 8839.0 9003.0 9355.0 ... 48619.0 \n", - "Angola 5833.0 5685.0 6219.0 6460.0 ... 25541.0 \n", - "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 92.0 \n", - "\n", - " Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 \\\n", - "Afghanistan 17658.0 18317.0 19248.0 19381.0 20661.0 21030.0 \n", - "Albania 6719.0 6911.0 6744.0 7168.0 7316.0 7907.0 \n", - "Algeria 49562.0 51067.0 49933.0 50916.0 57505.0 60071.0 \n", - "Angola 26696.0 28247.0 29877.0 32053.0 36985.0 38400.0 \n", - "Antigua and Barbuda 115.0 110.0 122.0 115.0 114.0 115.0 \n", - "\n", - " Y2011 Y2012 Y2013 \n", - "Afghanistan 21100.0 22706.0 23007.0 \n", - "Albania 8114.0 8221.0 8271.0 \n", - "Algeria 65852.0 69365.0 72161.0 \n", - "Angola 40573.0 38064.0 48639.0 \n", - "Antigua and Barbuda 118.0 113.0 119.0 \n", - "\n", - "[5 rows x 53 columns]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "new_df = pd.DataFrame.transpose(new_df)\n", - "new_df.columns = year_list\n", - "\n", - "new_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "57929d23-e3d7-4955-92d1-6fa388eb774d", - "_uuid": "605f908af9ff88120fce2a2b59160816fcdcfa67" - }, - "source": [ - "Perfect! Now, we will do some feature engineering.\n", - "\n", - "# First, a new column which indicates mean produce of each state over the given years. Second, a ranking column which ranks countries on the basis of mean produce." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "_cell_guid": "ab91a322-0cb9-4edf-b5a2-cde82a237824", - "_uuid": "979f875019abef3ed85af75e000fe59d1de5a381" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013Mean_ProduceRank
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...18317.019248.019381.020661.021030.021100.022706.023007.013003.05660469.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6911.06744.07168.07316.07907.08114.08221.08271.04475.509434104.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...51067.049933.050916.057505.060071.065852.069365.072161.028879.49056638.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...28247.029877.032053.036985.038400.040573.038064.048639.013321.05660468.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...110.0122.0115.0114.0115.0118.0113.0119.083.886792172.0
\n", - "

5 rows × 55 columns

\n", - "
" - ], - "text/plain": [ - " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", - "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", - "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", - "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", - "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", - "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", - "\n", - " Y1967 Y1968 Y1969 Y1970 ... Y2006 \\\n", - "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 18317.0 \n", - "Albania 2046.0 2169.0 2230.0 2395.0 ... 6911.0 \n", - "Algeria 7986.0 8839.0 9003.0 9355.0 ... 51067.0 \n", - "Angola 5833.0 5685.0 6219.0 6460.0 ... 28247.0 \n", - "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 110.0 \n", - "\n", - " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 \\\n", - "Afghanistan 19248.0 19381.0 20661.0 21030.0 21100.0 22706.0 \n", - "Albania 6744.0 7168.0 7316.0 7907.0 8114.0 8221.0 \n", - "Algeria 49933.0 50916.0 57505.0 60071.0 65852.0 69365.0 \n", - "Angola 29877.0 32053.0 36985.0 38400.0 40573.0 38064.0 \n", - "Antigua and Barbuda 122.0 115.0 114.0 115.0 118.0 113.0 \n", - "\n", - " Y2013 Mean_Produce Rank \n", - "Afghanistan 23007.0 13003.056604 69.0 \n", - "Albania 8271.0 4475.509434 104.0 \n", - "Algeria 72161.0 28879.490566 38.0 \n", - "Angola 48639.0 13321.056604 68.0 \n", - "Antigua and Barbuda 119.0 83.886792 172.0 \n", - "\n", - "[5 rows x 55 columns]" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mean_produce = []\n", - "for i in range(174):\n", - " mean_produce.append(new_df.iloc[i,:].values.mean())\n", - "new_df['Mean_Produce'] = mean_produce\n", - "\n", - "new_df['Rank'] = new_df['Mean_Produce'].rank(ascending=False)\n", - "\n", - "new_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "6f7c4fb7-1475-439f-9929-4cf4b29d8de7", - "_uuid": "da6c9c98eaff45edba1179103ae539bbfbe9753b" - }, - "source": [ - "Now, we create another dataframe with items and their total production each year from 1961 to 2013" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "_cell_guid": "bfd692bc-dce4-4870-9ab9-9775cf69a87f", - "_uuid": "9e11017d381f175eee714643bc5fa763600aaa0b" - }, - "outputs": [], - "source": [ - "item_list = list(df['Item'].unique())\n", - "\n", - "item_df = pd.DataFrame()\n", - "item_df['Item_Name'] = item_list\n", - "\n", - "for yr in year_list:\n", - " item_produce = []\n", - " for it in item_list:\n", - " item_produce.append(df[yr][df['Item']==it].sum())\n", - " item_df[yr] = item_produce\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "_cell_guid": "3b7ed0c2-6140-4285-861c-d0cd2324a1f5", - "_uuid": "cb4641df5ce90f516f88c536e8a6c6870c5b4f65" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Item_NameY1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969...Y2004Y2005Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013
0Wheat and products138829.0144643.0147325.0156273.0168822.0169832.0171469.0179530.0189658.0...527394.0532263.0537279.0529271.0562239.0557245.0549926.0578179.0576597587492
1Rice (Milled Equivalent)122700.0131842.0139507.0148304.0150056.0155583.0158587.0164614.0167922.0...361107.0366025.0372629.0378698.0389708.0394221.0398559.0404152.0406787410880
2Barley and products46180.048915.051642.054184.054945.055463.056424.060455.065501.0...102055.097185.0100981.093310.098209.099135.092563.092570.08876699452
3Maize and products168039.0168305.0172905.0175468.0190304.0200860.0213050.0215613.0221953.0...545024.0549036.0543280.0573892.0592231.0557940.0584337.0603297.0608730671300
4Millet and products19075.019019.019740.020353.018377.020860.022997.021785.023966.0...25789.025496.025997.026750.026373.024575.027039.025740.02610526346
\n", - "

5 rows × 54 columns

\n", - "
" - ], - "text/plain": [ - " Item_Name Y1961 Y1962 Y1963 Y1964 Y1965 \\\n", - "0 Wheat and products 138829.0 144643.0 147325.0 156273.0 168822.0 \n", - "1 Rice (Milled Equivalent) 122700.0 131842.0 139507.0 148304.0 150056.0 \n", - "2 Barley and products 46180.0 48915.0 51642.0 54184.0 54945.0 \n", - "3 Maize and products 168039.0 168305.0 172905.0 175468.0 190304.0 \n", - "4 Millet and products 19075.0 19019.0 19740.0 20353.0 18377.0 \n", - "\n", - " Y1966 Y1967 Y1968 Y1969 ... Y2004 Y2005 \\\n", - "0 169832.0 171469.0 179530.0 189658.0 ... 527394.0 532263.0 \n", - "1 155583.0 158587.0 164614.0 167922.0 ... 361107.0 366025.0 \n", - "2 55463.0 56424.0 60455.0 65501.0 ... 102055.0 97185.0 \n", - "3 200860.0 213050.0 215613.0 221953.0 ... 545024.0 549036.0 \n", - "4 20860.0 22997.0 21785.0 23966.0 ... 25789.0 25496.0 \n", - "\n", - " Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 \n", - "0 537279.0 529271.0 562239.0 557245.0 549926.0 578179.0 576597 587492 \n", - "1 372629.0 378698.0 389708.0 394221.0 398559.0 404152.0 406787 410880 \n", - "2 100981.0 93310.0 98209.0 99135.0 92563.0 92570.0 88766 99452 \n", - "3 543280.0 573892.0 592231.0 557940.0 584337.0 603297.0 608730 671300 \n", - "4 25997.0 26750.0 26373.0 24575.0 27039.0 25740.0 26105 26346 \n", - "\n", - "[5 rows x 54 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "3fa01e1f-bedd-431b-90c3-8d7d70545f34", - "_uuid": "56a647293f1c1aba7c184f249021e008a4d5a8f2" - }, - "source": [ - "# Some more feature engineering\n", - "\n", - "This time, we will use the new features to get some good conclusions.\n", - "\n", - "# 1. Total amount of item produced from 1961 to 2013\n", - "# 2. Providing a rank to the items to know the most produced item" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "_cell_guid": "3a6bb102-6749-4818-860d-59aaad6de07f", - "_uuid": "9e816786e7a161227ae72d164b25c0029e01e5b4", - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Item_NameY1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013SumProduction_Rank
0Wheat and products138829.0144643.0147325.0156273.0168822.0169832.0171469.0179530.0189658.0...537279.0529271.0562239.0557245.0549926.0578179.057659758749219194671.06.0
1Rice (Milled Equivalent)122700.0131842.0139507.0148304.0150056.0155583.0158587.0164614.0167922.0...372629.0378698.0389708.0394221.0398559.0404152.040678741088014475448.08.0
2Barley and products46180.048915.051642.054184.054945.055463.056424.060455.065501.0...100981.093310.098209.099135.092563.092570.088766994524442742.020.0
3Maize and products168039.0168305.0172905.0175468.0190304.0200860.0213050.0215613.0221953.0...543280.0573892.0592231.0557940.0584337.0603297.060873067130019960640.05.0
4Millet and products19075.019019.019740.020353.018377.020860.022997.021785.023966.0...25997.026750.026373.024575.027039.025740.026105263461225400.038.0
\n", - "

5 rows × 56 columns

\n", - "
" - ], - "text/plain": [ - " Item_Name Y1961 Y1962 Y1963 Y1964 Y1965 \\\n", - "0 Wheat and products 138829.0 144643.0 147325.0 156273.0 168822.0 \n", - "1 Rice (Milled Equivalent) 122700.0 131842.0 139507.0 148304.0 150056.0 \n", - "2 Barley and products 46180.0 48915.0 51642.0 54184.0 54945.0 \n", - "3 Maize and products 168039.0 168305.0 172905.0 175468.0 190304.0 \n", - "4 Millet and products 19075.0 19019.0 19740.0 20353.0 18377.0 \n", - "\n", - " Y1966 Y1967 Y1968 Y1969 ... Y2006 \\\n", - "0 169832.0 171469.0 179530.0 189658.0 ... 537279.0 \n", - "1 155583.0 158587.0 164614.0 167922.0 ... 372629.0 \n", - "2 55463.0 56424.0 60455.0 65501.0 ... 100981.0 \n", - "3 200860.0 213050.0 215613.0 221953.0 ... 543280.0 \n", - "4 20860.0 22997.0 21785.0 23966.0 ... 25997.0 \n", - "\n", - " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 \\\n", - "0 529271.0 562239.0 557245.0 549926.0 578179.0 576597 587492 \n", - "1 378698.0 389708.0 394221.0 398559.0 404152.0 406787 410880 \n", - "2 93310.0 98209.0 99135.0 92563.0 92570.0 88766 99452 \n", - "3 573892.0 592231.0 557940.0 584337.0 603297.0 608730 671300 \n", - "4 26750.0 26373.0 24575.0 27039.0 25740.0 26105 26346 \n", - "\n", - " Sum Production_Rank \n", - "0 19194671.0 6.0 \n", - "1 14475448.0 8.0 \n", - "2 4442742.0 20.0 \n", - "3 19960640.0 5.0 \n", - "4 1225400.0 38.0 \n", - "\n", - "[5 rows x 56 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum_col = []\n", - "for i in range(115):\n", - " sum_col.append(item_df.iloc[i,1:].values.sum())\n", - "item_df['Sum'] = sum_col\n", - "item_df['Production_Rank'] = item_df['Sum'].rank(ascending=False)\n", - "\n", - "item_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "7e20740c-565b-4969-a52e-d986e462b750", - "_uuid": "f483c9add5f6af9af9162b5425f6d65eb1c5f4aa" - }, - "source": [ - "# Now, we find the most produced food items in the last half-century" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "_cell_guid": "3130fe83-404c-4b3c-addc-560b2e2f32bf", - "_uuid": "0403e9ab2e13587588e3a30d64b8b6638571d3d5" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "56 Cereals - Excluding Beer\n", - "65 Fruits - Excluding Wine\n", - "3 Maize and products\n", - "53 Milk - Excluding Butter\n", - "6 Potatoes and products\n", - "1 Rice (Milled Equivalent)\n", - "57 Starchy Roots\n", - "64 Vegetables\n", - "27 Vegetables, Other\n", - "0 Wheat and products\n", - "Name: Item_Name, dtype: object" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item_df['Item_Name'][item_df['Production_Rank'] < 11.0].sort_values()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "b6212fed-588b-426e-9271-6d857cd6aacb", - "_uuid": "e2c83f4c851b755ea6cf19f1bca168e705bd4edd" - }, - "source": [ - "So, cereals, fruits and maize are the most produced items in the last 50 years\n", - "\n", - "# Food and feed plot for most produced items " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "_cell_guid": "493f9940-1762-4718-acb4-fba5c4c73f4b", - "_uuid": "f8454c5200bdeb3995b9a0ada3deb5ca1c31f181" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.\n", - " warnings.warn(msg)\n", - "/anaconda3/lib/python3.7/site-packages/seaborn/categorical.py:3672: UserWarning: The `size` paramter has been renamed to `height`; please update your code.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAWYCAYAAACyPKHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X/M7ndd3/HXmxahBrbCOGzQltTMEkFlBY6sDmMyJIgkS1Fxw4j8kARd2CKZaYbGGHBjP4JKhDkchgElZMhAY2cYwhC2MfmxAxxbSnXWwaCjgcPkRwnQpPWzP+5v4+3htL17eq5zevp6PJIr93V9vt/vdb3vf5/5/pi1VgAAAACg0X3O9AAAAAAAcKaIYwAAAADUEscAAAAAqCWOAQAAAFBLHAMAAACgljgGAAAAQC1xDAAAAIBa4hgAAAAAtcQxAAAAAGqde6YHuDue+tSnrne84x1negwAAACAe5o50wOcLc7qM8c+//nPn+kRAAAAADiLndVxDAAAAADuDnEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANTaWRybmfvPzIdm5g9n5tqZeem2/vqZ+cTMHN1el27rMzOvnJnrZ+bqmXncrmYDAAAAgCQ5d4fffXOSJ621vjIz903yvpn5z9u2K9Zabz1u/x9Icsn2+ttJXr39BQAAAICd2NmZY2vPV7aP991e6w4OuTzJldtxH0hy/sw8bFfzAQAAAMBO7zk2M+fMzNEkn0vyrrXWB7dNL9sunXzFzNxvW7sgyaf3HX7Dtnb8d75gZo7MzJFjx47tcnwAAAAA7uV2GsfWWreutS5NcmGSJ8zMdyT52STfluS7kjw4yT/ddp8TfcUJvvM1a63Da63Dhw4d2tHkAAAAADQ4LU+rXGt9Mcl7kzx1rXXjdunkzUlel+QJ2243JLlo32EXJvnM6ZgPAAAAgE67fFrloZk5f3t/XpInJ/mj2+4jNjOT5OlJPrYdclWSZ29PrbwsyZfWWjfuaj4AAAAA2OXTKh+W5A0zc072Itxb1lq/OzO/PzOHsncZ5dEkP7Xt//YkT0tyfZKvJnneDmcDAAAAgN3FsbXW1Ukee4L1J93O/ivJC3c1DwAAAAAc77TccwwAAAAA7onEMQAAAABq7fKeYwAA3I7HX3HlmR7hLvnwy599pkcAANgJZ44BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUGtncWxm7j8zH5qZP5yZa2fmpdv6t8zMB2fmT2bmN2fmm7b1+22fr9+2X7yr2QAAAAAg2e2ZYzcnedJa628luTTJU2fmsiT/Oskr1lqXJPlCkudv+z8/yRfWWt+a5BXbfgAAAACwMzuLY2vPV7aP991eK8mTkrx1W39Dkqdv7y/fPmfb/n0zM7uaDwAAAAB2es+xmTlnZo4m+VySdyX50yRfXGvdsu1yQ5ILtvcXJPl0kmzbv5Tkr+1yPgAAAAC67TSOrbVuXWtdmuTCJE9I8qgT7bb9PdFZYuv4hZl5wcwcmZkjx44dO3XDAgAAAFDntDytcq31xSTvTXJZkvNn5txt04VJPrO9vyHJRUmybf+rSf7sBN/1mrXW4bXW4UOHDu16dAAAAADuxXb5tMpDM3P+9v68JE9Ocl2S9yR5xrbbc5L8zvb+qu1ztu2/v9b6hjPHAAAAAOBUOffOdzlpD0vyhpk5J3sR7i1rrd+dmY8nefPM/PMkH03y2m3/1yZ548xcn70zxp65w9kAAAAAYHdxbK11dZLHnmD9f2fv/mPHr389yY/sah4AAAAAON5puecYAAAAANwTiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoNbO4tjMXDQz75mZ62bm2pn56W39JTPzf2fm6PZ62r5jfnZmrp+ZP56Z79/VbAAAAACQJOfu8LtvSfIza62PzMwDk3x4Zt61bXvFWuuX9u88M49O8swk357k4Un+y8w8cq116w5nBAAAAKDYzs4cW2vduNb6yPb+piTXJbngDg65PMmb11o3r7U+keT6JE/Y1XwAAAAAcFruOTYzFyd5bJIPbkv/aGaunpl/PzMP2tYuSPLpfYfdkBPEtJl5wcwcmZkjx44d2+HUAAAAANzb7TyOzcwDkrwtyYvWWl9O8uokfzPJpUluTPLLt+16gsPXNyys9Zq11uG11uFDhw7taGoAAAAAGuw0js3MfbMXxt601vqtJFlrfXatdeta68+T/Eb+4tLJG5JctO/wC5N8ZpfzAQAAANBtl0+rnCSvTXLdWutX9q0/bN9uP5jkY9v7q5I8c2buNzPfkuSSJB/a1XwAAAAAsMunVT4xyY8nuWZmjm5rP5fkR2fm0uxdMvnJJD+ZJGuta2fmLUk+nr0nXb7QkyoBAAAA2KWdxbG11vty4vuIvf0OjnlZkpftaiYAAAAA2O+0PK0SAAAAAO6JxDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1zj3TAwAAcM/3qV/8zjM9wl3yiF+45kyPAACcJZw5BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWuIYAAAAALXEMQAAAABqiWMAAAAA1BLHAAAAAKgljgEAAABQSxwDAAAAoJY4BgAAAEAtcQwAAACAWjuLYzNz0cy8Z2aum5lrZ+ant/UHz8y7ZuZPtr8P2tZnZl45M9fPzNUz87hdzQYAAAAAyW7PHLslyc+stR6V5LIkL5yZRyd5cZJ3r7UuSfLu7XOS/ECSS7bXC5K8eoezAQAAAMDu4tha68a11ke29zcluS7JBUkuT/KGbbc3JHn69v7yJFeuPR9Icv7MPGxX8wEAAADAabnn2MxcnOSxST6Y5K+vtW5M9gJakoduu12Q5NP7DrthWzv+u14wM0dm5sixY8d2OTYAAAAA93I7j2Mz84Akb0vyorXWl+9o1xOsrW9YWOs1a63Da63Dhw4dOlVjAgAAAFBop3FsZu6bvTD2prXWb23Ln73tcsnt7+e29RuSXLTv8AuTfGaX8wEAAADQbZdPq5wkr01y3VrrV/ZtuirJc7b3z0nyO/vWn709tfKyJF+67fJLAAAAANiFc3f43U9M8uNJrpmZo9vazyX5V0neMjPPT/KpJD+ybXt7kqcluT7JV5M8b4ezAQAAAMDu4tha63058X3EkuT7TrD/SvLCXc0DAAAAAMc7LU+rBAAAAIB7InEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABALXEMAAAAgFriGAAAAAC1xDEAAAAAaoljAAAAANQSxwAAAACoJY4BAAAAUEscAwAAAKCWOAYAAABArQPFsZl590HWAAAAAOBscu4dbZyZ+yf55iQPmZkHJZlt019J8vAdzwYAAAAAO3WHcSzJTyZ5UfZC2IfzF3Hsy0l+bYdzAQAAAMDO3WEcW2v9apJfnZl/vNZ61WmaCQAAAABOizs7cyxJstZ61cz8nSQX7z9mrXXljuYCAAAAgJ076A3535jkl5J8T5Lv2l6HdzgXAAAAAPcQM3PrzBzd93rxtv7emTkjjWhmnjszd/ue+Ac6cyx7IezRa611d38QAAAAgLPO19Zal57pIY7z3CQfS/KZu/MlBzpzbPuhv3F3fggAAACAe6+ZecrMvH9mPjIz/3FmHrCtf3Jm/sW27cjMPG5mfm9m/nRmfmrf8VfMzP+cmatn5qXb2sUzc93M/MbMXDsz75yZ82bmGdk7metN25ls553s3AeNYw9J8vFt8Ktue53sjwIAAABwVjnvuMsq/8H+jTPzkCQ/n+TJa63HJTmS5J/s2+XTa63vTvLfk7w+yTOSXJbkF7fjn5LkkiRPSHJpksfPzPdux16S5NfWWt+e5ItJfnit9dbtN35srXXpWutrJ/uPHfSyypec7A8AAAAAcNa7s8sqL0vy6CT/Y2aS5JuSvH/f9ttOsromyQPWWjcluWlmvj4z5yd5yvb66LbfA7IXxT6V5BNrraPb+oez98DIU+agT6v8r6fyRwEAAAC4V5kk71pr/ejtbL95+/vn+97f9vnc7fh/udb6d3/pS2cuPm7/W5Oc9CWUJ3LQp1XeNDNf3l5f355Q8OVTOQgAAAAAZ60PJHnizHxrkszMN8/MI+/C8b+X5Cf23afsgpl56J0cc1OSB57UtPsc9Myxv/RDM/P07F0DCgAAAMC933kzc3Tf53estV5824e11rGZeW6S/zAz99uWfz7J/zrIl6+13jkzj0ry/u2yzK8keVb2zhS7Pa9P8usz87Uk332y9x2btdbJHJeZ+cBa67KTOvgUOXz48Dpy5MiZHAEA4KQ8/oorz/QId8lvP/DlZ3qEu+QRv3DNmR4BAM60OdMDnC0OdObYzPzQvo/3yd6jMk+uqgEAAADAPcRBn1b59/a9vyXJJ5NcfsqnAQAAAIDT6KD3HHvergcBAAAAgNPtoE+rvHBmfntmPjczn52Zt83MhbseDgAAAAB26UBxLMnrklyV5OFJLkjyn7Y1AAAAADhrHTSOHVprvW6tdcv2en2SQzucCwAAAAB27qBx7PMz86yZOWd7PSvJ/9vlYAAAAADc+83MrTNzdN/r4lPwne+dmcMH2fegT6v8iST/Jskrkqwkf5DETfoBAAAA7kUef8WV61R+34df/uw5wG5fW2tdeip/96446Jlj/yzJc9Zah9ZaD81eLHvJzqYCAAAAoNbM3H9mXjcz18zMR2fm797J+nkz8+aZuXpmfjPJeQf9rYOeOfaYtdYXbvuw1vqzmXnsXfmnAAAAAOAEzpuZo9v7T6y1fjDJC5NkrfWdM/NtSd45M4+8g/V/mOSra63HzMxjknzkoD9+0Dh2n5l50G2BbGYefBeOBQAAAIDbc6LLKr8nyauSZK31RzPzf5I88g7WvzfJK7f1q2fm6oP++EED1y8n+YOZeWv27jn295O87KA/AgAAAAB3we3dq+yO7mF2UvdLO9A9x9ZaVyb54SSfTXIsyQ+ttd54Mj8IAAAAAHfivyX5sSTZLpt8RJI/PuD6dyR5zEF/6MCXRq61Pp7k4wfdHwAAAABO0r9N8uszc02SW5I8d61188zc3vqrk7xuu5zyaJIPHfSH3DcMAACA/8/e/QdJftd1Hn+9ySoGEgElxPAjFSoGTjC6J2s88bwKghA5lHAHZyg5EgWDHqBomSqUuiVEI2jgFOTgiBgDlgY4zkhEjl8pYoDgkd/ZwMmRgxBiKAhiUfLjsIif+6O/s9s7mdnM7O5M7+z78aiamu7vfPv7/XR/u7/d8+xvzwAkSa694Nn7+tjihhhjHLXCtP+X5Kx1TP96kjP2Z/1r+lglAAAAAByOxDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADa2rboAQAAAADQV1XdlWTX3KTTxxi3HuAyz03ylTHGK+9pXnEMAAAAgCTJbeedPA7m8o7fuavWMNvXxxjbD+Z618PHKgEAAADUQO3WAAAgAElEQVQ4pFTVEVV1QVVdXVU3VdXz5n52ztz0l81Nf0lVfaKq3p/kkWtdlyPHAAAAAFikI6vqhun0p8cYT0vynCRfHmP8YFXdO8mHq+q9SU6avk5JUkkuq6p/k+SrSc5I8i8z613XJbl2LSsXxwAAAABYpJU+VvnEJN9XVU+fzt8vsyj2xOnr+mn6UdP0o5NcOsb4WpJU1WVrXbk4BgAAAMChppK8cIzxnr0mVj0pycvHGG9YNv1FSfbr76X5m2MAAAAAHGrek+QXq+pbkqSqHlFV952m/1xVHTVNf0hVPSjJlUmeVlVHVtXRSX5yrSty5BgAAAAAh5o3JjkhyXVVVUnuTHL6GOO9VfU9ST4ym5yvJHnWGOO6qnprkhuSfCbJB9e6InEMAAAAgCTJ8Tt31Wavc4xx1ArT/jnJb0xfy3/26iSvXmH6+UnOX+/628Sxx5zz5kUPYV2uveDZix7CIcF2g83lMbc12W6weTzetibbbWuy3bYm242tyN8cAwAAAKAtcQwAAACAtsQxAAAAANpq8zfHAACgm9vOO3nRQ1iX43fuWvQQAGjIkWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQ1rZFDwA4/DzmnDcvegjrcu0Fz170EAAAAFgQR44BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0Na2RQ8AYNFuO+/kRQ9h3Y7fuWvRQwAAADgsOHIMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2NiyOVdVFVfWFqrp5btq5VfV3VXXD9PXkuZ/9elXdUlWfqKonbdS4AAAAAGDJRh45dnGS01aY/ntjjO3T17uSpKoeleSMJI+eLvO6qjpiA8cGAAAAABsXx8YYVyb50hpnf2qSt4wxvjHG+HSSW5KcslFjAwAAAIBkMX9z7AVVddP0scsHTNMekuSzc/PcPk0DAAAAgA2z2XHs9UlOTLI9yeeSvGqaXivMO1ZaQFWdXVXXVNU1d95558aMEgAAAIAWNjWOjTE+P8a4a4zxz0n+MHs+Onl7kofNzfrQJHessowLxxg7xhg7jjnmmI0dMAAAAACHtU2NY1V13NzZpyVZ+k+WlyU5o6ruXVUPT3JSko9u5tgAAAAA6GfbRi24qi5JcmqSB1bV7UlemuTUqtqe2Ucmb03yvCQZY3ysqt6W5ONJvpnk+WOMuzZqbAAAAACQbGAcG2M8c4XJf7SP+c9Pcv5GjQcAAAAAllvEf6sEAAAAgEOCOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0tW3RAwAAAGCP2847edFDWJfjd+5a9BAADogjxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADa2rA4VlUXVdUXqurmuWnfUVXvq6pPTt8fME2vqnpNVd1SVTdV1Q9s1LgAAAAAYMlGHjl2cZLTlk17cZLLxxgnJbl8Op8kP5HkpOnr7CSv38BxAQAAAECSDYxjY4wrk3xp2eSnJnnTdPpNSU6fm/7mMfM3Se5fVcdt1NgAAAAAINn8vzl27Bjjc0kyfX/QNP0hST47N9/t07S7qaqzq+qaqrrmzjvv3NDBAgAAAHB4O1T+IH+tMG2sNOMY48Ixxo4xxo5jjjlmg4cFAAAAwOFss+PY55c+Ljl9/8I0/fYkD5ub76FJ7tjksQEAAADQzGbHscuSnDmdPjPJO+amP3v6r5X/KsmXlz5+CQAAAAAbZdtGLbiqLklyapIHVtXtSV6a5BVJ3lZVz0lyW5JnTLO/K8mTk9yS5GtJfnajxrVV3HbeyYsewrocv3PXoocAAAAAsG4bFsfGGM9c5UePX2HekeT5GzUWAAAAAFjJofIH+QEAAABg04ljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANDWtkUPAADo5bbzTl70ENbl+J27Fj0EALYAz2+wdTlyDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANratugBwOHktvNOXvQQ1uX4nbsWPQQAAABYKEeOAQAAANCWOAYAAABAW+IYAAAAAG35m2MAbFn+zh8AAHCgHDkGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbW1b9AAAAAAAFuG2805e9BDW5fiduxY9hMOSI8cAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKAtcQwAAACAtsQxAAAAANoSxwAAAABoSxwDAAAAoC1xDAAAAIC2xDEAAAAA2hLHAAAAAGhLHAMAAACgLXEMAAAAgLbEMQAAAADaEscAAAAAaEscAwAAAKCtbYtYaVXdmuQfk9yV5JtjjB1V9R1J3prkhCS3JvkPY4x/WMT4AAAAAOhhkUeOPW6MsX2MsWM6/+Ikl48xTkpy+XQeAAAAADbMofSxyqcmedN0+k1JTl/gWAAAAABoYFFxbCR5b1VdW1VnT9OOHWN8Lkmm7w9a6YJVdXZVXVNV19x5552bNFwAAAAADkcL+ZtjSX5kjHFHVT0oyfuq6m/XesExxoVJLkySHTt2jI0aIAAAAACHv4UcOTbGuGP6/oUklyY5Jcnnq+q4JJm+f2ERYwMAAACgj02PY1V136o6eul0kicmuTnJZUnOnGY7M8k7NntsAAAAAPSyiI9VHpvk0qpaWv+fjTHeXVVXJ3lbVT0nyW1JnrGAsQEAAADQyKbHsTHGp5J8/wrT/z7J4zd7PAAAAAD0taj/VgkAAAAACyeOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtCWOAQAAANCWOAYAAABAW+IYAAAAAG2JYwAAAAC0JY4BAAAA0JY4BgAAAEBb4hgAAAAAbYljAAAAALQljgEAAADQljgGAAAAQFviGAAAAABtiWMAAAAAtHXIxbGqOq2qPlFVt1TVixc9HgAAAAAOX4dUHKuqI5L81yQ/keRRSZ5ZVY9a7KgAAAAAOFwdUnEsySlJbhljfGqM8U9J3pLkqQseEwAAAACHqRpjLHoMu1XV05OcNsZ47nT+Pyb5oTHGC+bmOTvJ2dPZRyb5xKYPdHM8MMkXFz0I1s1225pst63LttuabLetyXbbmmy3rcl225pst63pcN5uXxxjnLboQWwF2xY9gGVqhWl71bsxxoVJLtyc4SxOVV0zxtix6HGwPrbb1mS7bV223dZku21NttvWZLttTbbb1mS7bU22G8mh97HK25M8bO78Q5PcsaCxAAAAAHCYO9Ti2NVJTqqqh1fVtyY5I8llCx4TAAAAAIepQ+pjlWOMb1bVC5K8J8kRSS4aY3xswcNalMP+o6OHKdtta7Ldti7bbmuy3bYm221rst22Jttta7LdtibbjUPrD/IDAAAAwGY61D5WCQAAAACbRhwDAAAAoK3DLo5V1e9V1Yvmzr+nqt44d/5VVfWrVXVqVb3zIK3z9Kp61MFY1grLPreqfm0jlr1sPRdX1dP387K/sYZ57qqqG6rq5qr6y6q6/zT9wVX19v1Z7wrreFFVPXs6fXFVfa2qjp77+auralTVA6fzV03fT6iqm6fT675fVNUVVXW3f/07Tf/EdL1vOJDrWVVv3N/7WFXdunSd9+Oye923q+qVVfVjq8w7qupP5s5vq6o77+n2rKodVfWa/RnfwVRVX9mEdey+r+3HZU+tqsfu52XnH3//varus495719V/2kNy1zTfIt0IPu1da5nxX3AGi53wLfhtO4nLZv2oqp63YEsd4X1rOl5brXb/GA+584t81ur6ver6v9W1Ser6h1V9dDpZ3vdthux/lXGtM/9YFX9VFW9eDq9+/l9f+9Dc+tZeowvfb14P5ZxVlW9dp2X2b29D+R5aoXlLl2fG6vqurXs+6b7/X3mzq/62qSqvquq3jLddz5eVe+qqkccjLHvY50HZX80LefTc9v6qv1czrqe8+YfQ/P34wO17Pr8bVW99GAs9wDH9JKq+lhV3TSN64em6Xvdxw5wHQe0T5p7jXljVV1dVdsPYFn3+Dp+K9uM58lD8TnyYFvheeaEdV5+93PEwbzP1ez3nF1z41r37xT7c/svew4/r6qesN71rrDMX66q3587/4aqev/c+RcuXb/93fezb4ddHEtyVZLHJklV3SvJA5M8eu7nj03y4YO8ztOTbEgcOxBVtVn/cGEtO7ivjzG2jzG+N8mXkjw/ScYYd4wxDsaLxW1Jfi7Jn81NviXJU6ef3yvJ45L83dIPxxj7FRrW6Wem6739QK7nGOO5Y4yPH8yBrdHy+/YfJFntBfFXk3xvVR05nf/xzN3eqxljXDPG+KUDGuWCVdURm7CaUzPt2/bD/OPvn5L8wj7mvX+StQSbtc63JW3S/vNg3IaXZPafneedMU0/mA7F57nfTnJ0kkeMMU5K8hdJ/ryqKgf5/rmO+8M+94NjjMvGGK84WOOa8/W555rtG7SOfTrIz1NL1+f7k/x6kpev4TIvSjIfLlZ8bTLdPy5NcsUY48QxxqOmeY9dy768Zhb9+vmcuW29Ga9l9rIB9+Nzxhjbk2xPcmZVPfxAF7i/+/Cq+uEkT0nyA2OM70vyhCSfnX68/D62luVt5OuDn5keI69LcsEBLOewjmPZnOfJQ/E58mBb/jxz6/wP7+kxt+w54mDf5x43N65N/51ijLFzjPH+e57zHu3uGJPtSe43tx/Z3TEWse/vYNFP7hvhw9lzp3p0kpuT/GNVPaCq7p3ke5JcP/38qKp6+/RO1Z9OL5hSVY+pqr+uqmtrduTZcdP0n5/enbmxqv5HVd1nejfzp5JcMNXqE+cHU1U/WVX/q6qur6r3V9Wx0/Rzq+qi6d2MT1XVL81d5iXTu0HvT/LIla7k9M7Df6uqD1bV/6mqp0zTz6rZkSF/meS904u4C2p2xMiuqvrpab6qqtfW7B3Tv0ryoLll7z7SqGZH9VwxnT6qqv54Ws5NVfXvq+oVSY6crvufVtV9q+qvptvo5qX1LfORJA+Zljl/1NYRNTsyaWn5L9zX9ljmx5JcN8b45ty0S5Isrf/UzO4bu39e9/Cu6XRdLpq2+fVVtRTajqzZO843VdVbkxy5r+WssNyHV9VHpuX+5tI4atm7FtP2OWs6fcW0LX6xqn53bp6zquoPptN/Md1GH6uqs1dZ97Oq6qPT9nrD0s62qr5SVedP2+1vqurYle7bY4zPJPnOqvquVa7e/0zyb6fTz8zcC4+qOqWqrppuy6uq6pHLr3fN3r1feufny1V15nS/uGC6vW6qquetct1WvP4rXbeVtsMqyzyhZvuHN03rfntN7xpPj5OdVfWhJM+oqu3T8m+qqkur6gHTfI+Z1v2RTFF4btu9du78O6vq1On0aTU7WuLGqrq8Zu/O/UKSX5lumx+tqmdMj7Ebq+rKVbbHSj6Y5Lun9fzqtIyba88Rt69IcuK0ngtq9ri/fBrPrqXHwQrzVa2wr5nWc87c9nvZNO0e9xW1wj53mn5xVb1muh99qvYcuVK1yn5t2XKvqNkRR1dN6z5lmn5uVV1YVe9N8uaq+rbas8+7vqoeN8236j6g5vYrVfX0qrp4On3sdL+4cfp67Aq34XFVdWXtOcrvR9ewPd+e5Ck1e37LdF95cJIPrXbbT9P/83Tffl9VXVJ73v08sareXbPH0ger6l/UCvuC1bbN5Am17Llp2e2/2r710bVn/3RTVZ202jhpgCIAABc1SURBVJWe1vezSX5ljHFXkowx/jjJNzJ7Ptjrtp0utt7n/Cuq6rer6q+T/PIatsWSfe0H93rcr3C97lWz/c1vrWN9qy3rfjV7LbG0r72kqn5+Or3XPmaFy+51dEPteZ5a9TFWc0e/1er73ROn81fX7J32tRy99O1J/mG6/IrPkzV7DfXgJB+oqg/Ustcm07zPqqqPJvlkkhOS/OHcdft3SV6Z5IdXeszU7Lngf9fsSJPrkjysqp5Ys+eQ62r2uuuoad6d0+Vvrtn+pFa4fV8x3YY3VdUr13Ab3KOa7RN3TqefVLN9yb1q5X3P/OX29drjtOnx8qHpNlqaZ/f9uFbfH9+rql5Xs+fkd9bs+f2e3iT8tun7V6dlrPbYvNt+am4s/6WqPpDkd/bzpjwuyRfHGN9IkjHGF8cYdyy/j03re31VXTNdx/n96/LXB99ds98Blo6EXPpd4W77pKp6fFVdOresH6+qP7+HMe9+XT1d5pk1e966uap+Z1/Tlz9Wam2v47eaVZ8nV3q8T/Ns6efIzVJ3/71zLb/LbPh9rmZHbV9de15Xv7yqzp9O/+C0v7pxuj2PXnbZc2vuU1vTmE6YTq/4O3rtfRT1rVX1strzunlp/3TMdH+6rma/g32m7v7JnuuTPKJmrzPvl+RrSW5IcvL088dmFtDmn5dPnW7bNb++YR/GGIfdV5Jbkxyf5HmZ/UL5m0menORHklw5zXNqki8neWhmkfAjSf51km/J7E53zDTfTye5aDr9nXPr+K0kL5xOX5zk6auM5QHJ7v8K+twkr5pOnzut596ZHd3299O6H5NkV2bvTH17Zkc//doKy704ybunsZ+U5PbMXlScNZ3+/+2debhV1XXAf0sQQSaLklStUWNj1CgxqHEiAlVJ0sbEWZFUrVqrTZ2J0c8kJZoaGhpbhzjhgFMdiKiIUeRTEcV5gIezUVH8NBEVUeqMq3+sdd7d77xzzr0Xkcd7b/2+733v3H3P2WePa++99trrDvL79gJmAD2ALwOvYAP/nkn4OsA7WR68/Nby662x3VWwicb/pHnz/0uSsL2Aicnngek9/r7JwPf88wbAE359JHA90NM/D6qqj1x5/Cqrj7ROgAe8DiYCw3N5W1KQhhHANL8+HfixX68BPAf0BY5P2sQQTOG2dUGaZgLPYkJtDjDBw6cCB/r1T5J0tL7bP58DHJzEtTUwGPhTcs+twLCsvPx/H0wpvGZan5hi+GZgVQ8/N0mHArv59W+Bn5e1bS/LvQryu8TL4w9YW5yTK88BSd3uAlxflG8P2wpoAQYChyfpWQ14BNiw4P1l+S/LW2E95OLcwJ/f0T9fgvdHL9cTk3tbgOF+fSreV3LhE6i1tYOBc5Lnp3lZDMZ2qTfM5WsciSzA5MS6WfusIxOzNtYTuAnra5ms6Qv0A54EvkXSH5JnBvj1WphMkoL7ymTNKOznsQWTV9OAnSiRFbl0V8ncyR7fZnifoEKuFfTNiX69U1In44BHgT7++QTgUr/exPPUmwoZQFt5uDcwya+vBY5N5ODAgjI8ATgluad/Vb0mz90C/MivT6Ima8rKfmusf/bBLK+ep9au7wC+5tfbAncWyYI6dVM0No2gvmw9G7OEAOiV1UNJnocAjxeE/zdwdEHZjqD5MX8mcG4jddCEHDwY7/ckfdrftR2mSDulmXf680upjTVzgP08fFfP6/7AbR5WJmPStOXrO5MhVXOHmdT6QZncnQaM9usjKJC7ufw84/W2VVKPZePkfHx8L+iLreOft4+5tB3/9q3TZzYAPgO2S2ThLKCvf/4Z8Mu0PP36iqQcJmEyYRA2N8jmhpXyu6BsJgEvJXV9lYevjsnxkR7/RmWyJ1enhWWKtd8FWD8W4DqK2/EkiuXx3sAfPfyvMQVnkTxO87MEON3Dq/pmlZyaBvRotg8l6ennaXkOmycNT76bT9s2lvWdHlj7H5Lcl84PHgT28OveXlcjKJZJgrX7LN//m7WhXDpnUutvxybltg42Vg3Gxu87MaumwvCCvlJ3bO6MfxSMk3ThMfILKsN0nLnBww6m7bqzNR/+ud1aZnm3Oay/zUvSdpyHfwN4GhsHH/cy6wW8CGzj9wzw/pCW/zjazrefwMaA0jV6Wv+enqy+/xW4KCmLk/36e9jYs1ZBfmZi7fC72EbfoR7POsAryX2pDG9qfhN/5X8r6tjdiiazHtsBOAPbTdkBazjp+dyHVPVVABGZgzX8d4DNgRmudO0BvO73by62m7sGNnhObyAtfwNc65raXtgEIOMWtZ2pj0TkDWxB+R1M4Lzv6ZpaEfd1qvoZ8LyIvIgt3gBmqOrbfj0MuFptZ/0vYjvg22CdLgt/TUTubCAvu5CYJavqooJ75gH/5TtS01T1Hg/vk5Txo9jkuij+89Wtv1T1bRHZnPL6SFkbE4B5pniat8WUpc0wCvhhsnvQG1O67gSc5WlsEZGWijjGqOojubAdsYEAbOLc8O6mqi4U25ndDhusv07tmPDRIrKHX6+HDbpvJY/vjAn2h70s+wBv+HcfY5MCsPrZtSIZb2ACuih9Lb67MhqbFKcMBC7znS7FhHY7fBflCmyxslhERgFDpLbjPNDz9lLu0bL8l+Wt0XpYoKpZGV+JLayynf5rPc0DsQXO3R5+GTC5IPwK4Psl78nYDlPivwTWD0rumw1MEpHrsHZeRdb/wCzHLsYUZDeoarZDPwWTP3mZI8DpIrITtjhcF5NVeapkzSgSi12sbu6hWFakVMncG13+PSVulUJzcu1qAFWdJSIDxP0gAlNV9YMkT2f7fc+IyMvAxjQnAzL+DjjQn1kKLBa3Lkx4GLhERFb1/M2hMbIjIzf5/0M8fBTFZd8fuCnLp+/4Imb5sgPWdrO4Vyt5Z1XdlI1NGWWy9X7gFDG/YVNU9fmKPAsmRxoNh+bHfPA+3gx15GAVF2Bl9x/NvhM/7lKQlhkisg/we+CbHtyojCmi0T5WJne3xxbqYIv+Mqup1vyIHXO73OcDy0rr+IcptlYHvurfLcU25qC8z7wCvKyqD3j4dpgiaLa3m15Y+wUYKSIn+jsGYQqrm5O0vAt8CFwkZn23LH6GfqqqbfyYqur7YpaBs7DF4Qv+VTvZ0+A7NgFeyvqhiFyJbVYVUSSPhwGTPfzP4tZWVflxGXSHmCXOuxT0zQbk1GTP5zKhqktEZCtsPByJzeFPUtVJBbfvK2ap3hObh26GbYhBbX7QH9vIusHj/9DDoUAmqeq9Yn4Lfywil2J95sCS5F4lIn2xshnqYdtgm9oLPd6rsH6rJeE35uIsm8d3dorGyQPoumPkF0HhOEPbdeeysDza3EhVfTMNUNUnvS/dDGyvqh+LyBbA66r6sN/zLrT2x3o0s0bP5uWPUrO6HQbs4e+9TUSK1tFQ02P0wer8eewY6kLa6jFSlmV+ExTQVZVj2XndLTBt7wJsR/5dzPIj46PkeilWHgI8qarbF8Q7CdtlmStmIjqigbScDZyhqlPFTDvH1Xk/lE/s8+Tvyz7/XxJW1dvL3vMptSO3vZPwqkWHRaj6nE8q/h74jYjcrqqn4gLVlQXTMEudvMPEovir6iPlg1xaM67BjkBcpqqfNSj80nfvparPtgm0OBqtozKKnk/LHYrzAzbh2hfbWbxBVdXb1i6Y8H9f7Chs/nnByuHkgjg/UdUsTWlbLKI3Vt5lTMUWPCOANZPw04C7VHUPXzjOzD8odszzGuBUVc0c1wu2A1OqjK6T/6q8NVKPZf0M2va1wqRVvKOsvuv2MwBVPULMSfA/AHNEZEtVfavk9nYTGmm8M4zBdpq3UtVPRGQ+xW2zLD4BfqOqF7T7olhWpEyiXOam8jN9d0fLzzS8rA8XP2iKup2wOr1CRCao6uUNPHojcIaIDMV2kh/z8MKyF5HjSuJZBXinZPKbZxLldVPVZ7J0tZOtwNMi8iCW/+kicpiqlilf/gSsLyL9VfW9JHwobRURKc2O+VC/j5dRJgeruA9TrPwuW0BneF/P6vGXqlo1KU+fWwWzmvoAU9S8SmMyplU+uazolXzXSB9rZkypRFXv902TwTQ+TuZpHf9EZGfg31V1nH/3YaJMKeszG9BeNsxQ1dG5+3pj1kZbq+oCERmXT6Oqfip2lHtnbJH+b5gCK41nOrYJ8YiqHtZgHsHmvW9RsoFVQlWZNipPi+RxUxMuaFVMzcQWkbdS0DdFZADVcmpZ+2yajqXYHGWmiMwDDsJkXpqODYGxmAXKIrEj9GnZZemoKoeydcClmBz7EFP2fZp/0BmDWUGOxxTge1a8r6H6qJjHd3bajZMiMoauO0auSNI+17SMrtfmRGQ9auP6+ap6fhNp2wJTEmVK+6bGP+fzyMS0XzcqE+/DDDp6Y/16IaZ4X0i53/Rlmd8EBXRFn2NgDecHwNuqutS12Wtguy/3Vz5ppuiDfacSEVlVRDKH/v2xXatVsQEp4z3/roiB1JzxHtRA2mcBe4idNe4P7FZx7z5iPh02wnZA80I0i28/Mb9Ng7Fdooc8fH8PXxvbHcuYj+2wQs2yBuB2bBIHQGL18ImXCSKyDvC+ql6JLQyGJs+jqosxy5ux2TO5+I8Qd+goItnRg7L6SHka96OUe98rwCnYZLVZpgNHZUoEEfmWh8/C6993soc0Ge9sahZ4aTt6GdhMRFZzJeLOJc9PwXbeR1OzahgILHLF0CbYrnaeO4C9ReRLnvZBIrJ+nbQWte2NMaVzGZdgyq15ufC0Lxxc8ux4oEVVr0nCpgNHJm1sY98pzcddL/95yuohz1ey9oeV+b35G7xdL5Kaj6h/BO5W1XcwC6FhBe+ZD2zpfXg94Nsefj8w3CfeWT+AXF2I+YB7UFV/CbyJWcs1wyxgdzHfiX2x3ax78u/ByvYNV4yNBLI2k7+vTNZMBw6Rmj+edUXkS/VkhVMmc6vyVCbX8mT+F4cBi70Oi+LL+vrG2M7ts1TLgL+IyKaulNgjCb8Ds9bD0zeA9nW6PlbWEzHrvqIyaYeqLsEWcpfQ1sFwYdljbXg3MZ9q/XD/WL6D+pKYpVHmXyqzNsrXd1Xd1BubCmWriHwVeFFVz8KUS0M8/A4RWTeNQM3i8TJssZP5TjwQs9a5syC9ZTQ6xjRLmRys4mLM0myy5Bwbe1/PnA03pBhzjsPGx9HUrBLLZEzKfGrzgB9Rs/Rtpo8V8QC1eUXeQXYhLtN7YEqfqnEyX+etcxPajn93AquLyM+Sd2wjIsMp7zNF+dhRRDL/jau7jMgWUW96HEW/StcPOzb0R+w4XJHF33e9rhtWjLn8OAE7Hv998V9YpFj2pJSV6TPAhlLzjzWa5rgX2MtlwZdpYEPZ2/22wAuU9M06cupzIyJfl7a+nLbEygjatrEBmFJgseev0Crc0/uqiOzu8a8mdX7xUlVfA14Dfk5OKVdw7yd+33Yisil2hHO4iKzlsnE0cHdFODQxj++slIyTXWKMXMlodC3TzNpxQTL+NawYE5E9sc2pnYCzxE4IPAOsIyLb+D398+MtNv4N9e+HAtkPhDSzRi/iXsy4AbFTMfnTAxn3YeuYwar6hm80LcTG4mZ+ofKLmt90abqqcmweZjb/QC5scd7kMo+qfoxNZv5TROZiZ5cz56W/wAaXGVjnyrgG+KmY08Q2DvkxS7HJInIPtoCtxHf8r/X3Xo8tVst4FhvYbgWOyO80OzdgJt5zsQnhiar6Zw9/HiuX86gNkGD+u870NKem6b8G/krcCTi1SfGFQIuYifYWwENiJp2n+DP5PD7u6clPjC/Cji60ePwH1KmPlFsx4dcOVb1Aa8cLmuE0bEHQIvajAZnT9vMwJ6otwImYAqCMq6TmYD77FZNjgJ+IyMOY4iFL5wLMp0cLcBU1M+98fhYBTwHrq2r27tuAnp6m02jb9rPnnsImULf7fTOwYwBVtGnbPpD9Leb3qxBVfVVVzyz46rfYjtBsbKFTxFhgVFJmP8TaxVPAY14PF9DeCqFu/gsorIcCnsZ+PasFs7w4r+S+gzBnrC3YZDrb9fon4PdiDvlTi7vZ2NHQedhk4DGwo7PY0ZUp3uYzBejN2KA8R0wJN0HcsS42YM9tIM+tuKyZhLXfBzGfCI+79dls7+cTsLa4tYg8gk3wnvHn8/cVyhpVvR07PnW/2A78H7BJY11ZQbnMLaNKruVZJPYz2Odj/hyKOBfo4em+FvOb8RHVMuAkzDr2Ttqarx+DWQXNw8zsv1FQhiMwK8DHMQVCUT8q42rs2FyrYrms7NWOE0zF6moK1p8z5eAY4FBve0/iv/hL+3Guqm7qjU1lsnU/4AlvE5tgR+lWwWRO0ZGNkzHLiudE5HlgH8yvjxaUbSFNjDFNUSEH6z13BiYLrpDmfhExc26c/Y0XU9YcBpygdkxlFub7q0zGpEzEFtIPYcqKzDKgmT5WxLHA8R7v2pQf8WvNj6fvIN/srBonLwRuldrxvda5STr+Ye2+F7CriLyAHV0ZB7xWIa/a4GV4MHC1y4EHgE18Q2Sil8+N2DHOPP2Baf7c3ZgCs1km5Op7NUy5OtYVK4dixzZ7UyB7cnkpLFPvt4cDt4g5ln+Z5rges1TMxu0HKa/vCV7XLVjZTanTN8vk1PKgH+YC4imvo82onfpobWOqOhcrqycxhUuZRQfYhtnRHt99mA+2elyFuXWo+wuwasf/fofV/+uYbLwLa+uPqepNZeFJvhqex3di2oyTXWGM/Bxl8YXQ6FqG5d/m7krk4eVi1sbjgUNV9TnM39eZLlf2A872OpxBe+u264FBnp4jMZ9vza7Ri/gVtsZ5DFOmv44pVdvg67yFWPvKuB/7AZyG5/pf1Pymq5M5Aw06GWLm29M053OiOyP26z4n6oo/g/+5EJElqtqvo9PRCGI+vYaq6i86Oi0rArGjNNNU9fP4uglWMsSO7YzV9v4Auw0i0k/tCNPqmNLkcK0dx1xpELPMO0RVj+/otASfH29vH6iqisj+mHP+5anYCFYiEjmzJraJsKNv0AZ1EPs10MdV9eKOTkt3pLOMkUHnwTcxlqodrd8eOE8bO6IbrEC6qs+xoHtyErYT3amUY52MntjuZBAEnZsLRWQzbMf0spV10q/mezAUY12HrYBzREQwPzCH1Lk/6NxMEzvK1As4LRRjjSEij2LWmid0dFq6MZ1ijAw6FV8BrnOr8I+Bf+7g9AQFhOVYEARBEARBEARBEARB0G3pqj7HgiAIgiAIgiAIgiAIgqAuoRwLgiAIgiAIgiAIgiAIui2hHAuCIAiCIAiCIAiCIAi6LaEcC4IgCIIgqIOILPH/G4jIAR2dniAIgiAIgmD5EcqxIAiCIAiCxtkACOVYEARBEARBFyKUY0EQBEEQBI0zHviOiMwRkeNEpIeITBCRh0WkRUT+BUBERojI3SJynYg8JyLjRWSMiDwkIvNEZKMOzkcQBEEQBEHg9OzoBARBEARBEHQiTgLGquoPAETkcGCxqm4jIqsBs0Xkdr/3m8CmwNvAi8BFqvptETkGOAo4dsUnPwiCIAiCIMgTyrEgCIIgCIJlZxQwRET29s8Dga8BHwMPq+rrACLyApApzeYBI1d0QoMgCIIgCIJiQjkWBEEQBEGw7AhwlKpObxMoMgL4KAn6LPn8GTEHC4IgCIIgWGkIn2NBEARBEASN8x7QP/k8HThSRFYFEJGNRaRvh6QsCIIgCIIgWCZi1zIIgiAIgqBxWoBPRWQuMAk4E/sFy8dERICFwO4dlrogCIIgCIKgaURVOzoNQRAEQRAEQRAEQRAEQdAhxLHKIAiCIAiCIAiCIAiCoNsSyrEgCIIgCIIgCIIgCIKg2xLKsSAIgiAIgiAIgiAIgqDbEsqxIAiCIAiCIAiCIAiCoNsSyrEgCIIgCIIgCIIgCIKg2xLKsSAIgiAIgiAIgiAIgqDbEsqxIAiCIAiCIAiCIAiCoNvy/yCow6RV+SGaAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.factorplot(\"Item\", data=df[(df['Item']=='Wheat and products') | (df['Item']=='Rice (Milled Equivalent)') | (df['Item']=='Maize and products') | (df['Item']=='Potatoes and products') | (df['Item']=='Vegetables, Other') | (df['Item']=='Milk - Excluding Butter') | (df['Item']=='Cereals - Excluding Beer') | (df['Item']=='Starchy Roots') | (df['Item']=='Vegetables') | (df['Item']=='Fruits - Excluding Wine')], kind=\"count\", hue=\"Element\", size=20, aspect=.8)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "45dda825-49a0-41ab-9ebd-eaa609aac986", - "_uuid": "ce5b2d38ff24ea08da632c4e2773dbd0bd026b9d", - "collapsed": true - }, - "source": [ - "# Now, we plot a heatmap of correlation of produce in difference years" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "_cell_guid": "b1bab0ec-6615-452c-8d06-a81d4f2ae252", - "_uuid": "a2ed2aae2364810ce640648cf50880adcf2cdcc4" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJYCAYAAAANJyWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+QXOV95/v3p+eHhMaSk9goldjcJa615LKNpGDWcCsOZkOFQNjF67gQTCjuboktXXnlW3XvJgRSgQ0kUTZFvCorlZQpRRYs4BVyvCaghUireA0yjlKLUIQYsCxbFInHSiyDsQ36wcx0f+8f5wg37Z7pPl8PTc/o86rqmp7znO95nnP6nNPzzDnn+ygiMDMzMzMzs96rvdkNMDMzMzMzO1O5Q2ZmZmZmZvYmcYfMzMzMzMzsTeIOmZmZmZmZ2ZvEHTIzMzMzM7M3iTtkZmZmZmZmbxJ3yMzMzMzMzN4k7pCZmZmZmZm9SdwhMzMzMzMze5O4Q2ZmZmZmZvYmGXyzG5A1+cJzUTmoPlk5JCYnKscAxInvV47R4HCurqlcG1PUmz58vPxCT+opKmvk4iZfrV7Vi/+Yq2swcahOTeXqymyPRnIbnjpROSRe/E6qKg0NVa/r5KlUXfGd76biUnVNVj+vZbZFUVn1z3nqH15MVaXhgeoxIwuqVzSRO05isl45ZuqF6ueMrFe+mft6b0xVP8dPTeS+F+qN6nEnT+b23RdPnVU55hVV3wcBjg1WX6/sN+tA9b+EeCVZ2T8MJPZ5Eg0EvhPV/645Tu5Yfql+snLMK43qx/IrU7nvk+Fa7lh+6p/+RqnAN1Hqb/ukobe/q6+2z4yHpQqPS7qiadpqSTslbZV0TNJYS8xKSXslPS1ph6QlTWUryrJnyvKF5fQNkr4p6ZXZXkEzMzMzM7N+NWOHLCICWAdslLRQ0giwAVgP3A1c3iZsC3BzRJwHPADcCCBpELgPWBcR7wMuAU7/a3cH8MEfd2XMzMzMzGwOatR79+ozHa+DRsSYpB3ATcAIcE9EHAGOSDq3TchyYE/5fjewC7gVuAw4GBFPlct97T6WiPhbAKmvrh6amZmZmZm9obq9MfV2YD8wAVzQYd4x4CrgQeBq4Jxy+jIgJO0Czgbuj4g7KrfYzMzMzMzml+wz/fNAV492RsRxYDtwb0R0epJxDbBe0pPAYopOHBSdvw8B15U/Pyrp0iqNlbRW0j5J+7bcs61KqJmZmZmZWd+pkrqlUb5mFBGHKG5PRNIy4MqyaBx4LCJeKMseAc4HvthtAyJiM7AZepuJxczMzMzM7I0w6znMJS0tf9aAW4A7y6JdwApJi8oEHx8Gnp3t+s3MzMzMbI5pNHr36jPpDpmkbcBeYLmkcUk3lEWjkg4Dh4CjwF0AEfESsBF4AjgA7I+Ih8tl3SFpHFhULuu2bLvMzMzMzMzmChWZ7eeeyW9/rXrDBxIDSiYGkwaIU8erB9Vyg1Cm0ndmH5zs0cDQAPHKSz2ri3r1ASWjkRho/HvHKscAaKj6gLcxUX2wy7QeDgzN93IDDacG1z6V24bxYqKNjeS5uJ44/mu9y2hb/2Zyn88MDH1WYmBoIE4ljuVXc98N9RcT+/xU9X3j5LeqVwMw9Wr1c/zkqdx3V6NefT88cWI4Vde3Ty6qHHM8OTD0Pw1V34ZKHv6Zb+T0wNC16t+Tk+mBoasPvHwicgNDf7de/Zh8pZ4b5DkzOPRQ8m/DQ8eemHOpyyeOPtOzTsnwz76vr7ZP7/66Nqug3ztjZjY/ZDpjWanOmJnNC5nOmJ05ZuyQqfC4pCuapq2WtFPSVknHJI21xKyUtFfS05J2SFrSVLaiLHumLF9YPlP2sKRD5fQ/mv3VNDMzMzOzvuVnyNqL4n7GdcDGsvM0AmwA1gN3A5e3CdsC3BwR5wEPADcClIk87gPWRcT7gEuA0/+a/GREvAf4eeAXmjuAZmZmZmZm81XHhyoiYkzSDuAmYAS4JyKOAEckndsmZDmwp3y/myK74q0UqfAPRsRT5XJPP2RxAvhSOW1C0n7gndkVMjMzMzOzOcYDQ3d0O/DrwBXAHR3mHQOuKt9fDZxTvl8GhKRdkvZL+q3WQEk/AfxrKoxNZmZmZmZmNld11SGLiOPAduDeiI6pb9YA6yU9CSwGJsrpg8CHgOvKnx+VdOnpoPKWxm3An0TEc+0WLGmtpH2S9m25d3s3TTczMzMzs37XqPfu1Weq5IFulK8ZRcQhitsTkbQMuLIsGgcei4gXyrJHgPP54dWwzcDXI+JTMyx7czlfLu29mZmZmZlZH5n1tPeSlpY/a8AtwJ1l0S5gRZlVcRD4MPBsOe8fAG8F/t/Zbo+ZmZmZmfW5aPTu1WfSHTJJ24C9wHJJ45JuKItGJR0GDgFHgbsAIuIlYCPwBHAA2B8RD0t6J/A7wHuB/ZIOSPr36TUyMzMzMzObI7q+ZTEibmv5fXSa+TYBm6Ypu48i9X3ztHGgr0bLNjMzMzOzHurD8cF6pcozZH0lJic6z9Qi1esbGMpEobMWVw+qT6Xqih5eei3uRK0mMus1fFb1mKzk9tNkp/w2bYy8NVVXZj/UwpFcXZn1ykp8zumHRwcTp7tTJ1JVpc412S+iTFxyn49G9a1fO5ncnwYGKodowXD1ehZW/y4B0KlT1YMmkuf4evXPa+gHue1eG+zd49mNevUjZWgy9zB+7WQqLCVzdNWS/5ZOHJJk0xlk1quRPGPXE7VlYiDXxuhRDEAjnDLhTDDjX9cqPN48ULOk1ZJ2Stoq6ZiksZaYlZL2Snpa0g5JS5rKVpRlz5TlC8vpOyU9VU6/U1L1b2IzMzMzM5uTIho9e/WbGTtkERHAOmCjpIWSRoANwHrgbuDyNmFbgJsj4jzgAeBGeC2t/X3Auoh4H3AJMFnGrI6IlcD7gbMpxi8zMzMzMzOb1zrewxMRY5J2ADcBI8A9EXEEOCLp3DYhy4E95fvdFNkVb6VIhX8wIp4ql/tiUx0/aGrPMD/GXUlmZmZmZmZzRbcPVdwO7KcY5PmCDvOOAVcBD1Jc6TqnnL4MCEm7KK6C3R8Rd5wOKqd/EPgr4PPdroCZmZmZmc1xZ3BSj64yNETEcWA7cG9EdHpSeA2wXtKTwGKKThwUnb8PAdeVPz8q6dKmOn4F+BlgAfBL7RYsaa2kfZL2bfms+2xmZmZmZja3VUk71qCLJDsRcYji9kQkLQOuLIvGgcci4oWy7BHgfOCLTbGnJD0EfITidsfWZW8GNgNMjD/t2xrNzMzMzOaDPky20SvpgaGnI2lp+bMG3ALcWRbtAlZIWlQm+Pgw8Kykt0j6mTJmEPhVikGlzczMzMzM5rV0h0zSNmAvsFzSuKQbyqJRSYcpOlVHgbsAIuIlYCPwBHAA2B8RD1MkCnlI0kHgKeAYP+zEmZmZmZnZfNeo9+7VZ7q+ZTEibmv5fXSa+TYBm6Ypu48i9X3ztG8D/6LbdpiZmZmZmc0XVZ4h6ytx4vvVgxYsqhyisxZXrweglhjbuj6Vq6uHWWkic021Ptl5nla1Wb+bdnrZzZdp48BQqioNLqgcE5H8D5AS65W973sgcQqa6pRXqL3UNhwcTtWVOiaz2zBTV/KcoXpinzp5MlUXg4l9Y6j68aV0+6qf43UqcS4EmKz+3TCwaKLzTG1Vfzx7cCq3PzXqqhwzcDK57/ZwNJ1ePgVTq74JaSRiACKxDevJ7Z7ZhsXQudXVE+feRqKuevI7eSDznTxX+RkyMzMzMzMz67UZO2QqPC7piqZpqyXtlLRV0jFJYy0xKyXtlfS0pB2SljSVrSjLninLF7bEPtS6PDMzMzMzm+cajd69+syMHbIorv+uAzZKWihpBNgArAfuBi5vE7YFuDkizgMeAG6E1zIo3gesi4j3AZcAr92/IenXgFd+zPUxMzMzMzObMzrepB8RY5J2ADdRZES8JyKOAEckndsmZDmwp3y/myLd/a0UY5MdjIinyuW+eDpA0luA/wisBT6XXRkzMzMzM5uDzuBnyLp9avp2YD8wAVzQYd4x4CrgQeBq4Jxy+jIgJO0Czgbuj4g7yrLfB/4LcKL7ppuZmZmZmc1tXSX1iIjjwHbg3ojolOJsDbBe0pPAYopOHBSdvw8B15U/PyrpUkmrgH8eEQ90aoektZL2Sdq3ZftD3TTdzMzMzMz63Rn8DFmVvMINushEGhGHKG5PRNIy4MqyaBx4LCJeKMseAc6neG7sA5KeL9uzVNKjEXFJm2VvBjYDvHr48d7lsDUzMzMzM3sDzHrae0lLy5814BbgzrJoF7BC0qIywceHgWcj4tMR8bMRcS7FlbPD7TpjZmZmZmY2P0XUe/bqN+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQAR8RKwEXgCOADsj4iHf5zGm5mZmZmZzWVd37IYEbe1/D46zXybgE3TlN1Hkfp+ujqeB97fTXs0ONzNbK9XG6geU5+qHpONG1qQqkoDVe48LfUyk02mfZNDubpqif8xZO8lri/sPM+PxCT3p8Q2VHa9BpLbPiGmOj2S+qM0mDtOUvtGZt/ttXriP33pfb76/hsnTqaq0lBiP6ypeszwEJw8VTkspqpv95hMHv8T1eMaE7m7+hsTnedpVZ9MbHegUa8eV5/K/R95IvH/50nl1iuzObL/Ha8lPuZJcvvGyc5PrfyIiUQMwMnGZOeZWhzP7LzAqUTciXr1764BDfDyZPXcdVO1/ruaY7NvDvy1YWZm9gZJdMbMzKrKdMbOOGdw2vsZ/ymjwuOSrmiatlrSTklbJR2TNNYSs1LSXklPS9ohaUlT2Yqy7JmyfGE5/VFJX5N0oHwtne0VNTMzMzMz6zczXiGLiJC0DvgLSV8CBoANwOXAO4A/Be5pCdsC/GZEPCZpDXAjcGuZyOM+4PqIeErS24Dma9LXRcS+WVkrMzMzMzObO/owHX2vdLxlMSLGJO0AbgJGgHsi4ghwRNK5bUKWA3vK97spsiveSpEK/2BEPFUu98Ufu/VmZmZmZmZzWLfPkN0O7KcY5PmCDvOOAVcBDwJXA+eU05cBIWkXcDZwf0Tc0RR3l6Q68N+BP4gIjzNmZmZmZnYm8DNkM4uI48B24N6I6JRaZg2wXtKTwGKKThwUnb8PAdeVPz8q6dKy7LqIOA/4xfJ1fbsFS1oraZ+kfVu2PdBN083MzMzMzPpWlSyLjfI1o4g4RHF7IpKWAVeWRePAYxHxQln2CHA+8MWI+FYZ+7Kk/wZ8kB99No2I2AxsBph47n/7CpqZmZmZ2XzQOHNT/KcHhp7O6QyJkmrALcCdZdEuYIWkRWWCjw8Dz0oalPT2MmYI+FcUtz2amZmZmZnNa+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQAR8RKwEXgCOADsj4iHgQXALkkHy+nfAv482y4zMzMzM5tjotG7V5/RXM2d8erhxys3XAsWVa9oaEH1GEil7tTwwlxdtYHqMXPhsnB9qnJIZA+yHqZajZMvV47RQG4M90hsQ+qTneeZLVMTnedpEa989w1oyDR1TZzMBX7vheoxmc8K4FSijdm6EsdJ41tHU1VpMHFeW5Q4x0NqcOg4kds3Gi98v3pdr+aOycnx6us1dVypuk79oPo5Khq5ul7+fvXvyn848ZbKMS8NJPZB4OhQKiyllvgT7geZIODvqb4/nYrc3xov1KsPonwicsfJ9yaPV445PpU7/l+ZrL4Nh5Pf///0va/mDrA30an//Rc965Qs/ODVfbV9cp+y2Rst+wdjRp93xtJ19XIbms1Vic5YVqYzlpXpjGVlOmNZmc6YWT/IdMbOOGfwOGQz3rKowuOSrmiatlrSTklbJR2TNNYSs1LSXklPS9ohaUlT2Yqy7JmyfGE5fVjSZkmHJR2S9LHZXlEzMzMzM7N+M+O/tSIiJK0D/kLSl4ABYANwOfAO4E/50WyIW4DfjIjHJK0BbgRuLRN53AdcHxFPSXobcPr68u8AxyJiWZkM5Kdmaf3MzMzMzKzf9eGzXb3S8T6DiBiTtAO4CRgB7omII8ARSee2CVkO7Cnf76bIrngrRSr8gxHxVLncF5ti1gDvKac3gMQDGGZmZmZmZnNLtzd+3w7spxjk+YIO844BVwEPAlcD55TTlwEhaRdwNnB/RNwh6SfK8t+XdAlwBPhERHy767UwMzMzM7O5y8+QzSwijgPbgXsj4tUOs68B1kt6ElhM0YmDovP3IeC68udHJV1aTn8n8JWIOJ8ilf4n2y1Y0lpJ+yTt27L9oW6abmZmZmZm1jVJl0v6mqRvSLq5Tfk/k/RFSQclPSrpnU1l/4ek/ynpq5KeneaOwtepkhqpUb5mFBGHKG5PRNIy4MqyaBx4LCJeKMseAc4H/hdwAnignO8vgBtoIyI2A5shl/bezMzMzMxsOpIGgD8Dfpmi//KEpIci4tmm2T5J8RjXf5X0S8B/Bq4vy+4BNkTEbklvoYv+U3pg6OlIWlr+rAG3AHeWRbuAFZIWlQk+Pgw8G8VAaDuAS8r5LgWexczMzMzMzgyNRu9eM/sg8I2IeC4iJoD7gY+0zPNe4Ivl+y+dLpf0XmAwInYDRMQrEdFxYL10h0zSNorbC5dLGpd0+qrWqKTDwCHgKHBX2aCXgI3AE8ABYH9EPFzG3ATcJukgRe/yN7LtMjMzMzMzS3oH8M2m38fLac2eAk4P0/VRYHGZQX4Z8D1JX5D0d5L+uLziNqOub1mMiNtafh+dZr5NwKZpyu6jSH3fOv3vgYu7bYuZmZmZmc0fEfWe1SVpLbC2adLm8tEoALUJaX1U6jeBP5X07yiyy38LmKLoW/0i8PPAP1Dk4Ph3wGdmak+VZ8jmvn4f3yDbvkxYrWNnfZq6enSw1HIXb5XYFjHrN+7OILleqbj0ig0l4xIy+/xA705bGlqQiouh4epB2X2jPtW7uhIZsLQgsS0ABhLnqKHEvpvM6qV69XOhFiSPrVq7vw06hCzslH+rvYFG9cezhyZy3wuNevX1Gl6Q2N+B4RPVP+cFyXPogqi+Xlm1xNP0C5JP4A8rsT2Sm2K48wWFH1FP/TEEw7Xq3ykTterH8vBAct9NtM86a85L0cY4P8wSD0XywaMt8UeBXwMonxP7WER8X9I48HcR8VxZ9pfARXTokM14dKnwuKQrmqatlrRT0lZJxySNtcSslLRX0tOSdkha0lS2oix7pixfKGmxpANNrxckfWqmdpmZmZmZ2TzSP8+QPQG8W9LPSRoGrgVel95d0tvLfBkAvw1sbYr9SUlnl7//El3kxpixQ1Ym3FgHbCw7TyPABmA9cDdweZuwLcDNEXEeRebEG8uGD1LcrrguIt5HkcRjMiJejohVp1/A3wNf6NRwMzMzMzOz2RQRU8AnKBISfhX4XEQ8I+n3JF1VznYJ8LUyb8ZPU/SPiOK+y98EvijpaYrrxH/eqc6O10EjYkzSDorEGyMUKR6PAEemyau/nOJeSoDd5crcSpEK/2BEPFUu98XWQEnvBpYCX+7ULjMzMzMzmyf66NGiiHgEeKRl2n9qev954PPTxO4GVlSpr9sbU28H9lMM8nxBh3nHgKuAB4Gr+eE9mMuAkLQLOBu4PyLuaIkdBbaXV+bMzMzMzMzmta6e0IyI4xRZQu6NiE5PCq8B1kt6ElhM0YmDovP3IeC68udHJV3aEnstsG26BUtaK2mfpH1btj803WxmZmZmZjaX9M8zZD1XJXVLgy7y+UXEIYrbE5G0DLiyLBoHHouIF8qyR4DzKQdVk7SSYiC1J2dY9msZUV49/LivopmZmZmZ2Zw26wm/JS0tf9aAW4A7y6JdwApJi8oEHx/m9VlHRpnh6piZmZmZmc1T0ejdq8+kO2SStgF7geWSxiXdUBaNlhlHDlHk7L8LICJeAjZSpIM8AOyPiIebFrkad8jMzMzMzOwM0vUtixFxW8vvo9PMtwnYNE3ZfRSp79uVvavbtpiZmZmZ2TzSh8929crcHf47NWJ89Rhl6gFi1m8GnWWNei6uNtCbupIHZfTyMnR9qnrMZKecOO2lHpjMtA+gPlk9JnmcpNo4NdF5nnYSbYzk58Vkoo3ZzytzrGS/9DJx9ey5JrFP9XBbRCYue35qVD8DRCIGIBK7YYRydTWqx2ViAIJcXEYv/6TMnHnP3D9524vcN2zPNPq8fTY75m6HzMzMzMzM5oc+fLarV2b854oKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJU1lK8qyZ8ryheX00fL3g+Wy3z7bK2pmZmZmZtZvZuyQlQM0rwM2SlooaQTYAKwH7gYubxO2Bbg5Is4DHgBuBCgzK94HrIuI9wGXAJPl9E3Av4yIFcBB4BM//qqZmZmZmZn1t463LEbEmKQdwE3ACHBPRBwBjkg6t03IcmBP+X43Rbr7WynGJjsYEU+Vy30RQNIQIGBE0ovAEuAbP8Y6mZmZmZnZXOKkHh3dDuwHJoALOsw7BlwFPAhcDZxTTl8GhKRdwNnA/RFxR0RMSvo48DRwHPg6xRU4MzMzMzOzea2rBD0RcRzYDtwbEZ3Sjq0B1kt6ElhM0YmDovP3IeC68udHJV1aXiH7OPDzwM9S3LL42+0WLGmtpH2S9m25/8Fumm5mZmZmZv2u0ejdq89UybLYoItsqRFxiOL2RCQtA64si8aBxyLihbLsEeB84Adl3JFy+ueAm6dZ9mZgM8CrX/8b5wE1MzMzM7M5bdZHy5K0tPxZA24B7iyLdgErJC0qE3l8GHgW+BbwXklnl/P9MvDV2W6XmZmZmZn1qWj07tVn0h0ySduAvcBySeOSbiiLRiUdBg4BR4G7ACLiJWAj8ARwANgfEQ9HxFGKZ9T2SDoIrAL+MNsuMzMzMzOzuaLrWxYj4raW30enmW8TRRr7dmX3UaS+b51+Jz+8ktZXoj6VC6xPVo8ZmAPjdDfq1WNqA7mYxDZU5n8MyXuJo98/r8xnBaBZv3DeH3r5H7FMXdn21ROfc/b++UQbYyq3HyqzH2a24fAQnDxVPa5R/a75mEpu98TnFcmvrl7uupF48CATA108bzFLMdm47Fm3oWRgQp3qG7+R/MAy27CerKue2IEbUf28dtbAMC9PnqwcJ3r4Ib/Z+vDZrl6Zp3952ZyX6dCamVWV6YyZmVWU6YzZmWPGDpkKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJU1lK8qyZ8ryheX0ayQdLKffMdsraWZmZmZmfczPkLUXEQGsAzZKWihpBNhAMU7Y3cDlbcK2ADdHxHnAA8CNAGUij/uAdRHxPuASYFLS24A/Bi4tp/+0pEtnYd3MzMzMzMz6WseHYCJiTNIO4CZgBLinTFF/RNK5bUKWA3vK97spsiveSpEK/2BEPFUu90UASe8CDkfEd8qYvwY+BnwxuU5mZmZmZjaXnMHPkHWbleB2YD/FIM8XdJh3DLgKeBC4GjinnL4MCEm7gLOB+yPiDuAbwHvKzt048G+A4e5XwczMzMzMbG7qKqlHRBwHtgP3RsSrHWZfA6yX9CSwmKITB0Xn70PAdeXPj0q6tEyH//Fy+V8Gngfa5oeStFbSPkn7ttz/YDdNNzMzMzOzfncGP0NWJW93gy4ykUbEIYrbE5G0DLiyLBoHHouIF8qyR4DzgS9GxA5gRzl9LdA2n2hEbAY2A7z69b9JJr81MzMzMzPrD7Oe9l7S0vJnDbiFH44vtgtYIWlRmeDjw8CzLTE/CfwHisQgZmZmZmZ2Jmg0evfqM+kOmaRtwF5guaRxSTeURaOSDgOHgKPAXQDlrYkbgSeAA8D+iHi4jNkk6VngK8AfRcThbLvMzMzMzMzmiq5vWYyI21p+H51mvk3ApmnK7qNIfd86ve2yzMzMzMzM5rMqz5D1lXj5hepBC0aqxwyfVT0GoJa4+Dg5lKpKA4mPMdM+yF3mzTw8OZDbFtQnc3EJGkwkAz1rca6y2kD1mMx+AaDEvpF8QDYmEuuVOY4h1UZltgUQZ72letDkROd52skck5PJ4yRRlQYTnzFATbm4yvUkz4U9fCg8Xm2b52rmmOohADQmq2/3yVO5zzga1es69Wruu+H7iXPoS4O5ffC7tcS5JlVTzsuZAxn4TuNU5ZiJaJsSoKMXp16pHHO83innXHvfm6he14mp6nUdn6i+/QAGM9//c1Uf3krYKzN+E6nwuKQrmqatlrRT0lZJxySNtcSslLRX0tOSdkhaUk6/TtKBpldD0qqy7APl/N+Q9CeSenluMjMzMzMze1PM2CGLiADWARslLZQ0AmwA1gN3A5e3CdsC3BwR5wEPADeWy/psRKyKiFXA9cDzEXGgjPk0sBZ4d/lqt1wzMzMzM5uPInr36jMd79WIiDGKlPQ3Ab8L3BMRRyJiD/DdNiHLgT3l+93Ax9rMMwpsA5D0M8CSiNhbdgDvoRgc2szMzMzMbF7r9iGT24H9FIM8X9Bh3jHgKuBB4GrgnDbzXAN8pHz/Dooxyk4bL6eZmZmZmdmZwM+QzSwijgPbgXsjotOTjGuA9ZKeBBZTdOJeI+lC4ER55Q3aP8va9lqipLWS9kna95kv7Oqm6WZmZmZmZn2rShq2Bl3k2IqIQ8BlAJKWAVe2zHIt5e2KpXHgnU2/v5Ni/LJ2y94MbAY4tf+h/rsB1MzMzMzMqvMVstkjaWn5swbcAtzZVFajuI3x/tPTIuIfgZclXVRmV/y/KG53NDMzMzMzm9fSHTJJ24C9wHJJ45JuKItGJR0GDlFc6bqrKexiYDwinmtZ3McpsjN+AzgC/FW2XWZmZmZmNsdEo3evPtP1LYsRcVvL76PTzLcJ2DRN2aPARW2m7wPe321bzMzMzMzM5oMqz5DZG62Wu2AZiZ6+kv8cSNWVuRBbn6weAzAwVD1G9VxdiW0RUxOdZ2pDAz08VHv5n6PEemlwQaqqiMTnnN3uJ1+uHpM8/lOf19BUrq56Im54OFfXYGLfWDRSOSaU2+7tslF1jDl+MlfXYPU2Dnwvea6pVX88Oxq5/alRr74VF03m1mvxS9WP/0Z9IFXXDxLHcmKzA7n9sFbLRMFPqPqxPJH8Y2NioPo+VUsey1OJ74aactswY7iX3/9vNj9D1p4Kj0u6omnaakk7JW1Y6dHeAAAgAElEQVSVdEzSWEvMSkl7JT0taYekJeX06yQdaHo1JK0qyzZI+qakV96IlTQzMzMzM+tHM3bIyoGa1wEbJS2UNAJsANYDdwOXtwnbAtwcEecBDwA3lsv6bESsiohVwPXA8xFxoIzZAXxwFtbHzMzMzMzmmojevfpMx+ugETEmaQdwEzAC3BMRR4Ajks5tE7Ic2FO+3w3sAm5tmWeUptT3EfG3AOrhJWAzMzMzM7M3W7c3pt4O7KcY5PmCDvOOAVdRpK6/GjinzTzXAB/psm4zMzMzM5vP/AzZzCLiOLAduDciXu0w+xpgvaQngcUUnbjXSLoQOBERY+2CZyJpraR9kvZ95gu7qoabmZmZmZn1lSqpWxrla0YRcQi4DEDSMuDKllmupel2xSoiYjOwGeDU/of67wZQMzMzMzOr7gy+QjbruTQlLY2IY5JqwC3AnU1lNYrbGC+e7XrNzMzMzMzmmuTANyBpG7AXWC5pXNINZdGopMPAIeAocFdT2MXAeEQ817KsOySNA4vKZd2WbZeZmZmZmdlc0fUVsoi4reX30Wnm2wRsmqbsUeCiNtN/C/itbttiZmZmZmbzSPiWxbkn86HVq4/8nt45MmE9vHc20tdGE3p5T7Dq1WNqA7m66j3aBwFU/QOLHp7YlGhfVjQmc4GZNmb33cznnN03Mm3Mrlcmrp44JgFqic9rKrPdk+2bSsRN5j7jmKheV+NU7jHr+qnqMZOncsd/Y6p63Kuncn+2nEic51+p5YbieUWJbZ8c9WcwUdUr5Pb541TffyciV9crjU75437UiXr1GIBXJk9Wjjk+Wf1AOTGZa9+r2b9RbE6Zux0yMzMzMzObF6Jx5ubrm/HfUyo8LumKpmmrJe2UtFXSMUljLTErJe2V9LSkHZKWlNOvk3Sg6dWQtErSIkkPSzok6RlJf/TGrKqZmZmZmVl/mbFDFhEBrAM2SlooaQTYAKwH7gYubxO2Bbg5Is4DHgBuLJf12YhYFRGrgOuB5yPiQBnzyYh4D/DzwC80dwDNzMzMzGyeazR69+ozHW9ZjIgxSTuAm4AR4J6IOAIckXRum5DlwJ7y/W5gF3BryzyjlGORRcQJ4Evl+wlJ+4F3Vl4TMzMzMzOzOabbZ8huB/YDE8AFHeYdA64CHqQYc+ycNvNcA3ykdaKknwD+NdNkaTQzMzMzs3noDM6y2FWKo4g4DmwH7o2ITmli1gDrJT0JLKboxL1G0oXAiYhoffZskOKq2Z+0jlPWNM9aSfsk7fvMF/5nN003MzMzMzPrW1WyLDboIpl7RBwCLgOQtAy4smWWaylvV2yxGfh6RHxqhmVvLufj1JN/eeamYjEzMzMzm0/O4CyLs572XtLSiDimYmCiW4A7m8pqFLcxXtwS8wfAW4F/P9vtMTMzMzMz61fp0VwlbQP2AssljUu6oSwalXQYOAQcBe5qCrsYGG++JVHSO4HfAd4L7C9T4rtjZmZmZmZ2pnCWxc4i4raW30enmW8T0yTliIhHgYtapo2TGaM+MeJ5DFS/IKjkyOrUEn3d+sJcXQNDubiM+lTlkMx2B9DgcPWgzAOh9eSBmdjuWvTWXF2J/UmJz6oITP+fpnpVU4nja+isXGWZfbeW3DeGE8fy5ETneWYrrp6rKnVeG0qenwYHqsdkjpNFi4hXE/thrfrXlhYkzmkAjertG1iUPY6r7/ODJ7PHSfW4Bady57VFJ6vv9K8q9921KKrvG1mZT/ms5P/iF5I4JpOb4ixVP29ELXe726LB5N9eFY0MLeT45KnKccPJv6FsbvGnbH0p1RkzM6so1RkzM6so0xk74/ThlatemfHfJCo83jxQs6TVknZK2irpmKTWbIkrJe2V9LSkHZKWlNOvK29HPP1qSFpVlu2U9JSkZyTdKSnxbxgzMzMzM7O5ZcYOWUQEsA7YKGmhpBFgA7AeuBu4vE3YFuDmiDgPeAC4sVzWZyNiVUSsAq4Hno+IA2XM6ohYCbwfOJsi8YeZmZmZmZ0JInr36jMdb1mMiDFJO4CbgBHgnog4AhyRdG6bkOXAnvL9bmAXcGvLPKM0pb6PiB80tWcY6L8tZWZmZmZmNsu6fYbsdmA/xSDPF3SYdwy4CniQ4krXOW3muQb4SPMESbuADwJ/BXy+y3aZmZmZmZnNWV2l2omI48B24N6I6PQE9BpgvaQngcUUnbjXSLoQOBERr3v2LCJ+BfgZYAHwS+0WLGmtpH2S9n3mL/+6m6abmZmZmVm/c9r7rjToIh9uRBwCLgOQtAy4smWWa2m6XbEl9pSkhyiunu1uU74Z2Axw6m+3+7ZGMzMzMzOb02Y97b2kpRFxTFINuAW4s6msRnEb48VN094CLI6If5Q0CPwq8OXZbpeZmZmZmfWpxpl7rSU9AqykbcBeYLmkcUk3lEWjkg4Dh4CjwF1NYRcD4xHxXNO0EeAhSQeBp4BjNHXizMzMzMzM5quur5BFxG0tv49OM98mYNM0ZY8CF7VM+zbwL7pth5mZmZmZzTPRf8929cqs37LYK/HiP1YPGlmSiHlr9RiAgaHqMfWpXF0LRqrH1JIXRyc75XSZJWctToXF1ETnmVolt7sWVd83tDDxWQE06tVjBnp3eEd2380YPisXV5+sHKLE7gTAW36qeszEyVRVqRs8dCJVV6qqn3pbz+piwYLKIRrq3XZXPXEcA9RUOWTgZ3K3/ujFxL7R6N3xX5/MHZRv/V6ijcmP61St+rm3h2dQasnv/+/XhivHnMpuxMTX18lG9fYBDCU+r1eHFlWOeWXoVOUYgKHaQCrO5pYZj0oVHpd0RdO01ZJ2Stoq6ZiksZaYlZL2Snpa0g5JS8rp10k60PRqSFrVEvtQ6/LMzMzMzGyea0TvXn1mxg5ZRASwDtgoaaGkEWADsB64G7i8TdgW4OaIOA94ALixXNZnI2JVRKwCrgeej4gDp4Mk/Rrwyo+/SmZmZmZmZnNDx+u0ETEmaQdwE0UCjnsi4ghwRNK5bUKWA3vK97uBXcCtLfOM0pT6vsy0+B+BtcDnqq2CmZmZmZnNZdGH44P1Src3zt4O7KcY5PmCDvOOAVcBD1KkuD+nzTzXUIw1dtrvA/8F6N2DDWZmZmZmZm+yrp7sjIjjwHbg3ojolNVhDbBe0pPAYopO3GskXQiciIix8vdVwD+PiAc6tUPSWkn7JO37zM6/6abpZmZmZmbW787gZ8iqpJZplK8ZRcQh4DIAScuAK1tmuZam2xWB/xP4gKTny/YslfRoRFzSZtmbgc0AJx/+VP9tTTMzMzMzswpmPS+2pKURcUxSDbiFpkGey2lXUwwQDUBEfBr4dFl+LvA/2nXGzMzMzMxsnjqDxyFLDkYFkrYBe4HlksYl3VAWjUo6DBwCjgJ3NYVdDIxHxHPZes3MzMzMzOaLrq+QRcRtLb+PTjPfJmDTNGWPAhfNUMfzwPu7bZOZmZmZmc0DffhsV6/M+i2LPTNYvekaWlC9noGh6jGABjN15T4OZeJquYujPTtUkiPTp7aFkheKM9uwUU/WldgePbzyn9ruQCSOE6VqInV8Zfd3JfaNdF2TE51nmqW6UhYkh5fMHF/DC3tTD6BEeuaYnEzVxVT184YmplJVaVH146R2KnleS5yjhs7K1TU8UD1uwVTue2gocYDlaso5lYwbTpx9G8kbsRYk4iaV/LwSddUTdQ0l/64ZTK6XzS0z7oUqPC7piqZpqyXtlLRV0jFJYy0xKyXtlfS0pB2SlpTTr5N0oOnVKDMsIulRSV9rKlv6RqysmZmZmZlZP5mxQxYRAawDNkpaKGkE2ACsB+4GLm8TtgW4OSLOAx4AbiyX9dmIWBURq4Drgecj4kBT3HWnyyPi2I+7YmZmZmZmNkc0Gr179ZmO9yZExJikHcBNwAhwT0QcAY6UWRFbLQf2lO93A7uAW1vmGeX1qe/NzMzMzMzOON3eOHs78OvAFcAdHeYdA64q318NnNNmnmv40Q7ZXeXtirdKSj8mYmZmZmZmc0wfDQwt6fLycapvSLq5Tfk/k/RFSQfLR6/e2VT2byV9vXz9225WvasOWUQcB7YD90bEqx1mXwOsl/QksBh43RPnki4ETkRE87Nn15W3OP5i+bq+3YIlrZW0T9K+zzzylW6abmZmZmZm1hVJA8CfUVyIei/FkF7vbZntkxR3Da4Afg/4z2XsTwG/C1wIfBD4XUk/2anOKqllGnSREykiDkXEZRHxAYqrYEdaZrmWlqtjEfGt8ufLwH+jWIF2y94cERdExAU3/OovVGi6mZmZmZn1rWj07jWzDwLfiIjnImICuB/4SMs87wW+WL7/UlP5rwC7I+K7EfESxeNb7XJuvE56YOjpnM6QKKkG3ALc2VRWo7iN8f6maYOS3l6+HwL+FcVtj2ZmZmZmZr30DuCbTb+Pl9OaPQV8rHz/UWCxpLd1Gfsj0h0ySduAvcBySeOSbiiLRiUdBg4BR4G7msIuBsYj4rmmaQuAXZIOAgeAbwF/nm2XmZmZmZnNMT18hqz5MajytbapJe1yWbQ+ePabwIcl/R3wYYr+y1SXsT+i6xEgI+K2lt9Hp5lvE7BpmrJHgYtaph0HPtBtO8zMzMzMzLIiYjOweZricV6flPCdFBeZmuOPAr8GIOktwMci4vuSxoFLWmIf7dSerjtkfWdqqnJITJysHKOFI5VjACLq1etKjosQ9erbgkheHM3U1ai+LRjo3a4Zne8lbkuZbZFdr0wTawPJuhKfV5IS2yP7eZHYHNl0r5k2anBBrq4FC6vXlaopd15juHr70jJ1ZcejGRpOxAylqtKCRF3DuXONFlRvY21h4lwIxFT1bV8byn1egwPV44bqubqGonMGt1aN5FFZvSYYygQBQ4k2RvJGrMFE3ALl6hquVT9W6l1k6Ws1qNx38lAybi6K/hkf7Ang3ZJ+juLK17UU2eZfUz5u9d0ovvB/G9haFu0C/rApkcdlZfmMZv0ZMjMzMzMzs7koIqaAT1B0rr4KfC4inpH0e5JOD+11CfC18jGtnwY2lLHfBX6folP3BPB75bQZzfhvgXI8sC8DGyLir8ppqylS2x+lSMBxLCLe3xSzkiKRx1uA5ylS2v9A0nXAjU2LXwGcHxEHJA0Df1quXAP4nYj4750ab2ZmZmZm80DiyuMbJSIeAR5pmfafmt5/Hvj8NLFb+eEVs67MeIUsIgJYB2yUtFDSCEUPcD1wN+3TOG4Bbi7HFXuAshMWEZ+NiFURsYpinLHnI+JAGfM7FB27ZRRpJB+rshJmZmZmZmZzUccbZyNiTNIO4CZghGIQtCPAEUnntglZDuwp3++muNx3a8s8o7x+LLI1wHvK+hrAC92vgpmZmZmZzWl9dIWs17p9kvF2YD8wAVzQYd4x4CrgQYoxx85pM881lAOoSfqJctrvS7qEYiDpT0TEt7tsm5mZmZmZ2ZzUVVKPMjX9duDeiHi1w+xrgPWSngQWU3TiXiPpQuBERJwe/HmQIiXkVyLifIqxzT7ZbsHNYwZ8ZuffdNN0MzMzMzPrd9Ho3avPVMn12aCL5NsRcYgixSOSlgFXtsxyLa+/XfFF4ATF82YAfwHcQBvNYwacfPhTZ+51TTMzMzMzmxdmPe29pKXlzxpwC0XGRZqmXQ3cf3pamThkBz8cRO1S4NnZbpeZmZmZmVm/SXfIJG2juL1wuaRxSaevao2WOfkPUaTGv6sp7GJgPCKea1ncTcBtkg5SZGD8jWy7zMzMzMxsjmlE7159putbFiPitpbfR6eZbxOwaZqyR4GL2kz/e4rOWvd6df/nZKdH5qaRGTF+YChXV30yEdTDuhLbIk4dR2ctrl5XL+8LznzGvdSo5+JqA4m6clWlArPbvZf7RuZYrk/l6spsj1puGyrxP7xI1tWz42vhIpic6Dxfq4Hqx4kGE8cWEIm6Mu0D0GBiuw8qV1di36gN5o7jgVr1uAFyf7TVEmG1ZF2NxKYfiNznNUj1uMnsNlT1upRcr1pivTIxSwbO4pX6qcpxSmwLm3uqPENm1jOpzpiZWVWZzpiZWUWZztiZJvrwylWvzPjvKRUel3RF07TVknZK2irpmKSxlpiVkvZKelrSDklLyunXSTrQ9GpIWiVpccv0FyR96o1ZXTMzMzMzs/4xY4esTLixDtgoaaGkEWADsB64G7i8TdgW4OaIOI8ic+KN5bI+GxGrImIVxXNiz0fEgYh4+fT0suzvgS/M0vqZmZmZmVm/8zNk04uIMUk7KBJvjAD3RMQR4Iikc9uELAf2lO93A7uAW1vmGeX1qe8BkPRuYCnw5S7bb2ZmZmZmNmd1+wzZ7cB+ikGeL+gw7xhwFfAgRYr7c9rMcw3wkTbTR4Ht5ZU5MzMzMzM7EzT6b8DmXukqxVFEHAe2A/dGRKe0g2uA9ZKeBBZTdOJeI+lC4EREjLWJbR00+nUkrZW0T9K+z+zc203TzczMzMzM+laVLIsNushRHRGHgMsAJC0DrmyZpW2nS9JKYDAinpxh2ZuBzQAn/8dGX0UzMzMzM5sP+vDZrl6Z9bT3kpZGxDFJNeAW4M6mshrFbYztxhxr+1yZmZmZmZnZfJUeeVPSNmAvsFzSuKQbyqJRSYeBQ8BR4K6msIuB8Yh4rs0iV+MOmZmZmZnZmcdZFjuLiNtafh+dZr5NwKZpyh4FLpqm7F3dtsXMzMzMzGw+mPVbFnsmk4mll9lbYp5milH6omo1Pdx+6tU6AVGfSsVpoIeHambT1wZmvRnTyu4bmbDsds98ztm6Boaqxwxlt2Eirpf77tBw9Zjs/pSpK7sthhOf8WDymByq3kYNJ+tK/Jdaw7lz6OBA9c95sJbbN4Z6+N/3BqocM5xs3kCirsFEzFyoa0CZmNzfGgP5m9nmnDM5yfqMn7IKj0u6omnaakk7JW2VdEzSWEvMSkl7JT0taYekJeX06yQdaHo1JK0qy0bL+Q+Wy377G7GyZmZmZmZm/WTGDlk5Htg6YKOkhZJGgA3AeuBu4PI2YVuAmyPiPOAB4MZyWZ+NiFURsQq4Hng+Ig5IGqS4xfFfRsQK4CDwiVlZOzMzMzMz639n8DNkHa+DluOF7QBuAn4XuCcijkTEHuC7bUKWA3vK97uBj7WZpzmjosrXiCQBSyiSgZiZmZmZmc1r3d4sfjuwn2KQ5ws6zDsGXAU8SJHi/pw281wDfAQgIiYlfRx4GjgOfJ3iCpyZmZmZmdm81tWTghFxHNgO3BsRr3aYfQ2wXtKTwGKKTtxrJF0InCivvCFpCPg48PPAz1Lcsvjb7RYsaa2kfZL2fWbX33bTdDMzMzMz63dn8C2LVdIpNegiT1lEHAIuA5C0DLiyZZZref14Y6vKuCNlzOeAm6dZ9mZgM8DJhz7Zf1vTzMzMzMysglnPRyxpaUQcU5FL/BbgzqayGsVtjBc3hXwLeK+ksyPiO8AvA1+d7XaZmZmZmVl/ij68ctUr6cENJG0D9gLLJY1LuqEsGpV0GDhEkZzjrqawi4HxiHju9ISIOErxjNoeSQcprpj9YbZdZmZmZmZmc0XXV8gi4raW30enmW8TRRr7dmWPAhe1mX4nTVfSzMzMzMzsDHIGXyGb9VsWe+bUieoxA4nVHT6rekyyrpjqlC+lvdTY9NHxccD26lO5uIpiYiAXmPmMk5T8vDJicEHlGKW3RXLfyKhV/5zT65XZpbJ1JY6TqOVuWFCj+ucV2fXKnDcWLsrVperbQwuqn6/T2yJjInmOH0jsvMdPpurK/EFUm8x9L8RU9f1p4C2TqboWnFW9jRNTue+hhad6dw6NqP4XwGTi2AJYlKhrMHkj1gkltn3qjyE4pXousKJ6LdfZGM5sC5tzZjxSVHhc0hVN01ZL2ilpq6RjksZaYlZK2ivpaUk7JC0pp18n6UDTqyFpVVl2jaSDkp6RdMcbsaJmZmZmZtanGj189ZkZO2QREcA6YKOkhZJGgA0U44TdDVzeJmwLcHNEnAc8ANxYLuuzEbEqIlYB1wPPR8QBSW8D/hi4NCLeB/y0pEtnZ/XMzMzMzMz6V8d7NSJiTNIO4CZgBLinTFF/RNK5bUKWA3vK97uBXcCtLfOM8sPU9+8CDpcZFgH+GvgY8MXuV8PMzMzMzOaqMznLYrc3z98O7KcY5PmCDvOOAVcBD1KkuD+nzTzXAB8p338DeE/ZuRsH/g0w3GW7zMzMzMzM5qyunraMiOPAduDeiOj0VPIaYL2kJ4HFFJ2410i6EDgREWPlsl8CPl4u/8vA80Dbp28lrZW0T9K+z/z1vm6abmZmZmZm/a4RvXv1mSrppbp6DC4iDgGXAUhaBlzZMsu1/PB2xdMxO4AdZcxaoG3Km4jYDGwGOPm53+u/rWlmZmZmZlbBrOf7lbQ0Io5JqgG30DS+WDntaooBotvF/CTwH4DVs90uMzMzMzPrU32Y/bBXcgNEAJK2AXuB5ZLGJd1QFo1KOgwcAo4CdzWFXQyMR8RzLYvbJOlZ4CvAH0XE4Wy7zMzMzMzM5oqur5BFxG0tv49OM98mYNM0ZY8CF7WZ3nZZZmZmZmY2/znL4hwUL36n80wtNDlZvZ7KEaWpTrlPfpQGF6SqiqFEUsqB5Ec/NdF5ntmwYCQVltmG0ai+XwAwdFb1mOFEDKBETETy2r8SF86TdSmzHw4Mpeqi0fbR1Jll7yFIfM6q5/bDGGqbA2nmurL7RsbC3LGcMlj9XJg5tgCiXn27M5w7x9NIfF4jyXNNvfpxEgtyx6QGqq+XFg6k6hoYrF7XYKJ9AAsSfzlkj8jM3yhDyT9sFiTiQrkjbDhxZNaTJ+yzVP17SIn1qif/ohzMfCfbnONP2czMzMzM7E0yY4dMhcclXdE0bbWknZK2SjomaawlZqWkvZKelrRD0pJy+pCk/1pO/6qk326KuVzS1yR9Q9LNs72SZmZmZmbWxxo9fPWZGTtkERHAOmCjpIWSRoANwHrgbuDyNmFbgJsj4jzgAeDGcvrVwIJy+geA/1vSuZIGgD8DrgDeS5EU5L0/9pqZmZmZmZn1uY43zkbEmKQdwE3ACHBPRBwBjkg6t03IcmBP+X43sAu4leJW5xFJg8BZFANG/wD4IPCN05kXJd0PfAR4Nr9aZmZmZmY2VzipR2e3A/spOlEXdJh3DLgKeJDiqtg55fTPU3S0/hFYBPx/EfFdSe8AvtkUPw5c2GW7zMzMzMzM5qyuknpExHFgO3BvRHRKH7gGWC/pSWAxRScOiithdeBngZ8DfkPSu2if5KptF1nSWkn7JO3b+vhYu1nMzMzMzGyuOYOfIauS67OrVYiIQ8BlAJKWAVeWRb8O7IyISeCYpK9QXG37Jj+8igbwTooBpdstezOwGeDEp/+fM/e6ppmZmZmZzQuznvZe0tLyZw24BbizLPoH4JfKzI0jFANEHwKeAN4t6eckDQPXAg/NdrvMzOz/Z+/+4+yq7/vOv97zWxKSTeIoDzumBadBDmtV2NKybLNJqb1QFFJI6kWbofE2KxZMonQTSgnyo1BEW/rosjZB6XrDQ8UaDG1kEmIetraOCPU6VQElZlAtNCBFWC7GMmwmCSFYQtL8uJ/943wVpuM7c+/5IN/emXk/9bgP3fu953O+33PuOefe75xzPl8zM7PuFI3OPbpNukMmaRewD1gj6Zik68tbw5KOUHW2XgFGSvmngXOo7jF7BhiJiOciYgr4JarkH4eA34qI57PtMjMzMzMzWyjavmQxIrbNej08x3Tbge1Nyo9TJfloFvMl4EvttgVA/f11Jq/01R+NPRUDqG+wflDPAhinOzNifOZPEadPwMCy+lXFdP26MssEMD2ViJnM1dWb2A57c1WlPq/sX5sybWwkPmOAnkRlyeVS4vOK5P7f7CbclnVltieARmKFTLW67fjsSR13gUjsl0ocN2JyovVEzfQP1A5Rsq7MvQDZb66Yqr8v90wmjrvAsnPfSMVlnJpI7l8JEfWPAH1Tid9PwKmp+tvh6eTGkTmGHlfugN2v+uvwTepvu9/XO8CJqL/99p39i9m6VxeeueqUJfQp24KS6IyZmdWV6YyZmdWV6YzZ0jFvh6zc7/WkpI0zyjZJ2iNpp6RxSWOzYtZJ2ifpoKTdklaV8n5Jny3lhyR9YkZM03mZmZmZmdni53vI5hARAdwE3CtpqCTjuBvYAjwIXNkk7AFga0SsBR4Dbi3l1wKDpXw98PEZA0vPNS8zMzMzM7NFq+VFuhExJmk3cBuwAngoIo4CR2d0qGZaA+wtz5+gStZxB9Wl6Ssk9QHLqMYne6PUsXeOeZmZmZmZ2WLXhWeuOqXduybvAvZTdaI2tJh2DLga+ALVWbEzY4w9ClwDvAosB26OiNfqNtjMzMzMzGyxaCupR0ScAB4BHo6IVimzNgNbJD0LrKTqxAFcAkwD7wEuAG6R9L46jZV0o6RRSaOf2ftcnVAzMzMzM+tSS/kesjp5RRu0cTIxIg4DVwBIuhC4qrx1HbAnIiaBcUlPUZ1t+0a7DYiIHcAOgJMP/MNMdl4zMzMzM7OucdbT3ktaXf7vAW4H7i9vvQx8uGRuXAFcSjV4tJmZmZmZ2ZKU7pBJ2gXsA9ZIOibp+vLWsKQjVJ2tV4CRUv5p4Byqe8yeAUYi4rkW8zIzMzMzs0XOlyy2ISK2zXo9PMd024HtTcqPUyX5aBbTdF5mZmZmZmaLWZ17yLpKnDxVO0b9A/UrOvVm/Rgg+hJ19SY/junJ2iHqH0xVFZOtcrqcHdUVrwmZddjI/akkeurHaaL1NE3rSsQoV1VOdtvNxGXP62c+5p7eXF3TU7VDstt8JNqo5OcV1F+utMz6yCxX4viZrqsnufFm1kW2rsxy9Sb3k8SxV3255Uqtwr7cd0NvT/0jdmTvilf9wL5EDEBv4puoJ3LfRJlPuS9Zl1Q/Th38hu1JtG+h6sYzV50y7zZf7vd6UtLGGWWbJO2RtFPSuKSxWTHrJO2TdFDSbkmrSnm/pHafqDkAACAASURBVM+W8kOSPlHKz5P0lVL2vKRf/l4sqJmZmZmZWbeZt0MWEQHcBNwraagk47gb2AI8CFzZJOwBYGtErAUeA24t5dcCg6V8PfDxMhj0FHBLRPwoVaKPLZIuepvLZWZmZmZmC0Woc48u0/LahIgYk7QbuA1YATwUEUeBo6VDNdsaYG95/gTwOHAH1VVXKyT1Acuoxid7owwO/Wqp6zuSDgE/BLzwNpbLzMzMzMys67V7sfhdwH6qTtSGFtOOAVcDX6A6K3ZeKX8UuIaq87UcuLl0xv5S6eB9EPjDNttlZmZmZmYLnO8hayEiTgCPAA9HRKusDpupLjt8FlhJ1YkDuASYBt4DXADcIul9Z4IknQP8DvArEfFGsxlLulHSqKTRnU/5BJqZmZmZmS1sddIpNWgjT1lEHAauAJB0IXBVees6YE9ETALjkp6iOtv2DUn9VJ2xfxsRn59n3juAHQBv/qtfzOYkMjMzMzOzLhKN7ru3q1PSA0PPRdLq8n8PcDtwf3nrZeDDJXPjCqoEHodV5Rv9DHAoIu492+0xMzMzMzPrVukOmaRdwD5gjaRjkq4vbw1LOgIcBl4BRkr5p4FzqO4xewYYiYjngB8DPkbVWftaefxktl1mZmZmZrawRKNzj27T9iWLEbFt1uvhOabbDmxvUn6cKsnH7PIn6fAYtmZmZmZmZt2gzj1kXSX+5LXWE802OVk7JN1TbHSw+91b/2OM/oFcXZMTraf5rsrqr4tYdk79egBOfqd+zPRUrq6Bofox53xfqir11D+ZHdk/AfX214/JrsNM3MCyVFVK7Cfp5eofrB/TmM7Vlfmck3Wl1uHyd6bqSlH9/USJGKjGcald1znn5urqTRzXkvu/Mt8NPclvyqnEdtjI3T4+sLpprrB59fTl9v+p0ydrx0RyXKTp6fpxfSdz28bpk/X3lVPJ/auX3toxbya3w+U99Y9rpxLtO67cT+7eJXTOIrsfLAbz7inlfq8nJW2cUbZJ0h5JOyWNSxqbFbNO0j5JByXtlrSqlPdL+mwpPyTpE6V8SNJXJR2Q9Lyku74XC2pmZmZmZtZt5u2QRUQANwH3lo7TCuBuYAvwIHBlk7AHgK0RsRZ4DLi1lF8LDJby9cDHy7hjp4EPR8Q64GLgSkmXvs3lMjMzMzOzBcL3kM0jIsYk7QZuA1YAD0XEUeBo6VDNtgbYW54/ATwO3EF1hccKSX3AMqrxyd4onb7jZfr+8nBKezMzMzMzW/Tavbj3LqpxxDYC97SYdgy4ujy/FjivPH8UOAG8SpUC/5MR8RqApF5JXwPGgSci4g/bXgIzMzMzM7MFqq0OWUScAB4BHo6I0y0m3wxskfQssJLqTBjAJcA08B7gAuAWSe8r85+OiIuB9wKXSPpAsxlLulHSqKTRnfuPttN0MzMzMzPrctFQxx7dpk76m0Z5zCsiDkfEFRGxHtgFnOk5XQfsiYjJiBgHngI2zIp9Hfh9mt+bRkTsiIgNEbFh84d+uEbTzczMzMzMuk96YOi5SFpd/u8BbgfuL2+9TDX4s0pykEuBw5J+QNI7S8wy4H+kGlTazMzMzMyWgIjOPbpNukMmaRewD1gj6Zik68tbw5KOUHWqXgFGSvmngXOo7jF7BhiJiOeAdwNfkfRcKX8iIv6fbLvMzMzMzMwWirZHqYuIbbNeD88x3XZge5Py41RJPmaXPwd8sN12mJmZmZnZ4tKN93Z1Sm7Y8IWqkThH2UgOVtDJQQ6mp+rH9CRPjmbqyqyLyYnW0zSTWa7MMkGujRMnU1Vlzq6rbzBVV2p99OYOJZH4vDQ92bm6lNxPGtP1Y3p6U1Upse7TV2skjofKHkMzMutiKvcZK3Fci+SxJvMTJVtXSvIzVqaNk7n9v/fcoUTUqVRdy0/W/27I/hBtTNeP6+vLfV4TU/WPUaenct8NPYlNY1nyd01/b/11eFL1YwaSx/i+Lry8zs6+pdUhMzMzMzOzrrOUz5DN++eEkoDjSUkbZ5RtkrRH0k5J45LGZsWsk7RP0kFJuyWtKuX9kj5byg9J+sSsuF5J/0mS7x8zMzMzM7MlYd4OWUQEcBNwr6Shkh3xbmAL8CDN09M/AGyNiLXAY8CtpfxaYLCUrwc+Lun8GXG/DBxKL4mZmZmZmS1I3ZRlUdKVkv5I0tclbW3y/l+R9JVyMuk5ST/Z5P3jkv5RO8ve8oLbiBgDdgO3AXcCD0XE0YjYC7zWJGQNsLc8fwL46JlZASsk9QHLqAaMfqM0+r3AVVSdOTMzMzMzs46T1EuVHX4jcBFVBvmLZk12O/BbEfFB4GeB/3vW+78G/G67dbZ7D9ldwH6qTtSGFtOOAVcDX6A6K3ZeKX8UuAZ4FVgO3BwRZzp09wG/Cqxst+FmZmZmZrY4dNE9ZJcAX4+IbwBI+hxVH+aFGdMEsKo8fwfVUF+U6X8a+AZwot0K20pJExEngEeAhyPidIvJNwNbJD1L1cE6k27oEmAaeA9wAXCLpPdJ+ilgPCKebdUOSTdKGpU0unP/0XaabmZmZmZm1q4fAr414/WxUjbTNuDnJB0DvgT8A4Bye9dtVCez2lYnR2ijPOYVEYcj4oqIWA/sAs70nK4D9kTEZESMA09RnW37MeBqSS8BnwM+LOnfzDHvHRGxISI2bP7QD9doupmZmZmZdasIdewx8yRPedw4oynNTtXNvvNsGHgwIt4L/CTwsKqxcu4Cfq2Mv9y2s572XtLqiBgvjboduL+89TJvdbaWA5cC90XEbwGfKLGXAf8oIn7ubLfLzMzMzMwsInYAO+Z4+xhv3XIF8F5mXJJYXE9JbhgR+yQNAe8C/jvgf5J0D/BOoCHpVET8X/O1JznqKUjaBewD1kg6Jun68tawpCPA4dL4kVL+aeAcqnvMngFGIuK5bP1mZmZmZrY4RKNzjxaeAX5E0gWSBqiSdnxx1jQvAx8BkPSjwBDwJxHx4xFxfkScT5Uj41+06oxBjTNkEbFt1uvhOabbDmxvUn6cKsnHfHX8PvD7bbVncrKdyf4Lmp6uHUMjN6J9Ki7TvnRdUx2sK7Fcp09Df3/9uDb2su+S/YwnJ1pPM0sbmVabUqauwaFkZYm/0/QmPitAiXUf/bltN3OrcPT0purKbIfqTV6wkFj3ynzGkFqu7Daf0lN/udQ/CBMna8dF32D9uvrq78cAkTmu9Q2k6mIgUddQbrky30NaVv+zAtCK+sfDnuncd0P/G6dqx0Qjt6dE4nAo5eo653T9z3lgIve7plF/FdLfyF70Vf84399T/xtlVQPeSBx6z/qlbNZSRExJ+iXgcaoNZGdEPC/pnwKjEfFF4BbgX0u6meqr7ufLcGEp/pytO2U6Y2ZmdSU6Y2ZmdWU6Y/ZfT0R8iSpZx8yyfzLj+QtUeTDmm8e2duubd/NQ5UlJG2eUbZK0R9JOSeOSxmbFrJO0T9JBSbslrSrl/ZI+W8oPSfrEjJiXSvnXJI2223gzMzMzM1v4GqGOPbrNvB2ycurtJuBeSUMllePdwBbgQcrNbLM8AGyNiLXAY8CtpfxaYLCUrwc+Lun8GXF/KyIujohW45yZmZmZmZktCi0vWYyIMUm7qXLqrwAeioijwNFZHaoz1gB7y/MnqK6/vIPq+soVkvqAZVTjk73xdhfAzMzMzMwWtujCM1ed0u4VrXdRjSO2EbinxbRjwNXl+bW8lTbyUaoRq1+lykzyyYh4rbwXwO9JenbWOABmZmZmZmaLVlsdsog4ATwCPBwRp1tMvhnYIulZYCXVmTCAS4Bp4D3ABcAtkt5X3vuxiPgQVYdvi6SfaDbjmYO47fzaf26n6WZmZmZm1uWioY49uk2dnC+N8phXRByOiCsiYj2wCzha3roO2BMRkxExDjwFbCgxr5T/x6nuO7tkjnnviIgNEbFh88UX1Gi6mZmZmZlZ9znrSTglrS7/9wC3A/eXt14GPlwyN64ALgUOS1ohaWWJWQFcQXXZo5mZmZmZLQERnXt0m3SHTNIuYB+wRtIxSdeXt4YlHQEOA68AI6X808A5VJ2tZ4CRiHgO+EHgSUkHgK8C/y4i9mTbZWZmZmZmtlC0PTD07MHNImJ4jum2A9ublB+nSvIxu/wbwLp222FmZmZmZotLN97b1Sltd8i6jfr76wf1JD7oaHnbXHONRFwmBmB6qn5MT/LkaKeWa3KyfgxAf2JdpNd7IkZvpqrKnF1PH9Yy20Z/bh1Gb/1DkJL7ZKquRAwAjfobR/YKiurq8Jp6epO1JeImJ1pP00xiO8ysi+gbrB2Trms6d1xLbYfJuuivvz4i+32S+e5KHq97Vp9bO0ZDid8ZAI3E3pyJASIR1/dGYr0D6jlZO2bqdG7b6H+9/jH09ETueL3s9EDtmJNT9es6J3OsBvrT3w62kMy7dZT7vZ6UtHFG2SZJeyTtlDQuaWxWzDpJ+yQdlLRb0qpS3i/ps6X8kKRPzIh5p6RHJR0u7/33Z3tBzczMzMysOzVCHXt0m3k7ZBERwE3AvZKGStKNu4EtwIPAlU3CHgC2RsRaqoyJt5bya4HBUr4e+PiMgaW3U2VgfD/V5YuH3sYymZmZmZmZLQgtz7lGxJik3cBtwArgoYg4Chyd0aGaaQ2wtzx/AngcuIPqipwVkvqAZVTjk71RzqD9BPDzpb4J3hq7zMzMzMzMFrnowjNXndLuBa13UY0jthG4p8W0Y8DV5fm1wHnl+aPACeBVqhT4n4yI14D3AX8CjEj6T5IeKGfizMzMzMzMFrW2OmQRcQJ4BHg4Ik63mHwzsEXSs8BK3jrbdQlVGoT3ABcAt0h6H9VZug8BvxERH6TqtG1tNmNJN0oalTS6c//RZpOYmZmZmdkC43HI2tMoj3lFxOGIuCIi1gO7gDM9p+uo7hObjIhx4ClgA3AMOBYRf1ime5Sqg9Zs3jsiYkNEbNj8oR+u0XQzMzMzM7Pukx4Yei6SVpf/e4DbgfvLWy8DHy6ZG1cAlwKHI+L/A74laU2Z7iPAC2e7XWZmZmZmZt0m3SGTtAvYB6yRdEzS9eWtYUlHgMPAK8BIKf80cA7VPWbPACMR8Vx57x8A/1bSc8DFwL/ItsvMzMzMzBaWpZz2vu2R7SJi26zXw3NMt50qjf3s8uNUST6axXyN6vJFMzMzMzOzJSM3rHk3iJa3s52lanJ3/mm6/ijzTE+l6qKRWBeZmGxc5rPKfryZdZhdFz1n/YrfsyoisQ0Cypw4z67DDu3HQKqNQW6fVG/i0NrRddibqyshtS6gc/tXJOuJxDrsH8zVldHXwbomB3JxSqz7waFcXQOJNg7mlkuDmf0/+VsjE7c8V1ffsvrHQ/Xk6ho4mfv+ypicqr8vx3T9MyxTyUQSC/eHen1Oez+Hcr/Xk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdpdxxpDUL+mzpfyQpE+U8jWSvjbj8YakX/leLKyZmZmZmVk3mbdDFhEB3ATcK2moJOO4G9gCPAhc2STsAWBrRKwFHgNuLeXXAoOlfD3wcUnnR8QfRcTFEXFxKX+zxJmZmZmZ2RKwlNPetzwTGhFjknYDtwErgIci4ihwVNL5TULWAHvL8yeAx4E7gABWSOoDllGNT/bGrNiPAEcj4pv1F8XMzMzMzGxhaffS1LuA/VSdqFbJN8aAq4EvUJ0VO6+UPwpcA7wKLAdujojXZsX+LNXYZWZmZmZmtkR0Y/bDTmnrjtqIOAE8AjwcEadbTL4Z2CLpWWAlVScO4BJgGngPcAFwi6T3nQmSNEDVkfvtuWYs6UZJo5JGd+7/RjtNNzMzMzMz61p1krc0aCP3XUQcBq4AkHQhcFV56zpgT0RMAuOSnqI623amZ7UR2B8RfzzPvHcAOwBO3LGpC68ANTMzMzOzupxl8SyStLr83wPcDtxf3noZ+HDJ3LgCuJRq8OgzhvHlimZmZmZmtoSkO2SSdgH7gDWSjkm6vrw1LOkIVWfrFWCklH8aOIfqHrNngJGIeK7MazlwOfD5bHvMzMzMzGxhaoQ69ug2bV+yGBHbZr0enmO67cD2JuXHqZJ8NIt5E/j+dttiZmZmZma2GCzYAcCnXv6z2jE973izfszJVjlM5nDyZO2QeLN+TJYGB3KB09O1Q2Kqfoz6emvHADCQWK7EMgHQ3187RN+X/LvD4PH6MQNDqaqiJ3HivDd5KBlanohZkatrKrkvZyx/Z+0QNVreottU6mbayYnW0zShzOfcP5iqi0Ziv4z667C6uj5RVSJOA8tydSW2DS1/R66u0yfq15WqCUgsVyQ+YwC9s/4+SV/uuNbTSOyVyf0/8/2l5adSVQ301f8NFady3699y+q3cepkbktcfrz+8XDyVP3fKCdP5n53SUsnZcLSWdLvdtbvITMzMzMzM7P2zNshKwk4npS0cUbZJkl7JO2UNC5pbFbMOkn7JB2UtFvSqlLeL+mzpfyQpE/MiLlZ0vOSxiTtkpT7076ZmZmZmS04S/kesnk7ZBERwE3AvZKGSnbEu4EtwIPAlU3CHgC2RsRa4DHg1lJ+LTBYytcDH5d0vqQfAv53YENEfADopRog2szMzMzMbFFreYF0RIxJ2g3cBqwAHoqIo8BRSec3CVkD7C3PnwAeB+6gujR0haQ+YBnVgNFvlOd9wDJJk8ByquyMZmZmZma2BCzlccjavWP1LmA/VSdqQ4tpx4CrgS9QnRU7r5Q/ClwDvErV6bo5Il4DkPRJqnHKTgK/FxG/V2MZzMzMzMzMFqS2knpExAngEeDhiGiVqmwzsEXSs8BKqk4cwCXANPAe4ALgFknvk3QuVUftgvLeCkk/12zGkm6UNCpp9MEj326n6WZmZmZmZl2rTk7XRnnMKyIOA1cASLoQuKq8dR2wJyImgXFJT1GdbQvgP0fEn5SYzwN/A/g3Tea9A9gB8Bd//yNLOTummZmZmdmikRz8YVE462nvJa0u//cAtwP3l7deBj5cMjeuAC4FDpfySyUtlyTgI8Chs90uMzMzMzOzbpPukEnaBewD1kg6Jun68tawpCNUna1XgJFS/mngHKp7zJ4BRiLiuYj4Q6r7y/YDB0ubdmTbZWZmZmZmC0ugjj26TduXLEbEtlmvh+eYbjuwvUn5caokH81i7gTubLctABqoP0p6JobeRAxAX52rQSvq78/VFYmTvNnl6qnfh69OlmbqSuwwifWeWaaqruQ6zMi2MSP7eXV7XRnd3r6s7PaUiWtMJ+tK7F/TiWNhdl1EIi7TPsi1cSpXl1R/vUd6P0m0cSHsk43EcjWSd2Fk4zpVV3KTb0zVj4lG7kd2Y7p+3HSj/nY4MDjFm28O1I7r7VnKF/ItHYlfr2YdkOmMmZmZmXWhTGdsqenk3xe6zbxd/HK/15OSNs4o2yRpj6SdksYljc2KWSdpn6SDknZLWlXK+yV9tpQfkvSJGTG/LGlM0vOSfuVsL6SZmZmZmVk3mrdDFhEB3ATcK2moJOO4G9gCPAhc2STsAWBrRKwFHgNuLeXXAoOlfD3wcUnnS/oAcANVWvx1wE9J+pG3vWRmZmZmZrYgNFDHHt2m5UWwETEG7AZuo7rP66GIOBoRe4HXmoSsAfaW508AHz0zK6oxxvqAZVTjk70B/CjwBxHxZkRMAf8B+Jn8IpmZmZmZmS0M7d5DdhdVFsQJqrHD5jMGXA18geqs2Hml/FGqAaBfBZYDN0fEa+WSx7slfT9wEvhJYLTOQpiZmZmZ2cLVjdkPO6WtNDERcQJ4BHg4Ik63mHwzsEXSs8BKqk4cVJckTgPvAS4AbpH0vog4BPwfVGfT9gAHgKb5dSTdKGlU0ujI4WPtNN3MzMzMzKxr1cnb2aCNBKYRcTgiroiI9cAu4Gh56zpgT0RMRsQ48BTlbFtEfCYiPhQRP0F1GeSLc8x7R0RsiIgN/+v731uj6WZmZmZm1q0aHXx0m7M+oIek1eX/HuB24P7y1svAh0vmxhXApVSDR8+M+SvA36XqyJmZmZmZmS1q6Q6ZpF3APmCNpGOSri9vDUs6QtXZegUYKeWfBs6husfsGWAkIp4r7/2OpBeokodsiYg/z7bLzMzMzMwWlkAde3SbtgeGjohts14PzzHddmB7k/LjVEk+msX8eLvtMDMzMzMzWyza7pB1G60YrB+zLBEzmBxZvb+/fkxPsseeGdo80z6ARuLK2+jc1bpavqJ+0FTTHDKt9SROMA/W3wYBGBjqTExWf24/0eCy+kF9ybr6Euu+N3mIVGLbyNaV2A6VaV9Wdv+fTsT1Jo5rjen6MeTWYeJI3fG6InLro2M6+H2yIGR/NyxC2U0jGl6H3WIp793zHuXL/V5PSto4o2yTpD2SdkoaL2nrZ8ask7RP0kFJuyWtKuUDkkZK+QFJl82IWV/Kvy7p1yV57zAzMzMzs0Vv3g5ZRARwE3CvpKGSjONuYAvwIHBlk7AHgK0RsRZ4DLi1lN9Q5rkWuBz4lN76s99vADcCP1IezeZrZmZmZma2qLS8DiIixqiSbdwG3Ak8FBFHI2IvVYr62dYAe8vzJ4CPlucXAV8u8xwHXgc2SHo3sCoi9pUO4EPAT+cXyczMzMzMFpKlnPa+3ZsW7gL2Uw3yvKHFtGPA1cAXqJJ4nFfKDwDXSPpcKVtf/m8AM0d5Pgb8UJvtMjMzMzMzW7DaulM4Ik4AjwAPR8TpFpNvBrZIehZYSdWJA9hJ1dkaBe4DngamoGnuyab3I0u6UdKopNGRg99sp+lmZmZmZtblnPa+PW2d5YuIw8AVAJIuBK4q5VPAzWemk/Q08CLw58B7Z8zivVTjlzWb9w5gB8B3fuXvZJNImZmZmZmZdYWznvtY0uryfw9wO3B/eb28JAVB0uXAVES8EBGvAt+RdGnJrvi/UF3uaGZmZmZmS0BDnXt0m3SHTNIuYB+wRtIxSdeXt4YlHQEOU53pGinlq4H9kg5RJQj52IzZ/QJVdsavA0eB3822y8zMzMzMbKFo+5LFiNg26/XwHNNtB7Y3KX+JKgNjs5hR4APttsXMzMzMzBaPRhfe29Upde4h6y4TU7VD4tRk/XqGJlpP04ROnqwfND2dqotG4na6RjLpZyYus1w9uZO3oURcdr339tYOUX9iu4Dc+sh+xr2Jw0Lk6opEXdnDdUwn9v9MDKDEdhhTuW1eiXUffYOpuoj6bcysCyC5zWeONfX347TkftLJujL7V/qG7un63+MazH0nx0D9bV5D9dsHwLKh2iGR/k6uv/azx9CeN+uv++jLfb/2TdSvq6cv+T0U9T/n3tOd25d7e7oxSbudbQu3Q2ZmZmZmZovCUs7WN++fIFV5UtLGGWWbJO2RtFPSuKSxWTHrJO2TdFDSbkmrSvmApJFSfkDSZTNi7pb0LUnHz/LymZmZmZmZda15O2QREcBNwL2ShkqWxLuBLcCDwJVNwh4AtkbEWuAx4NZSfkOZ51rgcuBTeutalt3AJW9vUczMzMzMbCFqdPDRbVpepB8RY1QdptuAO4GHIuJoROwFXmsSsgbYW54/AXy0PL8I+HKZ5zjwOrChvP6Dkv7ezMzMzMxsyWj3HrK7gP3ABKUTNY8x4GqqscSuBc4r5QeAayR9rpStL/9/tWabzczMzMxsEWlo6WZZbCuNVUScAB4BHo6I0y0m3wxskfQssJKqEwewEzgGjAL3AU8DtVLbSLpR0qik0ZEXvlUn1MzMzMzMrOvUybLY1mWXEXEYuAJA0oXAVaV8Crj5zHSSngZerNPYiNgB7AD4zi9uXMrJWMzMzMzMFo2l/MM+OUDM3CStLv/3ALcD95fXy0tSECRdDkxFxAtnu34zMzMzM7OFIt0hk7QL2AeskXRM0vXlrWFJR4DDwCvASClfDeyXdIgqQcjHZszrHknHgOVlXtuy7TIzMzMzM1so2r5kMSK2zXo9PMd024HtTcpfosrA2CzmV4FfbbctADGZGP399GTtEJ06Vb8egL7e2iExlRvRnun6cUrEAEQjkSy0kTgJHbmkpKnbQbPrvad+bdnT8cqs9/6BXGW99bfddF0JMV3r1tO/9NYoGzX01rmq+y2Zz1nJbT76BuvXlVkXAJE4rqXrqh+XXq6MnvrrItu+aCSOUZOtbveeK26i9TSzJbddJk7WryoRk9aX2/8z3w3K/n28L/E9dDpbVyJuOrdt9Czv3G8oqf4Ru6e3fkymHoDe/m5M0v69sXSW9Lt18NvLzMzMzMzMZpq3Q6bKk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdktaVcoHJI2U8gOSLivlyyX9O0mHJT0v6V9+D5bTzMzMzMy6VEOde3SbeTtkERHATcC9koZKUo67gS3Ag8CVTcIeALZGxFrgMeDWUn5Dmeda4HLgU3rr+o1PRsT7gQ8CPzazA2hmZmZmZrZYtbxAOiLGJO2mSsSxAngoIo4CRyWd3yRkDbC3PH8CeBy4A7gI+HKZ57ik14ENEfFV4CulfELSfuC9b2ehzMzMzMxs4WjkMgEsCu3eQ3YXcB2wEbinxbRjwNXl+bXAeeX5AeAaSX2SLgDWz3gPAEnvBP4OpeNmZmZmZma2mLXVIYuIE8AjwMMR0Sp102Zgi6RngZXAmZRNO4FjwChwH/A08Jfp0iT1AbuAX4+IbzSbsaQbJY1KGh05fKydppuZmZmZWZeLDj66TZ2crg3ayEgZEYeBKwAkXQhcVcqngJvPTCfpaeDFGaE7gBcj4r555r2jTMcbN1zRjevTzMzMzMysbclBNuYmaXW5R6wHuB24v5QvBxQRJyRdDkxFxAvlvX8OvAP43852e8zMzMzMrLt1Y/bDTkmPQyZpF7APWCPpmKTry1vDko4Ah4FXgJFSvhrYL+kQVYKQj5X5vBf4x1RJP/ZL+pokd8zMzMzMzGzRa/sMWURsm/V6eI7ptgPbm5S/RJWBcXb5MaifVmXqT1vdyvbdepZPtZ5otolEDKBTk7VjYjJXF43EiPGD/bm6ov446jHVubHXM/N/bgAAIABJREFUdeJk/aDketfgQP2Y6elUXTFZf3uiP/cZq6+3flBv8mT7RP39mIHBVFUxOdF6otl6cn+z0jnn1o6J6eR22Fd/uWI6sT0B9Ndf9xpYlqtrOnGsydQzNZHaft8ataWGxPoDUGY7TNbFZP19UsltN5Yn9sllK3N1ZY5Rp99M1aWhxDbf6OD35JsncnHf9536QacTnzEQJ0/Vjuk7mfg+AQb+ov7nHJP1v8vfwTSN44l9pW/pnDbq3F7QfdJnyMzMzBa87B8TzMxqSHXG7L8aSVdK+iNJX5e0tcn7v1au6vuapCNlOK8z790j6XlJhyT9uqSWvep5O2SqPDlzoGZJmyTtkbRT0riksVkx6yTtk3RQ0m5Jq0r5gKSRUn5A0mUzYvaUsucl3S8p8Sd6MzMzMzNbiLoly2Lph3yaarivi6hux7rov2hrxM0RcXFEXAz8K+DzJfZvAD8G/HXgA8B/C/zNVss+b4csIgK4CbhX0pCkFcDdwBbgQeDKJmEPAFsjYi3wGHBrKb+hzHMtcDnwKb11zcemiFhXGv4DVOOXmZmZmZmZddIlwNcj4hsRMQF8DrhmnumHqYbugqq/NwQMAINAP/DHrSpsecliRIwBu6kScdwJPBQRRyNiL/Bak5A1wN7y/Ango+X5RZQBnyNiHHgd2FBev1Gm6SsL4JT2ZmZmZmZLREOde7TwQ8C3Zrw+Vsq+i6S/ClwA/L8AEbEP+Arwank8HhGHWlXY7j1kdwHXUZ26u6fFtGPA1eX5tcB55fkB4BpJfZIuANbPeA9JjwPjwHeAR9tsl5mZmZmZWdsk3ShpdMbjxplvNwmZ62TRzwKPRsR0me9fA34UeC9VJ+7Dkn6iVXva6pBFxAngEeDhiGiVxmYzsEXSs8BK4EyKnZ1UPcxR4D7gaeAv73CMiL8NvJvq9N6Hm8145sr77EuvttN0MzMzMzOzvxQROyJiw4zHjhlvH2PGSSOqztUrc8zqZ3nrckWAnwH+ICKOR8Rx4HeBS1u1p06WxQZtZKSMiMMRcUVErC8NPFrKp2bcAHcN8E7gxVmxp4AvMsd1mjNX3t8//901mm5mZmZmZt2q0cFHC88APyLpAkkDVJ2uL86eSNIa4FyqcZnPeBn4m+WKwH6qhB5n7ZLFtklaXf7vAW4H7i+vl5ekIEi6HJiKiBcknSPp3aW8D/hJqkGlzczMzMzMOiYipoBfAh6n6kz9VkQ8L+mfSrp6xqTDwOdKEsQzHqU6GXWQ6natAxGxu1Wd6QFYJO0CLgPeJekYcGdEfIYqNeSWMtnngZHyfDXwuKQG8G3gY6V8BfBFSYNAL9VNcfdn22VmZmZmZgtLNw0MHRFfAr40q+yfzHq9rUncNPDxuvW13SGbXWlEDM8x3XZge5Pyl6gyMM4u/2OqHP1mZmZmZmZLSvoM2YI0VT+bfkwn++uTiRHZJ3KjuKfa2NM652dTjcSIBI367YvTuXWhvvpX4cbEdKouGq3y2zSRXe9T9duowYFUVdGbGJd9oD9VlzJ1JbYnAPoT60O5q7qj9zv1q0rVBBH114d6O3foj+zn1VN/3Sv5eWVEI7FPJpYJgN76+5ey631gWe2QmE4er7PrI+P0ifoxifUOEFOJ9ZHYj4Hc8bA/ebxOfF5xOvE9Cag/cYxKfudlvpeV+I2n/ty6YGDp/FSP7BfhIjDv3qXKk5I2zijbJGmPpJ2SxiWNzYpZJ2mfpIOSdktaVcoHJI2U8gOSLmtS3xdnz8/MzMzMzGyxmrdDVm5Suwm4V9JQScpxN7AFeBC4sknYA8DWiFgLPAbcWspvKPNcC1wOfEoz/pwp6e8Cx9/W0piZmZmZ2YLTRVkWO67l+eeIGAN2A7cBdwIPRcTRiNgLvNYkZA2wtzx/AvhoeX4R8OUyz3HgdWADgKRzgH8I/PP0kpiZmZmZmS0w7V6Yehewn2qQ5w0tph0Drga+AFzLWwOrHQCukfS5Ura+/P9V4J8BnwLerNN4MzMzMzNb+LrxzFWntHWHZkScAB4BHo6IVnclbga2SHoWWEnViQPYSTXy9ShwH/A0MCXpYuCvRcRjrdoh6UZJo5JGP/vSq+003czMzMzMrGvVSd3S1mWXEXEYuAJA0oXAVaV8Crj5zHSSngZepBrBer2kl0p7Vkv6/Yi4rMm8dwA7AF77mb+ZSPdnZmZmZmbdZin/sD/rOWclrS7/9wC3UwZ5lrS8JAVB0uXAVES8EBG/ERHviYjzgf8BONKsM2ZmZmZmZrbYpDtkknYB+4A1ko5Jur68NSzpCHAYeAUYKeWrgf2SDlElCPlYvtlmZmZmZrZYNNS5R7dp+5LFiNg26/XwHNNtB7Y3KX+JKgPjfHW8BHyg3TaZmZmZmZktZAt2+O/j36rf9P6h+vlb+t/Ijazeu3yi9USzNCaSV88m0tL0DOWWKxr12xj1B7RPxQD0vp5Y76dy6713ef0TzL3vztWlicQKGUju3r299WP6EjEAJ07Wj1mxLFWVJutvG/QkLyKI+jtlTCc3+r6B+jHTk8m6BmuHaPk7cnVNJdZhpp7EZwXAZOIY2l9//QGokWhjsq7MtqHkT4lI7F/pP2wPraodEr39ubpiun5M5jOG3PY7cSpXV+bzmkwea5bVP86njvFALE98p0zX/4zjZO53Fz1deDrne8RZFs3MzMzMzKzj5u2QqfKkpI0zyjZJ2iNpp6RxSWOzYtZJ2ifpoKTdklaV8gFJI6X8gKTLZsT8vqQ/kvS18lh9lpfTzMzMzMys68zbIYuIAG4C7pU0VLIk3g1sAR4ErmwS9gCwNSLWAo8Bt5byG8o81wKXA58qmRjP+HsRcXF5jL+NZTIzMzMzswWk0cFHt2l5yWJEjAG7qTIj3gk8FBFHI2Iv8FqTkDXA3vL8CeCj5flFwJfLPMeB14ENb6v1ZmZmZmZmC1i795DdBVwHbATuaTHtGHB1eX4tcF55fgC4RlKfpAuA9TPeAxgplyveIWnp3MFoZmZmZrbERQcf3aatDllEnAAeAR6OiFZpYjYDWyQ9C6wEzqS92QkcA0aB+4CngTNpxf5euZTxx8uj6Rhlkm6UNCpp9Df/5NvtNN3MzMzMzKxr1clV29ZllxFxGLgCQNKFwFWlfAq4+cx0kp4GXizvfbv8/x1JvwlcAjzUZN47gB0AL2/4SDd2cM3MzMzMrKZuHLC5U8562vszGRJLwo7bgfvL6+UlKQiSLgemIuKFcgnju0p5P/BTVJc9mpmZmZmZLWrpgaEl7QIuA94l6RhwZ0R8BhiWtKVM9nlgpDxfDTwuqQF8m7cuSxws5f1AL/DvgX+dbZeZmZmZmS0s3Zj9sFPa7pBFxLZZr4fnmG47sL1J+UtUGRhnl5+gSvBRS2Oq/sm9qcQg6T192Ssj68c1coPME9P1z/H2NnLLFVOtp/mumMQe1pjMnbdWT/3lmj6VqorMoUN/9maqJi2v/7cTDfbn6upLnDjvT/5tJ7Edano6VVVqi+/NLZf6B1JxKQOJHax/8Oy3Yw5x+kQqTuqtX1ckto2Jk2hgWf24ycQBezLxJQSQad/0ZK6u3sRxQ7l9Uokvh8isC4ChFbVD1JO8iKiRWB+ZL0qARmIdJo9rmboYSPxoAMjkdutLfuclYmKq/mes5cvhVOIHR2/9Y6EtPOkzZGZmZgtdqjNmZlZXpjO2xCzl5BDz/vlHlSclbZxRtknSHkk7JY1LGpsVs07SPkkHJe2WtKqUD0gaKeUHJF02I2ZA0g5JRyQdlvRRzMzMzMzMFrl5O2QREcBNwL2ShkpSjruBLcCDwJVNwh4AtpY09o8Bt5byG8o81wKXA58qiT8A/jEwHhEXUg0g/R/ezkKZmZmZmdnC0SA69ug2LS9ZjIgxSbuB24AVwEMRcRQ4Kun8JiFrgL3l+RPA48AdVB2tL5d5jkt6HdgAfJVq7LL3l/cawJ/mF8nMzMzMzGxhaPeO1buA64CNwD0tph0Dri7PrwXOK88PANeUNPcXUCXyOE/SO8v7/0zSfkm/LekH214CMzMzMzNb0BodfHSbtjpkJRPiI8DDEdEqTdRmYIukZ4GVwJlUVDuBY8AocB/wNDBFdZbuvcBTEfEhYB/wyWYzlnSjpFFJo7/5Z8faabqZmZmZmVnXqpNlsa1OZUQcBq4AkHQhcFUpnwJuPjOdpKeBF4E/A96kut8M4LeB6+eY9w5gB8BLF1/efReAmpmZmZlZbUv5h31ykI25SVpd/u8BbgfuL6+Xl6QgSLocmIqIF0rikN1Ug0wDfAR44Wy3y8zMzMzMrNukO2SSdlFdXrhG0jFJZ85qDUs6AhwGXgFGSvlqYL+kQ1QJQj42Y3a3AdskPVfKb8m2y8zMzMzMbKFo+5LFiNg26/XwHNNtB7Y3KX+JKgNjs5hvAj/RblsApibq9yUb05nx2HP6purfMjg9mWvf9GT9ddE/UX+UeYCI+m2M5N2Tk6fqj04fjalEPbm/S/SdTCxYon0APafqf149Q7m66Kv/GWug/mcF0DNZv40x2J+rKxPUm1suehL7ciO5owxNtJ5mluhJ/i1ucqB2SPaoGzrrF3A0r2fiJGQGh04c2DSd2ycjEadadyTMDEx8N/Qk95PEJq/e5HINDNUOyW6DqW0+uf9H1P+81D+YqgslvpOnJ3N19dc/1jBZ/1hY1VX/O0XTif3kHcCpk/Xjst9DC1A3JtvolM5845nVlOmMmZnVlumMmZnVlemM2ZIxb4dMlSclbZxRtknSHkk7JY1LGpsVs07SPkkHJe2WtKqUD0gaKeUHJF1WyldK+tqMx59Kuu97sKxmZmZmZtaFGurco9vM2yErCTduAu6VNFSSctwNbAEeBK5sEvYAsDUi1lJlTry1lN9Q5rkWuBz4lKSeiPhORFx85gF8E/j82180MzMzMzOz7tbyYuyIGJO0myrxxgrgoYg4ChyVdH6TkDXA3vL8CeBx4A7gIuDLZZ7jkl4HNgBfPRMo6Ueokn/8x+TymJmZmZnZAtNYwonv272H7C7gOmAjcE+LaceAq8vza4HzyvMDwDWS+iRdAKyf8d4Zw8Aj5cycmZmZmZnZotZWhywiTgCPAA9HxOkWk28Gtkh6FlgJnEl7sxM4BowC9wFPA7NTR/0ssGuuGUu6UdKopNHP/fmxdppuZmZmZmZdLjr46DZ18sc2aCMjZUQcBq4AkHQhcFUpnwJuPjOdpKeBF2e8Xgf0RcSz88x7B7AD4OsX/e1uXJ9mZmZmZmZtSw7oMTdJq8s9Yj3A7cD9pXw5oIg4IelyYCoiXpgROsw8Z8fMzMzMzGxx8jhkCZJ2AfuANZKOSbq+vDUs6QhwGHgFGCnlq4H9kg5RJQj52KxZbsIdMjMzMzMzW0LaPkMWEdtmvR6eY7rtwPYm5S9RZWCca/7va7ctZmZmZma2eCzlLItn/ZLFTpluZE7u1T8Z2pjOjR6XicvWFYkR7jpZVyZnZqYeSK73qeSJ4oEOnlxPVBVTufapJ7E+GrmDaKaN6s0tV0xN1w9qJD/jRF2anp3jqE2ZuGxdymwb2f2kQ/tXdl1MnKwdEssnWk/URGafjMx+DCgS6z37UfX0dq6uzLabXIe5upJVZb4bMu2D3PqIDq7D7HL1D9SPaZnfronexPYO0Ltgf6pbDfNuvao8KWnjjLJNkvZI2ilpXNLYrJh1kvZJOihpt6RVpXxA0kgpPyDpshkxw6X8uTLvd53l5TQzMzMzsy61lLMsztshK+OB3QTcK2lI0grgbmAL8CBwZZOwB4CtEbEWeAy4tZTfUOa5Frgc+JSkHkl9VJc4/q2I+OvAc8Avvd0FMzMzMzMz63Ytz+9GxBiwmyoRx53AQxFxNCL2Aq81CVkD7C3PnwA+Wp5fBHy5zHMceB3YAKg8VkgSsIoqGYiZmZmZmS0BjQ4+uk27F9zeBVwHbATuaTHtGHB1eX4tcF55fgC4RlKfpAuA9cB5ETEJ/AJwkKojdhHwmbaXwMzMzMzMbIFqq0MWESeAR4CHI1reybgZ2CLpWWAlcOYu5p3AMWAUuA94GpiS1E/VIfsg8B6qSxY/0WzGkm6UNCpp9JHXv9VO083MzMzMzLpWndQtbZ3li4jDwBUAki4ErirlU8DNZ6aT9DTwInBxef9oKf8tYOsc894B7AD4o/dv7MZ78szMzMzMrKalnPY+PTD0XCStLv/3ALcD95fXy0tSECRdDkxFxAvAt4GLJP1AmcXlwKGz3S4zMzMzM7Nukx7cQNIu4DLgXZKOAXdGxGeAYUlbymSfB0bK89XA45IaVJ2wjwFExCuS7gL2SpoEvgn8fLZdZmZmZma2sCzd82M1OmQRsW3W6+E5pttOlcZ+dvlLVBkYm8XcTzmTZmZmZmZmtlQs2OG/T57srx3To/p97/7J6doxAL0n6yfVnJ7KXUE6NVV/9PeBwalUXdFQ/ZjEnzxOna7/+QIsn5xoPdEsp0/ldoPBU/XX4XSifQD9y+pvhz39ucSuPX314zSQ2556z5msX9dQ/e0doGeyfhvVl7yqu5HY6CfrrwsALTtZP6iRTPo7OFQ7JCJZlxLrPlGXBnP7ZEwk1vuylam6MuofqSsxsKx+Xb3JnxKZTaMnt/8rsVzZujr6V/7EvqypgVRV0VN/n9R07ruB3vq/AWI6dwxl4lT9mMx3eaYegOz+tQB1Yzr6Tjnr95CZmZmZmZlZe+btkKnypKSNM8o2SdojaaekcUljs2LWSdon6aCk3ZJWlfIBSSOl/ICky2bE/M+SnpP0vKRW45yZmZmZmdkiEh38123m7ZBFRAA3AfdKGipZEu8GtgAPAlc2CXsA2BoRa4HHgFtL+Q1lnmupMil+SlKPpO8H/k/gIxHx3wA/KOkjb3vJzMzMzMzMulzLC1MjYkzSbuA2YAXwUBkz7Kik85uErAH2ludPAI8DdwAXAV8u8xyX9Dqwgepy6yMR8Scl5t8DHz0zrZmZmZmZLW6+h6y1u4DrgI1Aq0sKx4Cry/NrgfPK8wPANZL6JF0ArC/vfR14v6TzJfUBPz0jxszMzMzMbNFqq0MWESeAR4CHI+J0i8k3A1skPQusBM6kotkJHANGgfuAp6kGh/5z4BfK/P8j8BLQNC2PpBsljUoa/Z3j32yn6WZmZmZm1uUaRMce3aZOLs0GbZxNjIjDwBUAki4ErirlU8DNZ6aT9DTwYnlvN7C7lN8INM3xHRE7gB0AX/urV3ff2jQzMzMzM6vhrKe9l7S6/N8D3E4Z8FnS8pIUBEmXU50de2FWzLnAL1IlBjEzMzMzsyUgOvjoNukOmaRdwD5gjaRjkq4vbw1LOgIcBl4BRkr5amC/pENUCUI+NmN22yW9ADwF/MuIOJJtl5mZmZmZ2ULR9iWLEbFt1uvhOabbDmxvUv4SVQbGZjFN5zWfPzu1rG5IKntLz8lEEKBE/3si2T+eRrVjBt7M5bKJRF2Zmv6ipzcRBSv/vOnVrvN6M1nX8pP163rH601vj2xpoLd+XX29uc+4t6d+XLauwWX110dvX66uZee+UTtGyT9ZDayuX1fvuUOpurSiflzP6nNTdTEwUDtE73xnrq4OCYCBwc7U1VvnLoEZTp+oHzO0KlfX0Ir6MQO5bTezg2mg/nc/AP31P2MlYgCUXR8ZjfrHw5jOfQ9p2cqO1cVkq3QF302R/F0zkfihNzXReppmMnVljxsLUDfe29UpZ/2SRTMzswWjQ50xM1viMp0xWzLm7ZCp8qSkjTPKNkn6sqSvSDok6XlJvzzj/e+T9ISkF8v/586Y169L+vr/3969x9tV1ffe/3z3JeQGEhRiDChWY4W2CDRiTvGCUiyhl9g+h6g9hcjDaQ6VVqjYQw72QWgfeuJpm9PS9tjG4qtAsYKVSrCxkEawBoESQ4SErSbeIBKJBbnkurP3/p0/5tgw2azbHNlZe62d7zuv+craY87f+o0511xzrbHmnGNIekjSqaWYJWn5LZKWHIwVNTMzMzMz6zQNG2QREcBFwApJU1OnHNcAVwKXRcQJwAKKbu5PTGHLgLURMY9icOdlqXwhMC9NS4FPQNGAAz4GvAU4DfjYaCPOzMzMzMwmv5E2Tp2m6SWLEbGJokv6yykaTjdExD0RsSHNfw4YAOamkEXA9enx9RQDPY+W3xCF+4AjJc0BfgFYExFPpTHJ1gBnj8vamZmZmZmZdbBW7xS8GthAMcjz/PIMSccDpwD3p6LZEbEdICK2j3ZpT9Fge6wUui2V1Ss3MzMzM7NDQLhTj8YiYhdwM3BjRDzf9Y2kmcDngEsjolm3YrW654sG5S99AmmppPWS1n9hz7dbqbqZmZmZmVnHqtLL4osuu5TUT9EYuykibi0t90S6FJH0/45Uvg04rrTcsRTjlNUrf4mIWBkR8yNi/i9Ne12FqpuZmZmZWafyPWQVSRJwHTAQESvGzF4FjPaUuAS4rVR+fuptcQHwTLq08Q7g3ZJmpc483p3KzMzMzMzMJrXc0eZOB84DHpa0MZVdERGrgeXALZIuBB4Fzk3zVwPnAFuB3cAFABHxlKQ/BB5Iy/1BRDyVWS8zMzMzM+syh/I9ZC03yCLiqtLjddS+94uIeBI4s0Z5ABfXifkU8KlW6wKwU71VFi/yVI5or/2quUmb2pcRd1i0b0zw3FPDP+6rvl4jw9X3C4CdPdVz7VP13zN+TB+zhocqxx02VH29+ofztnxvxjulrycv12DGevX1tu9ig56+vFw9fdVfY9iblyvjddbU/qxcHDalekxf7u9+7bITTZ1aPSxnvb7/LXjlsdXjequ/XrFvL0w/vHKceqp/NoQyP08yctGTd4xXfxsHAM/dHjkyUinzt/iIjGNN7rbIiIuMz1YAjWQc5zO+g9I/jdifMTh0b6cfQ208+FW2jpTTGMuV0xjLldMYM7ODJ6sxliunMZYrozFmZgdPVmPsENOJ93a1S8OfINL9XuskLSyVLZa0VtJdkgYkbZZ0SWn+UZLWSNqS/p9Veq5rJW2V9JCkU0sx/yLpaUlfOBgraWZmZmZm1okaNsjSZYYXASskTZU0A7gGuBK4LCJOABYAF0s6MYUtA9ZGxDxgbfobYCEwL01LgU+UUv0xxT1pZmZmZmZ2iBmJaNvUaZpepBsRm4DbgcuBjwE3RMQ9EbEhzX8OGOCFwZwXAdenx9cD7ymV3xCF+4AjR7vHj4i1wHPjs0pmZmZmZmbdodV7yK4GNgCDwPzyDEnHA6cA96ei2ak7eyJiu6RjUvlc4LFS6LZUtj2n4mZmZmZmNjl03nmr9mmpG5uI2AXcDNwYEftGyyXNpBgc+tKIeLbJ09TqOaHStpe0VNJ6Sevv2L21SqiZmZmZmVnHqdKv6IsGt5bUT9EYuykibi0t98TopYjp/x2pfBtwXGm5Y4HHq1Q2IlZGxPyImP8L019fJdTMzMzMzDrUCNG2qdNkDRAhScB1wEBErBgzexWwJD1eAtxWKj8/9ba4AHhm9NJGMzMzMzOzQ1HuOGSnU/SK+LCkjansiohYDSwHbpF0IfAocG6avxo4B9gK7AYuGH0ySV8B3gjMlLQNuDAi7sism5mZmZmZWVdouUEWEVeVHq+j9j1hRMSTwJk1ygO4uE7M21qth5mZmZmZTS7RQZcSSjob+HOgF/jbiFg+Zv7/Bt6Z/pwOHBMRR0o6mWJoryOAYeCaiLi5Wb7cM2QTbkdf9asth2s2IRvLHTU8J25/Rv1y4w6LvGQ565UT81RP3pZ/tqf6frFTeQeA6RnbcG9P3luuP6OK/ZnjbPTk5BrJyzV1b/XX+bDMA/bewerbvjdnYwBD+/ZUjpm+ZzArV/+ze6sHZb5eOqz6NuzJzMVI7tG3omlT8+J6qr//NXVaVqoYGsoIGs7KxUj1uMyPLlD143Xu1zVNyXidM+oHQE9vXlyOnLdJb9565bzOEZnv44xtqN68z9fI+N7AcPX3ZG79rP0k9QJ/BZxF0QfGA5JWRcQjo8tExO+Wlv8dih7nobgK8PyI2CLpVcDXJN0REU83ytlwL0z3e62TtLBUtljSWkl3SRqQtFnSJaX5R0laI2lL+n9W6bmulbRV0kOSTk3lJ0u6Nz3PQ5Le29rmMjMzMzOzyWCkjVMTpwFbI+I7ETEIfIZiPOV63g/8A0BEfCsitqTHj1N0bnh0s4QNG2TpMsOLgBWSpkqaAVwDXAlcFhEnAAuAiyWdmMKWAWsjYh6wNv0NsBCYl6alFKfz4IWW5E8BZwN/JunIZhU3MzMzMzMbZ/XGTn4JSa8BXgt8qca804ApwLebJWx6/jQiNkm6HbgcmAHcEBH3lOY/J2kgVfQRihbkGWn29cDdKXZRig3gPklHSpoTEd8qPdfjkkZbkg1P7ZmZmZmZ2eTQzu7oJS2lOEE0amVErBydXSOkXuXeB/xjxIuvE09Df90ILIkWrt1t9YLWq4ENwCAwf0zC4ymum7w/Fc0e7c4+IrZLOiaV12ttPt/1fZWWpJmZmZmZWVWp8bWyzuwqYye/jzGdFko6Avhn4Pcj4r5W6tPSnYwRsQu4GbgxIvaVEs6kGBz60oh4tsnTNGxtllqSF9RrSUpaKmm9pPX/tmtLK1U3MzMzM7MOF23818QDwDxJr5U0haLRtWrsQpJ+EpgF3FsqmwL8E8VVgZ9tdd2rdC3zovvgJPVTNMZuiohbS8s9kRpXo42sHam8bmuz1ZZkRKyMiPkRMf/tM+ZVqLqZmZmZmVljETEE/DZwBzAA3BIRmyX9gaRfKS36fuAz6XasUYuBtwMfkLQxTSc3y5nVB6ckAdcBAxGxYszsVcASigGilwC3lcp/W9JngLcAz6RLGrNakmZmZmZmNjm0abCTlkTEamD1mLIrx/x9VY24vwf+vmq+zEE2OB04D3hXqfV3Tpq3HDhL0haK/vtHB1JbDXwH2Ap8EvhgKs9qSZqZmZmZmXW7ls+QlVuBEbGOOmMERsSTwJk1yoMxN72l8qyWpJlk2BYWAAAgAElEQVSZmZmZTQ4vvvLv0NK1w4bnnNobyXide3KGps+Ue7qy0+WsV+5m78l5L7fxNR7KjOvNiBnJXLGeNnY7m6OdlzTkfjZEVN/2MZL3ekXOgS0nJjduJPMVy61jRZFZP+Uc2XK3RfMek7sz12T90GunnoxPh5Hh5svUzFX9BVPubpgTlLMtAKn6euXVzzu81de1DTIzMzMzM5sc2jkOWadp2FxXYZ2khaWyxZLWSrpL0oCkzZIuKc0/StIaSVvS/7NKz3WtpK2SHpJ0aip/jaSvpXvHNku66GCtrJmZmZmZWSdp2CBL931dBKyQNFXSDOAa4Ergsog4AVgAXCzpxBS2DFgbEfOAtelvgIXAvDQtBT6RyrcDPxcRJ1P0vrhM0qvGawXNzMzMzKyzjbRx6jRNL1mMiE2SbgcuB2ZQdE9/T2n+c5IGgLnAI8Ai4Iw0+3rg7hS7KMUGcJ+kIyXNiYjtpXSH4avKzczMzMzsENHqPWRXAxuAQWB+eYak44FTgPtT0ezRRlYaZ+yYVD4XeKwUui2VbZd0HMXA0K8Hfi8iHq+8JmZmZmZmZl2mpbNREbELuBm4MSL2jZZLmgl8Drg0Ip5t8jS1uhCL9PyPRcRJFA2yJZJm13wCaamk9ZLWf3nXllaqbmZmZmZmHS7a+K/TVLk88EWXXUrqp2iM3RQRt5aWe0LSnLTMHGBHKt8GHFda7ljgRWfC0pmxzcDbalUgIlZGxPyImP+OGfMqVN3MzMzMzKzzZN2vJUnAdcBARKwYM3sVsCQ9XgLcVio/P/W2uAB4Jl3SeKykael5ZwGnA9/MqZeZmZmZmXWfEaJtU6fJHYfsdOA84GFJG1PZFRGxGlgO3CLpQuBR4Nw0fzVwDrAV2A1ckMpPAP5UUlBc1vgnEfFwZr3MzMzMzMy6RssNsoi4qvR4HbXvCSMingTOrFEewMU1ytcAJ7Vaj1G9GY3bkZo1bhKT2YjuycjVk5srJ6aNuXK2e66cVH1t3BbtlPv7T9b7JGvLQ0T1uNz1ysmF8rIND1fPNZIRAxBDGTGZBzblxA0PZ+XKOvjmHHh374GpU6vH9bXxwDaS0UlzZHbsnJErIu81Vk4Vc7ZFblzuQT6nij29mcnamGu4jZ2FK2PjZ+7zkfteqaq3H/bva77cWD2d/m1j/BRNhUPTofMqm5mZjZXTGDMzqyqnMWaHjIYNsnS/1zpJC0tliyWtlXSXpAFJmyVdUpp/lKQ1krak/2eVnutaSVslPSTp1DG5jpD0A0l/Od4raWZmZmZmnetQHhi6YYMsXWZ4EbBC0lRJM4BrgCuByyLiBGABcLGkE1PYMmBtRMwD1qa/ARYC89K0FPjEmHR/CHz5wFfJzMzMzMysOzS9hywiNkm6HbgcmAHcEBH3lOY/J2mAYpDnR4BFwBlp9vXA3Sl2UYoN4D5JR0qak3pa/FlgNvAvjBl42szMzMzMJrdOHB+sXVrt1ONqYAMwyJgGk6TjgVOA+1PR7IjYDpAaW8ek8rnAY6XQbcBcSU8Af0rRa+NLOgMxMzMzMzObrFrq1CMidgE3AzdGxPN3JUqaSTE49KUR8WyTp6nVJVUAHwRWR8RjNea/+AmkpZLWS1p/964trVTdzMzMzMw6nMcha82L7oOT1E/RGLspIm4tLfdE6VLEOcCOVL4NOK603LHA48B/At4m6YPATGCKpJ0RsYwxImIlsBLg7+b+RudtTTMzMzMzswqyur2XJOA6YCAiVoyZvQpYkh4vAW4rlZ+feltcADwTEdsj4r9ExKsj4njgIxT3mb2kMWZmZmZmZpNTRLRt6jRVzpCVnU5xz9fDkjamsisiYjWwHLhF0oXAo8C5af5q4BxgK7AbuCC71mZmZmZmZpOAOrGV2Iq/PK76JYv7a93F1oLhjJiRzFz7M65r3ZeZ67CMl76dYzf8h6pv+ZfRm5VrZ8arPC1zXPVZI9Xj+rMyQX/Ga9ybeUiYkhE3NfP4k7NeR43sz8rVp+rJjpy6NyvXzMOrDxw69fC89Zo2p/p69UzPe3/1Hj0jK65dNCNjcGjlvf97XnNs9aCXHZmVi8Mz4qbNzEqlGRm5Mrehph1ePebwV+Tl6s343TonJldP3nsyy0jOtyEgqn9ziOGhvFwjGd9ShvOOoTE0mJErc70yHPaGt2Z+O5w47zz2rLY1Su7atqajtk/e0fAQknn4yZLTGMuV0xhrp5zGWK6cxliunMZYrpxGS66cxliudq5XTmMsV05jLFdOYyzXpGyMZcpqjOXKaYxlymqM5ebKaIxl52pnw2qyymiMZctpjGXq9MaYdZ+G3w7T/V7rJC0slS2WtFbSXZIGJG2WdElp/lGS1kjakv6fVXquayVtlfSQpFNLMcOSNqZp1cFYUTMzMzMz60zRxn+dpmGDLA3ifBGwQtJUSTOAa4Argcsi4gRgAXCxpBNT2DJgbUTMA9amvwEWAvPStBT4RCnVnog4OU2/Mk7rZmZmZmZm1tGano+PiE2SbgcuB2ZQ9IJ4T2n+c5IGKAZ+fgRYBJyRZl8P3J1iF6XYAO6TdORo9/jjuD5mZmZmZmZdo9ULpK8GNgCDwPzyDEnHA6cA96ei2aONrDQW2TGpfC5QHvx5WyrbDkyVtB4YApZHxOcrr4mZmZmZmXWlkS7taHA8tNQgi4hdkm4GdkbE83eeS5pJMTj0pRHxbJOnqdWbyeiWf3VEPC7pJ4AvSXo4Ir79kieQllJc7sj7jjyN02fOa6X6ZmZmZmZmHalKl28jlHo9l9RP0Ri7KSJuLS33hKQ5aZk5wI5Uvg04rrTcscDjABEx+v93KC5xPKVWBSJiZUTMj4j5boyZmZmZmU0O0cap02T1wS1JwHXAQESsGDN7FbAkPV4C3FYqPz/1trgAeCZd0jhL0mHpeV9BMej0Izn1MjMzMzMz6ya5g2ycDpwHPCxpYyq7IiJWA8uBWyRdCDwKnJvmrwbOAbYCu4ELUvkJwN9IGqFoIC6PCDfIzMzMzMwOESMdee6qPVpukEXEVaXH66h9TxgR8SRwZo3yAC6uUf5V4GdarYeZmZmZmdlk0bXD0D/aO1w5Zn9Gyzt33PecQef2ZGYbzIiboqyrVbMMZ2yLH43szcp1pKZUjtnFUFauqfRWjnmmp3r9AKbU/v2jof6MGIC+jLjezFzTo3rcYZk/oO0dqr7tezN/rdu3p/r7a3Co+v4EMHPfYOUY9ezJytU3rfp7ZUrf7qxcjLTnl9Ke3dW3HwB91V9jHfVcVir1ZByvc2IARjI+h5S37+bUMTLXS9MOr54r8j6Ts46Gua/XcM7rlZmrJ+d1zts3lFPHzNeL3oyvwr391WOG9jVf5hB3KJ8ha7jHp/u91klaWCpbLGmtpLskDUjaLOmS0vyjJK2RtCX9P6v0XNdK2irpIUmnlmJeLenO9HyPpK70zczMzMzMJrWGDbJ0meFFwApJUyXNAK4BrgQui4gTgAXAxZJOTGHLgLURMQ9Ym/4GWAjMS9NS4BOlVDcAf5ye7zRe6JnRzMzMzMwmuYho29Rpmp6njYhNkm4HLgdmADdExD2l+c9JGqAY5PkRYBFwRpp9PUU39pen8htSI+8+SUembvFnAX0RsSY9385xWjczMzMzM7OO1uqFs1cDG4BBYH55Rrq88BTg/lQ0OyK2A6Ru7Y9J5XOBx0qh21LZscDTkm4FXgv8K7AsIqrfJGZmZmZmZl3H95A1ERG7gJuBGyPi+bsSJc2kGBz60oh4tsnT1LrPNSgahW8DPgK8GfgJ4AM1n0BaKmm9pPVff25rK1U3MzMzMzPrWFW6sRmh1OmgpH6KxthNEXFrabkn0qWIpP9H7wfbBhxXWu5Y4PFU/mBEfCcihoDPA6dSQ0SsjIj5ETH/TYe/vkLVzczMzMysU0Ub/3WarL5PJQm4DhiIiBVjZq8ClqTHS4DbSuXnp94WFwDPpEsbHwBmSTo6LfcuinvRzMzMzMzMJrXccchOB84DHpa0MZVdERGrgeXALZIuBB4Fzk3zVwPnAFuB3cAFABExLOkjwNrU0Psa8MnMepmZmZmZWZfpxN4P26XlBllEXFV6vI46Yx9GxJPAmTXKA7i4Tswa4KRW62JmZmZmZjYZ5J4hm3BDGdd/7s+Iye3xZTgjbpC8Ueb35nRIWbM5fXCMZPziMZjZyeagqm/D3Fw523AveblGMq4ujrwrkrPeJ32ZO1RfznopL9e+jM3RE3m59qp6sn1DeYfjKYPV96mhnI0BqKf6vhF7M99feYfDyqIvs37DGRXcN5iVKvbta77QGNq/PysXU4Yqh8RwZq6ovh9quHr9ACIjThnvY4CI6vtGxkdXvrzVAnrHsxbjL/P1atvBJrt+dijo2gaZmZmZmZlNDu72vo7UAcc6SQtLZYslrZV0l6QBSZslXVKaf5SkNZK2pP9nlZ7rWklbJT0k6dRU/k5JG0vTXknvOVgrbGZmZmZm1ikaniGLiJB0EfBZSXdRnK++hmKcsD0RsUHS4cDXJK2JiEeAZcDaiFguaVn6+3JgITAvTW8BPgG8JSLuAk6GojFH0enHneO/qmZmZmZm1oncqUcDEbFJ0u0UjaoZwA0RcU9p/nOSBoC5FN3VLwLOSLOvB+5OsYtSbAD3STpS0pzU9f2o/wx8MSJ2H/CamZmZmZmZdbhW7yG7GtgADALzyzMkHQ+cAtyfimaPNrIiYrukY1L5XOCxUui2VFZukL0PGDuumZmZmZmZTWK+h6yJiNgF3AzcGBHPd/ckaSbwOeDSiHi2ydPU6q7s+S0vaQ7wM8AddZ9AWippvaT1Dz337VaqbmZmZmZm1rGq9ME5QqlvUEn9FI2xmyLi1tJyT6TG1Wgja0cq3wYcV1ruWODx0t+LgX+KiLr950bEyoiYHxHzTzr8dRWqbmZmZmZmnSra+K/TZA2KIEnAdcBARIy9xHAVsCQ9XgLcVio/P/W2uAB4Zsz9Y+8H/iGnPmZmZmZmZt0odxyy04HzgIclbUxlV0TEamA5cIukC4FHgXPT/NXAORS9KO4GLhh9snQf2nHAlzPrY2ZmZmZmXWrEvSw2FxFXlR6vo/Y9YUTEk8CZNcoDuLhOzPcoOvho2Y9isMriAAxmjMY+nDmCe07UnpG6V2s2NBjDlWOmqDcrV468LQhPDu2sHDPYO1Q5ZufIvuYL1TBN/dWDMn8COSzjZHZf3glwelTzrd1Qb+3DQVO7M/bDKZm51Ft94+dtQeil+nr1VN91ARjZWz2m/+nqxwyAKXuqx/VNy6ggMJK5PSr7j0H6jqge1jO9+msce/K2hfozDhzTpmXlIuP9T/+UzFwZ77DejOMuwP6M43xO/QB6MvaNvEx5dYy89VLu9siRsQ2zRfVvKcr5MO/tI4YzDmw9bdzuNmFyz5CZHVQ5jTEzs6pyGmNmZlVlNcYOMZ14b1e7NGx2p/u91klaWCpbLGmtpLskDUjaLOmS0vyjJK2RtCX9P6v0XNdK2irpIUmnlmL+V3qegbRM3k/gZmZmZmZmXaRhgyxdZngRsELSVEkzgGuAK4HLIuIEYAFwsaQTU9gyYG1EzAPWpr8BFgLz0rQU+ASApJ+juCftJOCngTcD7xi3NTQzMzMzs442EtG2qdM0vWQxIjZJuh24HJgB3BAR95TmPydpgOIesEeARcAZafb1wN0pdlGKDeA+SUembvEDmApMobgvrR94YlzWzszMzMzMrIO1eg/Z1cAGYBCYX56Rekg8Bbg/Fc0e7c4+IrZLOiaVzwUeK4VuA+ZGxL2S7gK2UzTI/jIiBqqvipmZmZmZdSPfQ9ZEROwCbgZujIjnuyqSNJNicOhLI+LZJk9T676wkPR64ASKgaLnAu+S9PaaTyAtlbRe0votO7/bStXNzMzMzMw6VpW+NEco9WAuqZ+iMXZTRNxaWu6JdCki6f8dqXwbxVhjo44FHgd+FbgvInZGxE7gixT3pb1ERKyMiPkRMX/ezNdWqLqZmZmZmVnnyRrcIPWCeB0wEBErxsxeBSxJj5cAt5XKz0+9LS4AnkmXNj4KvENSX2rkvQPwJYtmZmZmZoeIQ7lTj9zR5k4HzqO4vHBjms5J85YDZ0naApyV/gZYDXwH2Ap8EvhgKv9H4NvAw8DXga9HxO2Z9TIzMzMzM+saLQ8MHRFXlR6vo/Y9YUTEk8CZNcoDuLhG+TDw31qth5mZmZmZTS6HcqceLTfIOs0uqo94vj9Gmi80xjDVYwAi43TorpHBrFz7M+qYu145hnO2xfC+5gvV0KPqJ313Z+aKnurrtWdkSlau/eqtHHNYxrYAUFQfl72v9u8zLSSrHjKceWJ/p6rv830Z2wJgd0/1uGk9eevVP1L9ML5vsH2H/qE9edswRqrHZRzi6enLPMYPDVeO6duTd6zhsOrHDe3P+zyhr796TG6ujGNUDO/PS5Wxc8Rw9e8ZAOrNeH/1VD/GA3k7fe7Hf06uzM+hturN2Oepvh+qe79yWxs0fKek+73WSVpYKlssaa2kuyQNSNos6ZLS/KMkrZG0Jf0/q/Rc10raKukhSaeWYj4uaVOa3nswVtTMzMzMzDqT7yGrI11meBGwQtJUSTOAa4Argcsi4gSKHhEvlnRiClsGrI2IecDa9DfAQmBempYCnwCQ9IvAqcDJwFuA35N0xPitopmZmZmZWWdqev40IjZJuh24HJgB3BAR95TmPydpgGIMsUeARcAZafb1wN0pdlGKDeA+SUembvFPBL4cEUPAkKSvA2cDt4zPKpqZmZmZWSfzPWTNXQ1sAAaB+eUZko4HTgHuT0WzU3f2RMR2Scek8rnAY6XQbans68DHJK0ApgPvpGjYmZmZmZmZTWotNcgiYpekm4GdEfH8XcmSZlIMDn1pRDzb5Glq3aEdEXGnpDcDXwV+BNwLtXvskLSU4nJHTj7qJF478zWtVN/MzMzMzDpY5HQcM0lU6f5mhFLfPGkQ588BN0XEraXlnkiXIpL+35HKtwHHlZY7FngcICKuiYiTI+IsiobblloViIiVETE/Iua7MWZmZmZmZt0uqz9SSQKuAwYiYsWY2auAJenxEuC2Uvn5qbfFBcAz6ZLGXkkvT897EnAScGdOvczMzMzMrPuMEG2bOk3uoAinA+cBD0vamMquiIjVwHLgFkkXAo8C56b5q4FzgK3AbuCCVN4PfKVo4/Es8Bupgw8zMzMzM7NJreUGWURcVXq8jjpDukbEk8CZNcoDuLhG+V6KnhbNzMzMzOwQFB04Pli7dO2w4T8e3lM5ZjCGK8fkntYczrgxce/IYFau/SPV12tKT95Ln9Mlac62eHpwZ+UYgKGM13jn/ur7EsD0vqmVY/ozt3t/xtXFua9xT+3fWhrqzYgB2Kvqr9c0ZW5DVa+jMmIApmds+/7evFzQWzli2r4pWZn2D1XPNX1n3nFtZLj69oiRjJjMCzKk6sfCKc/szspFT8Z6TZ+WlSprL+zvz8pFf8Z+OLg3K1UMVj/OaySvg4HoqX68lrLuIMnqBEF9ee9/enOOvZmdNOR07tCbuR/myMmV8XkH5G0L6zoNjwDpfq91khaWyhZLWivpLkkDkjZLuqQ0/yhJayRtSf/PSuVvlHSvpH2SPjImz9mSvilpq6RlmJmZmZnZIeNQvoesYYMsXWZ4EbBC0lRJM4BrgCuByyLiBGABcLGk0csOlwFrI2IesDb9DfAU8CHgT8o5JPUCfwUspLh08f2l5zIzMzMzM5u0mp4jj4hNwO3A5cDHgBsi4p6I2JDmPwcMUAzyDLAIuD49vh54T1puR0Q8AOwfk+I0YGtEfCciBoHPpOcwMzMzMzOb1Fq9IPhqYAMwCMwvz5B0PHAKcH8qmh0R2wFSt/bHNHnuucBjpb+3AW9psV5mZmZmZtblDuVOPVq6izQidgE3AzdGxL7RckkzKQaHvjQins2sQ617iGu+IpKWSlovaf3ju7ZlpjMzMzMzM+sMVbr1GaHUXY6kforG2E0RcWtpuSckzUnLzAF2NHnebcBxpb+PBR6vtWBErIyI+REx/1Uzjq1QdTMzMzMz61QjEW2bOk1WP6sq+oK+DhiIiBVjZq8ClqTHS4DbmjzdA8A8Sa+VNAV4X3oOMzMzMzOzSS1v4As4HTgPeJekjWk6J81bDpwlaQtwVvobSa+UtA34MPD7krZJOiKKQWB+G7iDonOQWyJi8wGsk5mZmZmZdZFo479mWhmSKw0F9kgaAuzTpfJXS7ozDQ/2SOpvo6GWR/mLiKtKj9dRZ/zIiHgSOLNG+Q8pLkesFbMaWN1qXczMzMzMzMZbaUiusyhurXpA0qqIeKS0zDzgfwCnR8SPx3RieANwTUSsSf1tNB3dO2fY9Y6wc2Rf84XGGBwZqhzTSiu6lpzrU3cPV18ngKGM9Rrsad+I9iNRfXT63UN526JHNX8naGjX/r1ZuXLs65+eFTes3uoxI3n7bk/t31oa6s3Y7rmUmWs31fdDZWwLgL1Uf732ZK5Xf0/1uD1DeYf+GK6ea//e6tsCYHgk9wKOanr3Nf2crKmnt/r7K/ZX3wcBtL/6MZ7hvFwxlPE+ycxFZBzn9w/m5RrKiMs47gIwnPNdo32yc/W273uDsr6ejh1VqUXtWq+ezP0p7xDVlTqol8Xnh+QCkDQ6JNcjpWV+E/iriPgxFMN7pWVPBPoiYk0q39lKwvZ84pmZmZmZmXW+WkNyzR2zzBuAN0i6R9J9ks4ulT8t6VZJD0r643TGraGGDTIV1klaWCpbLGmtpLvStZGbJV1Smn+UpDWStqT/Z6XyN0q6V9I+SR8Zk+dTknZI2tSswmZmZmZmNrmMEG2bykNppWlpqSqtDMnVB8wDzgDeD/ytpCNT+duAjwBvBn4C+ECzdW/YIIvi3OFFwApJUyXNAK4BrgQui4gTgAXAxekUHcAyYG1EzAPWpr8BngI+BPxJjVR/B5xdo9zMzMzMzGzclIfSStPK0uxWhuTaBtwWEfsj4rvANykaaNuAByPiO6njws8DpzarT9NLFiNiE3A7cDnwMeCGiLgnIjak+c9R9I44eipvEXB9enw98J603I6IeIAaF/lGxL9RNNjMzMzMzOwQExFtm5poZUiuzwPvBJD0CopLFb+TYmdJOjot9y5efO9ZTa3eNXk1sAEYBOaXZ6SuHE8B7k9FsyNiO0BEbB/T64iZmZmZmVlHioghSaNDcvUCn4qIzZL+AFgfEavSvHdLegQYBn4v9TRPujVrbRq3+WvAJ5vlbKlBFhG7JN0M7Ix4oVuk1JXj54BLI+LZKiubI13fuRTgNS97PUdPn3OwU5qZmZmZ2UGW00P5wVJrSK6IuLL0OCjGVv5wjdg1wElV8lXpZXGEUuebkvopGmM3RcStpeWekDQnLTMH2FGlQo2Ur/d0Y8zMzMzMzLpdVrf36RTcdcBARKwYM3sVsCQ9XgLcll89MzMzMzOb7DroHrK2yx2H7HTgPOBdkjam6Zw0bzlwlqQtFCNcLweQ9EpJ2yhO7f2+pG2Sjkjz/gG4F/jJVH7hAayTmZmZmZlZV2h5KPSIuKr0eB21++gn3dB2Zo3yH1J0G1kr5v2t1mPUzqG9VUMYHBmqHBOZY9oPx3DlmN1D+5ovVCvXSPVh3Kf0Vt8WuYZGqm+L/p5ent676yDU5qV278/b7jl29lffb6HYHlX1NR+HsKae2m/thnqV99vOcE/199dw5nvysJ7c35+q26mWD63Pm5LxGueamfl6DWVs+j17puTlGm7P67V79xSmTx+sHCdV3xiH78w71qi/elzsycyV8z45bE9WLnoz9vnBvGMog9XrmPsbunqrv//JPT5lfP5ny/mOknmsydn2av0r7ZjA6t9RaOPxuq25bMJk7r1mB1e7GmNmdmjLaYyZmdn4G8n+GaT7NfzpQoV1khaWyhZLWivpLkkDkjZLuqQ0/yhJayRtSf/PSuVvlHSvpH2pO8jR5Y+r91xmZmZmZmaTWcMzZBERki4CPivpLoq++K8BPgDsiYgNkg4HviZpTUQ8AiwD1kbEcknL0t+XUwz8/CHSQNElQ8BldZ7LzMzMzMwmuU7sbKNdml7cGxGbgNspGlUfA26IiHsiYkOa/xwwAMxNIYuA69Pj60kNsIjYEREPAPvHPP/2Bs9lZmZmZmY2abV6D9nVwAZgEJhfniHpeOAU4P5UNDsitkPR2JJ0TKuVqfFcZmZmZmY2yXXSwNDt1lKDLCJ2SboZ2BkRz3ezI2kmxeDQl0bEswdSkVaeS9JSYCnAK2e+hiOntdzWMzMzMzMz6zhV+iMdSRMAkvopGlA3RcStpeWekDQnLTMH2NHsiRs814tExMqImB8R890YMzMzMzObHKKN/zpN1gARkgRcBwxExIoxs1cBS9LjJcBtB/BcZmZmZmZmk1buOGSnA+cBD0vamMquiIjVwHLgFkkXAo8C5wJIeiWwHjgCGJF0KXAicFKD5zIzMzMzs0nO95C1ICKuKj1eB6jOck8CZ9Yo/yFwbI2Qus9lZmZmZmY2meWeIZtwU3qqVz3nmtHc1nqvql8NOtQznJVrWCPNFxojZ/tB3ijqymhv9/X0Vo4BmNJbfb32tTFXf2auPlWP68+IASiuIq6mN+/qZ6Zk1LEv470F0JdRx56MbQHQm7PPZ/4wmPNO7s+8fj4nl5R5DO2pflxrZ57e/oy4vszfHqdkbPmezFy9GceNnBiAjGNoVky7c7VTT97xsOO1c70i472cc9jI/Pw/lHgcsjpUWCdpYalssaS1ku6SNCBps6RLSvOPkrRG0pb0/6xU/kZJ90raJ+kjpeWnSvp3SV9Pz3X1wVhRMzMzMzOzTtOwQRZFU/UiYEVqOM0ArgGuBC6LiBOABcDFkk5MYcuAtRExD1ib/gZ4CvgQ8Cdj0uwD3hURbwJOBs6WtODAV83MzMzMzLrBodzLYtPz8RGxSdLtwOXADOCGiLinNP85SQPAXOARYBFwRpp9PXA3cHlE7CtyVn0AABZASURBVAB2SPrFMc8fwM70Z3+aOm9LmZmZmZmZjbNWL5C+GtgADALzyzMkHQ+cAtyfimZHxHaAiNguqemAYZJ6ga8Brwf+KiLubxJiZmZmZmaThO8hayIidgE3AzdGxL7RckkzKQZ0vjQins2tREQMR8TJFL0wnibpp2stJ2mppPWS1j+5+4ncdGZmZmZmZh2hSjc2I5T6lZHUT9EYuykibi0t94SkOWmZOcCOVhNExNMUlzieXWf+yoiYHxHzXz59doWqm5mZmZmZdZ6sfkVV9It9HTAQESvGzF4FLEmPlwC3NXmuoyUdmR5PA34e+EZOvczMzMzMrPtERNumTpM7yMbpwHnAw5I2prIrImI1sBy4RdKFwKPAuQCSXgmsB44ARiRdCpwIzAGuT/eR9QC3RMQXclfIzMzMzMysW7TcIIuIq0qP10HtkU8j4kngzBrlP6S4R2yshyg6BTEzMzMzs0NQ5523aqN2nh5s0ynIpe2Kcy7ncq7OytXp9XMu53KuyZGr0+vnXM7lqbumCa/AuK8QrG9XnHM5l3N1Vq5Or59zOZdzTY5cnV4/53IuT901ZXXqYWZmZmZmZgfODTIzMzMzM7MJMhkbZCvbGOdczuVcnZWr0+vnXM7lXJMjV6fXz7mcy7qI0jWoZmZmZmZm1maT8QyZmZmZmZlZV3CDzMzMzMzMbIK0PDC0mZmZWTeT9DLgbGAuxTi0jwN3RMTTE1qxRNIrASLih5KOBt4GfDMiNld8nj+KiCsORh3bSdLbgSci4puS3gosAAYi4p8nuGpm42pSniGTdGWT+b8g6UJJx48p/3/rLC9JiyWdmx6fKelaSR+UVGkbSvpSk/mvGPP3b6RcSyWpQdyvSjoqPT5a0g2SHpZ0s6Rj68SskHR6lfqnuKMkXSnpv6bt8VFJX5D0x5JmNYh7p6S/lHSbpM9JWi7p9S3k+wVJn5C0KsV+QtLZVeudnsv7xkHaN3L3ixRbed+Q9EZJl6dt8Ofp8QlV6jzm+S5okutMSTPHlDfcDyWdJunN6fGJkj4s6ZyK9bqhyvIp5q0p17sbLPMWSUekx9MkXS3pdkkfV/GltV7chyQdV7E+UySdL+nn09+/nl7viyX1N4l9naSPpNf4TyVd1Kh+KWbcjhnp+eoeN6oeM9K8cTluNDtmpGUqHzdyjhlp2bYdNzKPGecDG4AzgOnADOCdwNfSvEokndVk/hGSXlej/KQ6y/834F7gPkm/BXwB+CXgVkkXNshz7ZjpL4APjv7d4rq8VtKvSXpjk+VeLWlqeixJF0j6C0m/Janmj/ySfmU0pgpJfwYsB26U9IfA/wKmAb8r6Y8bxM2U9J8l/a6k35F0divvK43jZ4oafJ6UclX6TNE4fJ5Y55qUnXpIejQiXl1n3h8Bb6U4KP8y8GcR8Rdp3oaIOLVGzP8BjgGmAM8ChwG3A+dQ/HJzSZ1cD40tAt4AfBMgIl5yUC7XQdLvU/w69mmKg/K2iPjdOrkeiYgT0+ObgfuAzwI/D/yXiHjJB4ekHwHfB44Gbgb+ISIerPX8Y+JWAw8DRwAnpMe3AGcBb4qIRTVilgOzgbXAe4DvAt8CPgj8UUR8tk6uP6PYZjcA21LxscD5wJZ6275B3b1vHKR9I2e/SHGV9w1JlwPvBz7Di/eL9wGfiYjljepapx419w1JHwIuBgaAk4FLIuK2NK/mfpHmfQxYSHElwhrgLcDdFNv9joi4pkbMqrFFFF8YvwQQEb9SJ9e/R8Rp6fFvpvr+E/Bu4PZa20PSZorXZUjSSmA38I/Aman81+rkegbYBXwb+AfgsxHxo1rLlmJuotgO04GngZnArSmXImJJnbgPUbwXv0zxntoI/Bj4VeCDEXF3jZhxPWak56y3b1Q+ZqR5lY8bOceMsfVo9biRc8xIy7bluHEAnyffBN4y9mxYavjdHxFvaFTXGs/X6PNkMfBnwA6gH/hARDyQ5tX7PHmY4jgxjWI7vj6dKZsF3BURJ9fJtY3i2HInxX4B8CfARwAi4voaMZ+PiPekx4tSXe8Gfg74nxHxd3VybQJOi4jdkj4OvA74PPCulOslP0RI2kNxzPgixTHjjogYrvX8Y+I2Az9NsT1+AMxNefuBByPip2vELAZ+D/g6xbHzqxQnH36GYt99uE6ucf1MabJvVP5Myfk8sS4z0SNT504UH2K1pueAoQZxDwN96fGRwGrgf6e/H6wXk/7vB54EpqS/+0bn1YlbBfw98EbgNcDxwGPp8WvqxDxYerwBmFHK3SjXN0uPvzZm3sZGuYB5wP8HbAa+AXwMeEODXBvT/wJ+0GKuh0uP+4B70uNZwKYGub5Vp1wUX668b3TIvpGzX+TuGxRfvvprlE+pt1+k+Q/VmR4G9jXYL2amx8cD6yk+QOvuF6W4XopGyLPAEal8GvBQnZgNab84A3hH+n97evyOBrnK+8YDwNHp8Yx6+wbFZT/P563wej1I8QXn3cB1wI+AfwGWAIfX2+6l1/cJoLe0r9TcFuVtmB5PB+5Oj19db9uTccxI8ysfN8g4ZpT3eSocN8g4ZtTYN1o6bpBxzCjn4iAfNziAzxPgZTXKX1Zv30jbvdZ0O7CrQa6NwJz0+LS0HX6t0b5B6X0IfL3e61gj7nCKBtWnKRotAN+pt3yN/eKrwGvT41eMzT0m7pHyvgH01KtzOVd6bX6TohH9BPDXNDimpbhN6f+pFD/ETEt/95brMSbmIWB6aV3uSI9PAr7aZN+o9JlCxufJ6P5Lxc8UMj5PPHXX1M2XLD4NzIuII8ZMh1N8gamnLyKGAKL4leyXgSMkfZbijVfL6PL7gQciYjD9PQTU/ZUnil+zP0cxTsSbIuJ7wP6I+H5EfL9O2DRJp0j6WYovIrtKuRv9onS3pD+QNC09Hv3l653AM/WqmJ57S0T8YUT8FLCY4uC3ukGunvSL3XHATKVLdSS9nPrbcETpEhjgVRQHFiLix7zwi14teyWdVqP8zcDeOjHeN16sXftGzn4BefvGSFp2rDlpXj2zKc6U/HKN6ck6Mb0RsTPV6XsUjaSFklY0qB8UX+KHI2I38O2IeDY9x54GdZxP8SXno8AzUZwB2hMRX46ILzfI1SNpVtrWinTGKu0jQ3ViNpUuq/m6pPkAkt4A7G+QKyJiJCLujIgLKV6H/0NxX853GtRvCsUXx+kUX4ChODPU8JJFXrjX+bAUT0Q82iAu55gBeceNnGMGZBw3Mo8ZkHfcyDlmQPuOG7mfJ9cAG1RcwnpFmv6aoqFa7wzD24C/Af60xrSzQa7eiNie6vXvFGdrPprOjkSD9Rrdr39xtFDF5X51v69FxHMRcWmq099L+kij5UfDSo/7IuK76bn+g8bH0MckvSs9/h7F6zb6ejWoYvw4Ij4ZEWcCbwIeAZZLeqxB3D9L+grwFeBvgVskfZTiTNu/1YkRsCc93kVxJpqIeIjiLGw9OZ8pOZ8nkPeZkvN5Yt1koluEuRPw/1OcNq817+MN4r5AjV9l0vON1In5IunXjDHlrwT+vYW6zgBWUPyqtq3JsneNmUZ/YXs5sL5BXD9wFfBomkYoftn9NPDqOjF1f3FrUsf3U/zC9QTw/wD/mqYfAEvrxLyX4hKMO1P9fjGVHw18ukGunwXupzh435mmgVT2s4fYvnF3J+8bdfaLNY32i9x9g+LL/9a0/Vem6V9S2dkNcl0HvLXOvHq5vgScPKasj+KSuOEGue7nhV9qy78iv4wxZ6RqxB5LcYnYXwKPtrDtv0fRGPpu+v+VqXwm9c8yvAz4O4pLD++naIR9h+LywDc1yNXol/ppdcp/Nz3394EPUfxK/kmKX30/1uD5LqH4xXklxRmGC0r7xr/ViTmViseMFFf5uEHGMSPNzz5uUOGYkZav/JlCxjGj2b7RIKbycYPMz5O0zCyKy9Auo7ik733ArCav1TvrzKu5D6Z5XwVeN6bs8LTv1zsb/2pqn6WZC/x8i9tTFJfD/X2T5YZ54QzwIC8cM6bQ+Kz1cWk/+jeKs4Q/pjhGPgicWXW/oMHZ3TT/PwEL0uPXpddsMaVj6pjlPw7cAVxB0ZC7IpUfBWxukKfyZwoZnydpXuXPFA7g88RTd0yT8h6yRtIvfkTxq8LYeXMj4gcVnmsGxeUfO1pc/k3Af4qIv241Rym2B5gaxa8jzZZ9GcUvXo1+oUHSzEi/0mTUp5fil/ghFTfynkxxuUndM1DpF82fALZGxR6tVPQ8NZfiw2ZbRPwwp95NcnTrvtELHNYJ+0bOfpHiKu8b6T1xGqX9guJsQ9N7E6pQ0YnBUK19TtLpEXFPnbjDImJfjfJXUHwprnkvw5hlfxE4PTJ7S5M0HZgd6dfvOsscTrHt+yjeW080ec43RMS3MuryKoCIeFzSkRT3PjwaxdmDRnE/RXFv0aaI+EaFfF11zEgxLR83DuSYkeJbOm60esxIy7btuHGAnyezKfWy2Gyfz5Fen90RsWVMeT+wOCJuGu/6jcd6pffmCRFxb5PlTqC4h7GPF469Nc/USDojatzvWaFOldZLRUcXJ1JcQrkmlfVQNHZfckwuxXXsZ8p4fJ5YZ+vaBlm6/GV/pBVIl1KcSnFd8RfHM865JjTXSVFcatCynBjnmpiYA4x7NfBsRDydLnOaT3FfVMPuoevEfSMiNo1njHNNXK4UN5/i1/whintAWmrM5cQ518Tkqhoj6WSKe5deRvFlWxRno5+m6CRmQ4PYg95IGlO/0cb8aP1+K+p0kNIkbsLXKzdmItarznNV/qHhAH6caFsu6zDRAafpciaKHnRmpce/R3F5wO9TXOqwPDPuf45XzEHKdSiu1zDFJQN/CJzY4r5ROca5uq5+yyguz/sG8F/T/9dRdCLw4fGMc66uy/UOipvk/5XicqovAPdQXPJ7XINcleOca2JyHUD9NlL0sji2fAH1O6Q4haKXyQFeuDz/G6ns1Aa5Tm4Qd8p41e8grVfN+rWwXjW3R07MAaxXVq5GEy1cNj4eMe3O5amzpgmvQHbFSz0ppQPzaO87fTS+/rlynHNNaK4HKbq9vYbiS/vXKb6kHT+eMc7VdfXbTNG71Msp7oEo9yrYqJe1ynHO1XW5Hiwt91rgn9Ljs4A7m+yHleKca2JyHUD9GvWyubVOeTsbSZXr1yXrlZurnev14TrTZcBT4xXT7lyeumfq5l4Wn5U0OgbFf1D04gTFF/xG65UT51wTlysiYlNEfDQiXk/Rbe4xwFckfXUcY5yru+o3HMV9O09T9Kj1ZHqiXQ3y5MY5V3fl6o0XxkV7lKJbeKK4l2TuOMc518Tkyq3fFyX9s6T3Svq5NL1X0j9TdOBQy4yIuH9sYUTcR/HDQD05cTn164b1ys3VzvX6I4oOXw4fM82k/neUnJh257Iu0c33kJ0E3EjxazrA6RS9g50ErIiIT49XnHNNaK4HI+KUGuUC3h41ugLPiXGurqvf31H0BjaDYkDjIYoP6HdRjIW1uE6uynHO1XW5PkVx38haYBFF5xAfVtHByYaIeGOdXJXjnGticuXWL8UuTDHljhtWRUTNbvklXUvRu98NFOO+QXHf2vnAdyPit8c5rlL9umG9cnO1eb2+CvxORHytxrzHIuK48Yhpdy7rHl3bIANQ0TPTu3lxTz93RJMel3LinGtickn69XqNtfGMca6JiTmAXH3AuRRfyv4ReAtF99mPAn8Vdc6g5MQ5V9fl6qc4y3oixQ9An4qIYRU9Ih4TdcbsyolzronJlVu/XO1qJLVbO9erndsis34/SXHp349qzJsdNToFyYlpdy7rHl3dIDMzMzNrhYou/P8HxZf1Y1LxDuA2is6lKnWfP95y69fp65Vrsq6XWS1de92ppJmS/kDSZknPSPqRpPskfWC845zLuZyra+q3JDNX3Tjn6tpcmzL3w5bjnGticuXWD7iFolfGd0bEyyPi5cA7Ke5R/GydXC+TtFzSgKQn0zSQyo5sUMecuMr164b1ys01Qev1jYz1ajmm3bmse3TtGTJJtwH/RNGl6WKKeww+Q9GV+g+izkCqOXHO5VzO1f31cy7ncq7JkesA6vfNiPjJKvMk3QF8Cbg+0kC+KgYd/wBwZkScVef5Ksfl1K9L1is3Vyes1xLg5yuuV92YdueyLhId0NVjzsSY7kspRlOH4qzfN8Yzzrmcy7m6v37O5VzONTlyHUD97gT+OzC7VDYbuBz41zox32zwfOM6L6d+XbJeuc83Wderbbk8dc/UtZcsArskvRVA0i8DTwFExAigcY5zLudyru6vn3M5l3NNjly59XsvxZh2X5b0lKSnKAaTPoriTFst35f03yXNHi2QNFvS5bzQi994xeXUrxvWKzfXZF2vduaybjHRLcLciaK79H+nuJZ4HfCGVH408KHxjHMu53Ku7q+fczmXc02OXLn1y5koxn76OPANiobfU8BAKjtqvOPaNbVzvdq5LbphvTp9G3qamKlr7yEzMzMzq0LSGym6Q78vSsMmSDo7IhoNvtwWufXr9PXKNVnXy2ysbr5ksS5JF7Qrzrmcy7kOToxzOZdzOdd4xkj6EEWX6b8DbJa0qDT7jxrEvVHSmZJmjCk/u0ldKsUdQP06er0OIGZSrle7c1mXmOhTdAdjAh5tV5xzOZdzdX/9nMu5nGty5GoUAzwMzEyPjwfWA5ekvx+sE/Mh4JvA54HvAYtK8zY0yFU5Lqd+XbJeubkm63q1LZen7pn66FKSHqo3i6IXnnGLcy7ncq7ur59zOZdzTY5cufUDeiNiJ0BEfE/SGcA/SnpNiq3lN4GfjYidko5Pyx8fEX/eICY3Lqd+3bBeubkm63q1M5d1ia5tkFEcdH+BYtDAMgFfHec453Iu5+r++jmXcznX5MiVW78fSjo5IjYCpC+3vwR8CviZOjHtbCTl1K8b1is312Rdr3bmsi7RzQ2yL1Ccyt44doaku8c5zrmcy7m6v37O5VzONTly5dZvBJhaLoiIIeB8SX9TJ6adjaSc+nXDeuXmmqzr1c5c1iW6uVOPVwE/qDUjIn59nOOcy7mcq/vr51zO5VyTI1du/VYCN0j6qKT+MXH31Imp2SiIiPOBtzfIlROXU7/cuHauV26uybpe7cxl3SI64Ea2nIliUMBvAR8F+g9mnHM5l3N1f/2cy7mca3Lkyq1fip1BMXbT14GPAB8enSZ6W+TUrxvWa7K+Xt2Qy1P3TF09DpmKrj+vBM4GbqT4BQGAiFgxnnHO5VzO1f31cy7ncq7JkesA6jcFWAb8OnDzmLirxzlXznpVrl+XrNdkfb06Ppd1h26+hwxgP7ALOAw4nNLOeRDinMu5nKv76+dczuVckyNX5RgV4zWtAFYBp0bE7hby5Navclxu/Tp9vXJjJut6TUAu6wYTfYoud6L4heARYDkw/WDGOZdzOVf318+5nMu5JkeuA6jfV4CfanX5CdgWlevXJes1WV+vjs/lqXumCa9AdsXbe+ByLudyri6vn3M5l3NNjly59cuZ2rkt2jl1+ms8mder07ehp4mZuvoeMjMzMzMzs27Wzd3em5mZmZmZdTU3yMzMzMzMzCaIG2RmZmZmZmYTxA0yMzMzMzOzCeIGmZmZmZmZ2QRxg8zMzMzMzGyC/F91IG84yAlWbAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "year_df = df.iloc[:,10:]\n", - "fig, ax = plt.subplots(figsize=(16,10))\n", - "sns.heatmap(year_df.corr(), ax=ax)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "43e1af94-ba07-4b95-8da3-1d774db940cd", - "_uuid": "70d2b0a7db9b8a5535b3c5b3c2eb927b904bf6d3" - }, - "source": [ - "So, we gather that a given year's production is more similar to its immediate previous and immediate following years." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "_cell_guid": "58cde27d-5ddc-4ebe-a8e1-80a8257f44c1", - "_uuid": "6f48b52c09ea6a207644044cace5a88c983bf316" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAJQCAYAAAANJJX4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8XHW9//HXd/bJvrRJuqS0oRtdwmIpKFoRFAHZpBWK/q5clwtevRcUBQpIwSIioCJcrwgKF9wo0IItm+ylgrIUaNOmewNt0mZr1klmn/P9/XFO0snapM3MZPk8H488kvnOmZkzLN95z/kuH6W1RgghhBBCiA62VJ+AEEIIIYQYXiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILiQgCiGEEEKILhypPoHhYty4cXrq1KmpPg0hRBK9//77B7XW41N9HkdL+i8hxp5E918SEC1Tp05lw4YNqT4NIUQSKaX2pvochoL0X0KMPYnuv2SIWQghhBBCdCEBUQghhBBCdCEBUQghhBBCdJGwgKiUelgpVaeU2hLXdrdSartSqkwp9bRSKifuvhuUUruVUjuUUl+Maz/batutlFoW1z5NKfWOUmqXUupxpZTLandbt3db909N1HsUQgghhBiNEnkF8RHg7G5tLwPztNalwE7gBgCl1BxgKTDXesxvlVJ2pZQd+F/gHGAOcJl1LMCdwD1a6xlAE/Atq/1bQJPWejpwj3WcEEIIIYQYoIQFRK31eqCxW9tLWuuodfNtYLL194XASq11SGv9EbAbWGj97NZaV2itw8BK4EKllALOAFZZj38UuCjuuR61/l4FnGkdL4QQQgghBiCVcxC/Cbxg/T0JqIy7r8pq66s9H2iOC5sd7V2ey7q/xTq+B6XUFUqpDUqpDfX19Uf9hoQQIlmk/xJCJFJKAqJS6iYgCvylo6mXw/QRtPf3XD0btX5Qa71Aa71g/PgRv1euEGIMkf5LCJFISd8oWyl1OXAecKbWuiO4VQHFcYdNBg5Yf/fWfhDIUUo5rKuE8cd3PFeVUsoBZNNtqFsIIYQQQvQtqVcQlVJnA9cDF2it/XF3rQWWWiuQpwEzgHeB94AZ1oplF+ZClrVWsHwdWGI9/nJgTdxzXW79vQR4LS6ICiFGqUjMQP5XF0KIoZHIbW4eA/4FzFJKVSmlvgX8BsgEXlZKbVRK/Q5Aa10OPAFsBf4OfE9rHbOuDv4X8CKwDXjCOhbMoHmNUmo35hzDh6z2h4B8q/0aoHNrHCHE6BSOGlQ3B5F8KIQQQyNhQ8xa68t6aX6ol7aO428Hbu+l/Xng+V7aKzBXOXdvDwJfGdTJCiFGrHDUoKYlSNQwUn0qQghxxMJRA5dj+NQvGT5nIoQQgxSKxqhuCUg4FEKMWFpr6lqDBCKxVJ9KFxIQhRAjUigao6YlSMyQcWUhxMiktabOF6ItFD38wUmW9FXMQghxtIIRMxwaMulQCDFCaa2pbQ3hDw+/cAgSEIUQI4yEQyHESGcYmlpfkEB4eA0rx5OAKIQYMSQcCiFGOsPQ1LQGCQ6zOYfdyRxEIcSIEAjHqJZwKIQYwWKGprqXcNjYHmbFM+XDarhZriAKIYatddvreGB9BXsb2ynI9LB0QTELS/JSfVpCCDFoMUNT3RIgHO2660JNS5BrV5WxvzlASyDC77++AKV6qxqcXHIFUQgxLK3bXsfyteXUtAZId9lpaAtx72u7eLei98qZ/9rTwCP//Di5JymEEAMQjRkcaO4ZDvc2tHPVyg/Z3xzA7bDx1VOmDItwCHIFUQgxTD2wvgK7DZx2G2jwOu0EIjFWvlfZ4yriS+U13PXiDgwNBVluziudmKKzFkKIrqIxg+qWIJFY13C4o8bH9avLaA1GSXfZ+Z+vnsgZswtTdJY9SUAUQgxLexvbSXfZIW7Kocdpo6Y10OW4Ve9X8dt1ewCYMyGLU6blJ/M0hRCiT5GYWempezjcWNnMj/+2BX84Ro7Xyc8Xz+cTxwyv6TMSEIUQw44vGKEgw0NDewiv097ZHowYFGV5AXMPsYff+pi/vLMPgNLJ2fzxmwvJSXOl5JyFECJeX2VA39p9kBXPbiUS0xRkurlrSSlT8tJSdJZ9kzmIQohhpTUYod4XYunJxUQNTSASQ2P+jhqapScXEzM0v351V2c4/NSx+dx58XyyPM4Un70QQvRdBvTlrbXcsracSEwzOdfLvUtPYEpeGkop3MOoDjPIFUQhxDDSEojQ0BYCYGFJHlczg5XvVVLTGqAoy8vSk4s58Zgcfvb8Nl7fUQ/AWXMKufaLs7DbhsfEbiHE2NZXGdCnP9zP/7y2G4DpBRncuXg+uWkubEpRmOXBEzdaMhxIQBRCDAst/ggN7aEubQtL8rosSAlEYtz09BY27G0CYPFJk/jP04/FNkxW/QkhxrbeNvPXWvPnt/fxf9YuC6WTs/npRfPIcDuw2xRF2R7cjuEVDkECohBiGGj2h2lsD/d7TGsgwo1Pb2ZrtQ+Ab316Kl9dOHy2hBBCjG29hUNDa+5ft4fVH+wH4NSSPG45bw5upx2n3UZRtsfcqWEYkoAohEippvYwTf7+w2G9L8T1q8v4uMGPAr7/+Rmcf7xsZSOEGB4C4Rg1rUF0XDiMGZpfvLSDF8trAThzdgHXnz0Lh92Gy2GjKMuDY5iGQ5CAKIRIocb2MM2HCYdVTX6uXVVGbWsIh01x47nHcfqs8Uk6QyGE6J8/HKW2NdQlHIajBtc8sYmt1a0A5Ke7OHN2AQ67DY/TTlGWB9swnzctAVEIkRINbSFaApF+j9lV62PZU5tp8kfwOG2suGAuC6YOr73ChBBjV3soSp2vazj0h6NcvXIje+rbAchNc+J12vif13fjddm56MRJI2JqzPC9timEGLUODiAcbqpq5ponNtHkj5DlcfDLrxwv4VAIMWy0haLUdhtWbglE+NGTZZ3hcFyGi/EZbtJcDlwOG09sqBoR4RDkCqIQIsnqfSF8wf7D4T/3HGTFs9sIRw3GZbi4a0kpU/PTk3SGQgjRP5+1X2u8g20hrltlzpUGKMh0keM1N+632xSZDgdVTf6kn+uRkoAohEiagYTD+LrKk3O93LWklKIsT5LOUAgh+he/X2uH/c0Brn2yjJrWIA6bYnKOl5h1ZdFht2G3KfzhKJNzh1/FlL5IQBRCJEWdL0hbMNrvMU++X8X9Vl3l+I1khRBiOOhtv9aK+jauW72ZxvYwHoeNn1w4F23Ava/tIhIzcDls+MNRIjHNlYtKUnTmgycBUQiRUFpr6n0h2kJ9h8PudZWPtzaSTXdLFyWEGB56269164FWbnh6M75glAy3g599eR7zJmVjU4rcdCeP/HMvVU1+JuemceWiEk6fXZCisx886X2FEAmjtabOF6K9n3AYMzT3vbqLZ8qqATjt2HxuPm8OrkHWJVVKMULmfgshRpjetuR6f28TN6/ZQjBikJvm5K4lpRw7PgO7zSydN3VcOl+cNyFFZ3z0JCAKIRJCa01tawh/uO9wGIkZ3PH8dtbtNOsqf3FuIT86a/B1lTs65JGyOlAIMXL0tiXX+l313P7cNiIxTVGWh7uXlDIp14vTbqMwyzPoL7jDkQREIcSQG0g4DIRj3LK2vLOu8lc+MZkrP1sy6LrKw71clRBi5DrYFqK1Wzh8YXM1v3x5J4aGY/LTuGtxKeMz3SOiOspgSEAUQgwprTU1rUEC4Vifx7RYdZW3WXWVv/3paVy2sHjQVwC9LjuFmcO/IoEQYuTpbdeFJzdUcv8bFQDMKsrk5xfPJ9vrHDHVUQYjYTFXKfWwUqpOKbUlri1PKfWyUmqX9TvXaldKqfuUUruVUmVKqZPiHnO5dfwupdTlce2fUEptth5zn7I+Wfp6DSFE4hmGprql/3BY7wvx/cc3sq3ahwKu+cIMvnrKlEGHw0yPc9R1yEKI1NNaU9ca7BIOtdY89OZHneHwhOIcfvmVUrK9TtLdDiZkj76+KJHXQR8Bzu7Wtgx4VWs9A3jVug1wDjDD+rkCuB/MsAfcApwCLARuiQt891vHdjzu7MO8hhAigQxDU90aJBjpOxxWNvq5auWH7G3w47Aplp8/h/NKJw76tfLT3YzPdMucQyHEkOpYWBe/64KhNfe9urtzl4XTjs3n5xfPJ83lIMPjGLXznxMWELXW64HGbs0XAo9afz8KXBTX/kdtehvIUUpNAL4IvKy1btRaNwEvA2db92Vprf+lzRo3f+z2XL29hhAiQWJWOAz1Ew531fq4euVGaltDeJw2fvbleXx25vhBvY5S5mKU7DTn0Z6yEEJ00TF3On7Xhai1kG7NpgMAnDWnkFsvmIvLYSMnzUVB5ujdxD/ZcxALtdbVAFrraqVUx4ZAk4DKuOOqrLb+2qt6ae/vNYQQCRAzNNUtAcJRo89jNlU2c9PftuAPx8jyOLjj4vkcNyFrUK/jsNkoyHLjcdqP9pSFEKKL3uZOhyIxfvLsVt6uMK91XXziJL77uWOxKUV+unvUf1EdLotUers2q4+gfXAvqtQVmMPUTJkyZbAPF2LMG0g4fGv3QVY8u5VITDMuw8XdS0o5ZpB1lUfb6sChIP2XEEPDMMxwGD89pj0U5cd/28KmqhYAvv7JY7j8k8dgs9kYl+Ei0zO6wyEkdg5ib2qt4WGs33VWexVQHHfcZODAYdon99Le32v0oLV+UGu9QGu9YPz4wQ11CTHWRWMGB5r7D4cvltdwy9pyIjHN5Fwv91124qDDYZrLwcRsr4TDbqT/EuLo9TZ3utkf5ponNnWGw+997lj+/VNTsdtsFGa5x0Q4hOQHxLVAx0rky4E1ce1ft1Yznwq0WMPELwJnKaVyrcUpZwEvWvf5lFKnWquXv97tuXp7DSHEEInGDKpbgkRifYfDJzdUcuffd2BomFGQwb1LT6Aoa3DzdbK8TopG4epAIUTqxQzNgZZAl7nTda1Brl65kV11bdgULDt7FotPmozdpijK9pDmGi4Dr4mXsHeqlHoMOB0Yp5SqwlyN/HPgCaXUt4B9wFesw58HzgV2A37gGwBa60al1G3Ae9ZxK7TWHQtf/hNzpbQXeMH6oZ/XEEIMgUjMoKafcNixHcRf3zWnD59QnM1tFw6+rvJYmOMjhEiN3qbHVDb6uXZVGXW+EE67Yvl5czht+jgcNnMz/tFQHWUwEhYQtdaX9XHXmb0cq4Hv9fE8DwMP99K+AZjXS3tDb68hhDh6kZhBdXOQqNF7OIwZmntf3cWzR1FX2aYU4zPdgw6UQggxEL2NgOyq9XH96s00ByJ4nXZ+etFcTpySi9NuY0L22Jz/LD2wEGJAwlHzymFf4TAcNfjZC9tYv/MgAGfPLeKHZ80cVF1lh81GYbYbt0NWKgshhl5vIyCbq1q48enNtFu7LPx88XxmF2XhtqqjDLY2/GghAVEIcVjhqEF1S4CY0ftmAYFwjOVry3nfqqt8yYLJXLmoZFCbx8pKZSFEIvU2AvJ2RQM/eWYroahBfoaLuxaXMm1cOmkuB4VZY3szfgmIQoh+haIxalqCfYbDlkCEG57azPaaQ3WVv3rK4LZdSXM5KMh0y2IUIURC9DYC8vr2On72wnZihmZijodfLDmeomwPGR4H4zPGdjgECYhCiH4EIzFqW/sOh/W+ENetLmNvgx+bgu9/fibnlU4Y1GtkeZ2My3APxekKIUQPvX3JfWbTAX79yi40UDI+nbsWl5KX7iLb6yRf+iNAAqIQog/BiNmpGrr3cFjZ6Oe61WXUtpor/m469zgWDbJ0Xn6Gm2yvrFQWQiRGb19yH3t3H7//x0cAzJmQxR0XzyPT45SdE7qRgCiE6OFw4XBnrY9l1oo/j9PGbRfO4xPH5A74+W1KUZDlHlN7igkhkqt7P6a15vf/+IiV75lbcC04JpefXDiXNJdjzFRHGQzpnYUQXQTC5jfuvsJh97rKHSv+BkpWKgshEq17PxYzNL9+ZRfPbTa34Fo0cxw3nnMcbqedQvmy2iv5JyKE6BQIx6hpDaL7CIfxdZXHZ7i5a8n8QZXOczvtFGa6ZaWyECJh/OEota2hzn4sHDW444XtvLGzHoBz5xfxg8/PxOWwUZjlweOUL6u9kYAohAB6dqrd/X1LDb94ySydV5zr5a4lpRQOonReuttcqTzWVwYKIRKnPRSlzneoHwtEYty6tpz3Pja34Lp0wWSuWFSC024fk9VRBkMCohCiR6fa3ZMbKrn/jQoAZhZm8POL55OT5hrw88vKQCFEorWFotTH9WO+YIQbn95C+YFW4NAWXE67WTrPKSMZ/ZKAKMQY171TjdezrnIOt104d8Bl8JRS5Ge4yJLJ30KIBPIFI9T7Qp23G9vDXLe6jIr6dhRw1ZkzuPCEiWO+OspgSEAUYgxrC0Wpaw32el/3Sd2nTc/n5i8NvK6yTSkKszx4XTK/RwiROK3BCAfjwmFNS5BrV5WxvzmA3aZYdvZszjyuAK/LTmGmRzbkHyAJiEKMUd2/ccfrXlf5nHlFXPOFgddVdtrNyd8yv0cIkUgtgQgNbYf6sb0N7Vy7qoyDbWFcDhu3nj+HU0vyyXA7GC9zoAdFAqIQY1D3b9zxAuEYy9ds4f19zcDg6yrLEI4QIhma/WEa28Odt7fXtLJs9WZag1HSXXZu//I8SifnyBzoIyQBUYgxpvs37u73xddVvuIz01i6cOB1leVbuhAiGZrawzT5D4XDjZXN3PT0FgKRGDleJ3cuns+Mwkzy0l2DWlAnDpGAKMQY0uKP0NDeezis94W4blUZexvNusrXfGEm584feF3lnDQXeenSEQshEquxPUxzXDiM35+1INPNXUtKmZKXxrhMtyyQOwoSEIUYI7oPx8Tb1+jnulVl1PkGX1dZVioLIZLlYFuI1kCk8/bLW2u58+/bMTRMzvVy95JSirK9FGS6B7zbguid/NMTYgzoPhwTL76ustdp57aL5nLSlIHVVZaVykKIZKn3hfAFD4XDpz7Yz29e3w3A9IIM7lw8n/x0N0XZUh1lKEhAFGKU6z4cE29jZTM/PsK6yrJSWQiRLHW+IG3BKGDuz/qnt/fyyD/3AjB/Uha3f3k+OV6X1HkfQhIQhRjFGtpCtMQNx8R7c9dBbnvuUF3lu5eUMiU/bUDPKyuVhRDJoLWm3heiLWSGQ0NrfrtuD099sB+AU6blccv5c8j0OKU6yhCTgCjEKNV9rk68F7bU8MsjrKssK5WFEMmgtabOF6LdCocxQ/OLl3bwYnktAGfMLmDZ2bNI9zjlC2sCSEAUYhTqPlcn3hMbKvmdVVd5VmEmd1w8b8DbQMhKZSFEMmitqW0N4Q+b4TAcNbjtua28tbsBgAuOn8hVZ04n3e2Q6igJIgFRiFEmfq5OPK01f3jzIx6z6iqfOMWsq5zmOnw3oJRiXIaLTFmpLIRIMMPQ1PqCBMIxAPzhKMvXlPOBtXn/106ZwjdPm0qmxymjGQkkAVGIUaSvcNi9rvJnZozjpnOPG9ACE7vNXKksqwKFEIlmGJqa1iDBiBkOu2/e/53PlnDJgmKyvE7GSXWUhJKAKMQo0H0id7xw1OBnz29j/S6zrvK584r4wQDrKstKZSFEssSscBiywuHBNnPz/o8bum7en5vmIlemuiScBEQhRph12+t4YH0FlU1+inPTuOIz05gzKbtzIne87kMzS08u5j8+M21AQzIep51CmfgthEiCmKGpbgkQjhoA7G8OcN2qMqpbgjhsipu+dByfnTleqqMkkVwWEGIEWbe9juVry6nzBcnxOqltDXDTmi28vq2ux7Et/gg/fKKsMxxe8ZlpXLGoZEDhMMPjYEK2hEMhROJFYwYHmg+Fw4r6Nq5euZHqliAeh43bvzyP02cVUJjlkXCYRCkJiEqpHyilypVSW5RSjymlPEqpaUqpd5RSu5RSjyulXNaxbuv2buv+qXHPc4PVvkMp9cW49rOttt1KqWXJf4dCJMYD6ytw2lXnwhKXw45dKVa+V9nluLrWIFc/vpEdtT5sCn501kyWLpwyoNfITXNRkOmRid9CiISLxgyqW4JEYmY43HqglR88sYnG9jAZbgd3f6WUU6blU5TlkdJ5SZb0gKiUmgRcBSzQWs8D7MBS4E7gHq31DKAJ+Jb1kG8BTVrr6cA91nEopeZYj5sLnA38VillV0rZgf8FzgHmAJdZxwox4lU2+fE67WitiRoaw9B4nDZqWgOdx+xr9HPVyo3sa/TjtCtuOX8u586fcNjnVkpRkOWRuT1CiKSIdAuHGz5u5EdPbsIXjJKb5uSeS4+ndHIOE3KknGcqpGqI2QF4lVIOIA2oBs4AVln3PwpcZP19oXUb6/4zlXlp40JgpdY6pLX+CNgNLLR+dmutK7TWYWCldawQI15xbhr+cJRIzAyHAMGIQVGWFzDrKl+9ciN1vhBep507Lp7PZ2aMO+zz2m2KCdkeMuQbuhAiCcJRg+rmQ+Fw/c56bnx6C8GoQVGWh/uWnsjsoiwm5nildF6KJD0gaq33A78A9mEGwxbgfaBZa90xy74KmGT9PQmotB4btY7Pj2/v9pi+2oUY8f7jM9MIRgz84SgaTSASI2polp5czIf7mvjB45toCUTI9jr51SXHc9KU3MM+p9NuY2KOV7axEUIkRThqUNMSJGqY4fCFzdWseHYrUUNzTH4a9y49gWnj05mY45XSeSmUiiHmXMwretOAiUA65nBwd7rjIX3cN9j23s7lCqXUBqXUhvr6+sOduhApFTM0syZkcdUZM8hPd+MLRslPd3P1GTMIxQyWPbWZQCRGQaabey89gVlFmYd9Tq/LLp3wCCX9lxiJQtEY1S2BznD45IZK7n5pJ4aG2UWZ/PrSE5iSn8bEbK8skkuxVIwnfR74SGtdD6CUegr4FJCjlHJYVwknAwes46uAYqDKGpLOBhrj2jvEP6av9i601g8CDwIsWLCg1xApxHAQvwXEwpI8Fpbkdd4XX1d5Sl4ady2eT8EA6ipneByMz5AqBCOV9F9ipAlGYtS0BDG0RmvNw299zF/e2Qccquw0PtNDgVRHGRZScdlgH3CqUirNmkt4JrAVeB1YYh1zObDG+nutdRvr/te01tpqX2qtcp4GzADeBd4DZlirol2YC1nWJuF9CZEQMUN32QIi3sr3Krn7RTMczirM5N5LTxhQOMxLl5XKQojkiQ+Hhtbc9+ruznB42rH53PHl+RRmeSnMkn5puEj6FUSt9TtKqVXAB0AU+BDzW/BzwEql1E+ttoeshzwE/EkptRvzyuFS63nKlVJPYIbLKPA9rXUMQCn1X8CLmCukH9Zalyfr/QkxlLpvAdFBa83v//FR5/Y2J03JYcUA6iorpRif6ZbFKEKIpAmEY9S0BtFa86/dDfzipR00BSKA2XfdesFcxmW4ZQeFYSYlnxJa61uAW7o1V2CuQO5+bBD4Sh/Pcztwey/tzwPPH/2ZCpE6fYXDmKG55+WdPL+lBhh4XWWpqSyESDZ/OEptawitNW/uPMjtL2wjZI2GZLjtHGgOsLPGx4zjDz9nWiSXzEwXYhjqvj9Yh3DUYMWzWzvD4bnzi1h+3pzDhkNZqSyESLb20KFw2BaKcueL2zvDYX66iwnZHrxOO3+2hprF8CLjTEIMM5GYuT9Yxyq/Dv5wlJvXlPPhIOsqe112CjM92GRFoBAiSdpCUep9Zjhs9oe5fvVm2sMxAMZnuMhNd+G02XA7oKrJn+KzFb2RgCjEMNJ9f7AOLf4Iy57azI5aHwBXLCph6cnFvT1FF5keJ+MyXDLpWwiRNL5ghHpfCDDLfl63ejP7Gs0QmJfmNMOh3YZNKfzhKJNz01J5uqIPEhCFSIF12+t4YH0FlU1+inPTuHJRCZ+cnk9NS5CY0XXHkrrWINeuKqOyKYBNwQ+/MJNzBlA6Lz/dTXaaFLYXQiRPazDCQSscVjb6uXZVGXW+EE67YumCKby6vZZozMBlt3GwLUhje4Rmf5jLHnybKxeVcPrsghS/A9FB5iAKkWTrttexfG05db4gOV4ndb4gN6/ZwpoP9vcIh/sazLrKlU2BzrrKhwuHSpmLUSQcCiGSqcV/KBzu6lb28+cXz+fK00u47cJ5FGZ5qWk1w2FumpMJ2V7qfEGWry1n3fa6FL8L0UECohBJ9sD6Cpx2RZrLgVIKj9OOUvDXdyu7HLejxsfVj5sdbJrL7GAPV1fZYbMxIdtDumxjI4RIomZ/mIZ2MxyWVTVzzRObaA5EyPI4+OUlpXzy2HFMzPZy5pxCHrviVGYUZDI518t4az/WNJcDp13xwPqKFL8T0UE+RYRIssomPzle8+qeoTWRmIHbYaOmNdB5zAf7mrj5b+UEIjGyvU7uXDyfmYX9bwPhctgoyvLgkLJ5QogkamwP0+wPA/B2RQO3PrOVcNRgXIaLu5aUMndido/qKPH9YAev0y4LVoYRCYhCJFlxbhp1viAep93cxkZDMGJQlOUFYP2uem5/bhuRmKYg081dS0qZktf/JO40l4OCTLesVBZCJFVDW4gWa9Pr17bXcccL24kZmkk5Xu5eUsqMwkzGZ7p7PK6jH4zf3D8QicmClWFELjUIkWRXLiohFDXwBSNorQlEYkQNzdKTi3l+czUrntlKJKaZkpfGfUtPOGw4zPI6KcqWbWyEEMl1MC4crt10gNuf20bM0JSMT+fepScwe0JWr+EQzH4wEtP4w1G0Nn9HYporF5Uk8y2IfkhAFCLJTinJ578+N528NDe+YJT8dDdXnzGDioNt/OKlnWZd5aKB1VXOT3czLqP3DlgIIRKl3heiNWB+yf3rO/v49Su70MCcCVncc8nxzCjIJK+f0nmnzy5gxQVzKcj00BKIUJDpYcUFc2UV8zAiQ8xCJFFH2amF0/JYOC0PMOsqP7i+gsc3VAEDq6tss2oqy2IUIUSy1fmCtAWjPfquk6fm8pML5jElP21A9d5Pn10ggXAYk08XIZKkPRSlzqos0CFmaH718k5esErnLZoxjhsPU1fZYbNRmO3G7ZCyeUKI5NFaU+cL0R6KmjXhX9nJ85utvmvmOG7+0hwm5Xr7/XIrRg75tyhEEsSXneoQjhozQO4uAAAgAElEQVT89LltvLn7IABfmj+B739+BvZ+5hLKSmUhRCporaltDeEPRwlHDe54YTtv7KwHzJrwPzprltR7H2UkIAqRYPFlpzq0h8y6yhsrzbrKly0s5tuf7r+usqxUFkKkgtaamtYggXCMQCTGLWvK2bC3CYBLF0zmu6dPZ0KOt9+RDzHySEAUIoF6C4fN/jDLntrMzto2AL7z2RIuWdB/XeUsr1MWowghks4wzHAYjMTwBSPc8NQWtla3AvDtT0/j8k9NZUK2jGqMRhIQhUiQ+JqkHWqtuspVHXWVz5rFOfOK+n2e/Aw32V4pmyeESC7D0FS3BglFYjS2h7ludRkV9e0o4OrPz+CSBcUUZnn6nRYjRi4JiEIkQEsgQkNb13C4t6Gd61Ztpr7NLFx/85fm8Ol+SufZlKIgyy0TvoUQSRczNNUtAcJRg5oW84vt/uYAdpvihnNmc17pRAqz3P1OixEjm3zyCDHEWvyRzpqkHbbXtLJs9WZag1HSXHZuu3AuJ07J7fM5ZKWyECJVXttay29e383+lgC5XhcHWgK0BqO4HDZuPX8On59TSHlVCz94/CMqm/wU56Zx5aIS2bJmlJGAKMQQavaHaWwPd2n7YG8TP16zhWDEGFBdZbfTTmGmW+b0CCGS7tWttdy8Zgt2m8JlV+ys82FocDts3Ll4Pp+ZMZ7NVS3c8sxWnHZFjtdJnS/I8rXlrAAJiaOIfAIJMUSa2nuGw/W76rnh6c0EIwYFmW7uXXpCv+Ew3e1gokz4FkKkQDRm8JvXd2O3KbTWVDUHMTTYFByTl8bnZhWSn+HmgfUVOO2KNJcDpczfTrvigfUVqX4LYgjJFUQhBmnd9joeWF/RZWiltDiHZn/XcPhcWTX3vGKWzjsmL407F8/vt3RettdJvqxUFkKkQCRmUN0c5ECLuYCupiWEBhw2xaQcD+3hKNlp5mK5yiY/Od0Wznmddqqa/Ck4c5EocplCiEFYt72O5WvLqfMFO4dWbvrbFl6yKqF0eOzdffzy5UN1lX/dT11lpRT5GW4Jh0KIlAhHzXAYNQzcdjvVVjh02hXFeV5sNsWUvPTO44tz0whEYl2eIxCJMTk3LclnLhJJAqIQg9B9aMVlt2FTsPK9SsDcUPZ3b+zh9//4CACXXeGy2dhR4+v1+WxKUZgl29gIIVIjFI1R3RIgahg89UEV+6yrgE676gx8MQOuXFTS+ZgrF5UQiWn8YbMesz8cJRLTXY4RI58ERCEGobLJj9cqJRWJGcQMjcdpo6Y1QMzQ3P3iTp6wCtd7nTaK87w0B8Lc+9ou3q1o7PJcDpuNCTke2cZGCJESwUiMmpYg0ZjBo//8mN+8vgeAafnpHFeURSQaoyjLy4oL5nZZfHL67AJWXDCXgkwPLYEIBZmeHseIke+IPpmUUsu11iuG+mSEGO6Kc9Oo8wVx2m0YhllX2VyA4uHWZ8p5a3cDAOkuOxOzPSil8DrN4ZeV71WysCQPMFcqF8kGsyKOMjeU+wqggVXAGcCFwHbgd1prI4WnJ0aZznBoGPx23R6e+mA/AKeW5PHTC+cxdVx6v4vlTp9dIIFwlDvSK4jfHtKzEGKEuHJRCcGIQXsoikYTiMQIxwzaQtHOcJjmsjMhu+sGsh1XGeHQSmUJh6Kb/wUuAf4N+BPwHWADsAi4J4XnJUaZQNgMh5GYwd0v7ugMh2fOLuDOxaVMG58hOymIvq8gKqVa+7oL8CbmdIQYvrTWzJmYxX9/bjor36ukpjVAfrqb5kCYioPtgFlX+e09jTS0h4ifVhiMGBRleclJc5GX7krROxDD3Ge01vOVUk6gBpigtQ4rpf4KfJjicxOjRCAco8Yqn3fbc1s7v9heePxErj9nNkVZHmzy5VXQ/xBzM3Cy1rq2+x1KqcrEnZIQw4/WmjpfiPZQlIUleSwsyaOmNch1q8rY3xzEpuBHZ83i7HlFTM1L597XdhGIxPA4bQQjBlFDc8WiaRIORX+iAFrriFLqPa112LodVUrF+n+oEIfXHopa/ViEm9eU8+G+ZgC+dsoUrjpzOgWZHimdJzr1dw35j8Axfdz316N5UaVUjlJqlVJqu1Jqm1Lqk0qpPKXUy0qpXdbvXOtYpZS6Tym1WylVppQ6Ke55LreO36WUujyu/RNKqc3WY+5T8l+8OApaa2pbzXDYYW9DO1c/tpGqpgBOu+InF8zl7HlFACwsyePqM2aQn+7GF4ySn+Hm1vPncG7pxFS9BTEy1CilMgC01md3NCqlioBwn48SYgDarHDY7A/zoyfLOsPhdz5bwjVfmElhllfCoeiizyuIWusf93Pf9Uf5uvcCf9daL1FKuYA04EbgVa31z5VSy4BlwPXAOcAM6+cU4H7gFKVUHnALsABzUvf7Sqm1Wusm65grgLeB54GzgReO8pzFGKS1pqY1SCB86ALOtupWbnjqUF3ln140jxOKc7o8ruMqo9NuozDLg8uRmPk8vW3aLRPHRyat9Tl93OUDzkvmuYjRxReMUO8LcbAtxHWryvi4wY9NwQ+/MJOvnXoMOWkysiF66vNTSynlir/yppT6nFLqh0qpvjqxAVFKZWFOun4IQGsd1lo3Y67We9Q67FHgIuvvC4E/atPbQI5SagLwReBlrXWjFQpfBs627svSWv9La60xr4R2PJcQA2YYPcPhB3ub+OGTm2gNRsnxOvnVJcf3CIcd3E47E3O8CQ2H3TftXr62nHXb6xLyeiKx+upzgUVaa/mXKo5IqxUO9zcHuOqxjXzc4MdhU9x83hz+7VNTJRyKPvX3yfUekAOglLoWuB1zcco1SqmfH8VrlgD1wP8ppT5USv1BKZUOFGqtqwGs3x2XQSYB8XMeq6y2/tqremnvQSl1hVJqg1JqQ319/VG8JTHa9BYO39h5qK5yYVb/dZUzkrBSWeqhjjr99bl3dD9Y+i9xOC2BCAd9ISrq27h65UZqWoN4HDbuuHg+l55cTJZHNugXfesvINqtK3MAlwJnaq1/ijnke+5RvKYDOAm4X2t9ItCOOZzcl94+YfURtPds1PpBrfUCrfWC8ePH93/WYswwDE11a5BgXCmpZ8uqWfHMViIxzTH5ady39ESK83ovK5WT5qIgK/GTveM37e4g9VBHtP763C91P1j6L9GfFn+EhrYQ5Qda+P7jm2hsD5PhdvDN06by5IYqzrpnPZc9+LaMOIg+9RcQW5VS86y/DwIdhWQdh3nc4VQBVVrrd6zbqzADY601PIz1uy7u+OK4x08GDhymfXIv7UIcVszQHGgJELLCodaav76zj1+9vBMNHDfBrKs8PrNn3WSlFOMz3UlbqSz1UEedRPW5Yoxpag/T0B7ivY8bufbJMtpCUfLSXfzHZ6bxTFk1De0hmZYiDqu/Tuc7wF+UUn/EDGsblFIPA28CPzvSF9Ra1wCVSqlZVtOZwFZgLdCxEvlyYI3191rg69Zq5lOBFmsI+kXgLKVUrrXi+SzgRes+n1LqVGs+z9fjnkuIPsUMTXVLgHDULFhh1lWu4A9vmnWVP3FMLr9YcnyvdZPtNkVRlofMJA7ZSD3UUSchfa4YWxrbwzT5w7yxs56bnt5CMGowIdvDb796Ev/c04DLYZNpKWJA+lvF3LGlzFnATGAT5tW5a6xFJUfjvzE7QhdQAXwDM6w+oZT6FrAPs+QUmKuQzwV2A37rWLTWjUqp2zDn7QCs0Fp3FLv9T+ARzPk7LyArmMVhRGMG1VZlATDD4i9e2sGL5eY2oJ+dOZ4bzpnd64KTRK9U7svpswtYgTkXsarJz2RZxTyiJbjPFWNAQ1uIlkCE5zdX86uXd2JoOCY/jXuXnsj8Sdnsbw6Q0+0LrkxLEX3ptxaz1jpGAgKW1noj5vY03Z3Zy7Ea+F4fz/Mw8HAv7RuAeT0fIURP3cNhOGpw27NbeWuPWWHgvNIJXH3mjF4XnHicdgpTWFNZ6qGOLonqc8XoV+8L4QtGeGJDJb97w7wiOKsok3svNRfT2Wyqs5Z8muvQR79MSxF96W+bmwyl1AqlVLlSqkUpVa+Uelsp9e9JPD8hEqp7OGwPRbl+dVlnOPzaKVP4wed7D4cZHgcTpKayGCLS54ojVecL0hoI89CbH3WGwxOn5PC7r53ErKLMztJ5Mi1FDEZ/VxD/AjyNud/gJUA6sBL4sVJqptb6xiScnxAJE4kZnQXrAZr8YZat3syuujYA/vOzJXxlQXGvj81Nc5ErZfPE0JI+VwyK1pp6X4jWYIT/eXU3azaZ6zFPm57PXUtKmZTT9cqgTEsRg6HMEdxe7lBqk9b6+Ljb72mtT1ZK2YCtWuvZyTrJZFiwYIHesGFDqk9DJEk4aobDqGGGw466ylVNAWwKrvviLM6aW9TjcUopxmW4kroYRSSOUup9rXVv012S7mj6XOm/xp6O+vAt/jB3/n0Hr1orkb84t5DbvzyPcRmewzyDGOkS3X/1N6u+XSn1aeskzgcaAbTWBr3vNSjEiNA9HH7c0M5Vj33Ypa5yb+HQblNMyE7uSmUxpkifKwakoz58Y1uI5WvLO8Ph4pMmcefiUgmHYkj0N8T8HeAPSqmZwBbgmwBKqfHA/ybh3MQolqoawqFojJqWIDHDvHIeX1c53aqrfHwvpfOcdhtF2R6cdtmOTiSM9LnisAxDU+sLUu8L8eO/baGsqgWAb5w2lR9+YSYZ8gVWDJF+t7kBFvbSXg/cl8iTEqNbRw1hp1112ax1BSQ0JHYPhxs+bmT52nKCEYPcNCc/v3g+M3opnZfqlcpibJA+VxxORwnQ6pYA16/ezG5rvvRVZ0znu5+bjqdbZSUhjsYRXQ5RSn1jqE9EjB2pqCEcjHQNh2/srOfGp7d0qavcWziUlcpiOJA+V8SsEqD7Gtq5euVGdte1YVNw07nH8b0zJByKoXek42U/GdKzEGNKsmsIdw+Hz5YdYMUzW4kamqlWXeXe9gHLS3dRkJn4mspCDID0uWNYR5WnXbU+rlq5sXO+9E8vmse/nzYVt0PCoRh6fQ4xK6XK+roLKEzM6YixIJmbtXaEQ0NrtNY89m5lZ+m84yZk8rMvz+9ROq+jpnKGu9995IUYUtLnit507NW69UAL16/eTHMggtdp587F8/lS6UQZ3RAJ098nYCHmflxN3doV8M+EnZEY9a5cVMLyteX4w1G8TjuBSKzfzVrve2Unf3jzI9rDMdJddr796Wlc9fmZh32dQDhGTWsQrTWG1jzwRgVPvl8FwIJjcvnJBXPxurp+87bbFIVZHhmuEakgfe4odaR9WEc4fH9vIzc9vYX2cIwsj4N7Lj2Bz80q6NwAW4hE6C8gPgtkWGXxulBKrUvYGYlRbzCbtd73yk7ufW03NgUOm3ml8d7XdgP028H6w1FqW0NorXvUVT595nhuOHd2jxXJslJZpJj0uaPQkfZhHRv5/2NXPbc+s5Vw1GBchovfXHYip5Tky9QXkXD9BcSJwP7e7tBafzUxpyPGioHWEP7Dmx9ZHasZ2mwKoobBH978qM/ONT4chiIxbntuG/+0Suedf/wErjqjZ+k8r8tOYaZHvpGLVJI+dxQ6kj6sY6/Wl7bWcMcL24kZmkk5Xu7/fydROrnnNlxCJEJ/l0r+D3hRKXWTUko2VhIp0R6O0T2z2ZTZ3uvxoUPhsC0U5fqnNneGw6+dMoXvn9kzHGZ6nBRlSTgUKSd97ig02D6sIxyu/qCK25/bRszQlIxP55FvnCzhUCRVf/sgPqGUeg5YDmxQSv0JMOLu/1USzk+Mcekuc45ifAdraLO9u7ZQlHqfGQ6b/OEu+4R99/RjWfKJyT0ek5fuIidNaiqL1JM+d3QaTB8Wisaobg7wp7f38tCbHwMwZ0IWD/zbJyjOG/pFfEL053CTrSJAO+AGMrv9CJFw3/70NAxtDskY2rB+m+3xfMEIddaClJrWYJd9wpadPatHOFRKUZDlkXAohhvpc0eZgfZhwYgZDu9ft6czHJ48NZdHvnmyhEOREv1tc3M28CtgLXCS1joxm9QJ0Y+OOTr9rQBsDUY46AsB8NHBdq5fXcbBtjAuh43l5x3Hp44d1+U5ZaWyGI6kzx2dBtKHBSMx9jcF+OVLO3h+Sw1gLqa7d+mJZKfJbAORGkpr3fsdSv0D+I7Wujy5p5QaCxYs0Bs2bEj1aYhBaglEaGgzw2GPuspfnsfx3ebsyEplEU8p9b7WekGqzwOOrs+V/mvkCoRj7Gv0c/vzW1m/8yAA55VO4M7FpaTLXqyiH4nuv/qbg/iZRL2oEEOhxR+hod0Mh93rKt+5uJTpBRldjpeVymI4kz537PGHo3x80M/yNVvYsNfc/vKyhcXcev5c3DLCIVJMvp6IEanZH6axPQzAuh31/Oz5bUQNTVGWh7uWzO9RlSXT42Rchkv2DhNCDAvtoSh76ttYtnozW6tbAbjysyVce9YsHDLCIYYBCYhiSKzbXscD6yuobPJT3M/G10MhPhw+W3aAe17ehQam5qdx15JSxmW4uxyfn+6WeTxCiGGjLRRlR00r164qo6K+HQVc+8VZfOezx8oIhxg2JCCKo7Zuex3L15bjtCtyvE7qfEGWry1nBQx5SGxqD9PkD6O15q/v7ovbCsKsq5wVV1dZKUVBplvm8Qghhg1fMMLmqhauXVXG/uYAdpviJxfM5WunTJERDjGsyCenOGoPrK/AaVekucz/nNJcDvzhKA+srxjSgNjYHqbZH8bQmt+9sYdV75tFJ06emsutF8zFGzdnx2GzUZDllpXKQoghd6QjJq3BCBs+buTaVWU0tIVxO2zcubiUi06clISzFmJwJCCKo1bZ5CfH23UI1+u0U9U0dLt0NLSFaAlEiMYMfvHSTl7aatZV/tys8Sw7p2tdZZfDRlGWR+bxCCGG3JGOmLT4I7y1p55lqw/ttHDfZSdy5nGFyTt5IQZBPkHFUSvOTSMQ6Vo2KhCJ9VgocqQOWuEwFIlxy9qtneHw/OMncOO5x3UJh2kuBxOzvRIOhRAJET9iopT522lXPLC+os/HNPvDvLKthh8+UUZrMEqO18lDl58s4VAMa/IpKo7alYtKiMQ0/nAUrc3fkZjmykUlR/3c9b4QrYEIbaEo163ezL8qzLrK/3Zqz7rKWV4nRdmyjY0QInEqm/xdprNA/yMmje1hntl0gGVPbSYQiVGY6ebP3z6FU4/NT8bpCnHEZIhZHLXTZxewAvObdVWTn8lDtIq5zhekLRilsT3MstWb2V3fd13l/Aw32V5ZqSyESKzi3DTqfMHOOdfQ94hJQ1uIJzdUcteLOzA0FOd5eeQbJ3PseKmcKIY/CYhiSJw+u2DIFqRoran3hWgLRalpCXau9rMpuO7s2Zw159CwjE0pCrLcXTprIYRIlCsXlbB8bTn+cBSv004gEut1xORgW4hH3vqI37y+B4CZhRk88o2FTMzxpuK0hRi0lA0xK6XsSqkPlVLPWrenKaXeUUrtUko9rpRyWe1u6/Zu6/6pcc9xg9W+Qyn1xbj2s6223UqpZcl+b+LIaa2ps8LhRwfb+e+VH7K/OYDLYWPFhXO7hEOHzcaEHI+EQyFE0pw+u4AVF8ylINNDSyBCQaaHFRfM7fIFua41yP+8uqszHB4/OZvH/uNUCYdiREnlJ+vVwDYgy7p9J3CP1nqlUup3wLeA+63fTVrr6UqppdZxlyql5gBLgbnAROAVpVRH9fP/Bb4AVAHvKaXWaq23JuuNiSPTEQ7bQ1G2Hmjlhqc347NW+93+5XmUxtVVlpXKQohU6W/EpKY1wF0v7OCpD81tuD51bD4P/tsnyPDIFBgxsqTk01UpNRn4EvAH67YCzgBWWYc8Clxk/X2hdRvr/jOt4y8EVmqtQ1rrj4DdwELrZ7fWukJrHQZWWseKYUxrTW2rGQ7f+7iRHz25CV8wSm6ak3suPaFLOEx3y0plIcTworXmQLOfW9aUd4bDs+YU8vC/nyzhUIxIqfqE/TVwHWBYt/OBZq111LpdBXTsHDoJqASw7m+xju9s7/aYvtp7UEpdoZTaoJTaUF9ff7TvSRwhrTU1rUH84SjrdtRx09NbCEYNirI83Lf0RKYXZHQem+11UpglK5WFkP5r+NBas6/Rz7VPlvFiubkN1+KTJnH/106SzfrFiJX0gKiUOg+o01q/H9/cy6H6MPcNtr1no9YPaq0XaK0XjB8/vp+zFoliGJrqliCBcIw1Gw9w27PbiBqaaePSue+yE5iUe2jOTn6Gm/xudZaFGKuk/xoetNbsqW/j6pUbeWuPuQ3XN0+byt1LSrHLKIcYwVIxB/E04AKl1LmAB3MO4q+BHKWUw7pKOBk4YB1fBRQDVUopB5ANNMa1d4h/TF/tYhgxDE11a5BgOMpf3tnHw299DMCcCVnccfE8Mq1hGVmpLIQYjgxDs6PWx/cf38iOGh8A13xhJledOSPFZybE0Uv61xut9Q1a68la66mYi0xe01p/DXgdWGIddjmwxvp7rXUb6/7XtNbaal9qrXKeBswA3gXeA2ZYq6Jd1musTcJbE4MQs8JhIBzlt+v2dIbDk6fmcvdXSjvDoaxUFkIMR4ahKdvfwnf+/D47anzYFNx6/lxKJ2Vz2YNv8+k7X+OyB99m3fa6VJ+qEEdkOH3qXg+sVEr9FPgQeMhqfwj4k1JqN+aVw6UAWutypdQTwFYgCnxPax0DUEr9F/AiYAce1lqXJ/WdiH7FDE11SwB/KMrdL+3k5T7qKruddgoz3bIYRQiRcOu21/HA+goqm/wUH2az/5ih2bC3kasf20hNaxCnXXHX4lJy01xHVKdZiOFImRfjxIIFC/SGDRtSfRqjXkc49AUi/OTZrbxd0QjABcdP5L/PmN5ZOi/d7aAg0425YF2IxFBKva+1XpDq8zha0n8dnXXb6zqDXfzm1933NwSzD3tzdz0/eHwTje1hPE4bv7nsRD4/p4jLHny7R5UVfzhKQaaHx644NdlvS4xyie6/5NKMSJpozOBAc4DG9jDXrd7cGQ6/fuoxXH3moXDYsVJZwqEQIhkeWF+B065IczlQyvzttCseWF/R5bhozOCl8hq+95cPaWwPk+F28Mg3FvL5OUXA4Os0CzGcDachZjGKRWMG1S1BaluDXL+6jD317QD81+eO5eKTzLrKSinyM1xkyZ5hQogkqmzyk9Otlnv3YBeNGazZeICbnt5MMGqQl+7i0W8sZP7k7M5jBlOnWYjhTq4gioSLWOGwstHP1Ss3sqe+HZuCG86Z3RkObUpRlOWRcCiESLri3DQCkViXtvhgF4kZ/PXdfVy/uoxg1GBCtocnrzy1SzgEs05zJKbxh6Nobf7urU6zECOBBESRUJGYQXVzkJ21vi51lX960Ty+YNVVdtptTMzx4nXJhrJCiOTrL9iFowa/X1/BrWvLO/doXf2fn+LYgswezzOQOs1CjBQyxCwSJhw1qGkJsqmqiRuf3mLWVXbb+dlF8zu/ebuddoqyPJ3zD4UQItlOn13ACsy5iFVNfiZbq5g/OT2fe17ewf1vmHMR50zI4s/fWkhePxv291enWYiRRAKiSIiOcPivioPcsqacYNQgN83JXYtLOdYqnZfhdjBeVioLIYaB7sEuEI6y4pmt/OWdfYC5R+v/SV1lMYZIQBRDLhSNUdMS5JWttdzxwnaihmZCtoe7Fpd2ls7LSXORl+5K8ZkKIUTPPRAv/+QxvLClhjWbzCJcp88az+/+3yekrrIYUyQgiiHVEQ6f+mA/9726Cw2UjEvnzsXzyc8wrxaOy3B1VkoRQohUit8DMcfrpLrFz/ef2EgwYgBw/vETuOeSE2TDfjHmSEAUQ2Ld9jruX7eHjxvaUMpGTWsQ6FpX2W5TFGR6ZDGKEGLYiN8DMRozqPeFO8Ph/ztlCisunIdN5kiLMUgCojhq67bX8eM1W1BoQlGD5kAYgJmFGdz9lVK8TjtOu43CLA8uh3wLF0IMHx17IEaiBnsb2wlY4TDT4+C2i+bJHGkxZklAFEftt+v2oNA0+6P4QlEA0px2PA47Xqcdj9NOoaxUFkIMQ8W5aexv8lPrCxGKmuEwL93JrMIsCYdiTJPLOeKoBMIxPm5oo7E90hkOs71OJua4qfMFyXA7mJAt4VAIMTydN38C+1uCneFwfIaLDLdTNrcWY55cQRRHzB+OsqeujfZQjPawWYUgL81JfrqLYNRgcm4aBVmeFJ+lEEL0blNVM/e+touYoVGYVw6nF2Ry5aIS2ctQjHkSEMURaQ9F2V7TynWryjrDYY7XSX6Gi2DEQAP/9bnpqT1JIYTow9sVDVz5p/dpCURIc9n5/dcXcNr0cak+LSGGDQmIYtDaQlHKKpv50apNHGgOYrcplpw0iR01bdS2BijOS+e7px8r38CFEMPSa9tq+e/HPqQ9HCPb6+TRb5zMCVNyU31aQgwrEhDFoLSForxT0cB1q8poaA/jdti45fw5nFqSP2QrlbtvWivDPUKIobJ2435+tKqMcNSgINPNX759CjMKe9ZVFmKsk0UqYsB8wQivbavl6pUbaWgPk+62c9fiUk4tycfjtDMxxzsk4XD52nLqfEFyvE7qfEGWry1n3fa6IXoXQoix6q/v7OUHT2wiHDUozvXy1Hc/JeFQiD5IQBQD0hqM8FxZNdeuKqMtFCUv3cWvLzmB+ZOzyfAM3Url+E1rlTJ/O+2KB9ZXDMG7EEKMVb97Yw83Pb2FmKGZWZjBU989jcm5aak+LSGGLRliFofVEojw5IZK7nhhO7GOuspLSpmU4yU3zUXuENZU7ti0Np7XaaeqyT9kryGEGDu01tz94g5+u24PACcU5/DoNxeS7ZVyn0L0RwKi6FeLP8LDb1Vw36u7u9RVHpfpYXymmwz30P4nVJybRp0vSJrr0PMGIjH5pi+EGDStNTev2cKf394HwGnT8/n91xd06V+EEL2TIWbRp6b2EPe8soN7rXA4b2IW91x6PAVZHiZke4Y8HAJcuVfJpCMAACAASURBVKiESEzjD0fR2vwdiWnZtFYIMSjRmMHVKzd2hsOz5xbxf/++UMKhEAMk/6eIHu57ZScPrN9De9jobFs4LY9bz59DpsdJUbYHpz0x3y1On13ACsy5iFVNfibLKmYhxCDc98pOHly/h7a4/uuSBZO54+JSqegkxCBIQBRd3PfKTu55ZVeP9uMKMshNd1GQmfiyeafPLpBAKIQYtL76r0lS7lOIQZMhZtHFA+vNidzaum1TYFeweuN+irKkkxVCDF8Prt+D5lD/5bApnHbFQ299nMKzEmJkkoAoOn10sI32sNHZudptCodNYbdBIGKglIRDIcTwVNsS7DKsbIZDG+j/z96dx9dV33f+f33u1dVmybtlGy/YBoMNNGxmN8TFJHG6AJ1mgaSBsBSaSSd0Op1C5pdJprTJI2nnkQy0nQwECJCmcUiaTtyUhMF2HGPAYEOAYGxsYxvkBUu2ZGu9++f3xz0SukKWtdyru+j95KGH7v2ec8/5ythHn/M93+/n47RFkyz/xnpufHCzcqqKDJECRAFg+6E2bntsa+/7iiA4DJnhGBMqwwXsnYjIie070sl/+PZzve8jQXCYSjuJdOZJiBLviwyPAkTh1++0cttjW9jT3IkZZMYJHfc0KXfSDrcvX1jgXoqIvN/2Q2187P88x4Fj3cFNLWCQ9jTxVGZEcdqESiXeFxmmMQ8QzWyemf3SzLab2TYzuyton2pmT5vZruD7lKDdzOx+M9ttZq+Z2QV9jnVzsP8uM7u5T/uFZvab4DP3m56NntBzbx3htse2cvBYlKqKEF+9/hxuvWIBNZEwKTdqImHuuvp0vnDNGYXuqohIlpf2tfDJB57nSEecuqoKfnDHpfzZysXURMIk02AGM+oizJpU0/sZJd4XGZpCrGJOAv/F3V82s3rgJTN7GvgssM7dv25m9wD3AHcDHwUWB1+XAN8GLjGzqcBXgGVk5iS/ZGZr3L012OcOYDPwJLAK+PkY/oxFz91Zt/0wf/bDV+mIJamrquBrf3AOFy2cyg0Xzee///7Zhe6iiMgJPbOzmTu+9xLdiRRTaiN877ZLOGfOJC5aMLX3hvbGBzfT1B7N+pwS74sMzZiPILr7IXd/OXjdDmwH5gDXAY8Fuz0GXB+8vg543DM2A5PNbDbwEeBpd28JgsKngVXBtonu/ry7O/B4n2MJmeDwX399gM//86976yp/65Pnctlp05k1sZqQViqLSIFs2NHEjQ9uHnRRyZO/OcStj22hO5Fi9qRq/uVzl3POnEnv20+J90VGrqBzEM1sAXA+8AIw090PQSaIBHoS4c0BGvt8bH/QNlj7/gHahUxw+L3n3+a//vg1Ysk0sydVc/8N53HxgmnMqK/SSmURKZgNO5r48pptNLVHT7io5IdbGvlP//xrEiln0fQJ/OQ/Xs6iGXUDHm/FkgbuvfZsGuqrOd6doKG+mnuvPVt5VkWGoGCJss2sDvgX4M/cvW2QwGSgDT6C9oH6cAeZR9HMnz//ZF0uee7OP6zfzTef3pmpqzxjAn/3sQ+wZNZEJpygbN6GHU08sHEPja1dzFNVE5GiUU7Xr57rzMvvtGLArEnVmBmptHPoWBe3PLaFiuB3RCKduZzPn1rLj/7kMqbVVQ16bCXeFxmZggSIZhYhExx+391/EjQfNrPZ7n4oeEzcc8u4H5jX5+NzgYNB+4p+7RuC9rkD7P8+7v4g8CDAsmXLBgwiS839a3fy0Ka9dMZTTKgMc/vyhXxg7mS+vWE32w610xFLApm6yt/4ww9wWkMd1ZGBU9j03M1HwpZ1N38v6IIrUmDlcv3qe51Ju2PAwWNRptSmONIRIxX8ZAl/70cMG3TGEnz6O5vpiKd08yqSB4VYxWzAw8B2d/9mn01rgJ6VyDcDP+3TflOwmvlS4HjwCPop4MNmNiVY8fxh4KlgW7uZXRqc66Y+xypr96/dyX3rd9OdSFERykzG/tbaXfzJ97awZV9rb3AIsGz+ZM6cVX/C4BAy9ZAj4UxqCKWIEJF86Hud8bQTTznxVJrD7e8Fh/2lHFo7E+xr6VJ+Q5E8KcQcxCuAzwBXm9krwdfvAF8HPmRmu4APBe8hswp5D7Ab+A7wHwHcvQX4a2BL8HVv0AbwOeCh4DNvMQ5WMG/Y0cR963eTSjuptJNOQ0UohAPRFKT77f+9F95h064jgx6zsbWLmn4BpFJEiEguNbZ2kUyl2fFuG8lhjIM6kEq7bl5F8mTMHzG7+yYGnicIsHKA/R34/AmO9QjwyADtW4FzRtHNktLziCYVzM1JO6TdSaRTJ/xM2jN37oM9kpk3pZam9ii1le/9NVGKCBHJpbrKMLubO0mmh/eU3IHK8HtjHLp5FcktVVIpAz2PaIaSnabvLie7mCpFhIjkS086m7eODD847DG9zwIV3byK5FbBVjHL6PWs/HtxXwtVYcOME6zXfk/P5kjYTnoxXbGkgXvJBKD7W7uYq4ngIpIDfRemAFSEINl/HswQxJIp3CvoTqR08yqSYwoQS1TPBTaeTGVG9xJDvwMPG0ysiQzpYqoUESKSa30XplSGQyRTjoe8d5rMYEKWqa1cETY6YymOdyd08yqSBwoQS9CGHU18YfWv6YgmT5j4sb++g4tmUF0R4us/386Xfvq6UkSIyJi5f+1ONu85ipMJ9qorQsRT6RM+/Oi5doUNIuEQ7nCsO8Epk6qpqAnxzN1Xj13nRcYRBYhFrn+i6ssWTeXhZ/fSFn0vZc3J7rkrw4YDiZRTGTZmT6rmwLEoEGPO5GrlNxSRMXH/2p18c+2u3vdph67E+58tV0eM8+dN5c6rFvHAxj38+p3WzM2wBVNp0nC4Pcb586aMXedFxhktUiliA5Wd+tbaXRzvTp78w4FwKLOiOZlywgazJ9VwpCNOOGSEzTjSEVeKCBHJu/+8+uWs4HAwnqb3xnXn4TZmTqzCg+wMPf9pzqFIfmkEsYj1nafTHk3wTkvXSUcLe4Qt8/gmFApRX11BezTJrIlVTKyJcPB4N+FgyXM8lbl7V4oIEcm1nicgr+4/Rlf8xGm3+ounnNrKit7MCRXhEKdMrqa5PUY8lSZsxmkzJuiJh0geKUAsYo2tmSoBPcHhcDJBpDzzZek0NZEwixvqaWqPApncYcm0g7+XR0wpIkQkl/quVB5OcAjvTZupiYSprAiRSDmRsLFw+oTeFct3r1qS+06LSC89Yi5i86bU0p1I0dweG1Zw2KNncndjazezJlb25jScXleZqbjizvS6SuU3FJGc6llId+BYF+8ejw778z0L77oTKRY31HPvtWfTUF/N8e4EDfXV3Hvt2Ro9FMkzjSAWofvX7uTv1+9igLnbgzID7xtIBhGiAet2NHP/Def35jRc3FCHu9MZT9FQX61VzCKSEz0jh13xFBUhI5Yc3ughZK5ZfW9clW5LZOwpQCwy/Vf5DYf7wO/DIeiMp3SRFZG8e2DjHjqiCZJpH1Hya4BIRUg3riIFpgCxyDy0aW9OjmNkRhTDZmBQGwnn5LgiIoPZdvB4Vhqu4ZpYFeb+Gy9QYChSYAoQi8xoLqyQWbmcdqgIajOnPfN1+/KFOeqhiMjANuxoGtU1bO7kav7m+t9ScChSBBQgFokNO5r4+s+3j/o4FSEjlXZqImE64ykmVIa5fflCPjB3Mjc+uLk34bYe3YhILm3Y0cR//fGrw/7crIlVVFaEtfBEpMgoQCwCPZO6Dx7rHvWx0g6LG+r4xX/+4PuOHwlbb8JtVU4RkZHqX+Gpp+LJkY74sI5TXQELp9fphlWkCClALJD71+7koU17aQ/qKeeCAZNrI9zz0aVZ7X0TbgO9CWgf2LhHF2URGZa+N5yxRJLn9xzl+T1Hh32cPzhvNt+64YI89FBEckEBYgHcv3Yn963fjac9Z8EhwJJZ9dy9asn7gr6ehNt9qXKKiIxEzw1nc1uUttjwU9gAXLZomoJDkSKnRNkF8NCmveDOCDNAZDGDabUVLJ1VT3ssMyq4YUdT1j49Cbf7UuUUERmJxtYukqn0iIPD+qqwkvKLlAAFiAXQEUuSGsXQoZHJbfjoZy/iuzdfxITqSuKpdNb8wr5B4p1XLeqtouLuqpwiIiNWX1XB2y0jmy9dGTL+XilsREqCAsQxdv/anSMqm9dXJGwsnlHHiiUNWfMLzTLfI2HjgY17evdfsaRBpapEZFQ27Gjio/9rI9vfbR/xMR68aZmuOyIlQnMQx8hIy+f1Vxk2Zk2q6V2IMtT5haqiIiIj0ZOCa2dTx6hubv/8msW6BomUEAWIY+DGB57j+b2toz5OOASLpk/gno8u7b3QzptSS1N7tHeFMmh+oYjkRs+K5QOtXaMKDpfOqucL15yRu46JSN7pEXOe3b92Z06Cw3lTanj4pov4xX/+YNZduOYXiki+PLBxD23d8VHNma4KGx2x0VWIEpGxpxHEPMtFbeV5U2p45u6rB9y2YkkD95K5kO9v7WKuqqSISI7sPNzGse6RB3cGpBw90RApQQoQ82y0tZUB/vq6cwbdrvmFIpIP7aMIDiGThiscMj3REClBesScRzc+8Nyoj1FbGVbwJyJj7v61O4mPMuVCJBzi8ytO0zVMpARpBDFPcrUw5U905y0iY+z+tTv55tpdI/58fVWYc+ZM1nQXkRJWtgGima0C7gPCwEPu/vWxOveGHU2jDg5DBhMqQ1r5JyJjbqTBYSQE37npIgWFImWgLANEMwsD/wh8CNgPbDGzNe7+xlic/7OPbhnxZ0MGZ58yia54kob66hz2SkTk5Bbd8+8j/qyCQ5HyUa5zEC8Gdrv7HnePA6uB6wrcpyGprggpVY2IFMxIc/kvnVWv4FCkjJTlCCIwB2js834/cEmB+jIkBlRWhKitqqChvlpzd0SkZETCxt2rlhS6GyKSQ+UaINoAbe9bjmdmdwB3AMyfPz/ffTohA86cWZdVIUVEZDDFcv0C+E+/fbquXSJlplwDxP3AvD7v5wIH++/k7g8CDwIsW7ZsdPkcMsfjW0/vHNZnls6q5+5VS3RxFZFhyfX1C+CVxmPD2t+A6ogW04mUo3INELcAi81sIXAAuAH4VD5PmEo7X1nzOv+0+Z2T7hsC5k6t5d5rz1ZgKCJF4dndR/jjx7cOad8QEA4baYfPffC0/HZMRAqiLBepuHsS+FPgKWA78IS7b8vX+eLJNHet/nVvcPgfzp9zwn3rq8JcsmiagkMRKRpPbXuXW767ha54ijmTa0643x+cN5uJ1RVYyKiJhLnr6tM1eihSpsp1BBF3fxJ4Mt/n6Yon+dw/vcyvdjYDcOsVC/nS7y7lm588L9+nFhEZtR+/tJ+//PGrpB0WzZjAP912CacMEiSKyPhQtgHiWDjWFefWR7fw8juZeTv/9SNn8h9XnIbZQGtkRESKyyOb9nLvzzLpYX9rziQeveUiptVVFbhXIlIMFCCO0OG2KJ95+AV2Hu7ADP76unP4o0tPLXS3REROyt25b90u/ldQMeWShVN56OZl1FdHCtwzESkWChBHYN+RTv7ooRfYf6ybSNj41ifP4/c+cEqhuyUiclLptHPvz97g0ef2AXDN0gb+4VMXUB0JF7ZjIlJUFCAO07aDx7n5kRc50hGnJhLmgc9cyFVnzCh0t0RETiqZSvOX//IaP3n5AADXn3cKf/fxc4mEy3K9ooiMggLEYUim0vzpP/+aIx1xJtdEeOSWi7hg/pRCd0tEZEj+4Ze7e4PDmy47lf/x+2cTCmnOtIi8n24bh6EiHOLvbzyf0xvqeOJPLlNwKCIl5bblC/nA3El84erT+atrFRyKyIlpBHGYzpkziaf+7CrCurCKSImpr47wxJ2Xab6hiJyURhBHQMGhiJQqBYciMhQKEEVEREQkiwJEEREREcmiAFFEREREsihAFBEREZEsChBFREREJIsCRBERERHJogBRRERERLIoQBQRERGRLObuhe5DUTCzZuDtPBx6OnAkD8dVH0qvD4U+v/rw/j6c6u4zCtyXUdP1S31QH8ZVH8bk+qUAMc/MbKu7L1Mf1IdCn199KK4+lIJi+HNSH9QH9aEw59cjZhERERHJogBRRERERLIoQMy/BwvdAdSHHoXuQ6HPD+pDj2LoQykohj8n9SFDfchQH8bo/JqDKCXPzAx4Bviqu/88aPsEcCtwEPg9oMndz+nzmXOB/wPUAfuAT7t7W7DtA8ADwEQgDVzk7lEzuxH4b4AHx/0jdy/0ZGkRKWG6fkmxUoAoZcHMzgF+BJwPhIFXgFXAHKADeLzfBXYL8Bfu/iszuxVY6O7/3cwqgJeBz7j7q2Y2DTgGGJmL6lnufsTM/hbocvf/MXY/pYiUI12/pBjpEbOUBXd/Hfg34G7gK2QuqG+5+0agZYCPnAlsDF4/Dfxh8PrDwGvu/mpw3KPuniJzgTVgQnDHP5HMBVdEZFR0/ZJiVFHoDojk0F+RuXuOAydLAfA6cC3wU+DjwLyg/QzAzewpYAaw2t3/1t0TZvY54DdAJ7AL+HzufwQRGad0/ZKiohFEKRvu3gn8EPieu8dOsvutwOfN7CWgnsxFGTI3TcuBTwff/8DMVppZBPgcmUdApwCvAV/M/U8hIuORrl9SbDSCKOUmHXwNyt13kHkcg5mdAfxusGk/8Kueydtm9iRwAdAWfO6toP0J4J5cd15ExjVdv6RoaARRxiUzawi+h4AvkVkRCPAU8AEzqw0mfH8QeAM4AJxlZj1ljT4EbB/bXouI6PolY0MBopQ1M/sB8DxwppntN7Pbgk03mtlOYAeZydrfBXD3VuCbwBYyKwlfdvd/d/eDZOYIbTSz14DzgK+N7U8jIuOJrl9SSEpzIyIiIiJZNIIoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkUYAoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkUYAoIiIiIlkUIIqIiIhIFgWIIiIiIpJFAaKIiIiIZFGAKCIiIiJZFCCKiIiISBYFiCIiIiKSRQGiiIiIiGRRgCgiIiIiWRQgioiIiEgWBYgiIiIikkUBooiIiIhkqSh0B4rF9OnTfcGCBYXuhoiMoZdeeumIu88odD9GS9cvkfEn39cvBYiBBQsWsHXr1kJ3Q0TGkJm9Xeg+5IKuXyLjT76vX3rELCIiIiJZFCCKiIiISJa8Bohmts/MfmNmr5jZ1qBtqpk9bWa7gu9TgnYzs/vNbLeZvWZmF/Q5zs3B/rvM7OY+7RcGx98dfNYGO4eIiIiInNxYjCD+truf5+7Lgvf3AOvcfTGwLngP8FFgcfB1B/BtyAR7wFeAS4CLga/0Cfi+Hezb87lVJzmHiIiIiJxEIR4xXwc8Frx+DLi+T/vjnrEZmGxms4GPAE+7e4u7twJPA6uCbRPd/Xl3d+Dxfsca6BwiIiIichL5DhAd+H9m9pKZ3RG0zXT3QwDB94agfQ7Q2Oez+4O2wdr3D9A+2DlERERE5CTynebmCnc/aGYNwNNmtmOQfW2ANh9B+5AFQesdAPPnzx/OR0VECkrXLxHJp7yOILr7weB7E/CvZOYQHg4eDxN8bwp23w/M6/PxucDBk7TPHaCdQc7Rv38Puvsyd182Y0bJ58oVkXFE16/C2bCjiRsf3Mzyb6znxgc3s2HHgL9iREpa3gJEM5tgZvU9r4EPA68Da4Celcg3Az8NXq8BbgpWM18KHA8eDz8FfNjMpgSLUz4MPBVsazezS4PVyzf1O9ZA5xARERmxDTua+PKabTS1R5lcE6GpPcqX12xTkChlJ5+PmGcC/xpknqkA/tndf2FmW4AnzOw24B3g48H+TwK/A+wGuoBbANy9xcz+GtgS7Hevu7cErz8HPArUAD8PvgC+foJziIiIjNgDG/cQCRu1lZlfn7WVFXTFkzywcQ8rlmi6u5SPvAWI7r4HOHeA9qPAygHaHfj8CY71CPDIAO1bgXOGeg4REZHRaGztYnJNJKutJhJmf2tXgXokkh+qpCIiIjJE86bU0p1IZbV1J1LMnVJboB6J5IcCRBERkSG686pFJFJOVzyJe+Z7IuXcedWiQndNJKcUIIqIiAzRiiUN3Hvt2TTUV3O8O0FDfTX3Xnu25h9K2cl3HkQREZGysmJJgwJCKXsaQRQRERGRLAoQRURERCSLAkQRERERyaIAUURERESyKEAUERERkSwKEEVEREQkiwJEEREREcmiAFFEREREsihAFBEREZEsChBFREREJIsCRBERERHJogBRRERERLIoQBQRERGRLAoQRURERCSLAkQRERERyaIAUURERESyKEAUERERkSwKEEVEREQkiwJEEREREclSUegOiIiIFNqGHU08sHEPja1dzJtSy51XLWLFkoZCd0ukYDSCKCIi49qGHU18ec02mtqjTK6J0NQe5ctrtrFhR1OhuyZSMAoQRURkXHtg4x4iYaO2sgKzzPdI2Hhg455Cd02kYBQgiojIuNbY2kVNJJzVVhMJs7+1q0A9Eik8BYgiIjKuzZtSS3cildXWnUgxd0ptgXokMjh3z/s5FCCKiMi4dudVi0iknK54EvfM90TKufOqRYXumsj7xJNpDh6P5v08ChBFRGRcW7GkgXuvPZuG+mqOdydoqK/m3mvP1ipmKTodsSQHj3WTSKbzfi6luRERkXFvxZIGBYRStNydo51x2roTAITM8n5OBYgiIiIiRSqRStPUHiPWb55svilAFBERESlCXfEkze0xUun8L0rpL+9zEM0sbGa/NrOfBe8XmtkLZrbLzH5oZpVBe1XwfnewfUGfY3wxaH/TzD7Sp31V0LbbzO7p0z7gOURERERKQWtnnHePRwsSHMLYLFK5C9je5/03gG+5+2KgFbgtaL8NaHX304FvBfthZmcBNwBnA6uA/x0EnWHgH4GPAmcBNwb7DnYOERERkaKVSjuHjnfT2hUvaD/yGiCa2Vzgd4GHgvcGXA38ONjlMeD64PV1wXuC7SuD/a8DVrt7zN33AruBi4Ov3e6+x93jwGrgupOcQ0RERKQoRRMpDrR20x0f2/mGA8n3COL/Av4S6FmPPQ045u7J4P1+YE7weg7QCBBsPx7s39ve7zMnah/sHCIiIiJF53hXgkPHoyTT+U9hMxR5CxDN7PeAJnd/qW/zALv6Sbblqn2gPt5hZlvNbGtzc/NAu4iIFCVdv0TKQzrtNLVFOdoZG5MKKUOVzxHEK4BrzWwfmce/V5MZUZxsZj2rp+cCB4PX+4F5AMH2SUBL3/Z+nzlR+5FBzpHF3R9092XuvmzGjBkj/0lFRMaYrl8ipS+WTHHgWDcdseTJdx5jeQsQ3f2L7j7X3ReQWWSy3t0/DfwS+Fiw283AT4PXa4L3BNvXeyaUXgPcEKxyXggsBl4EtgCLgxXLlcE51gSfOdE5RERERAquPZrg4LEoiVRxPFLurxCl9u4G/tzMdpOZL/hw0P4wMC1o/3PgHgB33wY8AbwB/AL4vLungjmGfwo8RWaV9BPBvoOdQ0RERKRg3J3m9hjN7cX1SLm/MUmU7e4bgA3B6z1kViD33ycKfPwEn/8q8NUB2p8EnhygfcBziIiIiBRKoaqijIQqqYiIiIjkWSGrooyEAkQRERGRPGrpjHOswImvh0sBooiIiEgepNJOU3u0KBJfD5cCRBEREZEciyZSNLXFiibx9XApQBQRERHJoeNdCVq64kW9SvlkFCCKiIiI5EA67TR3xOgswsTXw6UAUURERGSUYsnMI+ViTXw9XAoQRUREREahPZrgSEdpP1LuTwGiiIiIyAi4Zx4pd0RL/5FyfwoQRURERIYpkUpzuC1KPFkej5T7U4AoIiIiMgydsUxVlHQZPVLuTwGiiIiIyBC4Oy2dcY53JwrdlbxTgCgiIiJyEslUmqb2GNFE6VVFGQkFiCIiIiKD6I6naGqPkkqX7yPl/hQgioiIiJzAsa44LZ3xQndjzClAFBEREeknlXaa22N0xcsvhc1QKEAUERER6SOaSNHcXj5VUUZCAaKIiIhIoC2a4GiZVUUZCQWIIiIiMu6Vc1WUkVCAKCIiIuNaPJmmqb18q6KMhAJEERERGbfGQ1WUkVCAKCIiIuPOeKqKMhIKEEVERGRcGW9VUUZCAaKIiIiMG+OxKspIKEAUERGRcaG1M05r1/irijISChBFRESkrI33qigjoQBRREREypaqooyMAkQREREpS8e7E7R0qirKSChAFBERkbKSTjtHOmJ0xPRIeaQUIIqIiEjZiCfTHG6L6pHyKClAFBERkbLQEUtyRFVRckIBooiIiJQ0d+doZ5w2VUXJGQWIIiIiUrKSqTSH22PEVBUlpxQgioiISEnqiidpbo+pKkoehPJ1YDOrNrMXzexVM9tmZn8VtC80sxfMbJeZ/dDMKoP2quD97mD7gj7H+mLQ/qaZfaRP+6qgbbeZ3dOnfcBziIiISHlo7Yzz7nGVzMuXvAWIQAy42t3PBc4DVpnZpcA3gG+5+2KgFbgt2P82oNXdTwe+FeyHmZ0F3ACcDawC/reZhc0sDPwj8FHgLODGYF8GOYeIiIiUsFTaOXS8WyXz8ixvAaJndARvI8GXA1cDPw7aHwOuD15fF7wn2L7SzCxoX+3uMXffC+wGLg6+drv7HnePA6uB64LPnOgcIiIiUqKiiRQHWrvpjmu+Yb7lcwSRYKTvFaAJeBp4Czjm7j2ZK/cDc4LXc4BGgGD7cWBa3/Z+nzlR+7RBztG/f3eY2VYz29rc3DyaH1VEZEzp+iXjzfHuBIeOR0mmld9wLOQ1QHT3lLufB8wlM+K3dKDdgu92gm25w9llqwAAIABJREFUah+ofw+6+zJ3XzZjxoyBdhERKUq6fsl4kU47TW1RjnbEVDJvDI3JKmZ3P2ZmG4BLgclmVhGM8M0FDga77QfmAfvNrAKYBLT0ae/R9zMDtR8Z5BwiIiJSIlQVZWAHjnXn/Rz5XMU8w8wmB69rgGuA7cAvgY8Fu90M/DR4vSZ4T7B9vWduFdYANwSrnBcCi4EXgS3A4mDFciWZhSxrgs+c6BwiIiJSAtqjCQ4e61Zw2MeRjhjfWruTmx55Me/nyucI4mzgsWC1cQh4wt1/ZmZvAKvN7G+AXwMPB/s/DHzPzHaTGTm8AcDdt5nZE8AbQBL4vLunAMzsT4GngDDwiLtvC4519wnOISIiIkXM3TnSEac9qqooPdqjCVZvaeQnLx8glhybgDlvAaK7vwacP0D7HjLzEfu3R4GPn+BYXwW+OkD7k8CTQz2HiIiIFK9EKk2TqqL0iiZS/OTlA6ze0khHLLP2dnJNhM9cdip/8Y38nluVVERERKTgVBXlPclUmn//zbv80+a3OdqZyfdYWxnmk8vm8YcXzqGuKsJf5LkPChBFRESkoFo64xxT4mvS7vxyRxOPPLuPQ8ejAETCxvXnzeFTF89nUm1kzPqiAFFEREQKIpV2mtqj4z7xtbvzwt4WHtq0lz3NnQCEDFadM4ubLj2VhonVY94nBYgiIiIy5qKJFE1tsXGf+Po3+4/z0KY9/OZAW2/bB8+YwS1XLGD+1NqC9UsBooiIiIyp410JWrri4zrx9VtNHTz87F4272npbbvw1CncvnwhZ86qL2DPMhQgioiIyJhIp53mjhidseTJdy5TB4518+iz+1i/o6m3zNuSWfXcfuVCLpg/paB960sBooiIiORdLJl5pDxeE18f7YjxT5vf4We/OdS7UvvUqbXcunwhy0+fhtlAlYILRwGiiIiI5FV7NMGRjvH5SHmgJNcN9VV89vIFfOismYRDxRUY9lCAKCIiInkxnquiRBMp/vXXB/jBi+8luZ5UE+HTl8zn2nNPobIib9WOc0IBooiIiORcIpXmcFuU+BiVhisWyVSaJ19/l+89n53k+hPL5vKxC+dSW1kaoVdp9FJERERKRmcsUxUlPY4eKWeSXDfz3ef2cvBYYZNc58IJA0QzuwTY7u5tZlYD3ANcALwBfM3dj49RH0VExgUzuxhwd99iZmcBq4AdQd15kZIw3qqi9CS5fnjTXt7qm+T67FncdFlhklznwmAjiI8A5wav7wO6gG8AK4HvAv8hv10TERk/zOwrwEeBCjN7GrgE2ADcY2bnu/tXC9k/kZNJptI0tceIJsZPVZTXDxznO8/s5TcH3hszu2rxdG69YiHzpxUuyXUuDBYghty9J1HRMne/IHi9ycxeyXO/RETGm48B5wFVwLvA3OAJzt8BLwAKEKVojbeqKG81d/Dwpn5JrudP5rYrF7Jk1sQC9ix3BgsQXzezW9z9u8CrZrbM3bea2RnA+FuOJCKSX0l3TwFdZvaWu7cBuHu3mY2P37pSko51xWnpHB+PlA8e6+bR5/axbvt7Sa7PnFXPHy9fyAWnFk+S61wYLEC8HbjPzL4EHAGeN7NGoDHYJiIiuRM3s1p37wIu7Gk0s0mAAkQpOuOpKkpLZ5zvPf/2+5Jc37J8AVeePr3oklznwgkDxGARymfNrB5YFOy7390Pj1XnRETGkavcPQbg7n0Dwghwc2G6JDKw8VIVpSOaZPWWd/jJyweI9klyffNlp/Lhs2cVbZLrXBg0zY2ZzQfa3P1VM1sAXGlmO9z99bHonIjIeNETHA7QfsTMomPdH5ETaYsmOFrmVVGiiRT/99cH+MGWRtqjpZfkOhcGS3NzD3AnEDOz/wn8BfAs8Fdm9rC7f3OM+igiMt69AcwvdCdkfHPPPFLuiJbvI+VkKs3PX3+Xxze/zdGOzLzKmkgmyfXHl5VOkutcGOwn/QxwFlAL7AMWuXuzmU0gs6JOAaKISI6Y2Z+faBNQN5Z9Eemv3KuipN3Z8GYz3312HweOdQOZJNfXnnsKn75kPpNrKwvcw7E3WICYClbPxYFu4CiAu3eW42RMEZEC+xrwd8BAwzPl/zxLilY5V0Vxd17c18LDz+xjd3MHkEly/eGzZnHz5acys0STXOfCYAHiy2b2z8AEYB3wmJn9AriazOMOERHJnZeB/+vuL/XfYGbKHCFjzt1p6YxzvLs8M9u9fuA4D23ay2v7s5Nc33LFAk6dNqGAPSsOJ0tz83HAgR+Tyep/I/Am8I/575qIyLhyC9Bygm3LxrIjIuVcFWVPcwcPb9rH83uO9rZdMH8yt5dRkutcGCzNTRL4QZ+mZ4MvERHJMXd/c5BtSi8mY6Y7nqKpPdqb769cDJjkemY9t1+5kAvLLMl1Lgy2irkO+EvgD4G5QBx4C/i2uz82Nt0TERkfgoTYXwSuB2YEzU3AT4Gvu/uxQvVNxo9yrIrS0hnne5vf5t9fO0QyCHrnTanhtisXlm2S61wY7BHz94F/BT4CfILMXMTVwJfM7Ex3/29j0D8RkfHiCWA9sMLd3wUws1lkkmT/CPhQAfsmZS6VdprbY3TFyyeFTUc0yQ+3NvIvL+0fd0muc2GwAHGBuz8avP6mmW1x9782s1vILFJRgCgiJSeRStMeTVKEvxoWuPs3+jYEgeI3zOzWAvVJxoFoIkVze/lURTlRkutPXTKf68ZJkutcGCxA7DSz5e6+ycx+n2DytLunTeOxIlJiuuJJ2rqTvSMkE2siBe7R+7xtZn8JPNYz59DMZgKfBRoL2TEpX+VUFeVESa4/fmEmyfWEqvGT5DoXBvvT+hPgITM7A3gduBXAzGagVcwiUgJSaac9mqA9miyF0ZFPAvcAvzKzhqDtMLCGzDQfkZwpp6ooaXd+9WYzj/RLcv37557CH43TJNe5MNgq5teAiwdobwbuz2enRERGozueoj2aoDOeKpmREXdvBe4OvkTyJp5M09Re+lVR3J0t+1p5aNNedjdlJ7m+6fJTmVWmSa7NjNrKcN7PM6LxVjO7xd2/m+vOiIiMVDrttMeStHUnSmG0cEBmtgSYA2x2984+7avc/ReF65mUi45YkiNFUhXlxT0trN7SyKG2bmZPrOGGi+Zx8aKpQ/rstoPHeeiZvbzaJ8n1lYunc2sZJ7mOhEPUV1dQXx0ZkwU2I30g/1eAAkQRKbhoIkV7NElHLFkyo4UDMbMvAJ8HtgMPm9ld7v7TYPPXAAWIMmLFVhXlxT0t3Ld+FxUhY2J1BUc7Y9y3fhd3sXjQIHHvkU4e3rSX5956L8n1+fMnc/vyhSydXX5Jrs2MCVVhJlZHqI7kf9Swr8HyIL52ok3AzPx0R0Tk5Nwzo4Xt0SSx8qn08MfAhe7eYWYLgB+b2QJ3vw+KcdG1lIpkKs3h9lhR/VtZvaWRipBREwQ9NZEw3YkUq7c0DhggHjrezaPPvc3aNw6PiyTXlRUh6qsj1FVVFCwdz2AjiDPJ5EBs7dduwHMnO7CZzQMeB2YBaeBBd7/PzKYCPwQWAPuAT7h7a7Ay+j7gd4Au4LPu/nJwrJuBLwWH/pueRN1mdiHwKFADPAnc5e5+onOcrM8iUtziyTRt0QQd0WRRPCLLsbC7dwC4+z4zW0EmSDwVBYgyQsVaFeVQWzcTq7NDkOpIiHfburPaWjrj/NPmt/lZ/yTXyxdy5eLySnIdMmNCVQX11RVjPlo4kMECxJ8Bde7+Sv8NZrZhCMdOAv/F3V82s3rgJTN7mkzKhnXu/nUzu4fMqr27gY8Ci4OvS4BvA5cEwd5XyNQi9eA4a4KA79vAHcBmMgHiKuDnwTEHOoeIlBh3pzOeoq07UZZ1Yft418zO67nmBiOJvwc8AvxWYbsmpai1M05rV3FWRZk9sYajnbHeEUSAaCLNrIk1QGau5A+3NPIvL+8nmsjMKZ5RV8VNl53KqnPKK8l1VSRMfXUFdZUVhIro5xosQDwFODDQBnf/1MkO7O6HgEPB63Yz205m8vV1wIpgt8eADWSCt+uAxz0ziWizmU02s9nBvk+7ewtAEGSuCoLUie7+fND+OJkSVT8f5BwiUiJ6Elq3RxNFN/qRJ2kga9mluyeBm8zsgcJ0SUpRKVRFueGiedy3fhfdiRTVkRDRRJpk2vnDC+aweksjq198h7YgBc/E6go+dcl8rj9vTtkkuQ6H3hstrKoo/GjhQAYLEL8LPGVmjwF/6+4jntkazKc5H3gBmBkEj7j7oT75vuaQnQx2f9A2WPv+AdoZ5Bz9+3UHmRFI5s+fP8KfTkRyqTOYW1jMv9zy5EHg8YGuue7+bP+ddf0amg07mnhg4x4aW7uYN6WWO69axIolA/5KKAvRRIqmthjJdHGv5L940VTuYjGrtzTybls3M+urOW1GHfet38WRIMl1dSTEJy6cV1ZJrqt7RgurKor+8fhgeRCfMLN/B74MbDWz75G5w+3Z/s2hnMDM6oB/Af7M3dsG+QMZaIOPoH3I3P1BMhdlli1bNi6GKESKUbJ3tDCZ919s8WSaF/a2sHFXc17PM1zDvebq+nVyG3Y08eU124iEjck1EZrao3x5zTbuhbIMEo93J2jpLJ2qKBcvmsqyhVPYuDOT5PrVVzIPLXuSXH/6kvlMKYMk1+GQ9S44KaUR0JOF5AmgE6gC6ulzsRoKM4uQCQ6/7+4/CZoPm9nsYGRvNtAUtO8H5vX5+FzgYNC+ol/7hqB97gD7D3YOkbJS6qMj3fEUbdEEXXlOaJ1257X9x1m7/TAbdx6hI1a0o5OjuuZKtgc27iESNmorM7/qaisr6IoneWDjnpL6d3Iy6bRzpCNWzH+v38fd2fp2K995JjvJ9YfOmsnNly1g1qTST3JdW5l5hFxbGS760cKBDJbmZhXwTTJlni5w967hHDhYlfwwsL3fne8a4Gbg68H3n/Zp/1MzW01mkcrxIMB7CviamfWsY/8w8EV3bzGzdjO7lMyj65uAvz/JOUTKRqmOjqTSTkc0SVs0vwmt3Z09zZ2s3X6YdTuaeh9bQeYX0SULp/F23s4+fKO95sr7NbZ2Mblfze2aSJj9reXzRxtPpjncFs3pv6XRJLAeijcOtvHQpj280vhekusrTp/GrVcsZOH00k5yXRHKJLOuq64gEi6d0cKBDDaC+P8BH3f3bSM89hXAZ4DfmFnPSuj/RiZoe8LMbgPeAT4ebHuSTIqb3WTS3NwCEASCfw1sCfa7t2fBCvA53ktz8/Pgi0HOIVI2Sm10JJrIjBZ2xvI7Wvju8Sjrdhxm7fYm3j6aHQgsmVXPNUsbWHFmAwumT2D1nXnrxkiM9por/cybUktTe7T33whAdyLF3Cm1BexV7uSjKspIE1gPxd4jnTyyaS/P9klyfd68yfzxlaWd5Lqn9F1mtLA85krC4HMQrxzNgd19EyfO3bVygP2dTBWBgY71CJlUD/3btwLnDNB+dKBziJSTUhgdSaedjnim/F0+674e70qwYWcTa7c3se1gW9a2uVNqWLmkgZVLG4o6MBjtNVfe786rFvHlNdvoiid7EzEnUs6dVy0qdNdGxd052hmnLQ9VUYabwHoo3j0e5dHn9vF0nyTXZ8ys4/blmSTXpfj4Fd4rfVdXVUFFiY8WDqR8Ql2RcaaYR0diyaD8XR4TWncnUjy3+wjrdjSxZV9rViqcqRMq+e0zZ3DN0pmcMbOuZH8ByeisWNLAvWRG2/e3djG3BOfp9pfvqihDTWA9FC2dcb7/wjv826sHe5Ncz51Sw61XLOSDZ5RmkmszY0JlmPrqCDWVxZmeJlcUIIqUqGIbHXF3OoIUNflKaJ1MpXnpnVbWbW9i0+4jvQl0AWorw1y5eDorlzRw/vwpZZVIV0ZuxZKGkg4I++qKJ2luj+U1L+jJElgPRUcsyRNbG/nxS9lJrm++/FQ+cnZpJrmOhENMrI5QV1240ndjTQGiSIkqltGRRCpNW3eCjlgyL7+43J3th9pZu/0wG95s5lifx2oVIeOShVNZuXQmly2aSlURlKcSyYeWzjjHxqAqyokSWN9w0byTfjaWSPF/XznID/oluf70JfO5rgSTXBdb6buxpgBRpIQVcnSkM5ZZidwdz89o4dtHO1m3o4l125s4dDyate3cuZNYubSBqxbPYGK/eZgi5SSVdprao3n7d9Zf/wTWs4awijmVdn7++rs8/vy+skhyXayl78Zaaf1fE5GCyndC6+b2GL98M7PYpCc3Wo9FMyZwzZIGrl7SQMPE0s+RJnIyhaqKcvGiqUNakJJ2Z+POIzzy7F72t2bmKFaEMkmu/+jS0kpyHTKjrrq4S9+NNQWIInJS+Uxo3RFL8szOZtbuaOKVd45llUOaObEqWIE8s+Tzo4kMx/GuBC1dxVkVpSfJ9cOb9rLzcOZGzsgkuf7s5aWV5LqUSt+NNQWIIjKgfCa0jifTbN57lHXbm9i85yiJ1Hu/BCdWV/DBM2dwzZKZnD1nIiFdtGUcKfaqKJkk13t5pfFYb9sVp03j1uWlk+Q6HDLqqiqor46U3LzIsaQAUUSy5CuhdSrtvLb/GOu2N/GrXc10xt6bU1VVEeLy06ZxzdKZLFswpeQrEIiMRCyZeaSczwpDI7X3SCePPLuXZ3f3TXI9iduWL+TsUyYVsGdDVxOkp5lQoqXvxpoCRBEhnXbaY0nao7lNaO3u7G7qYO32Jta/2cTRfuXulp06hauXzmT56dPGrAJBKKh6UFdiE+elvLVHExzpKL5Hyu+2RXnsuX38v23vJble3FDH7VcuZFkJJLmuCIV65xbqxnN4dIUUGcdiyRRt3Uk6Y7lNaH3wWHfvCuR3WrIru5w1u56rl8xkxZkzmDphbCaxR8IhairDTKisoDoSKvpfajJ+uDtHOuK0R3NfFWU0WrvifH/zO/zbawd7p4D0JLm+6ozpRT31o1xL3401/cmJjDM9Ca3bosmcVmM41hXnl282s257E28cyi53N29KDdcsncnVSxuYM3noCXdf3NPC6i2NHGrrZvYQ0m30VRUJM6EyTE1lWKsSpSglUmma8lgVZSQ6Ykl+tLWRH/VJcj29rpKbL1vAqnOKO8l1uZe+G2sKEEXGiXgyTXs0twmtu+Mpnn3rCGu3N7F1Xwt9DzttQiW/vSRT7m5xw/DL3b24p4X71u+iImRMrK7gaGeM+9bv4i4WDxgk9owa1FSGqY2E9QtCitpYVEUZjlgixU9fPcg/v5Cd5PrGi+dz/XmnFG0S+vFU+m6sKUAUKWPuTmc8RXsOE1onU2m2vp0pd/fs7iNE+8xZnFAZ5srFM1i5tIHz5k0e1WjD6i2NVISst+RXTznB1VsaewPEilDw6LgqTE1EE8/L2YYdTTywcQ+NrV3MK/GaymNVFWUoUmnnF6+/y+PPv01zRwzIJLn+2IVz+cSyeUU7V3c8lr4ba8X5f15ERiWZStMWTdKRo4TW7s62g22s297Ehp3NHO9T7i4SNi5eOJVrls7k0oW5K3d3qK2bidXZl6jqSIjDbd1Mrq2ktjI8LstfjUcbdjTx5TXbiISNyTURmtqjfHnNNu6FkgoSx7oqymDcnY27jvDIpr009kty/elL5o/Z/ODhMDMmVIWZWB3Rv/0xoABRpIx0xZO0dSfpiucmh9rbRzszK5B3ZJe7M+DceZNYuWQmV50xnfrq3Je7mz2xhqOdMWoqw4TMCJkRTSRZML2uKH95Sf48sHEPkbD1LjioraygK57kgY17SiZALFRVlP5KMcl1ZUWI+uoI9VXju/TdWFOAKFLiUmmnPZqgPZrMSf605vYY64MVyLubs8vdnT6jjpVLM+XuZtRXjfpcJxIOGZ+9fAH/8+k3SabS1FZW0J1IkUzDnVctytt5pTg1tnYxuV/N7ZpImP2tXSf4RHEplqoo2w+18Z1nspNcX37aNG4rwiTXITMmVFUwsUal7wpFAaJIiYomUrR1J+jMQfm7jmiSjbuaWbu9iVcbs8vdzZpYzcqlDaxc2sCCafn7JRIJh6itDFMbpKI5ddoEJtdGeGDjHva3djG3xOedycjNm1JLU3s0K2VJdyLF3Cm1BezVyaXTTnNHjM4CV0UZKMn1uXMncfuVxZfkWqXviocCRJES0pPQuq179OXv4sk0m/ccZe32Jl7Ym13ublJNhBVnZBabnH3KxLxdqKsj4d6gcKCSVyuWNCggFO68ahFfXrONrniyd7FSIuVFPZpcDFVRepJcP/3G4d4MA6c31PHHRZbkulxL35X6wioFiCIlIJpI0R5N0hFLjmq0MJV2Xm08xtrtTTyzq5nOPpPlqytCXHH6dFYubWDZqVPykiYmZJZJQxMEhVp9KEOxYkkD90LJjCYXuipKa1ec77/wDv/2anaS61suX8AHz5xRNEmuy7n0XTksrFKAKFKk3HvK340uobW7s6upg3UnKne3YCrXLG3gitOm5yWPWEUoRG1VJihUKhoZqVIYTS50VZTOWJIfbd3Pj17aT3dwzZhWV8nNl53KqrNnFUVu0PFS+q4cFlYpQBQpMvFkmrZogo7o6MrfHTjWzfrtTazdfrg3jUWPs2ZPZOXSBlacOYMptblfEVwVySSrrq1SFRMZHxKpNIfbojmtZT5U8WS6N8l1Twqq+iDJ9R8USZLr2sqKoPTd+LhJLPWFVaAAUaQo9CS0butOEB3FaGFrV5wNbzazbvth3jjUnrVt/tTa3hXIwyl3NxRmmYTWtVWqYlLOSn1OVb50xjJVUXJZz3woUmnnqW2ZJNdN7UGS64oQf3jhXD65bB511YX9FR8Jh4K5heOv9F2pLqzqSwGiSAElUmnao0nao4kRl9zqjqfYtPsI67YfZuvbrdnl7uoqufrMBq5Z2sDpIyh3N5hwKDOfcEJlBTWRsPKTlblymFOVa+5OS2c8K3H8WJ13oCTXv/eB2fzRpacWNE/oyUrfjZebjFJcWNWfAkSRAhhtQutkKs2Wfa2s3X6Y5946SqxfuburghXI584dXbm7/iLhEBOqKlTFZBwqhzlVuZRMpWlqj41qxH8kXnq7lYee2cubhzNPCAxYubSBW65YwOxJuX0yMBxDKX03nm4ySm1h1UAUIIqMkWQqTUcsExiOpJpC2p1tB9pYu+Mwv3qzmbboe8FlJGxcumgaK5c2cOnCaTlLFWFmVEdC1EYqqK0Kl/WkchlcOcypypVCVEXZfqiNhzft5eV33ktyfdmiady2fAGLZtSNWT/6Gm7pu/F2k1EKC6sGowBRJA/6PkY5ZVINn7p4HufOnzKitBd7j3Sybvth1u1o4nBbrLc9U+5uMh9a2sCVi2fkbL5RyCyThqaqglo9OpZAOcypyoVjXXFaOuMn3zFH9h3t5JFN+9i0+0hv2wfmTuL25Qs5Z05hklyPtPSdbjJKiwJEkRzbsKOJ//7T1wmHjNpImEPHu/nGU29y19WLuXjR1CEdo6ktyvpgsclbzZ1Z204JaqXGU2lwmDahatTBYSQc6p1PWB0JjYtVhjI85TCnajTSaaepPZazOucnM2CS6xl13HblAi5eMHXM/432lL6rr64Y8fQS3WSUFgWIIjkUTaT4+/W7AagMHsf2/DJdvaVx0ACxPZrgVzszi01e2388q9zd7EnVXL2kgZl1VfxgayMVIWNKVYSjnTHuW7+Luxh68NmjKhJmQmWYmkqlopGTK4c5VSM1llVRjgVJrtf0SXI9Z3INt1yxgBUFSHJd1VP6rnJ4o4UDGe83GaVGAaLIKKXTTkc8U/4unkyz/1gXE/uN6FVHQrzb1v2+z8aTaZ7fc5S12w/z4t6W95e7O3MG1yxt4KzZmXJ3f/7DV6kIZVLKwNCDT8jMF6oNAkKlopGRKPU5VSPRFk1wdAyqonTGkvzopf38aGvhk1yHQ++NFuby5nE832SUIgWIIiMUSwbl7/oltJ49sYajnbHeIA4gmkgza2JmhWEq7bzSeIy12w+zadeR7HJ3kRDLg3J3F85/f7m7Q23dQw4+IVO1oKYyzIQqVTGR0jbW6VHcneaOGB3R/D5SLqYk12NR+m483mSUKgWIIsPg7nQE5e9OlN7ihovmcd/6XXQnUlRHQkQTaRKpNMtPn8Y//nI3v3yzOWuSezhkXLRgCiuXNHD56dOzAsv+ThZ8QmYCeW2lUtFI+Rjr9CjxZJqm9pFVRXlxTwurtzRyqK2b2RNruOGieQOO7qfSzv974zCPPbevoEmux0vpOxk+BYgiQ5BIpWnrTtARS540ofXFi6ZyF4tZvaWR/ce6qAiFSKadf9jwVtZ+55wSlLs7o4FJtZETHC3bQMFnMu3cdNmpTKurorZSqWikdN2/dicPbdpLZzzFhMowty9fyBeuOWNM06OMpirKi3tauG/9LipCxsTqigHnCLs7z+w+wiOb9vFOS2b1bkXI+N0PzOYzY5jkeryVvpPhU4AoMojOYLRwOCsXWzrj7D/WRTSZ4khHdjqMU4NydyuXNowoqW1P8PnDrY0cbosyd0otf/LBRVy9dOawjyVSTO5fu5P71u8mZFARyqxuvS9Y8DUW6VFyURVl9ZbGQecIv/x2K9/ZtJc3381Ocv3ZyxdwSo7LXw6kIhSivnp8lr6T4ctbgGhmjwC/BzS5+zlB21Tgh8ACYB/wCXdvtczty33A7wBdwGfd/eXgMzcDXwoO+zfu/ljQfiHwKFADPAnc5e5+onPk6+eU8pPsLX839ITWXfEkm3YfZd32w7zUr9zd9LpKrl7SwDVLZ3LajAkjvluPhEPUVoa5/oI53HDJ/BEdQ6RYPbRpbxAcZgKXkEEyneahTXs5+5RJeU2PkquqKCeaI9zY2slf/OjVgiS57lmclhkt1JiQDF0+/7Y8CvwD8HiftnuAde7+dTO7J3h/N/BRYHHwdQnwbeCSINj7CrAMcOAlM1sTBHzfBu4ANpMJEFcBPx/kHFJEirEeZ3c8RVs0QVc8NaQVi4lUmi37Wli3ven95e6qwnzwjBlcs3QmH5iUqPkRAAAgAElEQVQ7acSpKaojQa3jynDOqqOIFKPOeIr+f8VDlmnPZ3qU7niKpvboiGuh99V/jnA8meZwe5TuRJqjnZng8LfmTOKPr8x/kutIuGe0MJLTcpsyfuQtQHT3jWa2oF/zdcCK4PVjwAYywdt1wOOe+a282cwmm9nsYN+n3b0FwMyeBlaZ2QZgors/H7Q/DlxPJkA80TmkSBRTPc5U2umIJmmLJoaU4yztzusHjrNuR9OA5e4uO20a1yyZycULp44ooAuZZdLQVIaprTxxTVORcjOhMhP49f0rn/ZMe77So+S6KkrPHOH2WILOWCrr+nDajAncfuXCvCa5Hm7pO5HBjPV480x3PwTg7ofMrOdf9xygsc9++4O2wdr3D9A+2Dnex8zuIDMKyfz5emQ3VoqhHmc0kRkt7IwNbbRwT3MHa7c3sX5HU++KQ8jMITp//mRWLp3JlYunU1c1/H9SFaEQtVWZoFCpaGSoyu36dfvyhdy3fjfJdJqQZYLDtGfaIbfpUVJppzkPVVHOmFXHadMn8OxbR3sT3U+bUMnnVpyW1yTXPaXv6qrG7qayGJ8CSW4Vy4SEgf5G+wjah8XdHwQeBFi2bFl+s6BKr5NNOM/XhSeddtpjSdqjiSGlrzjcFmX9jibWbW9iz5HscndnzKxj5ZIGfntJA9Prqobdl6pIJll1bZWqmMjIlNv16wvXnAEw4CrmXIomUjS357YqSlc8yY+27ueJvkmuJ1Ry02Wn8tFz8pPkOhel70aqmJ4CSf6MdYB42MxmByN7s4GmoH0/MK/PfnOBg0H7in7tG4L2uQPsP9g5JI+GE9QNVo8zHxeeWDJFW3eSzljypKkr2roTbNzVzNrtTby2/3jWtlMmV7NySQMrl8xk/rThTY43y6xsrK1SFRORE/nCNWfkPCDs63h3gpbO3FVFiSfTrHn1IN/vl+T6hovm8Qfnz8lL4JbL0ncjVQxPgST/xjpAXAPcDHw9+P7TPu1/amarySxSOR4EeE8BXzOzKcF+Hwa+6O4tZtZuZpfy/7d359FxlWeex79v7Vq9SvKGseWAF3ZjNschBDsbZMiQpHugMyQQOOmhcyZJ98mZJJ30TJbunGwni3uYgbRDQmgawjBpshImNmExO8ZgDJaNLRkj2ZZsWbtU+zt/3FulKlkllZZSlaTf55w6Lt17de+tK+nxc+/7vs8LzwOfAP55lGNIgYw1qRupw/lkBZ5UQevucJzIKCMTI7GEO91dGy80nSKe0Vl9Xrmfq1bXsmVtLWsWVY2p+dfrcfoTVgR8lPm9RQvmIjPRWG5Kk0nLyd4IvZHhm5TzLW6dkqvI9UfWL+WGS5ZPepHrQk19N15TUXZIiq+QZW7ux3n6t9AY04wzGvnbwIPGmFuBI8BfuJv/AafEzUGcMje3ALiJ4DeBF93tvpEasALczmCZm0fcFyMcQwpkrEndSB3Ov/rrvRMKPNF4kp7w6AWtE0nLy0c62LGvjafePJluFkodb9NZC9m8ppaLz5w3pj49fq+HiqBmMZHZZar7o43lpjQaT9LaHc7ZpJxPceuUVJHrn+08zFtukWuvx/Ch8xbzny9fzoJxdDcZSSj1tDDoK6m+ySO1AsnMUchRzDfmWLV5mG0t8Jkc+7kbuHuY5S8B5w6zvH24Y0i2yQzo47mbzNXhfDyBx1pLv1uiZiCa+2mhtZb9rT1s39fGnxva6OgfLIibmu5uy9o6Nq5akHdyZ4wh5PdQ7vdRHtQsJjL7FKM/Wr43pb2ROCdHmRVltOLWKS+/1cG2nU00DCly/cmNK1g6SpHre585zIO7nP6JZX4vf3nxMm7auGLYbb0eQ2XQKU9TqqWtCll2SEpHqQxSkSk02QF9Mu8mxxJ48i1o3dzRnx6B3NwxkLXuvKXVXL2mjqvOrsl7ujuPW3i2POijXE3HMssVoz/aaDel1lra+6J05zErSq7i1se7nVix/3gP255qZFdGkevL6+dz66aVrMqjyPW9zxzmnufewmPA63H6RN/z3FsAWUnidJr6rlBlh6S0KEGchSY7oE/m3WQ+gac/6iSFfTn6E4Ez3d1jDW3saGhLT2uVsmJBOVvW1nH1mloWzQnldV6pWUzKAz5Cfk/JB3CRqVKo/miZrRxVQZ/Trzia4Ix55VS6NROHuymNJ5K09kRG7XucMrS4NUA4lmRuWYCv/eZ1nnzzZHr5eIpcP7ir2U0O3aeBBkgmeXBXM7dsqneakEO+adf6MJllh6Q0KUGchSY7oE/23eRwgSeRtPSEY/SE4zn7EvVF4uw8eJLt+9rYfSR7uruaymB6DuT6hflNdxf0e6kIeCkLqBSNSC6T2YKQSgoPtHbTG0kwv8JPwOvhzbZeAJbODdHWE6Z7IJaua5Z5U3rzxjNp6RwY06woqeLWA7EEIb+H3kiczv44zbEBGlqdm8uJFLkeiCUYmvt5jLN8rNUQRKaSEsRZqBAdjAt1NxmOJegeiNGXY/q7WCLJC02n2L6vjWcb27PqG1aFfFx5Vg1b1tZyXh7T3aXmLE2NPNYsJiKjm6wWhMyuL+FYkqS1tPfG3KdvBiyc7I2m5y4OeD3MLQ+kb0o/fulyzqqrGvOUeZfWz+dznMW/PvcWje19DEQT6eRzydwQt2xcwXvW1I67yHWZ30skngAzWMA3iaEyqJtOKW1KEGehUu9gnCpo3T0w/PR3SWt5raWLHfvaeOLACXoyprMK+DxcXj+f966t45IVo0935/N4nIQwqFlMRMZjrC0IuQbIZXZ9iSaSeI3BApF4kqDf+TuOuvGgzO+layDGI5+/csKzovRH4zS0dtPY3ke/O8htfkWAmy4/k2vPm1iRa2MMH79sOdt2NmGsHXaGGJFSpQRxFirVDsajFbQ+dKKXHcNMd+cxcNHyeWxeU8u7zlpIxSjT3QV8Hqc2YRFL0WiaKplJ8m1BGGmAXGbXl4DXQzxhMW5uZi1gneUw2OIRjiVo646MOEgtl2g8yW/3HOW+547Q6Q5mqQw6Ra4/sn5iRa79Xg/VIT+VIR9/f+06KoO+gs8QIzLZzGRVlJ/uNmzYYF966aVin8asM1pB6+PdYR7b5ww2aRoy3d3quio2r63lPatrRqw/li5FE/BRESj+LCaZ/0lmPsH9xnXnKEmcYsaYXdbaDcU+j4maLvHrxp88d1r3lv5onNoqZ7BYal33QIyjXc4oYg+QcP+bWjo3hM/rIZawfPH9q1m3dM6YZ0VJJC1/eqOVn2cUuQ6mi1yfQVUov2oGQxVz6juZnQodv/QEUYoiVdC6J3z608KugRhPHDjBjn2tvNbSnbXOABcsm8Pn33s2y+fn7jOZmsWkPFB6pWg0TZVMF5P9pHukAXLf/PC56a4vVSEfC+IBOvpjVIV81FQGsdbSF01QUxnkhkvOYO2S6jElh9Zanj7Yzk+fbuKt9sEi19eet5ibJlDkuhSmvhMpBCWIMqLJ/A8iFeB7hiloHY4leOZQO9v3tfLi4Y7TOpobwOMBLOxp6eKJhrbTCs2mStFUBEv7Dl7TVMl0UIgC2CMNkBva9WXlwkq+PSTejDYrSi67jzhFrvcdGyxyffWaWm5+5+hFrofjMYbKUOlMfSdSCEoQJafJ+g8ili5oHctK/FLT3W3f18bOYaa7e9dZC3niwAniiWRWs3DCrSF208YVhPzedH/CUp11YChNUyXTwXifdI90UznaALmR+jL2hGO090ZHnBVlqP3He9i2s4ldb3Wkl122cj63bVrJqtrRi1wPVapT34kUghJEyWmiTaH90TjdA/Gs0YXWWhqOO9PdPb4/e7o7n8dw6cr5bFlby+X1znR32/e15qwhduaCiqKUopnoU9VSH0UuAuN70j3aTeV4BsiNZVaUlCOn+rn76SaePJBZ5Lqa2zbVc96y/Itcw/SY+k6kEJQgSk5j+Q8ilTQdOdXH4jll/KcNZ3Dxinnp9UdO9fPYvja2N7RytDOc9b3nLa1my9o6rjy7hjnDHC8ST5B5s56qIVas5HCiT1VLdRS5SKZ8nnQPvVnq6IuMelM5lpqpsUSStjHMinKiJ8I9zx7mj3uPpwvl19dUcNumlVy2cmxFrssCXqpCfiqmwdR3IoWgBFFyyrcp9PGGNr766714DZQHvLR2h/nB9gPcsnEFHQMxduxr5UBrb9b31C+scEYgr6llUfXp090F/V7K/V5u3bSCOx5vJFEiNcQma4CJpqmSUvZ4QxsdfREOt/fh93ioqw6mRw+nnnQPd7N0uL2PZUP69I23f21/NM6Jnkheha+7+mP82wtHePiVFmLukOfFc0Lc8s4VXD2GItc+jyfdt3C6TX0nMtmUIM4S42kWHa0pNJG09Ibj/HjHmxgg6POSSFqi8SSdAzG+9UhD1v5qq4JcvaaWLWtr07MhpBjjlHwpDzqJYarP4d+9bw0+j6dkaohpgInMdJmJ37K5ZbT2RHi7Y4CQz0tZwMNdTzYCw98s+T0eWnsiVJcF0vtL3VSOJQad6ovS2R8d9Vz7o3Ee2tXMgy81n1bk+przFuWd5KXK02TeDIvMdvprmAVSAT+WSNDVH+NY1wAvH+ngM1etGjHRytUUevmqBbT1hOmLONPftXT24/UYjnZFnWUZ+6gO+Xj32TVsXlvLuUuzp7vzepz/XMoDXspHaMb57JazS6aorAaYyEw3NPEzxtDcMUASS2XQx+63O7j1Fy/hMbBkTvbT/7rqIM2d4dNuKq+on59X14xE0tLWEz6tysFQ0XiS3+05yr8OU+T6+vVLKcujioHf60kPOCl2bVSRUqQEcRa468lGYokE7b0xjHECYyJpuePxQ5y/bO6ITxJTTaHJpKU36kx/d7RzgKS17GnuYvu+Vtp7YyQyRhYanNF+i6pD3HnT+qy7eL/XQ0XQSQpLuRRNLhpgIjPd0Kfkzaf6iVuIJy1vnRpIL08AzR0DLMNQ7W7fHY5hreXQiT6MgaVzQvzjfzwvr64Z+cyKkkhatu9zily3dg8Wub7+oqXceOnoRa6NMVS4fQvLAtMv/ohMJSWIM8xwzThvd/TT3hMh5k5XZQx4jTM7wWh956LxJN3hGL3hOIlkksYTfWzf18pjDSc40RvJ2jbk8zCnzLkbT1onmQr4vM4sJn4f5UHvtO/XowEmMtNlPiU/3jVAfIQugAkLx7oGqAr5aOnsp6M/jtdA0GdIWjjWHWFPc+eoXTO6+mOc6o/mLHydq8j1Nect4hOXnzlqkevMqe+KMbhNZDpSgjgDpJLCA63ddPTFcPNAjnYOsLelkzkhH9GMm3LrDvQIehm271yqoHX3QIxwLMHxrjA7GlrZsa+Nw+3Z269ZVMWWtbXMCfn5/WvHOd49QE1ViJuvOJMt5ywquVlMJoMGmMhMlvmUvL0vdz9Aj3FaC2IJS9dAjO5wIj2QLJKRVd75RCMXnDF32K4ZS+eW0dodpi8SH+YIjlfe7mTbU4284Ra5BqfI9S0bV7B0Xu4i18YYKoJeqkP+adlaIVJsShCnucwO5V39MTIbZ5IWeiIJeiKD/XlSqVoqiczsO5dZ0PpUb5THD7SxfV8brx/Nnu5u2bwyNq+pZfPa2vT3+70ePnLxMsoDPkJ+j8pCiExTmU/JD53oy7mdz53ayGcMT33xauq//HuGG3DcH0twRf18Hnq5JatrRjSe5KPrl+VMDg+09vDTnU28eHiwyLXB6ff4vrV1OZPDgM9DVchPVVBT34lMhBLEaS6zb89ITUGpO3vrvvfgNA/99ZX19EXi9ITjtPdFeOZgOzsaTp/ubn5FgPesrmHL2jrOrqvEGEPQ76XCne9YBWRFZo7UU/LVX32ESHz4PoEGJ4a8Y6Fzk2iMcZonhrFtZxO3bVrJs42naO7oZ9GcEB9dvyxdK/WFxlM88OLbHOseYF5ZAL/Pw2stXVn78Bondh3vDvOdRxv44vvXcGn9fMCZ+q4i6KO6TFPfjWay59eWmUsJ4jQ3XN+e4fg9HpJYEkmL12PwAMsXVLB8QTm/ebWFHfva2HnwJOHY4H8G5QFnurvNa2q5aPk8fO5cx2UBZ3o79eURmbm2bj+QMzn0GDAe8Fk40jHAqr//w4j1CvsicR56uYWv/4d1nLtsLj3hwVlRvvX7N9jecCL9dWrwCUDI7yHuzrvs9bg3oUlLXzTOAy++zZWrazT13RgUYn5tmbmUIE5zlQEvB0/0jhicDZDEYtz3i6uD9EWTLKwM8pH/9Uy6TAQ4091dtnI+m9fWcUX9fCqCzmi/iqCXMr9mFBCZLe58ojHnOo+BWCyJ03ll9FlOEhZauwb4pz/s4yef2JBefu8zh7OSwxRjnMEy4Vic9t4oXq/JWpdMWk72hlkyN3cfRDndZBX6l9lBCeI0MrRp4Ir6+bT3RYnGkozQukzQC+HE4BYtnWESFp5tbE8vO3/ZHLasreXKs2pYWBWkIuCjbJqWohGRiXm8oY3+Eae3MyRGjDqniyctjSf7eKHxFJfWz2cgmuAXz7817LbWQjSeoDLop60nSiJuMVh8HoMBfF4PZ8yvGNPxRYX+ZWyUIE4TwzUN3PH4IcoDHjweM+ITxPCQOJ/KFVfVVLB5bR2b19SyfEE55QEfFQGvisaKzHLf+WPDiOvjeUx/N1TCgt8Ddz1xkO89Gqe9Pzbi9uUBHx39UTxAEqf/dCxp8RqoDvpVe3QcVOhfxkIJYoka+rSwsz+abhroCcc41jlAJGHTfYR8HkPS2vQowjkhH33RxLCB3ODULLz/05c7M5nMwFI0IjJ+jSdzj16eiHgSmjKKbY/EZ2BeuZ/qkJ/j3WGibqwL+Dx8/2MXqEl0HFToX8ZCCWKJyEwIKwNe2vuiVJf5008LD7f3s2xuiJ5wjLdP9ZMYkvcNTQS7wrnrivm9EE1aaqtCObcRkdlrpBaJich3rwsrA/THk8wt82PM4Ewt1jo1F5Ucjo8K/ctYKEEsAanm455wlM7+eDqInuh1itQanMB6rCuMhdOSw1xSs6WkGHdHFme6qVy2bj/Atp1N9EUTVAS83LZpZcnMhSwihWfG2L9w8o4L1WU+vv+xC7jryUY1hxaACv1LvpQgFlHqqeHLRzqIJ5I5E7/U4miemaHHgMeteVhTGUgnmqkSZUkLt21aOez3bt1+gB8/dhCPAZ/HCcg/fuwggJJEkdkidTc5hfwew4YV87OeaKk5VKR4NBqhSB5vaOMLD73K7rc7iMRzJ4djZXACrTVOx26vx1BT6SfVxbA84OVzV78jZ7K3bWeTmxx68BiP+6+zXERmh1xzIhdSXVWA+z99eTo5vGpNLd+47hxqq0J0DcSorQrxjevO0dMvkSmiJ4gFltm3EGs51RcbpXzExKRH+nkM1UEvHf0xqoJeLlu5IK++Jn3RBEMnRfEYZ7mIzA456mMXVHNXhK3bD2TdvKo5VKR4lCAW0NbtB9j62JtTHmyTFhaW+ambU0Z/NE5tVYj7P315Xt9bEXCacjIHNSctI/ZZFJGZ48a7ninase94/BDnL5urpFCkBChBLJCt2w/ww+1vFqmrN3QOxCkPxqgM+sZUBPW2TSv58WMHiSeT6fmbR+qzKCIzy7NNHUU7diJpuevJRvY0d2qgnEiRKUEsgMcb2oqaHAJEE0kOt/djgGXz8p+OKhWEFZxFZKoFfR72tnTywuFTGignUmQzNkE0xnwA+DHgBbZZa789Vcf+7AO7i5ocZrJAc8fAaX17RvLZLWcrEIvIlPN7DT2RRHqgHDh9oOPJJNt2NuUVl1SmS2RyzMhRzMYYL3AH8EFgHXCjMWbdVB2/e4Qi1YU03GQofo/B5zUahSwiJa9zIE4iaYknLOFYgkg8QTyRzHugXKpM10AskfX0cev2A1Nw9iIzy4xMEIFLgYPW2kZrbRR4APhwkc9p0hnj1jw0UBX0snJh9uT1TnLo0ShkESl5Bqe4PzgtHxan/3MsaYklbF4D5VSmS2TyzNQEcSnwdsbXze6yggrHEjzy2rGC7NsAi6qDLJ9fzvUXLqY65MNjDJVBH5/ffBb/fON6aqtCGAZrIfq8zo9Xo5BFpNgyWzjK/F6GNniE/F6GzvCX2ibfgXJ90cRpLSm6QRYZn5naB3GYxtbTuwUaYz4NfBpg+fLl4zpQIml5vrGdh19p4ZG9x+kpQPNy0OdxnxBWjljL8Ko1tekmFgwkbVKjkEVmqMmIX5maTvbxg/+3f8L7yaWmMkhbTyT9tTGDszulWFKtIoZ40mJxgnlVyJdXP0KV6RKZPDM1QWwGzsj4ehlwdOhG1tqfAD8B2LBhQ97jSqy1vH60m4d3t/DbV4/SmhH0vB4z4Ynuy/webn/3qnF1rNYoZJHZYbzxa6jjXWF++KcDPLSrmUSBZlCprQxQGfIRjifoHohnldECpykrmbQY973XYwj6PNTXVKZrueZDZbpEJs9MTRBfBM4yxqwEWoAbgL+a6E6PtPfz8Cst/PvuFppO9mWtW798Lh++cCnXnr+YDf+4Pe99Br1w102XTGphWI1CFpHRdPRF2LrjIPe9cISoW81/yZwQR7vCE9pvdciXvilNzSTV3NFPbVWIf7h2XVaNwzK/oSLoo6M/hvE4Bf47+p2BKouqg/RH42Oaf1k3yCKTxxRjzs2pYIy5BvgRTpmbu621/zTS9hs2bLAvvfTSactP9kb47atHeXh3C682d2Wtq6+p4PoLl/LhC5eyfEF51roVX/r9qOd4/YWL+eEN60fdTkQKwxizy1q7odjnMVG54tdwOvoj/MuTTdzz7GH6Ik7fvHnlfv7Lu1dx8ztXEPR584pfa+oq+OPfXjWBsx6UmUhWBLwYY+iNxFk2rzyvKUJFZqNCx68ZmyCOVWaA7YvE+ePe4/xqdzPPHTqV1exSUxXkuguWcP1FSzlnSTXGDNfdUUSmg9mSICaTlo7+KPc9f4SfPd1ER38McPrm/dVly7n9qlXMrwhO1emKyCQodPyaqU3MY2aBR18/zsO7W/jz/jbCscEJlCuDPj5wziI+sn4pl9UvwDtcwUERkRITjiXo7I/xm1db+NnThznmNh8HfB6uv3AJt26q5x21lXgU00RkCCWIrn1Hu/nre3elv/Z7DVeeXcPH1i/jPWtqCfk1Ck5ESl8iaemNxOkeiPLkgZP8dGcTjW6faY+Ba85bzCeuWMHquirmlPuLfLYiUqqUILoS1hlBd/GKeVx/4VI+dMES5pQpeIrI9DAQTdATidEXSfDq2x38y1NNvH60O73+PatruHnjClYurKS2OqibXhEZkRJEV111iKe/eDVL5pUV+1RERMYknrQc6xrgYFsv23Y28ULTqfS6S1bM47ZNKzmrroqygJfaqpC6yYjIqJQgumqrgkoORWRaisQTfPN3b/Dn/SfSy9YtruK2d9Vz4RlzAZhXHmBeRaBYpygi04wSRBGRaa7xRB8DbnJ45oJybtu0ko2rFmCMwesx1FQFKQ8o3ItI/hQxRERmgEXVIW7eeCab19alm5CDfi91VcH0vOwiIvlSgigiMs3VVYf4+S2XEPANJoLVZX4WVARUq1VExkUJoojINDevPJBODj3GsLAqSGVQ4V1Exk8RRERkhvB7PdRVh7KeJIqIjIcSRBGRGaAy6GNhZVCzoojIpFCCKCIyzfk8htrqULFPQ0RmELVDiIhMcxqHIiKTTQmiiIiIiGRRgigiIiIiWZQgioiIiEgWJYgiIiIikkUJooiIiIhkUYIoIiIiIlmUIIqIiIhIFiWIIiIiIpJFCaKIiIiIZFGCKCIiIiJZjLW22OdQEowxJ4C3CrDrhcDJAuxX5zD9zqHYx9c5nH4OZ1pra4p8LhOm+KVz0DnMqnOYkvilBLHAjDEvWWs36Bx0DsU+vs6htM5hOiiF66Rz0DnoHIpzfDUxi4iIiEgWJYgiIiIikkUJYuH9pNgngM4hpdjnUOzjg84hpRTOYTooheukc3DoHBw6hyk6vvogioiIiEgWPUEUERERkWzWWr0K8AI+AOwHDgJfmoT9nQH8GdgHvA58zl0+H/gT8Kb77zx3uQG2usffA6zP2Ncn3e3fBD6Zsfxi4DX3e7biPmEe5ly8wG7gd+7XK4Hn3f39Egi4y4Pu1wfd9Ssy9vFld/l+4P1juW7AXOAhoMG9HldM5XUA/tb9GewF7gdCU3ENgLuBNmBvxrKCf+6MY3QBUeCNjO/5nvtz2AP8OzB3Ap8vn2vYhlPeYW/mz8Td7guABRYW8BpkXeeZ/Mr1cxrnvhS/Brcpavxyt5nyGEbx49ebQAtwYsg5KIbl+rstdhCaiS+cAHQIqAcCwKvAugnuc3HqlwOoAg4A64DvZvwBfgn4jvv+GuAR9xfscuD5jF+SRvffee771B/lCzjByrjf+8Ec5/J3wL8xGGAfBG5w398J3O6+/xvgTvf9DcAv3ffr3GsSdP+gDrnXLK/rBtwD3Oa+D+AE3Cm5DsBSoAkoy/jsN0/FNQCuBNaTHdwK/rlTx3CPvxU4kXH89wE+9/13Mo4/ns+XzzX8GvAoQ4IrTgLyKE4twIWFugZDr/NMfY30c1L8mr7xq5gxjCLHr4zP9fMh56AYluvvttiBaCa+3B/Ooxlffxn48iQf49fAe3HuYha7yxYD+933dwE3Zmy/311/I3BXxvK73GWLgYaM5VnbZSxfBuwArgZ+5/4Snsz4A0t/dveX/Qr3vc/dzgy9Hqnt8rluQDVOcBv6VG9KrgNOcH3b/cP0udfg/VN1DYAVZAe3gn/uIce4BIjk+J28Hrgvx3mP+PnG+Ht0itOD60PABcBhBoNroa5B+jrP1Ndov4eTsH/Fr+zlU3YdKGIMo/jxazFOcnfa0zt3vWJYxkt9EAsj9QeY0uwumxTGmBXARTiPsuustccA3H9rRzmHkZY353HOPwL+G5B0v14AdFpr48N8X/pY7voud/uxnlumepwmgp8ZY3YbY7YZYyqm6jpYa1uA7wNHgGPuZ9o1xdcg01R87vQxcK69L5lyKPIAAAWzSURBVMe5fArnjnU8xx/L71EPzl08AMaY64AWa+2rQ86nINdgyHWeqQoWwxS/ihe/3P2XUgyb0vjl/rswx7mAYlgWJYiFYYZZZidlx8ZUAv8X+Ly1tnsc5zDW5ZnH/hDQZq3dlcdxCnIOOMnJeuB/W2svAvpwHpfnMqnnYIyZB3wYp8lhCVABfHCE7ynENcjHlB7XGPMVIA7cV4DjD7cuddxy4CvAfx9u9SSew2xTkGuh+FXc+AXTJoZN+TEVw06nBLEwmnH6E6QsA45OdKfGGD9OcL3PWvsrd3GrMWaxu34xTgfYkc5hpOXLRjnndwLXGWMOAw/gNNP8CJhrjPEN833pY7nr5+A8Wh/ruWVqBpqttc+7Xz+EE3Cn6jpsAZqstSestTHgV8DGKb4Gmabic6ePAdTgBNE0Y8wngQ8BH7du+8U4jn+S/K9hFZBw163C+Y/uVff3chnwsjFmUaGuwZDrPFNNegxT/Ervs5jxC0orhk1p/HL/PW0OZcWwHEZrg9ZrXP1rfDidRlcy2In1nAnu0wC/AH40ZPn3yO54+l33/bVkd259wV0+H6cPzDz31QTMd9e96G6b6tx6zQjncxWDnbz/D9kdc//Gff8Zsjs3P+i+P4fszr+NOI/b87puwFPAavf919xrMCXXAbgMZ/Rfubv+HuC/TtU14PQ+PAX/3EOO8R2yB6l8AHgDqBnyMxrz5xvDNfwdufsQHWaw/06hrkH6Os/U12i/h+PYn+LX4LGLFr/c9UWLYRQ/fn3J/WyZ56AYluvvpNiBaKa+cEYfHcDpEPuVSdjfJpxHxXuAV9zXNTj9HnbgDF3fkfFLYoA73OO/BmzI2NencIbAHwRuyVi+AafswSHgf8LwZSLcba9iMMDW44ycOuj+gQTd5SH364Pu+vqM7/+Ke5z9ZI8SHvW6ARcCL7nX4mH3D2TKrgPwdZyyCHuBe3ECSMGvAU45imNADOdO8dap+NwZx+gBIkOOfxCnL0zqd/LOCXy+fK5hO86db/ochvxsDpNdImKyr0HWdZ7Jr1w/p3HuS/FrcJuixi93mymPYRQ/fr0JHHdfimF5xDDNpCIiIiIiWdQHUURERESyKEEUERERkSxKEEVEREQkixJEEREREcmiBFFEREREsihBlGnPOHYaYz6YsewvjTF/NMbcbYxpM8bsHfI9FxhjnjXGvGaM+a0xpjpj3fnuutfd9SF3+Y3u13vcfY80ZZOIyKgUv6RUqcyNzAjGmHNx6kxdhFPM9BWcAqhLgV7gF9baczO2fxH4grX2CWPMp4CV1tp/cKvcvwzcZK191RizAOjEqUd1FFhnrT1pjPku0G+t/drUfUoRmYkUv6QU6QmizAjW2r3Ab4EvAv8DJ6AestY+iTMt1FCrgSfd938CPuq+fx+wx7qTpltr2621CZwAa4AKY4wBqpmE6RNFRBS/pBT5Rt9EZNr4Os7dcxSnmvxI9gLXAb8G/oLBeS3PBqwx5lGceYcfsNZ+11obM8bcjlPNvg+nGv1nJv8jiMgspfglJUVPEGXGsNb2Ab8E7rXWRkbZ/FPAZ4wxu3AmTo+6y30404J93P33emPMZmOMH7gdpwloCc40WV+e/E8hIrOR4peUGj1BlJkm6b5GZK1twGmOwRhzNs6k6ODMjfmEtfaku+4PwHqg2/2+Q+7yB3EmPBcRmSyKX1Iy9ARRZiVjTK37rwf4KnCnu+pR4HxjTLnb4fvdwBtAC7DOGFPjbvdeYN/UnrWIiOKXTA0liDKjGWPuB54FVhtjmo0xt7qrbjTGHAAacDpr/wzAWtsB/AB4EWck4cvW2t9ba4/i9BF60hizB7gQ+NbUfhoRmU0Uv6SYVOZGRERERLLoCaKIiIiIZFGCKCIiIiJZlCCKiIiISBYliCIiIiKSRQmiiIiIiGRRgigiIiIiWZQgioiIiEgWJYgiIiIikuX/A9xa8uDiN6tfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10,10))\n", - "ax1.set(xlabel='Y1968', ylabel='Y1961')\n", - "ax2.set(xlabel='Y1968', ylabel='Y1963')\n", - "ax3.set(xlabel='Y1968', ylabel='Y1986')\n", - "ax4.set(xlabel='Y1968', ylabel='Y2013')\n", - "sns.jointplot(x=\"Y1968\", y=\"Y1961\", data=df, kind=\"reg\", ax=ax1)\n", - "sns.jointplot(x=\"Y1968\", y=\"Y1963\", data=df, kind=\"reg\", ax=ax2)\n", - "sns.jointplot(x=\"Y1968\", y=\"Y1986\", data=df, kind=\"reg\", ax=ax3)\n", - "sns.jointplot(x=\"Y1968\", y=\"Y2013\", data=df, kind=\"reg\", ax=ax4)\n", - "plt.close(2)\n", - "plt.close(3)\n", - "plt.close(4)\n", - "plt.close(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "8a297a06-977f-4ff7-a9ad-c7e8804930a8", - "_uuid": "6b738ce8b15a764fab90fac96f9534f94c14342e" - }, - "source": [ - "# Heatmap of production of food items over years\n", - "\n", - "This will detect the items whose production has drastically increased over the years" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "_cell_guid": "588cebd9-e97c-460d-8ed5-e663ac293711", - "_uuid": "16ce47d43a3038874a74d8bbb9a2e26f6ee54437" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAVRCAYAAAAATSHSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcXEW99/HPdyYrQYKAImIgElkuCWQgAWUxEkS8oheIgGFxyQXNgwsoz0XkuiDLVdZHBXkAcxUhiIAs8UbgQnggCWGTJGSZBFkEoiJuXHbIQmZ+zx+nmjRDd+ZM0p3evu/Xa15zuk6dqjp1zvR0ddWpUkRgZmZmZmZmtdFW6wKYmZmZmZm1MjfKzMzMzMzMasiNMjMzMzMzsxpyo8zMzMzMzKyG3CgzMzMzMzOrITfKzMzMzMzMasiNMjMzMzMzsxpyo8zMzMzMzKyG3CgzMzMzMzOrITfKzMzMzMzMaqhfrQtgtr7es9mo6C1OG6ponu3K/32G+hA3V3o5z6VN+eI1S3rVkLeM7Tm/38p736jCdZM337x/J/37cE/nrZu855y3jJW+byr9DWY/teeKt0XbwArnXLu/qbx12F7xa5f377jy9fI63bni9c9ZO3nrMO81Dnr99wnAgJw5d+dML18sGFCFa9IvZ5rfW/bL2v3zKfL6s0/mra6m1X+L7eriWlRb0/SUSQpJVxW97ifpH5JuXsf0hks6ug/xJ6Qy7LQu+eVIv0PSQUWvD5Z0ah+OXyZpTo+whZKWVLKc60rSLElja10OMzMzM7MNrWkaZcCrwChJg9PrjwB/Xo/0hgO5G2XAUcA9wJHrkefadABvNMoiYnpEnNPHNN4maRiApH+qZOHMzMzMzGzdNFOjDOC/gY+n7aOAawo7JA2RdLmkuZIWSDokhQ+XNEfSQ+ln73TIOcAHU2/SSWvLVNLGwD7AcRQ1ypS5WNLDkm6RdKukw9O+ZZK2SNtjJc1K23tKui+V8T5JO0oaAJwJTEzlmShpkqSL0zFbSpomaVH62ZvSfgVMLFM/JetB0n6SZkv6laTHJJ0j6RhJD0rqlDQixbtC0qWSZkp6UtKHUn3/TtIVRflcKmmepKWSzihRl+0prSUp/bXWvZmZmZlZo2u2Rtm1wJGSBgG7Ar8t2vct4K6I2AMYD5wvaQjwd+AjEbE7WYPlohT/VGBORHRExA97yfdQ4LaIeAx4TtLuKXwCsCOwC/AFoFxjqdgjwLiI2A04Dfh+RKxK29el8lzX45iLgNkRMRrYHVhaJu0bgE+m7X8BflO0r1w9AIwGvprO4zPADhGxJ/BT4ISieG8H9gdOSmn/EBgJ7CKpI8X5VkSMJbs+H5K0a48ydgBbR8SoiNgF+HmZczEzMzMzawpNNdFHRCyWNJysF+jWHrsPBA6WdHJ6PQjYBngGuDg1GrqAHdYh66OAH6Xta9Prh4BxwDUR0QU8I+muHGkNBa6UtD3Zs7D9cxyzP/BZgJTXi2XiPQc8L+lI4HfAa0X7+lO+HuZGxF8AJD0BzEjhnWQN3ILfRERI6gT+FhGd6ZilZMNBFwKfkjSZ7N7bCtgZWFyUxpPAdpJ+DNxSlNebpDQmA2y60VYMGbhZmVM2MzMza1DdXbUugW0gTdUoS6YDFwD7AZsXhQs4LCIeLY4s6XTgb2S9QW3Air5kJmlzskbRKEkBtAMh6ZQUpdysOatZ01M5qCj8LGBmRExIDcxZfSlPDtcB/xeY1CP8JMrXw8qi7e6i1928+R5aWSLOG/EkvRc4GdgjIp5PwxqLz50UPhr4KPBl4FPAsT1PIiKmAFMg3+yLZmZmZmb1qtmGLwJcDpxZ6KUpcjtwgtK8y5J2S+FDgb9ERDfZ0LzCPMUvA28rHCxpa0l3lsjvcGBqRGwbEcMjYhjwFLAvcDfZcMp2SVvx5l6lZcCYtH1YUfhQ1kxQMqko/E3l6eFO4IupnO2SNikTD2AacB5ZfRQrVw+VtAnZhCwvStoS+FjPCOk5u7aIuBH4DtlwTDMzMzOzptV0jbKIeDoiLiyx6yyyIXqL0zTwZ6XwS4DPSXqAbMjeqyl8MbA6TZxxEtlQu9Ul0j2KrKFT7EaymRunAY+TDfO7FJhdFOcM4MI0TX1x3/R5wNmS7uXNDaOZwM6FiT565PdVYHwaNjif7DmukiLi5Yg4Nz2nVqxcPVRMRCwCFpA983Y5cG+JaFsDsyQtBK4A/r3S5TAzMzMzqyeK8MivPCR9BfhjRExfjzSuAG6OiBsqVjDz4tFl1Ptiz148ujx58eiyvHj0+vPi0RsmX/Di0eXzzceLR8Prf3+85T+o93/n9nVxLaqtGZ8pq4qIuLjWZTAzMzOzFhL5GvbW+Nwo24AiYlKty9CMurp7f8OKvD0POeP15U1Sub8TzCfvt75R4e/28/Z45KWo8Lfhea8d+b9F7sp56bqU737Ie859OZdc+Va4R21VhXt/oRo9W5X9m8+bXt54eXsUXuhanisekLsGK97rXeFrV++9ptWQuweswnWTV95exFrdC33RdM/tWNPwvWlmZmZmZlZDbpQ1KEldadKPJZJ+I2nTFP5uSev0zJqkWZLGVrakJfORpG9LelzSY5JmShpZtP/WovN5pdrlMTMzMzOrJTfKGtfyiOiIiFFki0J/GSAinomIw6uVqaRKDHn9MrA3MDoidgDOBqZLGgQQEQdFxAsVyMfMzMzMrO65UdYc7iebSh5Jw9OU/4U1yy6Q1ClpsaQTUvgYSbMlzZd0e1pDreDTku5LPXB7pvinS5oiaQYwNeUxR9JD6WfvFG+/1Nt2g6RHJF1dWBeuh28AJ0TEawARMQO4DzgmpbMsrVdmZmZm1rq6u/3TIjzRR4OT1A58GPhZid2TgfcCu0XEakmbSeoP/Bg4JCL+kdY8+x5wbDpmSETsLWkc2Vpio1L4GGDfiFguaSPgIxGxQtL2wDVAYdjjbmTrpD1Dtg7ZPsA9ReXdJOXxRI+yzmMt66uZmZmZmTUrN8oa1+C0wPJwsgWj7ygR5wDgsohYDRARz0kaRdbQuiN1YrUDfyk65poU925JmxSe7QKmR0RhGrD+wMWSOsgWvt6h6PgHI+JpgKLy3UPvRP6lS5A0mazRySaD38VGA96e91AzMzMzs7ri4YuNa3lEdADbAgNIz5T1UKqhI2Bpeh6tIyJ2iYgDi/b3jF94/WpR2EnA34DRZD1kA4r2rSza7qJHwz8iXgJelbRdj3x2Bx4ucQ4lRcSUiBgbEWPdIDMzMzOzRuZGWYOLiBeBE4GT09DEYjOA4wuTc0jaDHgUeIekvVJY/+KZD4GJKXxf4MWUfk9Dgb9ERDfwGbLetr44H7hI0uCU1wHAvsAv+5iOmZmZmVnD8/DFJhARCyQtAo4E5hTt+inZ0MLFkl4H/jMiLpZ0OFmjaCjZPfAjYGk65nlJ9wGbsOY5s54uAW6UdAQwkzf3ouXxY+DtQKekLuCvZM+45V8l1czMzMysSSgi92M8ZnVpq0137vUmbis5CeRblZ4sskR65IvXlzTzypu3VNmO8PYKp6c+1GEeea9xLfPOm29fzqWS+ea9xpW+F6AK1yT330ll/+bzxuvO+Qhtn95rcsar+P1a4WtX6WtS6XurGvL+RVXjf1Qe7XV+L/RF3rq+4Q/T6+LGWfXM0pb/oD7g3SPr4lpUm3vKrOG9tOq1DZ5nQ/yTr8I/szyq8U+00ir9wbnS+VZaI1yTelerLzAH9us5Kn395X3/ipz3f966qfTfUyN8qZz3C4xK101eeeuw0u8h1bh23TnTbG/zkztWn3xnmpmZmZmZ1VDLNsokfUvS0rSo8kJJ7691meqJpA5JB61l/1hJF6XtgZL+X6rHiRUuhxeSNjMzM7Om1pLDF9PMg58Ado+IlelD/4BeDlvfPNsjoquaeVRYB9l097f23CGpX0TMI1vwGbIFo/unKfrNzMzMzKwPWrWnbCvg2YhYCRARz0bEM/DmnpnUGzQrbb9D0h2SHpL0E0l/KIr3a0nzU8/b5EImkl6RdKak3wJ7FRdA0ixJ50p6UNJjkj6YwgdJ+rmkTkkLJI1P4ZMk3STpNkmPSzqv1IlJapd0QTp+saQTUvgYSbNTOW+XtFW5ckgaAJwJTCz0fkk6XdIUSTOAqZL2k3SzpHcCvwA6UtwRlaxDMzMzs5bV3e2fFtGqjbIZwLDUCLlE0odyHPNd4K6I2B2YBmxTtO/YiBhD1rN0oqTNU/gQYElEvD8i7imRZr+I2BP4Wkof0iLQEbELcBRwpaRBaV8H2Tpiu5A1mIaVSHMy8F5gt4jYFbg6rV/2Y+DwVM7Lge+VK0dErAJOA65LC0xfl+KNIZu6/ujCgRHxd+DzwJwU94ky9QfrVodmZmZmZk2tJRtlEfEKWQNjMvAP4DpJk3o5bF/g2nT8bcDzRftOTOuEPQAMA7ZP4V3AjWtJ86b0ez4wvCifq1I+jwB/IFtrDODOiHgxIlYADwPblkjzAOCyiFid0ngO2BEYBdwhaSHwbeA9vZSjlOnruZbYutRhSZImS5onad7q1S+vR5HMzMzMzGqrJZ8pA0jPd80CZknqBD4HXAGsZk1jdVDRISXng5W0H1lDaK+IeC0N1Ssct6KX58hWpt9drLkWa5t3dmXRdhfQT9IE1vSyfT4d33NeWAFLI2IvSitVjlLyLhJdyTosKSKmAFMAhmw0vP7nRTYzMzMzK6Mle8ok7SipuCemg6xHCmAZWS8awGFFce4BPpWOPxB4ewofCjyfGhM7AR9Yz+LdDRyT8tmBbIjfo+UiR8S0NGywI02+MQM4XlK/lMZm6fh3pAlOkNRf0sheyvEy8LZ1PIdl1LYOzczMzMwaRks2yoCNyZ7VeljSYmBn4PS07wzgQklzyHqOKAo/UNJDwMeAv5A1XG4j67FaDJxFNvxufVwCtKfeu+uASYUJSXL6KfBHYHEaDnh0ekbscODcFLYQ2LuXdGYCO6/jNPe1rkMzMzOzxhfd/mkRqsaq6s1I0kCgKyJWpx6nSz0FfN9Uqw5rMXxRax1lWh/aVJsyqkb59kVbzuvX/ZaRwBsm30prhGtS72r1v3Jgv/4VTzPv+1fkvP/z1k2l/54a4fNLu/J9913puskrbx1W+j2kGteuO2ea7W35rsk/Xny0Lt44V/1pUf3f6FU2YNjourgW1dayz5Stg22AX0lqA1YBX6hxeRpRVepwy43e3nuknKrR2Mr7TzlvvLyNrUqfS95823N2wOf9J5+3XlZ3518GsF9be654eeswb2Orv/Ll2y/vvVDhxmU1Gqt5r19Xzm9D89Zh3mvXRb58897XeYef5K2Xwar8v+n+FR4k0z/3/VpZ7Tmvcd541fjSJG/e/Wv0hc2AnPn2yxlvZc73hrznW416GdrdEp/vrQG5UZZTRDxOtkiyrSPXoZmZmZnZW7XqM2VNR9K7JF0r6Yn0rNytaaKQUnGHSzq66HWHpIM2XGnzkfRKrctgZmZmZlZt7ilrAsrGgU0DroyII1NYB7Al8FiJQ4YDRwO/TK87yBZtvrXqhTUzMzOzfPowNN8am3vKmsN44PWIuKwQEBELgXsknS9piaTOolkUzwE+mGZW/AZwJjCxMNOipM0k/VrSYkkPSNoVQNLpki6XNEvSk5JOTOFDJN0iaVHKa2IKHyNptqT5km6XtFUKHyHpthQ+J02Dj6T3Srpf0lxJZ22oyjMzMzMzqyX3lDWHUcD8EuGfJOsFGw1sAcyVdDdwKnByRHwCQNLfgLER8ZX0+sfAgog4VNL+wNSUDsBOZI3AtwGPSroU+GfgmYj4eDp+qKT+wI+BQyLiH6mh9j3gWLJFn4+PiMclvZ9sGYD9gQvJZmScKunLlawgMzMzM7N65UZZc9sXuCYiuoC/SZoN7AG8lOO4wwAi4i5Jm0samvbdktZNWynp72RDJDuBCySdC9wcEXMkjSJrLN6RZtlrB/4iaWOyNdKuL5p9b2D6vQ9rFpu+Cji3XAElTQYmA2w+5D1sMmiL3mvDzMzMzKwOuVHWHJaSLQ7d07rO+1rquMI8t8ULWXcB/SLiMUljgIOAsyXNIHvGbWlE7PWmhKVNgBfWsj5Zrvl0I2IKWY8b222xW8uv4WFmZmZmjcvPlDWHu4CBkt5Y90vSHsDzZM+KtUt6BzAOeBB4mWz4YUHP13cDx6R09gOejYiyvWuS3g28FhG/AC4AdgceBd6RFolGUn9JI1M6T0k6IoVL0uiU1L3AkWn7mL5Xg5mZmVkTiW7/tAg3yppARAQwAfhImhJ/KXA62eyKi4FFZA23UyLirylsdZqY4yRgJrBzYaKPdOxYSYvJJgX5XC9F2AV4UNJC4FvAf0TEKrLeu3MlLQIWkg1bhKzBdVwKXwocksK/CnxZ0lxgKGZmZmZmLUDZ53mzxlXJ4Yta5xGf5bUr33cfeeO1KV8ZK30uefNtz/ldj/Kml7NeVvdh2uB+be254uWtw7ac8forX7798t4LOfPtzjcquOLpQf7r15Xz29C8dZj32nWRL9+893Xebzrz1stgVf4pg/4V/j62f+77tbLac17jvPHy3v99kTfv/lXIO48BOfPtlzPeypzvDXnPtxr1MrQ7X5r/9sdf1Oai9LBq2byW/6A+YPjYurgW1eaeMjMzMzMzsxryRB/W8J5++R+1LsIGlbeHKW8veN70Kq3S5etLr3810mwl1bhnalXXzXL/m1ll/VutC2Atx40yMzMzM7N61N06E120Og9frBFJ35K0VNLiNMHG+9cjrRMl/U7S1ZImSbq4kmWtJUmv1LoMZmZmZmbV5J6yGkjTxH8C2D0iVkraAhiwHkl+CfhYRDwlaVIlytgbSf0iYvWGyMvMzMzMrJm5p6w2tiJb+2slQEQ8GxHPAEhalhppSBoraVbaPl3S5ZJmSXpS0okp/DJgO2B6mt7+DZK2lXRn6o27U9I2ac2yJ9P6YJtK6pY0LsWfI+l9koakvOZKWiDpkLR/kqTrJf0GmNEjryGSbknT7C9JU+sjaYyk2ZLmS7pd0lYpfISk21L4HEk7pfD3Sro/5X1WVWrfzMzMzKyOuFFWGzOAYZIek3SJpA/lPG4n4KPAnsB3JfWPiOOBZ4DxEfHDHvEvBqZGxK7A1cBFEdEFPAbsDOwLzAc+KGkg8J6I+D3ZWmN3RcQewHjgfElDUpp7AZ+LiP175PXPwDMRMToiRgG3SeoP/Bg4PCLGAJcD30vxpwAnpPCTgUtS+IXApSnvv+asFzMzMzOzhuXhizUQEa9IGgN8kKzRc52kUyPiil4OvSX1rq2U9HdgS+DptcTfC/hk2r4KOC9tzwHGAe8Fzga+AMwG5qb9BwIHSzo5vR4EbJO274iI50rk1QlcIOlc4OaImCNpFDAKuCPNINYO/EXSxmQLSV9fNLPYwPR7H+CwojKfW+rEJE0GJgO0t29KW/uQUtHMzMzMGlbkXMPRGp8bZTWSeqxmAbMkdQKfA64AVrOmB3NQj8NWFm130ffrV5iDeQ5wPPBu4DTg68B+wN1pv4DDIuLR4oPTZCSvljmfx1JD8yDgbEkzgGnA0ojYq0c6mwAvRERHL+UsfyIRU8h62xgw8D2et9zMzMzMGpaHL9aApB0lbV8U1AH8IW0vA8ak7cNYP/cBR6btY4B70vZvyXqquiNiBbAQ+F9kjTWA24ETlLqxJO3WW0aS3g28FhG/AC4AdgceBd6RJjZBUn9JIyPiJeApSUekcEkanZK6t0eZzczMzMyamhtltbExcKWkhyUtJnu+6/S07wzgQklzyHrD1seJwL+mPD4DfBUgDYH8E/BAijcHeBvZEESAs4D+wGJJS9Lr3uwCPChpIdkzaf8REauAw4FzJS0ia/ztneIfAxyXwpcCh6TwrwJfljQXGLpOZ21mZmZm1kAU4ZFf1thabfhi0XN4a5X3bztvepVW6fL15b2sGmm2kmrcM7Wq62a5/82sslau+FNd/PGtfOKBlv9HNHDEB+riWlSbnymzhted48NNM/01V/rDa703PKpRvno/53rXTPVX7+dSjS8brP5U+trVe6O/3stXV7o90Uer8PBFMzMzMzOzGnKjzNZZmqDjHkkfKwr7lKTbalkuMzMzM7NG4uGLts4iIiQdT7be2Eyydci+R7aQtJmZmZmZ5eCeMlsvEbEE+A3wDeC7wNSIeELSbyTNl7RU0ucBJPWT9IKk8yU9JOl2Se+XNFvSk5IOSvF2kTRX0kJJiyVtV7szNDMzMzOrLs++aOtN0hDgIWAVMDYiVkraLCKek7QRMA/YB3gZeB04MCLukPQbst7afwFGAz+JiLGSLgVmRcR1kgaS3acryuXfb8DWvd7EflTYzJqdJ0VoXJ7oo7Ra3tN1M/viY/e0/Af1gTvsWxfXoto8fNHWW0S8Kuk64JW0BhrASZIOTtvvAUaQrVO2PCLuSOGdwIsRsVpSJzA8hd8HfFvStsBNEfH7nnlKmgxMBlD7UNrahlTj1MzMzMzMqs7DF61SutMPkg4AxgEfiIjRwGJgUIq3qscxK4u2+wFExFXAhLTvDknjemYWEVMiYmxEjHWDzMzMzMwamRtlVg1DgeciYrmkkcAefTlY0nYR8fuIuBC4Bdi1GoU0MzMzM6sHbpRZNdwCbCRpEXAa8Ns+Hn90miBkIbAd8ItKF9DMzMzMrF54og9reJ7ow8zME300Mk/0UZon+oCVj8xu+Q/qA3f6UF1ci2rzRB/W8LYcsmmvcbpz/gNoq+E/gEr/82nL2RTtprLv95X+Z1ur86iGvOeS1+vdXbnitbflGxRRjS/p2lXZARl5r3Ol67rS8p7HRu2Deo+U9G9rzxWvK7pzxVPOOsx7jWv1/tpP+eqlll9S563DvPdN3mtc6b/PvPLm296HAV3+UsIanYcvmpmZmZmZ1ZAbZXVCUldaLHmJpOvT+l5ri79M0hZ9SP90SSevf0nzK1dGSUMlTZX0RPqZKmlo2vduSTek7f0k3bwhy2xmZmZmtqG5UVY/lkdER0SMIps2/vhaF6hAUqWHuf4MeDIiRkTECOAp4KcAEfFMRBxe4fzMzMzMzOqWG2X1aQ7wPgBJv5Y0P81GOLlnREnDJT0i6aepl+1qSQdIulfS45L2LHHMFyT9t6TBkkZIui3lMUfSTinOFZJ+IGkmcG7qabtc0ixJT0o6sSi9T0t6MPX0/UQqP4Bf0vuAMcBZRcFnAmNTWYZLWrKuFWdmZmZm1mjcKKszqVfqY0BnCjo2IsYAY4ETJW1e4rD3AReSree1E3A0sC9wMvDNHul/BfgX4NCIWA5MAU5IeZwMXFIUfQfggIj4t/R6J+CjwJ7AdyX1l/RPwERgn4joALqAY9ZyijsDCyPijRkK0vZCYORajjMzMzNrLdHtnxbh2Rfrx+C0LhdkPWU/S9snSpqQtocB2wP/0+PYpyKiE0DSUuDOiAhJncDwonifAZ4ma5C9LmljYG/g+qJZiwYWxb++uPEE3BIRK4GVkv4ObAl8mKzna25KYzDw97Wcp6Dk9FHlwksnkvUaTgYYOngrhgx8e95DzczMzMzqihtl9WN56ml6g6T9gAOAvSLiNUmzgFLzI68s2u4uet3Nm6/xEqADeA/Zc1xtwAs98y3y6lry6UppC7gyIv69TBo9LQV2k9QWkX39IakNGA38LmcaRMQUsl4+tn77yPqfC93MzMzMrAwPX6xvQ4HnU4NsJ+AD65neAuB/AdMlvTsiXgKeknQEgDKj+5jmncDhkt6Z0thM0rblIkfE71M5vl0U/G3gobTPzMzMzKyluFFW324D+klaTDYxxgPrm2BE3EP27Ngtabr6Y4DjJC0i68U6pI/pPUzWqJqRynkHsFUvhx0H7CDp95KeIHt27bi+nYmZmZmZWXNQLVewN6uEPMMXu3Pe521rnq3b4FThvNvIl153/kf5csn7npL3fGt1HtWQ91zyer27q/dIQHtbvu/fqvH/oF2V/e4v73WudF1XWt7z2Ki91Ij10vq3lZ349k26cj44r5x1mPca1+r9tV/5CYHfpJafh/LWYd77Ju81rvTfZ155823vQ99Bpf+H3v/nmXXxJrJy6Z31/8+tygaO/HBdXItqc0+ZmZmZmZlZDXmiD2t4zy5/qdc4eb/xrYbI+c1m3jJWOr1Ky1u+SqvlNW41fbnGtbouFe95rlEvzwtvmW+pvFq9N1Q630rXdd6REtV478qbd6XlrcN6vyZ9ybcRRsSYrY17yszMzMzMzGrIjTLLRdK7JF0r6QlJD0u6VdIOkpbUumxmZmZmZo3MwxetV8rGAU0jW4/syBTWQbZ4tJmZmZlVQ85JW6zxuafM8hgPvB4RlxUCImIh8KfCa0mDJP1cUqekBZLGp/DfShpZFG+WpDGShki6XNLcFP+QtH+kpAclLZS0WNL2G+40zczMzMw2PDfKLI9RwPxe4nwZICJ2AY4CrpQ0CLgW+BSApK2Ad0fEfOBbwF0RsQdZo+98SUOA44ELI6IDGAs8XYXzMTMzMzOrG26UWaXsC1wFEBGPAH8gWxT6V8ARKc6ngOvT9oHAqZIWArOAQcA2wP3ANyV9A9g2IpaXykzSZEnzJM3r6nqlOmdkZmZmZrYBuFFmeSwFxvQSp+QcsxHxZ+B/JO0KTCTrOSvEPywiOtLPNhHxu4j4JXAwsBy4XdL+ZdKdEhFjI2Jse/vG63JOZmZmZmZ1wY0yy+MuYKCkLxQCJO0BbFsU527gmLRvB7Jer0fTvmuBU4ChEdGZwm4HTkiTiCBpt/R7O+DJiLgImA7sWq2TMjMzM6tr3d3+aRFulFmvIiKACcBH0pT4S4HTgWeKol0CtEvqBK4DJkXEyrTvBuBIsqGMBWcB/YHFaVr9s1L4RGBJGta4EzC1OmdlZmZmZlYfFDVabd6sUgYOGtbrTazSoys3iCDf31jeMlY6vUrLW75Kq+U1bjV9uca1ui6pE75i2iqcXl59qb9avTdUOt9K13V3zs851Xjvypt3peWtw3q/Jn3Jt9JpvvTqk3XxT2Xl4ttb/oP6wF0/WhfXotq8Tpk1vK4W6to2M6s3eT8tVfqTZb3n25e8m+UTZ6XPt9JfrgC4M8LqlYcvmpmZmZmZ1ZAbZU1A0rskXZue93pY0q1pso1alumba9lXtS4QAAAgAElEQVQ3VNLUVN4n0vbQtO/dkm5I2/tJunlDldnMzMysnkR0tfxPq3CjrMGl2QunAbMiYkRE7Ax8E9iytiWjbKMM+BnZDIsjImIE8BTwU4CIeCYiDt8QBTQzMzMzqwdulDW+8cDrEXFZISAiFkbEHGXOl7REUqekiYU4kk5JYYsknZPCOiQ9IGmxpGmS3p7CZ0k6V9KDkh6T9MEUPknSxUVp3px6t84BBktaKOnq4sJKeh/ZmmdnFQWfCYyVNELS8DQbo5mZmZlZS3CjrPGNAuaX2fdJoAMYDRwAnC9pK0kfAw4F3h8Ro4HzUvypwDciYlegE/huUVr9ImJP4Gs9wt8iIk4FlqdFoY/psXtnYGEU9Uen7YXAyF7P1szMzMysybhR1tz2Ba6JiK6I+BswG9iDrIH284h4DSAinkvPdG0aEbPTsVcC44rSuin9ng8MX48yidITNJULL52INFnSPEnzurtfXY/imJmZmZnVlqfEb3xLgXLPYJWbS7ZPDaCksBB0F2vum9W8uWE/KEc6S4HdJLVFRDeApDay3rzf5S1MREwBpgD0G7C157c1MzOz5hNe9qdVuKes8d0FDJT0hUKApD0kfQi4G5goqV3SO8h6vh4EZgDHStooxd8sIl4Eni88LwZ8hqxnbW2WAR2S2iQNA/Ys2ve6pP49D4iI3wMLgG8XBX8beCjtMzMzMzNrKe4pa3AREZImAD+SdCqwgqyx9DWyRtlewCKynrFTIuKvwG2SOoB5klYBt5LNlvg54LLUWHsS+Ndesr+XbObETmAJ8FDRvinAYkkPlXiu7Djgx5J+T9Zrd38KMzMzMzNrOfLK5tboPHzRzKx2yo2T76nSb9T1nm9f8u5LmvWs0uebrfpTWXk/976+6s91cVlWLLy55T/jDOr4RF1ci2pzT5k1vP7t9X0bt1Xhn0olqc4/DtR7/fVFNT5gVFJbnd8LfVH3dZ2zfLU8j7z3Q73XdV7VeC9spvevWqjGvdVM73PWXOr706yZmZmZWavq9kQfrcITfTQISV1pMeYlkq4vTNKxlvjLJG2xjnm9aVHoDSEtUD12Q+ZpZmZmZlYP3ChrHIXFmEcBq4Dja12gUiS599XMzMzMrA/cKGtMc4D3AUj6taT5kpZKmtwzoqThkh6R9NPUy3a1pAMk3SvpcUl7viX1Nx//cUn3S9pC0jsk3ShpbvrZJ8U5XdIUSTOAqamn7SZJt6U8zitK78CU3kOpx2/jHvm1S7oilbVT0kmVqDAzMzMzs3rlXo0Gk3qiPgbcloKOjYjnJA0G5kq6MSL+p8dh7wOOACYDc4GjgX2Bg8mmwj+0TF4TgP8NHBQRz0v6JfDDiLhH0jbA7cA/pehjgH0jYrmkSUAHsBvZotOPSvoxsJxsTbIDIuJVSd9I6Z9ZlG0HsHXqEUTSpn2vJTMzMzOzxuFGWeMYLGlh2p4D/Cxtn5gaTwDDgO2Bno2ypyKiE0DSUuDOtL5ZJzC8TH7jgbHAgRHxUgo7ANi5aDakTSS9LW1Pj4jlRcffmRakRtLDwLbApsDOwL0pjQFka5QVexLYLjXibiFb6PotUq/gZIB+/TajX7+NS0UzMzMza1zhiT5ahRtljWN5RHQUB0jaj6yhtFdEvCZpFjCoxLEri7a7i153U/4eeBLYDtgBmJfC2lJexY2vwpS1r64lz66Uj4A7IuKoMnmSeuRGAx8Fvgx8Cji2RLwpZAtUM3jwti2/hoeZmZmZNS4/U9bYhgLPpwbZTsAHKpj2H4BPkj0jNjKFzQC+UoggqaPUgWvxALCPpMLzcBtJ2qE4Qpoxsi0ibgS+A+y+juU3MzMzM2sIbpQ1ttuAfpIWA2eRNXoqJiIeBY4Brpc0AjgRGCtpcRqS2KcZICPiH8Ak4JpU5geAnXpE2xqYlYZqXgH8+3qdhJmZmZlZnVOER35ZY6v34Ytta57Bq0uivstX7/XXF6rzc2mr83uhL+q+rnOWr5bnkfd+qPe6zqsa74XN9P5VC9W4t/Le1398rrMuLt6K+b+u6884G8KgMYfWxbWoNj9TZmZmZmZWj7q7al0C20DcKLOG93rX6loXwawptMRXkVZxzdJTZmZWS36mzMzMzMzMrIaarlEmaYKkSLMRViP9DkkHFb0+WNKpfTh+maROSYskzZD0rvUoy36Sbl7HYw+VtPN65D1S0l2SHpP0uKTvKH1dmsq1d1HcKyQdvq55mZmZmZk1s6ZrlAFHAfcAR1Yp/Q7gjUZZREyPiHP6mMb4iBhNtv7XN3vulNS+fkXM5VCyhZz7TNJgYDpwTkTsAIwG9ga+lKLsl16vN2Wa8T41MzMzMwOarFEmaWNgH+A4ihpl6YP9xZIelnSLpFsLPTep52qLtD02LcCMpD0l3SdpQfq9o6QBwJnAREkLJU2UNEnSxemYLSVNS71gi4p7i8q4Gyis2fWKpDMl/RbYS9KHU96dki6XNDDF+2dJj0i6h2wdscI5ni7p5KLXSyQNT9ufTdPYL5J0VSrXwcD56TxGSDox1c9iSdf2Uu6jgXsjYgZARLxGtn7ZqSnP44GTUtofTMeMS/X4ZHGvmaSvS5qb8j0jhQ2X9DtJlwAPAcN6KY+ZmZlZ84lu/7SIZpvo41Dgtoh4TNJzknaPiIeACcCOwC7AlsDDwOW9pPUIMC4iVks6APh+RBwm6TRgbER8BUDSpKJjLgJmR8SE1Nu1cS95fALoTNtDgCURcZqkQcDjwIfTuUwFvijpMuA/gf2B3wPX9VYhyhZ+/hawT0Q8K2mziHhO0nTg5oi4IcU7FXhvRKyUtGkvyY4E5hcHRMQTqVH8HHAZ8EpEXJDSPg7YCtiXbF2y6cANkg4Etgf2JJtjYLqkccAfya7Xv0bElzAzMzMza2JN1VNGNnSx0MtzbXoNMA64JiK6IuIZ4K4caQ0lWzR5CfBDsoZIb/YHLgVIeb1YJt7MtDjyJsDZKawLuDFt7wg8FRGPpddXpnPYKYU/HtkCc7/IWaYbIuLZVK7nysRbDFwt6dNAb9MZCii3bka58F9HRHdEPEzWMAY4MP0sIOsR24mskQbwh4gouxi2pMmS5kma1939ai/FNTMzMzOrX03TUyZpc7IGyChJAbQDIemUFKVcY2E1axqng4rCzwJmpl6v4cCsChZ3fKGRVGRFRBQWo1jb/MJ5zgPWnMvaGlDFPk7W8DsY+I6kkRFRrnG2NMV9g6TtyHrHXlbp6ZFXFkcv+n12RPykR1rDgbW2tCJiCjAFoN+ArVt+YUUzMzMza1zN1FN2ODA1IraNiOERMQx4imzI3N3AkZLaJW0FjC86bhkwJm0fVhQ+FPhz2p5UFP4y8LYyZbgT+CJkk3VI2mQdz+URYLik96XXnwFmp/D3ShqRwo8qOmYZsHvKe3fgvUVl+lRqtCJps57nkSbSGBYRM4FTgE2BjdNzdVNLlO9qYN80rLMw8cdFwHk90+7F7cCxadgjkraW9M4cx5mZmZmZNY1mapQdBUzrEXYj2aQU08ie0eokG144uyjOGcCFkuaQDSEsOA84W9K9ZL1uBTOBnQsTffTI76vAeEmdZM9c5Rny+BYRsQL4V7Lhk51AN3BZCp8M3JIm+vhDj3PdLA2L/CLwWEprKfA9YLakRcAPUvxrga9LWkA2ZPAXKa8FwA8j4gVgG2B5ifItBw4Bvi3pUbJ6nQtcnKL8BpjQY6KPUuc5A/glcH/K+wbyNebMzMzMml93t39ahLJHk1qLpCsomuTCSpN0PnBVRCyudVnWxsMXzSpjbeOmzcopM2TdrKGtWvl0XdzYKx64ruU/4wz6wMS6uBbV1jTPlFnlRcTXa10GM9twWv4/v62TVvxy18ys0lqyURYRk2pdBjMzMzMzM2iuZ8qagqQJkkLSTlVKv0PSQUWvD05rlOU9flla0HqRpBmS3lUUvsU6lulQSTuvy7FmZmZmZo3OjbL6cxRwD3BkldLvAN5olEXE9Ig4p49pjI+I0cA84JsVKNOhgBtlZmZmZtaS3CirI2lq+H2A4yhqlClzsaSHJd0i6VZJh6d9b/RQSRoraVba3lPSfZIWpN87ShoAnAlMLMweKWmSpIvTMVtKmpZ6wRZJ2ruXIt8NvK9noKRfS5ovaamkyUXhr0j6Xkr7gZTf3mRro52fyjRC0onpXBdLurZn+mZmZmYtIbr90yLcKKsvhwK3RcRjwHNpvTGACcCOwC7AF4DeGkuQrWk2LiJ2A04Dvh8Rq9L2dRHRERHX9TjmImB26gXbnWyR6LX5BNl0+D0dGxFjgLHAiYU10oAhwAMp/buBL0TEfcB04OupTE8ApwK7RcSuwPE5ztXMzMzMrGG5UVZfjiJbP4z0u7A49DjgmojoiohngLtypDWUbJ2zJcAPybdm2v5k67iR8nqxTLyZaT20TYCzS+w/Ma2J9gAwjGwdNIBVwM1pez4wvEz6i4GrJX0aWF0qgqTJkuZJmtfd/eraz8rMzMzMrI615OyL9Sj1Ju0PjJIUZAtWh6RTUpRycw6vZk3jelBR+FnAzIiYIGk4MKuCxR0fEc+W2iFpP+AAYK+IeC0NpyyU6/VYM3dyF+Xvv4+TNUQPBr4jaWREvKlxFhFTgCngdcrMzMzMrLG5p6x+HA5MjYhtI2J4RAwDngL2JRvqd6SkdklbAeOLjlsGjEnbhxWFDwX+nLYnFYW/DLytTBnuBL4IkPLaZB3OYyjwfGqQ7QR8IMcxb5RJUhswLCJmAqcAmwIbr0M5zMzMzMwaghtl9eMoYFqPsBuBo1P442TPb10KzC6KcwZwoaQ5ZL1PBecBZ0u6l6zXrWAmsHNhoo8e+X0VGC+pk2x4YZ4hjz3dBvSTtJist+6BHMdcC3xd0gKyoY6/SGVYAPwwIl5Yh3KYmZmZNbbubv+0CK0ZTWaNQtIVwM0RcUOty1IPPHzRzMzMKmn1qj+r1mUAWHHv1S3/GWfQPsfUxbWoNj9TZg2vTc3xt1rpL0jUYvXSLOfbF64bqybfN1YtwveWWU9ulDWgiJhU6zKYmZmZmVll+JkyMzMzMzOzGmqqRpmkCZIizfpXjfQ7JB1U9PpgSaf2MY3dUhk/mjP+mZIO6GtZy6T1yjoeJ0nflvS4pMckzZQ0smj/N4u2h6e10czMzMxsfdR6ko16+GkRTdUoI5vB8B7gyCql3wG80SiLiOkRcU4f0yiU8ajeIqY8TouI/9fHPCrty8DewOiI2IFswejpkgrrj32z7JF9JMlDas3MzMyspTRNo0zSxsA+wHEUNcpSL8/Fkh6WdIukWyUdnvYtk7RF2h6bFjpG0p6S7pO0IP3eUdIA4ExgYmE6eUmTJF2cjtlS0jRJi9LP3iXKKLL1yCYBBxYaNal36XeS/lPSUkkzJA1O+67oUd7vS7pf0jxJu0u6XdITko4v1IOkOyU9JKlT0iElyrGVpLvTeSyR9MFeqvcbwAkR8RpARMwA7gOOkXQOMDildXWK317mXEZIuk3SfElzCj2a6Rx/IGkmcK6kD6X0FqZrUG5dNTMzMzOzhtc0jTLgUOC2iHgMeE7S7il8ArAjsAvwBbIen948AoyLiN2A04DvR8SqtH1dRHRExHU9jrkImB0Ro4HdgaUl0t0HeCoingBmUdTrRrY+1/+NiJHAC7x5Iehif4qIvYA5wBVkjbwPkDUYAVYAEyJid7JFpv+P3jqF1tHA7RHRAYwGFpariLSA9JBU5mLzgJERcSqwPNXJMb2cyxSyxt0Y4GTgkqL0dgAOiIh/S/u+nMr3QWB5iXJNTg3Ted1dr5YrvpmZmZlZ3WumoWJHAT9K29em1w8B44BrIqILeEbSXTnSGgpcKWl7IID+OY7ZH/gsQMrrxTJlvLaojJ8Bbkqvn4qIQuNoPjC8TD7T0+9OYOOIeBl4WdIKSZsCrwLflzQO6Aa2BrYE/lqUxlzgckn9gV8X5dsXIqubUt5yLqknc2/g+qI24sCiY65P9QZwL/CD1PN2U0Q83TODiJhC1shjwMD3tPwaHmZmZmbWuJqiUSZpc7JG0ShJAbQDIemUFKXch/bVrOktHFQUfhYwMyImSBpO1qu1vmVsJ+sxOljSt8gaNZsXDc1bWRS9CxhcJqlCvO4ex3STXc9jgHcAYyLidUnLePO5ERF3p0bbx4GrJJ0fEVNLZRYRL0l6VdJ2EfFk0a7dgdm9lLH4XNqAF1LvVylvdHdFxDmSbiHrSXxA0gER8UiZ48zMzMya0prvq63ZNcvwxcOBqRGxbUQMj4hhwFPAvsDdwJGS2iVtRTakr2AZMCZtFw8XHAr8OW1PKgp/GSj3fNOdwBcha4ClYX/FDgAWRcSwVMZtgRvJhl1W0lDg76lBNh7YtmcESdumOP8J/IysgYWkqZL2LJHm+cBFRc+GHUBWt79M+19PvW5lRcRLwFOSjkhpSNLoUnEljYiIzog4l2yYZFVm0zQzMzMzqwfN0ig7CpjWI+xGsmenpgGPkw33u5Q39+6cAVwoaQ5Zj07BecDZku4l63UrmAnsXJjoo0d+XwXGS+okG7I3ssf+tZWxkq4GxkqaR9ZrVqqHaT9goaQFZI3RC1P4rsBfSsT/MdmQx05JjwLfAQ6JiMKzXlOAxUUTfZRzDHCcpEVkz9y9ZRKS5GtpApJFZM+T/Xcv6ZqZmZmZNSxFtNbjOJKuAG6OiBtqXZZ6knr2fhYRR9S6LH3VLM+UVfpv8a3zuzSmvPXSLOfbF64bqybfN1Ytov7vrRUr/lgXhVx+9xVN8RlnfQweN6kurkW1NcUzZbb+0vDChmuQAXS32BcLebXaFy6tdr594bqxdVLpL4oqmpo1Mjf4zd6q5RplETGp1mUwMzMzM+tVd3etS2AbSLM8U9ZQJIWkq4pe95P0D0k393Jc8WLVp0s6udplXUtZ3iPpvyQ9nhavvlDZAttI6pB0UFHcmpbVzMzMzKyeuVFWG6+STd9fmPb+I6yZ7bHupcWobyJb42x7soWfNwa+l6J08OaFsdc3v/beY5mZmZmZNSY3ymrnv8nWCYNsZsZrCjskbSbp15IWS3pA0q5rS0jSLElj0/YWaW0yJI2U9GCaLXJxWgwbSZ9NrxcVeuwkHVGY8VDS3b2UfX9gRUT8HN5YLPsk4Ng0YciZwMQes1TunMr5pKQTi8r+6aIy/qTQAJP0iqQzJf0W2Ku3yjQzMzMza1RulNXOtWTrpw0im4r+t0X7zgAWRMSuwDeBkgs753A8cGFasHks8LSkkcC3gP0jYjTZVP4ApwEfTWEH95LuSLJp/9+QJgr5IzA8pXVdRHRExHUpyk7AR4E9ge9K6i/pn4CJwD6pjF1k0+YDDAGWRMT7I+KedTt9MzMzM7P613ITfdSLiFgsaThZL9mtPXbvS1rMOiLukrS5pKHrkM39wLckvQe4KSIel7Q/cENEPJvSfy7FvRe4QtKvyIYmro2AUtNylQsHuCUiVgIrJf0d2BL4MNni3XPTTEyDgb+n+F1k67iVLoA0GZgMoPahtLUN6aXIZmZmZg0mPNFHq3BPWW1NBy6gaOhiUmqu2LXNTbyaNddy0BsHRPySrNdrOXB7apCVbDhFxPHAt4FhZAtLb76W/JaS9bytKXA2bHEY8ESZY1YWbXeRfSEg4MrUo9YRETtGxOkpzoo0LLKkiJgSEWMjYqwbZGZmZmbWyNwoq63LgTMjorNH+N2kYXyS9gOeTcMDy1lG1uMEcHghUNJ2wJMRcRFZA3BX4E7gU4VGl6TN0u8REfHbiDgNeBYYJmlrSXeWyO9OYCNJn03HtgP/B7giIl4DXgbeluP87wQOl/TOQlkkbZvjODMzMzOzpuFGWQ1FxNMRcWGJXacDYyUtBs4BPtdLUhcAX5R0H7BFUfhEYImkhWTPdE2NiKVksyTOlrQI+EGKe76kTklLyBqFi4CtyHrhepY7gAnAEZIeBx4DVpA9/wYwk2xij+KJPkqd/8NkvXMz0rnekfI0MzMzM2sZyj5fm72VpK8Af4yI6bUuy9r0G7C1b2IzszpXaly+tab0HHldW7Xy6boo5PKZP235zziDx3++Lq5FtXmiDysrIi6udRkqpSX+mq3i8v4n9P1l1dIIH17NrIq6PdFHq/DwRTMzMzMzsxpyo6yBSHqXpGslPSHpYUm3StphHdJZJmmL3mO+EX8/STf3NZ8+lukKSYf3HtPMzMzMrLm4UdYglI1hmQbMiogREbEz2cQaW9a2ZGZmZmZmtj7cKGsc44HXI+KyQkBELIyIOZK+LmmupMWSzgCQNFzSI5KuTOE3SNqoKL0TJD2UZlzcKR2zp6T7JC1Iv3fsWYg0bf2vU5oPSNo1hZ8u6SpJd0l6XNIXUrgknS9pScprYlH4xanH7xbgnUV5nJPCF0u6oAp1aWZmZmZWNzzRR+MYBczvGSjpQGB7YE+y+QamSxoH/BHYETguIu6VdDnwJbLp8yFb+2x3SV8CTgY+DzwCjIuI1ZIOAL4PHNYjyzOABRFxaFqMeirQkfbtCnwAGAIsSI2tvdL+0WTT9c+VdHcK3xHYhay372Hg8rRu2gRgp4gISZuue5WZmZmZNbDwRB+twj1lje/A9LMAeIhsPbLt074/RcS9afsXwL5Fx92Ufs8HhqftocD1aa2yHwIjS+S3L3AVQETcBWwuaWja918RsTwiniVbq2zPFP+aiOiKiL8Bs4E9gHFF4c8Ad6U0XiJb8+ynkj4JvFbqpCVNljRP0rzu7lfXWkFmZmZmZvXMjbLGsRQYUyJcwNkR0ZF+3hcRP0v7es7oXfx6ZfrdxZoe07OAmRExCvgXYFCZ/HqKHr+Lw9c2n/NbZhyPiNVkjbkbgUOB20oeGDElIsZGxNi2tiFrycLMzMzMrL65UdY47gIGFp7VApC0B1nP0rGSNk5hW0sqPJ+1jaS90vZRwD295DEU+HPanlQmzt3AMSmv/ciGQb6U9h0iaZCkzYH9gLkp/kRJ7ZLeQdZD9mAKPzKFb0X2zBzpPIZGxK3A11gzNNLMzMzMrCn5mbIGkZ6vmgD8SNKpZEP8lpE1XF4A7k+LjL4CfJqsB+x3wOck/QR4HLi0l2zOA66U9L9ZM5ywp9OBn0taTDa08HNF+x4EbgG2Ac6KiGckTSN7fmwRWc/YKRHx1xS+P9AJPEY2rBHgbcB/SRpE1st2Ui9lNjMzMzNraIp4ywgyawKShgM3p6GIGyK/04FXImKDz5bYb8DWvd7EaxtDaVZO3ndH319WLenLNjPbwFatfLou/viWz7ik5T+oDz7wS3VxLarNPWXWElr+Hc2qyveXVYu/ODUzaw1ulDWpiFhGNo3+hsrv9A2Vl5mZmZlZM/FEH2ZmZmZmZjXkRlkDkvQuSddKekLSw5JulbTDeqa5n6S9K1VGMzMzMzPLx8MXG4yyp76nAVdGxJEprAPYkmwWQyS1R0RXH5P+/+zdebxVVf3/8df7XkQmhXKq1CIVJUHCQL45o/G1X+Y3Iy01LaciR77ml8y+WTmUOfTVnA2HUEMtTc0pwZxFlNnL4JSKJVppmgkiCPfz+2Ovo9vjOeeeC/dy7r3n/Xw8zuPuu/aa9j4HOB/W2muNJFu58ZG2662ZmZmZrbJornUPbA3xSFnnsxvwTkRcWkiIiDlAo6T7JF0LzJXUX9K8Qh5J49IKiUgam0bYmtKIW3/gCOC7kuZI2lnSf0l6TNJsSX+StFEq20fSryXNTeX3Sel7SJoqaZakG3L7pv1Y0nRJ8ySNT0Elku6XdKakaZKelrRzSh+U0uak+ge0/y01MzMzM6sdj5R1PoOBmWXOjQAGR8TzKdAq50TgkxGxTFK/iPiXpEvJLWkv6UPAZ9P+aN8CTgD+B/gR8EZEbFPIJ2l94CRgVEQskfR94HjgVODCiDg15b0G2Au4LfWjW0SMkLQn8BNgFFlweF5ETJTUHWhs/S0yMzMzM+s8HJR1LdMi4vkq8jUBEyXdAtxSJs8mwG8lfRToDhTqHQXsX8gUEa9L2gvYGpiSBsK6A1NTlt0knQD0Aj4MzOe9oOym9HMm0D8dTwV+KGkT4KaIeKZU5ySNAcYAqLEvDQ29q7hsMzMzM7OOx9MXO5/5wLAy55bkjlfw/ve3R+74i8BFqZ6ZkkoF5xeQjXJtA3wnV158cFsmAXdHxND02joiDpfUA7gY2DfVc1lRP5alnytJ/0EQEdcCXwKWApMk7V7qQiNifEQMj4jhDsjMzMzMrDNzUNb53AusLenbhQRJ2wG7FuX7O7ChpPUkrU02bRBJDcCmEXEf2ZTEfkAf4E1gnVz5vsCidHxwLn0ycEyu7Q8BjwI7StoipfVKq0EWArBX0zNm+7Z0cZI2A56LiPOBW4EhLZUxMzMzM+vMPH2xk0nPeI0GfinpROBtYCFF0xAj4h1JpwKPkU09fDKdagR+I6kv2QjXuemZstuAGyXtDRwLnAzcIGkRWdD1yVT+p8BFaRGRlcApEXGTpEOA61IACHBSRDwt6TJgburj9CoucT/gIEnvAH8jey7NzMzMrP40e/XFeqGI4ploZp1Lt+4b+0NsZmZmbWbF8kWqdR8Alv7x/Lr/jtPzC2M7xHvR3jx90czMzMzMrIYclJmZmZmZmdWQg7JVJCnSvluF37tJekXS7a2s52OSbmyjPk2Q9HzaeHmOpLEp/U5J/SqUW5j2GmtNW4Mk3Zs2fn5G0o9yG0OPlLRDUb9aXOTDzMzMzKweeaGPVbcEGCypZ0QsBf6T91YrrIqkbhHxElWsStgK34uI9wV5EbFnG9aPpJ5kKyMeGRGTJfUCfg8cRbbU/khgMfBIG7Qlsmcf/aSrmZmZ1Rcv9FE3PFK2ev5ItucXwAHAdYUTkkZIekTS7PRzq5R+iKQb0mqHkyX1TysZFs7dJOmuNPp0Vq6+PSRNlTQrle9TbScLI2GSeku6Q9LjkuZJ2i+X7dhU91xJA1uo8uvAlIiYDBARb5Etk3+ipP7AEcB302jdzqnMLuk+PJcfNZP0PUN1164AACAASURBVEnTJTVJOiWl9Zf0hKSLgVnAptVeq5mZmZlZZ+OgbPVcD+yfNkkeQrb8fMGTwC4RsS3wY+D03LntgYMjotTGyEPJloXfBthP0qZpauFJwKiI+AwwAzi+TJ/Ozk1f3Kbo3P8DXoqIT0fEYOCu3LlXU92XAONauO5BwMx8QkQ8S7bf2WvApWRL7Q+NiIdSlo8CO5Htl3YGZIEmMAAYka57mKRdUv6tgKsjYtuIeKGF/piZmZmZdVqevrgaIqIpjQwdANxZdLovcJWkAUAAa+XO3R0Rr5Wp9p6IeANA0gLgE2QbPG8NTEmPbXUHppYp/4HpizlzgV9IOhO4PRcwAdyUfs4EvlKmfIHIrqmUcum3pCmICyRtlNL2SK/Z6fc+ZEHaX4AXIuLRsh2QxgBjANTYl4aG3i102czMzMysY3JQtvpuBX5B9hzVern004D7ImJ0Ctzuz51bUqG+ZbnjlWTvkcgCuQNWp6NpM+dhwJ7AzyVNjojC5syFdgttVjIf2CWfIGkzYHFEvJkCx2L561Lu588j4ldFdfWn8j0iIsYD48H7lJmZmZlZ5+bpi6vvSuDUiJhblN6X9xb+OGQ123gU2FHSFgCSeknasrWVSPoY8FZE/IYskPxMC/lHSLq6xKmJwE6SRqV8PYHzgcIzcG8C61TRpUnAYYXn4yRtLGnDqi7GzMzMrKuLZr/qhIOy1RQRL0bEeSVOnUU2GjUFaFzNNl4hC+yuk9REFqS1tBhHKdsA0yTNAX4I/LSF/B8Hlpboz1Jgb+AkSU+RTYucDlyYstwGjC5a6OMD0kIh1wJTJc0FbqS6YM7MzMzMrMtQhGd+WWmSzgauiYimWvelEk9fNDMzs7a0Yvmiks9irGlLbz+n7r/j9Nzr+A7xXrQ3P1NmZUXE92rdB7Naqot/BaxDK/OMrtUpfx7Mui5PXzQzMzMzM6shj5R1YpJWkj3P1Q14gmzvs7cq5F8IDI+IV1ehrSPIFgkptfBHpb4VfBlYH/hmRIwtU2YkMC4i9mpt/8zMzMy6nOb6Weii3jko69yWRsRQAEkTgSOAc9qjoYi4tJVF3u1bzkKyja/NzMzMzCzx9MWu4yGgsGT+QZKmpdUPfyXpA6s/SrpF0kxJ89NGzIX0wyU9Lel+SZdJujClnyxpXDreQtKfJD0uaZakzavpoKSRkm5Px7um/s2RNFtSYdXFPpJulPSkpInyBHozMzMz6+IclHUBkroBXwDmSvoUsB+wYxqpWgkcWKLYYRExDBgOjJW0XtrH7EfAZ4H/pPyy+xOBiyLi08AOwMsl8vTMBV03lzg/Djg69XFn3lt6f1vgOGBrYDNgxxYu38zMzMysU/P0xc6tZ9pzDLKRsiuAMcAwYHoaZOoJ/KNE2bGSRqfjTYEBwEeAByLiNQBJNwDv26Q6jWhtHBE3A0TE22X6Vmr6Yt4U4Jw07fKmiHgx9XdaRLyY2poD9AceLi6cRvfGAKixLw0NvSs0ZWZmZmbWcTko69w+EPik6X5XRcQPyhVKC2qMAraPiLck3Q/0oLoVwNtkOmFEnCHpDmBP4FFJo9KpZblsKynzGY2I8cB48D5lZmZm1kWFF/qoF56+2PXcA+wraUMASR+W9ImiPH2B11NANpBsuiLANGBXSR9KUyL3Ka48Iv4NvCjpy6n+tSX1am0nJW0eEXMj4kyyxT/KTZU0MzMzM+vSHJR1MRGxADgJmCypCbgb+GhRtruAbun8acCjqewi4HTgMeBPwALgjRLNfINs+mMT8AjZtMfWOk7SPEmPkz1P9sdVqMPMzMzMrNNThGd+2Xsk9YmIxWmk7GbgysLzYx2Vpy9ae/HSn1ZrXoDW8vx5WHOWvf3XDnGzl/7hrLr/jtNz7xM6xHvR3vxMmRU7OT3f1QOYDNxS4/6Y1Uzd/0toNef/OLX38efB7AMkXQnsBfwjIgbn0o8FjgFWAHdExAkp/QfA4WRrF4yNiEkp/f8B5wGNwOURcUZK/yRwPfBhYBbwjYhYLmlt4GqyBfb+CewXEQsrtVGJgzJ7n4gYV+s+mJmZmRnQ7IU+qjABuJAsQAJA0m7A3sCQiFiWW2tha2B/YBDwMeBPkgorjV9EtiXUi2SrmN+aHgs6Ezg3Iq6XdClZsHVJ+vl6RGwhaf+Ub79ybUTEykoX4WfKzMzMzMysU4qIB4HXipKPBM6IiGUpT2F7qL2B6yNiWUQ8D/wZGJFef46I5yJiOdnI2N5pVfPdgRtT+auAL+fquiod3wh8LuUv10ZFDso6EEkr02bL8yU9Lul4SR36PZK0UNL6ZdLn5jaQ3kHSxyTdWKqeVKa/pHnt22MzMzMz6+K2BHaW9JikByRtl9I3Bv6ay/diSiuXvh7wr4hYUZT+vrrS+TdS/nJ1VeTpix3Lu/uOpWHWa8mWr//JmmhcUrfch64t7BYRrxal7duG9ZuZmZlZFyZpDDAmlzQ+7VdbSTfgQ2TbPm0H/E7SZpRewysoPVAVFfJT4VylMmV16FGYepaGWccAxyjTKOlsSdMlNUn6DmQbQaf/AfidpKclnSHpQEnT0kjV5infBpJ+n8pPl7RjSj9Z0nhJk4GrJQ1KZeekdgakfLdImplG8caU6XZF+ZGwcu0AjZIuS+1MltRz9e6kmZmZmXVWETE+IobnXi0FZJCNTt0UmWlAM7B+St80l28T4KUK6a8C/dKq5Pl08mXS+b5k0yjL1VWRg7IOLCKeI3uPNiR7mPCNiNiOLOL/dloNBuDTwH8D25DtIbZlRIwALgeOTXnOI3tIcTuyTaEvzzU1DNg7Ir4OHAGcl0bshpN9sAAOi4hhKW2spPWquIT7UtD1WIlz5doZAFwUEYOAf1FiA2szMzOzuhDNfq2aW8ieBSMt5NGdLMC6Fdhf0trpe/QAYBowHRgg6ZOSupMt1HFrZEvg3sd7M70OBv6Qjm9Nv5PO35vyl2ujIk9f7PgKQ6B7AEMkFT4Ufcne5OXA9Ih4GUDSs2RL2QPMBXZLx6OArXN7nKwraZ10fGtELE3HU4EfStqE7H8YnknpYyWNTsebprb/2ULfS01fLPhAO6lvz0fEnJRnJtC/VOH8ULYa+9LQ0LuFrpiZmZlZVyPpOmAksL6kF8ke+7kSuDLN0FoOHJwCpvmSfgcsIFsq/+jCqoiSjgEmkS2Jf2VEzE9NfB+4XtJPgdnAFSn9CuAaSX8mGyHbHyAiyrZRiYOyDizNfV0J/IMsODu2eJ8DSSOBZbmk5tzvzbz3HjcA2+eCr0J5gCWF3yPi2jSy9UVgkqRvpXpGpfJvSbqfbB+zVVamneeKrmUlUHL6Yhq6Hg/ePNrMzMysXkXEAWVOHVQm/8+An5VIvxO4s0T6c5RYPTEi3ga+2po2KvH0xQ5K0gbApcCFKbKfBBwpaa10fktJrRkemky2gV6h/qFl2t0MeC4izicbfh1CNir3egrIBpI9NLlayrRjZmZmZlZ3PFLWsfSUNAdYi2y48xrgnHTucrKpfLPSHgiv8N4+CdUYC1wkqYnsfX+Q7LmuYvsBB0l6B/gbcCrZSNoRqexTwKOtvK5SSrWzbhvUa2ZmZmbWqSgbhDHrvDx90czMzNrSiuWLSi1rvsYtvfGndf8dp+e+J3WI96K9eaTMzMzMVllX+bbUHt98q7031bbdVe61mX2QnykzMzMzMzOrIQdlHZiklWmfr8Krv6Thks6vUGakpNtb2c7JksaVSH9kVfpdRXt9JV0t6dn0ulpS33TuY5JuTMetvhYzMzMzs87G0xc7tqVpc+W8hcCMNdF4ROywunVIaiyxN8MVwLyI+GbKcwrZQiZfjYiXeG+DPjMzMzOzLs8jZZ1MfvRI0q65UbTZuc2g+0i6UdKTkiYqt2N0K9tanH7+VtKeufQJkvaR1CjpbEnTJTVJ+k6uj/dJupZsA+t8nVsAw4DTcsmnAsMlbZ5GA+etSn/NzMzMupTmZr/qhEfKOrbCEvkAz0fE6KLz48h2CZ8iqQ/wdkrfFhgEvARMAXYEHl6NflxPtoT9nZK6A58DjgQOB96IiO0krQ1MkTQ5lRkBDI6I54vq2hqYkx89i4iV6ToHAU2r0U8zMzMzs07HQVnHVmr6Yt4U4BxJE4GbIuLFNCg2LSJeBEjBTn9WLyj7I3B+Crz+H/BgRCyVtAcwRFJhumFfYACwPPWhOCCDbPGoUgtNlUsvSdIYYAyAGvvS0NCafbTNzMzMzDoOT1/sxCLiDOBbQE/gUUkD06lluWwrWc3gOyLeBu4HPk82YnZ9OiXg2IgYml6fjIjCSNmSMtXNB7aV9O5nLx1/GniiFX0aHxHDI2K4AzIzMzMz68wclHVikjaPiLkRcSbZ4h8DW8j/c0nFUyCrdT1wKLAzMCmlTQKOlLRWqn9LSRUjpIj4MzAbOCmXfBIwK50zMzMzM6srDso6t+MkzZP0OLCUbJphJdsAfytz7iRJLxZeJc5PBnYB/hQRy1Pa5cACYFZanONXVDcqdziwpaQ/S3oW2DKlmZmZmVlBhF91QlFHF1vvJE2KiM/Xuh9trVv3jf0hNjOrkVVa3rcDao9/SKq9N9W23VXudWfwzvJFHeJ2L/3tKXX/Hafnfj/pEO9Fe/NCH3WkKwZkZmaWqYtvLe2olvfP752ZefqimZmZmZlZDTko66AkrcxtDD0nbao8XNL5Fcq8u7F0K9o5WdKi1MaTki7Jr4xYRflWb/YsaSdJ01J7T6bl7QvnjpD0zXQ8IbfcvpmZmZlZl+Tpix1XqT3KFpKtstjWzo2IX6Rg7EFgV+C+dmgHSR8BrgW+HBGzJK0PTJK0KCLuiIhL26NdMzMzs06nubnWPbA1xCNlnUh+JEzSrrlRtNmS1knZ+ki6MY1ATVTaTbpK3YEewOupjaGSHpXUJOlmSR9K6cMkPS5pKnB0rn8PSRqa+32KpCFFbRwNTIiIWQAR8SpwAnBiKnOypHGt6LOZmZmZWafmoKzj6pkLum4ucX4ccHQaTduZbEl8gG2B44Ctgc2AHato67uS5gAvA09HxJyUfjXw/YgYAswFfpLSfw2MjYjti+q5HDgEsj3LgLUjoqkozyBgZlHajJRuZmZmZlZ3HJR1XEsjYmh6ldrweQpwjqSxQL+IWJHSp0XEixHRDMwB+lfR1rkpuNsQ6C1pf0l9U70PpDxXAbuUSL8mV88NwF5pM+nDgAkl2hKlV/9t1ZKvksZImiFpRnPzktYUNTMzMzPrUByUdVIRcQbwLaAn8KikgenUsly2lbTiucGIeAe4i2yT6HLKBVVExFvA3cDewNfInh0rNh8YXpQ2jGwT6qpFxPiIGB4RwxsaeremqJmZmZlZh+KgrJOStHlEzI2IM8mm/w1sIf/PJZUaccvnEbAD8GxEvAG8LmnndPobwAMR8S/gDUk7pfQDi6q5HDgfmB4Rr5Vo5iLgkMKzZ5LWA84EzqrUNzMzMzOzrsqrL3Zex0najWw0bAHwR6D4Ga+8bYBby5z7rqSDgLWAJuDilH4wcKmkXsBzwKEp/VDgSklvAZPyFUXETEn/Jnvu7AMi4uXU1mVpcRIBv4yI2yperZmZmVm98eqLdUMRrXqUxzopSZMi4vNroJ2PAfcDA9Nzbe2uW/eN/SE2s7rXmqV2zayyd5Yv6hB/pJZO/FHdf8fpeeBpHeK9aG8eKasTaygg+ybwM+D4NRWQmZlZpu6/uZmZdWIOyqzNRMTVZMvom5mZmZlZlbzQh5mZmZmZWQ15pMwAkLSSbIPobsATwMER8ZakRyJihxr16X8j4vRatG1mZmZWc34apG54pMwKCptVDwaWA0cA1CogS/63hm2bmZmZma0RDsqslIeALQAkLU4/GyRdLGm+pNsl3Slp33RuoaTTJU2VNEPSZyRNkvSspCMKlUr6nqTpkpoknZJLv0XSzFT3mJR2BtBT0hxJE9fkxZuZmZmZrUkOyux9JHUDvkA2lTHvK0B/sv3OvsUH90T7a0RsTxbQTQD2BT4LnJrq3QMYAIwAhgLDJO2Syh4WEcOA4cBYSetFxIm8N3pXvEG1mZmZmVmX4WfKrKCnpDnp+CHgiqLzOwE3pKXu/ybpvqLzhY2p5wJ9IuJN4E1Jb0vqB+yRXrNTvj5kQdqDZIHY6JS+aUr/Z6XOphG1bFStsS8NDb2rv1IzMzMzsw7EQZkVLI2IoRXOt7Rx37L0szl3XPi9Wyr/84j41fsqlUYCo4Dt08Ii9wM9WupsRIwHxoM3jzYzM7MuqtkLfdQLT1+0aj0M7JOeLdsIGNnK8pOAwyT1AZC0saQNgb7A6ykgG0g25bHgHUlrtUHfzczMzMw6LI+UWbV+D3wOmAc8DTwGvFFt4YiYLOlTwFRJAIuBg4C7gCMkNQFPAY/mio0HmiTN8nNlZmZmZtZVKcIzv6w6kvpExGJJ6wHTgB0j4m+17penL5qZmVlbWrF8UUuPbawRS6/+Qd1/x+n5zZ93iPeivXmkzFrj9rRoR3fgtI4QkJmZWfuoi29BVnfSbB2zDsdBmVUtIkbWug9mZmZmdcMz2upGXSz0IWll2oT4cUmzJO1Q6z61F0n3S3oqXe+cwgbPtSbpEEkfa2WZ/pLmtVefzMzMzMw6gnoZKXt3uXdJnwd+DuzaHg0pGxdX2s+rVg6MiBmtLSSpMSJWtkeHgEPIFgl5qZ3qNzMzMzPrlOpipKzIusDrhV8kfU/SdElNkk5JaWdKOiqX52RJ/1Mhf39JT0i6GJgFbCrpEkkzJM0v5Et595T0pKSHJZ0v6faU3lvSlanu2ZL2TumDJE1Lo15NkgasykVLOihXz68kNab0xZJOlfQYsL2khZJOlzQ19f8zkiZJelbSES3ct8J9uCxd92RJPdNo3XBgYmq/p6Rhkh6QNDPV/9FUx7A0ojkVOHpVrtXMzMzMrDOpl6CsZwoGngQuB04DkLQHMAAYAQwFhknaBbge2C9X/mvADRXyA2wFXB0R20bEC8API2I4MATYVdIQST2AXwFfiIidgA1ybfwQuDcitgN2A86W1Bs4AjgvjfQNB16s4noLwc8cSeulpej3I1stcSiwEigsMd8bmBcR/xERD6e0v0bE9sBDwARgX7L9w05t4b6R0i+KiEHAv4B9IuJGYAbZCN5QYAVwAbBvRAwDrgR+lsr/Ghib2jczMzMz6/Lqcfri9sDVkgYDe6TX7JSvDzAgIq6QtGF6BmoDss2N/yJpbKn8wF+AFyIiv8fW1ySNIbvHHwW2JguCn4uI51Oe64Ax6XgP4EuSxqXfewAfB6YCP5S0CXBTRDxTxfW+b/qipAOAYcD0tOpQT+Af6fRKsj3I8m5NP+cCfSLiTeBNSW+n1RdL3rd0H56PiDkpfSbQv0T/tgIGA3en/jQCL0vqC/SLiAdSvmuAL5S6wHRvxwCosS8NDb3L3gwzMzOzTqm5lk/D2JpUL0HZuyJiqqT1yYItAT+PiF+VyHoj2QjRR8hGziiXX1J/YEnu908C44DtIuJ1SRPIgqxK67CKbFTpqaL0J9LUwi8CkyR9KyLureZai+q+KiJ+UOLc2yWeI1uWfjbnjgu/d6PyfcjnX0kWAJbqz/zi0bAU8FW1zFBEjCfbXNr7lJmZmZlZp1Yv0xffJWkg2cjMP4FJwGGS+qRzG0vaMGW9HtifLDC7MaVVyp+3LlmQ9oakjXhvtOdJYLMUvMD7p0hOAo5NC4Ugadv0czOy0bXzyUawhqT0eyRtXOVl3wPsW+irpA9L+kSVZUup9j7kvQmsk46fAjZIo5ZIWkvSoIj4F9k92ynlO7BEPWZmZmZmXUq9jJT1lFSYUifg4DQ6NDk9bzU1xUKLgYOAf0TEfEnrAIsi4mWAiCiX/30jTRHxuKTZwHzgOWBKSl+qbAGRuyS9CkzLFTsN+CXQlAKzhcBeZIHbQZLeAf4GnCqpAdgCeK2ai4+IBZJOStfbALxDtojGC9WUL1FfVfehyATgUklLge3Jgt3z05TFbmTXPh84FLhS0ltkwZ+ZmZmZWZem8KZ0a5SkPhGxOAVeFwHPRMS5raxjMHBYRBzfLp3sZDx90cys7VWab2/WWaX/TG7R8mUvdog/Akt/fULdf8fpeehZHeK9aG/1MlLWkXxb0sFAd7KFMko9z1ZRRMwDHJCZmVm7qftvgtYldbrBCC/0UTcclK1haVSsVSNjZmZmZmbWddXdQh9WmqSVaV+zeZJukNQrpT/Szu32U26jbjMzMzOzeuOgzAqWRsTQiBgMLCfbtJqI2KGd2+0HOCgzMzMzs7rloMxKeYhsdUckLU4/R0p6QNLvJD0t6QxJB0qaJmmupM1Tvg0k/V7S9PTaMaWfLOlKSfdLei5txA1wBrB5GqU7W5mz04jdXEn7leifmZmZmVmX4WfK7H0kdSPbV+2uEqc/DXyKbCn+54DLI2KEpP8GjgWOA84Dzo2IhyV9nGxZ+0+l8gOB3cj2K3tK0iXAicDgiBia2t8HGJraWh+YLunBwrYEZmZmZnUjvNBHvXBQZgX5vdweAq4okWd6ITiS9CwwOaXPJQu2AEYBW+eWnF037fcGcEdELAOWSfoHsFGJNnYCrkv7yP1d0gPAdmQbZ79L0hhgDIAa+9LQ0LtVF2tmZmZm1lE4KLOCpYXRqgqW5Y6bc783895nqQHYPiKW5gumIC1ffiWlP39V7UUREeOB8eB9yszMzMysc/MzZdbWJgPHFH6R1FKg9ybZdMaCB4H9JDVK2gDYBZjW5r00MzMzM+sgHJRZWxsLDJfUJGkBaRXHciLin8CUtLDH2cDNQBPwOHAvcEJE/K29O21mZmZmVivqdDubmxXx9EUzMzNrSyuWL6rqcYr29tb479b9d5xeY87tEO9Fe/NImZmZmZmZWQ05KDMzMzMzM6shB2VmZmZmZmY15KCsDklaKWlOWlzjBkm9Uvri1ajzEEkfqyLfqZJGrWo7ZmZmZmZdjfcpq0/v7kkmaSLZConnrGadhwDzgJcqZYqIH69mO2ZmZmb1obm51j2wNcQjZfYQsEU+QVIfSfdImiVprqS9U3p/SU9IukzSfEmTJfWUtC8wHJiYRuB6SvqxpOlpNG680u7Rkiak/EhaKOmUXDsDU/quqZ45kmZLWgczMzMzsy7KQVkdk9QN+AIwt+jU28DoiPgMsBvwf4WgChgAXBQRg4B/AftExI3ADODAiBgaEUuBCyNiu4gYDPQE9irTjVdTO5cA41LaOODoNJq3M7C0La7XzMzMzKwjclBWn3pKmkMWSP0FuKLovIDTJTUBfwI2BjZK556PiDnpeCbQv0wbu0l6TNJcYHdgUJl8N5WoawpwjqSxQL+IWFFcSNIYSTMkzWhuXlL+Ss3MzMzMOjg/U1af3n2mrIwDgQ2AYRHxjqSFQI90blku30qyUbD3kdQDuBgYHhF/lXRyrnyxQn0rSZ/HiDhD0h3AnsCjkkZFxJP5QhExHhgP3jzazMzMzDo3B2VWSl/gHykg2w34RBVl3gQKz34VArBXJfUB9gVurLZxSZtHxFxgrqTtgYHAky0UMzMzM+tawgt91AsHZVbKROA2STOAOVQXEE0ALpW0FNgeuIzsWbWFwPRWtn9cCgZXAguAP7ayvJmZmZlZp6EIz/yyzs3TF83MzKwtrVi+SC3nan9vXXJs3X/H6XXkBR3ivWhvXujDzMzMzMyshhyUmZmZmZmZ1VCXCcokbSTpWknPSZopaaqk0Wug3YG5TY43b0W5IyR9Mx0fIulj7dS/dzdrbk+S7pc0fBXK9ZN0VHv0yczMzMysM+gSC32kjY1vAa6KiK+ntE8AXyqRt1upfa9Ww5eBP0TET0r0SRGll82JiEtzvx4CzANeasN+rbZ2uFel9AOOIltC38zMzMwKmuv+kbK60VVGynYHlucDnYh4ISIugHdHom6QdBswWVIfSfdImiVprqS9U77+kp6UdJWkJkk3SuqVzg2T9EAahZsk6aOS9gSOA74l6b5U/glJFwOzgE0lLS70SdK+kiak45MljUujWMOBiWnE7X37fkn6tqTpkh6X9PtcfyZIOl/SI2l0cN+ULkkXSlqQ9vrasNQNSyNbv0zl50kakevXeEmTgasl9ZD063SfZqdVEZHUU9L16T79ltx+ZRWueSNJN6dreVzSDsAZwObp2s9O9/XB9Ps8STu36pNgZmZmZtbJdImRMmAQWRBUyfbAkIh4TVI3YHRE/FvS+mQbFN+a8m0FHB4RUyRdCRwl6TzgAmDviHhF0n7AzyLiMEmXAosj4heS+qfyh0bEUQDZgFl5EXGjpGOAcRExo0SWmyLislTXT4HDU18APgrsRLaP161ke4GNTn3YBtiIbEn5K8s03zsidpC0S8ozOKUPA3aKiKWS/if1cxtJA8mC2i2BI4G3ImKIpCG0fP8BzgceiIjRkhqBPsCJwODCZtapvUkR8bOUp1cV9ZqZmZmZdVpdJSh7H0kXkQUryyNiu5R8d0S8VsgCnJ6CkWZgY7IABuCvETElHf8GGAvcRRaw3J2CrEbg5TLNvxARj7bh5QxOwVg/siBmUu7cLWl65AJJhf7vAlwXESuBlyTdW6Hu6wAi4kFJ60rql9JvjYil6XgnUhAYEU9KegHYMrVzfkpvktRUxbXsDnwzlVkJvCHpQ0V5pgNXSlorXd+cUhVJGgOMAVBjXxoaelfRvJmZmZlZx9NVpi/OBz5T+CUijgY+B2yQy7Mkd3xgOjcsjdD8HehRKF5Ud5AFcfMjYmh6bRMRe5Tpy5Ki3/P19aD1JgDHRMQ2wClFdSzLHeeH5KqdgFzqWuH911BpqK9cO6t8zRHxIFnAtwi4RmkxlBL5xkfE8IgY7oDMzMzMzDqzrhKU3Qv0kHRkLq3StLe+wD8i4p30jNQncuc+Lmn7dHwA8DDwFLBBIV3SWpIGVdm3v0v6lKQGsqmFpbwJrFPm3DrAy2nk6MAq2nsQ2F9So6SPArtVyLsfgKSdgDci4o0y9R2Y8m0JfJzsfuTTfYHRbgAAIABJREFUBwNDcmXKXfM9ZNMeSf1bl6JrV7ZAyz/SlM0ryAXbZmZmZnWludmvOtElgrKICLJVEHeV9LykacBVwPfLFJkIDJc0gyyweDJ37gng4DQd78PAJRGxHNgXOFPS48AcYIcqu3cicDtZ4FhuyuME4NJSC30APwIeA+4u6mc5NwPPAHOBS4AHKuR9XdIjwKVkz6qVcjHQKGku8FvgkIhYluruk+7TCcC0XJly1/zfwG6prpnAoIj4JzAlLepxNjASmCNpNrAPcF4V12xmZmZm1mkpi2cMstUXgdsjYnALWTs9SfdTfnGRTqVb9439ITYzM7M2s2L5osorta0hb11wVN1/x+l17MUd4r1ob11yoQ+rLw0trHBZay2twGmVqeJjjZ1LV/ksdPQ/c63R1p+vtr43tfzMNFR5b6rtY7X/CVxtfdXe61r1D9r+Hra1tv78NzbUbgJWtffarKNyUJYTEQt5b1n4Li0iRta6D2ZmZmZmtoafKctvKtxZSFqY9jLLp31J0om16lNrKNs4+8I10M7JksatYtnjlDbFNjMzM7Ok1otsdIRXnegSC32saRFxa0ScUet+tLe0efOacBzeJNrMzMzM6lTNgzJJG0j6vaTp6bVjSj9Z0lWSJqfRqq9IOkvSXEl3pSXikfQ5SbNT+pWS1k7pCyWdImlWOjcwpe+aVjmck8qVW4q+Up/fHX2SNEHSJZLuk/Rcqv9KSU9ImpArs4ekqak/N0jqk9LPkLRAUpOkX5Roa4SkR1JfH5G0Va4PN6V78Yyks3JlDpX0tKQHgB3LXMPJkq6RdG8q/+2UPjJdy7VkKzgi6fi0OuI8Scfl6vihpKck/QnYKpd+v6Th6Xh9SQvTcaOkX6T3o0nSsZLGAh8D7kvtNqZ7Oi/l+25r3x8zMzMzs86kIzxTdh5wbkQ8LOnjwCTgU+nc5mT7bG0NTAX2iYgTJN0MfFHSXWTLyX8uIp6WdDXZPli/TOVfjYjPSDoKGAd8K/08OiKmpMDo7Ta4hg8BuwNfAm4jC4S+BUyXNBR4ETgJGBURSyR9Hzg+BXajgYEREZL6laj7SWCXiFghaRRwOtlS8QBDgW3JNpF+StIFwAqyTaaHAW8A9wGzy/R7CPBZoDcwW9IdKX0EMDginpc0DDgU+A+yjaQfS8FeA7B/ar8bMItsmftKxgCfBLZN1/PhiHhN0vHAbhHxampv48IKmGXuiZmZmZlZl9ERgrJRwNa5lYfWzY1e/TFt8DwXaATuSulzgf5kozPPR8TTKf0q4GjeC8puSj9nAl9Jx1OAcyRNBG6KiBfb4BpuS0HVXODvEVEYYZqf+rkJWWA5JV1nd7Ig899kQeHlKSC6vUTdfYGrJA0AAlgrd+6ewobPkhaQbYK9PnB/RLyS0n8LbFmm33+IiKXAUkn3kQVj/wKmRcTzKc9OwM0RsSTVdxOwM1lQdnNEvJXSb63iPo0CLo2IFQAR8VqJPM8Bm6UA8w5gcqmKJI0hC/JobOxHQ2PvKpo3MzMzM+t4OkJQ1gBsn4KDd6XgZRlARDRLeifeW6+2mazvLa1/uiz9XJnyExFnpABoT+BRSaMioppNmatppzl3nO/nSuDuiDiguKCkEcDnyEadjiEbccs7DbgvIkYr20ft/hLtQu4ayYK3ahTnK/y+JN/FVpQvWMF7U2N7FNVVsW8R8bqkTwOfJwuwvwYcViLfeGA8QPe1N6n7PTzMzMysC/J+wnWj5s+UkY2EHFP4JU33q9aTQH9JW6TfvwE8UKmApM0jYm5EnAnMAArPmq1uYFbJo8COhX5K6iVpyzR9sm9E3Em22EWpa+8LLErHh1TR1mPASEnrKXvu7qsV8u4tqYek9YCRwPQSeR4Evpz63JtsuuVDKX20pJ5pZPO/cmUWkk2fBNg3lz4ZOEJSNwBJH07pbwLrpLT1gYaI+D3wI+AzVVyzmZmZmVmntaZHynpJyk8XPAcYC1wkqSn150HgiGoqi4i3JR0K3JC+6E8HLm2h2HGSdiMbWVoA/DEFApVGhJokFdbk/B3QVE3/cv18RdIhwHVKC5GQPWP2JvAHST1S+6UWtTiLbPri8cC9VbT1sqSTyaZHvkz2rFe5VRSnkU0R/DhwWkS8JOl9Ux0jYpayBUumpaTLI2I2vDs1cg7wAlmgVvAL4HeSvlHU58vJplI2SXoHuAy4kGzE64+SXiYLTn8tqfAfBj9o6ZrNzMzMzDozVbuDfVcmaS9gs4g4v9Z9WVNS4LY4Ij6w4mNn09GnL+ael7RVoBZnKXceXeWz0NBFrgPa/vPV1vemlp+ZhirvTbV9rPb7RrX1VXuva9U/aPt72Nba+vPf2FC7CVjV3utq/eW1uR3iL7q3fvmdDv0dZ03oddyvOsR70d46wjNlNRcRpRbYsE7iI70/VOsutIm2/ke5rf+BqtZ7g5yVRVS3IWS19UH1XzDa/ItzjdqtVmOV97A1X9CqvZbGKmfJV9vHhmrztfGX4Wrra48/d2s3VPdP9VptfK+rra97lVtaNlZ5b6rN16PKdvtW+VVn7Va8d9X2ca0qv05X+617rTZut9rNSNeusr5q/7ZeuxX7AVd7LWtVGVRXm89sTXNQVqci4uRa98GsLXWlEbWOriuNlHV01QZktuZUG5DZ6qs2IOvSmlsRwVqn1hEW+jAzMzMzM6tbDsqsIkmbSPqDpGckPSvpPEndWyhzpzd9NjMzMzOrjoMyK0vZwxY3AbdExACylRP7AD+rVC4i9oyIf62BLpqZmZmZdXoOyqyS3YG3I+LXABGxkmzZ/sMkHSXpJkl3pVG0swqFJC1M2wwg6XhJ89LruJTWX9ITki6TNF/SZEk907mxkhZIapJ0/Rq/YjMzMzOzNcxPEFslg4CZ+YSI+Lekv5B9doYC2wLLgKckXRARfy3klTQMOBT4D7J92B6T9ADwOjAAOCAivi3pd8A+wG+AE4FPRsQyT4E0MzOzutbs1U7qhUfKrBJReqXeQvo9EfFGRLxNthH3J4ry7QTcHBFLImIx2VTIndO55yNiTjqeCfRPx03AREkHASvKdkwaI2mGpBmLl722CpdmZmZmZtYxOCizSuYDw/MJktYFNgVWko2QFazkgyOvldYNLlf2i8BFwDBgpqSSo7kRMT4ihkfE8D5rf7il6zAzMzMz67AclFkl9wC9JH0TQFIj8H/ABOCtKso/CHxZUi9JvYHRwEPlMivbJXjTiLgPOAHoR7awiJmZmZlZl+WgzMqKiCALpL4q6RngaeBt4H+rLD+LLICbBjwGXB4RsysUaQR+I2kuMBs416s4mpmZmVlX54U+rKK0cMd/lTg1Ib0K+fbKHffPHZ8DnFNU50JgcO73X+RO77R6PTYzMzPrIqK51j2wNcRBmXV6f1vyeq270CaybeHqhyo+cmjVqLfPTGs0tPG9qfbzGiXXRmr/dttDm9/DKuvLJmm0XX3VqlW7AA119vdhtfewNZ/B5irfv2p9pU1rM2uZpy+amZmZmZnVkIOyGpEUkq7J/d5N0iuSbm+h3HBJ57dB+xtJulbSc5JmSpoqafTq1ltl2ztJmibpyfQakzt3RG5hkQmS9l0TfTIzMzMzqxVPX6ydJcBgST0jYinwn8CilgpFxAxgxuo0rGzewC3AVRHx9ZT2CeBLraijMSJWrkLbHwGuBb4cEbMkrQ9MkrQoIu6IiEtbW6eZmZmZWWfmkbLa+iPZvlwABwDXFU5IGiHpEUmz08+tUvrIwmiapDslzUmvNyQdLKlR0tmSpktqkvSdEu3uDizPB0AR8UJEXJDqLVlHavs+SdcCcyX1TyNdl0uaJ2mipFGSpkh6RtKIEm0fDUxIKzMSEa+SLX9/YmrjZEnjVuemmpmZmXUJzeFXnXBQVlvXA/tL6gEMIVs2vuBJYJeI2Bb4MXB6ceGI2DMihgKHAy+QjX4dDrwREdsB2wHflvTJoqKDgFkV+lWpjhHADyNi6/T7FsB5qf8Dga+TraA4jtJL5w8CZhalzUjpZmZmZmZ1x9MXaygimiT1Jxslu7PodF/gKkkDgADWKlVHmv53DfC1iHhD0h7AkNyzWH2BAcDz5foh6SKyQGp5CsTK1bEcmBYR+bqej4i5qZ75wD0REWmvsf6lmkvXU6xV/xWSnkMbA9DY2I+Gxt6tKW5mZmZm1mE4KKu9W4FfACOB9XLppwH3RcToFLjdX1xQUiPZaNupETGvkAwcGxGTKrQ5H9in8EtEHJ2Cu8KzaiXrkDSS7Fm4vGW54+bc782U/nzNB4aTXXfBMGBBhf5+QESMB8YDdF97k/oZ2zYzMzOzLsfTF2vvSrKgam5Rel/eW/jjkDJlzwCaIuL6XNok4EhJawFI2lJS8TDSvUAPSUfm0nq1so5VdRFwiKShqe71gDOBs9qofjMzMzOzTsUjZTUWES+SPZNV7Cyy6YvHkwVRpYwD5kuak37/MXA52bTBWWmVxVeALxe1GZK+DJwr6YSUZwnw/ZSlxTpWVUS8LOkg4DJJ65CNyv0yIm5ri/rNzMzMuopobq51F2wNUbU72Jt1VF1l+mIW/9YPUV/X2x7q7TPTGg1tfG+q/bxG6x6PbbN220Ob38Mq66v2e0lbf/5r1S5AQ539fVjtPWzNZ7C5jb/PvvbmMx3iTVny84O7xHec1dH7B1d1iPeivXmkzDq9tv6LuGa6ynWYmVm7qPababX/mtTFN12zTsLPlJmZmZmZmdWQg7IakrSJpD+kjZaflXSepO7p3HBJ56fjQyRdWNvevp+kQZLulfR06v+P0vNnhU2md8jlnZBbXt/MzMzMzHIclNVICmBuAm6JiAHAlkAf4GcAETEjIsauSr2S2vV9ldSTbEn7MyJiS+DTwA7AUSnLyPR7W7TV7tdjZmZm1iE1h191wl92a2d34O2I+DVARKwEvgscJqlXGm26vbiQpI0k3Szp8fTaQVJ/SU9IuhiYBWwq6QBJcyXNk3RmrvxiSf8naZakeyRtkNLHSlogqUnS9cXtFvk6MCUiJqe+vwUcA5yY9lQ7AviupDmSdk5ldpH0iKTn8qNmkr4naXpq95SU9oHrae3NNTMzMzPrLByU1c4gYGY+ISL+DfwF2KJCufOBByLi08BnyDZjBtgKuDoitgXeIdv7a3dgKLBdWgIfoDcwKyI+AzwA/CSlnwhsGxFDyIKq1vb9WbKRvteAS4FzI2JoRDyUsnwU2AnYi2x/NSTtAQwARqR+DpO0S/H1RMQLLfTHzMzMzKzTclBWO6L0Aknl0gt2By6BbHQtIt5I6S9ExKPpeDvg/oh4JSJWABOBQrDTDPw2Hf+GLFACaAImpj3EVqxi36mQfktENEfEAmCjlLZHes0mGxEbSBakFV/PBzsgjZE0Q9KM5uYlLXTXzMzMzKzjclBWO/OB4fkESeuSTdV7dhXqy0cmrVnlthBEfRG4CBgGzJRUabuEUn3fDFgcEW+WKbOsRP8E/DyNqA2NiC0i4op0rmKkFRHjI2J4RAxvaOhdKauZmZmZWYfmoKx27gF6SfomgKRG4P+ACekZrUrljiyUSYFcsceAXSWtn+o9gGyqImTveeGZrq8DD6eFNDaNiPuAE4B+QB9JIyRdXaL+icBOkkalfvQkm1Z5Vjr/JrBOi3cAJpE9Q9cn1bOxpA2rKGdmZmZm1mV48+gaiYiQNBq4WNKPyIKlO4H/baHofwPjJR0OrCQL0F4uqvtlST8A7iMbjbozIv6QTi8BBkmaCbwB7Ac0Ar+R1DflPzci/iXp48DSEn1fKmlv4AJJF6Xy1wCFZftvA25MeY6tcA8mS/oUMDWtpr8YOChdl5mZmVl9i+Za98DWEEXUz1KTlq2+GBF9qsx7NnBNRDS1c7dWS7fuG/tDbGZmXV61zyZU+49ia551qDfvLF/UIW7Pkp8eVPffcXqf9JsO8V60N4+UWVkR8b1a98HMzMzMrKtzUFZnqh0l60waVBf/gfIu1dn11iP5/69XWz3+OekqfxfW4+e/rd+7aj//DTW61/X459OsJV7ow8zMzMzMrIa6dFAmaaWkOZLmSbpNUr9a96kSSSdLGlcmPSRtkUv7bkobXpy/inaGStqzDfo7QdK+Ledc5frvX5XrMzMzM+sSmsOvOtGlgzJgadr/ajDwGnB0rTu0GuYC++d+3xdYsIp1DQVaFZS1sG+ZmZmZmZmtoq4elOVNBTYGkNRH0j2SZkmam5ZuR1J/SU9KukpSk6QbJfVK54ZJekDSTEmTJH20uAFJ/yXpMUmzJf1J0kYp/WRJV6aRn+ckjc2V+aGkpyT9CdiqQv9vAQr93IxsOftXcvUszh3vK2lCOv5qGil8XNKDkroDpwL7pVHE/dJ+ZI+kfj8iaatU9hBJN0i6DZiszIWSFki6A9gw1+YZKb1J0i9S2gaSfi9penrtmNJ7p/sxPbVZuK6ekq5PdfwW6FnNG2tmZmZm1pnVxehH2kD5c8AVKeltYHRE/FvS+sCjkm5N57YCDo+IKZKuBI6SdB5wAbB3RLwiaT/gZ8BhRU09DHw27UH2LbKNmP8nnRsI7Ea2qfJTki4BhpCNfm1L9l7MAmaWuYx/A3+VNJgsOPstcGgVl/9j4PMRsUhSv4hYLunHwPCIOCbdn3WBXSJihbINoU8H9knltweGRMRrkr6S7s82wEZkI3VXSvowMBoYmK69ME30PLI9zx5Oe55NAj4F/BC4NyIOS3mnpaD0O8BbETFE0pB0P8zMzMzMurSuHpT1lDQH6E8W7Nyd0gWcLmkXoJlsBG2jdO6vETElHf8GGAvcBQwG7k4rBjVStGFzsgnw2zSK1h14PnfujohYBiyT9I/U3s7AzRHxFkAuMCznerIg7vNkQWY1QdkUYIKk3wE3lcnTF7hK0gCy7U3Wyp27OyJeS8e7ANdFxErgJUn3pvR/kwW6l6cRtNtT+ihg69wqS+tKWgfYA/hS7vm5HsDHU/3nA0REk6Sy+6NJGgOMAWhs7EdDY+8WboOZmZmZWcfU1YOypRExVFJfskDhaLIv/QcCGwDDIuIdSQvJAgP44J6LQRbEzY+I7Vto7wLgnIi4VdJI4OTcuWW545W8d+9b8wTjbcDZwIw0ylfcz4Ie7yZGHCHpP4AvAnMkDS1R72nAfRExWlJ/4P7cuSVFeT/Q3zTCNoIsUNwfOAbYnWx67PYRsTSf//+zd+dhchX1/sffn5kQEpIQZJGLYQlCAAHDAAENa9jhgiAKBkQEQSLIco2iotyLID8ULlwRiCxBIYAIEdn3sIUAko3sYReCBpBd1iQkme/vj1NNmranp5P0THdPf17P08+cqVOnqs7pnp7+dtWpUtbwr0fEMwXpRcsvJiJGAiMBuq+4duPcBWpmZmaNo7W12i2wTtIQ95RFxLtkPV4nS1qBrGfo9RSQ7QKsl5d9XUm54OtQsiGJzwBr5NIlrSBpsyJV9QVeTttHlNG0ccCB6V6qPsBX2jmPecBPyYZOFnpN0hckNZENJSS1dYOImBARpwFvAusA75MNoyzW7iPbae8hkppTb+AuqY7eQN+IuAv4AdlEIgBjyAK0XFty6fcCJ6bgDElb5pV/WErbnGx4p5mZmZlZl9YQQRlAREwFppP15FwLDJI0mSwIeDov61PAEWno3KrAJRHxMdlsh+dImg5MA7YrUs3pwA2SHiELgNpr0xSye8OmATcCj5RxzPXpuEKnkPUGPsinh1aeq2wyk1lkQc904CGyYYXT0v1x/wv8WtJjZEMz23Iz8BzZTJCXAA+n9D7AHemaPQwMT+knkV3nGZKeBI5N6WeSDZGckdp1Zkq/BOidyvkJMLG962FmZmZmVu8U4ZFfOWno3h1pCn2rE402fLFg2Kp1QcLP8fJqxL+Tpi5yzo34+q/0c1fu67+pSte6Hv4+337/uZpo5IenH9pQn3GK6XX6dTXxXHS0rn5PmTUAf7FgXU6F//2U+zdSDx+UylbjbwtRZgObVP6AltYqvRdWOqAo99p0JRVfH7fM10JU62++A57iLvX+ZQ3JQVmeiJhDNsuimZmZmVl1VTxit1pV9/eUSVpT0p+ULcr8hKTHJR3Y/pEVb8ectObZshzbIuk/l/KYnsoWs26W1CTpQmWLRM9MizKvn/J90F5ZBeUeKWlE2j49b9r6co8vWp+kxekettzjlHbK2U/SGUtTt5mZmZlZParrnrI0e98twFUR8c2Uth6wf5G83SJiUSc3sVwtwCDgrqU45ijgpohYLOlQ4HNkizy3Slqbf5/KvtrmRUSx6fjbcidwpqRzcuu4mZmZmZl1RfXeU7Yr8HFEXJpLiIiXIuIi+KTX5wZJtwNjlDk3r0dpaMo3RFJuwWMkjZB0ZNqeI+kMSVPSMZuk9NUkjZE0VdJlpLtAJPWX9JSkyyXNTnl6pn1jJQ1K26unsrsDvwSG5mZDlLRzXo/S1DRdfqHDgFvT9lrAqxHRmq7B3Ih4J+98zpI0XdJ4SWumtDUk3Zh61SZJ2r7UhZa0gaR7Um/kI3nXYf3UOzlJ0pmlymij3L0lPS3p0dTbd0c6hyBbL22/pS3TzMzMzKye1HtQthlQbHr4fIOBIyJiV+BrZL1SWwC7k00Xv1YZ9bwZEVuRTdmeG873C+DRiNgSuA1YNy//AOB3EbEZ8C/g620VnKbbPw0YHREtETE61XF86lnaEShcfLk78Pl0DxzAn4GvpCDu/7Rk3S+AXsD4iNiCbEr8Y1L6BcD5EbFNat/v27kGI4ETI2Lr1L6L88q5JJXzzxLH9ywYvjhUUg/gcrL12XYE/qPgmMkp3czMzMysy6rr4YuFJP0O2IGs92yblHxfRLydtncArouIxWSLLT8MbAO8107RN6WfT5AFdgA75bYj4k5J7+TlfzEipuUd038pT+Ux4DeSriUboji3YP/qZMEeqf65kjYm6zncFXhA0sER8QDwMdn6Zbm27JG2dydbqyxXzMpt9MjlFofejmwNtlzyiunn9iwJOq8BzmnjnP5t+KKyxaRfjIjn0u9/BIblZXmdbFhmsTYNy+Vtau5LU1OvNqo1MzMzq1PZIChrAPUelM0mrxcqIo5Pk21MzsuTf29VW/OlLuLTvYY9CvYvSD8X8+lr1taUOAvythcDPYvUU1jHkkIjzpZ0J/CfwHhJu0dE/gLX8wqPj4gFwN3A3ZJeA74KPAAsjCXzYee3vwkYHBGFvXDFmtQE/KvEPWHLMzVQqWN7UNBL+MlBESPJeu9YoXs/T01kZmZmZnWr3ocvPgj0kHRcXtpKJfKPI7t3q1nSGmS9XROBl8h6jVaU1BfYrYy6x5Hd14WkfYDPlHHMHGDrtH1QXvr7wCe9VJI2iIiZEXEOWYC5SX4h6X6x5jT8D0lbSfpc2m4CBqZzKmUMcEJenW1OwhER7wEvSjo45ZWkLdLux4BD0vZh7dRZ6GlgfUkbpN8PLdi/ETBrKcs0MzMzM6srdR2UpR6grwI7S3pR0kTgKuCnbRxyMzADmE4W0P0kIv4ZEf8guy9rBnAtMLWM6s8AdpI0BdgT+HsZx5wHHCfpr2RDEHMeIgsKp6XJR36QJiOZTtZTdHeRssaQDccE+Cxwu6RZ6RwWASPaactJwCBJMyQ9CRzbTv7DgKNTm2YDB6T0/wKOlzQJ6Fvi+MJ7ys6OiPlkQxDvlPQo/x5I7kI2C6OZmZmZWZelKHPVd6staTKPH0bE4dVuS6VIGgKcHBH7pVki/xQR7fZaNtrwxTaGmFoXUunnuNz3+a702lKbo9VrQ5Q56rtJtf/daVMXet1US7Ver13puav0+9e7H/ytJi7Oh//zjYb6jFNMrzP/XBPPRUer93vKGlZETJX0kKTmNHFJV7Mu8KNyMjbau5W/SOn6VKXn2K+t2tOKb/K3JbrSFydWpla/LzcKB2V1LCKuqHYbKikixpKtTUZETKpqY8zMzMzMOkntj4uwpSbp1LRw9Yx0/9aXKlj2nDTDpZmZmZmZVYB7yroYSYOB/YCtImJBCqC6V7lZZmZmZmbWBveUdT1rAW+mdcuIiDcj4hVJu0maKmmmpCvS9P+7Sbo5d6CkPSTdlLYvkTQ59bidUVDHjyVNTI8NU/41JN0oaVJ6bJ/St5X011T3X9Mi10g6UtJNku6R9Jyk/03pzZJGpdknZ0oa3vGXzMzMzMysetxT1vWMAU6T9CxwPzAamACMAnaLiGclXQ0cB1wA/E7SGhHxBvAd4MpUzqkR8bakZuABSQMjYkba915EbCvp28BvyXrmLgDOj4hHJa0L3At8gWwtsp0iYpGk3YFfsWTB7xZgS7LFtp+RdBHZ9P79ImJzAEmrdMhVMjMzM6tx0erJfhqFe8q6mIj4gGyB6mHAG2RB2feAFyPi2ZTtKrJAKYBrgG+l4GcwS9ZE+0Zag20qsBmwaV411+X9HJy2dwdGSJoG3AasLKkP2dplN6Q11M5PZeU8EBHvpvXKngTWA14APi/pIkl7A+8VO09Jw1JP3uTW1g+X8iqZmZmZmdUO95R1QWmK/LHAWEkzgSNKZL8SuB2YD9yQerTWB04GtomIdySNAnrkV1FkuwkYHBHz8gtPvV8PRcSBkvqnduUsyNteDHRL9W0B7AUcD3wDOKrIOY4ERgJ0a7B1yszMzMysa3FPWRcjaWNJA/KSWoDXgP65+7+Aw4GHASLiFeAV4L/JhjgCrAx8CLybFnHep6CaoXk/H0/bY4AT8trRkjb7Ai+n7SPLaP/qQFNE3Aj8D7BVe8eYmZmZmdUz95R1Pb2Bi9JwxEXA82RDGa8jG0bYDZgEXJp3zLXAGhHxJEBETJc0FZhNNpzwsYI6VpQ0gSyoPzSlnUR2f9oMstfVOOBY4H+BqyT9EHiwjPb3A66UlPvC4Gdln7mZmZmZWR1SdluRNTJJI4CpEfGHardlWXj4onU1qnYDzKwmSX536CwfL5hbExf7g59+reE/4/Q+56aaeC46mnvKGpykJ8iGKv6o2m0xMzMzM2tEDsqq7OcnAAAgAElEQVQaXERsXe02mNmnNfzXomZWlEc3mXVdnujDzMzMzMysitxTZhUjaTEwk+x19RRwRER8VN1WmZmZmZnVNgdlVknzIqIFQNK1ZLMv/qa6TTIzMzOrU60estooPHzROsojwIYAkr4laaKkaZIuk9Sc0i+RNFnSbEln5A6UdLakJyXNkHReldpvZmZmZtYp3FNmFZfWQtsHuEfSF8gWmd4+IhZKuhg4DLgaODUi3k5B2gOSBgJzgQOBTSIi0nprZmZmZmZdloMyq6Sekqal7UeAP5AtXL01MCmtr9ITeD3l+YakYWSvw7WATYEngfnA7yXdCdxRrKJ03DAANfelqalXh5yQmZmZmVlHc1BmlfTJPWU5yiKxqyLiZwXp6wMnA9tExDuSRgE9ImKRpG2B3YBDgBOAXQsrioiRwEjw4tFmZmZmVt8clFlHewC4VdL5EfG6pFWBPsDKZItWvytpTbLhjmMl9QZWioi7JI0Hnq9ay83MzMyqKVqr3QLrJA7KrENFxJOS/hsYI6kJWAgcHxHjJU0FZgMvAI+lQ/qQBXE9AAHDq9FuMzMzM7PO4qDMKiYiereRPhoYXST9yDaK2raCzTIzMzMzq2kOyqzuqdoNMDPrIGmCJDPAr4dS5E8DVue8TpmZmZmZmVkVuafMloqkxcBMsg6qxcAJEfHX6rbKzMzMrAtq9QTTjcJBmS2tT6a9l7QX8Gtg5+o2yczMzMysfnn4oi2PlYF3cr9I+rGkSZJmSDojL/0WSU9Imp0Wfc6lfyDpLEnTJY1PU+Mj6WBJs1L6uE49IzMzMzOzTuagzJZWT0nTJD0N/B44E0DSnsAAspkTW4CtJe2UjjkqIrYGBgEnSVotpfcCxkfEFsA44JiUfhqwV0rfvzNOyszMzMysWhyU2dKaFxEtEbEJsDdwtbLpoPZMj6nAFGATsiANskBsOjAeWCcv/WPgjrT9BNA/bT8GjJJ0DNBcrBGShkmaLGlya+uHlTw/MzMzM7NO5XvKbJlFxOOSVgfWIJv449cRcVl+HklDgN2BwRHxkaSxQI+0e2FE5O5gXUx6PUbEsZK+BOwLTJPUEhFvFdQ9EhgJsEL3fr4L1szMzMzqloMyW2aSNiHryXoLuBc4U9K1EfGBpH7AQqAv8E4KyDYBvlxGuRtExARggqSvkPWuvdXOYWZmZmZdSnj2xYbhoMyWVk9J09K2gCMiYjEwRtIXgMfT4pYfAN8C7gGOlTQDeIZsCGN7zpU0IJX/ADC9wudgZmZmZlYztGT0mFl98vBFM+uq0pdcZoBfD6WIyl6b+fP/XhMX+/0ffKXhP+P0+e3tNfFcdDT3lFnd69bsl3ExTf7nXbcq/eGimir9Omy0D6XNqvx8XF3lOWkq8++k0u1bmr/Pcq91uW0s95zLVa16y6WleP2X+7z4f6PVKs++aGZmZmZmVkUOyuqMpMVpnbBZkm6XtMoyltNf0jeXox3dJf1W0t8kPSfpVklrp32rSPp+Xt4hku5ouzQzMzMz+zet4UeDcFBWf3LrhG0OvA0cv4zl9AeWOSgDfgX0ATaKiAHALcBNac2yVYDvlzp4aUjy+EQzMzMz67IclNW3x4F+AMqcm3rQZkoaWiodOBvYMfW6DZe0maSJ6fcZafbDoiStBHwHGJ5mXiQirgQWALumsjdIZZ2bDust6S+SnpZ0bQrekLS1pIclPSHpXklrpfSxkn4l6WHgvyp83czMzMzMaoZ7IOqUpGZgN+APKelrQAuwBbA6MEnSOGC7NtJPAU6OiP1SeRcBF0TEtZK6k60/1pYNgb9HxHsF6ZOBzVLZm0dESyp7CLBl2vcK8BiwvaQJwEXAARHxRgoYzwKOSuWtEhE7L/XFMTMzMzOrIw7K6k9unbD+wBPAfSl9B+C61HP1Wuph2qZEemFA9Thwarov7KaIeK5EGwQUG+TbVjrAxIiYC5DX/n8BmwP3pY6zZuDVvGNGt9kAaRgwDKBbt1Xp1q13ieaamZmZmdUuB2X1Z15EtEjqC9xBdk/ZhdDmXLBlzf0aEX9KPVf7AvdK+m5EPNhG9ueB9ST1iYj389K3Am5v45gFeduLyV57AmZHxOA2jvmwRHtHAiMBevZcr3HuAjUzM7PG0dpa7RZYJ/E9ZXUqIt4FTgJOlrQCMA4YKqlZ0hrATsDEEunvk03UAYCkzwMvRMSFwG3AwJT+gKR+BXV/CFwF/CYNo0TSt4GVgAcLyy7hGWANSYNTGStI2myZLoiZmZmZWZ1yT1kdi4ipkqYDhwB/BAYD08mGEP4kIv4p6eY20t8CFqXjRwE9gG9JWgj8E/ilslUbNySb5bHQz4DzgGcltQJPAwdGRABvSXpM0izgbuDONtr/saSDgAtTz1834LfA7OW+OGZmZmZmdULZZ2izfydpc+CoiPhhtdtSiocvFtekskauWg1SeaOO60KlX4dqsNd1syo/oKWrPCdNZf6dVLp9S/P3We61LreN5Z5zuapVb7m0FK//cp+Xcp+T5954oibebN4/4T8b/jNOnxF31cRz0dHcU2ZtiohZQE0HZGZmZmZm9c5BmdW9hYsXVbsJZmZmdafS3Q/lduk0RLdHpbQ2fEdZw/BEH2ZmZmZmZlXkoKwKJJ0qabakGZKmSfpSB9UzRNJ2FSqrv6RvViqfmZmZmZllHJR1sjT9+37AVhExENgd+EcHVTcEqEhQRrbYcznBVrn5zMzMzMwMB2XVsBbwZkQsAIiINyPiFUnbSroJQNIBkuZJ6i6ph6QXUvoGku6R9ISkRyRtktLXkHSjpEnpsb2k/sCxwPDUG7djfiMknS7pGkkPSnpO0jEpXZLOlTRL0kxJQ9MhZwM7prKGpx6xRyRNSY/t2sjXQ9KVqaypknZJ9TSneialHsPvpfS1JI1Lx88qbLeZmZmZWVfjiT463xjgNEnPAvcDoyPiYWAKsGXKsyMwC9iG7DmakNJHAsdGxHNpyOPFwK7ABcD5EfGopHWBeyPiC5IuBT6IiPPaaMtA4MtAL2CqpDvJ1jRrAbYAVgcmSRoHnAKcHBH7AUhaCdgjIuZLGgBcBwwqku9HABHxxRREjpG0EfBt4N2I2EbSisBjksYAX0vtPystTL3SMl5nMzMzs/rmiT4ahoOyThYRH0jamizw2gUYLemUiBgl6XlJXwC2BX4D7AQ0A49I6k02FPGGvHVFVkw/dwc2zUtfWVKfMppza0TMA+ZJeijVuwNwXUQsBl6T9DBZcPhewbErACMktQCLgY3aqGMH4KJ07k9Leinl3RMYmBaPBugLDAAmAVdIWgG4JSKmFStU0jBgGICa+9LU1KuM0zUzMzMzqz0OyqogBTxjgbGSZgJHAKOAR4B9gIVkvWijyIKyk8mGmv4rIlqKFNkEDE4B1ifKWBSy8OuXoPyZaocDr5H1qDUB89vI11Z5Ak6MiHv/bYe0E7AvcI2kcyPi6n9reMRIsp5DunXv56+RzMzMzKxu+Z6yTiZp4zTcL6cFeCltjwN+ADweEW8AqwGbALMj4j3gRUkHp3IkaYt03BjghLw6coHb+0CpHrMD0j1fq5FNCjIptWFouudrDbLeuolFyuoLvBoRrcDhZMFjsTrHAYeldm0ErAs8A9wLHJd6xJC0kaRektYDXo+Iy4E/AFuVaL+ZmZmZWd1zUNb5egNXSXpS0gxgU+D0tG8CsCZZIAMwA5gREbmeoMOAoyVNB2YDB6T0k4BBacKMJ8km+AC4HTiw2EQfyUTgTmA8cGZEvALcnOqdDjwI/CQi/pnSFkmaLmk42f1sR0gaTzYc8cO8Nhfma049gqOBI9MkJ78HngSmSJoFXEbWczsEmCZpKvB1svvlzMzMzMy6LC35vG+NRNLplJ4EpG54+KKZmdnSK/d+hXKV+8+40vV2hIUfv1wTzXzve3s1/GeclS+7tyaei47me8rMzMzMGlC1Pu03fJRhVoSDsgYVEadXuw1mZmZmZtaA95RJ+g9J10v6W7qv6640AUWXJGmIpDs6oZ4jJY1YjmM/V+k2mZmZmZnVg4YKypTNEX8zMDYiNoiITYGfk02uYQXSDI+d8Ro5EnBQZmZmZmYNqaGCMrLFmhdGxKW5hIiYFhGPSOot6QFJUyTNlHQAQJqm/c40m+AsSUNT+tm5GRQlnZfSviJpgqSpku6XtKakJklzJK2SqzMtEr1msfyFDZbUX9IjqV1TJG2X0odIGivpL5KelnRtCjqRtHdKexT4WrELkXqnbpV0j6RnJP0ir76nJF0MTAHWkXRouiazJJ2TV8Z3JD2bFpjePi99VN6i0Ej6IG/7J6ms6ekaHgQMAq5Ns0T2LHZtzczMzBpOa/jRIBrtnrLNgSfa2DcfODAi3pO0OjBe0m3A3sArEbEvgKS+klYFDgQ2iYjIC7geBb6c0r5LNp38jyTdmvJfKelLwJyIeC0FTZ/KD/yooF2vA3tExHxl65tdRxbEAGwJbAa8AjwGbC9pMnA5sCvwPNk09G3ZNl2Tj4BJku4E3gQ2Br4TEd9PwwrPAbYG3gHGSPoq2fT9Z6T0d4GHgKkl6kLSPsBXgS9FxEeSVo2ItyWdAJwcEZNLXFszMzMzsy6p0XrKShHwq7R22P1AP7JhjTOB3SWdI2nHiHgXeI8siPu9pK+RBTUAawP3pjW5fkwWMEEWGA1N24ewJFBqK3++FYDLU54byNY1y5kYEXPTAs7TgP5ki02/GBHPpfXN/ljinO+LiLciYh5wE7BDSn8pIsan7W3Ihnu+ERGLgGvJFpT+Ul76x5QO/nJ2B66MiI8AIuLtInnaurafImmYpMmSJre2flgsi5mZmZlZXWi0oGw2Wc9OMYcBawBbR0QL8BrQIyKeTcfMBH4t6bQUnGwL3EjW83NPKuMiYEREfBH4HtAjpT8ObChpjZT/pnby5xue2rIFWQ9Z97x9C/K2F7Ok57Pcvt7CfLnf86OcUmtDtFXPItJrKw2pzLVZ7bWtxLUtzDcyIgZFxKCmpl6lijQzMzMzq2mNFpQ9CKwo6ZhcgqRtJO0M9AVej4iFknYB1kv7Pwd8FBF/BM4DtpLUG+gbEXcBPwBaUnF9gZfT9hG5OlKP1c3Ab4CnIuKtUvkL9AVeTb1hhwPN7Zzj08D6kjZIvx9aIu8eklaV1JMsAHqsSJ4JwM6SVpfUnMp7OKUPkbSapBWAg/OOmcOS4PcAst4+gDHAUZJWAkhDFQHeB/qktLaurZmZmZlZl9RQ95Sle5QOBH4r6RSyYXJzyD78zwZuT/dkTSMLbgC+CJwrqRVYCBxHFkDcKqkHWe/P8JT3dOAGSS8D44H186ofDUwim2mQMvLnXAzcKOlgsvu2So7VS/eeDQPulPQm2X1um7eR/VHgGmBD4E/pnq7+BeW9KulnqW4Bd0XErQCSTifrBXyVbFKQXMB4Odn1mQg8kGtzRNwjqQWYLOlj4C6y2S9HAZdKmgfsQ/Fra2ZmZtZYGmiii0anrBPHGo2kI4FBEXFCtduyvLp17+cXsZmZmVXMoo9fLnX7Rqd57+g9Gv4zzsp/uK8mnouO1mjDF83MzMzMzGpKQw1ftCUiYhTZsEEzMzMzM6uihugpk3SqpNlpMeJpaa2wSpR7pKQRlSirI6VFpge1n3O565mT1nhb2uP6S/pmR7TJzMzMzKzWdfmeMkmDgf2ArSJiQQoaurdzWP7xzRGxuMMaWOMkdUvT1Hek/sA3gT91cD1mZmZmdSM80UfDaISesrWANyNiAUBEvBkRrwBI2k3SVEkzJV0hacWUPkfSaZIeBQ5O0+bPkPS4pHMlzcor/3OS7pH0nKT/zSVK+iBv+yBJo9L2KEmXSHpI0guSdk51P5XLUyi1ZZKkWZJGprW/cj1g50iaKOlZSTum9J6Srk9tHg30bKPcOXnHT5S0YV4bfyPpIeCcNG3+Lam88ZIGpnyrSRqTruFlpDXNUs/XrLx6Tk4zNSJpQ0n3S5ouaUqauv9sYMfUizlc0mapPdNSnQPKeqbNzMzMzOpQIwRlY4B1UtBysbI1yUhTro8ChqbFm7uRTXefMz8idoiI64ErgWMjYjDZIs35WoChZFPnD5W0Thlt+gywK9l077cD5wObAV9MU8YXGhER20TE5mQB1n55+7pFxLZk0/r/IqUdR7a22kDgLNpeMBvgvXT8COC3eekbAbtHxI+AM4CpqbyfA1enPL8AHo2ILYHbgHXLOPdrgd9FxBbAdmTT6Z8CPBIRLRFxPnAscEFaxHsQMLeMcs3MzMzM6lKXD8oi4gOyoGQY8AYwOk0HvzHwYkQ8m7JeBeyUd+hoAEmrAH0i4q8pvXCI3QMR8W5EzAeeJC063Y7b04LSM4HXImJmWhx6NtlQvkK7SJogaSZZMLdZ3r6b0s8n8o7dCfhjOv8ZwIwSbbku7+fgvPQb8oZt7kC2nhkR8SCwmqS+BfXcCbxToh4k9QH6RcTN6Zj5EfFRkayPAz+X9FNgvYiYV6SsYZImS5rc2lpy6TYzMzMzs5rW5YMygIhYHBFjI+IXwAnA10lD7UrIfdJvL9+CvO3FLLlPL38QcI82jmktOL6Vgvv8Uo/excBBqUfv8oLycscvLji23EHI0cZ2fqRT7BpEwc98i/j0ayvX3rLWmYiIPwH7A/OAeyXtWiTPyIgYFBGDmpp6lVOsmZmZmVlN6vJBmaSNC+5JagFeAp4G+ufuowIOBx4uPD4i3gHel/TllHRImVW/JukLkpqAA5et9cCSgOZNSb2Bg8o4ZhxwGICkzYGBJfIOzfv5eBnlDSG7R++9gvR9yIZlArwGfDbdc7YiabhlOmaupK+mY1aUtBLwPtAnV5mkzwMvRMSFZMMiS7XfzMzMrGtqDT8aRJeffRHoDVyUhiEuAp4HhkXEfEnfAW6Q1A2YBFzaRhlHA5dL+hAYC7xbRr2nAHcA/wBmpXYstYj4l6TLyYY6zkntbM8lwJWSZgDTgIkl8q4oaQJZgH5oG3lOzyvvI+CIlH4GcJ2kKWQB7d9TmxdK+iUwAXiRLADOORy4LO1fCBxMNrxykaTpZPf59QC+JWkh8E/gl2Wcs5mZmZlZXVJ2a5OVIql3ujcNSacAa0XEf1W5WctN0hxgUES8We22LI9u3fv5RWxmZmYVs+jjl8u65aKjvXvEbg3/GafvVQ/UxHPR0Rqhp6wS9pX0M7Lr9RJwZHWbY2ZmZmZmXYWDsjJExGjSbIxdSUT0r3YbzMzMzMwaXZef6MPMzMzMzKyWOSizipK0tqRbJT0n6W+SLpDUvUT+/pK+2ZltNDMzM6sLrX40CgdlVjGSRLaY9S0RMQDYiGzWybNKHNYfcFBmZmZmZg3LQZlV0q7A/Ii4ErJFu4HhwFGSNpX0iKQp6bFdOuZsYEdJ0yQNl7SZpInp9xkFa8yZmZmZmXU5nujDKmkz4In8hIh4T9LfyV5re6T14QYA1wGDyNZzOzki9gOQdBFwQURcm4Y9NnfqGZiZmZmZdTIHZVZJAoqtp6H0uFxSC7CYbGhjMY8Dp0paG7gpIp4rWpE0DBgGoOa+NDX1Wt62m5mZmZlVhYMyq6TZwNfzEyStDKwDHAa8BmxBNmx2frECIuJPkiYA+wL3SvpuRDxYJN9IYCR48WgzMzPrmqLVH3Eahe8ps0p6AFhJ0rcBJDUD/weMAlYAXo2IVuBwlgxLfB/okytA0ueBFyLiQuA2YGCntd7MzMzMrAoclFnFREQABwIHS3oOeJasR+znwMXAEZLGkw1d/DAdNgNYJGm6pOHAUGCWpGnAJsDVnXwaZmZmZmadStnnaLP65eGLZmZmVkmLPn5Z1W4DwL8O27XhP+Oscu2DNfFcdDT3lJmZmZmZmVWRJ/owMzMzM6tFnuijYbinrIIkLU6LHs+SdLukVardJgBJH3RCHf0lzVrGY4fkLSZtZmZmZtZQHJRV1ryIaImIzYG3geOr3aDllWZQ7GhDAAdlZmZmZtaQHJR1nMeBfgCSrpF0QG6HpGsl7S+pWdK5kiZJmiHpe8UKknSLpCckzU6LJufSP5B0Vpq5cLykNVP6+pIeT+We2UaZ/SU9LemqVPdfJK2U9s2RdJqkR8lmUmxJ5c+QdLOkz6R8W6e6HycvAJV0pKQReb/fIWlI2t5b0pR03AOS+gPHAsNTL+OOkg5OvY3TJY1blotvZmZmZlYvHJR1gNS7tBvZOlsAvwe+k/b1JesVugs4Gng3IrYBtgGOkbR+kSKPioitgUHASZJWS+m9gPERsQUwDjgmpV8AXJLK/WeJpm4MjIyIgcB7wPfz9s2PiB0i4nqyael/mvLNBH6R8lwJnBQRg9u9KNm5rwFcDnw9tfngiJgDXAqcn3oZHwFOA/ZKefYvp2wzMzMzs3rloKyyeqb1td4CVgXuA4iIh4ENJX0WOBS4MSIWAXsC307HTABWAwYUKfckSdOB8cA6eXk+Bu5I208A/dP29sB1afuaEu39R0Q8lrb/COyQt280fBJErpLOAeAqYKci6aXqyfkyMC4iXgSIiLfbyPcYMErSMSxZZPpTJA2TNFnS5NbWD4tlMTMzM6tvrX40CgdllTUvIlqA9YDufPqesmuAw8h6zK5MaQJOTD1ELRGxfkSMyS8wDfvbHRiceo6mAj3S7oWxZKG5xXx6Ns1ypuspzJP/e3uRjkrUsYhPv7Zy7S11zJJGRBwL/DdZADotr2cwP8/IiBgUEYOamnq1V6SZmZmZWc1yUNYBIuJd4CTgZEkrpORRwA/S/tkp7V7guFweSRtJKoww+gLvRMRHkjYh621qz2PAIWn7sBL51pWUG3p4KPBoG+fyjqQdU9LhwMMR8S/gXUm53rX8euYALZKaJK0DbJvSHwd2zg3RlLRqSn8f6JM7WNIGETEhIk4D3iQLzszMzMzMuiQHZR0kIqYC00nBUUS8BjzFkl4yyO41exKYkqaTv4x/XzvuHqCbpBnAmWRDGNvzX8DxkiaRBXVteQo4IpW9KnBJG/mOAM5N+VqAX6b07wC/SxN9zMvL/xjwItn9Z+cBUwAi4g1gGHBTGo45OuW/HTgwN9FHqmtmuibjyK6jmZmZmVmXpCWj36wjpZkNZwJbpd6narenP3BHmr6/rnXr3s8vYjMzM6uYRR+/rGq3AeBfQ3dp+M84q4x+qCaei45W2CtjHUDS7sAVwG9qISDraprUEH+rHUa+flYD/AWhdUVd5f210n+fXeW6dIZo9Xtjo3BQ1gki4n5g3Wq3I1+air7ue8nMzMzMzOqd7ykzMzMzMzOrIgdlNUZSSLom7/dukt6QdEf6fX9Jp1SwvlGSDkrbYyUNqlTZZmZmZmbWPg9frD0fAptL6hkR84A9gJdzOyPiNuC2ajXOzMzMzMwqyz1lteluYN+0fShwXW6HpCMljUjbB0uaJWm6pHEprVnSeWlK+RmSTkzpW0t6WNITku6VtFapBki6RNJkSbMlnZGXPkfSGZKmpDo2Sem9JF0haZKkqZIOSOk9JF2Z8k6VtEvheaTf75A0JLV/VDqvmZKGV+B6mpmZmdWfVj8ahXvKatP1wGlpyOJAspkbdyyS7zRgr4h4WdIqKW0YsD6wZUQskrRqWpz6IuCAiHhD0lDgLOCoEm04NSLeltQMPCBpYETMSPvejIitJH0fOBn4LnAq8GBEHJXaMlHS/cCxABHxxRTAjZG0UYl6W4B+uan6887rUyQNS+dKc/MqNDUXrrltZmZmZlYf3FNWg1Lw05+sl+yuElkfA0ZJOgZoTmm7A5dGxKJU1tvAxmQzLd4naRrw38Da7TTjG5KmAFOBzYBN8/bdlH4+kdoJsCdwSip/LNCDbMbJHYBrUlueBl4CSgVlLwCfl3SRpL2B94plioiRETEoIgY5IDMzMzOzeuaestp1G3AeMARYrViGiDhW0pfIhjpOk9QCCChc1ELA7IgYXE7FktYn6wHbJiLekTSKLMjKWZB+LmbJa0jA1yPimYKy2lqMZBGf/lKgRzqndyRtAewFHA98g9I9emZmZmZmdc09ZbXrCuCXETGzrQySNoiICRFxGvAmsA4wBjhWUreUZ1XgGWANSYNT2gqSNitR98pkE468K2lNYJ8y2nsvcGIuCJO0ZUofBxyW0jYi6z17BpgDtEhqkrQOsG3KszrQFBE3Av8DbFVG3WZmZmZmdcs9ZTUqIuYCF7ST7VxJA8h6qR4ApgOzyIYHzpC0ELg8Ikakae8vlNSX7Hn/LTC7jbqnS5qa9r9ANkyyPWemMmekwGwOsB9wMXCppJlkvWNHRsQCSY8BLwIzU5unpHL6AVdKyn1h8LMy6jYzMzPrcqK1cPCTdVWK8JNt9a37imv7Rbwc2h5hatZ5/L/IuqKu8v5a6b/PerguC+b/oyYa+faBOzf8m+OqNz9cE89FR3NPmdW95qbm9jNVUVON//MR1WlfNa9LtT4QNFXpWperHj4olavSr696eM3U+vNX6feacp/jWr8uAM2q7N0k5b5umtR4/z+r9T/PrD2+p8zMzMzMzOpSWif3dUmz8tLOlfR0WrP35vwlliT9TNLzkp6RtFde+t4p7XlJp+Slry9pgqTnJI2W1D2lr5h+fz7t799eHaU4KKtxkhZLmpb36C9pkKQLSxwzJK1xtjT1bCxpbKrjKUkjl6PNJ6Uyrl3WMvLKmpMm/zAzMzMzKzQK2Lsg7T5g84gYCDxLmqNA0qbAIWTLPe0NXCypOa3L+zuyye02BQ5NeQHOAc6PiAHAO8DRKf1o4J2I2BA4P+Vrs472TsLDF2vfvIhoKUibA0yucD0Xkr3gbgWQ9MXlKOv7wD4R8WJFWmZmZmbWiFqr3YDaFxHj8nupUtqYvF/HAwel7QOA6yNiAfCipOdJM4ADz0fECwCSrgcOkPQUsCvwzZTnKuB04JJU1ukp/S/AiDTZXVt1PF7qPNxTVofye8Ik7ZzXizZVUp+Urbekv6Su22tLrBeWsxYwN/dLbir+9O3BuZImpS7g76X03pIekDRF0skXpcQAACAASURBVExJB6T0S4HPA7dJGi5pVUm3pGPHSxqY8rWVvpqkMelcLgMP/jYzMzOzZXYUcHfa7gf8I2/f3JTWVvpqwL8iYlFB+qfKSvvfTfnbKqskB2W1r2de0HVzkf0nA8en3rQdgXkpfUvgB2RdsJ8Htm+nnvOBByXdnYKp3Njbo4F3I2IbYBvgGGWLS88HDoyIrYBdgP+TpIg4FngF2CUizgfOAKam7uOfA1encttK/wXwaERsSbaA9rplXSUzMzMz63IkDZM0Oe8xbCmOPZVsSabcLTXFvuyPZUhflrJK8vDF2lds+GK+x4DfpPu3boqIualTbGJa6wxJ04D+wKNtFRIRV0q6l2zs6wHA9yRtAewJDFS2zhlAX2AAWdT/K0k7kXWu9wPWBP5ZUPQOwNdTHQ+mnrC+JdJ3Ar6W0u+U9E6x9qY/yGEA3bqtSrduvUtcIjMzMzOrRxExEljquQ4kHUG2Zu5usWRdh7nAOnnZ1ibrTKCN9DeBVSR1S71h+flzZc2V1I3sM/Lb7dTRJveU1bmIOBv4LtATGC9pk7RrQV62xZQRgEfEKxFxRUQcQPatwuZk0f6JEdGSHuuncbqHAWsAW6eg8TWgR5Fil+VbhHa/TYiIkRExKCIGOSAzMzMzsxxJewM/BfaPiI/ydt0GHJJmTlyfrKNhIjAJGJBmWuxONlHHbSmYe4gl96QdAdyaV9YRafsg4MGUv606SnJQVuckbRARMyPiHLLJPzZpJ/+vJR1YJH1vSSuk7f8gGxP7MnAvcFzevo0k9SL7NuD1iFgoaRdgvTaqHEcWwCFpCPBmRLxXZvo+wGfKvRZmZmZmXUm0+tEeSdeRTaKxsaS5ko4GRgB9gPvSLUCXAkTEbODPwJPAPWS3AC1OvWAnkH3ufQr4c8oLWXD3wzRhx2rAH1L6H4DVUvoPgVNK1dHeeXj4Yv37QQqKFpM9+XcDg0vk/yJZBF9oT+ACSfPT7z+OiH9K+j3Z0McpabKQN4Cvko3NvV3SZGAa8HQb9Z0OXClpBvARS75RaCv9DOA6SVOAh4G/lzgXMzMzM2tgEXFokeQ/FEnL5T8LOKtI+l3AXUXSX2DJDI356fOBg5emjlK0ZIilNQJJ90ZEWYvY1YuePder6RdxU7sTX1aXqjTBZTWvS/uTkXaMphqfTLRa16UjVPr1VQ+vmVp//ir9XlPuc1zr1wWgWZUduFTu66ap/aWTqqoj/k+U+zp89o3JNfHCeesrO9f0Z5zOsNrtD9fEc9HR3FPWYLpaQAawcPGi9jNZl9cQ79hWtnr4IG5mZpbje8rMzMzMzMyqyEFZFyLpQEmRNwNje/l/L2nTCtTbX9KsNvadK2m2pHNLHD9E0nbL2w4zMzOzLqXVj0bh4Ytdy6Fka5EdQjaRRkkR8d2ObhDwPWCNiFhQIs8Q4APgr53QHjMzMzOzmuKesi5CUm9ge+BosqAslz5E0lhJf5H0tKRr0yyKpPRBafsDSedIekLS/ZK2TftfkLR/ytNf0iOSpqRHyd4tSbcBvYAJkoZK+oqkCZKmpjrWlNQfOBYYnqYs3VHSwZJmSZouaVwHXC4zMzMzs5rhnrKu46vAPRHxrKS3JW0VEVPSvi2BzchWE3+MLHh7tOD4XsDYiPippJuB/wfsAWwKXEU2jf7rwB4RMV/SAOA6YFBbDYqI/SV9kBaXRtJngC9HREj6LvCTiPhRWjvig4g4L+WbCewVES9LWmX5L42ZmZmZWe1yUNZ1HAr8Nm1fn37PBWUTI2IugKRpZOuOFQZlH5MtcAcwE1iQFoaemfIDrACMkNRCti7aRkvZxrWB0ZLWAroDL7aR7zFglKQ/AzcVyyBpGDAMQM19aWrqtZRNMTMzMzOrDQ7KugBJqwG7AptLCqAZCEk/SVny7+daTPHnfWEsWbSuNXdMRLRKyuUfDrwGbEE29HX+v5VS2kXAbyLiNklDaOO+t4g4VtKXgH2BaZJaIuKtgjwjgZEA3br3a/g1PMzMzKzriQaa6KLR+Z6yruEg4OqIWC8i+kfEOmS9UDtUuJ6+wKsR0QocThb8Le3xL6ftI/LS3wf65H6RtEFETIiI04A3gXWWvclmZmZmZrXNQVnXcChwc0HajcA3K1zPxcARksaTDV38cCmPPx24QdIjZMFWzu3AgbmJPoBzJc1M0+yPA6Yvf9PNzMzMzGqTloxYM6tPHr5oAKp2A6ympElmzcyWyccL5tbEm8ib++zc8J9xVr/74Zp4Ljqa7ymzutfc1FgdvnL40Wn8wd6qrVmN9f5mpTX5Pcmsy/K7vZmZmZmZWRW5p8zMzMzMrBZ59sWG4Z4yWyaS1pZ0q6TnJP1N0gWSuqd910maIWm4pE3SBB5TJW1Qorw5klbvvDMwMzMzM6sNDspsqSm70eYm4JaIGEA2E2Nv4CxJ/wFsFxEDI+J84KvArRGxZUT8rXqtNjMzMzOrTR6+aMtiV2B+RFwJEBGLJQ0nWxvtAOCzkqaRTdN/HLBY0k4RsYukW8jWHesBXJAWgf6EpF7An4G1ydZBOzMiRnfWiZmZmZmZdTYHZbYsNgOeyE+IiPck/Z1sUeg/RUQLfNKr9kFEnJeyHhURb0vqCUySdGNEvJVX1N7AKxGxbzq+b7EGSBoGDANo7rYKzc29K3h6ZmZmZmadx0GZLQsBxdbNaCs930mSDkzb6wADgPygbCZwnqRzgDsi4pFihaQetpEAK/ZYp+HX8DAzM7OuJzzRR8PwPWW2LGYDg/ITJK1MFmQtbusgSUOA3YHBEbEFMJVsGOMnIuJZYGuy4OzXkk6raMvNzMzMzGqMgzJbFg8AK0n6NoCkZuD/gFHARyWO6wu8ExEfSdoE+HJhBkmfAz6KiD8C5wFbVbjtZmZmZmY1xUGZLbWICOBA4GBJzwHPAvOBn7dz6D1AN0kzgDOB8UXyfBGYmCYKORX4fxVruJmZmZlZDVL2+dqsfjXaPWVC1W5Cw8jmqTGrnmb5u1NbosnvSZ3mvQ9fqImL/cYeOzfUZ5xi1rjv4Zp4LjqaJ/qwure41XfBmlltqPQnh0UVLs/M6osn+mgc/grOzMzMzMysihyUWUVICknX5P3eTdIbku5YxvL6S/pm5VpoZmZmZlabHJRZpXwIbJ4WhQbYA3h5OcrrDzgoMzMzM7Muz0GZVdLdwL5p+1DgutwOSb0kXSFpkqSpkg5I6f0lPSJpSnpslw45G9hR0jRJwzv1LMzMzMzMOpEn+rBKuh44LQ1ZHAhcAeyY9p0KPBgRR0lahWza+/uB14E9ImK+pAFkgdwg4BTg5IjYr9PPwszMzKwGeKKPxuGgzComImZI6k/WS3ZXwe49gf0lnZx+7wGsC7wCjJDUAiwGNiqnLknDgGEAau5LU1Ov5W6/mZmZmVk1OCizSrsNOA8YAqyWly7g6xHxTH5mSacDrwFbkA2nnV9OJRExEhgJ0K17v4Zfw8PMzMzM6pfvKbNKuwL4ZUTMLEi/FzhRaTVeSVum9L7AqxHRChwONKf094E+ndBeMzMzM7OqclBmFRURcyPigiK7zgRWAGZImpV+B7gYOELSeLKhix+m9BnAIknTPdGHmZmZmXVlivDIL6tvHr5oZrVC1W6AmVXEwo9frok/59eGDGn4zzhrjh1bE89FR/M9ZVb3GuIvtYGlEa9WhK9N21Tj7wwd8dw1VbjMal3DSp9Huar599RUpWtd7jl3peekWtfarD0evmhmZmZmZlZFDspKkHSgpJC0SV5a/3RP1LKUN0fS6kuR/0hJI9L2sZK+vRTHLk4LL08vWJTZzMzMzMxqiIcvlnYo8ChwCHB6NRsSEZcu5SHzIqIFQNJewK+BnSvesKx8kd2f6CUOzczMzMyWknvK2iCpN7A9cDRZUFYsT7Ok8yTNlDRD0okpfTdJU1P6FZJWzDvsxNRzNTPXAydpVUm3pDLGSxpYpK7TcwsvS9pQ0v15vWAbtHM6KwPv5JX1Y0mTUn1npLRzJH2/oL4flcjfX9JTki4GpgDrSLpE0mRJs3P5Ut7/lPS0pEclXSjpjpTeK12fSel6HZDSN5M0MfX0zZA0oJ3zMzMzM+tyotWPRuGgrG1fBe6JiGeBtyVtVSTPMGB9YMuIGAhcK6kHMAoYGhFfJOuNPC7vmDcjYivgEuDklHYGMDWV8XPg6nbadi3wu4jYAtgOeLVInp4pqHka+D1pCnpJewIDgG2BFmBrSTsB1wND847/BnBDifwAGwNXR8SWEfEScGpEDAIGAjtLGpiux2XAPhGxA7BGXh2nAg9GxDbALsC5knoBxwIXpJ6+QcDcdq6HmZmZmVndclDWtkPJAhXSz0OL5NkduDQiFgFExNtkgcqLKZgDuArYKe+Ym9LPJ4D+aXsH4JpUxoPAapL6FmuUpD5Av4i4OeWfHxEfFck6LyJaImITYG/g6jTMcM/0mErWw7UJMCAipgKflfQ5SVsA70TE39vKn+p4KSLG59X5DUlTUt7NgE1T/hci4sWU57q8/HsCp0iaBowFegDrAo8DP5f0U2C9iJhX5DoMS71yk1tbPyzcbWZmZmZWN3xPWRGSVgN2BTaXFEAzEJJ+UpgVKFw/or25Vhekn4tZcv2LHdPWuhRLPZdrRDyeJhhZIx3/64i4rEjWvwAH8f/Zu/MwuYp6/+Pvz0z2haCCCLlo2BEQQhLAIFsE4wIiCAgIIhchoiIXFbxcUARcCBfcAFECelGJ7IsIQoJA2AnZN1ZZ8pNFZc2+znx/f5xq0un0zJxJejLd05/X8/Qzp6vrVNU5faanv1N1quADrApIy+aXNIhVCz0jaQuynr/dIuJtSVeTBVmttVfAYRHxTEn6U5ImAgcC4ySdmILV4mMaA4wB6O51yszMzMyshrmnrLzDyYblfSgiBkXE5sCLZD1axcYDJ0vqBtm9YcDTwCBJW6c8XwIeaKO+B4FjUhn7kQ1xnF8uY0p/WdIhKX9PSX1aKzzdu9YIvAmMA05I98whaaCk96es15HdP3c4WYBGG/mLbUAWpM2TtAnw6ZT+NLBlCuJg9SGS48jusVMqe9f0c0uy3rVLgNvJhkOamZmZmXVJ7ikr72hgdEnazcAXgQuL0q4CtgVmSloBXBkRl0n6T7L7sboBk4C2Zk48F/g/STOBxcCX28j/JeAKSecDK4AjgBdK8vROwwIh65H6ckQ0AeMlfRh4LMVCC4FjgX9HxJw0PPKViHgNICJayt9UXFlEzJA0DZiT2vJISl+SJhC5W9IbwBNFu/0Q+AXZ+RPwEnAQWeB2bDqn/wTOb+N8mJmZmXU50ezFruuFIjzyyzqWpH4RsTAFXr8CnouIn1eqfA9f7NrSPwOsDJ+blqn9I73Xq4547xoqXGZnncNKH0denfn71NBJ5zrvMXel9yTvuf7XvKer4kPktb1G1P13nE0fvr8q3ouO5p4yWx9OkvRloAfZJCDl7mdba3X/adXF+R9HrfC5MTMz6xIclFmHS71iFesZMzMzMzPrSjzRh5mZmZmZWSdyT5nlJulssslOmoBm4KsRMbGFvCcDiyOirYWwzczMzKyMaO7sFtj64qDMcpE0nGxmxCERsSyte9ajpfwR0daMk2ZmZmZmhocvWn6bkq2ftgwgIt6IiFclvSTpQklPpMfWAJLOlXR62t5a0t8kzZA0VdJWKf0MSZMkzZR0XkrrK+nOlHe2pCNbaI+ZmZmZWZfgoMzyGg9sLulZSZdL2rfotfkRsTtwGdm6Y6XGAr+KiF2APYHXJI0EtgF2BwYDQyXtA3wKeDUidomInYC7O/CYzMzMzMw6nYMyyyUiFgJDgVHA68D1ko5PL19b9HN48X5pMeqBEXFrKmdpRCwGRqbHNGAqsD1ZkDYLOCD1vu0dEfPKtUfSKEmTJU1ubl5UwSM1MzMzM1u/fE+Z5RYRTcAEYIKkWcCXCy8VZyvZraUF/wRcEBFrrFkmaSjwGeACSeMj4vwybRkDjAHo5sWjzczMrAuKqIt1kw33lFlOkraTtE1R0mBgbto+sujnY8X7RcR84GVJh6RyekrqA4wDTpDUL6UPlPR+SZuRzdp4DXAxMKTDDsrMzMzMrAq4p8zy6gdcKmlDYCXwd7KhjAcBPSVNJAvyjy6z75eAKySdD6wAjoiI8ZI+DDwmCWAhcCywNXCRpOaU92sde1hmZmZmZp1LER75ZWtP0kvAsIh4o7Pa4OGLZmZmVkkrl79SFeMGXxn+8br/jjPwsfuq4r3oaO4pMzOrUXXxV8rM2i2NQDGzGuKgzNZJRAzq7DaYmZmZdUXR3NktsPXFE310UZLOljQnLcw8XdIekk5Lk2wU8vw13SNWifoWrsO+x6cJPszMzMzM6o57yrogScPJJuAYEhHLJG0E9ACuB64BFgNExGc6r5WrOR6YDbzaye0wMzMzM1vv3FPWNW0KvBERywDSJByHA5sB90u6H7JJOiRtJGmQpKclXSVptqSxkg6Q9Iik5yTtnvKfK+n0QiUp76DiiiX1k3SvpKmSZkn6XEofJOkpSVemHrzxknpLOhwYBoxNPXq9JY2W9GTq5bu440+XmZmZmVnncVDWNY0HNpf0rKTLJe0bEZeQ9USNiIgRZfbZGvglsDOwPfBFYC/gdOCsdtS9FDg0IoYAI4CfatUdx9sAv4qIHYF3gMMi4iZgMnBMRAwGegOHAjtGxM7Aj9p15GZmZmZmNcZBWRcUEQuBoWTriL0OXC/p+DZ2ezEiZkVEMzAHuDey9RJmAYPaUb2An0iaCfwNGAhsUlTH9LQ9pYVy55MFdldJ+jxpqOUalUijJE2WNLm5eVE7mmdmZmZmVl18T1kXFRFNwARggqRZwJfb2GVZ0XZz0fNmVl0nK1k9kO9VppxjgI2BoRGxIq1jVshXXEcTWa9YabtXpuGS+wNHAacAHy+TbwwwBrxOmZmZmXVN0ezlDeqFg7IuSNJ2QHNEPJeSBgNzyXqm+gNru9DzS2QTiCBpCLBFmTwDgH+ngGwE8KEc5S5I7UJSP6BPRPxV0uPA39eyrWZmZmZmNcFBWdfUD7g0TXe/kiywGQUcDdwl6bUW7itry83AcZKmA5OAZ8vkGQv8RdJkYDrwdI5yrwZ+I2kJ8Gngz5J6kQ2F/NZatNPMzMzMrGYou23IrHZ5+KLVKw9qMbNyVs2vZWtr+bKXq+Ik/mO3/ev+O87mk+6tiveio7mnzMysRtX9X2qzTlAL3w79D3ez2uOgzMzMzMysCjm+rh9dekp8SU1pQeLCY1A7979K0g5puz1rdbVV7ktpYeVCuy5ZizL2k3RHO/d5d/FnSedLOqC99ZYp878k/aLo+RWS/lb0/JuF45P06LrWZ2ZmZmbW1XT1nrIlaUHisiR1i4iVLb0eEScWPT0L+EkF2zYiItZ2FsR1FhHnVKioR8mmwS8YDDRIakzT8u8J3Jbq3LNCdZqZmZmZdRlduqesHEnHS7pR0l+A8aU9TpIuKyy0LGmCpGGSRgO9U6/WWEl9Jd0paYak2ZKOrEC7ukmaJGm/9PwCST9O27tJejTV94Sk/iX7vtsDlp7PLvQKSjpb0jOp92q7ojxXSzo8bb8k6TxJU1MP3vYpfWNJ96T0KyTNlbRRSdOnAdtK6i1pANliz9OBj6TX9yQL3JC0MP3cL53bmyQ9nc6p0mtDJT0gaYqkcZI2Xddza2ZmZmZWzbp6T1nvNH07wIsRcWjaHg7sHBFvFYKg1kTEmZJOKfS6SToMeDUiDkzPB6xF2+6X1JS2fx8RP0/B4E2STgU+BewhqQdwPXBkREyStAGwJE8FkoaSLcC8K9l7PRWY0kL2NyJiiKSvA6cDJwI/AO6LiAskfYpsWv3VpMWepwO7kS0GPRF4DthT0r/JZvj8R5n6dgV2BF4FHgE+JmkicCnwuYh4PQW7PwZOyHO8ZmZmZma1qKsHZS0NX7wnIt5ah3JnARdLuhC4IyIeWosy1hi+GBFzJP0R+AswPCKWS/oI8FpETEp55kPu6W73Bm6NiMVpn9tbyXtL+jkF+Hza3gs4NNV7t6S3W9j3EbIesd7AY2RB2VnA66ResjKeiIiXU7umky1s/Q6wE3BPOr5G4LVyO0saRQoS1TiAhoa+rRyamZmZWe2J5lqY79Mqoe6GLyaLirZXsvp56NXWzhHxLDCULDi7QNJq92dJ2rxoEo+T29m2j5AFJ5sUiqPtma9bO4a88/YsSz+bWBWs5/0keJQsKBtOFpQ9BeyQ0h5po77iOgXMiYjB6fGRiBhZbueIGBMRwyJimAMyMzMzM6tl9RqUFZsL7CCpZxqGuH8L+VZI6g4gaTNgcURcA1wMDCnOGBH/KAosfpO3IZI+D7wP2Ae4RNKGwNPAZpJ2S3n6Syrt4Xyp0AZJQ4AtUvqDwKHpfq/+wGfztiV5GPhCKnck8J4W8j0KfBTYOCL+HdkCKa8Dn6PlnrJyngE2ljQ81dld0o7tbLOZmZmZWU3p6sMX2xQR/5B0AzCTbNjdtBayjgFmSpoK/AG4SFIzsAL42lpUXXxP2Uzg28BoYP/UpsuAX0bEl9O9VZdK6k12P1npVPY3A8elYYCTgGfTsU2VdD3ZxBtzgfYOszwPuDbV/wDZUMIFpZki4m1JrwNzipIfAz4GzMhbWRqueThZQDqA7Pr8RUm5ZmZmZmZdirzqu7VEUk+gKU3mMRz4dWtLDHSWbj0G+iI2M7P1wnf41IcVy1+pird67pAD6v47zoem/q0q3ouOVvc9ZdaqDwI3SGoAlgMndXJ7zMzMOlXdf0O29coTfdQPB2XWooh4jmzqejMzMzMz6yCe6MPMzMzMzKwTOSjrIiRNkPTJkrTTJF1ewToOkbRDjnxXpwk7StP3k3RHpdpjZmZmZtYVOCjrOq4FjipJOyqlV8ohZOuPmZmZmZlZhTgo6zpuAg5KMyYiaRCwGfCwpDMkTZI0U9J5hR0kfV/S05LukXStpNNT+laS7pY0RdJDkraXtCdwMNlSANNTnpNSuTMk3SypT1F7Dkj7PivpoNLGSuor6Xdp/2mSPpfSd5T0RKpjpqRtOuqEmZmZmVWzCD/qhSf66CIi4k1JTwCfAv5M1kt2PfAJYBtgd7KZfG+XtA+wGDiMbCKPbsBUYEoqbgxwckQ8J2kP4PKI+Lik24E7IuImAEnvRMSVaftHwFeAS1MZg4B9ga3I1mTbuqTJZwP3RcQJaZHsJyT9DTiZbH22sZJ6AI2VO0tmZmZmZtXHQVnXUhjCWAjKTgC+CIxk1aLY/ciCtP7AnyNiCYCkv6Sf/YA9gRuld6dh7dlCfTulYGzDVO64otduiIhm4DlJLwDbl+w7Eji40DsH9CKbgv8x4GxJ/wHckmaAXIOkUcAoADUOoKGhb0vnxMzMzMysqjko61puA34maQjQOyKmSjoGuCAirijOKOlbLZTRALyTc5Hoq4FDImKGpOOB/YpeK+1wLn0u4LCIeKYk/SlJE4EDgXGSToyI+0orjogxZD16XjzazMzMzGqa7ynrQiJiITAB+B2rJvgYB5yQesCQNFDS+4GHgc9K6pVeOzCVMR94UdIRKb8k7ZLKWkDWw1bQH3hNUnfgmJLmHCGpQdJWwJZAafA1DvimUnecpF3Tzy2BFyLiEuB2YOe1PiFmZmZmZjXAPWVdz7XALaSZGCNivKQPA4+l+GchcGxETEr3iM0A5gKTgXmpjGOAX0v6HtAduC7luw64UtKpwOHA94GJaf9ZrB6wPQM8AGxCdn/a0qLhkAA/BH4BzEyB2UvAQcCRwLGSVgD/BM6vzGkxMzMzqy3RrLYzWZegqKdpTWw1kvpFxMI0a+KDwKiImNrZ7WovD180MzOzSlq5/JWqiIZe+MjIuv+Os+Ws8VXxXnQ095TVtzFpMehewO9rMSAzs/WvLv46mpmZrUcOyupYRHyxs9tgZmZmZlbvPNFHFZA0QdInS9JOk3R5hes5JPWMtZXvakmHl0nfT9Id7axzR0n3pUWkn0sLVhcm9zhY0plp+9yi6fHNzMzMzOqGg7LqUFhfrNhRrJpBsVIOAdoMyipFUm+yGRRHR8S2wC5ka6B9HSAibo+I0eurPWZmZma1JEJ1/6gXDsqqw03AQZJ6AkgaBGxGNm09ks6QNEnSTEnnFXZKvU5PS7pH0rWFniZJW0m6W9IUSQ9J2l7SnsDBwEWSpqc8J6VyZ0i6OU34UXBA2vdZSQeVNlhSX0m/S/tPk/S5Msf1ReCRiBgPEBGLgVOAQu/Y8ZIuK1P2qZKeTMd7XftPp5mZmZlZ7fA9ZVUgIt6U9ATwKeDPZL1k10dESBoJbAPsTnZ//e2S9gEWA4cBu5K9j1OBKanIMWTT0D8naQ/g8oj4eJoC/46IuAlA0jsRcWXa/hHwFeDSVMYgYF9gK+B+SVuXNPts4L6IOEHShsATkv4WEYuK8uxY1KbCsT4vqZ+kDVo5JWcCW0TEslS2mZmZmVmX5aCsehSGMBaCshNS+sj0mJae9yML0voDf46IJQCS/pJ+9iMbInhj0bpgPVuoc6cUjG2Yyh1X9NoNEdEMPCfpBWD7kn1HAgcX3QfWC/gg8FRRHgEtTeXa2hSvM4Gxkm4DbiuXQdIoYBSAGgfQ0NC3leLMzMzMzKqXg7LqcRvwM0lDgN5F09MLuCAirijOLOlbLZTTALwTEYNz1Hk1cEhEzJB0PLBf0WulQVPpcwGHRcQzrZQ/B9hntZ2kLYGFEbGgZDHpYgem/Q4Gvi9px4hYuVpjIsaQ9Qh6nTIzMzMzq2m+p6xKRMRCYALwO1af4GMccELqAUPSQEnvJ7vf7LOSeqXXDkzlzAdelHREyi9Ju6SyFpD1sBX0B16T1B04pqRJR0hqkLQVsCVQGnyNA75ZNJPirmUOayywl6QDUp7ewCXA/7Z0HiQ1AJtHxP3Ad1nVi2dmZmZWV6LZj3rhoKy6XEs2Q+G7k1ukSTL+BDwmaRbZpCD9I2IS2cyGM4BbgMnAvLTbMcBXJM0g660q9zlYHwAAIABJREFUTMJxHXBGmphjK+D7wETgHuDpkrY8AzwA3EV2f9rSktd/CHQHZkqanZ6vJg2t/BzwPUnPALOAScAak3sUaQSuScc6Dfh5RLzTSn4zMzMzs5qmCI/8qlWS+kXEwjRr4oPAqKJhj3XDwxfN1q/6maDYzOrViuWvVMVH3d93+GTdf8fZ+slxVfFedDTfU1bbxqTFoHsBv6/HgAygscEdvutC/oq93rRyH2WX1VDlx9xZ13/e89IR10xDzmPurOu10tdMLfze5X1PKq2zzk1n/t2p9s8kq18OympYRHyxs9tgZmZmZmbrxkGZASDpP4BfATuQ3Wt4B3AGsDNwXEScmmZoHBYRp3RaQ83MzMzqRHO4Z69eeNyXkWZQvAW4LSK2AbYlm/HwxxExOSJOXZsy00yKZmZmZmbWCn9pNoCPA0sj4v8AIqIJ+BbZVPyfkXRH6Q6SNpF0q6QZ6bGnpEGSnpJ0OTAV2FzS0ZJmSZot6cKi/RdK+qmkqZLulbRxSj9V0pOSZkq6rrReMzMzM7OuxkGZAewITClOSOud/T9g6xb2uQR4ICJ2AYaQTb0PsB3wh4jYFVgBXEgW9A0GdpN0SMrXF5gaEUPIpt7/QUo/E9g1InYGTq7AsZmZmZmZVTUHZQbZDNflplxtKR2yQOvXkPWsRURhjbS5EfF42t4NmBARr0fESrLFpPdJrzUD16fta4C90vZMYKykY4GVLTZYGiVpsqTJTU0L2zxAMzMzM7Nq5Yk+DLJersOKEyRtAGwOPN/OshYVF9OO/QrB34FkgdvBwPcl7ZgCutUzR4wBxgD07LV53a/hYWZmZl1PeKKPuuGeMgO4F+gj6TgASY3AT4GrgcWt7PO1Qv4UxJWaCOwraaNU5tFkQxUhu/YOT9tfBB5OE4NsHhH3A98FNiSbcMTMzMzMrMtyUGZERACHAkdIeg54FlgKnNXKbv8FjJA0i+x+tB3LlPsa8D/A/cAMsnvI/pxeXgTsKGkK2VDI84FG4JpU5jTg5xHxTgUO0czMzMysain7Pm62fklaGBEV6QXz8MV1o3aNMrV1ka0+UV8aqvyYO+v6z3teOuKaach5zJ11vVb6mqmF37u870mldda56cy/O3mvr1fenlMVF84z23+67r/jbPf0XVXxXnQ031NmNe/4D3y0YmXl/rLSAWU2VviPVGPOfN1y1tu89k0pK2/72vNlpdJd/91zjuXPeyzdcx5Lt5x/giv9VyrvH4Tu7fiKkDdv3mPOK+97kldDJ70nO3RbkDuvlK+RDXnz5TzovOUpb3mN+fJ165bvU6mhMV++xu75P+W69chZZo+cx5zzF6WhV65sNPbJ92moXjnz9cj3G6XuOfP16p4vX++eufIB0Kd3vnwNdfH93mqQhy9ap6hUL5lZgT/MzGx9yBuQmZm1h3vKzMzMzMyqUDS7Z69e+J/LdUjS+yRNT49/Snql6HmP9dyWBklnrs86zczMzMyqiYOyOhQRb0bE4IgYDPyGbJbDwemxHECZ9XF9NAAOyszMzMysbjkos3dJ2lrSbEm/AaYCm0r6tKTHJE2VdL2kvinvbpIekDRF0l2SNknpD0saLekJSc9I2jOlnyjpF0V13S1pL2A00D/10v1BUv9U3ozUlsPXbKmZmZmZWdfhoMxK7QD8NiJ2BVaQ9WLtHxFDgJnAf0nqCfwSOCwihgLXAD8sKkMRsTtwBnBOG/WdCSxIvXTHAZ8BXoqIXSJiJ+CeSh6cmZmZmVm18UQfVur5iJiUtvckC9IeTWuZ9AAeBj5Mtlj031J6I/ByURm3pJ9TgEHtrH8mMFrSaOAvEfFIuUySRgGjAPZ+7xA+3H/LdlZjZmZmVt28nHD9cFBmpRYVbQu4OyK+VJxB0q7AzIjYu4UylqWfTay6xlayes9s2dVWIuIpScPIeswuknRHRPykTL4xwBiArw46wh9ZZmZmZlazPHzRWvMosK+kLQEk9ZW0DfAkMFDS7im9h6Qd2yjrJWDXNIHIIGAoQESsTGV0Sz8HAgsj4o/Az4AhlT4oMzMzM7Nq4p4ya1FE/EvSV4Dri6bKPysinksTcFwiqT/ZdfRTYE4rxT0AvALMAmYD04te+y0wU9Jk4Dqy4YvNwHLg5IoelJmZmZlZlXFQVuci4tyi7b8Dg0tev4cyk21ExFRgrzLpexVt/xPYOm0HcFQLbfgO8J2ipL+25xjMzMzMzGqZgzKreb999dHOboJZl6DOboCtIU2mVNVqoY3VTp3029dZ711DDVwzi/6ns1uQiebqP1dWGb6nzMzMzMzMrBM5KLPcJDWlRZ5nS7pRUp828l/txZ/NzMzMzFrnoMzaY0la5HknPAmHmZmZmVlFOCiztfUQsLWkQZJmFxIlnS7p3NLMkkZLelLSTEkXp7SNJd0saVJ6fCyl75t65KZLmpZmeDQzMzMz65I80Ye1W1pT7NPA3Tnzvxc4FNg+IkLShumlXwI/j4iHJX0QGAd8GDgd+EZEPCKpH7C04gdhZmZmVuWawxN91AsHZdYevSUV1hd7iGx9sc1y7DefLLC6StKdwB0p/QBgh6LZnzZIvWKPAD+TNBa4JSJeLi1Q0ihgFIAaB9DQ0HctD8nMzMzMrHM5KLP2WBIRq61jJmklqw+D7VW6U0SslLQ7sD/ZWmWnAB9P+w2PiCUlu4xOwdtngMclHRART5eUOQYYA9Ctx8BYt8MyMzMzM+s8vqfM1tW/gPdLep+knsBBpRnSEMQBEfFX4DRWLVA9nixAK+QbnH5uFRGzIuJCYDKwfQcfg5mZmZlZp3FPma2TiFgh6XxgIvAi8HSZbP2BP0vqRbY+7bdS+qnAryTNJLsWHySb0fE0SSOAJuBJ4K6OPQozMzMzs86jCI/8strm4YtmleHbyatP0T23VasW2ljt1Em/fZ313jXUwDWzaPFLVdHIWVt8tu6/43zkxb9UxXvR0dxTZmZmANT9X/4qVBP/OK2FNpqZVTnfU2ZmZmZmZtaJHJSVIelsSXPSQsfTJe3RCW04V9LTkmZLOrSVfB+VNDG186lyCzdXqD0bSvp6R5RtZmZmZlbPPHyxhKThZDMIDomIZZI2Anp0cJ2NEdFU9Hxz4BhgB7IRRR9oZfffA1+IiBmSGoHtOqiZGwJfBy7voPKBbGHqiFjZkXWYmZmZmVUT95StaVPgjYhYBhARb0TEqwCSXkpBGpKGSZqQtjeWdI+kqZKukDS3KN9tkqaknrdRhUokLZR0vqSJwPCSNqwENgD6RcTKcosnF3k/8Fpqa1NEPJnKn5V6tyTpTUnHpfQ/SjpAUqOkiyRNSj2CXy1q2xlF6eel5NHAVqlH7qKW8kkalHrsrkzHPF5S7/TaVpLuTufjIUnbp/SrJf1M0v3AhZL2TfVMlzQtLShtZmZmVlci/KgXDsrWNB7YXNKzki6XtG+OfX4A3BcRQ4BbgQ8WvXZCRAwFhgGnSnpfSu8LzI6IPSLi4ZLylpGt/3VLWvurNT8HnpF0q6SvpmnnAR4BPgbsCLwA7J3SPwo8DnwFmBcRuwG7ASdJ2kLSSGAbYHey9cSGStoHOBN4PiIGR8QZreQjpf8qInYE3gEOS+ljgG+m83E6q/e6bQscEBHfSa99Iy1UvTdQuri0mZmZmVmX4aCsREQsBIYCo4DXgeslHd/GbnsB16X97wbeLnrtVEkzyAKhzckCFsjW4Lq5hfJ+S7aW133AnyQ1SPqupG+Uae/5ZAHfeOCLwN3ppYeAfdLj18BHJA0E3krHOBI4TtJ0sjXG3pfaNjI9pgFTyRZu3oY1tZbvxYiYnranAIPSAtJ7AjemOq8g65UsuLFoCOcjwM8knQpsWG44o6RRkiZLmtzcvKjsSTQzMzMzqwW+p6yMFBxMACZImgV8GbiabFhhIZDtVbRL2fUTJO0HHAAMj4jFabhjYb+lxfeRlTgAODwi7pV0KVmP0nbAcS2093ng15KuBF5PvXEPAt8g67U7GzgUOJwsWCu0+ZsRMa6kzZ8ELoiIK0rSB5UeXiv5lhUlNQG9yc7bO6n3q5x3I6uIGC3pTuAzwOOSDoiI1RaljogxZD1vXqfMzMzMzGqae8pKSNpOUnHP0GBgbtp+iawXDVYNyQN4GPhC2n8k8J6UPgB4OwVk25MNHcxjJnBs2v4uWZC2LCL+Uaa9B0rvrsK4DVkQ9E7KuxGwTUS8kNp4OquCsnHA1yR1T+VsK6lvSj8h9WwhaaCk9wMLgOJ7u1rKV1ZEzAdelHREyi9Ju5TLK2mriJgVERcCk8l64czMzMzMuiT3lK2pH3CppA3Jesb+TjaUEeA84LeSziIb8kdR+rWSjgQeIJt4YwHZUMKTJc0EniEbwpjHccAVkr4DLAUuBg6T9O2I+FlJ3i8BP5e0OLX3mKIeuIlAY9p+CLiALDgDuAoYBExNQd3rwCERMV7Sh4HHUqy3EDg2Ip6X9Iik2cBd6b6yNfKRBYUtOYasR+97QHeyIZ8zyuQ7TdKIVNaTwF2tnSwzMzOzrqg5yg7Gsi5IUU/TmnSQNBlHU0SsVDal/q9bGaZnFebhi2ZmZlZJK5e/UhXR0PQPHVz333EGz729Kt6Ljuaessr4IHCDpAZgOXBSJ7enrvz3Zm1PkNk953+aGtvOsqrM8rcSrqFnzo/TvPkac+brUeF8PXP+A6dnNOfK15i3PPL/PVqR8z3p1WqHbvv1asxXXt+eK3Ll69YtX3kNOS+Gbt3yvSfde+VfIrCxe866e1X2XDf2ajsPgHL+dcu7KmJjn5zfCXLeFKBu+b9j9Bi6Vb6M3XJ+gvXMufRmc773WH365CuvIefJacx5HMpZXs+2JjFOeuS8uAByfs7RmPNC7N0vX7685zAn9eidL9+AFu9OWE0smZ+v4sbu+fIB6jMgX8aGfNdNw3s3y1232frkoKwCIuI5YNfOboetP3kDMlt/8gZktu7yBmS27nIHZLb+5A3IbJ3lDsjMugBP9GFmZmZmZtaJ3FNWoySdTbYuWRPQDHw1Iia2vlfF23A6cCLZBCNNwE8j4g/rsw1mZmZmXVV4oo+64aCsBqXJRA4ChkTEMkkbATlvEljrOhuL11WTdDLwCWD3iJgvaQBwSFv7mZmZmZnZ6jx8sTZtCrwREcsAIuKNiHgVQNJLKUhD0rC0YDWSNpZ0j6Spkq6QNLco322SpkiaI6kw/T+SFko6X9JEYHhJG84Cvp7WHyMi5kXE74vacI6kh4EjJA2W9LikmZJulfSelG+CpF9IelTSbEm7p/R9JU1Pj2mS+mNmZmZm1kU5KKtN44HNJT0r6XJJbU8/CD8A7ouIIcCtZDNGFpwQEUOBYcCpkt6X0vsCsyNij4gorG9GCpL6R8TzrdS3NCL2iojrgD8A/x0ROwOzUlsK+kbEnsDXgd+ltNOBb6RlBfYGluQ4PjMzMzOzmuSgrAZFxEJgKNmi1q8D10s6vo3d9iJbrJmIuBt4u+i1UyXNIFvcenNgm5TeBNxcpixBm/OUXw+QhjVuGBEPpPTfA/sU5bs2telBYIO0aPcjwM8knZr2XWPSakmjJE2WNHnagr+30RQzMzMzs+rloKxGRURTREyIiB8ApwCHpZdWsup9LV50peydopL2Aw4AhkfELsC0ov2WlrsfLA1ZXCRpy1aauCjvoaxZfIwmm0CkN/C4pO3LtGFMRAyLiGG79t86Z1VmZmZmtSPCj3rhoKwGSdpO0jZFSYOBuWn7JbJeNFgVqAE8DHwh7T8SeE9KHwC8HRGLU/Dz0ZzNuAD4laQNUpkbFN+PVhAR84C3Je2dkr4EPFCU5ci0/17AvIiYJ2mriJgVERcCk4E1gjIzMzMzs67Csy/Wpn7ApWmo30rg72RDGQHOA34r6SygeIr884BrJR1JFhS9BiwA7gZOljQTeIZsCGMev07tmCRpBbAC+GkLeb8M/EZSH+AF4D+LXntb0qPABsAJKe00SSPIhk8+CdyVs01mZmZmZjXHQVkNiogpwJ4tvPYQsG2Zl+YBn4yIlWlK/RGF2RuBT7dQVr9W2hDA/6ZH6WuDSp5Pp+UeuJsj4n9K8n+zpXrNzMzMzLoaB2X144PADZIagOXASZ3cnoq5b8VrFSurofytd+ukMWeZjco3mjhvG9VQ2WPpnnO08wqaK1pvDzVWtLz2aMo5mL17zveusSnfe9KUN1/uwfb52qf5PXPli3YM8s97XefV3OYcQ6neThqd3y3n72fe4+j/6Fu56+6V81yvyH0Oc3525cwXFa4372dS3vI6Qt6rsHvu6yafppznOq9Kn8G8vye92vF73JDzkPOWeM7csbnrNqsEB2V1IiKeA3bt7HYUi4j9OrsNZmZmZtWqOTrvnwq2fnmijyok6ey0kPPMtIDyHin9tHRfViXq2E/SHeuw/wRJz0iaIWmSpMHrUNZZa7uvmZmZmVmtc1BWZdL9XgcBQ9JiywcA/0gvnwa0KyiTOnTs1zFpGv3LgYvWoRwHZWZmZmZWtxyUVZ9NgTcKk3BExBsR8WpaSHkz4H5J9wNI+nVaQHmOpPMKBUh6SdI5kh4GjpC0taS/pV6tqZK2Sln7SbpJ0tOSxiqzv6Rbi8r6hKRb2mjzY8DAon2OljRL0mxJF7aWLmk00Dv1CI6V1FfSnamts9NskWZmZmZmXZbvKas+44FzJD0L/A24PiIeiIhLJH2bbNbEN1LesyPirdQbdq+knSNiZnptaUTsBSBpIjA6Im6V1IssGN+c7B6zHYFXgUeAjwH3ka0/tnFEvE42ff3/tdHmTwG3pbo2Ay4kWyvtbWC8pEOAJ8qlR8SZkk6JiMFp/8OAVyPiwPR8wFqeRzMzMzOzmuCesioTEQvJApdRwOvA9ZKObyH7FyRNBaaRBVc7FL12PYCk/sDAiLg1lb80IhanPE9ExMsR0QxMBwalqe7/CByb1kEbTsvrhI2V9DLw38ClKW03YEJEvB4RK4GxwD6tpJeaBRwg6UJJe6fFp9cgaVTqJZz8r0WvttA8MzMzs9oVobp/1AsHZVUoIpoiYkJE/AA4BTisNI+kLYDTgf3TvWd3Ar2KsiwqZG2lqmVF202s6jn9P+BY4GjgxhRElXMMsAXwJ+BXbdSX67cqIp4lC0pnARdIOqeFfGMiYlhEDNuk72Z5ijYzMzMzq0oOyqqMpO0kbVOUNBiYm7YXAP3T9gZkgdc8SZvQ8gLQ84GX0xBCJPVsawbHiHiVbEjj94Cr28i7IuX7qKQPAxOBfSVtlIZVHg080Eo6wApJ3VP7NgMWR8Q1wMXAkNbqNzMzMzOrdb6nrPr0Ay5NQwdXAn8nG8oIMAa4S9JrETFC0jRgDvAC2T1hLfkScIWk84EVwBE52jEW2DginmwrY0QskfRT4PSI+Iqk/wHuJ+sd+2tE/BmgpfR0XDPTUMw/ABdJak5t/VqOtpqZmZmZ1SxltxCZrU7SZcC0iPhtZ7elLcMHjqjYRdyQb5RluzTmLLNR+Tqu87ZRquyxdM/Zsb6C5orW26NDV3VoXVPOz8fuOd+7vNdCE/nqbYrKnuu810x7/m7kva7zas55bho7aSBIt5zvcd7j6K8euevulfNcr8h9DnN+duXMFxWuN+9nUt7yOkLeq7B77usmn7yfIXlV+gzm/T3p1Y7f44ach5y3xHPmjq2Km5kmDTy07r+o7/bKrVXxXnQ095TZGiRNIRsa+Z3ObkseU9/8e5t51Il/lPN+EcnbxrzlNeT8gtZZ/5ip9Hlpj44IPqy65H2PGyr8z4u88l7X7Wlfc4Wv17x15603b3mV/odS3t/jSp8/yP85V2mVvr466zOz0v/Ugfz/ECl7Q7tZB3JQZmuIiKGd3QYzMzOzetdcR7MP1ruan+hD0gckXSfpeUlPSvqrpG07uM6rJR1eoXJeTAsnT5f06FqWs7Cd+feTdEfaPljSmWtTb5lyi4/naUk/qES5ZmZmZmZdWU33lCnrT78V+H1EHJXSBgObAM/m3F9pna7OckZE3NRZlUfE7cDtFSzyjIi4KS1S/aSkP0TEi+tSoKRurUzLb2ZmZmZW02q9p2wEsCIiflNIiIjpEfEQgKQzJE2SNFPSeSltkKSnJF0OTAU2lzRS0mOSpkq6UVK/lPectP9sSWNUZlC1pNGph26mpIsrcVCSLimszyXpk5IelNQgaRNJt0qakR57luz3bg9Yen5ZYeFpSZ9KvVcPA58vynN8mtSj0NN1iaRHJb1Q6A1MdV8uaY6kO1JvZFs9hYU10xalMoZKekDSFEnjJG2a0reSdHdKf0jS9kVt+Zmk+4EL1/pkmpmZmZlVuVoPynYCppR7QdJIYBtgd7K1voZK2ie9vB3wh4jYlSxo+B5wQEQMASYD3075LouI3SJiJ6A3cFBJHe8FDgV2TAs4/2gtjuGiouGLY1PamcCRkkYAlwD/mXrzLgEeiIhdyNbvmpOngtRrdSXwWWBv4AOtZN8U2IvsWEentM8Dg4CPACcCw9s6HuBl4LqI+Hdag+xS4PB0v9rvgB+n/GOAb6b004HLi8ralux9qYkJR8zMzMzM1kZND19sw8j0mJae9yML0v4fMDciHk/pHwV2AB5JHWE9gMfSayMkfRfoA7yXLAj6S1Ed84GlwFWS7gTuoP3WGL4YEYslnQQ8CHwrIp5PL30cOC7laQLm5axje+DFiHgOQNI1rFr7rNRtKQB8Utmi1JAFaTem9H+m3qtWjyf1Nt6bevPmkwXQ96Rz3Ai8lvLsCdxY1AnZs6isG9NxrkHSqMIxNHbbkMbGfq00yczMzKz2eA7g+lHrQdkcoKVhdAIuiIgrVkuUBpGG1BXluyciji7J14us12ZYRPxD0rmsGpIHQESslLQ7sD9wFHAKWeBUXM44snvcJkfEie04to8AbwKbtWOflaze+1nc3ry/18uKtlXyM7eIWChpAllAdxcwJyJW62GTtAHwTkQMbqGYRS2kExFjyHrZ6Nlrc39mmZmZmVnNqvXhi/cBPVOvEgCSdpO0LzAOOKHo/rCBkt5fpozHgY9J2jrl66Ns9sZCQPNGKmON4C+lD4iIvwKnkQ2TXE1EfDIiBrcnIJP0IbI1wnYFPi1pj/TSvcDXUp7GFNQUmwvsIKmnpAFkwSLA08AWkrZKz4+mfR4GDivc1wbsl+MYugF7AM8DzwAbSxqeXusuaceImA+8KOmIlC5Ju7SzbWZmZmZmNa2mg7LIVik8FPiEsinx5wDnAq9GxHjgT8BjkmYBNwH9y5TxOnA8cK2kmWRB2vYR8Q7ZfVizgNuASWWa0B+4I+33APCttTiM4nvKpkvqCfwWOD0iXgW+QjY8shfwX2RDKmeR3Uu3Y8mx/AO4AZgJjCUN3YyIpWRD/e5ME33MbWcbbya7R2w2cAUwkZaHThbuKZtJdu5uiYjlZEHthZJmANPJhi0CHAN8JaXPAT7XzraZmZmZmdU0VXr1deuaJPVLQxLfBzwBfCwi/tnZ7YJ8wxfV/hGYFRM5R47mbWPe8hqU738unfUZUOnz0h5acyLVsvz5WLvyvscNOfNVWt7ruj3ta67w9Zq37rz15i0v73uXV97f40qfP8j/OVdplb6+OuszszHn37H2aM75nsxb+HxVrNr8+Gafr/s/RB999ZaqeC86Wq3fU2brzx2SNiSbCOWH1RKQAXRvaPsyXtncRLeGxvWeD2BF80p6NnZvM9/yppX0aGz7WJY1rchV3ormJrrnaOPyppX07NZ2ectWrqhovqUrl9OrW49c5fXOkW/JyuW58gEsbVpBrxznMG+ZS1Yup0/3nm3mW7xiWe58/Xr0ajPfwuVLOy1f/56928wHsGDZklx525NvQM8+beabv3wJG/Rou7yFK5bSr3uOY25Hvv556s15rhevWJarPIB5yxbnyrtgeb5zuGD5klzlzVu2mA179W0z3/xli9mwZ9v55i1fzIAebbdv3vJ8x5u33reWLuR9vdcYULOGN5csyJUP4I0l89mod+mdBh2fL28b3166kPf1ajvfW8sW8t6ebU+o9ebSBbnKy5vvnWWLeE+OfABvL12QK++bS+ezUa8BucqsBs1RF/GI4Z4y6wL69dmiqi/izvpPfF6V/q90pTV0Yi9nXpU+h75mWlbt10Olz017egoq3WOVV+5eyQq/d3l7PPLWW+2fhR2h+n+fKt9TlrcX8fk3plbFyXl008Oq+jvO+rDnazdXxXvR0Wr6njIzMzMzM7Na56Csi5G0MEeevSXNSROL5BsXs/r+x0sqO1W/pO1TudOKZntcK5LOlXT6upRhZmZmZlbtHJTVp2OAi9NU/UvWYv/jaXn9tEOAP0fErkWLXpuZmZmZWQsclHVRkvaTNEHSTZKeljQ2rQN2IvAF4JyU1k/SvZKmSpol6XNp/0GSnpJ0ZepVGy+pt6TDgWHA2NKeNkmfIVuv7URJ96e0b0uanR6nFeVtKf1sSc9I+huw3Xo5WWZmZmZVKEJ1/6gXnn2xa9uVbC2zV4FHyKaxv0rSXsAdEXFTWuT50IiYL2kj4HFJt6f9twGOjoiTJN0AHBYR10g6hWwdtcnFlUXEXyX9BlgYERdLGgr8J9ki0gImSnqA7J8BLaUfldrdDZhKth6bmZmZmVmX5aCsa3siIl4GSAs6DwIeLskj4CeS9gGagYHAJum1FyNietqekvZvj72AWyNiUWrDLcDeqc5y6Q0pfXFKv71sqdlro8gWxKZH9/fRvVu+KXPNzMzMzKqNhy92bcuKtpsoH4QfA2wMDI2IwcC/gMLiOXn2b01Lfc6t9UXnmvo1IsZExLCIGOaAzMzMzMxqmYMyGwD8OyJWSBoBfCjHPguAPJHQg8AhkvpI6gscCjzURvqh6d61/sBn1+J4zMzMzMxqiocv2ljgL5ImA9OBp3PsczXwG0lLgOEtzeAYEVMlXQ08kZKuiohpAK2kX5/aMZcsUDMzMzOrS82d3QBbbxRR9wuFW43r12eLqr6IG1TdMwepytvX0Oo64A4mAAAgAElEQVRo1+pQ6XPoa6Zl1X49VPrcNCr/gJbmnH/PK3195T3mSr93zflGu+eut9o/CztC9f8+VX5Al3Ie8/NvTK2Kk/PQBw6v6u8468Pe/7ypKt6LjuaeMqt5K5ubOrsJFRE5v2DklfcPT95685ZXaZU+L+3RWcecV7W/d52pLr9g1+Ex15t6+132NW31xPeUmZmZmZmZdSIHZeuRpKa04HLhMagCZb6U1heriLRo9BcrUM5LaTHqwrHuKWkzSTe1Uffsda3bzMzMzKyWePji+rUkTTtflqRuEbFyfTaojEHAF4E/5d1BUmNElBtDOCIi3ihJO3wd2mZmZmZWN6LOhqzWM/eUdTJJx0u6UdJfgPEp7QxJkyTNlHReSusr6U5JMyTNlnRkUTHflDQ19Uxtn/LPkrShMm9KOi6l/1HSAalX6qG031RJe6ayRgN7p96tb0lqlHRRUXu+msrZT9L9kv4EzMp5rO/2hEnaUdITqZ6ZkrZJ2RolXSlpjqTxknqv2xk2MzMzM6tu7ilbv3pLmp62X4yIQ9P2cGDniHhL0khgG2B3skWWb5e0D9kCz69GxIEAkgYUlftGRAyR9HXgdOBE4BHgY2RTy78A7A38Afgo8DWyWVY/ERFLU0B0LTAMOBM4PSIOSvWMAuZFxG6SegKPSBqf6t0d2CkiXmzheO+X1AQsi4g9Sl47GfhlRIyV1ANoBDZJx350RJwk6QbgMOCatk+tmZmZmVltclC2frU0fPGeiHgrbY9Mj2npeT+yQOUh4GJJFwJ3RETxGl63pJ9TgM+n7YeAfciCsl8DoyQNBN6KiIUpqLtM0mCgCdi2hTaPBHaWVBh2OCC1ZznwRCsBGZQfvljwGHC2pP8AbomI59JsaS9GRCFwnUI2nHINKVgcBdCt23tobOzXSjPMzMzMzKqXhy9Wh0VF2wIuiIjB6bF1RPw2Ip4FhpINFbxA0jlF+yxLP5tYFWg/SNY7tjcwAXid7H6uQjD3LeBfwC5kPWQ9WmibgG8WtWeLiCj0lC1qYZ82RcSfgIOBJcA4SR8vOZbS4yndf0xEDIuIYQ7IzMzMzKyWuaes+owDfihpbOrRGgisIHuv3oqIayQtBI5vrZCI+EealbFHRLwg6WGyoY2npCwDgJcjolnSl8mGDwIsAPqXtOdrku6LiBWStgVeWdeDlLQl8EJEXJK2dyYbZmlmZmZmQHPdLx1dPxyUVZmIGC/pw8BjaTjfQuBYYGvgIknNZEHa13IUN5FVwdZDwAXAw+n55cDNko4A7mdVr9dMYKWkGcDVwC/JhhBOVdag14FD1uEQC44EjpW0AvgncD6wQQXKNTMzMzOrKYpwCG61rVevD3aJizio7GEo5zS6eevNW16lVfq8tEdnHXNe1f7edab0T6260lCHx1xv6u13uTOv6fmLXqiKkz1hkyO6xHecdbHfv26siveio7mnzGreyuZyS6SZmVk1qYtvVZZLPf7TxKwtnujDzMzMzMysE9VFUCYpJP2x6Hk3Sa9LuiM9P1jSmWn7XEmnp+0JkoatQ71NaXHkwuPMtSjjeEmXtXOfqwtT2Eu6StIO7a23hXILxzOjZMHp1vY5TVKfoudnVaItZmZmZl1dM6r7R72ol+GLi4CdJPWOiCXAJyiaQTAibgdu74B6W1qXbL2JiBMrWNy7xyPpk2QTh+zbxj6nkS3+vDg9Pwv4SXsqldQYER6jaGZmZmZdUl30lCV3AQem7aOBawsvtNUbJalB0u8l/WhdGyFpgKRnJG2Xnl8r6aS0/anUAzVD0r1l9n23Byw9X5h+StJlkp6UdCfw/qI87/b2SVoo6cep/MclbZLSt0rPJ0k6v1BuGzYA3k7771fodUzPL0vn9FRgM+B+SfdLGg30Tr1tY1PeYyU9kdKukNRY1NbzJU0EhrfjFJuZmZmZ1ZR6CsquA46S1ItsTayJOffrBowFno2I77WzzkIAUngcGRHzyNYKu1rSUcB7IuJKSRsDVwKHRcQuwBHtqOdQYDvgI8BJQEvDCvsCj6fyH0x5IZv2/pcRsRvwao7jeRq4Cvhha42KiEtSeSMiYkREnEnqbYuIY9LU/0cCH0s9cE3AMUVtnR0Re0TEw2UrMDMzMzPrAupl+CIRMVPSILJesr+2Y9crgBsi4sdrUW3Z4YsRcU9aH+xXwC4p+aPAgxHxYsrzVjvq2Qe4Ng3xe1XSfS3kWw4UerSmkA3jhKwnqrD22J+Ai9s6HknDgT9I2qkd7Sy1PzAUmJRmYuoN/Du91gTc3NKOkkYBowDUOICGhr7r0AwzMzMzs85TTz1lkN03djFFQxdzeBQYkXrYViNpj6JesIPzFiipAfgwsAR4byEZ2lx0aCXpPUsLOfcoei3POhYrYtXCdE2sQ1AeEY8BGwEbF7crWeNctUDA71PP2eCI2C4izk2vLW3tPrKIGBMRwyJimAMyMzMz64oC1f2jXtRbUPY74PyImNWOfX5L1rN2o6TVgpiImFgUULRnopBvAU+R9dr9TlJ34DFgX0lbAEh6b5n9XiLrWQL4HNA9bT9INjSzUdKmwIh2tAXgceCwtH1Unh0kbQ80Am8Cc4EdJPWUNICsB6xgAdC/6PmKdLwA9wKHS3p/KvO9kj7UzrabmZmZmdW0uhm+CBARL5PdP9Xe/X6Wgo0/SjomIppz7tpb0vSi53eTBYYnArtHxAJJDwLfi4gfpCF5t6SetH+zanhhwZXAnyU9QRbQLErptwIfB2YBzwIPtPMQTwOukfQd4E5gXo7jEfDl1Jv1D0k3ADOB54BpRfuMAe6S9FpEjEjPZ0qamu4r+x4wPh3zCuAbZEGemZmZmVld0KrRbFav0jpiSyIi0uQjR0fE5zq7XXl16zHQF7GZWZWrn0FI1pZ0H3lVW77s5apo5L2bHFn333H+P3t3HiZXVed//P3pTkJCAkFWISxBAcOaSAIaNkER3GYQQQOSEcQhoig/UHRYXFh0QGEGYYCBjLIJArKKoiQaQYICScjSSZBFMSiLLIKRkJCl+/v7454yl6K6+nZS3VXV/Xk9Tz1dde655567VFd965x7zvuev6khzkVP61ctZdapscAl6T61vwPH1rk+ZmZmZmb9hoMyIyKms3oUyKbT0gS/uPUnRX8BLdpKX89fVJuhjo1ODd4+0pfOXX/7X9jo1xYUPyd96TosolXFhjToTm+uosew2d4nRe+XsebX3wb6MDMzMzMzayhuKbOakNRONtBIyY0RcV696mNmZmZm1iwclFmtVJwo28zMzMzMqnP3RetRkj4k6VFJ90u6WNLPUvomkn4pabakKyQ9JWljSUMl3SVpnqQFkibUex/MzMzMzHqSgzKrlSGS5uYeEyQNBq4APhgR+wCb5PJ/E/h1ROxONs/a1in9A8CzETE6InYhm9vNzMzMzKzPcvdFq5U3dV+UNAZ4MiL+lJJuACal5/sAhwJExN2SXknp84ELJH0H+FkaGfJN0kTbkwBaWzegpXVoTXfGzMzMrN6iCUYZtdpwS5n1pGr/SSoui4jHyeZNmw+cK+kbneSbHBHjImKcAzIzMzMza2YOyqwnPQq8TdLI9Dp/f9j9wCcAJB0EvCU93wJYGhHXARcAu/dWZc3MzMzM6sHdF61Whkiam3t9d0ScKunzwN2SXgJm5JafBdyQBvL4DfAc8CqwP3C+pA5gJfC5Xqm9mZmZmVmdOCizmoiI1k4W3RMRoyQJuBSYldIXAwdHxCpJ44EDImI5MCU9zMzMzMz6BQdl1tOOk3Q0MAiYQzYaI2SjLf5YUguwAjhuTTcQEWtdye7KYkyrpNbno2h5PXFOGv08qx/eAN7o56SlwevXHX3l+upL56ReWmp8LfTE53bRMtvr8J1hbXTUuwLWaxyUWY+KiAuBCyukPwG8s/drZGZmZmbWWDzQRzdJai+bj2tklbwjJX1yLbe3iaSVkj5bMP/xkj61NtvMlbVI0sZrsN6Zkp5Jx+cRSUfWoj5mZmZmZn2Rg7LuWxYRY3KPRVXyjgTWKigDPg48CBQKbCLi8oi4di23WQsXpnnLDgGukDSw3hUyMzMzM2tEDspqILWITZc0Oz32SovOA/ZNLUYnS9pZ0oz0uk3S9gWKPxL4MrClpBG5bS6R9G1J8yQ9KGmzlH6mpFPS83slXSjpPkm/l7SHpNskPSHpW7my7pD0sKSFaVLm8v0bKumutK0FacTEQlI3xaWsHvL+OEkzU1m3SlpXUqukJ5XZQFKHpP1S/umStiu6PTMzMzOzZuOgrPuG5Lou3p7SXgDeHxG7k83FdXFKPxWYnlrULgSOBy5KLUjjgKerbUjSVsBbI2IG8GPeOM/XUODBiBgN3EfnA2WsiIj9gMuBnwAnALsAx0jaKOU5NiLGpjqdmEsv+QDwbESMjohdgLur1btsH3YHnoiIF1LSbRGxR6r374HPREQ78DiwE7AP8DBZMLsOsGVE/KHo9szMzMz6ig4/+g0HZd2X7754aEobCPyfpPnAzWTBRSUPAKdL+g9gm4hY1sW2jiALxgBu5I1dGFcAP0vPHybrKlnJnenvfGBhRDyXhp5/EtgqLTtR0jyybpJbAeUtePOBAyV9R9K+EbG4i3oDnCzpMeAh4Mxc+i6p9Ws+cBSwc0qfDuyXHueSBWd7ADMrFS5pkqRZkmZ1dLxWoDpmZmZmZo3JQVltnAw8D4wma20aVClTRPwI+FdgGTBF0nu7KPdIshatRWTB1ehcl8eVsXr813Y6H0lzefrbkXteej1A0v7AgcD41Ho1BxhcVu/HgbFkwdm5kr7RRb0hu6fsHWSte9dKKpV5NfCFiNiVbALpUvp0YF9gT+DnwAZkE0nfV6nwiJgcEeMiYlxLy9AC1TEzMzMza0wOympjOPBcRHQA/waUJlJ+FVivlEnS24AnI+JisiBrt5Q+LX+/WEp7BzA0IkZExMiIGEnWgnRED9T9lYhYKmkU8O7yDJK2AJZGxHXABcDuKf1cSYeW58+LiNvIJow+OiWtBzyXBv44Kpf1IWAvoCMiXgfmAp8lC9bMzMzMzPosB2W1cRlwtKQHgR2AUn+6NmBVGtTiZLJWowWS5gKjyFqQWoDtgJfLyjwSuL0s7VYKjsLYDXeTtZi1AeeQdWEstyswI9X7DOBbufS/FtjG2cCX0r5+nSwA+yXwaClD6lL5l9z2p5MFcPO7u0NmZmZmZs1EPTGruhUnaReygTa+VO+6dJekKRFxcL3rMXDQiF6/iCX19iatC/3xnIh+uM8Nfp5bGrx+3dFXrq9mOCcNf133kWuhO15Z8oeG2Om7Njuy339R//DzNzTEuehpnd2HZL0kIhYATReQATRCQAYwcvhbe32bHd34MaPoF4JafwGq9XaDYvvcqmIN8EWPYU8cv1p/SWst2Omg6BevWn8Bail4Toqeu+4YWPDYFN32QLV2nYni10PRPS5av1q/j4ep+Mf0oILHZmDBOhY9d4OLXv+FcsE6BcsbFsVKHN5RLN86Bf+tD+zGV+R1iv6fK7ztYhmLbndgwf/rg2gvlq+l2Fh5AwvmW2fgqkL5AAYOLFbH1gH9aTw/aybuvmhmZmZmZlZHDsqsEElvlXSjpD9KekTSzyXtUO96mZmZmZk1Owdl1iVlfa5uB+6NiLdHxE7A6cBmuTzF+s2YmZmZmdkbOCizIg4gmxft8lJCRMwFWiXdI+lHpFESJU2UNEPSXElXlII1Sf+bJnteKOmsUjmSFkn6T0kPpOW7S5qSWuSO7+X9NDMzM2sYHfKjv3BQZkXsAjzcybI9gTMiYidJO5IN+793RIwhm9S6NBfZGRExjmxutvdI2i1Xxl8iYjzZMPhXA4eTzZd2ds33xMzMzMyswXj0RVtbMyLiT+n5+4CxwMw0ytwQ4IW07BOSJpFdc5sDO5HN4wbZRNqQtbYNi4hXgVclvS5pg4j4e/lGU1mTADYZtjXDB29c+z0zMzMzM+sFDsqsiIVkrVeVvJZ7LuCaiDgtn0HStsApwB4R8Yqkq4HBuSzL09+O3PPS64rXaERMBiYDbL/J2H4/h4eZmZmZNS93X7Qifg2sI+m4UoKkPYD3lOWbBhwuadOUZ0NJ2wDrkwVviyVtBnywd6ptZmZmZtb43FJmXYqIkHQo8D1JpwKvA4uAO8ryPSLpa8BUSS3ASuCEiHhQ0hyyFrcngd/26g6YmZmZNaGOGk9Ib43LQZkVEhHPAp+osOj/yvLdBNxUYf1jOil3ZO751WQDfbxpmZmZmZlZX+Xui2ZmZmZmZnXkljJrev9Y8VqXedJokDWjHuhO0FKwjkX3paXGdaz1MSyq6H5kPWZrq9bnufA5LrjdouUVVdfrusb7XLi8wtdXfa7/dVoGFs5bdF+K5mstuM+tBX/fbS34Hu2g2NhNAwtut/C5K5it6Hah+LEeUPDYFC2vaB2Ln+MaX1sFv362Uvz6H7Cy4LYL5ruw8JbNasMtZWZmZmZmZnXkoKyJSGqXNFfSPEmzJe1VYJ2TJK2be316D9RroqQ2SQtT3b4vaYO0bJEkTyJmZmZm1k3hR7/hoKy5LIuIMRExGjgNOLfAOicB6+Zedzsok9RaZdkHgJOBD0bEzsDuwO+Azbq7HTMzMzOz/shBWfNaH3gFQNL+kn5WWiDpEknHSDoR2AK4R9I9ks4DhqTWtutT3omSZqS0K0oBmKQlks6W9BAwvko9zgBOiYhnACKiPSKujIjHcnm+mFr25ksalcofKulKSTMlzZF0SEpvlXR+Sm+T9NlaHTAzMzMzs0bkoKy5lAKqR4HvA+dUyxwRFwPPAgdExAERcSqrW9uOkrQjMAHYOyLGAO3AUWn1ocCCiHhXRNxfZTM7A7O7qPdLEbE78L/AKSntDODXEbEHcABwvqShwGeAxSl9D+A4Sdt2Ub6ZmZmZWdNyUNZcSgHVKOADwLVauyHB3geMBWZKmptevy0tawdu7U5hknZNQeMfJU3ILbot/X0YGJmeHwScmrZ7LzAY2DqlfyqlPwRsBGxfYVuTJM2SNGvZir93p5pmZmZmZg3FQ+I3qYh4IA2gsQmwijcG2IMLFiPgmog4rcKy1yOivUAZC8nuI7snIuYDYyRdAgzJ5Vme/raz+poTcFhZN0dSkPnFiJhSbaMRMRmYDLDZ8FH96T5QMzMz6yc66l0B6zVuKWtS6d6sVuBvwFPATpLWkTScrMWr5FVgvdzrlZJKE39MAw6XtGkqc0NJ23SyvXMlHVph0bnABZK2zKUNqZCv3BSye82Uyn9nLv1zpTpK2iF1azQzMzMz65PcUtZchqRufZC1NB2dWrP+IunHQBvwBDAnt85k4BeSnouIA9LrNkmz031lXwOmKpt5dyVwAlmQV25X4M7yxIj4uaRN0jZagb8DC8iCq2rOAb6X6iJgEfARsnvlRgKzU/qLwEe7KMvMzMzMrGkpwj2/rGuSpkTEwfWuRyVFui+u3a13FcqjtuUBtBSsY9F9aalxHWt9DIsquh/Z7wq1VevzXPgcF9xu0fKKqut1XeN9Llxe4eurPtf/Oi0Du86UFN2XovlaC+5za8FON60F36MdBWcmGlhwu7U+d0W3C8WP9YCCx6ZoeUXrWPwcF722iilaXtF8AANqXOaFi26sz5u+zG1v/WS//6L+sb/+qCHORU9zS5kV0qgBGcDflr1a7yqY1VS/+PQxs26r148D/dGF9a6A9TsOyszMzMzMGlCHA/F+wwN9NDhJW0r6iaQn0lDzF0kalFt+Q5pk+WRJo9KQ9HMkvb1KmYvSyI3drcuZkp5J2yg9NqiQ715J49Lzn0vaQNJISQs6Kfef+c3MzMzM+hsHZQ0sDXRxG3BHRGwP7AAMA76dlr8V2CsidouIC8kGxPhJRLwzIv7YQ9W6MM2VVnpUnSQsIj7UVR4zMzMzs/7MQVljey/ZfGFXAaSRFk8GjpW0LjAV2DS1WH0TOAn4d0n3AEi6Q9LDkhZKmlReuKShku6SNE/SgrIJnwuTNETSjanF7iZyQ+KXtcoNkHRNyndL2ofysg6S9ICk2ZJuljRsTepkZmZmZv1D6jG2MH2fvUHSYEnbSnoo9Ta7qdTTLE0hdZOkP6TlI3PlnJbSH5N0cC79AyntD5JOzaVX3MaacFDW2HYGHs4nRMQ/gD8D2wH/CvwxtVidBVxO1pJ1QMp+bESMBcYBJ0raqKz8DwDPRsToiNgFuLtAnU7OdV28J6V9DlgaEbuRteKN7WTddwCTU75/AJ/PL0zB29eAAyNid2AW8KUCdTIzMzOzfkjSCOBEYFz6PtsKHAF8h+x78fbAK8Bn0iqfAV6JiO3IxnT5Tipnp7TezmTfkS+T1JqmfLoU+CCwE3BkykuVbXSbg7LGJqg4NnBn6eVOlDQPeBDYCti+bPl84EBJ35G0b0QsLlBmvvtiKfjbD7gOICLayOZLq+QvEfHb9Pw6YJ+y5e8mu9h/m+ZjOxrobDLrSZJmSZrV0fFagWqbmZmZNZfwo6gBZPP5DgDWBZ4j63F2S1p+DavnvT0kvSYtf1+6ZegQ4MaIWB4RfwL+AOyZHn+IiCcjYgVwI3BIWqezbXSbg7LGtpCsleufJK1PFmBVvWdM0v7AgcD4iBhNNqH04HyeiHicrFVrPnCupG+sRV2LvG/K85S/FvDLXNC3U0RU/MUhIiZHxLiIGNfSMnRN6mtmZmZmTS4ingEuIOtJ9hywmKyn2d8jYlXK9jQwIj0fAfwlrbsq5d8on162TmfpG1XZRrc5KGts04B1JX0KIDWf/hdwdUQs7WLd4WRNs0sljSJrhXoDSVuQdTu8juxi3j2lnyvp0G7U8z7gqLTuLsBuneTbWtL49PxI4P6y5Q8Ce0vaLpW1rqQdulEPMzMzM+tD8r2j0mNS2fK3kLVybQtsAQwl62pYrtQYUGmegahh+hpxUNbAIiKAQ4GPS3oCeBx4HTi9wOp3kw2s0QacQxbwlNsVmJG6Cp4BfCuX/tdOys3fUzY33Rz5v8CwtK2vAjM6Wff3wNEp34Zpvfz+vggcA9yQ8jwIjCqwr2ZmZmbWB+V7R6XH5LIsBwJ/iogXI2Il2cjlewEbpO6MAFsCz6bnT5P1OiMtHw68nE8vW6ez9JeqbKPblH3vN1tN0pSIOLjrnI1hwKARvoitT/FUoWZWiTyRcK9ZsfzphjjYN29+VL//jvPx566vei4kvQu4EtgDWAZcTTZY3H7ArRFxo6TLgbaIuEzSCcCuEXG8pCOAj0XEJyTtDPyI7B6yLch6rG1P9rH8OPA+4BlgJvDJiFgo6eZK21iT/RzQdRbrb5opIDPri/r9J7CZVdRXfkhviGinSXTUuwJNICIeknQLMBtYRTaOwmTgLuBGSd9KaT9Iq/wA+KGkP5C1kB2Rylko6cfAI6mcE9J0VEj6AjCFbGTHKyNiYSrrPzrZRre5pcyanlvKzMzMmkczBGUrVzzTENW8yS1lTOiipayv8D1lTUxSSPph7vUASS9K+tkaljdS0icL5t1S0k/SZHl/lHRRblK+MZI+lMt7pqRT1qROZmZmZmZ9nYOy5vYasIukIen1+8n6uq6pkUCXQVmal+E24I40Wd4OwDCyiaMBxgAf6mT1bkujTpqZmZmZ9UkOyprfL4APp+dHAjeUFkgaKulKSTMlzZF0SEofKWm6pNnpsVda5Txg3zSq4slVtvle4PWIuAog9bc9GTg2zaN2NjAhlTMhrbOTpHslPSnpxFwdJ0qakfJeUQrAJC2RdLakh4DxmJmZmZn1UQ7Kmt+NwBGSBpPND/ZQbtkZwK8jYg/gAOB8SUOBF4D3R8TuwATg4pT/VGB6mrj5wirb3JlsUr5/ioh/kE3aNxL4BnBTKuemlGUUcDDZiDbflDRQ0o5p+3tHxBignTTfGdkcEwsi4l0RUT6fmZmZmZlZn+HRF5tcRLSlucKOBH5etvgg4F9z93MNBrYmm0PhEkmlQKi7EzSLygPEdZYOcFdELAeWS3oB2IxsaNGxwMw0zO8QsoCRVK9bO61ANnHgJAC1DqelZWg3d8HMzMyssXX0iyEuDByU9RV3AhcA+wMb5dIFHBYRj+UzSzoTeB4YTdZa+no3t7cQOKyszPXJJtb7I1mgVW557nk72bUn4JqIOK1C/tdLw5BWkiYOnAwefdHMzMzMmpu7L/YNVwJnR8T8svQpwBfTwBxIemdKHw48FxEdwL+RzbkA8CqwXmllSSMkTauwvWnAupI+lfK1Av8FXB0RS8vLqWIacLikTVM5G0rapsB6ZmZmZmZ9hoOyPiAino6IiyosOgcYCLRJWpBeA1wGHC3pQbKui6+l9DZglaR5aaCPzckmzyvfXgCHAh+X9ATZLOevA6enLPeQDeyRH+ijUr0fAb4GTJXUBvwybdPMzMzMrN/w5NHWqTR7+Z8j4s5616Uad180MzNrHs1wm1SjTB59wxaePPrIZ/vH5NG+p8w6FRGX1LsOZmZmZv1VR1OEsFYLDsqs6Q0dNLhmZbXU8Z9fuvWv17UU3G7d6lfwnPRE/VSn66HoOam1ep3j7qj1e7TR97lVrV1nSmp9vdbtOqzTftTr/Q7QqtreTVK0vHp95hV93/VE/Rr9PW/9l+8pMzMzMzMzqyMHZU1GUnsaQGOBpJslrbuG5Vwt6fD0/KQ1LSdX3r2S/qzcT1CS7pC0ZC3KPL3rXGZmZmZmzc1BWfNZFhFjImIXYAVwfA3KPAmoGJSl4e6L+juwd1pvA9Z+JEUHZWZmZmbW5zkoa27Tge0AJH0ptZ4tkHRSShuZhsInvT4lTRxNLu1EYAvgHkn3pLQlks6W9BDwNUm35/K/X9JtndTnRuCI9PxjwBvySfqKpJmS2iSdlUu/Q9LDkhZKmpTSzgOGpFbB67t/aMzMzMyaW/jRbzgoa1KSBgAfBOZLGgt8GngX8G7guNxE0VVFxMXAs8ABEXFASh4KLIiIdwFnAztK2iQt+zRwVSfFTQP2S61rRwA35b/DprkAACAASURBVOp7ELA9sCcwBhgrab+0+NiIGAuMA06UtFFEnMrqVsGjiuyLmZmZmVkzclDWfIZImgvMAv4M/ADYB7g9Il6LiCVkLVT7rsU22oFb4Z8TRf8QmJi6JI4HflFlvfuBCcCQiFiUW3ZQeswBZgOjyII0yAKxecCDwFa59E5JmiRplqRZK1b+o3t7Z2ZmZmbWQDwkfvNZFhFj8gn5wTXKrOKNgXfRseNfj4j23OurgJ8CrwM3R8SqKuveCNwOnFmWLuDciLjiDYnS/sCBwPiIWCrp3iL1jIjJwGSA4cPe3p9at83MzMysj3FLWd9wH/BRSetKGgocSna/2fPAppI2krQO8JFO1n8VWK+zwiPiWbIujl8Dru6iLtOBc4EbytKnAMdKGgYgaYSkTYHhwCspIBtF1v2yZKWkgV1sz8zMzMysqbmlrA+IiNmSrgZmpKTvR8QcAElnAw8BfwIe7aSIycAvJD2Xu6+s3PXAJhHxSBd1CeCCCulTJe0IPJAa9pYAE4G7geMltQGPkXVhzNerTdJs31dmZmZm/U2H57ruN5R9hzarTtIlwJyI+EG961Kult0XW6jff7/Oe6H2rJaC261b/Qqek56on+p0PRQ9J7VWr3PcHbV+jzb6Prd2Y1aSWl+vdbsO67Qf9Xq/A7Sqth2XipZXr8+8ou+7nqhf0W3PfPa+hvjncO2Iif3+i/qnnrmuIc5FT3NLmXVJ0sPAa8CX612XSto7OrrMU/RDub3g4Ks98kWu4A8ktf6Qai+43Xp9eY2i2+2Bj61a73PRc9dRcF9qfk6KbrcHvijV6z3aUuPrptbnpDvHutbBR62Dslpvt9H3oztq/eNTrcsrfKzr+CNa0W3X88dXs2oclFmX0nD1ZmZmZmbWAzzQRyckhaQf5l4PkPSipJ91sd4Gkj6fez1S0idrWC9JmizpEUnzJY2vkneApP+U9ESahHmupDPWYtunV1m2SNL0srS5+cmru7mtNxxHMzMzM7O+ykFZ514DdpE0JL1+P/BMgfU2APLBxEigZkEZ2Zxk2wM7k00W/WSVvN8CtgB2TcPo7wuszWiGnQZlyXqStgJIg3qsjfLjaGZmZtavdPjRbzgoq+4XwIfT8yPJDfMu6UxJp+ReL5A0EjgPeHtqJTo/vd43vT5Z0mBJV6VWrjmSDkjrHyPpNkl3p5at73ZSpxXAZsDAiFgaEc9XyiRpXeA44IsR8TpARLwaEWfm8nwp1XuBpJNy6XdIeljSQkmTUtp5pImrJV3fSd1+TDZxdKXj1SrpfEkzJbVJ+mxKHyZpmqTZ6ZgcklYpP45mZmZmZn2Sg7LqbgSOkDQY2I1saPmunAr8MSLGRMRX0uvp6fWFwAkAEbErWeByTSofYAxZULMrMKHU6lTmeWB94Ooqk0YDbAf8OSJerbRQ0ljg02Stbe8GjpP0zrT42HQf2TjgREkbRcSppImrqwxPfwvwsfT8X8gmnC75DLA4IvYA9kjb25ZsQupDI2J34ADgv9J+lR9HMzMzM7M+yUFZFRHRRtb98Ejg5zUqdh/gh6n8R4GngB3SsmkRsTi1bD0CbFNh/VuA9wFLgQsBJF0m6cMV8v6TpE+nVqe/pGBvH+D2iHgtIpYAt5F1b4QsEJtHNmfYVmTdJYt4GXhF0hHA71MdSw4CPiVpLllwu1EqV8B/pnnKfgWMIGsJrErSJEmzJM1auapi3GlmZmZm1hQclHXtTrLJkG8oS1/FG4/fYIqp1rq1PPe8nbLRMSVtCmwcEY8BnwVGSvomWYvWvWVl/QHYWtJ6ABFxVbqvbDHQ2lk9JO0PHAiMj4jRwByK7xvATcClvPl4iawr5Zj02DYipgJHAZsAY1P9ni+yvYiYHBHjImLcwAHrdaN6ZmZmZmaNxUFZ164Ezo6I+WXpi4DdASTtDmyb0l8F8lFC+ev7yAIRJO0AbA08VrAuL2ar6YCIaAcmAf8PmB0Rr+UzRsRS4AfAJaXukZJagUG5enxU0rqShgKHAtOB4cArEbFU0iiyro0lKyV1NVDI7cB3gSll6VOAz5XWl7RD2u5w4IWIWJnuryu1DpYfNzMzM7N+JfzoNxyUdSEino6IiyosuhXYMHXH+xzweMr/N+C3afCM84E2YJWkeZJOBi4DWiXNJ2tVOiYillcov1JdAjgM+Hba7h3AF4B3Szq8wipnAM8BCyTNIQu6rgGejYjZwNXADLLuhN+PiDnA3cCA1J3wHLIujCWTgbYqA32UBhP5TkSsKFv0fbIumbPTMPlXkLUEXg+MkzSLLFh9NJVTfhzNzMzMzPokZd/zzZrXsHW37fIibqk6Jkr3VR9jpWe1VO0B23Pqtc+1PnfdUet9rvW5q9c5UQ9cg/V6jzb6ORmgAV1nSooew6Lnr+bnpMbbbfT96I6i12Gtr+ui5RU+1jXebncU3XbRfNOfmVa/D5+cq0ZM7Pdf1D/9zHUNcS56WvH/9mYN6vVV5Y1yZv1Dv/iUMrNuq+cPh2a2Ztx90czMzMzMrI7cUmZmZmZm1oA63OjZb7ilrAlJak9zjs2TNFvSXmtYzjhJF9eoTvdK+nN+QmtJd0hashZlnl6LupmZmZmZNTIHZc1pWZrrazRwGnDumhQSEbMi4sQa1uvvwN4AkjYANl/L8hyUmZmZmVmf56Cs+a0PvALZBGaSzk/DyM+XNCGl3yTpQ6UVJF0t6TBJ+0v6WUo7U9KVqcXrSUkn5vJPlDQjtc5dkeY7q+RG4Ij0/GPAbfmFkr4iaaakNkln5dLvkPSwpIWSJqW084AhaZudDsFvZmZmZtbsHJQ1p1Kw8ijZ/F/npPSPAWOA0cCBwPmSNicLlkoB2iDgfcDPK5Q7CjgY2BP4pqSBknZM6+4dEWOAdtLk1xVMA/ZLQdsRZPOwkbZ7ELB9KnsMMFbSfmnxsRExFhgHnChpo4g4ldUtgm/anqRJkmZJmtXR8Vr5YjMzMzOzpuGBPprTshQgIWk8cK2kXYB9gBsioh14XtJvgD2AXwAXS1oH+ABwX0QsqzBk7l1pIuvlkl4ANiML4MYCM1P+IcALndSrHbifLIgbEhGLcts4KD3mpNfDyIK0+8gCsUNT+lYp/W/VDkBETCabzJoBg0b0+zk8zMzMrO/pqHcFrNc4KGtyEfGApI2BTehk2qKIeF3SvWStYBOAGzopbnnueTvZ9SHgmog4rWCVbgRuB84sSxdwbkRc8YZEaX+yVr3xEbE01XNwwW2ZmZmZmTU9d19scpJGAa1kLUv3ARMktUraBNgPmJGy3gh8GtgXmNKNTUwDDpe0adrehpK2qZJ/OtnAI+WB3xTgWEnDUjkjUpnDgVdSQDYKeHdunZWSBnajrmZmZmZmTcctZc1piKS56bmAoyOiXdLtwHhgHhDAVyPirynfVOBa4M6IWFF0QxHxiKSvAVMltQArgROApzrJH8AFFdKnpvvTHkhdGpcAE4G7geMltQGPAQ/mVpsMtEmaXem+MjMzMzOzvkDZd2iz5uV7yqy/8pyiZlZJhXvGrZtWLH+6IQ7i/205sd9/xznu6esa4lz0NLeUWdPrF+9UswbiL3zWn/n6t97kgT76D99TZmZmZmZmVkcOyhJJ7Wnur3mSZkvaq9516kmSNpG0UtJny9IXpdEcu1ve1ZIO70b+kZIWpOfjJF3c3W2amZmZmfUFDspWK01UPBo4jWwEwR6hTL2P/cfJBtU4ss71ICJmRcSJ9a6HmZmZmVk91DswaFTrA6+UXkj6iqSZktoknZXSviPp87k8Z0r6cpX8IyX9XtJlwGxgK0n/K2mWpIWlfCnvhyQ9Kul+SRdL+llKHyrpylT2HEmHpPSdJc1ILX1tkrYvsI9HAl8GtpQ0olIGSZ9K5c2T9MOUto2kaSl9mqStc6vsJ+l3kp4stZqlAPR8SQskzZc0ocJ29s/t4zBJV6W8bZIOK7AvZmZmZmZNywN9rFYaZn4wsDnwXgBJBwHbA3uSjSlxp6T9yOb9+h5wWVr/E8AHquT/M/AO4NMR8flU9hkR8bKkVmCapN2Ax4ErgP0i4k+S8vN9nQH8OiKOlbQBMEPSr4DjgYsi4npJg8jmLeuUpK2At0bEDEk/JptQ+r/L8uyctrd3RLwkacO06BLg2oi4RtKxwMXAR9OyzYF9gFHAncAtwMeAMcBoYGNgpqT7qlTv68DiiNg11eMt1fbFzMzMrK8KjyvTb7ilbLVS98VRwAeAa5UNsXRQeswha+EaBWwfEXOATSVtIWk02QTIf+4sf9rGUxGRn4frE5Jmp7w7Azul/E9GxJ9SnnxQdhBwagoe7yULILcGHgBOl/QfwDYRsayLfT0C+HF6fiOVuzC+F7glIl4CiIiXU/p44Efp+Q/JgrCSOyKiIyIeATZLafsAN0REe0Q8D/wG2KNK3Q4ELi29iIhXKmWSNCm1Ms7q6HitSnFmZmZmZo3NLWUVRMQDabCLTchau86NiCsqZL0FOBx4K1lwQ2f5JY0EXsu93hY4BdgjIl6RdDVZkFXtNxEBh0XEY2Xpv5f0EPBhYIqkf4+IX1cp50hgM0mlCZm3kLR9RDxRtq0ic2Pk8ywvWz//t6hC242IyWSTSzPQ85SZmZmZWRNzS1kFkkaRdQH8GzAFOFbSsLRshKRNU9YbyVqdDicL0Ogif976ZEHaYkmbAR9M6Y8Cb0tBHGRdC0umAF9MLXhIemf6+zay1rWLyboN7pbSp5XfLybpHcDQiBgRESMjYiTZoCZHlNVvGllL3kZpvVL3xd/l8h4F3F9h3/LuAyZIapW0CbAfMKNK/qnAF3L1dfdFMzMzM+vT3FK2WumeMshaa46OiHZgqqQdgQdSLLQEmAi8EBELJa0HPBMRzwFERGf52/Mbi4h5kuYAC4Engd+m9GVpAJG7Jb3EGwOYc8juY2tLgdki4CNkgdtESSuBvwJnKxvdcTvgZd7oSOD2srRbyQLMc3L1Wyjp28BvJLWTdbE8BjgRuFLSV4AXgU9XP6zcTtblcR5ZC9hXI+KvuaCz3LeAS5UNl98OnAXc1sU2zMzMzMyaliLc86vRSBoWEUtS4HUp8EREXNjNMnYBjo2IL/VIJRuIuy+a9a70g5NZv+Trv39Y/vpfGuJEX77VxH7/Hef4v1zXEOeip7mlrDEdJ+loYBBZC1Wl+9mqiogFQJ8PyABaW6oONtkj6vmh3NJHvhCo4O2GUejWxp7Zdr0UPccdBX9Uq+c1U+v3SkvBc9dXvjh359wV3ef+dgwb/f0Oxc9zvc5J0WumqJ7Yj6J17OiBz5Se1FHvClivcVDWgFKrWLdaxszMzMzMrDl5oA+rGUntaQLreZJmS9qr3nUyMzMzM2t0bimzWloWEWMAJB1MNqrje9a2UEmtadAVMzMzM7M+xy1l1lPWB/458bOkr0iaKalN0lm59ImSZqQWtisktab0JZLOTvOvje/96puZmZmZ9Q63lFktlaYVGAxsDrwXQNJBwPbAnmTTDdwpaT+yIfUnAHtHxEpJl5HNfXYtMBRYEBHf6P3dMDMzM6s/D/TRfzgos1rKd18cD1ybhuY/KD3mpHzDyIK03YCxwMw0EtMQ4IWUp51s/rSKJE0CJgEMGPAWWluH1XxnzMzMzMx6g4My6xER8YCkjYFNyFrHzo2INwztL+mLwDURcVqFIl6vdh9ZREwGJgMMHrx1c41va2ZmZmaW43vKrEdIGgW0An8DpgDHShqWlo2QtCkwDTg8PUfShpK2qVedzczMzMzqwS1lVkule8ogax07OrV2TZW0I/BA6qa4BJgYEY9I+lpa3gKsBE4AnqpD3c3MzMzM6sJBmdVMRLRWWXYRcFGF9JuAmyqk+yYxMzMz69d8f0b/4aDMmt6qDk9hZmZmZmbNy/eUmZmZmZmZ1ZGDMjMzMzMzszpyUGZrTdKFkk7KvZ4i6fu51/8l6XRJt9SnhmZmZmZmjctBmdXC74C9ANIoihsDO+eW7wVMi4jD61A3MzMzs6bUIT/6CwdlVgu/JQVlZMHYAuBVSW+RtA6wI/CKpAUAko6RdJukuyU9Iem7pYIkHSTpAUmzJd1cmtvMzMzMzKyvclBmay0ingVWSdqaLDh7AHgIGA+MA9qAFWWrjQEmALsCEyRtJWlj4GvAgRGxOzAL+FKlbUqaJGmWpFkdHa/1xG6ZmZmZmfUKD4lvtVJqLdsL+G9gRHq+mKx7Y7lpEbEYQNIjwDbABsBOwG/TJNODyAK8N4mIycBkgAGDRngaDzMzMzNrWg7KrFZK95XtStZ98S/Al4F/AFdWyL8897yd7FoU8MuIOLJnq2pmZmZm1jjcfdFq5bfAR4CXI6I9Il4ma/kaTyetXRU8COwtaTsASetK2qFHamtmZmbW4Dr86DcclFmtzCcbdfHBsrTFEfFSkQIi4kXgGOAGSW2prFE1rqeZmZmZWUNRhG/Hsebme8rMzMysllateKYhBmO/cOuJ/f47zsl/vq4hzkVP8z1l1vRa1C/eq3VX9AccNcH58I9Rvafo9eBzUllLS+07tPhY9x4fazMryt0XzczMzMzM6shBWYOTdIakhZLaJM2V9K4u8h8v6VO9VLdJkh5NjxmS9sktO0nSurnXS3qjTmZmZmZ9Rb0H2WiER3/h7osNTNJ4shENd4+I5Wly5UHV1omIy3upbh8BPgvsExEvSdoduEPSnhHxV+Ak4DpgaQ22NSAiVq1tOWZmZmZmjcgtZY1tc+CliFgOEBEvRcSzAJIWSfpOaqGakRtG/kxJp6Tn20n6laR5kmZLentK/4qkman17ayUNlTSXSnvAkkTuqjbfwBfKY2sGBGzgWuAEySdCGwB3CPpntIKkr6dyn9Q0mYpbRNJt6b6zJS0d24/JkuaClxbm8NpZmZmZtZ4HJQ1tqnAVpIel3SZpPeULf9HROwJXAJ8r8L61wOXRsRosomdn5N0ELA9sCcwBhgraT/gA8CzETE6InYB7u6ibjsDD5elzQJ2joiLgWeBAyLigLRsKPBgqst9wHEp/SLgwojYAzgM+H6uvLHAIRHxyS7qYmZmZmbWtByUNbCIWEIWmEwCXgRuknRMLssNub/j8+tKWg8YERG3p7Jej4ilwEHpMQeYTTYP2PZkc4odmFrf9o2IxWtQZQGdDTW1AvhZev4wMDI9PxC4RNJc4E5g/VR3gDsjYlnFDWX3s82SNKuj/bU1qKqZmZmZWWPwPWUNLiLagXuBeyXNB44Gri4tzmctW7WzcagFnBsRV7xpgTQW+BBwrqSpEXF2lao9QhYw/jqXtntKr2RlrB4buJ3V114LML48+ErDaHcabUXEZGAywKB1tvSYw2ZmZtbn+AtO/+GWsgYm6R2Sts8ljQGeyr2ekPv7QH7diPgH8LSkj6ay1kmjIU4BjpU0LKWPkLSppC2ApRFxHXABWYCFpHMlHVqhet8FviNpo5RvDHAMcFla/iqwXoX1yk0FvpDb5zEF1jEzMzMz6zPcUtbYhgH/I2kDYBXwB7KujCXrSHqILLg+ssL6/wZcIelsYCXw8YiYKmlH4IHUGrUEmAhsB5wvqSPl/VwqY1eyboVvEBF3ShoB/E5SkAVhEyPiuZRlMvALSc/l7iur5ETgUkltZNfjfcDxVY+KmZmZmVkfIs8235wkLQLGlUY/7MHtTImIg3tyG2vL3Rd7R9H/FSnYb2j+v9d7il4PPieVtbTUvkOLj3Xv8bFuXitXPNMQH2YXbD2x319Ep/z5uoY4Fz3NLWVWVaMHZAAt6vpLi78Y1kAf+pcY8nluNLUO5v1e7lyj/3BSr3PXE58TRYNqX69m5qCsSUXEyHrXwczMzMx6Tkdj/4ZiNeSgzKqS1E42XP4A4PfA0WlofTMzMzMzqwGPvmhdWRYRY9KE0iuowyAckvzjgZmZmZn1WQ7KrDumk43SiKSJkmZImivpCkmtKX2JpP+SNFvSNEmbpPR7JX1P0u8kLZC0Z0ofKulKSTMlzZF0SEo/RtLNkn5KNmy+mZmZmVmf5KDMCkmtVR8E5qch9ScAe0fEGLLJoI9KWYcCsyNid+A3wDdzxQyNiL2AzwNXprQzgF9HxB7AAWTD8g9Ny8aTdZd8bw/umpmZmZlZXblbmHVliKS56fl04Adkc6WNBWam0aqGAC+kPB3ATen5dcBtubJuAIiI+yStn+ZfOwj4V0mnpDyDga3T819GxMuVKiVpUqoHAwa8hdbWYWu1k2ZmZmaNpqPeFbBe46DMurIstYb9k7JI7JqIOK3A+tHJ89JrAYdFxGNl23gX8FqnhUZMJpugmsGDt/ZYwmZmZmbWtNx90dbENOBwSZsCSNpQ0jZpWQtweHr+SeD+3HoTUv59gMURsRiYAnwxBXpIemcv1N/MzMzMrGG4pcy6LSIekfQ1YKqkFmAlcALwFFnr1s6SHgYWkwKx5BVJvwPWB45NaecA3wPaUmC2CPhIr+yImZmZmVkDkGeRt1qStCQi3nSDl6R7gVMiYlatt1mk+2JqiOuS3w/9Q7ypJ631NX3lvVz0f1dfUq9z1xOfE/7saV4rlj/dEG++87aZ2O8vjlOfuq4hzkVPc0uZWU49vwC19JEvX6Lgl5CCgVHR8npCo9ex0evXHUWv/44+8uW1Gc5d0Tq2qtidEO3hIQvMuqtv/MezIhyUWU1VaiVL6fv3clXMzMzMzJqCB/owMzMzMzOrIwdlgKSNJM1Nj79Keib3etBaln2JpL3S86skvWMNyhgg6e/dXOdASXek54dK+kp3t1trkloknVow7zRJw3u6TmZmZmZm9eagDIiIv0XEmDQf1+XAhaXXEbFiTcuVtAnwzoj4XdrOp8vn4+oNEXF7RJzf29utoAUoFJQBPwKO78G6mJmZmZk1BAdlXZB0tKQZqdXssjQEPJImS5olaaGkb3Sy+seBX+TKul/SmFLLl6TzJM2T9EBuzq+3SvqJpLa07F1l9flnC1h6fbmkien5hyU9Jul+4JBcnn+X9L30/DpJF0n6naQnJR2a0ltTWQsl/VTS3ZI+WuF43C/pvyVNl/SIpHGSbpf0hKQzc/l+KunhVN6/p+TzgPXSsby22vEFfkI2z5mZmZmZWZ/moKwKSbsAhwJ7pVa0AcARafGpETEOGA28X9JOFYrYG3i4k+KHA7+JiNHAA6yet+tS4JcRsRswFvh9wbquC1wBfAjYF9iiSvZNU90+Cpyb0j4OjAB2BT4LjK+y/rKI2Bf4AXAHWYvWrsAkSRukPEdHxFhgD+BLkt5C1kr2amqB/FS14xsRL5EFcBtgZmZm1g91EP3+0V949MXqDiQLKmalodKHAH9Jy46U9BmyY7gFsBPwSNn6mwMvdlL2sogotaI9TBZIAezP6sBkFfAPSUXO007A4xHxRwBJ1wOf6iTvHZFNitImaURK2wf4cUR0AM9K+k2Vbd2Z/s4H5kfE82mbi4Atgb8DJ0v615RvS+DtwNyycqodX8iO3eapvDeQNAmYBDBgwFtoba046KOZmZmZWcNzUFadgCsj4utvSJS2B/4fsGdE/F3SdcDgCusv6yQdIH+vWjtvPBfVfhZYxRtbOPPlF/05YXnuucr+dmf9jrKyOoABkg4E9gPeHRHLUnfKSseh4vHNGUx2DN8kIiYDk6HY5NFmZmZmZo3K3Rer+xXwCUkbwz9HadwaWB94lawVa3Pg4E7W/z2wXTe3eQ9pgIt0n9f6ZcufAnaWNCh1CXxvSn8E2EHStsqanY7s5nbvBw5XZnOyoGpNDQdeTgHZzmStYaWWP3Itf50dX9K9ZRvzxpYzMzMzM7M+x0FZFRExHzgL+JWkNmAqsBkwmywIWgD8H/DbToq4i6w7Ynd8AThY0nxgFjCqrE5/IruPaz5wbaoLEbGULJj7BTAdeLKb2/0x8ALZPl0KPAQs7mYZJXcB60qaB3wjlVXyA7Juk9dWOb4AewL3R0T7GtbBzMzMzKwpKLu1yHpCarG6H/hgRPyj3vXpiqRhEbEkDeX/EPCuiOjsnriersulZPe4Vbu3DSjWfTHds9bQWpqgjkWoYE/YKNjbtmh5PaHR69jo9euOotd/Rx/5zGqGc1e0jq0q9vtue3SsTXXMetVrSxc1xD/Oc7Y5qm/801sLX3/q+oY4Fz3N95T1oIgISacAW5O1QDW6X6TukgOBb9YrIEvmFAnIAAa0tPZ0Xd6kngFUvQLMlib4Yl9UrY9hnwmoC+5Hd37Ma/QfRGp9XRfd32YIlIsGZfVS9BgWfX/2xLVa9Pqq9bZbVdvPxahxQK2CgXx33ieFz3MTvPesf3JQ1sMi4oF616GoNMx9Q4iI79e7DmZmZmZmvaEh7ylLEyjfKOmPaYLin0vaoZfrcIykF9Okxgsl3ZLmAmsqks5MrXU9vZ2rJR2+huueXuv6mJmZmZk1i4YLytJ9WLcD90bE2yNiJ+B0Vg8A0ZtuShMd70w2hP2EOtShbgrOj1YLDsrMzMzMrN9quKAMOABYGRGXlxIiYm5ETE/DtZ8vaYGk+ZL+GSRJ+mpKmyfpvJQ2RtKDktok3Z6GkEfScZJmpry3dtUCloKTocAr6fUmab2Z6bF3St9T0u8kzUl/35HSj5F0m6S7JT0h6bspvTW1MJX25+QK2/4XSQ+lMn8labOUfqakKyXdK+lJSSfm1jlD0mOSfgW8o5N9ulrS5ZKmS3pc0kdydb1Z0k+BqZ0d85R+SWrJvAvYNFf2otww9+Mk3ZueD5N0VSqnTdJh6VwNSS2S10saKumudG4W5M+xmZmZWX8SfvQbjXhP2S7Aw50s+xgwBhhNNofVTEn3pbSPko0WuFTShin/tcAXI+I3ks4GvgmcBNwWEf8HIOlbwGeA/6mwvQmS9gE2Bx4HfprSLwIujIj7lc2rNQXYEXgU2C8iVimbQPk/gcPSOmOAd5JNtvyYpP8hC2RGRMQuqS4bVKjD/WSTMIekfwe+Cnw5LRtFFsSul8r8X2A34Ii0rQFkQ+Z3djxHAu8B3g7cI6k0m1s/sAAAIABJREFUp9p4YLeIeFnSYVQ+5uPJAr5dyVoxHwGu7GQ7JV8HFkfErml/3xIRt0r6QkSMSWmHAc9GxIfT6+FdlGlmZmZm1tQaMSirZh/ghjR31fOSfkM2MfF7gKvSXF2kYGI4sEFuBL9rgJvT811SMLYBMIwsqKrkpoj4QupSeSnwFeA84EBgJ60e6Wd9SeuRTZp8jaTtyYL7gbmypkXEYgBJjwDbAAuBt6UA7S6yebrKbQncpGxC50HAn3LL7oqI5cBySS+QBUf7AreXjoWkOzvZN8iGnO8AnpD0JKvnRPtlRLycnnd2zPfLpT8r6ddVtlNyIFnACEBEvFIhz3zgAknfAX4WEdMrFSRpEjAJYNDAjRg4YL0CmzczMzMzazyN2H1xITC2k2WdjWMqutfCeTXwhdRicxYwuFrmyMZ//ilZIALZcRuf7jcbExEjIuJV4BzgntTy9S9l5S7PPW8HBqSgZDRwL3ACUGnEwf8BLkl1/WxXZZaqXG1/8rvWyevXcmnVxo7tbDurWH1t5evb5XmKiMfJzv984FxJ3+gk3+SIGBcR4xyQmZmZmVkza8Sg7NfAOpKOKyVI2kPSe4D7yLoUtiqb4Hg/YAZZC9OxpXvDJG2YWqVekVQa5v3fgFKr2XrAc5IGAkcVrNc+wB/T86nAF3L1G5OeDgeeSc+P6arAdN9VS0TcSta1b/cK2fJlHl2gnvcBh0oaklrv/qVK3o9LapH0duBtwGOdlFfpmN8HHJHSNyfrRlmyiNWB9WG59PLj9pb0dGU6F0jaAlgaEdcBF1D5mJiZmZmZ9RkN130x3Tt1KPA9SacCr5N9yT+JLBAYD8wja3H5akT8Fbg7BUazJK0Afk42ot/RwOUpWHsS+HTazNeBh4CnyFpkOmtqKd1T1gI8zepA60TgUkltZMfwPuB44Ltk3Re/RBZcdmUEcJVWz6J4WoU8ZwI3S3oGeBDYtlqBETFb0k3A3LR/Fbv/JY+RBaqbAcdHxOt68+SLt1PhmEu6HXgv2fF7nNUBL2Stjz9QNtT9Q7n0b5EdtwVkLXtnAbcBk4E2SbPJ7gM8X1IHsBL4XLX9NTMzM+urajtttzUyZT3zrL+RdDXZPVu31Lsua2vYutv2+kXc8ubgtddUCJx7RUvVnqzNpdbHsJ7XQy0VPS7d+dyo1/VaVK2v66L7qyZ4P0WDj3tW9BgWfX/2xLVa9Pqq9bZb1VrT8rLbz2tn9W/RXeTrxvuk8HkuWObjL85qiDfpmdsc1dhvxF5w5lPXN8S56GkN11Jm1l2DBwzsMk+tv2x2dONLaWtLsQ+fegU9tf4SWesvcgNain256IkfmIqe51p/6av1vrQX/EJV+EtuS/FrtegxrPV1U6/rtaie2G6t97nWQU+tr8Oi/1uLvp/aO2rfJtFe4/KKnrv2WN51Jnrm/6aZrRkHZf1URBxT7zqYmZmZmdn/Z+/O462u6v2Pv94HcQLESvKqmRiiJKgIaKHmlEOlCaT+nLpFekMrsuyqaV3Nbpl5tWuamaEpzpIzagmkIs4yxOyYYjnc1BxxYDqf3x9rbfmy2Xufw2E4w34/e5zH2Xt91/T9fre0P2et71ptc6GPVifp3yRdL+lveXPkP0nauoky50iak3/30NINnz9Xq9zqprTJ9IlroJ3Rkg5pYdkfrer+mJmZmZm1Fx4pK5P3JLsFuCIiDs9p/UmLYTxVo+ixQI+IWCDpcOCJiGjOaoltlqS1ImLxGmjqR6SNts3MzMwsa6yLp6kMPFJWyV7Aooi4uJQQEdMj4n4l50iaLWmWpMPgww2auwCPSvohaRXGL0manpem30/Sw5KmSbpBUtdcbqCk+yRNlTQuLy2/DElfLoy6/UXSxjn9DEmXSZoo6VlJxxfK/FjSk5L+AmxT6STzyNbFku6X9JSkA3P68NzH24HxNc5Zki7MI4l3Ah8v1D0vL/ePpEGSJubXXSVdnuuZKelgSb8E1svX6hpJXSTdKWlGbvOwlt5IMzMzM7P2wCNly+sHTK1y7CtAf9KGzxsBkyVNioiDJM2PiP4Akv4JDIqIkTk4+S9gn4h4NwdtP5B0Fmlj6CER8WoOPs4Eji5r8wHgs3mrgP8ATgb+Mx/rQwoiuwFPSvodsD1wOLAj6f5Oq3E+PYE9gF7AvZK2yumDge0j4nVJB1c655xnG2A70ijiXOCyKu2UnAa8lTfCRtJHIuImSSML1+5g4KWIOCC/795EnWZmZmZm7ZqDshWzG3BdRCwB/inpPmAnYGyNMp8FtgUezCuvrQ08TApo+gETcnon4OUK5T8BjMmjaGsDzxWO3RkRC4AFkl4hBUefA26JiPfgw1G8av4YaZ3bpyU9SwryACZExOtNnPPuhfSXJDVnX7Z9SAEjABHxRoU8s4BzJZ1NWrK/4j5rkkYAIwC6rPNx1l3bsZuZmZmZtU+evri8OcDAKsdaMrNXpCCnf/7ZNiKOyelzCunbRcR+Fcr/Brgwjy4dC6xbOFZc83YJS4Ps5q5xW56v9P7dsv43t3zJYpZ+tor9VVN9i4inSNd/FnCWpNOr5BsVEYMiYpADMjMzMzNrzxyULe8eYB1J3ywlSNpJ0h7AJOAwSZ0k9SCNFj3WRH2PALuWpgZKWl9pJccngR6SBuf0zpL6VijfHXgxv27OwiGTgGH5WbZuwJdr5D1UUoOkXsCncp8q1VfpnCcBh+f0TUjTKEvmsTSwPbiQPh4YWXoj6SP55SJJnXPapsB7EXE1cC4woBnnbGZmZtbhNBJ1/1MvHJSVibST4jBgX6Ul8ecAZwAvkVZlnAnMIAVvJ0fE/zVR36vAcOA6STNJQVqfiFgIHAKcLWkGMB3YpUIVZwA3SLofeK0Z/Z8GjMn13QRUnP6XPQncB/wZOC4iPqiQp9o53wI8TRrR+l2up+SnwPm5z8W9M38OfCQv4DGDpYHcKGCmpGtIz6g9Jmk68ONcxszMzMysw5J3c69PkkaTntm6sbX7srI22mDrJj/E+bm9JjX3v4fGFfjvplND8/720dCi2bErr7nXRs3sX6ziv2qt1dCpee2uhn/LmnufG5p7DVfx57C5lkRjs/I19x4393yh+ddwVX9uWuvz2ppW9Tmv6s/Dqv4cNvff1tXx73prae69a+619nfA6l57+6k2sRj9f/U8su5v0s/nXdsm7sXq5oU+rN1784N3m85kZtbB1cW3FjOzDspBWZ2KiOGt3QczMzMzM3NQZmZmZmbWJtX93MU64oU+2hlJSyRNL/z0XMHyl0raNr/+0Ur2ZYSkJ/LPY5J2Kxz7vqT1C+/nr0xbZmZmZmYdlYOy9uf9wt5m/SNiXvGgpJqjnxHxHxExN79tcVAm6UDSvmm7RUQf4DjgWkn/lrN8H1i/WvkVbMsjumZmZmbWYTko6wAkDZd0g6TbgfGS9pR0R+H4hZKG59cTJQ2S9EtgvTzado2kLpLulDQjL1l/WBPN/hA4KSJegw+X4r8C+I6k44FNgXsl3Vvox5m5/kckbZzTeki6SdLk/LNrTj9D0ihJ44ErV9W1MjMzMzNraxyUtT+lQGq6pFsK6YOBr0fE3s2pJCJOYemo21HAF4CXImKHiOgH3NVEFX2BqWVpU4C+EXEBaV+3vSKitBdZF+CRiNiBtPF0aXPu84HzImIn0kbTlxbqGwgMiYgjm3NOZmZmZmbtkaeFtT/vR0T/CukTIuL1lah3FnCupLNJ+5fV2nS6GlH9mdSFQGn0biqwb369D7BtYf+mDSR1y6/HRsT7FRuSRgAjANSpOw0NXVrQXTMzM7O2q3k7zllH4JGyjqO4Wddilr236zZVOCKeIo1MzQLOknR6E0Xm5vxFA3J6JYti6S6VS1j6B4EGYHDhGbnNIuKdfKzqBmQRMSoiBkXEIAdkZmZmZtaeOSjrmJ4njT6tI6k78Pkq+RZJ6gwgaVPgvYi4GjiXFGAh6SxJwyqU/R/gbEkfy/n6A8OBi/Lxd4BuFcqVGw+MLL3J9ZiZmZmZ1Q1PX+yAIuIfkv4IzASeBv5aJesoYKakaaTFNM6R1AgsAr6V82wHjK3QxlhJmwEPSQpSEPbViHi5UPefJb1ceK6skuOB30qaSfo8TiKt5GhmZmZmVhe0dEaZ2fIkjYuI/Vu7H7WstfZm/hCbWd1T01nMrJkWLXyxTfwndWrPI+v+O85Z865tE/didfNImdXU1gMy8BcRMzOrrrCQlFm701h1/TTraPxMmZmZmZmZWStqMiiTtLGkayU9K2mqpIerLPzQrpRvsLwa2xku6cKVKLvpCpYZ2oyVE1e0H/NbWO5PkjZsYdmRkr7RkrJmZmZmZu1JzaBMacz/VmBSRHwqIgYChwOfqJC3bqZCKlkTo4zDgRUKyoCTWboCYquKiC9FxJstLH4ZaREQMzMzM7MOranAYm9gYURcXEqIiOcj4jfw4UjODZJuB8ZL6irpbknTJM2SNCTn6ynpCUlXSJop6UZJ6+djAyXdl0fhxknaJKcfL2luzn99ecdynffntqZJ2iWn7ylpYm7jCUnX5OASSV/IaQ8AX6l0wvmcbpN0l6QnJf2k0N7jki4CpgGbSzoin+fsvOlyqY5vSHpK0n3AroX00ZIOKbyfX3h9cq5rhqRf5nyDgGskTZe0Xk4vXZNzK/R9a2BBRLyW3/eQdJOkyfln15x+QWk0TdL+kiZJasijorfkPswoXdMq1+lkScfn1+dJuie//rykq/PreZI2Kly7SyTNkTRe0no5T698rafm+9kHICLeA+ZJ2rlaH8zMzMzMOoKmRrf6kgKQWgYD20fE63m0bFhEvC1pI+ARSaXl1LcBjomIByVdBnxb0vnAb4AhEfGqpMOAM4GjgVOALSNiQZUpcK8A+0bEB5J6A9eRghiAHXPfXwIeBHaVNAW4hBRoPgOMqXFOOwP9gPeAyZLuBF7L5/CNiPi20rTCs0kbKL9BCkqHAo8CP83pbwH3Un1JegAkfREYCnwmIt6T9NF8PUcCJ0bEFEkfBYYBfSIiqlyTXVn2fp0PnBcRD0j6JDAO+DTp2k6WdD9wAfCliGiUdAFwX0QMk9QJ6Fqj25OA/8zlBwHrKO15thtwf4X8vYEjIuKbSsv1HwxcTVo6/7iIeFrSZ0ijfHvnMlOAzwGP1eiHmZmZWYfkZT7qxwpNOZT0W9KX7oURsVNOnhARr5eyAL+QtDvQCGwGbJyP/SMiHsyvryZNTbuLFPxMyINZnYDSPlczSaNEt5KmUJbrDFyotNnwEmDrwrHHIuKF3OfpQE9gPvBcRDyd068GRlQ51QkR8a+c7+Z8zrcCz0fEIznPTsDEiHg157sG2D0fK6aPKetbJfsAl+fRIQrXs+ht4APg0hwkVnoebhPg1bJ6t9XSlac2kNQtIt6R9E1SYHVCRPwtH98b+FruwxJSUFnNVGCgpG7AAlIwOIgURFWadvhcREwvlO0pqSuwC3BDoY/rFMq8AvSp1LikEeT719CpOw0NXWp01czMzMys7WoqKJtDGtEAICK+k0fAphTyvFt4fRTQAxgYEYskzQPWLRUvqztIQdyciBhcoe0DSEHOQcBpkvpGxOLC8ROAfwI7kKZhflA4tqDweglLz7O5f3Co1FdY9lxrrbFbrZ3F5CmjeUrl2oW6avYtIhbnqXyfJz3XN5KlI0ol7wPdC+8bgMER8X6FKrcD/sWKP7NW6k/p/n4DeIgURO8F9AIer1Ck/J6sl/v3ZkT0r9LMuqRzqtT+KNIoG529T5mZmZmZtWNNPVN2D7CupG8V0tavkb878Er+wr4XsEXh2CcllYKvI4AHgCeBHqV0SZ0l9VVaRGPziLiXtHDFhiw/la478HJENAL/Thplq+UJYEtJvQp9qGZfSR/Nzz0NJU2BLPcosEd+ZqpTru++nL6npI/l6XyHFsrMI01rBBhCGu0DGA8craXP2X00p78DdMtpXYHuEfEn4PtApUDmcWCrwvvxpOCNXEf//HsL0tTDHYEv5mmDAHcD38p5OknaoPLl+dAk4MT8+37gOGB6NHNH8oh4G3hO0qG5TUnaoZBla2B2c+oyMzMzM2uvagZl+cv1UFLw8Zykx4ArgB9WKXINMCg/v3UUKRAqeRz4uqSZwEeB30XEQuAQ4GxJM4DppOlsnYCrJc0iPY91XoVV/C7K9T1C+vL+LjVExAek6W53Ki308XyN7A8AV+X+3BQRU8ozRMTLwKmkZ8ZmANMi4racfgbwMPAXln3G6xLStXwM+EypzxFxFzAWmJKnW56Y848GLs5p3YA78vW7jzRSWG4SsKOWzgU8nnQ/ZkqaCxyXj/2B9KzaS8AxpCmR6wLfA/bK130q6bm8Wu4nTZl8OCL+SRqtrPQ8WS1HAcfk+z+HFKyW7Eq6hmZmZmZmHZaaOaixco1IPYE7IqLfam9sJUkaDgyKiJFN5W2L8uIpt0dEuw5mJO0I/CAi/r2pvJ6+aGZm1RSeWTZrtoULXmgTH5wTex5R999xzp13XZu4F6tb3ewtVkd+QRqFa+82Ak5rTsa6/9fKzNqM5n5zaO6/W3XxTWQ1WxN/fDYzW1lrJCiLiHmkVRbbvIgYTZo22C7laYRjm8zYxkXEhNbug5mZmZnZmtDUQh9my5G0RGlD6zlKm0z/IC/OUqtMT0lHrqk+mpmZmZm1Fw7KrCXej4j+EdEX2Bf4EvCTJsr0BByUmZmZmZmVcVBmKyUiXiGtajkyL2nfU9L9kqbln11y1l8Cn8sjbCfkJffPkTQ5rw55LICkTSRNyvlmS/pca52bmZmZmdma4IU+bKVFxLN5+uLHgVeAfSPiA0m9geuAQcAppGX4DwSQNAJ4KyJ2krQO8KCk8cBXgHERcWbe/63WvnhmZmZmHVajlzOrGw7KbFUpLRLWGbgwb1S9hLSHXCX7AdtLOiS/7w70BiYDl+WNt2+NiOkVG0tB3QgAdepOQ0OXVXMWZmZmZmZrmIMyW2mSPkUKwF4hPVv2T2AH0vTYD6oVA74bEeMq1Lc7cABwlaRzIuLK8jwRMQoYBbCW9ykzMzMzs3bMz5TZSpHUA7gYuDDSZjDdgZcjohH4d6BTzvoO0K1QdBzwrTwihqStJXWRtAXwSkRcAvwBGLCGTsXMzMzMrFV4pMxaYj1J00lTFRcDVwH/m49dBNwk6VDgXuDdnD4TWCxpBmkfuPNJKzJOkyTgVWAosCdwkqRFwHzga2vgfMzMzMzMWo280721d56+aGZthZrOAtDsR/ebW5+ZrVqLFr7YJv7zO6Hn4XX/Hee8ede3iXuxunmkzMysnaqL/5fqoHzv6kOaCGLlfF3MludnyszMzMzMzFqRgzIzMzMzM7NW1K6DMklLJE2XNFvSDZLWz+kPtXbfACTNbwN9GF3YC2x1tjNR0qAWlNtQ0rdXR5/MzMzMzNqDdh2UAe9HRP+I6AcsBI4DiIhdWrdbHYOkNfHM4YaAgzIzMzOzMo3+qRvtPSgruh/YCpaOUEnaM4/g3CjpCUnX5OXXkTRQ0n2SpkoaJ2mTnP5NSZMlzZB0U2H0bbSkiyXdL+kpSQfm9OGSbpN0l6QnJf2kUucknZTrnSnppzmti6Q7c1uzJR1WoVyt/lwg6SFJz5ZGw5RcKGmupDuBj1fpz0RJv87lZ0vaOaefIWmUpPHAlZLWlXS5pFmS/ippr5xvPUnX5/MZA6xXqHt+4fUhkkbn1xtLuiWfywxJuwC/BHrlEc9zJG0iaVJhBPRzzbr7ZmZmZmbtVIdYfTGP6HwRuKvC4R2BvsBLwIPArpIeBX4DDImIV3MwdCZwNHBz3rgYST8Hjsl5Ie2rtQfQC7hX0lY5fWegH/AeMFnSnRExpdC//YDeOZ+AsZJ2B3oAL0XEATlf9wr9r9WfTYDdgD7AWOBGYBiwDbAdsDEwF7isyqXrEhG75L5cls8BYCCwW0S8L+k/ASJiO0l9gPGStga+BbwXEdtL2h6YVqWNoguA+yJimKROQFfgFKBfRPTP5/ifwLiIODPnWb8Z9ZqZmZmZtVvtPSgrbWIMaaTsDxXyPBYRLwDkvD2BN0kByIQ8cNYJeDnn75eDnw1JQcO4Ql1/jIhG4GlJz5KCIYAJEfGv3MbNpEBpSqHcfvnnr/l9V1KQdj9wrqSzgTsi4v4K/a/Vn1tzf+ZK2jin7Q5cFxFLgJck3VOhzpLrACJikqQNJG2Y08dGxPv59W7kIDAinpD0PLB1bueCnD5T0swa7ZTsTd4MOvfvLUkfKcszGbhMUud8ftOpQNIIYASAOnWnoaFLM5o3MzMzM2t72ntQ9n5phKWGBYXXS0jnLGBORAyukH80MDQiZkgaDuxZOFa+gV80kV4i4KyI+H15Y5IGAl8CzpI0PiL+ewX6Uzy34qYfzd1osFq/361Sb1PlK6Wv28y+pIIpQNwdOAC4StI5EXFlhXyjgFHgzaPNzMzMrH3rSM+UrYgngR6SBgNI6iypbz7WDXg5j9QcVVbuUEkNknoBn8r1AOwr6aOS1gOGkqZJFo0DjpbUNbe3maSPS9qUNAXwauBcYECFvtbqTyWTgMMldVJ6Tm6vGnkPy/3ZDXgrIt6qUt9ROd/WwCdJ511M7wdsXyjzT0mfltRAmk5Zcjdp2iO5fxsA7+RzJKdvAbySp2z+gcrXxMzMzKzDC/+vtW/BGtPeR8paJCIW5oUxLsjPca0F/BqYA5wGPAo8D8yiEDCQgpH7SM9qHRcRH+Tpjw8AV5EWGrm2+DxZbm+8pE8DD+f884Gv5vznSGoEFpEDljK1+lPJLaRpgrOAp3J/q3lDafuADUjP01VyEXCxpFnAYmB4RCyQ9Dvg8jxtcTrwWKHMKcAdwD+A2aRplwDfA0ZJOoY0avmtiHhY0oOSZgN/zvlPkrSIdJ2+1sT5mpmZmZm1a4qonwh0ZeQVBO+IiBvL0ocDgyJiZGv0q6UkTQROLA8g2yNPX7R6VWtusZm1vvyHWCvTHq7Lgg/+0SY6eXzPw+r+O84F88a0iXuxutXlSJmZWUdQ9/9PbR1SR/r25T98V+brYrY8B2XNFBHDq6SPJi3G0a5ExJ6t3QczMzMzM6vfhT5qkjRMUuR9uVamntGlTZ1bi9IG2nesgXaGS7pwJcpuuqr7ZGZmZtaeNfqnbjgoq+wI0uIdh7d2R1qTkjXxGRkOOCgzMzMzs7rkoKxMXrZ+V+AYCkFZHnGaJOkWSXMlXVwKWCTNl/QrSdMk3S2pR4V6B0q6T9JUSePycvVIOj7XN1PS9RXK9ZR0f657mqRdCv2ZKOlGSU9Iukb5yVlJX8hpDwBfqXKewyXdJukuSU9K+kmhvcclXQRMAzaXdISkWZJm542uS3V8Q9JTku7L16yUvswIoaT5hdcn57pmSPplzjcIuEbSdEnr5fTSNTm3GbfNzMzMzKzd8jNlyxsK3BURT0l6XdKAiJiWj+0MbEtanv4uUsBzI9AFmBYR/ynpdOAnwIerMeY9xn4DDImIVyUdBpxJWob+FGDLvMz8hhX68wqwb15+vzdwHSmIAdgR6Au8RNobbVdJU4BLSMviPwOMqXGuOwP9gPeAyZLuBF4DtgG+ERHfztMKzwYGAm8A4yUNJS3T/9Oc/hZwL/DXWhdW0hfz9f1MRLwn6aMR8bqkkeSVICV9lLS3WZ+IiCrXxMzMzMysw/BI2fKOAEojVtfn9yWPRcSzEbGEFBztltMbWRr8XF1IL9mGFPxMkDQd+C/gE/nYTNIo0VdJ+4CV6wxckvcJu4EUFBb780JENJL2CusJ9AGei4inIy1vdHWNc50QEf+KiPeBmwv9fj4iHsmvdwImRsSrEbEYuAbYHfhMIX0htYO/kn2AyyPiPYCIeL1CnreBD4BLJX2FFDAuR9IISVMkTWlsfLcZTZuZmZmZtU0eKSuQ9DHSCFM/SQF0AkLSyTlL+Rqu1dZ0LU8XMCciBlfIewApyDkIOE1S3xz8lJwA/BPYgRREf1A4tqDweglL72dz15qtdj7FKKfW6sTV2llMDvjzlMq1C3XV7FtELJa0M/B50vTRkaR7Up5vFDAKvE+ZmZmZdUyN3vykbnikbFmHAFdGxBYR0TMiNgeeY+kI0s6StszPkh1GWgwE0nUsPUN1ZCG95Emgh6TBkKYzSuqb69k8Iu4FTgY2BLqWle0OvJxHw/6dFCjW8gSwpaRe+f0RNfLuK+mjktYjTSt8sEKeR4E9JG0kqVOu776cvqekj+XpmYcWyswjTWsEGEIa7QMYDxwtaX2APFUR4B2gW07rCnSPiD8B3wf6N3G+ZmZmZmbtmkfKlnUE8MuytJtIgdYY4OF8fDtgEnBLzvMu0FfSVNLzVYcVK4iIhXlBiwskdSdd918DTwFX5zQB50XEm2XtXwTcJOlQ0nNbNefq5WfPRgB3SnqNFCD2q5L9AeAqYCvg2vxMV8+y+l6WdGpuW8CfIuI2AEln5GvyMmlRkFLAeAlwm6THgLtLfY6IuyT1B6ZIWgj8CfgRaZ+3iyW9D3wxl103t3dCrfM1MzMzM2vv5F3Vm0fSnqTFKA6scGx+RJSPcLVpkoYDgyJiZFN52zpPXzQz6zhqzZk3W1MWLXyxTXwUv93z/9X9d5yL5v2xTdyL1c0jZWZmZtZm1P03UDOrSw7KmikiJgITqxxrV6NkABExmjRt0MzMzMzaIP+Ron54oY86JmlJ3rB5RnFjajMzMzMzW3M8Ulbf3o+I/gCS9gfOAvZo3S6ZmZmZmdUXj5RZyQbAG5CWpZd0dx49myVpSE7vKelxSZdImiNpfF5OH0nflDQ5j7rdVFj2frSkCyQ9JOnZvAplrTa6SLoz1zNb0mEVe2tmZmZm1kE4KKtv6+Xpi08AlwI/y+kfAMMiYgCwF/CrvAk0QG/gtxHRF3gTODin3xwRO0XEDsDjwDGFdjYh7fV2IEu3HKjWxheAlyJih4joB9y16k/bzMzMzKzt8PTF+lacvjgYuFJSP9KKxL+QtDvQCGwGbJzLPBcR0/PrqUBE6+DCAAAgAElEQVTP/LqfpJ+zdAPscYV2bs2bX8+VVKqnWhuzgHMlnQ3cERH3V+p43ottBIA6daehoctKXAYzMzOztqfRS33UDY+UGQAR8TCwEdADOCr/HpiDtn8C6+asCwrFlrA0sB8NjIyI7YCfFvKXlymNuFVsIyKeAgaSgrOzJJ1epb+jImJQRAxyQGZmZmZm7ZlHygwASX2ATsC/gO7AKxGxSNJewBbNqKIb8LKkzqSA68Um8ldsQ9KmwOsRcbWk+cDwFp2QmZmZmVk74aCsvq0nqTQVUcDXI2KJpGuA2yVNAaYDTzSjrtOAR4HnSaNc3ZrIX62N7YBzJDUCi4BvrcgJmZmZmZm1N4rwXFVr39ZaezN/iM3MzGyVWbzwRTWda/U7tuehdf8d5/fzbmgT92J180iZmZmZmVkb1NjaHbA1xgt9mJmZmZmZtSIHZWZmZmZmZq3IQVk7IunfJF0v6W+S5kr6k6StJW0q6cacp7+kL62h/gyVNFPSE5JmSRpaODY8r6RYej9P0kZrol9mZmZmZu2Jg7J2QpKAW4CJEdErIrYFfgRsHBEvRcQhOWt/oGJQJmmVPUMoaQfgXGBIRPQBDiJt+rx9zjIc2LRK8RVty88+mpmZmVmH5S+77cdewKKIuLiUEBHTAST1BO4ABgD/TVrqfjfgLODTpOCoJ/CapPHAoIgYmcveQQqu7gf+AAwCArgsIs6r0Z8TgV9ExHO5L89JOgs4SdJtuZ5rJL0PDM5lvivpy0Bn4NCIeEJSF+A3pKXw1wLOiIjbJA0HDiBtQt0F2LslF83MzMysvQrqfvHFuuGRsvajHzC1VoaIWAicDoyJiP4RMSYfGkga0TqyRvH+wGYR0S8itgMub6I/fSv0ZwrQNyJuzK+Pyv14Px9/LSIGAL8jBXUAPwbuiYidSIHnOTlQgxTMfT0iHJCZmZmZWYfloKw+jC0ERtU8C3xK0m8kfQF4u4n8guX+fFMprejm/HsqaeQOYD/glLyJ9UTSyNgn87EJEfF6xcalEZKmSJrS2PhuE101MzMzM2u7HJS1H3NII14tUYxaFrPsfV8XICLeAHYgBUbfAS5tRn8GlaUNAObWKLMg/17C0qmzAg7OI2r9I+KTEfF4hX4vIyJGRcSgiBjU0NClWjYzMzMzszbPQVn7cQ+wjqRvlhIk7SRpj7J87wDdatQzD+gvqUHS5sDOua6NgIaIuAk4jRRgIWmkpJEV6jkXODU/z1Z6ru1HwK+a2Y+ScaRnzZTr2bEZZczMzMzMOgwHZe1ERAQwDNg3L4k/BzgDeKks673AtpKmSzqsQlUPAs8Bs0iB1bScvhkwMU8jHA2cmtP7AP+q0J/pwA+B2yU9AdwOnFxafCTXcXHux3o1Tu1npIU/Zkqand+bmZmZmdUNpe/6ZpXl1Rm/khcRaZPWWnszf4jNzMxslVm88EW1dh8Aju55SN1/x7ls3o1t4l6sbl4S32qKiANbuw9mZmZmZh2Zpy+amZmZmZm1oroPyiR9QtJtkp7Oz2qdL2nt1u5Xc0kaLek9Sd0KaedLirx4x6poY34LyvxJ0oaron0zMzMzs46sroOyvOLfzcCtEdEb2BroCpxZIW9bnur5DDAEQFIDaRPmF1ujI0oaIuJLEfFma/TBzMzMzKw9qeugDNgb+CAiLgeIiCXACcDRktaXNFzSDZJuB8ZL6irpbknTJM2SVAqEekp6XNIlkuZIGl9acTAvWz9T0sOSzskrDCKpU34/OR8/NqdvImlSXrVwtqTPNeM8rgNKKy3uSVphcXHpoKRbJU3NfRtRSJ8v6UxJMyQ9ImnjnL5l7u9kST8r5G/q/C8irea4uaR5kjZq4tr0knRX7tv9kvrk9EPzuc+QNGnFbqmZmZlZxxD+X2vfgjWm3oOyvsDUYkJEvA38HdgqJw0Gvh4RewMfAMMiYgBpNOpXpf21gN7AbyOiL/AmcHBOvxw4LiIGkzZNLjkGeCsidgJ2Ar4paUvgSGBcRPQnbeY8naY9DfSQ9BHgCOD6suNHR8RA0mbPx0v6WE7vAjwSETsAk4DSHmjnA7/Lffu/Qj21zn8b4MqI2DEini9rv9q1GQV8N/ftROCinH46sH/u10HNOH8zMzMzs3arLU/JWxMEFUPwYvqEiHi9kP4LSbsDjaS9vTbOx54r7NE1FeiZn6nqFhEP5fRrgdJqhvsB20s6JL/vTgpeJgOXSepMmlbZnKAM0jTMw4HPAMeWHTte0rD8evPczr+AhcAdhT7vm1/vytLA6Srg7Gac//MR8UiVvlW6Nl2BXYAblsZ1rJN/PwiMlvTHfF7LySN+IwDUqTsNDV2qNG1mZmZm1rbVe1A2h6XBBwCSNiAFLn8DBgLvFg4fBfQABkbEIknzgHXzsQWFfEuA9UhBTDUijRKNW+5ACnoOAK6SdE5EXNmMc7meNHXwiohoLAU6kvYE9gEGR8R7kiYW+rwolm5Ut4RlPw+VgtVa5/9uhfwlla5NA/BmHhFcRkQcJ+kzpGswXVL/iPhXWZ5RpJE271NmZmZmZu1avU9fvBtYX9LXID3nBfwKGB0R71XI3x14JQckewFb1Ko8It4A3pH02Zx0eOHwOOBbeUQMSVtL6iJpi9zGJcAfgAH5+JWSdq7R1t+BH7N0CmCxz2/kgKwP8NnlCi/vwUJfjyqrq9nnX0ueJvqcpEPhwwVCdsive0XEoxFxOvAaKUg2MzMzM+uQ6jooy6NEw4BDJT0NPEV6bupHVYpcAwySNIUUrDzRjGaOAUZJepg0OvZWTr8UmAtMy4t//J40UrUnaXTor6RRvPNz/u2Bl5s4n99HxN/Kku8C1pI0E/gZUG2KYdH3gO9ImkwKxEpacv61HAUcI2kGadRySE4/Jy8kMpv0rNuMlWzHzMzMrN1p9E/d0NLZa7Y6SOoaEfPz61OATSLieytYxwbAHyLi0NXRx/bO0xfNzMxsVVq88MVaj6CsMV/veXDdf8e5Yt5NbeJerG71/kzZmnCApFNJ1/p5YPiKVpCn+jkgq6Iu/ku1JhUWjDHrMJ8H1eG/cKv63jW0g8/Cqr7Pbf2cm3uPG+rw82/1y0HZahYRY4Axrd0PMzMzMzNrm+r6mbKVJWmipP3L0r6fN1Fele0MlbRtM/KNLiyxX0zfU9IdlcqsRJ/WlvRrSX+T9LSk2yR9Ih/bUNK3V2f7ZmZmZmYdhYOylXMdy66oSH5/3SpuZyjQZFC2hv0C6AZsHRG9gVuBm/Nm0hsC365VeEVI8oiumZmZ1Z3GiLr/qRcOylbOjcCBktYBkNQT2BR4IL8/SdJkSTMl/bRUSNJpkp6QNEHSdZJOzOm9JN0laaqk+yX1kbQLcBBpRcLpOc83c70zJN0kaf1Cn/bJZZ+SdCBl8rL7l+Xyf5U0JKf3lfRYbmOmpN7VTjq39w3ghIhYAhARl5P2I9sb+CXQK9d1Ti7WVdKN+byvycEbkgZKui+f8zhJm+T0iZJ+Iek+0mqQZmZmZmYdkkcgVkJE/EvSY8AXgNtIo2RjIiIk7Qf0BnYmrUUxNm8K/R5pqfsdSdd/GjA1VzkKOC4ins6bJ18UEXtLGgvcERE3Akh6M+9jhqSfk5bd/02uoyewB9ALuFfSVmXd/jFwT0QcLWlD4DFJfwGOA86PiGskrQ10qnHqWwF/zwuQFE0B+gKnAP1KG0MrbWC9Yz72EmkftF0lPZr7PSQiXpV0GHAmcHSub8OI2KNGP8zMzMzM2j0HZSuvNIWxFJSVAor98s9f8/uupCCtG3BbRLwPIOn2/LsrsAtwQ2FVonWqtNkvB2Mb5nrHFY79MSIagaclPQv0KSu7H3BQaXQOWBf4JPAw8OP8XNjNEfF0jXMWUGk8uVo6wGMR8QKApOmk4PFNoB8wIZ9zJ5bdi63qAimSRgAjABo6daehoUuN7pqZmZmZtV0OylbercD/ShoArBcR03K6gLMi4vfFzJJOqFJPA/BmaXSpCaOBoRExQ9Jw0obTJeVBUfl7AQdHxJNl6Y/nkasDgHGS/iMi7qnS/jPAFpK6RcQ7hfQBwO1VyiwovF5C+uwJmBMRg6uUebdKOhExijSySGfvU2ZmZmZm7ZifKVtJeWPoicBlLLvAxzjg6DwChqTNJH2c9LzZlyWtm48dkOt5G3hO0qE5vyTtkOt6hzTCVtINeFlSZ+Cosi4dKqlBUi/gU0B58DUO+G7hma4d8+9PAc9GxAXAWGD7nH63pM3Kzvld4ApSMNop5/sasD5wT4X+VvMk0EPS4FxHZ0l9m1HOzMzMrMML/9QNB2WrxnXADsD1pYSIGA9cCzwsaRZpUZBuETGZFPTMAG4mPYf1Vi52FHCMpBnAHGBITr8eOCkvzNELOA14FJgAPFHWlyeB+4A/k55P+6Ds+M+AzsBMSbPze4DDgNl5amEf4EpJDaTnx16vcM6nAh8AT0l6mrS59bBI/gU8KGl2YaGP5UTEQuAQ4Ox8ztNJUzjNzMzMzOqGoo6WmmwrJHWNiPl5FcNJwIjCtMc2Q1I/4OiI+EFr96UWT180gMKzmGYd5vMgOsZ5rIhVfe8a2sFnYVXf57Z+zs29xw2t+Pl/Y/4zbeIifnWLr9T9d5yrn7+5TdyL1c3PlLWOUUqbQa8LXNEWAzKAiJgNtOmADOpraNuq8x+YbBl1+Hmoi28t1uY1N+Dyv9lmy3JQ1goi4sjW7oOZmZnZquSAzKzlHJSZmZmZmbVBjZ4PVDc63EIfkj4maXr++T9JLxber70a2hsg6Qurut5VSdILeaPo1dnGWpLebGHZNn8NzczMzMxWlw43UpZX/usPIOkMYH5EnLsamxxA2gD5rtXYRquRtFZELF7NzXToa2hmZmZmVkuHGymrRdLJeZn22ZK+m9O2yu8vkzRH0pWS9pf0kKSnJA3K+T4r6eG8LP2DknpLWg84HTgqj8QdImkjSWMlzcx19Mvlu0oaLemxXMeXc/p2kibn8jPzfmHl/R4laUru3+mF9BcknZHrmylp65zeQ9IESdMk/Y4Kz3+XRrYknZfzTZD0sXzsAUlnSpoEjJS0paR7cxsTJH0i5+sl6VFJk4EzCnXvI+nWwvuLJX01v/5Mvo4zctkuFa7h3vn49Ny3Litz383MzMzM2rK6Ccok7UzaB2xnYDDwbUnb58PbAOcC25E2TT4kInYh7cV1Ss7zOLBbROxI2tvr5xHxPvDfwDUR0T8ibszHHo2I7UmByuhc/nTgrojYGdgb+JWkdYFvA+dGRH9gJ+ClCt0/JSIGkfZC2zev3Fjyz9ynS1m6UuJPgXsjYgBp9GnTKpelO/BIzvcwaf+zkg0iYveI+DVwEXBpPqcbgF/nPL8Bzo+InYBXq7TxoXy+1wPfiYgdgP1Ie52VX8OTSNsE9Ad2z3nMzMzMzDqkugnKgM8BN0XEexHxDnArsFs+9kxEzI2IRmAu8JecPgvomV9vCNycN1w+F+hbpZ3dgKvgww2kN80jPfsBP86bM99LWg7/k8BDwH9JOhnYvMJmzwBHSJoGTAM+DRSDspvz76mFvu4OXJ37cBvwTpW+LiYFWeT8uxWOXV94/ZnC+ytJ1xJScDsmv76qShtFnwb+XtoCICLeioglFfI9CPw6j2ZuUCmPpBF59HBKY+O7zWjazMzMrH0J/6+1b8EaU09BWa11WhcUXjcW3jey9Lm7M4FxEdEPGEoKqprTjgq/h+bRoP4R8cmIeCoirgKG5TYnSNp9mcJSb+B7wN55pOqusrZLfV3Css8INudTXJ6n+L45kU5UaWcxy362Sv1Vc/oVET8HjgW6ApPzNSjPMyoiBkXEoIYGz240MzMzs/arnoKyScAwSetJ6goMAe5fgfLdgRfz6+GF9HeAbmXtHAXp2SrghYh4FxgHHF/KJGnH/PtTEfFMRJwP3EmaPlm0QW7jbUmbAPs3o6/FPny5rH9FnYGv5NdHAg9UyfcI8P/y66/m+svTjyrkfx7oK2ltSR8hTdcEmANsIWlA7tsGkjpRdg0l9YqImRFxFvBX0vRSMzMzM7MOqW6Csoh4DLgOmEwKJn4XEbNWoIqzgXMkPViWfg+wQ15s4xDSs2O7SJpJelbqGznfT4H1Jc2SNIelC2McmRfwmA58ijztsGAaaUrlbOAS0tS+pvwE2CdPedyTpcFkubeAATnfbsDPq+QbCYzI53QYcEJOPx44QdJjpFEtACLiOdL00Fmk6Y6l6YoLgCOA30maAYwH1mH5a3hiXnxlJvBmzmdmZmZm1iHJu6rXJ0lrAa9FxGrdv2xNWGvtzfwhNrO6V2uOvtmaIDXvU9gevnsuWvhim/hP6ogthrb9i7WaXff8rW3iXqxuHW6fMjMzs3pU99/crNW1ZrDVUb+1N7Z2B2yNcVBWp/KG0O1+lMzMzMzMrL2rm2fKVgdJn5B0m6SnJf1N0vmS1s7HBkm6IL8eLunC1u0tSNotb179RP4ZUTh2nKSv5dej87NdTdU3olDXY5J2Kxz7vqT1C+/nr+rzMTMzMzPrCByUtZDSxOmbgVsjojewNWmxizMBImJKRBxfo4qq9Upa5fdF0r8B1wLHRUQf0sIex0o6ACAiLo6IK1egvgNJy9bvlus7Drg2twPwfWD9auVXsO8e0TUzMzOzDstBWcvtDXwQEZcD5A2OTwCOlrS+pD0l3VFeSNLGkm6RNCP/7CKpp6THJV1EWqlwc0lH5JUaZ0s6u1B+vqRfSZom6W5JPXL68ZLmSpop6frydoHvAKMLGze/BpwMnJLLnyHpxBU4/x8CJ+V6yPVeAXxH0vHApsC9ku4t9P3MfM6PSNo4p/WQdJOkyfln10J/RkkaT1rB0czMzMysQ3JQ1nJ9ganFhIh4G/g7sFWNchcA90XEDsAA0t5dkPbiujIidgQWkZbg3xvoD+wkaWjO1wWYFhEDgPtIy99DCq52zBtMH9ec/gJTcnpLVK0vIi4AXgL2ioi9Cv1+JJ/3JOCbOf184LyI2Ak4GLi0UN9AYEhEHNnCPpqZmZm1W41E3f/UCwdlLScqL3ZVLb1kb+B3kEbXIuKtnP58RDySX+8ETIyIV/OCHNcAu+djjcCY/Ppq0jREgJnANZK+CixegX6tyk97rXNfCJRGDqcCPfPrfYAL8z5tY4ENJJU2kh4bEe9XbCg9zzZF0pTGxndXSefNzMzMzFqDg7KWmwMMKiZI2gDYHPhbC+orRhYrsrJrKQg6APgtaXRpaoXnsJbrb847d0U6WTA3ly8aUKO+RbF0rdwlLF35swEYHBH9889mEfFOPlY12oqIURExKCIGNTR0aeEpmJmZmZm1PgdlLXc3sH5hxcJOwK9Iz22910S5b5XK5ECu3KPAHpI2yvUeQZqqCOmelVZGPBJ4IC8MsnlE3Et6TmxD0qIjRb8Fhkvqn9v+GGmK5P/UOklJZ0kaVuHQ/wBn53rI9Q4HLsrH3wG6VShXbjwwstBe/2aUMTMzMzPrMLyqXQtFRORg5SJJp5GCpT8BP2qi6PeAUZKOIY0YfQt4uazulyWdCtxLGjX7U0Tclg+/C/SVNBV4CzgM6ARcLal7zn9eRLxZoc6vApfk6YECfh0RtzfR3+1I0wrLz3+spM2AhyQFKQj7akSUzmUU8GdJLxeeK6vkeOC3kmaSPo+TqPxMnJmZmZlZh6TW3H3dVpyk+RFRPgq2OtsbFxH7r6n2WmKttTfzh9jMzKyOrchzH82xaOGLq7rKFjlki4Pq/jvOjc+PbRP3YnXzSJnV1NYDMlj1/xCb2ZqXtn40a/vq8bPaWn/Ar8drbfXLz5S1M2tylMzMzMzMzFY/B2V1TtInJN0m6WlJf5N0vqS187EPN8CWdJCkU1ZRm0PzJtdP5A2yhxaO/bekffLriZLKV4w0MzMzM+tQHJTVMaV5ATcDt0ZEb2Br0qqNZ5bnjYixEfHLVdDmDsC5pE2h+wAHAedK2j63c3pE/GVl2zEzMzMzay8clNW3vYEPIuJySJtZAycAR0tav5hR0nBJF0rqLmleXoYfSetL+oekzpJ6SbpL0lRJ90vqU6HNE4FfRMRzuc3ngLOAk3J9oyUdUqGcmZmZmVmH5KCsvvUFphYTIuJt4O/AVpUKRMRbwAxgj5z0ZWBcRCwiLYP/3YgYSAq+LqpQxXJtAlNyupmZmZlljf6pGw7K6puASksqVUsvGUPaHw3gcGCMpK7ALsANkqYDvwc2aWbdTbW3fCXSCElTJE1pbHx3RYqamZmZWQciqZOkvxbWQthS0qN5zYQxhfUS1snvn8nHexbqODWnPylp/0L6F3LaM8X1Faq10VIOyurbHGCZhTQkbQBsDvytRrmxwBclfRQYCNxD+iy9GRH9Cz+fbk6bwABg7op0PCJGRcSgiBjU0NBlRYqamZmZWcfyPeDxwvuzgfPymglvAMfk9GOANyJiK+C8nA9J25IGGvoCXwAuyoFeJ+C3wBeBbYEjct5abbSIg7L6djewvqSvQforA/ArYHREvFetUETMBx4DzgfuiIgledrjc5IOzXUpL+pR7lzg1NJfJvLvH+V2zczMzMyaTdIngAOAS/N7kdZNuDFnuQIorfQ9JL8nH/98zj8EuD4iFuT1Dp4Bds4/z0TEsxGxELgeGNJEGy3ioKyORdoNchhwqKSngaeAD0hBUlPGAF/Nv0uOAo6RNIM0IjakQpvTgR8Ct0t6ArgdODmnm5mZmZmtiF8DJ7P0EbSPkWZvLc7vXwA2y683A/4BkI+/lfN/mF5Wplp6rTZaZK2VKWztX0T8g7RYR6VjE4GJ+fVoYHTh2I2kZ8GK+Z8jDfk21ebNpKX4Kx0bXni9Z1N1mZmZmXVU6e/n9U3SCGBEIWlURIzKxw4EXomIqZL2LBWpUE00caxaeqUBrFr5W8xBmZmZmZmZtUk5ABtV5fCuwEGSvgSsC2xAGjnbUNJaeSTrE8BLOf8LpLUTXpC0FtAdeL2QXlIsUyn9tRpttIiDMmv3/Dcks/bPfw22dsOf1TXH19qaEBGnAqcC5JGyEyPiKEk3AIeQngH7OnBbLjI2v384H78nIkLSWOBaSf8LbAr0Jq2fIKC3pC2BF0mLgRyZy9xbpY0W8TNlZmZmZmbWkfwQ+IGkZ0jPf/0hp/8B+FhO/wFwCkBEzAH+SFoN/C7gO3khu8XASGAcaXXHP+a8tdpoEfmvk2uOpB8DRwJLSA8jHhsRj7Zur1YfSWcA8yPi3ArHRpD+YwB4G/hBRDyQj10K/G9EzJU0DxgUEa9Va2ettTfzh9jMzMxWmcULX6z0zNAaN+yTX6777zi3/P32NnEvVjdPX1xDJA0GDgQGRMQCSRsBK7XJXHuVH8o8FtgtIl6TNAC4VdLOEfF/EfEfrdxFMzMzs1bX6Ic06oanL645mwCvRcQCgIh4LSJeApA0UNJ9kqZKGidpk5x+vKS5kmZKuj6n7Szpobxr+UOStsnpwyXdKul2Sc9JGinpBznfI3mjZyT1knRXbut+SX1y+qGSZkuaIWlSTusk6RxJk3Mfji2djKSTCuk/LaT/OO96/hdgmyrX4ofASaXRr4iYRtrf4Tu5jomSyjeYNjMzMzPrkDxStuaMB06X9BTwF2BMRNwnqTPwG2BIRLwq6TDgTOBo0jzXLfPI2oa5nieA3SNisaR9gF8AB+dj/YAdSavPPAP8MCJ2lHQe8DXSajSjgOMi4mlJnwEuIm1+dzqwf0S8WGjrGOCtiNhJ0jrAg5LGkx5+7E3aUE/AWEm7A++SHoDckfTZmgZMrXAt+lZIn0J6SNLMzMzMrK44KFtDImK+pIHA54C9gDGSTiEFI/2ACWlzcDoBL+diM4FrJN0K3JrTugNXSOpNWniwc6GZeyPiHeAdSW+RNmYGmAVsL6krsAtwQ24LYJ38+0FgtKQ/snQPsf1yuUMKbffO6fsBf83pXXN6N+CWiHgPIK9k01xiBRZSLO5ZoU7daWjosgJNmZmZmZm1HQ7K1qCIWELajHmipFmkkaGpwJyIGFyhyAHA7sBBwGmS+gI/IwVfwyT1zPWVLCi8biy8byTd6wbS7uP9K/TtuDxydgAwXVJ/UqD03YgYV8wraX/grIj4fVn692leYDUXGAjcU0gbkNObpbhnhRf6MDMzM7P2zM+UrSGStsmjWyX9geeBJ4EeeSEQJHWW1Pf/s3fn8VZV9f/HX++LIAiKOWRoKuUsClcZipyHr6VZampYmqJ9I/talP38mt/0a2rfcizniUrRnMhSUzHBiUFFmefEETM1lRxRBIHP74+1jm6v514ul3u5597zfvq4j7vP2muvvfY+Bzwf1trrI6kG2DQiHgJOBtYljUh1J+VJABi8Mn2IiLeB5yQdns8lSX3y9hYR8XhEnE5KiLcpafnPH+QplkjaWlLXXH5cHnlD0iaSPg2MAw6R1EXS2sDX6unKecC5ktbPx9fma7liZa7HzMzMrD1b7p+q4ZGy1acbcGl+Xmsp6ZmvIRGxJE8PvERSd9J7chHwJHBDLhNwYUS8Kek80vTFn/LxkabGOhK4UtJppKmPtwAzgPNz0CjggVw2E+gJTFWa7/gacHBEjJa0HTAhT4NcCBwVEVMljQCmkwLO8eU6EBF3StoEeFRSAO/k418uV9/MzMzMrD1znjJr8zx90czMzJpTpeQp+9pmB1b9d5y7/nF3RbwXLc0jZdbmVcWfVFuhwuI1ZtaG+c+ymVUjP1NmZmZmZmbWihyUGZKWSZqek0ffKmmtFdSfL2mDVTjfrpImSnoi/wwp7Dte0tF5e3hhOX4zMzOzqhL+r7XfgtXGQZkBLIqI2ojYAVgCHN9SJ5L0GeAmUgLrbYFdge9L+ipARFwVEde31PnNzMzMzCqNgzKrazywJYCkOyRNkTSnOJpVIqlnHun6fR5lu1HSvpIekfSUpAFl2j8BGB4RUwEiYgFpyf9TcptnSDqpxa7OzMzMzKzCOCizD0laA9gfmJWLjouIvkA/YGgpr1gdWwIXA72BbYFvk0a/TjGW1tYAACAASURBVAJ+XqZ+L1LC7KLJudzMzMzMrOp49UUD6CJpet4eD/whbw+VdEje3hTYCvh3nWOfi4hZAJLmAA9EREiaRcpxVpeg7AThlZo0nEfuhgDUdOhOTU3XlTnczMzMzKxiOCgzyM+UFQsk7QnsCwyMiPckjQE6lzl2cWF7eeH1csp/vuaQRt7uLJT1BeauTIcjYhgwDKCj85SZmZlZO7S8iha6qHaevmj16Q68kQOybYEvNlO7lwODJdUC5CmR5wLnNVP7ZmZmZmZtikfKrD73AsdLmgnMAx5rjkYj4mVJRwG/k7Q2aTrjRRFxV3O0b2ZmZmbW1ijCw6LWtnn6ogFIau0umFkz8J9lqwSL33+hIj6IB2x2QNV/x7nnH/dUxHvR0jxSZm1ec/4P3F8GVp3wPaxPa32+aqrwc13pn8PGviet+XdSTYXfw7bw93Wl/9lrtb+TWvGz1RY+N1adHJSZmZmZmVUgz2irHl7oowJI+oykWyQ9I2mupHskbd1A/Z6Svl14XSvpgNXT28aTtLCe8s9K+mtOMP2MpIsldcr7+km6JG8PlnTZ6uyzmZmZmdnq5qCslSmNo98OjImILSJie1LS5Y0aOKwnKUlzSS1QcUFZOfl6bwPuiIitgK2BbsCvACJickQMbcUumpmZmZmtVg7KWt9ewAcRcVWpICKmR8R4JedLmi1plqRBuco5wG6Spkv6GXAWMCi/HiRpPUl3SJop6TFJvQEknSHpGkljJD0raWgu7ypppKQZ+VyDcnlfSWMlTZE0SlKPXL6FpHtz+fi8ZD6SPidpgqRJkn5Zz/XuDbwfEdfma10GnAgcJ2ktSXtKuruZ77GZmZmZWcXyM2WtbwdgSj37vkEaBesDbABMkjQOOAU4KSIOBJD0CtAvIn6YX18KTIuIgyXtDVyf2wHYlhQIrg3Mk3Ql8BXgpYj4aj6+u6SOwKXAQRHxWg7UfgUcR0rafHxEPCXpC8AVpGDrYuDKiLhe0gn1XFOvutcbEW9L+gewZSPvmZmZmZlZu+GgrLLtCtycR5NekTQW6A+83YjjDgWIiAclrS+pe943MiIWA4slvUqaJjkLuEDSucDdeZRuB1LAeF9eqagD8LKkbsCXgFsLKxitmX/vUjov8EdSUui6BGXT09dXXpakIcAQgA4d1qWmQ9fGHmpmZmbWJixv7Q7YauOgrPXNAQ6rZ19T120td1wp4FlcKFsGrBERT0rqS3ou7WxJo0nPuc2JiIEfa1haB3gzImopb0WB1Rw+CtyKbW4KPAOsv4Lj00kihpFG7Oi05me9NJGZmZmZtVl+pqz1PQisKel7pQJJ/SXtAYwjPSvWQdKGwO7AROAd0vTDkrqvxwFH5rb2BBZERL2ja5I2Bt6LiBuAC4CdgXnAhpIG5jodJfXK7Twn6fBcLkl9clOPAEfk7SPrOd0DwFqSjs7HdwB+AwyPiPfq66OZmZmZWXvloKyVRUpAcQjwH3l5+DnAGcBLpNGqmcAMUvB2ckT8K5ctzQtznAg8BGxfWugjH99P0kzSoiDHrKAbOwITJU0HTgX+LyKWkEbwzpU0A5hOmrYIKeD6bi6fAxyUy38MnCBpEtCdMgrXe7ikp4AngfdJK06amZmZmVUdOSmdtXXNOX2x8JycNZGaPOu2/Wutz1dNFX6uK/1z2Nj3pDX/Tqqp8HvYFv6+rvQ/e632d1IrfrYae83/evPvFfHmfXnT/av+i/qoF/5WEe9FS/MzZWZmZmZmFSgavwaatXEOyqzNW96co70eOTYzMzOz1czPlJmZmZmZmbWiqg7KJC3Li2PMlnSXpHVbu08NkXSGpJPqKQ9JWxbKTsxl/ZpwnlpJBzRDf4dL+sRy/3nFxtMkPSXpSUkPSepV2H9P6b2QtHBV+2FmZmZmVsmqOigDFkVEbUTsALwOnNDaHVoFs/hoOXpIKyfObWJbtaScZY0maWWmwp5AWsmxT0RsDZwN3CmpM0BEHBARb67M+c3MzMzM2qpqD8qKJgCbAEjqJukBSVMlzZJ0UC7vKekJSddJminpz5LWyvv6ShoraYqkUZJ61D2BpK9JelzSNEn3S9ool58h6RpJYyQ9K2lo4ZhTJc2TdD+wTQP9v4O8NL2kzwNvAa8V2llY2D5M0vC8fXgeKZwhaZykTsBZpPxo0yUNkjRA0qO5349K2iYfO1jSrZLuAkbnEbDLJM2VNBL4dD19/Rnwo1JesogYDTzKR7nV5kvaoIFrNTMzM2v3lhNV/1MtHJTxYQLjfYA7c9H7wCERsTOwF/AbfbSG6jbAsIjoDbwN/JekjsClwGER0Re4BvhVmVM9DHwxInYCbgFOLuzbFvgyMAD4RU7W3Jc0+rUT8A2gfwOX8TbwgqQdgG8BIxp5+acDX46IPsDXc36y04EReRRxBPAEsHvu9+nArwvHDwSOiYi9SfnHtiHlPfseH+U1+5CkdYCuEfFMnV2TgV5165uZmZmZtXfVvvpil5wwuScwBbgvlwv4taTdgeWkEbSN8r4XIuKRvH0DMBS4F9gBuC/Hbh2Al8uc77PAiDyK1gl4rrBvZEQsBhZLejWfbzfg9tKIkqQ76zZYxy2kIO7LpCDz2BXdAOARYLikPwG31VOnO3CdpK2AADoW9t0XEa/n7d2BmyNiGfCSpAcbcf4S5bYbV1kaAgwBUIfu1NR0XYlTmZmZmZlVjmofKVsUEbXA5qQgqfRM2ZHAhkDfvP8VoHPeVzdwCFJAMSePLNVGxI4RsV+Z810KXBYROwLfL7QJsLiwvYyPAuaVGbe9C/gO8I+IeLtMP0s+PG9EHA+cBmwKTJe0fpl2fwk8lJ+9+1qdfr/bwHk+Iffr3TzFsmhnVuIZuIgYFhH9IqKfAzIzMzMza8uqPSgDICLeIo14nZSnInYHXo2IDyTtRQraSjaTNDBvf4s0JXEesGGpPE89LDcVrzvwYt4+phFdGwccIqmLpLVJAVFD17GI9LxWuamTr0jaTlINaZohua9bRMTjEXE6sIAUnL0DrF1PvwevoL9HSOqQRwP3qqfe+cAlkrrkPuwL7Arc1ND1mZmZmZm1R9U+ffFDETFN0gzS9L8bgbskTQamk56pKvk7cIykq4GngCsjYkle+v0SSd1J9/UiYE6d05wB3CrpReAx4HMr6NNUSSNyH54HxjfiOm6pZ9cpwN3AC8BsoFsuPz9PSxTwADAD+AdwSp7aeTZwHmn64k+BhqYk3g7sTVoJ8klgbD31LgU+BcyStAz4F3BQDirNzMzMDIionoUuqp38ZjeepJ7A3Xkan1WINTpt4g+xmZmZNZulS17Uimu1vH0+u1/Vf8d54J+jK+K9aGmevmhmZmZmZtaKPH1xJUTEfNIqi2ZmZmZmZs3CI2WrKCd3npOTSU+X9IVVaGuopL9LujEnZr6sOfu6OuVE27Pr2ddL0oOSnpT0lKT/LeWBk/R1Safk7TMknbQ6+21mZmZmtro5KFsFebXFA4GdczLpfUkLaTTVfwEHRMSRzdG/xpC0WkdL84qLdwLnRMTWQB9Skun/AoiIOyPinNXZJzMzMzOz1uSgbNX0ABbkpM9ExIKIeAlA0nxJG+TtfpLG5O0zJF0jaYykZyUNzeVXAZ8H7pR0YvEkkjaX9EAejXtA0mZ52flnlawraXlOdo2k8ZK2lNQ1n2uSpGmSDsr7B0u6VdJdwGhJPSSNyyN9syXtluvtJ2mCpKm5frdc3lfSWElTJI3Ky9+XymdImsBHOd/q+jbwSESMzvfsPeCHpNUhS31rsyOEZmZmZs1lOVH1P9XCQdmqGQ1smqfhXSFpj0Yety3wZWAA8AtJHXMS55eAvSLiwjr1LwOuz6NxNwKXRMQy0rLz25NyfE0BdpO0JvDZiHgaOBV4MCL6k3KGnS+plGl5IHBMROxNCpRG5UTZfUhJpDcgJZXeNyJ2BiYDP8153C4FDouIvsA1fJQX7VpgaESU8riV0yv39UMR8QzQTdI6jbt9ZmZmZmbthxf6WAURsVBSX2A3UtAzQtIpETF8BYeOzKNriyW9CmwE/LOB+gOBb+TtP5LyhkHKW7Y7Kd/Z2cD3SLnBJuX9+wFfLzyX1RnYLG/fFxGv5+1JwDU54LojIqbnAHN74JH8uFcnYAKwDWmxk/tyeQfg5Zyfbd2IKOUm+yOwf5lrEdT7zx6N/ucQSUOAIQDq0J2amq4rOMLMzMzMrDI5KFtFecRqDDBG0izgGGA4sJSPRiI71zlscWF7GSv/PpSCl/HA8cDGwOnAfwN7AuPyfgGHRsS84sF5MZJ3C9cwLk99/CrwR0nnA2+QArdv1Tl2R2BO3dEwSevSuKBqDimQLB77eWBhRLyTA70ViohhwDBwnjIzMzMza9s8fXEVSNpG0laFolrg+bw9H+ibtw9dxVM9ChyRt48EHs7bj5MWyVgeEe8D04Hvk4I1gFHAjworG+5Uz3VsDrwaEb8D/gDsDDwG7CJpy1xnLUlbA/OADfMiJ0jqKKlXRLwJvCVp10I/y7kR2FXSvvn4LsAlfDT6Z2ZmZmZWVRyUrZpuwHWS5kqaSZrud0bedyZwsaTxpNGwVTEUODaf4zvAjwHyFMgXSAEUpGBsbWBWfv1LoCMwMy9P/8t62t+T9BzZNFIAeXFEvAYMBm7O530M2DYilgCHAedKmkEKBL+U2zkWuDwv9LGo3IkiYhFwEHCapHm5r5NIz82ZmZmZWRb+r7XfgtVGEdVzsdY+efqimZmZNaelS15s3PMULWzPz+5b9d9xxvzz/op4L1qanymzNq8q/qSaWatq7POuZmZmTeHpi2ZmZmZmZq3IQVmFkbSRpJtyYugpOXnzIa3Qjw+TXzfh2FpJBzSwf1dJEyU9kX+GFPYdL+novD1c0mFN6YOZmZmZWVvh6YsVJK+SeAdwXUR8O5dtDny9TN01ImLpau5iY9UC/YB76u6Q9BngJuDgiJiaA79Rkl6MiJERcdVq7quZmZlZRVrutR+qhkfKKsvewJJiYBIRz0fEpQCSBku6VdJdwGgl50uaLWmWpEG53p6S7i61IekySYPz9nxJZ0qamo/ZNpevL2m0pGmSriY/qiWpp6S/S/qdpDm5Tpe8b4ykfnl7g9x2J+AsYJCk6aU+FZwADI+Iqfn6FgAnA6fkds4oJLs2MzMzM2v3HJRVll7A1BXUGQgcExF7A98gjUr1AfYFzpfUoxHnWRAROwNXAqUA6BfAwxGxE3AnsFmh/lbA5RHRC3iTBvKu5SXzTwdGRERtRIwoc41T6pRNzuVmZmZmZlXHQVkFk3S5pBmSJhWK74uI1/P2rsDNEbEsIl4BxgL9G9H0bfn3FKBn3t4duAEgIkYCbxTqPxcR08sc0xSCskknVmp8XtIQSZMlTV6+/N1V6I6ZmZmZWetyUFZZ5gA7l15ExAnAPsCGhTrFCKS+NZqX8vH3tnOd/Yvz72V8/LnC+gKjxYXt4jHF89Q9R33mkJ43K+oLzG3k8QBExLCI6BcR/Wpquq7MoWZmZmZmFcVBWWV5EOgs6QeFsrUaqD+O9OxWB0kbkka7JgLPA9tLWlNSd1JgtyLjgCMBJO0PfKoRx8wnBVQAxVUS3wHWrueYy4HBkmrzudYHzgXOa8T5zMzMzKpG+KdqOCirIBERwMHAHpKekzQRuA74WT2H3A7MBGaQArqTI+JfEfEC8Ke870ZgWiNOfyawu6SpwH7APxpxzAXADyQ9ChSXz3+IFBR+YqGPiHgZOAr4naQngEeBayLirkacz8zMzMys3VF4qU1r4zp22sQfYjNrUSljiZlViyWL/1kRf+h322Sfqv+OM/7FByrivWhpHikzMzMzMzNrRU4ebVWhGv+Vu7mvubGj6q113pZQjZ+b5qZ61yOy1lLpn+vW+rvGzKw1OSgzMzMzM6tAy6tqqYvq5umLbYCkUyXNkTQzL57xhWZuf76kDVZcs9nO10nSRZKekfSUpL9K+mxh/6P5d09Js1dXv8zMzMzMWoNHyiqcpIHAgcDOEbE4B0+dWrlbq+rXpCXzt46IZZKOBW6T9IVIvtTK/TMzMzMzW208Ulb5egALImIxQEQsiIiXACTtI2mapFmSrsl5yfaRdHvpYEn/Iem2vH2lpMl51O3MOuf5b0kT88+Wuf6Gkv4iaVL+2SWXD5D0aD73o5K2yeWDJd0m6d48AvaJ3GOS1gKOBU6MiGX5mq4lJajeO9dZ2Jw30MzMzMyskjkoq3yjgU0lPSnpCkl7AEjqDAwHBkXEjqRRzx+Q8pVtl5NJQwqArs3bp0ZEP6A3KRda78J53o6IAcBlwEW57GLgwojoDxwK/D6XPwHsHhE7AaeTRr5KaoFBwI6kxNab1rmeLYF/RMTbdconA70ae1PMzMzMzNoLT1+scBGxUFJfYDdgL2CEpFNICaGfi4gnc9XrgBMi4iJJfwSOknQtMBA4Otf5pqQhpPe9B7A9KcE0wM2F3xfm7X1JSaBL3VlH0tpAd+A6SVuRkq13LHT5gYh4C0DSXGBz4IXCflE+QXt95WXl6xgCUNOhOzU1XRt7qJmZmVmb4IU+qoeDsjYgT/MbA4yRNAs4BpjewCHXAncB7wO3RsRSSZ8DTgL6R8QbkoYDnYunKbNdAwyMiEXFxiVdCjwUEYdI6pn7VrK4sL2MT37GngY2l7R2RLxTKN8597lRImIYMAycPNrMzMzM2jZPX6xwkrbJI1IltcDzpCmEPUvPfwHfAcYC5GfOXgJOI01xBFgHeBd4S9JGwP51TjWo8HtC3h4N/LDQl9q82R14MW8PXpnriYh3SaN6v5XUIbd7NLAWaeqlmZmZmVlV8UhZ5esGXCppXWApaaRpSES8n1ctvFXSGsAk4KrCcTcCG0bEXICImCFpGjAHeBZ4pM551pT0OClQ/1YuGwpcLmkm6bMyDjgeOI80ffGnNC2Q+h/gAuBJSctJAeYh0ZpZgs3MzMzMWon8Pbh9knQZMC0i/tDafWlpjZm+WHgurmo09zU39u+K1jpvS6jGz01zE76HlabSP9et9XeNWdGiRc9XxAds4CZ7Vf0X9QkvPlQR70VL80hZOyRpCmmq4v9r7b6sDo3526oq//Ghta65Pd3r9nQt7URV/J/ZzCyryu8vVcpBWTsUEX1buw9mZmZmZtY4rbLQh6TPSvprTjD8jKSLJXXK+/aUdHfe/npe/r2l+tGjcK5+ki5pYjtnSDppJY8ZI6lf3r4nPzNW1SQNl3RY3r6lzgInZmZmZmbt0moPypQmgd8G3BERWwFbkxaz+FXduhFxZ0Sc04Ld+Snwu3yuyRExtAXPVa+IOCAi3lxd5yutetjMbTb3qOuVwMnN3KaZmZmZWcVpjZGyvYH3I+Ja+DAH14nAcZLWKlaUNFjSZZK6S5ovqSaXryXpBUkdJW0h6V5JUySNl7RtrnO4pNmSZkgaV09fDgXuzfWLI3RnSLomj2Y9K+nDYE3S0ZJm5nb/WLfBOiNgG0ian7e75NGfmZJGAF0Kx8zPdXtK+ruk30maI2m0pC65Tv987ARJ50uaXebce0oaJ+l2SXMlXVW4ZwslnZVXWBwoqa+ksfm+jZLUI9cbmo+dKemWXNY1349JkqZJOqjw/twq6S5gtKQRkg4o9Ge4pEMldch9npTb/X7er/z+zpU0Evh04XLGA/u2QLBnZmZmZlZRWuMLby9gSrEgIt6W9A9gy3IHRMRbkmYAewAPAV8DRkXEB5KGAcdHxFOSvgBcQQr8Tge+HBEvlpsaqJRM+Y2IWFx3X7YtsBewNjBP0pWkUb1TgV0iYoGk9Vbiun8AvBcRvSX1BqbWU28r4FsR8T1JfyIFjjeQEkIPiYhHJTU0ejgA2J6Uy+xe4BvAn4GuwOyIOF1SR1JOs4Mi4jVJg0gjlccBpwCfi4jFhft2KvBgRByXyyZKuj/vGwj0jojXJR1CynN2j9J01H3ydX8XeCsi+ktaE3hE0mhgJ2AbYEdgI2AucA1ARCyX9DTQhzqfFzMzM7NqsLxRy5lZe9AaI2Wi/IJ59ZWXjOCjBMdHACMkdQO+RMrVNR24GuiR6zwCDJf0PaDcdL0ewGsNnG9kRCyOiAXAq6SgYW/gz7mMiHi9gePr2p0UXBERM4GZ9dR7LiKm5+0ppATR6wJrR8SjufymBs4zMSKezSOQNwO75vJlwF/y9jbADsB9+b6dBnw275sJ3CjpKFJeNID9gFNy3TFAZ2CzvO++wn34G7B3Drz2B8ZFxKJ8/NH5+MeB9UnB5+7AzRGxLCe8rpvz7FVg43IXKWmIpMmSJi9f/m4Dt8PMzMzMrLK1xkjZHNLoz4ckrQNsCjxD+sJezp3A2Xl0qi/pC3xX4M2IqK1bOSKOzyNnXwWmS6qNiH8XqiwiBRf1KY6gLSPdqxUFjpACmVKwW7f9xvxzR93zdmHlVoGue47S6/dzoEZub05EDCxz/FdJwdLXgf+V1CvXPzQi5hUr5vv7YUSUE1qPAb5MCqBvLpzvRxExqs7xB5Tpb1Fn0vv0yYuMGAYMA1ijEXnKzMzMzMwqVWuMlD0ArCXpaPhw0YnfAMMj4r36DoqIhcBE4GLg7jy68jbwnKTDc1uS1CdvbxERj0fE6cACUtBX9CTQswl9/6ak9fM5yk1fnE8KGgEOK5SPA47Mx+0A9G7sSSPiDeAdSV/MRUc0UH2ApM/lZ8kGAQ+XqTMP2FDSwNyfjpJ65WM2jYiHSItsrEtahGUU8CMpZeqUtFMD578FOBbYLR9H/v2DPG0SSVtL6kq6J0fkZ856kKaLFm1NCuLNzMzMzNqt1R6URcqCdwhwuKSnSMHR+8DPG3H4COCo/LvkSOC7+ZmzOcBBufx8SbPyghjjgBl1+vEu8Iykss+x1dP3OaRnr8bm8/22TLULSAHIo8AGhfIrgW6SZpICnomNPW/2XWCYpAmkkae36qk3ATgHmA08B9xe5jqWkALGc/N1TCdNA+0A3CBpFjANuDCvCvlLoCMwM9/PXzbQz9Gkkbb783kAfk96XmxqPv5q0sjj7cBTwCzS/RlbakTSRsCiiHi5oZtiZmZmZtbWqZozheeFKfpGxGmt3ZcVkdQtjxailLutR0T8uE6dPYGTIuLAVuhis5J0IvB2RPxhRXU9fdGseqzMXG4zs6b6YMmLFfHXTf+Nd6/67ziTXhpXEe9FS6vq5cYj4vbSVMQ24KuS/of0nj0PDG7d7rS4N4FPpBwws+pW9d9OqkBVfPsyM6ujqkfKrH3wSJmZWfvhoMwqgUfKKke1jJS1xkIfthIknaqUSHqmpOl5xcOqkJNTX9ba/TAzMzMza0lVPX2x0uXVEQ8Eds7JnDcAOrVyt8zMzMzMrBl5pKyy9QAWRMRigIhYkJMsI6mvpLGSpkgalZeUR9JQSXPzyNotuWyApEclTcu/t8nlgyXdIekuSc9J+qGkn+Z6j5WW/Je0haR787nGS9q2bkcl7ZFH8qbn49fO5f8taVLuz5mF+kdJmpjrX51TIyDpWElPShoL7NKSN9fMzMyskkVE1f9UCwdllW00sGkOUq6QtAekvGLApcBhEdEXuIa0VD/AKcBOEdEbOD6XPQHsHhE7AacDvy6cYwfg28CA3MZ7ud4E4OhcZxgp+XNf4CTgijJ9PQk4ISfy3g1YJGk/YKvcdi3QV9LukrYj5VDbJddfBhyZA8szScHYfwDbN+mumZmZmZm1IZ6+WMEiYqGkvqQgZy9gRF4OfzIpmLov53PuAJTyec0EbpR0B3BHLusOXCdpK9LiZR0Lp3koIt4hJad+C7grl88CekvqRsphdms+F8CaZbr7CPBbSTcCt0XEP3NQth8p5xmkRNRbkRJn9wUm5Ta7AK8CXwDGRMRrAJJGkBJIf4KkIcAQAHXoTk1N1/I30czMzMyswjkoq3ARsQwYA4zJSZ2PAaYAcyJiYJlDvkpK3vx14H8l9SIle34oIg6R1DO3V7K4sL288Ho56fNRA7yZR7Qa6uc5kkYCBwCPSdqXtIjW2RFxdbGupB8B10XE/9QpP5hGrngdEcNII3hefdHMzMzM2jRPX6xgkrbJo1sltaQcZfOADfNCIEjqKKmXpBpg04h4CDgZWJc0OtUdeDG3MXhl+hARbwPPSTo8n0uS+pTp6xYRMSsiziWN5G0LjAKOy6NtSNpE0qeBB4DD8jaS1pO0OfA4sKek9fMUzcNXpq9mZmZmZm2RR8oqWzfgUknrAkuBp4EhEbFE0mHAJZK6k97Hi4AngRtymYALI+JNSeeRpi/+FHiwCf04ErhS0mmkqY+3ADPq1PmJpL1Iz4fNBf6WV4zcDpiQpykuBI6KiLm5rdE5kPyA9DzaY5LOID3P9jIwlTQ108zMzMys3XLyaGvzPH3RzKz9qIossVbxKiV59M49dq367zhTX364It6Llubpi2ZmZmZmZq3I0xfNzMysYlT9sICZVSWPlJmZmZmZmbWiqg/KJH1G0i2SnpE0V9I9ksrmxlqNffp5M7Y1X9IGTTiup6TZ9ezbOt+npyX9XdKfJG206r01MzMzM6s+VT19UWlJwNtJObOOyGW1wEaklQxby8+BX7fi+eslqTMwEvhpRNyVy/YCNgReWYV2RVp4ZnmzdNTMzMysjfOCfNWj2kfK9gI+iIirSgURMT0ixud8XOdLmi1plqRBpTqSTs5lMySdk8tqJT0maaak2yV9KpePkXSupImSnpS0Wy4fLOmyQpt3S9ozt9dF0nRJN0rqKmlkPtfsYj9WRh75+ruk30maI2m0pC5535aS7s/nmCppiwaa+jYwoRSQ5Xv2UETMltRZ0rX53kzLwVrpWv8q6V5J8yT9ok6friAtf7+ppCslTc59PLMp12pmZmZm1pZUe1C2AzClnn3fICVr7gPsC5wvqYek/YGDgS9ERB/gvFz/euBnEdEbmAX8otDWGhExAPhJnfJPiIhTgEURURsRRwJfAV6KiD4RsQNwb1MuNNsKuDwiegFvAofm8htzeR/gS6Qc9CQG8QAAIABJREFUYfVp6J6dkK9hR+BbpNxonfO+AaR8Z7XA4ZL65fJtgOsjYqeIeB44NSL6Ab2BPST1bsJ1mpmZmZm1GdUelDVkV+DmiFgWEa8AY4H+pADt2oh4DyAiXs/JmteNiLH52OuA3Qtt3ZZ/TwF6rmQ/ZgH75tG23SLiraZdDgDPRcT0Yl8krQ1sEhG3A0TE+6Vra4JdgT/mdp4AngdKz+fdFxH/johFpPuxay5/PiIeK7TxTUlTgWlAL2D7cieSNCSPqE1evvzdJnbXzMzMzKz1VXtQNgfoW8+++hLViZVfsXdx/r2Mj57jW8rH739nyoiIJ3MfZwFnSzr9Y52RNs1THadLOr6R/Sj2ZWUT8jXlnsEn71np9YcRlaTPAScB++QRx5HUf1+GRUS/iOhXU9O1UR03MzMzM6tE1R6UPQisKel7pQJJ/SXtAYwDBknqIGlD0sjXRGA0cJyktXL99fLo1Rul58WA75BG1hoyH6iVVCNpU9L0vpIPJHXM7W8MvBcRNwAXADsXG4mIF/JUx9ris3GNFRFvA/+UdHA+35qla6vHTcCXJH21VCDpK5J2JN2zI3PZ1sBmwLxc7T8krZefYzsYeKRM2+uQgrS38mqO+6/s9ZiZmZm1F8uJqv+pFlW9+mJEhKRDgIsknQK8TwqWfkIKMAYCM0ijOidHxL+Ae/MKjZMlLQHuIa2WeAxwVQ5ongWOXcHpHwGeI42AzSYtdFEyDJiZp/FdT3qebTnwAfCDVb7wT/oOcLWks/I5DgfKroIYEYskHUi6Zxfl+jOBHwNXkO7BLNJI4OCIWJwWVuRh0tTGLYGbImKypJ512p4haRppNO5ZygduZmZmZmbtirzUprU0SYOBfhHxw5Zof41Om/hDbGZmZs1m6ZIXV/bxjhbR5zNfqvrvODP+9WhFvBctrapHyszMzCpZVXwTsXYjz4wxsyZwUGYtLiKGA8NbuRtmZmZmZhWp2hf6WCWSQtJvCq9PknTGCo7pKenbLd65j59zvqQNVsN5FjbxuFpJBzR3f8zMzMzasvB/rf0WrDYOylbNYuAbKxnw9ARWa1C2KiStjtHUWsBBmZmZmZlVJQdlq2YpaaXEE+vukDRc0mGF16VRpHOA3XJesRMl9ZI0Mb+eKWmrMm1dmRMlz5F0ZqF8vqQzJU2VNEvStrl8fUmjJU2TdDX1PJYgaaGk3+TjH8hL/yNpjKRfSxoL/FjS5nn/zPx7s1zvc5ImSJok6ZeFdveUdHfh9WV5sY9SyoFHJc3I190dOIuUfmC6pEGS9ijkXpuWE1ybmZmZmbVLDspW3eXAkTm4aIxTgPE5r9iFwPHAxRFRC/QD/lnmmFMjoh/QG9hDUu/CvgURsTNwJSnxMsAvgIcjYifgTlK+sHK6AlPz8WPzcSXrRsQeEfEb4DLg+pzQ+UbgklznYuDKiOgP/GtFFy6pEzAC+HFE9AH2JeUlOx0Yke/JiHwdJ+R7shuwaEVtm5mZmZm1VQ7KVlFOvnw9MLSJTUwAfi7pZ8DmEVEuAPlmzlk2DegFbF/Yd1v+PYU0NRJSousbcv9GAm/Uc+7lpCCJXH/Xwr4Rhe2BpKTRkHKNlertAtxcKF+RbYCXI2JS7tvbEbG0TL1HgN9KGkoKDj9RR9KQPHo4efnydxtxajMzMzOzyuSgrHlcBHyXNPJUspR8f5XWiO1U7sCIuAn4Omk0aJSkvYv7JX2ONHK0Tx6pGgl0LlRZnH8v4+OraTblycjiMQ1FOlHPdsmH156V+qvG9CsizgH+E+gCPFaallmnzrCI6BcR/Wpqun6iDTMzM7O2bnlE1f9UCwdlzSAiXgf+RArMSuYDffP2QUDHvP0O8OEzUpI+DzwbEZeQphoWpyYCrEMKkN6StBGwfyO6NA44Mre/P/CpeurVAKXn3r4NPFxPvUeBI/L2kYV6j9QpL3ke2F7Smnla5z65/AlgY0n9c9/WzguJ1L0nW0TErIg4F5gMfCIoMzMzMzNrL5ynrPn8Bvhh4fXvgL9Kmgg8wEcjTzOBpZJmkHJ3dQaOkvQB6bmss4qNRsQMSdOAOcCzpEBoRc4Ebs5THscC/6in3rtAL0lTgLeAQfXUGwpcI+m/gdeAY3P5j4GbJP0Y+Euhzy9I+lO+1qdI0y6JiCWSBgGXSupCGh3cF3gIOEXSdOBsYFdJe5FG/+YCf2vENZuZmZmZtUmKKhoWtI+TtDAiurV2P1bVGp028YfYzNqlskvnmlWo9LRG+7Bk8T8r4mJ22OiLVf8dZ/Yrj1XEe9HSPFJmZmZWoar+25i1Kf6HfrOmc1BWxdrDKJmZmZlZexX+p5mq4YU+zMzMzMzMWlFFBWWSlkmaLmm2pFslrbWC+sMlHdZQnWbqV3dJ10t6Jv9cX0oWLamnpG8X6g6WdFlL96mxJJ0h6aQV11zl8zT5vZD08+buj5mZmZlZW1FRQRmwKCJqI2IHYAlwfGt3KPsDadn6LSJiC+A54Pd5X0/ScvLNQlKH5mprVeXl6lcHB2VmZmZmVrUqLSgrGg9smUeiZpcKJZ0k6Yy6lSWdI2mupJmSLshlG0r6i6RJ+WeXXL5HHpGbLmmapLXrtldod0tSvrFfForPAvpJ2gI4B9gtt3Vi3r+xpHslPSXpvEJb+0maIGlqHgnslsvnSzpd0sPA4XXO/zVJj+d+3p9zlZVGwK6RNEbSs5KGFo45VdI8SfcD29RzXcMlXSVpvKQnJR2Yywfnvt0FjFZyfh69nJWXtCeXX5bv+Ujg04W250vaIG/3kzQmb3eTdG1uZ6akQyWdA3TJ9+9GSV0ljZQ0I5+zvmX6zczMzMzahYpc6COP0OwP3NvI+usBhwDbRkRIWjfvuhi4MCIelrQZMArYDjgJOCEiHsmB0fsNNL89MD0ilpUKImJZzqnVCzgFOCkiPgxqgFpgJ2AxME/SpaScXKcB+0bEu5J+BvyUj/KSvR8Ru5Y5/8PAF/N1/SdwMvD/8r5tgb1IiZfnSbqSlHz6iHz+NYCpwJR6rq0nsAewBfBQDkABBgK9I+J1SYfm6+kDbABMkjQu19kG2BHYiJRP7JoG7iPA/wJvRcSO+V59KiL+IumHEVGbyw4FXoqIr+bX3cs1JGkIMARAHbpTU9N1Bac2MzMza1uWe0XLqlFpQVmXHOxAGin7A7BxI457mxRY/T6P2tydy/cFttdHeTPWyaNijwC/lXQjcFtE/LOBtkX5VYnrKwd4ICLeApA0F9gcWJcU4D2S+9MJmFA4ZkQ9bX0WGCGpRz7mucK+kRGxGFgs6VVScLQbcHtEvJfPf2cD1/aniFgOPCXpWVKQB3BfRLyet3cFbs5B6SuSxgL9gd0L5S9JerCB85TsSwoYAYiIN8rUmQVcIOlc4O6IGF+uoYgYBgwD5ykzMzMzs7at0qYvlp4pq42IH0XEEmApH+9n57oHRcRSYADwF+BgPhphqwEGFtrcJCLeiYhzgP8EugCPSdq2bpsFc4CdJH3Yh7zdB/h7PccsLmwvIwW/IgU7pb5sHxHfLdR7t562LgUuy6NL369z/eXOA41PbVO3Xul1sS8NJeyr7zzF96zY34YC2dRgxJOk6aKzgLMlnd5QfTMzMzOztq7SgrJyXgE+LWl9SWsCB9atkKcgdo+Ie4CfkKbbAYwGflioV5oit0VEzIqIc4HJ5BEiSU/UbTsingamkaYelpwGTM373iFNH1yRx4BdSlMEJa0laetGHNcdeDFvH9OI+uOAQyR1yaOCX2ug7uGSavKzcZ8H5tXT3iBJHSRtSBohm5jLj8jlPUjTKEvmkwIrgEML5XXfj0/lzQ8kdcxlGwPvRcQNwAXAzo24ZjMzMzOzNqvig7KI+ID03NXjpGmJnwicSEHR3ZJmAmOB0oIbQ0kLcszM0whLqzn+JC8iMYP0rNff8sIU9Y0KfRfYWtLTkp4Bts5lADOBpXlhihPrOZ6IeA0YDNyc+/kYH00XbMgZwK2SxgMLVlQ5IqaSpkJOJ40clp3+l80j3a+/AcdHRLln624nXeMM4EHg5Ij4Vy5/ijSidWVup+RM4OLc52WF8v8DPlW496VAbhgwM08n3RGYmKexnpqPMTMzMzNrtxR+gBCAvPrg5yPiktbuy+ogaTjpma0/t3ZfVpWfKTMzM7PmtHTJiw09vrHabPvp/lX/HeeJVydVxHvR0iptoY9WExF3r7iWmZmZVYKq+JZmZlXDQVmViojBrd0HMzMzMzNrA8+UWeWQtLDO68GSLmut/piZmZmZtQcOyszMzMzMzFqRpy9as5C0OXANsCHwGnBsRPwjLyjyNtAP+Axp9cY/52P+G/gmsCYp4fUvJP0SWBARF+c6vwJeqZYFWMzMzMxKlntBvqrhkTJbGV0kTS/9kFIVlFwGXB8RvYEbgWIQ1QPYlZRj7hwASfsBW5GSftcCfSXtDvyBnI8tJ+k+IrdnZmZmZtYueaTMVsaiiCgl5kbSYNIIGMBA4Bt5+4/AeYXj7oiI5cBcSRvlsv3yz7T8uhuwVUSMk/RvSTsBGwHTIuLfdTsiaQgwBEAdulNT07U5rs/MzMzMbLVzUGYtpTjevriwrcLvsyPi6jLH/p6UaPszpCmRn2w8Yhgp6bTzlJmZmZlZm+bpi9ZcHiVNNQQ4Enh4BfVHAcdJ6gYgaRNJn877bge+AvTP9czMzMzM2i2PlFlzGQpckxfveA04tqHKETFa0nbABEkAC4GjgFcjYomkh4A3I2JZC/fbzMzMrCIFngxULRRe1cUqTF7gYypweEQ8taL6nr5oZlZ9tOIqZk32wZIXK+IjttWGfav+O85Tr02piPeipXmkzCqKpO2Bu0lL5K8wIDMzs/alKr59WbPLs27M2iwHZVZRImIu8PnW7oeZmZmZ2erihT6aSNKpkuZImpnzdn2hhc6zp6QvtUTbq0rSrpImSnoi/wwp7Ds4j3qVXo+R1K98S2ZmZmZm1csjZU0gaSApEfLOEbFY0gZApxY63Z6kRTAebaH2AZDUYWUW1ZD0GeAm4OCImJrvwShJL0bESOBg0jTEuau7b2ZmZmbtwXKv/VA1PFLWND2ABRGxGCAiFkTES5IGSLoNQNJBkhZJ6iSps6Rnc/kWku6VNEXSeEnb5vINJf1F0qT8s4uknsDxwIl5NG63cvXy8WdIuiaPSD0raWips5KOyiNa0yVdLalDLl8o6SxJjwMDJZ0jaW4e/btgBffgBGB4REwt3QPgZOCUPLL3deD8fM4t8jGH5348KWm33IcOks7P1zJT0vdz+Z6SHpJ0EzBrVd4sMzMzM7NK5pGyphkNnC7pSeB+YEREjCWtGLhTrrMbMJuUa2sN4PFcPgw4PiKeylMerwD2Bi4GLoyIhyVtBoyKiO0kXQUsjIgLAHKQ8rF6wHa57W2BvYC1gXmSrgS2BAYBu0TEB5KuIOURux7oCsyOiNMlrQf8Adg2IkLSuiu4B72A6+qUTQZ6RcSjku4E7o6IP+d+A6wREQMkHQD8AtgX+C7wVkT0l7Qm8Iik0bm9AcAOEfHcCvpiZmZmZtZmOShrgohYKKkvKfDaCxgh6ZSIGC7p6Zx/awDwW2B3oAMwPidK/hJwa2GVoDXz732B7Qvl60hau8zpG6o3Mo/eLZb0KrARsA/QF5iUj+kCvJrrLwP+krffBt4Hfi9pJGnqYUMEZZNnNDTOflv+PQXombf3A3pLOiy/7g5sBSwBJtYXkOXn14YAqEN3amq6rqC7ZmZmZmaVyUFZE+VnnMYAYyTNAo4BhgPjgf2BD0ijaMNJQdlJpOmib0ZEbZkma4CBEbGoWFhmideG6i0uFC0jvb8CrouI/ylzzvdLz2pFxFJJA0hB3BHAD0kjePWZA/QD7iyU9aXhZ8hK/Sv1jdy/H0XEqDrXsyfwbn0NRcQw0qij85SZmZmZWZvmZ8qaQNI2krYqFNUCz+ftccBPgAkR8RqwPmla4ZyIeBt4TtLhuR1J6pOPG00KhErnKAVu75CmI7KCevV5ADhM0qdz/fUkbV7mmroB3SPintz/2lx+iKSzy7R7OTC4dH5J6wPnAufV0+/6jAJ+IKljbmdrSR72MjMzM7Oq4ZGypukGXJqfu1oKPE2eSkd6dmwjUnAGMBN4NeLD5XOOBK6UdBrQEbgFmAEMBS6XNJP0vowjLfJxF/BnSQcBP2qgXlkRMTefa7SkGtII3gl8FESWrA38VVJn0ujVibl8C9LUxrrtvizpKOB3efqkgIsi4q5c5Za8byhwWN3jC35Pmso4VWm47zXSyo1mZmZmVS0afCrE2hOFl9q0Bki6ATgxj/pVJE9fNDNrPz4xad+sEco87rFKliz+Z0V8FD+/wU5V/x3n2QXTKuK9aGkeKbMGRcRRrd0HMzOrHlX/DdSaxIMM1tb5mTIzMzMzM7NW5KDMzMzMzMysFbXLoEzSqZLmSJopaXpO0ry6+3CRpN3z9hhJ8yTNkDSpESsmruy5zpD0Yr7W0s+Kkj/X19bxko5u4rHDC/nGVvbY2pxUuvT6QElnNqUtMzMzs/YgYnnV/1SLdheUSRoIHAjsHBG9ScmWX2jhc3ao83o94IsRMa5QfGRE9AGuAM5vgW5cGBG1hZ83m9JIRFwVEdc3d+caoRY4oPB6JPB1SWu1Ql/MzMzMzFabdheUAT2ABRGxGCAiFkTESwCS5kvaIG/3kzQmb28o6T5JUyVdLen5Qr07JE3JI2+lZe+RtFDSWZIeBwbW6cNhwL319G8CsEmhnSslTc7tn5nLBki6LW8fJGmRpE6SOkt6trE3QlIXSbfkEcMRkh6X1K/U/0K9wyQNz9tnSDpJ0naSJhbq9MzL8CPp9DziN1vSMJVZ8khSX0lj870bJalHLh8j6VxJEyU9KWk3SZ2As4BBeZRvUE4hMIYUYJuZmZmZtVvtMSgbDWyav/BfIWmPRhzzC+DBiNgZuB3YrLDvuIjoC/QDhuYkyQBdgdkR8YWIeLhOe7sAU+o511eAOwqvT42IfkBvYA9JvYGpwE55/27AbKA/8AVSHrRyTixMXXwol/0AeC+PGP4K6FvPsZ8QEX8HOkn6fC4aBPwpb18WEf0jYgegC3UCp5wI+lLgsHzvrsnnL1kjIgaQklT/IiKWAKcDI/Io34hcb3K+fjMzMzOzdqvdLYkfEQsl9SV9md8LGCHplIgY3sBhuwKH5OPvlfRGYd9QSYfk7U2BrYB/A8uAv9TTXg9SEuSiGyV1BToAOxfKv5lH4NbIx20fETMlPS1pO2AA8Ftg93zs+HrOeWFEXFCnbHfgknxdM0sjXSvhT8A3gXNIQdmgXL6XpJOBtYD1gDmkJNcl2wA7APflQbQOwMuF/bfl31NIiaPr8yqwcbkd+Z4NAVCH7tTUdG3sNZmZmZmZVZR2F5QBRMQy0tS3MZJmAccAw4GlfDQ62LlwSNmkdJL2JD2TNjAi3svTHUvHvZ/PU86iOu0DHAnMIAU4lwPfkPQ54CSgf0S8kacQlo4bD+wPfADcn/vfIddfGfUl7iiW1+1ryQj+f3t3HidXUa9//PNkgYQkhEWMiED4IXsIgYR9MQhycWO5ICh4BeESxQVcwIviAiIKFzcWRQJi2EEUuAhCQDAECEtClklYAi4JqwoCkbCFJN/fH1VtTpqemZ5kenq6+3nndV5z+pzvqapzzvSkq6tOFVybu1JGRDwhaQDpubgxEfGUpFMqHC/g4Ygo79ZZ8mb+uYSOfwcHkK7l2wsfMR4YD5482szMzJrTUs/c1zKarvuipM0kbVLYNAqYn9fnsawL30GFmHtILUJI2gdYM28fCryUK2SbAztVWYxHgfeWb4yIt4BvAjvlVrDVgVeBBZKGkSphJZNJ3fvui4jngbWBzUmtUtWaTKoMImkEqYtkyd/zc2N9yK2EFcr7Z1LF6VukChosq4C9IGkw6fm5cnOBdfKgK0jqL2mrTsr6CjCkbNumpK6bZmZmZmZNq+kqZcBg4BJJj+TuelsCp+R9pwJnS7qbVNmgsH0fSdNJFaPnSJWEW4F+OZ3TgPurLMPNwNhKOyLideBHwAkRMQuYQapoXQzcWwh9ABhGqlgBtAFt0f6U9cVnymZKGg6cDwzO5f8a8GAh/iTgJuBOlu9aWO4a4JPk58nyqI4XArNJz8ZNrXCOi0iVtTMlzQJmArt0kAfAH4EtSwN95G17kq6lmZmZmVnTUvuf8VuHpFWBJRGxOLfunB8RKzWXmKR7gI+s6ND0tZC7X54QEdPqXZbO5JbDKyNir85i3X3RzMzMutPiRc9UfLSlp2249siW/4wz/59tveJe1FpTPlO2AjYAfp278i0CjumGNL+a0+01lbIGswHpGpqZmZmZNTW3lFnDc0uZmZmZdafe0lK2wVpbt/xnnCdfnN0r7kWtNeMzZS1N0sl5Iuq2/HzWjj2c/6TSBNUrmc5wSYd1R5nMzMzMzHozd19sIvl5uI8A20XEm5LeAaxS4zz7djA1wMoYDhwGXFmDtM3MzMzMeg23lDWXdYEXIuJNgIh4ISKeBZA0L1fSkDQmD/qBpHUk3S5puqQLJM0vxN0g6aHc8jaulImkhZK+K+kBoNJcZJ+UNEXSHEk75GMGSbpY0lRJMyTtn7f3lXRW3t4m6TM5jTOA3XNr35drcbHMzMzMzHoDV8qay23A+pIel/RzSe+r4pjvAHdGxHbA9aQBNkqOiojRwBjgOElr5+2DgDkRsWNE3FMhzUERsQvwOdJQ/wAn53y2Jw11f5akQcDRwIK8fXvgmDyp9knA3RExKiJ+0oVrYGZmZmbWUNx9sYlExEJJo4HdSRWfaySdFBETOjhsN/Lk0RFxq6SXCvuOk1SaWHp9YBPgn6Q53n7bQZpX5fQmS1pd0hrAPsB+kk7IMQNIFcB9gJGSSpNQD835LOroXHPL3TgA9R1Knz6DOgo3MzMzazhLaflxPlqGK2VNJj/fNQmYJGk2cAQwAVjMspbRAYVDKo5oI2kssDewc0S8lrs7lo57o5PnyMr/gkTO56CImFuWj4AvRsTECvm3n0HEeGA8ePRFMzMzM2ts7r7YRCRtJmmTwqZRwPy8Pg8YndcPKsTcAxySj98HWDNvHwq8lCtkmwM7daEoh+b0diN1TVwATAS+mCthSNo2x04EjpXUP2/fNHdrfAUY0oU8zczMzMwakitlzWUwcImkRyS1AVsCp+R9pwJnS7qb1P2QwvZ9JE0HPgg8R6oQ3Qr0y+mcBtzfhXK8JGkK8AvSM2PkNPoDbZLm5NcAFwGPANPz9gtILbhtwGJJszzQh5mZmZk1M08e3eIkrQosiYjFeUj98yNiVL3L1RXuvmhmZmbdqbdMHv2etUa0/Gecp1+c0yvuRa35mTLbAPi1pD6kwTWOqXN5zMzMzAxw40nrcKWsxUXEE8C2nQaamZmZmVlN+JmyJiHp5DzJc1uecHnHepfJzMzMzMw655ayJpCfBfsIsF1EvCnpHcAqNc6zbyfD4puZmZmZWRXcUtYc1gVeiIg3ASLihYh4FkDSvFxJQ9KYPN8YktaRdLuk6ZIukDS/EHeDpIdyy9u4UiaSFkr6rqQHgJ2LBZD0Xkl/yKMlTpe0saTBku7Ir2dL2j/HDpf0qKQLcx63SRqY920s6dac/915OH4zMzMzs6blSllzuA1YX9Ljkn4u6X1VHPMd4M6I2A64njTgR8lRETEaGAMcJ2ntvH0QMCcidoyIe8rSuwL4WURsA+xCGlr/DeDAnMeewI9K85QBm+T4rYCXWTZ32njSZNKjgROAn1d7EczMzMyaydKIll9ahbsvNoGIWChpNLA7qfJzjaSTImJCB4ftBhyYj79V0kuFfcdJOjCvr0+qQP2TNL/Zb8sTkjQEWC8irs/pvZG39we+L2kPYCmwHjAsH/bXiJiZ1x8ChksaTKrQXbus7saqlQqfW/DGAajvUPr0GdTBqZqZmZmZ9V6ulDWJ/HzXJGCSpNnAEcAEYDHLWkQHFA6pOOeDpLHA3sDOEfFa7u5YOu6Ndp4ja2/+iMOBdYDREfGWpHmFtN4sxC0BBuZyvlzNPGkRMZ7UquZ5yszMzMysobn7YhOQtJmkTQqbRgHz8/o8YHReP6gQcw9wSD5+H2DNvH0o8FKukG0O7NRZ/hHxL+BpSQfk9FaVtFpO6x+5QrYnsGEV6fxV0sdyOpK0TWf5m5mZmZk1MlfKmsNg4BJJj0hqA7YETsn7TgXOlnQ3qUWKwvZ9JE0HPkh6BuwV4FagX07nNOD+KsvwX6Ruj23AFOBdpOfMxkiaRmo1e6yKdA4HjpY0C3gY2L/K/M3MzMzMGpI8U3hrkrQqsCQiFuch9c+vpttgb+Tui2ZmZtadFi96pr1HM3rUu9bYouU/4/zt5Ud7xb2oNT9T1ro2AH4tqQ+wCDimzuUxMzMzM2tJrpS1qIh4Ati23uUwMzMzM2t1fqbMzMzMzMysjlqmUiZpiaSZkuZIujaPDthe7BqSPldFmlXF1ZOkCZIO7oF8JkkaswLH9fpraGZmZmZWSy1TKQNej4hRETGC9AzVZzuIXQOopqJQbVxDktQT3Vub+hqamZmZraiIaPmlVbRSpazobuC9AJK+klvP5kj6Ut5/BrBxblk7S9JgSXdImi5ptqT924lT/jknxx1aylDSiZKmSmqTdGreNkjSzZJm5WMOpYykY/JxsyT9ttTCl1vAzpE0RdJfSq1huQzn5eHxbwbeWekC5Jatn+bj50jaIW8/RdJ4SbcBl0oaIOlX+Xxm5PnGkDRQ0tX5fK4hTf5cSnthYf1gSRPy+jBJ1+dzmSVplwrXcF1Jkwutmrt38d6amZmZmTWUlhvoI7f+fBC4VdJo4NPAjoCAByTdBZwEjCgNEZ+POTAi/iXpHcD9km6sEHcQaeLmbYB3AFMlTQa2BjYBdsj53ChpD2Ad4NmI+HA+fmiFIl8XERfm/d8DjgbOzfvWBXYDNgduBH4DHAhslvMcBjwCXNzO5RgUEbvkslwMjMioJmovAAAgAElEQVTbRwO7RcTrkr4KEBFbK00mfZukTYFjgdciYqSkkcD0jq88AOcAd0XEgZL6kuZXK7+GXwUmRsTpOabdbqZmZmZmZs2glVrKBkqaCUwDngR+SarQXB8Rr0bEQuA6oFLLjIDv54mR/wCsR6rwlNsNuCoilkTE34G7gO2BffIyg1R52ZxUSZsN7C3pTEm7R8SCCmmOkHS3pNmkiZW3Kuy7ISKWRsQjhfLsUSjDs8CdHVyTqwAiYjKwuqQ18vYbI+L1wjldluMeA+YDm+Z8Ls/b24C2DvIpeT9wfj5mSTvnOxX4tKRTgK0j4pVKCUkaJ2mapGlLl75aRdZmZmZmZr1TK7WUvV4+ObKkaiejO5zUqjU6It6SNA8YUCGuvfQE/CAiLnjbjtRa9yHgB5Jui4jvloVMAA6IiFmSjgTGFva92U7e1XbALY8rvS7Wcjq6Ru3lU9xe6Tq1n2DE5Nxy92HgMklnRcSlFeLGA+PBk0ebmZmZWWNrpZaySiYDB0haTdIgUte/u4FXgCGFuKHAP3KFbE9gw7y9PG4ycKikvpLWIbUmPQhMBI6SNBhA0nqS3inp3aQugJcDPwS2q1DGIcBzkvqTKofVnNPHcxnWBfbsIPbQXJ7dgAXttFxNLuWbuy1uAMwt2z4CGFk45u+StlCamPrAwvY7SN0eyeVbnbJrKGlD0rW+kNSaWemamJmZmTW9pUTLL62ilVrK3iYipudBKB7Mmy6KiBkAku6VNAe4BTgT+J2kacBM4LF8/D/L4r4G7AzMIrUWfS0i/gb8TdIWwH25cW4h8EnSYCNnSVoKvEWusJT5FvAAqdvgbJavBFZyPamb4GzgcVIXyva8JGkKsDpwVDsxPwd+kbtPLgaOjIg3JZ0P/Cp36ZzJsmsI6Tmxm4CngDmkZ8cAjgfGSzoaWAIcGxH3lV3DOcCJkt4iXadPdXK+ZmZmZmYNTa001KQtI2kScEJETKt3WVaWuy+amZlZd1q86JlqH3GpqXWGbtbyn3GeXzC3V9yLWmvpljKzRtQsf5mq/V+mnufb8v8TdoNq718j/D50p+ofabb2+Bq2T03yTunKPa62kcG/N9ZbuVLWoiJibL3LYGZmZmZmHuijV5H0rjwh85/z5M+/z4Nr1DLPCaWJp1fg2N0kPSjpsbyMK+w7QNKWhdeTJI3pjjKbmZmZmTUTt5T1Enl4/uuBSyLi43nbKNL8Y49XebwiYmlNC7osv3cBV5KG65+eJ9WeKOmZiLgZOIA02Mcj3ZBX34hYsrLpmJmZmTUSj/3QOtxS1nvsCbwVEb8obYiImRFxN4CkEyVNldQm6dS8bbikRyX9nDQp9fqS9pF0n6Tpkq4tDMP/7Xz8HEnjK83RJumM3ELXJumHnZT388CEiJiey/oCafTJkyTtAuxHGllypqSN8zEfyy1rj0vaPefZV9JZhXP7TN4+VtIfJV1JGknSzMzMzKwpuVLWe4wAHqq0Q9I+wCbADsAoYHSeYBlgM+DSiNiWNOnzN4G9I2I7YBrwlRx3XkRsHxEjgIHAR8ryWIs0p9hWETES+F4n5d2qQnmn5eOnADcCJ0bEqIj4c97fLyJ2AL4EfCdvO5o0R9r2wPbAMZI2yvt2AE6OiC0xMzMzM2tS7r7YGPbJy4z8ejCpkvYkMD8i7s/bdwK2BO7NDWGrAPflfXtK+hqwGrAW8DDwu0Ie/wLeAC6SdDOp62FHROUB0zpqZ78u/3wIGF44t5GF59qG5nNbBDwYEX+tmHl6fm0cgPoOpU+fQZ0U18zMzMysd3KlrPd4GGhvwA0BP4iIC5bbKA0ntY4V426PiE+UxQ0gTQI9JiKeknQKMKAYExGLJe0A7AV8HPgCaRLqjso7htQiVjKajp8hezP/XMKy3z0BX4yIiWVlHlt2bsuJiPHAePA8ZWZmZmbW2Nx9sfe4E1hV0jGlDZK2l/Q+YCJwVOH5sPUkvbNCGvcDu0p6b45bLY/eWKqAvZDTeFvlL28fGhG/J3UvHJW3HyjpBxXy+hlwZB6MBElrA2cC/5v3vwIMqeK8JwLHSuqf09lUkpu9zMzMrOUtjWj5pVW4payXiIiQdCDwU0knkboSzgO+FBFPSNoCuC93S1wIfJLU4lRM43lJRwJXSVo1b/5mRDwu6ULSgBnzgKkVijAE+L/cqibgy3n7xqSujeXlfU7SJ4ELJQ3Jx/w0IkpdIq/O+46j/RZAgItIXRmn58FHnieN3GhmZmZm1hLkoTatI5IuB74cEc/XuyztabXui28bNrNBVXvT6nm+LfWLVSPV3r9G+H3oThUGwLUu8jVsn5rkndKVe1zt59lq03z99fm94iKuNWSTlv+v6MVXnugV96LW3FJmHYqIT9a7DLa8Vvvr3Grn22y6+/41y++DvxDtBr6GZtZE/EyZmZmZmZlZHblSViVJIemywut+kp6XdFN+vV9+FgxJp0g6Ia9PKAz33l7aR0p6d43K3Wn+3ZTPJEljVuC4NSR9rhZlMjMzM2tkEdHyS6twpax6rwIjJA3Mrz8APFPaGRE3RsQZK5j2kUBNKmUrQ1JPdG9dA3ClzMzMzMxalitlXXML8OG8/gngqtKO3Np1XkcHSxot6S5JD0maKGnd3Io1BrhC0sxCpa90zDGSpkqaJem3klbL2ydIOkfSFEl/KbWGKTlP0iN5EuhKQ+eXWrZ+mo+fk+coK7XyjZd0G3CppAGSfiVptqQZkvbMcQMlXS2pTdI1wMBC2gsL6wdLmpDXh0m6Pp/LLEm7AGcAG+dzPytfk8n59RxJu3d6V8zMzMzMGpgrZV1zNfDxPGz8SOCBag/M83CdCxwcEaOBi4HTI+I3wDTg8IgYFRGvlx16XURsHxHbAI8CRxf2rQvsBnyEVLkBOBDYDNgaOAbYpYNiDYqIXUgtVRcXto8G9o+Iw4DPA0TE1qSK6CX5/I8FXouIkcDp+ZjOnAPclc9lO9IE1CcBf87nfiJwGDAxIkYB2wAzq0jXzMzMzKxhefTFLoiINknDSZWT33fx8M2AEcDteTjWvsBzVRw3QtL3SN38BpMmWy65ISKWAo9IGpa37QFcFRFLgGcl3dlB2lcBRMRkSatLWiNvv7FQOdyNVJkkIh6TNB/YNOdzTt7eJqmtinN5P/CpfMwSYIGkNctipgIX50rsDRFRsVImaRwwDkB9h9Knj+ebNjMzM7PG5EpZ190I/BAYC6zdheMEPBwRO3cxvwnAARExK08MPbaw782y9EuqfSqyPK70+tV20u3s+ErbB1RZlnRgqiDuQeomepmksyLi0gpx44Hx0HrzlJmZmVlrWNo0E4FYZ9x9sesuBr4bEbO7eNxcYB1JO0Pqzihpq7zvFWBIO8cNAZ7LLUeHV5HPZFIXy76S1gX27CD20FyW3YAFEbGgnfQOz3GbAhvkcyluH0Hqzlnyd0lbSOpD6k5Zcgep2yO5fKtTdu6SNgT+EREXAr8kdXM0MzMzM2tabinrooh4Gjh7BY5blAfjOEfSUNK1/ynpuaoJwC8kvQ7sXPZc2bdIz67NB2bTfuWt5HpSN8HZwOPAXR3EviRpCrA6cFQ7MT/PZZsNLAaOjIg3JZ0P/Cp3W5wJPFg45iTgJuApYA6p2yXA8cB4SUcDS4BjI+I+SfdKmkMaSGUOcKKkt4CF5O6OZmZmZmbNSq00/r8tI2kScEJETKt3WVaWuy+amZlZd1q86JmOHt/oMUMHb9zyn3EWLPxzr7gXteaWMjMzM2t5XfnU192fkpvlE2e116VZztesO7lS1qIiYmy9y2BmZtZoWr7ZwnqUe7S1Dg/0YWZmZmZmVkeulFVBUki6rPC6n6TnJd3UyXFjJJ1T+xJ2TNLCHshjeB6sY0WOHSupo0muzczMzMyalrsvVudV0iTOA/PIiB8AnunsoDyIRkMPpCGpb57ouZbGkkZanFLjfMzMzMzMeh23lFXvFtKExgCfAK4q7ZC0g6Qpkmbkn5vl7WNLrWmSfi9pZl4WSDoiz9V1lqSpktokfaZSxpJukPSQpIcljStsXyjpdEmzJN0vaVjevpGk+3K6p7WT5nBJj0m6JOf9G0mr5X3zJH1b0j3AxySNyum3Sbpe0po5bnTO+z7g84W0j5R0XuH1TZLG5vV9JU3Px90haTjwWeDL+drsLuljkubkmMlduUlmZmZmZo3GlbLqXU2alHkAaaLkBwr7HgP2iIhtgW8D3y8/OCI+FBGjgKNJc47dkNcXRMT2wPbAMZI2qpD3URExGhgDHCdp7bx9EHB/RGxDmsz5mLz9bOD8nO7fOjinzYDxETES+BfwucK+NyJit4i4GrgU+J8cNxv4To75FXBcROzcQR7/Jmkd4ELgoFzmj0XEPOAXwE8iYlRE3E26hv+RY/arJm0zMzOzZrM0ouWXVuFKWZUiog0YTmol+33Z7qHAtfmZqp8AW1VKQ9I7gMuAwyJiAbAP8ClJM0mVvLWBTSocepykWcD9wPqFmEWkSZoBHsrlA9iVZS15/34WroKnIuLevH45sFth3zW5zEOBNSKiNAn1JcAeFbZ3lE/JTsDkiPgrQES82E7cvcAESccAfSsFSBonaZqkaUuXvlpF1mZmZmZmvZOfKeuaG4Efkp6BWruw/TTgjxFxYO6ON6n8QEl9Sa1t342I0oAYAr4YERPbyzB3+9sb2DkiXsuTPg/Iu9+KZWOlLmH5+1nNVwvlMcXXndV01EEei1m+wl8qb0fHLCtExGcl7UjqLjpT0qiI+GdZzHhgPHjyaDMzMzNrbG4p65qLSZWq2WXbh7Js4I8j2zn2DKAtdwcsmQgcK6k/gKRNJQ2qkPZLuUK2Oam1qTP3Ah/P64d3ELeBpFLXw08A95QH5Ba9lyTtnjf9F3BXRLwMLJBUal0r5jMPGCWpj6T1gR3y9vuA95W6aEpaK29/BRhSOljSxhHxQER8G3iB1DpoZmZmZtaUXCnrgoh4OiLOrrDrf4EfSLqXdrrbAScA+xQG+9gPuAh4BJieuz5ewNtbL28F+klqI7XI3V9FUY8HPi9pKqlS155HgSNy2msB57cTdwRwVo4bBXw3b/808LM80Mfrhfh7gb+Snj/7ITAdICKeB8YB1+XumNfk+N8BB5YG+sh5zc7XZDIwq4pzNjMzMzNrSPJM4a0pd7O8KSJG1LkoK83dF83MbGWpyrha/IdTbd69XbXXphHO961Fz/SKYg5abXjLf8Z59bV5veJe1JqfKbOG1xLvVDOzTjTTB+LerBbXr7vvXb0+xXf3tWn52oi1FFfKWlQeir7hW8nMzMzMzBqdnylrh6Ql+RmnWXmy411WII15eRj8uuqpckhauILHjZL0oe4uj5mZmZlZI3ClrH2v58mMtwG+Dvyg2gOVNMW1ldQTramjAFfKzMzMzKwlNUXFoQesDrwEIGmwpDty69lsSfvn7cMlPSrp56TRBpcbxl3SJyU9mFvfLpDUV9LRkn5SiDlG0o/LM5d0fp4o+WFJpxa2z5N0aqEsm+fta0u6TdIMSRfQTjdvSQsl/Sgff4ekdfL2SZK+L+ku4HhJG+b9bfnnBjluI0n3SZoq6bRCumMl3VR4fZ6kI/P69pKm5BbIB/Mk1N8FDs3X5lBJ7yuMUjlD0hDMzMzMWszSiJZfWoUrZe0bmCsFj5GGri9VOt4ADoyI7YA9gR9JKlV6NgMujYhtI2J+KSFJWwCHArtGxCjSRM+HkyaT3q80TxlpiPlfVSjLyRExBhhJmudrZGHfC7ks55OG3Qf4DnBPRGxLmvB6g3bOcRAwPR9/Vz6uZI2IeF9E/Ag4L5/XSOAK4JwcczZwfkRsD/ytnTz+TdIqpGHwj88tkHuTJqn+NnBNbpm8Jp/H5/O12p3lh9s3MzMzM2sqrpS1r9R9cXNgX+DSXPkS8P08Z9cfgPWAYfmY+RFRaR6xvYDRwFRJM/Pr/xcRrwJ3Ah/JrVz9K0xMDXCIpOnADGArYMvCvuvyz4eA4Xl9D+BygIi4mdzKV8FSls0VdjmwW2HfNYX1nYEr8/plhbhdgasK2zuzGfBcREzNZftXRCyuEHcv8GNJx5Eqh2+LkTQutx5OW7r01SqyNjMzMzPrnTz6YhUi4r48UMY6pGef1gFGR8RbkuYBA3Joe7UDAZdExNcr7LsI+AbwGBVaySRtRGo52j4iXpI0oZAfwJv55xKWv58r0t5bPKajmk60s16ymOUr/KXyqppyRcQZkm4mXev7Je0dEY+VxYwHxgP09zxlZmZmZtbA3FJWhdyK1Rf4JzAU+EeukO0JbFhFEncAB0t6Z05vLUkbAkTEA6Tnzw5jWatT0eqkCtICScOAD1aR32RS90gkfRBYs524PsDBef0w4J524qYAH8/rhxfi7i3bXjIf2FLSqvmZsb3y9seAd0vaPpdtSB5I5BXg38+NSdo4ImZHxJnANGDzjk/XzMzMzKxxuaWsfQNzV0NILTxHRMQSSVcAv5M0DZhJqmh0KCIekfRN4LY8KuNbwOdJlReAXwOjIuJt3QwjYpakGcDDwF9IFaHOnApclbs83gU82U7cq8BWkh4CFpCee6vkOOBiSScCz5OefQM4HrhS0vHAbwtlfkrSr4E24AlSt0siYpGkQ4FzJQ0kPSu2N/BH4KR8vX8A7JYrvEuAR4BbqjhnMzMzs6YSLTTQRauTb3b95ZEKfxIRd/RwvgsjYnBP5lkL7r5oZlZ9n/WKw/FaXXX3vavXf4rd/btVz//cFy96ple8VQYM2KDlP+O88caTveJe1JpbyupI0hrAg8Csnq6QNZOW/2tlZtYF/pvZuHr7vevt5TPrzVwpq6OIeBnYtI75N3wrmZmZmZlZo2u6gT4kLcnzi82R9LvcGoWkd0v6TTfl8SVJn8rrEyS9VpzgWNLZkiKP2IikKfnncElz8vpyEyxXme8kSWPa2T63MOHyCp+npIskbdl5ZMVj55XOeQWOPaCYr6QfSnr/iqRlZmZmZtZImq5SxrL5xUYAL5IG1CAino2Igzs+tHN5tMCjWDZvF8CfgP3z/j6kSaWfKe2MiF1WNt8qHJ7Pe9TKnGdE/HdEPNKdBavSASw//9q5wEl1KIeZmZlZrxD+V+9b0GOasVJWdB9pcufyVqq+uSVmtqQ2SV/M20dLukvSQ5ImSlq3QprvB6aXTWh8FctGLhxLGiHx3/slLeyokJIGSbpY0lRJMySVKngDJV2dy3gNMLArJy9pI0n35XRPK5WjvJVO0nmSjszrkySNkXSspP8txBwp6dy8fkO+Rg9LGtdO3p+U9GBuubtAUt/StZB0uqRZku6XNEzSLsB+wFk5fuOImA+sLeldXTlnMzMzM7NG07SVslwJ2Au4scLuccBGwLYRMRK4QlJ/UuvMwRExGrgYOL3CsbsCD5VtewJYR9KawCeAq7tY3JOBOyNie1Ir21mSBgHHAq/lMp4OjO4gjSsK3RfPytvOBs7P6f6ti2X6DfCfhdeHAtfk9aPyNRoDHCdp7eKBkrbI8btGxCjS0PalecwGAfdHxDak+dSOiYgppPt0Ym7p+3OOnU663mZmZmZmTasZB/oozS82nFR5ur1CzN7AL0qtXRHxoqQRwAjgdkmQJot+rsKx6wKPVth+HWki5R2Bz3SxzPsA+0k6Ib8eAGwA7AGck8vYJqmtgzQOj4hpZdt2BQ7K65cBZ1ZboIh4XtJfJO1EqnRuxrI50o6TdGBeXx/YhDSxdslepArk1HwtBwL/yPsWAaVWuoeAD3RQjH8A7660I7fQjQNQ36H06TOo2lMzMzMzM+tVmrFS9npEjJI0lPTh//Pkik2BePvIrQIejoidO0ufVGkqdzWpZeeSiFiaKyPVEnBQRMxdbmNKY2U701Y6fjHLt5JWOh9ILWOHkCbIvj4iQtJYUqV254h4TdKkCseLdB2+XiHNt2LZ5HhL6Ph3cADper9NRIwHxgP08zxlZmZmZtbAmrb7YkQsAI4DTshdE4tuAz6bB+1A0lrAXFIXxJ3ztv6StqqQ9KPAeyvk9ySpG+LPV6C4E4EvKtfCJG2bt08md/vLLXkju5juvaTWO1jWfRBgPrClpFVz5XWvdo6/jjQAxydY1nVxKPBSrpBtDuxU4bg7gIMlvTOXfS1JG3ZS1leAIWXbNgXmdHKcmZmZmVlDa9pKGUBEzABmsaxiUnIR8CTQJmkWcFhELAIOBs7M22YClUZNvIXUrbBSfhcUnofqitOA/rk8c/JrgPOBwbnb4tdIE023p/hM2R/ytuOBz0uaSqpMlcr5FPBroA24ApjRzvm8BDwCbBgRpbxvBfrlMp0G3F/huEeAbwK35bjbSd0+O3I1cGIe6GTjXJF+L1DeJdPMzMysJUREyy+tQq10st1F0vXA1yLiiXqXpSskLWyUCaPzM2vbRcS3Oot190UzMzPrTosXPdOl51BqZZVV39Pyn3EWvfl0r7gXtdbULWU1dBKdt/zYyukH/KjehTAzMzMzqzW3lFnDc0uZmZmZdSe3lPUebikzMzMzMzOzmnOlrIykn0j6UuH1REkXFV7/SNJXJI2VdFPlVLqc5wGStuyOtCqkfUph/rOakTRB0sEreOw3urs8ZmZmZo2u3oNs9IalVbhS9nZTyKMuSuoDvAMoDo2/C8smUe4uBwA1qZStjNKUAT3AlTIzMzMza1mulL3dvSwbCn8r0jxZr0haU9KqwBYsG0J+sKTfSHpM0hWFecZGS7pL0kO5pW3dvP0YSVMlzZL0W0mrSdoF2A84Kw9nv3GxMJI+KumBPFT8HyQNy9tPkXSxpEmS/iLpuMIxJ0uam4fG36zSSeaWrV9IulvS45I+krcfKelaSb8jDWkvSWdJmiNptqRDc5wknSfpEUk3A+8spD1P0jvy+pg8wTSSBkv6VU6nTdJBks4ABuZzv0LSIEk352s0p5SfmZmZmVmz6qmWkIYREc9KWixpA1Ll7D5gPWBnYAHQFhGLcv1rW1LF7VlSZW5XSQ8A5wL7R8TzuVJxOnAUcF1EXAgg6XvA0RFxrqQbgZsi4jcVinQPsFNEhKT/Js1X9tW8b3NgT9Kky3MlnU+aYPrjuWz9gOnAQ+2c7nDgfcDGwB8llSbF3hkYGREvSjoIGAVsQ2o1nCppco7ZDNgaGEaaz+ziTi7vt4AFEbF1vgZrRsRvJX0hIkblbQcBz0bEh/Proe0nZ2ZmZmbW+Fwpq6zUWrYL8GNSpWwXUqVsSiHuwYh4GkDSTFIl52VgBHB7rrj1BZ7L8SNyZWwNYDAwsYqyvAe4Jre2rQL8tbDv5oh4E3hT0j9IlaPdgesj4rVcrhs7SPvXEbEUeELSX0iVPIDbI+LFvL4bcFVELAH+LukuYHvSBNql7c9KurOKc9mbwkTekSanLjcb+KGkM0kV1bsrJSRpHDAOQH2H0qfPoCqyNzMzMzPrfdx9sbLSc2Vbk7ov3k9qGSp/nuzNwvoSUiVXwMMRMSovW0fEPjlmAvCF3FJ0KjCgirKcC5yXj/lM2TGV8geo9qnI8rjS61cL2zoahrS9fBaz7HerWF51VraIeBwYTaqc/UDSt9uJGx8RYyJijCtkZmZm1ozCS1Uk7Zsf3fmTpJOqPKxXcaWssnuBjwAvRsSS3Gq0Bqlidl8nx84F1pG0M4Ck/pJKA4UMAZ6T1B84vHDMK3lfJUOBZ/L6EVWUfTJwoKSBkoYAH+0g9mOS+uTn2P5fLnul9A6V1FfSOqQWsgfz9o/n7euSulGWzCNVrAAOKmy/DfhC6YWkNfPqW/maIOndwGsRcTnwQ2C7Ks7ZzMzMzFqQpL7Az4APkgbO+4RqNKp5LblSVtls0vNT95dtWxARL3R0YEQsAg4GzpQ0C5jJsoFDvgU8ANwOPFY47GrgxDyYx3IDfQCnANdKuhvoMO+c/3Tgmpzvb4GK3f+yucBdwC3AZyPijQox1wNtwCzgTuBrEfG3vP0J0nU5P6dTcipwdi7zksL27wFr5gE8ZrGsIjceaJN0Bal18sHcHfTkfIyZmZmZWSU7AH+KiL/kz+FXA/vXuUxdplYa/9+WkTSB9gcXaSj9VlnPv8RmZmbWbRYveqajxzd6jD/jdH4vlObJ3Tci/ju//i9gx4j4QkfH9Tr1nhDOS90m4psAHFzvctTw/MY5rvZxjVDGZolrhDI2S1wjlLHV4hqhjM0S1whlrOe18dLzC2lgt2mFZVzZ/o8BFxVe/xdwbr3L3eXzrHcBvHipxQJMc1zt4xqhjM0S1whlbJa4Rihjq8U1QhmbJa4RyljPa+Ol9y2kMR8mFl5/Hfh6vcvV1cXPlJmZmZmZWaOaCmwiaSNJq5CmX+poSqheyfOUmZmZmZlZQ4qIxZK+QJr/ty9wcUQ8XOdidZkrZdasxjuuR+LqmXerxdUz71aLq2fejut9ebdaXD3z7u1x1ktFxO+B39e7HCvDoy+amZmZmZnVkZ8pMzMzMzMzqyNXyszMzMzMzOrIz5SZmZlZU5M0FNgXWA8I4FnSENov1zjfdwFExN8krQPsDsztbBACSd+PiG/UsmxdJWkP4O8RMVfSbsBOwKMRcXOdi2bWFNxSZk1L0rfLXv+HpKMlDS/bflRhXZIOkfSxvL6XpHMkfU5Sh+8XSXdW2PaOstefzOmNk6TC9gMlrZXX15F0qaTZkq6R9J5C3I8l7VrFua8l6duS/jufx8mSbpJ0lqQ1y2L3lHSepP+T9FtJZ0h6bzvp/oek8yXdmOPPl7RvZ+UpHO970v33ZHNJ/5PP4ey8vkVn5Skc/+kK6e0laXDZ9n3LXu8gafu8vqWkr0j6UBX5XVpFzG45vX3Ktu8oafW8PlDSqZJ+J+lMpQ/dpbjjJK1fRT6rSPqUpL3z68Pydf+8pP4V4jeWdEK+zj+S9NlivoU4v09W8H2SY7v1vSLpU8B0YCywGjAI2BN4KO+rpkwfKHu9uqSNK8SNLKx/BrgPuF/SscBNwEeA6yQdXYg7p2w5F/hc6XUHZdpI0n9K2rxs+8ZgIBYAABENSURBVAaSBuR1Sfq0pHMlHSupXyFuv1JcFef/U+AM4DJJpwH/CwwEvizprLLYwZIOlvRlSV+UtG+l30E12N8us1rzQB/WtCQ9GREb5PXvA7uR/mP+KPDTiDg375seEdvl9Z8D7wRWAf4FrAr8DvgQ6RvC43NcW3l2wKbAXICIGFkh7W+SviW9kvQf89MR8eW875GI2DKvXwPcD1wL7A0cHhEfyPueB+YD6wDXAFdFxIwK5/57YDawOrBFXv818AFgm4jYP8edAQwD7gAOAP4KPA58Dvh+RFxbSPOn+RwvBZ7Om98DfAp4onRtOuJ70u335H+ATwBXs/w9+ThwdUSc0f7d+HcaxXtyHPB54FFgFHB8RPxfhev2HeCDpN4WtwM7ApPytZkYEafnuPJ5YkT6MHwnQETsl+MejIgd8voxuQzXA/sAvyudh6SH87VaLGk88BrwG2CvvP0/c9wC4FXgz8BVwLUR8XyFc78in8NqwMvAYOC6nJ4i4ohC7HGk39O7SL97M4GXgAOBz0XEpBzn98lKvE9ybLe+VyTNBXYsbxXLFbwHImLT9u5FIbZ4Tw4Bfgr8A+gPHBkRUytct9mk98bAfO7vzS1mawJ/jIhROe5p0vvntnw/AH4InAAQEZfkuBsi4oC8vn8uwyRgF+AHETEh75sD7BARr0k6E9gYuAF4f07vqBz3Oul9cgvpfTIxIpa0c/4PAyPyuTwDrJfT7w/MiIgRhWtzIjCL9F6fQmoA2Jr0+zA7x/Xqv11mdVHv2au9eFmZhfTho9LyCrC4EDcb6JfX1yANm/qT/HpGMS7/7A/8E1glv+5X2pdf3whcDmwObAgMB57K6xsW4oppTwcGFdIvpje3sP5Q2TnOLE8P2AT4FvAw8BjwHWDT8mNI/8E/00F6xTL0A+7N62sCc8qOe7ydeyDSh03fkzrcE6B/hXuyStk9aWtnmQ28WXZPBuf14cA00oebt90T0lwwq+V7u3rePhBoK7u+l5NaKN6Xfz6X19/Xzj2ZCqyT1weVXY9Hi2l3dE9IHwT3AX4JPA/cChwBDClel8J1/jvQt3CP2srSn13YvxowKa9vUFZ+v09W4n1Si/cK6X0ytMI9GVp2T25sZ/kd8GqxDMC6eX2HfB7/Wem6FdZnleVdjBtCqmBdSarsAPylQnmLx0wBNsrr7yimDzxSvCdAn0rlIL1P1gSOIVVs/w78gsJ7sxA7J/8cQPoyYmB+3bcsvzZgtUK5Jub1kcCUsnvSa/92efFSj8XdF63RvQxsEhGrly1DSB/+SvpFxGKASN+WfhRYXdK1pP8ESkoxbwFTI2JRfr0Y+Pc3iJG+4f8taW6TbSJiHvBWRMyPiPmF9AZK2lbSaNIHulcL6Re/kZwk6buSBub10rehewILCnGRj38iIk6LiK2AQ0j/URbn5+iTv41dHxis3O1J0tpl57tUuesR8G7Sf1ZExEss+8a25A1JO/B22wNvFF77nvTcPVmaY8qtm/eVDCO11Hy0wvLPQlzfiFiY85tHqkR9UNKPy/JeHBFLIuI14M8R8a98zOtl+Y4hfSg8GVgQqTXp9Yi4KyLuKr82+VoocqtWvjeLC3FzCl2WZkkaAyBpU+CtQlxExNKIuC0ijs7X6OekZ4r+UpbvKqQPxauRPqRDamV6W/dFlj2HvWo+hoh4sizW7xNW6n0C3f9eOR2YrtSN9Bt5+QWpsllsGdkduAD4UYVlYSGub0Q8l/N6kNQidHJurYmy8pV+Nz5c2qjUZfDfn78i4pWI+FLO53JJJ1D58ZJi2v0i4q/5+BdY/n33lKT35/V5pOtYun7LpRcRL0XEhRGxF7AN8AhwhqSnymJvlnQ3cDdwEfBrSSeTWtkmF+IEvJ7XXyW13hIRbaSWz5Le/rfLrOfVu1boxcvKLMD3SN00Ku07s7B+E5W//fsesLTw+hbyt21lce8CHqywfRDwY9K3qU9X2P/HsqX07erawLRCXH/gFODJvCwlfWN+JbBBIW5GpXOtkO8nSN96/h04CPhDXp4BxhXiDiV1q7kt5/vhvH0d4MqyNEcDD5D+074tL4/mbaMb6J5M6kX35PaVvCf7An/K12h8Xm7N2/YtxP0S2K2dcl1ZWL8TGFW2vx+pK96SwrYHWPZtePFb+KGUtWDl7e8hdWk7D3iywv55pMrSX/PPd+Xtg1m+ZWQoMIHULfEBUkXsL6QuhdtUc0/I3/Dn9S/n4+cDx5FaCy4kfZv+nbLjjid9Qz+e1DLy6cJ9mVyI247meJ/U5W9XDd8ra5K6xn2V1C3w48CaZTG3AHu2U6biPZ4CbFy2f0j+/Sm23mxA5dag9YC928lHpG54l1fYt4RlramLWPY+WYXlW6jXz/dsMqmV7yXSe3sGsFeV75MNK2zbGdgpr2+cr+MhLP834ExgIvANUgXuG3n7WsDDhbiG+NvlxUtPLn6mzFpC/haXSN+Gle9bLyKe6eT4QaTuO/9oZ/82wM4R8Ysqy9MHGBDp27ryfUNJ34L+s8K+wZG/Dawij76kVofFSg93jyJ1BXquLG4t4P8Bf4oqRiJTGk1sPdKHh6cj4m/VlKdCOr3tnvQFVm20e5J/l3agcE9ILSUVnw3pJK33kL5Jfts9lbRrRNyb11eNiDcrxLyD9OF9djvpfxjYNaocVU7SasCwyC0Che1DSNenH+l38O9l+zeNiMerzOPdABHxrKQ1SM+WPBmpBaQ8divSM05zIuKxTtL1+2T5fVW/Twr5dPd7ZRiF0RfLf2+6ULZtgNci4omy7f2BQyLiihXJd0XLl39vt4iI+8q2b0F6XrAfy/4uLC3sHxv5WchqVVNGpUEztiR1lbw9b+tDqqC+WYhrmL9dZj3BlTJraLnr0VuRf5Fzl5ntSH3cb3Fc98TlfSMjdUHpkON6Jq4QvwHwr4h4OXfzGkN69urhKuIei4g5jus8bgVix5BaLBaTnpGpWIlzXPuV2+5KU9Io0rNSQ0kf/EVqvX2ZNEjL9LL4bqlEleVbqjyX8j028kAnncTVrHxdiatVGdspT1UV+HrFmdVM9ILmOi9eVnQhjfC0Zl4/kdSt5Jukri5nVBn3gzrFNUz58v4lpK4lpwFbdnBPHNcDcTn2JFKXv8eA/84/f0kaROErjuueuC6m+T7SIAN/IHUbuwm4l9Rtdn3HdRxXo7xnkkZfLH//7MTyA19sSxo98lGWdfl+LG/brhA3qoO4bVcg3+4o37ZVlq/a89iurCzVlrHqNDv4u/a2Ls69Kc6Ll1otdS+AFy8rs7D8CFvTWDYiVD+W72PvuJWIy9tmkIZEPp1UaZhF+qA63HE9H5djHyaNGrY26TmT4qiFcxzXPXFdTHNGYd9GwPV5/QPAbY7rOK5GeT9RTL8srz8V1ru7ElVtvvUqX1VxNSrjV9pZvgq8WO84L17qsXj0RWt0/5I0Iq+/QBrJC1Kloo/jui0O0khdcyLi5Ih4L2kY5XcCd0ua4rgej4P0APvrpC5Er5NHI4s8Up7jui2uK7F9Y9mcaE+Shpon0rM16zmu07hapHmLpJslHSppl7wcKulm0uASJYMi4oGyshAR95Mq312NqzbfepWv2rhalPH7pMFXhpQtg1n+/556xZn1OD9TZg1N0kjgMlJrAsCupJHYRgI/jogrHbfycTl2RkRsW+EeCNgj8hDnjuuZuLxtAmnktUGkiZQXkz4gvZ80H9chjlv5uC6meTHpOZo7gP1Jg1N8RWnQkukRsbnj2o+rYZofzDHFQSVujIjfF2LOIY0qeClp7jZIz6p9CvhrRHyhK3HV5luv8nXlPGpQxinAFyPiIcpIeioi1q9nnFk9uFJmDU9plK59WH6UqYlRNhKX41Y67rBiJa09juuZuBzbD/gY6YPpb4AdScOJPwn8LHIrjuNWLq6LafYntW5uSfqy4+KIWKI0iuI7I88F5rjKcbVKs1rdWYmqhe4uXy3Oo8rK22ak7oLPVzh+WOSBQeoVZ1YPrpSZmZlZ01Iaqv/rpIrCO/PmfwD/RxrQqNOpQGqZb73K1xWNUEazRuf+s9bQJA2W9F1JD0taIOl5SfdLOtJx3RfXCGVstbhOYo9wXPfFrWCac6q8z45r/1p3V5q/Jo3OuGdErB0RawN7kp4PvLaQ3lBJZ0h6VNI/8/Jo3rZGV+Oqzbde5evCedSyjI/1xjizenBLmTU0Sf8HXE8advcQ0vMeV5OGdX8m8iS1jlu5uEYoY6vFNUIZmyWuEcrYLHE1yntuRGxGBcV9kiYCdwKXRJ6EWGkS8COBvSLiA12MqzbfepWvqrgeLuMRwN71jjOri+gFQ0B68bKiC28ftndq/tmHNKmr47ohrhHK2GpxjVDGZolrhDI2S1yN8r4N+BowrLBtGPA/wB8K2+YW0ytLe+4KxFWbb73KV1VcI5SxFufsxUtPL+6+aI3uVUm7AUj6KPAiQEQsBeS4botrhDK2WlwjlLFZ4hqhjM0SV4s0DyXNL3eXpBclvUiaYHotUgtbyXxJX5M0rLRB0jBJ/8OykQS7EldtvvUqX7VxjVDGWpyzWc+qd63Qi5eVWUhDtz9I6td+D7Bp3r4OcJzjuieuEcrYanGNUMZmiWuEMjZLXK3SrGYhzV91JvAYqYL3IvBo3rZWV+O6e+nu8tXiPOpVxt5+77x4qWbxM2VmZmbW1CRtThqi/f5YfqqDfSPi1vaP7Jl861W+rmiEMpo1MndftKYl6dOOq31cPfN2XO/Lu9Xi6pl3q8WtaJqSjiMN3f5F4GFJ+xdCv1923OaS9pI0qGz7vl2NqzbfepWvi3GNUMZujTPrcfVuqvPipVYL8KTjah/XCGVstbhGKGOzxDVCGZslbkXTBGYDg/P6cGAacHx+PaMQdxwwF7gBmAfsX9g3fQXiqs23XuWrKq4RyliLc/bipaeXfpg1MElt7e0ijQzluG6Ia4QytlpcI5SxWeIaoYzNElejNPtGxEKAiJgnaSzwG0kb5tiSY4DREbFQ0vAcMzwizl7BuGrzrVf5qo1rhDLW4pzNepQrZdbohgH/QZrUskjAFMd1W1wjlLHV4hqhjM0S1whlbJa4WqT5N0mjImImQP5A/hHgYmDrQlx3V6Kqzbde5as2rhHKWItzNutRrpRZo7uJ1KViZvkOSZMc121xjVDGVotrhDI2S1wjlLFZ4mqR5lJgQHF/RCwGPiXpgsLm7q5EVZtvvcpXbVwjlLEW52zWozzQhzW6dwPPVNoREYc5rtviGqGMrRbXCGVslrhGKGOzxNUizfHApZJOltS/LO7ewsuKFY+I+BSwxwrEVZtvvcpXbVwjlLEW52zWs6IXPNjmxcuKLqRJKx8HTgb6O642cY1QxlaLa4QyNktcI5SxWeJqmOYg0lxUs4ATgK+UlnrnW6/ydeU8ensZa3XOXrz05OJ5yqzhKQ1r+21gX+Ay0jdhAETEjx3XPXGNUMZWi2uEMjZLXCOUsVniapT3KsBJwGHANWVxp/aCfOtVvq7ck15dxlqcs1lP8jNl1gzeAl4FVgWGUPgD67hujWuEMrZaXCOUsVniGqGMzRLXrWkqzT/1Y+BGYLuIeK035Vuv8nUlrhHKWIM4s55V76Y6L15WZiF90/UIcAawmuNqE9cIZWy1uEYoY7PENUIZmyWuRnnfDWzVUZ51zrde5evKPenVZazFOXvx0tNL3QvgxcvKLDX4T89xvSxvx/W+vFstrhHK2CxxtUqzN+dbr/LV4jx6++9Xve6dFy/VLH6mzMzMzMzMrI48JL6ZmZmZmVkduVJmZmZmZmZWR66UmZmZmZmZ1ZErZWZmZmZmZnXkSpmZmZmZmVkduVJmZmZmZmZWR/8fWZ+pNy/cxB4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "new_item_df = item_df.drop([\"Item_Name\",\"Sum\",\"Production_Rank\"], axis = 1)\n", - "fig, ax = plt.subplots(figsize=(12,24))\n", - "sns.heatmap(new_item_df,ax=ax)\n", - "ax.set_yticklabels(item_df.Item_Name.values[::-1])\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "825620f9-7ab5-4fe2-9529-c4f1a300138e", - "_uuid": "5c42595537332ea71089d8c3dc041d3bf7d41b55" - }, - "source": [ - "There is considerable growth in production of Palmkernel oil, Meat/Aquatic animals, ricebran oil, cottonseed, seafood, offals, roots, poultry meat, mutton, bear, cocoa, coffee and soyabean oil.\n", - "There has been exceptional growth in production of onions, cream, sugar crops, treenuts, butter/ghee and to some extent starchy roots." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "80428f51-2fd4-468d-9530-9279215b4218", - "_uuid": "4c9bb27cd76099c5348243a99448c509ef0c5ded" - }, - "source": [ - "Now, we look at clustering." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "a3f1db3a-1b82-4e42-8e7d-f1a26915693b", - "_uuid": "da167de5a5b92e164fc6993b32ebbfab4ef9a6e3", - "collapsed": true - }, - "source": [ - "# What is clustering?\n", - "Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "136315a0-b37d-4d89-bd0d-037727062c34", - "_uuid": "04ab802ec92eaf6a27706f2008933dcf3865855a" - }, - "source": [ - "# Today, we will form clusters to classify countries based on productivity scale" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "27ba0b5d-c57e-485d-9588-017e16fe1904", - "_uuid": "659afdada04e8854765b5e7208394915b30f859a" - }, - "source": [ - "For this, we will use k-means clustering algorithm.\n", - "# K-means clustering\n", - "(Source [Wikipedia](https://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm) )\n", - "![http://gdurl.com/5BbP](http://gdurl.com/5BbP)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "7aeb3175-33bd-4f49-903a-57d43380e90e", - "_uuid": "6b0b4881e623ed3c133b68b98e6fb6755e18fd78" - }, - "source": [ - "This is the data we will use." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "_cell_guid": "a5b99ea8-975f-4467-9895-bffe1db876eb", - "_uuid": "57aba4000bfc422e848b14ad24b02a570d6c0554" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Y1961Y1962Y1963Y1964Y1965Y1966Y1967Y1968Y1969Y1970...Y2006Y2007Y2008Y2009Y2010Y2011Y2012Y2013Mean_ProduceRank
Afghanistan9481.09414.09194.010170.010473.010169.011289.011508.011815.010454.0...18317.019248.019381.020661.021030.021100.022706.023007.013003.05660469.0
Albania1706.01749.01767.01889.01884.01995.02046.02169.02230.02395.0...6911.06744.07168.07316.07907.08114.08221.08271.04475.509434104.0
Algeria7488.07235.06861.07255.07509.07536.07986.08839.09003.09355.0...51067.049933.050916.057505.060071.065852.069365.072161.028879.49056638.0
Angola4834.04775.05240.05286.05527.05677.05833.05685.06219.06460.0...28247.029877.032053.036985.038400.040573.038064.048639.013321.05660468.0
Antigua and Barbuda92.094.0105.095.084.073.064.059.068.077.0...110.0122.0115.0114.0115.0118.0113.0119.083.886792172.0
\n", - "

5 rows × 55 columns

\n", - "
" - ], - "text/plain": [ - " Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 \\\n", - "Afghanistan 9481.0 9414.0 9194.0 10170.0 10473.0 10169.0 \n", - "Albania 1706.0 1749.0 1767.0 1889.0 1884.0 1995.0 \n", - "Algeria 7488.0 7235.0 6861.0 7255.0 7509.0 7536.0 \n", - "Angola 4834.0 4775.0 5240.0 5286.0 5527.0 5677.0 \n", - "Antigua and Barbuda 92.0 94.0 105.0 95.0 84.0 73.0 \n", - "\n", - " Y1967 Y1968 Y1969 Y1970 ... Y2006 \\\n", - "Afghanistan 11289.0 11508.0 11815.0 10454.0 ... 18317.0 \n", - "Albania 2046.0 2169.0 2230.0 2395.0 ... 6911.0 \n", - "Algeria 7986.0 8839.0 9003.0 9355.0 ... 51067.0 \n", - "Angola 5833.0 5685.0 6219.0 6460.0 ... 28247.0 \n", - "Antigua and Barbuda 64.0 59.0 68.0 77.0 ... 110.0 \n", - "\n", - " Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 \\\n", - "Afghanistan 19248.0 19381.0 20661.0 21030.0 21100.0 22706.0 \n", - "Albania 6744.0 7168.0 7316.0 7907.0 8114.0 8221.0 \n", - "Algeria 49933.0 50916.0 57505.0 60071.0 65852.0 69365.0 \n", - "Angola 29877.0 32053.0 36985.0 38400.0 40573.0 38064.0 \n", - "Antigua and Barbuda 122.0 115.0 114.0 115.0 118.0 113.0 \n", - "\n", - " Y2013 Mean_Produce Rank \n", - "Afghanistan 23007.0 13003.056604 69.0 \n", - "Albania 8271.0 4475.509434 104.0 \n", - "Algeria 72161.0 28879.490566 38.0 \n", - "Angola 48639.0 13321.056604 68.0 \n", - "Antigua and Barbuda 119.0 83.886792 172.0 \n", - "\n", - "[5 rows x 55 columns]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "new_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "_cell_guid": "66964df2-892d-4e55-a4b1-f94d10e4c7dd", - "_uuid": "19bdd89a3ad9df962959ad6b996946f6f3916d58" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: convert_objects is deprecated. To re-infer data dtypes for object columns, use DataFrame.infer_objects()\n", - "For all other conversions use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n", - " after removing the cwd from sys.path.\n" - ] - } - ], - "source": [ - "X = new_df.iloc[:,:-2].values\n", - "\n", - "X = pd.DataFrame(X)\n", - "X = X.convert_objects(convert_numeric=True)\n", - "X.columns = year_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "461e5bcc-0101-4ea1-ae13-20600f883929", - "_uuid": "0d3e50235c9505ebc255053d4a5aae547fc17d8d" - }, - "source": [ - "# Elbow method to select number of clusters\n", - "This method looks at the percentage of variance explained as a function of the number of clusters: One should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. More precisely, if one plots the percentage of variance explained by the clusters against the number of clusters, the first clusters will add much information (explain a lot of variance), but at some point the marginal gain will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the \"elbow criterion\". This \"elbow\" cannot always be unambiguously identified. Percentage of variance explained is the ratio of the between-group variance to the total variance, also known as an F-test. A slight variation of this method plots the curvature of the within group variance.\n", - "# Basically, number of clusters = the x-axis value of the point that is the corner of the \"elbow\"(the plot looks often looks like an elbow)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "_cell_guid": "06271223-bd32-48ac-a373-6c1e6bbf7c7b", - "_uuid": "c57d7277510a8c11fdc3d311e4d8a22539617ed9" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcXHWd7vHPU72ks3fHNDEk3R02WWRLpWEQVNzuDLiAe0AZ98EFRL06zoz3jnq9M1edcZxxxA1REeWCERgBxX1BREU6CyGIQAxLdwhkIXsnvdV3/jinO5Wm090JXV3b83696tXnnDp1zvcUoZ4651e/31FEYGZmBpApdgFmZlY6HApmZjbEoWBmZkMcCmZmNsShYGZmQxwKZmY2xKFgJUXSxyV9exL2s0hSSKpN538l6R2F3u9kmMhjkXSVpH+aiG1ZeXAo2KSStCvvkZO0J2/+jRO8r6sk9Q7b590TuY9DlRdKK4Ytn5vW/PA4tzMpIWrVw6FgkyoiZgw+gEeBV+Qtu6YAu/yX/H1GxCkF2MfTMV3SiXnzbwAeKlYxZg4FK0X1kq6WtFPSvZLaB5+QdLikGyRtkvSQpMsmcL9HSfqDpO2SbpI0J2+/56W1bEsvzxyfLn+rpFvy1lsraVnefKekU0fZ57eAN+fNvwm4On+FAx2zpHOAjwBLRzgLapN0R/oe/kTS3LGOJX1usaQV6eu+AzSM762zSuFQsFJ0HnAd0AjcDFwOICkD3ALcDSwAXgy8X9JfTdB+3wS8DTgc6Af+M93vs4BrgfcDzcCtwC2S6oHbgOdJykiaD9QBZ6WvOxKYAaweZZ/fBi6QVJN+OM8E7hx8crRjjogfAf8P+M4IZ0FvAN4KHAbUAx8a61jS4/keSVDNAb4LvOag3kEre2UZCpK+LmmjpDXjWPf56TeffkmvHeH5WZLWS7q8MNXaIfhNRNwaEQMkH1CDH3anAc0R8YmI6I2IdcBXgQtG2daH0m/Eg49vjrLutyJiTUTsBv4ReL2kGmAp8IOI+GlE9AGfAaYCZ6Y17AROBc4Gfgysl3RcOn97RORG2WcXcD/wEpIzhquHPX8oxwzwjYh4ICL2AMvS+hjtWIAzSELtPyKiLyKuB+4aYz9WYWqLXcAhuork2+Pw/4FG8ijwFtJvSiP4vyTf9qx0PJ433Q00pL8SagMOl7Qt7/ka4PZRtvWZiPjf49xvZ970IyQfkHNJzhweGXwiInKSOkm+uUPy7+cFwNHp9DaSQHgO4/u3dTXJv9EzgecDx+Q9dyjHDE99D2ek06MdywCwPvYfJfMRrKqU5ZlCRPwaeDJ/maSjJP1I0nJJt6ff1IiIhyNiNfCUb2uSlgDzgJ9MRt32tHUCD0VEY95jZkS8dIK235I33Qr0AZuBx0g+nAGQpHTd9emiwVB4Xjp9G0konM34QuEG4GXAuogY/iE81jEf7DDHox3LBmBBumxQ60Fu38pcWYbCAVwBvDcilpCcFXxxtJXTa7X/BvztJNRmE+MPwA5Jfydpanod/kRJp03Q9i+SdIKkacAngOvTS1jLgJdJerGkOuCDQA/w2/R1twEvBKZGRBfJt/hzgGcAK8faaXq56kXASH0LxjrmJ4BF6b/n8RjtWH5H0pZymaRaSa8GTh/ndq1CVEQoSJpBcur9XUmrgK8A88d42XuAWyOic4z1rESkH9CvILk+/hDJt/grgdmjvOzDw/opbB5l3W+RXJp8nORXN5el+70fuAj4fLrPV5D8lLY3ff4BYBfpJZ2I2AGsA+5Iax7PsXVExJ8P4Zi/m/7dMrzPwwH2c8BjSY/n1SSXsraStD/cOJ76rXKoXG+yI2kR8P2IOFHSLOD+iDhgEEi6Kl3/+nT+GpLT/RzJ9dZ64IsR8fcFLt3MrGRVxJlC+s3sIUmvg+Q6qaRROylFxBsjojUiFpFcbrragWBm1a4sQ0HStSTXP4+V1CXp7cAbgbenHXjuBc5P1z1NUhfwOuArku4tVt1mZqWubC8fmZnZxCvLMwUzMyuMsuu8Nnfu3Fi0aFGxyzAzKyvLly/fHBHNY61XdqGwaNEiOjo6il2GmVlZkTSu3um+fGRmZkMcCmZmNsShYGZmQxwKZmY2xKFgZmZDHApmZjbEoWBmZkOqJhTuf3wn//yDP9Ld21/sUszMSlbVhELX1m6+evtDrO7aXuxSzMxKVtWEwuLWJgBWPLq1yJWYmZWuqgmFOdPrOXLudFY8sm3slc3MqlTVhAIkZwsrH92Khws3MxtZVYVCtq2RLbt7efTJ7mKXYmZWkqorFNJ2heWPuF3BzGwkVRUKz5o3kxlTat3YbGZ2AFUVCjUZcUrLbDc2m5kdQFWFAsCS1ib+9PgOdve4E5uZ2XBVFwqL25rIBdzd5bMFM7Phqi4Usi1JY/PKRx0KZmbDVV0ozJ5Wx1HN0/0LJDOzEVRdKEDy01R3YjMze6qChYKkFkm/lHSfpHslvW+EdSTpPyWtlbRaUrZQ9eTLtjWxtbuPhzbvnozdmZmVjUKeKfQDH4yI44EzgEsknTBsnXOBY9LHxcCXCljPkCVtg4PjuV3BzCxfwUIhIjZExIp0eidwH7Bg2GrnA1dH4vdAo6T5happ0NHNM5jZ4E5sZmbDTUqbgqRFwGLgzmFPLQA68+a7eGpwIOliSR2SOjZt2vS068lkxKktjaxwY7OZ2X4KHgqSZgA3AO+PiB3Dnx7hJU9p/Y2IKyKiPSLam5ubJ6SubGsT9z+xk517+yZke2ZmlaCgoSCpjiQQromIG0dYpQtoyZtfCDxWyJoGZduaiIC7O30nNjOzQYX89ZGArwH3RcRnD7DazcCb0l8hnQFsj4gNhaop36ktjYDvxGZmlq+2gNs+C/hr4B5Jq9JlHwFaASLiy8CtwEuBtUA38NYC1rOf2VPreNa8GQ4FM7M8BQuFiPgNI7cZ5K8TwCWFqmEs2dYmfrjmcXK5IJMZtVQzs6pQlT2aB2Vbm9i+p4917sRmZgZUeyi0pe0K/mmqmRlQ5aFw5NwZzHInNjOzIVUdCpmMWNza5FAwM0tVdShAMg7Sgxt3scOd2MzMHArZ1qQT2yoPjmdm5lA4pWU2kjuxmZmBQ4GZDXUcO2+m78RmZoZDAYDFrU2s6txGLuc7sZlZdXMoANnWRnbu7Wftpl3FLsXMrKgcCuTdic2XkMysyjkUgCPmTqdpWp0bm82s6jkUAGmwE5t/lmpm1c2hkMq2NrJ24y62dfcWuxQzs6JxKKSyrUm7wspOny2YWfVyKKROaWkkI1jpxmYzq2IOhdT0KbUc98xZblcws6rmUMiTbWtkVec2BtyJzcyqlEMhT7a1iV09/Ty4cWexSzEzKwqHQp7BxmaPg2Rm1cqhkKftGdOYM72eFY+4XcHMqpNDIY8ksq2NrHTPZjOrUg6FYbJtTazbvJutu92Jzcyqj0NhmH2d2Hy2YGbVx6EwzMkLZ1OTkdsVzKwqORSGmVZfy/HzZ3rEVDOrSg6FEWTTO7H1D+SKXYqZ2aRyKIwg29pEd+8A9z/hTmxmVl0cCiMYuhObx0EysyrjUBjBwqapzJ0xxSOmmlnVcSiMYLATmxubzazaOBQOINvWxMNbutmyq6fYpZiZTRqHwgEMdmJzu4KZVROHwgGcvHA2tRn5EpKZVRWHwgE01NXw7MNnscKNzWZWRRwKo1jc2sTqru3uxGZmVaNgoSDp65I2SlpzgOdfIGm7pFXp46OFquVQZdua2NM3wJ8edyc2M6sOhTxTuAo4Z4x1bo+IU9PHJwpYyyHJtjYCuF3BzKpGwUIhIn4NPFmo7U+GBY1TOWzmFN+e08yqRrHbFJ4j6W5JP5T07CLX8hRJJ7YmnymYWdUoZiisANoi4hTg88D3DrSipIsldUjq2LRp06QVCMk4SJ1P7mHTTndiM7PKV7RQiIgdEbErnb4VqJM09wDrXhER7RHR3tzcPKl1ZtvcrmBm1aNooSDpmZKUTp+e1rKlWPUcyLMPn01djTuxmVl1qC3UhiVdC7wAmCupC/gYUAcQEV8GXgu8W1I/sAe4ICKiUPUcqqQT22xW+vacZlYFChYKEXHhGM9fDlxeqP1PpGxrE9fc+Qi9/Tnqa4vdNm9mVjj+hBuHbFsjPf057tuwo9ilmJkVlENhHPbdic3tCmZW2RwK4zB/9lTmz27wMNpmVvEcCuOUbW3yiKlmVvEcCuO0uLWR9dv28MSOvcUuxcysYBwK45QdbFfw2YKZVTCHwjg9+/BZ1Ndk3NhsZhXNoTBOU2prOGnhbDc2m1lFcygchGxrI/es305vv+/EZmaVyaFwELKtTfT257j3se3FLsXMrCAcCgdhqLHZl5DMrEI5FA7CvFkNLGic6l8gmVnFcigcpMWtjf4FkplVLIfCQVrS1sSG7XvZsH1PsUsxM5twDoWDlG0d7MTmdgUzqzwOhYN0/PxZTKl1JzYzq0wOhYNUX5vh5IWzHQpmVpEcCocg29rEmvXb2ds3UOxSzMwmlEPhECxubaJvINyJzcwqjkPhEGTbGgE3NptZ5XEoHILDZjbQMmeq2xXMrOKMGgqSTpP0zLz5N0m6SdJ/SppT+PJKV7a1iRWPbiUiil2KmdmEGetM4StAL4Ck5wOfAq4GtgNXFLa00pZtbeKJHT08tt13YjOzyjFWKNRExJPp9FLgioi4ISL+ETi6sKWVtsFObMs9DpKZVZAxQ0FSbTr9YuAXec/VjrB+1Thu/kwa6jIeHM/MKspYH+zXArdJ2gzsAW4HkHQ0ySWkqlVXk+GUhY2sdGOzmVWQUc8UIuKfgQ8CVwHPjX2tqhngvYUtrfRl25q497Ed7sRmZhVj1DMFSdOA5RHRl84fC7wUeCQibpyE+kpatrWJ/lxwz/rtnLaoqn+MZWYVYqw2hR8Bi2DoktHvgCOBSyR9srCllb7FrYOd2HwJycwqw1ih0BQRD6bTbwaujYj3AucCLy9oZWVg7owptD1jmn+BZGYVY6xQyO+Z9SLgpwAR0QvkClVUOUk6sW1zJzYzqwhjhcJqSZ+R9AGSfgk/AZDUWPDKykS2rYnNu3ro2uo7sZlZ+RsrFP4G2EzSrvCXEdGdLj8B+EwB6yob2cF2Bf801cwqwFihMAO4JSLeFxF35y3fQdIIXfWOnTeTafU1bmw2s4owVih8Hpg7wvIFwOcmvpzyU5t2YlvxqIfRNrPyN1YonBQRtw1fGBE/Bk4uTEnlJ9vWyB837KC7t7/YpZiZPS1jhULdIT5XVbKtTQzkgtVdVT3yh5lVgLFC4UFJLx2+UNK5wLrRXijp65I2SlpzgOeV3pdhraTVkrLjL7u0LE5HTHVjs5mVu7EGxHs/8ANJrweWp8vagecwdue1q4DLSe6/MJJzgWPSx18AX0r/lp050+s5cu50357TzMreWGcKLwPeDtwBtKWP24CTI+KB0V4YEb8GnhxllfOBqyPxe6BR0vxxV15iFrc2sdJ3YjOzMjdWKCwEPg38C8kZQi/wBDBtAva9AOjMm+9Klz2FpIsldUjq2LRp0wTseuJl2xrZsruXR5/sHntlM7MSNdbQ2R+KiDOBecBHSL75vw1YI+mPT3PfGmmXB6jjiohoj4j25ubmp7nbwsi6XcHMKsBYZwqDpgKzgNnp4zHgzqe57y6gJW9+YbrdsvSseTOZMaXWg+OZWVkb634KVwDPBnaShMBvgc9GxER88t0MXCrpOpIG5u0RsWECtlsUNRlxakujG5vNrKyNdabQCkwBHgfWk3y7H9ennqRrSe6/cKykLklvl/QuSe9KV7mV5Geta4GvAu85hPpLSra1kT89voPdPe7EZmbladQzhYg4R5JIzhbOJLk154mSngR+FxEfG+W1F46x7QAuOfiSS9fitiZyAXd3bePMo0YaHcTMrLSN2aaQ/mR0Dck3+x+S/Dz1KOB9Ba6t7GRbksbmlR4HyczK1FhtCpeRnCGcBfSRBMLvgK8D9xS8ujIze1odRzVP94ipZla2xurRvAi4HvhAOTcCT6ZsaxM/u+8JIoLkypuZWfkYq5/C/4yI6x0I47ekrYmt3X08tHl3sUsxMzto4+2nYOOUbRvsxOZ2BTMrPw6FCXZ08wxmNtS6Z7OZlSWHwgTLDHVicyiYWflxKBRAtrWJB57Yyc69fcUuxczsoDgUCiA72Imt03diM7Py4lAogFNbGpE8YqqZlR+HQgHMnlrHMYfNcCiYWdlxKBRItrWJlY9uI5fzndjMrHw4FAok29rE9j19rHMnNjMrIw6FAsm2NQJuVzCz8uJQKJAj585gVkOt+yuYWVlxKBRIJiOybU0+UzCzsuJQKKBsaxMPbtzFDndiM7My4VAooGxrExGwyoPjmVmZcCgU0Ckts92JzczKikOhgGY21HHsvJkeRtvMyoZDocAWtzax8tGt7sRmZmXBoVBgS9qa2Lm3n7WbdhW7FDOzMTkUCizbmnZic38FMysDDoUCO2LudJqm1bmx2czKgkOhwCSxuLXJjc1mVhYcCpMg29rI2o272N7tTmxmVtocCpMg29oEwIpOX0Iys9LmUJgEp7Q0khGsdGOzmZU4h8IkmD6lluOeOcvtCmZW8hwKkyTb1siqzm0MuBObmZUwh8IkybY2saunnwc37ix2KWZmB+RQmCRDjc2P+BKSmZUuh8IkaXvGNOZMr2e5G5vNrIQ5FCaJJLLp4HhmZqXKoTCJsm2NrNu8m627e4tdipnZiBwKk2iwXWGlO7GZWYlyKEyikxfOpiYjNzabWckqaChIOkfS/ZLWSvr7EZ5/i6RNklalj3cUsp5im1Zfy/HzZ3rEVDMrWQULBUk1wBeAc4ETgAslnTDCqt+JiFPTx5WFqqdUtLfNoeORrdz2wKZil2Jm9hSFPFM4HVgbEesiohe4Dji/gPsrC+88+0iOnDudt37jD3zltj8T4R7OZlY6ChkKC4DOvPmudNlwr5G0WtL1klpG2pCkiyV1SOrYtKm8v2HPnz2VG99zJueeOJ9P/vBPvO+6VezpHSh2WWZmQGFDQSMsG/61+BZgUUScDPwM+OZIG4qIKyKiPSLam5ubJ7jMyTetvpbL37CYv/2rY7ll9WO89su/pWtrd7HLMjMraCh0Afnf/BcCj+WvEBFbIqInnf0qsKSA9ZQUSVzywqP52pvbeXRLN+ddfge/X7el2GWZWZUrZCjcBRwj6QhJ9cAFwM35K0ianzd7HnBfAespSS86bh7fu/QsGqfVcdGVd3L17x52O4OZFU3BQiEi+oFLgR+TfNgvi4h7JX1C0nnpapdJulfS3cBlwFsKVU8pO6p5Bt+75CxecGwzH73pXv7uhtX09Ludwcwmn8rtW2l7e3t0dHQUu4yCyOWCf//ZA3z+F2tZ3NrIly9awrxZDcUuy8wqgKTlEdE+1nru0VxCMhnxwb88li+9Mcv9j+/kFZ//jTu6mdmkciiUoHNPms+N7zmThroaLvjK71l2V+fYLzIzmwAOhRJ13DNncfOlZ3H6EXP48A2r+dhNa+gbyBW7LDOrcA6FEtY4rZ6r3noaf/O8I/jm7x7hoivvZMuunrFfaGZ2iBwKJa62JsP/etkJ/PvSU1jVuY3zLr+DNeu3F7ssM6tQDoUy8arFC7n+XWeSi+C1X/4tN61aX+ySzKwCORTKyEkLZ3Pzpc/lpAWzed91q/jkrfcxkCuvnxSbWWlzKJSZ5plTuOYdZ3DRGa185dfreMs3/sD27r5il2VmFcKhUIbqazP80ytP4pOvPonfr9vCeV/4DQ88sbPYZZlZBXAolLELT2/l2r85g909A7zqC3fw43sfL3ZJZlbmHAplrn3RHL7/3udy9GEzeOe3lvPvP32AnNsZzOwQORQqwDNnN/Cddz6H12QX8rmfP8g7v72cnXvdzmBmB8+hUCEa6mr4zOtO5qMvP4Ff/Gkjr/rib3lo8+5il2VmZcahUEEk8bbnHsG33nY6W3b1cN7lv+FX928sdllmVkYcChXozKPncvOlz2VB41TeetVdfOlXf/aNe8xsXBwKFaplzjRufM+ZvPSk+Xz6R3/isutWsafXN+4xs9E5FCrYtPpaLr9wMX93znF8f/VjvOZLv6Xzye5il2VmJcyhUOEk8e4XHMXX33IanVu7Of8Ld/C7P28pdllmVqIcClXihccexk2XnMWc6fVc9LU7ueqOh9zOYGZP4VCoIkc2z+C/3nMmLzz2MD5+yx+5+FvLuWPtZnd2M7MhtcUuwCbXzIY6rvjrJXzxV2v56u0P8dM/PkHLnKm8bkkLr12ykMMbpxa7RDMrIpXbJYT29vbo6OgodhkVYW/fAD++93GWdXRyx9otZATPO6aZpae18JLj51Ff6xNJs0ohaXlEtI+5nkPBADqf7Oa7HZ18d3kXG7bvZc70el61eAFLT2vhWfNmFrs8M3uaHAp2SAZywa8f3MSyuzr52X1P0DcQLG5tZGl7Cy8/5XBmTPEVR7Ny5FCwp23Lrh7+a+V6vnNXJw9u3MW0+hpedtJ8lp7WwpK2JiQVu0QzGyeHgk2YiGBl5zaW3dXJLXc/xu7eAY5qns7r21t4dXYhzTOnFLtEMxuDQ8EKYndPPz+4ZwPL7uqk45Gt1GbEi447jKWntXD2s5qprXHjtFkpcihYwa3duItlHZ3cuKKLzbt6mTdrCq/JLuT17S0smju92OWZWR6Hgk2avoEcP79vI8s6OvnV/RvJBZxx5ByWntbCuSfOp6GuptglmlU9h4IVxePb93LDii6WdXTyyJZuZjbUcv6ph7O0vZUTF8xy47RZkTgUrKhyueDOh55kWUcnt96zgZ7+HMfPn8XS9oW8cvECGqfVF7tEs6riULCSsX1PHzevWs93OjpZs34H9bUZ/urZz2RpewtnHvUMMhmfPZgVmkPBStK9j21n2V2dfG/VY2zf08fCpqksaWtiZkMtMxvqmDGlllnpdP6ymQ21zGqoY0ZDLTUOEbOD5lCwkjY47tINK9bz8Obd7Nzbx869/fSPY8TW6fU1SVg01A4FRxIatWmA1O23fGZDLTOn5E031HlcJ6s64w0Fj1lgRdFQV8P5py7g/FMXDC2LCHr6c+xIAyJ59LErnc5fvqtn3/T27l66nuxmZ0+y/t6+3Jj7n1KbeUpwTK2rYUptDVNqM0ypy+ybrs0wpS5vurYmfX7fOvUHWD64HZ/dWLlwKFjJkERDXQ0NdTUc9jTG4Ovtz7ErDYj8cMn/u6unnx3Dlm/r7qOnP0dP/wA9fbl90/05nu4JdW1G4wqXKXUZGoaW1wzNN6Svy//bkK6T/3fw+fz9+BdfdjAcClZx6mszzKmtZ870ifmFU0TQNxBDAdHTn6On7wDTIwRKMj8w6vPdvf1s7c6xN29bg9O9/WOf+RyIxFDojBQe+SHSkBdCU+oy1NUkoVJXI+pqkvn6mgx1tcPma5J16mvTZbV5ywafH9xOJuMfFpS4goaCpHOAzwE1wJUR8alhz08BrgaWAFuApRHxcCFrMjtYkqivTT70ijGIeC4XQyGyt2/f38HQyP87fFlP3wB7B//mvzYNp109/WzZtW8+fx99A4Vpb8wPmSRYlIZG3nxemNQIajIZajOiJn3UZkQm/VtzwOUZaiRqa9Lnla5TIzIa6bUZajL79jV8+xnt204mQ970vm1n8p6vTfc/uO7+ry/dYCxYKEiqAb4A/A+gC7hL0s0R8ce81d4ObI2IoyVdAHwaWFqomszKUSYjptbXMLV+cnuGD54h9Q3k6BvI0TuQS+b7k/me9O/gOr0DufS5vPl02eBre4dek84PvWbffP463XsGyOWCgfTRn8uRC+jP5RgYCAZicHn+OkEu/VvK9guYwXDJC5j9giQjMoILT2/lHc87sqB1FfJM4XRgbUSsA5B0HXA+kB8K5wMfT6evBy6XpCi3n0SZVaD8M6RyFBHkgv0DJZcGSi4JlP6BGJoeyCXzuRgMmRwDOegfyA09n4tgIEfe9L6/+z0fwcBAjoFIzvSGXp9O71vGCK9PaxjIXzfZztwZhR+RuJChsADozJvvAv7iQOtERL+k7cAzgM35K0m6GLgYoLW1tVD1mlkFkZReehq8VOMxuMajkF8BRrpoNvwMYDzrEBFXRER7RLQ3NzdPSHFmZvZUhQyFLqAlb34h8NiB1pFUC8wGnixgTWZmNopChsJdwDGSjpBUD1wA3DxsnZuBN6fTrwV+4fYEM7PiKVibQtpGcCnwY5KLeV+PiHslfQLoiIibga8B35K0luQM4YJC1WNmZmMraD+FiLgVuHXYso/mTe8FXlfIGszMbPzK87dmZmZWEA4FMzMb4lAwM7MhZXc/BUmbgEeKXcfTNJdhHfSqnN+P/fn92Mfvxf6ezvvRFhFjdvQqu1CoBJI6xnOzi2rh92N/fj/28Xuxv8l4P3z5yMzMhjgUzMxsiEOhOK4odgElxu/H/vx+7OP3Yn8Ffz/cpmBmZkN8pmBmZkMcCmZmNsShMIkktUj6paT7JN0r6X3FrqnYJNVIWinp+8WupdgkNUq6XtKf0n8jzyl2TcUk6QPp/ydrJF0rqaHYNU0mSV+XtFHSmrxlcyT9VNKD6d+mid6vQ2Fy9QMfjIjjgTOASySdUOSaiu19wH3FLqJEfA74UUQcB5xCFb8vkhYAlwHtEXEiyUjL1TaK8lXAOcOW/T3w84g4Bvh5Oj+hHAqTKCI2RMSKdHonyf/0C4pbVfFIWgi8DLiy2LUUm6RZwPNJhpMnInojYltxqyq6WmBqegOuaTz1Jl0VLSJ+zVNvOnY+8M10+pvAKyd6vw6FIpG0CFgM3FncSorqP4APA7liF1ICjgQ2Ad9IL6ddKWl6sYsqlohYD3wGeBTYAGyPiJ8Ut6qSMC8iNkDyJRM4bKJ34FAoAkkzgBuA90fEjmLXUwySXg5sjIjlxa6lRNQCWeBLEbEY2E0BLg2Ui/Ra+fnAEcDhwHRJFxW3qurgUJhkkupIAuGaiLix2PUU0VnAeZIeBq4DXiTp28Utqai6gK6IGDxzvJ4kJKrVS4CHImJTRPQBNwJnFrmmUvCEpPkA6d+NE70Dh8IkkiSSa8b3RcRni11PMUXEP0TEwohYRNKA+IuIqNpvghHxONAp6dh00YuBPxaxpGJ7FDhD0rT0/5ts6mneAAAD8klEQVQXU8UN73ny72v/ZuCmid5BQW/HaU9xFvDXwD2SVqXLPpLettTsvcA1kuqBdcBbi1xP0UTEnZKuB1aQ/GpvJVU25IWka4EXAHMldQEfAz4FLJP0dpLgnPDbGXuYCzMzG+LLR2ZmNsShYGZmQxwKZmY2xKFgZmZDHApmZjbEoWAlR1JI+re8+Q9J+vgEbfsqSa+diG2NsZ/XpSOd/rKQdUlaJOkNB1+h2cgcClaKeoBXS5pb7ELySao5iNXfDrwnIl5YqHpSi4CDCoWDPA6rMg4FK0X9JB2VPjD8ieHfqCXtSv++QNJtkpZJekDSpyS9UdIfJN0j6ai8zbxE0u3pei9PX18j6V8l3SVptaR35m33l5L+P3DPCPVcmG5/jaRPp8s+CjwX+LKkfx3hNR9OX3O3pE+N8PzDg4EoqV3Sr9LpsyWtSh8rJc0k6cz0vHTZB8Z7HJKmS/pBWsMaSUvH8x/GKp97NFup+gKwWtK/HMRrTgGOJxlueB1wZUScnt7M6L3A+9P1FgFnA0cBv5R0NPAmkpE4T5M0BbhD0uConKcDJ0bEQ/k7k3Q48GlgCbAV+ImkV0bEJyS9CPhQRHQMe825JMMd/0VEdEuacxDH9yHgkoi4Ix1UcS/JoHkfiojBcLt4PMch6TXAYxHxsvR1sw+iDqtgPlOwkpSOHns1yY1Wxuuu9J4VPcCfgcEPw3tIgmDQsojIRcSDJOFxHPCXwJvS4UfuBJ4BHJOu/4fhgZA6DfhVOmhbP3ANyT0RRvMS4BsR0Z0e5/Dx8kdzB/BZSZcBjek+hxvvcdxDcsb0aUnPi4jtB1GHVTCHgpWy/yC5Np9/X4F+0n+36UBp9XnP9eRN5/Lmc+x/Vjx8bJcABLw3Ik5NH0fkjd+/+wD1abwHMuw1Y40tM3SMwNAtKCPiU8A7gKnA7yUdd4Dtj3kcEfEAyRnOPcAn00teZg4FK13pt+hlJMEw6GGSDzNIxtuvO4RNv05SJm1nOBK4H/gx8O50aHMkPWscN7m5Ezhb0ty08fZC4LYxXvMT4G2SpqX7Geny0cPsO8bXDC6UdFRE3BMRnwY6SM5wdgIz8147ruNIL311R8S3SW5mU83DdFsetylYqfs34NK8+a8CN0n6A8k9ag/0LX4095N8eM8D3hUReyVdSXKJaUV6BrKJMW51GBEbJP0D8EuSb+i3RsSoQxlHxI8knQp0SOoFbgU+Mmy1/wN8TdJH2P/OfO+X9EJggGRY7R+SnAX1S7qb5J6+nxvncZwE/KukHNAHvHu0uq16eJRUMzMb4stHZmY2xKFgZmZDHApmZjbEoWBmZkMcCmZmNsShYGZmQxwKZmY25L8B64WpsvFo3LcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn.cluster import KMeans\n", - "wcss = []\n", - "for i in range(1,11):\n", - " kmeans = KMeans(n_clusters=i,init='k-means++',max_iter=300,n_init=10,random_state=0)\n", - " kmeans.fit(X)\n", - " wcss.append(kmeans.inertia_)\n", - "plt.plot(range(1,11),wcss)\n", - "plt.title('The Elbow Method')\n", - "plt.xlabel('Number of clusters')\n", - "plt.ylabel('WCSS')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "ad4bc40a-9540-497d-95e3-3fee6088ea95", - "_uuid": "6450dd1c3d7a8114931dc358d2f09a0424b52fd7" - }, - "source": [ - "As the elbow corner coincides with x=2, we will have to form **2 clusters**. Personally, I would have liked to select 3 to 4 clusters. But trust me, only selecting 2 clusters can lead to best results.\n", - "Now, we apply k-means algorithm." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "_cell_guid": "eed3f672-e089-4dbb-aad8-b9618967abf3", - "_uuid": "d92d758ee7213ddcd84e9b8b2f61c9e260ed6ba2" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n", - " after removing the cwd from sys.path.\n" - ] - } - ], - "source": [ - "kmeans = KMeans(n_clusters=2,init='k-means++',max_iter=300,n_init=10,random_state=0) \n", - "y_kmeans = kmeans.fit_predict(X)\n", - "\n", - "X = X.as_matrix(columns=None)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "ef07bd6d-679d-4375-b7b3-abeca3421e37", - "_uuid": "6f93a4bd3f17427f4b2dbe08af8e015a1e4a2f89" - }, - "source": [ - "Now, let's visualize the results." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "_cell_guid": "5a7fe139-13df-453b-8c16-891929bc595e", - "_uuid": "a57e0a38f4c0f0385be75fd9f71d4a2d8213aea3" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEICAYAAACj2qi6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW9///XhxANiDgg+kOxZZBeCRIBg+B1whnUXhzoo1gHqAMV9Npa+7V49Spa52rha/U64YCgglLnn1ylzrVWCDUGQZREsUQQUARBoAb6+f6x14knycnJTjjJyfB+Ph7ncfZZe+211t45OZ+99rTM3REREYmjXbYbICIiLYeChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEpqDRipnZJDObke12ZIpFHjKzr81sXrbbUx9mdo+Z/XeGy3zYzK7PZJmNwczGmtlfGqHcH5jZRjPLiZE349u/rVLQaOHM7GdmVhT+eVaa2RwzOyyD5fcwMzez9pkqczscBhwHdHf3g7PdGIj/g+juF7r775qiTQ0R/sbfhu/R52b2hzg/xk3JzJaZ2bGJz+7+D3fv5O7b6lo2efub2TAzK2/MtrZmChotmJn9GpgC3AjsBfwA+B9gZDbblSzDweaHwDJ3/zaDZTa65vbjm8aB7t4JOAb4GXBB9QzNZOdBskhBo4Uys12A64CL3P0pd//W3Svc/Xl3/z8p8tfYu0reczOzg0OP5RszW2VmfwjZ3gzv68Je6CEh/7lm9mE4VPSSmf0wqVw3s4vMbCmwNBxWmmxmq81svZmVmNkBtazX3mb2nJmtNbNSM7sgpJ8HTAUOCe24tpblLwjt2mBmi81sUEjva2avm9k6M1tkZv+RtMzrZnZ+0ucqvYewPhea2dKwvneFdeoL3JPUpnUh/8NmdreZvWhm3wJHVT+UZGYnm1lxaM9fzawgad5vw97+BjP7yMyOSbWuwR5mNjfkfSPxdwhtvL3atnnezH6VpiwA3H0J8BZwQFhuWWhTCfCtmbWvY3t2CX/Dbyw6jNg7aV6NnmuK7V/jb2hm04l2ip4P2/ry5LLMbLSZFVVb30vN7Lmkv8n1ZrYTMAfYO5SzMXznNplZl6RlDzKzNWaWW9f2anPcXa8W+AKGA1uB9mnyTAJmhOlhQHm1+cuAY8P0O8DZYboTMDRM9wA8uR7gFKAU6Au0B64C/po034G5wO5AB+AEYAGwK2BhuW61tPkNot5SHjAAWAMcE+aNBf6SZn1/AnwODA717EfUO8kN7f0vYAfgaGAD8G9hudeB85PKqVJPWJ8XQvt/ENo0vLY2AQ8D64FDiXbM8kLa9WH+IGA1MATIAcaEv8WOwL8By4G9k7Z/71rW9+GwHkeEZf9voi3AwcAKoF34vAewCdirlrIc2C9M5wNfAOclfU+KgX3D37Ou7TkTeALYiSjwfJ7Urh7U/D5Vbv/a/obVv6/VywI6hjb0SZo/HxidtK0S238YNf8XXgTGJ32eDPwx2//nzfGlnkbL1QX40t23Zqi8CmA/M9vD3Te6+9/S5P0FcJO7fxjqvxEYkNzbCPPXuvvmUPbOwP6AheVWVi/UzPYlOm/xW3ff4u7FRL2Ls2Ouw/nAre4+3yOl7v4ZMJQoEN7s7t+5+6tEQeCMmOUSll3n7v8AXiMKaOk86+5vu/u/3H1LtXkXAPe6+7vuvs3dpwH/DO3cRhQA8s0s192XuXtZmnr+f3d/093/CVxJ1OvZ193nEQWuRC9lNPC6u69KU9bfzexr4Hmi7f5Q0rw73H15+HvWuj0tOhR3OnC1R73fD4BpdWyrZLX9DdNy903As4S/qZn1Ifq+PRez3mnAWWHZnFDO9Hq0u81Q0Gi5viI6NJGpY8znAT8ClpjZfDM7OU3eHwL/NxyaWAesJdor3Ccpz/LERPhRuRO4C1hlZveZWecU5e4NrHX3DUlpn1UrN519gVQ/sHsDy939Xw0sF6I974RNRD+a6SxPM++HwGWJ7Re24b5EvYtS4FdEvcTVZjbTzPaOU4+7byT6WyTyV/4Qhve6fgQHuftu7t7b3a+qtr2S1yfd9uxKtOe/vNq8uGr7G8bxGN/vCPwMeCYEkzieJQrUvYgutlgfAq9Uo6DRcr0DbCE6VBTHt0RdeKByb6pr4rO7L3X3M4A9gVuA2eH4b6rHIC8HfuHuuya9Orj7X5PyVFnO3e9w94OAfkTBqcZ5F6LDKbub2c5JaT8gOlwRx3KSjp9XK3dfM0v+vieXW2XbAP9fzPog9fZJlw5RO2+otv06uvvjAO7+mLsfRhRcnOjvUZt9ExNm1onokOCKkDQDGGlmBxIdEnwm1hqllrw+6bbnGqLDpvtWm5eQuIihtu1d29+wehtSeZloR2oAUfB4LG45oTf4BHAmUc9WvYxaKGi0UO6+HrgauMvMTjGzjmaWa2YjzOzWFIt8DOSZ2Unh5N5VRIdBADCzs8ysa9h7XBeStxH9CPwL6JVU1j3AFWbWLyy7i5n9pLa2mtlgMxsS6v2WKNjVuEzS3ZcDfwVuMrO8cHL4PODReFuFqcBvwklMM7P9wiGzd0O9l4dtNAz4MdGxd4iO158WtuF+oc64VgHdzWyHeixzP3Bh2CZmZjuFv8vOZvZvZna0me1ItJ02k2JbJTnRzA4L9f8OeDdsR9y9nOi4/nTgT+HQUibUuj09uvz1KWBS2J75ROdsCG1aQxRczjKzHDM7l6pBora/IUTbOvl7WEU4VDob+D1R8JxbS9ZVQBeLLiZJ9gjROar/IAq4koKCRgvm7n8Afk0UANYQ7aVdTIo9yhBkJhD9U35O9E+ffDXVcGCRmW0kOqE6OpxX2ATcALwdDqUMdfenifZ+Z5rZN8AHwIg0Te1M9EP5NdGhiq+A22rJewbRCc4VwNPANe5e2z9/9XV8MrT1MaKTos8Au7v7d0Q/BCOAL4lOtJ/j0VVCEJ30/I7ox2Qa8YMUwKvAIuALM/syZjuLiM5r3Em0TUqJfqwgCuQ3h3Z+QdTz+680xT0GXEN0WOogoj3lZNOA/mRwzznG9ryY6PDdF0QnoB+qVsQFRD3Nr4h6npU91Nr+hmH2TcBV4Xv4m1qa9xhwLPBkbef7QjsfBz4JZe0d0t8m2kH6u7svq3NDtFHmrkGYRForMzuCaK+5R7VzEJKCmb0KPObuU7PdluZKN+qItFLhcOAvgakKGHUzs8FEl0M3m5tjmyMdnhJphSy68XAd0I3oqQGShplNA/4M/Kra1XtSjQ5PiYhIbOppiIhIbK3unMYee+zhPXr0yHYzRERalAULFnzp7l3rytfqgkaPHj0oKiqqO6OIiFQys1h37uvwlIiIxKagISIisSloiIhIbK3unEYqFRUVlJeXs2VL9SdUizQPeXl5dO/endxcjfkjzVubCBrl5eXsvPPO9OjRAzPLdnNEqnB3vvrqK8rLy+nZs2e2myOSVps4PLVlyxa6dOmigCHNkpnRpUsX9YSlXsrKYMIE6NwZ2rWL3idMiNIbU5sIGoAChjRr+n5KfcyZAwUFMHUqbNgA7tH71KlR+pw5jVd3mwkaIiKtQVkZjBoFmzZBRUXVeRUVUfqoUY3X41DQqK6R+nzl5eWMHDmSPn360Lt3b375y1/y3XffUVxczIsvvliZb9KkSdx2W21DTYhIW3f77TWDRXUVFTB5cuPUr6CRrJH6fO7OaaedximnnMLSpUv5+OOP2bhxI1deeWWNoLG9tm1LN8ibiLR0M2bECxrTG2nAWgWNhEbs87366qvk5eXx85//HICcnBwmT57M1KlTufzyy5k1axYDBgxg1qxZACxevJhhw4bRq1cv7rjjjspyZsyYwcEHH8yAAQP4xS9+URkgOnXqxNVXX82QIUN45513mDhxIvn5+RQUFPCb39Q2wJmItEQbN2Y2X30paCQ0Yp9v0aJFHHTQQVXSOnfuTI8ePbjqqqv46U9/SnFxMT/96U8BWLJkCS+99BLz5s3j2muvpaKigg8//JBZs2bx9ttvU1xcTE5ODo8+Go1K+u2333LAAQfw7rvvkp+fz9NPP82iRYsoKSnhqquuqnd7RaT56tQps/nqS0EjoRH7fO6e8uqY2tJPOukkdtxxR/bYYw/23HNPVq1axSuvvMKCBQsYPHgwAwYM4JVXXuGTTz4Bop7L6aefDkTBKC8vj/PPP5+nnnqKjh071ru9ItJ8nXUW1HUPaG4unH1249SvoJHQiH2+fv361Xjy7jfffMPy5cvJycmpkX/HHXesnM7JyWHr1q24O2PGjKG4uJji4mI++ugjJk2aBER3EyfKad++PfPmzeP000/nmWeeYfjw4fVur4g0X5ddFi9oXHpp49SvoJHQiH2+Y445hk2bNvHII48A0cnqyy67jLFjx7LXXnuxYUPdo0sec8wxzJ49m9WrVwOwdu1aPvus5pOMN27cyPr16znxxBOZMmUKxcXF9W6viDRfvXvD7NnQsWPN4JGbG6XPnh3lawwKGgmN2OczM55++mmefPJJ+vTpw49+9CPy8vK48cYbOeqoo1i8eHGVE+Gp5Ofnc/3113P88cdTUFDAcccdx8qVK2vk27BhAyeffDIFBQUceeSRTG6s6+5EJGtGjICSEhg3rurdAePGRekjRjRe3a1ujPDCwkKvfijoww8/pG/fvukXLCuLLqvdtKn2PB07Rn+Rxgrh0qbF+p6KNBIzW+DuhXXlU08jIdt9PhGRFkBBI1k2+3wiIi1Am3g0er307g133hm9RESkCvU0REQkNgUNERGJTUFDRERiU9CoJlujYYmItAQKGkkaczSsL774gtGjR9O7d2/y8/M58cQTue+++zj55JNT5j///PNZvHhxg+t75plnuO666xq8fH3bkslxQMaOHcvs2bMBGD16NEuXLk2Zr0ePHnz55ZeVn19//fXK7blq1SpOPvlkDjzwwMrtnWzy5Mnk5eWxfv36lGUvW7aMAw44oF7tfvjhh7n44osBuOeeeyqfACDSmihoBI05Gpa7c+qppzJs2DDKyspYvHgxN954I6tWrap1malTp5Kfn1//yoJbb72VCRMmNHj5TLZle4wfP55bb7213stdffXVHHfccbz//vssXryYm2++ucr8xx9/nMGDB/P0009nqqlVXHjhhZxzzjmNUrZkno4wxBcraJjZMjNbaGbFZlYU0nY3s7lmtjS87xbSzczuMLNSMysxs0FJ5YwJ+Zea2Zik9INC+aVhWUtXR2NozNGwXnvtNXJzc7nwwgsr0wYMGMDhhx/Oxo0bGTVqFPvvvz9nnnkmiTv0hw0bVvmQw06dOnHllVdy4IEHMnTo0Mpg8/zzzzNkyBAGDhzIscceW5n+8ccfVz4lF6I99/Hjx3PUUUfRq1cv3njjDc4991z69u3L2LFjK9s0fvx4CgsL6devH9dcc01lepy2JLv//vsZPHgwBx54IKeffjqbwl32Y8eO5ZJLLuHf//3f6dWrV2Vvwt25+OKLyc/P56STTqp8vhbA4Ycfzp///Ge2bt1ar22+cuVKunfvXvm5oKCgcrqsrIyNGzdy/fXX8/jjj9dZ1sMPP8xpp53G8OHD6dOnD5dffnnlvIceeogf/ehHHHnkkbz99tuV6ck9r9q2hzQP2RxvuyWqT0/jKHcfkHSb+UTgFXfvA7wSPgOMAPqE1zjgbogCAHANMAQ4GLgmKQjcHfImlhteRx0Z15ijYX3wwQc1xtNIeO+995gyZQqLFy/mk08+qfLDk/Dtt98ydOhQ3n//fY444gjuv/9+AA477DD+9re/8d577zF69OjKPfK3336bQYMGVSnj66+/5tVXX2Xy5Mn8+Mc/5tJLL2XRokUsXLiw8qGGN9xwA0VFRZSUlPDGG29QUlISuy3JTjvtNObPn8/7779P3759eeCBByrnrVy5kr/85S+88MILTJwY/TmffvppPvroIxYuXMj999/PX//618r87dq1Y7/99uP9999Pu42ru+iiizjvvPM46qijuOGGG1ixYkXlvMcff5wzzjiDww8/nI8++qhKkKpNcXExs2bNYuHChcyaNYvly5ezcuVKrrnmGt5++23mzp1b6yG8dNtDsivb4223RNtzeGokMC1MTwNOSUp/xCN/A3Y1s27ACcBcd1/r7l8Dc4HhYV5nd3/Ho93sR6qVlaqOjMvWaFgHH3ww3bt3p127dgwYMIBly5bVyLPDDjtUHqs/6KCDKvOUl5dzwgkn0L9/f37/+9+zaNEiIPph7tq1a5UyfvzjH2Nm9O/fn7322ov+/fvTrl07+vXrV1neE088waBBgxg4cCCLFi1K+SNYW1uSffDBBxx++OH079+fRx99tLJdAKeccgrt2rUjPz+/spfy5ptvcsYZZ5CTk8Pee+/N0UcfXaW8Pffcs8qPfkKqsUgSaSeccAKffPIJF1xwAUuWLGHgwIGsWbMGgJkzZzJ69GjatWvHaaedxpNPPlmjnOqOOeYYdtllF/Ly8sjPz+ezzz7j3XffZdiwYXTt2pUddtihchCt+mwPya5sj7fdEsUNGg68bGYLzGxcSNvL3VcChPc9Q/o+wPKkZctDWrr08hTp6erIuMYcDatfv34sWLAg5bxUY2dUl5ubW/ljmJznP//zP7n44otZuHAh9957L1u2bAGgQ4cOldPV62nXrl2VOtu1a8fWrVv59NNPue2223jllVcoKSnhpJNOqlFGurYkGzt2LHfeeScLFy7kmmuuqVJOct3JD8tMFQAStmzZQocOHWqkd+nSha+//rry89q1aysPyQHsvvvu/OxnP2P69OkMHjyYN998k5KSEpYuXcpxxx1Hjx49mDlzZqxDVLX9ndK1OyHd9pDsyvZ42y1R3KBxqLsPIjr0dJGZHZEmb6r/Im9AemxmNs7MisysKLE3WV+NORrW0UcfzT//+c8qh3Lmz5/PG2+8Uf/Ckqxfv5599oni67Rp0yrT+/btS2lpab3K+uabb9hpp53YZZddWLVqFXO240Duhg0b6NatGxUVFZVD0qZzxBFHMHPmTLZt28bKlSt57bXXqsz/+OOP6devHwDnnHMO8+bNA6JzLdPDf/O2bduYMWMGRx11FBCNy544d7BhwwbKysr4wQ9+wOOPP86kSZNYtmwZy5YtY8WKFXz++ed89tlnfP755xxzzDGx13PIkCG8/vrrfPXVV1RUVNTaY6nv9pCmk+3xtluiWEHD3VeE99XA00TnJFaFQ0uE98SB4XJg36TFuwMr6kjvniKdNHVUb9997l7o7oXVD8vE1ZijYSXG05g7dy69e/emX79+TJo0ib333rtBbU2YNGkSP/nJTzj88MOr7GEfccQRvPfee9TnsfcHHnggAwcOpF+/fpx77rkceuihDW7X7373O4YMGcJxxx3H/vvvX2f+U089lT59+tC/f3/Gjx/PkUceWTlv1apVdOjQgW7dugFQUlJSOf3f//3flJaWVrZ9v/3246yzzgJgwYIFFBYWUlBQwCGHHML555/P4MGDmTlzJqeeemqN+mfOnMnKlStp3z7+49i6devGpEmTOOSQQzj22GNrnEdq6PaQppPt8bZbJHdP+wJ2AnZOmv4r0Ynq3wMTQ/pE4NYwfRIwh6gHMRSYF9J3Bz4FdguvT4Hdw7z5Ia+FZU8M6SnrSPc66KCDvLrFixfXSEvlxRfdO3Z0z811j66hiF65uVH6iy/GKqZZuOSSS3zu3LnZbsZ2+8Mf/uBTp051d/f169f7qFGjGq2uP/7xj/7ss882Wvl1ifs9lcwZP77m/3v1V26u+0UXZbuljQ8o8jp+Xz3aJHUGjV7A++G1CLgypHchuqJpaXhPBAAD7gLKgIVAYVJZ5wKl4fXzpPRC4IOwzJ18PzhUyjrSvbYnaLi7l5ZGX5DOnd3btYveL7ooSm9Jvvjii6z+AGbKgw8+6BUVFdluRpNQ0Gh6paXRDmG6oNGxY8v7/2+IuEFDI/fVsBp4GCgB1gO7AAXAz4GGHfoSiUMj92XHnDnRZbUVFVVPiufmRq/Zs9vGUDpxR+7TeBqV5gM3ER0dA0i+wuUpoltMRgBXAIObtmkiEkPDdvgSY69NnhxdJbVxY3QO4+yzo3OYGqyzKgUNILq38DfAZlJfuLU5vD8DvATcBoxvmqaJSB22f4dPY6/Fp2dPVQaMTdR9pa+HfL8Jy4lIdt0NDCPaodtC1YAB0Q7fljB/GPq/3X5tPGjM5/uAUR+JwFFUV8ZKqZ5y+/HHH9ez3ug5SKnujq7L1VdfzZ///Oca6clPhhVpWbTDlw1tPGjcxPeHnuprc1i+bt6Ap9zWJl3Q2LZtW63LXXfddRx77LH1rk+keWq6HT6pqg0HjdVEx0AbevWYAy8Cdd+Bnu4pt7///e8ZPHgwBQUFlU+WXbZsGX379uWCCy6gX79+HH/88WzevJnZs2dTVFTEmWeeyYABA9i8eTM9evTguuuu47DDDuPJJ5+kuLiYoUOHUlBQwKmnnlr5mI3kMSr+93//l/3335/DDjuMp556qrJNb7zxBgMGDGDAgAEMHDiQDRs2NHDbiDS2ptnhk5racNB4OANlWKxyanvK7csvv8zSpUuZN28excXFLFiwgDfffBOApUuXctFFF7Fo0SJ23XVX/vSnPzFq1CgKCwt59NFHKS4urnweU15eHn/5y18YPXo055xzDrfccgslJSX079+fa6+9tkqdW7Zs4YILLuD555/nrbfe4osvvqicd9ttt3HXXXdRXFzMW2+9lfJ5TyLZ13Q7fFJTGw4aJdQ8aVZfm4nuX2yYl19+mZdffpmBAwcyaNAglixZUjlKXc+ePRkwYABQ+9NkExJPV12/fj3r1q2rfAzHmDFjKoNQwpIlS+jZsyd9+vTBzCofuwFw6KGH8utf/5o77riDdevW1euRGiJN5+EMlBFvh09qasNBI/Uwn/X3dZ05anvKrbtzxRVXUFxcTHFxMaWlpZx33nlAvKffJuy00071anFtT2adOHEiU6dOZfPmzQwdOpQlS5bUq1yRppH9Hb62rA0HjV0yVE7dgwnW9pTbzp078+CDD7IxPELz888/r3NAoJ133rnWcw277LILu+22G2+99RYA06dPr/LwP4D999+fTz/9lLIwqkzyY8HLysro378/v/3tbyksLFTQkGaq6Xb4pKY2fPyhAPgT27fH0gHoX2euxFNuf/WrX3HzzTeTl5dHjx49mDJlCrvuuiuHHHIIEA2lOmPGDHJycmota+zYsVx44YV06NCBd955p8b8adOmceGFF7Jp0yZ69erFQw89VGV+Xl4e9913HyeddBJ77LEHhx12GB988AEAU6ZM4bXXXiMnJ4f8/HxGtIVnJ0gL1HQ7fFJTG3721Grgh2xf0MgD/oGeSSWZoGdPxXUr0V3e27vDdy3wfzLSotYg7rOn2vDhqT2JHi1Q98hrqRlwIgoYIk1tbAbK8AyV0/a04aAB0bNoGnpZaYewvIg0Le3wZVObCRqpD8MNJnr4YMd6ltYxLFdnT04kltZ2mLjxaYcvW9pE0MjLy+Orr76q5R9zPN8Hjrr2XIzvA4aeciuZ4e589dVX5OXlZbspLYh2+LKlTVw91b17d8rLy1mzprY7QIeRl/cwXbrcR6dObwJGu3b/rJz7r3/tCDgbNx7BV1+NY8uWA4APm6Dl0lbk5eXRvXv3bDejhUnsuKUb1iDBiHoY2uHbXm0iaOTm5tKzZ886cvUFfkL0aIGHiW78+RrYjXbt+gNj6dy5K507N2pTRaRexhP1Om4iejSIUfWZVB2IgsmJRIek1MPYXm0iaNRPV3QZnkhLUkh0z1XNHb7oPqqx6KR35ihoiEgroR2+ptAmToSLiEhmKGiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGyxg4aZ5ZjZe2b2Qvjc08zeNbOlZjbLzHYI6TuGz6Vhfo+kMq4I6R+Z2QlJ6cNDWqmZTUxKT1mHiIhkR316Gr+k6rMzbgEmu3sfojtpzgvp5wFfu/t+wOSQDzPLB0YD/YDhwP+EQJQD3EX02Mp84IyQN10dIiKSBbGChpl1B04CpobPBhwNzA5ZpgGnhOmR4TNh/jEh/0hgprv/090/BUqBg8Or1N0/cffvgJnAyDrqEBGRLIjb05gCXA78K3zuAqxz963hczmwT5jeB1gOEOavD/kr06stU1t6ujqqMLNxZlZkZkW1P5RQRES2V51Bw8xOBla7+4Lk5BRZvY55mUqvmeh+n7sXunth1656xoyISGOJ8+ypQ4H/MLMTiQbF7kzU89jVzNqHnkB3YEXIXw7sC5SbWXuiUeDXJqUnJC+TKv3LNHWIiEgW1NnTcPcr3L27u/cgOpH9qrufCbwGjArZxgDPhunnwmfC/Fc9Gv3oOWB0uLqqJ9AHmAfMB/qEK6V2CHU8F5aprQ4REcmC7blP47fAr82slOj8wwMh/QGgS0j/NTARwN0XAU8Ai4H/BS5y922hF3Ex8BLR1VlPhLzp6hARkSyw1jY2cWFhoRcVFWW7GSIiLYqZLXD3Okep0h3hIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGwKGiIiEpuChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoZIM1ZWBhMmQOfO0K5d9D5hQpQukg0KGiLN1Jw5UFAAU6fChg3gHr1PnRqlz5mT7RZKW6SgIdIMlZXBqFGwaRNUVFSdV1ERpY8apR6HND0FDZFm6PbbawaL6ioqYPLkpmmPSIKChkgzNGNGvKAxfXrTtEckQUFDpBnauDGz+UQyRUFDpBnq1Cmz+UQyRUFDpBk66yzIzU2fJzcXzj67adojklBn0DCzPDObZ2bvm9kiM7s2pPc0s3fNbKmZzTKzHUL6juFzaZjfI6msK0L6R2Z2QlL68JBWamYTk9JT1iHS2l12WbygcemlTdMekYQ4PY1/Ake7+4HAAGC4mQ0FbgEmu3sf4GvgvJD/POBrd98PmBzyYWb5wGigHzAc+B8zyzGzHOAuYASQD5wR8pKmDpFWrXdvmD0bOnasGTxyc6P02bOjfCJNqc6g4ZHE6bbc8HLgaGB2SJ8GnBKmR4Z/aGP9AAARWUlEQVTPhPnHmJmF9Jnu/k93/xQoBQ4Or1J3/8TdvwNmAiPDMrXVIdLqjRgBJSUwblzVO8LHjYvSR4zIdgulLWofJ1PoDSwA9iPqFZQB69x9a8hSDuwTpvcBlgO4+1YzWw90Cel/Syo2eZnl1dKHhGVqq0OkTejdG+68M3qJNAexToS7+zZ3HwB0J+oZ9E2VLbxbLfMylV6DmY0zsyIzK1qzZk2qLCIikgH1unrK3dcBrwNDgV3NLNFT6Q6sCNPlwL4AYf4uwNrk9GrL1Jb+ZZo6qrfrPncvdPfCrl271meVRESkHuJcPdXVzHYN0x2AY4EPgdeAUSHbGODZMP1c+EyY/6q7e0gfHa6u6gn0AeYB84E+4UqpHYhOlj8XlqmtDhERyYI45zS6AdPCeY12wBPu/oKZLQZmmtn1wHvAAyH/A8B0Mysl6mGMBnD3RWb2BLAY2Apc5O7bAMzsYuAlIAd40N0XhbJ+W0sdIiKSBRbt0LcehYWFXlRUlO1miIi0KGa2wN0L68qnO8JFRCQ2BQ0REYlNQUNERGJT0BARkdgUNEREJDYFDRERiU1BQ0REYlPQEBGR2BQ0REQkNgUNERGJTUFDRERiU9AQEZHYFDRERCQ2BQ0REYlNQUNal7IymDABOneGdu2i9wkTonQR2W4KGtJ6zJkDBQUwdSps2ADu0fvUqVH6nDnZbqFIi6egIa1DWRmMGgWbNkFFRdV5FRVR+qhR6nGIbCcFDWkdbr+9ZrCorqICJk9umvaItFIKGtI6zJgRL2hMn9407RFppRQ0pHXYuDGz+UQkJQUNaR06dcpsPhFJSUFDWoezzoLc3PR5cnPh7LObpj0irZSChrQOl10WL2hcemnTtEeklVLQkNahd2+YPRs6dqwZPHJzo/TZs6N8ItJgChrSeowYASUlMG5c1TvCx42L0keMyHYLRVo8c/dstyGjCgsLvaioKNvNEBFpUcxsgbsX1pWvzp6Gme1rZq+Z2YdmtsjMfhnSdzezuWa2NLzvFtLNzO4ws1IzKzGzQUlljQn5l5rZmKT0g8xsYVjmDjOzdHWIiEh2xDk8tRW4zN37AkOBi8wsH5gIvOLufYBXwmeAEUCf8BoH3A1RAACuAYYABwPXJAWBu0PexHLDQ3ptdYiISBbUGTTcfaW7/z1MbwA+BPYBRgLTQrZpwClheiTwiEf+BuxqZt2AE4C57r7W3b8G5gLDw7zO7v6OR8fKHqlWVqo6REQkC+p1ItzMegADgXeBvdx9JUSBBdgzZNsHWJ60WHlIS5deniKdNHVUb9c4Mysys6I1a9bUZ5VERKQeYgcNM+sE/An4lbt/ky5rijRvQHps7n6fuxe6e2HXrl3rs6iIiNRDrKBhZrlEAeNRd38qJK8Kh5YI76tDejmwb9Li3YEVdaR3T5Gerg4REcmCOFdPGfAA8KG7/yFp1nNA4gqoMcCzSennhKuohgLrw6Gll4DjzWy3cAL8eOClMG+DmQ0NdZ1TraxUdYiISBa0j5HnUOBsYKGZFYe0/wJuBp4ws/OAfwA/CfNeBE4ESoFNwM8B3H2tmf0OmB/yXefua8P0eOBhoAMwJ7xIU4eIiGSBbu4TEZHM3dwnIiKSoKAhIiKxKWiIiEhsChoiIhKbgoaIiMSmoCEiIrEpaIiISGwKGiIiEpuChtRPWRlMmFB1ONUJE6J0EWn1FDQktVTB4aSToH9/mDoVNmwA9+h96lQoKIA5c+ouV0RatDjPnpK2Zs4cGDUKKiqiF0TB4cUXU+dP5Bs1CkpKoHfvpmuriDQp9TSkqrKy6Md/06bvA0ZcFRUweXLjtEtEmgUFDanq9tvrHywSKipg+vTMtkdEmhUFDalqxoyGBw2AjRsz1xYRaXYUNKSq7f3R79QpM+0QkWZJQUOqXim1PeOr5ObC2Wdnrl0i0uzo6qm2LtWVUg2VmwuXXpqZdolIs6SeRltVVgZnngknntiwK6WS5eZCx44we7YutxVp5dTTaIsSvYvNmxu2vFl0GMsMdt45OiR16aUKGCJtgIJGW5N8H0ZDJc57dOgAf/+7goVIG6LDU23N9tyHUZ1u5hNpcxQ02pKysug5UZkMGrqZT6RNUdBoK+bMiR4qmKmAkaCb+UTaFAWNtiAT5zFqo5v5RNoUBY22IJPnMZLpZj6RNqfOoGFmD5rZajP7ICltdzOba2ZLw/tuId3M7A4zKzWzEjMblLTMmJB/qZmNSUo/yMwWhmXuMDNLV4c0QEOeJzVyJOTlpc+jm/lE2pw4PY2HgeHV0iYCr7h7H+CV8BlgBNAnvMYBd0MUAIBrgCHAwcA1SUHg7pA3sdzwOuqQ+qrPeYeOHaNxM555Bp56Kvqcm1s1j27mE2mz6gwa7v4msLZa8khgWpieBpySlP6IR/4G7Gpm3YATgLnuvtbdvwbmAsPDvM7u/o67O/BItbJS1SH1Ffe8Q25uNIjSiBHR5xEjos/jxlUdwW/cuKr5RKTNaOg5jb3cfSVAeN8zpO8DLE/KVx7S0qWXp0hPV0cNZjbOzIrMrGjNmjUNXKVW7KyzavYWqsvNjYJB9Z5D795w552wfj1s2xa933mnehgibVSmT4RbijRvQHq9uPt97l7o7oVdu3at7+Kt32WXxQsaOj8hInVoaNBYFQ4tEd5Xh/RyYN+kfN2BFXWkd0+Rnq4Oqa/evaPzDzo/ISLbqaFB4zkgcQXUGODZpPRzwlVUQ4H14dDSS8DxZrZbOAF+PPBSmLfBzIaGq6bOqVZWqjqkIXR+QkQywLyOQXfM7HFgGLAHsIroKqhngCeAHwD/AH7i7mvDD/+dRFdAbQJ+7u5FoZxzgf8Kxd7g7g+F9EKiK7Q6AHOA/3R3N7Muqeqoa4UKCwu9qKgo7vqLiAhgZgvcvbDOfHUFjZZGQUNEpP7iBg3dES4iIrEpaIiISGwKGs1JWRlMmFD1RPWECVG6iEgzoKCRTclBwgz22w/uuQc2bIhGx9uwIRr/oqAgerS5iEiWabjXbEmM0/3dd7B16/fp1S9MqKiIXqNGRZfG6l4KEcki9TSyIXl8i+SAkY6GVhWRZkBBIxuuvrr+AyJpaFURaQYUNJranDnw2GMNW1ZDq4pIliloNKXEYamG0tCqIpJlChpNaXuGXdXQqiLSDChoNIXEpbV33719QUOPLheRLNMlt43h1Vfhkktg0aLMlJeTo0eXi0izoKCRaZdeClOmZK68nBx4+WU4+ujMlSki0kA6PJVJN9+c2YCx447w/PMKGCLSbChobK9XX4UDDogeA3LFFZkps337aFzvRYs0OJKINCs6PBXLaqJxokqA9cAuQAFc8h78cWZmqsjNjV6zZytQiEizpaCR1nzgJqIBBQG2fD9r86NwC9GYhjcB2zvu07hx0fkQnewWkWZMQaNWdwO/ATYDKUY37BDeRwInAJcB9zagmtzcKGDceWfDmiki0oQUNFJKBIwYz4fKAXYCbg+f6xs4dP+FiLQgOhFew3xiB4xkicBxUMz8ubnQsaPuvxCRFkVBo4abiA5JNUAeEOcCqk6dokNSJSU66S0iLYoOT1Wxmuikd4pzGHHkACcCewBfppifmwvPPqtAISItlnoaVTwM3zXw2VAJDoxJkT5yJHz4oQKGiLRoChrJpv8Wdti2fWV0BAqSPu+wA7z4IjzzjM5diEiLp6CRYAa7ZqisRDkHHwyLF6t3ISKths5pQBQwANZlqLxv28MrL+mZUSLS6jT7noaZDTezj8ys1MwmNkIF30+XUO8rbWuoaA9n3KiAISKtUrMOGmaWA9wFjADygTPMLL/RKpwGWJ250sttD4zd/raIiDRDzTpoAAcDpe7+ibt/B8wkenBH41hDdMVtg8+FG9E1t10z1SIRkWaluQeNfYDlSZ/LQ1oVZjbOzIrMrGjNmjXbV+NNVHkuYf10IN7dfSIiLVNzDxqpDhbVuPPO3e9z90J3L+zadTv38ouIHj74bX0X7AjcBhRuX/0iIs1Yc796qhzYN+lzd2BFo9eaeOjg7USPBslJl9mIehi3AeMbt10iIlnW3Hsa84E+ZtbTzHYARgPPNUnN9wJHAs8QPYqqxlVVHYgiyqnAGyhgiEhb0Kx7Gu6+1cwuBl4i2t9/0N0XZbiSqpfdJlsAjCJ6ltQt+8O5g4Gvgd2A/kRXSemkt4i0Hc06aAC4+4vAi41cSe2BA2BNAx9gKCLSyjT7oNFkXIFBRKQuzf2choiINCMKGiIiEpuChoiIxKagISIisSloiIhIbAoaIiISm4KGiIjEZt7K7k8wszXAZ9tZzB7AlxloTnPTGterNa4TaL1amtawXj909zofcdHqgkYmmFmRu7e6x9W2xvVqjesEWq+WprWuVyo6PCUiIrEpaIiISGwKGqndl+0GNJLWuF6tcZ1A69XStNb1qkHnNEREJDb1NEREJDYFDRERiU1BI4mZDTezj8ys1MwmZrs9CWb2oJmtNrMPktJ2N7O5ZrY0vO8W0s3M7gjrUGJmg5KWGRPyLzWzMUnpB5nZwrDMHWbRiFS11ZGhddrXzF4zsw/NbJGZ/bKVrFeemc0zs/fDel0b0nua2buhzllh+GLMbMfwuTTM75FU1hUh/SMzOyEpPeX3tLY6MsnMcszsPTN7obWsl5ktC9+TYjMrCmkt+nvYqNxdr+i8Tg5QBvQCdgDeB/Kz3a7QtiOAQcAHSWm3AhPD9ETgljB9IjAHMGAo8G5I3x34JLzvFqZ3C/PmAYeEZeYAI9LVkaF16gYMCtM7Ax8D+a1gvQzoFKZzgXdDe58ARof0e4DxYXoCcE+YHg3MCtP54Tu4I9AzfDdz0n1Pa6sjw9/FXwOPAS+kq7MlrRewDNijWlqL/h425ivrDWgur/BHfSnp8xXAFdluV1J7elA1aHwEdAvT3YCPwvS9wBnV8wFnAPcmpd8b0roBS5LSK/PVVkcjrd+zwHGtab2AjsDfgSFEdwu3r/5dA14CDgnT7UM+q/79S+Sr7XsalklZRwbXpzvwCnA08EK6OlvYei2jZtBoNd/DTL90eOp7+wDLkz6Xh7Tmai93XwkQ3vcM6bWtR7r08hTp6erIqHDoYiDRXnmLX69wCKcYWA3MJdqDXufuW1O0pbL9Yf56oEsd65UqvUuaOjJlCnA58K/wOV2dLWm9HHjZzBaY2biQ1uK/h41FY4R/z1KktcTrkWtbj/qmNwkz6wT8CfiVu38TDvemzJoirVmul7tvAwaY2a7A00DfNG2pb/tT7eg1+vqa2cnAandfYGbDEslp6mwR6xUc6u4rzGxPYK6ZLUmTt8V8DxuLehrfKwf2TfrcHViRpbbEscrMugGE99Uhvbb1SJfePUV6ujoywsxyiQLGo+7+VB11tpj1SnD3dcDrRMe+dzWzxE5aclsq2x/m7wKspf7r+2WaOjLhUOA/zGwZMJPoENWUVrBeuPuK8L6aKMgfTCv6Hmaagsb35gN9wpUaOxCdvHsuy21K5zkgcYXGGKJzAon0c8JVHkOB9aHr+xJwvJntFq7SOJ7o2PBKYIOZDQ1XdZxTraxUdWy3UNcDwIfu/odWtF5dQw8DM+sAHAt8CLwGjKplvRJtGQW86tFB7ueA0eEqpJ5AH6ITqim/p2GZ2urYbu5+hbt3d/ceoc5X3f3Mlr5eZraTme2cmCb6/nxAC/8eNqpsn1RpTi+iKyM+JjoGfWW225PUrseBlUAF0Z7LeUTHel8Blob33UNeA+4K67AQKEwq51ygNLx+npReSPSPUgbcyfdPCkhZR4bW6TCibnoJUBxeJ7aC9SoA3gvr9QFwdUjvRfTjWAo8CewY0vPC59Iwv1dSWVeGtn9EuOIm3fe0tjoa4fs4jO+vnmrR6xXKfj+8FiXqbenfw8Z86TEiIiISmw5PiYhIbAoaIiISm4KGiIjEpqAhIiKxKWiIiEhsChoiIhKbgoaIiMT2/wBBp3I+W+RSDQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0,1],s=100,c='red',label='Others')\n", - "plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1,1],s=100,c='blue',label='China(mainland),USA,India')\n", - "plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=300,c='yellow',label='Centroids')\n", - "plt.title('Clusters of countries by Productivity')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "923d4536-2bce-4b99-b98a-33b801a56a8b", - "_uuid": "fe531e8c41eec0eb5dc52a9890871841f5d27211" - }, - "source": [ - "So, the blue cluster represents China(Mainland), USA and India while the red cluster represents all the other countries.\n", - "This result was highly probable. Just take a look at the plot of cell 3 above. See how China, USA and India stand out. That has been observed here in clustering too.\n", - "\n", - "You should try this algorithm for 3 or 4 clusters. Looking at the distribution, you will realise why 2 clusters is the best choice for the given data" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_cell_guid": "6dee7acb-0f08-4ae1-85b4-f4704026694a", - "_uuid": "179a1ede21ae330664a0b7c63e36574acdc0428c" - }, - "source": [ - "This is not the end! More is yet to come." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Now, lets try to predict the production using regression for 2020. We will predict the production for USA,India and Pakistan.**\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl81NW9//HXJwsQUAy4QgABZRFFReJWrcUVoW7VWrWtxeWW9l77025WaG+r1SpUrbbW1tZb9WoXl6rXoqiICFp3QVRkE2RNQEHDToAsn98f3+/AkMwkM8msyfv5eOSRmTPf+c45JvLJOZ+zmLsjIiKSCgXZroCIiLQdCioiIpIyCioiIpIyCioiIpIyCioiIpIyCioiIpIyCioiOcLMbjCzv4WP+5jZZjMrzHa9RJKhoCKSYma2zMxOa8093H2Fu+/h7nWpqpdIJiioiIhIyiioiKSJmV1mZq+a2e1mts7MlprZqKjX+5nZy2a2ycymAvtEvdbXzNzMisLnl5vZ/PDaJWb2nSw0SaRZCioi6XUssJAgYNwK3GdmFr72D2BW+NpNwJgm7rMGOAvoClwO3GlmR6Wr0iItpaAikl7L3f1/wtzIg0APYH8z6wMcDfzc3be7+yvA0/Fu4u6T3f1jD7wMvAB8MRMNEEmGgopIen0SeeDuW8OHewA9gXXuviXq2uXxbmJmo8zsTTOrMrP1wGiihstEcoWCikh2rAa6mVmXqLI+sS40s47AE8DtwP7uXgo8C1is60WySUFFJAvcfTkwE/ilmXUwsxOBs+Nc3gHoCKwFasNk/xmZqalIcoqyXQGRduzrBHmWKuAN4CGgtOFF7r7JzK4GHiMILk8DkzJYT5GEmQ7pEhGRVNHwl4iIpIyCioiIpIyCioiIpIyCioiIpEy7m/21zz77eN++fbNdDRGRvDFr1qzP3H3fRK5td0Glb9++zJw5M9vVEBHJG2YWd7eHhjT8JSIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKdPuZn+JiLQnT82u5LYpC1m1vpqepSVcO3IQ5w0rS9vnKaiIiLRRT82uZPyTc6iuqQOgcn0145+cA5C2wKLhLxGRNuq2KQt3BpSI6po6bpuyMG2fqaAiItJGrVpfnVR5KiioiIi0UT1LS5IqTwUFFRGRNurakYMoKS7craykuJBrRw5K22cqUS8i0kZFkvGa/SUiIkmJN3U48pUpCioiInkuG1OH41FORUQkz2Vj6nA8CioiInkuG1OH41FQERHJc9mYOhyPcioiInkkVkL+2pGDdsupQPqnDsejnoqISJ6IJOQr11fj7J6Qn3D+UMpKSzCgrLSECecPzXiSHtRTERHJG00l5F8bd0pWgkhD6qmIiOSJXErIx6OgIiKSJ3IpIR+PgoqISJ7Ixl5eyVJORUQkT2RjL69kKaiIiOSopvbzylUKKiIiOSiX9vNKhnIqIiI5KJf280qGgoqISA7Kh+nDsSioiIjkoHyYPhyLgoqISA7Kh+nDsShRLyKSg1I9fbi2rp6iwvT3IxRURERyVCqmD6/ZtI3bpyxk9YZtPHTFMZhZimoXm4KKiEgbtK2mjvtfW8ofXlrMjrp6LvtCX2rrneJCBRURkTYt3iLHlnB3nv/wE255bj4rq6o57ZD9+dmXD6HfPl1SXOvYFFRERDIkVvAAUrbI8cPKDdz4zDzeXlrFoP335G9XHsuJA/ZJbSOakbasjZndb2ZrzOzDqLLuZjbVzBaF37uF5WZmd5nZYjP7wMyOinrPmPD6RWY2Jqp8uJnNCd9zl6V7oFBEpBXiHbD1y6fntnqR45pN27ju8Q84++5XWbxmM7867zAmX31ixgMKpHdK8f8CZzYoGwdMc/cBwLTwOcAoYED4NRa4B4IgBFwPHAscA1wfCUThNWOj3tfws0REcka8FfLrttbEvD6RRY7bauq4Z8bHnHL7yzzxbgVXntCP6T8ewTePOzAjM71iSdvwl7u/YmZ9GxSfC4wIHz8IzACuC8sfcncH3jSzUjPrEV471d2rAMxsKnCmmc0Aurr7G2H5Q8B5wHPpao+ISGskuxK+qUWO7s6UuZ9w87O78iY/HT2Y/vvu0dpqtlqmcyr7u/tqAHdfbWb7heVlwMqo6yrCsqbKK2KUx2RmYwl6NfTp06eVTRARSV7P0hIqYwSW0pJittfW79aLaWqR44eVG7jpmXm8FeZN/nrlMXxxwL5pq3eyciVRHysf4i0oj8nd7wXuBSgvL497nYhIulw7ctBuCXkIgscN5xwKNL/Ice2m7fzmhYU8OnMl3Tp34KbzDuOSo3tnbZgrnkwHlU/NrEfYS+kBrAnLK4DeUdf1AlaF5SMalM8Iy3vFuF5EJCc1t0I+3kyv7bV1PPDaMu5+aTHbauq48oR+/L9TB7BXSXHG6p6MTAeVScAYYGL4/V9R5d8zs0cIkvIbwsAzBbglKjl/BjDe3avMbJOZHQe8BXwL+H0mGyIikqxkVshH8ia3PLuAFVVbOe2Q/fjp6ENyIm/SlLQFFTN7mKCXsY+ZVRDM4poIPGZmVwIrgAvDy58FRgOLga3A5QBh8LgJeCe87sZI0h74T4IZZiUECXol6UUkJ7R2MePcVUHe5M0lVQzcf4+cy5s0xYIJV+1HeXm5z5w5M9vVEJE2quGJjRDkTiacP7TZwLJ203bumLqQR95ZSWlJMT88Y1BO5E3MbJa7lydyba4k6kVE2oSmTmxsKm/yv68t4/dh3uSKE/px9SkD2KtzbuZNmqKgIiKSQsmc2BjkTT7llmfns6JqK6cO3o+ffTn38yZNUVAREUmheOtRGi5mnLdqIzc9M483lnzOwP334KErjuGkgfmRN2mKgoqISArFW48SWcz42eZgvUkkb3LTuYdyyTF9sp43SRUFFRGRFIq3HmXU0AP488sfc/dLi6muqePyL/TjmlPzM2/SFAUVEZEUi16P4u68MO9TzrjzFZZ/HuRNfvrlQzgoj/MmTVFQERFJk/mrg7zJ6x9/zoD92k7epCkKKiIiKfbZ5u3cMfUjHnl7BV1Lirnx3EP5ehvKmzRFQUVEJEV21Nbz4OvLuGvaIqpr6hjzhb58/9SBbS5v0hQFFRGRFopsx1K5vpruXTpQYPDZ5h2cMjjYp+vg/dpm3qQpCioiIi3QcDuWqi07MOA7J/Vn/OhDslu5LGr7A3wiImkw8bkFjbZjceCZD1Znp0I5Qj0VEZEkRPImn2zcFvP1ZI8NbmsUVEREEuDuvDh/DTdPnseyz7fSsaiA7bX1ja5r6mz59kBBRUSkGQs+CdabvLb4cw7atwsPXH40G7bWNLkdS3uloCIiEsfn4XqTh99ewZ6dirn+7CF887gDKY5ab9Kaw7jaIgUVEZEGdtTW89Aby/jdtEVs3VHHt47vy/dPG0Bp5w67XZfM8cDthYKKiEjI3Zk2fw03PzufpZ9t4UsD9+XnZx3Cwfvtme2q5Q0FFRERYOEnm/jV5Hn8e9Fn9A/zJicP2i/b1co7Cioi0q5VbdnBHVMX8o+34udNJHEKKiLSLjXMm1x63IF8/7SBdOvSodn3SnwKKiLSrjTMm5w0cF9+/uVDGLB//LxJZI8vzfJqnoKKiLQbjfImlx3NiEH7YmZx39Nwj6/K9dWMf3IOgAJLDAoqItLmVW3ZwZ1TP+Lvby1nj45F/OKsIVx6fGJ5k9umLGy0x1d1TR23TVmooBKDgoqItFmRvMld0xaxpYV5k3h7ebX3Pb7iUVARkZzUmjyGu/PSgjXcPHk+S+LkTRK9f8/SEipjBJD2vsdXPAoqIpJzWpLHiD4wK7LZY7y8Sbz7z1xexfQFa3cLNNeOHKQ9vpKgidgiknOaymPE8tTsSsY98cHOHsX22nqKC4yrRhzMyYP3a5SIj3f/v7+5gsr11Ti7B7IJ5w+lrLQEA8pKS5hw/lDlU+JQT0VEck4yeYyaunqunzSXbQ22oa+pd+6Y+hEXDO+V8P29wfNIIHtt3CkKIglSUBGRnNNUHiN6mGvvLh0oLDA2VNfEvE+84BHv/sncQ2LT8JeI5JxrRw6ipLhwt7KS4kJOHrwv45+cszMgfL5lB2s3bWePjoWxbrMzCJ0w8SX6jZvMCRNf4qnZlTHvH2+lihLyyVFQEZGcc96wsph5jBfnrYl5LnxRQUGzQai5PMk3jusT8x5KyCcnK8NfZvYD4D8Ifh/mAJcDPYBHgO7Au8Cl7r7DzDoCDwHDgc+Bi9x9WXif8cCVQB1wtbtPyXBTRCRNos8qqamr569vLI97LvyG6hruvOjIRlOEm0r4x8qTlB/YXduxtFLGg4qZlQFXA0PcvdrMHgMuBkYDd7r7I2b2J4JgcU/4fZ27H2xmFwO/Bi4ysyHh+w4FegIvmtlAd6+L8bEikqOaWi/i7sxYuJabJs9jydotTZ4LH+vArB88+l7Mz4yXJ9GhW62XreGvIqDEzIqAzsBq4BTg8fD1B4Hzwsfnhs8JXz/VgvmB5wKPuPt2d18KLAaOyVD9RSQFIutFGg5PPTW7kkWfbmLMA+9w+f++Aw73jSln4vlDkxqiipcPUZ4kfTLeU3H3SjO7HVgBVAMvALOA9e5eG15WAUT+XCgDVobvrTWzDcDeYfmbUbeOfs9uzGwsMBagT58+KW2PiLRcvOGpn/3fHLbV1tO5QyH//eVD+NbxfelQFPwNbGYJD1Fp4WLmZWP4qxtBL6MfsB74JzAqxqWRKeOxJmV4E+WNC93vBe4FKC8vj3mNiGRevGGoyD5dPzh9IN27tPxc+Mh1ypNkTjYS9acBS919LYCZPQl8ASg1s6Kwt9ILWBVeXwH0BirC4bK9gKqo8ojo94hIHoi3XmS/PTty03mHpeQzlCfJrGzkVFYAx5lZ5zA3ciowD5gOfDW8Zgzwr/DxpPA54esvubuH5RebWUcz6wcMAN7OUBtEJAUuPf5AChqMOXQqKuCnow/JToWk1bKRU3nLzB4nmDZcC8wmGJqaDDxiZr8Ky+4L33If8FczW0zQQ7k4vM/ccObYvPA+V2nml0h+WL91B799cRF/fXM5HYoK6FBYwMZttZRpeCrvWfBHfzMXme0LfBvoS1Qgcvcr0lazNCkvL/eZM2dmuxoi7VJNXT3/eGsFd774ERura7jkmD788PSB7L1Hx2xXTZpgZrPcvTyRaxPtqfwL+DfwIsFCQxGRpMxYuIZfTZ7P4jWbOeHgvfn5WUMYfEDXbFdLUizRoNLZ3a9La01EpE1avGYzv5o8jxkL11IYJlCWrt3CgtWbFFTaoESDyjNmNtrdn01rbUSkzYjOmxQXGkUFRm19MNy+asO2Zg/dkvyU6OyvawgCyzYz2xR+bUxnxUQkP9XU1fPg68sYcfsMHnpjGRcd3ZvSkg47A0pEU4duSf5KqKfi7ns2f5WItHcvf7SWm56Zx+I1mzm+f5A3GdKzK/3emhzzep1V0vYkPKXYzM4BTgqfznD3Z9JTJRHJN4vXbObmyfOYvnAtB+7dmXsvHc7pQ/bfeYxvU4duSduSUFAxs4nA0cDfw6JrzOxEdx+XtpqJSM5bv3UHv5u2iL++sZyS4kJ+OnowY77Ql45Fu2/6qD242o9E16l8ABzp7vXh80Jgtrsfnub6pZzWqYi0Xm1dPf94ewV3TA3Wm1x0dB9+dMZA9gnXm8Tazh60B1e+Ssc6FYBSghXtEOy/JSLt0Cth3mRRmDf5xdlDOKTHrqnBke3sI72SyHb2E84fymvjTslWtSVDEg0qE4DZZjadYHfgk4DxaauViOScJWs3c/Pk+UxbsIYD9+7Mny8dzhlReZOIpk5bVM+k7Ut09tfDZjaDIK9iwHXu/kk6KyYiuWHD1hruemkRD76+rFHeJNYwV7wZXZrp1T40GVTMbLC7LzCzo8KiivB7TzPr6e7vprd6IpIttXX1PBzmTdZX13Dx0cE+XfvuuStvEmuYq7RzMeu21jS6n2Z6tQ/N9VR+SHBi4m9ivOYERwCLSBsTnTc5rn93fnHWoQzpufuWKvGGuToWFVBSXKiZXu1Uk0HF3ceGD0e5+7bo18ysU9pqJSJZ8fHazdySQN4E4g9nbaiu4c6LjtRMr3Yq0UT968BRCZSJSB6Kzpt0Ki5k/KjBXHbCrvUmsXInTS1o1GmL7VdzOZUDgDKgxMyGsetc+K5A5zTXTUTSrHHepDc/PH3QzrwJxM+dXDC8jCdmVWqYS3bTXE9lJHAZwfnvv2FXUNkI/DR91RKRdPv3oiBv8tGnQd7k52cN4dCejZegxcudTF+wlgnnD9Uwl+ymuZzKg8CDZnaBuz+RoTqJSBotWbuZW56dz4vz19Cne2f+9M3hjDw0dt4E4udOVq2v1jCXNJJoTmW4mU1z9/UAZtYN+JG7/3f6qiYiqbShuoa7pu3Km4wbNZjLT9h9n65kcyciDSW699dsdx/WoOxdd8+7RL32/pL2praunoffWckdLyxkfXUNF5X35tCeXfnTy0sa7c0Va9PHeLmTCecPVS+lnUjH3l+FZtbR3beHH1ACdGzmPSKSZa8u+oybnpnHwk83cWy/7vzi7CEs+nRzzMR7p+IC5U6k1RINKn8DppnZAwSLHq8AHkxbrUSkVZZ+toWbJ8/jxflr6N29hHu+cRRnHnYAZsbYh2bFDB4NyyKUO5FkJLr3161mNgc4lWAG2E3uPiWtNRORpG2oruH30xbx4BvL6FBYwHVnBnmTTsW78ibJ7sGl3IkkI+Gt7939OeC5NNZFRFqotq6eR2eu5DcvfMS6rTv42vDe/GjkQPbbs/HGF/ES76UlxWyvrde6E2mVRE9+3EQw7AXQASgGtrh71/jvEpFMeG1xkDdZ8MkmjunXnV+cNYTDyuIfeRTvFMYbzjkU0EFa0jqJDn/tGf3czM4DjklLjUQkIUs/28Itz85n6rxP6dVt97xJRKwpwpEgEa9cQURaI5mTH3dy96fMTOfTi2TBxm013P3SYh54bSkdCgv4yZmDuOKEfrvlTSD+9iqAEu+SNokOf50f9bQAKGfXcJiIZEBdvfPoOyv5zQsLqdq6gwuH9+LHIwfFzJuATmCU7Ei0p3J21ONaYBlwbsprIyIxvb74M24M8yb99+1CgRn/nFnBa4s/j5v30AmMkg2J5lQuT3dFRKSxZWHe5IUwb3LZF/ryyNsr2FZbDzQe0oqm7VUkG5rb+v73NDHM5e5Xp7xGIhI3b3Lqb17eGVAi4g1pxZvlpSnCkk7N9VQim2SdAAwBHg2fXwjMSlelRNqrmHmTMwaxX9cgb9LUkFasmV7aXkUyLdENJacDZ7h7Tfi8GHjB3U9u0YealQJ/AQ5j17YvCwmCVl+CnM3X3H2dBfMjfweMBrYCl7n7u+F9xgCRnZJ/FW7V3yRtKCm5Kjpvckzf4HyTob12X29ywsSXklq4qE0fJRWS2VCyIMF79gSi16rsEZa11O+A5919MHAEMB8YB0xz9wHAtPA5wChgQPg1FrgHwMy6A9cDxxKsmbk+3JJfJK8s+2wLYx+aydf/8habttXyh68fxaPfOa5RQIFgSKukwdThkuJCzIg700skkxKd/TURmB32WAC+BNzQkg80s67ASQQnSuLuO4AdZnYuMCK87EFgBnAdwSyzhzzoUr1pZqVm1iO8dqq7V4X3nQqcCTzcknqJZNrGbTX84aXF3P/aUooLC7h25CCuPLHxepNo8RYu/uDR92Jer5lekmmJzv56wMyeI+gVODDO3T9p4Wf2B9YCD5jZEQS5mWuA/d19dfh5q81sv/D6MmBl1PsrwrJ45Y2Y2ViCXg59+vRpYbVFUqNh3uSrR/Xi2pG78iYR8VbDx1q4eNuUhZrpJTkh0eEvCIaYvkjQyzi6FZ9ZBBwF3BMe/LWFXUNdscQ649SbKG9c6H6vu5e7e/m+++6bbH1FUuaNjz/nrN+/yk//bw799+3CpKtO5LYLj4gZUMY/OYfK9dU4u6YOPzW7MuZ94w2LaaaXZFpCQcXMJhL0JuaFX1eb2YQWfmYFUOHub4XPHycIMp+Gw1qE39dEXd876v29gFVNlIvknOWfb+E7f53JJf/zJhura7j768N47DvHx8ybQNOr4WM5b1gZE84fSllpCQaUlZYoSS9ZkWhOZTRwpLvXA5jZg8BsYHyyH+jun5jZSjMb5O4LCc5oiQSrMQT5mzHAv8K3TAK+Z2aPEAy/bQiHx6YAt0Ql589oSX1E0mnTthrunr6YB15dRlGhJZQ3gZathtd+XpILktlQshSoCh/H31c7Mf8P+LuZdQCWAJcT9JoeM7MrgRUEa2EAniUIaosJphRfDuDuVWZ2E/BOeN2NkaS9SLbV1Tv/nLmS219YyGebd/DV4UHeZP+usffpakir4SVfJRpUJrBr9pcR5FVa3Ctw9/cINqVs6NQY1zpwVZz73A/c39J6iKTDGx9/zk3PzGPe6o2UH9iN+y87msN7lca9PlZCXqvhJV81u/gxXHzYi2AjyaMJgspbrZj9lVVa/CjpsuLzrdzy7Hyen/sJZaUljBs1mLMO77Hb+SYNNdyeHnYtWgQdmCW5IZnFj4muqJ/l7sNbXbMcoKAiqbZpWw1/mP4x97+6lKJC479GHMR/fLF/s3kTiL9Cvqy0hNfGnZKO6ookLZmgkujw15tmdrS7v9P8pSLtQ1298/isldw25SM+27ydC47qxU/OTDxvAtqeXtqeRIPKycB3zWwZwboSI0h3HJ6uionksjeXBHmTuas2MvzAbtx/WXmTeROInTtRQl7amkSDyqi01kIkT6z4fCsTnpvPcx8GeZPfXzKs2bwJxD/a94LhZTwxq1IJeWkzmjtPpRPwXeBgYA5wn7vXZqJiIrlk8/Za/jB9Mff9eymFBcaPTh/It0+KnTeJ1SOJt5hx+oK12p5e2pQmE/Vm9ihQA/yboLey3N2vyVDd0kKJeklGXb3zxKwKbp2ykM82b+f8o8r4ycjBHLBXp5jBA4g5m6thQIkwYOnEL2eiKSItlspE/RB3Hxre9D7g7dZWTiRfvLXkc26MypvcN6acI3oHeZN4w1mdigti9kgKzaiL8QeccifS1jQXVGoiD9y9trlxY5G2YGVVkDd5ds4n9NyrE3ddMoyzG+RN4g1nxeuR1Lk36rEodyJtUXNB5Qgz2xg+NqAkfB6Z/dU1rbUTyaCGeZMfnj6Qb3+xPyUdGudNkp3yWxaVW1HuRNqyJoOKuze/ekskz9XXO49H502GlXHtmYPosdeuoamG+ZPSzsWs21rT6F7xjvWNPgtFpC1LZkNJkTbn7aVV/PLpucxdtZGj+pTylzHlHNl79/UmsfInxQVGcaFRU7crT1JSXMgN5xwKaHsVab8UVKRdWlm1lYnPLWDynNX03KsTv7v4SM45omfM9Sax8ic19U5pSTFdOhbFDB4KItJeKahIu7J5ey1/nL6Yv7y6lEIzfnDaQMaeFDtvEhEvf7Khuob3rj8jXVUVyUsKKtIu1Nc7j79bwW1TFrJ203a+MqyMnzTIm8SjrVREEqegIm3e20uruPGZuXxYuZFhfUq599LhDOvTrfk3hnS2iUjiFFSkzYrOm/RoJm/SlEh+RMl3keYpqEibs2V7LX+csZj/+fdSCgy+f9oAvnPSQU3mTZqj6cAiiVFQkTajvt554t1gvUmyeRMRSQ0FFWkT3llWxY1Pz2NO5QaO7F3Kny8dzlFJ5E0iYm0SqR6KSOIUVCSvVazbyoTnFjD5g9Uc0LUTv70oyJsUFDR/vklzOwxHNokErTsRSZSCiuSlLdtruWfGx9z77yU78yZjT+pP5w7N/0onu8PwbVMWKqiIJEhBRfJKfb3z5OxKbn1+AWs2bee8I3vykzMHJ7VmJNkdhnVevEjiFFQkb8xcVsWNz8zjg4oNHNG7lD+1MG+SbJDQIkeRxCmoSM6rWBesN3kmybxJPPFWyDe1w7CIJEZBRXLWlu21/Onlj7n3lSWYwTWnDqBnaSdum7KQHzz6XotnZ8VbIa8dhkVaT0FFck59vfN/syu5dcoCPt24nXOP7Ml1Zw7m7aVVcWdnQexg0NQU4XjlCiIiLWce49zstqy8vNxnzpyZ7WpIHLOWB+tN3g/zJr846xCGH9gdgBMmvpTUsNUFw8t4YlZlo/IJ5w9V4BBJgpnNcvfyRK5VT0VyQuX6aiY+t4Cn31/F/l078o1j+zB9wRq+es8bO3sS8RLs66sbn8BYXVPHw2+tpK7BH02aIiySXgoqklVbd9Typxkf8+dXlgBw9akDKCvtxA2T5jUa5op3hG88DQNKhKYIi6SPgopkRX2989R7lfz6+SBvcvYRPRk3ajBlpSWcMPGlmOtIOhYVUFJc2Gg4q1NxQcxgU2gWM7BoirBI+hRk64PNrNDMZpvZM+Hzfmb2lpktMrNHzaxDWN4xfL44fL1v1D3Gh+ULzWxkdloiyZq1vIqv/PE1fvjY+xzQtRNP/Ofx/P6SYZSF/9g3ddLihPOHUlZaggFlpSVMOH8o1599KCXFu+9AXFJcyCXH9o5ZrinCIumTzZ7KNcB8oGv4/NfAne7+iJn9CbgSuCf8vs7dDzazi8PrLjKzIcDFwKFAT+BFMxvo7rGXRUvWVa6v5tfPLWBSmDe542tHcN6RZY3WmzR10mJTW9DHms1VfmB3TREWyaCszP4ys17Ag8DNwA+Bs4G1wAHuXmtmxwM3uPtIM5sSPn7DzIqAT4B9gXEA7j4hvOfO65r6bM3+yryGeZOxJ/Xnu186iC4dY/9N03BvLtCsLZFsyofZX78FfgLsGT7fG1jv7rXh8wog8q9HGbASIAw4G8Lry4A3o+4Z/R7JAQ3zJsP6lLJqfTV3v7SYJ9+tjNtr0EmLIvkr40HFzM4C1rj7LDMbESmOcak381pT72n4mWOBsQB9+vRJqr7SMrOWr+PGZ+bx/sr1HN5rLy4+ug/3vrIkqYWLCiIi+ScbPZUTgHPMbDTQiSCn8lug1MyKwt5KL2BVeH0F0BuoCIe/9gKqosojot+zG3e/F7gXguGvlLdIdloVrjeZ9P4q9tuzI7+58Ai+MqyML946PeaMrhsmzd1t4aLOMBHJbxmf/eXu4929l7v3JUi0v+Tu3wCmA18NLxsD/Ct8PCl8Tvj6Sx4kgiYBF4ezw/oBA4AbYNt1AAAOsklEQVS3M9QMaWDrjlrumPoRp/xmBlPmfsL/O+Vgpv94BBcM70VBgTW5cDHeGSYikn9yaZ3KdcAjZvYrYDZwX1h+H/BXM1tM0EO5GMDd55rZY8A8oBa4SjO/Muup8FyTVRu2UWBQ73DW4T0YN2owvbp13u3aeDO64tECRZH8pL2/pEWeml3JdY9/wPa6+p1lHQoLuPWrhwONcyRAzBld8RYulpWW8Nq4U9LcChFJRDKzv7K2+FHy16ow7xEdUAB21NVzw6S5jH9yDpXrq3F2z5Eks3BRCxRF8lMuDX9JjopsH1+5vpo9OxaxrbaOmrrYPdx4mzveNmUhr407JamFiyKSfxRU2qmmzhlpeN24Jz5gW23QK9m0vZZCM7p2KmLjttpG18fTVI5E04dF2g4FlXao4Yr1yBDVzOVVTF+wdrdAc/Pk+TsDSkSdOwVmSW3uqE0cRdoH5VTaodumLIw5jffvb67YLRfyo8feZ+3m7THvkezmjsqRiLQP6qm0cbGGueINRTXMktS5YzHKoWWbO4pI26cpxW1YvI0Z4w1RxRNrmEubO4q0H5pSLED8YS53Gg1RxRMZ1mo4zKWAIiKxaPirjUhmmGtDdQ13XnQkE59bwCcbtwHQqbiAunrfbapwJBei2Vkikij1VNqAyDBXwwWHpZ2LY15/wF6dWP75VjZU19ChqID/GnEQM//7dG776hHqkYhIqyinkmdi9UgiCxMbKi0p3m0HYIDiQqNLxyLWb61h9NADGD/qEHp379zovSIiEflwSJe0QLz1JQ3zJhGRYa5I0OlQWMCOunrKSkv48zeHc2z/vTNZfRFpBxRUclS8HkmsxHuhGXUxepw9S0s4rv/eHNuvO0/OrmSvzsVcO3IQFxzVi8KCWGeciYi0joJKDkq2R1Ln3mjab6eiAob22ouTb59BnTv/OeIgrjr5YPaIcy68iEgq6F+YLEtFj6SsQW6lW+diHHj+w0+UNxGRjFJQyZBYwQNodY8ketpvv326cOMz85i1fB2H9uyqvImIZJyCSisks9NvrODRqbigxT2S6M88/qC9+eFj7/Hku5Xss0dHbr3gcC4YrryJiGSegkoLxQsUEdH/8G/dURszeLS0RxIJXNtq6vifV5Yw/sk51NUHeZP/GnEQe3aKvT5FRCTdFFQSkEze44ZJc3dbG5LMuewR8XokkWDi7jzzwWomPreAyvXVjDosyJv02Vt5ExHJLi1+bEa8TRnj9TKSEWtxYnObNb6/cv3OvMmQHl35xdlDOE55ExFJIy1+TKFkZ2IlqqS4kBvOOXTnZzSXl/l04zZ+/fyCMG/SgYnnD+XC8t7Km4hITlFQaUa8TRnj5T3ibStfWlJMl45FMYNHU/trbaup4y//XsIfZ3xMbZ3z3S8dxFUnK28iIrlJQaUZPUtLYuZF4uU9gJjDZTecc2hSmzM2zJuceegBjB89mAP37tL6RomIpImCSjOuHTkoZpBobkv41px8+EHFem58eh4zl6/jkB5duf3CIzj+IOVNRCT3Kag0IxIMkgkSLT1/5NON27htykIen1WhvImI5CUFlQSk+5CqhnmT73ypP987+WDlTUQk7yioZJG7M3nOaiY8q7yJiLQNCipZMqdiAzc+M5d3lgV5k9suPJwvHLRPtqslItIqCioZtiaSN3m3gu6dOzDh/KF8TXkTEWkjFFQyZFtNHfe9upQ/Tl9MTZ0z9qT+XHXywXRV3kRE2hAFlTRzd56d8wm3PDufyvXVnDFkf3725UOUNxGRNklBJY0+rNzAjU/P4+1lVQw+YE/+8e1jlTcRkTatINMfaGa9zWy6mc03s7lmdk1Y3t3MpprZovB7t7DczOwuM1tsZh+Y2VFR9xoTXr/IzMZkui3xrNm4jWv/+T5n3/0qH6/dzC1fGcrkq7+ogCIibV42eiq1wI/c/V0z2xOYZWZTgcuAae4+0czGAeOA64BRwIDw61jgHuBYM+sOXA+UAx7eZ5K7r8t4i0LReZMddfV8+4v9+d4pypuISPuR8aDi7quB1eHjTWY2HygDzgVGhJc9CMwgCCrnAg95sEf/m2ZWamY9wmununsVQBiYzgQezlhjQpG8yYTn5lOxrprTh+zPz0YfQt99lDcRkfYlqzkVM+sLDAPeAvYPAw7uvtrM9gsvKwNWRr2tIiyLVx7rc8YCYwH69OmTugbQOG/y9/84lhMO1jCXiLRPWQsqZrYH8ATwfXffaBZ3nUasF7yJ8saF7vcC90JwSFfytW1szaZt3D5lIf+cVUG3zh24+SuHcVF5b4oKM56mEhHJGVkJKmZWTBBQ/u7uT4bFn5pZj7CX0gNYE5ZXAL2j3t4LWBWWj2hQPiOd9YbGeZP/OLEf3ztlAHuVKG8iIpLxoGJBl+Q+YL673xH10iRgDDAx/P6vqPLvmdkjBIn6DWHgmQLcEpklBpwBjE9Xvd2d5z4M1ptUrKvmtEOC9Sb9lDcREdkpGz2VE4BLgTlm9l5Y9lOCYPKYmV0JrAAuDF97FhgNLAa2ApcDuHuVmd0EvBNed2MkaZ9q1TvqGPPA27y9tIpB++/J3648lhMHKG8iItJQNmZ/vUrsfAjAqTGud+CqOPe6H7g/dbWLraRDIf327sI5R/Tk4qOVNxERiUcr6hP0668enu0qiIjkPP3JLSIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKaOgIiIiKWPBgvX2w8zWAsubuWwf4LMMVCcXtJe2tpd2Qvtpa3tpJ2S/rQe6+76JXNjugkoizGymu5dnux6Z0F7a2l7aCe2nre2lnZBfbdXwl4iIpIyCioiIpIyCSmz3ZrsCGdRe2tpe2gntp63tpZ2QR21VTkVERFJGPRUREUkZBRUREUmZdhFUzOx+M1tjZh9GlR1hZm+Y2Rwze9rMuka9dnj42tzw9U5h+fDw+WIzu8vM4p1gmTXJtNXMvmFm70V91ZvZkeFrba2txWb2YFg+38zGR73nTDNbGLZ1XDba0pQk29nBzB4Iy983sxFR78npn6mZ9Taz6eHPZ66ZXROWdzezqWa2KPzeLSy3sB2LzewDMzsq6l5jwusXmdmYbLUpnha0dXD4895uZj9ucK/c+v119zb/BZwEHAV8GFX2DvCl8PEVwE3h4yLgA+CI8PneQGH4+G3geILjkJ8DRmW7ba1pa4P3DQWWRD1vU20Fvg48Ej7uDCwD+gKFwMdAf6AD8D4wJNtta0U7rwIeCB/vB8wCCvLhZwr0AI4KH+8JfAQMAW4FxoXl44Bfh49Hh+0w4DjgrbC8O7Ak/N4tfNwt2+1rZVv3A44GbgZ+HHWfnPv9bRc9FXd/BahqUDwIeCV8PBW4IHx8BvCBu78fvvdzd68zsx5AV3d/w4Of5kPAeemvfXKSbGu0S4CHAdpoWx3oYmZFQAmwA9gIHAMsdvcl7r4DeAQ4N911T0aS7RwCTAvftwZYD5Tnw8/U3Ve7+7vh403AfKCM4OfxYHjZg+yq97nAQx54EygN2zkSmOruVe6+juC/z5kZbEqzkm2ru69x93eAmga3yrnf33YRVOL4EDgnfHwh0Dt8PBBwM5tiZu+a2U/C8jKgIur9FWFZPojX1mgXEQYV2mZbHwe2AKuBFcDt7l5F0K6VUe/Pl7bGa+f7wLlmVmRm/YDh4Wt59TM1s77AMOAtYH93Xw3BP8YEf7VD/J9dXv1ME2xrPDnX1vYcVK4ArjKzWQTdzx1heRFwIvCN8PtXzOxUgi52Q/kyHzteWwEws2OBre4eGbNvi209BqgDegL9gB+ZWX/yt63x2nk/wT8sM4HfAq8DteRRO81sD+AJ4PvuvrGpS2OUeRPlOSeJtsa9RYyyrLa1KJsfnk3uvoBgqAszGwh8OXypAnjZ3T8LX3uWYDz7b0CvqFv0AlZlrMKt0ERbIy5mVy8Fgv8Gba2tXweed/caYI2ZvQaUE/yVF91zy4u2xmunu9cCP4hcZ2avA4uAdeTBz9TMign+kf27uz8ZFn9qZj3cfXU4vLUmLK8g9s+uAhjRoHxGOuvdEkm2NZ54/w2ypt32VMxsv/B7AfDfwJ/Cl6YAh5tZ53D8/UvAvLArusnMjgtnzXwL+FcWqp60JtoaKbuQYCwW2NntbmttXQGcEs4Y6kKQ2F1AkPAeYGb9zKwDQYCdlPmaJydeO8Pf2y7h49OBWnfPi9/fsF73AfPd/Y6olyYBkRlcY9hV70nAt8Kf6XHAhrCdU4AzzKxbOHvqjLAsZ7SgrfHk3u9vNmcJZOqL4K/w1QRJrgrgSuAaghkXHwETCXcXCK//JjCXYNz61qjy8rDsY+Du6PfkylcL2joCeDPGfdpUW4E9gH+GP9d5wLVR9xkdXv8x8LNst6uV7ewLLCRI/L5IsGV5XvxMCYabnWD25Xvh12iCGZjTCHpc04Du4fUG/CFszxygPOpeVwCLw6/Ls922FLT1gPBnv5Fg8kUFwcSLnPv91TYtIiKSMu12+EtERFJPQUVERFJGQUVERFJGQUVERFJGQUVERFJGQUUkjcI1FK+a2aiosq+Z2fPZrJdIumhKsUiamdlhBGtkhhHsKvsecKa7f9yKexZ5sHpeJKcoqIhkgJndSrChZRdgk7vfFJ7zcRXBluWvA99z93ozu5dga6AS4FF3vzG8RwXwZ4Idd3/r7v/MQlNEmtRu9/4SybBfAu8SbPxYHvZevgJ8wd1rw0ByMfAPgvM0qsJtgqab2ePuPi+8zxZ3PyEbDRBJhIKKSAa4+xYzexTY7O7bzew0gkOXZgbbQFHCri3MLzGzKwn+/+xJcEZKJKg8mtmaiyRHQUUkc+rDLwj2rbrf3X8efYGZDSDY1+sYd19vZn8DOkVdsiUjNRVpIc3+EsmOF4Gvmdk+AGa2t5n1AboCm4CNUacYiuQN9VREssDd55jZL4EXw+3ra4DvEhyuNY9gN+ElwGvZq6VI8jT7S0REUkbDXyIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjIKKiIikjL/H2HG3kny6adeAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "ename": "ValueError", - "evalue": "Expected 2D array, got scalar array instead:\narray=2020.\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreset\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 29\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2020\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mArea\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;34m'India'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mElement\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;34m'Food'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Y1961'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mReturns\u001b[0m \u001b[0mpredicted\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 212\u001b[0m \"\"\"\n\u001b[0;32m--> 213\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_decision_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[0m_preprocess_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstaticmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_preprocess_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36m_decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[0mcheck_is_fitted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"coef_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccept_sparse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'csr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'csc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'coo'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 197\u001b[0m return safe_sparse_dot(X, self.coef_.T,\n\u001b[1;32m 198\u001b[0m dense_output=True) + self.intercept_\n", - "\u001b[0;32m/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\"Reshape your data either using array.reshape(-1, 1) if \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;34m\"your data has a single feature or array.reshape(1, -1) \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \"if it contains a single sample.\".format(array))\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0;31m# If input is 1D raise error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: Expected 2D array, got scalar array instead:\narray=2020.\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." - ] - } - ], - "source": [ - "india_list=[]\n", - "year_list = list(df.iloc[:,10:].columns)\n", - "for i in year_list:\n", - " x=df[(df.Area=='India') & (df.Element=='Food')][i].mean()\n", - " india_list.append(x) \n", - "\n", - "reset=[]\n", - "for i in year_list:\n", - " reset.append(int(i[1:]))\n", - "\n", - "\n", - "reset=np.array(reset)\n", - "reset=reset.reshape(-1,1)\n", - "\n", - "\n", - "india_list=np.array(india_list)\n", - "india_list=india_list.reshape(-1,1)\n", - "\n", - "\n", - "reg = LinearRegression()\n", - "reg.fit(reset,india_list)\n", - "predictions = reg.predict(reset)\n", - "plt.title(\"India\")\n", - "plt.xlabel(\"Year\")\n", - "plt.ylabel(\"Production\")\n", - "plt.scatter(reset,india_list)\n", - "plt.plot(reset,predictions)\n", - "plt.show()\n", - "print(reg.predict(2020))\n", - "\n", - "df[(df.Area=='India') & (df.Element=='Food')]['Y1961'].mean()\n", - "\n", - "df[(df.Area=='Pakistan') & (df.Element=='Food')]\n", - "\n", - "Pak_list=[]\n", - "year_list = list(df.iloc[:,10:].columns)\n", - "for i in year_list:\n", - " yx=df[(df.Area=='Pakistan') & (df.Element=='Food')][i].mean()\n", - " Pak_list.append(yx) \n", - "\n", - "Pak_list=np.array(Pak_list)\n", - "Pak_list=Pak_list.reshape(-1,1)\n", - "Pak_list\n", - "reg = LinearRegression()\n", - "reg.fit(reset,Pak_list)\n", - "predictions = reg.predict(reset)\n", - "plt.title(\"Pakistan\")\n", - "plt.xlabel(\"Year\")\n", - "plt.ylabel(\"Production\")\n", - "plt.scatter(reset,Pak_list)\n", - "plt.plot(reset,predictions)\n", - "plt.show()\n", - "print(reg.predict(2020))\n", - "\n", - "\n", - "\n", - "usa_list=[]\n", - "year_list = list(df.iloc[:,10:].columns)\n", - "for i in year_list:\n", - " xu=df[(df.Area=='United States of America') & (df.Element=='Food')][i].mean()\n", - " usa_list.append(xu)\n", - "\n", - "usa_list=np.array(usa_list)\n", - "usa_list=india_list.reshape(-1,1)\n", - "\n", - "\n", - "reg = LinearRegression()\n", - "reg.fit(reset,usa_list)\n", - "predictions = reg.predict(reset)\n", - "plt.title(\"USA\")\n", - "plt.xlabel(\"Year\")\n", - "plt.ylabel(\"Production\")\n", - "plt.scatter(reset,usa_list)\n", - "plt.plot(reset,predictions)\n", - "plt.show()\n", - "print(reg.predict(2020))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} From dd7d2fa270ce9ee42f685f677fff051e5ad3d101 Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Thu, 14 Nov 2019 15:52:08 +0530 Subject: [PATCH 438/594] Panagram Script Added (#1564) * Python Program that fetches top trending news * Python Program that fetches top trending news * Revisions in Fetch BBC News * psf/black Changes * Python Program to send slack message to a channel * Slack Message Revision Changes * Python Program to check Palindrome String * Doctest Added * Python Program to check whether a String is Panagram or not * Python Program to check whether a String is Panagram or not * Check Panagram Script Added * Panagram Script Added * Anagram Script Changes * Anagram Alphabet Check Added * Python Program to fetch github info --- strings/check_panagram.py | 30 ++++++++++++++++++++++++++++ web_programming/fetch_github_info.py | 17 ++++++++++++++++ 2 files changed, 47 insertions(+) create mode 100644 strings/check_panagram.py create mode 100644 web_programming/fetch_github_info.py diff --git a/strings/check_panagram.py b/strings/check_panagram.py new file mode 100644 index 000000000000..6f1991da2aa9 --- /dev/null +++ b/strings/check_panagram.py @@ -0,0 +1,30 @@ +# Created by sarathkaul on 12/11/19 + + +def check_panagram( + input_str: str = "The quick brown fox jumps over the lazy dog", +) -> bool: + """ + A Panagram String contains all the alphabets at least once. + >>> check_panagram("The quick brown fox jumps over the lazy dog") + True + >>> check_panagram("My name is Unknown") + False + >>> check_panagram("The quick brown fox jumps over the la_y dog") + False + """ + frequency = set() + input_str = input_str.replace( + " ", "" + ) # Replacing all the Whitespaces in our sentence + for alpha in input_str: + if "a" <= alpha.lower() <= "z": + frequency.add(alpha.lower()) + + return True if len(frequency) == 26 else False + + +if __name__ == "main": + check_str = "INPUT STRING" + status = check_panagram(check_str) + print(f"{check_str} is {'not ' if status else ''}a panagram string") diff --git a/web_programming/fetch_github_info.py b/web_programming/fetch_github_info.py new file mode 100644 index 000000000000..f6626770e833 --- /dev/null +++ b/web_programming/fetch_github_info.py @@ -0,0 +1,17 @@ +# Created by sarathkaul on 14/11/19 + +import requests + +_GITHUB_API = "https://api.github.com/user" + + +def fetch_github_info(auth_user: str, auth_pass: str) -> None: + # fetching github info using requests + info = requests.get(_GITHUB_API, auth=(auth_user, auth_pass)) + + for a_info, a_detail in info.json().items(): + print(f"{a_info}: {a_detail}") + + +if __name__ == "main": + fetch_github_info("", "") From 52cf66861771cf75d9be52c9a99dcb54737a77cc Mon Sep 17 00:00:00 2001 From: jwmneu Date: Fri, 15 Nov 2019 02:08:07 +0800 Subject: [PATCH 439/594] add sol3 to project_euler/problem_08 (#1557) * Add sol3 for project_euler proble_03 * Update sol3.py add type hint remove unused variable * Format code with psf/black * add sol3 to project_euler/problem_08, modify the stepsize of the loop,will be faster than sol1 --- project_euler/problem_08/sol3.py | 83 ++++++++++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 project_euler/problem_08/sol3.py diff --git a/project_euler/problem_08/sol3.py b/project_euler/problem_08/sol3.py new file mode 100644 index 000000000000..fe9901742201 --- /dev/null +++ b/project_euler/problem_08/sol3.py @@ -0,0 +1,83 @@ +# -*- coding: utf-8 -*- +""" +The four adjacent digits in the 1000-digit number that have the greatest +product are 9 × 9 × 8 × 9 = 5832. + +73167176531330624919225119674426574742355349194934 +96983520312774506326239578318016984801869478851843 +85861560789112949495459501737958331952853208805511 +12540698747158523863050715693290963295227443043557 +66896648950445244523161731856403098711121722383113 +62229893423380308135336276614282806444486645238749 +30358907296290491560440772390713810515859307960866 +70172427121883998797908792274921901699720888093776 +65727333001053367881220235421809751254540594752243 +52584907711670556013604839586446706324415722155397 +53697817977846174064955149290862569321978468622482 +83972241375657056057490261407972968652414535100474 +82166370484403199890008895243450658541227588666881 +16427171479924442928230863465674813919123162824586 +17866458359124566529476545682848912883142607690042 +24219022671055626321111109370544217506941658960408 +07198403850962455444362981230987879927244284909188 +84580156166097919133875499200524063689912560717606 +05886116467109405077541002256983155200055935729725 +71636269561882670428252483600823257530420752963450 + +Find the thirteen adjacent digits in the 1000-digit number that have the +greatest product. What is the value of this product? +""" +import sys + +N = """73167176531330624919225119674426574742355349194934\ +96983520312774506326239578318016984801869478851843\ +85861560789112949495459501737958331952853208805511\ +12540698747158523863050715693290963295227443043557\ +66896648950445244523161731856403098711121722383113\ +62229893423380308135336276614282806444486645238749\ +30358907296290491560440772390713810515859307960866\ +70172427121883998797908792274921901699720888093776\ +65727333001053367881220235421809751254540594752243\ +52584907711670556013604839586446706324415722155397\ +53697817977846174064955149290862569321978468622482\ +83972241375657056057490261407972968652414535100474\ +82166370484403199890008895243450658541227588666881\ +16427171479924442928230863465674813919123162824586\ +17866458359124566529476545682848912883142607690042\ +24219022671055626321111109370544217506941658960408\ +07198403850962455444362981230987879927244284909188\ +84580156166097919133875499200524063689912560717606\ +05886116467109405077541002256983155200055935729725\ +71636269561882670428252483600823257530420752963450""" + + +def streval(s: str) -> int: + ret = 1 + for it in s: + ret *= int(it) + return ret + + +def solution(n: str) -> int: + """Find the thirteen adjacent digits in the 1000-digit number n that have + the greatest product and returns it. + + >>> solution(N) + 23514624000 + """ + LargestProduct = -sys.maxsize - 1 + substr = n[:13] + cur_index = 13 + while cur_index < len(n) - 13: + if int(n[cur_index]) >= int(substr[0]): + substr = substr[1:] + n[cur_index] + cur_index += 1 + else: + LargestProduct = max(LargestProduct, streval(substr)) + substr = n[cur_index : cur_index + 13] + cur_index += 13 + return LargestProduct + + +if __name__ == "__main__": + print(solution(N)) From 5df8aec66cdd87b893a0ee17b97ca8684262f7f7 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 14 Nov 2019 19:59:43 +0100 Subject: [PATCH 440/594] GitHub Action formats our code with psf/black (#1569) * GitHub Action formats our code with psf/black @poyea Your review please. * fixup! Format Python code with psf/black push --- .github/workflows/autoblack.yml | 36 +- ciphers/deterministic_miller_rabin.py | 30 +- ciphers/diffie.py | 15 +- .../binary_tree/basic_binary_tree.py | 4 +- data_structures/binary_tree/treap.py | 1 - data_structures/heap/min_heap.py | 7 +- .../linked_list/doubly_linked_list.py | 4 +- data_structures/linked_list/from_sequence.py | 5 +- data_structures/linked_list/print_reverse.py | 6 +- .../longest_increasing_subsequence.py | 3 +- ...longest_increasing_subsequence_o(nlogn).py | 2 + dynamic_programming/max_sub_array.py | 1 + file_transfer/send_file.py | 4 +- maths/ceil.py | 6 +- maths/factorial_python.py | 2 +- maths/factorial_recursive.py | 2 +- maths/floor.py | 6 +- maths/gaussian.py | 2 +- maths/perfect_square.py | 2 +- neural_network/gan.py | 331 +++++++----- neural_network/input_data.py | 470 +++++++++--------- other/least_recently_used.py | 10 +- project_euler/problem_20/sol4.py | 2 +- project_euler/problem_99/sol1.py | 6 +- web_programming/get_imdbtop.py | 6 +- 25 files changed, 543 insertions(+), 420 deletions(-) diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index 98310ac80b11..dc76d4cee068 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -1,34 +1,24 @@ -# GitHub Action that uses Black to reformat the Python code in an incoming pull request. -# If all Python code in the pull request is complient with Black then this Action does nothing. -# Othewrwise, Black is run and its changes are committed back to the incoming pull request. +# GitHub Action that uses Black to reformat Python code (if needed) when doing a git push. +# If all Python code in the repo is complient with Black then this Action does nothing. +# Otherwise, Black is run and its changes are committed to the repo. # https://github.com/cclauss/autoblack -name: autoblack -on: [pull_request] +name: autoblack_push +on: [push] jobs: build: runs-on: ubuntu-latest - strategy: - max-parallel: 1 - matrix: - python-version: [3.7] steps: - uses: actions/checkout@v1 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v1 - with: - python-version: ${{ matrix.python-version }} - - name: Install psf/black - run: pip install black - - name: Run black --check . - run: black --check . - - name: If needed, commit black changes to the pull request + - uses: actions/setup-python@v1 + - run: pip install black + - run: black --check . + - name: If needed, commit black changes to a new pull request if: failure() run: | black . - git config --global user.name 'autoblack' - git config --global user.email 'cclauss@users.noreply.github.com' + git config --global user.name github-actions + git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY - git checkout $GITHUB_HEAD_REF - git commit -am "fixup: Format Python code with psf/black" - git push + git commit -am "fixup! Format Python code with psf/black push" + git push --force origin HEAD:$GITHUB_REF diff --git a/ciphers/deterministic_miller_rabin.py b/ciphers/deterministic_miller_rabin.py index 37845d6c9b41..e604a7b84166 100644 --- a/ciphers/deterministic_miller_rabin.py +++ b/ciphers/deterministic_miller_rabin.py @@ -41,19 +41,21 @@ def miller_rabin(n, allow_probable=False): "A return value of True indicates a probable prime." ) # array bounds provided by analysis - bounds = [2_047, - 1_373_653, - 25_326_001, - 3_215_031_751, - 2_152_302_898_747, - 3_474_749_660_383, - 341_550_071_728_321, - 1, - 3_825_123_056_546_413_051, - 1, - 1, - 318_665_857_834_031_151_167_461, - 3_317_044_064_679_887_385_961_981] + bounds = [ + 2_047, + 1_373_653, + 25_326_001, + 3_215_031_751, + 2_152_302_898_747, + 3_474_749_660_383, + 341_550_071_728_321, + 1, + 3_825_123_056_546_413_051, + 1, + 1, + 318_665_857_834_031_151_167_461, + 3_317_044_064_679_887_385_961_981, + ] primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(bounds, 1): @@ -131,5 +133,5 @@ def test_miller_rabin(): # upper limit for probabilistic test -if __name__ == '__main__': +if __name__ == "__main__": test_miller_rabin() diff --git a/ciphers/diffie.py b/ciphers/diffie.py index 6b0cca1f45e6..c349aaa2f3b8 100644 --- a/ciphers/diffie.py +++ b/ciphers/diffie.py @@ -1,8 +1,8 @@ def find_primitive(n): for r in range(1, n): li = [] - for x in range(n-1): - val = pow(r,x,n) + for x in range(n - 1): + val = pow(r, x, n) if val in li: break li.append(val) @@ -11,16 +11,15 @@ def find_primitive(n): if __name__ == "__main__": - q = int(input('Enter a prime number q: ')) + q = int(input("Enter a prime number q: ")) a = find_primitive(q) - a_private = int(input('Enter private key of A: ')) + a_private = int(input("Enter private key of A: ")) a_public = pow(a, a_private, q) - b_private = int(input('Enter private key of B: ')) + b_private = int(input("Enter private key of B: ")) b_public = pow(a, b_private, q) a_secret = pow(b_public, a_private, q) b_secret = pow(a_public, b_private, q) - print('The key value generated by A is: ', a_secret) - print('The key value generated by B is: ', b_secret) - + print("The key value generated by A is: ", a_secret) + print("The key value generated by B is: ", b_secret) diff --git a/data_structures/binary_tree/basic_binary_tree.py b/data_structures/binary_tree/basic_binary_tree.py index 6b7de7803704..4257a8e3c5b3 100644 --- a/data_structures/binary_tree/basic_binary_tree.py +++ b/data_structures/binary_tree/basic_binary_tree.py @@ -22,7 +22,7 @@ def display(tree): # In Order traversal of the tree def depth_of_tree( - tree + tree, ): # This is the recursive function to find the depth of binary tree. if tree is None: return 0 @@ -36,7 +36,7 @@ def depth_of_tree( def is_full_binary_tree( - tree + tree, ): # This functions returns that is it full binary tree or not? if tree is None: return True diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index b603eec3ef3c..6bc2403f7102 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -172,7 +172,6 @@ def main(): args = input() print("good by!") - if __name__ == "__main__": diff --git a/data_structures/heap/min_heap.py b/data_structures/heap/min_heap.py index 6184d83be774..e68853837faa 100644 --- a/data_structures/heap/min_heap.py +++ b/data_structures/heap/min_heap.py @@ -77,9 +77,10 @@ def sift_down(self, idx, array): if smallest != idx: array[idx], array[smallest] = array[smallest], array[idx] - self.idx_of_element[array[idx]], self.idx_of_element[ - array[smallest] - ] = ( + ( + self.idx_of_element[array[idx]], + self.idx_of_element[array[smallest]], + ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 38fff867b416..2a95a004587c 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -23,9 +23,7 @@ def insertHead(self, x): def deleteHead(self): temp = self.head self.head = self.head.next # oldHead <--> 2ndElement(head) - self.head.previous = ( - None - ) # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed + self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed if self.head is None: self.tail = None # if empty linked list return temp diff --git a/data_structures/linked_list/from_sequence.py b/data_structures/linked_list/from_sequence.py index e6d335e81326..94b44f15037f 100644 --- a/data_structures/linked_list/from_sequence.py +++ b/data_structures/linked_list/from_sequence.py @@ -1,6 +1,7 @@ # Recursive Prorgam to create a Linked List from a sequence and # print a string representation of it. + class Node: def __init__(self, data=None): self.data = data @@ -17,7 +18,6 @@ def __repr__(self): return string_rep - def make_linked_list(elements_list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List.""" @@ -36,8 +36,7 @@ def make_linked_list(elements_list): return head - -list_data = [1,3,5,32,44,12,43] +list_data = [1, 3, 5, 32, 44, 12, 43] print(f"List: {list_data}") print("Creating Linked List from List.") linked_list = make_linked_list(list_data) diff --git a/data_structures/linked_list/print_reverse.py b/data_structures/linked_list/print_reverse.py index 6572ccd8f4a9..c3a72b6b7a23 100644 --- a/data_structures/linked_list/print_reverse.py +++ b/data_structures/linked_list/print_reverse.py @@ -1,5 +1,6 @@ # Program to print the elements of a linked list in reverse + class Node: def __init__(self, data=None): self.data = data @@ -16,7 +17,6 @@ def __repr__(self): return string_rep - def make_linked_list(elements_list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List.""" @@ -34,6 +34,7 @@ def make_linked_list(elements_list): current = current.next return head + def print_reverse(head_node): """Prints the elements of the given Linked List in reverse order""" @@ -46,8 +47,7 @@ def print_reverse(head_node): print(head_node.data) - -list_data = [14,52,14,12,43] +list_data = [14, 52, 14, 12, 43] linked_list = make_linked_list(list_data) print("Linked List:") print(linked_list) diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index 6d12f1c7caf0..81b7f8f8ff17 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -48,8 +48,9 @@ def longest_subsequence(array: List[int]) -> List[int]: # This function is recu return temp_array else: return longest_subseq - + if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py index 4b06e0d885f2..46790a5a8d41 100644 --- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py @@ -6,6 +6,7 @@ ############################# from typing import List + def CeilIndex(v, l, r, key): while r - l > 1: m = (l + r) // 2 @@ -49,4 +50,5 @@ def LongestIncreasingSubsequenceLength(v: List[int]) -> int: if __name__ == "__main__": import doctest + doctest.testmod() diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index f7c8209718ef..7350eaf373cb 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -75,6 +75,7 @@ def max_sub_array(nums: List[int]) -> int: import time import matplotlib.pyplot as plt from random import randint + inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] tim = [] for i in inputs: diff --git a/file_transfer/send_file.py b/file_transfer/send_file.py index ebc075a30ad4..6494114a9072 100644 --- a/file_transfer/send_file.py +++ b/file_transfer/send_file.py @@ -2,8 +2,8 @@ import socket # Import socket module ONE_CONNECTION_ONLY = ( - True - ) # Set this to False if you wish to continuously accept connections + True # Set this to False if you wish to continuously accept connections + ) filename = "mytext.txt" port = 12312 # Reserve a port for your service. diff --git a/maths/ceil.py b/maths/ceil.py index 3e46f1474dcf..ff136f685524 100644 --- a/maths/ceil.py +++ b/maths/ceil.py @@ -9,10 +9,12 @@ def ceil(x) -> int: >>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) True """ - return x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x) + return ( + x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x) + ) -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/maths/factorial_python.py b/maths/factorial_python.py index b9adfdbaeaff..46688261af56 100644 --- a/maths/factorial_python.py +++ b/maths/factorial_python.py @@ -28,7 +28,7 @@ def factorial(input_number: int) -> int: return result -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py index 013560b28b42..4f7074d16587 100644 --- a/maths/factorial_recursive.py +++ b/maths/factorial_recursive.py @@ -24,7 +24,7 @@ def factorial(n: int) -> int: return 1 if n == 0 or n == 1 else n * factorial(n - 1) -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/maths/floor.py b/maths/floor.py index a9b680b37b97..ae6e5129a6ff 100644 --- a/maths/floor.py +++ b/maths/floor.py @@ -9,10 +9,12 @@ def floor(x) -> int: >>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) True """ - return x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1) + return ( + x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1) + ) -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/maths/gaussian.py b/maths/gaussian.py index e5f55dfaffd1..ffea20fb2ba1 100644 --- a/maths/gaussian.py +++ b/maths/gaussian.py @@ -50,7 +50,7 @@ def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: >>> gaussian(2523, mu=234234, sigma=3425) 0.0 """ - return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2) + return 1 / sqrt(2 * pi * sigma ** 2) * exp(-((x - mu) ** 2) / 2 * sigma ** 2) if __name__ == "__main__": diff --git a/maths/perfect_square.py b/maths/perfect_square.py index 9b868c5de98a..3e7a1c07a75f 100644 --- a/maths/perfect_square.py +++ b/maths/perfect_square.py @@ -21,7 +21,7 @@ def perfect_square(num: int) -> bool: return math.sqrt(num) * math.sqrt(num) == num -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/neural_network/gan.py b/neural_network/gan.py index edfff420547b..76f46314c4ba 100644 --- a/neural_network/gan.py +++ b/neural_network/gan.py @@ -7,28 +7,42 @@ random_numer = 42 np.random.seed(random_numer) + + def ReLu(x): - mask = (x>0) * 1.0 - return mask *x + mask = (x > 0) * 1.0 + return mask * x + + def d_ReLu(x): - mask = (x>0) * 1.0 + mask = (x > 0) * 1.0 return mask + def arctan(x): return np.arctan(x) + + def d_arctan(x): return 1 / (1 + x ** 2) + def log(x): - return 1 / ( 1+ np.exp(-1*x)) + return 1 / (1 + np.exp(-1 * x)) + + def d_log(x): return log(x) * (1 - log(x)) + def tanh(x): return np.tanh(x) + + def d_tanh(x): return 1 - np.tanh(x) ** 2 + def plot(samples): fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) @@ -36,104 +50,140 @@ def plot(samples): for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) - plt.axis('off') + plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) - ax.set_aspect('equal') - plt.imshow(sample.reshape(28, 28), cmap='Greys_r') + ax.set_aspect("equal") + plt.imshow(sample.reshape(28, 28), cmap="Greys_r") return fig - # 1. Load Data and declare hyper -print('--------- Load Data ----------') -mnist = input_data.read_data_sets('MNIST_data', one_hot=False) +print("--------- Load Data ----------") +mnist = input_data.read_data_sets("MNIST_data", one_hot=False) temp = mnist.test images, labels = temp.images, temp.labels -images, labels = shuffle(np.asarray(images),np.asarray(labels)) +images, labels = shuffle(np.asarray(images), np.asarray(labels)) num_epoch = 10 learing_rate = 0.00009 G_input = 100 -hidden_input,hidden_input2,hidden_input3 = 128,256,346 -hidden_input4,hidden_input5,hidden_input6 = 480,560,686 +hidden_input, hidden_input2, hidden_input3 = 128, 256, 346 +hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686 - -print('--------- Declare Hyper Parameters ----------') +print("--------- Declare Hyper Parameters ----------") # 2. Declare Weights -D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002 +D_W1 = ( + np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002 +) # D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 D_b1 = np.zeros(hidden_input) -D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 +D_W2 = ( + np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0))) + * 0.002 +) # D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 D_b2 = np.zeros(1) -G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002 +G_W1 = ( + np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0))) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b1 = np.zeros(hidden_input) -G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 +G_W2 = ( + np.random.normal( + size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0)) + ) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b2 = np.zeros(hidden_input2) -G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002 +G_W3 = ( + np.random.normal( + size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0)) + ) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b3 = np.zeros(hidden_input3) -G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002 +G_W4 = ( + np.random.normal( + size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0)) + ) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b4 = np.zeros(hidden_input4) -G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002 +G_W5 = ( + np.random.normal( + size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0)) + ) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b5 = np.zeros(hidden_input5) -G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002 +G_W6 = ( + np.random.normal( + size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0)) + ) + * 0.002 +) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b6 = np.zeros(hidden_input6) -G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002 +G_W7 = ( + np.random.normal( + size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0)) + ) + * 0.002 +) # G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 G_b7 = np.zeros(784) # 3. For Adam Optimzier -v1,m1 = 0,0 -v2,m2 = 0,0 -v3,m3 = 0,0 -v4,m4 = 0,0 +v1, m1 = 0, 0 +v2, m2 = 0, 0 +v3, m3 = 0, 0 +v4, m4 = 0, 0 -v5,m5 = 0,0 -v6,m6 = 0,0 -v7,m7 = 0,0 -v8,m8 = 0,0 -v9,m9 = 0,0 -v10,m10 = 0,0 -v11,m11 = 0,0 -v12,m12 = 0,0 +v5, m5 = 0, 0 +v6, m6 = 0, 0 +v7, m7 = 0, 0 +v8, m8 = 0, 0 +v9, m9 = 0, 0 +v10, m10 = 0, 0 +v11, m11 = 0, 0 +v12, m12 = 0, 0 -v13,m13 = 0,0 -v14,m14 = 0,0 +v13, m13 = 0, 0 +v14, m14 = 0, 0 -v15,m15 = 0,0 -v16,m16 = 0,0 +v15, m15 = 0, 0 +v16, m16 = 0, 0 -v17,m17 = 0,0 -v18,m18 = 0,0 +v17, m17 = 0, 0 +v18, m18 = 0, 0 -beta_1,beta_2,eps = 0.9,0.999,0.00000001 +beta_1, beta_2, eps = 0.9, 0.999, 0.00000001 -print('--------- Started Training ----------') +print("--------- Started Training ----------") for iter in range(num_epoch): random_int = np.random.randint(len(images) - 5) - current_image = np.expand_dims(images[random_int],axis=0) + current_image = np.expand_dims(images[random_int], axis=0) # Func: Generate The first Fake Data - Z = np.random.uniform(-1., 1., size=[1, G_input]) + Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) Gl2 = Gl1A.dot(G_W2) + G_b2 @@ -164,38 +214,38 @@ def plot(samples): Dl2_fA = log(Dl2_f) # Func: Cost D - D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA) + D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA) # Func: Gradient - grad_f_w2_part_1 = 1/(1.0- Dl2_fA) - grad_f_w2_part_2 = d_log(Dl2_f) - grad_f_w2_part_3 = Dl1_fA - grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) + grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA) + grad_f_w2_part_2 = d_log(Dl2_f) + grad_f_w2_part_3 = Dl1_fA + grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 - grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) - grad_f_w1_part_2 = d_ReLu(Dl1_f) - grad_f_w1_part_3 = current_fake_data - grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) - grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 + grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) + grad_f_w1_part_2 = d_ReLu(Dl1_f) + grad_f_w1_part_3 = current_fake_data + grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) + grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 - grad_r_w2_part_1 = - 1/Dl2_rA - grad_r_w2_part_2 = d_log(Dl2_r) - grad_r_w2_part_3 = Dl1_rA - grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) - grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 + grad_r_w2_part_1 = -1 / Dl2_rA + grad_r_w2_part_2 = d_log(Dl2_r) + grad_r_w2_part_3 = Dl1_rA + grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) + grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 - grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) - grad_r_w1_part_2 = d_ReLu(Dl1_r) - grad_r_w1_part_3 = current_image - grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) - grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 + grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) + grad_r_w1_part_2 = d_ReLu(Dl1_r) + grad_r_w1_part_3 = current_image + grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) + grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 - grad_w1 =grad_f_w1 + grad_r_w1 - grad_b1 =grad_f_b1 + grad_r_b1 + grad_w1 = grad_f_w1 + grad_r_w1 + grad_b1 = grad_f_b1 + grad_r_b1 - grad_w2 =grad_f_w2 + grad_r_w2 - grad_b2 =grad_f_b2 + grad_r_b2 + grad_w2 = grad_f_w2 + grad_r_w2 + grad_b2 = grad_f_b2 + grad_r_b2 # ---- Update Gradient ---- m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 @@ -210,14 +260,22 @@ def plot(samples): m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 - D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1)) - D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1)) + D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * ( + m1 / (1 - beta_1) + ) + D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * ( + m2 / (1 - beta_1) + ) - D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1)) - D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1)) + D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * ( + m3 / (1 - beta_1) + ) + D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * ( + m4 / (1 - beta_1) + ) # Func: Forward Feed for G - Z = np.random.uniform(-1., 1., size=[1, G_input]) + Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) Gl2 = Gl1A.dot(G_W2) + G_b2 @@ -244,7 +302,9 @@ def plot(samples): G_cost = -np.log(Dl2_A) # Func: Gradient - grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T) + grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot( + D_W1.T + ) grad_G_w7_part_2 = d_log(Gl7) grad_G_w7_part_3 = Gl6A grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) @@ -254,31 +314,31 @@ def plot(samples): grad_G_w6_part_2 = d_ReLu(Gl6) grad_G_w6_part_3 = Gl5A grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) - grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2) + grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2 grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) grad_G_w5_part_2 = d_tanh(Gl5) grad_G_w5_part_3 = Gl4A grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) - grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2) + grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2 grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) grad_G_w4_part_2 = d_ReLu(Gl4) grad_G_w4_part_3 = Gl3A grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) - grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2) + grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2 grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) grad_G_w3_part_2 = d_arctan(Gl3) grad_G_w3_part_3 = Gl2A grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) - grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2) + grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2 grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) grad_G_w2_part_2 = d_ReLu(Gl2) grad_G_w2_part_3 = Gl1A grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) - grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2) + grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2 grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) grad_G_w1_part_2 = d_arctan(Gl1) @@ -329,29 +389,57 @@ def plot(samples): m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 - G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1)) - G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1)) - - G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1)) - G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1)) - - G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1)) - G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1)) - - G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1)) - G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1)) - - G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1)) - G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1)) - - G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1)) - G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1)) - - G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1)) - G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1)) + G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * ( + m5 / (1 - beta_1) + ) + G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * ( + m6 / (1 - beta_1) + ) + + G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * ( + m7 / (1 - beta_1) + ) + G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * ( + m8 / (1 - beta_1) + ) + + G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * ( + m9 / (1 - beta_1) + ) + G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * ( + m10 / (1 - beta_1) + ) + + G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * ( + m11 / (1 - beta_1) + ) + G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * ( + m12 / (1 - beta_1) + ) + + G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * ( + m13 / (1 - beta_1) + ) + G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * ( + m14 / (1 - beta_1) + ) + + G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * ( + m15 / (1 - beta_1) + ) + G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * ( + m16 / (1 - beta_1) + ) + + G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * ( + m17 / (1 - beta_1) + ) + G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * ( + m18 / (1 - beta_1) + ) # --- Print Error ---- - #print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') + # print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') if iter == 0: learing_rate = learing_rate * 0.01 @@ -359,12 +447,20 @@ def plot(samples): learing_rate = learing_rate * 0.01 # ---- Print to Out put ---- - if iter%10 == 0: - - print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') - print('--------- Show Example Result See Tab Above ----------') - print('--------- Wait for the image to load ---------') - Z = np.random.uniform(-1., 1., size=[16, G_input]) + if iter % 10 == 0: + + print( + "Current Iter: ", + iter, + " Current D cost:", + D_cost, + " Current G cost: ", + G_cost, + end="\r", + ) + print("--------- Show Example Result See Tab Above ----------") + print("--------- Wait for the image to load ---------") + Z = np.random.uniform(-1.0, 1.0, size=[16, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) @@ -384,8 +480,19 @@ def plot(samples): current_fake_data = log(Gl7) fig = plot(current_fake_data) - fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \ - "_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate) - ), bbox_inches='tight') -#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 + fig.savefig( + "Click_Me_{}.png".format( + str(iter).zfill(3) + + "_Ginput_" + + str(G_input) + + "_hiddenone" + + str(hidden_input) + + "_hiddentwo" + + str(hidden_input2) + + "_LR_" + + str(learing_rate) + ), + bbox_inches="tight", + ) +# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 # -- end code -- diff --git a/neural_network/input_data.py b/neural_network/input_data.py index 983063f0b72d..5e6c433aa97d 100644 --- a/neural_network/input_data.py +++ b/neural_network/input_data.py @@ -34,20 +34,20 @@ from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated -_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) +_Datasets = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ -DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' +DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/" def _read32(bytestream): - dt = numpy.dtype(numpy.uint32).newbyteorder('>') - return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] + dt = numpy.dtype(numpy.uint32).newbyteorder(">") + return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] -@deprecated(None, 'Please use tf.data to implement this functionality.') +@deprecated(None, "Please use tf.data to implement this functionality.") def _extract_images(f): - """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. + """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. Args: f: A file object that can be passed into a gzip reader. @@ -59,34 +59,35 @@ def _extract_images(f): ValueError: If the bytestream does not start with 2051. """ - print('Extracting', f.name) - with gzip.GzipFile(fileobj=f) as bytestream: - magic = _read32(bytestream) - if magic != 2051: - raise ValueError('Invalid magic number %d in MNIST image file: %s' % - (magic, f.name)) - num_images = _read32(bytestream) - rows = _read32(bytestream) - cols = _read32(bytestream) - buf = bytestream.read(rows * cols * num_images) - data = numpy.frombuffer(buf, dtype=numpy.uint8) - data = data.reshape(num_images, rows, cols, 1) - return data - - -@deprecated(None, 'Please use tf.one_hot on tensors.') + print("Extracting", f.name) + with gzip.GzipFile(fileobj=f) as bytestream: + magic = _read32(bytestream) + if magic != 2051: + raise ValueError( + "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) + ) + num_images = _read32(bytestream) + rows = _read32(bytestream) + cols = _read32(bytestream) + buf = bytestream.read(rows * cols * num_images) + data = numpy.frombuffer(buf, dtype=numpy.uint8) + data = data.reshape(num_images, rows, cols, 1) + return data + + +@deprecated(None, "Please use tf.one_hot on tensors.") def _dense_to_one_hot(labels_dense, num_classes): - """Convert class labels from scalars to one-hot vectors.""" - num_labels = labels_dense.shape[0] - index_offset = numpy.arange(num_labels) * num_classes - labels_one_hot = numpy.zeros((num_labels, num_classes)) - labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 - return labels_one_hot + """Convert class labels from scalars to one-hot vectors.""" + num_labels = labels_dense.shape[0] + index_offset = numpy.arange(num_labels) * num_classes + labels_one_hot = numpy.zeros((num_labels, num_classes)) + labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 + return labels_one_hot -@deprecated(None, 'Please use tf.data to implement this functionality.') +@deprecated(None, "Please use tf.data to implement this functionality.") def _extract_labels(f, one_hot=False, num_classes=10): - """Extract the labels into a 1D uint8 numpy array [index]. + """Extract the labels into a 1D uint8 numpy array [index]. Args: f: A file object that can be passed into a gzip reader. @@ -99,37 +100,43 @@ def _extract_labels(f, one_hot=False, num_classes=10): Raises: ValueError: If the bystream doesn't start with 2049. """ - print('Extracting', f.name) - with gzip.GzipFile(fileobj=f) as bytestream: - magic = _read32(bytestream) - if magic != 2049: - raise ValueError('Invalid magic number %d in MNIST label file: %s' % - (magic, f.name)) - num_items = _read32(bytestream) - buf = bytestream.read(num_items) - labels = numpy.frombuffer(buf, dtype=numpy.uint8) - if one_hot: - return _dense_to_one_hot(labels, num_classes) - return labels + print("Extracting", f.name) + with gzip.GzipFile(fileobj=f) as bytestream: + magic = _read32(bytestream) + if magic != 2049: + raise ValueError( + "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) + ) + num_items = _read32(bytestream) + buf = bytestream.read(num_items) + labels = numpy.frombuffer(buf, dtype=numpy.uint8) + if one_hot: + return _dense_to_one_hot(labels, num_classes) + return labels class _DataSet(object): - """Container class for a _DataSet (deprecated). + """Container class for a _DataSet (deprecated). THIS CLASS IS DEPRECATED. """ - @deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py' - ' from tensorflow/models.') - def __init__(self, - images, - labels, - fake_data=False, - one_hot=False, - dtype=dtypes.float32, - reshape=True, - seed=None): - """Construct a _DataSet. + @deprecated( + None, + "Please use alternatives such as official/mnist/_DataSet.py" + " from tensorflow/models.", + ) + def __init__( + self, + images, + labels, + fake_data=False, + one_hot=False, + dtype=dtypes.float32, + reshape=True, + seed=None, + ): + """Construct a _DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into @@ -146,101 +153,105 @@ def __init__(self, reshape: Bool. If True returned images are returned flattened to vectors. seed: The random seed to use. """ - seed1, seed2 = random_seed.get_seed(seed) - # If op level seed is not set, use whatever graph level seed is returned - numpy.random.seed(seed1 if seed is None else seed2) - dtype = dtypes.as_dtype(dtype).base_dtype - if dtype not in (dtypes.uint8, dtypes.float32): - raise TypeError('Invalid image dtype %r, expected uint8 or float32' % - dtype) - if fake_data: - self._num_examples = 10000 - self.one_hot = one_hot - else: - assert images.shape[0] == labels.shape[0], ( - 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) - self._num_examples = images.shape[0] - - # Convert shape from [num examples, rows, columns, depth] - # to [num examples, rows*columns] (assuming depth == 1) - if reshape: - assert images.shape[3] == 1 - images = images.reshape(images.shape[0], - images.shape[1] * images.shape[2]) - if dtype == dtypes.float32: - # Convert from [0, 255] -> [0.0, 1.0]. - images = images.astype(numpy.float32) - images = numpy.multiply(images, 1.0 / 255.0) - self._images = images - self._labels = labels - self._epochs_completed = 0 - self._index_in_epoch = 0 - - @property - def images(self): - return self._images - - @property - def labels(self): - return self._labels - - @property - def num_examples(self): - return self._num_examples - - @property - def epochs_completed(self): - return self._epochs_completed - - def next_batch(self, batch_size, fake_data=False, shuffle=True): - """Return the next `batch_size` examples from this data set.""" - if fake_data: - fake_image = [1] * 784 - if self.one_hot: - fake_label = [1] + [0] * 9 - else: - fake_label = 0 - return [fake_image for _ in xrange(batch_size) - ], [fake_label for _ in xrange(batch_size)] - start = self._index_in_epoch - # Shuffle for the first epoch - if self._epochs_completed == 0 and start == 0 and shuffle: - perm0 = numpy.arange(self._num_examples) - numpy.random.shuffle(perm0) - self._images = self.images[perm0] - self._labels = self.labels[perm0] - # Go to the next epoch - if start + batch_size > self._num_examples: - # Finished epoch - self._epochs_completed += 1 - # Get the rest examples in this epoch - rest_num_examples = self._num_examples - start - images_rest_part = self._images[start:self._num_examples] - labels_rest_part = self._labels[start:self._num_examples] - # Shuffle the data - if shuffle: - perm = numpy.arange(self._num_examples) - numpy.random.shuffle(perm) - self._images = self.images[perm] - self._labels = self.labels[perm] - # Start next epoch - start = 0 - self._index_in_epoch = batch_size - rest_num_examples - end = self._index_in_epoch - images_new_part = self._images[start:end] - labels_new_part = self._labels[start:end] - return numpy.concatenate((images_rest_part, images_new_part), - axis=0), numpy.concatenate( - (labels_rest_part, labels_new_part), axis=0) - else: - self._index_in_epoch += batch_size - end = self._index_in_epoch - return self._images[start:end], self._labels[start:end] - - -@deprecated(None, 'Please write your own downloading logic.') + seed1, seed2 = random_seed.get_seed(seed) + # If op level seed is not set, use whatever graph level seed is returned + numpy.random.seed(seed1 if seed is None else seed2) + dtype = dtypes.as_dtype(dtype).base_dtype + if dtype not in (dtypes.uint8, dtypes.float32): + raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) + if fake_data: + self._num_examples = 10000 + self.one_hot = one_hot + else: + assert ( + images.shape[0] == labels.shape[0] + ), "images.shape: %s labels.shape: %s" % (images.shape, labels.shape) + self._num_examples = images.shape[0] + + # Convert shape from [num examples, rows, columns, depth] + # to [num examples, rows*columns] (assuming depth == 1) + if reshape: + assert images.shape[3] == 1 + images = images.reshape( + images.shape[0], images.shape[1] * images.shape[2] + ) + if dtype == dtypes.float32: + # Convert from [0, 255] -> [0.0, 1.0]. + images = images.astype(numpy.float32) + images = numpy.multiply(images, 1.0 / 255.0) + self._images = images + self._labels = labels + self._epochs_completed = 0 + self._index_in_epoch = 0 + + @property + def images(self): + return self._images + + @property + def labels(self): + return self._labels + + @property + def num_examples(self): + return self._num_examples + + @property + def epochs_completed(self): + return self._epochs_completed + + def next_batch(self, batch_size, fake_data=False, shuffle=True): + """Return the next `batch_size` examples from this data set.""" + if fake_data: + fake_image = [1] * 784 + if self.one_hot: + fake_label = [1] + [0] * 9 + else: + fake_label = 0 + return ( + [fake_image for _ in xrange(batch_size)], + [fake_label for _ in xrange(batch_size)], + ) + start = self._index_in_epoch + # Shuffle for the first epoch + if self._epochs_completed == 0 and start == 0 and shuffle: + perm0 = numpy.arange(self._num_examples) + numpy.random.shuffle(perm0) + self._images = self.images[perm0] + self._labels = self.labels[perm0] + # Go to the next epoch + if start + batch_size > self._num_examples: + # Finished epoch + self._epochs_completed += 1 + # Get the rest examples in this epoch + rest_num_examples = self._num_examples - start + images_rest_part = self._images[start : self._num_examples] + labels_rest_part = self._labels[start : self._num_examples] + # Shuffle the data + if shuffle: + perm = numpy.arange(self._num_examples) + numpy.random.shuffle(perm) + self._images = self.images[perm] + self._labels = self.labels[perm] + # Start next epoch + start = 0 + self._index_in_epoch = batch_size - rest_num_examples + end = self._index_in_epoch + images_new_part = self._images[start:end] + labels_new_part = self._labels[start:end] + return ( + numpy.concatenate((images_rest_part, images_new_part), axis=0), + numpy.concatenate((labels_rest_part, labels_new_part), axis=0), + ) + else: + self._index_in_epoch += batch_size + end = self._index_in_epoch + return self._images[start:end], self._labels[start:end] + + +@deprecated(None, "Please write your own downloading logic.") def _maybe_download(filename, work_directory, source_url): - """Download the data from source url, unless it's already here. + """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. @@ -250,83 +261,90 @@ def _maybe_download(filename, work_directory, source_url): Returns: Path to resulting file. """ - if not gfile.Exists(work_directory): - gfile.MakeDirs(work_directory) - filepath = os.path.join(work_directory, filename) - if not gfile.Exists(filepath): - urllib.request.urlretrieve(source_url, filepath) - with gfile.GFile(filepath) as f: - size = f.size() - print('Successfully downloaded', filename, size, 'bytes.') - return filepath - - -@deprecated(None, 'Please use alternatives such as:' - ' tensorflow_datasets.load(\'mnist\')') -def read_data_sets(train_dir, - fake_data=False, - one_hot=False, - dtype=dtypes.float32, - reshape=True, - validation_size=5000, - seed=None, - source_url=DEFAULT_SOURCE_URL): - if fake_data: - - def fake(): - return _DataSet([], [], - fake_data=True, - one_hot=one_hot, - dtype=dtype, - seed=seed) - - train = fake() - validation = fake() - test = fake() - return _Datasets(train=train, validation=validation, test=test) - - if not source_url: # empty string check - source_url = DEFAULT_SOURCE_URL - - train_images_file = 'train-images-idx3-ubyte.gz' - train_labels_file = 'train-labels-idx1-ubyte.gz' - test_images_file = 't10k-images-idx3-ubyte.gz' - test_labels_file = 't10k-labels-idx1-ubyte.gz' - - local_file = _maybe_download(train_images_file, train_dir, - source_url + train_images_file) - with gfile.Open(local_file, 'rb') as f: - train_images = _extract_images(f) - - local_file = _maybe_download(train_labels_file, train_dir, - source_url + train_labels_file) - with gfile.Open(local_file, 'rb') as f: - train_labels = _extract_labels(f, one_hot=one_hot) - - local_file = _maybe_download(test_images_file, train_dir, - source_url + test_images_file) - with gfile.Open(local_file, 'rb') as f: - test_images = _extract_images(f) - - local_file = _maybe_download(test_labels_file, train_dir, - source_url + test_labels_file) - with gfile.Open(local_file, 'rb') as f: - test_labels = _extract_labels(f, one_hot=one_hot) - - if not 0 <= validation_size <= len(train_images): - raise ValueError( - 'Validation size should be between 0 and {}. Received: {}.'.format( - len(train_images), validation_size)) - - validation_images = train_images[:validation_size] - validation_labels = train_labels[:validation_size] - train_images = train_images[validation_size:] - train_labels = train_labels[validation_size:] - - options = dict(dtype=dtype, reshape=reshape, seed=seed) + if not gfile.Exists(work_directory): + gfile.MakeDirs(work_directory) + filepath = os.path.join(work_directory, filename) + if not gfile.Exists(filepath): + urllib.request.urlretrieve(source_url, filepath) + with gfile.GFile(filepath) as f: + size = f.size() + print("Successfully downloaded", filename, size, "bytes.") + return filepath + + +@deprecated( + None, "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" +) +def read_data_sets( + train_dir, + fake_data=False, + one_hot=False, + dtype=dtypes.float32, + reshape=True, + validation_size=5000, + seed=None, + source_url=DEFAULT_SOURCE_URL, +): + if fake_data: - train = _DataSet(train_images, train_labels, **options) - validation = _DataSet(validation_images, validation_labels, **options) - test = _DataSet(test_images, test_labels, **options) + def fake(): + return _DataSet( + [], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed + ) + + train = fake() + validation = fake() + test = fake() + return _Datasets(train=train, validation=validation, test=test) + + if not source_url: # empty string check + source_url = DEFAULT_SOURCE_URL + + train_images_file = "train-images-idx3-ubyte.gz" + train_labels_file = "train-labels-idx1-ubyte.gz" + test_images_file = "t10k-images-idx3-ubyte.gz" + test_labels_file = "t10k-labels-idx1-ubyte.gz" + + local_file = _maybe_download( + train_images_file, train_dir, source_url + train_images_file + ) + with gfile.Open(local_file, "rb") as f: + train_images = _extract_images(f) + + local_file = _maybe_download( + train_labels_file, train_dir, source_url + train_labels_file + ) + with gfile.Open(local_file, "rb") as f: + train_labels = _extract_labels(f, one_hot=one_hot) + + local_file = _maybe_download( + test_images_file, train_dir, source_url + test_images_file + ) + with gfile.Open(local_file, "rb") as f: + test_images = _extract_images(f) + + local_file = _maybe_download( + test_labels_file, train_dir, source_url + test_labels_file + ) + with gfile.Open(local_file, "rb") as f: + test_labels = _extract_labels(f, one_hot=one_hot) + + if not 0 <= validation_size <= len(train_images): + raise ValueError( + "Validation size should be between 0 and {}. Received: {}.".format( + len(train_images), validation_size + ) + ) + + validation_images = train_images[:validation_size] + validation_labels = train_labels[:validation_size] + train_images = train_images[validation_size:] + train_labels = train_labels[validation_size:] + + options = dict(dtype=dtype, reshape=reshape, seed=seed) + + train = _DataSet(train_images, train_labels, **options) + validation = _DataSet(validation_images, validation_labels, **options) + test = _DataSet(test_images, test_labels, **options) - return _Datasets(train=train, validation=validation, test=test) + return _Datasets(train=train, validation=validation, test=test) diff --git a/other/least_recently_used.py b/other/least_recently_used.py index 2932e9c185e8..e1b5ab5bd380 100644 --- a/other/least_recently_used.py +++ b/other/least_recently_used.py @@ -2,12 +2,13 @@ import sys from collections import deque + class LRUCache: """ Page Replacement Algorithm, Least Recently Used (LRU) Caching.""" - dq_store = object() # Cache store of keys - key_reference_map = object() # References of the keys in cache - _MAX_CAPACITY: int = 10 # Maximum capacity of cache + dq_store = object() # Cache store of keys + key_reference_map = object() # References of the keys in cache + _MAX_CAPACITY: int = 10 # Maximum capacity of cache @abstractmethod def __init__(self, n: int): @@ -19,7 +20,7 @@ def __init__(self, n: int): if not n: LRUCache._MAX_CAPACITY = sys.maxsize elif n < 0: - raise ValueError('n should be an integer greater than 0.') + raise ValueError("n should be an integer greater than 0.") else: LRUCache._MAX_CAPACITY = n @@ -51,6 +52,7 @@ def display(self): for k in self.dq_store: print(k) + if __name__ == "__main__": lru_cache = LRUCache(4) lru_cache.refer(1) diff --git a/project_euler/problem_20/sol4.py b/project_euler/problem_20/sol4.py index 50ebca5a0bf7..4c597220f09b 100644 --- a/project_euler/problem_20/sol4.py +++ b/project_euler/problem_20/sol4.py @@ -27,7 +27,7 @@ def solution(n): """ fact = 1 result = 0 - for i in range(1,n + 1): + for i in range(1, n + 1): fact *= i for j in str(fact): diff --git a/project_euler/problem_99/sol1.py b/project_euler/problem_99/sol1.py index 6729927dfa63..713bf65caab7 100644 --- a/project_euler/problem_99/sol1.py +++ b/project_euler/problem_99/sol1.py @@ -14,15 +14,13 @@ from math import log10 -def find_largest(data_file: str="base_exp.txt") -> int: +def find_largest(data_file: str = "base_exp.txt") -> int: """ >>> find_largest() 709 """ largest = [0, 0] - for i, line in enumerate( - open(os.path.join(os.path.dirname(__file__), data_file)) - ): + for i, line in enumerate(open(os.path.join(os.path.dirname(__file__), data_file))): a, x = list(map(int, line.split(","))) if x * log10(a) > largest[0]: largest = [x * log10(a), i + 1] diff --git a/web_programming/get_imdbtop.py b/web_programming/get_imdbtop.py index 95fbeba7a772..522e423b4eab 100644 --- a/web_programming/get_imdbtop.py +++ b/web_programming/get_imdbtop.py @@ -3,8 +3,10 @@ def imdb_top(imdb_top_n): - base_url = (f"https://www.imdb.com/search/title?title_type=" - f"feature&sort=num_votes,desc&count={imdb_top_n}") + base_url = ( + f"https://www.imdb.com/search/title?title_type=" + f"feature&sort=num_votes,desc&count={imdb_top_n}" + ) source = BeautifulSoup(requests.get(base_url).content, "html.parser") for m in source.findAll("div", class_="lister-item mode-advanced"): print("\n" + m.h3.a.text) # movie's name From ea9bf0a90cb0a04ca5d51e1906e1d1afe52a4732 Mon Sep 17 00:00:00 2001 From: "Marvin M. Michum" <11682032+mrvnmchm@users.noreply.github.com> Date: Thu, 14 Nov 2019 14:27:31 -0500 Subject: [PATCH 441/594] directory_writer (#1) (#1549) * directory_writer * fixup: Format Python code with psf/black * fixup: DIRECTORY.md --- .github/workflows/directory_writer.yml | 25 +++++++++++++++++++++++++ DIRECTORY.md | 25 +++++++++++++++++++++++++ 2 files changed, 50 insertions(+) create mode 100644 .github/workflows/directory_writer.yml diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml new file mode 100644 index 000000000000..dcbb9c304e15 --- /dev/null +++ b/.github/workflows/directory_writer.yml @@ -0,0 +1,25 @@ +# The objective of this GitHub Action is to add a new DIRECTORY.md file to a pull request if needed. +name: directory_writer +on: [pull_request] +jobs: + build: + runs-on: ubuntu-latest + strategy: + max-parallel: 1 + matrix: + python-version: [3.7] + steps: + + - uses: actions/checkout@v1 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} + - name: Update DIRECTORY.md + run: | + scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md + git config --global user.name 'directory_writer' + git config --global user.email 'mrvnmchm@users.noreply.github.com' + git remote set-url origin https://x-access-token:${{ secrets.gh_token }}@github.com/$GITHUB_REPOSITORY + git checkout $GITHUB_HEAD_REF + if git diff-files --quiet; then echo 0; else git commit -am "fixup: DIRECTORY.md" && git push; fi diff --git a/DIRECTORY.md b/DIRECTORY.md index e2d74d39828f..04b785b2b833 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -8,6 +8,7 @@ * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) + * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) @@ -36,8 +37,11 @@ * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) + * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) + * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) + * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) @@ -71,6 +75,7 @@ * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) + * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) @@ -149,6 +154,7 @@ * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) + * [Max Sum Contigous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contigous_subsequence.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) @@ -228,13 +234,16 @@ * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) + * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) + * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) + * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) @@ -257,9 +266,11 @@ * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) + * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) @@ -293,6 +304,8 @@ ## Neural Network * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [Gan](https://github.com/TheAlgorithms/Python/blob/master/neural_network/gan.py) + * [Input Data](https://github.com/TheAlgorithms/Python/blob/master/neural_network/input_data.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other @@ -309,12 +322,14 @@ * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) + * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) + * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) @@ -390,6 +405,7 @@ * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol4.py) * Problem 21 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) * Problem 22 @@ -404,6 +420,9 @@ * Problem 25 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol3.py) + * Problem 27 + * [Problem 27 Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_27/problem_27_sol1.py) * Problem 28 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) * Problem 29 @@ -412,6 +431,8 @@ * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) * Problem 32 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_32/sol32.py) + * Problem 33 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_33/sol1.py) * Problem 36 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) * Problem 40 @@ -432,6 +453,8 @@ * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_67/sol1.py) * Problem 76 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) + * Problem 99 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_99/sol1.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) @@ -471,6 +494,7 @@ * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) + * [Recursive-Quick-Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive-quick-sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) @@ -494,3 +518,4 @@ ## Web Programming * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) + * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) From e3aa0f65e8a5a453e967ac2dc343c7cb96217548 Mon Sep 17 00:00:00 2001 From: Zizhou Zhang Date: Fri, 15 Nov 2019 06:29:54 +1100 Subject: [PATCH 442/594] fix implementation errors. (#1568) I revised my implementation and found out that I have miss a inner loop for t. x and y should be recalculated everytime when t is divisble by 2. I have also included a more readble source for this algorithm. --- ciphers/rsa_factorization.py | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/ciphers/rsa_factorization.py b/ciphers/rsa_factorization.py index 58bdc554a861..9ec34e6c5a17 100644 --- a/ciphers/rsa_factorization.py +++ b/ciphers/rsa_factorization.py @@ -4,6 +4,7 @@ The program can efficiently factor RSA prime number given the private key d and public key e. Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf +More readable source: https://www.di-mgt.com.au/rsa_factorize_n.html large number can take minutes to factor, therefore are not included in doctest. """ import math @@ -15,7 +16,7 @@ def rsafactor(d: int, e: int, N: int) -> List[int]: """ This function returns the factors of N, where p*q=N Return: [p, q] - + We call N the RSA modulus, e the encryption exponent, and d the decryption exponent. The pair (N, e) is the public key. As its name suggests, it is public and is used to encrypt messages. @@ -35,13 +36,17 @@ def rsafactor(d: int, e: int, N: int) -> List[int]: while p == 0: g = random.randint(2, N - 1) t = k - if t % 2 == 0: - t = t // 2 - x = (g ** t) % N - y = math.gcd(x - 1, N) - if x > 1 and y > 1: - p = y - q = N // y + while True: + if t % 2 == 0: + t = t // 2 + x = (g ** t) % N + y = math.gcd(x - 1, N) + if x > 1 and y > 1: + p = y + q = N // y + break # find the correct factors + else: + break # t is not divisible by 2, break and choose another g return sorted([p, q]) From e3f55aecce9380381099421dceba985f353df87f Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Fri, 15 Nov 2019 01:31:51 +0530 Subject: [PATCH 443/594] Remove Duplicate Script Added (#1570) * Added Remove duplicate script and updated requirements.txt * Requirements.txt Updated * Remove Duplicate Script Added * Directory Modified * Directory.md Updated --- DIRECTORY.md | 126 +++++++++++++++++++++++++++++++++++- strings/remove_duplicate.py | 20 ++++++ 2 files changed, 145 insertions(+), 1 deletion(-) create mode 100644 strings/remove_duplicate.py diff --git a/DIRECTORY.md b/DIRECTORY.md index 04b785b2b833..e807644b67db 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -45,9 +45,11 @@ * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) + * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) + * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) @@ -94,7 +96,9 @@ * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * Linked List * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue @@ -238,6 +242,7 @@ * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) + * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) @@ -251,6 +256,7 @@ * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) + * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) @@ -317,7 +323,6 @@ * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) - * [Food Wastage Analysis From 1961-2013 Fao](https://github.com/TheAlgorithms/Python/blob/master/other/food_wastage_analysis_from_1961-2013_fao.ipynb) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) @@ -353,6 +358,7 @@ * Problem 03 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol3.py) * Problem 04 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) @@ -371,6 +377,7 @@ * Problem 08 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol3.py) * Problem 09 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) @@ -506,16 +513,133 @@ ## Strings * [Aho-Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho-corasick.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) + * [Check Panagram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_panagram.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) +## Venv + * Lib + * Python3.7 + * Site-Packages + * Certifi + * [ Main ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/certifi/__main__.py) + * [Core](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/certifi/core.py) + * Chardet + * [Big5Freq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/big5freq.py) + * [Big5Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/big5prober.py) + * [Chardistribution](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/chardistribution.py) + * [Charsetgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/charsetgroupprober.py) + * [Charsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/charsetprober.py) + * Cli + * [Chardetect](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/cli/chardetect.py) + * [Codingstatemachine](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/codingstatemachine.py) + * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/compat.py) + * [Cp949Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/cp949prober.py) + * [Enums](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/enums.py) + * [Escprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/escprober.py) + * [Escsm](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/escsm.py) + * [Eucjpprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/eucjpprober.py) + * [Euckrfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euckrfreq.py) + * [Euckrprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euckrprober.py) + * [Euctwfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euctwfreq.py) + * [Euctwprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euctwprober.py) + * [Gb2312Freq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/gb2312freq.py) + * [Gb2312Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/gb2312prober.py) + * [Hebrewprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/hebrewprober.py) + * [Jisfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/jisfreq.py) + * [Jpcntx](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/jpcntx.py) + * [Langbulgarianmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langbulgarianmodel.py) + * [Langcyrillicmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langcyrillicmodel.py) + * [Langgreekmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langgreekmodel.py) + * [Langhebrewmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langhebrewmodel.py) + * [Langhungarianmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langhungarianmodel.py) + * [Langthaimodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langthaimodel.py) + * [Langturkishmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langturkishmodel.py) + * [Latin1Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/latin1prober.py) + * [Mbcharsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcharsetprober.py) + * [Mbcsgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcsgroupprober.py) + * [Mbcssm](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcssm.py) + * [Sbcharsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sbcharsetprober.py) + * [Sbcsgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sbcsgroupprober.py) + * [Sjisprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sjisprober.py) + * [Universaldetector](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/universaldetector.py) + * [Utf8Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/utf8prober.py) + * [Version](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/version.py) + * Idna + * [Codec](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/codec.py) + * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/compat.py) + * [Core](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/core.py) + * [Idnadata](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/idnadata.py) + * [Intranges](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/intranges.py) + * [Package Data](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/package_data.py) + * [Uts46Data](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/uts46data.py) + * [Ordered Set](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/ordered_set.py) + * Pip-19.0.3-Py3.7.Egg + * Pip + * [ Main ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/pip/__main__.py) + * Requests + * [ Version ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/__version__.py) + * [ Internal Utils](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/_internal_utils.py) + * [Adapters](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/adapters.py) + * [Api](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/api.py) + * [Auth](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/auth.py) + * [Certs](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/certs.py) + * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/compat.py) + * [Cookies](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/cookies.py) + * [Exceptions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/exceptions.py) + * [Help](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/help.py) + * [Hooks](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/hooks.py) + * [Models](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/models.py) + * [Packages](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/packages.py) + * [Sessions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/sessions.py) + * [Status Codes](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/status_codes.py) + * [Structures](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/structures.py) + * [Utils](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/utils.py) + * Urllib3 + * [ Collections](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/_collections.py) + * [Connection](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/connection.py) + * [Connectionpool](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/connectionpool.py) + * Contrib + * [ Appengine Environ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/_appengine_environ.py) + * [Appengine](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/appengine.py) + * [Ntlmpool](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/ntlmpool.py) + * [Pyopenssl](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/pyopenssl.py) + * [Securetransport](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/securetransport.py) + * [Socks](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/socks.py) + * [Exceptions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/exceptions.py) + * [Fields](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/fields.py) + * [Filepost](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/filepost.py) + * Packages + * Backports + * [Makefile](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/backports/makefile.py) + * [Six](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/six.py) + * Ssl Match Hostname + * [ Implementation](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/ssl_match_hostname/_implementation.py) + * [Poolmanager](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/poolmanager.py) + * [Request](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/request.py) + * [Response](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/response.py) + * Util + * [Connection](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/connection.py) + * [Queue](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/queue.py) + * [Request](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/request.py) + * [Response](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/response.py) + * [Retry](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/retry.py) + * [Ssl ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/ssl_.py) + * [Timeout](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/timeout.py) + * [Url](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/url.py) + * [Wait](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/wait.py) + ## Web Programming * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) + * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) + * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) + * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) diff --git a/strings/remove_duplicate.py b/strings/remove_duplicate.py new file mode 100644 index 000000000000..0462292b78d2 --- /dev/null +++ b/strings/remove_duplicate.py @@ -0,0 +1,20 @@ +# Created by sarathkaul on 14/11/19 + + +def remove_duplicates(sentence: str) -> str: + """ + Reomove duplicates from sentence + >>> remove_duplicates("Python is great and Java is also great") + 'Java Python also and great is' + """ + sen_list = sentence.split(" ") + check = set() + + for a_word in sen_list: + check.add(a_word) + + return " ".join(sorted(check)) + + +if __name__ == "__main__": + print(remove_duplicates("INPUT_SENTENCE")) From a7424cc115a3b5db388b0d599f7a01a7a33b9483 Mon Sep 17 00:00:00 2001 From: Ankur Chattopadhyay <39518771+chttrjeankr@users.noreply.github.com> Date: Fri, 15 Nov 2019 02:00:35 +0530 Subject: [PATCH 444/594] changed implementation of GitHub action to auto update DIRECTORY.md (#1571) * changed implementation of GitHub action to auto update DIRECTORY.md * updating DIRECTORY.md --- .github/workflows/directory_writer.yml | 17 ++-- DIRECTORY.md | 112 ------------------------- 2 files changed, 9 insertions(+), 120 deletions(-) diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index dcbb9c304e15..76c7a5cc1969 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -1,6 +1,7 @@ -# The objective of this GitHub Action is to add a new DIRECTORY.md file to a pull request if needed. +# The objective of this GitHub Action is to update the DIRECTORY.md file (if needed) +# when doing a git push name: directory_writer -on: [pull_request] +on: [push] jobs: build: runs-on: ubuntu-latest @@ -8,8 +9,8 @@ jobs: max-parallel: 1 matrix: python-version: [3.7] - steps: + steps: - uses: actions/checkout@v1 - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v1 @@ -18,8 +19,8 @@ jobs: - name: Update DIRECTORY.md run: | scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md - git config --global user.name 'directory_writer' - git config --global user.email 'mrvnmchm@users.noreply.github.com' - git remote set-url origin https://x-access-token:${{ secrets.gh_token }}@github.com/$GITHUB_REPOSITORY - git checkout $GITHUB_HEAD_REF - if git diff-files --quiet; then echo 0; else git commit -am "fixup: DIRECTORY.md" && git push; fi + git config --global user.name github-actions + git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' + git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY + git commit -am "updating DIRECTORY.md" + git push --force origin HEAD:$GITHUB_REF diff --git a/DIRECTORY.md b/DIRECTORY.md index e807644b67db..15a906332d22 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -525,118 +525,6 @@ ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) -## Venv - * Lib - * Python3.7 - * Site-Packages - * Certifi - * [ Main ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/certifi/__main__.py) - * [Core](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/certifi/core.py) - * Chardet - * [Big5Freq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/big5freq.py) - * [Big5Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/big5prober.py) - * [Chardistribution](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/chardistribution.py) - * [Charsetgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/charsetgroupprober.py) - * [Charsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/charsetprober.py) - * Cli - * [Chardetect](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/cli/chardetect.py) - * [Codingstatemachine](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/codingstatemachine.py) - * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/compat.py) - * [Cp949Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/cp949prober.py) - * [Enums](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/enums.py) - * [Escprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/escprober.py) - * [Escsm](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/escsm.py) - * [Eucjpprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/eucjpprober.py) - * [Euckrfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euckrfreq.py) - * [Euckrprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euckrprober.py) - * [Euctwfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euctwfreq.py) - * [Euctwprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/euctwprober.py) - * [Gb2312Freq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/gb2312freq.py) - * [Gb2312Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/gb2312prober.py) - * [Hebrewprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/hebrewprober.py) - * [Jisfreq](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/jisfreq.py) - * [Jpcntx](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/jpcntx.py) - * [Langbulgarianmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langbulgarianmodel.py) - * [Langcyrillicmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langcyrillicmodel.py) - * [Langgreekmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langgreekmodel.py) - * [Langhebrewmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langhebrewmodel.py) - * [Langhungarianmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langhungarianmodel.py) - * [Langthaimodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langthaimodel.py) - * [Langturkishmodel](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/langturkishmodel.py) - * [Latin1Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/latin1prober.py) - * [Mbcharsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcharsetprober.py) - * [Mbcsgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcsgroupprober.py) - * [Mbcssm](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/mbcssm.py) - * [Sbcharsetprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sbcharsetprober.py) - * [Sbcsgroupprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sbcsgroupprober.py) - * [Sjisprober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/sjisprober.py) - * [Universaldetector](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/universaldetector.py) - * [Utf8Prober](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/utf8prober.py) - * [Version](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/chardet/version.py) - * Idna - * [Codec](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/codec.py) - * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/compat.py) - * [Core](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/core.py) - * [Idnadata](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/idnadata.py) - * [Intranges](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/intranges.py) - * [Package Data](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/package_data.py) - * [Uts46Data](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/idna/uts46data.py) - * [Ordered Set](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/ordered_set.py) - * Pip-19.0.3-Py3.7.Egg - * Pip - * [ Main ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/pip/__main__.py) - * Requests - * [ Version ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/__version__.py) - * [ Internal Utils](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/_internal_utils.py) - * [Adapters](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/adapters.py) - * [Api](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/api.py) - * [Auth](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/auth.py) - * [Certs](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/certs.py) - * [Compat](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/compat.py) - * [Cookies](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/cookies.py) - * [Exceptions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/exceptions.py) - * [Help](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/help.py) - * [Hooks](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/hooks.py) - * [Models](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/models.py) - * [Packages](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/packages.py) - * [Sessions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/sessions.py) - * [Status Codes](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/status_codes.py) - * [Structures](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/structures.py) - * [Utils](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/requests/utils.py) - * Urllib3 - * [ Collections](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/_collections.py) - * [Connection](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/connection.py) - * [Connectionpool](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/connectionpool.py) - * Contrib - * [ Appengine Environ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/_appengine_environ.py) - * [Appengine](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/appengine.py) - * [Ntlmpool](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/ntlmpool.py) - * [Pyopenssl](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/pyopenssl.py) - * [Securetransport](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/securetransport.py) - * [Socks](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/contrib/socks.py) - * [Exceptions](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/exceptions.py) - * [Fields](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/fields.py) - * [Filepost](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/filepost.py) - * Packages - * Backports - * [Makefile](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/backports/makefile.py) - * [Six](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/six.py) - * Ssl Match Hostname - * [ Implementation](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/packages/ssl_match_hostname/_implementation.py) - * [Poolmanager](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/poolmanager.py) - * [Request](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/request.py) - * [Response](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/response.py) - * Util - * [Connection](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/connection.py) - * [Queue](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/queue.py) - * [Request](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/request.py) - * [Response](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/response.py) - * [Retry](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/retry.py) - * [Ssl ](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/ssl_.py) - * [Timeout](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/timeout.py) - * [Url](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/url.py) - * [Wait](https://github.com/TheAlgorithms/Python/blob/master/venv/lib/python3.7/site-packages/urllib3/util/wait.py) - ## Web Programming * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) From dbaedd4ed7f5302921177107d8010e557f28a52c Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 15 Nov 2019 03:22:23 +0100 Subject: [PATCH 445/594] || true (#1572) * || true * 3.8 * python: 3.x --- .github/workflows/directory_writer.yml | 14 ++++---------- 1 file changed, 4 insertions(+), 10 deletions(-) diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index 76c7a5cc1969..e021051fe564 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -5,22 +5,16 @@ on: [push] jobs: build: runs-on: ubuntu-latest - strategy: - max-parallel: 1 - matrix: - python-version: [3.7] - steps: - uses: actions/checkout@v1 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v1 + - uses: actions/setup-python@v1 with: - python-version: ${{ matrix.python-version }} + python-version: 3.x - name: Update DIRECTORY.md run: | scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md git config --global user.name github-actions git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY - git commit -am "updating DIRECTORY.md" - git push --force origin HEAD:$GITHUB_REF + git commit -am "updating DIRECTORY.md" || true + git push --force origin HEAD:$GITHUB_REF || true From b838f1042c6d67110965da2a45ffaa69b0c4bfc4 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 16 Nov 2019 08:05:00 +0100 Subject: [PATCH 446/594] Fix indentation contains tabs (flake8 E101,W191) (#1573) --- .travis.yml | 2 +- backtracking/all_combinations.py | 6 +- backtracking/all_permutations.py | 18 +- backtracking/all_subsequences.py | 18 +- backtracking/sum_of_subsets.py | 20 +- boolean_algebra/quine_mc_cluskey.py | 54 +++--- ciphers/xor_cipher.py | 110 +++++------ compression/peak_signal_to_noise_ratio.py | 2 +- .../stacks/infix_to_prefix_conversion.py | 2 +- data_structures/stacks/postfix_evaluation.py | 2 +- dynamic_programming/rod_cutting.py | 180 +++++++++--------- other/magicdiamondpattern.py | 18 +- other/nested_brackets.py | 6 +- project_euler/problem_27/problem_27_sol1.py | 22 +-- searches/interpolation_search.py | 4 +- 15 files changed, 232 insertions(+), 232 deletions(-) diff --git a/.travis.yml b/.travis.yml index 0c7c9fd0e1c7..6884d9addba0 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,7 +5,7 @@ before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt before_script: - black --check . || true - - flake8 . --count --select=E9,F4,F63,F7,F82 --show-source --statistics + - flake8 . --count --select=E101,E9,F4,F63,F7,F82,W191 --show-source --statistics script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . diff --git a/backtracking/all_combinations.py b/backtracking/all_combinations.py index 23fe378f5462..60e9579f28ba 100644 --- a/backtracking/all_combinations.py +++ b/backtracking/all_combinations.py @@ -1,9 +1,9 @@ # -*- coding: utf-8 -*- """ - In this problem, we want to determine all possible combinations of k - numbers out of 1 ... n. We use backtracking to solve this problem. - Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))) + In this problem, we want to determine all possible combinations of k + numbers out of 1 ... n. We use backtracking to solve this problem. + Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))) """ diff --git a/backtracking/all_permutations.py b/backtracking/all_permutations.py index b0955bf53a31..d144436033de 100644 --- a/backtracking/all_permutations.py +++ b/backtracking/all_permutations.py @@ -1,9 +1,9 @@ """ - In this problem, we want to determine all possible permutations - of the given sequence. We use backtracking to solve this problem. + In this problem, we want to determine all possible permutations + of the given sequence. We use backtracking to solve this problem. - Time complexity: O(n! * n), - where n denotes the length of the given sequence. + Time complexity: O(n! * n), + where n denotes the length of the given sequence. """ @@ -13,10 +13,10 @@ def generate_all_permutations(sequence): def create_state_space_tree(sequence, current_sequence, index, index_used): """ - Creates a state space tree to iterate through each branch using DFS. - We know that each state has exactly len(sequence) - index children. - It terminates when it reaches the end of the given sequence. - """ + Creates a state space tree to iterate through each branch using DFS. + We know that each state has exactly len(sequence) - index children. + It terminates when it reaches the end of the given sequence. + """ if index == len(sequence): print(current_sequence) @@ -32,7 +32,7 @@ def create_state_space_tree(sequence, current_sequence, index, index_used): """ -remove the comment to take an input from the user +remove the comment to take an input from the user print("Enter the elements") sequence = list(map(int, input().split())) diff --git a/backtracking/all_subsequences.py b/backtracking/all_subsequences.py index 4a22c05d29a8..8283386991d9 100644 --- a/backtracking/all_subsequences.py +++ b/backtracking/all_subsequences.py @@ -1,9 +1,9 @@ """ - In this problem, we want to determine all possible subsequences - of the given sequence. We use backtracking to solve this problem. + In this problem, we want to determine all possible subsequences + of the given sequence. We use backtracking to solve this problem. - Time complexity: O(2^n), - where n denotes the length of the given sequence. + Time complexity: O(2^n), + where n denotes the length of the given sequence. """ @@ -13,10 +13,10 @@ def generate_all_subsequences(sequence): def create_state_space_tree(sequence, current_subsequence, index): """ - Creates a state space tree to iterate through each branch using DFS. - We know that each state has exactly two children. - It terminates when it reaches the end of the given sequence. - """ + Creates a state space tree to iterate through each branch using DFS. + We know that each state has exactly two children. + It terminates when it reaches the end of the given sequence. + """ if index == len(sequence): print(current_subsequence) @@ -29,7 +29,7 @@ def create_state_space_tree(sequence, current_subsequence, index): """ -remove the comment to take an input from the user +remove the comment to take an input from the user print("Enter the elements") sequence = list(map(int, input().split())) diff --git a/backtracking/sum_of_subsets.py b/backtracking/sum_of_subsets.py index d96552d39997..e765a1b69714 100644 --- a/backtracking/sum_of_subsets.py +++ b/backtracking/sum_of_subsets.py @@ -1,9 +1,9 @@ """ - The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, - determine all possible subsets of the given set whose summation sum equal to given M. + The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, + determine all possible subsets of the given set whose summation sum equal to given M. - Summation of the chosen numbers must be equal to given number M and one number can - be used only once. + Summation of the chosen numbers must be equal to given number M and one number can + be used only once. """ @@ -18,12 +18,12 @@ def generate_sum_of_subsets_soln(nums, max_sum): def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum): """ - Creates a state space tree to iterate through each branch using DFS. - It terminates the branching of a node when any of the two conditions - given below satisfy. - This algorithm follows depth-fist-search and backtracks when the node is not branchable. + Creates a state space tree to iterate through each branch using DFS. + It terminates the branching of a node when any of the two conditions + given below satisfy. + This algorithm follows depth-fist-search and backtracks when the node is not branchable. - """ + """ if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: return if sum(path) == max_sum: @@ -41,7 +41,7 @@ def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nu """ -remove the comment to take an input from the user +remove the comment to take an input from the user print("Enter the elements") nums = list(map(int, input().split())) diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py index 7762d712a01a..a066982e53b4 100644 --- a/boolean_algebra/quine_mc_cluskey.py +++ b/boolean_algebra/quine_mc_cluskey.py @@ -1,11 +1,11 @@ def compare_string(string1, string2): """ - >>> compare_string('0010','0110') - '0_10' - - >>> compare_string('0110','1101') - -1 - """ + >>> compare_string('0010','0110') + '0_10' + + >>> compare_string('0110','1101') + -1 + """ l1 = list(string1) l2 = list(string2) count = 0 @@ -21,9 +21,9 @@ def compare_string(string1, string2): def check(binary): """ - >>> check(['0.00.01.5']) - ['0.00.01.5'] - """ + >>> check(['0.00.01.5']) + ['0.00.01.5'] + """ pi = [] while 1: check1 = ["$"] * len(binary) @@ -45,9 +45,9 @@ def check(binary): def decimal_to_binary(no_of_variable, minterms): """ - >>> decimal_to_binary(3,[1.5]) - ['0.00.01.5'] - """ + >>> decimal_to_binary(3,[1.5]) + ['0.00.01.5'] + """ temp = [] s = "" for m in minterms: @@ -61,12 +61,12 @@ def decimal_to_binary(no_of_variable, minterms): def is_for_table(string1, string2, count): """ - >>> is_for_table('__1','011',2) - True - - >>> is_for_table('01_','001',1) - False - """ + >>> is_for_table('__1','011',2) + True + + >>> is_for_table('01_','001',1) + False + """ l1 = list(string1) l2 = list(string2) count_n = 0 @@ -81,12 +81,12 @@ def is_for_table(string1, string2, count): def selection(chart, prime_implicants): """ - >>> selection([[1]],['0.00.01.5']) - ['0.00.01.5'] - - >>> selection([[1]],['0.00.01.5']) - ['0.00.01.5'] - """ + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] + + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] + """ temp = [] select = [0] * len(chart) for i in range(len(chart[0])): @@ -128,9 +128,9 @@ def selection(chart, prime_implicants): def prime_implicant_chart(prime_implicants, binary): """ - >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) - [[1]] - """ + >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) + [[1]] + """ chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] for i in range(len(prime_implicants)): count = prime_implicants[i].count("_") diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py index 7d8dbe41fdea..17e45413acd5 100644 --- a/ciphers/xor_cipher.py +++ b/ciphers/xor_cipher.py @@ -1,40 +1,40 @@ """ - author: Christian Bender - date: 21.12.2017 - class: XORCipher - - This class implements the XOR-cipher algorithm and provides - some useful methods for encrypting and decrypting strings and - files. - - Overview about methods - - - encrypt : list of char - - decrypt : list of char - - encrypt_string : str - - decrypt_string : str - - encrypt_file : boolean - - decrypt_file : boolean + author: Christian Bender + date: 21.12.2017 + class: XORCipher + + This class implements the XOR-cipher algorithm and provides + some useful methods for encrypting and decrypting strings and + files. + + Overview about methods + + - encrypt : list of char + - decrypt : list of char + - encrypt_string : str + - decrypt_string : str + - encrypt_file : boolean + - decrypt_file : boolean """ class XORCipher(object): def __init__(self, key=0): """ - simple constructor that receives a key or uses - default key = 0 - """ + simple constructor that receives a key or uses + default key = 0 + """ # private field self.__key = key def encrypt(self, content, key): """ - input: 'content' of type string and 'key' of type int - output: encrypted string 'content' as a list of chars - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: 'content' of type string and 'key' of type int + output: encrypted string 'content' as a list of chars + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(key, int) and isinstance(content, str) @@ -55,11 +55,11 @@ def encrypt(self, content, key): def decrypt(self, content, key): """ - input: 'content' of type list and 'key' of type int - output: decrypted string 'content' as a list of chars - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: 'content' of type list and 'key' of type int + output: decrypted string 'content' as a list of chars + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(key, int) and isinstance(content, list) @@ -80,11 +80,11 @@ def decrypt(self, content, key): def encrypt_string(self, content, key=0): """ - input: 'content' of type string and 'key' of type int - output: encrypted string 'content' - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: 'content' of type string and 'key' of type int + output: encrypted string 'content' + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(key, int) and isinstance(content, str) @@ -105,11 +105,11 @@ def encrypt_string(self, content, key=0): def decrypt_string(self, content, key=0): """ - input: 'content' of type string and 'key' of type int - output: decrypted string 'content' - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: 'content' of type string and 'key' of type int + output: decrypted string 'content' + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(key, int) and isinstance(content, str) @@ -130,12 +130,12 @@ def decrypt_string(self, content, key=0): def encrypt_file(self, file, key=0): """ - input: filename (str) and a key (int) - output: returns true if encrypt process was - successful otherwise false - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: filename (str) and a key (int) + output: returns true if encrypt process was + successful otherwise false + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(file, str) and isinstance(key, int) @@ -155,12 +155,12 @@ def encrypt_file(self, file, key=0): def decrypt_file(self, file, key): """ - input: filename (str) and a key (int) - output: returns true if decrypt process was - successful otherwise false - if key not passed the method uses the key by the constructor. - otherwise key = 1 - """ + input: filename (str) and a key (int) + output: returns true if decrypt process was + successful otherwise false + if key not passed the method uses the key by the constructor. + otherwise key = 1 + """ # precondition assert isinstance(file, str) and isinstance(key, int) @@ -195,11 +195,11 @@ def decrypt_file(self, file, key): # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): -# print("encrypt successful") +# print("encrypt successful") # else: -# print("encrypt unsuccessful") +# print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): -# print("decrypt successful") +# print("decrypt successful") # else: -# print("decrypt unsuccessful") +# print("decrypt unsuccessful") diff --git a/compression/peak_signal_to_noise_ratio.py b/compression/peak_signal_to_noise_ratio.py index 418832a8127c..5853aace8f96 100644 --- a/compression/peak_signal_to_noise_ratio.py +++ b/compression/peak_signal_to_noise_ratio.py @@ -1,5 +1,5 @@ """ - Peak signal-to-noise ratio - PSNR - https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio + Peak signal-to-noise ratio - PSNR - https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Soruce: https://tutorials.techonical.com/how-to-calculate-psnr-value-of-two-images-using-python/ """ diff --git a/data_structures/stacks/infix_to_prefix_conversion.py b/data_structures/stacks/infix_to_prefix_conversion.py index 4f0e1ab8adfa..5aa41a119528 100644 --- a/data_structures/stacks/infix_to_prefix_conversion.py +++ b/data_structures/stacks/infix_to_prefix_conversion.py @@ -11,7 +11,7 @@ a | + | cb^a | | cb^a+ - a+b^c (Infix) -> +a^bc (Prefix) + a+b^c (Infix) -> +a^bc (Prefix) """ diff --git a/data_structures/stacks/postfix_evaluation.py b/data_structures/stacks/postfix_evaluation.py index 0f3d5c76d6a3..22836cdcfcb1 100644 --- a/data_structures/stacks/postfix_evaluation.py +++ b/data_structures/stacks/postfix_evaluation.py @@ -14,7 +14,7 @@ | pop(5) | + | push(5+54) | 59 - Result = 59 + Result = 59 """ import operator as op diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py index 3a1d55320d7b..26af71915833 100644 --- a/dynamic_programming/rod_cutting.py +++ b/dynamic_programming/rod_cutting.py @@ -13,28 +13,28 @@ def naive_cut_rod_recursive(n: int, prices: list): """ - Solves the rod-cutting problem via naively without using the benefit of dynamic programming. - The results is the same sub-problems are solved several times leading to an exponential runtime + Solves the rod-cutting problem via naively without using the benefit of dynamic programming. + The results is the same sub-problems are solved several times leading to an exponential runtime - Runtime: O(2^n) + Runtime: O(2^n) - Arguments - ------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` + Arguments + ------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` - Returns - ------- - The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. - Examples - -------- - >>> naive_cut_rod_recursive(4, [1, 5, 8, 9]) - 10 - >>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) - 30 - """ + Examples + -------- + >>> naive_cut_rod_recursive(4, [1, 5, 8, 9]) + 10 + >>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ _enforce_args(n, prices) if n == 0: @@ -50,33 +50,33 @@ def naive_cut_rod_recursive(n: int, prices: list): def top_down_cut_rod(n: int, prices: list): """ - Constructs a top-down dynamic programming solution for the rod-cutting problem - via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive - - Runtime: O(n^2) - - Arguments - -------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` - - Note - ---- - For convenience and because Python's lists using 0-indexing, length(max_rev) = n + 1, - to accommodate for the revenue obtainable from a rod of length 0. - - Returns - ------- - The maximum revenue obtainable for a rod of length n given the list of prices for each piece. - - Examples - ------- - >>> top_down_cut_rod(4, [1, 5, 8, 9]) - 10 - >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) - 30 - """ + Constructs a top-down dynamic programming solution for the rod-cutting problem + via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive + + Runtime: O(n^2) + + Arguments + -------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + Note + ---- + For convenience and because Python's lists using 0-indexing, length(max_rev) = n + 1, + to accommodate for the revenue obtainable from a rod of length 0. + + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + + Examples + ------- + >>> top_down_cut_rod(4, [1, 5, 8, 9]) + 10 + >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ _enforce_args(n, prices) max_rev = [float("-inf") for _ in range(n + 1)] return _top_down_cut_rod_recursive(n, prices, max_rev) @@ -84,23 +84,23 @@ def top_down_cut_rod(n: int, prices: list): def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): """ - Constructs a top-down dynamic programming solution for the rod-cutting problem - via memoization. - - Runtime: O(n^2) - - Arguments - -------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` - max_rev: list, the computed maximum revenue for a piece of rod. - ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` - - Returns - ------- - The maximum revenue obtainable for a rod of length n given the list of prices for each piece. - """ + Constructs a top-down dynamic programming solution for the rod-cutting problem + via memoization. + + Runtime: O(n^2) + + Arguments + -------- + n: int, the length of the rod + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + max_rev: list, the computed maximum revenue for a piece of rod. + ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` + + Returns + ------- + The maximum revenue obtainable for a rod of length n given the list of prices for each piece. + """ if max_rev[n] >= 0: return max_rev[n] elif n == 0: @@ -120,28 +120,28 @@ def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): def bottom_up_cut_rod(n: int, prices: list): """ - Constructs a bottom-up dynamic programming solution for the rod-cutting problem - - Runtime: O(n^2) - - Arguments - ---------- - n: int, the maximum length of the rod. - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` - - Returns - ------- - The maximum revenue obtainable from cutting a rod of length n given - the prices for each piece of rod p. - - Examples - ------- - >>> bottom_up_cut_rod(4, [1, 5, 8, 9]) - 10 - >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) - 30 - """ + Constructs a bottom-up dynamic programming solution for the rod-cutting problem + + Runtime: O(n^2) + + Arguments + ---------- + n: int, the maximum length of the rod. + prices: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + Returns + ------- + The maximum revenue obtainable from cutting a rod of length n given + the prices for each piece of rod p. + + Examples + ------- + >>> bottom_up_cut_rod(4, [1, 5, 8, 9]) + 10 + >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) + 30 + """ _enforce_args(n, prices) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0. @@ -160,15 +160,15 @@ def bottom_up_cut_rod(n: int, prices: list): def _enforce_args(n: int, prices: list): """ - Basic checks on the arguments to the rod-cutting algorithms + Basic checks on the arguments to the rod-cutting algorithms - n: int, the length of the rod - prices: list, the price list for each piece of rod. + n: int, the length of the rod + prices: list, the price list for each piece of rod. - Throws ValueError: + Throws ValueError: - if n is negative or there are fewer items in the price list than the length of the rod - """ + if n is negative or there are fewer items in the price list than the length of the rod + """ if n < 0: raise ValueError(f"n must be greater than or equal to 0. Got n = {n}") diff --git a/other/magicdiamondpattern.py b/other/magicdiamondpattern.py index 9b434a7b6e0b..6de5046c9f18 100644 --- a/other/magicdiamondpattern.py +++ b/other/magicdiamondpattern.py @@ -3,9 +3,9 @@ # Function to print upper half of diamond (pyramid) def floyd(n): """ - Parameters: - n : size of pattern - """ + Parameters: + n : size of pattern + """ for i in range(0, n): for j in range(0, n - i - 1): # printing spaces print(" ", end="") @@ -17,9 +17,9 @@ def floyd(n): # Function to print lower half of diamond (pyramid) def reverse_floyd(n): """ - Parameters: - n : size of pattern - """ + Parameters: + n : size of pattern + """ for i in range(n, 0, -1): for j in range(i, 0, -1): # printing stars print("* ", end="") @@ -31,9 +31,9 @@ def reverse_floyd(n): # Function to print complete diamond pattern of "*" def pretty_print(n): """ - Parameters: - n : size of pattern - """ + Parameters: + n : size of pattern + """ if n <= 0: print(" ... .... nothing printing :(") return diff --git a/other/nested_brackets.py b/other/nested_brackets.py index 011e94b92928..c712bc21b5ce 100644 --- a/other/nested_brackets.py +++ b/other/nested_brackets.py @@ -3,9 +3,9 @@ brackets are properly nested. A sequence of brackets s is considered properly nested if any of the following conditions are true: - - s is empty - - s has the form (U) or [U] or {U} where U is a properly nested string - - s has the form VW where V and W are properly nested strings + - s is empty + - s has the form (U) or [U] or {U} where U is a properly nested string + - s has the form VW where V and W are properly nested strings For example, the string "()()[()]" is properly nested but "[(()]" is not. diff --git a/project_euler/problem_27/problem_27_sol1.py b/project_euler/problem_27/problem_27_sol1.py index dbd07f81b713..84b007a0bc88 100644 --- a/project_euler/problem_27/problem_27_sol1.py +++ b/project_euler/problem_27/problem_27_sol1.py @@ -39,17 +39,17 @@ def is_prime(k: int) -> bool: def solution(a_limit: int, b_limit: int) -> int: """ - >>> solution(1000, 1000) - -59231 - >>> solution(200, 1000) - -59231 - >>> solution(200, 200) - -4925 - >>> solution(-1000, 1000) - 0 - >>> solution(-1000, -1000) - 0 - """ + >>> solution(1000, 1000) + -59231 + >>> solution(200, 1000) + -59231 + >>> solution(200, 200) + -4925 + >>> solution(-1000, 1000) + 0 + >>> solution(-1000, -1000) + 0 + """ longest = [0, 0, 0] # length, a, b for a in range((a_limit * -1) + 1, a_limit): for b in range(2, b_limit): diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index d1873083bf8a..dffaf8d26084 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -113,7 +113,7 @@ def __assert_sorted(collection): import sys """ - user_input = input('Enter numbers separated by comma:\n').strip() + user_input = input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) @@ -122,7 +122,7 @@ def __assert_sorted(collection): target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) - """ + """ debug = 0 if debug == 1: From 9a894ebc521a8b09613737905608dbfd8be5faf4 Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Sun, 17 Nov 2019 17:27:26 +0530 Subject: [PATCH 447/594] Word Occurence Script Added (#1576) * Word Occurence Script Added * Word Occurence Script Updated * Added doctest using collections.Counter https://docs.python.org/3/library/collections.html#collections.Counter --- strings/word_occurence.py | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) create mode 100644 strings/word_occurence.py diff --git a/strings/word_occurence.py b/strings/word_occurence.py new file mode 100644 index 000000000000..c4eb923d6bc8 --- /dev/null +++ b/strings/word_occurence.py @@ -0,0 +1,23 @@ +# Created by sarathkaul on 17/11/19 +from collections import defaultdict + + +def word_occurence(sentence: str) -> dict: + """ + >>> from collections import Counter + >>> SENTENCE = "a b A b c b d b d e f e g e h e i e j e 0" + >>> occurence_dict = word_occurence(SENTENCE) + >>> all(occurence_dict[word] == count for word, count + ... in Counter(SENTENCE.split()).items()) + True + """ + occurence = defaultdict(int) + # Creating a dictionary containing count of each word + for word in sentence.split(" "): + occurence[word] += 1 + return occurence + + +if __name__ == "__main__": + for word, count in word_occurence("INPUT STRING").items(): + print(f"{word}: {count}") From 5616fa9e62a7fc85f2e195db55ee086b687cbb48 Mon Sep 17 00:00:00 2001 From: Mantas Zimnickas Date: Sun, 17 Nov 2019 20:37:58 +0200 Subject: [PATCH 448/594] Add pytest-cov (#1578) * Add pytest-cov Also added coverage report in .travis.yml file. * updating DIRECTORY.md * Sort by missing statements * sort = Cover --- .coveragerc | 4 ++++ .travis.yml | 2 +- DIRECTORY.md | 1 + requirements.txt | 1 + 4 files changed, 7 insertions(+), 1 deletion(-) create mode 100644 .coveragerc diff --git a/.coveragerc b/.coveragerc new file mode 100644 index 000000000000..f7e6eb212bc8 --- /dev/null +++ b/.coveragerc @@ -0,0 +1,4 @@ +[report] +sort = Cover +omit = + .env/* diff --git a/.travis.yml b/.travis.yml index 6884d9addba0..6852b84915f9 100644 --- a/.travis.yml +++ b/.travis.yml @@ -9,6 +9,6 @@ before_script: script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . - - pytest . --doctest-modules + - pytest --doctest-modules --cov-report=term-missing:skip-covered --cov=. . after_success: - scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md diff --git a/DIRECTORY.md b/DIRECTORY.md index 15a906332d22..6e64f034df62 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -521,6 +521,7 @@ * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) + * [Word Occurence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurence.py) ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) diff --git a/requirements.txt b/requirements.txt index 824f534a245f..1f4b11fc3ea5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -9,6 +9,7 @@ opencv-python pandas pillow pytest +pytest-cov requests scikit-fuzzy sklearn From 12f69a86f56845f6df96c9991c856f665169f8a6 Mon Sep 17 00:00:00 2001 From: Mantas Zimnickas Date: Sun, 17 Nov 2019 20:38:48 +0200 Subject: [PATCH 449/594] Remove code with side effects from main (#1577) * Remove code with side effects from main When running tests withy pytest, some modules execute code in main scope and open plot or browser windows. Moves such code under `if __name__ == "__main__"`. * fixup! Format Python code with psf/black push --- fuzzy_logic/fuzzy_operations.py | 182 ++--- machine_learning/polymonial_regression.py | 9 +- neural_network/gan.py | 792 +++++++++++----------- web_programming/crawl_google_results.py | 26 +- 4 files changed, 510 insertions(+), 499 deletions(-) diff --git a/fuzzy_logic/fuzzy_operations.py b/fuzzy_logic/fuzzy_operations.py index ba4a8a22a4d1..cb870e8d9e3b 100644 --- a/fuzzy_logic/fuzzy_operations.py +++ b/fuzzy_logic/fuzzy_operations.py @@ -6,97 +6,97 @@ Python: - 3.5 """ -# Create universe of discourse in python using linspace () import numpy as np - -X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) - -# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). import skfuzzy as fuzz -abc1 = [0, 25, 50] -abc2 = [25, 50, 75] -young = fuzz.membership.trimf(X, abc1) -middle_aged = fuzz.membership.trimf(X, abc2) - -# Compute the different operations using inbuilt functions. -one = np.ones(75) -zero = np.zeros((75,)) -# 1. Union = max(µA(x), µB(x)) -union = fuzz.fuzzy_or(X, young, X, middle_aged)[1] -# 2. Intersection = min(µA(x), µB(x)) -intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1] -# 3. Complement (A) = (1- min(µA(x)) -complement_a = fuzz.fuzzy_not(young) -# 4. Difference (A/B) = min(µA(x),(1- µB(x))) -difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] -# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] -alg_sum = young + middle_aged - (young * middle_aged) -# 6. Algebraic Product = (µA(x) * µB(x)) -alg_product = young * middle_aged -# 7. Bounded Sum = min[1,(µA(x), µB(x))] -bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] -# 8. Bounded difference = min[0,(µA(x), µB(x))] -bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] - -# max-min composition -# max-product composition - - -# Plot each set A, set B and each operation result using plot() and subplot(). -import matplotlib.pyplot as plt - -plt.figure() - -plt.subplot(4, 3, 1) -plt.plot(X, young) -plt.title("Young") -plt.grid(True) - -plt.subplot(4, 3, 2) -plt.plot(X, middle_aged) -plt.title("Middle aged") -plt.grid(True) - -plt.subplot(4, 3, 3) -plt.plot(X, union) -plt.title("union") -plt.grid(True) - -plt.subplot(4, 3, 4) -plt.plot(X, intersection) -plt.title("intersection") -plt.grid(True) - -plt.subplot(4, 3, 5) -plt.plot(X, complement_a) -plt.title("complement_a") -plt.grid(True) - -plt.subplot(4, 3, 6) -plt.plot(X, difference) -plt.title("difference a/b") -plt.grid(True) - -plt.subplot(4, 3, 7) -plt.plot(X, alg_sum) -plt.title("alg_sum") -plt.grid(True) - -plt.subplot(4, 3, 8) -plt.plot(X, alg_product) -plt.title("alg_product") -plt.grid(True) - -plt.subplot(4, 3, 9) -plt.plot(X, bdd_sum) -plt.title("bdd_sum") -plt.grid(True) - -plt.subplot(4, 3, 10) -plt.plot(X, bdd_difference) -plt.title("bdd_difference") -plt.grid(True) - -plt.subplots_adjust(hspace=0.5) -plt.show() + +if __name__ == "__main__": + # Create universe of discourse in python using linspace () + X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) + + # Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). + abc1 = [0, 25, 50] + abc2 = [25, 50, 75] + young = fuzz.membership.trimf(X, abc1) + middle_aged = fuzz.membership.trimf(X, abc2) + + # Compute the different operations using inbuilt functions. + one = np.ones(75) + zero = np.zeros((75,)) + # 1. Union = max(µA(x), µB(x)) + union = fuzz.fuzzy_or(X, young, X, middle_aged)[1] + # 2. Intersection = min(µA(x), µB(x)) + intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1] + # 3. Complement (A) = (1- min(µA(x)) + complement_a = fuzz.fuzzy_not(young) + # 4. Difference (A/B) = min(µA(x),(1- µB(x))) + difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] + # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] + alg_sum = young + middle_aged - (young * middle_aged) + # 6. Algebraic Product = (µA(x) * µB(x)) + alg_product = young * middle_aged + # 7. Bounded Sum = min[1,(µA(x), µB(x))] + bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] + # 8. Bounded difference = min[0,(µA(x), µB(x))] + bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] + + # max-min composition + # max-product composition + + # Plot each set A, set B and each operation result using plot() and subplot(). + import matplotlib.pyplot as plt + + plt.figure() + + plt.subplot(4, 3, 1) + plt.plot(X, young) + plt.title("Young") + plt.grid(True) + + plt.subplot(4, 3, 2) + plt.plot(X, middle_aged) + plt.title("Middle aged") + plt.grid(True) + + plt.subplot(4, 3, 3) + plt.plot(X, union) + plt.title("union") + plt.grid(True) + + plt.subplot(4, 3, 4) + plt.plot(X, intersection) + plt.title("intersection") + plt.grid(True) + + plt.subplot(4, 3, 5) + plt.plot(X, complement_a) + plt.title("complement_a") + plt.grid(True) + + plt.subplot(4, 3, 6) + plt.plot(X, difference) + plt.title("difference a/b") + plt.grid(True) + + plt.subplot(4, 3, 7) + plt.plot(X, alg_sum) + plt.title("alg_sum") + plt.grid(True) + + plt.subplot(4, 3, 8) + plt.plot(X, alg_product) + plt.title("alg_product") + plt.grid(True) + + plt.subplot(4, 3, 9) + plt.plot(X, bdd_sum) + plt.title("bdd_sum") + plt.grid(True) + + plt.subplot(4, 3, 10) + plt.plot(X, bdd_difference) + plt.title("bdd_difference") + plt.grid(True) + + plt.subplots_adjust(hspace=0.5) + plt.show() diff --git a/machine_learning/polymonial_regression.py b/machine_learning/polymonial_regression.py index 0d9db0f7578a..7b080715b762 100644 --- a/machine_learning/polymonial_regression.py +++ b/machine_learning/polymonial_regression.py @@ -36,8 +36,9 @@ def viz_polymonial(): return -viz_polymonial() +if __name__ == "__main__": + viz_polymonial() -# Predicting a new result with Polymonial Regression -pol_reg.predict(poly_reg.fit_transform([[5.5]])) -# output should be 132148.43750003 + # Predicting a new result with Polymonial Regression + pol_reg.predict(poly_reg.fit_transform([[5.5]])) + # output should be 132148.43750003 diff --git a/neural_network/gan.py b/neural_network/gan.py index 76f46314c4ba..deb062c48dc7 100644 --- a/neural_network/gan.py +++ b/neural_network/gan.py @@ -59,440 +59,448 @@ def plot(samples): return fig -# 1. Load Data and declare hyper -print("--------- Load Data ----------") -mnist = input_data.read_data_sets("MNIST_data", one_hot=False) -temp = mnist.test -images, labels = temp.images, temp.labels -images, labels = shuffle(np.asarray(images), np.asarray(labels)) -num_epoch = 10 -learing_rate = 0.00009 -G_input = 100 -hidden_input, hidden_input2, hidden_input3 = 128, 256, 346 -hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686 - - -print("--------- Declare Hyper Parameters ----------") -# 2. Declare Weights -D_W1 = ( - np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002 -) -# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -D_b1 = np.zeros(hidden_input) - -D_W2 = ( - np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0))) - * 0.002 -) -# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 -D_b2 = np.zeros(1) - - -G_W1 = ( - np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0))) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b1 = np.zeros(hidden_input) - -G_W2 = ( - np.random.normal( - size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0)) +if __name__ == "__main__": + # 1. Load Data and declare hyper + print("--------- Load Data ----------") + mnist = input_data.read_data_sets("MNIST_data", one_hot=False) + temp = mnist.test + images, labels = temp.images, temp.labels + images, labels = shuffle(np.asarray(images), np.asarray(labels)) + num_epoch = 10 + learing_rate = 0.00009 + G_input = 100 + hidden_input, hidden_input2, hidden_input3 = 128, 256, 346 + hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686 + + print("--------- Declare Hyper Parameters ----------") + # 2. Declare Weights + D_W1 = ( + np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) + * 0.002 ) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b2 = np.zeros(hidden_input2) - -G_W3 = ( - np.random.normal( - size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0)) - ) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b3 = np.zeros(hidden_input3) - -G_W4 = ( - np.random.normal( - size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0)) - ) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b4 = np.zeros(hidden_input4) - -G_W5 = ( - np.random.normal( - size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0)) + # D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + D_b1 = np.zeros(hidden_input) + + D_W2 = ( + np.random.normal( + size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)) + ) + * 0.002 ) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b5 = np.zeros(hidden_input5) - -G_W6 = ( - np.random.normal( - size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0)) + # D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 + D_b2 = np.zeros(1) + + G_W1 = ( + np.random.normal( + size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)) + ) + * 0.002 ) - * 0.002 -) -# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 -G_b6 = np.zeros(hidden_input6) - -G_W7 = ( - np.random.normal( - size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0)) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b1 = np.zeros(hidden_input) + + G_W2 = ( + np.random.normal( + size=(hidden_input, hidden_input2), + scale=(1.0 / np.sqrt(hidden_input / 2.0)), + ) + * 0.002 ) - * 0.002 -) -# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 -G_b7 = np.zeros(784) - -# 3. For Adam Optimzier -v1, m1 = 0, 0 -v2, m2 = 0, 0 -v3, m3 = 0, 0 -v4, m4 = 0, 0 - -v5, m5 = 0, 0 -v6, m6 = 0, 0 -v7, m7 = 0, 0 -v8, m8 = 0, 0 -v9, m9 = 0, 0 -v10, m10 = 0, 0 -v11, m11 = 0, 0 -v12, m12 = 0, 0 - -v13, m13 = 0, 0 -v14, m14 = 0, 0 - -v15, m15 = 0, 0 -v16, m16 = 0, 0 - -v17, m17 = 0, 0 -v18, m18 = 0, 0 - - -beta_1, beta_2, eps = 0.9, 0.999, 0.00000001 - -print("--------- Started Training ----------") -for iter in range(num_epoch): - - random_int = np.random.randint(len(images) - 5) - current_image = np.expand_dims(images[random_int], axis=0) - - # Func: Generate The first Fake Data - Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) - Gl1 = Z.dot(G_W1) + G_b1 - Gl1A = arctan(Gl1) - Gl2 = Gl1A.dot(G_W2) + G_b2 - Gl2A = ReLu(Gl2) - Gl3 = Gl2A.dot(G_W3) + G_b3 - Gl3A = arctan(Gl3) - - Gl4 = Gl3A.dot(G_W4) + G_b4 - Gl4A = ReLu(Gl4) - Gl5 = Gl4A.dot(G_W5) + G_b5 - Gl5A = tanh(Gl5) - Gl6 = Gl5A.dot(G_W6) + G_b6 - Gl6A = ReLu(Gl6) - Gl7 = Gl6A.dot(G_W7) + G_b7 - - current_fake_data = log(Gl7) - - # Func: Forward Feed for Real data - Dl1_r = current_image.dot(D_W1) + D_b1 - Dl1_rA = ReLu(Dl1_r) - Dl2_r = Dl1_rA.dot(D_W2) + D_b2 - Dl2_rA = log(Dl2_r) - - # Func: Forward Feed for Fake Data - Dl1_f = current_fake_data.dot(D_W1) + D_b1 - Dl1_fA = ReLu(Dl1_f) - Dl2_f = Dl1_fA.dot(D_W2) + D_b2 - Dl2_fA = log(Dl2_f) - - # Func: Cost D - D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA) - - # Func: Gradient - grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA) - grad_f_w2_part_2 = d_log(Dl2_f) - grad_f_w2_part_3 = Dl1_fA - grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) - grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 - - grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) - grad_f_w1_part_2 = d_ReLu(Dl1_f) - grad_f_w1_part_3 = current_fake_data - grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) - grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 - - grad_r_w2_part_1 = -1 / Dl2_rA - grad_r_w2_part_2 = d_log(Dl2_r) - grad_r_w2_part_3 = Dl1_rA - grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) - grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 - - grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) - grad_r_w1_part_2 = d_ReLu(Dl1_r) - grad_r_w1_part_3 = current_image - grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) - grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 - - grad_w1 = grad_f_w1 + grad_r_w1 - grad_b1 = grad_f_b1 + grad_r_b1 - - grad_w2 = grad_f_w2 + grad_r_w2 - grad_b2 = grad_f_b2 + grad_r_b2 - - # ---- Update Gradient ---- - m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 - v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2 - - m2 = beta_1 * m2 + (1 - beta_1) * grad_b1 - v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2 - - m3 = beta_1 * m3 + (1 - beta_1) * grad_w2 - v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2 - - m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 - v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 - - D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * ( - m1 / (1 - beta_1) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b2 = np.zeros(hidden_input2) + + G_W3 = ( + np.random.normal( + size=(hidden_input2, hidden_input3), + scale=(1.0 / np.sqrt(hidden_input2 / 2.0)), + ) + * 0.002 ) - D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * ( - m2 / (1 - beta_1) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b3 = np.zeros(hidden_input3) + + G_W4 = ( + np.random.normal( + size=(hidden_input3, hidden_input4), + scale=(1.0 / np.sqrt(hidden_input3 / 2.0)), + ) + * 0.002 ) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b4 = np.zeros(hidden_input4) - D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * ( - m3 / (1 - beta_1) + G_W5 = ( + np.random.normal( + size=(hidden_input4, hidden_input5), + scale=(1.0 / np.sqrt(hidden_input4 / 2.0)), + ) + * 0.002 ) - D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * ( - m4 / (1 - beta_1) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b5 = np.zeros(hidden_input5) + + G_W6 = ( + np.random.normal( + size=(hidden_input5, hidden_input6), + scale=(1.0 / np.sqrt(hidden_input5 / 2.0)), + ) + * 0.002 ) + # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 + G_b6 = np.zeros(hidden_input6) - # Func: Forward Feed for G - Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) - Gl1 = Z.dot(G_W1) + G_b1 - Gl1A = arctan(Gl1) - Gl2 = Gl1A.dot(G_W2) + G_b2 - Gl2A = ReLu(Gl2) - Gl3 = Gl2A.dot(G_W3) + G_b3 - Gl3A = arctan(Gl3) - - Gl4 = Gl3A.dot(G_W4) + G_b4 - Gl4A = ReLu(Gl4) - Gl5 = Gl4A.dot(G_W5) + G_b5 - Gl5A = tanh(Gl5) - Gl6 = Gl5A.dot(G_W6) + G_b6 - Gl6A = ReLu(Gl6) - Gl7 = Gl6A.dot(G_W7) + G_b7 - - current_fake_data = log(Gl7) - - Dl1 = current_fake_data.dot(D_W1) + D_b1 - Dl1_A = ReLu(Dl1) - Dl2 = Dl1_A.dot(D_W2) + D_b2 - Dl2_A = log(Dl2) - - # Func: Cost G - G_cost = -np.log(Dl2_A) - - # Func: Gradient - grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot( - D_W1.T + G_W7 = ( + np.random.normal( + size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0)) + ) + * 0.002 ) - grad_G_w7_part_2 = d_log(Gl7) - grad_G_w7_part_3 = Gl6A - grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) - grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2 + # G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 + G_b7 = np.zeros(784) - grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T) - grad_G_w6_part_2 = d_ReLu(Gl6) - grad_G_w6_part_3 = Gl5A - grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) - grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2 + # 3. For Adam Optimzier + v1, m1 = 0, 0 + v2, m2 = 0, 0 + v3, m3 = 0, 0 + v4, m4 = 0, 0 - grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) - grad_G_w5_part_2 = d_tanh(Gl5) - grad_G_w5_part_3 = Gl4A - grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) - grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2 + v5, m5 = 0, 0 + v6, m6 = 0, 0 + v7, m7 = 0, 0 + v8, m8 = 0, 0 + v9, m9 = 0, 0 + v10, m10 = 0, 0 + v11, m11 = 0, 0 + v12, m12 = 0, 0 - grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) - grad_G_w4_part_2 = d_ReLu(Gl4) - grad_G_w4_part_3 = Gl3A - grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) - grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2 + v13, m13 = 0, 0 + v14, m14 = 0, 0 - grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) - grad_G_w3_part_2 = d_arctan(Gl3) - grad_G_w3_part_3 = Gl2A - grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) - grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2 + v15, m15 = 0, 0 + v16, m16 = 0, 0 - grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) - grad_G_w2_part_2 = d_ReLu(Gl2) - grad_G_w2_part_3 = Gl1A - grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) - grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2 + v17, m17 = 0, 0 + v18, m18 = 0, 0 - grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) - grad_G_w1_part_2 = d_arctan(Gl1) - grad_G_w1_part_3 = Z - grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2) - grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2 + beta_1, beta_2, eps = 0.9, 0.999, 0.00000001 - # ---- Update Gradient ---- - m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1 - v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2 + print("--------- Started Training ----------") + for iter in range(num_epoch): - m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1 - v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2 + random_int = np.random.randint(len(images) - 5) + current_image = np.expand_dims(images[random_int], axis=0) - m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2 - v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2 + # Func: Generate The first Fake Data + Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) - m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2 - v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2 + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 - m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3 - v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2 + current_fake_data = log(Gl7) - m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3 - v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2 + # Func: Forward Feed for Real data + Dl1_r = current_image.dot(D_W1) + D_b1 + Dl1_rA = ReLu(Dl1_r) + Dl2_r = Dl1_rA.dot(D_W2) + D_b2 + Dl2_rA = log(Dl2_r) + + # Func: Forward Feed for Fake Data + Dl1_f = current_fake_data.dot(D_W1) + D_b1 + Dl1_fA = ReLu(Dl1_f) + Dl2_f = Dl1_fA.dot(D_W2) + D_b2 + Dl2_fA = log(Dl2_f) + + # Func: Cost D + D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA) + + # Func: Gradient + grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA) + grad_f_w2_part_2 = d_log(Dl2_f) + grad_f_w2_part_3 = Dl1_fA + grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) + grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 + + grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) + grad_f_w1_part_2 = d_ReLu(Dl1_f) + grad_f_w1_part_3 = current_fake_data + grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) + grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 + + grad_r_w2_part_1 = -1 / Dl2_rA + grad_r_w2_part_2 = d_log(Dl2_r) + grad_r_w2_part_3 = Dl1_rA + grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) + grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 + + grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) + grad_r_w1_part_2 = d_ReLu(Dl1_r) + grad_r_w1_part_3 = current_image + grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) + grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 + + grad_w1 = grad_f_w1 + grad_r_w1 + grad_b1 = grad_f_b1 + grad_r_b1 + + grad_w2 = grad_f_w2 + grad_r_w2 + grad_b2 = grad_f_b2 + grad_r_b2 + + # ---- Update Gradient ---- + m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 + v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2 + + m2 = beta_1 * m2 + (1 - beta_1) * grad_b1 + v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2 + + m3 = beta_1 * m3 + (1 - beta_1) * grad_w2 + v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2 + + m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 + v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 + + D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * ( + m1 / (1 - beta_1) + ) + D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * ( + m2 / (1 - beta_1) + ) - m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4 - v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2 + D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * ( + m3 / (1 - beta_1) + ) + D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * ( + m4 / (1 - beta_1) + ) - m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4 - v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2 + # Func: Forward Feed for G + Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) - m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5 - v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2 + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 - m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5 - v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2 + current_fake_data = log(Gl7) - m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6 - v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2 + Dl1 = current_fake_data.dot(D_W1) + D_b1 + Dl1_A = ReLu(Dl1) + Dl2 = Dl1_A.dot(D_W2) + D_b2 + Dl2_A = log(Dl2) - m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6 - v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2 + # Func: Cost G + G_cost = -np.log(Dl2_A) - m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7 - v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2 + # Func: Gradient + grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot( + D_W1.T + ) + grad_G_w7_part_2 = d_log(Gl7) + grad_G_w7_part_3 = Gl6A + grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) + grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2 - m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 - v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 + grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T) + grad_G_w6_part_2 = d_ReLu(Gl6) + grad_G_w6_part_3 = Gl5A + grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) + grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2 - G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * ( - m5 / (1 - beta_1) - ) - G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * ( - m6 / (1 - beta_1) - ) + grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) + grad_G_w5_part_2 = d_tanh(Gl5) + grad_G_w5_part_3 = Gl4A + grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) + grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2 - G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * ( - m7 / (1 - beta_1) - ) - G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * ( - m8 / (1 - beta_1) - ) + grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) + grad_G_w4_part_2 = d_ReLu(Gl4) + grad_G_w4_part_3 = Gl3A + grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) + grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2 - G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * ( - m9 / (1 - beta_1) - ) - G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * ( - m10 / (1 - beta_1) - ) + grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) + grad_G_w3_part_2 = d_arctan(Gl3) + grad_G_w3_part_3 = Gl2A + grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) + grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2 - G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * ( - m11 / (1 - beta_1) - ) - G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * ( - m12 / (1 - beta_1) - ) + grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) + grad_G_w2_part_2 = d_ReLu(Gl2) + grad_G_w2_part_3 = Gl1A + grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) + grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2 - G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * ( - m13 / (1 - beta_1) - ) - G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * ( - m14 / (1 - beta_1) - ) + grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) + grad_G_w1_part_2 = d_arctan(Gl1) + grad_G_w1_part_3 = Z + grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2) + grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2 - G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * ( - m15 / (1 - beta_1) - ) - G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * ( - m16 / (1 - beta_1) - ) + # ---- Update Gradient ---- + m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1 + v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2 - G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * ( - m17 / (1 - beta_1) - ) - G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * ( - m18 / (1 - beta_1) - ) + m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1 + v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2 + + m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2 + v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2 + + m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2 + v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2 - # --- Print Error ---- - # print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') - - if iter == 0: - learing_rate = learing_rate * 0.01 - if iter == 40: - learing_rate = learing_rate * 0.01 - - # ---- Print to Out put ---- - if iter % 10 == 0: - - print( - "Current Iter: ", - iter, - " Current D cost:", - D_cost, - " Current G cost: ", - G_cost, - end="\r", + m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3 + v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2 + + m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3 + v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2 + + m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4 + v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2 + + m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4 + v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2 + + m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5 + v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2 + + m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5 + v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2 + + m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6 + v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2 + + m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6 + v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2 + + m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7 + v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2 + + m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 + v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 + + G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * ( + m5 / (1 - beta_1) + ) + G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * ( + m6 / (1 - beta_1) ) - print("--------- Show Example Result See Tab Above ----------") - print("--------- Wait for the image to load ---------") - Z = np.random.uniform(-1.0, 1.0, size=[16, G_input]) - Gl1 = Z.dot(G_W1) + G_b1 - Gl1A = arctan(Gl1) - Gl2 = Gl1A.dot(G_W2) + G_b2 - Gl2A = ReLu(Gl2) - Gl3 = Gl2A.dot(G_W3) + G_b3 - Gl3A = arctan(Gl3) + G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * ( + m7 / (1 - beta_1) + ) + G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * ( + m8 / (1 - beta_1) + ) - Gl4 = Gl3A.dot(G_W4) + G_b4 - Gl4A = ReLu(Gl4) - Gl5 = Gl4A.dot(G_W5) + G_b5 - Gl5A = tanh(Gl5) - Gl6 = Gl5A.dot(G_W6) + G_b6 - Gl6A = ReLu(Gl6) - Gl7 = Gl6A.dot(G_W7) + G_b7 + G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * ( + m9 / (1 - beta_1) + ) + G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * ( + m10 / (1 - beta_1) + ) - current_fake_data = log(Gl7) + G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * ( + m11 / (1 - beta_1) + ) + G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * ( + m12 / (1 - beta_1) + ) - fig = plot(current_fake_data) - fig.savefig( - "Click_Me_{}.png".format( - str(iter).zfill(3) - + "_Ginput_" - + str(G_input) - + "_hiddenone" - + str(hidden_input) - + "_hiddentwo" - + str(hidden_input2) - + "_LR_" - + str(learing_rate) - ), - bbox_inches="tight", + G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * ( + m13 / (1 - beta_1) + ) + G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * ( + m14 / (1 - beta_1) ) -# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 -# -- end code -- + + G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * ( + m15 / (1 - beta_1) + ) + G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * ( + m16 / (1 - beta_1) + ) + + G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * ( + m17 / (1 - beta_1) + ) + G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * ( + m18 / (1 - beta_1) + ) + + # --- Print Error ---- + # print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') + + if iter == 0: + learing_rate = learing_rate * 0.01 + if iter == 40: + learing_rate = learing_rate * 0.01 + + # ---- Print to Out put ---- + if iter % 10 == 0: + + print( + "Current Iter: ", + iter, + " Current D cost:", + D_cost, + " Current G cost: ", + G_cost, + end="\r", + ) + print("--------- Show Example Result See Tab Above ----------") + print("--------- Wait for the image to load ---------") + Z = np.random.uniform(-1.0, 1.0, size=[16, G_input]) + + Gl1 = Z.dot(G_W1) + G_b1 + Gl1A = arctan(Gl1) + Gl2 = Gl1A.dot(G_W2) + G_b2 + Gl2A = ReLu(Gl2) + Gl3 = Gl2A.dot(G_W3) + G_b3 + Gl3A = arctan(Gl3) + + Gl4 = Gl3A.dot(G_W4) + G_b4 + Gl4A = ReLu(Gl4) + Gl5 = Gl4A.dot(G_W5) + G_b5 + Gl5A = tanh(Gl5) + Gl6 = Gl5A.dot(G_W6) + G_b6 + Gl6A = ReLu(Gl6) + Gl7 = Gl6A.dot(G_W7) + G_b7 + + current_fake_data = log(Gl7) + + fig = plot(current_fake_data) + fig.savefig( + "Click_Me_{}.png".format( + str(iter).zfill(3) + + "_Ginput_" + + str(G_input) + + "_hiddenone" + + str(hidden_input) + + "_hiddentwo" + + str(hidden_input2) + + "_LR_" + + str(learing_rate) + ), + bbox_inches="tight", + ) + # for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 + # -- end code -- diff --git a/web_programming/crawl_google_results.py b/web_programming/crawl_google_results.py index c31ec1526d3e..79b69e71c6b3 100644 --- a/web_programming/crawl_google_results.py +++ b/web_programming/crawl_google_results.py @@ -5,16 +5,18 @@ from fake_useragent import UserAgent import requests -print("Googling.....") -url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) -res = requests.get(url, headers={"UserAgent": UserAgent().random}) -# res.raise_for_status() -with open("project1a.html", "wb") as out_file: # only for knowing the class - for data in res.iter_content(10000): - out_file.write(data) -soup = BeautifulSoup(res.text, "html.parser") -links = list(soup.select(".eZt8xd"))[:5] -print(len(links)) -for link in links: - webbrowser.open(f"http://google.com{link.get('href')}") +if __name__ == "__main__": + print("Googling.....") + url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) + res = requests.get(url, headers={"UserAgent": UserAgent().random}) + # res.raise_for_status() + with open("project1a.html", "wb") as out_file: # only for knowing the class + for data in res.iter_content(10000): + out_file.write(data) + soup = BeautifulSoup(res.text, "html.parser") + links = list(soup.select(".eZt8xd"))[:5] + + print(len(links)) + for link in links: + webbrowser.open(f"http://google.com{link.get('href')}") From 0832e1ec583406a70a3d38bca11bb01a77299a23 Mon Sep 17 00:00:00 2001 From: Himanshu Bhatnagar <33115688+Himan10@users.noreply.github.com> Date: Mon, 18 Nov 2019 00:29:50 +0530 Subject: [PATCH 450/594] Adding circular_queue.py (#1574) * Create circular_queue.py Circular Queue implementation using python list with fixed range. * Update circular_queue.py * Update circular_queue.py * Update circular_queue.py * Update circular_queue.py * Update circular_queue.py * doctest: Catch "Exception: UNDERFLOW" * Deal with the fluent interface for cq.enqueue() * Test the fluent interface --- data_structures/queue/circular_queue.py | 93 +++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 data_structures/queue/circular_queue.py diff --git a/data_structures/queue/circular_queue.py b/data_structures/queue/circular_queue.py new file mode 100644 index 000000000000..2ba3f891e253 --- /dev/null +++ b/data_structures/queue/circular_queue.py @@ -0,0 +1,93 @@ +# Implementation of Circular Queue (using Python lists) + +class CircularQueue: + """Circular FIFO queue with a fixed capacity""" + + def __init__(self, n: int): + self.n = n + self.array = [None] * self.n + self.front = 0 # index of the first element + self.rear = 0 + self.size = 0 + + def __len__(self) -> int: + """ + >>> cq = CircularQueue(5) + >>> len(cq) + 0 + >>> cq.enqueue("A") # doctest: +ELLIPSIS + >> len(cq) + 1 + """ + return self.size + + def is_empty(self) -> bool: + """ + >>> cq = CircularQueue(5) + >>> cq.is_empty() + True + >>> cq.enqueue("A").is_empty() + False + """ + return self.size == 0 + + def first(self): + """ + >>> cq = CircularQueue(5) + >>> cq.first() + False + >>> cq.enqueue("A").first() + 'A' + """ + return False if self.is_empty() else self.array[self.front] + + def enqueue(self, data): + """ + This function insert an element in the queue using self.rear value as an index + >>> cq = CircularQueue(5) + >>> cq.enqueue("A") # doctest: +ELLIPSIS + >> (cq.size, cq.first()) + (1, 'A') + >>> cq.enqueue("B") # doctest: +ELLIPSIS + >> (cq.size, cq.first()) + (2, 'A') + """ + if self.size >= self.n: + raise Exception("QUEUE IS FULL") + + self.array[self.rear] = data + self.rear = (self.rear+1)%self.n + self.size += 1 + return self + + def dequeue(self): + """ + This function removes an element from the queue using on self.front value as an + index + >>> cq = CircularQueue(5) + >>> cq.dequeue() + Traceback (most recent call last): + ... + Exception: UNDERFLOW + >>> cq.enqueue("A").enqueue("B").dequeue() + 'A' + >>> (cq.size, cq.first()) + (1, 'B') + >>> cq.dequeue() + 'B' + >>> cq.dequeue() + Traceback (most recent call last): + ... + Exception: UNDERFLOW + """ + if self.size == 0: + raise Exception("UNDERFLOW") + + temp = self.array[self.front] + self.array[self.front] = None + self.front = (self.front + 1)%self.n + self.size -= 1 + return temp From 2565797504ccf270c150d657ef815f4d8ea467f3 Mon Sep 17 00:00:00 2001 From: Sarath Kaul Date: Mon, 18 Nov 2019 17:17:26 +0530 Subject: [PATCH 451/594] Reverse Words (#1581) * Word Occurence Script Added * Word Occurence Script Updated * Added doctest using collections.Counter https://docs.python.org/3/library/collections.html#collections.Counter * Reverse Word Script Added * Reverse Word Script Added * Reverse Word Script Added * Reverse Word Script Added * Word Occurence Script Added * Reverse Word Script Added * Reverse Word Script Added * Reverse Words DocTest Updated * Word Occurence Updated * Doctest Updated * Doctest Updated * Doctest Updated --- strings/reverse_words.py | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) create mode 100644 strings/reverse_words.py diff --git a/strings/reverse_words.py b/strings/reverse_words.py new file mode 100644 index 000000000000..123b074406c3 --- /dev/null +++ b/strings/reverse_words.py @@ -0,0 +1,23 @@ +# Created by sarathkaul on 18/11/19 + + +def reverse_words(input_str: str) -> str: + """ + Reverses words in a given string + >>> sentence = "I love Python" + >>> reverse_words(sentence) == " ".join(sentence.split()[::-1]) + True + >>> reverse_words(sentence) + 'Python love I' + """ + input_str = input_str.split(" ") + new_str = list() + + for a_word in input_str: + new_str.insert(0, a_word) + + return " ".join(new_str) + + +if __name__ == "__main__": + print(reverse_words("INPUT STRING")) From c57c4ca1a126871a2153cec6425cf19ed6ed1e49 Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Tue, 19 Nov 2019 15:23:44 +0530 Subject: [PATCH 452/594] Adds operations for circular linked list (#1584) * Adds, append, len, print operations for circular linked list * Adds, prepend support * Adds, delete from front of the list * Adds, delete_rear support * Adds, method documentations * Adds, type checking and doctests * Updates doctest for delete ops * Addressing requested changes * Removes unused import * Fixes failing doctests * Minor modifications... --- .../linked_list/circular_linked_list.py | 186 ++++++++++++++++++ 1 file changed, 186 insertions(+) create mode 100644 data_structures/linked_list/circular_linked_list.py diff --git a/data_structures/linked_list/circular_linked_list.py b/data_structures/linked_list/circular_linked_list.py new file mode 100644 index 000000000000..cf523f0a4380 --- /dev/null +++ b/data_structures/linked_list/circular_linked_list.py @@ -0,0 +1,186 @@ +from typing import Any + + +class Node: + """ + Class to represent a single node. + + Each node has following attributes + * data + * next_ptr + """ + + def __init__(self, data: Any): + self.data = data + self.next_ptr = None + + +class CircularLinkedList: + """ + Class to represent the CircularLinkedList. + + CircularLinkedList has following attributes. + * head + * length + """ + + def __init__(self): + self.head = None + self.length = 0 + + def __len__(self) -> int: + """ + Dunder method to return length of the CircularLinkedList + >>> cll = CircularLinkedList() + >>> len(cll) + 0 + >>> cll.append(1) + >>> len(cll) + 1 + """ + return self.length + + def __str__(self) -> str: + """ + Dunder method to represent the string representation of the CircularLinkedList + >>> cll = CircularLinkedList() + >>> print(cll) + Empty linked list + >>> cll.append(1) + >>> cll.append(2) + >>> print(cll) + => + """ + current_node = self.head + if not current_node: + return "Empty linked list" + + results = [current_node.data] + current_node = current_node.next_ptr + + while current_node != self.head: + results.append(current_node.data) + current_node = current_node.next_ptr + + return " => ".join(f"" for result in results) + + def append(self, data: Any) -> None: + """ + Adds a node with given data to the end of the CircularLinkedList + >>> cll = CircularLinkedList() + >>> cll.append(1) + >>> print(f"{len(cll)}: {cll}") + 1: + >>> cll.append(2) + >>> print(f"{len(cll)}: {cll}") + 2: => + """ + current_node = self.head + + new_node = Node(data) + new_node.next_ptr = new_node + + if current_node: + while current_node.next_ptr != self.head: + current_node = current_node.next_ptr + + current_node.next_ptr = new_node + new_node.next_ptr = self.head + else: + self.head = new_node + + self.length += 1 + + def prepend(self, data: Any) -> None: + """ + Adds a ndoe with given data to the front of the CircularLinkedList + >>> cll = CircularLinkedList() + >>> cll.prepend(1) + >>> cll.prepend(2) + >>> print(f"{len(cll)}: {cll}") + 2: => + """ + current_node = self.head + + new_node = Node(data) + new_node.next_ptr = new_node + + if current_node: + while current_node.next_ptr != self.head: + current_node = current_node.next_ptr + + current_node.next_ptr = new_node + new_node.next_ptr = self.head + + self.head = new_node + self.length += 1 + + def delete_front(self) -> None: + """ + Removes the 1st node from the CircularLinkedList + >>> cll = CircularLinkedList() + >>> cll.delete_front() + Traceback (most recent call last): + ... + IndexError: Deleting from an empty list + >>> cll.append(1) + >>> cll.append(2) + >>> print(f"{len(cll)}: {cll}") + 2: => + >>> cll.delete_front() + >>> print(f"{len(cll)}: {cll}") + 1: + """ + if not self.head: + raise IndexError("Deleting from an empty list") + + current_node = self.head + + if current_node.next_ptr == current_node: + self.head, self.length = None, 0 + else: + while current_node.next_ptr != self.head: + current_node = current_node.next_ptr + + current_node.next_ptr = self.head.next_ptr + self.head = self.head.next_ptr + + self.length -= 1 + + def delete_rear(self) -> None: + """ + Removes the last node from the CircularLinkedList + >>> cll = CircularLinkedList() + >>> cll.delete_rear() + Traceback (most recent call last): + ... + IndexError: Deleting from an empty list + >>> cll.append(1) + >>> cll.append(2) + >>> print(f"{len(cll)}: {cll}") + 2: => + >>> cll.delete_rear() + >>> print(f"{len(cll)}: {cll}") + 1: + """ + if not self.head: + raise IndexError("Deleting from an empty list") + + temp_node, current_node = self.head, self.head + + if current_node.next_ptr == current_node: + self.head, self.length = None, 0 + else: + while current_node.next_ptr != self.head: + temp_node = current_node + current_node = current_node.next_ptr + + temp_node.next_ptr = current_node.next_ptr + + self.length -= 1 + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 28c02a1f21b07627c98dd38e2cb933c1b9c14c6c Mon Sep 17 00:00:00 2001 From: John Law Date: Tue, 19 Nov 2019 13:52:55 -0800 Subject: [PATCH 453/594] Improve bellman_ford.py (#1575) * Fix out of range error in bellman_ford.py * Update bellman_ford.py * fixup! Format Python code with psf/black push * Enhance the print function * fixup! Format Python code with psf/black push --- graphs/bellman_ford.py | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index 5c36468e79de..6b5e8b735c43 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -1,14 +1,17 @@ +from typing import Dict, List + + def printDist(dist, V): - print("\nVertex Distance") - for i in range(V): - if dist[i] != float("inf"): - print(i, "\t", int(dist[i]), end="\t") - else: - print(i, "\t", "INF", end="\t") - print() + print("Vertex Distance") + distances = ("INF" if d == float("inf") else d for d in dist) + print("\t".join(f"{i}\t{d}" for i, d in enumerate(distances))) -def BellmanFord(graph, V, E, src): +def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int: + r""" + Returns shortest paths from a vertex src to all + other vertices. + """ mdist = [float("inf") for i in range(V)] mdist[src] = 0.0 @@ -30,6 +33,7 @@ def BellmanFord(graph, V, E, src): return printDist(mdist, V) + return src if __name__ == "__main__": @@ -38,7 +42,7 @@ def BellmanFord(graph, V, E, src): graph = [dict() for j in range(E)] - for i in range(V): + for i in range(E): graph[i][i] = 0.0 for i in range(E): From e8aa81297a6291a7d0994d71605f07d654aae17c Mon Sep 17 00:00:00 2001 From: Fakher Mokadem Date: Wed, 20 Nov 2019 06:36:32 +0100 Subject: [PATCH 454/594] Update gaussian_filter.py (#1548) * Update gaussian_filter.py Changed embedded for loops with product. This way range(dst_height) is called only once, instead of being called $dst_height. * Update gaussian_filter.py fixed missing width --- digital_image_processing/filters/gaussian_filter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/digital_image_processing/filters/gaussian_filter.py b/digital_image_processing/filters/gaussian_filter.py index b800f0a7edc8..b5e2ac00dd81 100644 --- a/digital_image_processing/filters/gaussian_filter.py +++ b/digital_image_processing/filters/gaussian_filter.py @@ -3,6 +3,7 @@ """ from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey from numpy import pi, mgrid, exp, square, zeros, ravel, dot, uint8 +from itertools import product def gen_gaussian_kernel(k_size, sigma): @@ -21,8 +22,7 @@ def gaussian_filter(image, k_size, sigma): # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 - for i in range(0, dst_height): - for j in range(0, dst_width): + for i, j in product(range(dst_height), range(dst_width)): window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 From ec7bc7c7cde95afbc8a7d7f826358cc221edfb6b Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 21 Nov 2019 15:21:40 +0100 Subject: [PATCH 455/594] Tabs --> spaces in quine_mc_cluskey.py (#1426) * Tabs --> spaces in quine_mc_cluskey.py * fixup! Format Python code with psf/black push --- boolean_algebra/quine_mc_cluskey.py | 48 +++++++++---------- data_structures/queue/circular_queue.py | 5 +- .../filters/gaussian_filter.py | 8 ++-- 3 files changed, 31 insertions(+), 30 deletions(-) diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py index a066982e53b4..036cfbe63e79 100644 --- a/boolean_algebra/quine_mc_cluskey.py +++ b/boolean_algebra/quine_mc_cluskey.py @@ -1,11 +1,11 @@ def compare_string(string1, string2): """ - >>> compare_string('0010','0110') - '0_10' + >>> compare_string('0010','0110') + '0_10' - >>> compare_string('0110','1101') - -1 - """ + >>> compare_string('0110','1101') + -1 + """ l1 = list(string1) l2 = list(string2) count = 0 @@ -21,9 +21,9 @@ def compare_string(string1, string2): def check(binary): """ - >>> check(['0.00.01.5']) - ['0.00.01.5'] - """ + >>> check(['0.00.01.5']) + ['0.00.01.5'] + """ pi = [] while 1: check1 = ["$"] * len(binary) @@ -45,9 +45,9 @@ def check(binary): def decimal_to_binary(no_of_variable, minterms): """ - >>> decimal_to_binary(3,[1.5]) - ['0.00.01.5'] - """ + >>> decimal_to_binary(3,[1.5]) + ['0.00.01.5'] + """ temp = [] s = "" for m in minterms: @@ -61,12 +61,12 @@ def decimal_to_binary(no_of_variable, minterms): def is_for_table(string1, string2, count): """ - >>> is_for_table('__1','011',2) - True + >>> is_for_table('__1','011',2) + True - >>> is_for_table('01_','001',1) - False - """ + >>> is_for_table('01_','001',1) + False + """ l1 = list(string1) l2 = list(string2) count_n = 0 @@ -81,12 +81,12 @@ def is_for_table(string1, string2, count): def selection(chart, prime_implicants): """ - >>> selection([[1]],['0.00.01.5']) - ['0.00.01.5'] + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] - >>> selection([[1]],['0.00.01.5']) - ['0.00.01.5'] - """ + >>> selection([[1]],['0.00.01.5']) + ['0.00.01.5'] + """ temp = [] select = [0] * len(chart) for i in range(len(chart[0])): @@ -128,9 +128,9 @@ def selection(chart, prime_implicants): def prime_implicant_chart(prime_implicants, binary): """ - >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) - [[1]] - """ + >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) + [[1]] + """ chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] for i in range(len(prime_implicants)): count = prime_implicants[i].count("_") diff --git a/data_structures/queue/circular_queue.py b/data_structures/queue/circular_queue.py index 2ba3f891e253..229a67ebb8be 100644 --- a/data_structures/queue/circular_queue.py +++ b/data_structures/queue/circular_queue.py @@ -1,5 +1,6 @@ # Implementation of Circular Queue (using Python lists) + class CircularQueue: """Circular FIFO queue with a fixed capacity""" @@ -59,7 +60,7 @@ def enqueue(self, data): raise Exception("QUEUE IS FULL") self.array[self.rear] = data - self.rear = (self.rear+1)%self.n + self.rear = (self.rear + 1) % self.n self.size += 1 return self @@ -88,6 +89,6 @@ def dequeue(self): temp = self.array[self.front] self.array[self.front] = None - self.front = (self.front + 1)%self.n + self.front = (self.front + 1) % self.n self.size -= 1 return temp diff --git a/digital_image_processing/filters/gaussian_filter.py b/digital_image_processing/filters/gaussian_filter.py index b5e2ac00dd81..79026ddcc57a 100644 --- a/digital_image_processing/filters/gaussian_filter.py +++ b/digital_image_processing/filters/gaussian_filter.py @@ -22,10 +22,10 @@ def gaussian_filter(image, k_size, sigma): # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 - for i, j in product(range(dst_height), range(dst_width)): - window = ravel(image[i : i + k_size, j : j + k_size]) - image_array[row, :] = window - row += 1 + for i, j in product(range(dst_height), range(dst_width)): + window = ravel(image[i : i + k_size, j : j + k_size]) + image_array[row, :] = window + row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) From c5fd075f1ea9b6dc11cca2d36605aaddbd0ab5fa Mon Sep 17 00:00:00 2001 From: Arun Babu PT <36483987+ptarun@users.noreply.github.com> Date: Fri, 22 Nov 2019 20:25:19 +0530 Subject: [PATCH 456/594] Fractional knapsack (#1524) * Add files via upload * Added doctests, type hints, f-strings, URLs * Rename knapsack.py to fractional_knapsack.py * Rename graphs/fractional_knapsack.py to dynamic_programming/fractional_knapsack_2.py --- dynamic_programming/fractional_knapsack_2.py | 60 ++++++++++++++++++++ 1 file changed, 60 insertions(+) create mode 100644 dynamic_programming/fractional_knapsack_2.py diff --git a/dynamic_programming/fractional_knapsack_2.py b/dynamic_programming/fractional_knapsack_2.py new file mode 100644 index 000000000000..eadb73c61a39 --- /dev/null +++ b/dynamic_programming/fractional_knapsack_2.py @@ -0,0 +1,60 @@ +# https://en.wikipedia.org/wiki/Continuous_knapsack_problem +# https://www.guru99.com/fractional-knapsack-problem-greedy.html +# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93 + +from typing import List, Tuple + + +def fractional_knapsack( + value: List[int], weight: List[int], capacity: int +) -> Tuple[int, List[int]]: + """ + >>> value = [1, 3, 5, 7, 9] + >>> weight = [0.9, 0.7, 0.5, 0.3, 0.1] + >>> fractional_knapsack(value, weight, 5) + (25, [1, 1, 1, 1, 1]) + >>> fractional_knapsack(value, weight, 15) + (25, [1, 1, 1, 1, 1]) + >>> fractional_knapsack(value, weight, 25) + (25, [1, 1, 1, 1, 1]) + >>> fractional_knapsack(value, weight, 26) + (25, [1, 1, 1, 1, 1]) + >>> fractional_knapsack(value, weight, -1) + (-90.0, [0, 0, 0, 0, -10.0]) + >>> fractional_knapsack([1, 3, 5, 7], weight, 30) + (16, [1, 1, 1, 1]) + >>> fractional_knapsack(value, [0.9, 0.7, 0.5, 0.3, 0.1], 30) + (25, [1, 1, 1, 1, 1]) + >>> fractional_knapsack([], [], 30) + (0, []) + """ + index = list(range(len(value))) + ratio = [v / w for v, w in zip(value, weight)] + index.sort(key=lambda i: ratio[i], reverse=True) + + max_value = 0 + fractions = [0] * len(value) + for i in index: + if weight[i] <= capacity: + fractions[i] = 1 + max_value += value[i] + capacity -= weight[i] + else: + fractions[i] = capacity / weight[i] + max_value += value[i] * capacity / weight[i] + break + + return max_value, fractions + + +if __name__ == "__main__": + n = int(input("Enter number of items: ")) + value = input(f"Enter the values of the {n} item(s) in order: ").split() + value = [int(v) for v in value] + weight = input(f"Enter the positive weights of the {n} item(s) in order: ".split()) + weight = [int(w) for w in weight] + capacity = int(input("Enter maximum weight: ")) + + max_value, fractions = fractional_knapsack(value, weight, capacity) + print("The maximum value of items that can be carried:", max_value) + print("The fractions in which the items should be taken:", fractions) From e09bf696488b83b090330c1baaf51ec938ed2d3a Mon Sep 17 00:00:00 2001 From: BryanChan777 <43082778+BryanChan777@users.noreply.github.com> Date: Fri, 22 Nov 2019 19:06:52 -0800 Subject: [PATCH 457/594] Update README.md (#1588) * Update README.md * python -m unittest -v --- linear_algebra/README.md | 18 +++++++----------- 1 file changed, 7 insertions(+), 11 deletions(-) diff --git a/linear_algebra/README.md b/linear_algebra/README.md index 169cd074d396..540920744948 100644 --- a/linear_algebra/README.md +++ b/linear_algebra/README.md @@ -1,6 +1,6 @@ # Linear algebra library for Python -This module contains some useful classes and functions for dealing with linear algebra in python 2. +This module contains classes and functions for doing linear algebra. --- @@ -8,7 +8,7 @@ This module contains some useful classes and functions for dealing with linear a ### class Vector - - - This class represents a vector of arbitray size and operations on it. + - This class represents a vector of arbitray size and related operations. **Overview about the methods:** @@ -58,22 +58,18 @@ This module contains some useful classes and functions for dealing with linear a ## Documentation -The module is well documented. You can use the python in-built ```help(...)``` function. -For instance: ```help(Vector)``` gives you all information about the Vector-class. -Or ```help(unitBasisVector)``` gives you all information you needed about the -global function ```unitBasisVector(...)```. If you need informations about a certain -method you type ```help(CLASSNAME.METHODNAME)```. +This module uses docstrings to enable the use of Python's in-built `help(...)` function. +For instance, try `help(Vector)`, `help(unitBasisVector)`, and `help(CLASSNAME.METHODNAME)`. --- ## Usage -You will find the module in the **src** directory its called ```lib.py```. You need to -import this module in your project. Alternative you can also use the file ```lib.pyc``` in python-bytecode. +Import the module `lib.py` from the **src** directory into your project. +Alternatively, you can directly use the Python bytecode file `lib.pyc`. --- ## Tests -In the **src** directory you also find the test-suite, its called ```tests.py```. -The test-suite uses the built-in python-test-framework **unittest**. +`src/tests.py` contains Python unit tests which can be run with `python3 -m unittest -v`. From 4c75f863c84e049026135d5ae04e6969fc569add Mon Sep 17 00:00:00 2001 From: vansh bhardwaj <39709733+vansh1999@users.noreply.github.com> Date: Sat, 23 Nov 2019 18:24:06 +0530 Subject: [PATCH 458/594] added current stock price (#1590) * added current stock price * Ten lines or less --- web_programming/current_stock_price.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) create mode 100644 web_programming/current_stock_price.py diff --git a/web_programming/current_stock_price.py b/web_programming/current_stock_price.py new file mode 100644 index 000000000000..df44da4ef351 --- /dev/null +++ b/web_programming/current_stock_price.py @@ -0,0 +1,14 @@ +import requests +from bs4 import BeautifulSoup + + +def stock_price(symbol: str = "AAPL") -> str: + url = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" + soup = BeautifulSoup(requests.get(url).text, "html.parser") + class_ = "My(6px) Pos(r) smartphone_Mt(6px)" + return soup.find("div", class_=class_).find("span").text + + +if __name__ == "__main__": + for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): + print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}") From 2ad5a1f0836f9d8b8da77457f163a183d98a0bda Mon Sep 17 00:00:00 2001 From: achance6 <45263295+achance6@users.noreply.github.com> Date: Sat, 23 Nov 2019 10:52:32 -0500 Subject: [PATCH 459/594] Implemented simple keyword cipher (#1589) * Implemented simple keyword cipher * Added documentation and improved input processing * Allow object's hash function to be called * added to string functionality * reverted * Revised according to pull request #1589 * Optimized imports * Update simple_keyword_cypher.py * Update hash_table.py --- ciphers/simple_keyword_cypher.py | 90 ++++++++++++++++++++++++++++++++ 1 file changed, 90 insertions(+) create mode 100644 ciphers/simple_keyword_cypher.py diff --git a/ciphers/simple_keyword_cypher.py b/ciphers/simple_keyword_cypher.py new file mode 100644 index 000000000000..71c3083e9dfc --- /dev/null +++ b/ciphers/simple_keyword_cypher.py @@ -0,0 +1,90 @@ +def remove_duplicates(key: str) -> str: + """ + Removes duplicate alphabetic characters in a keyword (letter is ignored after its + first appearance). + :param key: Keyword to use + :return: String with duplicates removed + >>> remove_duplicates('Hello World!!') + 'Helo Wrd' + """ + + key_no_dups = "" + for ch in key: + if ch == " " or ch not in key_no_dups and ch.isalpha(): + key_no_dups += ch + return key_no_dups + + +def create_cipher_map(key: str) -> dict: + """ + Returns a cipher map given a keyword. + :param key: keyword to use + :return: dictionary cipher map + """ + # Create alphabet list + alphabet = [chr(i + 65) for i in range(26)] + # Remove duplicate characters from key + key = remove_duplicates(key.upper()) + offset = len(key) + # First fill cipher with key characters + cipher_alphabet = {alphabet[i]: char for i, char in enumerate(key)} + # Then map remaining characters in alphabet to + # the alphabet from the beginning + for i in range(len(cipher_alphabet), 26): + char = alphabet[i - offset] + # Ensure we are not mapping letters to letters previously mapped + while char in key: + offset -= 1 + char = alphabet[i - offset] + cipher_alphabet[alphabet[i]] = char + return cipher_alphabet + + +def encipher(message: str, cipher_map: dict) -> str: + """ + Enciphers a message given a cipher map. + :param message: Message to encipher + :param cipher_map: Cipher map + :return: enciphered string + >>> encipher('Hello World!!', create_cipher_map('Goodbye!!')) + 'CYJJM VMQJB!!' + """ + return "".join(cipher_map.get(ch, ch) for ch in message.upper()) + + +def decipher(message: str, cipher_map: dict) -> str: + """ + Deciphers a message given a cipher map + :param message: Message to decipher + :param cipher_map: Dictionary mapping to use + :return: Deciphered string + >>> cipher_map = create_cipher_map('Goodbye!!') + >>> decipher(encipher('Hello World!!', cipher_map), cipher_map) + 'HELLO WORLD!!' + """ + # Reverse our cipher mappings + rev_cipher_map = {v: k for k, v in cipher_map.items()} + return "".join(rev_cipher_map.get(ch, ch) for ch in message.upper()) + + +def main(): + """ + Handles I/O + :return: void + """ + message = input("Enter message to encode or decode: ").strip() + key = input("Enter keyword: ").strip() + option = input("Encipher or decipher? E/D:").strip()[0].lower() + try: + func = {"e": encipher, "d": decipher}[option] + except KeyError: + raise KeyError("invalid input option") + cipher_map = create_cipher_map(key) + print(func(message, cipher_map)) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + main() From 0d3c9d586ca3e4642aa88e1bbf88a008993e0019 Mon Sep 17 00:00:00 2001 From: Vikas Kumar <54888022+vikasit12@users.noreply.github.com> Date: Tue, 26 Nov 2019 11:15:28 +0530 Subject: [PATCH 460/594] Update singly_linked_list.py (#1593) * Update singly_linked_list.py printing current.data rather than node address in __repr__ for a more readable print statement * eval(repr(c)) == c The output of `__repr__()` _should look like a valid Python expression that could be used to recreate an object with the same value_. https://docs.python.org/3.4/reference/datamodel.html#object.__repr__ * += --> + --- .../linked_list/singly_linked_list.py | 76 ++++++++----------- 1 file changed, 32 insertions(+), 44 deletions(-) diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 7137f4e66deb..8730a6d2a9e8 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -3,30 +3,30 @@ def __init__(self, data): self.data = data # given data self.next = None # given next to None - def __repr__(self): # String Representation of a Node - return f"" + def __repr__(self): # string representation of a Node + return f"Node({self.data})" class LinkedList: def __init__(self): - self.head = None # Initialize head to None + self.head = None # initialize head to None - def insert_tail(self, data): + def insert_tail(self, data) -> None: if self.head is None: - self.insert_head(data) # If this is first node, call insert_head + self.insert_head(data) # if this is first node, call insert_head else: temp = self.head while temp.next: # traverse to last node temp = temp.next temp.next = Node(data) # create node & link to tail - def insert_head(self, data): + def insert_head(self, data) -> None: newNod = Node(data) # create a new node if self.head: newNod.next = self.head # link newNode to head self.head = newNod # make NewNode as head - def printList(self): # print every node data + def print_list(self) -> None: # print every node data temp = self.head while temp: print(temp.data) @@ -47,14 +47,12 @@ def delete_tail(self): # delete from tail else: while temp.next.next: # find the 2nd last element temp = temp.next - temp.next, temp = ( - None, - temp.next, - ) # (2nd last element).next = None and temp = last element + # (2nd last element).next = None and temp = last element + temp.next, temp = None, temp.next return temp - def isEmpty(self): - return self.head is None # Return if head is none + def is_empty(self) -> bool: + return self.head is None # return True if head is none def reverse(self): prev = None @@ -76,17 +74,16 @@ def __repr__(self): # String representation/visualization of a Linked Lists current = self.head string_repr = "" while current: - string_repr += f"{current} ---> " + string_repr += f"{current} --> " current = current.next # END represents end of the LinkedList - string_repr += "END" - return string_repr + return string_repr + "END" # Indexing Support. Used to get a node at particaular position def __getitem__(self, index): current = self.head - # If LinkedList is Empty + # If LinkedList is empty if current is None: raise IndexError("The Linked List is empty") @@ -113,39 +110,30 @@ def __setitem__(self, index, data): def main(): A = LinkedList() - print("Inserting 1st at head") - a1 = input() - A.insert_head(a1) - print("Inserting 2nd at head") - a2 = input() - A.insert_head(a2) - print("\nPrint List : ") - A.printList() - print("\nInserting 1st at Tail") - a3 = input() - A.insert_tail(a3) - print("Inserting 2nd at Tail") - a4 = input() - A.insert_tail(a4) - print("\nPrint List : ") - A.printList() + A.insert_head(input("Inserting 1st at head ").strip()) + A.insert_head(input("Inserting 2nd at head ").strip()) + print("\nPrint list:") + A.print_list() + A.insert_tail(input("\nInserting 1st at tail ").strip()) + A.insert_tail(input("Inserting 2nd at tail ").strip()) + print("\nPrint list:") + A.print_list() print("\nDelete head") A.delete_head() - print("Delete Tail") + print("Delete tail") A.delete_tail() - print("\nPrint List : ") - A.printList() - print("\nReverse Linked List") + print("\nPrint list:") + A.print_list() + print("\nReverse linked list") A.reverse() - print("\nPrint List : ") - A.printList() - print("\nString Representation of Linked List:") + print("\nPrint list:") + A.print_list() + print("\nString representation of linked list:") print(A) - print("\n Reading/Changing Node Data using Indexing:") + print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {A[1]}") - p1 = input("Enter New Value: ") - A[1] = p1 - print("New List:") + A[1] = input("Enter New Value: ").strip() + print("New list:") print(A) From 140b79b4b2a184e041ce2e50e503d7a87b235b68 Mon Sep 17 00:00:00 2001 From: ELNS <57490926+EverLookNeverSee@users.noreply.github.com> Date: Tue, 26 Nov 2019 15:27:53 +0330 Subject: [PATCH 461/594] Adding Linear Discriminant Analysis (#1592) * Adding new file to the machine_learning directory * Adding initial documentation * importing modules * Adding Normal_gen function * Adding Y_gen function * Adding mean_calc function * Adding prob_calc function * Adding var_calc function * Adding predict function * Adding accuracy function * Adding main function * Renaming LDA file * Adding requested changes * Renaming some of functions * Refactoring str.format() statements to f-string * Removing unnecessary list objects inside two functions * changing code style in some lines * Fixing y_generator function * Refactoring 'predict_y_values' function by using list comprehensions * Changing code style in import statements * Refactoring CLI code block * fixup! Format Python code with psf/black push * No lines longer than 88 characters --- DIRECTORY.md | 7 + .../linear_discriminant_analysis.py | 330 ++++++++++++++++++ 2 files changed, 337 insertions(+) create mode 100644 machine_learning/linear_discriminant_analysis.py diff --git a/DIRECTORY.md b/DIRECTORY.md index 6e64f034df62..74c63d144e40 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -52,6 +52,7 @@ * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) + * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) @@ -95,6 +96,7 @@ * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * Linked List + * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) @@ -102,6 +104,7 @@ * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue + * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) @@ -149,6 +152,7 @@ * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) + * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [K Means Clustering Tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) @@ -224,6 +228,7 @@ * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) + * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) @@ -521,6 +526,7 @@ * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) + * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Word Occurence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurence.py) ## Traversals @@ -528,6 +534,7 @@ ## Web Programming * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) + * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) diff --git a/machine_learning/linear_discriminant_analysis.py b/machine_learning/linear_discriminant_analysis.py new file mode 100644 index 000000000000..8a89f6f5922e --- /dev/null +++ b/machine_learning/linear_discriminant_analysis.py @@ -0,0 +1,330 @@ +""" + Linear Discriminant Analysis + + + Assumptions About Data : + 1. The input variables has a gaussian distribution. + 2. The variance calculated for each input variables by class grouping is the + same. + 3. The mix of classes in your training set is representative of the problem. + + + Learning The Model : + The LDA model requires the estimation of statistics from the training data : + 1. Mean of each input value for each class. + 2. Probability of an instance belong to each class. + 3. Covariance for the input data for each class + + Calculate the class means : + mean(x) = 1/n ( for i = 1 to i = n --> sum(xi)) + + Calculate the class probabilities : + P(y = 0) = count(y = 0) / (count(y = 0) + count(y = 1)) + P(y = 1) = count(y = 1) / (count(y = 0) + count(y = 1)) + + Calculate the variance : + We can calculate the variance for dataset in two steps : + 1. Calculate the squared difference for each input variable from the + group mean. + 2. Calculate the mean of the squared difference. + ------------------------------------------------ + Squared_Difference = (x - mean(k)) ** 2 + Variance = (1 / (count(x) - count(classes))) * + (for i = 1 to i = n --> sum(Squared_Difference(xi))) + + Making Predictions : + discriminant(x) = x * (mean / variance) - + ((mean ** 2) / (2 * variance)) + Ln(probability) + --------------------------------------------------------------------------- + After calculating the discriminant value for each class, the class with the + largest discriminant value is taken as the prediction. + + Author: @EverLookNeverSee +""" + +from math import log +from os import name, system +from random import gauss + + +# Make a training dataset drawn from a gaussian distribution +def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> list: + """ + Generate gaussian distribution instances based-on given mean and standard deviation + :param mean: mean value of class + :param std_dev: value of standard deviation entered by usr or default value of it + :param instance_count: instance number of class + :return: a list containing generated values based-on given mean, std_dev and + instance_count + """ + return [gauss(mean, std_dev) for _ in range(instance_count)] + + +# Make corresponding Y flags to detecting classes +def y_generator(class_count: int, instance_count: list) -> list: + """ + Generate y values for corresponding classes + :param class_count: Number of classes(data groupings) in dataset + :param instance_count: number of instances in class + :return: corresponding values for data groupings in dataset + """ + + return [k for k in range(class_count) for _ in range(instance_count[k])] + + +# Calculate the class means +def calculate_mean(instance_count: int, items: list) -> float: + """ + Calculate given class mean + :param instance_count: Number of instances in class + :param items: items that related to specific class(data grouping) + :return: calculated actual mean of considered class + """ + # the sum of all items divided by number of instances + return sum(items) / instance_count + + +# Calculate the class probabilities +def calculate_probabilities(instance_count: int, total_count: int) -> float: + """ + Calculate the probability that a given instance will belong to which class + :param instance_count: number of instances in class + :param total_count: the number of all instances + :return: value of probability for considered class + """ + # number of instances in specific class divided by number of all instances + return instance_count / total_count + + +# Calculate the variance +def calculate_variance(items: list, means: list, total_count: int) -> float: + """ + Calculate the variance + :param items: a list containing all items(gaussian distribution of all classes) + :param means: a list containing real mean values of each class + :param total_count: the number of all instances + :return: calculated variance for considered dataset + """ + squared_diff = [] # An empty list to store all squared differences + # iterate over number of elements in items + for i in range(len(items)): + # for loop iterates over number of elements in inner layer of items + for j in range(len(items[i])): + # appending squared differences to 'squared_diff' list + squared_diff.append((items[i][j] - means[i]) ** 2) + + # one divided by (the number of all instances - number of classes) multiplied by + # sum of all squared differences + n_classes = len(means) # Number of classes in dataset + return 1 / (total_count - n_classes) * sum(squared_diff) + + +# Making predictions +def predict_y_values( + x_items: list, means: list, variance: float, probabilities: list +) -> list: + """ This function predicts new indexes(groups for our data) + :param x_items: a list containing all items(gaussian distribution of all classes) + :param means: a list containing real mean values of each class + :param variance: calculated value of variance by calculate_variance function + :param probabilities: a list containing all probabilities of classes + :return: a list containing predicted Y values + """ + # An empty list to store generated discriminant values of all items in dataset for + # each class + results = [] + # for loop iterates over number of elements in list + for i in range(len(x_items)): + # for loop iterates over number of inner items of each element + for j in range(len(x_items[i])): + temp = [] # to store all discriminant values of each item as a list + # for loop iterates over number of classes we have in our dataset + for k in range(len(x_items)): + # appending values of discriminants for each class to 'temp' list + temp.append( + x_items[i][j] * (means[k] / variance) + - (means[k] ** 2 / (2 * variance)) + + log(probabilities[k]) + ) + # appending discriminant values of each item to 'results' list + results.append(temp) + print("Generated Discriminants: \n", results) + return [l.index(max(l)) for l in results] + + +# Calculating Accuracy +def accuracy(actual_y: list, predicted_y: list) -> float: + """ + Calculate the value of accuracy based-on predictions + :param actual_y:a list containing initial Y values generated by 'y_generator' + function + :param predicted_y: a list containing predicted Y values generated by + 'predict_y_values' function + :return: percentage of accuracy + """ + # iterate over one element of each list at a time (zip mode) + # prediction is correct if actual Y value equals to predicted Y value + correct = sum(1 for i, j in zip(actual_y, predicted_y) if i == j) + # percentage of accuracy equals to number of correct predictions divided by number + # of all data and multiplied by 100 + return (correct / len(actual_y)) * 100 + + +# Main Function +def main(): + """ This function starts execution phase """ + while True: + print(" Linear Discriminant Analysis ".center(100, "*")) + print("*" * 100, "\n") + print("First of all we should specify the number of classes that") + print("we want to generate as training dataset") + # Trying to get number of classes + n_classes = 0 + while True: + try: + user_input = int( + input("Enter the number of classes (Data Groupings): ").strip() + ) + if user_input > 0: + n_classes = user_input + break + else: + print( + f"Your entered value is {user_input} , Number of classes " + f"should be positive!" + ) + continue + except ValueError: + print("Your entered value is not numerical!") + + print("-" * 100) + + std_dev = 1.0 # Default value for standard deviation of dataset + # Trying to get the value of standard deviation + while True: + try: + user_sd = float( + input( + "Enter the value of standard deviation" + "(Default value is 1.0 for all classes): " + ).strip() + or "1.0" + ) + if user_sd >= 0.0: + std_dev = user_sd + break + else: + print( + f"Your entered value is {user_sd}, Standard deviation should " + f"not be negative!" + ) + continue + except ValueError: + print("Your entered value is not numerical!") + + print("-" * 100) + + # Trying to get number of instances in classes and theirs means to generate + # dataset + counts = [] # An empty list to store instance counts of classes in dataset + for i in range(n_classes): + while True: + try: + user_count = int( + input(f"Enter The number of instances for class_{i+1}: ") + ) + if user_count > 0: + counts.append(user_count) + break + else: + print( + f"Your entered value is {user_count}, Number of " + f"instances should be positive!" + ) + continue + except ValueError: + print("Your entered value is not numerical!") + print("-" * 100) + + # An empty list to store values of user-entered means of classes + user_means = [] + for a in range(n_classes): + while True: + try: + user_mean = float( + input(f"Enter the value of mean for class_{a+1}: ") + ) + if isinstance(user_mean, float): + user_means.append(user_mean) + break + print(f"You entered an invalid value: {user_mean}") + except ValueError: + print("Your entered value is not numerical!") + print("-" * 100) + + print("Standard deviation: ", std_dev) + # print out the number of instances in classes in separated line + for i, count in enumerate(counts, 1): + print(f"Number of instances in class_{i} is: {count}") + print("-" * 100) + + # print out mean values of classes separated line + for i, user_mean in enumerate(user_means, 1): + print(f"Mean of class_{i} is: {user_mean}") + print("-" * 100) + + # Generating training dataset drawn from gaussian distribution + x = [ + gaussian_distribution(user_means[j], std_dev, counts[j]) + for j in range(n_classes) + ] + print("Generated Normal Distribution: \n", x) + print("-" * 100) + + # Generating Ys to detecting corresponding classes + y = y_generator(n_classes, counts) + print("Generated Corresponding Ys: \n", y) + print("-" * 100) + + # Calculating the value of actual mean for each class + actual_means = [calculate_mean(counts[k], x[k]) for k in range(n_classes)] + # for loop iterates over number of elements in 'actual_means' list and print + # out them in separated line + for i, actual_mean in enumerate(actual_means, 1): + print(f"Actual(Real) mean of class_{i} is: {actual_mean}") + print("-" * 100) + + # Calculating the value of probabilities for each class + # An empty list to store values of probabilities for each class + probabilities = ( + calculate_probabilities(counts[i], sum(counts)) for i in range(n_classes) + ) + # for loop iterates over number of elements in 'probabilities' list and print + # out them in separated line + for i, probability in enumerate(probabilities, 1): + print("Probability of class_{} is: {}".format(i, probability)) + print("-" * 100) + + # Calculating the values of variance for each class + variance = calculate_variance(x, actual_means, sum(counts)) + print("Variance: ", variance) + print("-" * 100) + + # Predicting Y values + # storing predicted Y values in 'pre_indexes' variable + pre_indexes = predict_y_values(x, actual_means, variance, probabilities) + print("-" * 100) + + # Calculating Accuracy of the model + print(f"Accuracy: {accuracy(y, pre_indexes)}") + print("-" * 100) + print(" DONE ".center(100, "+")) + + if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q": + print("\n" + "GoodBye!".center(100, "-") + "\n") + break + system("cls" if name == "nt" else "clear") + + +if __name__ == "__main__": + main() From 4baf3972e1fc8b8e366e509762e4731bb158f0f5 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 27 Nov 2019 11:30:21 +0100 Subject: [PATCH 462/594] GitHub Action to mark stale issues and pull requests (#1594) --- .github/workflows/stale.yml | 15 +++++++++++++++ 1 file changed, 15 insertions(+) create mode 100644 .github/workflows/stale.yml diff --git a/.github/workflows/stale.yml b/.github/workflows/stale.yml new file mode 100644 index 000000000000..1d1d743fa832 --- /dev/null +++ b/.github/workflows/stale.yml @@ -0,0 +1,15 @@ +name: Mark stale issues and pull requests +on: + schedule: + - cron: "0 0 * * *" +jobs: + stale: + runs-on: ubuntu-latest + steps: + - uses: actions/stale@v1 + with: + repo-token: ${{ secrets.GITHUB_TOKEN }} + stale-issue-message: 'Stale issue message' + stale-pr-message: 'Stale pull request message' + stale-issue-label: 'no-issue-activity' + stale-pr-label: 'no-pr-activity' From f4a7c5066c1921842a158976e349b4c6a6955d72 Mon Sep 17 00:00:00 2001 From: ELNS <57490926+EverLookNeverSee@users.noreply.github.com> Date: Thu, 28 Nov 2019 19:51:34 +0330 Subject: [PATCH 463/594] converting generator object to a list object (#1602) * converting generator object to a list object * Refactor: converting generator object to a list object * fixup! Format Python code with psf/black push --- machine_learning/linear_discriminant_analysis.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/machine_learning/linear_discriminant_analysis.py b/machine_learning/linear_discriminant_analysis.py index 8a89f6f5922e..62dc34af6bbd 100644 --- a/machine_learning/linear_discriminant_analysis.py +++ b/machine_learning/linear_discriminant_analysis.py @@ -295,10 +295,10 @@ def main(): print("-" * 100) # Calculating the value of probabilities for each class - # An empty list to store values of probabilities for each class - probabilities = ( + probabilities = [ calculate_probabilities(counts[i], sum(counts)) for i in range(n_classes) - ) + ] + # for loop iterates over number of elements in 'probabilities' list and print # out them in separated line for i, probability in enumerate(probabilities, 1): From 2fb6f786ceff9fef94494d73d541a4e7e5feafed Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 28 Nov 2019 19:53:37 +0100 Subject: [PATCH 464/594] Typo in a comment (#1603) --- .github/workflows/autoblack.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index dc76d4cee068..cf578a14da95 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -1,5 +1,5 @@ # GitHub Action that uses Black to reformat Python code (if needed) when doing a git push. -# If all Python code in the repo is complient with Black then this Action does nothing. +# If all Python code in the repo is compliant with Black then this Action does nothing. # Otherwise, Black is run and its changes are committed to the repo. # https://github.com/cclauss/autoblack From 5d20dbfb98a19634db0961318f5378f50e94c428 Mon Sep 17 00:00:00 2001 From: Saurabh Goyal Date: Sat, 30 Nov 2019 10:47:13 +0530 Subject: [PATCH 465/594] add a generic heap (#906) * add a generic heap * Delete __init__.py * Rename data_structures/Heap/heap_generic.py to data_structures/heap/heap_generic.py * Add doctests * Fix doctests * Fix doctests again --- .../data_structures/heap/heap_generic.py | 162 ++++++++++++++++++ 1 file changed, 162 insertions(+) create mode 100644 data_structures/data_structures/heap/heap_generic.py diff --git a/data_structures/data_structures/heap/heap_generic.py b/data_structures/data_structures/heap/heap_generic.py new file mode 100644 index 000000000000..c41a434542e7 --- /dev/null +++ b/data_structures/data_structures/heap/heap_generic.py @@ -0,0 +1,162 @@ +class Heap(object): + """A generic Heap class, can be used as min or max by passing the key function accordingly. + """ + + def __init__(self, key=None): + # Stores actual heap items. + self.arr = list() + # Stores indexes of each item for supporting updates and deletion. + self.pos_map = {} + # Stores current size of heap. + self.size = 0 + # Stores function used to evaluate the score of an item on which basis ordering will be done. + self.key = key or (lambda x: x) + + def _parent(self, i): + """Returns parent index of given index if exists else None""" + return int((i - 1) / 2) if i > 0 else None + + def _left(self, i): + """Returns left-child-index of given index if exists else None""" + left = int(2 * i + 1) + return left if 0 < left < self.size else None + + def _right(self, i): + """Returns right-child-index of given index if exists else None""" + right = int(2 * i + 2) + return right if 0 < right < self.size else None + + def _swap(self, i, j): + """Performs changes required for swapping two elements in the heap""" + # First update the indexes of the items in index map. + self.pos_map[self.arr[i][0]], self.pos_map[self.arr[j][0]] = ( + self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]] + ) + # Then swap the items in the list. + self.arr[i], self.arr[j] = self.arr[j], self.arr[i] + + def _cmp(self, i, j): + """Compares the two items using default comparison""" + return self.arr[i][1] < self.arr[j][1] + + def _get_valid_parent(self, i): + """Returns index of valid parent as per desired ordering among given index and both it's children""" + left = self._left(i) + right = self._right(i) + valid_parent = i + + if left is not None and not self._cmp(left, valid_parent): + valid_parent = left + if right is not None and not self._cmp(right, valid_parent): + valid_parent = right + + return valid_parent + + def _heapify_up(self, index): + """Fixes the heap in upward direction of given index""" + parent = self._parent(index) + while parent is not None and not self._cmp(index, parent): + self._swap(index, parent) + index, parent = parent, self._parent(parent) + + def _heapify_down(self, index): + """Fixes the heap in downward direction of given index""" + valid_parent = self._get_valid_parent(index) + while valid_parent != index: + self._swap(index, valid_parent) + index, valid_parent = valid_parent, self._get_valid_parent(valid_parent) + + def update_item(self, item, item_value): + """Updates given item value in heap if present""" + if item not in self.pos_map: + return + index = self.pos_map[item] + self.arr[index] = [item, self.key(item_value)] + # Make sure heap is right in both up and down direction. + # Ideally only one of them will make any change. + self._heapify_up(index) + self._heapify_down(index) + + def delete_item(self, item): + """Deletes given item from heap if present""" + if item not in self.pos_map: + return + index = self.pos_map[item] + del self.pos_map[item] + self.arr[index] = self.arr[self.size - 1] + self.pos_map[self.arr[self.size - 1][0]] = index + self.size -= 1 + # Make sure heap is right in both up and down direction. + # Ideally only one of them will make any change- so no performance loss in calling both. + if self.size > index: + self._heapify_up(index) + self._heapify_down(index) + + def insert_item(self, item, item_value): + """Inserts given item with given value in heap""" + arr_len = len(self.arr) + if arr_len == self.size: + self.arr.append([item, self.key(item_value)]) + else: + self.arr[self.size] = [item, self.key(item_value)] + self.pos_map[item] = self.size + self.size += 1 + self._heapify_up(self.size - 1) + + def get_top(self): + """Returns top item tuple (Calculated value, item) from heap if present""" + return self.arr[0] if self.size else None + + def extract_top(self): + """Returns top item tuple (Calculated value, item) from heap and removes it as well if present""" + top_item_tuple = self.get_top() + if top_item_tuple: + self.delete_item(top_item_tuple[0]) + return top_item_tuple + + +def test_heap() -> None: + """ + >>> h = Heap() # Max-heap + >>> h.insert_item(5, 34) + >>> h.insert_item(6, 31) + >>> h.insert_item(7, 37) + >>> h.get_top() + [7, 37] + >>> h.extract_top() + [7, 37] + >>> h.extract_top() + [5, 34] + >>> h.extract_top() + [6, 31] + >>> h = Heap(key=lambda x: -x) # Min heap + >>> h.insert_item(5, 34) + >>> h.insert_item(6, 31) + >>> h.insert_item(7, 37) + >>> h.get_top() + [6, -31] + >>> h.extract_top() + [6, -31] + >>> h.extract_top() + [5, -34] + >>> h.extract_top() + [7, -37] + >>> h.insert_item(8, 45) + >>> h.insert_item(9, 40) + >>> h.insert_item(10, 50) + >>> h.get_top() + [9, -40] + >>> h.update_item(10, 30) + >>> h.get_top() + [10, -30] + >>> h.delete_item(10) + >>> h.get_top() + [9, -40] + """ + pass + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 415c9f5e6547457eb3546b467283cbd9e82e4eec Mon Sep 17 00:00:00 2001 From: Bruno Santos <7022432+dunderbruno@users.noreply.github.com> Date: Sun, 1 Dec 2019 02:13:28 -0300 Subject: [PATCH 466/594] Improve prim.py (#1226) * suiting PEP8 * create auxiliary function * running example * updating DIRECTORY.md --- DIRECTORY.md | 3 ++ graphs/prim.py | 76 +++++++++++++++++++++++++++++++++----------------- 2 files changed, 53 insertions(+), 26 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index 74c63d144e40..a3db3636e34c 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -82,6 +82,9 @@ * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) + * Data Structures + * Heap + * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/data_structures/heap/heap_generic.py) * Disjoint Set * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing diff --git a/graphs/prim.py b/graphs/prim.py index 336424d2c3c1..16cfaee089cb 100644 --- a/graphs/prim.py +++ b/graphs/prim.py @@ -2,26 +2,12 @@ Prim's Algorithm. Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm - -Create a list to store x the vertices. -G = [vertex(n) for n in range(x)] - -For each vertex in G, add the neighbors: -G[x].addNeighbor(G[y]) -G[y].addNeighbor(G[x]) - -For each vertex in G, add the edges: -G[x].addEdge(G[y], w) -G[y].addEdge(G[x], w) - -To solve run: -MST = prim(G, G[0]) """ import math -class vertex: +class Vertex: """Class Vertex.""" def __init__(self, id): @@ -36,7 +22,7 @@ def __init__(self, id): self.key = None self.pi = None self.neighbors = [] - self.edges = {} # [vertex:distance] + self.edges = {} # {vertex:distance} def __lt__(self, other): """Comparison rule to < operator.""" @@ -46,34 +32,72 @@ def __repr__(self): """Return the vertex id.""" return self.id - def addNeighbor(self, vertex): + def add_neighbor(self, vertex): """Add a pointer to a vertex at neighbor's list.""" self.neighbors.append(vertex) - def addEdge(self, vertex, weight): + def add_edge(self, vertex, weight): """Destination vertex and weight.""" self.edges[vertex.id] = weight +def connect(graph, a, b, edge): + # add the neighbors: + graph[a - 1].add_neighbor(graph[b - 1]) + graph[b - 1].add_neighbor(graph[a - 1]) + # add the edges: + graph[a - 1].add_edge(graph[b - 1], edge) + graph[b - 1].add_edge(graph[a - 1], edge) + + def prim(graph, root): """ Prim's Algorithm. Return a list with the edges of a Minimum Spanning Tree prim(graph, graph[0]) """ - A = [] + a = [] for u in graph: u.key = math.inf u.pi = None root.key = 0 - Q = graph[:] - while Q: - u = min(Q) - Q.remove(u) + q = graph[:] + while q: + u = min(q) + q.remove(u) for v in u.neighbors: - if (v in Q) and (u.edges[v.id] < v.key): + if (v in q) and (u.edges[v.id] < v.key): v.pi = u v.key = u.edges[v.id] for i in range(1, len(graph)): - A.append([graph[i].id, graph[i].pi.id]) - return A + a.append((int(graph[i].id) + 1, int(graph[i].pi.id) + 1)) + return a + + +def test_vector() -> None: + """ + # Creates a list to store x vertices. + >>> x = 5 + >>> G = [Vertex(n) for n in range(x)] + + >>> connect(G, 1, 2, 15) + >>> connect(G, 1, 3, 12) + >>> connect(G, 2, 4, 13) + >>> connect(G, 2, 5, 5) + >>> connect(G, 3, 2, 6) + >>> connect(G, 3, 4, 6) + >>> connect(G, 0, 0, 0) # Generate the minimum spanning tree: + >>> MST = prim(G, G[0]) + >>> for i in MST: + ... print(i) + (2, 3) + (3, 1) + (4, 3) + (5, 2) + """ + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 4dca9571dba5b6d0ce31fe49e8928451573a34af Mon Sep 17 00:00:00 2001 From: Bruno Santos <7022432+dunderbruno@users.noreply.github.com> Date: Sun, 1 Dec 2019 02:29:23 -0300 Subject: [PATCH 467/594] Pythagoras (#1243) * add pythagoras.py * function distance * run as script * Update pythagoras.py --- maths/pythagoras.py | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100644 maths/pythagoras.py diff --git a/maths/pythagoras.py b/maths/pythagoras.py new file mode 100644 index 000000000000..2f59107cdfaa --- /dev/null +++ b/maths/pythagoras.py @@ -0,0 +1,33 @@ +"""Uses Pythagoras theorem to calculate the distance between two points in space.""" + +import math + + +class Point: + def __init__(self, x, y, z): + self.x = x + self.y = y + self.z = z + + def __repr__(self) -> str: + return f"Point({self.x}, {self.y}, {self.z})" + + +def distance(a: Point, b: Point) -> float: + return math.sqrt(abs(((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2))) + + +def test_distance() -> None: + """ + >>> point1 = Point(2, -1, 7) + >>> point2 = Point(1, -3, 5) + >>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}") + Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0 + """ + pass + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 74aeaa333f81912b696e0cf069e4993bc94113cc Mon Sep 17 00:00:00 2001 From: Abhijit Patil Date: Sun, 1 Dec 2019 11:28:25 +0530 Subject: [PATCH 468/594] Code for Eulers Totient function (#1229) * Create eulersTotient.py * Rename eulersTotient.py to eulers_totient.py * Update eulers_totient.py --- maths/eulers_totient.py | 45 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 maths/eulers_totient.py diff --git a/maths/eulers_totient.py b/maths/eulers_totient.py new file mode 100644 index 000000000000..6a35e69bde0b --- /dev/null +++ b/maths/eulers_totient.py @@ -0,0 +1,45 @@ +# Eulers Totient function finds the number of relative primes of a number n from 1 to n +def totient(n: int) -> list: + is_prime = [True for i in range(n + 1)] + totients = [i - 1 for i in range(n + 1)] + primes = [] + for i in range(2, n + 1): + if is_prime[i]: + primes.append(i) + for j in range(0, len(primes)): + if i * primes[j] >= n: + break + is_prime[i * primes[j]] = False + + if i % primes[j] == 0: + totients[i * primes[j]] = totients[i] * primes[j] + break + + totients[i * primes[j]] = totients[i] * (primes[j] - 1) + + return totients + + +def test_totient() -> None: + """ + >>> n = 10 + >>> totient_calculation = totient(n) + >>> for i in range(1, n): + ... print(f"{i} has {totient_calculation[i]} relative primes.") + 1 has 0 relative primes. + 2 has 1 relative primes. + 3 has 2 relative primes. + 4 has 2 relative primes. + 5 has 4 relative primes. + 6 has 2 relative primes. + 7 has 6 relative primes. + 8 has 4 relative primes. + 9 has 6 relative primes. + """ + pass + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 8ffc4f8706dc5ecb7cd015839f1cb92997217c63 Mon Sep 17 00:00:00 2001 From: GeorgeChambi Date: Tue, 3 Dec 2019 11:14:30 +0000 Subject: [PATCH 469/594] fixed bug (#1610) Removed comma from print statement causing and error. --- ciphers/caesar_cipher.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py index 200f868051d4..4427a5234d70 100644 --- a/ciphers/caesar_cipher.py +++ b/ciphers/caesar_cipher.py @@ -39,7 +39,7 @@ def brute_force(input_string: str) -> None: def main(): while True: - print(f'{"-" * 10}\n Menu\n{"-", * 10}') + print(f'{"-" * 10}\n Menu\n{"-" * 10}') print(*["1.Encrpyt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n") choice = input("What would you like to do?: ") if choice not in ["1", "2", "3", "4"]: From caad74466aaa6a98465e10bd7adf828482d2de63 Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Tue, 3 Dec 2019 16:17:42 +0500 Subject: [PATCH 470/594] Added Multilayer Perceptron (sklearn) (#1609) * Added Multilayer Perceptron ( sklearn) * Rename MLPClassifier.py to multilayer_preceptron_classifier.py * Rename multilayer_preceptron_classifier.py to multilayer_perceptron_classifier.py * Update multilayer_perceptron_classifier.py --- .../multilayer_perceptron_classifier.py | 30 +++++++++++++++++++ 1 file changed, 30 insertions(+) create mode 100644 machine_learning/multilayer_perceptron_classifier.py diff --git a/machine_learning/multilayer_perceptron_classifier.py b/machine_learning/multilayer_perceptron_classifier.py new file mode 100644 index 000000000000..d78d2a9ed8eb --- /dev/null +++ b/machine_learning/multilayer_perceptron_classifier.py @@ -0,0 +1,30 @@ +from sklearn.neural_network import MLPClassifier + + +X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]] +y = [0, 1, 0, 0] + + +clf = MLPClassifier( + solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1 +) + +clf.fit(X, y) + + +test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]] +Y = clf.predict(test) + + +def wrapper(Y): + """ + >>> wrapper(Y) + [0, 0, 1] + """ + return list(Y) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 494fb4fb490c49d46c693933c5583ac2fb4f665b Mon Sep 17 00:00:00 2001 From: Bardia Alavi Date: Wed, 4 Dec 2019 23:06:41 -0500 Subject: [PATCH 471/594] address merge_soft duplicate files (#1612) Here the old file merge_sort_fastest is renamed to unknown_sort. Because it is not merge sort algorithm. Comments are updated accordingly. --- sorts/{merge_sort_fastest.py => unknown_sort.py} | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) rename sorts/{merge_sort_fastest.py => unknown_sort.py} (88%) diff --git a/sorts/merge_sort_fastest.py b/sorts/unknown_sort.py similarity index 88% rename from sorts/merge_sort_fastest.py rename to sorts/unknown_sort.py index f3c067795dd5..087533b4a575 100644 --- a/sorts/merge_sort_fastest.py +++ b/sorts/unknown_sort.py @@ -1,6 +1,5 @@ """ -Python implementation of the fastest merge sort algorithm. -Takes an average of 0.6 microseconds to sort a list of length 1000 items. +Python implementation of a sort algorithm. Best Case Scenario : O(n) Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n) """ From 3cfca42f17e4e5f3d31da30eb80f7c0baa66eb4b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jo=C3=A3o=20Gustavo=20A=2E=20Amorim?= Date: Fri, 6 Dec 2019 03:13:10 -0300 Subject: [PATCH 472/594] add the index calculation class at digital_image_processing and the hamming code algorithm at hashes (#1152) * add the index calculation at difital_image_processing file * make changes at index_calculation * update the variables to self variables at functions * update the word wrap in comments at index_calculation * add the hamming code algorithm * Wrap long lines --- digital_image_processing/index_calculation.py | 571 ++++++++++++++++++ hashes/hamming_code.py | 315 ++++++++++ 2 files changed, 886 insertions(+) create mode 100644 digital_image_processing/index_calculation.py create mode 100644 hashes/hamming_code.py diff --git a/digital_image_processing/index_calculation.py b/digital_image_processing/index_calculation.py new file mode 100644 index 000000000000..f4f8759ad010 --- /dev/null +++ b/digital_image_processing/index_calculation.py @@ -0,0 +1,571 @@ +# Author: João Gustavo A. Amorim +# Author email: joaogustavoamorim@gmail.com +# Coding date: jan 2019 +# python/black: True + +# Imports +import numpy as np + +# Class implemented to calculus the index +class IndexCalculation: + """ + # Class Summary + This algorithm consists in calculating vegetation indices, these indices + can be used for precision agriculture for example (or remote sensing). There are + functions to define the data and to calculate the implemented indices. + + # Vegetation index + https://en.wikipedia.org/wiki/Vegetation_Index + A Vegetation Index (VI) is a spectral transformation of two or more bands designed + to enhance the contribution of vegetation properties and allow reliable spatial and + temporal inter-comparisons of terrestrial photosynthetic activity and canopy + structural variations + + # Information about channels (Wavelength range for each) + * nir - near-infrared + https://www.malvernpanalytical.com/br/products/technology/near-infrared-spectroscopy + Wavelength Range 700 nm to 2500 nm + * Red Edge + https://en.wikipedia.org/wiki/Red_edge + Wavelength Range 680 nm to 730 nm + * red + https://en.wikipedia.org/wiki/Color + Wavelength Range 635 nm to 700 nm + * blue + https://en.wikipedia.org/wiki/Color + Wavelength Range 450 nm to 490 nm + * green + https://en.wikipedia.org/wiki/Color + Wavelength Range 520 nm to 560 nm + + + # Implemented index list + #"abbreviationOfIndexName" -- list of channels used + + #"ARVI2" -- red, nir + #"CCCI" -- red, redEdge, nir + #"CVI" -- red, green, nir + #"GLI" -- red, green, blue + #"NDVI" -- red, nir + #"BNDVI" -- blue, nir + #"redEdgeNDVI" -- red, redEdge + #"GNDVI" -- green, nir + #"GBNDVI" -- green, blue, nir + #"GRNDVI" -- red, green, nir + #"RBNDVI" -- red, blue, nir + #"PNDVI" -- red, green, blue, nir + #"ATSAVI" -- red, nir + #"BWDRVI" -- blue, nir + #"CIgreen" -- green, nir + #"CIrededge" -- redEdge, nir + #"CI" -- red, blue + #"CTVI" -- red, nir + #"GDVI" -- green, nir + #"EVI" -- red, blue, nir + #"GEMI" -- red, nir + #"GOSAVI" -- green, nir + #"GSAVI" -- green, nir + #"Hue" -- red, green, blue + #"IVI" -- red, nir + #"IPVI" -- red, nir + #"I" -- red, green, blue + #"RVI" -- red, nir + #"MRVI" -- red, nir + #"MSAVI" -- red, nir + #"NormG" -- red, green, nir + #"NormNIR" -- red, green, nir + #"NormR" -- red, green, nir + #"NGRDI" -- red, green + #"RI" -- red, green + #"S" -- red, green, blue + #"IF" -- red, green, blue + #"DVI" -- red, nir + #"TVI" -- red, nir + #"NDRE" -- redEdge, nir + + #list of all index implemented + #allIndex = ["ARVI2", "CCCI", "CVI", "GLI", "NDVI", "BNDVI", "redEdgeNDVI", "GNDVI", + "GBNDVI", "GRNDVI", "RBNDVI", "PNDVI", "ATSAVI", "BWDRVI", "CIgreen", + "CIrededge", "CI", "CTVI", "GDVI", "EVI", "GEMI", "GOSAVI", "GSAVI", + "Hue", "IVI", "IPVI", "I", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", + "NormR", "NGRDI", "RI", "S", "IF", "DVI", "TVI", "NDRE"] + + #list of index with not blue channel + #notBlueIndex = ["ARVI2", "CCCI", "CVI", "NDVI", "redEdgeNDVI", "GNDVI", "GRNDVI", + "ATSAVI", "CIgreen", "CIrededge", "CTVI", "GDVI", "GEMI", "GOSAVI", + "GSAVI", "IVI", "IPVI", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", + "NormR", "NGRDI", "RI", "DVI", "TVI", "NDRE"] + + #list of index just with RGB channels + #RGBIndex = ["GLI", "CI", "Hue", "I", "NGRDI", "RI", "S", "IF"] + """ + + def __init__(self, red=None, green=None, blue=None, redEdge=None, nir=None): + # print("Numpy version: " + np.__version__) + self.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) + + def setMatrices(self, red=None, green=None, blue=None, redEdge=None, nir=None): + if red is not None: + self.red = red + if green is not None: + self.green = green + if blue is not None: + self.blue = blue + if redEdge is not None: + self.redEdge = redEdge + if nir is not None: + self.nir = nir + return True + + def calculation( + self, index="", red=None, green=None, blue=None, redEdge=None, nir=None + ): + """ + performs the calculation of the index with the values instantiated in the class + :str index: abbreviation of index name to perform + """ + self.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) + funcs = { + "ARVI2": self.ARVI2, + "CCCI": self.CCCI, + "CVI": self.CVI, + "GLI": self.GLI, + "NDVI": self.NDVI, + "BNDVI": self.BNDVI, + "redEdgeNDVI": self.redEdgeNDVI, + "GNDVI": self.GNDVI, + "GBNDVI": self.GBNDVI, + "GRNDVI": self.GRNDVI, + "RBNDVI": self.RBNDVI, + "PNDVI": self.PNDVI, + "ATSAVI": self.ATSAVI, + "BWDRVI": self.BWDRVI, + "CIgreen": self.CIgreen, + "CIrededge": self.CIrededge, + "CI": self.CI, + "CTVI": self.CTVI, + "GDVI": self.GDVI, + "EVI": self.EVI, + "GEMI": self.GEMI, + "GOSAVI": self.GOSAVI, + "GSAVI": self.GSAVI, + "Hue": self.Hue, + "IVI": self.IVI, + "IPVI": self.IPVI, + "I": self.I, + "RVI": self.RVI, + "MRVI": self.MRVI, + "MSAVI": self.MSAVI, + "NormG": self.NormG, + "NormNIR": self.NormNIR, + "NormR": self.NormR, + "NGRDI": self.NGRDI, + "RI": self.RI, + "S": self.S, + "IF": self.IF, + "DVI": self.DVI, + "TVI": self.TVI, + "NDRE": self.NDRE, + } + + try: + return funcs[index]() + except KeyError: + print("Index not in the list!") + return False + + def ARVI2(self): + """ + Atmospherically Resistant Vegetation Index 2 + https://www.indexdatabase.de/db/i-single.php?id=396 + :return: index + −0.18+1.17*(self.nir−self.red)/(self.nir+self.red) + """ + return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) + + def CCCI(self): + """ + Canopy Chlorophyll Content Index + https://www.indexdatabase.de/db/i-single.php?id=224 + :return: index + """ + return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( + (self.nir - self.red) / (self.nir + self.red) + ) + + def CVI(self): + """ + Chlorophyll vegetation index + https://www.indexdatabase.de/db/i-single.php?id=391 + :return: index + """ + return self.nir * (self.red / (self.green ** 2)) + + def GLI(self): + """ + self.green leaf index + https://www.indexdatabase.de/db/i-single.php?id=375 + :return: index + """ + return (2 * self.green - self.red - self.blue) / ( + 2 * self.green + self.red + self.blue + ) + + def NDVI(self): + """ + Normalized Difference self.nir/self.red Normalized Difference Vegetation Index, + Calibrated NDVI - CDVI + https://www.indexdatabase.de/db/i-single.php?id=58 + :return: index + """ + return (self.nir - self.red) / (self.nir + self.red) + + def BNDVI(self): + """ + Normalized Difference self.nir/self.blue self.blue-normalized difference + vegetation index + https://www.indexdatabase.de/db/i-single.php?id=135 + :return: index + """ + return (self.nir - self.blue) / (self.nir + self.blue) + + def redEdgeNDVI(self): + """ + Normalized Difference self.rededge/self.red + https://www.indexdatabase.de/db/i-single.php?id=235 + :return: index + """ + return (self.redEdge - self.red) / (self.redEdge + self.red) + + def GNDVI(self): + """ + Normalized Difference self.nir/self.green self.green NDVI + https://www.indexdatabase.de/db/i-single.php?id=401 + :return: index + """ + return (self.nir - self.green) / (self.nir + self.green) + + def GBNDVI(self): + """ + self.green-self.blue NDVI + https://www.indexdatabase.de/db/i-single.php?id=186 + :return: index + """ + return (self.nir - (self.green + self.blue)) / ( + self.nir + (self.green + self.blue) + ) + + def GRNDVI(self): + """ + self.green-self.red NDVI + https://www.indexdatabase.de/db/i-single.php?id=185 + :return: index + """ + return (self.nir - (self.green + self.red)) / ( + self.nir + (self.green + self.red) + ) + + def RBNDVI(self): + """ + self.red-self.blue NDVI + https://www.indexdatabase.de/db/i-single.php?id=187 + :return: index + """ + return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) + + def PNDVI(self): + """ + Pan NDVI + https://www.indexdatabase.de/db/i-single.php?id=188 + :return: index + """ + return (self.nir - (self.green + self.red + self.blue)) / ( + self.nir + (self.green + self.red + self.blue) + ) + + def ATSAVI(self, X=0.08, a=1.22, b=0.03): + """ + Adjusted transformed soil-adjusted VI + https://www.indexdatabase.de/db/i-single.php?id=209 + :return: index + """ + return a * ( + (self.nir - a * self.red - b) + / (a * self.nir + self.red - a * b + X * (1 + a ** 2)) + ) + + def BWDRVI(self): + """ + self.blue-wide dynamic range vegetation index + https://www.indexdatabase.de/db/i-single.php?id=136 + :return: index + """ + return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) + + def CIgreen(self): + """ + Chlorophyll Index self.green + https://www.indexdatabase.de/db/i-single.php?id=128 + :return: index + """ + return (self.nir / self.green) - 1 + + def CIrededge(self): + """ + Chlorophyll Index self.redEdge + https://www.indexdatabase.de/db/i-single.php?id=131 + :return: index + """ + return (self.nir / self.redEdge) - 1 + + def CI(self): + """ + Coloration Index + https://www.indexdatabase.de/db/i-single.php?id=11 + :return: index + """ + return (self.red - self.blue) / self.red + + def CTVI(self): + """ + Corrected Transformed Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=244 + :return: index + """ + ndvi = self.NDVI() + return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) + + def GDVI(self): + """ + Difference self.nir/self.green self.green Difference Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=27 + :return: index + """ + return self.nir - self.green + + def EVI(self): + """ + Enhanced Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=16 + :return: index + """ + return 2.5 * ( + (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) + ) + + def GEMI(self): + """ + Global Environment Monitoring Index + https://www.indexdatabase.de/db/i-single.php?id=25 + :return: index + """ + n = (2 * (self.nir ** 2 - self.red ** 2) + 1.5 * self.nir + 0.5 * self.red) / ( + self.nir + self.red + 0.5 + ) + return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) + + def GOSAVI(self, Y=0.16): + """ + self.green Optimized Soil Adjusted Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=29 + mit Y = 0,16 + :return: index + """ + return (self.nir - self.green) / (self.nir + self.green + Y) + + def GSAVI(self, L=0.5): + """ + self.green Soil Adjusted Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=31 + mit L = 0,5 + :return: index + """ + return ((self.nir - self.green) / (self.nir + self.green + L)) * (1 + L) + + def Hue(self): + """ + Hue + https://www.indexdatabase.de/db/i-single.php?id=34 + :return: index + """ + return np.arctan( + ( + ((2 * self.red - self.green - self.blue) / 30.5) + * (self.green - self.blue) + ) + ) + + def IVI(self, a=None, b=None): + """ + Ideal vegetation index + https://www.indexdatabase.de/db/i-single.php?id=276 + b=intercept of vegetation line + a=soil line slope + :return: index + """ + return (self.nir - b) / (a * self.red) + + def IPVI(self): + """ + Infraself.red percentage vegetation index + https://www.indexdatabase.de/db/i-single.php?id=35 + :return: index + """ + return (self.nir / ((self.nir + self.red) / 2)) * (self.NDVI() + 1) + + def I(self): + """ + Intensity + https://www.indexdatabase.de/db/i-single.php?id=36 + :return: index + """ + return (self.red + self.green + self.blue) / 30.5 + + def RVI(self): + """ + Ratio-Vegetation-Index + http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-s01-p01.html + :return: index + """ + return self.nir / self.red + + def MRVI(self): + """ + Modified Normalized Difference Vegetation Index RVI + https://www.indexdatabase.de/db/i-single.php?id=275 + :return: index + """ + return (self.RVI() - 1) / (self.RVI() + 1) + + def MSAVI(self): + """ + Modified Soil Adjusted Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=44 + :return: index + """ + return ( + (2 * self.nir + 1) + - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) + ) / 2 + + def NormG(self): + """ + Norm G + https://www.indexdatabase.de/db/i-single.php?id=50 + :return: index + """ + return self.green / (self.nir + self.red + self.green) + + def NormNIR(self): + """ + Norm self.nir + https://www.indexdatabase.de/db/i-single.php?id=51 + :return: index + """ + return self.nir / (self.nir + self.red + self.green) + + def NormR(self): + """ + Norm R + https://www.indexdatabase.de/db/i-single.php?id=52 + :return: index + """ + return self.red / (self.nir + self.red + self.green) + + def NGRDI(self): + """ + Normalized Difference self.green/self.red Normalized self.green self.red + difference index, Visible Atmospherically Resistant Indices self.green (VIself.green) + https://www.indexdatabase.de/db/i-single.php?id=390 + :return: index + """ + return (self.green - self.red) / (self.green + self.red) + + def RI(self): + """ + Normalized Difference self.red/self.green self.redness Index + https://www.indexdatabase.de/db/i-single.php?id=74 + :return: index + """ + return (self.red - self.green) / (self.red + self.green) + + def S(self): + """ + Saturation + https://www.indexdatabase.de/db/i-single.php?id=77 + :return: index + """ + max = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) + min = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) + return (max - min) / max + + def IF(self): + """ + Shape Index + https://www.indexdatabase.de/db/i-single.php?id=79 + :return: index + """ + return (2 * self.red - self.green - self.blue) / (self.green - self.blue) + + def DVI(self): + """ + Simple Ratio self.nir/self.red Difference Vegetation Index, Vegetation Index + Number (VIN) + https://www.indexdatabase.de/db/i-single.php?id=12 + :return: index + """ + return self.nir / self.red + + def TVI(self): + """ + Transformed Vegetation Index + https://www.indexdatabase.de/db/i-single.php?id=98 + :return: index + """ + return (self.NDVI() + 0.5) ** (1 / 2) + + def NDRE(self): + return (self.nir - self.redEdge) / (self.nir + self.redEdge) + + +""" +# genering a random matrices to test this class +red = np.ones((1000,1000, 1),dtype="float64") * 46787 +green = np.ones((1000,1000, 1),dtype="float64") * 23487 +blue = np.ones((1000,1000, 1),dtype="float64") * 14578 +redEdge = np.ones((1000,1000, 1),dtype="float64") * 51045 +nir = np.ones((1000,1000, 1),dtype="float64") * 52200 + +# Examples of how to use the class + +# instantiating the class +cl = IndexCalculation() + +# instantiating the class with the values +#cl = indexCalculation(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) + +# how set the values after instantiate the class cl, (for update the data or when dont +# instantiating the class with the values) +cl.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) + +# calculating the indices for the instantiated values in the class + # Note: the CCCI index can be changed to any index implemented in the class. +indexValue_form1 = cl.calculation("CCCI", red=red, green=green, blue=blue, + redEdge=redEdge, nir=nir).astype(np.float64) +indexValue_form2 = cl.CCCI() + +# calculating the index with the values directly -- you can set just the values preferred -- +# note: the *calculation* fuction performs the function *setMatrices* +indexValue_form3 = cl.calculation("CCCI", red=red, green=green, blue=blue, + redEdge=redEdge, nir=nir).astype(np.float64) + +print("Form 1: "+np.array2string(indexValue_form1, precision=20, separator=', ', floatmode='maxprec_equal')) +print("Form 2: "+np.array2string(indexValue_form2, precision=20, separator=', ', floatmode='maxprec_equal')) +print("Form 3: "+np.array2string(indexValue_form3, precision=20, separator=', ', floatmode='maxprec_equal')) + +# A list of examples results for different type of data at NDVI +# float16 -> 0.31567383 #NDVI (red = 50, nir = 100) +# float32 -> 0.31578946 #NDVI (red = 50, nir = 100) +# float64 -> 0.3157894736842105 #NDVI (red = 50, nir = 100) +# longdouble -> 0.3157894736842105 #NDVI (red = 50, nir = 100) +""" diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py new file mode 100644 index 000000000000..155c1b10a38d --- /dev/null +++ b/hashes/hamming_code.py @@ -0,0 +1,315 @@ +# -*- coding: utf-8 -*- +# Author: João Gustavo A. Amorim & Gabriel Kunz +# Author email: joaogustavoamorim@gmail.com and gabriel-kunz@uergs.edu.br +# Coding date: apr 2019 +# Black: True + +""" + * This code implement the Hamming code: + https://en.wikipedia.org/wiki/Hamming_code - In telecommunication, + Hamming codes are a family of linear error-correcting codes. Hamming + codes can detect up to two-bit errors or correct one-bit errors + without detection of uncorrected errors. By contrast, the simple + parity code cannot correct errors, and can detect only an odd number + of bits in error. Hamming codes are perfect codes, that is, they + achieve the highest possible rate for codes with their block length + and minimum distance of three. + + * the implemented code consists of: + * a function responsible for encoding the message (emitterConverter) + * return the encoded message + * a function responsible for decoding the message (receptorConverter) + * return the decoded message and a ack of data integrity + + * how to use: + to be used you must declare how many parity bits (sizePari) + you want to include in the message. + it is desired (for test purposes) to select a bit to be set + as an error. This serves to check whether the code is working correctly. + Lastly, the variable of the message/word that must be desired to be + encoded (text). + + * how this work: + declaration of variables (sizePari, be, text) + + converts the message/word (text) to binary using the + text_to_bits function + encodes the message using the rules of hamming encoding + decodes the message using the rules of hamming encoding + print the original message, the encoded message and the + decoded message + + forces an error in the coded text variable + decodes the message that was forced the error + print the original message, the encoded message, the bit changed + message and the decoded message +""" + +# Imports +import numpy as np + +# Functions of binary conversion-------------------------------------- +def text_to_bits(text, encoding="utf-8", errors="surrogatepass"): + """ + >>> text_to_bits("msg") + '011011010111001101100111' + """ + bits = bin(int.from_bytes(text.encode(encoding, errors), "big"))[2:] + return bits.zfill(8 * ((len(bits) + 7) // 8)) + + +def text_from_bits(bits, encoding="utf-8", errors="surrogatepass"): + """ + >>> text_from_bits('011011010111001101100111') + 'msg' + """ + n = int(bits, 2) + return n.to_bytes((n.bit_length() + 7) // 8, "big").decode(encoding, errors) or "\0" + + +# Functions of hamming code------------------------------------------- +def emitterConverter(sizePar, data): + """ + :param sizePar: how many parity bits the message must have + :param data: information bits + :return: message to be transmitted by unreliable medium + - bits of information merged with parity bits + + >>> emitterConverter(4, "101010111111") + ['1', '1', '1', '1', '0', '1', '0', '0', '1', '0', '1', '1', '1', '1', '1', '1'] + """ + if sizePar + len(data) <= 2 ** sizePar - (len(data) - 1): + print("ERROR - size of parity don't match with size of data") + exit(0) + + dataOut = [] + parity = [] + binPos = [bin(x)[2:] for x in range(1, sizePar + len(data) + 1)] + pos = [x for x in range(1, sizePar + len(data) + 1)] + + # sorted information data for the size of the output data + dataOrd = [] + # data position template + parity + dataOutGab = [] + # parity bit counter + qtdBP = 0 + # counter position of data bits + contData = 0 + + for x in range(1, sizePar + len(data) + 1): + # Performs a template of bit positions - who should be given, + # and who should be parity + if qtdBP < sizePar: + if ((np.log(x) / np.log(2))).is_integer(): + dataOutGab.append("P") + qtdBP = qtdBP + 1 + else: + dataOutGab.append("D") + else: + dataOutGab.append("D") + + # Sorts the data to the new output size + if dataOutGab[-1] == "D": + dataOrd.append(data[contData]) + contData += 1 + else: + dataOrd.append(None) + + # Calculates parity + qtdBP = 0 # parity bit counter + for bp in range(1, sizePar + 1): + # Bit counter one for a given parity + contBO = 0 + # counter to control the loop reading + contLoop = 0 + for x in dataOrd: + if x != None: + try: + aux = (binPos[contLoop])[-1 * (bp)] + except: + aux = "0" + if aux == "1": + if x == "1": + contBO += 1 + contLoop += 1 + if contBO % 2 == 0: + parity.append(0) + else: + parity.append(1) + + qtdBP += 1 + + # Mount the message + ContBP = 0 # parity bit counter + for x in range(0, sizePar + len(data)): + if dataOrd[x] == None: + dataOut.append(str(parity[ContBP])) + ContBP += 1 + else: + dataOut.append(dataOrd[x]) + + return dataOut + + +def receptorConverter(sizePar, data): + """ + >>> receptorConverter(4, "1111010010111111") + (['1', '0', '1', '0', '1', '0', '1', '1', '1', '1', '1', '1'], True) + """ + # data position template + parity + dataOutGab = [] + # Parity bit counter + qtdBP = 0 + # Counter p data bit reading + contData = 0 + # list of parity received + parityReceived = [] + dataOutput = [] + + for x in range(1, len(data) + 1): + # Performs a template of bit positions - who should be given, + # and who should be parity + if qtdBP < sizePar: + if ((np.log(x) / np.log(2))).is_integer(): + dataOutGab.append("P") + qtdBP = qtdBP + 1 + else: + dataOutGab.append("D") + else: + dataOutGab.append("D") + + # Sorts the data to the new output size + if dataOutGab[-1] == "D": + dataOutput.append(data[contData]) + else: + parityReceived.append(data[contData]) + contData += 1 + + # -----------calculates the parity with the data + dataOut = [] + parity = [] + binPos = [bin(x)[2:] for x in range(1, sizePar + len(dataOutput) + 1)] + pos = [x for x in range(1, sizePar + len(dataOutput) + 1)] + + # sorted information data for the size of the output data + dataOrd = [] + # Data position feedback + parity + dataOutGab = [] + # Parity bit counter + qtdBP = 0 + # Counter p data bit reading + contData = 0 + + for x in range(1, sizePar + len(dataOutput) + 1): + # Performs a template position of bits - who should be given, + # and who should be parity + if qtdBP < sizePar: + if ((np.log(x) / np.log(2))).is_integer(): + dataOutGab.append("P") + qtdBP = qtdBP + 1 + else: + dataOutGab.append("D") + else: + dataOutGab.append("D") + + # Sorts the data to the new output size + if dataOutGab[-1] == "D": + dataOrd.append(dataOutput[contData]) + contData += 1 + else: + dataOrd.append(None) + + # Calculates parity + qtdBP = 0 # parity bit counter + for bp in range(1, sizePar + 1): + # Bit counter one for a certain parity + contBO = 0 + # Counter to control loop reading + contLoop = 0 + for x in dataOrd: + if x != None: + try: + aux = (binPos[contLoop])[-1 * (bp)] + except: + aux = "0" + if aux == "1": + if x == "1": + contBO += 1 + contLoop += 1 + if contBO % 2 == 0: + parity.append("0") + else: + parity.append("1") + + qtdBP += 1 + + # Mount the message + ContBP = 0 # Parity bit counter + for x in range(0, sizePar + len(dataOutput)): + if dataOrd[x] == None: + dataOut.append(str(parity[ContBP])) + ContBP += 1 + else: + dataOut.append(dataOrd[x]) + + if parityReceived == parity: + ack = True + else: + ack = False + + return dataOutput, ack + + +# --------------------------------------------------------------------- +""" +# Example how to use + +# number of parity bits +sizePari = 4 + +# location of the bit that will be forced an error +be = 2 + +# Message/word to be encoded and decoded with hamming +# text = input("Enter the word to be read: ") +text = "Message01" + +# Convert the message to binary +binaryText = text_to_bits(text) + +# Prints the binary of the string +print("Text input in binary is '" + binaryText + "'") + +# total transmitted bits +totalBits = len(binaryText) + sizePari +print("Size of data is " + str(totalBits)) + +print("\n --Message exchange--") +print("Data to send ------------> " + binaryText) +dataOut = emitterConverter(sizePari, binaryText) +print("Data converted ----------> " + "".join(dataOut)) +dataReceiv, ack = receptorConverter(sizePari, dataOut) +print( + "Data receive ------------> " + + "".join(dataReceiv) + + "\t\t -- Data integrity: " + + str(ack) +) + + +print("\n --Force error--") +print("Data to send ------------> " + binaryText) +dataOut = emitterConverter(sizePari, binaryText) +print("Data converted ----------> " + "".join(dataOut)) + +# forces error +dataOut[-be] = "1" * (dataOut[-be] == "0") + "0" * (dataOut[-be] == "1") +print("Data after transmission -> " + "".join(dataOut)) +dataReceiv, ack = receptorConverter(sizePari, dataOut) +print( + "Data receive ------------> " + + "".join(dataReceiv) + + "\t\t -- Data integrity: " + + str(ack) +) +""" From ccc1ff2ce89af2a569f1fbfa16ff70ad22ed9e89 Mon Sep 17 00:00:00 2001 From: SHAKTI SINGH Date: Fri, 6 Dec 2019 12:04:21 +0530 Subject: [PATCH 473/594] pigeonhole sorting in python (#364) * pigeonhole sorting in python * variable name update in pigeonhole_sort.py * Add doctest --- sorts/pigeonhole_sort.py | 44 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) create mode 100644 sorts/pigeonhole_sort.py diff --git a/sorts/pigeonhole_sort.py b/sorts/pigeonhole_sort.py new file mode 100644 index 000000000000..d8eb61fc0e08 --- /dev/null +++ b/sorts/pigeonhole_sort.py @@ -0,0 +1,44 @@ +# Python program to implement Pigeonhole Sorting in python + +# Algorithm for the pigeonhole sorting + + +def pigeonhole_sort(a): + """ + >>> a = [8, 3, 2, 7, 4, 6, 8] + >>> b = sorted(a) # a nondestructive sort + >>> pigeonhole_sort(a) # a distructive sort + >>> a == b + True + """ + # size of range of values in the list (ie, number of pigeonholes we need) + + min_val = min(a) # min() finds the minimum value + max_val = max(a) # max() finds the maximum value + + size = max_val - min_val + 1 # size is difference of max and min values plus one + + # list of pigeonholes of size equal to the variable size + holes = [0] * size + + # Populate the pigeonholes. + for x in a: + assert isinstance(x, int), "integers only please" + holes[x - min_val] += 1 + + # Putting the elements back into the array in an order. + i = 0 + for count in range(size): + while holes[count] > 0: + holes[count] -= 1 + a[i] = count + min_val + i += 1 + + +def main(): + pigeonhole_sort([8, 3, 2, 7, 4, 6, 8]) + print("Sorted order is: ", " ", join(a)) + + +if __name__ == "__main__": + main() From 938dd0bbb5145aa7c60127745ae0571cb20a2387 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?N=C3=ADkolas=20Vargas?= Date: Sat, 7 Dec 2019 02:39:08 -0300 Subject: [PATCH 474/594] improved prime numbers implementation (#1606) * improved prime numbers implementation * fixup! Format Python code with psf/black push * fix type hint * fixup! Format Python code with psf/black push * fix doctests * updating DIRECTORY.md * added prime tests with negative numbers * using for instead filter * updating DIRECTORY.md * Remove unused typing.List * Remove tab indentation * print("Sorted order is:", " ".join(a)) --- DIRECTORY.md | 8 +++- .../data_structures/heap/heap_generic.py | 3 +- digital_image_processing/index_calculation.py | 8 ++-- maths/prime_numbers.py | 44 +++++++++++-------- sorts/pigeonhole_sort.py | 5 ++- 5 files changed, 41 insertions(+), 27 deletions(-) diff --git a/DIRECTORY.md b/DIRECTORY.md index a3db3636e34c..468fe65298d9 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -133,6 +133,7 @@ * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) + * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) @@ -216,6 +217,7 @@ ## Hashes * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) + * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) @@ -234,6 +236,7 @@ * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) + * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) @@ -252,6 +255,7 @@ * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) + * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) @@ -286,6 +290,7 @@ * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) + * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) @@ -499,11 +504,11 @@ * [I Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/i_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) - * [Merge Sort Fastest](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort_fastest.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) + * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) @@ -516,6 +521,7 @@ * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) + * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings diff --git a/data_structures/data_structures/heap/heap_generic.py b/data_structures/data_structures/heap/heap_generic.py index c41a434542e7..fc17c1b1218e 100644 --- a/data_structures/data_structures/heap/heap_generic.py +++ b/data_structures/data_structures/heap/heap_generic.py @@ -30,7 +30,8 @@ def _swap(self, i, j): """Performs changes required for swapping two elements in the heap""" # First update the indexes of the items in index map. self.pos_map[self.arr[i][0]], self.pos_map[self.arr[j][0]] = ( - self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]] + self.pos_map[self.arr[j][0]], + self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. self.arr[i], self.arr[j] = self.arr[j], self.arr[i] diff --git a/digital_image_processing/index_calculation.py b/digital_image_processing/index_calculation.py index f4f8759ad010..fc5b169650a2 100644 --- a/digital_image_processing/index_calculation.py +++ b/digital_image_processing/index_calculation.py @@ -176,10 +176,10 @@ def calculation( def ARVI2(self): """ - Atmospherically Resistant Vegetation Index 2 - https://www.indexdatabase.de/db/i-single.php?id=396 - :return: index - −0.18+1.17*(self.nir−self.red)/(self.nir+self.red) + Atmospherically Resistant Vegetation Index 2 + https://www.indexdatabase.de/db/i-single.php?id=396 + :return: index + −0.18+1.17*(self.nir−self.red)/(self.nir+self.red) """ return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) diff --git a/maths/prime_numbers.py b/maths/prime_numbers.py index a29a95ea2280..f9325996500c 100644 --- a/maths/prime_numbers.py +++ b/maths/prime_numbers.py @@ -1,28 +1,34 @@ -from typing import List +from typing import Generator -def primes(max: int) -> List[int]: +def primes(max: int) -> Generator[int, None, None]: """ Return a list of all primes numbers up to max. - >>> primes(10) - [2, 3, 5, 7] - >>> primes(11) - [2, 3, 5, 7, 11] - >>> primes(25) + >>> list(primes(0)) + [] + >>> list(primes(-1)) + [] + >>> list(primes(-10)) + [] + >>> list(primes(25)) [2, 3, 5, 7, 11, 13, 17, 19, 23] - >>> primes(1_000_000)[-1] - 999983 + >>> list(primes(11)) + [2, 3, 5, 7, 11] + >>> list(primes(33)) + [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31] + >>> list(primes(10000))[-1] + 9973 """ - max += 1 - numbers = [False] * max - ret = [] - for i in range(2, max): - if not numbers[i]: - for j in range(i, max, i): - numbers[j] = True - ret.append(i) - return ret + numbers: Generator = (i for i in range(1, (max + 1))) + for i in (n for n in numbers if n > 1): + for j in range(2, i): + if (i % j) == 0: + break + else: + yield i if __name__ == "__main__": - print(primes(int(input("Calculate primes up to:\n>> ")))) + number = int(input("Calculate primes up to:\n>> ").strip()) + for ret in primes(number): + print(ret) diff --git a/sorts/pigeonhole_sort.py b/sorts/pigeonhole_sort.py index d8eb61fc0e08..a91e1d054442 100644 --- a/sorts/pigeonhole_sort.py +++ b/sorts/pigeonhole_sort.py @@ -36,8 +36,9 @@ def pigeonhole_sort(a): def main(): - pigeonhole_sort([8, 3, 2, 7, 4, 6, 8]) - print("Sorted order is: ", " ", join(a)) + a = [8, 3, 2, 7, 4, 6, 8] + pigeonhole_sort(a) + print("Sorted order is:", " ".join(a)) if __name__ == "__main__": From 9eb50cc223f7a8da8d7299bf4db8e4d3313b8bff Mon Sep 17 00:00:00 2001 From: GeorgeChambi Date: Sat, 7 Dec 2019 05:39:59 +0000 Subject: [PATCH 475/594] Improved readability (#1615) * improved readability * further readability improvements * removed csv file and added f --- .../newton_forward_interpolation.py | 10 +++++----- ciphers/trafid_cipher.py | 2 +- data_structures/linked_list/doubly_linked_list.py | 2 +- divide_and_conquer/convex_hull.py | 14 +++++++------- dynamic_programming/knapsack.py | 4 ++-- graphs/dijkstra_algorithm.py | 10 +++++----- graphs/edmonds_karp_multiple_source_and_sink.py | 2 +- graphs/page_rank.py | 6 ++---- machine_learning/knn_sklearn.py | 4 ++-- machine_learning/linear_discriminant_analysis.py | 8 ++++---- .../sequential_minimum_optimization.py | 8 +++----- maths/binary_exponentiation.py | 2 +- maths/simpson_rule.py | 2 +- maths/trapezoidal_rule.py | 2 +- neural_network/input_data.py | 4 +--- searches/binary_search.py | 2 +- searches/interpolation_search.py | 2 +- searches/linear_search.py | 2 +- searches/sentinel_linear_search.py | 2 +- searches/tabu_search.py | 2 +- searches/ternary_search.py | 4 ++-- 21 files changed, 44 insertions(+), 50 deletions(-) diff --git a/arithmetic_analysis/newton_forward_interpolation.py b/arithmetic_analysis/newton_forward_interpolation.py index 09adb5113f82..d91b9709f3d6 100644 --- a/arithmetic_analysis/newton_forward_interpolation.py +++ b/arithmetic_analysis/newton_forward_interpolation.py @@ -19,7 +19,7 @@ def ucal(u, p): def main(): - n = int(input("enter the numbers of values")) + n = int(input("enter the numbers of values: ")) y = [] for i in range(n): y.append([]) @@ -28,14 +28,14 @@ def main(): y[i].append(j) y[i][j] = 0 - print("enter the values of parameters in a list") + print("enter the values of parameters in a list: ") x = list(map(int, input().split())) - print("enter the values of corresponding parameters") + print("enter the values of corresponding parameters: ") for i in range(n): y[i][0] = float(input()) - value = int(input("enter the value to interpolate")) + value = int(input("enter the value to interpolate: ")) u = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table @@ -48,7 +48,7 @@ def main(): for i in range(1, n): summ += (ucal(u, i) * y[0][i]) / math.factorial(i) - print("the value at {} is {}".format(value, summ)) + print(f"the value at {value} is {summ}") if __name__ == "__main__": diff --git a/ciphers/trafid_cipher.py b/ciphers/trafid_cipher.py index 0add9ee74beb..f1c954b5c34f 100644 --- a/ciphers/trafid_cipher.py +++ b/ciphers/trafid_cipher.py @@ -117,4 +117,4 @@ def decryptMessage(message, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") - print("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted)) + print(f"Encrypted: {encrypted}\nDecrypted: {decrypted}") diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 2a95a004587c..2864356c1d19 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -76,4 +76,4 @@ def __init__(self, x): self.value = x def displayLink(self): - print("{}".format(self.value), end=" ") + print(f"{self.value}", end=" ") diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index bd88256ab01c..21463e62197d 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -50,7 +50,7 @@ def __init__(self, x, y): except ValueError as e: e.args = ( "x and y must be both numeric types " - "but got {}, {} instead".format(type(x), type(y)), + f"but got {type(x)}, {type(y)} instead" ) raise @@ -88,7 +88,7 @@ def __le__(self, other): return False def __repr__(self): - return "({}, {})".format(self.x, self.y) + return f"({self.x}, {self.y})" def __hash__(self): return hash(self.x) @@ -136,8 +136,8 @@ def _construct_points(list_of_tuples): points.append(Point(p[0], p[1])) except (IndexError, TypeError): print( - "Ignoring deformed point {}. All points" - " must have at least 2 coordinates.".format(p) + f"Ignoring deformed point {p}. All points" + " must have at least 2 coordinates." ) return points @@ -184,7 +184,7 @@ def _validate_input(points): """ if not points: - raise ValueError("Expecting a list of points but got {}".format(points)) + raise ValueError(f"Expecting a list of points but got {points}") if isinstance(points, set): points = list(points) @@ -196,12 +196,12 @@ def _validate_input(points): else: raise ValueError( "Expecting an iterable of type Point, list or tuple. " - "Found objects of type {} instead".format(type(points[0])) + f"Found objects of type {type(points[0])} instead" ) elif not hasattr(points, "__iter__"): raise ValueError( "Expecting an iterable object " - "but got an non-iterable type {}".format(points) + f"but got an non-iterable type {points}" ) except TypeError as e: print("Expecting an iterable of type Point, list or tuple.") diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py index e71e3892e8cc..aefaa6bade96 100644 --- a/dynamic_programming/knapsack.py +++ b/dynamic_programming/knapsack.py @@ -81,13 +81,13 @@ def knapsack_with_example_solution(W: int, wt: list, val: list): raise ValueError( "The number of weights must be the " "same as the number of values.\nBut " - "got {} weights and {} values".format(num_items, len(val)) + f"got {num_items} weights and {len(val)} values" ) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError( "All weights must be integers but " - "got weight of type {} at index {}".format(type(wt[i]), i) + f"got weight of type {type(wt[i])} at index {i}" ) optimal_val, dp_table = knapsack(W, wt, val, num_items) diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py index 9304a83148f3..57733eb5106d 100644 --- a/graphs/dijkstra_algorithm.py +++ b/graphs/dijkstra_algorithm.py @@ -106,7 +106,7 @@ def show_graph(self): print( u, "->", - " -> ".join(str("{}({})".format(v, w)) for v, w in self.adjList[u]), + " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]), ) def dijkstra(self, src): @@ -139,9 +139,9 @@ def dijkstra(self, src): self.show_distances(src) def show_distances(self, src): - print("Distance from node: {}".format(src)) + print(f"Distance from node: {src}") for u in range(self.num_nodes): - print("Node {} has distance: {}".format(u, self.dist[u])) + print(f"Node {u} has distance: {self.dist[u]}") def show_path(self, src, dest): # To show the shortest path from src to dest @@ -161,9 +161,9 @@ def show_path(self, src, dest): path.append(src) path.reverse() - print("----Path to reach {} from {}----".format(dest, src)) + print(f"----Path to reach {dest} from {src}----") for u in path: - print("{}".format(u), end=" ") + print(f"{u}", end=" ") if u != dest: print("-> ", end="") diff --git a/graphs/edmonds_karp_multiple_source_and_sink.py b/graphs/edmonds_karp_multiple_source_and_sink.py index 6334f05c50bd..eb6ec739ba00 100644 --- a/graphs/edmonds_karp_multiple_source_and_sink.py +++ b/graphs/edmonds_karp_multiple_source_and_sink.py @@ -190,4 +190,4 @@ def relabel(self, vertexIndex): # and calculate maximumFlow = flowNetwork.findMaximumFlow() - print("maximum flow is {}".format(maximumFlow)) + print(f"maximum flow is {maximumFlow}") diff --git a/graphs/page_rank.py b/graphs/page_rank.py index 1e2c7d9aeb48..0f5129146ddf 100644 --- a/graphs/page_rank.py +++ b/graphs/page_rank.py @@ -27,9 +27,7 @@ def add_outbound(self, node): self.outbound.append(node) def __repr__(self): - return "Node {}: Inbound: {} ; Outbound: {}".format( - self.name, self.inbound, self.outbound - ) + return f"Node {self.name}: Inbound: {self.inbound} ; Outbound: {self.outbound}" def page_rank(nodes, limit=3, d=0.85): @@ -42,7 +40,7 @@ def page_rank(nodes, limit=3, d=0.85): outbounds[node.name] = len(node.outbound) for i in range(limit): - print("======= Iteration {} =======".format(i + 1)) + print(f"======= Iteration {i + 1} =======") for j, node in enumerate(nodes): ranks[node.name] = (1 - d) + d * sum( [ranks[ib] / outbounds[ib] for ib in node.inbound] diff --git a/machine_learning/knn_sklearn.py b/machine_learning/knn_sklearn.py index a371e30f5403..c36a530736cd 100644 --- a/machine_learning/knn_sklearn.py +++ b/machine_learning/knn_sklearn.py @@ -7,8 +7,8 @@ iris.keys() -print("Target names: \n {} ".format(iris.target_names)) -print("\n Features: \n {}".format(iris.feature_names)) +print(f"Target names: \n {iris.target_names} ") +print(f"\n Features: \n {iris.feature_names}") # Train set e Test set X_train, X_test, y_train, y_test = train_test_split( diff --git a/machine_learning/linear_discriminant_analysis.py b/machine_learning/linear_discriminant_analysis.py index 62dc34af6bbd..cc2f1dac7237 100644 --- a/machine_learning/linear_discriminant_analysis.py +++ b/machine_learning/linear_discriminant_analysis.py @@ -174,8 +174,8 @@ def accuracy(actual_y: list, predicted_y: list) -> float: def main(): """ This function starts execution phase """ while True: - print(" Linear Discriminant Analysis ".center(100, "*")) - print("*" * 100, "\n") + print(" Linear Discriminant Analysis ".center(50, "*")) + print("*" * 50, "\n") print("First of all we should specify the number of classes that") print("we want to generate as training dataset") # Trying to get number of classes @@ -239,7 +239,7 @@ def main(): else: print( f"Your entered value is {user_count}, Number of " - f"instances should be positive!" + "instances should be positive!" ) continue except ValueError: @@ -302,7 +302,7 @@ def main(): # for loop iterates over number of elements in 'probabilities' list and print # out them in separated line for i, probability in enumerate(probabilities, 1): - print("Probability of class_{} is: {}".format(i, probability)) + print(f"Probability of class_{i} is: {probability}") print("-" * 100) # Calculating the values of variance for each class diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index 1d4e4a276bc1..cb859602b29f 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -446,7 +446,7 @@ def call_func(*args, **kwargs): start_time = time.time() func(*args, **kwargs) end_time = time.time() - print("smo algorithm cost {} seconds".format(end_time - start_time)) + print(f"smo algorithm cost {end_time - start_time} seconds") return call_func @@ -500,11 +500,9 @@ def test_cancel_data(): if test_tags[i] == predict[i]: score += 1 print( - "\r\nall: {}\r\nright: {}\r\nfalse: {}".format( - test_num, score, test_num - score - ) + f"\r\nall: {test_num}\r\nright: {score}\r\nfalse: {test_num - score}" ) - print("Rough Accuracy: {}".format(score / test_tags.shape[0])) + print(f"Rough Accuracy: {score / test_tags.shape[0]}") def test_demonstration(): diff --git a/maths/binary_exponentiation.py b/maths/binary_exponentiation.py index 57c4b8686f5c..8dda5245cf44 100644 --- a/maths/binary_exponentiation.py +++ b/maths/binary_exponentiation.py @@ -25,4 +25,4 @@ def binary_exponentiation(a, n): print("Invalid literal for integer") RESULT = binary_exponentiation(BASE, POWER) - print("{}^({}) : {}".format(BASE, POWER, RESULT)) + print(f"{BASE}^({POWER}) : {RESULT}") diff --git a/maths/simpson_rule.py b/maths/simpson_rule.py index f4620be8e70f..91098804395d 100644 --- a/maths/simpson_rule.py +++ b/maths/simpson_rule.py @@ -44,7 +44,7 @@ def main(): steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_2(boundary, steps) - print("y = {0}".format(y)) + print(f"y = {y}") if __name__ == "__main__": diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index 0f321317614d..0f7dea6bf888 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -43,7 +43,7 @@ def main(): steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_1(boundary, steps) - print("y = {0}".format(y)) + print(f"y = {y}") if __name__ == "__main__": diff --git a/neural_network/input_data.py b/neural_network/input_data.py index 5e6c433aa97d..ea826be6cd84 100644 --- a/neural_network/input_data.py +++ b/neural_network/input_data.py @@ -331,9 +331,7 @@ def fake(): if not 0 <= validation_size <= len(train_images): raise ValueError( - "Validation size should be between 0 and {}. Received: {}.".format( - len(train_images), validation_size - ) + f"Validation size should be between 0 and {len(train_images)}. Received: {validation_size}." ) validation_images = train_images[:validation_size] diff --git a/searches/binary_search.py b/searches/binary_search.py index 76a50560e943..ff959c6cf2e3 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -152,6 +152,6 @@ def __assert_sorted(collection): target = int(target_input) result = binary_search(collection, target) if result is not None: - print("{} found at positions: {}".format(target, result)) + print(f"{target} found at positions: {result}") else: print("Not found") diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index dffaf8d26084..fd26ae0c64ce 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -135,6 +135,6 @@ def __assert_sorted(collection): result = interpolation_search(collection, target) if result is not None: - print("{} found at positions: {}".format(target, result)) + print(f"{target} found at positions: {result}") else: print("Not found") diff --git a/searches/linear_search.py b/searches/linear_search.py index ab20f3527bb3..b6f52ca4857f 100644 --- a/searches/linear_search.py +++ b/searches/linear_search.py @@ -45,6 +45,6 @@ def linear_search(sequence, target): target = int(target_input) result = linear_search(sequence, target) if result is not None: - print("{} found at positions: {}".format(target, result)) + print(f"{target} found at positions: {result}") else: print("Not found") diff --git a/searches/sentinel_linear_search.py b/searches/sentinel_linear_search.py index 6c4da9b21189..5650151b1d2f 100644 --- a/searches/sentinel_linear_search.py +++ b/searches/sentinel_linear_search.py @@ -53,6 +53,6 @@ def sentinel_linear_search(sequence, target): target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: - print("{} found at positions: {}".format(target, result)) + print(f"{target} found at positions: {result}") else: print("Not found") diff --git a/searches/tabu_search.py b/searches/tabu_search.py index 9a1478244503..52086f1235ab 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -254,7 +254,7 @@ def main(args=None): args.Size, ) - print("Best solution: {0}, with total distance: {1}.".format(best_sol, best_cost)) + print(f"Best solution: {best_sol}, with total distance: {best_cost}.") if __name__ == "__main__": diff --git a/searches/ternary_search.py b/searches/ternary_search.py index 43407b7e5538..5ecc47644248 100644 --- a/searches/ternary_search.py +++ b/searches/ternary_search.py @@ -97,7 +97,7 @@ def __assert_sorted(collection): result2 = rec_ternary_search(0, len(collection) - 1, collection, target) if result2 is not None: - print("Iterative search: {} found at positions: {}".format(target, result1)) - print("Recursive search: {} found at positions: {}".format(target, result2)) + print(f"Iterative search: {target} found at positions: {result1}") + print(f"Recursive search: {target} found at positions: {result2}") else: print("Not found") From 26b0803319b6cf14f623769356c79343e3d43d14 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 8 Dec 2019 22:42:17 +0100 Subject: [PATCH 476/594] Simplify sudoku.is_completed() using builtin all() (#1608) * Simplify sudoku.is_completed() using builtin all() Simplify __sudoku.is_completed()__ using Python builtin function [__all()__](https://docs.python.org/3/library/functions.html#all). * fixup! Format Python code with psf/black push * Update sudoku.py * fixup! Format Python code with psf/black push * Old style exception -> new style for Python 3 * updating DIRECTORY.md * Update convex_hull.py * fixup! Format Python code with psf/black push * e.args[0] = "msg" * ValueError: could not convert string to float: 'pi' * Update convex_hull.py * fixup! Format Python code with psf/black push --- backtracking/sudoku.py | 36 +++++++++---------- divide_and_conquer/convex_hull.py | 7 ++-- graphs/dijkstra_algorithm.py | 4 +-- .../sequential_minimum_optimization.py | 4 +-- 4 files changed, 21 insertions(+), 30 deletions(-) diff --git a/backtracking/sudoku.py b/backtracking/sudoku.py index b33351fd4911..d864e2823a9b 100644 --- a/backtracking/sudoku.py +++ b/backtracking/sudoku.py @@ -1,5 +1,4 @@ """ - Given a partially filled 9×9 2D array, the objective is to fill a 9×9 square grid with digits numbered 1 to 9, so that every row, column, and and each of the nine 3×3 sub-grids contains all of the digits. @@ -9,9 +8,7 @@ function on the next column to see if it returns True. if yes, we have solved the puzzle. else, we backtrack and place another number in that cell and repeat this process. - """ - # assigning initial values to the grid initial_grid = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], @@ -24,6 +21,7 @@ [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] + # a grid with no solution no_solution = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], @@ -44,9 +42,7 @@ def is_safe(grid, row, column, n): column, and the 3x3 subgrids contain the digit 'n'. It returns False if it is not 'safe' (a duplicate digit is found) else returns True if it is 'safe' - """ - for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False @@ -62,26 +58,29 @@ def is_safe(grid, row, column, n): def is_completed(grid): """ This function checks if the puzzle is completed or not. - it is completed when all the cells are assigned with a number(not zero) - and There is no repeating number in any column, row or 3x3 subgrid. - + it is completed when all the cells are assigned with a non-zero number. + + >>> is_completed([[0]]) + False + >>> is_completed([[1]]) + True + >>> is_completed([[1, 2], [0, 4]]) + False + >>> is_completed([[1, 2], [3, 4]]) + True + >>> is_completed(initial_grid) + False + >>> is_completed(no_solution) + False """ - - for row in grid: - for cell in row: - if cell == 0: - return False - - return True + return all(all(cell != 0 for cell in row) for row in grid) def find_empty_location(grid): """ This function finds an empty location so that we can assign a number for that particular row and column. - """ - for i in range(9): for j in range(9): if grid[i][j] == 0: @@ -129,9 +128,7 @@ def print_solution(grid): """ A function to print the solution in the form of a 9x9 grid - """ - for row in grid: for cell in row: print(cell, end=" ") @@ -139,7 +136,6 @@ def print_solution(grid): if __name__ == "__main__": - # make a copy of grid so that you can compare with the unmodified grid for grid in (initial_grid, no_solution): grid = list(map(list, grid)) diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index 21463e62197d..f233e822c473 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -28,7 +28,7 @@ class Point: Examples -------- >>> Point(1, 2) - (1, 2) + (1.0, 2.0) >>> Point("1", "2") (1.0, 2.0) >>> Point(1, 2) > Point(0, 1) @@ -41,7 +41,7 @@ class Point: Traceback (most recent call last): ... ValueError: x and y must be both numeric types but got , instead - """ + """ def __init__(self, x, y): if not (isinstance(x, Number) and isinstance(y, Number)): @@ -200,8 +200,7 @@ def _validate_input(points): ) elif not hasattr(points, "__iter__"): raise ValueError( - "Expecting an iterable object " - f"but got an non-iterable type {points}" + "Expecting an iterable object " f"but got an non-iterable type {points}" ) except TypeError as e: print("Expecting an iterable of type Point, list or tuple.") diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py index 57733eb5106d..7dfb5fb9df48 100644 --- a/graphs/dijkstra_algorithm.py +++ b/graphs/dijkstra_algorithm.py @@ -104,9 +104,7 @@ def show_graph(self): # u -> v(w) for u in self.adjList: print( - u, - "->", - " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]), + u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]), ) def dijkstra(self, src): diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index cb859602b29f..a98bd93f7a06 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -499,9 +499,7 @@ def test_cancel_data(): for i in range(test_tags.shape[0]): if test_tags[i] == predict[i]: score += 1 - print( - f"\r\nall: {test_num}\r\nright: {score}\r\nfalse: {test_num - score}" - ) + print(f"\r\nall: {test_num}\r\nright: {score}\r\nfalse: {test_num - score}") print(f"Rough Accuracy: {score / test_tags.shape[0]}") From 43905efe298172e9e9280661d80af8f7e2105517 Mon Sep 17 00:00:00 2001 From: ELNS <57490926+EverLookNeverSee@users.noreply.github.com> Date: Mon, 9 Dec 2019 01:45:17 +0330 Subject: [PATCH 477/594] Adding doctests into LDA algorithm (#1621) * Adding doctests into function * Adding doctests into function * Adding doctests into function * Adding doctests into function * Adding doctests into function * Adding doctests into function * Adding doctests into function * fixup! Format Python code with psf/black push * Update convex_hull.py * Update convex_hull.py --- divide_and_conquer/convex_hull.py | 57 +++++--------- .../linear_discriminant_analysis.py | 78 ++++++++++++++++++- 2 files changed, 96 insertions(+), 39 deletions(-) diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index f233e822c473..76184524e266 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -1,5 +1,3 @@ -from numbers import Number - """ The convex hull problem is problem of finding all the vertices of convex polygon, P of a set of points in a plane such that all the points are either on the vertices of P or @@ -40,22 +38,11 @@ class Point: >>> Point("pi", "e") Traceback (most recent call last): ... - ValueError: x and y must be both numeric types but got , instead + ValueError: could not convert string to float: 'pi' """ def __init__(self, x, y): - if not (isinstance(x, Number) and isinstance(y, Number)): - try: - x, y = float(x), float(y) - except ValueError as e: - e.args = ( - "x and y must be both numeric types " - f"but got {type(x)}, {type(y)} instead" - ) - raise - - self.x = x - self.y = y + self.x, self.y = float(x), float(y) def __eq__(self, other): return self.x == other.x and self.y == other.y @@ -112,13 +99,7 @@ def _construct_points(list_of_tuples): Examples ------- >>> _construct_points([[1, 1], [2, -1], [0.3, 4]]) - [(1, 1), (2, -1), (0.3, 4)] - >>> _construct_points(([1, 1], [2, -1], [0.3, 4])) - [(1, 1), (2, -1), (0.3, 4)] - >>> _construct_points([(1, 1), (2, -1), (0.3, 4)]) - [(1, 1), (2, -1), (0.3, 4)] - >>> _construct_points([[1, 1], (2, -1), [0.3, 4]]) - [(1, 1), (2, -1), (0.3, 4)] + [(1.0, 1.0), (2.0, -1.0), (0.3, 4.0)] >>> _construct_points([1, 2]) Ignoring deformed point 1. All points must have at least 2 coordinates. Ignoring deformed point 2. All points must have at least 2 coordinates. @@ -168,11 +149,11 @@ def _validate_input(points): Examples ------- >>> _validate_input([[1, 2]]) - [(1, 2)] + [(1.0, 2.0)] >>> _validate_input([(1, 2)]) - [(1, 2)] + [(1.0, 2.0)] >>> _validate_input([Point(2, 1), Point(-1, 2)]) - [(2, 1), (-1, 2)] + [(2.0, 1.0), (-1.0, 2.0)] >>> _validate_input([]) Traceback (most recent call last): ... @@ -200,9 +181,9 @@ def _validate_input(points): ) elif not hasattr(points, "__iter__"): raise ValueError( - "Expecting an iterable object " f"but got an non-iterable type {points}" + f"Expecting an iterable object but got an non-iterable type {points}" ) - except TypeError as e: + except TypeError: print("Expecting an iterable of type Point, list or tuple.") raise @@ -233,11 +214,11 @@ def _det(a, b, c): Examples ---------- >>> _det(Point(1, 1), Point(1, 2), Point(1, 5)) - 0 + 0.0 >>> _det(Point(0, 0), Point(10, 0), Point(0, 10)) - 100 + 100.0 >>> _det(Point(0, 0), Point(10, 0), Point(0, -10)) - -100 + -100.0 """ det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x) @@ -271,13 +252,13 @@ def convex_hull_bf(points): Examples --------- >>> convex_hull_bf([[0, 0], [1, 0], [10, 1]]) - [(0, 0), (1, 0), (10, 1)] + [(0.0, 0.0), (1.0, 0.0), (10.0, 1.0)] >>> convex_hull_bf([[0, 0], [1, 0], [10, 0]]) - [(0, 0), (10, 0)] + [(0.0, 0.0), (10.0, 0.0)] >>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) - [(-1, -1), (-1, 1), (1, -1), (1, 1)] + [(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.0, 1.0)] >>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) - [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] + [(0.0, 0.0), (0.0, 3.0), (1.0, -3.0), (2.0, -4.0), (3.0, 0.0), (3.0, 3.0)] """ points = sorted(_validate_input(points)) @@ -336,13 +317,13 @@ def convex_hull_recursive(points): Examples --------- >>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]]) - [(0, 0), (1, 0), (10, 1)] + [(0.0, 0.0), (1.0, 0.0), (10.0, 1.0)] >>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]]) - [(0, 0), (10, 0)] + [(0.0, 0.0), (10.0, 0.0)] >>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) - [(-1, -1), (-1, 1), (1, -1), (1, 1)] + [(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.0, 1.0)] >>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) - [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] + [(0.0, 0.0), (0.0, 3.0), (1.0, -3.0), (2.0, -4.0), (3.0, 0.0), (3.0, 3.0)] """ points = sorted(_validate_input(points)) diff --git a/machine_learning/linear_discriminant_analysis.py b/machine_learning/linear_discriminant_analysis.py index cc2f1dac7237..6998db1ce4a0 100644 --- a/machine_learning/linear_discriminant_analysis.py +++ b/machine_learning/linear_discriminant_analysis.py @@ -45,6 +45,7 @@ from math import log from os import name, system from random import gauss +from random import seed # Make a training dataset drawn from a gaussian distribution @@ -56,7 +57,15 @@ def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> l :param instance_count: instance number of class :return: a list containing generated values based-on given mean, std_dev and instance_count + + >>> gaussian_distribution(5.0, 1.0, 20) # doctest: +NORMALIZE_WHITESPACE + [6.288184753155463, 6.4494456086997705, 5.066335808938262, 4.235456349028368, + 3.9078267848958586, 5.031334516831717, 3.977896829989127, 3.56317055489747, + 5.199311976483754, 5.133374604658605, 5.546468300338232, 4.086029056264687, + 5.005005283626573, 4.935258239627312, 3.494170998739258, 5.537997178661033, + 5.320711100998849, 7.3891120432406865, 5.202969177309964, 4.855297691835079] """ + seed(1) return [gauss(mean, std_dev) for _ in range(instance_count)] @@ -67,6 +76,14 @@ def y_generator(class_count: int, instance_count: list) -> list: :param class_count: Number of classes(data groupings) in dataset :param instance_count: number of instances in class :return: corresponding values for data groupings in dataset + + >>> y_generator(1, [10]) + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + >>> y_generator(2, [5, 10]) + [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + >>> y_generator(4, [10, 5, 15, 20]) # doctest: +NORMALIZE_WHITESPACE + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] """ return [k for k in range(class_count) for _ in range(instance_count[k])] @@ -79,6 +96,10 @@ def calculate_mean(instance_count: int, items: list) -> float: :param instance_count: Number of instances in class :param items: items that related to specific class(data grouping) :return: calculated actual mean of considered class + + >>> items = gaussian_distribution(5.0, 1.0, 20) + >>> calculate_mean(len(items), items) + 5.011267842911003 """ # the sum of all items divided by number of instances return sum(items) / instance_count @@ -91,6 +112,11 @@ def calculate_probabilities(instance_count: int, total_count: int) -> float: :param instance_count: number of instances in class :param total_count: the number of all instances :return: value of probability for considered class + + >>> calculate_probabilities(20, 60) + 0.3333333333333333 + >>> calculate_probabilities(30, 100) + 0.3 """ # number of instances in specific class divided by number of all instances return instance_count / total_count @@ -104,6 +130,12 @@ def calculate_variance(items: list, means: list, total_count: int) -> float: :param means: a list containing real mean values of each class :param total_count: the number of all instances :return: calculated variance for considered dataset + + >>> items = gaussian_distribution(5.0, 1.0, 20) + >>> means = [5.011267842911003] + >>> total_count = 20 + >>> calculate_variance([items], means, total_count) + 0.9618530973487491 """ squared_diff = [] # An empty list to store all squared differences # iterate over number of elements in items @@ -129,6 +161,36 @@ def predict_y_values( :param variance: calculated value of variance by calculate_variance function :param probabilities: a list containing all probabilities of classes :return: a list containing predicted Y values + + >>> x_items = [[6.288184753155463, 6.4494456086997705, 5.066335808938262, + ... 4.235456349028368, 3.9078267848958586, 5.031334516831717, + ... 3.977896829989127, 3.56317055489747, 5.199311976483754, + ... 5.133374604658605, 5.546468300338232, 4.086029056264687, + ... 5.005005283626573, 4.935258239627312, 3.494170998739258, + ... 5.537997178661033, 5.320711100998849, 7.3891120432406865, + ... 5.202969177309964, 4.855297691835079], [11.288184753155463, + ... 11.44944560869977, 10.066335808938263, 9.235456349028368, + ... 8.907826784895859, 10.031334516831716, 8.977896829989128, + ... 8.56317055489747, 10.199311976483754, 10.133374604658606, + ... 10.546468300338232, 9.086029056264687, 10.005005283626572, + ... 9.935258239627313, 8.494170998739259, 10.537997178661033, + ... 10.320711100998848, 12.389112043240686, 10.202969177309964, + ... 9.85529769183508], [16.288184753155463, 16.449445608699772, + ... 15.066335808938263, 14.235456349028368, 13.907826784895859, + ... 15.031334516831716, 13.977896829989128, 13.56317055489747, + ... 15.199311976483754, 15.133374604658606, 15.546468300338232, + ... 14.086029056264687, 15.005005283626572, 14.935258239627313, + ... 13.494170998739259, 15.537997178661033, 15.320711100998848, + ... 17.389112043240686, 15.202969177309964, 14.85529769183508]] + + >>> means = [5.011267842911003, 10.011267842911003, 15.011267842911002] + >>> variance = 0.9618530973487494 + >>> probabilities = [0.3333333333333333, 0.3333333333333333, 0.3333333333333333] + >>> predict_y_values(x_items, means, variance, probabilities) # doctest: +NORMALIZE_WHITESPACE + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2] + """ # An empty list to store generated discriminant values of all items in dataset for # each class @@ -148,7 +210,7 @@ def predict_y_values( ) # appending discriminant values of each item to 'results' list results.append(temp) - print("Generated Discriminants: \n", results) + return [l.index(max(l)) for l in results] @@ -161,6 +223,20 @@ def accuracy(actual_y: list, predicted_y: list) -> float: :param predicted_y: a list containing predicted Y values generated by 'predict_y_values' function :return: percentage of accuracy + + >>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, + ... 1, 1 ,1 ,1 ,1 ,1 ,1] + >>> predicted_y = [0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, + ... 0, 0, 1, 1, 1, 0, 1, 1, 1] + >>> accuracy(actual_y, predicted_y) + 50.0 + + >>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, + ... 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + >>> predicted_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, + ... 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + >>> accuracy(actual_y, predicted_y) + 100.0 """ # iterate over one element of each list at a time (zip mode) # prediction is correct if actual Y value equals to predicted Y value From 74d96ab3558120b6810aa3f613e091774aefeca3 Mon Sep 17 00:00:00 2001 From: Jawpral <34590600+Jawpral@users.noreply.github.com> Date: Mon, 9 Dec 2019 03:57:42 +0530 Subject: [PATCH 478/594] Fixed issue #1368 (#1482) * Changed as suggested Now return in same format as oct() returns * Slight change * Fixed issue #1368, return values for large number now is fixed and does not return in scientific notation * Update decimal_to_octal.py --- conversions/decimal_to_octal.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/conversions/decimal_to_octal.py b/conversions/decimal_to_octal.py index 0b005429d9d7..b1829f1a3973 100644 --- a/conversions/decimal_to_octal.py +++ b/conversions/decimal_to_octal.py @@ -6,8 +6,12 @@ # https://github.com/TheAlgorithms/Javascript/blob/master/Conversions/DecimalToOctal.js -def decimal_to_octal(num): - """Convert a Decimal Number to an Octal Number.""" +def decimal_to_octal(num: int) -> str: + """Convert a Decimal Number to an Octal Number. + + >>> all(decimal_to_octal(i) == oct(i) for i in (0, 2, 8, 64, 65, 216, 255, 256, 512)) + True + """ octal = 0 counter = 0 while num > 0: @@ -16,7 +20,7 @@ def decimal_to_octal(num): counter += 1 num = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. - return "{0:g}".format(float(octal)) + return f"0o{int(octal)}" def main(): From 02b717e364cd6623e303d4cc2378d1448779dc2b Mon Sep 17 00:00:00 2001 From: Samarth Sehgal Date: Mon, 9 Dec 2019 09:43:56 +1100 Subject: [PATCH 479/594] Update odd_even_transposition_parallel.py (#1458) * Update odd_even_transposition_parallel.py * arr = OddEvenTransposition(arr) --- sorts/odd_even_transposition_parallel.py | 16 +++------------- 1 file changed, 3 insertions(+), 13 deletions(-) diff --git a/sorts/odd_even_transposition_parallel.py b/sorts/odd_even_transposition_parallel.py index 4d2f377024d2..080c86af5a8c 100644 --- a/sorts/odd_even_transposition_parallel.py +++ b/sorts/odd_even_transposition_parallel.py @@ -10,7 +10,7 @@ They are synchronized with locks and message passing but other forms of synchronization could be used. """ -from multiprocessing import Process, Pipe, Lock +from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time processLock = Lock() @@ -73,15 +73,11 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): def OddEvenTransposition(arr): - processArray = [] - resultPipe = [] - # initialize the list of pipes where the values will be retrieved for _ in arr: resultPipe.append(Pipe()) - # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop @@ -131,21 +127,15 @@ def OddEvenTransposition(arr): for p in range(0, len(resultPipe)): arr[p] = resultPipe[p][0].recv() processArray[p].join() - return arr # creates a reverse sorted list and sorts it def main(): - arr = [] - - for i in range(10, 0, -1): - arr.append(i) + arr = list(range(10, 0, -1)) print("Initial List") print(*arr) - - list = OddEvenTransposition(arr) - + arr = OddEvenTransposition(arr) print("Sorted List\n") print(*arr) From 9316618611967c26b98ce275fab238f735f2864e Mon Sep 17 00:00:00 2001 From: Shoaib Asgar Date: Mon, 9 Dec 2019 07:59:01 +0530 Subject: [PATCH 480/594] digital_image_processing/convert_to_negative (#1216) * digital_image_processing/convert_to_negative * added doc * added test code * Update convert_to_negative.py --- .../convert_to_negative.py | 30 +++++++++++++++++++ .../test_digital_image_processing.py | 8 +++++ 2 files changed, 38 insertions(+) create mode 100644 digital_image_processing/convert_to_negative.py diff --git a/digital_image_processing/convert_to_negative.py b/digital_image_processing/convert_to_negative.py new file mode 100644 index 000000000000..cba503938aec --- /dev/null +++ b/digital_image_processing/convert_to_negative.py @@ -0,0 +1,30 @@ +""" + Implemented an algorithm using opencv to convert a colored image into its negative +""" + +from cv2 import imread, imshow, waitKey, destroyAllWindows + + +def convert_to_negative(img): + # getting number of pixels in the image + pixel_h, pixel_v = img.shape[0], img.shape[1] + + # converting each pixel's color to its negative + for i in range(pixel_h): + for j in range(pixel_v): + img[i][j] = [255, 255, 255] - img[i][j] + + return img + + +if __name__ == "__main__": + # read original image + img = imread("image_data/lena.jpg", 1) + + # convert to its negative + neg = convert_to_negative(img) + + # show result image + imshow("negative of original image", img) + waitKey(0) + destroyAllWindows() diff --git a/digital_image_processing/test_digital_image_processing.py b/digital_image_processing/test_digital_image_processing.py index 02c1a2d3a663..1a730b39101b 100644 --- a/digital_image_processing/test_digital_image_processing.py +++ b/digital_image_processing/test_digital_image_processing.py @@ -8,6 +8,7 @@ import digital_image_processing.filters.sobel_filter as sob import digital_image_processing.filters.convolve as conv import digital_image_processing.change_contrast as cc +import digital_image_processing.convert_to_negative as cn from cv2 import imread, cvtColor, COLOR_BGR2GRAY from numpy import array, uint8 from PIL import Image @@ -15,6 +16,13 @@ img = imread(r"digital_image_processing/image_data/lena_small.jpg") gray = cvtColor(img, COLOR_BGR2GRAY) +# Test: convert_to_negative() +def test_convert_to_negative(): + negative_img = cn.convert_to_negative(img) + # assert negative_img array for at least one True + assert negative_img.any() + + # Test: change_contrast() def test_change_contrast(): with Image.open("digital_image_processing/image_data/lena_small.jpg") as img: From 1cbeaa252ad5822c9197b385a99e550f7aa2f897 Mon Sep 17 00:00:00 2001 From: Binish Manandhar <37204996+binish784@users.noreply.github.com> Date: Tue, 10 Dec 2019 12:37:40 +0545 Subject: [PATCH 481/594] Image processing algorithms added (#616) * Image processing algorithms added * Example images included * Issues resolved * class added * Naming issues fixes * Create file_path --- .../histogram_stretch.py | 65 ++++++++++++++++++ .../image_data/input.jpg | Bin 0 -> 60104 bytes .../output_data/output.jpg | Bin 0 -> 118463 bytes 3 files changed, 65 insertions(+) create mode 100644 digital_image_processing/histogram_equalization/histogram_stretch.py create mode 100644 digital_image_processing/histogram_equalization/image_data/input.jpg create mode 100644 digital_image_processing/histogram_equalization/output_data/output.jpg diff --git a/digital_image_processing/histogram_equalization/histogram_stretch.py b/digital_image_processing/histogram_equalization/histogram_stretch.py new file mode 100644 index 000000000000..b6557d6ef77d --- /dev/null +++ b/digital_image_processing/histogram_equalization/histogram_stretch.py @@ -0,0 +1,65 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Sep 28 15:22:29 2018 + +@author: Binish125 +""" +import copy +import os + +import numpy as np + +import cv2 +import matplotlib.pyplot as plt + + +class contrastStretch: + def __init__(self): + self.img = "" + self.original_image = "" + self.last_list = [] + self.rem = 0 + self.L = 256 + self.sk = 0 + self.k = 0 + self.number_of_rows = 0 + self.number_of_cols = 0 + + def stretch(self, input_image): + self.img = cv2.imread(input_image, 0) + self.original_image = copy.deepcopy(self.img) + x, _, _ = plt.hist(self.img.ravel(), 256, [0, 256], label="x") + self.k = np.sum(x) + for i in range(len(x)): + prk = x[i] / self.k + self.sk += prk + last = (self.L - 1) * self.sk + if self.rem != 0: + self.rem = int(last % last) + last = int(last + 1 if self.rem >= 0.5 else last) + self.last_list.append(last) + self.number_of_rows = int(np.ma.count(self.img) / self.img[1].size) + self.number_of_cols = self.img[1].size + for i in range(self.number_of_cols): + for j in range(self.number_of_rows): + num = self.img[j][i] + if num != self.last_list[num]: + self.img[j][i] = self.last_list[num] + cv2.imwrite("output_data/output.jpg", self.img) + + def plotHistogram(self): + plt.hist(self.img.ravel(), 256, [0, 256]) + + def showImage(self): + cv2.imshow("Output-Image", self.img) + cv2.imshow("Input-Image", self.original_image) + cv2.waitKey(5000) + cv2.destroyAllWindows() + + +if __name__ == "__main__": + file_path = os.path.join(os.path.basename(__file__), "image_data/input.jpg") + stretcher = contrastStretch() + stretcher.stretch(file_path) + stretcher.plotHistogram() + stretcher.showImage() diff --git a/digital_image_processing/histogram_equalization/image_data/input.jpg b/digital_image_processing/histogram_equalization/image_data/input.jpg new file mode 100644 index 0000000000000000000000000000000000000000..483da6fd97f44624598f9f501fddcd2987951677 GIT binary patch literal 60104 zcmbTdbx>Px5H=c|BBc~5P74%=;_fY8iUybBB#_{)6`;kXK#^j>AvgqYDee>r5JGS$ z?k>Ij?)T00KkmJovoo2=d(J%1oU_?|_TBSu_TLiViH3^03IGcW3-JEo1Nb)&cn!eD z!us#{pN4~n^Pl14;^N>D;1dx1=Y)@l9}yA~5fTs(krELRlROx~qsL^VB#;05{@+FZ zJN>`29u5*h0>b}R{C~55zX0Tf*pk>%I9MzIY;r6da;$&d0A>IH3-1B#e}Mm|VPWIo z;^99)A|ifR(D38|J`N7{16Vv<+=tb{55EI&$?=}P5LCpc(6uIDai-KE8hb0iQmHM?`-48kLm%EhRPWdwNDbte~){xTLhKwywUR5z*A#^1G|Mr?;xScN>Hh#8 z6*j7|jv6;ieanc*)01P6&x_EVgb^DQe|(u=goPX<^(-&PW78*C z@}_{RG}S3rw(#iJ?yLdfOVfLz2kY<4Nq=(=yf;V)CA!XkMF46 zH)q_I)M`B6S0@wx0G#(lOKW;6k4c)Np3VouDp8(HVsn!odW*Q+ETf530pkIRdbi)1 zP5la5_TW@H(GnrF845;mkxn3jb+Qo;w^YYrw2@Em*m+D>rRCL9!1KsAg7Y4-ev)zi z)k~fXGuzM|0I45}PZNlfOVQZuG*#}1n;|Xk*^pQkjN`-^<_mgFYaeT)j+DcVn(ISW z%sa>JuDtm$l|`Vvd_AKLIsBwPRXjEbF8c-1rV{H~ECj=_lJRU>JFiJtH!5hHEMmsT}4jVWS1sAw@QsX zB#FPxA5TwL=r(LQoou{X;`umTC33k>dTVLzbRFB^`}(r*ak2OiakXyb7)|cu!HL~P zTH>IJVpqm(3w;gkCm>JLfqwhdyJbw%h-QzcqRUSkX8#jYI>%_bEh=b%liglJz&I{T z*9}93kk~{Uzbd9Y6Yh`+JvFrcH5O35N(^eylpP!$BV39*>*?|t9U8id3V}M|j8`1M zR~iM-^0dpXL>a-Bq8~+nrFbITPAmC)H#D0tRFEs$O}Hkc6uqVEVuj%kS*FB-1s8OR ze}QFirLxi55RP8MY<-JwWdfsfGSnPBI@E4{WqZB`*DNS+aMz+=-%6}zl&-vqG^S6o}vM%LbK>N=U=#WpS6lt#S(p7QcH^ za%G3}l`Jopj3*D6wM25q<9$o)4e>fe+engEE5LuS{!aLwt`ROf0&ti8TN&L$CnM(5 zH)NHrZMx|M$dBUuKRVVB`|Mn3yZ)TjT@tO)WtN*eup}3!w46Hary~ixsge)?4B*5% zeEa^JP?7)`lSi3Gn4CIn=Y3ihVz@q-;3gDY_FDs{%@f-v(J9M`qcqk-`o!2L)qII= zqVs28Cnan zW$ii9I^|FVsw>t0K$lTyejwKDIoH5h#fX}!tFSU51Xe1m1#nSa@k60(X^t05&>?4f zOl%3D36;GLbuufB+-1A3K4j@CrqQkojC1Ip-LiN9^@6w6mK8BKJ|}18o|mf0|-Ohi-a*tzCyuX&q4ez4<8iRX4=d{jJpYz|(rJR$og_Z1hvsa*p5}9}PyOXB8$@{8g1|NzClzlLT;Js>FKE(2dF>+lFFm1Hkny?FMP$TJA#P z_%!QEwEByL3lq}!m8eM$1NNYq4p2ZHVm$qR4)*l_h${&M}~>Y zD3&jp&-bjADUQ7$lc>m{_}y|a2MbIG8r{7o&YIL(Gn~y(r*nkTVr^+_8Bt)ZRk$NO z73j}Zkc@H?@0;wOoGQuLYWkMJez9dQqk-X#KVnsNKn+?admfr74Yfl-@cxgdr znBuf)b4eMMRww|5AX1tBpN!#|Q)!EkZvH%bhR&wvoP+TJ4WclM_;!ZWHao6$ zZu;~o?MCD?qD8KtjWC%{eL2`2{gdV(A>rQKW`t|or|X$ab$Ufs9xg-ukAz!RKrIiK zxOIf{*Tz*hX5Sr4*CUSQHzCh!l64SPwcF%Lc1i*q*MZ{%e1{vC;Fwa8PE&$~KKH1D z`cU#dIhg22j$|mMpgX3`vkSuhb;WoBGF~e-!<4dZ_{DCCfjM2(Dd5B4#;5@{ z^17fdT&l8b(fD&{?g7bC#V-b%@`d0WbL9;7_+iWD1NGoS(Y3=7hR&c$LjBvnI5xpP zt8XGy5^cSA1xHLKgB00ewwt`8V^B z)ftA?&Kb9-sH^?5=ZX@uct~5dWefr~5X8p&86#1pf90d#f1kliO*b&2h}9J6_go^= z$B5!Bgw-5~A^v0!-IZ6Kfo@67^jw>t?_?0V?br2i7FzX`jvC#jqSxlvZ zS~Y1pVp%Y|%ikEaJ^s>cz;ucQ7mF8bZ`5o8I)uDlrP4T1J|5x+*fX|}8wI)Ib-SCX zyZSQ!c*Hx7b7G4rFD(6e*lI2kOPT)CAY1)3mrU-c^mzK)Dnpp_H+U5dW_SkfDiUJG zHT3Ym+mnkO#rgl}kMdfN)1cGyi&IkxU}lH3H67c&7ZL72r(9A}Lnl+JXfM? zo1j{LN!>7TxSVvv=b+;FcT-rf+--KT_R9|^UCpwdmS*4O)ESD+w%;@@us??fDVB6?} z$?^6Kox@bbHf>w))dz+sz|0iik{U++r7o?s-LFw09#*9ZoAF8SuP6B)n)_DrRqTw*1{&G~*&s6UX%TFziq3I6g9uudCj@%bisPmc_)Ka$?*?uQu~` zPkwN)J=PIzu3a!&CQ=4$dMOn(*3|s5Q`b-|J)SK&Mh8D{Vw$hON-%?6I$T-MwT@VC zsQz{iI{o7g?v)x-F2Y?I@`iPz>>?43USO-3Pgfz#C6zoAk9~?+NCO9N;w0;62Chkf z*aG9a9VMu8Uaog@>M_FamJx-5o0@NQT2s{}A4*4!jcxiZ69}E!48zhYdpdr(SW?Is zohnQJPhkXjBq`97BaLBE=y-Nd4V9PriX(tK&NmSm_6k1Qzh-PG$p$TmZ#Cq5b^nJf zk?SjcsYFG6Gc{`vNu9JeehSgpbG{+LO;ngDUj}h%vR$vlWRms~@aG-{gaJbNWkEo2 z9#g}SF+V()M0w80bx!wto=a^RZLpe*3X{T}(YrdgRIOvgwf&^ecRl~3-1Uol)+*et zsFZO^{%_6w$xJ1wI@Rs~^?Z4X@=j7y55SqPr{r#Bc)WCVh;eJ&+(n-%D+WIO>9oSN zLFJeW2>Kp8v#X`ap7-+iZhBCo{w<>xz_jHD%Za$THbZ0tN}}vUas4&Xqo4u1^;LP_ zqhjR}ElOy%ReB$ZvQgC4`v`S9YJaiKc@eDjMLLm`NZq(=2}9-_yG&Jm{Y$G}YGflZ zn|pn)3^p0~ZwQNmXe_p|PgQ#T$c6LAOK(rcx>`9J^!q1)Is}E9?sq?mMb8%o^?g&N zfzr%RW8eMKl02LT}eTdYVXC#E4a23DmK2EyvTs3HMQW zLKTCdm+(oNGH*dB4*> z{eWfehnQ(ss!R7EV6jU~ak}f^PdMPc>0plcw^x$5e3sFMi7yRPDHADeCAN7e-c7%Z z@@Z(AZxNzgg+p>Pgs4^*=pWNCabiJN&9;CT!E>KoSmN6jwKsftIqCF53GbvP1}~I= zkM1i%8u;#EnfkR)>$vX@op9J0@gO3lAv4WFRsxmSHwTZhKqn zr3oxa;N<`6z|wAgAY9Rtgttp#B#=LmBp@#J#MFTnx5tOP)g~LpbT)9SjBtHq z`IR-^%j11z@0B((OaKz{bSKU25jEyXg^>8${Gxw=aN#QZP*3NZQKP#T{-w#5CWCb< zLt|{>+J#Q^>q#%2_EXhXB{~`402}jLHY6Mvt?Yap^P{e`OgtNZYL{=g)~vE~Y;Y-K z2gbc$As@KVctOQWMsq^>wx+|cKbK6*&Q4ya_D=b^B-NJwY#$r*7P+c>LtP>|aN0zM z);gGf{wS|6 z;~hx73aL+8|M$cfH>LZ~WcnYD^`O&mcKMX_ z21Azj^v68@%nLeA+dKTyM;lO}2N^@`U;jx|(E{*Zh_L`8IM>D#`CV(mLGdfO}e2Ej4eYrhQo2 zNoBN$JfEaadMMKUgl7_*u)B}Sl{%S}-+QKrQk9FQG=qpWn~qu!h)Tu3R@lZGjRJYH zJ{YVW{rILQOj7sw`z|MrhcMyS#*(M%acXONy&F2uz(FvXxQ5R`o{lW`2MvZQSZ(814- zh_EPcNDoNH^Iq`s*lJW;c;3s}o5+0(qlW~c-c(dm zI)oIQm$FW=PO;scZ?Q21M4{_0b%O($HtfU6l!h|?FcW4>>j$r7#pMy^KDMr0C$9%* zn;t4_GR-8aWnRRzZM4jW&=V3aN>N#=C~ic@W2sQ?JI&m*dFMU`Ph30OAFsFykhQlI zChZOq3moTfg-Ic64#zTICH=VyRPl{+y=BoKzzwvs$h|{uJK>~G72Vi>9%A4g?))Zr zTE#rEKlAzsce}p=_=RbDKO-*Qo#d@d{}lg(reY>8UUGxz9A}m>I(xd*VJ(7bMFUUE5!VfmGP8G4{Cr1As%JP9tL3aQc#~ zPd=1b0rx2S@M9Fa(@B!jMPUu1p*C%Zq^y=nou)^)GcC|w z@UzBZx-JSx0trG_;gPGmZ`I#Cp9%kPZI;k*}a{Ag%(2 zmbva3$lAlnZR$*iwm8Wr9%KQ4a{scqzQ^{_L$RT)w+8bN4UCg1kOD8p&d!^1C(}ai z_g`f>{>Ch~fa%s&iIr%NvOZ@7uP`c1(v`-~a}W92pbm)62@aqDifC@V+P!T^34tml zUpT{3ujei5BD1*lb7(!b&ec?jV ztzUD|)ur~bg2-q_CFMDhc@tHje2-Daz7v$%Y4x{2r|yLlc52ZB_#7GczU?OlAq?a6 z>anmm+vcmal^+~mD=GAjQyI$wezXD4Yiiyni4OY5PuZ=}0s4-mn{{uW}D2{~3BvUn6J|<|l2U~LdfV!Z1y+Rh*vDsWg17f;Y@Jsiv`H(R%W^tGIFoYuH7~={%$x2`WRjJ8g+CZp*y}HY z;0M5hRMk29O%Vdy?n%R5-O6I0+}6MMumyP_mLb6^zL;WjAgf`Fs-L8UG$zOf{e~t6W+#_ zHt?JFp%dzxhH(?SKI(yIL(ry&Mh&@o#0kuJj!|Hc^vO2ipMAZf-7AffmAp^t#>H_f z9Ow!U1sS?_szFVWsDwT9pkHyPfP^=!7Vt)wNBSixNs$xi4*aBUJ!j z|Ea$nQvdN~)N?25gFOW%Rd?w5NW-6$$f|(2b~D{S6=x-Hgt%QS)fpJ>oMVw8 z%vw-WP4f|E`@Rtch6T#4r9e=O2an25r=BDw3c#5k^*?-!QJ(JqET+gxGN@l9e!ne# z9(VeO*H^na%_Z@aquu<;RjmL?#h~Ox#ho^|BFc&Z-hF zAr^=MCR+k0{V5}+d$x}084@$+Y=u4DSCJWK&9RGj`A#@Cn=7Pk2|*pU0xqji9-AC}a%F(KkxSb%k=pxhTDFDBht59Hj@i^JJKGJl4o4ZEvMrG4 z(p7qTJO`iUhr(NqsRIc!NmW_3UzO#mciHRqC;UamclhXWf@tmKoiM79Bj|To?p;eN zJ7qMRL*EM(cgwS)Ad*R!bq9Zv=3XHI9*?eHbirSK&#OpmFR15|W$m@mzU*#gMKmR3 z-vk(b3VJz}Ze(8@bKMY3P95(0_+X)I^-`gaiZ{SRaFDy~AHbIqYl)f}=Zu57jXYks z8mbHeE!ORhxVNaf7CFy{3{{sb2Mgi7nFVCUNgXLLIp^Jv8S1JCIVqEvuD;OIhcn8+EUlj)wC?IPm9vB5!o#mC=N zEH>&4Gxr-QdfzO9$8usoD>abapt5P0)a5ZGG(x)#YX^AMT$Wt%mQWk&&&c8_mh7Zn z_+V_`?y&h?slJ^NrW|l*PIqn*zSYpyRcFdQ@A{sSkdq#-sK6-N7nL38hvGEysKUr< z>86=v+@-3s&;B_B$|~E8$+*W0NmoWntAfkjL(iQ{Frvadam~5JOe{wdW+rT(J{!;0 zNmOBVG(j{?GwjU|AZVk)Aj2b^o&t3`m99M+dd01sjN|_4&!3#EKMgQ_!}=TYL``=( zp+1dXtd?n|F}d4OdHTgi6iv5>JImh9^vI>bAiHz_EbkEYugK=gWJT@0X!nm zES!k8MQ*Y^wADzT_0UD+?>V|*L-lM|Y04T+8%qm!1n13#MFM}&vNmV2p>AYL`)+kvfv{teDkk@F{y~>JO7;B90UO@W$l%V|3oiZ?)RM3Z3=(J*mz)1!!E>f)s^n(_5?TI)e7;Hd-?VIofhqm9$) zXw1eFN9;i@4Dr(Fx4mMc{(reI>z%*RS5k_E?s=C~LH0$P?uX7BEZW}*Dm>kJ0)lB$ zm}^wj+CFDUaF)C2ZVcctqc`);9F;auYnC@nyC*L<-bG@T)2Fq0+qcm^hUu}5ToFvq zWR(GL(}ZNZJ^cliBhcYnTF81US*2ljdNE&BR8hR4*;}(NVs&O4Rk%@0Q`6xszlrZv zUpVx47^`#r^s7`9t+?qSZ0Eq-D7v1x8k|OM%hQ(KT-l{sZ6QY=9bs`aEL0|UoQ$b< z6&Y|9p{-;$Qit2W(6$oP4gf4Q$dgqJA3uNJ*C+*)mQ~qN^fuHR|1^ng~H=8?` zkmr#r(;e|Hv5n?)%Ie|ar`wuY&2#QWD(#Lab)`Q8& zu&0pYmag@xxto?a(1ia-Z7yGxpBTn%>90lE0yPd#0;0&io7g(X*1ocx8prqjD#Pkn zihm-``+Y1uu~jajiPY*%rrNiP=#`&!IH zVciL5;4gfP`ci6DAwB)Iy7MhxeCwXE-%1z}Xa4_iu6|0yNLHXuVqG@A6IQ*hGJx{I zgI`x(X7J#G*p6+8B)As?nixG-cxQUw)WvUDf85i-{JjWa^-hWZ-Z5m_!u-kc+m+i~ zTc)3Fj1B=0q)^MRvj{~0Q+MjrxGO0V~KfH3!EHsAJ=Lg6t1BkZktHO8e znYM~d=v!98WGcIUYjX3{^ECJo5r|Iy4JE1+RTCGRcgoC__lpOg4l$FNf&znDgW>2z zB-~$41CU#7n-!o#z*rDOJ1KIyz@zSV_ijJsr}OfTh1d)+2?$YbI-Sg9gz6>nTsR#}8DNNlEXAmFR<}PXfDz4%{#_GlNF^pMuAaa8>P@aG>T*>Za zW*yQblL)k2cZr<4V63G`6V3F7D=shf7Z#xXIVQqHIa<6EI}TFY&AfG+npJ`hT=|+t z!QxZXc`9l?svHZrcPBv0U5#zinRVJFIzaGRbx*UQiNs%LsjIaVdH>Y-o1u5jQI|N+J0_P-`m`O%x_K1SE%i3j>Joa zQHUgpCku<;2|wsTzvCefIHjC9hb(uw)fbD18RMf9$L3P%3mr|HD4&0T+J&-5XZSuu zhY{x1BLMl)k7{2V4AGJ=BB^lGg!z&khk!EWk5|&AMcXG!;;DDrurSS`^nSgv+*4ij zLTI(z=l6R6o6AT83$vbOs)0Dc_1Xr{fQqLk;N&;-^k&T3ibh`jwWOnOlb#JRU6uwZ z7w=BL$aH2IZ5@#9&m|2d7@ZN@p?Q#~gfH5I%Uf#I+37Q6dji5FMK>{zreK#2P1#gNV?$FJHh;-` z0@8HHB1TQ5$MIyD2EAI7)H5%@K3Qj?Fu4y!sHQd(K#(JLQN+5aNd~pO3c)08v3ikN zThWBcvkeAM1)4sEPX_6gsrHUg1&%_KLrf-VTps%zu#(JPM&IinfGC#f{#`5u6F!(& zn>5sJo78Lg1zLS=93NA>s+*@|;{-2gg2p^!Bg&XJS8Xu+z6UI@{y5v?XzJusPh_#J+dKge)wyM&g_*Fj-Don@#&g|M)lBhaNPDfYpf|oEJ@~eTlMvu zL>}ey9{b~X1O17@x+x|#nz^EhfICjCBQ#o_dUo27dOad!&-OA??Z!OR36b8`b8}-B z1wnx+cB1H1$R8BMo~b4CM?&^&qb2;`=D^quNLS@i->Zk%e2-Q6~zC9O*<-7vU{W@)l$$~slW;Y%MBCd=JENN9bW z(l&uE6;+uukgDecxplk^j9Po_grl!IvnMJl*d5y{ZIC?iBlJ;iDF3yp=L>q1$L?Cy z6TG{+kY&g)IwlT0TZgD~<=?Qv1TRV5*JH)-r{8Lcd_8%MO_C?8tSowqsw@E7_O$(U z_Z;^fv8aof8hbgIYC`{9HU4K*+>Ieb2+tU9C|#by*YpoSR>X;uJ}qMHSTTV6$u-Fr zKxPGwBICY)Pb1>Nc>^m1?TAGhOxkql89K*={R8Yp4NiVeOVDKKw9S;%lOD%4Y9u{> zTRGDH*qO}a@V8mdX79WmE<@a+>2}&c`gu}oB!=mXwlRK0x^d4Eh76PZ!O

EY;=J z8mTp6VPOCE^^l$M^`>Zgsgt02x2;nO!mID3V%Bh{YcgDLA7KfTM9Dhglpmk>HMiAv zv~LYH5Y<*4cn+{e4cB*QDKQHYHIM1uin_=rJZzQDj+u|+m8^ma?+#a|wIpc^qXqdl z?oYg_EXbkitO%iz+Ty5b2 z2k55AC9VfY`dZ8@Nm~U{B;SjU$zqeZzbPSqWl8<_+n3WtnpV@@4hP+cPU7JKB8h!6 zq{l^U5<73spLFD`^(R&scV$mut+moH1Q0oyXBqzddMknw9a5`+Ltb1lN*QV_-J9!R zlh;pX2t_wtY>kMwORm`Ac${r15VG3L9%!hhH8HhIjepP(^M&q32^Bq#^a&Wp0Vz@A zK9uWlInk&5=slMt&#kvS;bR?~SXir9y4r-Ta*+8}5`9jb{qJq$MJR~h9%Sb3M}rSN z&3n*Okyu}ngz^}Jv9FBS{c^gPjEOpkz58(%a{wR~DM1;05ULTey~mgAj#gY2^DgBt z042g6HBqF>P17khRi&2IR1JG7Jh51iMQaRj=T~6}4k!-PJpffLqdMdr5@Bldm~`;214qqPnu5+t(0++CvZI_OtJ zNZ*$+Fsy_HQ^}54^(B(x%6%j<^3Go*3|>Nc+d6JVcQ)Oy_5hsuDtjM@Cwj( zPU&YPGU`jc0n0IVMJXYQuf+W&1=Y z{3i8{PfPL%c-RHB0PinDR)c;~0SzVC&MMF6^)kjZU0+>f>s;}Sz@ah-5bMpL$FG^- z<)IIu@0+Y|dIqk?2^0$!)GJJRqnmxnmSwl$=ds?)J5>$-!@aM6z{e;}mEDWXSQJx+ zg1R4nY=FDkxe8Y1pXA5G$dO^Bs#cS`e6}E%T~ngREF;*=Ojg?9qjXObWVRR8-FT#u zvqEbhv5oG=fy9nUJ2gz#-_h$@h?)(1uRRIO{)T0xGufcl@Ji66W2|+3$FwE#GgP$q z!{^xbCFs?)fezTTVYC`zkq$A~-@J8JI$N!+%?J#PmrX0<+EO6Z5@MudL(tFTfI3IH zwd55h`R3B2MbZ~Oa%D5mgf@!o!NII zg2`NaVgCu+%@-Zk1|mQ3PIoT8i~TLQnUnc|sn?TO&4je~vP0>4kVz26N;pcT1x5K} z5dUEt219CUhzN%@A?6XR2V9kg!R(K;=L#L-)ZY0roxuw_otJL>`D6Y8M2bIbgGBel z_Zl_5`gqZYoY=71zNfpfg(v~ChPMv2h=x0~HIzP;Z=!5Y`{ifSn|00w0(bp)smFay zYHaBdJ`a(j_9Dq*=*5W|4&bzGhHkwv(d|XktB1(rISHY9H#k?&vG~I2wnNzjF}eFZ z!#SB{jFquF)F+J39E@^#*(mHE)tcfyehp+4)=BR5&Gsrw7=ViH_2C7#Z_8JU?l)d2 znpivaE(N$7@;Q9cYe)e7sjY3|4LsUXAm9Eemc#MAoFq@p0JzHhkdQ|D7^++lPY~%Z zmJ`mY<^+=Urr2(rdFAbKXlc+q(TMQ+pVSLDZW!|k*Eg&U0Fx*h6hn0!ZQa%6#)l{_ zV4US}XscG#BbIFCB$h$>c2seFYduz`v*L%33yLCGpIqt)OSG zbtdcR+FqSF76Q}|l2@U!4ctuzXmjpsJ_nF#b&^AbS_}nO@8mxKANMf>b8BrFUynd& zx|vJp0`yev%ToPBJ$L~-zyQF*3F(~mqA9LQeYa2;uP4ii?Nq6oX!}8?KdtJbZbxsM zb+|rBwl#eQ92NqOSjcM}`nA~hSG7CiV3Mn!%hR3#g$&X_5Px_kB^O6^S?yrKHpJY4SOBG*;4 z&}rXm1@iCHawdlvY-fiG{qx3>~e{{!fe5KQ8?`kqn zJnoPp`uMt3vDIb174WPOAm*K_Su%^W&iPCAzFx{gNUa&6&bEXnTUI#IoA4G*~-$LaW!)}r)Fqy?FuUusQxA#S( z_{%xOlj6eH{1r24TBIvE{DL16C&JjWG0Ws8l`se9-*kDcO)VW?ff=0Z1YuGQx`8xR z(dK{ve;R`T&38*H!1lR7JYc-+wPpMCN3 zzSJx*A8wxIl0wL%EmUuH#b0k3w%NMT?~Z@EAZ7nT$0IseH7P?>2sihifw%5Iq-!2Y z3?aQQ#sNi^Tlw?1uR3WSdNA8cam(BSR*_u0$*@^viWxu8Oo=VHa$Jp@!kRaC_6_jP z76}u$In0ZWJgl$|?@wU79*0WG>EM?c9nm^l^A5_t}EfI5# z3)W^h5@)%Dp@@h=zjL9w*SMdY(zRKSN_oAkE*0KPnhz(N{#?Lo2BYL~5jcCqh~4Ig zVO7c*uMso-q~4W9FIrTk85l)586fSU!pl3Y8VKAXduI86@$n)8bJc89($y&hNElc3Jl_dABJhL0d56KG$E2X{Wvi*c zaXdsz6Saz1ocy+2PYngHo=^$_ZO^O7 z)5|ug#Q7^{w_#6K=7%X-Pg`Nr&hyg5H??1}IAk8eV~0Li)$DT@`&0}iTK>y5@*c)~ z?wxs;7j)3zAc23-Y%H~rv*xGkTN<(C%TX+mOS1E<>3-V5!S$Q{Coj=}-m{`4-RfWdXZJ}p>BX|REraElm zSMHo}b|}g!66+To=e$O43T2M;#>%eLh85$EBJs4bo1KHrZcGh9FOOHhR#%XkG|%KW zwA{$J*rRiKBb#$co%vqt1@k+_f1gyFQxE2Lipz6!-OzsV8M4VCDVoCZ#r0P_IDhXd zWFM4FoyeAPuTBE>BktwId3U~lEG=_a?x`lH=PcGMU9xLz(ek?|@<4E)h*9`PWkakn z;mf$=rVELlxrJOsCX`mWW!+C^9M_fAq#{YtV*>H69sB}rsclob)_Z&0?fJGXZc?c} zMxj?FrPfntz~eYIF|!}oi~SEk1u$y;X#zx;)oc9p!?}o6`DiwaqbkhC?OvVXje&W3 z5bYVN%|8#{0dh21=xXfUNLalSa>6>cobTUj?4}RjzOUbcR^&HQyp3UFfXHl=ELyyU zw6#8LI8FL9f~7sV&He!jzNB|9y$S%-t!*I^{VzxnpngMnKZ7TWpyR>A+1hle@YAw@ zj&!ElFSX)HgCV-v+;Qn3+uX&*nR!7yEQS*Wy00MqEK|)=nxh0+JXOAf6s$zkw@i@} zr5NXkxiM6M9(-Q5JZI|GuO^3oS`#YYEkTLZcCka++$1b?Q*)m(a0%;!v;D?U{8;Se zd8PNWWtv~Ce!f<2Ni@x$df@lzb6ZM)g}Hi(w135fZOs1aVF|4pJ;;9HU?SxaAtiae zFQX!?`5!f!0Y+sjs91=FI18)r|e-bsCQ^_p%%qi8J@y` z`AB9{6QdCo(pw96Ehj|LWR?!zjeiPX$|u29iTe~4FJb?5D1C8*Izt#r&i{R&!TWWr zT-@U{j~qp0z03YnDieHPj(5&7Ij(8Q3R8^;t%92)1;(Q2vaaHJ|ACus>ysD%0CY%K z>I$JQ2DbutG(XO@(W_;iFHu4*`}PDlHB^60U%NU|zIc&tkl{CSk}52SDJrzUQQOnUJ;7)l|OQved*SxaOPI8-q#t1F0WZV-4n- znyT?bh!mLdC2p1>a|~>Xe{Tgbxsl;F-2s7*0KDlsev|}%_>!Vjy9U8wua#kT4km4O z{=1g0DO9vUQ65;bErp54MIMWI@aDK{YXDH6ejje9X`MHk z`BSc&xw>j3>rb*wL8#H8WrqI%rrH{?;41U2iMcMfY_Fs$$zpH_J49X=QCAl~dZYAl zd1n8U0^MMO=^U|2qKPqNA->%lnrCxuSavwzz8-!RrrSwS=#5ORBSu8Nn%|oj-ioZy{6NwV3_Q(iF7k zD4)igY;IBh!sU<)*+TE+L*3Y#2_%}Z?|BWAAu;>Fn{FN4KP~;VDe2E-NG7z1r69mK@>}V^3`I82nA+MZ zsMM4TU@d7VTebw?lp%r|mK_DN6o(GZr?fIn^K|C}^_vj^I!C>Ob2iOe3Y2HW%FS}d zI?tMAceto6=vFr1S39FJgjNG0- zGPAYH`oi#R+drdZI=l#oR5spC7dn?z7E+&Ce&Q`I$$hk(_#QGmJiElK@q>dt?k{lm z4&yKSs0$#s9}F7rFEX_Hk*@mhNp?Kq#Ym?{QxyBZY&lo^TrHtZ9@8WY-e z(d(Hh0{5K7&n?t0Y*oKLz8KQMCKRh2m$;q?&bixe#>>?B+4E2U4csjv!(^pZj?_{o z)Y2Z;GQ=?DH|8NBrOg(dkv9nk2C2j>@Zp9 z`=^;7hmp1RecT0Sl=E=t^*)Vbm)vT^>+zXv&_4i$#p1=EvR-_2Zv*UEcex+A(H-lB zqX)%~0@G)^4Ce-iJG4ty$tsn}`i+OWD?^A?N^+~L^MgJO4|kfVh;?W6&k3Tq&>~x< zPSbVJ+;MkZ@Ef4Snx*C2%a3KdJAn*fmyP%{J_!33(fE?{3hm3cyIuayo=>iP@i_{0 zrb1YZiA`W;@tA zAR0e6#lC2HmUaCNLD-tDSH3-kH8-^CjgYQnjU}@uU_*+*R=J>EB2Ow_%TV9^uI`<& z*&VqbeFrwSMh7kO{wQXe0<3{te-tDcI-J>do)!a7z<`5vx)>7kfl+v z+DI6=Scw9RBIaGTff}wfyn#Sc8#3HfYYu#n9>t->(#n(k%sAdmjcJ z6)ufESuRe%VuSWj>#RW>aD_CsJ*?zpL~`DRbw_~|KZ-5(Ta4E}sFZq3GcbfE7wg-b zm_=_8-|xK_W>x0d-)QDA3X1~J?5TO>ZL!rxPh{B3B);;8B$=VtsgcmMi2$2ez$e$^ zJ$*++8c!~KuA>0RiArjoFSCxHrs#I~Ds7#=+*Xg^!pQDB&nl@0>bO7kN*Mu{;gG#O zdKc@t0LONKH(8)W)~W;`Eq~aae_2)tW>es>avO*Cc3)^J>63Zj2;LYk|gLi-lTHYIwCk9PvXQk74R_(?lS)C zBY;{k*WwlS3R(;CS~|C+ZoDy&bLnZZ38S~Iv@!u(TIS~aMUs5KX=o^Pq86yLEJ&z# z@hH6;jMqxjK6?43Ed%2!aCcZ7Ghqd82?>ktz$`-;R&kOu05e&rzl&S(BEm|loYGSP zu3zf!pepfN_K0sMV^xI?Xpm1fSJbn(W%%BVjGDrN;furb%)-G~yukr}i8t0+*WO~!eYm0KwYn&a!z5UTxp2C>t{$TClj_GWbGz!_Nufpa^Lfz8~^gZX-XUV}C)F-Ul zY7Z}~M5|8Q&RnRMC_NkOKMAl&Vib}TWuNMpCi-1cB8#WIGNN3?n~ylQ{WL5u_U9v* z^3Wvsk#)BAOM`t5pN9cuP17Sv6k|OPZmG1nc)#bk!KCq`b4Gp0dnQc<+%PW!W@O2h zX=*ZGr&iL)xo#L5A_3of)nj#-Fgwg=J^NQFDIh_X6X(-Inyp1LJz{m5Gl}FtfXC}& z_g69KY zx?_wKko-S;-rx8A>i%5kd7Z~`e9vg-l-S(V()C+WZ57rj4^APXwzm$Z;y>OxPSZEq z5ZY}J?oA5F>Q&YN@S`%%rmK_h`J=?I>*&|D`Iob7l#V=^h&P?;abV8RWXzQ>Br5yQ zd}^aMzj$b}I^JUy>%y%s{dKNh7We!Rtm8EF)3GUqqLpfO_x0x zU_I5SsJ6ZT*W6gop_Jbz#Mbw<<9S$RO9~;Z#M2tS-@JL!KcA9ZdX4hbMk{?-VD@DR z1cpB5nGMpG*FFs{9+0_XN}JfyHcO4Q8B_^B6DKMy=@Eat_DuZz#cyhXE1i38>Y*3)o+2#O9x z6a)IBp9~`o^uo@hL*(Z0Pw=aXCLlmKpZr3kCUf)lb|`wFb%LuQTb|MAMjMAWGkDGU zz4p71!b6;XM*NG!(=8TqKzuLWmBz)QPUt?0p2TPvIrek0>P}g|fgjPKYxJE*?pwZdvDe@Lw6W zv5zfPZHZdcQe6g7iabSR+SoL^WHt7vmqHL+xXH~+g1CW8V*|6Nl;hs>uPn8^Hnv(D zkp|D+%)V%3VDAm8*LCPc_Ednz`HwfS7-Y@;_oB*^$_2WNe&w*5ItK5g z_=lBhlP^AB*^ZIgo@WVb+qqv&v8j*X!6&<&_7=;&EK?r4A8k%(a=sVX%pULyTGSX^r2?!>yHYjRQnVOsjRuT<9_k0Gz5Aul+ks390Wr(1V~}`c z+bJ^c1Zne04^@|DHqu>FtphMXp+6MQZvwCLFUsl0(}MSaXdeVgeRA-fz2w0PdFULC zIgM3IYzm=&dC`za`>3+{XRG0z#a^#jwpVp!|A+nQe!uomDMJbg(b9>eykG!FPD#-_4Q2)Rcly*u37vTi7R!Nh1oJGVsR-NhAY7M3hr?c}gqI1R zJhXYR@XP!TnO{zUv}t1|l||41wiEjmom?EtX+k#3h-%xr@JkKiI(qvTBIu)oty;w7Zi7+{w9n?zJ%y*%x<>#$Vy{<QNe1`NsJc~$G>WnXY+B`^A!>xFa0+;V*xbgJG)K~PkT4^(C1V6`7hI_i3mF(K zKZkKo1etQ9%RWLiG7_3SFCZ99Kw5cuaK#bQ=UeK@^~Y+4yCJd^81#CJK`35KA9u&z zIwQat;Ua2%-61KaOoAz}S%z;Nne095L|hZ)cSlv?@)^D zwS*b?mL0RQd}`(RrH3Z%c*-D4B?lbPgxIa!gTuP`JMFELKe;1kD2fLp5S>-Ym${~^ zI$o20$)no;1E@v~pB{)loxOtpK4wkX4aoM;sQTr&nZ@!{nf?VkmTH-|bHS#;sU6|B z#9nU?mo9GnLsJ8;N`L<1cDC>c3QD1)<iBqyFr^yAPA3P795aPcatQIPE(mn92(Y&ehfdl9&o)S8l7m z3nx17PJ<_+HN$=6IsoyaKGz|Xj{~i)wv|lK?4_MV zkjs3eTtbM`i|fG>QOWELeUiYyaWA(aRC>4(zmxrf&p}1{`D|nSdolz#+NYUV&Q}Np zuoNkr{dp?JV==pnH-O05@Xw<^oSju&FH83`+TQSPR{t>k-BowcR}3&XRx3SkiHPwH z`3~33J4uP|zJ_Xs3@?(nK$r%r$Ci*pErr<4+dyOGpDzvGd%fal!5TX?Knu*o5?1r6 zY0$5eszVNV5le;bqUARVPLAHxqM*3Q_ijZ#w8WP_^p6U+ObLJ(3($vwy*>_P)tSXI zf1ZEi2nb?&UU$=O(i!VhksQl=8cBF)@_`h`X8j*`U8trlC%NP~ZF(tGr2oD4MHGuK zqTlwk2o!tM{+);!@lSN8-Y1~Um<*}Y$m54L zdULkPvQwuecuFpuymfl(Je~$y77Lun3hv5TjsQ5cr+tl9vOE))%yWpL7Bu}kDN(fFS{!pg01PDG zJ$n!0OVPa+?RCG*10zNI@d?d-6{p&pn?3|HRHaXa+O$I84E@?|?H-w{^&h^nX~CIy z^$?S7;^;M(1I2lFt~kPVhZ0~s%6F(OeEG^klL8%wtZFGE`q~r|kK|1y_BEfJ_K9Y2 z;XBK}pX7-qxNZCrj@ODil!gtINqL``Nl4HTQB6Ky@xtlF+Dl&99GAu`$&bgk{{_sB z`v|dIO(qCj`09T{hQ`ULixU<9aEc@81C3Jj75g&1J4)K}kfKtk9GODG8d;3>Ru$eO zi5TnX!sJMwEOrdFeP@fMmQdFo7ZRUO5E~Y9=}UD%6_hS@n!1^}h=prIxhBlf!*$#N zgi?<=`b|5;FH+Zkvq6Q#MKm=wB>7~RP?j0DX|hgz<15fz&}{gLPyUC4UGF}E&i?HI z$f-=$i2J*6wralWgp-o31;XiFw00>-mo(UL?k@)jP}U6)!GU z^tf_)5TgllCU@z|oJ5XFiGON(9pO@IqlUJ485}RyYfjykdu9%K5E?^66zs}0(EexU6IM0*(}fdPEmS>ey%AEKmGh%ce3@n*7mGQXM~Z1k zCpG;p6CWjAguvk=T*HO(PZk}C3&KrOG(pLGlKxy9e1-$TB%A5;Tx^D~wP{%QG%(DN z(1{Jx=dLY#N=%V^80K_Wku*6F0~scaw`a|Q$1te|P6ztx=01axGHH`tEb0LkMNX^4 zD7Xb0ReR|u>7n0>`6s=bCI3;S6L_2R#0=ZbBzZG3d73SH8nPV}G^(!o5?+iatVaXpIRBg+pVY;=V{>g!=mW(h zm#Eu}QF+6e#vXX9tfd;Ts2)w0@#bPS3Lv}qGX@z{e6oebGP6>9T~fX0{D1u%u5h%xs?&9(Lw5=up@RY~`(T7hSn>bG#?QA1@`k zsrMRkf4>z^Vk6VnCc84?EjSIDUv^wEe7d=5bJ^ypOqp2!_R~py&Xn9ptk;6Dh;AZ% z@P3z@p)d(E6T|uwNz-Qci7?KlOG}CCR?qmYALx3=^ZF)`Ql~615~$OiGlGSGv?t~- zT?*r9Bxn5P|I=Zj-rE#I0dkxx>bU&21AT2~-}uZwI@sM*_OCPCE1G$OaAXCzL8$h( zeZlSG7$wmo+1U4BXZ99L8W#8H9r1tRKPvS}6nHFBv@%uc)>3?=YxDIv@QmAROk+Jp;CZ?nP-h%)L}tpL~K=_Wr4q!zK&)b`?teGMa7(_)qA4D(K^X-uaYo$VV?iY@OURu=Z5LSMW&LOX0O@ndTOnhqncu)=eBD8HM!d+Mf4cee zU~%u^nF=EiJ2L-jOrK;xkYn!Djxm8YptH~=D!5y&ND zy)1v@Z2T#ADq}wTSecUDCwwAR<}x_IkcDXAJfBFjPuwWlW|t5T{*EB>c(wjXnG!g{ z>`w3l{1-dj#8nXx(&&4}vIG^yFgt7gB)CVYK9K`Vcll&LK58SOE! zp>myi%INoO8oKz(``^t#I#j)vx)`AS@qBw2&iH6PQY)G#U2hUGv8Nr%lWlu7C959E zIav+%w(pfzb{aWPq5k@8o+l$q*H4-T0QW&S1pCxbcKEPzK07sZlHGwO@a${ZxTZFQ zkEp^{11+R4$LK^kvOio@w6kF(_;NH0GJUv13_)SyMdMgAppK&SYM)$!fuUmRi?ik~ zh0)>cWNNT;fWkBar^z*fihmt`(Vps-<&~1LaoH%7|DbSk|3F1kQ1Vj#(LGPy&lAfg z4UX90TD5L3oG!Z^I%~+p;bhi!V?qJx>!wimA;9KPyoUsU50?UBGlp|CRrOIx@OEQ?7rxCZ^07@@n#(Jzp8Uqf)5C2(ZCh z@)9mVl=V+f3p?eag!DS4psbg)h?J%cFVP+A-RqF%fsj>lRelB8*G!e^x~|MLz6F>Li)OkcZz81?&VnV#F=JH&`@LYQfji`yIx9h?YfZE1a7?C6%@2CpZkw#r*!Fkg}^0E704_APJ;$Qctw!H06=Xj$;VaCmB7$l5GZ5$opG#V&oQ*B{Xk zLI|}*eXy|F@m^iuxz{#SEcR^o-G9hmBCw%x6$yy-0}72_Laqh|eJq@wlDEG)a!!^1 z^VhQSS#3}($=np|ijXAY22NGTIU7np?p$HU_kh2Y~CWCyzLb86E&Y8 z`kejduk+b1_(k&4ZlNtKRuA0MmTm6T^8UXHcY+oJ25)g;WyzN&ZC)6o6;rc{g}ztj zX7sp1c1Wq&wE(k|u$~FtysQQh<6o=vsy9mi@an5ui!VnP4=uj?RM=SN5GG%8J*WNN zz<9cAnQ!isQ57I2?cmIC`cWQI4jR>z3O1mg-25dMst!QakOCS6n z0OAPnhpT-YX+#IWqXr@$HwkmI^4iLda0{}N&cI^tg4W)-ysXYxALs)?61W` zBNisS3}y96*)ms5YYI%cTm?*QZKG%EjvfgoWP;vZRR5UN>rS``_)A=@YbdJ5Ah;wl z5hk3{MR%l%`tViwtYXqHVD_fojCVT`)LhyCq2G*SWNxFp@BRz~B(A0exSjfOV;mN~ z^zHCT;yO~)sMCJ8#Rbq}Vz#<%qc;C;NB;-`&2ib8T@Oo(6KxxZFtnizM<`%yQ4;#y z{cgZtyl1bR+ozqzBi~n~1(01SrMp>Y)}Q1wj;<@SIlteY2=Ay-osy@8dMxkx)ZOk& zd~j;NZ?`bEDS1x#H?n?|woKaBZE4I3UDW%~-9rg$|=EMoxWc`&50#y9X6_&u}2|HuZh9+_%o$rSC+$aPMJ{h0ExG*mVWS zNR?X8cw#TZS#_Y=)GB#(qW}&*kFsk|ba~Tfz7-|}PN9kJ59*(vnil#Ghi38~ENgVtFJ};+2P`0*f;XxM?_8fv^RiDfzm%?cF80w?_tSLEz*WqXi)MjDrTkTjkvSL-& zhUaziFInRrTfOxTt_=ZM^^e^j?>)vQh{VYL-7c0kuQ!$4w7@MDeA=LV{-N>j2-Qi$ zO$FUw(lEA!^BAio%}xBF!Qw8O{waU%2gmP^f)?F@C`!q71HTPZP9UqYlP6YVgpC^r zT;V=2xqW$Wvj>aJ4#81mUnS`ecruChbGeE{@vxA`6*rz{4FgX)ddY8kv&8yntf%Es zy$rb-`415XoE9pn3?uyETcdBQL-hqpaboUqqn+m*4bMytl8PhW-fod@R@FQuAO;=Z zibrk6`6SBb1psPUJ3j-X(wV8K+e8mu^9K!ICiQ-aEWzSmR_!C$FI2YbZ?t`4iWbCq z^5^3gUlP+T;b7g#sm>$4Vi!=*z!&{qddif~I@YR9kF;8Am=pd7utah=X!~`KGj`!UU7$YNr zN~IArFBgdM#^XO^?xxMlk=5c5rC)4*eDgRUUWn$bi8jF;)yc> z1J`bTNm&KVqw_c&34fIN>vqs`>+B8*|Ko%gk&6|Jn&SOK>O3Q{0ow>2=TGBkjc|8D zCd@l_=rJFYe^vn8dEH%X08O0FhEz(0GQ^d1N!cB0yod)>vcUMZc?f=9Rd;6LZufeP zZk9B>M*k2eH%Gi*ve0= z7Zbg``*LMe^N^n6zW;{pvHpU1ES#%QWs8q3evr#+#uItzYDtaU!9Jw)+M;NX`}nU7GLXD-pS#67|1&GxRGFZ>Ym zIf9*kCUnru;VdtyCo1P4p&uGfnN~vv`(DK8lRPaY%c&N$Ke2h1lFOSOwGyexl`KQ& zXv~wcl(kM!G}S|_Cqw+7XS)c7Pt+q@DuwQwV(0eZrh@S@?7rD!_v>(vzd8I5pw4FN zKR*f{okWB-*d%KrI_oy#p#;f=7SY~z?iE&(6ZuGe)wKTK515ig+RXknZ05eC;<+Pn z-m&ke^(mTnKYJ@LOw-F0QJw$7yXcwj&)X(kz%DG?>aO1scqN~govlHVjF0qG&2P`Y za8JB=qC+83X#)qGu;%TL*Wbc%XQNRb+8<_opwB6$RW7r3@#a9R|F*q&F6$)c< zkFerDJL>_6znQuJ>1*^E?Ss|`+mj`QeZRG8X{ky7=mF+XuUzC~S0##uS5ZrZwp}~W zH>fwS#R#XTaZ`^!!CG;ENY8x`~(%uBX3pn8NfghYpO}0Pbj6g9(?pcgd2QmwpvT zPQssosWIv!J|`yXZXtHTLl-&@P&TH>wf|^@6K!LukVKzu^LvFv87_p5?TaZ`r#}4r zv)W%FS#tWOHFOO`_N+z=Rcaw#I{dLnh?$Xdlp)#la$Z|WV%4fgr zfx=r~a=KTNg+Xm@(|J{nhB|)rZ;o$+6k#Af8>E}DZ zBGBZX%$&%)^wTBi<-~z$;hgA3a;xiKLbMx28*=?RPuK30-nWFeWF*`LGuj5Q9CvLW zq>&Uks~*z8fJ~-=vYtKu2ffBCUI-l}L-@TGQ{&@&s`FrORvq*QJ{uVcSDo597%KY6 z&-qN^kK@(&d%2ATa5F290X3{aO@FR`1Yq9s*<>0l4zk-g)vf!wpwg`E^{qavqgCEqnMoG24h=QD0KB}YsP}Wh+^yD7 zNQz|#Oa)*fy(u#6u3r~D{)E!}Elz~+V_}ppIpv;DrG1Nfi>%d$ifL4#KdcByx(Qoye^IXW}lb_qRFAD&Fk#`+;52w3zZSHH5 z+Vy#Y!4lo+!a*%Imw_`%Yb}A_ydN@izvYqFC($7N2L!fTOb1{*$~pKV4(P9^wWh>q zeGSm^)8K48%coYTZF9`J$P-*r zOr3(re(``Uo!NkoVAVCvc8c%&4w9CBg0V2tP3ug0$LnemfX~~4RO5fO6GgH78EoM7 zTJCyeOp5Hw1<9m=Gl}9SRW@GXZun?`&6_Xvu!K$N0R>)-4Fh7$ZCaO@p4Sl@_MNZZ zohejkSGGlS+B5}|0N%=XPSZbqG7-EV9j(g<5<3$=&&yl&|yAqr6uR>mbBlF4gPqgJ)H=<3VZ8y(97e@*n&)1NoB``@l)^KUDZD4gM7G z$4Kgm%)|GCWNQ_=LxuCH3cHxpXhSUdDl8-#64EOEIW0*=-Bb4bjX)&T5GMTHI7PAg z2_ZyPwZN>N$mOWD{y$uo+rM!2YlXJ%7-s7(;)xmyzhHst_2fP2gA#+(15g!q^hv(I zvYN{yzx+oC;x4{IllgD*E#-v_7KJF28F8Pfvj;BlXjLT8yvvw)(TEf%_|u z+)d%3vCpPzHqeopbeazh)fe+0oGm}lfLzqmxAQ_VM2rExB8~{UOfkjK2Wl%akgqhk9OEjna%5>;MzluEz zCum^*1>Uej3T3JH)yMvNe~T6IyrW~s@m@Qs7&+Ei{w!L;APJ5+I;+^l>ZNWXhxSl; zYf99X7B!g+3r(Z6p}NTSdIH*8(e_S+a5^YI0hsx)IBc!cK5Wx0I>Bh%jQ1{`3C7rY z%ZuLraFxgrL8AFgFW`ZWl20UBA?|LiS8#v}qQYc$DaK#8hU0Vhd9|zQQ7dK8$=onz zpUT*O^)7XMN0Ht2@o%p5@$R~^b)|sj2jX&}brH$Z7cV;x7<&Nzi0l)!JK#h{kx`;q zn`58g9I+sc2rie>yLmZ6z&pauTkdOT19t0-k^|Q@w1H|KA@}l@|D?=FcSoMI$c|X&hf#S60R zMGr^Ws{2IJiiOskd=GXg1&ygim_Q~YVuKLBolmAi@#JWVQ|a|^I3PuTDs5@n_F8^8 zAK&Xo^NlEsKdp@OG{k-z4nr&_E83r?yALKA+%~}uZhEZI`RfGe|5P%qZPM$TZK@5g z3g0nxN+hn$)Ilk5>UvBNt}t|0>)E(oDv`Iwm;BM<7w>jNKB<+4R}1UU1W{ww7NaN5 zbG;KTPn7Q4m-Uoy`fOiBhqx94TLfot&wQ{sqyhRw6@xz){M~CtXG6gpoiJQeloB|8 z?ObMKq02K~R1Rn=NEBRQHi-Z@b>dOJl3PZW z`DdRz0mNs?LUe++8lD>e9uk#ug?Xo!^qY*8sPdlL+e_1soE>6oA*R_c@&|{zx{W4h z4}zMKtj0g>nqV%fN}&y70mmSi_w$^Jg7oVi_h>*aC2Q5}<-2zwk=4bRjlBwmy&ub> z*{}XcOP8-TMuxVbO{+A^cz?$M~ke`P`3DTvR3jKG&*KMhC;-N zLIS4*O*13|UgChI(+|U)Kk!}!Oh1%hy`^^79J84@~(lR9u9LuKO4%%x5~S3;cLzMw3_VTNAxG4`wX?2cY+=bZ{PA z4$G&+t9SV{M?dCz-u8etJoG4Br&+Dr&g2SZuXFsTV-at35-O{mm(bw8@S|q&j#HWO zDyoCdU+n&GC6;N^_9spOsxHyW*Zv6HXaY7!#AUVi{p!DC+P`);jhznF?#hoLGqMR$ zR>O^PvCx6_dr0-}eD$TMlj^`8rT^H?>y#@DCAr-HyfsW15~(@(xJ!^G@o_!%BuTzK zvKR8zWGtE?ByD6tj>!eLH6l50xmtgr!&6rOCUMem%*{!p9SH~YM z*`Gh7^g}Oy7w$YWK-rybr>THbHIT%P#JnE6%t|<9Zu-H>G%XO<)>c(pUM-ios za~vmCRI0?vbZ71)-wAsK93WqQNvhnEc)H;*7fhR5>8wp=K_t(kz`IGSsFP`YPrpIe zdLmTRZw)>DZhW>Jk|p=kkKoB`z}muDqi^FC68nqn{ISqXrk?YB7lAGN*mc)I87^a6 zo5nhn)Z<3Sjn}WY!$MN~|0x-^{Q8yY$^nFR6E}o0ug1(d|79*|j|W{#^W?VqRm@nj zppF}|w$xG9zZaO3ORJ%XbR9KR61V+{ErW~fjF5MAbylcAtgt$as%x{ExM@@iaDsQx zgi*m_P-`Dw_bcx97^c0JOx9!zZwv6w`!dtbe zVy23V2J9#@`MV8xbM{@hkwTl}pF1?DckzXMY_y7+fxbxXtcN+rKdA1UF`6UnElEu! z(*m?7{`Te+hi#@_=jS>)P|{((#dV%gBi={fdP6_#RS>h#vAzW!3w+9Dj>xdZ!IzDqeBlV7J zh7mR{IP6(IL;sA|QNt)@e$|v7=tDVzA)tVM^c1M~EksXgk>T(?4_$y{X8VZZ^! zr4Klhz|W-WNk=RuTK%Dw76L7ADsU%c#3|8$@Q!A|Vu!L3Prnh4gZZCqKbo&I5iqRS zBmN0VRVk;@THD~kvveu(d<0-nH|DzBjrZQ-Gpp9^ z2$*WNl`Zu9p()7N{-@~!nYG#APwb!i*F78QiA8QurbDCFCd?NHkD%F(Ljp%ik9J`X zK9z=N4$k9Yj?iQ>Gly1H-k*;eYRpDxRt!P!i>lT0dun`fpOP>*I!`G#g-Ee^N@YrS zzsWwuDL?T`>A)-QI-mFPfK8Dsr zzZg9$6u8S3>G~*&IW0{7Zd9u|3Y2u=V(e^}Fv#0;j^O@QUiF}&R#J4uZE6wPC7T}M zZ7n14qA2b=W4}b}lfk1-uzVU|CALhQ$nx%dm^J}o`ob!mQ@SdL3bXdgg{zfkAVyBj zy)h6}d=a(YJY}=6Q1)lcUqa7tqFT^9V=;7n@x9=TvkeWAwr(!BM2l zIi58T#3E&7r!y!;ir)o2o0dL1PRx~9hVhPfw7C^JlqY;sm~W-^b&1TPjd0O#4ZKcr|TC@WB~q(Kg;$r2i0Z;CuJI!Uu1Zl6%Itgsl|e*IQMlJun(v z+zcNDSEmiDZECf`d#Zw^*gLb~x8<&9fmsCDm%l0dA>X6GN$qzgHtt(BdTR^|LA5n2 zydntBnyU)H8?$_x>ch0Eo^o?=+$j54bO|B8DF5?Ek!-`}<&OmG?B>JpKu7!NXsT7+cwKf$Py0{1S2nBk+XECs$6N81(8z z`s6&OBtbPp`m#9>TmxH^P6m-zrYy7a_F!6AtK>!Nh4Hgv#MRtsb7?QW-x5{ESQBu> z?_!4+>rFu5ygdKb)N|6(#u-7o7V?Pq)CXgv)4w9OPC||$3MB7>c--*4hrI=L$41~z zT1Ci%jp=VUb}x$2OP56i@9lc0fGZ@Et3&+ok)K^jBQPntrzJPw>SMX-UYvNlUH5QT znfbBNA}-VkE*X~t)O&+hX8lgLB?d57`9=)wDV=3;;QJAGmwWy~oN|xq9-k!X@5xRDSageYJ&{j7 zO%^2qfEte@5DiUid8i`e-qV%>@e!@wUYL`TpzUd@ALVZD_tpIFtASR>&^OJ$4*#G0R&;iThUt;*41YP?w-0)pewbX)E2Gs6nyt4bVv{3WywEX z{r6T&!ereR_#4(lnta+-+TG0Ylsb85zUvji=Ph>>JOq*5PiqM=jb92hHsG4ropkxL zGynNPRSmPFcA+}$l;KnNha~;@GlT%godQ%RZX>i=IC$sYT?)(NND~JTNWMA%IPfDL zX#Mi^$G*r?({+rDcvfWYykp$mNs=-0*24RZiOoXXVz48ziB)jgkfYV27rW3ap!b`f z(;V?jd+XNjO`6h+ASQugPL>)~_|UOMM0|~?SszcjJKKXRLNX;S&c^n6Jhkkc9qQfmV7Da(mB9OGsElrN7fy^e#TkL1o|4jSJf)hk}w*%HoAkDsCZH`|oj#Sou zLR^W)Yh2`0T#a_i{i2@htj!tk4{DoN$C1^O$nvb%bfb zz_Ywngge)DnA#J;(q_Y7@kTSW?jPX(@@qC?YW{!^GtWaS z7yNAW>(S_8;eIuIVOn)Nqjj78TTykc%H*ZLL?cW8NNi`|KG4Xe-_hH|@cFEsI!F3M zY!wBX!SL4U*S9l;*Q08V_@I`wZ;>YK*+3{GnDq&BZ6V;Zp4XLy}%PCKJ zAH@=e(*}g0ddUoMI=81#MD$3iOzti>HDXPN{#r@jWdHE_Su*iVp4N_+4B|$e9b5Db zhE)W1Zj4uyq_EX8n=8(D(i~Fs06YXBt|VK}GX%yMOy&j_hvYWjSlh=dk5jiQ zh2y|6m8z>|K(yoC_!gDetfAvY17VJ77C4j^?GpFX{U1F2{ZF)y^6z3mP%=^W7|Fcm z>dgKH|GSFZxDm6oP8rxu8i1E@0h?xhzB>MFo>TMsVAUVoBv|ZP+Fhdk1EdT5nolLv zlSif0z%6QeX|SNaK;35P8*Im&C#Ehn@Qmv}=)AmvN9k)ji!5#y9mX#B=3%RX&6)r+ z$zt{QpgP!QJCbNyF{Jvn= zA@oXMP)5^bt--kR(>~e0ew>kN;HJwhZ=y5YGISuH;@Ig4Zx8{2fiSpjP=ArN#XeYB zd8`}dHNi_n=ny8*dUtht=?!nqPD?)PR0K6nCTrmEKxbFr$CSqhlIw1Lo`$;@hURJ| z>pr_w%6%%z^e!%sIZf}5T${uGO1#^nf9D}}Itu<-Psd-$L>p5eeki;1_fse@;7YaE zimEEel#qd{tKoae>}d(DfiTU4Ie4GgwogvEEd1)=n|1Lv3zo%7HYLF>ZpZva?ENBp z*UcR5QAs+@w>R0B;S*u<+seo9WY6kpt)GUvH%CvTsh`puP>gb7s{Hy^I+v3?OGeJk zzTUwK!=Nb^A*WsG0?_jAz9H!)<7d}fVY1GpStnI7$c-m{BPK~3Q$E8#>q%ClK{_P` ztc!L1S#}`l#oSaM8T-17)z01y2O1*hEHi&i3K0-tF5rktUcR`qYrO-XkQkZXgk5Jy zC)HJjMwUb$sAt-m(xwKKvpNFW+cX4JyP$leA=LS$^yvOXFghbJcUmB=!0S}2cD{S) zB2@#YDKRxxlwzeqwh;Cu`w5LtXydb}cOELM! zuPrTiMp%DT4Ch-Hu4WxqHJzCqQtpiTx1>QBNO`tg|AdJJX?xlPu2Bpz7Pv~jePDY> zSH;S#=}PG&s=gI+pqfgSPdnom-u19LE3jYda%70=3x++mNSnFQ+16-FoBnFSmf8t` z+UhHdOI%RfQ#>CmsDj|3vO`33&&uS5Tv>~ICN4W=vLAusN;16!xlh^gkG+R{^2sqv zyzz5EEnhd1S9O(HDb-2y9M+(bO?FUI+Geq!?rS4d4v9;K=6}P{qB_7y387kA?XoT* z{ly*t3@SUhD=XS6jQmqgd{3;S5^PyXxs--x^Z0#U(h--S3dEn$PEUTUa>`*$FlQRT z{K@n6Y6hoA6iTc2k%q}aM(J zj$JwF%tz1sDH+#;(uk@vcCBNInv!*N7909to4KSRX8@CH9aPnLeq3hJb@%y*YNa}B zFV3V8@;%-pl+ppm{-1y|PyCX$8&|)@Y$Y5W>$Q0AzW3!u;ytyO_m(1T8#F%HB}?=z z9U6yBpbLH^mB^{QXFnYaoN~9&S(Cfpj51k^%Xpe%+Wadnt?zv#M%w6)4>LSWTwD`G z3I)|C3G^{Xf&UycPP&|J+Amn#3;U&NhDOutP;Hsmn7dF$Z{T74-fb2|(OatAA=ZTT zXRn8PlC=pKe}}g0We1}#&(0BxpdOTiS*V~!p-PgVqG2!}$GpYlkGuho;{ir&O~N)9 zp7+)HuePHt93sL)40Q|MAeeCcOu1RaUj*FK9kwx9;3l``0Vn|J`jl#}$u7Z(F z#aYAk{$m3J_k*z`GdJ`U^Oa^juJ@~c;nFF%UlM0ex*V{{aJHd9S$RSebrOeEdTY#I z7i(R{vq{K`p-@G(Ozv16cX?Na!JmxFXB7ff;Jpv366Z6qcn10HrLdPvdp~KcxBwQ6@59xu+d^+%c?XXO*svlJ zjO|*3$@r8tCkuVgBz?fPtOYpD$`iy0Eh&Y#n_gf`{!*|nvhHoii-V31zm}kk{b@r! z^tFd})_TGLhWq~m1j1jt5%9;%Tlzf_vW5A?-ppk`!bk~Kq0|>aqfZ2<_!zmX18_LF z`wrM6q@Ya{zwfzbv?Bp~uW~;KL|(QjlyAVq0Y)|{{-rM4G$L48eWJJGEkvE!lj$!) zsT_%VzE>;7v`G@ycd|l_-fG~ZvP7=8Dd2xJTG!~W7eG~Xh!-2sXSWMbv^YQj8LnrK zvUe4U--9by7kWnxy$Hj4$QoEf#EriQZpQf;;K1xQ(bI8VYQ@de0RVxbWRp2g;C3aj zI1;EY|GT4V#0RqQ@{`sh4|;@h%Hn-?{zZbxaIc2;pGuICElACVBfGaNOffZmrAM`MnBwY2A3DEt>GY??+#(91*!%geGXv?M0Fle=EjYY3~J(Wd&^ zxhhou+c3@Y)t3dGZAP8{fe()~8DlHJj_#1OH>3;0b9{JZmhD6S$8)KfW~@|{PGAbT zU4)(8DU&3lx03Jd6gD@9b;{CVn3hc5yNY>-Y0yeh;kV~tJW)PX^`TMtyU7yxThR~S zp9cm`TaknN2#%3HaSv6$5R+R6qg1^GUf zAg}}ar24NzE}BZZRw;lJ)dH|tF3)O^rn-PKDH^ftXg|jfZ13){o=FXu&eA|nOURk# zfMo{5>z8q+%{*9nfdWkmP0FKhx&XP)cQk*GaeHixjTA0F4kRwM$`@V|S7$778LGPt zHx#({ciiCURmNdnQrEzW0U7u^IEOc}zUW?jCg|BN(J z@JVGro=vhgfSmCW2Cq_Nn(mBf3^(|f2-Xv5i#Z^uhD)*$G`gQ4=WyuT4I9_~2 zi3cjx&vl*muV;q4=T`n3BSz&>FGwcPwnd{FhX1>+PdWs8kI|Aq<(=e^zYUi6=A37=g`)8{+SUSnvul|M4WNEzzXY^XldE?4Ia-@=YAK3@W5c9l z;&>mQ=s1sfx(N5{E@0wQs?4B2VYAlo$DNVu(F?VaTMGV&Ge_%LKhuuQiiEH75`t-5 zP&vQ!a*zQ5!yMDXC~&4JRMJZEXf*FtdKrS9irLR)qc!5D@fo9?)9}o~X#OQUa%DV` z$Z|PC=*z)#%=5;&SW&{hsgtBmB4s*xg91pq*aUZDyutZrcjlD1qH~GOfcQ+wR5=xS zdl{qH?dP{W0i{vMEC=6&QBVSjPYtLq2pCG^cW>EfoQoTh<`_CvU$eyaWsL0mI7ot3 z)oU&ELw^07#GtUiL_B6{md4+f;s};8^-NNrz>O=q;fP=?D^k%%0G1Z`PLKr(ZZ zocs@f{adn4lk=dM&}Z||7%IA-Or)*^O%VmYMVfuf^JP|3xu}dQ8^+jy6iR()8z#kf z?gm`;)fe@LLt9_LL^5zm`gi|8zSAmqp;VD2qgVfGNQ0Ch*=3<@K%cOpkrz; zU(Ew#GJ^d#I>?Rr#enkiTr7mnspVohqvkrCQ*GMaMR#=AWxc zFi$6ryL!nyDV9`WPw0WwuKwI@x^9Z1DWd~>K>oj&)!DPQSJv@r*M{f}&Qa2^m;anF zcY1WF|D))v;+p>dHatW@r9|meK|~s)Tal8k5hFyJvC*B1fV6;wG}18;*vJ7tKp5Q& z*cctsB_;8HzRv+?J7TYW>V4nW)veB%R;8}W?p0oy;@7PY%9)KcIQ08JGPwZwC4L>Tyk9sFT;AxhAyiNSxAf z$iI;j`ZCQIl9Z~;%W9|P}gYuAPmqvOHvy7o*?~i7X>?SN0 zyS_V?F6Su@ZhAUK5?|RZj29JwTUnl3;x@Kd{we-K`_yJzN0~idQBAqA2|36XGll7| z9E;D7M_7hE1bH>mRZ2drxt(bfKSZol6lp!I@m$DaD`fr6^+Fl^XGm3a%cce0Fq_b7 zc(kKP<62eXcUC&oG19ESJB z0L{a42mQS1R*mzY2`yre=55}RTDzmCC&_jw%mSF@hBxL2oX8blUcB}K-KRR_iJvz% zUXIsa{4MRGO~c*G?qD$mI(V!u`V?a?+atNxSutuq^IZ5Pv+7V&kHwKd3r=fI-IYvZ z>=C#~`r|^qXtGEeDB?Vy@+Fv52m8L4(bo+PF3$V93b}ZOwj*QO^bvwO{7$RQSaq}p z3s*BIX8!VKeE}DZ7T`?WFbH!bcF>=({-p`&nqm96rdGNi;~MGE6o0N2TWPO9ILZUP z(`}fd7(V29{RdALxe3B9L{~94BrHg->OGZt=ymOQ2Z|8bw$Kvf-*B|C%2c-L<$>|4 zB7BFZyVRS3V0qnZJpdUm^^%Nl>yO>i2~e!5hkD{yalU~shwBsCtL z#%yP>qn+5(3{vYcC%WxQDj;CEl2{{VWMF(PQNK& zQ+Ja;yxsHH`VE81V4m9fjm+pv8Q|JtRgX|3h%!V~L#wf`9y>w4xvC~6l&W;fHt-KM zlL==e=x5j+5640ly##L1FfCK{ zi+_`G73{77ARl*?#Vj$FK1?2U^%lkd-;{uBmh+yGoT{}VMLK}i)~fA2s&@bHZ)K&| zvdSiGb~E>sE-hVC;O-Fq`y;6e{!)u4x4?D(paOKZL+~^_toedFRylze@l;f!xmlfW zbNpY%1ih4THrB&qyqew`J7

xo=CaSEX!ow`Qz!aPX?HbdX#4rO7}{79?#WV*Rbp z%CETr3SEa_@e3>Ch~>!#|C~`t-@_znKWgmsZ?^AB{18kWq(;Y68uiF@wZ21 zb#Tdpq&;0fTffk^&3M-N8G6m%)b;C{nV|ILTcF8+H=ao`KVWn3qMicRLvSGG3XLs141}1%or+o|d88i7jNNnex`He+@lQ!4 z5&WHM!!G^Vz7Id?HABtB!TGCUI1M9Mj4)=?@LF(b&a1pyAXnL>nwa72)cmY0h+3e= z*|jjqSES(nkQB=p$$13Y!o6nuJZbO{nK(W~c7SJzeBC{i1mwGhVV=c$~hc;#J#dw%@G?E!lN zRq^{<#&Dzh6GIIAD86-S9kS2>EO?e5ObYGodR2KA%?eAMVvFdU*tF`zHQxm_18x+b z|AD%XO$0N#M-mI%O>6mJtqfA~s71M5Urs*voZ91o?nacSJoh+P+q53Sn!2XkoP8kd zwY6XO-iLbFHmS20-u{0e!wu@OxT$nAt)7&7Nk+Ci&8h>_Mj4g+cFX{A5|sIXPSW2> z_TQ8-`EKq9ScG3E>#L9Lvz>;Q&cWc=tcIZa+EGm#1jsF5Bi#RGbcsFeY{o)6z}-Ze zs}?w5gnqS;{*g(4Nq>_U@VD|8xyeJ!e9SW1yWkFElF@9n_QDiV{c;X$1uabAZi)MR z)GWtqqn(C_n->iPluNkZ6hf&71sLoUzui8p9Pac|=7O&P?O zkH<(t!dE4W8y)A~4g$oD9^(^_mg%-3Xp2nB2_`ojTg(0?LB`iEKK#{EOy;0jmWJKQ zk4%M@(x!Zh^P?{>b(0C<5H(3k9kWTl>gtuxMp+vVwPl*B?eUt4;H1DA zk~&Ak!=7dfHC40D<)VC(N?ao1DKX6m@d6L9$RO2Ic4ybf{Zj@3(;ALNc#(sTAMkPzFsavM0%qruU-Qi;=T~?i^{yEjeZT<; z{(X%>sI&d>u7bw$>}M`kwEQ!a7Z~3|Yk*MEMNxxNgOn6jha0K%3}nt=`F1zs`EAf@bG0aw&6wdlCFK_NB2;|!&sC2E<{iUH z)tqaynL3f19L1d*ZsPnYwBjxO7@g!Ay^J59LO3pG>3^Wd60xu%NdEYTo1-o5DT-F7 zD(pI(adaLtcrocE_?Ow<#M+QBxOt%kf=M;Tj5x@^pMMhZ@2vKbEIcx_^vSd#c@hcU zq(wLd-qb!(Uc_({Smu=Z+^F`wyxsP&@RHdJo%ML%U#jwF=>1W)#rF0rjW>%E723E-TC@Z2d7Veba#8}O#J{goq#3i%ho zOP_(?i-*jAGTmUjA^>v$jS{S$$j1d=4$R>P_J|jc~PIJwb1b6 z&x5;p0Skxe5l_1Q1wqLW-9%RtR0dn7w*p5NrzLruX}TF^O32*i{0Cx*k4-LKtw8!_ z_B`|Ld8FB*POEY_y8mUMrsy_Qpn+kdWbl5_F^~1q#kKO!xBpUZPaFCWc|U?HOX@Sl zKK-;mF8FHmvYa8GQW|4`p13A^IcvI>DZUdv#+!Xix0HwW`RP)0XKs?*1)mdaNZZ@cZYX&lrh7VNriulBuQGJ}*z8YTT2wYiQYb zj05FIR~g?0;tS`h5iYGdl{(5M7F|+d&f>z$=yQfD1oZr9H{KYCmD`=Avo5T%?F5BB zkh;@MP}RJWw3i(Cr%RfCkQe*Jc+ls)R+8NF|YjF75B zWQ+vM+Ddb)#wN1q#HhBf?-b~pY|j92+JsVy^{Tzr&z)JHz(v!$`BPfuMpuU6kr>d7 zgi}Q#^=$WBLdNK<6yY`6wpgK(r&Nm_gC>bQ~RSiB-Z(!#qy<1~ozEJ3`kUQMC zpErUO!^gkf$B8y1<18}yjF+x-N!dMJ&g%GnrN_6u?nE%V(!Im(P)x~$ zk{>Np<;c#@i;4&+!rN0*y-R2_{npHT0lt;ko;Nd$HmFr@eeJSa=br=2e zx_ro{&7F>3t4M^u^R-!hPz5QWI;JbMVTbGmdcoE_k1sb{_uih2Mg5HT1OAT$@~>|1 za(48UkJpc<>Z_#zxHYt@`)n{Wd2}$7J>yZxsS5;pR__ETa8X5)vH*N*##lmHE^g=r zpUj^IGOj%!2NdqZAjb$|O^i^p(gdnRbfbn^xmbUtn3<&X!N2hSVD>*yr_#QkH*HJ5b{ z`8^P1{L~3Wc+Pm&t#?=6`+429R`ueR4og6QdefQa;u_VLPm0w!lH_Sz}a zx%(^<9bcr-Jt|5>msdQv?D$`#Nok5NC>yH~?LGYFT7!kBOKyPjk((C0bGf%;&J)UK zZD_k%RwekvFZKGhtjB$<{k)=wh~XHi1|5oZI!^q&2e$S!EM!XzVtF{+b~7&`F;wfp zs_ns>K9hFxyWx=qiIcgwn%)Sn8RmDgpG@}=a_>#rnQuZR8{`Hj9I&ItyB^&~6H(FE{BL|w_75W5E z9ZjhwmIGTJd{9-*ks!Ht5>3JE8NOpd_05uy7Wio$b0RP~NcFykE2fcr!tCdN1L#ns z%oypHi`7nJdCDnG{d^gK2WkrVDX;H%WGqtLJ`@-IIi&|xSafs-R zsLV1gbetvW+y!z*F^g_DuV@~JXB!@ObszXJl-2ftB*+zF6(WdzLL+nD`8@89bS9|Q^=`VbV3zB{$o0hHHx)Rs$fVbb zB%Wd5tipLq8ByPd3;NZRftk}+qK+}e=yqu)Q1{`5Eh-cRw>#f4+bJv4Ljj=jw6tUD zyO0D<*JU=;a~<#6P~QaU09}&NXw<>(6Q(&+%!4GQec~ju7T35H^n`6wYkh*$PnJIV zlmkA&{`PUUxh*S)$`^to&yzKMud%v;nDb6RUQK2cVE$&`8@D`3jTe%95$g%wq=Ih6K9ALULRC z0?1r7Tzs4IS;Qv{17nGLphOgMQ^TLmad!P-+)5Zf#rvM;RwzKlu}kY$vbZh&FEvHw zX{xUqgr%|V<93MfuL)#N=CR=4Vi}*@qN%*YI)0efA9!)&e<=@%4isr2U1M7<_ok$w z>YJKhKC1|YpcFnM5gIDvYN^+QahnJ5m7lE_sZg6haw=!j8q)p4kfl;TPxBV^(Tm^D zbzTYADgjMnRm|fB!bO&r2+Rn)O3K=d5Tt@^0jDZ=8i}}>6x*aE6!h&?_ldH|pg$A3 zLOs@3A=UGrU|5RA(cORFnsgRyGe%v;NR96D`nSS5O>J0`XNQfNGYXO4hH|sLhCf_j zZ&~33E2FB}Hx0rq%9hN3xDS0&-JMFRB$ALGQcJDA`4mz=(8F6_Tvu7+-^h-qitxp5 zc+Ki?RavA3*R~WGZFjeM$iJ98pzm>8Fctj4#7$1LrO0e7Y_4qtp+<)1PUlomJwvxM zez(mmuYtA{UL-F(uKGn8PP3<8sK%J9IHV&#MbvkZGU&KrZxQi{#jBc1q33v6hjz{n z=M|;n!j5*6tBfU!7(G1ZCRS3JE}9U;svUa-5Mx_!croCU7Cv`@`Qw7V39)E_Itqv%tg@dztdSa()e~8i{@8&0wdZ)kHHbdL8r_U-ged zzsrGFo9=}g?TKbS&`R$oT@pdvZ6LMEoC$H7{?Yd(UOk3MMIHl-BSn*f>r*I+_+@z| zFNQ5+v0&|yk-Lp{$2U3%kjMEM#AUW)p!T|Zp`M>Jvv;{9;?~@YcGhaksa%l*OlS)+ zNJt%4T5d+Z@v7g2mF|ZpD}&6&#PIxPE0XKX_8$zh51}428uc;1Rhk^n9avAyrTs!A z*C1aZUhdhcr2Eq~6c^?E2R>?yQ@N!m;LzAm@1EbAXV;iuCmYn?^vSrY7}Atxzev;S z;S)z>2)ApRLiz;D>sRM_IUr2N7XHkJmIl>%ebC|Kz5^39k6bxcjAj~rIr(|0j6Xst2(Gr_E^lFayBGeA|5!o5lp zdp_Qe^6L~s*Fgpo3BLfc`NQsxBUF1z#U<2AKH`$dH8AK(8&(r@PIphpC{#k}`$&{Xq!-Kv_!K|{%@1tnA#2`!G zqDZ9F^DurV9|hdmFT&d{hORZ998~%WLR~j zZ&l;E^&6WfY3A{HLV^qbKO~=9=Mo7IuY>E5?{IspP;W6@;C|;ZTYd*;q&TbtwG-FI6R2N!dF;CTnkZ%^P6*XpW z*1V1@EY`c??=8tSOuoON)TWoHx24n6)bv@fJ~ct2*`$ODS98TSS zkeV*VmP*W}h$$7D3Q`%Ld_Qe9U=b}$k%;h2F}r*o#;Y3u_`F}c->xeZ(@cc8D^eCR z{QOM0@E!Cq;k$$AlNit|gM)|KQ@{$=y8J1_7Go^QHr-|`KyK}M-txrMk_lykT>sX9 z9i^?O&91I&QN9FtQW<=i^i+e5N-0U1!9C~{jg9^Wq41}~*q@J(`gBgr19~apQ`68& z-f~ykRlYto$-gv25RK`Vd6urH5pVV-5l1Y~t+IlWfkzIILGogs)_6s|1Ov@xredq9 zB3$IR*Wdhy>BerjQO;-R!O!yMXB7$#O$x_z9S0T9#A`Yj&fLa^to;;ia z_})^~9ux5Wl%?=`fA#LNK^CK7LDNapSMV@m|6{Ve@dMK{OAaS;H>3!puT6MlI}v=u zN=Ti1gtIHyz5x;v5(!;59l_+oFPfHicMQGQ8R~YlU}sYID($HHRCpQ?o)s1t2mZoK zc7d%oG?6T+1|^-v6su+ewwf zOi4!m$y8cq>)%=43$#QMJmR9)zjAApYWE_fx3+31+ZC7`d$ri-tw^O=C}&EI<$ZVS zNY#~)7W^sz9?o^_X|*=7A*C($c6ap~k7xwqic%f{_P_qR5(8DJ6dlS9d%mzx`ZkdH z5k*66;WoJOiQMlL)!!c|NwE$5C=Gv?pdAe#(+r2ego{0se~D2pr;Q2FE&0LqY#7JE zEr8h{zR99bx!2N9BCldI4DwiD!=8RQx;MR1%oht~xP9tI+5jz{@E%lP#&FE_8TYve zDfA?q=B(94hy5F9VX_9~?YC4{g+gHkgi!-jq9qxNJ=xgq zmW=`Vq`&CR1K_%D?Jk9t4x(4X;#$JwM}ysz)H+f-dL^Z2)FN*y-5U!kqB$o8apYOz z$4UWXMBe3Eww)zL{+xeIysC1*`$o}OF2Npt3jd~v zM*NO1;XmV5q&~XI7>jefaPF-vYbXdBny<*cr^FokuZ(Ey`jcl&EsR;cYl(cL&;&R{ z?-;yml@@=!r%3+XE3wO%*K5_Ny@`c9a*7(wk1*7m-Q!$%?>UV(+KnI3B7FbA*Fd8ZhH6L{3NzfwNF zbX!{rzv0Qvaxd-QxQRfo+eEwL!UQ0uw%@9PP?{v8?>B4?3EkVtS{!NQY9sroDQ9}0 z26!xIuA1EyVxeMjJ5Aa<{W?gw{UgYnjhi^VWgM@J${PfKYdl=3Tdu#-YE_tCIykpo!xAw z5%gabkR0O1&f}MP9*R(7)tF7~+AL50Nx?y8N^YVcUeDk_;%+~y;jf3GZIA;w6cW1m z3KGErV+}!l`l(YsC>!esu#`SCu)um;-VHLGuqo%^0hmZ-$*h*!M87M?z+$RNnw^&k zZrF}@9NqqX-2J(5l7*3uwzN?e#oHBb(~s`YbDLSY?;r?MK9w7N0~xoEh3=V7-0S!X zjDcqEg(wOv@;f-=f^*Tgnlni~?yadix`Zt()afRRb)`qT+|I?uKc9k~&I#)y4m~S@ zeASIFHfNz$FR_#_cBz95w7);q>i%SE<{BZuFKUW7h)Mevav*oJt@Gf*19nI7FQRtu zPeBJ(mjuu2Tzh}_T@o@hFjvdYZ}j(hE^XujBLnOF-+s2P|;w-fk&-JaU;!{HcGuxC>Dbii+ug3@Ob%sqbSuSMY9gW+p2~XjTSq`fE~B6+2v1s-@^n z?}gUmJ$l``_ooroH3Fi&iGF^|lHULipHR6eOc+1){w4w)yZ#QUoY2vk(c6B*6Q)`-skiXsEmzBmsB^)mEVNcSdr zmu>4}9@jw%`r$~T09L`>hqfm_^2&%ay`HZ?!O6sG603w5O((9#>y^;Vi zOD&n>gwBQBAb#_#B%x9?jx+Ja1U*psbpwY8q3bV$h6hw0qP*DHkKnnL?E7g8%k5XT z*<&P#n&_g5&lo4DyQs^5tT#|qqxRZ1q}qNp6QO_bd9Gqb!>z^XHqy7MGCP7{qiToA z)}Y>;j~X@9!9B`3MiLoi=UNEi#QJ@h|BNX+NA%Tv#4cyx5G|UO{qm@8M_g5lO2PW# z@Z+v-*VG%_AD4**-17Z5OoRPE@r3vz??&dm&&x@+>;kF*2};4NGyjHE*%|FuX=BeA zb~l}Hn?qW2Zy}$I*+;O*xhH$j=e4USkh8NdU7Z*n|fC0&Z365ah$TP{qMhgl10Cm5peuI>Ry63gCY39WUpZR z$wky&9^Ayn8&_ecAoS13>o6o;?i_EVHIp$nvQJcz{?8ESeVsmIAThVf-l7bT0yLoI z0G=b~XBy!#fkYN-l`$h+Ht4YQKz>TX+`>X$WxeXHI7j+zv%kheMumQzH9?tZn^vp;+S9E#m@d8a~=Rs->$Beow@GHtZdR#_@HU;Ymi zHzUJwQ{Kq(xikfskq5#Ok!J@x+G@21vEHe~d|6RS3Da_@c7;@sO0(@MN>(B@%qZAd zHR|Ik!?4)$P>ko8?p+ZXp{t*n56kd3+nHVr!=m>xf(8?~iQAl=63NB!F;5lDj-TGl*juZ z3I+rRdE3$+F-x(F^B_(_yA160SG0c0(jh{x9rn^*bH2xd%E(?+>N19oBOEK!%UYeE>)Bnb& z8!xXVdb+)i!vcCc$7qfZgH3KgK&pH@?L3#m#Ef8PFwk-CbSAwUU8(MZ-TK;TD~}|4 zd#=g`f$ST7%Vqe>{yz5olz=SXC@bcmP{Hf89C>4n(gK^n`Om)nenkuY9e5AvG9IZc zDc>8$=VbOJ^E+i7pPl^@?JZN{+r#fT`o^)8shj!)+aJdOxD65N=7 z-2A2-u*XlJA2y@}R~(-VHGv1dT-KjfGA%{`J-p=>rzGny&=vX%4)VXjZ-v z)Q9C0uFx<_rx{m0ULU-wNK-8$w$)1+yLOs^Y=IU1aa%Dyw|*qxaRmue!NQ z3|7#hGnhA}4(Zw`()dt)BkXn2uf;Oa#V#r_{q6bI`fB&w(^`KfNWDr`YsOgx{r%Bn z_~q0ZFeep<*uT4F&l(&1_`#11>AeBm3-X-L$`(`}GhCkM6Vbkry#8a;Kk}+}L%4A= z5y4x_6-K=}zxWET*CKQ)kowexy;w3og+H$=?70e_o}n^8Q~^E(TkW&hr+L~(Ku{p*4djzdmr4DiK^>;mm;s2~hlpXFtHV7+BpBa$Ym((9K`^*}c0XVyf^ z1EhwZ?f*c|<=euLuK$7dfPpvKpplk%3v9_v2r;W#g#vA|SUo>xFPMnXK9w2%*U{;E zRUor%L9mWOj_2IZFquj#HWMqzy<`dX)`tI7H_fp0wF@T0w@EB<-D`|nmew72NyZG^5u zG$IM^@QS&sTVQXVb4;)Aao%zN#d|ZoufQaxwmc>JKTy5aX2{{Dqnz>wvx}}*`_z_i z$Ag8z1=G*2Y}DQ(ZT8pWLC#y)vwxyicF~+hn70I;ce!-me-E-G{dx)nFybACr_Ai* z{r>u&3M)yRJ+q$%JG1s=n5~w8E z7lP@3AYZX~Z_!w{Me+TBCyI{=eL+3mm#M8&k>b?*xYh@2zGX`}CE&}DJqz9KtyDymoCWw~rc5ce{3`W7Yzx zx{n#?yJ@)NqU}!DGHXdkaG*$oR$1RN2NwyHd9z&%-RQ!Bp=o!`@P#h%n|TU84;op0 zVy%>7kjqvsUsGLFzdiqhz4;lP6XtO5HDChCP4Oxe5Qzj)7z66amxF&{EZQoD)yJQ4JVG zHCZsfPyV;x!->`;exBEHN?ZGL=i7FR$B^y4kR#1t9H^Ksh2@b-?f#Hye~&?yI`uQM zR!`P}MFL`2#tJpPmc}gH7Dc&`Dm@nw(I_~-5++>bZOT8ndrs{8MXOlYaW)mW@57~{*3E^##9dD<3M_0ZZ9w`Xu9~)D!nHdRZhZDm z>=Gk2&nul7)1i`IC6q^>htZ&8iB5=>9^cI8{w%6*jWje@sS8Zf`yqQ~B|?`ewzPJn zuO+{Bya$_>`^2J4%(s!t+fN6vb%d0tG89x-Q}odRK-H;rzvpQi(2{uTN>Sn`Y#ywJ;jH(FLl3C`V)C(KiqpkxQ5Dpl+@?4PC>h87Fr{ec^l_U>(J_% zNjb&#JcAM$BEe;MWOj;U#O-I{^c%Wux2Y+`mR1URFV+^!eMz6oFBz446=`%d_*adz z83VPr!H!*IrZU&^8auZ_ry}jCRvym9P}t^Ny{d1*;`nisE`|%?G*cg(6;wgi_%_&C zW<7a@OKYGqt{=G1M5aN-u7(h;@W5%AyU^AxGPj?|zmC?mrdgpsvR8gcQFBeW{FCWsnu1GE!Qy>2G){-~E472>G?&`X% z>F^muVCIE>&2s!$vG`oD((r#E+p8|8j)41X zxj-PLHX=-Rm_tS)f2CyNg_Dvp6CWwt85O+0;BCD=WqS|eYizIY(cs@ zB)85}{j4`9Wgzkyx z7f;>#mDE}g`tl#trWSH#)VXTs`K_dJov_lM%QHlJgp`RLFln znV%-Z+e-wFhafWR@6J7jdE@f4^?7f84j0C!W&zLM)OS9&UZzax1rwJu8$rBPOEJIH zHy+>hmQ0gKwFo&tfZip2ocqxZwwyXAxRb-!tw&KBB9VC;mucF6XF>66(W-+}D3I`6 zGWq^Iq^5yKGv#q3!M;QZUQu1>?rQ$GQqSr3WA(sW%&< zZ=K9_a)9m!m^F~PP-!kxskn7`!9s1 zpF{>=V)&T-#svk$e*F@d=oBY! z{1Y>!K64wOdaq<#faCj22#)YDV@q0h4uwY^D{`)~X*uh>c8Tki2A+4}|(Q4~v82@u;^YE4No^GNGv; z2FJZj6@_*=qOzx{h33tdS^1({%l@vvYzd9npJ=1Z;MEI9qB@E6^F*@*qsyu6;8(Uc zyRkP5$T>rFj_Ru7{VQK@S$!6t(be~RO@B8#+Qh>^WbSX4PP9*?-4o5dO9m9s;*m4} z(VX&XH{H@$K|#UnFNMhYki`(X@u8~oaSr9lu34Ojmt|xduVSugfxO-gE^%m#RN3)l zp7j$XkQ}~ez-i^cS5@~~P$1w0Fr}%D7da2LhB!!7<~fo*;K3&)PzIy`qU&I9WCnJt z@eYO=`bL1suP_xox*)Lhpjr?^^@1=ZT)of!O`6(5CC|_PSEGWEomQzRk+to!?@jX+ zel+m`_;T_XD$3z!vQ+P@7kpNaOU*z>QZIo+uycG)UU}(Av+MG|ji0hiApPGBPOp1t z?83>tfJg<=Fb!z=nNg2c$BC%~hDktvJ)ePS+0b<1KVHc{ zc7L6gvi|KT+!&?Bqi#*s$eW7-H5yQ2dyNZ*K}wa7z6Q10?0+9lbUW>>>wA8Od$JM9 zRp>mCfdFZpz=j%gBWUa^6cKq$l^?4X$Si^3H}kWr!TwXxE4*OC+kA1;fGfjq_$mXq z(PdJA!BV1^hd3eb254%}neZ`3e^|(8s!P*=x4Q%yWnr_5w}xq|<_IbAD7z1~PO?KE zJo1@9H9lXhXHAv7Zz+xZ@_z3ldE^ z-IVC-ox(oRIv892TqdXiCsS&cK$7fbubje>AHq#Ma5_5IGGECIiBd7T6(50)Tss`r zn2h~AVFa%*j1uu~^(~7i{V?|Qsv@|mC+rCgw7SQ)0@t9#O+Yw8&LqAs6XOWmbpIGA z{I^Es0<+{=XT|*W=ka;N3lhNrw_$7RH!# zhQ{dSSoR%T^H*%sI}1;4GQHxtIHC3Y(*ucF?w7Cs)@U|NT2Jz=Hb#miya2fnm&h0t zrF)e#HAt;d1I~}#AXbMW2rOY@j?|S9uAQe5r<_Q@!L|zmvut!+uX#N@=rdm^>6YSsE3aWQFzGnUD(+9(+nN$&JxWRf{aTnE&~hW zXk+7hJWpuPsvRubBlr*a>4)!VegM+uvZ}x;O~o}yrbXsIR&(@l9j>N)d?-7#w$c8% zX)?cdj85f4+&oXy6$Xbs08lGfTM1#Fo@bk`_5gG0zW6x}q15fx2&x-_C_Ro5b&0wM zL8*HD6ls1Q_S~+sh-OP_ORsfTbL{S?KGD^Qg2zEW%IQ5TD&iW8L6C-Nt}yr46=#eH zeubXQh{8&~_%DB$b6vi>11Yrcpmjh+LL>Sqbz+0z;| z>|L-Q)(K7-#sXL&1Rf#)R@q51c9G@5e(M`RaD>nLm`-#_UsPTAY$~Qa=GAb$ zSsr)(lFqZ;^pL)kcBjQf*E!8)Qt+Ql@S64Fj-~IaAgR{R_cKD64O5wHA$E^2VUZ#j zd(JcOX!I}qrvu$h`09C7u^7l`KJYA`EML`$%-_MQO7bP@U40vp+1CSuP<$~B3Dz#Pf14HK)j>(ZgxrYVs*dsC0tL3530SQFKuXJzUWt=&AUa%c7&D=|Hd9 zV#yo7C@Sp#La%k*QaFbFJTOde%o7mljwEOJ+N2PD1+1wqes1}7(e z<_b;16}ra^2I>IjUW917l{ZLIy4>7heRIq5({kVs!M{y$TB!OoHq>Ut#arQ-HZMyO z?83m#AV11>YZw%8mubk!3)>;o^ps^a@}JQRm+!l zZqPlJ_|cdSjJFFbO!~c9;xgjD!(Y0Zb(ENVpDgGWvOsSlr2m=h^KHyE`G>FHLCjtH zV1+7cKhmE9fF+D{C(o|(yktKu_?>T3V%F4VvGy^B<25e~!$50-@5KO*jH?pDa5#;- z?k~f*qYLa%iw#kHw`(;|>O%GrC1vPC&|j3h-`!qIA4gb-*V^?8@f@38CiUqI4E{%J#Nqg9es1$P|K38iPeR+#yRQu= zJexktc+~T639LF>*ze+-_O4m&_dvo=kKv8?aHSpY77pElQLp_rO&N{psI&XI5B5xQ zpN!ca+1Ik7t*47Vkg~qEdUs*0+;|un;c7?jLXdzl%sbv$!Q-58@9~Pg+=ViVM!h_Q zl5Fg`a8phk=#I_kf;{S#+WLIeV1$Cu->Mr8?UrD@kWp^1-N?zg``>&DSnDADe0vnD z^Mle-p3T&JU)szA?qUE=%qvjR6NEqhwT*$PpRXNjBdl3epC zb#7^I+UxoFy<1F{VJqT)blSYS=4^B;k1Gxf>wCZ|^wyU3O5bVsOLy_t-A>*vA= z6k0VTQ!G7Wl0oCqqdcpCAuPJ}fC}yFp}L_dlu(+q&rQtSJ3|&)h9TpH)MXcKrRe#6 zR-HsDN1c0G6i_r?rw<~ZpmJ)u!9 zp~c@hO7<~U@c-SZ4vv)iVfzinJM{_3?{$}|G8i6D z!uRHbaeaAOs2P}`%ke4Z?>G3batC} z-4*Fx#Bm%h#w*LZte*Sp223D_Swe*`<=ltmrQ$;0gPz8ETw~0-LgF>N`lBFgi3>~>cy8TBr!YsWULcm5a&i( zMpL@t1iJ5T!!2Pi#6Obn+2I!|X!S8{Z9GuK;4%E)+7$7_n?Uz{$2-c=#we3dcO@PU z%-6h+Q1Ns9AIL&|J@w_{LYRyWmERZh|A3AB`B76YYD`HXi>I}n(4CY^$vcE7NnXrY zZ1Z9w{rY{LXE^PnA|oJ}a$b})rJV}~Z5bdY4)jLbgPl^cG3@E_aWX!oFMbI;u+CF- z1ih}-UNj#QuptK8204_Uy#3w4++40d*;0do6sErZ50vPyaF7WQl`6fhoC~@2UJg%g z8SitdlP*+vMi@$6a}$f~(Rvv9+|ufU?_$FhXOzNwsGTfr_VURuT+)0FFk-b%_OBq{;u1C#y-`o92-CUe=Oeck!$J?opjwP?$JRi6yfTFx05sZ-7<1JRz()1?Ov5*dvAEn56$OB zNjV(_Vf--Cqtd($W3^ReRWcHLR;9$h+1jID7G{D-utJWefE}&qa%wQe_Gj|rk-vDr z{MB~fN%C(anQj_HjxB&Ud~sB5d|r#FS=+6g>*s<- zJJ1HS25XzvR)tm={_aoSsSb|=-1*F(IPIR5n?2pso+P!lP0_-mF8JZ9%$kkE>wZje zGTW%hbKZb7@FZnm+d$(K_F<2`x}d_!H%8eV{i#960lA6pAD_f zhiW02nd1ATuQZxRgTJ!%37SiUn$@JqLU(-Ll^p&sy1Bf*vbBMhXjFvafFGz>Tj?zx zsdBrnAy1sB^sKwj4R{9{%hytyVXm~oR-wW%yL zdpjE)zOv zlMSJ<)2?crm6J<$S-MEr$UQ2wy1K?&X*lQzt&a@5OEfb`yfcN`2SMvV9k+w@#eo%7 zcNP1Yq4lEEORqRWMH8{;AW|5TE?E5q>!n6X{lKZf+7n%*%kKx*Fl_ z{6&AJc#Z9Dg84F>C~=XB0KMUtmsir`lJW%;FWn^aYhp;GiX|b6=dr66`g<~Yir+3W zIO40`HSrQnF4b7a-6N==2wP-%+}q^G-8Ce3DJIPPy@;&!fXM93`I$!Jk4lo#2_9j# zLi>(!Ko+KnAd_NYThLIg3`%_I8JE60RY$j2W_D(BN#y75)rd66<@r^kZ{j&L0V~=^ zBs=Y->UbRuQ`D~FvXK^K4BbJ_cH`EtwVV5;@v_4S@@-XD1axETT@CEE&_K;GSriYQ z{{ZKi_xjKW7x6bilV9-E*DS-!g-o%pOyknLWgB#xwv}9WKaG6>t3f8Qs9eKv%C=7j z?%6)?JXeJ4wuz)`GsE+Iu2Fu1fGIKaE*Ir*_!mlBj26ZjokwbOMdnVepSnLYO%So0 z%nUZ?v7iEGkiev8J@HPqoZH2>ob~CNk-Af1If;Ih0HXW&e75@ItyxC~CBW-d^UXOG zR2JR$yHEwIdtWq=x#FXq@5z5Hal6;npt#f@{aj;ja&yv{hj+OC^#C?iX-D3~ow@2N zKzXAd=hBY!0OXTss~%#wsIiA!FCFU6m0>02%0m=x?B@!KGRA-!s7S3(4fuBd0K`{` z6^*=;NT(zFt6rDz`}T8}P_SzOz z@Q=een#uvFxsE`;G6U4tQKk4}Pl{rxZyxA|PDduURYcb@w$_s?jHuuWfLXqHT(GVsMp3e>Yytw&^XGTl`J+3Z)vnHT5N_a*~hji7f!Z8 zx63?n(ttij{{V!Ez3MrsZlFxNXvP^c5O1`Hi`W9gZ`a0O&3JLb1j|^Vpib zVd5ybEV!;-IpawG0KinrdC2;MKpo|$iLKCm;Jj9Z9xk;h^Go!vI*qp|=cPQ#Sn_BC z(5LZToWuQhO3l=Dizi*iZoZYrG`Kx+QA=^XanyRy2EF|D%_D7+vTjP2`AKSqX*{)N zKYQMwjlAYn-0Iyw3MxZS(H1#=UzlWFH`bOhH&;W>PXc;Ew! z&|5_<0?4F;AilyjXZsx&vZ&; zxS4WD9Ss0u!Q&f-*5zpVg81se>-|Pl0PpU z2c-Zx7A?gVY!&2zO%7C$6L-BdTSaXY;`G;?60O<7lTYD>PdB$eWaKoXh8jaG}>I%`@`E57K(kSOX z^!*dX_B#FK*6`(CHakf@#Yf_Q77q(TvR+2AG~BA7pbB0k@UQlthrF4lGD*LBmFl&L zccR$ZTj@~V-bpOWCRBP?NolS}ePXv!!!o?wV6H%}YCjF_m|SYi!bF=eVB?I?2F8u6 z-dy;W{@f2P-razOlyF8ltPdH%eFusyCbyDSjc`6*aC2Q1zN-$q1m9&0tqH?pf@?2U zmg>sUTGfP;Cl47PGLKpShE$r~Hk#!c;^mkS=lh)TT<*DOAkgloMU7&aSnLO(snYjT znPi!zEgZyTmHWK*tnY}MY;-G@4U9$=eb0IT@>PJ{T&!^o%-rMBy(_{xQH3p3MzS-G zRQ=Ijec>BNxw~Ar4JR1>D)kQw7}rm=f=Sjn6^Oz6)B$z0+YK?Mj^)Up3H4;AXoX{tkSZ5kxE9r znDwR9uNzYR-rpo+hCg>cv;kHKneLiBs;Z+QfvXm3vB@XzF}U%8(yPa8u{4Y44=^v@ z&kyvet>S2{_HO&*ueAU{0q5s~OnHFXrGD|HciJ=a z9P`I|uFvMHNI~4E<;O*!3lb<`RlRe7af)kPq-Xob&{cmlynvS5+aOa=sz1!9^Pma7 z)#pw8BX3O5x7_lh>+Mmjt>%9SZ&E5)p;;sam@{XPIvN0#lP$aWfWW5=g~uFvQ$pbM zr|kI)VViGZKnSC8^r@CG6Qb_znv+b@X4USN-rhEvc04ML#8_BevCHxr#9(c{54Efl%LR3##2BvbNaIEKU^B z{htkli6n5e(&z6hXKAL-r-^RFlSwWY=ECqO0%3f%_X`XvWFzIs=qS2}Hu6HOw&A+4 zJkf1>r{=eXo16k$fmQ9aiLNhXl6ee zyLlD~qF6@+5m^s=8apr8=541L9q0q&ecb(NeAXYtMKy-j{{RYfYOH=^wty9i>=<8} zz4}wd+eWIqe7*f?WQAgtM^)@kf2}9knbp78?TP@k72>LA<@d>ns zp*HASY%9ZO_^1O?{>gP%Hpv`v1bx7hS@%92OV1EPdebi0#sYMy^$lKo8N)jHcFI0; ziiUeN)^4G^x4MtXj|3lD0M%xaz@NK~WZlV9c~L__CDSV#gx?pZ zLsZvJx`z3tN!57E1JZyqd{w7k-CSGUTacR@=J~$ptw{BVWVSCWv3Qr9bCXc5yw_5+ zi#khh)sTM;I%uBaAlC7s#t+ZOS^&rY0ELDxb%ch@G>Q%#aniaIb7&4Hk})G=P||Gf zSzhS%XBudqOc(Xo|VdY ze%9*#?WEOJw#4Vk&my{cB3p)b`$TIC{F`&o)=sag!=lCHwZcqf%A$^;r~@0txAJNF zrH|QTYklr_k-&O9PkhiA=8jFbEWpaE**)mfH4p8%V~0@x09ylPbHU9v^G}g(re%^h zS)w6`89D4I13o=M_fdO^BS4m_L}ESI3-4Sv#=T*Di0s;LpCA&w2(GI7`fWH#H1aHP zkCl_A1$jS+^+NNAow>kleb2_ai+!POLJI0G4Tz?idINtkIr-Vqfi5T z)jd;1Z-`oCHxpg0w2%;F5|h$^I_u96X}7XQyOt%uE6?7jWx2GKnoYmH!3qHF*w-(p z_}wit}i>#|3eN^`HewE-&rOcQZUOlZ8H&UR8{? z(<4Zc4Xh9GRolI7bv-^cjvdO))N{>5v3;rrjagDo`@7HtH_)FZCRkVIIM1N=t55!p zs+dyBG4vHq&29#^WAl{95(APrtvQ5+u^!fA)qv?h6+FvW?o>_lEAZIpDc9akV_RE% zBK2}Q)7mMC+Z#o<{#r3!l=X`8;vlj7@GstF9Yp|RYL;4Ugf~|$Jj|^Y$s;TBp!PK` zg4Wg=MZEAI^jJ_}9Gt7+p;Sq;3BoT($LRc$)!P4J{K*j+ie+_{qnfM^0M zmcFvoZnb9ltW|O&Eznn<`1ro5;p?l}5o3-?!=Uy&V!ONTCgS$`@_Agtq`X`yJONzq z#G43hd;=xCF0)4AWkz1YfINy>x0QAITe!_e@&;_}`t#PCoQek~fE;<}-=#auR(!Jk zd8LXlUxwZ7w={+|3Aj4$Q__F|wWNKkk&LZA*azI-D1O3`6MUx!!ReP z0CV`z1hEDTyS{9kH*8kFhCCyA;>|&AY~gtsm~uK|q44L2t~^Pr$7^c~OwK~^I(wgL z`h($b!wY`_Xz<27x42*ovZ(3pKovd`{3EjPU7q5CO+b&Git?Vo*H@@$aO+b;=eF4+ zU{o5pI>{u<2qb5OWMio`0Y>M=Hacdcwk;z`HZhEJs}QV9B%V#Y zd%b;Y4u1_Mp|7r_vBTK5ASyl-gVIiB268)8vc++!K_{Iu{hhjTKo0YviY1Q4T2?2Lc*bhHR-a?H zk>$E+8IC-#b55CIv{-H7xJ}K$Z1oit#pF69f*41gCUVEFC;?>qIz=2RjHmuu73wOh zYZ1o9Rb|?z1DY;w z1hmkc$h&jT6tTp~C(XICcp&lk(_|`vcI{>EJ!omMa5lCV7#N@k=Q){=y)vCC%&p&= zZ2%NeMF130MF1*bxZTpFTW!iVxX*fpS9@Zl2&m_9AA?W^)}42=zR~>acGFSZ2hChm zGPDOE_vdM?eLiM#zcUZ1#Q=Jb!*3BSwy>~B*tfVMHx=rdX1KPJd2!pXmz}xCUwZlK z#(sAOV9SG$Yu7#;c+GW-Sgl!t$rvhto>2YbKe@ zn~oc?qS9!Q85ZI>Ji(0Tm8j*{VH$#I&djTg!s9)0KpKL@r?>k$Hs43?YBq{HSeiL5 zAIyz%K;#inzwiEUFs{+^fO^$EO8u=Z3&RT+-OhQ<081>^cJ}^ccV1kQe5Fa-n$6cW z8~a;DHX=g38x@V?&kM=pD?54Px)yRq;kGv)m1yZBQnJ%hIGjk!!=9@^7W6+5-CEcK zb-p%}zTQPXI2T<>V~+XNr0BzpR7-J*aeo}lKiN3NSvFQP6AhY3k}%|x%>Yo3!gm@j zku*?WHRbkxQ6q3GQ^K+8QR(aUpDnHj-dyoiZ9Fw5i*RPRx!t(nDf`){PS;cFAL#4k zqW$7eS^(6$wrQl>CBTik{Iw1B?dRCU7OJx|a2vY%)l0kUcx^n*hDjLU^Gvrg-E(Ot zm(FpT0MfL#pGu8d7HK6TB^$BtMyU51ovej!KF>DNFb{gK9L)j?mX~zN@|6@^MQb?{ zG=Yoqz&A<&&(VA{CYz&dxwvU0^E|+FoyN1gM{j3%W4JzIUR#pr0N}9ot+|nHWJZeV zV~2Lq8?I|NUAt(}oA+!-LOaj~PMv=awub6uXzrtII2;0Lx7V^GNf}~_A9g_KD>qT| zt=es~M;tO?i1e;2#~%|j3t8H>^Nblcb3hRMRPl=3O7=GHUnl2d+}A(hjVehlvxUJ! zw+AE|##j4P>Lha8k0hGvGz}U}J*B#iPr967@jxABhoxOz=#jUWM5=Mg!N;|9$t%Nd z-bzXK$Yb0I96z;T_-fH_^t(B{0{;MqwRvx} zc3o=OeCZhN9+j)$jYCN@%VZWyZme*%ELuIMh_u*RONimP+6%_bjGC`);Wf}TBd8mQ z=JNW+zJuO?El=W&CT&JL86)$MHUl!8iqgHXu}emd0U?37V~#+qcy$doS9^=iKG~(b zkDaHUY2F3ZwMY%qYBuGeHnws-Ox4g`E(5kL~cK8fM zPhoPtDT+@m#k$6S)q_sE(WdibW|RFMA;~lWRJ?jt*lj~JE6#ROe&k=S=WIx%vtxy+ zjmtU+{KQpks&#h0Nxbq9RX}&NSfhHv5c`Nr{h2l7iPs4Hn)oEeCKxFL97ek2AyA5nrS48J=}m> z2R-csscCu0zBYutD(pOI`b}E#V4K4u-l9>0Xy*8(Lc`ws<+(qO2&WSeLl0pIhW1iiGG~|L3bzw7$a-z(noHZ8 zeJ0!fT1>5s^U|YM^Wa|~EMqx4{%p_#ZZ#Q%YPPH9XQ|usReeVKTgHwxhAgS%KL)0~ zl1Z-D{USSdQH%lit3LAGM6A-c+8u@oL(+gC`)#_r4wng9& zI@bwnax&T4o|U6zsXF@;-r3cQe-3(8$*!(T4=uiYeb6WZd#^84xGL(A2*z+Z%~XwKiNjm7 zd0^qW=}B^oiMYohmHPWqV&P(6DO(Iiu5Wr`paegfLogSF7 zEv$ZXW4X$TmtE2BXI1khW4LwCO5?mmp{!6h-Z;r5&<1aae0_JS*?iwCNx=#HHO&jH z>dfCOFJEe9#OkuJ-JP`9%>!;XApZb_ni;Mlw^(l?9Du!O0t?>>-CFpXE9-yX zTQ&*L-4)Y|jVNFFYj6ybF4Da~^{!vSmb#UWud?n*R^CEGhUmHJRv`Fa{h6zMu`c0t z^LPA>lk0;(8=5zTY;?UsL1!}w(SQ%C6p9bUpp))4=lTP^yKFIR@;GwQ2AR zFlAWe7{TkBucWNWdeU&qAIdY|+JG)REZ;Akw|4;3URgBRRzEeF7+{b-?rOl9K^V6y zwB+ZxqAS~!GJfT8o;c}16kgT@J7H-XamaVZah^AxJSA)8OUOQ|7Q zH!N(JVL%=le)D}z6gS>KQ$+wOw$=n1u^d@tWoB&f#EPzr75U^2wJa{tNWU==w{t)j zG}}M6T*Qht$s+{Y+}GA03Vb6UgS;beX44gU2KE4S&o$vcv-g3&;Vkib$noyAwaZFR z_lV-Yq_eaZaja~O^8Bkn5=CyYxgKj{iiq6DCC8HR?gO2~RhD%M7i$yi=~2ogR@}u_ zJaA0_MOFyJJ(3sn(qw>QUKe+`a0(ypU~S3o^)iwE#7hr??E3 z>oj0;UyM~Hh6{9Q?bw@#ZWs7!?ZIt4ed#A=>?#@VB(!B~dv@EOne(S0a@NT zBl1krc~K0m;rHr4?HghL050+VD^pxd@~ZN(0D9xCNA|3L%eqhp$uky=w0z@tN{+2x zf5=h4-W3hc{Cr9N@t_8syE>iS#wab7#yWTPrk<2g0YK)82U-Af6;N39=V%_Z1l(60 zN&Km_=s(u201~$8N$N9AqKW`0qKW`02NY324vE6C+&)$q&v92Gm3I8C)4qAdQKEn~ zp|~MF_jMd$GYQ?hu0FQB2A^Y?J>mLJ*y3dHVw9;(~aJk@DtV>|lQlozojMtF< z&Y$u#xBIp2T8H|!{{VJ?Gp~WS+{)XYPI&EAfpsCbuwUZKQ|`ax=l%jKGg|)ukZiwE zKpA?Ug|4RYO5R4q!btuuE25rLWpFVH$TNa}3ah1m$CbTbm+v?G=71QYMOBhE+y2ce z#pd2C1}iHLPpvFp>lf=%%l`l&D}Sk=2%)&&D>5kgPbx>=txH?8ac};uMt)O+j8!XN z`226Fs3ZH5f4pb|S}1(D*;N!SIKiqqm7ITOG62z)UR93=-k)v$rXQs<#ozJa{{U>w z0CRfuD=a7%JCtXN;`~-V&!$bg=J`!`H-GWt{{U?3h4IJygC_p~ale%Sc{Rzx1OCvf z7EwHmn8Cs7dsQia)W7@V`BmtDoR(!)>s=CSE2ioDe$2R&E(!In zPr{$^^B?=Bx{Ln+`2t)0T7Wu_2l$R_{S(gnEHCAqrAVgui&?+Y?;(=H53}cz7lTds zZT|ouhW`M3S4ph@0LW55`sF|v`uw_;;@R9n%*yeGeo5!ObecA$4fTpoOkVY0OZ8@}W4T z_^tl{Alpy(X}VwhgCYL_bWj6-u%@-sX0V3;05^^>2buSMs$UEEZch(sk8gQ5@1!|6 zIn8pGAM#OV{{VQ`X?ybixSk0Div^MrRMONSnn^gY*k466gcC*+1LiYav z^~lf!rVFUZEp_|mI6pVtTE=f2pY7kX!4KORepZl<1zNlR0FT>`_iH!7AMyVHc|aF+ zZx7$=nvzbe65cSom0t=fJKZnINkZG(NfH9icKz>avoA@1-W8!I{DCK+4?VKgKea4c zSv1ABj4_P@j1(1#;t8#E-6m*P&cq1H?ngj-S9dS^zxWUJt{=zW@(0#`-~RyFXamOI z?;dgiIL$VSC;`z$y}t6Vx$jpr`$nGY%TUd^f+}NnYK?SX3xDKovHt+Bt3V$}dgxlr=63~bM8^aL!ix0i`ja5L7UhyFaD{n1Xe{{URy?vLd_1XD;OK4OUd zG3iWojlXuv(uO@xYJR2v03QDUjaY;JJ=f_#8LVw=6{A&Xh%5zsqNU^H?yApoy<}qSeACK-Ow@nmF)z}cqkpge0D({gXR=wJ zYfSl79$3%a6$x9Um=>FIsK;J$Mfd!Nrl?c?LK6P~*E#?TeEU<(cuzZsD`m<9$VQ)Bgak KfA@_5fB)G)6y%Qp literal 0 HcmV?d00001 diff --git a/digital_image_processing/histogram_equalization/output_data/output.jpg b/digital_image_processing/histogram_equalization/output_data/output.jpg new file mode 100644 index 0000000000000000000000000000000000000000..48c70d8ae17daa06ac182057374ffdb3b8556384 GIT binary patch literal 118463 zcmX`S3p|tkAOF8fNn#=7xJq%Ckenj6RFZ_s9Wv}L$*Eal46_wQIab1rSS2KTRGyLCe%hqjD+jmGyJ}WDE196Y! zoZGfZ&a_=}8p*q3C9i{|6t*iKFt**HbmfNh!O*=Y9z1)!Q|HXbR^_WdxQ9$`-iwpj zrJ}k|P5rR0-d{(KnwptgoV2t$d(Q5>{RM}Mu76*1bN9IJ>3hrXwtqliP*^xRA`%l7 z9slrALgM2mNzXH0WM*amo0I#d@NH3X$-C0`pQ>w!wRQCkjcwHSj?S*n-Cz0#28V`e zBco#sChO;~nc3fS^SnRHE35o9V0~kA47BsVVS|B$r`{y}_2$0J$-RFY2fKan_MD_v zEd;|>PldDy9lkkRCGjazzY#mdW|)kNJh@HK#5}B zS8+*&4bsrrlvw>y@)jW+V3YwNOji3Q2#j?pog(CiAXipA-d>VVJSsViX6_2=QS?$5 zUa3bpvxM5WXD;h^hC}T3-s*16hj&5ARpbj=#^1tx^5`hA(3zJ|7Fq(hGYUQtd?A#~ zn(nK{aIrCv&9h*vJvB028irY)}{o!9H^3Ts+F^OteO5zBQ2pll@ zZ#CQ@LVShUIMOugZm?T+(U|cj$SJs(Tf&j8nDp`)1G3L>SAUWE*Y5^3dTfHy5gTlA z3@!9EhH&u%_ty}uT@>R?!=AF(<8lihqfn(LdbbG*!jIw^qIUJ^RFY-sRM)GsGxq4c z_FuDKhHI{NU7|h4eV-p z+mkdi?rfFWTwV}@Wl{p@e~w#*#2OD%-l5{BHA&aFEPeoR?G+H?R5y5Vkmzl4F-u4M z!P8Mb5{%1S>1&5P!EFbm>B$5&VEk&`fT{lZQEe;L1!>@#jRmVJeig5LmL6rMdz~nE z4B=@SzjS6+t%7&tQ*E~KV#4SqC`wFQ@4(hmxUO)=s}n?Nf*ZS6JNz~ zpRt8jpXXHv#INq-ckxn9S|cdC_E&S$D&FrDKKM1Nb^|h}JVczPPTF5nj~cqeY$$+D zQfGIs6IgEH5LJx5bhK1#NQL!V0%`U;tAtW=}ceHqYm-QpW-=EYd>)l6fBD2 zy94f`M~tc@sK)SZ63_3U%MEPCo%D+hJ_qyOwI)MF`t&N`FMpxJI2BUk^6)J$y^Zo@ zN}UXpDyNTe42~ghr`benuF{v$t!rwBBBgnKojwY@O%Ro$Q6rXoF$rt}yHh9HuuVi;E;A~GB zyOgnAHR$ik(}#Rtx;t=b%uE_Jf1CG@-KhqPCAXn{;aMX`;?851mP6A+^m8iu5(!E! z4=a{ddflcL;g;o#91h0-vZYaOQhw@RA!en#PmUc~pf$uA4iC$n*+(aTZ|Up(Y`Ni%rh~^XE?+W-N>jMPx~Dnh zKDmjjDz|k&ckPein$ts*R;#qcgJKx~6;u2>x~3|8?UG&VhX$os!oHb*f8IKh0eoBKETpav?~= z{q5P=S=*vN%UjOw`^hXBfZah!&6B}2w2QpGC?`s;q2LGFe$0@2@^@@Zboi1F8Y%F` zHA_G?pgv=cNCN7&f7X#^oi7d zG-UZx)A@*HV1+g3UC<;55qcxf&;04%7&Yi9R)s(%fkEN0nH>EN;|pUq zskgeN>UiE0ip~z*bK}y#x>)dR1oujQz{F?w)?>C$>3Kq>zTzqUUtdaZW6zquy3z3I z(E%ypm(fEJU9j)ha_GmI{ff`Lk1nQ7G3*y(e7C)tH(A7Gj!p>w%4;L5Ci?JvJ?-wT z!G71`Fq7u?$BbX1R~N%B3!#7tSP=thiXV3C58!5}g5tB0OQ&zbJcfo>ajJlLgO09 zuGDMXinnm{psfUXiC zo^Cg%d;~wJaO)Dm;Q=4*6rP4duhNwO_e#K>FE2{Ms>Qz&f7RYrd*w$qRb_k=WRuy7 zL7W$5VDY>RFF@-R?u$0$%9|6Z&NJ*b^EuR^loOx~)Ynj-Qpv|QK_JorTs7cG?|ZoN zPDgspOC7(TKkZ1JmQr5l@%6FspGX1D;C!Z$&q z1Fajxs^?C5lt;+%ZQ`6?_{=cv1EM7SEgPK{Rh&Vi=w-NWL&4xC=(Vh^+L5{6`YkJc zfDV4)5f9Rmo1MHePEf-9<)h|k_h#PMRt<8dB)ya5*d-Zrlow8eTQg-1XbCO@Y0Gf( zQw6_ROO-SVC$-(EYAZPcSlR?hd5W5#DpY^oc~&PaY%EZW?kp_)z47l0C;3xxmJ2Z~ zP2UWJ8rDx#fwkw3yEpV>{kY3s0?%qYq;}Jr9z~a$6h^~Ip^bhk&KlQGJ_0NSZODnU z1N{TH|040=qh}i!Hai?xgDZ3#ISLt8JQftu_-I}Setq89F{0eKz{+1M$|nY=EK zZG!3`ZTLh=HIzU{D0+97v7=XOBqLO(kIMX@?Y?LW&8*`S0^YhAGV&=p_x^4 zm-!uB1V@(fkmo{;y$X-nnMjD*TlVXtb|wp^Dhw5v%|Q?1$Ly*2F~!L_f7Rm^&t|!1 zL&9B>XrvH5(A4F&qnvNn18JGu z#V0Ip&p-U3;pNNX!MgfQ(31xOho!ORbVgsY(23=ALeSC}QH}KSO zN%aBwK|4F(E^wQ0dNiO{NA(?7ejUoorb18jYqXE~WS~(@Cn?s#4)A2W(Yi=KS@iyn zHCU3bT66IU*f2&@GlT<~yEo5;`*&+6HdGZzDkAWcH8)T52ZCebF9;Pg4>U*SO&B_& zO(TYR-gfz({xA+U3ZOb6pKj-%1rb29K(9mn7~a3u{E*idm&yZt@wHB&64#|=X_rvB z2B4JzvsZa;C57K^afy!}x}LkGBaWthMG&VK3h5}|sA}qMURNU4(AtctaT3NvRF2#J z2{NIJXIu;NdDB|eh#gLn3HuvpVo;Q(Fc!>$Qe<(EXDl}j9^*0b$146g?A>fhRWnvg zlp(2)H=Mququ$uw@#`C#$#^~)_Hs5pqs!T)B1)AL%e83HR^TdktR<}MyFsdMxLVz{ zbIYd|Y>V$nHsJpCza0F(U0G}BMf5{mW*dJfl?1(0`B}3~{`lniQ`(}kcLV6jtws;m z)TJT_L5(r5)yMn7{)~gj@zyWttK#bv?x`!>%GZ^im>8y07Ge9Nvb={wezoJKsdbA5 zxXU(RFM^K+EU*WX*r+_51CBFoy5*|EF5{v9e0fWcj*DJp7Z80Jb@yusNf6m8B1#h< z99wpNhlXsPzf^a~tEchHdbJiHu=01{6dgvTJccUPlF8qRTB=8Ww&&q#_n~WFceZYT zdv-MHQ|{xX3Dgar%rbbRy>IBOlg@D^2X;Mc-B;_Qj~eeewXI+;&ulgxyIuYjKkMU* zhKBk(UlvT-Ufv7aNGTZoLQ;2{eDo>c`{$5<>Wpw2Pvu#0#@~G*skV$zQG7J|RE~J) zwpZ+@k^C~{da=Stv_Eg7mwBH1tGz_5;AB0=T_1J48Hx0o1&Mvl6up6~Up~**Ern|Y ze36&-Imw~*m$H{FhboCqiaUQktCY@_{pZv2x~8^>vWqM}^j-N&&)bV0kblb+eW4@D z($v142<&Mdp06}!r<4P7tgX>0zBlO{`XDVKVWZA0X=s(pS^ zm~)}arf=WUOZVTKpoQg4(2fy&tNA9#KV6}N#ffp?L6TSX?WbjEL^sE9XxZ*lr#C@5 zMX{rdbV;@YTPrXG-m0wydk4bHWbYOa50AB8K5uhh)2+v6j5yHx1QCQ?fF+8zT^{X0 z9<=5o8g19cJY(DWf9&|Jr3>c-ee7$MSy7b_XY2&W9A{97#-Rl05e#&`b0$3UhSXwZ zz1Vp0?<>H7_t45<4E$W01EQP|^^om0T&wM0U_70sKP6P8fWsl% z=frYcMAFX$E#2c!Jubj-EfJP8#XNAkoP|KmjG_XZVagoL>rU0VaiC8Sm&3C0r^>xO zoKO@R87lwIyrWq3@B4J_JFH&W1R(1iYvKBFpl0&0dvBaHY3lksMtF7;B!eSh&~V2l z^ds2!qFk2)yZ`0*_zP@teUe%P7EradI74t&s5G$pxzhbh?&0c`Zj{0%s36g@YamH@ zTN1&OBq6V0$A7~%D8zO$cf>#j#peW(} zo0VJ#t*;f$W%Ju-roj4&E0uK&BaQ(xJ!x9LFD-m2F&a7anL|{B*0;@^mgkd;}}U?R&h^v!ns+i_K_%zCIP&r??3sEVB{N09DEVNNPYH zc$82Qyd}L)>5u+v?vSK4a?+t@HD*5u8FzpFT@5wN65YC1U5fhw)s2B8U8<HLAXA zp2W@*`fmn>2wn)=A^Q@qGCer5XcGPhx!xxV?ZD`@8z}Lk;(iK)c;JLpHe$hTU+w)( zP^B=&9l=Q7f!W4y)!$i>GME5_|&ypk|LqjMPs|(LJs5qE3KP+z@|L?B^3XFo1 z{axcC>oZ3~?n(U_a3izv?x;9{Z2lh~`rlq5r`ORxcf>I3&atsc8n#6^a6!8EgtR1j zGf>F`02tnod}e@C8BQbWE)KZXEw}sbPkELW+LR{F9L7fTq^Sn3=RTsgj(X%(oVBp9 zsCA6nBDEz2eJG=^MCaKxp-zlp6ZcfR)zPsB1}P5w;8(9QcduK={6pxhrTD>;tr7@m zNE|WKSF58T`0{=UIEiSzElsvs?K9(4vn|%m$7=J$NvdCo4GH@r9OiuNSo(b$9@vP1 z6+CAqu5;lv{2p*!wO*&#L3&wpSW>u%RRgLdDF%^!3EqkhVlIw3!ffvC-TgfJmT%Qs z@RwsNlF^-qs4v!x=LOdv5ZFz~?t(x2nTA!HsqIN=MB3eE#+Wj}J1vXkouUnupcH%U! z3V=8A^<3y@kBX-Cij0Zw1IN1NogzGEnu~y-wq;LJy>$0uQfX7f_qYa^N1Gr`tSm3D z)qvRtwir8jeYcCYrBp;^lJ`}OCR=RnJ$TpN>v?HqmkDa)lb&7Zw_`cy2r)7q{qtgd znpxof!5U+~TZH-1!`~#eetFa9nx;udfdTfij#W$|<*`@z*#T(ggLl}|b*|=3C<(9< zw>-GpAH~{Y`j;XfJ*AP>rO^}zU5O=tjDd!;ER%9Rb zwg**rDN$g(UPNglhXD2r${3`LQggn9hhT{b?^5LhFFn1U{A?dz^chwZYvjvBB@nd2 zZ3F4}-9ajk@vNCYOTWYx=~Jh)P5TNaz$Bk-=#S%a(&*y#UR z7Vj#O6s#d!3devu`?si&tQi>J22nI!pCP~p-ahV7eQa~d=aT}ER#-sEfPG5sO2Tau z4~?M`gm-nnFI5kvX`yeWADz)SLS7P~E8huG zfD=!aiswEM-mGhE8m#dD!y#gKvVBUp zT}AlfmzYy9<1*gdCc`$VxW+e-Oc-YblN0WGl^RV&z-j65fYT@{3T zVA81;>AXS)B+(GL!hVA7J@e~EOJ7Bl(F2?*)}w!4uy`BKjyU0d7hhrW$h?UNU>9KA6`&``; zx-yy9*V2<%TU+0fq|#C^4E3&B7-IE0G7}$qA`-MUYPhW)u>NC4-)G1>eno(o4`x??&~mWfxwoW0(- z2|5!`{n9^vy(8n9p}g_ueL5-bAH>tSkajKoOI*rh>~>zFlhttIp@AvjjBNT!(c_mh zUfR*_`Zws^;{D>!kpv~Q%UtU^!TcE#tc-!0uT>bXZoGf ziXJr7Wra6Z!}cGOvEBsj;iUYD>Bss4r2;5>%;#sVRr8-OTV0e3k7##1h8RIt;dY`D zvKD|pQ`@gfr7iA}(lE%pzalmoq{;D=x+t>NzBBAl-~_*4d^Sh!ZJ{sZ>eiQH5Zdy+ zB%sz+Y=VB<{@4U94d8j#L{Bj+rcwJSRN5QpY4zOQTW+h%jy1pJ_d=VHi7t@ip^}9z z3_1O)*=OLV@*e9vpHXv;P&{D=r*XnB80e7)SO4lC>c(HU;=Cc|qD>2~Z`#uBZkk z>)JO^S$Qb;*R30x7hJ4E-BCgprnk$LChk;;TyxrUY1IJe<${8toY?Z9i1iQLx+DWi z^^GLEte-v4U4|P_8eW(&{yf!@o1J1f)&E!Z-5cl;`{DXNjd{G3X^ciij60BF_BD4| z7G4(Yu%(@1JJ5XZD)wN1Imw`O4#kWqt2nqwpFCTi)J?NE}+d{z3Z{`%?` z!m-`%Fs4y*?qWXj2DgWSD+xj_oEG59q!7*7Nv*@yv8o9uok5ZdGkIyRs%WTP_OFaD z4~Ou30ctBmf!LIBp#g<8z^yE7p(ufqYPN9&o$j7?kEX1<7omNf zVZ%k-qG@Wns@Ht{X&!0JC+B7x{K@Qo4T`IGA@*uE)zdBS9R}83t7^Gt-JGe3n;k}6 z{B24Z+jgE;w2Z;CUUd!4&RQVenfGwR8Z4kJJa(S87)T=Y}s-OMFq^MKqB>WCj zjt7G!6DNpSCt zW1+puou?nCUEBn1)K`5X8ttJ_jS`-VzZW_=CdZ^2^?A#ybY*_C6vpa5;kt0_R68JB z?U}HB0J=t`Pmg^E9XZ;&aLWBxb6-3*N?<1R8N?}JuMHml!BD;0UF6*>_z}9BFki?TZjNl- z=u9LmRJc1P4d#$O>m~FIH!EEL7|c8aPuf*p_5)LqTj%f=g?a&O<8u&7W6l%bZs0>} zmo#h%H?>t8PO5CgQkHJM*Eadc-Ro)4N1c8k?K%(=a_4pu^9D-XG)AJG5#<|LD{wR1 z>Vfaso{+3kr&ZWG#6>rZ8cT5_po2%9eUI& zbXSp=%cws8AuqA336{K;jR>scnTRU+^KgcMwA>q^o=_+-!!)%wW-p+Mf>f=X#CdzI z-b_xk9Zm{tv5uO)2$YF;jS93Kc|DBG5)P943yJm)zKE}$Zhc#PiFY=oo85=PaviGr zARwUvFwV33>;r&XuJ+!kgI=i5x+~#7gszI1>3BRn8N$76q>i~a-C>2gZ*5&$cX^%9 zy2`s&9^>LYGGZxhBX1+1*{TZnWQcbe@2+jNR-#jYJd3=WWvt{YGhCa7#e1>AV2S7~ zA^GD?tq}tgJ{VN%T~RLN#H`>{r(0EhH0#DDNS7q&f^c0RV@-@rP~uyja|3tDDXZ7( zQd!CTGg8z2Z#X~Db4;I43@zQexTvW2SI~wQr*KPuFqZIH5wCeOClD>S`pNsWGfnf> zKS|I3UsLseTdOLLSei!kfV+JdRQ%!VRCnA#`U~-E5cD|D=uuJKhwsAcB?z zeGTQ4_DmA)7wOcV>TW4`e)t<7b}e5A^|vInSW zC?Ju;l`z>|gzaL;SilA)xx%mRWt4@gx+l{k?Ua1x4DKioMI|J-4XdBeWW?l0&$!Nd zIoWh&{=%=$=K!O;gs#>|w+L;k??_}-iKO3h&M@7^LCmtf`Xs!CIh}0n>&KEqTv2s* z%MxGWx7^h?apg__r~L>13DA}bhTn&=#NdTZ&?=(nGKmLCBq^16j?N{_kGl?58@`$j z_$*m!jK9rbdxXZ>R}s5`;4b+PWM3Zk2fhauowUT-K3x3<4B7;Rc#Msm!%lOqzuE-B zJ=G(VIAqN?Yzo*6?j0>=L9wcut~GO}OA7NJCxhy<=I8O#bo~1YlmZ(sGk(oVaiUkb zykzS>=|xJPZVgmT7%_l__#4JEP+LTm!SM9Iau#8~Qlru7oi1`f-&q~{?4$0X==Juf zH)_p&Y)?-}Iu>2@n=m@PPkeN2WL#k;YT0A`JaiK@%f6(2f?Hcu3iqD#^d4>w+tZO& z_28F-1#P$%MLvwlYp+c_%Nu?X-qR$hZD#h4W?k&>#~lJ_4g*y+hq*rn<81SS=U&rk zCPl(?1K3lq=5a>`Niyh|Qqf~cz%^R@IwH>GtqJ$iY-<3vz-qn#6sy~dJ`%pZnk`qt zwUBENo&Ylt`7o~I(jEXsMiwJCc3U7 zFWA-sH9s+LzIMFm#hkeE0ByOF#SaCDeuA4=iy^E&ugfh<>)uFIXwVM@k0)AejN1ITDSxO}viF+iXOk(OLh@n{Bzqlf+9~g=} zboKEc*walAoAyZv0b=Mz(gF4@Q`?6s7eXrhMIEB9Mbf|~XuitjBd>y==x>pH%o-Jp z4ns<3he|2=e>Fo$w9wtqlO2(as>j)sk*E0b+Jc=}ifNeFG$&bLI7cBaQ4jwhnMB?) zL&!r;bh+w@Q16)JV?Zzu(GjiN9LmjRp1$wp;UZV_X212+DI9UB_BgP7DWGP04+g=B z_8y`v8oeg0c~huD=9{5aNQ&`1f7lbE{x@uL&bWf`grFi-u;)d9k5m@ThgiJ{dRnfk zDM_AXU&^5xKo5&To#jS$Olv(uy*szdc~<0XS>**>qeBvK$^hP%VH96If~jS8&RVFG z?5kdciSg-9QYLqDWRmU}ou`v(F9r^8T)+j9xvaYT(kgn zgZ-+yxGpW;75oMv?$AD_t@E8^h?cXsa@?Ur?%7%)$}p~~_H*o+$+#SN9Gu89(0{w|NL-cg3c8lxIVUM(NUIQ!h=A)en6EsAA#VI@mU>hljX{caRl zQwS&iU}g&6m7D1YzTLAjmj$|eYIegt1$#sE1ZsjkG%W5e1|pW*@8$?so4+I5lb^rc z^LIpNlp336_G=@RTwOS?bAG5MupH%U*;qrmD)|ndrLF74Z}^+O_-HaosUM=&ZS7#YLUz%!_mLFA$dFMIL|B$~h1=o0xCUn<-4=gjp z&kBQ}raum4sZq2Ue&UB)~@TdK3Ja}%nKr5!Wv7b)M4I{A0NK(B`l zu(Ax7-Sg%u92CEF>3Msbj&gPx*8cm?4@3Lo&(+rSGvh@NpS~sV`sXUkVUiP<%7Bl} z>9sc&Q_%0>vF~NtEfWl*hYnMQ@WfS{3;Tzv7A1YicY{SMdoRNe9HVq(-nIVnkjlck zmbyAZf5j-KOmNoAstl9&MJmeu`-GGDeZ4oX=TiOmkcw~vlq<0@4S(Frqi^_=_2I}; zj1u*E5LqvmVQD-gDm5>V#YPds%e;BLozhjzsl7@B=GV1wU;;#ZhqDJx~^t0SVL`T=MyX%F$& z0jG-I-qNqjUicnQvNZ}>I-wEDs7Kz~)>9y!0cXk~hmKrZqf7YZlAzYLHV$;n0>i^atW&){GDHK< zae;;;aJv1IB=2X&+ytqR&X8>YbYqC$$OJt7==GoKNQcUp@v`kce zQX}VUU!60&;ZZ(nEKUP|dvE`bt!O*$nNUSkB-COWC0QA@&0#I%inF1a%F90R6gAy0 z&rvcU{l1&mbOE5!!>#fwOYnIlTf$$nFKNv}M{db|p%YRebLdxg;Z_^3*2S|$>P;moES?70ISz6Pu&NhmH?G|*8aO(UkdhE_~eO+ z{5PM$D}<1vlt)kltU0YlgQ6OkmHRWI(Yql_Cv1oHNR&u_mN1^k|0kKL`hX>>5X+3f z*ZIl$KA*vc*N;bwf*%92Jn0UEg0&)6uNY_>iG7!||5N?T^y;v2vjr=cRNRT*1+q+(O#61qHV9{W z_gwVNc=0p&jO~|2*_7L&FgiaU{R%*Jg=FX6Uk2sk_0tI78kWWjCAE->5XMdGp<6em zzGXV58?s#EuwVY2-9d`+2H?D%^W?3=;geQKPrk+xWO3$=6SPgU25{t5b*rbALfLa zQ>X9k(H6S$&e@qPYt z;!wx8Lfih3V>^mUCZ_`_zE_ZDnJ-Qz3s)+Zz;hqw_|v0}abs+sfaN=N1MQfj%(uG~LHsfcQVgb6xIw z$ENqu$%KLa!t8d)h@0D3<=gGwno7m&l8tvZ!7sSK`1uUTx7vU;T^>O&H_eJn=&WoIzxgXH@F<*LqLSAq&m5D)4jelGI=Rt7lAnXn$Ufr!Q z^4%FSdZ=+RvF8Q&AlP+opu!3E(hZ4>e_6a4lfH$ zaL>mY;uP(j<#2^}3TW4V)c-EEG z(B;!Ly;?D;#LpMKG)pc+imftSUf`<=_~UxoB=;KZ0U)?o{5`3Mo7ZVR7H@b$r>+xL z5tE&Or@x>m3tjKfth$mGR$?MHL04uyo_uC;t4{YzUQ-#{t-^kfMMOPL-f_W{stToG zXrZrgE!vRpxzhs2jw5KfvZWLkrC(x-nI{c)6Si#vej)qJmt**@k1B=7f)BF!cLr9I zUo-S2T~I|FoZ5`m2Gs-RMm!M5 ztNzux5JN)>q%mtO-6qCu!0-Kfq=m0RaOhq9;Qg2l+WS$V8W4zjKZ!xHmPW?^ZmQRv z62R`p;E2DbAwoS~RU28aUuZ)2-mxgKRoz!heklHZ55p4jt`qi!Kp7Xg8%aYI(NDbottVEE#!q6}CJ~4)`-iPJ9VUMTq5T@90 zQSz$MsAGFA0b(up{%bDuW9YBghmzG;+holWH-!2;;4U!}lkSkItSU{7n6iMua=y|g zsAnkJY!j4RGiQdIL)^g?~JD_3*;ME5?1Ux!;CsVx6ZYSNr6O5FLsy zWfy4cZj;XY)%6lBEc*c9E9dTsKdVnuQE83H;llUxo^>NNHkbN7U1*FJ(9*?&u#Z_8 zf(zpA2p?UZ%JZ(y0`=t;LH z5m-?eoHf%nn;qcn3r$Q9TJct8_!VcD1x{IWXUgl`)|8?$?DkIU_zpK!7F#_cbFfk#dUt6GwaaE9S~1qMF-QhXgY`>^ACym z{CCPo?}+PyHKddv2M@p*3{tAAD8s#7ONS)_JaMn5TTUV7`TPXt`2o~1lc+sj_m8187-M~|-b@*(3>!O_F z|1X&!Xg1%H-*sz!OD_#NL8$JTIcutQ>;1F&DRrLT5d*dY-+*_ZTgUm46jjie3q|81OmfFxH`%lQ7sI3AWuQg6&$aQpQbff|QNWuVY^S=HFEi)E8l-FD}DWvHt)9R&Y;F zMtkm~vY?}g-b+eb*w1BJH}KE;#xQ3)3JeD_&3c^|V@gkF{WM$mE~(sd>F!aA#4;l> zOlZuj-|=+nEIc;gJU{&DtU2^s=wNh#!|H~6WFhXWyQklyx2_)Z7D{%=kFSX-J-;4! zqY_}g6lH+mChp=&ruLqB*9-E8oNTK1Rb4^>hx9nt&4{1o5WDuLf7O&Rdf}@XO+(Z1 zzyTEJ3Vvs7#Q4QpxY*Nl5Fe%b%O{yD5X-T6FUbcbdBOVD=bfPT?A;^UEib_pF;%U2 zz=A>tKO*L=BKEPZ(uzW+?+yLjrNmR_Pq$2u7Sd-IM2zuRr55tunvZ+hb*>xSpuz^% zDyi*cQ+4MaCy2Aa_N+jHF5DquykZA*R5(0Uk$$?gnJD`(R1=YEi{y<>1)oYrs@)jW ztIL@2dx3qnF^ous8ezb$Ty}8e)L*$%%#OlIDf?|-7mmug^5X{0yyeGTxm^j$KjFw8 zQ%(ZvRi!hFS@M{4WQm@VcZUwSR3%nmn|rSI$$+`!7H zBc7o5WYLDTy{7&9HY8|hc`$}XMeN3@U@wba;&g%$GUELnUO|lx&7H|n?|UBQ6%-c0 zHij0X5$%1C6$0y^DowHa3sd;f{V%mwU;8m3Nj~5oA*MDiEmq2X`)xz5b-tRh@Vg|i zWN(o60SPB(^*TEpWq&&XsY#!-_j$&nQ1PE~u?N$;Ad1-QsIVPxzpsCXd#zX7TQGc( zEXtU~?aQ%1aNk~FhI(4yS0v6Y)Z_*v{3 z`Pp#|3KMRD>eQw?^Lj^;9UCai(8<^M9>Y^JA1Z~YSCYsOAIL3iA?pfU;^SJ8J516~ ziSzIUL)s?%5NYND9p~(rkif}lM++gzjZY{8?xFT> zg8YKBAwi^LhXkjsqlfv`%vf`~<;6wA^F_ggg&ca`+O@LM;M`klym_4NfT43qm~{4& zuDsmjc8e(`Qga;_pLPdXH;&_LxosQ!WLCwg@L8O0g>lp2VEL`P$MRDted%*4y=HRb8;puP4dl8ybB~+w7=ZWTik1zCvB(G@qhx7Ov_s;2Ll}X7wh6k&bY$6wdZWfxaJv8dFd-15d|`$Wby$Z z@v4XL03GRaRdC_!DT7T=qz{eTBbLz-T*Z78z5rbCflny3DNd4g^q(++ves8#J7T3hlpWC@7c|6CPIDfFd zxBUZ4*Puji?j_h$q$bL`&AUc!(Cb9*SiiISS!kX0an9s}W!}pNOUnv`8wf{n-`FjP zdbk49{5RxPLU2r8n7CTV^R}m! z0OJg!vE%a>Lqf17@4Z+a^#$Nb`%Mt7$`vT&o}wdXpHzqqN3f2y@q!b(Cj#BtV~Y{& z+-2}q+>m6{B=@_HyK$ZK3rBvd4`zrrW|#`%Y)-+nC}@T97@`EbjgaXmu6sg4{Q|PS z;+S2W_0~%FHbU)eG7k1zokm?ssJ$Gxk(ysKj(U~2_UXY?17Xy8mIZz!JUs;ga^89e zv&+-XnX=Ca`n;+@phR$fUc3)@@K&N?2Xj-JhiZ)Rukqy|-=gTZ1xh?xdbj|hgh`t2 zt~nkR*@!j9msLVo?#V__8O-hRzeNQ8q(dl9XUO2OWHN#8>6Ze@TnR!Hy(P=c1#Q?h z6UWCB>qrJ`ejV7tN^uWC%kW%u$P-pkZ3B_KZ1m5|)x_aO9vunqh%lCOVWz%~w7O0= zfBj6a*%w%%LL@CqfIb*-#d8~x2E8Q~O0uZGAVKYjQG3RYRC*I45u${S=@~Hyk;%S1 z@J))4AJK@okK5U8o-L6OeLWps1)TlzX}NEya3hH=(G*fW-Q(0D3DE7_!&9Zj+r+7% zrZzKTZ@Vz4F%Q-O9!<8TG!B}!zQc$77gk56A*)y1^|<q{(>fZoi-cEDHQA$o)f)9H%%h!Ya1wB z|4ec6y$@TF^7f18mq_xV-w6m;hN*;Q{fz6MIh~zwIqwrT@hJWxy1Al*`Y1v1=L+cW za7hY*L$vWhF4EXz{gtG%Oo{u(Ic=v*UG6ZT6gHQFF9=?4Vo7w$@h-?7zrk>P{FJuG z;l_t{(4xqmXFgjPlmv+kp4x`M-vLO3&GZ@;1k6Z{Hr4qZ!R1wr*~(F z8#mk=u$H1H9AcAfEdCnz8fCO1?@LnWPD*s}oY6x9*Kt|_(|67!xNZ*+=Jb+z>fGhE z9guT2D$N57d!b@A{}vDm9$SUW_Tm=E>wZIihHp3M|F}0|Vi+ZHB(*|A!W-b;moI;v zSCozU=RIr-{3G0cFTUYnl#5Vb_2QkUvY#XLChf zLu((7g-rihq)@M+h%(1EL0Fzzfh(~VziY_%BsoQtJA1=@eNx|C;NG0TysBvQsT~?c z5@+@WHFm!I^W@v>{WaM?m$75Bq$}?Ml#4_8KeQ#~7r4bMUf|S4GtSlT#iYXoXV{;$ z+xp#RV9CA7Rz<@Zbc(Eqyb$&?7@7V_6bz$k>kM04l-&UcT++N-eEz)2UbA#o-n2T~ z=V;9!R+WB!z*J4DHI#%nWp^%>bLXZGd1=;C1n}^&-JptnVkFT5x9^ z@c%y)U5P)_{~uQ>N*Wc)wMwX5$rWb%N+n54ikwR-$70Df%vLGnXx~y4Wl64>CCA*$ zx%!IboO`y(a&L|qJNkWo{s25apU?aCe!ZU8>pX9Fns0%7V@6>iL;beW_RyTdRNgQD ziKdH!-%LOy2@`ad30y~Au05Ayl`OxQO1Qr4J8P24=C;RW3RRJHq!f%&exR|}&IseF z2DjGIL`ig9?7msOC6d%k(@}b^q_JHke+dN3cMgs_1^*U=wJ_Yh)(#q-5s8>8=MjX)IW<+1XK-`3w_P{JM8R zS7=5X0WIAjUE}G_j|z_opnRjWP24k9!qSfw2`xkvcP<)t}2n)fJNnAaJAI41P>6p=E^hw85lU zkimwY8>q^C!Acp6k(l+MUHDIX%#5~=V%)jZ7B%Gi%dX zwR^b6E9DNDs=ckUz7#$6Zlh7}!$5;wAu=kX?rwa(*G%REj)mM`DT5L$m1PRsDY8R; z!q^G5C7GZ_{{!7JK^0{fH?DH+XYU|Y!sDqvh;bllnunt2pW~YF(*;JnTjL^KCSs3w z{;xNlfh$fhV-BUtkq5S|72t|+EoQ>Ag1jq~%0(aBZpA(bn`DNVWGuL_ zz;c4*Q6{HjT-WHQzf0rcYbzb+rKGEEn@Plb+U4n&@IpD~%IYuRhLuZHOJYWESJ``U zagm0(V@RL>dK00$)T8?S9kVLQ+XBKu7&JtuCUG5I;t~127-?05QuQPpd-ry}U46NM- zLJY!r5xb4Mkp9uaVo2#V#z6>plBOZDq*u~ZeZ(afA5;B@f){r#PeBwH5LuK;{QO&z zNbSp4UNv5!zf!{^R3WQt8y<8IK5IEAh{HS{>AO;eo?kzID`Dt3Btif5rr&;i;Py71 z|1P+7>Qxq;mfpOUnt!?PQe9=7xn)FjLD;nYn_kD%V^sCXgIdKO^}Ns8^P_6cXIH%W z0#mFf`LLels@~7p$v~DX9*Qm4cy5gMqZit2_I*CxJAKE*<{RQGe)XG7=lj~(XsO%k zlJKDdo&M~|q#e$DK+-(=;>E`5f{WXNN@|n5=$^RHXhC!b+g02mQm!rsut}dPt{xxE zte z>OhGe&!|xG?7j7(a@g!i##7`XbdQ~qd>N94nsRgFNEyzx7I2eZr98=V%RR&={bfbLLQ!9~8@ zqxX_$)Mj8VuRKk=!Ht{WVJytHX?WqKoKHk&x96x!I=Dt@=U>@xichgdbsA_?kLu#Q znV!HVGp<5?-IHh+#ta9~D}A#jcDdeTh<}KQh>8%8ZyVinf=Ix_0_VUxJ3r3!sa@T# z=!eNO-XfaI;epyUJe})Ooaha5+XpBwre?{zL$f#-duT2be}FL)nRCDxeQU8(tT_SR z2!Os`hA+$rQE1>?#oyuPq!f91q7$!_KQ}nSP(Sl+5A2jl-}86$j=xe{O|>bNnQZL= z_H5QbchTkC(Ddn24RiMCIog-g8Yk!rM%<2xK6Yjz=D}d!4O^0jT4(lK86)j42JiTj zTNY9`>G_ftf=alPeH%H2G%Dw4a{t_uBIDP(kcTn&m5HX+Uu&>u_)pmcxmh>ku$1Tz zmMiCCL9J>)dWY_>h48q5A1R2n^?mDr75f?yc9*a_Kmz$9XlCM)TJ&DP-sAFdoxT!W zeq>IU zBCPyB(S8BG7&47 zU>D2ICZ+o5@_rYT=LM~7r2FIb01I0)f$IVquK1>DPGEwcLJvB`eH;Z>cm^4t*py3PD{dnV|F ziwgmwV?=Y1?##34x4JUTSNidA*BWd%uN4Lgmq)c>b$S~7f=fIvt=K~|kAZ7RguhaO zh{TblZ;XRpv)BXu&-x(tuE;5z{(9mN28;Jb73}=CAfx_+Z~xlO$P*;f6z!4E!9ovj31dyjLQBi^`fM+VfzP> zT6P=Y83=|h&(d9LS6J1*rTH7N{yv;;xiOmCC z#1xhyj^P=lO(@g}3c0lN;txdsml}R;G*ic75Uc<2Eb<3rOK^#Re7=7by#JH3RlVc% zu#*BUD^3rq$TaYn4_u*1y@#BG8Go?8(}B9^K53T z=3(x8;=G%B+XsKi$aD6r-p|TdL^7-b+o<^xb21aEQ002+qgV9HVf)m#*)a6Jn#tRn zF<>N@oVE%}Qa#4gc^ZYp_@FYT$G;vH*=r6Aw8xAXOm|sy>@c!;Ci<`EvE-oIf^Hk) z9{WJojXuLl+P*Uw`-q~>L#cnIisH@8rt>EC9JT2Hjv!ZC1L!?6R>XOY-oNs=)46wm z!Fn%R$4F;%Jt1~99xrLU(SHwOQT9h=Z&~*3eav)WL)nj(%UP!8qZi(M z4fv?A1+OIr+eC)W(F$iS7r^rwpPb*LElCXoOPH1l2^XKwepN4PpRc`r3ar}(M z@7{5w0i~*Es>Dnx`|?18je5e!-N-k=*$*ci!uSNg*wQdrul@4K3hpx zmAHol8Ik#%;Un(c`AX@Jwl|Yuw%*z~uk(kas|Q{GZBxJV^4Mcm&P?#VhrZ>E-jX2I z*HurTnCxM=!iKcLwKciX?78r)zAMj<^@(p$7zUC7ZAnS2bm-RV0mN%i*EJNx12SH1 zz5rQ_Y^=v^cd6s;s15Wx`gJ(Jy%kriNEs`wXQ+<4zd2uJ)8YVuH40C5g{@00dKUE? z-n+RB=mYHNm#?WPIDbZm9-;Tt+w%hN>E~f_%S(rqeQP8$fcHT$jS`@;HN38}>b$Fs z;x6JCCL^=*8to}V5rQhg9It5L8KkcGcv-wXodJMxb!$XqTI_X4ub!2C9_&;~Y$GRW<^)rR=aPBk z$08?Y^hX{wp~2C-78PXdS4hJ>@-ob06ZKfGrQz?-lAnY;+B+5vC^Ok!?S;uihz;wJ z&TAf6h+UkM+(7Wx#d=0>w@Y+EeZq(ZVBpQc@+@=|*e* zMPo{GzDxAVg#A4y3gL(JeHtl0&RO^XqumDy6`BaZuAU~o#ew8LtM=#R#q3psO}BW- zPwXk^p*I^@+Qj#zbf{Owg^ky5w!B1dhDnsxIq^*=1OQ;Xs|=oaV^-QBQKIei{4I1~ zp0EP~XHn87KxE#YjF1JVwgbQe#4}>)hj}WKhz{^DuHBJ`lI+t;NmQ;ZL@$d&5%QezQq>Kc}NtvM)PD|%Go}w#SCR{NK?<0 zY}$+aC*zC}hM0>2gwXvDVK4rfzL62^i@fCCZ6iaO{8(@sX(*2swXh|cIqphtTbIwz zMq|h8uYFI%OKQtL_c37)C0heyaIF^zR~kmQRM!e2693n<{6LY3I16^0uzSLbG3#cb z67!M9Csd5Jf1m#9C)i*&>ah>wTfuuO@<+xt%=x`T*u@)haV030TM{Jzm&#BGZ`5O^ zj0QwLFxs>W!2jMrxcKBTX4HuL?nhF8Lnu#F{z zIy!NZ)H;3@F1RK+Ibayx1-E;1!H5HK@{Y_6D+tUoEBYle4l5OBG5&kZtdJB=kdM-# zQfNeTt3(mE`&=+9Hh0>Gh6TM|401AQ&5<53i|7x>D|MR{A9`$b1dwp`6S!rbZHP+1 z|N7WR8?hDRRMW`Y{*%5HnNqUX@UpcX&EpTmkq1nnzqD)PWSr})-dEvADupJX&0?yk zyiA(u-v-}{9iM<|n)3i5#K#~XRkHGQ=XdC}Y7AjKLcDg4msCY<^>%7-&iDA^(dPP~ z)$h}A;MCchz)bj^GDE~r3Ilz#>$z=U1&CIWoRF_$-DU2au6{#|^mpnJ*+hIiSasl@ zY4C0M@)WLADe4AS@?lVU-2?l+FsN1RJ zCJ1YU*D4uVW_&Tcqv=F#A91nfvHZ!11Y#gox5vMd%;h`^*XcK{vCPJ=rW=XYl!&|o zYK)x-L1^Xg+S-OnWxhf?G$e+eE^y&rul_10YE6NXRAyyytUcP7{7qxIbPStM57r47S} z+2)f|s|P06=6(%C-wW?NMz}yc?k%^^&a`d-LAE z3bKnfk{TikbWy93!aLW__02s+)8U34AN%A7UfR97blne_l~c={LtGrH+8&<#D|Kl; zTC#u(Ur2nhEiAR@Pi!ybe(Dy8i3GRAADIy6#>z6Jl7Z=J?XlGk`k02ul+qm0P_CE;-J?(cJyx z4ifaABt|-`JqwjMqF%7n%6HvN@6ufiuhyCpfiAKohi0tc&-M3qQo$gLc78*vKlnJx zh@_PJVQ!Q2q>}cMsVdf62foMfJu*ttFu#ISVX1rQCi(#w z)e{&yuu)55JJ?+Do8UoY(^Le7z;IQ?Z6Zv18VN22CvKht^nDpQYg9DdhpUnB1_Ni) zw&LyvRp;7>aS`05 z7RHdp*4CdEa}VGn^=^QBrV6&eW74G1&ZcQ@?I*HU5%uKs1@KArRgL-;Adh5~2TL;Z zj=Gk~0w=AVE~~PMnZDm6hcgL~lDZs5{^g%zGl%apeSdz6792(N&ikjHbEM}V(J9Jc zQ;PUm=}oJ;Ik&n*kz<26`Q->J_}kXYaVKNKB(N)z5rXn+9EfTDnmN@tj*Of7w9jkL ze5B-E`n=v0ZY#P;Zl@Vc1FdOc@oOxu(4)NRp8VTek*iZ-8(5iDU4Af~*mMZ3eC%Gt zh5v#gp-8gd;XiSL>Bf}iEVs6$Cle}Pd$3^0;52d)wRkgL)5``qA_77e+SVOD2N4cn zRL#U{mjK-!E;N{MssXSzRN?1`g%^YB3Li_1MW(?=4oC6hWL#gQ7WBkzxS)=PRt)+T>2lI(I zQ&NAcQIEPlp(cm}&J02j&!w;)^0s%C?+Dgu;Uoc>qo#xk-Gx0^3z3=Cvn7u%d$p<)TmY{s6GGSsQfOKymclj$WKN{9dkQW^iCju!XBF`p4l4{&t zjIGq^m3)2?E)elli%J14U{B7PB-Xv#2~XdFQ(Zww3GnR%`3CDKGPSzb-J7?)2^Oo; zOK!0D<+k4F#Z`UaT@1=v8#{8oT$w|Rc6*31D4vBW;HpKAQDOOjk_WrYuqpZSe?iVL zsdc1-%)7YWo*_BfU#0^nzW++mio3!LxGQb|Av!H&btR;S1?P_ad0{qhf-Bj2=(Koy zxMc4j6pXpb#TNPt4Fn#GgUj@53COvZxVR)7CoO_}5}nSXwk=%2;0B1{MgqG9ruj4y zr?+r&x=Hz0xQ!bVzJO!VsxbET!Fo67=cZrhkB##7AG#@gx5kHg{8??3Zi|7|7R^j( zao>?oo~`kX*`sAymeQPKB!E6$4?aYjUGT-W2G3TBA=I8H&s}zu35cq0;LwyM44_oIFeIJ`7RSd8)c)3|& zp~=nGv0c9biN|#(m+ST1!X$`xXzuJFd55BZc%JIRwF5^L`~INIdV9|$UoyiFTh6($ zlUrEhW;^;{E>FYOPDZ9|2&0cgB8;3pEb&ob2 z?<7d%4vx^y_vrL;`VM#-wD}v|KW`7E9>t|$(X%<4<$V~t(1IX9TwMKurS``7B%gZ4 zQjD~^X7#kEBJSd%_UKCVeIEWwTLh9=~;yABIA6$0yQY_=lDJ9&zbLso?A-K zxmC_7H4GHMt2-kiwzQLnn~i@yu#$MG$A)J0^i~#9x=TtOgH_c*rzXKV`m5g$ib_tf z?aJ#1n!YvZ3Xj6(j=XCf{h}qK1fi?mPSStrRC-u5Ocpl?=D3zZjx)huTBqk?c&Ou1 ziUm73n)Mr-^mRFt8Q#y2p80Oszt3sR_+7a7;^UK$(G{$jw4>hsTH#mRZaoohqI7ib zf;RqpERu3KJGKsZSgvvN9lgZY-A{mbw_rTTW|*r zItAs6xB5-H&i`nChxKkdk7)QSHBlp3$fwBq-rN`I{@8@obu1zv5^pbi}h=tAM5r&b$?+BVp;EzSI9hk%J$be z6@JGRhR=`Mwa;WxdGh!+kSh8kLNTy!Xp~xb_qgwun*a9E3B9#)<1pq#t_C$N0;V~a zK?fjE-rb0;#%oIP!INSWuOvabEw8aZ^VG@~A@;WDb3P?aWX4^yPmovyE}K8q zPdDwvE)n&_P{AnkjiHR-zq9nd3)|J{q zOQ{Q|Y+Jw@VSEJE$Vk)EnEZjZt;cU?X%d(|GeRTmFM=#Ckd$y$Kxvy$ZR{)4&ueek zdp->B>w!FHgxE;Xy>cMyuup~QwaWo0`cY+3My2F>WwsKA zr{Rxo;gYQipBb1romg4V9PB&y)+rRMfI;ybsfbD&dOXB`7VZ2cT#VE*jq!857z=zaARk0KQ|%ru<$2#7$+9zb2?GZ#t}@x)%0_d2RY+ z+>iBDrIHVV$hfPMfxo0VFXA6Kv^T-7SOQuUyb-DqxRls%r?Gd2mrSoBh69MJT zAbu%NToUs8yjj46H{;yVx{!kUG0eYjYCVdr8I=V+WTH@avCKSf;IoAsTL`oGJ}`LM zSXCCfaBEgY0wXv|TKdDMqi<*L_5M1qcEZNdg*)ak#BJMQ8>Z2u6+jK*MBoy8JTfSMb#U+UfK& z?EJFtlf3@^eV7xxPa|vO4!GdrnH$4HnMoUzIg@TDOp3}vBhO=nUl-quJ;ifc4xqb1 zubn#bRMD~oWK=6YsSefJh-(Fh z03BLacP->#GCXK*4bY3y)?j8?ABSx3&<=r>V632m1mfmfW&z3z05ey6y24 z{>yOy_P!QM7fshL$%}jic}&JmMxY0&d1x`Dt#w}Evauv~P@eO==@@b@f;53SsqFSo z*p6SwPORRDkLU*X(xzKmHe&vm4%91;#x|Q$y+@J7-O;;YMubt#@4q6iIBh<9Mn!yc z1KwJdy=cED3*VOJa*dn$5MmqUC+#g8Wv8HbKlZ6cH~Pl`u{@?c3Q5A<`4Rdl$W6K2 zfd0lXM%J)=)|$O>)lBkvd%??)g)>vnT1N2`Etl_KkcQw_2A{h1OXwm0sZJrrs|!DgPW8Dt_b#yfG?xw=TAY7a zeu%@cBpCwM(`#9@w&?KjYYu$1Eg`q%;$KD|jr1DSi1zUcMF0%FC&2aVpXgdQkl!*(u?jJD@o&tJ9$Wlw=Og7M3GBcA|?C>o=ej1s^rXACGz zrBfR#=k1qdX++GLpYRO!Kkxyl{w#P4^r+~h2|A(-+Ep;y7qr76H*>Jjvvp8YLHxor zII0CEyQalDW(4dv;9J0EKP7JRyil!hJXTfwHT*rC34V@Il6m@3_#-g5_cTtG4}L;W z!f0?$dWsALcP7*9+8B4@J8R;gjJE(&DbFLbLehK#S>Rzd(-`kfK3Lm3;yi5+`gM)4 z1JGEF&{(%K=ymib1_sK*4fPvoZ^4;nGhk)OL9|IL-$K)v$H3<{k^5o4|GRKrZD!6V zlnuv&E0*T-KF@%6i!6^1?8yU-z`hbUUhSG~h*fD7`!zp6Q#%NXe%wJqnG;Clu;>e} zhY~o+%S)qdW>rQpH`|W4^k^ZW5XH0^qZvlgtGXA0)k-)VB9XFJ1vY z8dvxu=GKLfL(3}%CD&0bndc%)mfRfSp|ZrJs<%omcT3BC@s3y~RKSz<5*@hbCv{mP*4v@;K z8Z{PDorAeX4oKu-|8%t^GYwj5+H|e+P|g{g^W-{Jbud%(6u*6L(f~k>_}_we5j0ga z;FPi)<{vu@bg?+j>j(I&$m4E76JRJQn`zKg*p5$%EP{Q^wHiPB#Uyo&qu~-e@(Y z;O&~_wBMc2!3Ug&*dtY@d?0RN#?G0iE%@3_Ub2nbz={SC3PD(lDy|Tssh`HF#fz2Q z_oed7OqyK@it{23eZ;;sN2FZEgNL*CsR{qafquKYk)tLKexcAYT5Lc(g|AVX-ey@E zi%VuGSK(zxhg&B{t*cKhQMFU9{4hi6u}xp3vI@!`z@Vice= z+Y*l2MP<`816 zB~fx%(q&amjGe>{Gp z6&{Scg~p=x&198*KJp673jHgk54>>L>*zI3o3%W+^`+=SCRN3CAyt2!e(`7#W}j}td00Y16JcppDOHl$bv^VJGgfO z{@rq&(?^8zSKQoHug4sUflW>K=7`N6Go4bAP4Grz(ne$`&YIeuH!D>lw zup0c@d7Z3SqEDQivyL^#Z%YW|3;c4-{m|<>(h7b=qpWJLWC+tbCZ24@gzspaV^UKZ zfVhFk&i3-s67$TETd4=vl@1)7p<4qa+*lITlkIUh&pz) zwg!?uE&ftk8Rv2l*aHFq70$#&Hr_s*c$I3rn+?kk5bfe|+F(zc^aoABNwXuI$4(8s zp4y^`TVtCsbP`5dP!h&dajM7jT@xlcFZX@v`?H7}h?msR<#;PB!0Pjqpmca(btx%o zUDa@&#^go3`N$_BdmvX4?ho7rH!u0#o%9>JYsQ|8-anVz&X+)k)G?)LbWso5d8$c#>a=alPYac8C83+E}fu zb#N*J1nAX0Nr`k)0lIte!0)f8&gd`Xt=xgR_?QSmfSNKMC{8x(3tO0CxH~z6zc@h^ zo|)VWgSJiA&4Gt?n-R(wcm%9{_|UI4$5{NSj%B@*g#cWhA3b z?eG%hPrO1G6hkT`MpS3{Kg8%x9>9Wve6+~5)iu>Zqmfi;3rNf^fC+MIT|iATIsgOg zHgqQIMxQSk7D!I$0F68Brp#7&L}s;*J^5h^z*u+7v>q#tHJlsDlFH$=!iIGg?V0_6-dBaj&;)$I?TX8xFE{o zIzDBRh;{5dPIYZS}AM5xQH}JzJH<&0OuyoQs z4+X{KS`iYbx;_;OHaH@oTVNqNsttOAn@>rZAE66x^@3N~76?C2x2(l%T=bpKf2D4D zdU?viSV;MX{;UW|X0dihUcsz|t9b!#>>u*}@i4o7GdbA&g7w8d(+jp>Um-|Tl`Wbs zCz%GrFIGx^4n!O)rxJ__#M@4&Q(^-Ld zz_S#4p~0R@@>Z#H&Ivww2}%##J+!P>&m|jOFXtu`e#JFFG~&u^(zt>j%-fD1cW6tZxQVzsLlW`e!N5KZ-&c=Ivb#(dq} zBVy_8ZmxU!G@e&xg&=N-ql71hfOL%^NPyypZ5K zee%zq#m|=N_=`MPYL;vzkN7-2U}pcbTZf+0PqRa*Aq1vZ+VjGq_K%|h%2B+ym&do2 z*pTA6KM|ylPo%8 z$er<0r<*&}v>yGU8)}CYv_63S&ffaZ>F?^dUIse8Q2QotKa zp&2902i4SeN#@7RFEE{)SMC8E^X*eCo)0yPyj82%)IoftTBv-)H8i zxA$UUVVPc);5gT)8K|{uu>>j6X+bAaTtzhcH{U3!tqG7u9^$IBPH{$t0EVH;2Fs>e89ce_9(a-wor9t%QPFdNhz7>{D>WIFD2nBFwvnyw=A+79 zTlo+|*KI6Gj)Hih1Lms0g(v`jBkXN}nl-xIDDR@b{iah2_+(2XP{1GFk1+;parmd1 zo~XUq8vrSLwsJI5%qMUKaD z7&I^pDVczhSc>iI~igzLxGNyfUz07(#jAe-bo7U6K!{wp#h5YZN|P zZM+afwp+j3g2m=U1Tca;yx#x`+!(dIz%2h4?|s;njkwJ9B0IUZasNC=3qak)TPaQ*TKq~N$pO3id>>=k+MYy#I*)c$o=7P-X)}d zTxs2W+D_(IVsD#x#eLKBW3IaTsPT@jpt~iL9;axMbA8~s=@v^bD%J~-UA%~nDlsX!Ub6L}F)VFq24_euW%^*=mw^YU9wQg9)h zpPl=_QfN7KH)9>nZR6AB!#+DAfse6BW@hF_;`w0nUx7bZ+iO>F(I6OSM~U~4yTd1+ z8@Lw88EN4kd$)Cxek~Vh5tM_p+BFs5*l&9g_i^?cu4J9`4|g4}-*jk(F_Mvm+X>2! z_Sa?DdOna1d2$~J9;F?y404Vs>jA`xBQj5yc~V8KRVn-a}%Zr$koWI z?}66GdHWO5;OlYxGnA~@?KV7{5! zeQUb)X80oXW{^bBE)U5sIu<-br82O=AT#AV(5|;sK z?o~?dt2Z(_;dPnfdywn6{g^PpIt#Za0H$!SvbOB$&xz}j7e{Vc+G~#C*5>-0)>9*J z%A-M6k5sX5!}6zNkKr?Jnf;uYWpKafS0NHL)wwHyi5FMA5N~V#6#}+&{kqInlH5#8 zNFvKvTou6wpF$s&nu?)ol?vD`jJ;9bL1__ye>z^Qv*&H%L6U_ycL@{BQ(^Y2qM8ZM zJPKYPihrB27XnbM$s7obx6fPP$ZcX=5C~ZYr)H-{?e<4C-gy-(K2ew^(ZQS&;Fyj` z18}=GrD~6F%|rHoB3MVmIvdrY$Yr!-`Q#QN9Egkqu%30eFxSWWvt-;n%ivc(1jigd z)iYd<3REARdbLK?-3ars1gMjdl{Sg#V>S>S7C+hh@7Ud)M*k9jqE9cHjP^Ek!qeNK z2K6=c2%uFMAMd_xH0}KzQY|C7!L~PEn4Ve|v5pjXYLJ6M~Ov)Q@YM)OIehK4#k#8@HJYVG07_8>ChI(|WXT;ns zI$|N05+4d3NZk{b!#0a*^U-iRvcHNv=tt=)n0uM{6e7u6Q!-)P7zuKXAwK^%*g2$i zd*#$OXkqaty@#@^!6`58V(axj-9W|LhrDc|w$#SBbAX)&9Rybx(s_gog(iMJv+uea zXZ`^&pdeP3d`83Agkb=mC^aW2=26J~9uu_rBc7;@+g8(GT_$O*wA3b3pve!!Cu*8V zXw`B5IM~#8b}GcWc~4Syif#&gdHcM8J+`gw@#;r)A0oxmZtH?I(_(V}(BdG<{RVSJ?>GTo5 ziD%Z-SKJZ1V1blj3Y#dVJ;mL%xjfn$)8EMnsZ9yF1I$h6rE3lTcZ4T`z)FdaDFGT0 zw|Q^c?vJS#Wz=izYnSIheDO@ZQ!TN{3jDTziD{Wy(;&jm)-7n0!2a#;HfLAMJldP!%S;PHrDpX4sK?gY|DhqMflY4lx9S1)2_D zu3XEeCSlTO?+ro1N*i6!TNqgL9E^w=rbDE8bhcajxH04kFgdo^L`(`;bc0;fIMw?6 z0~tHvPsy1k6E39{rY_K8r!BQE?M2_^T+W%;T-FX;Jhj`#_y7D!KSb#hI`P}cuig-h z(Z{)o;I*T7_3qkn#_;k!8@|UCWQ+^E7# z|GqbP!J5|LgxINvIMq2QI3NnlO~@7)J^5xYEGMi*OkgbgAf6wGpVHY5tHOZP^7!65 zQsTtns(#41;82xE?St=NY=I|d#q2Z3a}Z-2frgkIFRv8OD}Xor7MyjHhT)nKj1T`A(r*bVY_D^{E$3*aK{$5$;%?K;-GCoTCF9LcOm*u(2F3Bk2{Nzpvpaz(?kW^$%<{0hBi^5!XbPXcN1 z)Kf9nea+u~3@9*?%|^ZjZEkSl#n*52REo`~O@JHr8P4tfn}@b(TiR%Jn!MUX{F&>(@t7 zb%?}m=J#zi1SB5;3RssN%srm&P|pMN8*9Z=#l={@smR2q0!SO$70dGM{57HXtCZE3 zF*;x1y|+_FlbTC9-vgU0)Rf~&-Xrr%v06aX${p%Rcx}PI>P`ZQ*#Jmz+^A)EEgP{n z$OkfLNU2N|IT5F_w~nBkoo5kbnWQ!NGrCpIGaje42OaoayWIHf(U;&hw;)&uDgMPJ zh*6&CVxJ#k{;w2N{tT10_>2nnSXoNOaj#MyX?@#VO1uY&=`2bIWb;n9ln>go(4?bW zgh|0s{lm@MgAJQw;_d%7wy-&CTQFpV@7HHZWK&hG#_C+ zv}g%S-Fty%*IOG5=XVOSBPK(+9EXHnPe^*B`c9dRuIMSme&7}Yay{u}6{~NRPp0Au zX3pD_T&S>o`~6ln(;p^|Q3gZytjQHV3u$Ou+ps@#K`STLwJGz%=orH&#j|zcXmy#d z3*q16Q@p;SvPbh}W;3WV)T;CLI(tddEz9qc*D-!d8QD@_f59*^wjK{GMmX)fm%E=I zQKbJ1EEHBi@+<0lDgz5L%ubIEU*J3!J=$=4;x$v~RC|o?Oc|@X^Ev;t~yiaHm?J5kzrmvAu_Lb8Xp4()GLY_Ykx@7S3U!o3}LupS~N;QPowKu_IVsN&uDR*?qt0L$Hd%4x(R6-L{oLtKDvy zinz}za_e(n1QC{nK>z`=$G6~L;1As@+q>~C0+>S~bS*-eqJo{r${_e*Y9kwwiUb=$OmDTz%9=; zkxiY&g@ujb9y0S(p&mwiu(S%E2$Y0{HG`XHptOR(m{d*QY)S0(S{4489+Hs+nB30{ zE@B)%G*2^V_jev$>53u%Ep#wE5nO2>9|Cv~c6g^bUcTawObHdz^qP=K;tH(REcPT< zGo4G9C~Cm$ynWaflsifGM{^iNzZ;U~uyINEVABr4Ggf@AZD0hy{%t$|8<$N985qQ9 z3rIqBBvuCp@|aOA_zKZL{kAQtI~#mkVKbbB7Qlqp+_Alyy9YP|Pv+ZTLsQ|Ws<&kw zs%I}3Kq5#g0GXL8GUdS%g2R_mB?sjNtbt(Y;zR0V8*; zy64EPl};PVspJ(>B0&y%0^4)END#&zBz+$7@R&834ITHwk9!_S1md}HTQEj_s|4x) z|9U1W^>|reu9nhlvc-btMqEC-mnWe1-Z+{_L-WzW)`98mnjR-Y~Z1o7pejwgs2=kylv()yu?kA#dlx=Jj!K8*F&9Ncuu;ZF$nNKg~3- zcQz*N=|GR72MaeQ&UcA&39-QbPLf@kb?1RIYsSE^mohFmiZTRtlpp3P;7eQ9%pYaP~eW(4_x8W`t zHC+Gf1m@rA{^;izDqI0=PKbllNHPT^=8wvyJ+oKUh=CPSjhcuI6L;X;Lk|XJbx^iS zD=dTO`{Iyx{7QizC?0cI4e{!wXT>yIl*|Pfm;l5KGIZzMvRl1KNq{lbGUV*hnercL zWWnN}oX-;;&5=10hUXwMak~~g-3KE|iuZ4k|CSmmI&2HZn+*qkIh#?_2q>MrAcSK$ z4J$UVS6~z_ej9KYjdk#o&c8jYY9J~3*o-U~e-m;D>QQYHFFAL0utC3iL7i?PTzGPN zWc>GJyucME`X5Kv9?$gt|8=^k6RlFNu}bNjgoMat>n4@UlCl_EB{7R7$uL$a_e*jR zVo6BMlKYtDx=IXlYc6xknoHYUW_IiM`TqXopY5^F_I|&f&)4&!%cXr;O8deX`%EWa z?i$d2$@0$D^;5rt%}ESXAXt*7j6_Q)@fe`ScHi{gUNk2apxIQOsinP$>O>r;hoA3>kWUU;1RRrL9fg6F&^Bx%yD&;Lzd zK-I?~g@EY&)m3>~gA>?~<8A&h_EL%8SrzfZVgX3kpK=6~;P@58nD^Dd@k-<_tJVA%3+e@v6!fE2d7 zHdfE=@8uqa0@~@L>1Z6bZMSboq;G0d_eHgMD>8~vWP-Yc-yT)&ms@wIKoCzL^yxQV_-VQxng$$))Kth zH0mlWnS||#>}GGRl9>pf@oi{vJ}Sh6-P_BwP)J+ghOZ>hK~GWYWgL-Li4?3V{1~}@ zZ*YcaPHbH%?U9emb!5cVd7=W)Z+I9RRES>F@&5T=Ovx10XcE*;i=owIMtf6%#1ris z&8BScs+u|rlVIVZt27*N)xm_%`Cs_%EDw=c6<1oSy}fJLFhv&JeiN@FOKdzPF_xZ< zn!={6VsboPSra1&wEjPJ%eUz$Q@EYPJrYo(Zw8XiGde%ZcZxP+!vjfp)-#?V+hpV$ zN3U2w0I~&_h2g+DZq+CXyvd+y5q3SQi+FioXw;nLS|MO4^Tp)=c)P9rqoB6gQ)l)D zOuU&v>>_)tGPtgI-3ctKcv`L9Ra7tNn~N}N&Nzti%Kx|RF1UD=#8#DFmJw-pauF?r zO^qu2M89lo!hwu6mqF6>*V+t2li!5&aP~sG#2QDKP)#~S+aCPBJRn$4ZHv`w>_w^t zi3~82J4{jWY``SGxi&WQ`penTijT<(Pc=?YkJF&?9dmLEeoUOdDMLlnAaOv$!S&4F zAXp1E#r+xnYQN#L?CVWYA+I7C&9PmJJddG{lznrkN~0&`!A3f`kn@AqFkzG`G59Va z4AK~Z`7ZUAxXiP6`J2L?MjrVXp=d8~iaUnX9UwJ-zb}>@1#NN%$_wFfD~_0nn1o=@ zke2b?pMdJ?`e!#gU{G0@h$CE1_?)*#R%V9Xi}T*x-p>Akf5w2Ej!mW4T#{nqMQ#E; z_S8dju~R{jW06zEHr>#kjsNKGPt?H-Sey9}0OZ=Z+jsmZJ9HD9>ZX{5jNy;CR11Em z1sCH|rZ%}!5;kam^o0%%*#+O40L9b_#Q}xW*JQu`C|m^lKskMJ){c_|CER1*Fds4g z#10%_5f-}^F0R(pe;CnragrD&Th!S=omQ`c_vW6Ea`V)gk)sdxjIMkxLSlxHT0>ps zCB9gBzjZhCXXZ~wYQ4lJuC|XMb{sl0KVIS|wu`nlDFE1#ZHM#gA(8$Q)`5Bd{dmY$ zVzE@ezWk%`_0^f17iDAcjLwelH6vBDPb13u-+ea+hR9VT?tT{)x6;4Y)e>KTpy_Ts zjabEaH~(M*tA#by*3R_IIv@+4l;Cd;%S2cv4cC}!aEXHrTvO@}$>i!lmcS^t1kf2u zd;#JT4mi08>0VMz%}2Qg-NmxEhDzr9oD{{ZWg;tK3ZNte#~|98PmWd+KCFFUZ+gGQ+vGOmt`lnOsPXdby#zaX8c}Wa5%~5%6AoR z&s_^xSoI`qv#7vL@R*W^zys#I9Z_rB7c4soF?m zB>Nl-zl_SV%`L{hbVD9TqLQvr2ks0Mn(wx6Ov||W<7+YcBX_OXGP+oJtCkm$l?*FV zygbGSWVxDkPw@7_CnZt7kA|l;wBxv6z`1Ae8h#f-Ja| z328^q{FXRo1SLtmpqz1{?L$r5v?EWdwNGE%8oKN6>7pH&*Yci}g>iVsNE5SiglYDR zy(9R#C;~$Ce?JF;3aLZ9R=58o#vAj(XC{0Eh!n7-#8wRo9N%3q zIE%m#|H%U)%X{(ad`<^6hW58gEAmu~e7E*xz2%n{THW(2^B#nD9#CN~4V?}WgwUZH z4{f&0v~CLGs?p}{=H18li#ARh#g3osTc!PV0z5JcWJj5Ss|2kk)?s!YyN2s*x0JvCCa~S+-6)jHRl%i(Nw+*|!oI(Zqu+93ZqE!?0fJV*q8!)rF|H^P1WKj>g&>emuJ7FhlW=!MM z#2!~{|0ukjFBAm@DGqxJoS$?(i--0))V;KmV&3-#M3(hp;0iNDaqzSE6OS+yc-)0edID4n8Gi4EAKtY_U`}P zK1y3+n`>{eDb?(~F~;K7LiS}qKXo5QPbd}!A|d>~R`ReY^FqxFqnyw5FzyPKa8+Yrr zQEXgG#Mw2gJ!|Brh64uUf93+DH|+_lX;_vM40s)SMm*6)gM+_d>1z-+hZ=F* zS|#*Jtp8TJqIaaK@8GAAALlqmzm+^xJlJtk+{+&fp91M@|3*u)^WtiGMtPQ+5MkqR zO7{KSGHF}nE?nld+9yq401{=1g}vueEV37DzXmwzJ1;tPuylVa^=HzQ@pc4EO=~N^ zx((lT3{01s1znU8vE@~~MT5&S|8#nmsbjxuI)FE+dL4b^o6}B#=V9V+!@Z5Fa&TW` zuF3APOVHzY0zFle_(7e7D&!bw(JHDPc*zXp>Mh9boQRW`R_$A7ZDW(DG=jUE_2v(T zPcU!MVL2n)e7cQ$uBY?MQ;X_rZoL>C_3(q1!g&slwOyS{e&>C5rrBU2f z|AUv*zAAI7EA}sTSUnVFSc-wva(>>uzPmQ-ZP!!O9yjESe!dh(s`<+^J6HiIOoAuWqFp=3daCEt;v48 z=cX`__V!Cb1+^@Pq$W|GnquPeFU4A&)e`)X`hkQLCB3r0mlh^3agu*%(=1m3%_w-U z;XV8r8w%_MBcKy3w3ktSfHi5f$!tVKXs(--ph7jY@nj-#47m$C8d4bl)u`Y zC2I)rS0V~{5lVj)sJc=yd>g-DLal=rttl4e2G=(5f3}J0DjO^wM5Zr7GOA-BIS zA}a-O;ch_)aB#7vy z@8WBUvRkX=T9;&{P%lutCW*1Q;R8-}j>WrBE9+{morSG?CsRW|p!QjZ8!c{_NQzvx z>-}w}4Qe@g#c^^dD^TC=q~d=BdJjASZzhN=6aEi;q82Tpx@zfY45g>q^C0Ikg=rl$ zS@N*fMwtQ(L#thSz3T1I z&A7YJqskY8Kfee|>udT))(~A_w1}S4*1FoLnt8Unf8lXrEAI=p11J&bGF*13=$&L* z>)zV4R(s^c<;Kva)d7mK!;jGY=d6uGLsLXYnPa(n;69G=(*7MfZyTfoM#WMBvSig$HkaoNPRvK`APma)_PUK#XJpBWCooE__wZjk zPWateC8(e}f^F`jJKpA$AGgdqMem7Bx28N_{2F!TBjni#EWxZfK?3ve#ZeT8-Xv?^L(d5m5^zW<2744KS@1)NyQy$yQ3RMMWZdfj>M75={!Rkr+SEhU7mMc zktsincmx+%)YnU3;@IiPny%G_OQ)>y z<8@rNSvM}`!hpQ1$o$##(uIr$oGuN|-{M5DtR(%4D=WJ>s?Iub|Iy4&g6wSOx!!`_ z#rQ2_y3^lpF_RyM|9!W*urr)c=s?}_rsQ$`{8QLuBG4xZh%bLs*__uk|F%!7LFxXE zZ8MT(_7K%zkBjL%ZlS>Vd%|(e6c$rg3!zS@4QAh)!q%9m8sKw$9)xx%!a9MY-E5M* zaAVuGquVwmok_WBQ^x>v;(K}whR3T?G-Q3L40SKMXfSc3OW*1_5&~eUc5hU*!GVXU z5l1A3c$ciI*s4-0?E6#0H#)0AVk=ljw3qCE-rW2Gb3u;%QG9CgD$eejpqo5Z`dl-; zy!iGIc%E^wl*Y8iOyxq|X+4HjI+5Lx46;FtNI2Dm4Xsvu;15I$4$ewh_u>=hIHGr zbMvw$<`Zu1ZJdnZK`&29uS+2E?|&4O@n&AdNYPlejV_Y9L@Fygz*#9TMhcdJ$mKGK z27W)^&x8BYBVl{Oj|GdR#ymxxfu&uR#jU6~3j2Ark&37FeZTQLYT)JX;-UOskx+qR zZ23<$q#lsCbZq>Z8nabGzOUci2u)+SN81~0!Kq_D99~w=%d`G6GyM)Z&?D~x z?}{{+B73CvUgSAvG{v?mhjhQCeX|IB+HLTKlZ`3)WlgTHa!)$44!>K=+reAe_JqENrGM%?EN${ck=2cC@l)y zn6Oe#X}#cY$&*;Mx);_2eB7kc>WVj*OxY!J1y|$P4*zYmpm)x4M&c_@)&s!EwOZ3d zbbHq3#GukhYal%f02xW{TH*fst;ijeT4ToNCF4Df14etG$=05wK;Z+I;?MYTx((1Z z$E-OAI(L~1Z>Bl%zerp_t5bnYR@$}rCGoN({96BQHRs{3ZBMs{DQA?v<+839#|6Vq z&d%rHo8_hKLOYwHoZE&0N9{ox2!q4}(5?5DCm8PvZ)vBQ0Gm z^Vk|;Nw5G#R%a9M^sC)d+t^)=HP^|dL?|PGcad-{cTvys%HM3f23-+M@*eNPQ4*uW zZ(lt#Tbc8Cll4OYlvKmNG)W$rlhbQ;kmEo#t;}=2Q4}tSf%D6*u;#uQ9QHl$xIaMj zOF10XN&{AYQD2^u@787q{&ctrU1APWv9^MtXkImHLE?E{mVaRRftt+!k-Ifgt$(_v zo@sV2$eaZwYyi)#lhz3zJBor25oMaXKM~X7fzC}#y~b00ogQC@zF22($(^L0bF8Dt zyS;*e@R`qe`D&rL@Kz7WbWCq(t>$xQV4#@r{7@~@sRT{F2pQUQe@B2tmuo+eJEsDu zSyYY-%|lG&6Vcr^rGR7`Z`-?)YqvPmjekEmO>xP%s&ce_TJ9#D-W(=wpq5#G~M50 z&KG{!7l|A&+iUYXC&(-6_+~`GztfO(NNOQHtSEGN!S%EA=qiU*1UxdVoJd##mo zIouriMDGjh!Qaznz0w1N&`DLndCRhjdo|1ZV-|+FTlWEywlyFg$4K<|>~`Nqn@QiX z!@w5A3;3C>fPe+*PN}&Ua2+UbO~CM~LTh*KuqZ|94_F5m%&~oYRuMTQqie*jr6Bs{ zU-HB9zHw!dvH#7y<4?-S0ac<~bqCoe*3F1~A#XD0YYC89r*k+5X|6hpNP-w1^$c;9 zWi@Hw9<)xa#mZG{qPqfrZu8zWi(OuHjZ~N35ot}cb=*Z!zz%13pYXSCg8yH$tXrJ$ zyH%0@$oo{&aIZuv@;!U2Se^{A0ly;pUMIKbI>}`MSwO-;n6|QPYqKKXTcFp$S}Cg) zt|VSFb}#-spIZDl@*v(_?|19k|1{NjM%W+|=$P3qxZ^kpJPG_|iIuPJ*O)KyXeA2cpXm>d_Hh{qgNn%2OyWuA_Do94tr)mug`R_BAv9V5!vhyh+V+G)2rnHjzO(h3z+h{ zF#>q>omi_ZOuO6|qyHXVns01DYZ!ZCKH3!^wSMxmqFT;K*sMFx%w8ir5Az)DIX#(p z+GEFgZQF=j{DhX8JkyW0%-?iYjrVdPH$d#r*!@DP(}e7ltBJOh4i zM=gItu;-B*)fSeIDnVkN*l&jgIibl|-U6*MZ=M$w4OuIju~`RzIwhYCzA01s9n%%m ziWAKdUiV3x`mzqbj+ItiyXzJB0E9A<-`LRQO3D1{5+uBOQA4MgzxqMYF0A#mb4zL; zR-X_gM+n@Tv;tBh_lyl_IF25gp79{xC7!!)zGaAU#i2;&sbvpYqg?+`DMILtq48Ga%R1h{(` zu+}7@kv5ciHOrUW784=Q3Si?q{ixwni$*t+y;YJ<&Ka#^@z6oI%@im>nC;zO^O_ah z{*|6COfr&r1pg#z0`9LIe>1(l72?jEtcSnWJ`dBgfU?FbqGBM(j5QjT-#@6X8^cM! zipP!PC;Yv$Px)Yex`6nyT&KXUlLh^zoo*_NwY{9}UynUdJW_qfG5=iXy{BeMEoUBW z{<-WGqFZ~0$LlMzdn<~!vDmJEosxQ6b)wS#sYWP1t1f52_eLdwpBd(*`D7iz4YR*-NPvpWU_w-MO%874zI+c}p7h{)r$Kg{+O&;KLS; z-pCT#3`)>EH1w6jiS_#{i|tqW^o2Nn!sIJJ!xK@0gq3iGDq4g}SYN=vm&h*gK7t== zkMwHV=W*jojFnxEOcjv>s$c918&BsSnFc?L-0vwWXv?#zlbCfea+RM~iOdPBbhdQa zbF>z!v|x4tK~tLZS|m{FB&VV2=eCK?Oh)*~cln!tjyxd$PKoNuEx%(S?uU=>;**o4 zCMD=c;u}2&YKUFXfJ~X;?1u5obE5P@ZuaLM)0Ak(Afe-tgP~u#dOjpg8@Qaw8<|42 z%Kp;#f5aM&ZG_%Gb*hXJk30f6d6n+)ca)-qj**;hT2t*3Ga%$K^q-h`VGyv*9RizrpNQ_LObjsrSb-|GYGnrkB08QIvzz{p= zct4i}(RHPmnK9oVINFqdSNifcdH>8^>}u#LSq&)kyrb+C{$-W%TpznHJ3>7ARqNC? z$kxe<6+omDQi4f(@26>4`X)ht(RADXnoCc1C=Mk)oUHvzjJ`jR|?vuo8{h;jgGq$(qF z65@Vuu^J$`&rc?2qJ@M?&v`W;nZv}BU1b`;=N*#05XOtE8tJ@+Run5I(Zo!%>(#vm z_im+K6+m)w?n48g;sI$=x4wxzvk{~@=I5SIlN_fDozj3q1pj-$eZCc`Zuhq-`P1k* z$w(}eGh2_+&V^pvbwe*J7!wQ}HQ*XMv)LfnyI)AX`W|dmmYi>LSy z;iRjv_5Cx3t$V5$*h*fSey0O)iLF1=vc)Qsh3RE~S&_$nUa)?Gx+?Dsxy^HdRdE)6 zY?<()MkHbLhu60)*{vz^!{NDdCWR4SBv>qpn;66WGPyCb&!m}R^*_WG1O_#!_<{M! zW1`Zj2Rlo!KWkZ>6A4e45cnCC75+9L*NVjdB`YWkR<`S`WoE^QZ90gOkFcJh7J>%g z^a0EpYE65F$8ag1GZhg`jl_&42|zl55WVF+XU6ULFChq*(Je z-}ON2?HL8rNY|)Oe|K$DZ6AKZvs)oaP^@SxdxOP$Yv;P@VhaNXvVY7= zSS5%MY_Yl+iCVSx>MR3J7C)mn%k&CN(rw|yV}~nFp@~3}=x;zY9%pWOin+3AyO{Fg zc-cjbMIg!cFV3|AvkR2G^=QY~<3mG6b}{ zE&?Gm5@Ac(x$w(%m@SH`f)mStcYbzUPxf5uR?Ko#eSRop>jmXT4o;d9P|ZP}lx0Co zaem+ICFHFhvW&g!&HN@+M2sT`q4$+3sxS z<>|Wm;wQ0p_`^h~~?SqivVMvH3vMn1eI734dZ7 z<%s!C2OQk_mjve)#y9ph9TX{k{y63b$NQPZv~O$P`;Q8@W%t#MLRKXSxS># zzt9P=_Ror&&osiOq6#C@>+5y*rcI|j1MJPt?Ndvrc%__hT@VxfP||?f<1Q-V1|v#u8V0Dc*PO$hCkcCScbQX3 z9l3A(PKcsz^e+k`ebnQJ2Al4Php;H5sT`kRwC;WE6xTB^bIQ?hn|EKZ zJ!+xr#Bb236O==yUJ*nWhp0VxR$|9dA%N?mFw``-Ij1O!L$&?$F_%WFO_Y)Xs_(}f;_S)sBivV{C<_3 z3OORR5Uf3Ebf!7i(xMiOx4w&4`$|lET|&2(a9Gui+N31Njm6G=veX+&fyu;fYT6__ zvH0nE@48)d;4r+UM`e6wEt2~7daGxayj!1=Fk2D{O(Y>@!4Dt0Z zkL9!DJF1Oh9+p1pDfdU%tJVxzGfbCfLP&%d%ilTgV1~Jqxf><01)4x`N<+HiXmPBU z#3K!VUU0g034o~1%5`*JCB3hny_*}B`~5bv6{1;RKVaw+jjDo005mN+(^WGUh$VZY z6&`9B@YdMLPFgnvExR$7NogN^2XG+z&OckT8sJtXjvqW6gG#t;fh^@{XvLZZP-qU% z!m-cwuPT~Tl0^2Ms79s6p;+8yCPOgLsZ}4aEgLp&9`G7;S-kP{gN10QC^IyblhuJ4 zZd9CV4UY7GwbS^E?t3zz6u#ra8BK4V?}h;RddF6CkN;@HN6AUy;jTq-li=NR8C~Wn z`zxq75D~At{Dc1OvMT69o%!ya2658&BKv5=h3e-jmnRi`HTeySl4^KB9wku*9rNt z>`#L}`m`EakcO~zcd3OR7YR%EPSM3kN}0HbCE- z@)jCW#7gc2cI6+1b{FrSJ1;gzpx<>8I&1bs*n|TptCC0HjD7IeIvp)WV6@JXZ0KD| z$Cb9>=H(Hki_jldLW>@}ej#`Kgec(_2l6HmbL*JhO!FMUNuLYdBsKINAop(%Fa-TR z5G6x7(KytH*kTdVZCaJp=o&q=Ydc}}=HLA^ek8fXoh&quHl3$J=84rlwR`4i$|A(M zk5QKgOdEWGJJ0>V>+sw41a&zhiR9adBYr++0L-HFkIVn-^9=mw<>1UO>iX*J*)?LfbNvnF7oi21 zY*Qy_8u*KvhOcPelxp>_*fEDwr4S98;Ow|xEv34;_~o873`cHSJ2Y<5AR&yHk|3D! z!Jg6Zp!PtN3ZPkW78SqeHvPlI164w-4u!g>gJKd&q}#4$?(UAjiTegw%v}gB020?~ zO@LGtkPid>y_#`bXiz zl3#61S)%hsYm&;!T zkWfyQpEgg**en1UEvAp6A7E4|%5qxqW1%==f&reB&G)T<)U4Wt#45!0EbEd@P~TFp z3LuZM5Y0~}kgVtlzE39Fu$sSJGkZ8>;5!UtL304{s3VYlb)e6!{FrXTmfnX`?<;g> zgQTYkAqvZE(p5e!aaCE%Sr?u(IB2)){4nn&u>Ri0XSQb;Gd8G=UK+NK7XlS*xTK%Y zxEVEVI~A6faOHISOyEdpncHIYPY_2#lu7j$!5nL7%yQy2fgW-9D3As|j^~Ug@I>dN z2a0SbsV?+L&-O1<%22s`zcU7@!C!bp!A1k^%%$w@DJLg9&ZW)(4B&v-5*K+uU|3Qz zk0}}b1}sVHK7ND>=2yFd;Gg{9VgL56Y%fb7k2xvRa*WbEph@FXM!OMsD1S2TMEk6R zHF;TXdkYso-4^0Jg7c&6T?8sHTjlOUuSDzLHEn*E5@thtv!MMctHD!jS@|CARl~zn33s^N;gbOvdT$t$4$%f#$^2k@(;De%teB4C6Fcl< z@*-4!%Dky-iwI9 zRjYKMvaZ&|{@!^Rh65fsCsgc}qBlV-ffa4l2;yvH7a{nrlL(-1@`m-Ac8Vkt6Z|>R zhH_=ycBJONKKD($-@iDm+Yiqr_z?P!tQJVD+h0eMp8a(v^W?Y>uTF8W zSPp!l-^1qZh65QwLOOAZaoJP?)jRfV6M=E_=#bE#CzX+9%P8B(Z!`s<5!v(T$kbYg zviY~Zw2clwo>Xcdx6xlI>m3zyE#K))SJ?YVSBa-K#akZYUeTyE1&d<^=)W<$G zM?n2>x8kk)Jk5LJ?r?Di(^}B}2jFvbUk`$lnl^J$J69MBT?oe+ z*;pOuip{WZDIHpk&ND$R>`6ht2`N z4s(|@U@7w~vsp(IQR?wWp?F=UkJN%~7q!|abFSAcBj-RXu`ukiJPZghEf#t*rEao( z)r1cSW&JC<_d*nPU{pM38aqsxvT<4pmmP8J!5U=VgByR}@NyqVL43CnPDgEQ^qI&q z$dH4oTKDTN_D-03JSx9yX8;+`gMe@!2+G55BXeJOKezo>w!Tq7{s`2| z1$^qiXHb=+3_{1QziZ_olgM~YKCHbVwZsmqUC2bN(|lh8S!F~1{G7?2Dt>-N|L;Y3 z=j%|l*_jQ;WEeme9*y^Uhj90cRPXUO{7oW+pIVjxJkWIyQAqw6uK2WkNC0n zERlGmS$d9$;Qmu;P>jEgjWgG6hv-0u0Z1*Hsx$-dlR`vk*g$^FWJr6o&Y`4Alj9Te zbd;R{+6t`HB6VQVsNGG57l5#CdC`W~M)gIago*L|KmpudL?YupBYcG)o3#^f0G!`2 zHyHp7I?d!WK_#_O)m|UwyKc=6pBb`_z%YJC8n}zBCc83QX{^pRxMlDx?c}ubV;MiX zD09NF0ElB6apdb{2?qvt?$dI}lRpZ2nZoSrlI zwmh2%*PlQel3D#YpNlp1UpqE|yBp65rw5Gut$~UyJNd4PTi8&AOwXNZlCRWIF+36d zuaI<7OW*4I*#OGz29WaH+7&l8_oO9dB)Tp22PYwZVPz2|!N8fTTXxx5{!f6e)Bp_Uz2 zSlcwzN>Dt}DPDC%!rrE)0ZXh=-KYmz*9O_hG^2wWyy8gQ=X$PD#a3QM*NYrxt zxxUOG>YEi8&bfOawJ3t)g3+2xdr8AigHN#a_MoPNLk3b^FF$`gz~H-Q0UD9zi3xdi z>W5jY98dFB^BboCZDLMeeXbV*IOC@7{lfMCu8owh$wTcuh{?Q0+s!G$S?cY>_5GKY z-&Flk$n+DS;?&${3*Y*=x^LaBexZYLdD2vQ$9nOzk6TYC%p=+Spq4dOM(G|OnHwE; zSyC+Y<~u(BHiE9T=h!Dt%dST(@)ai=-A|@&LZhGkMSbm?HXRG%c#P*yLSra8aY1{V zsFZ&Z_b%4P%!pk>Vyt!5o;|$KZ-{qIDrg9O>A?tk4f4q5r;KDy4?V*>LsBJX<8E_m ztdRJdXiopiyRn~T=fSi3i6XZtqo=5ks3<8Amx<0EFL{qEpP_4HD6Jp6v%Dk1Qdpia z4Fbyj7|j6PvtNY3PSkr5JuU`#(QsSTIp4@80`tZ2X;?HM_9OA*VbPIx(IkA9KQ99; zT3>FE6TVS_xVh%-1eSS=-R0g}wYAKETg(1D@61<4T+~VYIaw|#nD*4NIy0^@Jl|ss z2a(b#fvF=Yej@gCj8uit&SJD;QWC+64`o*|2p<$=kcId3xEb~8e==03;}Ml80}N|N zzLH+^&m1RO@-5Ag&aD<)R<=-eISqT$K?I{W=A3b1gG*0%tI6kxO zs+OlQ$u##7R3ukZ*YOd_t0w?Sf{fRZKWU)iBr>p(Em8*-di`pI1#+7dbwwuaCo)&E zL3&1%S%lN!{O^O8+7)pt+`k{}@otI@Egqx-+LKltbG~d%SoB<=dpf>jV(Pmkp-dX& zsrS5acuu~j;x(>g^f8T^#{g45SQ1;w%D4>g2z#dnb5)|?=PAzKpMW-s0H~=p;wsO_ zD;u(=w4IDBFKUi&kT6mEMJEZ#(8{4?a(qeN`0s5^Oy#bWU9%L%bNTW9RWu_$*eWOV zRz2}sUGxrX%7VeIz7EBBep2D}*eWkNEsk{nk}({dMaS~P!Wu>C3&J)XcE zR=e&usfzR`Mw0BE`MjsAuAor`_iG+YV*h zdvpZ+QQ%~3{i9$#^isr}ASU9sg<=75!IoEdy}w5JsQ*#WoYk$6ch{s`Mr_Y`p|tUS zTbd}3I!7K}Mc5A@tgijowI1c8%iMRHYSgR)5jZ9C9gEnu{_=%^6}x73(ok4LS!db& z;{9czO(~c76uP&p9DnE`O=a$6>X;VUa(L9J`r#l^qwHAqtEw&+q~y@2$0w)PbeTXx z+qqJ7K2kOHN^5YTALQO3bftCU zn%P%5leo*;C|q(%l-8!{k#PS={1%e;zeH)u}7d(NlxS3=V4u_bV#nL%a zCAnsEQvwaJDLvR75p;z@Imy~vRiig8dk9FVJNv4wZ%s#6)FiY}(uY_ikhG!MV|6G_ zy$h%&b*-s+%I?w&ik}D`^SMg>Sl_>@_n!_l@HSykB5?)Bj$Ert?&nU;w(X!7yHC$D zSD|XS0vMkc<6j=Em6P@Hh1=;nM=^lmBC<_QXRF9)kGMFddOJq)1;Vt*>$H+l>&STr zMP|VTu=}-0aDC12osj3i>vWmL5Q#k2+E0?GLLRj7V*y1J9@Pl z#c3b>?i^kr9t>G5m6-byt7@AsMQY#(baPg4bz7>ZZ3M>f(F8}ZH)KL_Vcv_6om`8l z@(e?OcluFm$!VBite@I0B5ave3#3RNW;TXTN2pBgsNl> z64@o+CMqoB0(yu>m%=V6PiWN;#jX^Z z-((|tf)@?m*tk7VV&exn+P@GCRq?y~N8x;3-ZasQ34M;MT?_&^kST#rd#=8dz%Uhq z@tTS?5CmgpQf2Rg`oo7fyyPY=AiBizCnH8`TQG`VyL9r1+q>qjn`6oW|123u*@qS& z&W3)~?YVO;dH(VA*)AsVsNC$eUlvZp_}w|z+z#1ys6_=E$kD*l#_UmVi4|(iS%B`X zhTazDBPEPMv;OJ05AD_;fSei~^^F7#H3m;aC|*gPwfeU*5W35DFkhDPyU}Zk_wGne!6cJPqA#Br>%tE-uv~eLB7dIG%?8CE?5!%bSI3K#h5?>t=%c(VaywJ5D%DJA z=DuZ=j_lX%{-mMI05CK4sEKvlzLSuxdC)N)pelr*GTlJaxr)~Zv|23*u`2+T;G5}n zj5Ul=iy~_XU;B;4Xc(1&cPrlYyO{?(Z z`(o#e+$9NQcuDz#x3*MmeG-S-RXD_y z>sz^5HPciZ;%Vogv^9GQWD?KAYY6NCLh#w#P%D(5G2)Im?~u7=eBTBSS{s7}o9<4Z zo^Jqc#$EmK&?Rto4cuQ~UtT5e{?^o;=eKgE@QR+`KHD7+g_3zYOOF1m*ml>{kw#l%&0 zVo)nwDG33ui;}@baF9Up41e&+BzY$qO?LN0%r6TFFRj0Z$%T#Nj?5*z0smrO;{kQr zfYICaY|y&5oItt~b;Av>dng^W%==0~ zJ0o@PM+x)?sct563D!~j@asc+xk0(H>1#Y)cC);RPPa^XHj{F`;XBb6IJajAA9Sj* zZ9SrpDW^p1Q`7#c<159|aMTEcXtY`mKPNg;Dmo!_ne@DT=^<|_-pg|!B_U}r?~w-r zao$eas8fw{Q5p4J_8ggS@*m0t0+nct>YMWreaIe4b%UOfC29;+9!Q^->9ij#ouPlc=4GpeZfB>b!w6aNA`UN{#Oair#nRR)3t5N&`I8tm64R4 z^X3qE8oK!Y!Hp$0&m%hl&fSJKkqrewz1WI$5-wXSBB&!1xKi7gaNpXa`($61PN=O9 z^+p~Rg-#mnMQHhB&qW8@n5di04r@=)j zg*iD}uQf81ZkwT6fry?FpXO(GFydQ^`CS+cK~ZX&cd$YLPHwdFDxb@^MCowL2OXwS zIE7fQW^zWx*YL9Q8GYaX`g#YRUu=&>m(Iny}d;)OnQPudhz$4a{0($~U?NF+Sj0W?J7k8fF>f zv)qqE!We=eQOu>j-_~br-g>|=+g@G_s?eKi+RF!SLUIStDiE?b_8zAfp(kmnG4Zg! z<+Bs=5D`YiZ$wtAJ+)Q=#uY`rVzm6QyM6V;@IMMwh^qT?p~+|vGLA3-+IJ*Ax?qOI zc*jCa*!Q`w^MviPcvE6BD~KCn>6)eU4jQ_7?FS#`q*T3*5YQ(GaexJnp^fAs|4BUd zGUbHHc0$1y8{0r?Dwht34l`vZ6N28YkzGobw}St;*kv{3RY-URqxW!*5dNBx5~ z$@_2Ql(oUWFjT88zn%JgJ?9%@65DoHvsIMIm)H#~R70a(-T#lHYmaC8|Ngp>+;XR| zic(3ETNta4BuVRrTo)=am*h6g7IMFRBq?Iu+!At`xo)|xl9uZ-m)RC_-(2R+E}!4~ z`}@aZ|9CuhdB4u9mf+u2+J^<0~+5-f@ z;%5lWq{da|Xi!&3@W>lMIrt@zGCWM5B8AElVLSU~BCl_3Q{V8AvO)M9Q*6sOIU4RZ_XE6zjb0yXB z%S2TgDyfsJlNRIn-RoGQUa;Flbqe(Mb_BQHF}qMl=&1^8TO-X87WyI~9eNogc|D>& zZ4TsMhAosW1!}KO8MA%BuH+mD9%FRpnteLqd;E&bgXD1vF0|M~NlUP~L))BIC<@rA(vVjN$ggTst@0_VpYhY z$_81ISKqV?X3zXU6Ed$XtkY9z@iwA3NJ`j2asS9OH2Yss9I&Q!=%v)oZ=cdo2d|kb z;Q(NtU15d%Q8YZl*BWWH`7kz)vScwc>!S3qLzDKrzQSmbEapHv zckb>vN7?FjV&^VGBwKBiUNL&nW8?7()Q;KBJQ%|x6>4AN0=yW;)(5@&0r|VR6TNm5 zFz+G%lNMf4jtv}>m}})pq+!=me;|^hd=grb;ACq2>f>R8=JzK?B>k<4kDoAl!=c4Z z1MyPV#wfgt3nBvgN(;3RGvIN&X!aVOxAPzpes0Uy@-_7Z_`B?X+0KR4V@ogSZ99tz zot;dX&Um{lRjW#?3b(xh=Th}dmP0>AQBp%Q9&9dAYqmB|tVY&g_k?WH#`Pk&5~d~E z%ice#>a3L<9nZ*PS4&~Kp;3<23?$Mn*^?S5nbSFqGuaG_uy4^-@@h=s*YV08s4s-8 z+uf)mh+Q2z#J~=L;PTbmlj@v?(jaYacxAa!>)ADvWn>9EuM6TWHvR-aYsL0 z#5jaG()WiUeU!FCg~3^yw_fVJ9e~iDgOMq}!6Rcb~ng z$wTnhs;O|`m`oz54WN%od^y1sw>&wwU7EU)yrZ=Zx8p5h`S_yFT$__{-$CA)hw_*6 zle*4b8vNPi%}T&VUpJ=Opbmv3M)wQ3Rvz#gu zZl<6G-bG0o=|?^2VUF|&BfTQ8i%b3+`%{0QspT+ZrY?cR*f(IB66FDb7stE|)04c~ zKOZg(DCT?b__LM!QP0G6c%NSbZ9g#=vKh4F6D5r#i;)ElJ*11lT!@t5z*9?HKVMn% zCzNZJcm_f=4DmaOk<@8%iv=RRP=k--V}=iIH|4(iqxW~mIngqpYJrusq|TA)D1rey zn5Li5`W7j^{vKCFwO@Z1W03JN2hcaB1PAC>*|?PDfKMCIZztVOJ(F(yl$ETkA^*#0 z5Botyj0G@ka>dy88@OZzJ+@^qzev(hC(eH&J=j{uZ1%*`x=O&ihQiZtJHB6TS6Q$2 zW|KSZs^c({@irh$aHwV=(Erc*01URy_V?P*1L9qzAine6g#ZQHeLu`|5N{4Rrre*>itj$avJMFd ziT^5Cv}hjbPE2AibZ-~-lrk!dL&*&RtNF!AIG|3Z>EFz+#b_pfvP9ktYW- z+9qqx7?i{Q_D3RCf2Z@Dh<-6qG5lmyzI-pnphvzTOQ`To#?%SvQ`<6JOU`-47wL>n^yJJ`qqs5{7A2!_VBbNH(G#X%a+vE}X4}P(dI7S5%il#{qNxw&CyRTE2K~D|F=3L&I zFMslOvx*dMpl6wor~iqlpe-!Zs^(1c?W|MYlj4|UfdiT|g^edEuOl)JB!0?IZfs~F z>K`ls%WePrZR!n<1j{59>w`;kq{~2Io=D{T@x7S-k5>NBmMSx9H6JwpW*;#?GD3>K zAwMD=cky6932W%0b0BTBh_A|l*bJj>nApq+xeSR*ncnyPAFK+g5UACHGgf9JO9V5J zKQRl47VYVt=a!@f_$HS5Mk+@e^8>=@m(A zBMHJdlx|qOr3qlcG;K9v=^B1Y8~M{?3>qq*{JwdscF?;<1O0D`=^EUKz*teDKWxa< z{qggeqx6Egdd~I6|3pd}h~WnAici?N8`LpS0ehWi-PKmI;*sRTx}{N5 z{QFp8wD#!X8MJU29JxB|KaS5i(ej>dn0p@HX&!Glo?r70Nb7XcxPIXEKO;I=dOL{4 zy6T4HVa{Ur`Z<|_h5%zXHDRx0UY~1H*NNvirENe|QU3yQE1P@iTE^ZV5Lae`))%w_ zE+O|^1}7;&Da_*T!+xZ3R8~&(;cV=5b^b~9a60&<9@= zDXPy>BA`Ba%&m1@UtgP7)#iBrEcyqee-c@#lMM~Plk9e*y!@+b@|nYJC8*6Fq8egJ z%F0Fryv0r&`7=UK5E|Mt&A}Df_Rq(o%V&^{d0m94qSrxt1a0^iSk|O`w{2L>%-i{S8f|w;DL?VD;I+la_2{Mg=qZjWIS()G%GUrA5q;PoAl^ zk)&BTzHEN?(sAr8ZgatfGBulab55ic(pI3lmgJJ>It=>V&)sGBWhGC8xWtR=y*Ka~W^Ah{GA8(wMN0tS7Rl=+6AMgro%NTCLPc+Gxk?*k4}d=!<|l z1Cp$LX^8L1Qq`^g^s4CR{N$r=X0|=j$j=$;Qksj7w5$ZtT3wc)?>~`e#RJ!HNeqve zkAE%Y*_5tXPGT(EWzufq!7REt-?i~X?1;F7f z9PyGMnW%&I1u|HIh^qjdp@VeIZOuLO@(xR^vAWm@mlSn$Gr>q*tVel}m{Zn1jS$UR ziAQJy1a86rQGtJX1m;sMinbi&pLpAleF9`|pQQ!W)8WF3K@d7%F{q0{p1ezFeJWp^ zgKXC=MaA1U$@YfGEN?vr)fny7KPl-T?1Kl-I#GWJeIiE1RpQ_r7zff4)@8C&K2xj| z4~}$vc~Lk=B^!OWffg(q*C~WFvq?*O<&&8<^3Lm(O2D|9mPy4p&yTTD+f6ss3vcU@`K>#Aa9ZSD^Yh zN2Uv&x=rml-fH;E{{FrR|J&)RS8Y{<)* z-n!L}I~`aQ@Ca59UmPywTLU2_uynL+so#w+V%fp|!80-)Bv7jPaOJmVkEI-Yoi1;A zz&Ag4`*xYe(g<>WC(eQzvk&$alq^9U`nQcB%*7v*)`_I@T`l-MXA+TA>63^A6#U zl`Kx24%8PmTw1yvhRwu4NLiS|4`ZLNgO`ggD0Dkc)R~KDn5s@f9a8faEqCMJv3t)A z@0Z(c6a`PwK%1|iEq#)xiZ~?G$}>Vx?)y$9dd9Ev13!Qhnim_UYo@|%-)jAWL|g%~ z%IEV5V+kw&zWGn29MbO6Ozz%-!rr^}a(hFw6K5I&^*4-u_`;N*g3xu>(iehW!ovcA zZ?)Ag%t^F<(gisK*Q+IJ@5hKXLyp))A`I{tb7;m7yseMyfs$q8JSo-1p&FV%?>ivG zw!3Xz-ac67*kNIn3$s;|BW{G1%Wzn}dlxJcFv^v&5#bpW2qAKyk9>1F{j=AEiI4U~ zE62i+>d5xyBXcy!%7(aR7eQ(~MyGff8&Iu^a_t0>pTva>n-$f>5I4kA;z_^!pPxaE zMKV#pr8ym9e9%gNbPkH?(PN?W5BWC7 zqoOz_r`@DKZuX%Qep1dXj_konO8DemH-vUB8HdjZH}0oNzh@gEWc_Y|tjY!DY>Ka8 z(Y<%DCTX1=Ntfa~l=yla=%-&#bMiWt-*wM=8JW$2FO{>aJ8<>V1w4~NOAuxt zL|WZwRK}h<+xrXRlEj2PA?{wFtF03T&LPal8D%+3?6dlCs5YPWUD+gYjKo;O(BXlg67Ft8e`7Ck&X|X`4&(y z*qFNh%(fGF5!cM7;`I_BYE?qDW3MeKRrXvHd6^ARB~V>vWD(sBQp)gySZ)^HHxJfa z1Udqzu3*G{ankEAtLjO6_}2AJ_02eeHXM9Jhc~L$y3F8-Mit14AeFH~>?O)Jbf*S- zk!w_{+;s=4KDDEi=6mm9SEM5koOdRF-;Lf_+H%t5#PxCmfVTH@SSjLZzCBVr=q}G8 zp=)g~X3!&r9Y?+nM6!i4yHUt5Hg4=na29He^=}>A&yS)$$I$3?xGqY%Be)P39-w3I z&b_!9Ftm;%Y+bNjnSMaT0r%M;HSl~t8U~tV^f=DY?FWgJV9`m*$tGB?_e1(#qLM4B z;sytv0NvkwtmQHEYY>^=f-BZrlI2CC7P#T;hUCy_8G?(S6ZWnvmvB`l>gx_L!;lH4 zAjCrC(6&h410bs_kE%b()ajKu7wO>-6Mo!gaqj`6rF=i&PS}bJ@EBEfO56C?D`~-p zXsWO1tLk|ZD@5TU{YE|da<(;|o6zV-T{QJysX{f*2nV4?RX7v zmS`hlFJ{D;img`z+3dsQ&X_9}=J101l|AERtvf#+ZxxDRCpM~H^m6k6AC3fb@-5ro z`oPTK%97~soSXQJ7wch`PTGMM3*E4X@OT1I5{UJA3mPDIzIPQpX7AHZxEGmO3wnVc zdTbV2b%oUqli-`PYLHV1^$Wf%m8sQFhIWI(oc}~Hpm3&2p8J$z(&1_sU1>b9;5Hbv zhTYSal^61dTF5^Gc$Z)XXi>hF=IohLsgZ0^rR}j;?hC=AT|H?Wk< zV(EYpf0>igx$_>99PK!muih?DN99{2-%P;Q`eSBza_KQTwIdh}6w;afi|ttIbHJrt zY#9oGrkwzc+X^;pUbdWQk38_^+^soq%4kf)O647ymQ}W1{S&kxfw{6Zs)NBsNICv~ znH99gt<&Us42)8FK~US!aH*H)uxyeE%}+e<-Ifjy)`pMs1b$1;^GbYak6vk}I}E?{ z%@$-G&+*<_hN|V6G?edXR1@-KeT=k|Hx7IKqIX6PSYATD7)D!_drXwcqM!1qJBTZU zw)^V0+&mL&{>`!qJ)Z7Iy^$D3dcNP}Q9Nu2Yc@2v=g$i}t!CuW5g3LbW*!wK&z~Rf zr~CeUn5TC4++Qgz6OSX$eknC%T4JBFPXyL)G}Vs=VHOyJtSxa3={bvD0~lGT19~-XqW(?)!lNWUep}h<6x;Kak z&@pwMc%0M_(pTcym>3W>nVG9h@UoJe4j)%N%vV!@L61M?bI( zL(X!3=DcyGb%%%*L?80sLSsGr$V+(~0t?o$l4|CjnZc+uV_l0Q-=p^3yPtV$ZpofQ zU+jY|IkES3AnAKf$Co*K2pT3=dsxCqa0!Tp^B!X;2e4n#bTyf*Ifuk}fhz~zyB->K-MUo;8wt5XJi&%13nfu67C@G{#BN#Nh*l40 zxG31eNP>GE17NHaeRpsPx{HCW|2;0b#f7c?e$bY`axwbYAYbPJly?(dkYft^NU=x_ z@F!RwdOGHC4G_e@%1aq^A9$GZ{`xszxc41|3Q=1)LaL*IvoQH7^m^bC-i=IV46JzE zSq&11Uk~_C7-cXwCi6z`{zZ?kSLsb1{R*m{ z!7+0*j~SSYtoj=lSsVv`anobCwJj?Cf2#>gIV5hMO^2QeO4Q!Oeh^(fq3$$4-+11se(4Ich^2Yw0y*sUPIe;lw9qy&F$fx=VY!MILOZHVvAOM@`daM-LfGXP&1<- zx%2n)Cv7e?%Z2dXL_gB^i04_Ly@oAyJ0rZAW!~0_0c^qZKc{@&9hh&0zXuU1@lqsY zziTJ=W@TkfuHB;l-%`=K#}b3M%!1d`?^)2^L9K!%IJRve<8(@^mXlbZoD&|e7BUW6 z09B76xsL@cm93FTB%?06YR++lT}k|y_f89Bn^T-WXoYN4!vRf>1f$Di7as8Dv@r2M zv#Vym6NSC;{@yuVwM>HL8MFcDw{BlL<~O38|J?>;EXq}e?}gG0=&AEUDR-16=xqLV zpw;%{{5@nqHq=q&89lRTc-#-n1;ZRf8xH7Jw>of~i>NmR(;4fWuqtJ43&%1~Z*e2i zr}UejKfV_YTJ*|ISx0K4v%V9ra`F}z*z(+efkPr3sSR>^fM;JxgFpNg%Hmk{6MhVP z7L1vOdcxvcZA*Ic(?cTt52yV>V<~36gY})KOHNh4j`_;JEr>42YS&F>DIUoLjFXMJ%}Lisdf`Fe~bQECgD8hHiSAf z9QD2o`OCNVd1GB8ZSPL&^Z>1Nwk^2)ESnlyo=tclmn(U8$KX9EM$+2%#&zfUhN$=E zF5{~E{&maMtctP0JFm6c3&61Z1K5p<4})Rw`mxA=)9*22A)$ly(S@!KBTKC?_2fd$ zEQ9ZRMT|wyt-Qv4Z}aIOp016z8`2oGLY5mIzsfnK@*^jVY_T2Xm=p`OtwJST!#8uf zoMgulpR*4=to2IIOj2KXljM*;WBVzhJ8;Vn^V+vT^<|* zcH4Wve#T-?05pK{L3xB6^P*B@wK%2iCH8bKyR-+kOGv|hHm-<}&SiiAQ!+y8?UV6H z?ox{3-^8FSBd~QoOV}wa4c4jbbl|~zrR>ns!ecyvKZ4~^UQP!`2bv>6^G4>l zI0-8QX{*?`Z92Tqd9FEq=VXwvYDvK+Ccu9JF)uVynmkdjvMrU}-=ya<#`md1z$gdC{qshl}Gj_fPc- zGeSk(9I^bvV7nW*9EM2NIMFf`@S{NXFk#0e4DDdpzmAZdpZ#Y*4&^DahJAQpX5U+8 zfEY7jGo$h_yQmCej~6vh3;S{vx8;jC06I6H65yZ_yvqP(N-v{TCN%$NvG<*Sxpo(!eR>9~uS{>+{LMZdK;+YqV%o^An4(6R_lGXo?g#*k=ARV(%%$e=LJ@L@x zh$gUL@)A~6E`)6;7qL3V_rrDK;&2kgU3_FK0OssvsTEV~ zUyFHu{$^Y&tisv%#@yLH3yy$aWjXsQr|%yB+F(6GZp;m=m#r3-x~a_6pAk-yk)VYa&d)>h*j$=8$u!yQ3>rwuj?-39jrboVbTR+f3;H zP{3G48?=1xuY7JJ^_?}tCA&;vOk6P(jS~RHCyePUNvnMB*fBXsGp&W)vUv*5@BfL& z`oYv^0r8J$m65{(hXR^0C7F^z8fLgF8({rG`C-++7b)aiYpuh_>7Vp__`cWY|Kt1+ zP;`VKNw^1SGJ-1r1)Y!J(S8LbXK;EHa+S^(>;oKahT6UTg2aQNHGzl_--?G(=oy-n zgFt79sE8V5mb@*Vw^RqSI`e7n!B@!_H8pNYhH|SF1@Ax`z3OCK{YpwGN!HH`A~`#mN)C@Rr+Lg69dfuZu#_A!P)=B=WQMO+4G;eq$7%z;DTr#WRtZHKV?aQlT) zK)x=FX?WAO*3ETS2}qOGf^LB=^4Jv$M~thTWH>=vu708=>a9BGW|NN5(i*uj_Sfgk zC2@n;*OFmXR!hx=e>I&SPOnS6mR-ruWTKWleW$hkG9T%H#T~x=_&<@aIDy}TVp#HG z_OyGF6!|>qYxb67m_j~18Dbm5tImf`z5Y{rVePU0w-5arhSV|2!@yB7u@f&ehcqsz zmfkiYj5MSFL4FHA5%6Y78`n8^%h70spE-iv04p8O$iLs(3-IoiN9LV%?b~;{YkXgv zdF*@)_6qG?wa0=6q`9uZ=6dP%>q@HzD$9>Ue#b8ry({Yn)8t&Q4ML6lCJ%AK->u>| zzVWnak-yt^3Pogk>OI+$Z8A@mtB5Loa$ji)<9(0r9ev^rY!?;o@gL>G+iIKRJ7zCE zvwfy_3~r{OSw-#Kq;ZQ&DIXq&@6XZRUU=)SrlG*OoUn6&BcgCOvS?TUS|$Cb!ra{7&C~yO!&=qM+EsDxOy}M=`B_K|*E$ zT7*P!t#pBNkQ>dp!A7L4Z?3(!vmV{uw=6bc35JRlhEixDEW~0b)0U`!85SxvHD-3W zr+xb7Gt+H}ohB4cw$a;Ra(q2j(7rKL0r-5}1Cxuj^(DamRp1`Zb;(L=g;X|XIV7qZ zqrBFjL^ADFP!&X`k}+gt*phU;?X2^p{Q!NzWjiQkW5Vh-foe$K?+OnPKY}#%>e(J( zlQS@ylYX?qqP(dzF@nR|r+{gdvpmR^R8V+tdAvV#$*P;A+NxJP*Bt8Dbjig0qBqg@ z6J#H5w{S#5EpDMx!+h9(YH)=VeRAUE%WPUJoi*}`cWWM2Uz9Qxl;qU>gx&X|=-5!; zkrpX6T-&TAP}Rb%8Ne8#dZ)sKNo=o4^MI&xo}geVM>`iv?!Uj}0cXO~NE+Dt;L^QF zEl4#j8Q*tFcsyvf5r%Bk+U^~AD=3EDi&5sLHi0n*)jKC#s|b(YxqhWA7kPT@;Dys4 zl4SUZw|r5KbfGr)MJWS6!PJz=&yKsinl!yl73XO^)KF*VCAT_%Fv(;N;Covh62Je} zCTXUwuZV%i|4Y#cs%uyCSB~*>5YJCr>k8{ehY1P|=}K;;$$a&|fqBOfrt7P^FPl|1 z483k^widTpyL&~VI}9mo0Lj-4X4{$|XWDQj(-HAIKQOm=?2gZO(omqt+C>A6VHOM` zv&dquD34*jn_bLnR@-)<=9DhTNPE59_THurfh)0H?x?Wx;yM!(v z&f$l6f@^U4qL;C4%2CRis%SB-EK%B?$bPCJV^zd#?h(8viuls12vb>m@3^@mql}*g zF>7B%aaI6KSPt*FaI~4cWcLAifS%z!h}JDfoeb6`)7~;KU$$&Btqx<8$XS3(@Z6*^ z0RP}?R#kx1PrHdKp1!}XSXt=~YTRj|X`KYXv)E0fL ztsI5_=d-_CPk)4IJd?Ir1=Tmi zb7<*7^gn1-Y`NWi?0vmaM$@w+XM*`Y1eQClD=UL8X({tJ3e(2IDtz11wvhZL``Gud zaE=3Ad<<|Ud#HnPrr|^*i?agskF#-QIuzj<;Wx}~YG_Ft+a@v8eV0pP!|4CUy}|&6 z197Eq9yP%-P})7X(a!E1zbH4%aiF|9Q_*!t3d*z)A49`Uh_8{Zu%fXCxemqIcMv zIJFH`e$qE;TaP`D`$;|r75;e~6SF{m_%3z&@4M8K#ESn!4z=L6H?e}U97ikab>0QfZzJk?fU-K`%etV4jQ&idllRG@& z+V){7=(;!_F-&`+#hhJKkfGN_t zizl8bt;*CXifAO6s;WVr=WoP7I;jMrc5U4V6XI2aUxg0R@K9AowSq5EJKA-3zJ!Xt z`fE*~N2ftU5kwIZOR?&HW(soGZ1R+_)1?+LmkxkjfvVa*=gEG6JNhgV)|N_H$%^WX zcLL%LUEr$2pF&pYG*T%n3ntQP%2{b&VXVkQOYZ!U`|Z}jJ0Pa6D&y@&SOl&1(?E#};3tSqxj7OedwTgOmw<{PIj8Nxa0g=@Z{#C$$-80(-t63%}7H+f>L-Tk4 zl6biiIamAm6869>PnMQb3kFQBr4YT1`XZ&a^tRK;V{E@N+aor^BUMTDx9L(7g89ny2)FsFn)ZC-vaB%jCU( zGz&u60v+=%m}KC6!X2ppXJq)oxx8z&PCZ&5Qx4p5tpG~DbG>3oLD{atPH*D{ZQlyJ1Gf>VaV*07z>@s7QxGn zG!ji|jGJH2F{*soP%riIZya`V+&UdoKVi;|1rBmLSwYFz2b%1EQCIAvC|~2)_1R7p{gtH&U7I96A86H{qASeZ0D=&lMUx1c z4JG)%Pgu-`;va~5Xwaxh_v$3yZOHP#B&7m%uiI$+WS1^E_bcTb)ajrxo(B=qA$xWC zk)F(RP-v0D1LNTkK0vGEur{eppvCpC&x<`JkG2R&h8)MYsnw zvo>J3`%5l6(!mRUuh~FQjy=Dn=bR!s>(_fEN06)_%&*9WEp- zuej*PlLM^-(IJ8gzCO-hNOslCS~uok!-?n*y{56AtJ!i7yszEc8fjj@sfHQ*p_2;QJWI3EwX z%exJyzwe|r*ce792pZ1hGnNjYkY{)U$*w_w^r=!w^neprlzhh!EU*0f9p8D?`Kj1>y1b#gw>54 z3F2$Av6P|$urz{|r~7t8^U-v@8T-;ZHMI> zxOAz|q#rk_%zde}cT^Yon*n*2fxZ>-yRhk;#bxa$!R)3Hr!pWo80KB41|7N-ud_exsS3@HL%$;snf`QJ#rv0`Li9j`t-^;6Bb}-;kC4fI`*H)NQS@ybljYz({#GAa;-Ps{9b_7RVRBjXI*Lm zJEg+U|0*?IH$5MH0RQnJN!ij!NO74>3N$KZFIPr*^^eV;{Ed2HWlL1|V(R7}0_VD=K<8pJ76PS-mA2vH2WGv?Q3VCZYBh%o? z=#&r``YAX6PI9hyli#<$Y1_fP&y~@=fiI&j>S0C;Up)J8>|%~EKiILf?U&&kxL6>h zWBikp>RdqHBYb<#(W4jsx!G=47N1>*EcHjXC7$Sh#0gR7arQ{#7Nt_n?UJlJ;s96}U;ku?s3 z!JC)n=8lzz1bnc6ynk}9rIif7_FQ!{I)*)ru|yxm-5A0LhXo;D%Yvb1id`r>ZWueM z1C}&+LArw5(o(_E?S2AV?X=K&2Gp@zIyKG=z!=9H z^@2ZrffI$=va=ZY^>7z#@~5XSz!m=CA9c8DRrQn9FRnq!^jed}g^wtm+nm!Wtl#TM z+oDMc*PKT$IxQsKgDF?S!6LC|FO{f;`JtiR)X(2ngCbuAC$;{YJ>PGgl&9|w&Z>MM z?9k8`lwke-H?``seY$aKboDC_(S@QG9==Cxc0ab=rRAfz2&v0TMF;av@ui8dgY~XR zl>dX=1pKG1qie6DLfmG%;QLXX+#i6AH|OBg{f@C2?AbM&=ze*V8p}4F5zGC+*-b09 zWrkSy(y>kl5}{Gh`(u|y6G(bYYKwZ&R19=F5MD@F1RmEt{r336Znx5JLrx%fw}#${ z%>+pXffY>Be!dlF{QxfEy>hL~1)ZRKoj#^ZUyNFDc(G0x&44jd!x5!0j7pQW*xg-^ zTz*#-Y5U&1e#S|&v5LTb&@fbOXnz&u&FHI6lv+P)=#&yP&AgU99g}3#%eRbY;t4$k zlwHC>;l5w@Yf)TZ%TxGd@zYtGmw!5en`}1(xD6bw?jlKr3Tzw!DK_g;{Y&xt_~tr7 zXOl(6pK97a3pY46i;F~UL9yJtd7tsTN`Ozzxz$zJY=$}4fFlz}H2Q0K4A{X~aBZIxCf@s}498j_n=6cg|SQISr)`Msc9?r1{IFtofdN21{?ze~=HccYBf zQ0lG5(Ox;D>SU31Ll~o@lzLL?ro{t0QDM(NKhq_G3*R@XPHC8PMVm;#1v~{jiVv}V z)}-*oWm8I3@M|8`=}z+}a7oQ^|4x?lXH?lRVR*>ZDdtlt_ao2acC6} ze?u;L+Zi)1g4Jk^fI74!-yFL=u=ML$&4*O+g(puOb8m69xeZ|XeTsxc<4ghzV}s^aiA~KWSsK837w0_;M_O$|q8Vu!EAQAgN%|Z0lXUnoblQt_4?KbpzTbUJyIR_-f=%suBic9t$`b^B> zncO@0yWn_GO{wxKkVu&pi)-W}s^G z${s2s-dO3ry-4?C=R{}|Th-?v3VfY6K;}w2LAfHJeD3pB$Zxm_q0$fJHbe!!FR?B4 z+w1>k`7oq)+bM(*1VMSOhxQumaJ zDS|uORJ{*qVNz2pkIWm7VD`2QLbXeJr+2r-i#|5XUUJVYX38X;L8c*n?uUR|5b`e( zK6umn$tc9+bT|A0wU0@Gh6T}>i>v8k8ekUDKWy!c>iX)%J{iH0aSj2tAXbb<@FLLC z!}z`mU@VFy=^QHiH z<&TlxPQRj4X;<+aGZp)KRnq5&(2rXY%;{WeCndw_Ku}WUasYZ{)aT`AewliQsvwS)to*K{`)?1}>3v1lKK z-z<-Sc0==4w>iz)X?&d!Z==3UpC2#kqSgkg01`u{M+(90!;#^MMMllP*2f;7#uwP} z(l6D7;L5-S|2SaI*6hSd5ltpA!!Ax)U=^FFu+zx6OY{egUW1$2NsF$WmCmJ)zvr?a zM!jlT3$mXYGtAzklo?IK_G6KK2H-%V>?y!uv;Ys59b1vIefm}9)VEV^VVkO804Z2V zccLP|M=Gg`?vCQh?EgD?H0uX`fT5bV82_3@a#<7}MNz&W_Cn<=(e{FT%L9Itj}sl5 zZBnXoG1sug0hsRyMW_Wxy%Y7tBZvC&ed^&8AMB@dwMolaJDc@VHKajtBTmE*CJpZ% z+k5&{4L5D<>xGP_WoeyR(6}@okzy%@`LQ;Ktt~1JV@ecu=q$Nf;f~HMdyyF)HN5>G z?-G52cMjYKp{)k>j4~W(z895W%Dtgj0n`{ar5mEs>cfnU-sxfUUU5weUwHmLZ0$Qd zYMGCGhcc$ND~IR%#A`L>3svtn;}g+3;@FV~ONF zoFD!%NYap@jOxOR{omdo-<^9(YRgpFPMyX2;y_>p@MS}8a>U~56*$_dpLFZ)`vwKQ zvh%6Z`O25)@VEs)3){{fTolk{KwQjk+r2%l%S@@%3mYB#)r0vN=ASj126{cz+aGkL zPP@ykxX8LKaNNPY;4=|3UOJO_BFPD8V|OyADIIVLzT!};QOSG==+i)>i1UorEubqV zkolN}rh@Z;6;GLeVG!zEit<`<;22l(TJ|1l5)2v0r*|)SOmKq0xd|eK@z1e`M^YHB zvF|)Oxmfu-*G$g}E$TcDgZ<4BK_XENl=X?fv15D~7-OE!KZ?w_CgEA|TYRh1RP1+* z#X0gHZ0c2^66f?=h5)1Ua=E@D0Y9?7RVki7@c2RlO{9I+a*G^g??_wxY{}x z=%20iQWCa#?NN-(*3#|MXgwwa1-)#vvi{i0|8ZC5BT+Ni^pNbWp~_;Tk;?nfpI>FO zdI>9HtV1Io=c2kloqDk;k$5QArX6-QQ^&X-ZBmR=1xkK;zRz0h{wGNOhFcx%&|S6F zGv@1l+sZfCl%%kL)9P}pJ9oSr6VJ)0PU`4^XG$7$9%s@CH2t{A9;?7ZNu_z@mHVt} zL?Bi-5^caPnI%WeeLyy>lm$q8Qhvm1s|v6u;o>O8RvTuDQ476Z*6--C!@TCYGSFv} z9(|uHC2^&-CcaNR`N$W+aOh`{$=Y+&B&zS*^RhMDmx5*RlVhe(2&UMQ1Y3f8JgaM) zn-$4~Da7RKtH;L2^la@FQ48xq>P$iST8M*0sRc(+NpXK-h<3l-`(rm&C4RB9{1(J> z#e)o*Pi0N1mp*m+g4<=(=u0JVnd1Jp{+v>Q5-ODb`QkTXcJTo4~U%t*W>o_}5YqXdVMG z>mKtv_c)>Y-G_$)mL+d}pEv!ZVS|sz;CM3}N;4S1uCR#E=88FtSNqWl25Syypdvup zw0j)*MO1%i1&?3q5Vw0_+jB8y!RdB$V%Ysm?)(WU;$I@10j}EoD8E5F;_j8bemE6$ z2-Y~E%Jmr~N zR<(k&yT$ZOp@I@-l|7>~heL{^I&U~Ay&2vVXbn2D(M&V*xWso7pue^?sG~nA#ggJyM{~`bjsN$;( zSsn$Yy;liJn@5f>TObQT0}t;mY~4&AxEImgOw4f^ta3aqsm%Hzu0Rrg+{8VBs0BfN zB1_QvY-)mG%f+F$FMV_7tTqwcF|beA0L`ScCQoyAp={vn{llld2R3xDpXcS~Agc?Y zS0LEY$b+&e#LjhllMBP(0y9~)b>TH?_I|%!&*$UHYh!K6(0og>+H!^I*_?K#2K}V3|2S?BLRFN9P<9!fM(hD& zNu2p#@(CBq^kw7|WM%*CIB4&DiLGz4b%yQ!8z%^F-x;n4w!adj${a}Yk>{{aJ7E9< zMN#$B)gh#P_6~deHD#d?v4t1%Sg6O}zl8CBW=GxY>nr0rd=vlq(8FSXb)kGWy2*7P zPwJ`RH3?WE8Ln(e5IjP&L6{^1i-jF8|Gt4DS0bv%PlsS!2GL z-~+H+uEoSJ_12bUqB8e#DYdibNaaEB#I?1`Qp{VGt5r3o(T~k4nQ}=gP z-PC*}O#A&U@?r_#A*<4w;7R!HS`dD7xA#Vd_pRsC4C{NbMNLF zN}#~XX{O=NTiCfQjI~~{#c>Aop-ayQy&9P|cO%pwLXwr03_5>_j+IeXH7}}uCzdOx z^Jxi48A=F8FNvzmCpY=;7zW9&HP;1P#MWU*cZ8=YJBw&CZmaH-Twp2V#yt zYD|BpGd^stRY@Esr3&@eRd9DiDJH7^`8L(??e5)G_^O-JDo;JUU&61b$2^}kvEbV@ zeQ}ko=NBhE3wLMN7%T?LXQ9>%n`wQNGh-p#Wj+ez?wtYQWV+D#YQcPXlxax<{&yZg z=&832$MHNnJfvmO42unGndeH5nQrNtyjuDQAWK8u7h;#Umi_G3Gt(o%ZB~UOzF|Xq zPF`9>xB()F-FiZ2!^ne+H>g=T%bfI;Fw2UX6MyQZhE}KC1VVc(i3cjnEkd^;M1ok|bQn zWbRFJUDofPsq~4Z_BYE}wI@)&4ppS_KoTmz-3S zwhAwv3HPW68FG3_LNuFuy)p5gFIWH2{ZZvs4KwylV8zAjafT5}lxsHtZy>bmr zJAVGuD?W(&lCaCG1>U@!(2p_3)WqTU8Jag~MyMvkzhXs*$%C=C6m?X`|`S%qPt6qSTA6@7w(N8?_7MMt;*8lY5@^kilBsV z(S+VBG{_L|aN6@!#f5QhK_TJg-M@iTF6ddHo3X%FaA3`NB`gR`-c;MAU{2jWgt{LI z(NQZAu!e_Ohijog{zYH2v0=o)?xCwm9T5}HJ?t|jgIm_WZ%h`g-gY%Lt#L92^)QvrAwtL@7Pt zkv)C>*{6%E+fzn$B_BI$CQHTmA-a5V1s78Oc=&0%nKuB6lp+5%Law^JFK4B*al=Bu z^_h)L4rfjDiV+0mRo(rI_{$IDK6wjNbUn(%Bd=svzdT%?D5qEi6gv+RcMSQQ|7CT1 zJXGIITtYj8_aY5;b1r7D|2uO!DLc&H#F+iPLZ>rrztrn@@La6c7gC}^Bpq34RPn*Z zN5Of@_-LQvm;1i00h0k}yU6dfO7+?t>?leONY35(k#CPFpuNJ1n^%vAWnqS?N;Bw+ zN$zHLz5i|tj(1SI{l#}y;kO0vBL4=g+WiUBiw02da&On-1CK290j$Lwg=nKaj#t2$ zsT=cm5w{+Ke1juCxS;Q)V?x*3p%9Wme~`6`zxuFHv5Rs_pV1O5FT1!h<=oy*BT(g` z{%ie0EtB-%#IjdM&*M7ust=S5jVW=fSk=4+dUUY$0cFGMg%Kp&dtxQr?D>2uhn-2I z6Xk?l3n>l>TOQFKBQ#-{(le>es^MIt{Sza>Q?3!~CnJBO6{)*%`r;;0nW0oE zrLGrO=yKg2-jJj|who&?TTS654KTjvnb&!fNzZ!LejfksjmLyfc>bI`Sf;+jMSU4P z23co2Yb=o+r#Z#}|13&>tmF&oS>Hb3qt$nH2Sxw#-&fnl=SE%gnP)TArutuCzeHqu zM*SpbDdQ>*(O9nf>xRHXJFK+E%_jtBWcY3m{XO&(dqB^}v&laSAq#RMZiMi)>CC-B zGyZa_Q@N5?Yv>tVM@76$q_)sQlzmU=>uZqS@$Av!J;QJ{s0+p(U3BZJg3n<_HPyN|=CW+n?^an` zyYqPL!)-R!`fMQ7>==w0yL%)T#Ar2M>bn{3^l1QA!GYvWYg+VXqt-2b&{g(Pq;YjpD@cW z_Kw#~d2qWfdQR`3i}*V82lKq>#V=X=kUMZ@{3AuWhL+}(HD9U@!>n^_!%X{A+A#L++R0H=l#Zv!*UrfINgGH>?ay-=Hk8a>AWZDaAjjlFT3`BpaH~IfQtNSd7N>TJT|qHBRvlJMOwfrvwMynnJ`C+RSo3YF zRr^R49Iu}?4gV9c)MCfKn9YuNijq&x zeNoGL9kO?2)84Vbq)>Ls6~09*$3lhhEM!h{gKaA;G8Flv5Z`FQfvqV5jlKdtF(`Pi z`k@FFE`VjMk`sToZap{q;zA?)jQxN{|wiw0cfX7x>10+v71s+hBM z4vAskBv#?UVuY67IU|4j=YtqQA?lPWA)n!#C;O@1(ahC-{YqqSV1R<0>1pZ9`Gl>8hMF+hrbY43RR}dCMxyO0RC;%(d9DxC8rcJtwpM2LMwX zsVE{DFd0g$>asjXN9SgXICVBFvH87-OK~e*nnIt`m?M1FX*_q^U%O4QYi7|xYrXd| z3oSK-)wGH)%)I!wB{X0HLEIg{h zfjBljRJd1Pwf7E$dyfDL0DY?Sj50$)jJhFjhK?z8a%}p9FEXyadS`TO{rRLvU2PRj zB`G(LE_m~w#6y^HNl>T~LQwoQtt}(nn(3=0Tq&QKw`3!CPb(eK5tBaEeJ5zoiY?X{ zi$qlmj8TH``)<#)uJCx=y8R@bJH=D%`n3>Yb+Mw7l8)K0^R3jx+yPmNQRhXorn55V=dM4j~Sf782e+DR5gcG z@T5X!V>vo~X+D0sw-+@_$;6#0>8nj+D_pfaYz4Z8=P%UW)Mc3AJ(0?oz~GmkP&gL+ z{uT$}xd$MbFk>fUu2A5H-%MWn7oF&bVQ$i`td9t>;@cFeeXorXNoASNeAPopPAR(X zZRnY;l&Q+crn=c5rd@P#9U*?*q@p77o%F7vGJh+uE0%+m@?2kK2H{M*`s<|!|4YcxsJ>eFqT5%eSeRY-b+m@?oK`_=nrH0n z)4ATtRPdv==b|Ri$x=cvVi9Lt5AwV1MTHbO{(NIPsj=AN8kv__S|0sljlmrMXLSTd z;<(0uSTGKfOXqd4MZ`pk+$ZOmFvSn0tEn7Rs(Cy~nZA2S7*;FFH@WC*;>kkE5i5QE zIWNoj_f$ea7ja!1OB3Y%rl3M1`1GcUnWp<~O6e<&&Q0`t%UraX4^fS(gk3?$e^q2i zP6=#2ww*}K7STG2aiVoE91QYbzy9|h;bC5N@u$DnrtH#oO zV;&j285Rg`oEhYfElkvUSM1U+m5CAB78 z?=gOd9@5u}L~z~TQ;cV+R8__5F{E&}LeYs4S{w{<>ogKJS0db=8YU!r%H)@CAqP%r zRh{EGp~`rk(SN#4_OoOnOg-Ing!cme{J<3PI^u@datUiDRFxRZG>^%LtJhcxU6i55 zl*kTbxqmab@1FKi_t$p^>%o28{@ozHdEm}J0h<3H=Fek#DK~P4Fl$e%$$fSy=DW#r zAEQkdwYs|~C8MbApfaoFS4CcNjU~QQ7~iq{vR{pje0-YOa%q_;kDY1u)r%onye*j0 z_d(VZhLWDp_9Dk}0Rw9cHhp)L(g^5SGAky>nkf3Ej(D>DXIEpc6Kt~rdbX_|h&ThP zlB#{mB680Vz@96#?=Vp_FdZB&N{q{nsatCQQk!`h_(zI}KcYw<7y$|nf z5Cb`ZoR80_>VRbf68ADxZdl>n6=z%lEJ!guo{M7lrxwNGDy zouJ^ece?gidnm5`?vNSoGv%G&8y)4i(x&6#qCPEmLeR4B$*%!ZkU!Sfgw43XS9(T> z)uZT^H3>*d*NLMbTEeSOeG8u%qZ>REZxxT9h0fzWVXThdY<#)b%Qw z)?>%Bekz#U=!7I28UD@6?zOy!PhPlo{A5n4-%KhJcQRp=;1Av^u9>X(_0(DhzA|r7 z_;b;Ii5bnP@a~)4b*mAaftLik*DZ_xijP7Lg(E^szCA&g)4kufy6#@c&fRdfkH3oW zBJVr|bA<}V3jBg~!sw_IGXJiBdHmuygL+K#1}DcS)6rF$M37%2INjUjQ{C zIB6R5<}BQCkrqYV2&5&|!oU?bS)!Yp_LuV>d z_lUoyr4c3P{0uWgF1_xPK16;omvpN1J`9~!6`{R;8fTlqrZqNxsi#rgnlyc^Qa;A=JdZ^IT)+TP$wLfj)T?YIzLhf8g$i*D$1=@B{bO+li@kqaA{ix@OmX6-9(%n4pNdiMkJA<3E|b)(FJ_cm{JV&Xd5qS#u7;4pVnWC-#)#OdE6Xv{Q1&Jp#~>D;^<6slvO9KqUim9 z5*AtPX2J=7ywBF{AO%fxL=Cn&8k#npR}GmbL;^I~0P37jaA{Z!?8 zUJLC>OySCv!u>~?S>-zzQGf7ex6^@G4 zpae|d6n>XUIJ@9L9j!E@qjMj81`E!gJ`g5P08cPz<&9kdxUf(|ZZzuC&@Z=S!-`~M z0Hxrsl26-}n;g%x29{^ReMA>(tz@_tsSIU+9F2~cFhPYcdrG$xPyc9d%&d3qeY~zL z?gY>TLI;cd*Pa?>S=SwGc||>USkUUU;T!SexN2!4PMpRH$&cj5N4 zb&$>tm@c>H6W8d(ao2gyM<9$aJh?P5S9B-&PIvat2klvZ`n&5;Eh91x zyy&zsW}mZL4O?Zsa0^cp0 zbSb6Pbx+q)Px8;|`?E=mA=`Cs$7Pya!)QKOfB8Cs6oV6T-}-k5yCcj)(Jk|vvFS}M zjVoV>GE10w7-|E-HM!)_^E;-GIJu$y;DmFZA8fPd*~gjau?VtL=}%??f21)Cr*_8X z!x#E{)R!S9$Q5XY?*iGf^KpR?s>LWZEj>b1Nk+ga6%!}le^Ix{?75qeby8S3nQ6z> z3;Hy9F5${41% z)irz#oFu;dGaPYJ7^5!oQ9G))-HaVEs!8CwcW+rkoPRtu5QcXR9r{Gl*-xzww|eyO z{|r$`8FC)2OeXRR_EWX%QrT3e+|2_5*xHj$xiZ@KeYA+uNG$i zXsKBBnz8z(UYxWbsGGHj50~CzJMW6;Aa`P;zPM^fw>8%7l{4uQPj`P~+hF=|rT|>s z0i{`!(F(YezkRc74p;;7JCyn?p?UqwMCRS%3Ox1jlt= zRd-B8JkVBc!B=s5Uw*5MJm9)3=D*jAR6zvn-RQ=e$8y-@r*R=5eA zj8g0#js+!Y$>@zh5b#Fv#^3va-G)o3*?NEog$O($e|MIijF0wbt6ibJ{xZVuw&8Gl zjdcfH1k^T$j#kRr2kPFo#9Yk^ka&4vQOcAj7ifl zE*G*Q;SuhA0Hm@8yFlsU27Nb(^H^6)e05IpTck&VMks!^fBg#XA7}+pHHLbYI;EJA zJzP~=d;76g4aq*Wb<(oC`C*0A$T9STtTp;6M6|!uYQa^fB1CJ{FlmCc#r&^i4?hG9T!cRc;iE zy6J`Iyl9w2<{78G-OI|$+A|X`1yhWzRQv7Q+No*Qod$~mAASbI{t=5$cC3AF?)_NR zTa*}0{?HV$XI1!W74wMS-{=c#Nk$=_nYKRRCq$&%Gj~SrUes#wkIHG}x%l*N(Glc} zZ|=QAGXyZ`1@pj&+nWW)ivFnGKfXL~#lOy;d&>)KdKkw? zeu;AE#g_;CA+82xAd7EdJHV^b%v8mu_dD^DUJFQ7Q;HA1+=5TDgrDc*DVqzM*uV24 z$lS0NXkl^_{xc^p%s#=A_iMfd2s?QeaY0>EY66o5WN)~AGE~TVJxVOWWU2MvlT9`H z6HWZiVN~EYu-iJG**~;XN2a=<8y8*Xs>_}rml2TRQcP1sC?%BN)ejVoxVyn>2lX!- zXvcx%tveu-gGh&M)Jin5_zV%pUUXNr!$q2-PT?<27Kc?{ea6P$BTwo&sU+Icz2vTx7B6 z#+CF*y1y)Fz#e$>JwJ}S;M=e|<)YWb)o(%^;pOHx!(l>4D-60c^ewrTt%v57#C)O3 z@zvhZcqv#d_Kx~)zjOO9fmpM7rx2RtGE?4()`C}r-nRs7U-Z2){FIYF=|~3U6`rx# z>c}4Pp@ELj1EQw;11ay8et8=(AEjWs7HyzJ9<$})cBdA3f!B5=bSvecfGqkPOdPZa z6@cfwSs5-5A5zi}2cL<>eb;fPvz(Q&(Z?1c8+Hbj%T|??J4fg0o6biH=&BwZN55AzaBB# zVp8{may$S(IhGnCqv~AqL$zWNd%aT`8h?zw-U&Wy@|Upo2@sPP0qd$OrbG zLBV4rJRFK$%ZjFSxbTX5hZK83EcW=|8--&QS|ppy&4E3(Hw^T)d)2-EhB&~R_)zz$ z&EZIcU%7A^fIrQ+2M52|~FC&;=97g3+M=Zja;$f}o9RKTx3$JzTR zFpJs{a3iNTtEmNf+ts}H@wMaKvNjPl?KgPUQKFO`HR4`l#2tyt#57Y7IgfYj&%NNi z_hQsBxoUd)u;D2m;`iDUv*ac@9|O5N zx-G6IF|bh__~4zPF_)+|XT5wiZ6*x^XPg4K;beCZ5fH+gD%<5mKQ)Zw=*_+Cer{?W)!=Q(b|c-~b0~eByLI#c{gm@0 zd3U!^UQ~^Dhb7^a43UF<{xBa~3%4UresOF|n|E?PsnI!o4dEQMSCNX4t?^TY8EnqiYRR;-vNmepW<=EalT^X)&w9NCQleoyF?Nb7 zgeOZPBlbWhdB?ZhG{itIu{BGg^vNhvh0=5_@?g?o=}qf*-m;N9AWVx`t)@%;tPmtdDT!ZdM|gZ0%Y0vny=o264NRQYwR5k@rhLRxoO;coDEZ9N@?-^K7IsB*!Md zuyTZ#_!7N1^U1e+(xKtagalb)D`j5LgH!@oKO>xF)g}lJmx-`uXhx6ac>WOakdJo% z{ZC>8#dzINs10SZkuuOhc8&{{FG2>Tg%f48Z%xl|H;fp|Qo>jRCB(z4rD-ouS>s;j;FVlU##Q z_1YNwUjIs387k=IK7jU5*UX^hD~4)a>`>*(TwUqvfT4p@#Gm#7ym)q6EMgayJ=Ba) z_jXAb+|gtVsGu2p=KrX-vG>#sJ$gk3nXoT?ak8EG=7A2_+Em^05{a~gjMZ}J)CopL zQ&kr>Anr9zCLyO@-@!%+u2g~obHXlYvPB>m(WqI}fKOJ166g)~?3Kq{Up(urVN|hs zZkxd6e0b<$EbX-$HikotiIn$oR4?SCE$i$1gEbZgzJw~MRBR@{)nGn13{?AA_eNj# zoU;K@y99BubM!K1{Qawg+)qcv;k<;<+&=)bmI!hNFm6lu2q-f2hsrzQc2f+7d;oR{CNvG!k)ugRQ_ zXIa}tpDWiBk!*Bq#+5qDZ;OF%VpiF;Bma9aQ9H3G)&(w*JAdwsud9A}=vc-n(@QG_ zmG~!OO;M^?b%rX-gEbeMHB&W{Mlr8Z29`?W?YG6>z@ATR#wU&*sDr%ui%lW(zFQZB z1s~~%r}kZnb%ds3mk)r%dN`q76l%7jeB8_lp$1^BC=(sFs*{=${m*y&@kJf+$O>{B z-yb?mZ-GBUm(M>n7y+I*xuj~GS>Yaymp2yMOVw^&wO(9^)A|<;{_kT}oYz-tF#T!f_pLt9%%ZYKq4eQ4l zLV59US#953Fq4dKabN##Li7>nJr!?_7kKgdQdk|bkjwm>)>HEWiwB`veIFqgUKY7 z@ql4_&aZ|K7lW+NPN%3^-gzEyQfiAj4B2n^I54N}*wu)ntGT{LF8}P|bOJF^v9oCR zFTA%iu-_nns@wvsMlNc*fD#8|4j8?6Xr7*EQ-6*4m#?5<=K|(d3(4ci)>|jut=rc? z8i@UxtEc;dedz(iy&Xv5Qs8$Hz*dFK1cmtwCz&LJzM@91+*Q;03`j=u^7BGkXNQXAKX zR&33lf8~e73zb-=;n#UCCGUfgJH9I(bG)6bR24ceKsFQB)O3-&J2Vd34R=vgD&B~L zcLwQg1bKGA569B#PfC`t{2cKHJ}N$0@6#Ud67fa+T;u6SXiI+*Zh%=h>8XfRCE}3Pi@zY4P)RP8nO1Z{#KrL$Nb6 zH)vx-s$FD6OOL*9Exf4?2liC0KIWM9Dgz!DCN4!DigT#FmFoj<$%W^OXsj;3o04fHuTd;ax{UI%oQ<5Th(+`%!LKOVsd|~K< zWzKhHnH_KbEM|E#tMP;-S`re5v*)1&=1>BXWzxk`Qpt_Z)Jh8^i$nJ>8wLtAAT
}`)`RaFBIvbfW!@1@6R7WcZU@lH(XGq9mIm2WxWY15XXqbn`- zBpC;+-~82nobB$B;WWvP&9vSyK6-)YbrY)iUm?B*v`N@qD$Cn?w*JDczX^BD?Yhcl%?UD+f`;p^lD_oswq5Dg?U7QMoI zHv>8S|SKyv@@eL1o7`4lR*x@M+J2_0%AX^)roi4efpT1#cBDzfv(m( z85Up^2FYMqO9*yxYBFB))7z@=)p|^@R3*}D}TTznUUDY3=+HW2(Jq$Uldtgz5qAoBFfS1laFmKx0SNvx5<^jiV z5Mb{&LHv$J!gFmtrnzh2oSP?-aaQ5ocdj^MX8Md8oVEMI@XV+T-?zxIx$RBR`w>)k zF^r1qPVbEcVuS`iV71s=39=VNp zVs^gwhdx43*Sr;LQ?6mQHYP!CvxZWr+pj5T8OLN?if`T(CB z#DFIPOTUMy>q<-H=Gwl^A4gqZ2X&5B-L_((3 zuB3u6(Q9V(AQb<>8#5*y#6@09yYvF@-M)hkloXCM2AH$GA% z_O?Od&MfD!Z!FUru_ZX~PmuD6Y@2U{AdAWBk&W%mer$Il_7yWRR86bv zc_7lpc0>}Ei8nBz18aI=^Ahc;W8_=Dl@s44pMCCAdxVL{kKmIGOAvx}4KW zCr|G>Rbs|r9@M>@hJqLJ+Lssqw^3skP?4Bj69~6P>kadO!e7GJ&-}hb*`?j#=e@ep7 zBi;ySdX_5dps2AnqkgfmY6SX{y8EK_;e<;8eWy-xM#;hWXjfIf=QD$LbTfWCr=hev z>96aeZIh*5ZJx965|qh%;fM|V>bfPu6IBzlVy}?+U8yIjH<68gir#?q5;@YFnUx#T znU3A=Y3?!a?mP-#jeuJ28;f;Bad>aE!jN!#L!Y6Q9(0jJsn>p^V)*{jSE;b)K* zd0zB9QdW2k?7+;p(^(C{CEoepJ3o-G{nn!7z$Zr=avEtnD0|qj&E!PH9>@qAEc3}^ zVBS#1xBkz<|NO{R3*_0~{0u>Rw-^aEu~)cA67wcj-vr>5KtQC{Vqk}J@4S-Gq@SvCE`URn!=|3wR89ZZRScih zzuQJHAOS6H3rbmt!0J)_^M=qqj&A`amM+-4wXh}95Ms7ItTXNVz;Jy-n^M2a{3|jo zTwD?S;kRaRtP#H&HxurWPkh_|6km9V&{U0?{I)a{cTiVq-%=q%rQvl$`Ecxm_mYp9 zykhX64UUX{if(I5lpUh4?jFG^(6jbK5rrbs<=VTtvJX~u#HIEOWZ4SW`2AGYMoL|m z5OcpS3Z{*E66uGV zR{@}^ZJ}j|TKiAFVJCGDm}(vWP+WMZ8=zsvH`G8|CewWGzFao>ul5fE!d7IQfoi5J zd}EWWpy^F^Jg+#@m>zjjL|jfpx^#W0tMtzMS$3AWza?BRu?ob)e5otz0Z~MB+uy-M z?oT7KrYBdf!JP%9PdKR@pH%e?)jSd*SbM8^F>Nh)4&S$!H5_JVRG$Z-FY}D!z-RYN z+~^By?yp`{*2{;_M2AlHmEzs-io!^~IQ|m^=iHdf6&2)kWOxr1)5|#NYiF(k<`>{I zgO21RgOzIj-tCc-vk!%BphG2K$Z$fDDUJ733u!S%oZuTbxm;YoS?f1_<*XQ<7_>G@ z&P6*iAWu6;bxWlnXFD2yTh?rK>2sDbpZLsV4^T`<=JMGPRVUsKp zSBC|wg6-Z!Q4hNM{gaEw21vc?@%kMc0#Y68hQ*2+&eC^;N9cYA3p+}=L2j?j`QZGzZ3QyJW5b!|f`CsV_WZ=l43C7vGw-9j;(N z+EE-6?~xX7C743yY0I$a3ApgFTEk3ZL5z4r#k%K2M)*t1g&4DT9C*z(|C4crpPI|c z?F!1l`}AuvM%TOo>W(F8gGHMmI~9tpp${&ulN=WvB-cz6P5&l=}>JC(OLjXd{zdgVgO zqmm5bV`e%~jLb`8oo3g9uDA|e-6x{lBJH8KP0cW;oPy&xawn|MPg-49-Gv#+NGq{9 zsSdUKUE&_BOnUIsQfu^?oyWG%mRb@U`lz*#Lv};{6N5q-7lc(te7vp6N%iIFEcM^_ zggPWA@49qn*WpncSeBM(_{JzqZi=ej=S$IJv;9jB5!=h2Y~M^uNy1If&QVp3p5-{t z)TJeHeIt8t^&2*c|8)))2dhW%@Z#N7MbyLUr|aryUtTgsnJcx1p68?3ezhzau!W>u zHe%p~6jT5#O{drGZ@ScTLz0pgCJ*a*CH>4>VUf*g`@X0zqel|9wq|DwDG|TLhWw7l zcpp>L)d=mcN|CZXCdQu_@0>EO-d#tr{zd#F?tv>&dVsa!YOcIPaS(0(&Asnr-d+iiCbaB#^T6MJQ%(172wSCu_3IB(Sp80%;vs) z_N%B2S|HbzpXWn^>mZb%+m)sP%SKhDU{2)MWTbFiXt4&wjkvQ=us<861`?HjZ_*D9 z9KO=1r!}NmCYJM|Rm1>KA{$(_gh$llQ!lMPOozr5UwK46B_;d7Jj7PqZ-kJ%&3n>x z!P;Z)Tj)jcna5S8`Yuwj!L*Io^0~&*p)cLlxt|;^9qQ2tSWn*f$5XgOB8nx%U((Qk z4l2ZQ=;GZ;3)7fYKZ7AG91$V{>fRZ9Z+?it8`9@bfCOYdou250^_r?!MZ48B#{V9` z7n3kh-~pj&*BzcGsCbt96|=iWCAeqh6fP{#)pk9=>pux~v2NrKu_hD(785z0zJh}D z`zy)+4o)OI2}=hRHD$`+AG>%p*Z{m-kv)l3|-IUw5*ZHpm_b1$EC)K!^ppi&76VWiwG%ALCH$0QmxS z*q|6t567%=EFeelpmy&kwpx|!Y=^y)n1nC=pl*VaIc-ceNWkV?wbg0(_@1sBJdDq@ zEv@?|<#EPfQ(r^Fiwi^d>7L#dj&(S=r}C2(kHwC;&*S5)=gqEW4=>HHm%Mgs#P0}( zZS_$U@9#9crmOSoMzf3d6m76Wu)wdHOe&h>@1_z9FG;<2_YVF~LI(hxskGv7+E?a~ zF-P|`KNGi`U(ZSeYFVG_v6c00#|fn^S)(5sICkCCJ(esu^L0}ug6tcj_nK|~%;t`Ij%lE4JpT+GEoCAV?v{tmZ_&)%|L*+ZLo zU;9reHJ}jOsLg^%6^2;JC_OL#l>Qg|I8kI&gi4@EssHgx_x+Wr*3#qF{*Hj+lMYdN z$ONGre;>A^F}2(Rqo8O;(0jgQ4HvwE?+iMHkQ92B)^xYNKi5_DO=}!4&u)kx^GM`d zvG7gI?WWvia(s!-rK(Pn?@-$`Qgj0eL&lUBk)|LXb+QJk^Q~<13)n*34CIDS3k!Pzbfa)H@;3;5drVbP(-`wg5AQ+F zVAW_UOZa%Cgdak40L7kHoVpJsS;d)r*YV%idT0rr>*Ihk;?Kuc1@Ud-^K{o`4&NqT zxl}6a+FD`a@_xQ9<=;NsImHan)A&4M=N>4HLB)#7fTTQwO=zWUB@R}v`rYcjyWpP< z|2t$8*jG27)Fpff+HI^za%vCc%&dQFEmW;?*XT)@2`1x5a2MWlUUJ$_rNYGx9rV~U zMr;~EdyVt_YzWq)+u?bmDY75&ZEh=^5*hk-Mmrk?ojdk~zsD-q^u?bb06_NDwxb)3 z1WG7>$zsa=JR|Nmi3k*2og&YnB2Ra83hxHbZvgS`hK=;5$1hBQZpGdrA5)f>uR)ByJbX;)?&T8?PPU#7TM=O=)A;RibzPgjz4dw* zm<4F6WkK&bzUHZq2iG<2?)^#8LU*SZuwe@HzyR+*Ru8N{$R!@%^aqcK8XD@q(}A`c z*|2=rGo)m8aQuE`8Ve0N&`8?v9DoeB_`00MJf4R+1v0mOGvPl*vfDs+_R6Bq&kf zSbQbK!xbX6ywz2BS&1Q@KrTXQZ8-G`=D3Em=3S)SX3eObX&l|Su2~R_eAO->tlk#m zUt98xFZM5e1&<~?31@~0!T84It(&(>@3t4*`7I3K=&9?)Eitz`%Bf!Yd3_*RTqtBW zv`)0OXil6bN}U`H5T^_oLb+qaA%zw;n|XzAlph+B_XXjCdgwXRQS-lBp+t+Wc2Mw) z(ru!hjjdXGOA7GaEnGR}aEd;EiFB85-H}uY3J9}Qc~gjkJwb7(A@_!c1@?BamXKY7 z;w19}$6lADaZm~)7N4g44brnxScz6YUxB~)O7wkgA`i($vyo9RnpmVLq>Rw4$UDux z^kb9#o>#yr)=m9Kcuqv59>8kZ@K#!waZ0XxsV`^RXAG}shO9`*tGVnbyMjifD~w6R0I$Y_)0m~LgpCOkgwlp$GwVQ`f+8g*eRRe zxX=Qhwaw&5;zK?Ujp{zZJ@wB%&_wiReu5L~LK372=$nIi41>+s({rm49J@n|GQ@M%y{jJ-9L_#cj1$}=haV( zaw9jn3{TbNH!~SW=~w!7vIjA_18BlBohs$X$IK7@Cn0#lm*Sp?G{!fbb?|cZ<&p-M z){jukjb`2)?=+k0CbTwu7-FY2N5F5^@yPL1)xiPiP9y9X_T}1;=m5HrdKF5J;5mt< z>7NPDtMvle{>oU=Reh(7>(oBgP?YQGehUth(E)yoMJq{uideDIRF8yt^((SnTo(ib zq1N(YDFfT4g%0dE%DGS9;RHjpv8CKZJXRMOZj8RX0NVxJ6y3f_87#TWL+i-BUpzoJ zQ9JH7sDC!|k0o>8dl`TC-MiOBzYVaIj+0GKx@_}YHa2RouY)@+JaESDo!FyhyFhFddr58pN3pH13pAHya#pFv4E|2!V(Ut}e?hwneuOH>EZQF4(d{+?D7L>tOvxTr9+36-mS zd~R&L9iVO#|C88msFxU`F7;ciEK0dh{j^zcbL~&FJ~vljqQb&#>$~k+sal#xDE~0g|IpG;GhtwDZM})P`%lz_z9}ub&~w z7Af56v%dPo{jc^^1ndI;(Av|m)PjP)4+h?yEF)(W-w~o|6aZd74n}Q+{G8D8E~Dqh zorWEq1Lo0sxC1~P7d9n^_0n7X6Va;IR+^0fudf}kFXGd;@YTWHU7%j|<*`Uzq1SJ! z&a}Eocd>z*CS!wKvZ%M`W4(*Y_TTW7 z^M>whU*_$qP{j{qqJjJdchxBQcx+2xfuEc)#pScw!&amc_Oq#lSZU)_h~htQ^2@4w zT4)USl_CsE7Pki~EVKzmZvW^gwD?&=PMthXHElq)Rv3=JST+RNy6QN#m6H=!cY_+Q zD_^pG`CEz2;#pqv8c+abUSrQ&^*V+VckZE+rx?_0qJkyWp-erSUPGCG>J(<8tze~r z&CVg>s)aW5+n=Bh5k6m7-(NIk^-kK;U|he*1J<0cFAt)RUQvhP+|IEh|4G=$s}4M}!E#o`C#H?PUXE1FK8$MHGs;Qr zpmo!HTKa^lYI7iOP9@6QFL`X%`R+1D86jG;*I~otu^+yxusO|M9UfyM!6Dp0hv_M` zh|hg7g^1T<`KO($KmX)BoPD`ruN(8ANx(CK;a~U$g9#{(L)`Y4|J`2-F3fli+8o&_2)u?H*3qGkA^xn%vpweRoeU# z1e?nR1Y=j-NpKM;u}v2-S=)MLL&O#gN_^@ z&JLnuh;aXDxsn21QXw|~Ul)swn8&vRCRzwLu_eZwy@<`76oiTGCrIJn+8^vunYjNX zaNYQB|GtL8F|8Pkz z=7CKAe;n6WrE(>qT&rA_P`S@_NfN8%W=kr^u-wB~x$hNU6rqwU$8z8ImBi#48)lm$ z_m*pReSe?d-}c8g`@G+;*X#LsJ)e5DMd@F^-n)B2IW5Vx4y|tY7>RKNq~pCXK1Z{} zM6*tXD!Xs*yc_$v_@LB6bkR44$=)DvC$nmQJM<)YRj9B_0Zt{{-zDOZjP6hvA4{K$ zhgC1;wEbH`HiHQ>Qr-4f>!1BK{eb6;AeU2ghC;D1ncc9Hs8FwBMkuv*qM)H+TV>t( z+6&<1T?^MksnCkzl$sdt3K)Fmc|FYTu-v&z?+33GCFPaB0=Sf`4D5Vf&l@s^AlxVE zDJj--cM>7=U1@!K>&*y$3@p6PJ%fbwFvDguW67f%0dJOu&_bW{W~c?um{=nTnoxTH zUCNqK)sz!UWX~#6D2(7ok{es1eI!u0=xT^0+r4&t!@EK_)ym)_*NU$b8=JouG77GC z=%LT@m!3a;0J{#>YlQ%l@l)aQZcO8hQt|X6NB25)N<5NA-5M)?Ic?!iPtwE?|Q_%VQssW7_ck$z^e+)G1xT|lt9ZYAq| zSm_rIpka98k^t9*w#%!JP^K3E9wCtHXfNG*fe9qm|5hCFKTBcVZT0%(@f?>OdVGVu zrA%nVf!H@D08u*hU%H%`QKTp8x6f1XM0i*Tei*9wyS?ekK<82UcbW**i@iZaq-d@*n@(~t#CJkM4?`%(u@!+u4D zm9%e!&exB&DKI|S75+O1%`@QLhe8Z5WW`STxu6jR&jtJd zQdO^%&P69dPtjc2a-ie>rOu^}d5mJCU*M1<&fz~v;=3wR^V_rBNu!HRb(OVvzP&K+ zCop8V5t5j9#^?-^x>r<3gBH<7$82jdgjib|!IUNv;nN=<2IT&vrW(Joj|&`} zc9oao$lYC{aTeN{XJEN5R`Lht%XOBJL z2ko8TI_4$|8m%yiL8<#60sf!&B=$+GYY1Z+G@aa>UqoUXN+u8e-p-mg&$|e0C@x#q z3`spO4|D=Qq)kKx;=!w`irE|(`Qch6QmX4(B04@KFulal)aZ(9a4ZwsSE~sVMulct z0sf;M8IzU_-zC!i9=%QyT=1xNtVNK9@8vTe3;3|JR@%+Y*4>2PwgKGjz?~c5WB?M2 z8ztfVSR|F#a+sSO_|dg4^pUT$a#C`O{5GeF>nzRm6h|YOE@JTRHJXIoZ&0tS3e7-E zG9@R~G&9qvuX+a|!X37cN%x_?pgGoMRpb^<{y2Me)R-tXFtbA9tKrv&=l$bh=2PK> zE+5$f+8hV2nAq?;`ZJbE^EgVKoM^~rlHw=cSVW}0hc6+BiNKyj&4fQDN>+$>Fa=%H z{T#gb&S>|qQWQ!(R4M7@_jbo9X`h+SBzfME^=y5`Ky_jc>&J?ON8_epJZ)aO38V|ex%g>=X3UvTQk3o zKh+1-SWpYwXLdp2%*D58#6U`9*(Cr_x6HI5?e>{C5 zg*o$`)MSWx-FSX2n7%dFTH4umo`y}%ujK;aGSl9}*TZq#dN%yqXq%LKNK9)nlCN75 zJB_FX&jBK3z+WbJsmTjWw#X#wZlE;3G3?i@nv&389TQX1o;C541Q_i%svAc~>#op-4DYG!}&y3Ki z7~%94DBKUAddhz#f?~I{V$Z*tt%l)%NBYm7Ht8{wGrT@J9ShV?8%!TNf9urMklYXM zFRQ+zri%UQV?2FLWNTQUWSb^bX|daJ3j7jf!QA`XoeqpIl4;Y1GUBuusWDv5^b9w8 zQ@&DzJoco*k`oNjTIIc@V2a4X(GjJk|#&F0AiA8mSF4iN6`R;vMEF9 z(Xp{DFdEA#1rbLG&kyxO0OxLYV5Tgrelcr=CR<4nj+fL!N>I1mw6e4^t^sAjv*K+( zuGsV%P^ufrB8AB>@}k?$tXlWcaEls}(e#9e%Eg>qgD|?NF)f|@fqt#*S#28tYw?2) z;6R04G2Sk*-XcmDC4T`ds|MlZTB&z>Q@utHzSGTUxLXWYnzk7tDpzbIz)fW#_WEr< zG`E;5_PG!l+o8U8odMYHYP6b}HAc8qod0+Lbl3)Xg?aJpuBJUeXJ_2pxyaU6_3}(Q zyRGmom4UxMD(i*i1=qUSAdOiTx?lF@3bJsKaM|JEvPHF42 z+;VB%NjuxSYM!r;v)VO!oix9i7Xxy_)blN-mGaQzy?IW;OIV=?Htjzib4xDsn;w=4 z{5j-P-Q>BTj|XxWRCCi4i`ze9-(O>G-YjzpS$DYaGkWk{J;28)j4UYAA`|>=KoR5jlX&f5QHQ&!gDnJ*Vl+|Bl(rRB zQC_ow>McL{tls^u$rccjHXqnb$B|=ucjC{TZJ)uLUj{ORCY!gU*>@SWbaa0v zl%MmdP0FZbelQa}?fb`C_R06bsmP%Kz|y6CI&Uw8ex#@?uErN-R?y@1bYj=-a4Lqm zcJUkO7|@KMo9WAmC~Yc2*bN@~&0XD;OcK+2M;hY%k|Sm%&YNsNC|;q|!$1^^0zWSrY_6L5oC0TTMayPlZ`5J^OzWv zK6ywDLhE)4Zqm-%ON``$qA$;DZbeuVRH8Bn9!_C}n}CHEDYx!F9!Os^Bo-#w0wFsb zq771_iwNz&SHB=?6oOfUE`FI|JOdx=Ej0PIYSW3v<6ihIrPMS@9GXeb@jCkcI5Fte&x{5`YRI&rW0*pI)-hDE<_@@qH1CW#}&8+ zwKpImvMsqGfuKiERCXYzax4(1k+F~a)Xtz?GZgHC`wjaoCbA0|vuqoRa8=ahx=CJL zUo)9*>>Afx4w-%bcR)7o!ePQOk-CpZh51IPXAPUJtsCZ4_yIlj`Ss@&@>6t{}bdUCE^p)tXBx6_v@i z)_(kYBwP?85yb}QuQl2-!I-|(KX~peHox)8eZrk`wgoW8J1I<49gP{MeL zUl@pSQ_3!|q1z;eUz}!qVk|@Gb^a>@O_}DA=H1kGvH$BF69$%FXBe41xsr(%F$9v{ zgTF(I2WcTTK$r$&c0LT<>tjX<9azpHf$2&yRL)C1pz@?+4d_9Af%NDfBlFc+eKSH= zqGnF~1&MobRVwjCseMcOz1w%!9I|u1`b@n>%Q;BOHU^j7^vlt~PLp^^EB1BU)8>BC zN+*Lerg?xyGSX}e;a`xad&!_OSI~b>vPsWtf#ee9$(%^GH0StrcIl67ehr8)cd`gx_Om|PtR&UUT$B8?g6>CC@Y3(0B~HrA)UN1rdmTh zc42ha3~Ao^{+4d6T&pt@3`Ey-Y(+9NH~8pjdm&ZhEnd&)#;W!3SKu*I!0BLQPji!W z2*}vsWxFsO_>#9!ro6-mZ||B)K6Xe}Gp&2?9mAMjZ#4no17NL`ZT?)g~ ze-juNCdY0!NT$5M_ROG4_(IE;BSWWtP`0$Vo*gRSJ|)8k``G{yvSsYgm(Mg|V`@zm zYn%Vyipc5cU||dgx>`5rR5`fXA`9rO3NWgGyt@s6GJqbvhDUfbCGEv@Kb*WUD%bQM zk0l_u{=ICsdxS1PGp2x!I>Pn58vZVCFUnfEc@P#-S4gxJ_7z5`mz#;~gX^~rLnkbI zC1ZQmvh@)s;H1;U`z&j|>96+!MRxn(IbN0&Tm(v~*cO@Hqm}1U$C=CU%H(+J%o{_) zXvUy|EfOkMU5+oQBk=*H{(GzXI|inBv*g z+w>Xa&!r{iuSh=^%r1bg7) z^@8_G`uok!)H4l-I#*PcwfjaGX|T~v4OqQHH&2{dS)889P%x$|N4aZGFxI-o>k;-> zu6v|XBRAc~CRN4=w{GupBeOnJUjZw@D5a{{Z&L)o{FITO(=%Q6d)q;G&cERaTp4GM zL)9urJx}4gZuKcTJP>o}On-QYH*c)fFIO?U_pL|orvHl!mDkEwJ_iqMqGbW`65~^h zH0w$=tGuIn^@KoLWMopVe!?)_i>T86fgEO92R|GuW#RfXsUg zBJ<{9Tb+LIsENX};HGeqFn#nh9+fvA7j_rI16++K*;b!s0N*t2L-k;F2m6X&e=T&B zN_Lod5}F2qopcw^Ju>0>w4UE6yS({znDt#gHo%V7giEq-O&DFMXJ25(eAt8M+~ykA zi}oMv>||9xts)@?)=kfgDj+8EQ{42xzuVp-4NLU6r-r zTm$BClTA*DF3Ir9asozhHSc9z4C1ZS*p;Kj7QRj#QKxUHuw@ap%RtGS{%3xyzWQ^WC4^l?hRI zLEVw7P$+|(LMi=bzwq=5Fm#^E{bZ!STtE7`Ire7de>^v|e{V(ZKf6t6M4!A37bkn> zzp7V1r`#defb+>(&=gd<2T%JPzVPX()pZFs98}Nup3<6?=!21(cGCOvm@8NR*1a-$ zAZ`FEuy3q3BkErG;3p+mhMfOMrBlJtwyc0HHWxUY(1L)`;SQi5uRzaY?z(9W$b5gu zvyp_(EBEj)5~e{vWk6->vXF~elgh8Z^+Nc@MfxGbU$Vwv6D?{1vT^ffC*J>l|NJP^ zx<01G>>IK7NXF+-T>5sf`ohaf)J=K>t2o?0FF*4jka9ce&^Z2uJJsB)X2df9 z-q;?{&hbotY>w!WOsd0whe9qGw7$q_5SC=z<-(-9DNg(*5N+?l@*6YnYJ)p?+wryj zlkcYQ?rnX0r@|%e{^lLndO%M}E4^9k&*FziYP-%`s$98`40mX*{j2!ePyBK(ju_B- z`RBgzY9)8uhxKp0C3JcPc}u~G*;=9^%iCp zbHM4ovKqkk6053G3;72pLKpjW!ERFpm!9<-2&&C9ueW6f7n&)SDzQ;BhsF~Al%wnl zJ(y`8H)cd7Hj`UKCqk!pW^Ep`Zmr;pud(u!xc1g237P?8Z$f8{mL_irn1Au1^I<@xQ)DZqyEnrX>uyFj?q$_<7~XAp_50rblj;(OeWVah+lwYd}FQjAc# zayKyTG!jB-PS{g>Gu9N?L!Bp6U-48}Qucd=d4ZF#iQvG<;7+d29XeNknI|LUU>Gp! zl5M1{WgCW@o%Hhha_WKn859Se!RV#pWZ4faCEjGoXeJeTKY1(M@MFlYO>10JSb$;6 z0Nc|ao1hI~t*K|*C#_#>Mfsz7*cXr}UF`AN(1|36t+OI0b#Pdn6}zm~y2kmu*sF6S zlEM%h7x{+O%T4cfg?^`b;o`Ou&eTYZEq#r$H> zj)Pg*B|d32Q0%fT^fKNg#z_J;K9iXFGbuIyz^5-X7rD2Hf*BW z)+H@mVuNvh>1Bm)IA4Zb(CYFs{2ygwvD+I~73ivc&^or}Aow7BEP3vL?f#B913UCA z`+WnkHVh(t!u0)(|9DoeNaO}-!}{8Q8#^Kx+1Vl-j3C1lU%(5u9h8h-y_A>aoMGIi z9}3`iDP9e+e$gcB6y4j{|1bIn){Azxgf7}Eq@f(9xVEvcMLAy#fKh6r^*iNf7)}*6 zIS}*l&CT-6;fV_L)E+_1A|CNBh8^JrP+S?C$y|F3if-5VGUve@prUrB9Nj5snoT&Y~Iu)Wm1_Hb65K%|rICg+aM)l<+ zr>Bv}X5Y9?b*_x>uz!@1q|C|L<%kFEHkd1U^y}PTay-kahB(78zVXGm`q-4>pO^r{ z+;xHZYcj*a%L$~>mV3gVBdVTCX>icf+&QFIs`Hcql;&WYm%M`lfSN4N4_;F zE)DtkaKWRmUshQ9X9eLL6iQ|(d*0?&nPKe{@BaoiSmC8QsQqki$U(brlZ<|6 zo_7MMZth6TF*Z)^*Vn2s6%7S|V9degMwoN0%n_yTSrRexc(t;H2#IVi>zh3(@d{t` zb^$4@j=8zEZ=L@cv*rk_@L7c&4$N};_x6KOUqLeTRqe2c@a5_LDxV;o`T31m?&%@^ z$1L-t%ngJ}#m%2{7a#Mr+ndXEg|q|87&%XP=*qTZNt#|jm$B}db)U2pHolAj+f!ta zN;!EpO$9|LyJizl2kmjK{9 z@AthCUIk5;!y7>4xz;hVF#B{2`kxgl%e4!yot0toF6_ehtK9U>dRV>o`Ye69qs|&E z;$0!j9JW+QvhYBu6C|a1%%$z91JTOS;3M$x6&ZV|d;PVTt>t+!6)lhg%q;KH&=FuBnua-e4o_u3=R?XNv)AqFq_&kDS)!FJ&6y|8_Ny^X9=+D+QRm(9>? zAI?AcS4Mwl6)roDvZ819EM+WP@_+s2{A_yrQa^T_d#lR8lpGf7$SCDCrO*wmFD*&g z^&OLcDytV6Ir*Kd^oOY($G+EgwXW$)Y@ zVZF_jnKwUn+2${iZ9ubydbqc*S0-Re#vboVZscW#PN*OrIaye}E8`;wg-;Cv{0CpX zOf&ao@x%`OsNh%dQ`^JdMw64$jv&jl++d@*2}sY|;WUNe+OM1#eir)r)wtm0dP7|t zK%TL*kkcqBy2;JSjg4R8)eg1gT^W7PVc9xcE5x%ME3gt^^C!;WMd_b3wJ2|&LPBS% z5I9&Hd$5c3qj{H85?inLcM+^hf;?3Gg327jzBJP*p=Mr(wlu;XI!!q_23sb+MoquO z#(@!rHZXc@vPQcQA$VwERY39#cw#^n*&BwSb@ylL?RUcj94|JdtP)MN>IHQG*OfJE z)+*uossDJsAY+!ctuj0vZlD)488*s+xnP!KJN?R7?3PqS*cvUUhYOzA(f{pH|5MZW z(NdF;=oIfqpo!+_hFSJxO*V9Rgd{fbp7G9M3734^w@;o}TxriW9~A|rn3p3GF7MX0 z7Ejw6eK;L;w`WtfRc9AS5F14usj6*ae9m{6y;$??uh@g<*9dnF8-Rfmb8S`d(R$52 zgAMn5ahxAFadGn2%3T%v&CprDtFQ+KpHlrPpBRHc?=Ob#YBSgFvU%Y89N4(i+CQWq zy*;qP4X@3d#~oR-=X+xVVSJ$YH#BFtR4Qi5{aja1$~A<;&3>c6uK9uzT^Ge|kEcFt z4;xs>Tk^mqvSo8sMxE84cvbhPHaqlxq^ooQq0GT*Ay zJ*X7l0*1rA`~q(Vz362H5 zdva#3<{7^-|Jlu@>*2bZd#)WI#`*eU=;+8(+s zO_41xbTamOt*QU!RTU`wkQhJ%rUP_V0jCn|$`NaU1QggK(~Q4o?wftBgVfzTD@F&$ zQCmml8!-BF?c`Zty2@Oj%qVfrlK zC)arq?7l_BSf|2{Fg&)q2^SNc=~|8Mi}r)Z`cFPR6-rM6qPZerrFm6bY^i>hG+T14 ztQHh+_6^w&i@7pql<#kxW|~rZY-8ONTWKK1(r3#vT)$MLkwGz%N3;L=kEb*Re?Lxm z#JYAXMuY6W5Vx_B7}n3yo(iBZsOSn*qK=e2favy=ik>iHj!&tJD6BlEo9>mS&9{AV@8)*FndP& z^V_NY1FI~=S9#2z#JEK2pS2e$Sd;Y5^MRk4Hz`UAgIk(%n*BqE?l{3og4lD-^(PPZ zC$GJI@gI-Q1~lIp*p$&{1Og}gULEF(hc(mPfPd}Ua(Hby;4oiAcH&k9+-(?lu2Xt_ z4n(zSu>xK$%iz&u(i>5tn7ceIW?_l|mel`;oCuyT? zM}i@VK(UHT0-^{M#NQdz?R`soiCf>BHx=giYp?*G&4CJu^W=gUMUU!pndVo^3eUDQ z%4M!G@WXi$U{`bksM`9IXNyUp(;8G1{C6+v^w@++yQ*Q+Yr{sWCJe-QX|DCtLH$`4 zDwUHNQ2LJq@0*nF*M`+&S5+R}69lS~Ol%w!tNK7vf zo@H=4OOq7mlCj4G6wW#D?2T>`mda7qHye>-gcdn5s-g6W`Np=SvLN-Lj~`#%Tc~7v zEMnqP>VaRK+n=T*MB*I_Q8{fsETRZDI9lodWCCSYe5#z2R*)#z&?-+)X`w2SQozt4 zr@T9oHIk3@9g_{5vEhVppZ*6sydMKs@S53I2KNg8R@K>E7<+Xn4p;)-sU31f{?uKdN1Xs4* zON$Jt{Kw6Iklrjj-`ilH`;X@%W)wCJ>*2~VqG|2-nrMN=UPZxo_N_N2x(~hC#eQwk zrjK<4ow6!d^unw$#qLuKq~=(AP{7IpH+{|n;rF%2vtp;=w$m9Uqyc7Ecf(N__~K%7 zFVmA_ib~x|#54We`3Re?THrN5u5k#gb1OE;8q8lKQ9n`fxkgI~w+-2X7?#$LwHW6! zf^6$BH%C;We}?~=F-HLQvmpV^i33GOIya!!&y0rkKjODpbWwAbcZ*hkf$~#Cv&1Lq zkGqEf?0G(1Y~XtOvoc-2qp9x{C(pONDT^10{J1Q=Tr2V;^;4?W55r>xU(+`9g{Q%j zE{nY(5*@5W<*j5%q2yxV$LRmp&NSQe*gvH%?pq|Fd0Pv6MCT{h)uZ#vBW;5-mTpNx zC(>jwFA1(w*jo~@oF{Fr_6uN-WVjP8Hp&xaMaI+|Q*pHnTA=C+%P@V7osolpX(FRQ zIEHOkU~gfNcDPHqG&$eB^W1CUU*Nu0_4~g){Wl(x>}_l3JUnW@+p@ z4yyP8L5d*gie$mkmjGaQ{kP8>w~e=vg?t76uU51(s^HxH5xais1<_-ma_CP`LK1~Wh+{44GBy-Oz! z?UUCY5(a~V_;FqW9hio+d zXFwGW_Q)voJpA4L_mE8Gr6mn1Ae-&C@FqTm{hV$R$8-2)}zhCu9f zy723kBeeZ_dA)+&8LjKTK3^#h(CJfrzatX42Fn5_uJvqDUjh}9NkPQaG&`wox-4mB zS-9kVq;tgpZ!Ra0BW<{dFS<-4Xl(OJMTT;s)cCnOuYGxB^o2)@8AJZFV&yN!u^W_s zppv&E$3AhC)q1Z&A(H5qy^S4S&2PVN;Kc^v1a_8dEZ#cds-&^w^W~Q|y1)W6_0H<`ys+JB36$I+Ju798a4-Vn0WqU?A+;C=M$Yn2#_PZ61*bY7vb6EGj-UG${=UVlV!aj?xMeUkJ6!dFm`x}?Y z2NN0$uOA}*Mlj~@-Wx`T;ro+#LH8mlOf}|eFQ39%dS>UGcrD$k|F!44jjf{pcpT*; zu^#I!60ECmS*hQ&1is zvRLUhWN(I(i1ML{+T>AUBT(X5{cjMvCDUq@nj>WvJXdnr&-ayzP^emXm~5tMLHRLs zjh8^Q{m_8USp{1<&SF`Y{)v|LfA=J_QrZ&2E z-0qsn2`AfZGbQog-FpvD@V<#K3=yi~*vpZBm$+-S$wcRrZSX^R0a@^Cv0>=*$tM!l zV)# zms6~t|E?+3;(8d+ks2fnwBR=pyX_k*(r5W&1-|L+Q43UJ8tSqX=Kj_A)V1X-5!&>0 znU|Obv*C8+$)awPonB}p4(`-MKIB_>Rtr)${`h=5Epo1nM&pa|CxXvnL{|06Yln*# z07K0}1|(i3ITRADI+R;25r=|&tN7+6F*GshE0AB$u+Hppf_LRA(S%w#arj3A-#U!? z4_}7p?g6PvhX5T%lMIg46UxSV_|BM%z3u>S6S={Db`nfd)UH`+j)Tbr_t!JohY=*B z)@Was`?T!jrCaL5{O=OjWRz3 z#a@xJGxg(Dz+3ThX}RjTK=_Zx<${fasKn409A@5*Z{57h$8bYs#I4DIa&^ZVx?y%p z<|B_+Fz9RI&E=0Azm&XQ*eC0zzH%z$2=ewLT1FAVzbW~hcHtDKGxw^ABhAk-qmrUH zhPvf%mVDyOX^`q8ZQ-RSgvm7L)3=QeLymNE_OpS#&DF2DQZ2OIq2j96RJSAtgW_bE zgtd*Y)J4A*0Jss6{kMKHLsGT`@nSi?g%Q#Ro|tfOI=9kxp5?C%yrR5z&`$c+h6QGJt*=(w&e`2V2<_gr)f})=~>04Ai z60EKLdPrPBnupJ0qH<)jT=SSWWl~-%@#Ih)GKjnDzASx3;zft{;pgZZH4MzRH52FeHa(%>A@$$xingzakz0A5x#r6 z^2(bRfByyVe@iJPbCe&!NOoP0M)R9_fh~K}Tt(n&yWSqxVg)aDldxQxfq*hqny4IT z$W^QXr+CvJ$TmjinbUwIcVdlx`g`+2WVVHgpJ>P{aE>)&t89(S!!T-+&CLi|jxQIm z1op2g`3*N3oR^=5P&FN3w7GcJLzK#EM*qz)CG(gO$7$H*H-3fYtA@w0ml)IY`mIvr zqtRu^3@NmLbNU;^KCQQZE}>Vm-bwAMPBg6F6z2neI+5&H1OBB}7@ZQ?1*+#9ML( z2cj}2tt-h=96z%=+ArrUwFx#SUL6N!eO$$=-R$yHtL7@@2HF8ypT)LsI=jFXNlmZ( z{v0}stB2O^6|KKuNx6l%#)8S$=!WTwV}0kX&0>|#oY@))J;4&~0`s!fUGl}p+6Gy; zUGamp{?@0cvw%mqE+e*=u$f<>Fp)<9O4geR3%Oy+zqkr0KKk;y6#~=emM`Ht{lOC=X z2cuOX%Dp^MpN;bTyq`z2KaYUAn)wmaPo|aj3R=Dp2tN*7SVkTFk37(onC|RE48yhw zA5{*}>83-iQ}Xd)^qFxyiMO0Q_IYAw!(!QN8@RRZ3A8GQ_s=huaRuXE?_2izEQfuR z4xU&x;^D+yVT-XIOrh@5gp*&^$J#~}){|LrMpk^qOq=m0P&bHw<&}e5A~{j4mK6ll zEsz~YCO#exta%G_N9F|S`yGod0Cv#O){^9ALknM>L>z3SP}=#?Za9HilsetIlGbiJ zrn*BMlCsH~P$>`qt(U$2zA`NBBHLke$%iaea&8QzfAo_ouY337YncRoS)Kh38IPhw z18^Y&Fg0}@Mcp`ak+QFQ?c?^x5YW%>0UKJIyYksx)|u9I+ls2U+HP(4BZ~M85`dJ# zC@;-Y6DMD$saAz}-%#c+gMj6F&&mBn13s)rR$~>dFQLgd*k!}p(YbjCXTf(yI?}!_ z#O}9O+5^v}^TR%*T$26I$rd%m0_T$1_v@Lg2g{HX!Sf5$lm_WNgGsObuJ%*iB{#qP z$q=ARU1_G*IJ&$QUQF6us?VGcF{9X$8}Qu0BIu>4KIs@2yxV$+Ya^AYiFZJ0j~R%| zd+|M~iRp;IcUcY3^93p;g=;Qk2Fl9hGRZscLXtaiWj~ZshH&J5Sh;@_I>JER+v4O^=5GIa+smt^;euxvX}dQp8AvyN6KOr_RYM%oniRan zyI8*S_gy=27yAWBrAUU^*5PYs;lLubd!%TGDmXwbZ5Nn2`C4=N5u)z)8$*>ire+K8 z{%y9tjR~A;t`NZQa9g_LlzD%yPyDK`foZ{61urGtZT9T!sv6@STMm%j2ij@!HjA72 z^U4#jYR!dk6ZW1+xMnwUpNx$g9Wg2J=oBKqo$Rc}Y^pE$(O+Ayi!4UfaS@o2bZFYNK<1C~jXj1*#D)iE5oA>*-5&4FY zS`S1&HN3xFEyD{jI-2ai29w;R9%%fGt8hRW^sVeA6M(4pEW+=o03FShy*h zPm^;9Xn~Hjh_J4+rGFaNTw#R? zPUMQuA^rM7TCSOWbI{P*ud5EEq;OaRYh0oM?>y-g11QLAO{sb@8GZM@m{!WSxa2)@G|Wq3OHs?EdM71g$~k#O z?s}2-9(7GI7x+7rl7r;Oz$(Y%$Evp&HhJMAP!LVN z?GhueoNYErV405<)Yox-|NUhbBic_f4u^BcVaIm>U&u)ZpxdVYT;pgF!GDKE32nag zwn%VN0KJfLchgPC_eD}tQeYu6t>YvSnL50O(4ww?*BV4Z{&9KJyoP~ULI+vE@+cv; zS6I@7lJiP!YUcy0-|ov|EGi7Xt2B@8aw{A?G7T{QsdK90O9Cc#z{I)zxw#p|q}T8| zOn_0e9{5_g=B5jH4fC@tdz8&ri1Z$w@%V>7<7Dv5odiq|RHzC6w4PR8A4_c?yT@TP z)|@gvhfQx&<^Dj6)NT#aF>}^yB(lC1}8OUZ$q>}w6}TJe_&>Ao$pK} zG)}9ipe#c3>5nhia9xO6`IihsSWC(>QVVhu8ep{!M31$hVZMp$RQq7KUQfa zYn-;69H4eWUE?~YI@js=*3K>vlj3Z{KBStd^>t3}RfUVd<4*OAc{)Ieg26~)Pq-3Y zyikN~A-bfG2s#aOToB6rh}H`)3ZjOV+wVCEJ&?I7=lptA;r-WitzU-D#*FPUTSN?ZzFE+8(ZC9mT zz4i=E!FsD zTr)Mrh6>IO7l_^u-)ODv_>bqp*DiZ$V7gYSxXszR-Ll#wKan~lh8mq zWj}SR%F%x6fbR@0eY7#zf{B`D{(qhLL=z(s*XbABeT^y$ z2mBB!u_QAMK3!0cFrw%_6SjAoQw;b88H!qrX(9x9u@YL{54CSAUfFpc-hLa3L6eHa>wBtiZ>R+CW2^=5E^R;N-=3KRDT*B6m5XN+brnaW+lSw|6nLO?Yeb!t zhs68GUTIM)9IBBns4_*N)SJGz$7K$(z*fVnWfAU^H?Kg1aeu3_mW(bkY&r{ElqLetEp<|KKd_M24EuhLU7$)qGltt z2U%fPFI6?A@;pB*;Ah1KF4$OrtE;fwi=hv{PlZbwr5bPSw&*%b{&Nq660o!b&lQ5fS3{$?Nqm zN4YS=XDp|}YfB~l=l(&KLxfPu40kdj+TJFjr|{zeVX>EZAah;x8^1 zB}ZK80ge0?(TY|+TUT57 z-Z{bRhVeK6e32sAmpRJF(zn< zW^_ouT5R2KcwkTV@#W0@R2IvombAj0%PH#AtouYm$XzqXEZa$dru9O9X!7IgJdPgX z#$Q{r@oW+ON-8L|h&Xk3;Io)eN#P%+%GTc9B$v8|<&)j_GL24;t}g=N7ZLFH;KfSJ z*8t7_7=LpU6Yc~9UB0oc@atlf9H_t6hjbd{HNW-Gs+OK>vc~%gCEbkUzuH`<*%f|j z1t@bs4SLGSF@Ug4xq~63UMbG~OaA2`NamB@{_|YZe@&8tP3m$S^SR`$f zYu4|2MtLGI67G-EdVP8z(D`h`SsiJYGo5^G!P48%c=CpK7v#vwC6~f2mf30L`ZGQs zbC2z;3c=x>fW}jEK+VOOhNhlRgCkxAgNmqch@;<8!E|rP3HWs+_(omS?0KjCRF_k! zdQXE^xH8H=1ER)ve=kE(eSgwFDdUq z2tFCGBMslfL?T9fvgqizaPbKnNNauV3zEF~F}|5+EmGY^@^nNuPE0ZXi^nO4LHD3K z=9v&Jp<{BSoi&&vo0kI&X}=E2X43DkdOd;GPk(BvkMC*@JtYJN+3%6~SKAITvIA7} z)#9$4QjFEQ3UHBEIN%c$Zv%d`%*0+P+DmB@7-eFm)?6OcjC+-zK1HU$B+dNfrUspBDG3IPox>ij z*j}PBT``gD)^fh2hgo+0p4rX6#Ax0aU23@{EgIW1i>4TrQ@|%zm0iC$0Jz?Yo=35w zQ|n8YO^a(A_F1`D%7^d^?zytxBkq+wKAO7u2RnFvJ%6s|`Q+|2%26ZH>(b=Fg;|9$ zf0sYX&JX<5J{*3XvP19xS>?BNFJU>&j+wdluGzs!%OBXE+toPkgE-4_c==T&dizD1 zTe0M$5Q9?FeRQaMF;uNiZHi1fW=>3RUn~z6?pB*#=8BOLcC!cD&*VUi$2H|%5dw$@ zbB@d3{t2~`G24r$!{Sh~ZXH zj~3zIyr;C95Zj5G?1D>Z|4IRo6zW_HYwzDG2DOMG@dy!-RhQ>lT=(%=)yRv)(EF`A zhAH3^2Skdk(J6)vIWIa38>^{u-K_MFYWO+38ikhWV`oJ~@+dnyVhccuc{k~>2dQc~ zUX6QpwO(@e?f7#Sv2}1uZQ>YywEapgB0=wEhPPsU7KT@c$~h@_45IKd!GL$yFieDx`9yTnVd$grssGtK=NXJ&YA0=Nv^SQ$ljA+~<~? z|i1YZ@{h=MWwQ2=|raH8Zev! z9iEw6*L^o_*TKp3#5}s7udtRnfuaCn_;$+_aE(y1fr>Xua+k@h;8RHDt0W)#Q74mn zPd5@e3e1nyCbQcRf6qcfzr=V0%Rm|Rd%vC=?a z-T!=Zr&ibUKiGdtUV6?YgqCVc-{mgpY?EV?n-CEgg7$&^IZB)}UXKDamXp&0LbeT) z#XY5lD`(;Xtd)fS!_a{+G*8NyjyeaBw|>4v-3$;}xY>OW;vF&FGg90lkNd5Mf7{VTY_l z>wAK;Mz{;o&v%7jZYnXz&7qTm1NGD3MohSp>I6`_LKXz z%i|GW!U@*5S__Ses}@k?##dSUEt%x}hd{$0{<(U1vs|OYCv7XDqTMFf87N^reAVHa z3%ze|Yf!h75oPG5OpYYc91zDrfjr6u1pQlSDF+t?%CfBX7V!6r?Y-KCTC#wQfW6U2 z>>c_9ibw{hO*B@txFU8dcNXxQqVt;%rlbz!>^iiLf#-OKkuL8xf#j4zxOmC!keM%_ zhH0SL0X*LdJ;Am34%;fFZ}bEPXX$AkI%)#NSNrw*+{L%=kru7c-v;t;XmmwxNYJhOqNAG5d9W1krhEG#jGVtyCNz}uyrBKG6 zeXpWaW+T`rKX1K+%>}NK3#b}&aLTZeCfjn9RgL(dhIs- z=(}=ajwvbviM;xruWh znHF@#Zj@kf>jUR=+|uGA_GeyXyVXpv%iCy!>|(r=`*&Ai)+4%kW*yv-5Pl)f`X>`(@hK- z7lsmbC(tkVz$b^6r-z=;c_n???Xj};1yV&mU}Q#s{ni?~u-fMLhKFc{TiLOgm;sUW zhKeHjm?E4ZF+|mBdmbVN*JNhdc)ZG68`N`=XbMZYBt~y z=oQ*C$+&sE;$uzgbK*u4^v#nK8w9(0z(zWD5yDpzTU(*}`v&&!c87ZZ`?CBIjoG{V zU7-fDx=vy=9OWR*r46h(47-Qxu^bQPYMQt5H+W+A6mY#W^Zj;<(c1NKC_ZI|n*;g3 z5gsSpIt(K|I}otr#Ym`{KnK$7KD|ANvUc}|95Vp@m6eNAlQj{gm6ia6qZ6i`AG-f> z?eyAaMNJZTS-y+pNpxp6MgmGKo4qNNS2T^>Yj|&?7{@sccN;;t4_q~(f?n@L27I5M zoOW`GqIEkRwBU(gmgvrWH+sQun%i#NZ$k{XZ=HBip=y?c3HVtFCKnG4N8o!mitNgO zI=`Gb5HRgqml<00nrSrBZQ9p6v@kr*_^m!5-Q@ng`DV+NJTo(tT;I@royBjc6Mv`N zer^-RAAEbxl=txTk!>KNElKv9i(mIX`gFZNmoX+KW<->^xi3B1M*J|?AL=1A^J~yV zh=(U^jUbEt=rc1JRu3)Z85qBR5W;dr-DCm6pZu8_LtmOjI_SbuBx((Sl}hX{w&+Za z>@DMLkUqh@SbZLShV3NyJD7FClJsqYdChOXs=I$~wVYitCg`rEB3bVb_$Dz1yq`8yT)O(+fYuAmQ-Xy5VX^neV z<#vkMj;!fAH{a{u_OooN$^Dp<)lM|6YjhMjb5Lw@5Nk8KSu?A4hco2t;&{;WUl_i~ z2#`+3nfWnSux|#W97oSbQ};k8TrZhw{opygZ5%cqf%8q-LrrgS2nfAl@~oe~3^rHZ zg~z~Ues!*{W)^y@W-K|iytC5KP;9<~!4a)~5=3?3CrOtl!bxWNUqnb`&S|tEC9XVJ z=F*^CY4Vi%@moUKnaRl>!yK7#9EqO6p)JcbjfRd!}u5Vg!QeD-cx#otmNTGd{ey{XF={n;E+r)9tXN?E(Z{AVgO( zGRA~y{P9peV@qXg{i9?fG9f%Q_A}k%4mG~>qd*C^4)bQJ&1?JQwRu-mp!3^*T*5(6 zXr7GRedMo3tdY{G4h9h){rpyA z44I{cXtlcc{Mr4w$|sQo-TsGOQ(<)}ud7cCv8>ORmfG2OEYHlu&RzDm+p+jObLUNH zeKzM)Zc(jnMNRDTpI8hz&uYfm>86igE&1Z;p?B&+SQjCR6fKWlMtw*`Cb3k$!FWh! z6kJTeXa2Ik-`x)fBgbtESjz0es8jGKRKbb`OCIlt%9^sibCEr#({(4nQ@pfP%IXGj zp#g45J>OR;u$$-WTYhF{Yxc#Zq1S+wtcxZkvLtmkh1crUo`%$uhC2C@aoZR#NcFc_ z=nufrpmfhT`@tCe-YEU9SwxI*BIxod=};Q_2?g6p;Dfu2X7BlbPedJ z*KA`sPjHlAChb-bmSTp0nN97bY{nxhQdh^)o>w2bs-o77s?DnQKoF(KVl@o+Mm>XP zV}D#XTmdOxmK+N@h@CI?_nJFG7g|)gMR>4Xw5heQ^{tt~U+QwT-+xIh$V4qe9N~KS z71RO_rP^G08RvNKA;L?}@6sPYd!47DYdW&Yf-FLgcZCJ=YE}Iz=#!1qR~po_V1hYA z93^^JG0PVZ2bI<*%Dv=2ORG{x?!i4I7VB72^N7U4o=}bsej&o_DBTR2vx6lh{vZ-g zc*|Z-v=r=dpSr8T+l&3c&6O=}>a>!xFnirJpV3LjfHxJYrO=Z8%d-f)?i7WV8Ce92 zV4hjGXFk%iL>{==XbN1lOfszhj-mQZR;bWhJQ2%9&n97k9aF!BpbLJI>dnzYGZKD* zG*9f>dxj0-O)dE~fse&k4$JOzIg@!G!uMwYA%7mB{=rore3xqZ5?sr>d4y@kIyVt@ z87Wkh(puDsn6%;N+fn^YRtc}H7fRj=K8-m;Sm)O}_e&{ZbF1ers{r6k(!KH}YN*I) zjLHl>p80SCuLIICvQ+i3Q-}?z{$)G z(MFxEjb66g@xY(l{`+TKaTPbedV{0zcRlGtd|BF3j~e$2*P=&+1;p)CkZ4&sTW@e-!NJC!Ewjoim?lPHA^qJoTRI2cIkV^BY9|A$bpJTM{w` z&b>h3>wp&1y+`?-b*Bh!A3xtdp~3x~yU0g#0#o2_ zOVV)GDGMldPcl~AmQ(wYd(UKT|?S@3ls zJ2YT%dq<~)IqoxvZ)IYPl)5qvs%KMe)zqiyb655&9ei!g<2+u|-Ph{WrRwti=dcNN zjYet4qZhoc)|xI6$8bqWjjpjtgc|1$wL@#>{3Ou-os zd}%QWBvKJyB{5_H{&WEam7i4S7eCQh%8uL7jNipTU= zmCB%yiIkD;inq<`(tSga(W=V53Z+NsHTnlt><$T4+cT>#P0$OE{4@owtS{&I++!-p z4+;F`{?T^OY7(VWV&^jJWCZms^`e&L@MYLOzO5&MazRLY>@ehL52y#O<}>~S;7M81B?Gk?(X*QOy(I;ya#>*xyq`Bry|G_83KI3Y zvNjO*)#a)gRGh4b%~Nr4c4fN2Lc75yK2t0^9-c2AzVq-=f}Gq2JA9?p-NLd%y>H2z z5!+;Wo-osbx?Jq!xE?a5)h`c&Y#ET7A8i%Kz~UHT=FlBk=vBw6_-==AFAfOrQODj_ zS?0X+upA}_K_zx)MIYxAzl{FBL9@r4p!*lV1h0Rz?Enkzk{n3~`HpSAr)|=a1o_nB zJRoWlBBbZ=IJ*ZY3{{^RREW7ZzS;SsY_&^&iv6RiM2p4{;#Af zDG%&k-XV)~$B+q{;7vnfg=IVO9@R2dbEujgOa7DzsjfNmcC4{4bC^3ds&=KxwiAT} zo!C(zNi8Sxa*9f5WuJ?0;Ab#yP zjbYUwB#55BYFv}+r#c$MrGZF!x?abT$$D7g0*fYERgKOwHFw3i!Jdo>q>R_Yy38WT znu~CqpRT|72i*=q@N)K=v&G;nk5uGE-}$il*NVJbCie9X$c_ks04cvymxe_DZf~_< zo?2FzE;h92RN2|F^eIH!YF!PagkA7Tko2q{sr5M8?2ol&{%6MlP{Nc%`qpPp?f^A^j1Ubsk} zKKaNsbY9B$`tO*V0PX(BSs5xP9KR9@XoGzN7x5b%M9b8CISRWnuXue_=-FZxIJ_-g`-nf3-)xZ%hk6zPBFu zA;P^Fesbjy&}BASTHN|&&zXpPez`>ZP?3c6v*<{FtAml*b@2+f;;^(Yx19Csh4Rh- zSyKLtT}{7^kTjR_sq!B;p;27ww_cci{OS6F#)Y?7AXym8xD4#Q)8v8N=!TIR&&2c|D`nY{Rg41ZJadl z{Cfn&Of3fTedyKah8UB2EVYH!7Od}J_SogmXOn6-*x05}1kz!M4`hSa%8r zT!S(l3TaQQH6bYo0X=nM9wN5BiJobfCDZ3Ft}KqLS9vn#njcu?nHH}PVNS@+_7qL? z_-5^&P}}-!%^a|cl5C-BT$x+vT)tg1*3+9_4ga&JsSz4(UGdG1t~FaJjUD_QvN`)m zImlzgXG={Ja>^oL8$+n#nc@9jY@U0hwp>!P_CtCGcy#K}j*7eKB3Z~#?p9sB-K|Ff z5w_HeVSc_vzp`y;8SrvLqh~P!X<<(YGObr_mGu(RAy$a$6F1zR3Xa~>O|6Z1I8xJk z{ZaJj#r&1=503qT=_{o&Zd}BIRdBq6VS)3yR{iyg{h|UMyIkpcj|K(~{@u}0ar)W# zmdHq;|1xMcjce#vVCu)l{jw}ZRf|ou#Z48Pp9fl$$PX9ZuIelW?#V>{ZPC?g4harx zG2;Exp{@;f7hAh<&E<*oq5Rp_Nc+HV7GXteznY#Tc3CNzNNf2 z?Kk&r>aQ=Liw$z0maG$M-aj)x-+Jnq^w!PH-DL}{Q+2sFX;mZWKu|!#eQZd zjVJ@cCc6=B;3zpdxQkE?iqCa+x$|6u_hR|$LCLcpJf=^x$^ew$2)(}}N-Yqv&_D0v z>YMRn?Q8`^n2vrl{5*D(W#(7ZB>^pcA35^qc~CQ0ny@yfO&Ln^&F>bjGE#=Qy%lNW z9c?nHX~BA~__~9>j8b?9B>biFn6I2fX8*HuHWdWY(wD4x4d5c}zWSp>eGDcU>=d zA~$1eZfjdK&#)>^NAw@pXaFj_A(-yFfISLJ^%I4u{e0o*on0M|X?exvK`hlL0UUq& z1^fn{dC!>zsOGP61{o`b8ri~K&~IzB{p;{p-ZKp3+wRzer>q&er{`4S^QXfVXMvc;hOu|fv z%O9YXp5mXOM(@M?Ru7FIA0ev6yPSiFk{t5$D!ukYnh5dk(X>1BI|@74<>bh4+d-@_ z=Pc_6{jnxU8gMRBsLcChOmJ%%72kI|+hYYmLTXI9Q{;egP^sphjXev>r1Phdm-W2M zu~o)l-CWk2gHRG;(xGRuqNmG}hkn;WUv5;@hcgmX4Z7%-iBcNaTfqR0WOO)O9?ubA zIZ%6IS*|4&?7^n0eh-hs9s90ew!h0iE+DG0GmjQYzihPHzV|xlBM;y?S zKI-BWOndeR!zw{U-k;5A`UPyer4WqS`H$=5Q%ccRyskz0G}PFlOgw5{$Z3poK57sm z2vDzN6x$sT8=Fj{zuHsCSM$-`o&}9UGQF<_n@!u$P^x&(Pz<5^wWMOKfx34{9p_B$ zOxP92*L-Tt44bWbs-HPMb{?ugA;+a`w$9>4e!zsxd$q&|d&Tb^!H%`RHI-`8a3bAHjXHT?NE&F<`9BgrQKR3>Wq9P?df@Dn2U zxyiqw43A6{Jf>q%lRb;s2~v=(t^Ps0r1tFb04CDXo5(rC zlBQ=9hu*koQwb@0Mp{Xf=ldOxJ3KV;Tcgr~9RyT2#ua#_#VlP4=rv;ggCx2G%mW>U zHo5J6k;G+wwaYkebwo#w+7$&dx@2);;G~lM!qlBpro2KQ{ zS4&t*bjx{1v~WcyWm^2U_0+G%onk-7HFtcT z?@c~VCgsl7VrDmZMbIx|3V^AM0<1n`raNeI5jKGd;$794^}iDT$l{!rTdf84HS_n} zyJZIYC-OKflcwo+EAZF*{))#=mY)Tl&cbgl zMucsZpA37ZSAw}TF`L@BcwOl&PSXxsy>i-I(HkA45vi)ACb%ZaI%jY2VCA0kkw@df zZ1Fa6{!eQnn#+Ui9p8gQX6^t^)A!!)?OdJ`h1vlMLTlU1XT!3{yt>?54k7BL{OEDL zG|GV^FZ<-FYEkoWNYCIZ5*k*hmjRaEnbr)bmCv)r1=-7?T~Bfz_I4XDrSwDPQ6PkpOoj`ZHo~Vd-!8arXvL*G0XF@C%<4|C=&Z zeoD1|`QrX%-W6$TKHGc7;rPBy9m%VryQ+{oz@BS{CvbPD{w~98J|1~4)7Z|%%J-DK zaco`=Oqx?mHjtvW<;YD(66z0DFyp|t%!xCK%NL+e@^-Mp=_UZL@}#NQM+Cp1_D&6_ zmeIB#^d`%}8BfznUr;c+o!4h?qsL1mvz2P8V(CzzwiWc2<;#5Nd1m~aXKwJpo5N4P zNAa`dzSEuOgX!LI!{9*q2fZh@T=%z4E9;q((0=aE4m0oR2dXA>n%r%!#nY`Rv}QGw zAJ4w^L5#u^$U292)W^8cZ}IQON|S+AqWx=^C%Y>Rs1yS=de;J(zaxwiW171WHyKc{ zlN>Bj2I0e8gl!G|q~QrCeLa4(HbdqRg{%=&L0L-4BIU~$*c@xByBFWg!ejyc1} z`6yb5x&ZRwhz_q$`A)D1?yc0Lb(v&$L8Yr*K$~KFOH%Ds`D1Kj-jeAO{4@e%;W)Be z5!ha5s+u0EFfew0wXQ*K89^+DO@U9+t2?sOy$mku8h^%B$@@uhSDC*6g!tO@vlJl+ z;FMjer%wb%^3G7*mlF>3xxS08dS6ys{lPV%uL1G|Ci3c{D5W)~EB|!9BU|!%&{>!D zvp>^<&NT|X24Gy46qNvQy<*FV0_TWkRGZ8&TI7Sd|6Eg6c69)VvC&^uYM9^a!Y`%<-HOVt+}iXaKC+M}uwK+X*O7X70C z7tRb2U!{Vr)0DaO#Fe|7hey}7{uAa1UYZT{Lt4ro+WUlzEueOuCp~CTLU<`> zYr8t_KeHC;+N~or0M2#i! zWYGfpn?QS4dngOy0u&zv5yX>h`Uth&fr?Lnn-qJIf(~cl$RQ6P+F!nOt+Anjv_87P zVgterEewjF=KpB!Xk2x0)p=&C{b03(8^x)+By%CmMV`s?v1HmprAlC|AFQ+VYAiozX&-%$ z?lDgmgB5mK{rUSaq4Ko_)a$s9Nsh)}&dryg$_>VUP{uvr7(0b%Q(s`e0p_dxes8eC zH5bq<#A37Oa`QxGw?}PlhNcovM8y8j`=(t{FV{kLyl{NSKVfW!vQJo**{xd&1{rhp z^{W#_k92iT*&wAI=Dze@f6OgBG+-Sp;Ad?o2jn^vJZJa+^z2Ls342c!m&%LTG&z?( zLwr4E+fjf2OKp7kfj0 z-AhkpfglBOI3F#x&VLOsBdgC1!|j3uVX>QtAFf#|qEp$ApWnaqp-HbP2r>GO@UW%u71&oE}5!bDGSBu zy`nYVj_8K@g)^kuCHs58v{=k1JzL?h0KQMzqD&z`+&99mt3jn=j*oFpuh;*WCh6KT zCZH{S8is{WF?}Po0%v`fs%xp5wfOuz!-Sijq$@z`B`V&xB^XLcdXNQcAsPA$*4X)E zKH*Ac>{liRYh%~AtzfKL_OC+rdK)!6!LLT(KMS)C4k#Cjy1rs8RgWJa)Yot1Em}@1 zwPB?2tgBQLj);um-Em@*qvQ8S(#Uzaw25_)Kn;NC$coSdi~nlrwpJD*e4_Pl%`X=y zj)zvJ>H{4c9F^c;y_;l?`Io_DwT+e3FM&2OGK;G>!u%h zx122rfcw~`l2n$OKUzSoC)XzDlXt$wZ`#s)R~KA?31Ay-HuZl`vQE&wN{g6pw9HDi zK9}mfA5v6|9s0-h4XasGVTF;04fdE)v5A$ci!F`k!xWpQ3SRx>dVC!J2XP2 z3q~Xwh~bxR`W2VFO&emqZ%-B|{Bdm+huLDkYvKRGGNN10qhxLpnP{y_66-;T->ifUnLBq+JyS^jGauNqY|7+^o3SfI0J#s-9Cpra%*I~f zySUA{$(J(5*Aw@!|Ix8`*q>`08-oPyuU(#;@r53BlX@jvi|B+1w3w=*OXi%RZ9%@e zC)}?HntscK;%!6v3oGlPexhv|{AQnKaQ7O&+=R|E$$SKe)_3#sSCs<;GNMFBJ*ULu zg9yhbJxvQ-%G$iSyQER<@C1C%f-m4@w}FG&Bk-L#dPV~hDJww#L`Ad-v-Bt?i9SKD z`oo;@?87t0n3&x%kWdtl7v~U#9UrI03aFRN`p6a0T)Mg($r@|`%91svI|)@i)LC(L zVJKQpwuvz9OH8j-X^?&HpQ`jz&ye{a+@3zbd|Kayl4SWh>I>aRF)bw2z>%j4K@GzB z?>W|E{Y-864XW*C7;vkb%_C)vH5@$`s>d`WR@D{rj&{#o_h*qhv7UrOu#@uy0OLwl zCmF~$Ot2mjp`~g*zMTL)6r~78twCOP z#5gg*QYmv;AMWxCQ)rDgY3Mn+zK1>WUO9_@!0;*Z-3`(|u1ITr+Xth1nk8AmxeKQ& z=RrEfa+=Gz0%u)c`_0V32)PwyeTcwPk4>C4olj*fF0NW%>7vC7U#w@Y*6Aoz-O&q@BUyest3JXbC^2; z@WyMJn-esAqmH=eOS3b$h2N&$SP!_|F)Y20F5&RAygAd~{|Fn8{FH0W;NI@M=O05x zwqxSxGE^XST&Ts-iz?M7drm9&GQN}7$J_^U-Vpp{QW7}E%o;bK|NrCq0 zEim4{@8OK?IG@)-O5knF!(NmeStaen2+|wQ3wqD0m1jtJ=qru)8Z^Aecx9G;US8=p z$)P07B?nktZ`%SiVpgFL>?uZ$OK1)zIZSmrm?YPV{TQ$C-OL)%e%~g9`Jv*w7opTp z*`g47vC6*AnOkj!@z5lWbHalwEM3*b6b)%AQN zS-&kx^1Dy@Zfof6ma)yVp-|ZVJ;A8(#a(bhlb)?lQ}6~&oK`^#E5Jb1hQKM|YOyUA zC6hz-CUuE7Ll6;%uJ>kwdaQvcQ(wi~HQ5fWW9PJQnH$Mq8CB3B48YI@%DHH(V82s_ zPZV0JjWpC-uQ?<%r3x*EPkz35FSEl|IF`X1j}t&hQ%R ziDc;7S}~Pb3aBoZGsrIdhPzm~g9vi3Lz;1w>Ga_ zUKz2RjJ?aewNEn{W0@=f+caiQz3$HDKd!NXl%gKSBjAuZMgU@CNsCvh%^j#CEX2H- zg+urB{kXnbi2T9i;MLT3YX&;(v?wLI2d!?@z<{OmE*L2=^ZrXy+yeEm9srnyGr~cl zoIwKR14>|$zB1@+!x-*Rc=PrSmo&!64KB&f#_+LZsl}!KltQaqf-TTTM}*8j5n4co zZ$`WaQ(mq?r%KJFn`YXmwO5SpJ-c@v}2D>(p^SkD;oo$c}epJ%CkeO57tAP zmh%*2H9tCd?cz)&H;K~Z&E0bTW(3c=gS0j-H+Z7`k2CcYwg*s~>aRQd-JKv~&Uo2q zU7nuw+E34!vNIu@%9MR?93w06j6+w1w3kzF=vq7GZQ8bFfA>-;x6m&qRhhabvF|Yk z5CU|UfvK^MZ1F&;gq8uz`yuQ_=1LWjN^ZN360w|j=IuN|3LTB{4?U?$K7)9{h*Sb~ zxrnh*dnmCr#A#NrUY)JYcN5=Y2WRj*(7+~X0RI1B{etZ#-=fg8WhY7oqcrF2g*iD) zzB3xs@8VmzdHKdR_KYPw7fJhoTtsflF>eE`MIgD&QKCi$)KLb6OuF!~P+EGg(vkgC z^l5f|u;nEA&e+yQ(B?hnBWf%zCRm}X^E)8GFxf?~V$|q66F}{|2=vG|D=yu6ewHB9 zDW3RilD{Tdo%7}K?tVqHiu_#)WUby-`v_HZud@yt1UQhA(le)9gRw^qWQ+i-=UlB6 zud3<$B>BgcD zOrrt{1Up{QZAT~$CWn(hAM_qXj0;700D>*w!4FP{8hY36cVd-|upt(PVI|Hk z7NLk2l$qY7I;a!8`5)J0d9(A`HfNWWiJ<6o7V^-+w-hW(PQd56&z|GQTV9IW&vCa2 z4FHt+jg4x{(i&CGEG0PhC>>n2pDF=5=@%hiRTW0I%H!ib@LQZNS7DgNFGSA}ajq26 zZa;6yICTzq9daB|mivg&O_~*cgSaVc%R+=f_kSc4D+c$S%+hydu3Pht)x?k8 zA7bb3I9w2aa3@eXM&_QSY~wD^+pM5fx>t>rk&$R?zx}5w9XIx3_hzkCK8@>H1+H+nr?a}U*Zy%Gx2=I+W`CBitxLq)wKng(>d74yQiW$C%@KRm zF8h>f+IxHpsBDssZ4dw5}arK(X>L! z#QaR*pWsprwBTP|v26b*i`rRR67PF&pLp@k(QyRsS4!9LLhuC3K@|m&FP4y(&~)*; zh-1^W^=}rk_F7tgr6(^o2?@}XOi!>&?vAQ%o_W2If2E--0Pr%wZyXfCT`1BFU~s?3 zx3T9KyraBTG1GlhbeX`@BEWnIJBCvNOSl-8{&DQ+S}r;6P3TgSf;%=-sADXpLi018 zA(2hHuKhrxc%V&7ri)TtU8?KyIytIM*_-zt&qNl!fi5DZ_~+lD;)D9qG`3$~X{q|H z8wmMG5N6#hDM=*HBOgN3{mvS>)7B3GtH^w$;ddM;M~nnB3au;*nE`*NuM{=r6i9F@ zQm*xsXzrmm_9)p7!y3&w8Yu>U#hTQPyfz6TO%tz(?b{Hli@-OSgCav?j~_v zd5*++~co#EeLf%n63oT-CXsk2{zBt7v= z2aX7Et2sCT-Uu^M8UPLH)W*tdSUl6Pzb38bwa38rmupMzn5HU7?Ed#2qQbb!X62%+ zb6axqtH0iHUpf5r$jemc{mzDSjw}2gDg!@{ZHI7c?tr^clStZEAbwS=fAQnPMaDGU zUhOvHS+3iNfbUTm_4UX|(qEbLq)rif)F8Q?qgs!t9^*}q`XO}n_s_i{hx!+fQ&w72 zX-9p?=l-0_BpHY-)o~&A{4*5-%;Dok<3JlTX7;77?8S4+wWhYHr!@<`i9U>l=~} zLW@uko3q47MOq?$w}i4h3fHIH&&RD?|7zf|4I5f@LLq^Run;WSV!CL_<()4?nF)7^ zUjzx8$$t56n3q#SxzS@VS!weB;P;IYVxAuW{QS%fDX!1Tm6=UQqzUr%u1;a|`w&Y? z9zZUZErKCZaVZgRRh<}i!t{2j4|dI@ffaXM_M`e}B|V&EHKtZ!Noz?ccKWus71h|w zts|Wbx)n&bU0Y>I6)^=Iq9(w#uMr}ez?s57#7{RIYM@Hjzdvub_F2~CFE4&&jlggn zt@*p#58KF{eVOc&v}P+aas%1_G}6R75m752Xa6kaEMJG_!?+cmMEiw_mQK#45)Xqk zu{*nsbJvj6ek+2;)TJGb{R}Wg;URWhQ$S@g@7A!q=Wi5d2D{$np;?KBYJ`_dB3N}{ z@^c8>^YV|Tn$8w~=-9T=e))_vlt=c(YOum>@}je>oC+@KxL6fD?F?97tDV`t8D(oZ zj{CK!0E8C_$ingEn-2huQNb<;|9ue80?zhl&(GZLe5&X-OPuxI3Fir%n4!vxc_WFw#TzTc;tYa!6BaTPu ze;qG&%p+X>S-nVHU1L@!Z?%!f2)V!%?8ON{(@v52~zd8|y_>`gC#+y?oJ` ze~pNS1m(Y>f*7U%ko6o0RhDOqu`T-_Wqm|y_v^TUAckYbn6)Ga$rkoY?IS?#EYXE}hD zH%Y%5#X4@aXd1*u_=dFf9}m+s>m(UuWX?`HOFVzxJuk;O)^o!9eoJW2gPb!U>fXw% zZ9hsB@ystNm%JGR2*)~dYcf0o%nk)>H{8=%quY*2&Xoo)Sh%ZI!)%nsz3MEkd=O!_ zOnl9BOq`POFm4f!zE<1gU{}-Nr)MQt=odoqzG|58475G`C^w|09=|i|6>?WE!C$i` zJy0{GNvmF~w3wTnBPqrn&jUT5%KFvjTOnUl{XI@6I%>n1WqXxqDdfd#oM~&N@G1Jw zL7I~(6Y#?H`Nx$4-(wni>bf)+Oxdq>Lu#gPx&Oya7{wfCqt9e^paeBxwc5;^%&W)} zO`rp@akS8XZkHiRQ}_v*J1|*Ss-YV$phcmK%ABuuM~Hid6E@hCO^pj% z*}t3W>y2y!XGBJuhNe#5XMfdu;xUhULlE>^&Ke~f#jRSWUVQfAyxe|E_)|<85Eyo{ z0|Ta5pp)?(R~=`jjjA}fMf`C~e{0T_s9^}N!7;iD%a)3=$TJ&#KJD8W_urU0R8e^&0oe1j^;AO~$qRUczrD>Q@hBp7@d zF%ULhQCRvpamdbhM^U+VLG+5sf*JO2S&u+1xKp9xq3mrdIDN!vJ*JKe_;_FHwbl5VS#I|R=&1rJliW1vDAo4((`~tm^!XR~Vi=E}i4tKX-P2XL>9?SSV7Sx|a`lM`I7qWB#upP|R%X?K5*mDyVML_vc zvfD!Q<*2`1q{n==JWThlL$3?SZD753Y{6Q9&xsIe7{6x=Z25=mH*hJYWK=f?G@`;% z(J(keJ(6q-unD#fNvE~M7?|#MBd%CPev~r*u045dFeX+2m*W>0a@Mb|{X22Xm$PZ2 zVUudmr6=^FN?V!G@o1VOvMHur70vf1^nj*df;f-#nza*UnM4d9{<#ZRcuwEGmgtK{P} zros;D7!z7=589`GI}JP|s5j)%FO~0))UlP!DN7Hqp$$x=UH%y*!IDd}dN$c!$L{zp zfSb1eaScL~8(T*VM$VH@wF~Z~XObX&;$5f%)m$taK8@Izc(n*VkggqK@(-}GN=E=N zzYap(ML8rU0tfJg3hbeOT)owPocVuT!$!fJqyM~z~DNf?7r2!4|-l*lOeHNHX0zhO)2IB54pp9FS za0A4pu$p5eP8(3yUZN6!CG-O4HSI9?7xp^BPv}6gse~QojQCrG?z94CrMf8g z>relp*PZSOx-#D~*d5Wee1N2qVf6*^2h6aBye4cPnm~|hYIpu|u|zF7rpB*0 z|G0KVYbg;N)ALDyu>c*LhEBssA%0oyp@Etgbs)*ac44>Gy|83N3KZ7QxhWaXj$STv z0Z3D6+VO}D;6GfINNNGfmos;;qwW~C2HE#+0ReAiuAGTFIIa?yOJJqo!FxT7@qFN0fCL~P=U8_VX#2kEKdzZ?{=mx_ z3j4?9a;`>W=s+<9Yg`HKfovZG9*4Ana9Gs?1h29Hff(~{XATPtGN%a)X68SxTblnS F{|Aochi3o) literal 0 HcmV?d00001 From b9bff8f3a72427b5d2ae3f2f174dc5db11df0d50 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 10 Dec 2019 15:53:50 +0100 Subject: [PATCH 482/594] Remove \r from strings (#1622) * Remove \r from strings * Satisfy tensorflow with numpy>=1.17.4 --- machine_learning/sequential_minimum_optimization.py | 8 ++++---- requirements.txt | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index a98bd93f7a06..aa997d88cac9 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -85,7 +85,7 @@ def fit(self): i1, i2 = self.choose_alpha.send(state) state = None except StopIteration: - print("Optimization done!\r\nEvery sample satisfy the KKT condition!") + print("Optimization done!\nEvery sample satisfy the KKT condition!") break # 2: calculate new alpha2 and new alpha1 @@ -453,7 +453,7 @@ def call_func(*args, **kwargs): @count_time def test_cancel_data(): - print("Hello!\r\nStart test svm by smo algorithm!") + print("Hello!\nStart test svm by smo algorithm!") # 0: download dataset and load into pandas' dataframe if not os.path.exists(r"cancel_data.csv"): request = urllib.request.Request( @@ -499,13 +499,13 @@ def test_cancel_data(): for i in range(test_tags.shape[0]): if test_tags[i] == predict[i]: score += 1 - print(f"\r\nall: {test_num}\r\nright: {score}\r\nfalse: {test_num - score}") + print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}") print(f"Rough Accuracy: {score / test_tags.shape[0]}") def test_demonstration(): # change stdout - print("\r\nStart plot,please wait!!!") + print("\nStart plot,please wait!!!") sys.stdout = open(os.devnull, "w") ax1 = plt.subplot2grid((2, 2), (0, 0)) diff --git a/requirements.txt b/requirements.txt index 1f4b11fc3ea5..2c4ac59d3e09 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,7 +4,7 @@ fake_useragent flake8 matplotlib mypy -numpy +numpy>=1.17.4 opencv-python pandas pillow From d385472c6fe5abda18759f89e81efe1f0bf6da0f Mon Sep 17 00:00:00 2001 From: heartsmoking <327899144@qq.com> Date: Wed, 11 Dec 2019 14:57:08 +0800 Subject: [PATCH 483/594] Update find_min.py (#1627) Line 5: :return: max number in list "max" must be "min" --- maths/find_min.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/maths/find_min.py b/maths/find_min.py index 4d721ce82194..2af2e44ba353 100644 --- a/maths/find_min.py +++ b/maths/find_min.py @@ -2,7 +2,7 @@ def find_min(nums): """ Find Minimum Number in a List :param nums: contains elements - :return: max number in list + :return: min number in list >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums) == min(nums) From bc5b92f7f9de09bbaba96cd7fc8b2853dc0c080c Mon Sep 17 00:00:00 2001 From: Muhammad Ibtihaj Naeem Date: Sat, 14 Dec 2019 10:46:02 +0500 Subject: [PATCH 484/594] Harmonic Geometric and P-Series Added (#1633) * Harmonic Geometric and P-Series Added * Editing comments * Update and rename series/Geometric_Series.py to maths/series/geometric_series.py * Update and rename series/Harmonic_Series.py to maths/series/harmonic_series.py * Update and rename series/P_Series.py to maths/series/p_series.py --- maths/series/geometric_series.py | 63 ++++++++++++++++++++++++++++++++ maths/series/harmonic_series.py | 46 +++++++++++++++++++++++ maths/series/p_series.py | 48 ++++++++++++++++++++++++ 3 files changed, 157 insertions(+) create mode 100644 maths/series/geometric_series.py create mode 100644 maths/series/harmonic_series.py create mode 100644 maths/series/p_series.py diff --git a/maths/series/geometric_series.py b/maths/series/geometric_series.py new file mode 100644 index 000000000000..d12382e6d8c4 --- /dev/null +++ b/maths/series/geometric_series.py @@ -0,0 +1,63 @@ +""" +This is a pure Python implementation of the Geometric Series algorithm +https://en.wikipedia.org/wiki/Geometric_series + +Run the doctests with the following command: +python3 -m doctest -v geometric_series.py +or +python -m doctest -v geometric_series.py +For manual testing run: +python3 geometric_series.py +""" + + +def geometric_series(nth_term: int, start_term_a: int, common_ratio_r: int) -> list: + """Pure Python implementation of Geometric Series algorithm + :param nth_term: The last term (nth term of Geometric Series) + :param start_term_a : The first term of Geometric Series + :param common_ratio_r : The common ratio between all the terms + :return: The Geometric Series starting from first term a and multiple of common + ration with first term with increase in power till last term (nth term) + Examples: + >>> geometric_series(4, 2, 2) + [2, '4.0', '8.0', '16.0'] + >>> geometric_series(4.0, 2.0, 2.0) + [2.0, '4.0', '8.0', '16.0'] + >>> geometric_series(4.1, 2.1, 2.1) + [2.1, '4.41', '9.261000000000001', '19.448100000000004'] + >>> geometric_series(4, 2, -2) + [2, '-4.0', '8.0', '-16.0'] + >>> geometric_series(4, -2, 2) + [-2, '-4.0', '-8.0', '-16.0'] + >>> geometric_series(-4, 2, 2) + [] + >>> geometric_series(0, 100, 500) + [] + >>> geometric_series(1, 1, 1) + [1] + >>> geometric_series(0, 0, 0) + [] + """ + if "" in (nth_term, start_term_a, common_ratio_r): + return "" + series = [] + power = 1 + multiple = common_ratio_r + for _ in range(int(nth_term)): + if series == []: + series.append(start_term_a) + else: + power += 1 + series.append(str(float(start_term_a) * float(multiple))) + multiple = pow(float(common_ratio_r), power) + return series + + +if __name__ == "__main__": + nth_term = input("Enter the last number (n term) of the Geometric Series") + start_term_a = input("Enter the starting term (a) of the Geometric Series") + common_ratio_r = input( + "Enter the common ratio between two terms (r) of the Geometric Series" + ) + print("Formula of Geometric Series => a + ar + ar^2 ... +ar^n") + print(geometric_series(nth_term, start_term_a, common_ratio_r)) diff --git a/maths/series/harmonic_series.py b/maths/series/harmonic_series.py new file mode 100644 index 000000000000..91b5944583e4 --- /dev/null +++ b/maths/series/harmonic_series.py @@ -0,0 +1,46 @@ +""" +This is a pure Python implementation of the Harmonic Series algorithm +https://en.wikipedia.org/wiki/Harmonic_series_(mathematics) + +For doctests run following command: +python -m doctest -v harmonic_series.py +or +python3 -m doctest -v harmonic_series.py + +For manual testing run: +python3 harmonic_series.py +""" + + +def harmonic_series(n_term: str) -> list: + """Pure Python implementation of Harmonic Series algorithm + + :param n_term: The last (nth) term of Harmonic Series + :return: The Harmonic Series starting from 1 to last (nth) term + + Examples: + >>> harmonic_series(5) + ['1', '1/2', '1/3', '1/4', '1/5'] + >>> harmonic_series(5.0) + ['1', '1/2', '1/3', '1/4', '1/5'] + >>> harmonic_series(5.1) + ['1', '1/2', '1/3', '1/4', '1/5'] + >>> harmonic_series(-5) + [] + >>> harmonic_series(0) + [] + >>> harmonic_series(1) + ['1'] + """ + if n_term == "": + return n_term + series = [] + for temp in range(int(n_term)): + series.append(f"1/{temp + 1}" if series else "1") + return series + + +if __name__ == "__main__": + nth_term = input("Enter the last number (nth term) of the Harmonic Series") + print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") + print(harmonic_series(nth_term)) diff --git a/maths/series/p_series.py b/maths/series/p_series.py new file mode 100644 index 000000000000..04019aed5a85 --- /dev/null +++ b/maths/series/p_series.py @@ -0,0 +1,48 @@ +""" +This is a pure Python implementation of the P-Series algorithm +https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#P-series + +For doctests run following command: +python -m doctest -v p_series.py +or +python3 -m doctest -v p_series.py + +For manual testing run: +python3 p_series.py +""" + + +def p_series(nth_term: int, power: int) -> list: + """Pure Python implementation of P-Series algorithm + + :return: The P-Series starting from 1 to last (nth) term + + Examples: + >>> p_series(5, 2) + [1, '1/4', '1/9', '1/16', '1/25'] + >>> p_series(-5, 2) + [] + >>> p_series(5, -2) + [1, '1/0.25', '1/0.1111111111111111', '1/0.0625', '1/0.04'] + >>> p_series("", 1000) + '' + >>> p_series(0, 0) + [] + >>> p_series(1, 1) + [1] + """ + if nth_term == "": + return nth_term + nth_term = int(nth_term) + power = int(power) + series = [] + for temp in range(int(nth_term)): + series.append(f"1/{pow(temp + 1, int(power))}" if series else 1) + return series + + +if __name__ == "__main__": + nth_term = input("Enter the last number (nth term) of the P-Series") + power = input("Enter the power for P-Series") + print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") + print(p_series(nth_term, power)) From f4779bc04ae706b0c548e2fe6d7a59efe8b85524 Mon Sep 17 00:00:00 2001 From: Rohit Joshi <34398948+rohitjoshi21@users.noreply.github.com> Date: Sun, 15 Dec 2019 13:12:07 +0545 Subject: [PATCH 485/594] Bug Fixed in newton_raphson_method.py (#1634) * Bug Fixed * Fixed newton_raphson_method.py * Fixed newton_raphson_method.py 2 * Fixed newton_raphson_method.py 3 * Fixed newton_raphson_method.py 4 * Fixed newton_raphson_method.py 5 * Fixed newton_raphson_method.py 6 * Update newton_raphson_method.py * Update newton_raphson_method.py * # noqa: F401, F403 * newton_raphson * newton_raphson * precision: int=10 ** -10 * return float(x) * 3.1415926536808043 * Update newton_raphson_method.py * 2.23606797749979 * Update newton_raphson_method.py * Rename newton_raphson_method.py to newton_raphson.py --- arithmetic_analysis/newton_raphson.py | 40 ++++++++++++++++++++ arithmetic_analysis/newton_raphson_method.py | 34 ----------------- 2 files changed, 40 insertions(+), 34 deletions(-) create mode 100644 arithmetic_analysis/newton_raphson.py delete mode 100644 arithmetic_analysis/newton_raphson_method.py diff --git a/arithmetic_analysis/newton_raphson.py b/arithmetic_analysis/newton_raphson.py new file mode 100644 index 000000000000..8aa816cd0d04 --- /dev/null +++ b/arithmetic_analysis/newton_raphson.py @@ -0,0 +1,40 @@ +# Implementing Newton Raphson method in Python +# Author: Syed Haseeb Shah (github.com/QuantumNovice) +# The Newton-Raphson method (also known as Newton's method) is a way to +# quickly find a good approximation for the root of a real-valued function + +from decimal import Decimal +from math import * # noqa: F401, F403 +from sympy import diff + + +def newton_raphson(func: str, a: int, precision: int=10 ** -10) -> float: + """ Finds root from the point 'a' onwards by Newton-Raphson method + >>> newton_raphson("sin(x)", 2) + 3.1415926536808043 + >>> newton_raphson("x**2 - 5*x +2", 0.4) + 0.4384471871911695 + >>> newton_raphson("x**2 - 5", 0.1) + 2.23606797749979 + >>> newton_raphson("log(x)- 1", 2) + 2.718281828458938 + """ + x = a + while True: + x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) + # This number dictates the accuracy of the answer + if abs(eval(func)) < precision: + return float(x) + + +# Let's Execute +if __name__ == "__main__": + # Find root of trigonometric function + # Find value of pi + print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") + # Find root of polynomial + print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") + # Find Square Root of 5 + print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") + # Exponential Roots + print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}") diff --git a/arithmetic_analysis/newton_raphson_method.py b/arithmetic_analysis/newton_raphson_method.py deleted file mode 100644 index 646b352a923c..000000000000 --- a/arithmetic_analysis/newton_raphson_method.py +++ /dev/null @@ -1,34 +0,0 @@ -# Implementing Newton Raphson method in Python -# Author: Syed Haseeb Shah (github.com/QuantumNovice) -# The Newton-Raphson method (also known as Newton's method) is a way to -# quickly find a good approximation for the root of a real-valued function -from sympy import diff -from decimal import Decimal - - -def NewtonRaphson(func, a): - """ Finds root from the point 'a' onwards by Newton-Raphson method """ - while True: - c = Decimal(a) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) - - a = c - - # This number dictates the accuracy of the answer - if abs(eval(func)) < 10 ** -15: - return c - - -# Let's Execute -if __name__ == "__main__": - # Find root of trigonometric function - # Find value of pi - print("sin(x) = 0", NewtonRaphson("sin(x)", 2)) - - # Find root of polynomial - print("x**2 - 5*x +2 = 0", NewtonRaphson("x**2 - 5*x +2", 0.4)) - - # Find Square Root of 5 - print("x**2 - 5 = 0", NewtonRaphson("x**2 - 5", 0.1)) - - # Exponential Roots - print("exp(x) - 1 = 0", NewtonRaphson("exp(x) - 1", 0)) From 1af4c02ba6999dff2d9b8c3b3016a4774faed842 Mon Sep 17 00:00:00 2001 From: Iqrar Agalosi Nureyza Date: Wed, 18 Dec 2019 14:35:03 +0700 Subject: [PATCH 486/594] adding doctests on coin_change.py and fixed some typos (#1337) * adding doctests on coin_change.py * fixed some typos * Update lib.py --- dynamic_programming/coin_change.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/dynamic_programming/coin_change.py b/dynamic_programming/coin_change.py index a85d8e08dbb1..12ced411780f 100644 --- a/dynamic_programming/coin_change.py +++ b/dynamic_programming/coin_change.py @@ -8,6 +8,18 @@ def dp_count(S, m, n): + """ + >>> dp_count([1, 2, 3], 3, 4) + 4 + >>> dp_count([1, 2, 3], 3, 7) + 8 + >>> dp_count([2, 5, 3, 6], 4, 10) + 5 + >>> dp_count([10], 1, 99) + 0 + >>> dp_count([4, 5, 6], 3, 0) + 1 + """ # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) @@ -24,7 +36,7 @@ def dp_count(S, m, n): return table[n] - if __name__ == "__main__": - print(dp_count([1, 2, 3], 3, 4)) # answer 4 - print(dp_count([2, 5, 3, 6], 4, 10)) # answer 5 + import doctest + + doctest.testmod() From 86dbf0a9d399c93280a9676ef3bf3cbc2fc2a284 Mon Sep 17 00:00:00 2001 From: faizan2700 <46817346+faizan2700@users.noreply.github.com> Date: Wed, 18 Dec 2019 19:55:12 +0530 Subject: [PATCH 487/594] file iterating_through_submasks.py for given mask is added in dynamic_programming (#1635) * new file *iterating_through_submasks* is added in dynamic_programming section * no changes * *iterating_through_submasks.py is added in dynamic_programming * iterating_through_submasks is added with doctests * iterating_through_submasks.py is added in dynamic_programming * changes made in *iterating_through_submasks.py * changes made in *iterating_through_submasks.py * updated --- .../iterating_through_submasks.py | 60 +++++++++++++++++++ 1 file changed, 60 insertions(+) create mode 100644 dynamic_programming/iterating_through_submasks.py diff --git a/dynamic_programming/iterating_through_submasks.py b/dynamic_programming/iterating_through_submasks.py new file mode 100644 index 000000000000..edeacc3124fa --- /dev/null +++ b/dynamic_programming/iterating_through_submasks.py @@ -0,0 +1,60 @@ +""" +Author : Syed Faizan (3rd Year Student IIIT Pune) +github : faizan2700 +You are given a bitmask m and you want to efficiently iterate through all of +its submasks. The mask s is submask of m if only bits that were included in +bitmask are set +""" +from typing import List + + +def list_of_submasks(mask: int) -> List[int]: + + """ + Args: + mask : number which shows mask ( always integer > 0, zero does not have any submasks ) + + Returns: + all_submasks : the list of submasks of mask (mask s is called submask of mask + m if only bits that were included in original mask are set + + Raises: + AssertionError: mask not positive integer + + >>> list_of_submasks(15) + [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] + >>> list_of_submasks(13) + [13, 12, 9, 8, 5, 4, 1] + >>> list_of_submasks(-7) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + AssertionError: mask needs to be positive integer, your input -7 + >>> list_of_submasks(0) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + AssertionError: mask needs to be positive integer, your input 0 + + """ + + fmt = "mask needs to be positive integer, your input {}" + assert isinstance(mask, int) and mask > 0, fmt.format(mask) + + """ + first submask iterated will be mask itself then operation will be performed + to get other submasks till we reach empty submask that is zero ( zero is not + included in final submasks list ) + """ + all_submasks = [] + submask = mask + + while submask: + all_submasks.append(submask) + submask = (submask - 1) & mask + + return all_submasks + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 5f57ac975f80bb79949d0dc222bb5fe124de6357 Mon Sep 17 00:00:00 2001 From: Kyle <40903431+kylepw@users.noreply.github.com> Date: Thu, 19 Dec 2019 18:40:16 +0900 Subject: [PATCH 488/594] Add docstr and algorithm to BFS shortest path module (#1637) * Add docs and type alias to bfs_shortest_path.py * Add bfs_shortest_path_distance algorithm * Make requested changes --- graphs/bfs_shortest_path.py | 71 +++++++++++++++++++++++++++++++++++-- 1 file changed, 69 insertions(+), 2 deletions(-) diff --git a/graphs/bfs_shortest_path.py b/graphs/bfs_shortest_path.py index ec82c13997e2..c3664796e677 100644 --- a/graphs/bfs_shortest_path.py +++ b/graphs/bfs_shortest_path.py @@ -1,3 +1,11 @@ +"""Breadth-first search shortest path implementations. + + doctest: + python -m doctest -v bfs_shortest_path.py + + Manual test: + python bfs_shortest_path.py +""" graph = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], @@ -9,7 +17,22 @@ } -def bfs_shortest_path(graph, start, goal): +def bfs_shortest_path(graph: dict, start, goal) -> str: + """Find shortest path between `start` and `goal` nodes. + + Args: + graph (dict): node/list of neighboring nodes key/value pairs. + start: start node. + goal: target node. + + Returns: + Shortest path between `start` and `goal` nodes as a string of nodes. + 'Not found' string if no path found. + + Example: + >>> bfs_shortest_path(graph, "G", "D") + ['G', 'C', 'A', 'B', 'D'] + """ # keep track of explored nodes explored = [] # keep track of all the paths to be checked @@ -44,4 +67,48 @@ def bfs_shortest_path(graph, start, goal): return "So sorry, but a connecting path doesn't exist :(" -bfs_shortest_path(graph, "G", "D") # returns ['G', 'C', 'A', 'B', 'D'] +def bfs_shortest_path_distance(graph: dict, start, target) -> int: + """Find shortest path distance between `start` and `target` nodes. + + Args: + graph: node/list of neighboring nodes key/value pairs. + start: node to start search from. + target: node to search for. + + Returns: + Number of edges in shortest path between `start` and `target` nodes. + -1 if no path exists. + + Example: + >>> bfs_shortest_path_distance(graph, "G", "D") + 4 + >>> bfs_shortest_path_distance(graph, "A", "A") + 0 + >>> bfs_shortest_path_distance(graph, "A", "H") + -1 + """ + if not graph or start not in graph or target not in graph: + return -1 + if start == target: + return 0 + queue = [start] + visited = [start] + # Keep tab on distances from `start` node. + dist = {start: 0, target: -1} + while queue: + node = queue.pop(0) + if node == target: + dist[target] = ( + dist[node] if dist[target] == -1 else min(dist[target], dist[node]) + ) + for adjacent in graph[node]: + if adjacent not in visited: + visited.append(adjacent) + queue.append(adjacent) + dist[adjacent] = dist[node] + 1 + return dist[target] + + +if __name__ == "__main__": + print(bfs_shortest_path(graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] + print(bfs_shortest_path_distance(graph, "G", "D")) # returns 4 From c67776da597aef98e27fd1f701e7de987fdd4bb2 Mon Sep 17 00:00:00 2001 From: faizan2700 <46817346+faizan2700@users.noreply.github.com> Date: Sat, 21 Dec 2019 00:57:32 +0530 Subject: [PATCH 489/594] other/integeration_by_simpson_approx.py is added for approximate integeration (#1638) * new file *iterating_through_submasks* is added in dynamic_programming section * no changes * *iterating_through_submasks.py is added in dynamic_programming * iterating_through_submasks is added with doctests * iterating_through_submasks.py is added in dynamic_programming * changes made in *iterating_through_submasks.py * changes made in *iterating_through_submasks.py * updated * *other/integeration_by_simpson_approx.py added * *other/integeration_by_simpson_approx.py Added for integeration * Delete iterating_through_submasks.py * Delete DIRECTORY.md * Revert "updated" This reverts commit 73456f85de03782b7d3c794eca8390a4fe87037c. * changes made *integeration_by_simpson_approx.py * update2 Co-authored-by: Christian Clauss --- other/integeration_by_simpson_approx.py | 123 ++++++++++++++++++++++++ 1 file changed, 123 insertions(+) create mode 100644 other/integeration_by_simpson_approx.py diff --git a/other/integeration_by_simpson_approx.py b/other/integeration_by_simpson_approx.py new file mode 100644 index 000000000000..2115ac9a5146 --- /dev/null +++ b/other/integeration_by_simpson_approx.py @@ -0,0 +1,123 @@ +""" +Author : Syed Faizan ( 3rd Year IIIT Pune ) +Github : faizan2700 + +Purpose : You have one function f(x) which takes float integer and returns +float you have to integrate the function in limits a to b. +The approximation proposed by Thomas Simpsons in 1743 is one way to calculate integration. + +( read article : https://cp-algorithms.com/num_methods/simpson-integration.html ) + +simpson_integration() takes function,lower_limit=a,upper_limit=b,precision and +returns the integration of function in given limit. +""" + +# constants +# the more the number of steps the more accurate +N_STEPS = 1000 + + +def f(x: float) -> float: + return x * x + + +""" +Summary of Simpson Approximation : + +By simpsons integration : +1.integration of fxdx with limit a to b is = f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + 2 * f(x4)..... + f(xn) +where x0 = a +xi = a + i * h +xn = b +""" + + +def simpson_integration(function, a: float, b: float, precision: int = 4) -> float: + + """ + Args: + function : the function which's integration is desired + a : the lower limit of integration + b : upper limit of integraion + precision : precision of the result,error required default is 4 + + Returns: + result : the value of the approximated integration of function in range a to b + + Raises: + AssertionError: function is not callable + AssertionError: a is not float or integer + AssertionError: function should return float or integer + AssertionError: b is not float or integer + AssertionError: precision is not positive integer + + >>> simpson_integration(lambda x : x*x,1,2,3) + 2.333 + + >>> simpson_integration(lambda x : x*x,'wrong_input',2,3) + Traceback (most recent call last): + ... + AssertionError: a should be float or integer your input : wrong_input + + >>> simpson_integration(lambda x : x*x,1,'wrong_input',3) + Traceback (most recent call last): + ... + AssertionError: b should be float or integer your input : wrong_input + + >>> simpson_integration(lambda x : x*x,1,2,'wrong_input') + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : wrong_input + >>> simpson_integration('wrong_input',2,3,4) + Traceback (most recent call last): + ... + AssertionError: the function(object) passed should be callable your input : wrong_input + + >>> simpson_integration(lambda x : x*x,3.45,3.2,1) + -2.8 + + >>> simpson_integration(lambda x : x*x,3.45,3.2,0) + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : 0 + + >>> simpson_integration(lambda x : x*x,3.45,3.2,-1) + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : -1 + + """ + assert callable( + function + ), f"the function(object) passed should be callable your input : {function}" + assert isinstance(a, float) or isinstance( + a, int + ), f"a should be float or integer your input : {a}" + assert isinstance(function(a), float) or isinstance( + function(a), int + ), f"the function should return integer or float return type of your function, {type(a)}" + assert isinstance(b, float) or isinstance( + b, int + ), f"b should be float or integer your input : {b}" + assert ( + isinstance(precision, int) and precision > 0 + ), f"precision should be positive integer your input : {precision}" + + # just applying the formula of simpson for approximate integraion written in + # mentioned article in first comment of this file and above this function + + h = (b - a) / N_STEPS + result = function(a) + function(b) + + for i in range(1, N_STEPS): + a1 = a + h * i + result += function(a1) * (4 if i%2 else 2) + + result *= h / 3 + return round(result, precision) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 1d9266eca08c4e58ba04a403168292edf4204b80 Mon Sep 17 00:00:00 2001 From: Saransh Gupta Date: Sat, 21 Dec 2019 04:22:43 +0530 Subject: [PATCH 490/594] Fixed warning string for Key B = 0 (#1639) * Fixed warning string for Key B = 0 * Update affine_cipher.py * Update affine_cipher.py * decrypt_message(encrypt_message()) Co-authored-by: Christian Clauss --- ciphers/affine_cipher.py | 93 +++++++++++++++++++++------------------- 1 file changed, 50 insertions(+), 43 deletions(-) diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py index eb50acf8fc20..ad41feb32837 100644 --- a/ciphers/affine_cipher.py +++ b/ciphers/affine_cipher.py @@ -1,56 +1,63 @@ -import sys, random, cryptomath_module as cryptoMath +import random +import sys -SYMBOLS = r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" +import cryptomath_module as cryptomath + +SYMBOLS = (r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`""" + r"""abcdefghijklmnopqrstuvwxyz{|}~""") def main(): - message = input("Enter message: ") - key = int(input("Enter key [2000 - 9000]: ")) - mode = input("Encrypt/Decrypt [E/D]: ") + """ + >>> key = get_random_key() + >>> msg = "This is a test!" + >>> decrypt_message(key, encrypt_message(key, msg)) == msg + True + """ + message = input("Enter message: ").strip() + key = int(input("Enter key [2000 - 9000]: ").strip()) + mode = input("Encrypt/Decrypt [E/D]: ").strip().lower() - if mode.lower().startswith("e"): + if mode.startswith("e"): mode = "encrypt" - translated = encryptMessage(key, message) - elif mode.lower().startswith("d"): + translated = encrypt_message(key, message) + elif mode.startswith("d"): mode = "decrypt" - translated = decryptMessage(key, message) - print("\n%sed text: \n%s" % (mode.title(), translated)) - - -def getKeyParts(key): - keyA = key // len(SYMBOLS) - keyB = key % len(SYMBOLS) - return (keyA, keyB) - - -def checkKeys(keyA, keyB, mode): - if keyA == 1 and mode == "encrypt": - sys.exit( - "The affine cipher becomes weak when key A is set to 1. Choose different key" - ) - if keyB == 0 and mode == "encrypt": - sys.exit( - "The affine cipher becomes weak when key A is set to 1. Choose different key" - ) + translated = decrypt_message(key, message) + print(f"\n{mode.title()}ed text: \n{translated}") + + +def check_keys(keyA, keyB, mode): + if mode == "encrypt": + if keyA == 1: + sys.exit( + "The affine cipher becomes weak when key " + "A is set to 1. Choose different key" + ) + if keyB == 0: + sys.exit( + "The affine cipher becomes weak when key " + "B is set to 0. Choose different key" + ) if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1: sys.exit( - "Key A must be greater than 0 and key B must be between 0 and %s." - % (len(SYMBOLS) - 1) + "Key A must be greater than 0 and key B must " + f"be between 0 and {len(SYMBOLS) - 1}." ) - if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1: + if cryptomath.gcd(keyA, len(SYMBOLS)) != 1: sys.exit( - "Key A %s and the symbol set size %s are not relatively prime. Choose a different key." - % (keyA, len(SYMBOLS)) + f"Key A {keyA} and the symbol set size {len(SYMBOLS)} " + "are not relatively prime. Choose a different key." ) -def encryptMessage(key, message): +def encrypt_message(key: int, message: str) -> str: """ - >>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.') + >>> encrypt_message(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.') 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' """ - keyA, keyB = getKeyParts(key) - checkKeys(keyA, keyB, "encrypt") + keyA, keyB = divmod(key, len(SYMBOLS)) + check_keys(keyA, keyB, "encrypt") cipherText = "" for symbol in message: if symbol in SYMBOLS: @@ -61,15 +68,15 @@ def encryptMessage(key, message): return cipherText -def decryptMessage(key, message): +def decrypt_message(key: int, message: str) -> str: """ - >>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi') + >>> decrypt_message(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi') 'The affine cipher is a type of monoalphabetic substitution cipher.' """ - keyA, keyB = getKeyParts(key) - checkKeys(keyA, keyB, "decrypt") + keyA, keyB = divmod(key, len(SYMBOLS)) + check_keys(keyA, keyB, "decrypt") plainText = "" - modInverseOfkeyA = cryptoMath.findModInverse(keyA, len(SYMBOLS)) + modInverseOfkeyA = cryptomath.findModInverse(keyA, len(SYMBOLS)) for symbol in message: if symbol in SYMBOLS: symIndex = SYMBOLS.find(symbol) @@ -79,11 +86,11 @@ def decryptMessage(key, message): return plainText -def getRandomKey(): +def get_random_key(): while True: keyA = random.randint(2, len(SYMBOLS)) keyB = random.randint(2, len(SYMBOLS)) - if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1: + if cryptomath.gcd(keyA, len(SYMBOLS)) == 1: return keyA * len(SYMBOLS) + keyB From 3242682473c58aebb1b8083443603487ea507589 Mon Sep 17 00:00:00 2001 From: Jasper <46252815+jasper256@users.noreply.github.com> Date: Fri, 20 Dec 2019 18:23:15 -0500 Subject: [PATCH 491/594] Create roman_to_integer.py (#1636) * added roman to integer conversion (LeetCode No. 13) * updated directory to include Roman to Integer * Delete DIRECTORY.md * Update roman_to_integer.py Co-authored-by: Christian Clauss --- DIRECTORY.md | 550 -------------------------------- conversions/roman_to_integer.py | 27 ++ 2 files changed, 27 insertions(+), 550 deletions(-) delete mode 100644 DIRECTORY.md create mode 100644 conversions/roman_to_integer.py diff --git a/DIRECTORY.md b/DIRECTORY.md deleted file mode 100644 index 468fe65298d9..000000000000 --- a/DIRECTORY.md +++ /dev/null @@ -1,550 +0,0 @@ - -## Arithmetic Analysis - * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) - * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) - * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) - * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) - * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) - * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) - * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) - * [Newton Raphson Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson_method.py) - * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) - -## Backtracking - * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) - * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) - * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) - * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) - * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) - * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) - * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) - -## Blockchain - * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) - * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) - * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) - -## Boolean Algebra - * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) - -## Ciphers - * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) - * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) - * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) - * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) - * [Base64 Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) - * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) - * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) - * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) - * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) - * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) - * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) - * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) - * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) - * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) - * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) - * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) - * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) - * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) - * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) - * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) - * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) - * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) - * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) - * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) - * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) - * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) - * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) - * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) - * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) - * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) - * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) - -## Compression - * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) - * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) - * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) - -## Conversions - * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) - * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) - * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) - -## Data Structures - * Binary Tree - * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) - * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) - * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) - * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) - * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) - * [Lca](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lca.py) - * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) - * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) - * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) - * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) - * Data Structures - * Heap - * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/data_structures/heap/heap_generic.py) - * Disjoint Set - * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) - * Hashing - * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) - * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) - * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) - * Number Theory - * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) - * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) - * Heap - * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) - * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) - * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) - * Linked List - * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) - * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) - * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) - * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) - * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) - * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) - * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) - * Queue - * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) - * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) - * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) - * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) - * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) - * Stacks - * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) - * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) - * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) - * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) - * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) - * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) - * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) - * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) - * Trie - * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) - -## Digital Image Processing - * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) - * Edge Detection - * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) - * Filters - * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) - * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) - * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) - * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) - * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) - * Rotation - * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) - * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) - -## Divide And Conquer - * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) - * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) - * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) - * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) - * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) - -## Dynamic Programming - * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) - * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) - * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) - * [Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) - * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) - * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) - * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) - * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) - * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) - * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) - * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) - * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) - * [K Means Clustering Tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) - * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) - * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) - * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) - * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) - * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) - * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) - * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) - * [Max Sum Contigous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contigous_subsequence.py) - * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) - * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) - * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) - * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) - -## File Transfer - * [Recieve File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) - * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) - -## Fuzzy Logic - * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) - -## Graphs - * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) - * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) - * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) - * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) - * [Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) - * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) - * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) - * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) - * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) - * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) - * [Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) - * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) - * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) - * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) - * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) - * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) - * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) - * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) - * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) - * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) - * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) - * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) - * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) - * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) - * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) - * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) - * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) - * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) - * [Multi Hueristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) - * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) - * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) - * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) - * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) - -## Hashes - * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) - * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) - * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) - * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) - * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) - -## Linear Algebra - * Src - * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) - * [Polynom-For-Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) - * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) - -## Machine Learning - * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) - * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) - * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) - * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) - * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) - * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) - * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) - * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) - * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) - * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) - * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) - * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) - * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) - -## Maths - * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) - * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) - * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) - * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) - * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) - * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) - * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) - * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) - * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) - * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) - * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) - * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) - * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) - * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) - * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) - * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) - * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) - * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) - * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) - * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) - * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) - * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) - * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) - * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) - * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) - * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) - * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) - * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) - * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) - * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) - * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) - * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) - * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) - * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) - * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) - * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) - * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) - * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) - * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) - * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) - * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) - * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) - * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) - * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) - * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) - * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) - * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) - * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) - * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) - * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) - * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) - * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) - * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) - * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) - * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) - * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) - * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) - * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) - * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) - * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) - * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) - -## Matrix - * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) - * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) - * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) - * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) - * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) - * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) - * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) - * Tests - * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) - -## Networking Flow - * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) - * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) - -## Neural Network - * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) - * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) - * [Gan](https://github.com/TheAlgorithms/Python/blob/master/neural_network/gan.py) - * [Input Data](https://github.com/TheAlgorithms/Python/blob/master/neural_network/input_data.py) - * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) - -## Other - * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) - * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) - * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/other/autocomplete_using_trie.py) - * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) - * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) - * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) - * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) - * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) - * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) - * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) - * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) - * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) - * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) - * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) - * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) - * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) - * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) - * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) - * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) - * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) - * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) - * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) - * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) - * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) - -## Project Euler - * Problem 01 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) - * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) - * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) - * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) - * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol7.py) - * Problem 02 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) - * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) - * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol5.py) - * Problem 03 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol3.py) - * Problem 04 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) - * Problem 05 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) - * Problem 06 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) - * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol4.py) - * Problem 07 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) - * Problem 08 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol3.py) - * Problem 09 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) - * Problem 10 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) - * Problem 11 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) - * Problem 12 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) - * Problem 13 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) - * Problem 14 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) - * Problem 15 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) - * Problem 16 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) - * Problem 17 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) - * Problem 18 - * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_18/solution.py) - * Problem 19 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) - * Problem 20 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol3.py) - * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol4.py) - * Problem 21 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) - * Problem 22 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) - * Problem 23 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_23/sol1.py) - * Problem 234 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) - * Problem 24 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) - * Problem 25 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) - * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) - * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol3.py) - * Problem 27 - * [Problem 27 Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_27/problem_27_sol1.py) - * Problem 28 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) - * Problem 29 - * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) - * Problem 31 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) - * Problem 32 - * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_32/sol32.py) - * Problem 33 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_33/sol1.py) - * Problem 36 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) - * Problem 40 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) - * Problem 42 - * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_42/solution42.py) - * Problem 48 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) - * Problem 52 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) - * Problem 53 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) - * Problem 551 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) - * Problem 56 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_56/sol1.py) - * Problem 67 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_67/sol1.py) - * Problem 76 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) - * Problem 99 - * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_99/sol1.py) - -## Searches - * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) - * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) - * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) - * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) - * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) - * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) - * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) - * [Simple-Binary-Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple-binary-search.py) - * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) - * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) - -## Sorts - * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) - * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) - * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) - * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) - * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) - * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) - * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) - * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) - * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) - * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) - * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) - * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) - * [I Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/i_sort.py) - * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) - * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) - * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) - * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) - * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) - * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) - * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) - * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) - * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) - * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) - * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) - * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) - * [Recursive-Quick-Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive-quick-sort.py) - * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) - * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) - * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) - * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) - * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) - * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) - * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) - * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) - -## Strings - * [Aho-Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho-corasick.py) - * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) - * [Check Panagram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_panagram.py) - * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) - * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) - * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) - * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) - * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) - * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) - * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) - * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) - * [Word Occurence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurence.py) - -## Traversals - * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) - -## Web Programming - * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) - * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) - * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) - * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) - * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) - * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) diff --git a/conversions/roman_to_integer.py b/conversions/roman_to_integer.py new file mode 100644 index 000000000000..ce52b6fb7cbb --- /dev/null +++ b/conversions/roman_to_integer.py @@ -0,0 +1,27 @@ +def roman_to_int(roman: str) -> int: + """ + LeetCode No. 13 Roman to Integer + Given a roman numeral, convert it to an integer. + Input is guaranteed to be within the range from 1 to 3999. + https://en.wikipedia.org/wiki/Roman_numerals + >>> tests = {"III": 3, "CLIV": 154, "MIX": 1009, "MMD": 2500, "MMMCMXCIX": 3999} + >>> all(roman_to_int(key) == value for key, value in tests.items()) + True + """ + vals = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} + total = 0 + place = 0 + while place < len(roman): + if (place + 1 < len(roman)) and (vals[roman[place]] < vals[roman[place + 1]]): + total += vals[roman[place + 1]] - vals[roman[place]] + place += 2 + else: + total += vals[roman[place]] + place += 1 + return total + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 81ae5adcc8c7b5d7a348399bc43d21488facd205 Mon Sep 17 00:00:00 2001 From: Hocnonsense <48747984+Hocnonsense@users.noreply.github.com> Date: Sat, 21 Dec 2019 08:44:31 +0800 Subject: [PATCH 492/594] Update binary_search_tree.py (#1339) * Update binary_search_tree.py remove some bugs * Update binary_search_tree.py * Update binary_search_tree.py * Update binary_search_tree.py * Update binary_search_tree.py * Update binary_search_tree.py * Update binary_search_tree.py * testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) * Update .travis.yml Co-authored-by: Christian Clauss --- .travis.yml | 1 + .../binary_tree/binary_search_tree.py | 383 ++++++++---------- 2 files changed, 164 insertions(+), 220 deletions(-) diff --git a/.travis.yml b/.travis.yml index 6852b84915f9..80ea1302990d 100644 --- a/.travis.yml +++ b/.travis.yml @@ -6,6 +6,7 @@ install: pip install -r requirements.txt before_script: - black --check . || true - flake8 . --count --select=E101,E9,F4,F63,F7,F82,W191 --show-source --statistics + - flake8 . --count --exit-zero --max-line-length=127 --statistics script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - mypy --ignore-missing-imports . diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 1e6c17112e81..4c687379e8c8 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -1,204 +1,157 @@ -""" +''' A binary search Tree -""" - - +''' class Node: - def __init__(self, label, parent): - self.label = label + def __init__(self, value, parent): + self.value = value + self.parent = parent # Added in order to delete a node easier self.left = None self.right = None - # Added in order to delete a node easier - self.parent = parent - - def getLabel(self): - return self.label - - def setLabel(self, label): - self.label = label - - def getLeft(self): - return self.left - - def setLeft(self, left): - self.left = left - def getRight(self): - return self.right - - def setRight(self, right): - self.right = right - - def getParent(self): - return self.parent - - def setParent(self, parent): - self.parent = parent + def __repr__(self): + from pprint import pformat + if self.left is None and self.right is None: + return str(self.value) + return pformat( + { + "%s" + % (self.value): (self.left, self.right) + }, + indent=1, + ) class BinarySearchTree: - def __init__(self): - self.root = None + def __init__(self, root = None): + self.root = root - # Insert a new node in Binary Search Tree with value label - def insert(self, label): - # Create a new Node - new_node = Node(label, None) - # If Tree is empty - if self.empty(): - self.root = new_node - else: - # If Tree is not empty - curr_node = self.root - # While we don't get to a leaf - while curr_node is not None: - # We keep reference of the parent node - parent_node = curr_node - # If node label is less than current node - if new_node.getLabel() < curr_node.getLabel(): - # We go left - curr_node = curr_node.getLeft() - else: - # Else we go right - curr_node = curr_node.getRight() - # We insert the new node in a leaf - if new_node.getLabel() < parent_node.getLabel(): - parent_node.setLeft(new_node) + def __str__(self): + """ + Return a string of all the Nodes using in order traversal + """ + return str(self.root) + + def __reassign_nodes(self, node, newChildren): + if(newChildren is not None): # reset its kids + newChildren.parent = node.parent + if(node.parent is not None): # reset its parent + if(self.is_right(node)): # If it is the right children + node.parent.right = newChildren else: - parent_node.setRight(new_node) - # Set parent to the new node - new_node.setParent(parent_node) + node.parent.left = newChildren + else: + self.root = newChildren - def delete(self, label): - if not self.empty(): - # Look for the node with that label - node = self.getNode(label) - # If the node exists - if node is not None: - # If it has no children - if node.getLeft() is None and node.getRight() is None: - self.__reassignNodes(node, None) - node = None - # Has only right children - elif node.getLeft() is None and node.getRight() is not None: - self.__reassignNodes(node, node.getRight()) - # Has only left children - elif node.getLeft() is not None and node.getRight() is None: - self.__reassignNodes(node, node.getLeft()) - # Has two children - else: - # Gets the max value of the left branch - tmpNode = self.getMax(node.getLeft()) - # Deletes the tmpNode - self.delete(tmpNode.getLabel()) - # Assigns the value to the node to delete and keesp tree structure - node.setLabel(tmpNode.getLabel()) + def is_right(self, node): + return node == node.parent.right - def getNode(self, label): - curr_node = None - # If the tree is not empty - if not self.empty(): - # Get tree root - curr_node = self.getRoot() - # While we don't find the node we look for - # I am using lazy evaluation here to avoid NoneType Attribute error - while curr_node is not None and curr_node.getLabel() is not label: - # If node label is less than current node - if label < curr_node.getLabel(): - # We go left - curr_node = curr_node.getLeft() + def empty(self): + return self.root is None + + def __insert(self, value): + """ + Insert a new node in Binary Search Tree with value label + """ + new_node = Node(value, None) # create a new Node + if self.empty(): # if Tree is empty + self.root = new_node # set its root + else: # Tree is not empty + parent_node = self.root # from root + while True: # While we don't get to a leaf + if value < parent_node.value: # We go left + if parent_node.left == None: + parent_node.left = new_node # We insert the new node in a leaf + break + else: + parent_node = parent_node.left else: - # Else we go right - curr_node = curr_node.getRight() - return curr_node - - def getMax(self, root=None): - if root is not None: - curr_node = root - else: - # We go deep on the right branch - curr_node = self.getRoot() - if not self.empty(): - while curr_node.getRight() is not None: - curr_node = curr_node.getRight() - return curr_node - - def getMin(self, root=None): - if root is not None: - curr_node = root + if parent_node.right == None: + parent_node.right = new_node + break + else: + parent_node = parent_node.right + new_node.parent = parent_node + + def insert(self, *values): + for value in values: + self.__insert(value) + return self + + def search(self, value): + if self.empty(): + raise IndexError("Warning: Tree is empty! please use another. ") else: - # We go deep on the left branch - curr_node = self.getRoot() + node = self.root + # use lazy evaluation here to avoid NoneType Attribute error + while node is not None and node.value is not value: + node = node.left if value < node.value else node.right + return node + + def get_max(self, node = None): + """ + We go deep on the right branch + """ + if node is None: + node = self.root if not self.empty(): - curr_node = self.getRoot() - while curr_node.getLeft() is not None: - curr_node = curr_node.getLeft() - return curr_node - - def empty(self): - if self.root is None: - return True - return False - - def __InOrderTraversal(self, curr_node): - nodeList = [] - if curr_node is not None: - nodeList.insert(0, curr_node) - nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft()) - nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight()) - return nodeList - - def getRoot(self): - return self.root - - def __isRightChildren(self, node): - if node == node.getParent().getRight(): - return True - return False - - def __reassignNodes(self, node, newChildren): - if newChildren is not None: - newChildren.setParent(node.getParent()) - if node.getParent() is not None: - # If it is the Right Children - if self.__isRightChildren(node): - node.getParent().setRight(newChildren) + while(node.right is not None): + node = node.right + return node + + def get_min(self, node = None): + """ + We go deep on the left branch + """ + if(node is None): + node = self.root + if(not self.empty()): + node = self.root + while(node.left is not None): + node = node.left + return node + + def remove(self, value): + node = self.search(value) # Look for the node with that label + if(node is not None): + if(node.left is None and node.right is None): # If it has no children + self.__reassign_nodes(node, None) + node = None + elif(node.left is None): # Has only right children + self.__reassign_nodes(node, node.right) + elif(node.right is None): # Has only left children + self.__reassign_nodes(node, node.left) else: - # Else it is the left children - node.getParent().setLeft(newChildren) - - # This function traversal the tree. By default it returns an - # In order traversal list. You can pass a function to traversal - # The tree as needed by client code - def traversalTree(self, traversalFunction=None, root=None): - if traversalFunction is None: - # Returns a list of nodes in preOrder by default - return self.__InOrderTraversal(self.root) + tmpNode = self.get_max(node.left) # Gets the max value of the left branch + self.remove(tmpNode.value) + node.value = tmpNode.value # Assigns the value to the node to delete and keesp tree structure + + def preorder_traverse(self, node): + if node is not None: + yield node # Preorder Traversal + yield from self.preorder_traverse(node.left) + yield from self.preorder_traverse(node.right) + + def traversal_tree(self, traversalFunction = None): + """ + This function traversal the tree. + You can pass a function to traversal the tree as needed by client code + """ + if(traversalFunction is None): + return self.preorder_traverse(self.root) else: - # Returns a list of nodes in the order that the users wants to return traversalFunction(self.root) - # Returns an string of all the nodes labels in the list - # In Order Traversal - def __str__(self): - list = self.__InOrderTraversal(self.root) - str = "" - for x in list: - str = str + " " + x.getLabel().__str__() - return str - - -def InPreOrder(curr_node): - nodeList = [] +def postorder(curr_node): + """ + postOrder (left, right, self) + """ + nodeList = list() if curr_node is not None: - nodeList = nodeList + InPreOrder(curr_node.getLeft()) - nodeList.insert(0, curr_node.getLabel()) - nodeList = nodeList + InPreOrder(curr_node.getRight()) + nodeList = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return nodeList - -def testBinarySearchTree(): - r""" +def binary_search_tree(): + r''' Example 8 / \ @@ -207,56 +160,46 @@ def testBinarySearchTree(): 1 6 14 / \ / 4 7 13 - """ - r""" - Example After Deletion - 7 - / \ - 1 4 - - """ + >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) + >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) + 8 3 1 6 4 7 10 14 13 + >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) + 1 4 7 6 3 13 14 10 8 + >>> BinarySearchTree().search(6) + Traceback (most recent call last): + ... + IndexError: Warning: Tree is empty! please use another. + ''' + testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() - t.insert(8) - t.insert(3) - t.insert(6) - t.insert(1) - t.insert(10) - t.insert(14) - t.insert(13) - t.insert(4) - t.insert(7) + for i in testlist: + t.insert(i) # Prints all the elements of the list in order traversal - print(t.__str__()) - - if t.getNode(6) is not None: - print("The label 6 exists") + print(t) + + if(t.search(6) is not None): + print("The value 6 exists") else: - print("The label 6 doesn't exist") + print("The value 6 doesn't exist") - if t.getNode(-1) is not None: - print("The label -1 exists") + if(t.search(-1) is not None): + print("The value -1 exists") else: - print("The label -1 doesn't exist") - - if not t.empty(): - print(("Max Value: ", t.getMax().getLabel())) - print(("Min Value: ", t.getMin().getLabel())) + print("The value -1 doesn't exist") - t.delete(13) - t.delete(10) - t.delete(8) - t.delete(3) - t.delete(6) - t.delete(14) + if(not t.empty()): + print("Max Value: ", t.get_max().value) + print("Min Value: ", t.get_min().value) - # Gets all the elements of the tree In pre order - # And it prints them - list = t.traversalTree(InPreOrder, t.root) - for x in list: - print(x) + for i in testlist: + t.remove(i) + print(t) +二叉搜索树 = binary_search_tree if __name__ == "__main__": - testBinarySearchTree() + import doctest + doctest.testmod() + binary_search_tree() From aa18600e22ce323c59f2e1051ed53971196320c1 Mon Sep 17 00:00:00 2001 From: Dhakad9 <53108891+Dhakad9@users.noreply.github.com> Date: Sat, 21 Dec 2019 07:16:49 +0530 Subject: [PATCH 493/594] Stack using double linked list (#1413) * Stack using double linked list * Test with doctests * Update stack_using_dll.py * Update stack_using_dll.py * Update stack_using_dll.py Co-authored-by: Christian Clauss --- data_structures/stacks/stack_using_dll.py | 120 ++++++++++++++++++++++ 1 file changed, 120 insertions(+) create mode 100644 data_structures/stacks/stack_using_dll.py diff --git a/data_structures/stacks/stack_using_dll.py b/data_structures/stacks/stack_using_dll.py new file mode 100644 index 000000000000..10e4c067f6f3 --- /dev/null +++ b/data_structures/stacks/stack_using_dll.py @@ -0,0 +1,120 @@ +# A complete working Python program to demonstrate all +# stack operations using a doubly linked list + +class Node: + def __init__(self, data): + self.data = data # Assign data + self.next = None # Initialize next as null + self.prev = None # Initialize prev as null + +class Stack: + """ + >>> stack = Stack() + >>> stack.is_empty() + True + >>> stack.print_stack() + stack elements are: + >>> for i in range(4): + ... stack.push(i) + ... + >>> stack.is_empty() + False + >>> stack.print_stack() + stack elements are: + 3->2->1->0-> + >>> stack.top() + 3 + >>> len(stack) + 4 + >>> stack.pop() + 3 + >>> stack.print_stack() + stack elements are: + 2->1->0-> + """ + def __init__(self): + self.head = None + + def push(self, data): + """add a Node to the stack""" + if self.head is None: + self.head = Node(data) + else: + new_node = Node(data) + self.head.prev = new_node + new_node.next = self.head + new_node.prev = None + self.head = new_node + + def pop(self): + """pop the top element off the stack""" + if self.head is None: + return None + else: + temp = self.head.data + self.head = self.head.next + self.head.prev = None + return temp + + def top(self): + """return the top element of the stack""" + return self.head.data + + def __len__(self): + temp = self.head + count = 0 + while temp is not None: + count += 1 + temp = temp.next + return count + + def is_empty(self): + return self.head is None + + def print_stack(self): + print("stack elements are:") + temp = self.head + while temp is not None: + print(temp.data, end ="->") + temp = temp.next + + +# Code execution starts here +if __name__=='__main__': + + # Start with the empty stack + stack = Stack() + + # Insert 4 at the beginning. So stack becomes 4->None + print("Stack operations using Doubly LinkedList") + stack.push(4) + + # Insert 5 at the beginning. So stack becomes 4->5->None + stack.push(5) + + # Insert 6 at the beginning. So stack becomes 4->5->6->None + stack.push(6) + + # Insert 7 at the beginning. So stack becomes 4->5->6->7->None + stack.push(7) + + # Print the stack + stack.print_stack() + + # Print the top element + print("\nTop element is ", stack.top()) + + # Print the stack size + print("Size of the stack is ", len(stack)) + + # pop the top element + stack.pop() + + # pop the top element + stack.pop() + + # two elements have now been popped off + stack.print_stack() + + # Print True if the stack is empty else False + print("\nstack is empty:", stack.is_empty()) From 725834b9bca7c9cb1a76aa0ada0f4abf5a66f20b Mon Sep 17 00:00:00 2001 From: Anzo Teh Date: Tue, 24 Dec 2019 01:23:15 -0500 Subject: [PATCH 494/594] Added binary exponentiaion with respect to modulo (#1428) * Added binary exponentiaion with respect to modulo * Added miller rabin: the probabilistic primality test for large numbers * Removed unused import * Added test for miller_rabin * Add test to binary_exp_mod * Removed test parameter to make Travis CI happy * unittest.main() # doctest: +ELLIPSIS ... * Update binary_exp_mod.py * Update binary_exp_mod.py * Update miller_rabin.py * from .prime_check import prime_check Co-authored-by: Christian Clauss --- maths/binary_exp_mod.py | 28 +++++++++++++++++++++++ maths/miller_rabin.py | 50 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 78 insertions(+) create mode 100644 maths/binary_exp_mod.py create mode 100644 maths/miller_rabin.py diff --git a/maths/binary_exp_mod.py b/maths/binary_exp_mod.py new file mode 100644 index 000000000000..67dd1e728b18 --- /dev/null +++ b/maths/binary_exp_mod.py @@ -0,0 +1,28 @@ +def bin_exp_mod(a, n, b): + """ + >>> bin_exp_mod(3, 4, 5) + 1 + >>> bin_exp_mod(7, 13, 10) + 7 + """ + # mod b + assert not (b == 0), "This cannot accept modulo that is == 0" + if n == 0: + return 1 + + if n % 2 == 1: + return (bin_exp_mod(a, n - 1, b) * a) % b + + r = bin_exp_mod(a, n / 2, b) + return (r * r) % b + + +if __name__ == "__main__": + try: + BASE = int(input("Enter Base : ").strip()) + POWER = int(input("Enter Power : ").strip()) + MODULO = int(input("Enter Modulo : ").strip()) + except ValueError: + print("Invalid literal for integer") + + print(bin_exp_mod(BASE, POWER, MODULO)) diff --git a/maths/miller_rabin.py b/maths/miller_rabin.py new file mode 100644 index 000000000000..fe992027190b --- /dev/null +++ b/maths/miller_rabin.py @@ -0,0 +1,50 @@ +import random + +from .binary_exp_mod import bin_exp_mod + + +# This is a probabilistic check to test primality, useful for big numbers! +# if it's a prime, it will return true +# if it's not a prime, the chance of it returning true is at most 1/4**prec +def is_prime(n, prec=1000): + """ + >>> from .prime_check import prime_check + >>> all(is_prime(i) == prime_check(i) for i in range(1000)) + True + """ + if n < 2: + return False + + if n % 2 == 0: + return n == 2 + + # this means n is odd + d = n - 1 + exp = 0 + while d % 2 == 0: + d /= 2 + exp += 1 + + # n - 1=d*(2**exp) + count = 0 + while count < prec: + a = random.randint(2, n - 1) + b = bin_exp_mod(a, d, n) + if b != 1: + flag = True + for i in range(exp): + if b == n - 1: + flag = False + break + b = b * b + b %= n + if flag: + return False + count += 1 + return True + + +if __name__ == "__main__": + n = abs(int(input("Enter bound : ").strip())) + print("Here's the list of primes:") + print(", ".join(str(i) for i in range(n + 1) if is_prime(i))) From 1b3985837fac9b72c7d49d903282a219262f737b Mon Sep 17 00:00:00 2001 From: Yash Bhardwaj Date: Thu, 26 Dec 2019 08:44:47 +0530 Subject: [PATCH 495/594] Update back_propagation_neural_network.py (#1342) * Update back_propagation_neural_network.py Added comments below functions * Update back_propagation_neural_network.py Co-authored-by: Christian Clauss --- .../back_propagation_neural_network.py | 23 +++++-------------- 1 file changed, 6 insertions(+), 17 deletions(-) diff --git a/neural_network/back_propagation_neural_network.py b/neural_network/back_propagation_neural_network.py index 86797694bb0a..224fc85de066 100644 --- a/neural_network/back_propagation_neural_network.py +++ b/neural_network/back_propagation_neural_network.py @@ -31,7 +31,6 @@ class DenseLayer: """ Layers of BP neural network """ - def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): @@ -58,6 +57,7 @@ def initializer(self, back_units): self.activation = sigmoid def cal_gradient(self): + # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) @@ -78,7 +78,6 @@ def forward_propagation(self, xdata): return self.output def back_propagation(self, gradient): - gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) @@ -89,11 +88,10 @@ def back_propagation(self, gradient): self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T - # ----------------------upgrade - # -----------the Negative gradient direction -------- + # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T - + # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient @@ -101,7 +99,6 @@ class BPNN: """ Back Propagation Neural Network model """ - def __init__(self): self.layers = [] self.train_mse = [] @@ -144,8 +141,7 @@ def train(self, xdata, ydata, train_round, accuracy): loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss - # back propagation - # the input_layer does not upgrade + # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) @@ -176,7 +172,6 @@ def plot_loss(self): def example(): - x = np.random.randn(10, 10) y = np.asarray( [ @@ -192,17 +187,11 @@ def example(): [0.1, 0.5], ] ) - model = BPNN() - model.add_layer(DenseLayer(10)) - model.add_layer(DenseLayer(20)) - model.add_layer(DenseLayer(30)) - model.add_layer(DenseLayer(2)) - + for i in (10, 20, 30, 2): + model.add_layer(DenseLayer(i)) model.build() - model.summary() - model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) From 34c808b3751f3f9b0fe45e736b2f61abee1b91f6 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 26 Dec 2019 12:50:12 +0100 Subject: [PATCH 496/594] actions/checkout@v2 (#1643) * actions/checkout@v2 https://github.com/actions/checkout/releases * fixup! Format Python code with psf/black push --- .github/workflows/directory_writer.yml | 2 +- arithmetic_analysis/newton_raphson.py | 2 +- ciphers/affine_cipher.py | 6 +- .../binary_tree/binary_search_tree.py | 81 +++++----- data_structures/stacks/stack_using_dll.py | 151 +++++++++--------- dynamic_programming/coin_change.py | 1 + other/integeration_by_simpson_approx.py | 2 +- 7 files changed, 128 insertions(+), 117 deletions(-) diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index e021051fe564..4a8ed6c9e509 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -6,7 +6,7 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v1 + - uses: actions/checkout@v2 - uses: actions/setup-python@v1 with: python-version: 3.x diff --git a/arithmetic_analysis/newton_raphson.py b/arithmetic_analysis/newton_raphson.py index 8aa816cd0d04..a3e8bbf0fc21 100644 --- a/arithmetic_analysis/newton_raphson.py +++ b/arithmetic_analysis/newton_raphson.py @@ -8,7 +8,7 @@ from sympy import diff -def newton_raphson(func: str, a: int, precision: int=10 ** -10) -> float: +def newton_raphson(func: str, a: int, precision: int = 10 ** -10) -> float: """ Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py index ad41feb32837..21c92c6437e7 100644 --- a/ciphers/affine_cipher.py +++ b/ciphers/affine_cipher.py @@ -3,8 +3,10 @@ import cryptomath_module as cryptomath -SYMBOLS = (r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`""" - r"""abcdefghijklmnopqrstuvwxyz{|}~""") +SYMBOLS = ( + r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`""" + r"""abcdefghijklmnopqrstuvwxyz{|}~""" +) def main(): diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 4c687379e8c8..c3c97bb02003 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -1,6 +1,8 @@ -''' +""" A binary search Tree -''' +""" + + class Node: def __init__(self, value, parent): self.value = value @@ -13,16 +15,11 @@ def __repr__(self): if self.left is None and self.right is None: return str(self.value) - return pformat( - { - "%s" - % (self.value): (self.left, self.right) - }, - indent=1, - ) + return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1,) + class BinarySearchTree: - def __init__(self, root = None): + def __init__(self, root=None): self.root = root def __str__(self): @@ -32,10 +29,10 @@ def __str__(self): return str(self.root) def __reassign_nodes(self, node, newChildren): - if(newChildren is not None): # reset its kids + if newChildren is not None: # reset its kids newChildren.parent = node.parent - if(node.parent is not None): # reset its parent - if(self.is_right(node)): # If it is the right children + if node.parent is not None: # reset its parent + if self.is_right(node): # If it is the right children node.parent.right = newChildren else: node.parent.left = newChildren @@ -55,10 +52,10 @@ def __insert(self, value): new_node = Node(value, None) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root - else: # Tree is not empty - parent_node = self.root # from root + else: # Tree is not empty + parent_node = self.root # from root while True: # While we don't get to a leaf - if value < parent_node.value: # We go left + if value < parent_node.value: # We go left if parent_node.left == None: parent_node.left = new_node # We insert the new node in a leaf break @@ -87,60 +84,65 @@ def search(self, value): node = node.left if value < node.value else node.right return node - def get_max(self, node = None): + def get_max(self, node=None): """ We go deep on the right branch """ if node is None: node = self.root if not self.empty(): - while(node.right is not None): + while node.right is not None: node = node.right return node - def get_min(self, node = None): + def get_min(self, node=None): """ We go deep on the left branch """ - if(node is None): + if node is None: node = self.root - if(not self.empty()): + if not self.empty(): node = self.root - while(node.left is not None): + while node.left is not None: node = node.left return node def remove(self, value): - node = self.search(value) # Look for the node with that label - if(node is not None): - if(node.left is None and node.right is None): # If it has no children + node = self.search(value) # Look for the node with that label + if node is not None: + if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) node = None - elif(node.left is None): # Has only right children + elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) - elif(node.right is None): # Has only left children + elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: - tmpNode = self.get_max(node.left) # Gets the max value of the left branch + tmpNode = self.get_max( + node.left + ) # Gets the max value of the left branch self.remove(tmpNode.value) - node.value = tmpNode.value # Assigns the value to the node to delete and keesp tree structure - + node.value = ( + tmpNode.value + ) # Assigns the value to the node to delete and keesp tree structure + def preorder_traverse(self, node): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) - def traversal_tree(self, traversalFunction = None): + def traversal_tree(self, traversalFunction=None): """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ - if(traversalFunction is None): + if traversalFunction is None: return self.preorder_traverse(self.root) else: return traversalFunction(self.root) + def postorder(curr_node): """ postOrder (left, right, self) @@ -150,8 +152,9 @@ def postorder(curr_node): nodeList = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return nodeList + def binary_search_tree(): - r''' + r""" Example 8 / \ @@ -170,7 +173,7 @@ def binary_search_tree(): Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. - ''' + """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() for i in testlist: @@ -178,18 +181,18 @@ def binary_search_tree(): # Prints all the elements of the list in order traversal print(t) - - if(t.search(6) is not None): + + if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") - if(t.search(-1) is not None): + if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") - if(not t.empty()): + if not t.empty(): print("Max Value: ", t.get_max().value) print("Min Value: ", t.get_min().value) @@ -197,9 +200,11 @@ def binary_search_tree(): t.remove(i) print(t) + 二叉搜索树 = binary_search_tree if __name__ == "__main__": import doctest + doctest.testmod() binary_search_tree() diff --git a/data_structures/stacks/stack_using_dll.py b/data_structures/stacks/stack_using_dll.py index 10e4c067f6f3..75e0cd20640d 100644 --- a/data_structures/stacks/stack_using_dll.py +++ b/data_structures/stacks/stack_using_dll.py @@ -1,12 +1,14 @@ -# A complete working Python program to demonstrate all -# stack operations using a doubly linked list - -class Node: - def __init__(self, data): - self.data = data # Assign data - self.next = None # Initialize next as null - self.prev = None # Initialize prev as null - +# A complete working Python program to demonstrate all +# stack operations using a doubly linked list + + +class Node: + def __init__(self, data): + self.data = data # Assign data + self.next = None # Initialize next as null + self.prev = None # Initialize prev as null + + class Stack: """ >>> stack = Stack() @@ -32,89 +34,90 @@ class Stack: stack elements are: 2->1->0-> """ - def __init__(self): + + def __init__(self): self.head = None - + def push(self, data): """add a Node to the stack""" - if self.head is None: - self.head = Node(data) - else: - new_node = Node(data) - self.head.prev = new_node - new_node.next = self.head + if self.head is None: + self.head = Node(data) + else: + new_node = Node(data) + self.head.prev = new_node + new_node.next = self.head new_node.prev = None - self.head = new_node - + self.head = new_node + def pop(self): """pop the top element off the stack""" - if self.head is None: + if self.head is None: return None - else: - temp = self.head.data + else: + temp = self.head.data self.head = self.head.next self.head.prev = None - return temp - + return temp + def top(self): """return the top element of the stack""" return self.head.data - def __len__(self): - temp = self.head + def __len__(self): + temp = self.head count = 0 - while temp is not None: + while temp is not None: count += 1 temp = temp.next - return count + return count def is_empty(self): return self.head is None - def print_stack(self): - print("stack elements are:") - temp = self.head - while temp is not None: - print(temp.data, end ="->") - temp = temp.next - - -# Code execution starts here -if __name__=='__main__': - - # Start with the empty stack - stack = Stack() - - # Insert 4 at the beginning. So stack becomes 4->None - print("Stack operations using Doubly LinkedList") - stack.push(4) - - # Insert 5 at the beginning. So stack becomes 4->5->None - stack.push(5) - - # Insert 6 at the beginning. So stack becomes 4->5->6->None - stack.push(6) - - # Insert 7 at the beginning. So stack becomes 4->5->6->7->None - stack.push(7) - - # Print the stack - stack.print_stack() - - # Print the top element - print("\nTop element is ", stack.top()) - - # Print the stack size - print("Size of the stack is ", len(stack)) - - # pop the top element - stack.pop() - - # pop the top element - stack.pop() - + def print_stack(self): + print("stack elements are:") + temp = self.head + while temp is not None: + print(temp.data, end="->") + temp = temp.next + + +# Code execution starts here +if __name__ == "__main__": + + # Start with the empty stack + stack = Stack() + + # Insert 4 at the beginning. So stack becomes 4->None + print("Stack operations using Doubly LinkedList") + stack.push(4) + + # Insert 5 at the beginning. So stack becomes 4->5->None + stack.push(5) + + # Insert 6 at the beginning. So stack becomes 4->5->6->None + stack.push(6) + + # Insert 7 at the beginning. So stack becomes 4->5->6->7->None + stack.push(7) + + # Print the stack + stack.print_stack() + + # Print the top element + print("\nTop element is ", stack.top()) + + # Print the stack size + print("Size of the stack is ", len(stack)) + + # pop the top element + stack.pop() + + # pop the top element + stack.pop() + # two elements have now been popped off - stack.print_stack() - - # Print True if the stack is empty else False - print("\nstack is empty:", stack.is_empty()) + stack.print_stack() + + # Print True if the stack is empty else False + print("\nstack is empty:", stack.is_empty()) diff --git a/dynamic_programming/coin_change.py b/dynamic_programming/coin_change.py index 12ced411780f..2d7106f0cc6f 100644 --- a/dynamic_programming/coin_change.py +++ b/dynamic_programming/coin_change.py @@ -36,6 +36,7 @@ def dp_count(S, m, n): return table[n] + if __name__ == "__main__": import doctest diff --git a/other/integeration_by_simpson_approx.py b/other/integeration_by_simpson_approx.py index 2115ac9a5146..0f7bfacf030a 100644 --- a/other/integeration_by_simpson_approx.py +++ b/other/integeration_by_simpson_approx.py @@ -111,7 +111,7 @@ def simpson_integration(function, a: float, b: float, precision: int = 4) -> flo for i in range(1, N_STEPS): a1 = a + h * i - result += function(a1) * (4 if i%2 else 2) + result += function(a1) * (4 if i % 2 else 2) result *= h / 3 return round(result, precision) From 28419cf8396bc390437a6c56a143a548ca8fa631 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 3 Jan 2020 15:25:36 +0100 Subject: [PATCH 497/594] pyupgrade --py37-plus **/*.py (#1654) * pyupgrade --py37-plus **/*.py * fixup! Format Python code with psf/black push --- backtracking/all_combinations.py | 2 -- ciphers/brute_force_caesar_cipher.py | 2 +- ciphers/hill_cipher.py | 2 +- ciphers/rsa_cipher.py | 2 +- ciphers/rsa_key_generator.py | 4 ++-- ciphers/shuffled_shift_cipher.py | 2 +- ciphers/simple_substitution_cipher.py | 2 +- ciphers/xor_cipher.py | 2 +- compression/burrows_wheeler.py | 8 +++----- data_structures/binary_tree/avl_tree.py | 1 - data_structures/binary_tree/red_black_tree.py | 2 +- data_structures/binary_tree/treap.py | 7 +++---- data_structures/data_structures/heap/heap_generic.py | 2 +- data_structures/hashing/hash_table.py | 2 +- data_structures/stacks/stack.py | 2 +- .../histogram_equalization/histogram_stretch.py | 1 - digital_image_processing/index_calculation.py | 5 +---- dynamic_programming/fast_fibonacci.py | 1 - dynamic_programming/k_means_clustering_tensorflow.py | 2 +- dynamic_programming/matrix_chain_order.py | 2 +- graphs/basic_graphs.py | 6 +++--- graphs/breadth_first_search.py | 1 - graphs/depth_first_search.py | 1 - graphs/edmonds_karp_multiple_source_and_sink.py | 6 +++--- graphs/graph_list.py | 3 +-- hashes/hamming_code.py | 7 +++---- linear_algebra/src/lib.py | 5 ++--- linear_algebra/src/test_linear_algebra.py | 1 - machine_learning/k_means_clust.py | 4 ++-- machine_learning/logistic_regression.py | 1 - machine_learning/sequential_minimum_optimization.py | 6 ++---- maths/3n+1.py | 4 ++-- maths/__init__.py | 1 - maths/hardy_ramanujanalgo.py | 2 +- maths/lucas_lehmer_primality_test.py | 1 - maths/matrix_exponentiation.py | 2 +- maths/newton_raphson.py | 2 +- maths/pythagoras.py | 2 +- maths/sieve_of_eratosthenes.py | 2 -- matrix/matrix_operation.py | 6 +++--- matrix/rotate_matrix.py | 2 -- matrix/searching_in_sorted_matrix.py | 2 +- matrix/sherman_morrison.py | 10 +++++----- neural_network/back_propagation_neural_network.py | 3 ++- neural_network/convolution_neural_network.py | 4 +--- neural_network/input_data.py | 7 ++----- other/anagrams.py | 2 +- other/fischer_yates_shuffle.py | 1 - other/linear_congruential_generator.py | 2 +- other/primelib.py | 1 - other/sierpinski_triangle.py | 1 - project_euler/problem_06/sol1.py | 1 - project_euler/problem_06/sol2.py | 1 - project_euler/problem_06/sol3.py | 1 - project_euler/problem_06/sol4.py | 1 - project_euler/problem_07/sol1.py | 1 - project_euler/problem_07/sol2.py | 1 - project_euler/problem_07/sol3.py | 1 - project_euler/problem_08/sol1.py | 1 - project_euler/problem_08/sol2.py | 1 - project_euler/problem_08/sol3.py | 1 - project_euler/problem_14/sol1.py | 1 - project_euler/problem_14/sol2.py | 1 - project_euler/problem_21/sol1.py | 1 - project_euler/problem_22/sol1.py | 1 - project_euler/problem_22/sol2.py | 1 - project_euler/problem_25/sol1.py | 1 - project_euler/problem_25/sol2.py | 1 - project_euler/problem_25/sol3.py | 1 - project_euler/problem_31/sol1.py | 1 - project_euler/problem_32/sol32.py | 12 +++++------- project_euler/problem_33/__init__.py | 1 - project_euler/problem_33/sol1.py | 2 +- project_euler/problem_40/sol1.py | 1 - project_euler/problem_53/sol1.py | 1 - sorts/external_sort.py | 10 +++++----- strings/aho-corasick.py | 2 +- 77 files changed, 71 insertions(+), 128 deletions(-) diff --git a/backtracking/all_combinations.py b/backtracking/all_combinations.py index 60e9579f28ba..854dc5198422 100644 --- a/backtracking/all_combinations.py +++ b/backtracking/all_combinations.py @@ -1,5 +1,3 @@ -# -*- coding: utf-8 -*- - """ In this problem, we want to determine all possible combinations of k numbers out of 1 ... n. We use backtracking to solve this problem. diff --git a/ciphers/brute_force_caesar_cipher.py b/ciphers/brute_force_caesar_cipher.py index 2586803ba5ff..5f11cb848c41 100644 --- a/ciphers/brute_force_caesar_cipher.py +++ b/ciphers/brute_force_caesar_cipher.py @@ -40,7 +40,7 @@ def decrypt(message): translated = translated + LETTERS[num] else: translated = translated + symbol - print("Decryption using Key #%s: %s" % (key, translated)) + print(f"Decryption using Key #{key}: {translated}") def main(): diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py index e01b6a3f48a8..05f716f8595e 100644 --- a/ciphers/hill_cipher.py +++ b/ciphers/hill_cipher.py @@ -78,7 +78,7 @@ def checkDeterminant(self): req_l = len(self.key_string) if gcd(det, len(self.key_string)) != 1: raise ValueError( - "discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format( + "discriminant modular {} of encryption key({}) is not co prime w.r.t {}.\nTry another key.".format( req_l, det, req_l ) ) diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index a9b2dcc55daa..da3778ae96f0 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -101,7 +101,7 @@ def encryptAndWriteToFile( for i in range(len(encryptedBlocks)): encryptedBlocks[i] = str(encryptedBlocks[i]) encryptedContent = ",".join(encryptedBlocks) - encryptedContent = "%s_%s_%s" % (len(message), blockSize, encryptedContent) + encryptedContent = "{}_{}_{}".format(len(message), blockSize, encryptedContent) with open(messageFilename, "w") as fo: fo.write(encryptedContent) return encryptedContent diff --git a/ciphers/rsa_key_generator.py b/ciphers/rsa_key_generator.py index ce7c1f3dd12b..729d31c08a02 100644 --- a/ciphers/rsa_key_generator.py +++ b/ciphers/rsa_key_generator.py @@ -43,11 +43,11 @@ def makeKeyFiles(name, keySize): publicKey, privateKey = generateKey(keySize) print("\nWriting public key to file %s_pubkey.txt..." % name) with open("%s_pubkey.txt" % name, "w") as fo: - fo.write("%s,%s,%s" % (keySize, publicKey[0], publicKey[1])) + fo.write("{},{},{}".format(keySize, publicKey[0], publicKey[1])) print("Writing private key to file %s_privkey.txt..." % name) with open("%s_privkey.txt" % name, "w") as fo: - fo.write("%s,%s,%s" % (keySize, privateKey[0], privateKey[1])) + fo.write("{},{},{}".format(keySize, privateKey[0], privateKey[1])) if __name__ == "__main__": diff --git a/ciphers/shuffled_shift_cipher.py b/ciphers/shuffled_shift_cipher.py index bbefe3305fa7..be5c6caf845b 100644 --- a/ciphers/shuffled_shift_cipher.py +++ b/ciphers/shuffled_shift_cipher.py @@ -2,7 +2,7 @@ import string -class ShuffledShiftCipher(object): +class ShuffledShiftCipher: """ This algorithm uses the Caesar Cipher algorithm but removes the option to use brute force to decrypt the message. diff --git a/ciphers/simple_substitution_cipher.py b/ciphers/simple_substitution_cipher.py index 12511cc39bbc..7da18482db8c 100644 --- a/ciphers/simple_substitution_cipher.py +++ b/ciphers/simple_substitution_cipher.py @@ -17,7 +17,7 @@ def main(): mode = "decrypt" translated = decryptMessage(key, message) - print("\n%sion: \n%s" % (mode.title(), translated)) + print("\n{}ion: \n{}".format(mode.title(), translated)) def checkValidKey(key): diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py index 17e45413acd5..58b5352672ef 100644 --- a/ciphers/xor_cipher.py +++ b/ciphers/xor_cipher.py @@ -18,7 +18,7 @@ """ -class XORCipher(object): +class XORCipher: def __init__(self, key=0): """ simple constructor that receives a key or uses diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py index 50ee62aa0cb3..1c7939b39038 100644 --- a/compression/burrows_wheeler.py +++ b/compression/burrows_wheeler.py @@ -135,16 +135,14 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: idx_original_string = int(idx_original_string) except ValueError: raise TypeError( - ( - "The parameter idx_original_string type must be int or passive" - " of cast to int." - ) + "The parameter idx_original_string type must be int or passive" + " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0.") if idx_original_string >= len(bwt_string): raise ValueError( - ("The parameter idx_original_string must be lower than" " len(bwt_string).") + "The parameter idx_original_string must be lower than" " len(bwt_string)." ) ordered_rotations = [""] * len(bwt_string) diff --git a/data_structures/binary_tree/avl_tree.py b/data_structures/binary_tree/avl_tree.py index 31d12c811105..2df747c105ad 100644 --- a/data_structures/binary_tree/avl_tree.py +++ b/data_structures/binary_tree/avl_tree.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ An auto-balanced binary tree! """ diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py index 908f13cd581e..0884766504de 100644 --- a/data_structures/binary_tree/red_black_tree.py +++ b/data_structures/binary_tree/red_black_tree.py @@ -467,7 +467,7 @@ def __repr__(self): from pprint import pformat if self.left is None and self.right is None: - return "'%s %s'" % (self.label, (self.color and "red") or "blk") + return "'{} {}'".format(self.label, (self.color and "red") or "blk") return pformat( { "%s %s" diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index 6bc2403f7102..d2e3fb88e8f7 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -2,7 +2,7 @@ from typing import Tuple -class Node(object): +class Node: """ Treap's node Treap is a binary tree by value and heap by priority @@ -18,11 +18,10 @@ def __repr__(self): from pprint import pformat if self.left is None and self.right is None: - return "'%s: %.5s'" % (self.value, self.prior) + return f"'{self.value}: {self.prior:.5}'" else: return pformat( - {"%s: %.5s" % (self.value, self.prior): (self.left, self.right)}, - indent=1, + {f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1, ) def __str__(self): diff --git a/data_structures/data_structures/heap/heap_generic.py b/data_structures/data_structures/heap/heap_generic.py index fc17c1b1218e..8993d501331b 100644 --- a/data_structures/data_structures/heap/heap_generic.py +++ b/data_structures/data_structures/heap/heap_generic.py @@ -1,4 +1,4 @@ -class Heap(object): +class Heap: """A generic Heap class, can be used as min or max by passing the key function accordingly. """ diff --git a/data_structures/hashing/hash_table.py b/data_structures/hashing/hash_table.py index ab473dc52324..69eaa65d8e57 100644 --- a/data_structures/hashing/hash_table.py +++ b/data_structures/hashing/hash_table.py @@ -28,7 +28,7 @@ def hash_function(self, key): def _step_by_step(self, step_ord): - print("step {0}".format(step_ord)) + print(f"step {step_ord}") print([i for i in range(len(self.values))]) print(self.values) diff --git a/data_structures/stacks/stack.py b/data_structures/stacks/stack.py index 9f5b279710c6..53a40a7b7ebc 100644 --- a/data_structures/stacks/stack.py +++ b/data_structures/stacks/stack.py @@ -1,7 +1,7 @@ __author__ = "Omkar Pathak" -class Stack(object): +class Stack: """ A stack is an abstract data type that serves as a collection of elements with two principal operations: push() and pop(). push() adds an element to the top of the stack, and pop() removes an element from the top diff --git a/digital_image_processing/histogram_equalization/histogram_stretch.py b/digital_image_processing/histogram_equalization/histogram_stretch.py index b6557d6ef77d..d4a6c08418ee 100644 --- a/digital_image_processing/histogram_equalization/histogram_stretch.py +++ b/digital_image_processing/histogram_equalization/histogram_stretch.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Created on Fri Sep 28 15:22:29 2018 diff --git a/digital_image_processing/index_calculation.py b/digital_image_processing/index_calculation.py index fc5b169650a2..0786314e1223 100644 --- a/digital_image_processing/index_calculation.py +++ b/digital_image_processing/index_calculation.py @@ -389,10 +389,7 @@ def Hue(self): :return: index """ return np.arctan( - ( - ((2 * self.red - self.green - self.blue) / 30.5) - * (self.green - self.blue) - ) + ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def IVI(self, a=None, b=None): diff --git a/dynamic_programming/fast_fibonacci.py b/dynamic_programming/fast_fibonacci.py index 47248078bd81..77094a40384b 100644 --- a/dynamic_programming/fast_fibonacci.py +++ b/dynamic_programming/fast_fibonacci.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """ This program calculates the nth Fibonacci number in O(log(n)). diff --git a/dynamic_programming/k_means_clustering_tensorflow.py b/dynamic_programming/k_means_clustering_tensorflow.py index 6b1eb628e5c3..4fbcedeaa0dc 100644 --- a/dynamic_programming/k_means_clustering_tensorflow.py +++ b/dynamic_programming/k_means_clustering_tensorflow.py @@ -40,7 +40,7 @@ def TFKMeansCluster(vectors, noofclusters): ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points centroids = [ - tf.Variable((vectors[vector_indices[i]])) for i in range(noofclusters) + tf.Variable(vectors[vector_indices[i]]) for i in range(noofclusters) ] ##These nodes will assign the centroid Variables the appropriate ##values diff --git a/dynamic_programming/matrix_chain_order.py b/dynamic_programming/matrix_chain_order.py index f88a9be8ac95..9411bc704f1c 100644 --- a/dynamic_programming/matrix_chain_order.py +++ b/dynamic_programming/matrix_chain_order.py @@ -46,7 +46,7 @@ def main(): # 30*35 35*15 15*5 5*10 10*20 20*25 Matrix, OptimalSolution = MatrixChainOrder(array) - print("No. of Operation required: " + str((Matrix[1][n - 1]))) + print("No. of Operation required: " + str(Matrix[1][n - 1])) PrintOptimalSolution(OptimalSolution, 1, n - 1) diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index 161bc0c09d3b..070af5f55f01 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -48,7 +48,7 @@ def dfs(G, s): - vis, S = set([s]), [s] + vis, S = {s}, [s] print(s) while S: flag = 0 @@ -76,7 +76,7 @@ def dfs(G, s): def bfs(G, s): - vis, Q = set([s]), deque([s]) + vis, Q = {s}, deque([s]) print(s) while Q: u = Q.popleft() @@ -255,7 +255,7 @@ def krusk(E_and_n): # Sort edges on the basis of distance (E, n) = E_and_n E.sort(reverse=True, key=lambda x: x[2]) - s = [set([i]) for i in range(1, n + 1)] + s = [{i} for i in range(1, n + 1)] while True: if len(s) == 1: break diff --git a/graphs/breadth_first_search.py b/graphs/breadth_first_search.py index 8516e60a59c4..faa166150c76 100644 --- a/graphs/breadth_first_search.py +++ b/graphs/breadth_first_search.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """ Author: OMKAR PATHAK """ diff --git a/graphs/depth_first_search.py b/graphs/depth_first_search.py index 5347c2fbcfa3..2fe9dd157d2d 100644 --- a/graphs/depth_first_search.py +++ b/graphs/depth_first_search.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """ Author: OMKAR PATHAK """ diff --git a/graphs/edmonds_karp_multiple_source_and_sink.py b/graphs/edmonds_karp_multiple_source_and_sink.py index eb6ec739ba00..0f359ff1aea3 100644 --- a/graphs/edmonds_karp_multiple_source_and_sink.py +++ b/graphs/edmonds_karp_multiple_source_and_sink.py @@ -57,7 +57,7 @@ def setMaximumFlowAlgorithm(self, Algorithm): self.maximumFlowAlgorithm = Algorithm(self) -class FlowNetworkAlgorithmExecutor(object): +class FlowNetworkAlgorithmExecutor: def __init__(self, flowNetwork): self.flowNetwork = flowNetwork self.verticesCount = flowNetwork.verticesCount @@ -80,7 +80,7 @@ def _algorithm(self): class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor): def __init__(self, flowNetwork): - super(MaximumFlowAlgorithmExecutor, self).__init__(flowNetwork) + super().__init__(flowNetwork) # use this to save your result self.maximumFlow = -1 @@ -93,7 +93,7 @@ def getMaximumFlow(self): class PushRelabelExecutor(MaximumFlowAlgorithmExecutor): def __init__(self, flowNetwork): - super(PushRelabelExecutor, self).__init__(flowNetwork) + super().__init__(flowNetwork) self.preflow = [[0] * self.verticesCount for i in range(self.verticesCount)] diff --git a/graphs/graph_list.py b/graphs/graph_list.py index 4f0cbf15c033..a20940ab1598 100644 --- a/graphs/graph_list.py +++ b/graphs/graph_list.py @@ -1,12 +1,11 @@ #!/usr/bin/python -# encoding=utf8 # Author: OMKAR PATHAK # We can use Python's dictionary for constructing the graph. -class AdjacencyList(object): +class AdjacencyList: def __init__(self): self.List = {} diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py index 155c1b10a38d..3e0424490781 100644 --- a/hashes/hamming_code.py +++ b/hashes/hamming_code.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- # Author: João Gustavo A. Amorim & Gabriel Kunz # Author email: joaogustavoamorim@gmail.com and gabriel-kunz@uergs.edu.br # Coding date: apr 2019 @@ -100,7 +99,7 @@ def emitterConverter(sizePar, data): # Performs a template of bit positions - who should be given, # and who should be parity if qtdBP < sizePar: - if ((np.log(x) / np.log(2))).is_integer(): + if (np.log(x) / np.log(2)).is_integer(): dataOutGab.append("P") qtdBP = qtdBP + 1 else: @@ -170,7 +169,7 @@ def receptorConverter(sizePar, data): # Performs a template of bit positions - who should be given, # and who should be parity if qtdBP < sizePar: - if ((np.log(x) / np.log(2))).is_integer(): + if (np.log(x) / np.log(2)).is_integer(): dataOutGab.append("P") qtdBP = qtdBP + 1 else: @@ -204,7 +203,7 @@ def receptorConverter(sizePar, data): # Performs a template position of bits - who should be given, # and who should be parity if qtdBP < sizePar: - if ((np.log(x) / np.log(2))).is_integer(): + if (np.log(x) / np.log(2)).is_integer(): dataOutGab.append("P") qtdBP = qtdBP + 1 else: diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py index 15d176cc6392..f4628f1d964a 100644 --- a/linear_algebra/src/lib.py +++ b/linear_algebra/src/lib.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Created on Mon Feb 26 14:29:11 2018 @@ -25,7 +24,7 @@ import random -class Vector(object): +class Vector: """ This class represents a vector of arbitrary size. You need to give the vector components. @@ -205,7 +204,7 @@ def randomVector(N, a, b): return Vector(ans) -class Matrix(object): +class Matrix: """ class: Matrix This class represents a arbitrary matrix. diff --git a/linear_algebra/src/test_linear_algebra.py b/linear_algebra/src/test_linear_algebra.py index f8e7db7de6cc..5e28910af86a 100644 --- a/linear_algebra/src/test_linear_algebra.py +++ b/linear_algebra/src/test_linear_algebra.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Created on Mon Feb 26 15:40:07 2018 diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index 4c643226b213..7a4f69eb77ce 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -126,7 +126,7 @@ def plot_heterogeneity(heterogeneity, k): plt.plot(heterogeneity, linewidth=4) plt.xlabel("# Iterations") plt.ylabel("Heterogeneity") - plt.title("Heterogeneity of clustering over time, K={0:d}".format(k)) + plt.title(f"Heterogeneity of clustering over time, K={k:d}") plt.rcParams.update({"font.size": 16}) plt.show() @@ -164,7 +164,7 @@ def kmeans( num_changed = np.sum(prev_cluster_assignment != cluster_assignment) if verbose: print( - " {0:5d} elements changed their cluster assignment.".format( + " {:5d} elements changed their cluster assignment.".format( num_changed ) ) diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py index f23d400ced55..f5edfb9c5d2c 100644 --- a/machine_learning/logistic_regression.py +++ b/machine_learning/logistic_regression.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# -*- coding: utf-8 -*- ## Logistic Regression from scratch diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index aa997d88cac9..0612392c8dc2 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -1,4 +1,3 @@ -# coding: utf-8 """ Implementation of sequential minimal optimization(SMO) for support vector machines(SVM). @@ -29,7 +28,6 @@ http://web.cs.iastate.edu/~honavar/smo-svm.pdf """ -from __future__ import division import os import sys @@ -44,7 +42,7 @@ CANCER_DATASET_URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data" -class SmoSVM(object): +class SmoSVM: def __init__( self, train, @@ -405,7 +403,7 @@ def length(self): return self.samples.shape[0] -class Kernel(object): +class Kernel: def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0): self.degree = np.float64(degree) self.coef0 = np.float64(coef0) diff --git a/maths/3n+1.py b/maths/3n+1.py index f6fe77b2b3fe..64ff34fd2039 100644 --- a/maths/3n+1.py +++ b/maths/3n+1.py @@ -9,9 +9,9 @@ def n31(a: int) -> Tuple[List[int], int]: """ if not isinstance(a, int): - raise TypeError("Must be int, not {0}".format(type(a).__name__)) + raise TypeError("Must be int, not {}".format(type(a).__name__)) if a < 1: - raise ValueError("Given integer must be greater than 1, not {0}".format(a)) + raise ValueError(f"Given integer must be greater than 1, not {a}") path = [a] while a != 1: diff --git a/maths/__init__.py b/maths/__init__.py index 8b137891791f..e69de29bb2d1 100644 --- a/maths/__init__.py +++ b/maths/__init__.py @@ -1 +0,0 @@ - diff --git a/maths/hardy_ramanujanalgo.py b/maths/hardy_ramanujanalgo.py index bb31a1be49fb..90e4913c70a7 100644 --- a/maths/hardy_ramanujanalgo.py +++ b/maths/hardy_ramanujanalgo.py @@ -37,7 +37,7 @@ def exactPrimeFactorCount(n): if __name__ == "__main__": n = 51242183 print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}") - print("The value of log(log(n)) is {0:.4f}".format(math.log(math.log(n)))) + print("The value of log(log(n)) is {:.4f}".format(math.log(math.log(n)))) """ The number of distinct prime factors is/are 3 diff --git a/maths/lucas_lehmer_primality_test.py b/maths/lucas_lehmer_primality_test.py index 44e41ba58d93..8dac658f16d1 100644 --- a/maths/lucas_lehmer_primality_test.py +++ b/maths/lucas_lehmer_primality_test.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py index c20292735a92..a8f11480378a 100644 --- a/maths/matrix_exponentiation.py +++ b/maths/matrix_exponentiation.py @@ -10,7 +10,7 @@ """ -class Matrix(object): +class Matrix: def __init__(self, arg): if isinstance(arg, list): # Initialzes a matrix identical to the one provided. self.t = arg diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py index 093cc4438416..c4975c73e037 100644 --- a/maths/newton_raphson.py +++ b/maths/newton_raphson.py @@ -52,4 +52,4 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa plt.xlabel("step") plt.ylabel("error") plt.show() - print("solution = {%f}, error = {%f}" % (solution, error)) + print(f"solution = {{{solution:f}}}, error = {{{error:f}}}") diff --git a/maths/pythagoras.py b/maths/pythagoras.py index 2f59107cdfaa..69a17731a0fd 100644 --- a/maths/pythagoras.py +++ b/maths/pythagoras.py @@ -14,7 +14,7 @@ def __repr__(self) -> str: def distance(a: Point, b: Point) -> float: - return math.sqrt(abs(((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2))) + return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2)) def test_distance() -> None: diff --git a/maths/sieve_of_eratosthenes.py b/maths/sieve_of_eratosthenes.py index 44c7f8a02682..4761c9339ea0 100644 --- a/maths/sieve_of_eratosthenes.py +++ b/maths/sieve_of_eratosthenes.py @@ -1,5 +1,3 @@ -# -*- coding: utf-8 -*- - """ Sieve of Eratosthones diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py index 5ca61b4ed023..26e21aafcbca 100644 --- a/matrix/matrix_operation.py +++ b/matrix/matrix_operation.py @@ -148,9 +148,9 @@ def main(): % (matrix_a, matrix_b, multiply(matrix_a, matrix_b)) ) print("Identity: %s \n" % identity(5)) - print("Minor of %s = %s \n" % (matrix_c, minor(matrix_c, 1, 2))) - print("Determinant of %s = %s \n" % (matrix_b, determinant(matrix_b))) - print("Inverse of %s = %s\n" % (matrix_d, inverse(matrix_d))) + print("Minor of {} = {} \n".format(matrix_c, minor(matrix_c, 1, 2))) + print("Determinant of {} = {} \n".format(matrix_b, determinant(matrix_b))) + print("Inverse of {} = {}\n".format(matrix_d, inverse(matrix_d))) if __name__ == "__main__": diff --git a/matrix/rotate_matrix.py b/matrix/rotate_matrix.py index 822851826121..14a9493cd12f 100644 --- a/matrix/rotate_matrix.py +++ b/matrix/rotate_matrix.py @@ -1,5 +1,3 @@ -# -*- coding: utf-8 -*- - """ In this problem, we want to rotate the matrix elements by 90, 180, 270 (counterclockwise) Discussion in stackoverflow: diff --git a/matrix/searching_in_sorted_matrix.py b/matrix/searching_in_sorted_matrix.py index 1b3eeedf3110..3897ffb1d9c6 100644 --- a/matrix/searching_in_sorted_matrix.py +++ b/matrix/searching_in_sorted_matrix.py @@ -2,7 +2,7 @@ def search_in_a_sorted_matrix(mat, m, n, key): i, j = m - 1, 0 while i >= 0 and j < n: if key == mat[i][j]: - print("Key %s found at row- %s column- %s" % (key, i + 1, j + 1)) + print("Key {} found at row- {} column- {}".format(key, i + 1, j + 1)) return if key < mat[i][j]: i -= 1 diff --git a/matrix/sherman_morrison.py b/matrix/sherman_morrison.py index 531b76cdeb94..257cf33712d5 100644 --- a/matrix/sherman_morrison.py +++ b/matrix/sherman_morrison.py @@ -176,7 +176,7 @@ def __mul__(self, another): return result else: raise TypeError( - "Unsupported type given for another (%s)" % (type(another),) + "Unsupported type given for another ({})".format(type(another)) ) def transpose(self): @@ -248,17 +248,17 @@ def test1(): ainv = Matrix(3, 3, 0) for i in range(3): ainv[i, i] = 1 - print("a^(-1) is %s" % (ainv,)) + print(f"a^(-1) is {ainv}") # u, v u = Matrix(3, 1, 0) u[0, 0], u[1, 0], u[2, 0] = 1, 2, -3 v = Matrix(3, 1, 0) v[0, 0], v[1, 0], v[2, 0] = 4, -2, 5 - print("u is %s" % (u,)) - print("v is %s" % (v,)) + print(f"u is {u}") + print(f"v is {v}") print("uv^T is %s" % (u * v.transpose())) # Sherman Morrison - print("(a + uv^T)^(-1) is %s" % (ainv.ShermanMorrison(u, v),)) + print("(a + uv^T)^(-1) is {}".format(ainv.ShermanMorrison(u, v))) def test2(): import doctest diff --git a/neural_network/back_propagation_neural_network.py b/neural_network/back_propagation_neural_network.py index 224fc85de066..c771dc46afc2 100644 --- a/neural_network/back_propagation_neural_network.py +++ b/neural_network/back_propagation_neural_network.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """ @@ -31,6 +30,7 @@ class DenseLayer: """ Layers of BP neural network """ + def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): @@ -99,6 +99,7 @@ class BPNN: """ Back Propagation Neural Network model """ + def __init__(self): self.layers = [] self.train_mse = [] diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index 9448671abace..ecc8e3392b7f 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -1,5 +1,3 @@ -# -*- coding: utf-8 -*- - """ - - - - - -- - - - - - - - - - - - - - - - - - - - - - - Name - - CNN - Convolution Neural Network For Photo Recognizing @@ -286,7 +284,7 @@ def train( self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre # calculate the sum error of all single image - errors = np.sum(abs((data_teach - bp_out3))) + errors = np.sum(abs(data_teach - bp_out3)) alle = alle + errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) diff --git a/neural_network/input_data.py b/neural_network/input_data.py index ea826be6cd84..0e22ac0bcda5 100644 --- a/neural_network/input_data.py +++ b/neural_network/input_data.py @@ -17,9 +17,6 @@ This module and all its submodules are deprecated. """ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function import collections import gzip @@ -115,7 +112,7 @@ def _extract_labels(f, one_hot=False, num_classes=10): return labels -class _DataSet(object): +class _DataSet: """Container class for a _DataSet (deprecated). THIS CLASS IS DEPRECATED. @@ -165,7 +162,7 @@ def __init__( else: assert ( images.shape[0] == labels.shape[0] - ), "images.shape: %s labels.shape: %s" % (images.shape, labels.shape) + ), f"images.shape: {images.shape} labels.shape: {labels.shape}" self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] diff --git a/other/anagrams.py b/other/anagrams.py index 9e103296b382..6e6806e92a0f 100644 --- a/other/anagrams.py +++ b/other/anagrams.py @@ -4,7 +4,7 @@ print("creating word list...") path = os.path.split(os.path.realpath(__file__)) with open(path[0] + "/words") as f: - word_list = sorted(list(set([word.strip().lower() for word in f]))) + word_list = sorted(list({word.strip().lower() for word in f})) def signature(word): diff --git a/other/fischer_yates_shuffle.py b/other/fischer_yates_shuffle.py index 977e5f131e4f..4217cb0bef67 100644 --- a/other/fischer_yates_shuffle.py +++ b/other/fischer_yates_shuffle.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """ The Fisher–Yates shuffle is an algorithm for generating a random permutation of a finite sequence. For more details visit diff --git a/other/linear_congruential_generator.py b/other/linear_congruential_generator.py index 3b150f422e4f..ea0adc7d027f 100644 --- a/other/linear_congruential_generator.py +++ b/other/linear_congruential_generator.py @@ -3,7 +3,7 @@ from time import time -class LinearCongruentialGenerator(object): +class LinearCongruentialGenerator: """ A pseudorandom number generator. """ diff --git a/other/primelib.py b/other/primelib.py index 6fc5eddeb257..ff438755ae6f 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Created on Thu Oct 5 16:44:23 2017 diff --git a/other/sierpinski_triangle.py b/other/sierpinski_triangle.py index 0e6ce43e35d3..a262900a84f9 100644 --- a/other/sierpinski_triangle.py +++ b/other/sierpinski_triangle.py @@ -1,5 +1,4 @@ #!/usr/bin/python -# encoding=utf8 """Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95 diff --git a/project_euler/problem_06/sol1.py b/project_euler/problem_06/sol1.py index c69b6c89e35a..513b354679a9 100644 --- a/project_euler/problem_06/sol1.py +++ b/project_euler/problem_06/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Problem: diff --git a/project_euler/problem_06/sol2.py b/project_euler/problem_06/sol2.py index 1698a3fb61fd..18cdb51752ea 100644 --- a/project_euler/problem_06/sol2.py +++ b/project_euler/problem_06/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Problem: diff --git a/project_euler/problem_06/sol3.py b/project_euler/problem_06/sol3.py index f9c5dacb3777..ee739c9a1293 100644 --- a/project_euler/problem_06/sol3.py +++ b/project_euler/problem_06/sol3.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Problem: diff --git a/project_euler/problem_06/sol4.py b/project_euler/problem_06/sol4.py index 1e1de5570e7d..07eed57ba9b5 100644 --- a/project_euler/problem_06/sol4.py +++ b/project_euler/problem_06/sol4.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Problem: diff --git a/project_euler/problem_07/sol1.py b/project_euler/problem_07/sol1.py index d8d67e157860..f6b2584d9cdc 100644 --- a/project_euler/problem_07/sol1.py +++ b/project_euler/problem_07/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ By listing the first six prime numbers: diff --git a/project_euler/problem_07/sol2.py b/project_euler/problem_07/sol2.py index 5d30e540b3e7..6bfc5881f548 100644 --- a/project_euler/problem_07/sol2.py +++ b/project_euler/problem_07/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ By listing the first six prime numbers: diff --git a/project_euler/problem_07/sol3.py b/project_euler/problem_07/sol3.py index 3c28ecf7fb34..9b02ea87ec49 100644 --- a/project_euler/problem_07/sol3.py +++ b/project_euler/problem_07/sol3.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ By listing the first six prime numbers: diff --git a/project_euler/problem_08/sol1.py b/project_euler/problem_08/sol1.py index 6752fae3de60..e7582d46c351 100644 --- a/project_euler/problem_08/sol1.py +++ b/project_euler/problem_08/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. diff --git a/project_euler/problem_08/sol2.py b/project_euler/problem_08/sol2.py index bae96e373d6c..bf8afa8379ee 100644 --- a/project_euler/problem_08/sol2.py +++ b/project_euler/problem_08/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. diff --git a/project_euler/problem_08/sol3.py b/project_euler/problem_08/sol3.py index fe9901742201..dfbef5755dd7 100644 --- a/project_euler/problem_08/sol3.py +++ b/project_euler/problem_08/sol3.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. diff --git a/project_euler/problem_14/sol1.py b/project_euler/problem_14/sol1.py index ab09937fb315..fda45bc94bb7 100644 --- a/project_euler/problem_14/sol1.py +++ b/project_euler/problem_14/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Problem Statement: The following iterative sequence is defined for the set of positive integers: diff --git a/project_euler/problem_14/sol2.py b/project_euler/problem_14/sol2.py index 9b8857e710b4..375a34c72f57 100644 --- a/project_euler/problem_14/sol2.py +++ b/project_euler/problem_14/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Collatz conjecture: start with any positive integer n. Next term obtained from the previous term as follows: diff --git a/project_euler/problem_21/sol1.py b/project_euler/problem_21/sol1.py index 49c2db964316..f01c9d0dad73 100644 --- a/project_euler/problem_21/sol1.py +++ b/project_euler/problem_21/sol1.py @@ -1,4 +1,3 @@ -# -.- coding: latin-1 -.- from math import sqrt """ diff --git a/project_euler/problem_22/sol1.py b/project_euler/problem_22/sol1.py index f6275e2138bb..982906245e87 100644 --- a/project_euler/problem_22/sol1.py +++ b/project_euler/problem_22/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: latin-1 -*- """ Name scores Problem 22 diff --git a/project_euler/problem_22/sol2.py b/project_euler/problem_22/sol2.py index 69acd2fb8ef3..5ae41c84686e 100644 --- a/project_euler/problem_22/sol2.py +++ b/project_euler/problem_22/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: latin-1 -*- """ Name scores Problem 22 diff --git a/project_euler/problem_25/sol1.py b/project_euler/problem_25/sol1.py index 8fce32285976..f0228915dc15 100644 --- a/project_euler/problem_25/sol1.py +++ b/project_euler/problem_25/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The Fibonacci sequence is defined by the recurrence relation: diff --git a/project_euler/problem_25/sol2.py b/project_euler/problem_25/sol2.py index d754e2ddd722..c98f09b1d316 100644 --- a/project_euler/problem_25/sol2.py +++ b/project_euler/problem_25/sol2.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The Fibonacci sequence is defined by the recurrence relation: diff --git a/project_euler/problem_25/sol3.py b/project_euler/problem_25/sol3.py index 4e3084ce5456..4a1d9da76bf7 100644 --- a/project_euler/problem_25/sol3.py +++ b/project_euler/problem_25/sol3.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ The Fibonacci sequence is defined by the recurrence relation: diff --git a/project_euler/problem_31/sol1.py b/project_euler/problem_31/sol1.py index 187fb9167a13..1c59658b81ee 100644 --- a/project_euler/problem_31/sol1.py +++ b/project_euler/problem_31/sol1.py @@ -1,4 +1,3 @@ -# -*- coding: utf-8 -*- """ Coin sums Problem 31 diff --git a/project_euler/problem_32/sol32.py b/project_euler/problem_32/sol32.py index 0abc04829a9a..393218339e9f 100644 --- a/project_euler/problem_32/sol32.py +++ b/project_euler/problem_32/sol32.py @@ -46,13 +46,11 @@ def solution(): """ return sum( - set( - [ - int("".join(pandigital[5:9])) - for pandigital in itertools.permutations("123456789") - if isCombinationValid(pandigital) - ] - ) + { + int("".join(pandigital[5:9])) + for pandigital in itertools.permutations("123456789") + if isCombinationValid(pandigital) + } ) diff --git a/project_euler/problem_33/__init__.py b/project_euler/problem_33/__init__.py index 8b137891791f..e69de29bb2d1 100644 --- a/project_euler/problem_33/__init__.py +++ b/project_euler/problem_33/__init__.py @@ -1 +0,0 @@ - diff --git a/project_euler/problem_33/sol1.py b/project_euler/problem_33/sol1.py index 0992c96935f5..73a49023ae41 100644 --- a/project_euler/problem_33/sol1.py +++ b/project_euler/problem_33/sol1.py @@ -43,7 +43,7 @@ def solve(digit_len: int) -> str: while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if isDigitCancelling(num, den): - solutions.append("{}/{}".format(num, den)) + solutions.append(f"{num}/{den}") den += 1 num += 1 den = 10 diff --git a/project_euler/problem_40/sol1.py b/project_euler/problem_40/sol1.py index 786725e274b1..69be377723a5 100644 --- a/project_euler/problem_40/sol1.py +++ b/project_euler/problem_40/sol1.py @@ -1,4 +1,3 @@ -# -.- coding: latin-1 -.- """ Champernowne's constant Problem 40 diff --git a/project_euler/problem_53/sol1.py b/project_euler/problem_53/sol1.py index f17508b005d1..0692bbe0ebb8 100644 --- a/project_euler/problem_53/sol1.py +++ b/project_euler/problem_53/sol1.py @@ -1,4 +1,3 @@ -# -.- coding: latin-1 -.- """ Combinatoric selections Problem 53 diff --git a/sorts/external_sort.py b/sorts/external_sort.py index abdcb29f95b2..e5b2c045fa95 100644 --- a/sorts/external_sort.py +++ b/sorts/external_sort.py @@ -7,7 +7,7 @@ import argparse -class FileSplitter(object): +class FileSplitter: BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): @@ -44,7 +44,7 @@ def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) -class NWayMerge(object): +class NWayMerge: def select(self, choices): min_index = -1 min_str = None @@ -56,7 +56,7 @@ def select(self, choices): return min_index -class FilesArray(object): +class FilesArray: def __init__(self, files): self.files = files self.empty = set() @@ -89,7 +89,7 @@ def unshift(self, index): return value -class FileMerger(object): +class FileMerger: def __init__(self, merge_strategy): self.merge_strategy = merge_strategy @@ -109,7 +109,7 @@ def get_file_handles(self, filenames, buffer_size): return files -class ExternalSort(object): +class ExternalSort: def __init__(self, block_size): self.block_size = block_size diff --git a/strings/aho-corasick.py b/strings/aho-corasick.py index b2f89450ee7a..d63dc94a03fc 100644 --- a/strings/aho-corasick.py +++ b/strings/aho-corasick.py @@ -82,7 +82,7 @@ def search_in(self, string): for key in self.adlist[current_state]["output"]: if not (key in result): result[key] = [] - result[key].append((i - len(key) + 1)) + result[key].append(i - len(key) + 1) return result From 1d606d877244159319229a123079cfa3630d779a Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 3 Jan 2020 15:26:16 +0100 Subject: [PATCH 498/594] Dijkstra's Bankers algorithm (#1650) * Dijkstra's Bankers algorithm @bluedistro, Your review please. A second shot at #1645 Implementation of the Dijkstra's Banker's algorithm with test examples and a comprehensible description. * fixup! Format Python code with psf/black push * Delete back_propagation_neural_network.py * Create back_propagation_neural_network.py * fixup! Format Python code with psf/black push --- other/dijkstra_bankers_algorithm.py | 222 ++++++++++++++++++++++++++++ 1 file changed, 222 insertions(+) create mode 100644 other/dijkstra_bankers_algorithm.py diff --git a/other/dijkstra_bankers_algorithm.py b/other/dijkstra_bankers_algorithm.py new file mode 100644 index 000000000000..1f78941d3afc --- /dev/null +++ b/other/dijkstra_bankers_algorithm.py @@ -0,0 +1,222 @@ +# A Python implementation of the Banker's Algorithm in Operating Systems using +# Processes and Resources +# { +# "Author: "Biney Kingsley (bluedistro@github.io), bineykingsley36@gmail.com", +# "Date": 28-10-2018 +# } +""" +The Banker's algorithm is a resource allocation and deadlock avoidance algorithm +developed by Edsger Dijkstra that tests for safety by simulating the allocation of +predetermined maximum possible amounts of all resources, and then makes a "s-state" +check to test for possible deadlock conditions for all other pending activities, +before deciding whether allocation should be allowed to continue. +[Source] Wikipedia +[Credit] Rosetta Code C implementation helped very much. + (https://rosettacode.org/wiki/Banker%27s_algorithm) +""" + +import time +from typing import Dict, List + +import numpy as np + +test_claim_vector = [8, 5, 9, 7] +test_allocated_res_table = [ + [2, 0, 1, 1], + [0, 1, 2, 1], + [4, 0, 0, 3], + [0, 2, 1, 0], + [1, 0, 3, 0], +] +test_maximum_claim_table = [ + [3, 2, 1, 4], + [0, 2, 5, 2], + [5, 1, 0, 5], + [1, 5, 3, 0], + [3, 0, 3, 3], +] + + +class BankersAlgorithm: + def __init__( + self, + claim_vector: List[int], + allocated_resources_table: List[List[int]], + maximum_claim_table: List[List[int]], + ) -> None: + """ + :param claim_vector: A nxn/nxm list depicting the amount of each resources + (eg. memory, interface, semaphores, etc.) available. + :param allocated_resources_table: A nxn/nxm list depicting the amount of each + resource each process is currently holding + :param maximum_claim_table: A nxn/nxm list depicting how much of each resource + the system currently has available + """ + self.__claim_vector = claim_vector + self.__allocated_resources_table = allocated_resources_table + self.__maximum_claim_table = maximum_claim_table + + def __processes_resource_summation(self) -> List[int]: + """ + Check for allocated resources in line with each resource in the claim vector + """ + return [ + sum(p_item[i] for p_item in self.__allocated_resources_table) + for i in range(len(self.__allocated_resources_table[0])) + ] + + def __available_resources(self) -> List[int]: + """ + Check for available resources in line with each resource in the claim vector + """ + return np.array(self.__claim_vector) - np.array( + self.__processes_resource_summation() + ) + + def __need(self) -> List[List[int]]: + """ + Implement safety checker that calculates the needs by ensuring that + max_claim[i][j] - alloc_table[i][j] <= avail[j] + """ + return [ + list(np.array(self.__maximum_claim_table[i]) - np.array(allocated_resource)) + for i, allocated_resource in enumerate(self.__allocated_resources_table) + ] + + def __need_index_manager(self) -> Dict[int, List[int]]: + """ + This function builds an index control dictionary to track original ids/indices + of processes when altered during execution of method "main" + Return: {0: [a: int, b: int], 1: [c: int, d: int]} + >>> BankersAlgorithm(test_claim_vector, test_allocated_res_table, + ... test_maximum_claim_table)._BankersAlgorithm__need_index_manager() + {0: [1, 2, 0, 3], 1: [0, 1, 3, 1], 2: [1, 1, 0, 2], 3: [1, 3, 2, 0], 4: [2, 0, 0, 3]} + """ + return {self.__need().index(i): i for i in self.__need()} + + def main(self, **kwargs) -> None: + """ + Utilize various methods in this class to simulate the Banker's algorithm + Return: None + >>> BankersAlgorithm(test_claim_vector, test_allocated_res_table, + ... test_maximum_claim_table).main(describe=True) + Allocated Resource Table + P1 2 0 1 1 + + P2 0 1 2 1 + + P3 4 0 0 3 + + P4 0 2 1 0 + + P5 1 0 3 0 + + System Resource Table + P1 3 2 1 4 + + P2 0 2 5 2 + + P3 5 1 0 5 + + P4 1 5 3 0 + + P5 3 0 3 3 + + Current Usage by Active Processes: 8 5 9 7 + Initial Available Resources: 1 2 2 2 + __________________________________________________ + + Process 3 is executing. + Updated available resource stack for processes: 5 2 2 5 + The process is in a safe state. + + Process 1 is executing. + Updated available resource stack for processes: 7 2 3 6 + The process is in a safe state. + + Process 2 is executing. + Updated available resource stack for processes: 7 3 5 7 + The process is in a safe state. + + Process 4 is executing. + Updated available resource stack for processes: 7 5 6 7 + The process is in a safe state. + + Process 5 is executing. + Updated available resource stack for processes: 8 5 9 7 + The process is in a safe state. + + """ + need_list = self.__need() + alloc_resources_table = self.__allocated_resources_table + available_resources = self.__available_resources() + need_index_manager = self.__need_index_manager() + for kw, val in kwargs.items(): + if kw and val is True: + self.__pretty_data() + print("_" * 50 + "\n") + while need_list: + safe = False + for each_need in need_list: + execution = True + for index, need in enumerate(each_need): + if need > available_resources[index]: + execution = False + break + if execution: + safe = True + # get the original index of the process from ind_ctrl db + for original_need_index, need_clone in need_index_manager.items(): + if each_need == need_clone: + process_number = original_need_index + print(f"Process {process_number + 1} is executing.") + # remove the process run from stack + need_list.remove(each_need) + # update available/freed resources stack + available_resources = np.array(available_resources) + np.array( + alloc_resources_table[process_number] + ) + print( + "Updated available resource stack for processes: " + + " ".join([str(x) for x in available_resources]) + ) + break + if safe: + print("The process is in a safe state.\n") + else: + print("System in unsafe state. Aborting...\n") + break + + def __pretty_data(self): + """ + Properly align display of the algorithm's solution + """ + print(" " * 9 + "Allocated Resource Table") + for item in self.__allocated_resources_table: + print( + f"P{self.__allocated_resources_table.index(item) + 1}" + + " ".join(f"{it:>8}" for it in item) + + "\n" + ) + print(" " * 9 + "System Resource Table") + for item in self.__maximum_claim_table: + print( + f"P{self.__maximum_claim_table.index(item) + 1}" + + " ".join(f"{it:>8}" for it in item) + + "\n" + ) + print( + "Current Usage by Active Processes: " + + " ".join(str(x) for x in self.__claim_vector) + ) + print( + "Initial Available Resources: " + + " ".join(str(x) for x in self.__available_resources()) + ) + time.sleep(1) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From d4fc55c5fc4859490584c5f023a18e1c514226c8 Mon Sep 17 00:00:00 2001 From: harsh patel Date: Sat, 4 Jan 2020 20:33:55 +0530 Subject: [PATCH 499/594] Add files via upload (#1657) --- sorts/recursive_bubble_sort.py | 40 ++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 sorts/recursive_bubble_sort.py diff --git a/sorts/recursive_bubble_sort.py b/sorts/recursive_bubble_sort.py new file mode 100644 index 000000000000..88c13cbb95b5 --- /dev/null +++ b/sorts/recursive_bubble_sort.py @@ -0,0 +1,40 @@ +def bubble_sort(list1): + """ + It is similar is bubble sort but recursive. + :param list1: mutable ordered sequence of elements + :return: the same list in ascending order + + >>> bubble_sort([0, 5, 2, 3, 2]) + [0, 2, 2, 3, 5] + + >>> bubble_sort([]) + [] + + >>> bubble_sort([-2, -45, -5]) + [-45, -5, -2] + + >>> bubble_sort([-23, 0, 6, -4, 34]) + [-23, -4, 0, 6, 34] + + >>> bubble_sort([-23, 0, 6, -4, 34]) == sorted([-23, 0, 6, -4, 34]) + True + + >>> bubble_sort(['z','a','y','b','x','c']) + ['a', 'b', 'c', 'x', 'y', 'z'] + + """ + + for i, num in enumerate(list1): + try: + if list1[i+1] < num: + list1[i] = list1[i+1] + list1[i+1] = num + bubble_sort(list1) + except IndexError: + pass + return list1 + +if __name__ == "__main__": + list1 = [33,99,22,11,66] + bubble_sort(list1) + print(list1) From 1cc817bcc961061941fddcd081ab2dc19da6b877 Mon Sep 17 00:00:00 2001 From: Yurii <33547678+yuriimchg@users.noreply.github.com> Date: Sun, 5 Jan 2020 08:19:29 +0200 Subject: [PATCH 500/594] update volumes with type hints + some refactoring (#1353) * update volumes with type hints + some refactoring * added docstrings * Use float instead of ints in doctest results Co-authored-by: Christian Clauss --- maths/volume.py | 98 +++++++++++++++++++++++++++++++++---------------- 1 file changed, 67 insertions(+), 31 deletions(-) diff --git a/maths/volume.py b/maths/volume.py index 38de7516d9b2..04283743d71f 100644 --- a/maths/volume.py +++ b/maths/volume.py @@ -3,80 +3,116 @@ Wikipedia reference: https://en.wikipedia.org/wiki/Volume """ +from typing import Union +from math import pi, pow -from math import pi +def vol_cube(side_length: Union[int, float]) -> float: + """ + Calculate the Volume of a Cube. -def vol_cube(side_length): - """Calculate the Volume of a Cube.""" - # Cube side_length. - return float(side_length ** 3) + >>> vol_cube(1) + 1.0 + >>> vol_cube(3) + 27.0 + """ + return pow(side_length, 3) -def vol_cuboid(width, height, length): - """Calculate the Volume of a Cuboid.""" - # Multiply lengths together. +def vol_cuboid(width: float, height: float, length: float) -> float: + """ + Calculate the Volume of a Cuboid. + :return multiple of width, length and height + + >>> vol_cuboid(1, 1, 1) + 1.0 + >>> vol_cuboid(1, 2, 3) + 6.0 + """ return float(width * height * length) -def vol_cone(area_of_base, height): +def vol_cone(area_of_base: float, height: float) -> float: """ Calculate the Volume of a Cone. Wikipedia reference: https://en.wikipedia.org/wiki/Cone - volume = (1/3) * area_of_base * height + :return (1/3) * area_of_base * height + + >>> vol_cone(10, 3) + 10.0 + >>> vol_cone(1, 1) + 0.3333333333333333 """ - return (float(1) / 3) * area_of_base * height + return area_of_base * height / 3.0 -def vol_right_circ_cone(radius, height): +def vol_right_circ_cone(radius: float, height: float) -> float: """ Calculate the Volume of a Right Circular Cone. Wikipedia reference: https://en.wikipedia.org/wiki/Cone - volume = (1/3) * pi * radius^2 * height - """ + :return (1/3) * pi * radius^2 * height - return (float(1) / 3) * pi * (radius ** 2) * height + >>> vol_right_circ_cone(2, 3) + 12.566370614359172 + """ + return pi * pow(radius, 2) * height / 3.0 -def vol_prism(area_of_base, height): +def vol_prism(area_of_base: float, height: float) -> float: """ Calculate the Volume of a Prism. - - V = Bh Wikipedia reference: https://en.wikipedia.org/wiki/Prism_(geometry) + :return V = Bh + + >>> vol_prism(10, 2) + 20.0 + >>> vol_prism(11, 1) + 11.0 """ return float(area_of_base * height) -def vol_pyramid(area_of_base, height): +def vol_pyramid(area_of_base: float, height: float) -> float: """ - Calculate the Volume of a Prism. - - V = (1/3) * Bh + Calculate the Volume of a Pyramid. Wikipedia reference: https://en.wikipedia.org/wiki/Pyramid_(geometry) + :return (1/3) * Bh + + >>> vol_pyramid(10, 3) + 10.0 + >>> vol_pyramid(1.5, 3) + 1.5 """ - return (float(1) / 3) * area_of_base * height + return area_of_base * height / 3.0 -def vol_sphere(radius): +def vol_sphere(radius: float) -> float: """ Calculate the Volume of a Sphere. - - V = (4/3) * pi * r^3 Wikipedia reference: https://en.wikipedia.org/wiki/Sphere + :return (4/3) * pi * r^3 + + >>> vol_sphere(5) + 523.5987755982989 + >>> vol_sphere(1) + 4.1887902047863905 """ - return (float(4) / 3) * pi * radius ** 3 + return 4 / 3 * pi * pow(radius, 3) -def vol_circular_cylinder(radius, height): +def vol_circular_cylinder(radius: float, height: float) -> float: """Calculate the Volume of a Circular Cylinder. - Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder - volume = pi * radius^2 * height + :return pi * radius^2 * height + + >>> vol_circular_cylinder(1, 1) + 3.141592653589793 + >>> vol_circular_cylinder(4, 3) + 150.79644737231007 """ - return pi * radius ** 2 * height + return pi * pow(radius, 2) * height def main(): From b212a59754c8ac6c1293db402c263160a4bc76c0 Mon Sep 17 00:00:00 2001 From: Himanshu Bhatnagar <33115688+Himan10@users.noreply.github.com> Date: Sun, 5 Jan 2020 15:21:03 +0530 Subject: [PATCH 501/594] Create deque_doubly.py (#1652) * Create deque_doubly.py Implementing Deque ADT using Doubly Linked List.... * Update deque_doubly.py * Update deque_doubly.py Adding doctest * Update doctest of deque_doubly.py * Update deque_doubly.py * linked_list. Co-authored-by: Christian Clauss --- data_structures/linked_list/deque_doubly.py | 138 ++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 data_structures/linked_list/deque_doubly.py diff --git a/data_structures/linked_list/deque_doubly.py b/data_structures/linked_list/deque_doubly.py new file mode 100644 index 000000000000..d858333220e9 --- /dev/null +++ b/data_structures/linked_list/deque_doubly.py @@ -0,0 +1,138 @@ +""" +Implementing Deque using DoublyLinkedList ... +Operations: + 1. insertion in the front -> O(1) + 2. insertion in the end -> O(1) + 3. remove fron the front -> O(1) + 4. remove from the end -> O(1) +""" + +class _DoublyLinkedBase: + """ A Private class (to be inherited) """ + class _Node: + __slots__ = '_prev', '_data', '_next' + def __init__(self, link_p, element, link_n): + self._prev = link_p + self._data = element + self._next = link_n + + def has_next_and_prev(self): + return " Prev -> {0}, Next -> {1}".format(self._prev != None, self._next != None) + + def __init__(self): + self._header = self._Node(None, None, None) + self._trailer = self._Node(None, None, None) + self._header._next = self._trailer + self._trailer._prev = self._header + self._size = 0 + + def __len__(self): + return self._size + + def is_empty(self): + return self.__len__() == 0 + + def _insert(self, predecessor, e, successor): + # Create new_node by setting it's prev.link -> header + # setting it's next.link -> trailer + new_node = self._Node(predecessor, e, successor) + predecessor._next = new_node + successor._prev = new_node + self._size += 1 + return self + + def _delete(self, node): + predecessor = node._prev + successor = node._next + + predecessor._next = successor + successor._prev = predecessor + self._size -= 1 + temp = node._data + node._prev = node._next = node._data = None + del node + return temp + +class LinkedDeque(_DoublyLinkedBase): + + def first(self): + """ return first element + >>> d = LinkedDeque() + >>> d.add_first('A').first() + 'A' + >>> d.add_first('B').first() + 'B' + """ + if self.is_empty(): + raise Exception('List is empty') + return self._header._next._data + + def last(self): + """ return last element + >>> d = LinkedDeque() + >>> d.add_last('A').last() + 'A' + >>> d.add_last('B').last() + 'B' + """ + if self.is_empty(): + raise Exception('List is empty') + return self._trailer._prev._data + + ### DEque Insert Operations (At the front, At the end) ### + + def add_first(self, element): + """ insertion in the front + >>> LinkedDeque().add_first('AV').first() + 'AV' + """ + return self._insert(self._header, element, self._header._next) + + def add_last(self, element): + """ insertion in the end + >>> LinkedDeque().add_last('B').last() + 'B' + """ + return self._insert(self._trailer._prev, element, self._trailer) + + ### DEqueu Remove Operations (At the front, At the end) ### + + def remove_first(self): + """ removal from the front + >>> d = LinkedDeque() + >>> d.is_empty() + True + >>> d.remove_first() + Traceback (most recent call last): + ... + IndexError: remove_first from empty list + >>> d.add_first('A') # doctest: +ELLIPSIS + >> d.remove_first() + 'A' + >>> d.is_empty() + True + """ + if self.is_empty(): + raise IndexError('remove_first from empty list') + return self._delete(self._header._next) + + def remove_last(self): + """ removal in the end + >>> d = LinkedDeque() + >>> d.is_empty() + True + >>> d.remove_last() + Traceback (most recent call last): + ... + IndexError: remove_first from empty list + >>> d.add_first('A') # doctest: +ELLIPSIS + >> d.remove_last() + 'A' + >>> d.is_empty() + True + """ + if self.is_empty(): + raise IndexError('remove_first from empty list') + return self._delete(self._trailer._prev) From 51b769095f9b5671147b71c412024009eba03220 Mon Sep 17 00:00:00 2001 From: nishithshowri006 <58651995+nishithshowri006@users.noreply.github.com> Date: Mon, 6 Jan 2020 02:58:36 +0530 Subject: [PATCH 502/594] Create get_imdb_top_250_movies_csv.py (#1659) * Create get_imdb_top_250_movies_csv.py * Update get_imdb_top_250_movies_csv.py * Update get_imdb_top_250_movies_csv.py * get_imdb_top_250_movies() Co-authored-by: Christian Clauss --- .../get_imdb_top_250_movies_csv.py | 29 +++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 web_programming/get_imdb_top_250_movies_csv.py diff --git a/web_programming/get_imdb_top_250_movies_csv.py b/web_programming/get_imdb_top_250_movies_csv.py new file mode 100644 index 000000000000..811c21fb00e4 --- /dev/null +++ b/web_programming/get_imdb_top_250_movies_csv.py @@ -0,0 +1,29 @@ +import csv +from typing import Dict + +import requests +from bs4 import BeautifulSoup + + +def get_imdb_top_250_movies(url: str = "") -> Dict[str, float]: + url = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" + soup = BeautifulSoup(requests.get(url).text, "html.parser") + titles = soup.find_all("td", attrs="titleColumn") + ratings = soup.find_all("td", class_="ratingColumn imdbRating") + return { + title.a.text: float(rating.strong.text) + for title, rating in zip(titles, ratings) + } + + +def write_movies(filename: str = "IMDb_Top_250_Movies.csv") -> None: + movies = get_imdb_top_250_movies() + with open(filename, "w", newline="") as out_file: + writer = csv.writer(out_file) + writer.writerow(["Movie title", "IMDb rating"]) + for title, rating in movies.items(): + writer.writerow([title, rating]) + + +if __name__ == "__main__": + write_movies() From 46df735cf48103ae0a400604762bf10208d5a6dc Mon Sep 17 00:00:00 2001 From: MadhavCode Date: Tue, 7 Jan 2020 14:47:35 +0530 Subject: [PATCH 503/594] New Code!!(Finding the N Possible Binary Search Tree and Binary Tree from Given N node Number) (#1663) * Code Upload * Code Upload * Delete n_possible_bst * Find the N Possible Binary Tree and Binary Tree from given Nth Number of Node. * Update in Test * Update and rename n_possible_bst.py to number_of_possible_binary_trees.py Co-authored-by: Christian Clauss --- .../number_of_possible_binary_trees.py | 102 ++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 data_structures/binary_tree/number_of_possible_binary_trees.py diff --git a/data_structures/binary_tree/number_of_possible_binary_trees.py b/data_structures/binary_tree/number_of_possible_binary_trees.py new file mode 100644 index 000000000000..71670d9691ac --- /dev/null +++ b/data_structures/binary_tree/number_of_possible_binary_trees.py @@ -0,0 +1,102 @@ +""" +Hey, we are going to find an exciting number called Catalan number which is use to find +the number of possible binary search trees from tree of a given number of nodes. + +We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i) + +Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number +""" +""" +Our Contribution: +Basically we Create the 2 function: + 1. catalan_number(node_count: int) -> int + Returns the number of possible binary search trees for n nodes. + 2. binary_tree_count(node_count: int) -> int + Returns the number of possible binary trees for n nodes. +""" + + +def binomial_coefficient(n: int, k: int) -> int: + """ + Since Here we Find the Binomial Coefficient: + https://en.wikipedia.org/wiki/Binomial_coefficient + C(n,k) = n! / k!(n-k)! + :param n: 2 times of Number of nodes + :param k: Number of nodes + :return: Integer Value + + >>> binomial_coefficient(4, 2) + 6 + """ + result = 1 # To kept the Calculated Value + # Since C(n, k) = C(n, n-k) + if k > (n - k): + k = n - k + # Calculate C(n,k) + for i in range(k): + result *= n - i + result //= i + 1 + return result + + +def catalan_number(node_count: int) -> int: + """ + We can find Catalan number many ways but here we use Binomial Coefficent because it + does the job in O(n) + + return the Catalan number of n using 2nCn/(n+1). + :param n: number of nodes + :return: Catalan number of n nodes + + >>> catalan_number(5) + 42 + >>> catalan_number(6) + 132 + """ + return binomial_coefficient(2 * node_count, node_count) // (node_count + 1) + + +def factorial(n: int) -> int: + """ + Return the factorial of a number. + :param n: Number to find the Factorial of. + :return: Factorial of n. + + >>> import math + >>> all(factorial(i) == math.factorial(i) for i in range(10)) + True + >>> factorial(-5) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values + """ + if n < 0: + raise ValueError("factorial() not defined for negative values") + result = 1 + for i in range(1, n + 1): + result *= i + return result + + +def binary_tree_count(node_count: int) -> int: + """ + Return the number of possible of binary trees. + :param n: number of nodes + :return: Number of possilble binary trees + + >>> binary_tree_count(5) + 5040 + >>> binary_tree_count(6) + 95040 + """ + return catalan_number(node_count) * factorial(node_count) + + +if __name__ == "__main__": + node_count = int(input("Enter the number of nodes: ").strip() or 0) + if node_count <= 0: + raise ValueError("We need some nodes to work with.") + print( + f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " + f"binary trees and {catalan_number(node_count)} binary search trees." + ) From cbab5f18f1d5f5434dc241c609085e6f1c0e469f Mon Sep 17 00:00:00 2001 From: Faraz Ahmed Khan <31242842+fk03983@users.noreply.github.com> Date: Tue, 7 Jan 2020 23:00:55 -0600 Subject: [PATCH 504/594] added hill climbing algorithm (#1666) * added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Update and rename optimization/hill_climbing.py to searches/hill_climbing.py Co-authored-by: Christian Clauss --- optimization/requirements.txt | 1 + searches/hill_climbing.py | 187 ++++++++++++++++++++++++++++++++++ 2 files changed, 188 insertions(+) create mode 100644 optimization/requirements.txt create mode 100644 searches/hill_climbing.py diff --git a/optimization/requirements.txt b/optimization/requirements.txt new file mode 100644 index 000000000000..4b43f7e68658 --- /dev/null +++ b/optimization/requirements.txt @@ -0,0 +1 @@ +matplotlib \ No newline at end of file diff --git a/searches/hill_climbing.py b/searches/hill_climbing.py new file mode 100644 index 000000000000..7c4ba3fb84ab --- /dev/null +++ b/searches/hill_climbing.py @@ -0,0 +1,187 @@ +# https://en.wikipedia.org/wiki/Hill_climbing +import math + + +class SearchProblem: + """ + A interface to define search problems. The interface will be illustrated using + the example of mathematical function. + """ + + def __init__(self, x: int, y: int, step_size: int, function_to_optimize): + """ + The constructor of the search problem. + x: the x coordinate of the current search state. + y: the y coordinate of the current search state. + step_size: size of the step to take when looking for neighbors. + function_to_optimize: a function to optimize having the signature f(x, y). + """ + self.x = x + self.y = y + self.step_size = step_size + self.function = function_to_optimize + + def score(self) -> int: + """ + Returns the output for the function called with current x and y coordinates. + >>> def test_function(x, y): + ... return x + y + >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 + 0 + >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 + 12 + """ + return self.function(self.x, self.y) + + def get_neighbors(self): + """ + Returns a list of coordinates of neighbors adjacent to the current coordinates. + + Neighbors: + | 0 | 1 | 2 | + | 3 | _ | 4 | + | 5 | 6 | 7 | + """ + step_size = self.step_size + return [ + SearchProblem(x, y, step_size, self.function) + for x, y in ( + (self.x - step_size, self.y - step_size), + (self.x - step_size, self.y), + (self.x - step_size, self.y + step_size), + (self.x, self.y - step_size), + (self.x, self.y + step_size), + (self.x + step_size, self.y - step_size), + (self.x + step_size, self.y), + (self.x + step_size, self.y + step_size), + ) + ] + + def __hash__(self): + """ + hash the string represetation of the current search state. + """ + return hash(str(self)) + + def __str__(self): + """ + string representation of the current search state. + >>> str(SearchProblem(0, 0, 1, None)) + 'x: 0 y: 0' + >>> str(SearchProblem(2, 5, 1, None)) + 'x: 2 y: 5' + """ + return f"x: {self.x} y: {self.y}" + + +def hill_climbing( + search_prob, + find_max: bool = True, + max_x: float = math.inf, + min_x: float = -math.inf, + max_y: float = math.inf, + min_y: float = -math.inf, + visualization: bool = False, + max_iter: int = 10000, +) -> SearchProblem: + """ + implementation of the hill climbling algorithm. We start with a given state, find + all its neighbors, move towards the neighbor which provides the maximum (or + minimum) change. We keep doing this untill we are at a state where we do not + have any neighbors which can improve the solution. + Args: + search_prob: The search state at the start. + find_max: If True, the algorithm should find the minimum else the minimum. + max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. + visualization: If True, a matplotlib graph is displayed. + max_iter: number of times to run the iteration. + Returns a search state having the maximum (or minimum) score. + """ + current_state = search_prob + scores = [] # list to store the current score at each iteration + iterations = 0 + solution_found = False + visited = set() + while not solution_found and iterations < max_iter: + visited.add(current_state) + iterations += 1 + current_score = current_state.score() + scores.append(current_score) + neighbors = current_state.get_neighbors() + max_change = -math.inf + min_change = math.inf + next_state = None # to hold the next best neighbor + for neighbor in neighbors: + if neighbor in visited: + continue # do not want to visit the same state again + if ( + neighbor.x > max_x + or neighbor.x < min_x + or neighbor.y > max_y + or neighbor.y < min_y + ): + continue # neighbor outside our bounds + change = neighbor.score() - current_score + if find_max: # finding max + # going to direction with greatest ascent + if change > max_change and change > 0: + max_change = change + next_state = neighbor + else: # finding min + # to direction with greatest descent + if change < min_change and change < 0: + min_change = change + next_state = neighbor + if next_state is not None: + # we found at least one neighbor which improved the current state + current_state = next_state + else: + # since we have no neighbor that improves the solution we stop the search + solution_found = True + + if visualization: + import matplotlib.pyplot as plt + + plt.plot(range(iterations), scores) + plt.xlabel("Iterations") + plt.ylabel("Function values") + plt.show() + + return current_state + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + + def test_f1(x, y): + return (x ** 2) + (y ** 2) + + # starting the problem with initial coordinates (3, 4) + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) + local_min = hill_climbing(prob, find_max=False) + print( + "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " + f"{local_min.score()}" + ) + + # starting the problem with initial coordinates (12, 47) + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) + local_min = hill_climbing( + prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True + ) + print( + "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" + ) + + def test_f2(x, y): + return (3 * x ** 2) - (6 * y) + + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) + local_min = hill_climbing(prob, find_max=True) + print( + "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " + f"{local_min.score()}" + ) From 36d229f82a7b966419da7ea09f0077137d8714c1 Mon Sep 17 00:00:00 2001 From: MadhavCode Date: Wed, 8 Jan 2020 17:55:50 +0530 Subject: [PATCH 505/594] number of Possible Binary Search Tree and Binary Tree. (#1670) * Code Upload * Code Upload * Delete n_possible_bst * Find the N Possible Binary Tree and Binary Tree from given Nth Number of Node. * Update in Test * Update and rename n_possible_bst.py to number_of_possible_binary_trees.py Co-authored-by: Christian Clauss From 1f2b1a88ab726ea6ff7fbe382b9fea58c96deaed Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 8 Jan 2020 14:06:53 +0100 Subject: [PATCH 506/594] Typos in comments in hill_climbing.py (#1667) * Typos in comments in hill_climbing.py * fixup! Format Python code with psf/black push --- data_structures/linked_list/deque_doubly.py | 49 ++++++++++++--------- searches/hill_climbing.py | 4 +- sorts/recursive_bubble_sort.py | 23 +++++----- 3 files changed, 41 insertions(+), 35 deletions(-) diff --git a/data_structures/linked_list/deque_doubly.py b/data_structures/linked_list/deque_doubly.py index d858333220e9..abc7bc1f769f 100644 --- a/data_structures/linked_list/deque_doubly.py +++ b/data_structures/linked_list/deque_doubly.py @@ -7,31 +7,36 @@ 4. remove from the end -> O(1) """ + class _DoublyLinkedBase: """ A Private class (to be inherited) """ + class _Node: - __slots__ = '_prev', '_data', '_next' + __slots__ = "_prev", "_data", "_next" + def __init__(self, link_p, element, link_n): self._prev = link_p self._data = element self._next = link_n - + def has_next_and_prev(self): - return " Prev -> {0}, Next -> {1}".format(self._prev != None, self._next != None) - + return " Prev -> {0}, Next -> {1}".format( + self._prev != None, self._next != None + ) + def __init__(self): self._header = self._Node(None, None, None) self._trailer = self._Node(None, None, None) self._header._next = self._trailer self._trailer._prev = self._header self._size = 0 - + def __len__(self): return self._size - + def is_empty(self): return self.__len__() == 0 - + def _insert(self, predecessor, e, successor): # Create new_node by setting it's prev.link -> header # setting it's next.link -> trailer @@ -40,11 +45,11 @@ def _insert(self, predecessor, e, successor): successor._prev = new_node self._size += 1 return self - + def _delete(self, node): predecessor = node._prev successor = node._next - + predecessor._next = successor successor._prev = predecessor self._size -= 1 @@ -53,8 +58,8 @@ def _delete(self, node): del node return temp + class LinkedDeque(_DoublyLinkedBase): - def first(self): """ return first element >>> d = LinkedDeque() @@ -62,11 +67,11 @@ def first(self): 'A' >>> d.add_first('B').first() 'B' - """ + """ if self.is_empty(): - raise Exception('List is empty') + raise Exception("List is empty") return self._header._next._data - + def last(self): """ return last element >>> d = LinkedDeque() @@ -76,27 +81,27 @@ def last(self): 'B' """ if self.is_empty(): - raise Exception('List is empty') + raise Exception("List is empty") return self._trailer._prev._data - + ### DEque Insert Operations (At the front, At the end) ### - + def add_first(self, element): """ insertion in the front >>> LinkedDeque().add_first('AV').first() 'AV' """ return self._insert(self._header, element, self._header._next) - + def add_last(self, element): """ insertion in the end >>> LinkedDeque().add_last('B').last() 'B' """ return self._insert(self._trailer._prev, element, self._trailer) - + ### DEqueu Remove Operations (At the front, At the end) ### - + def remove_first(self): """ removal from the front >>> d = LinkedDeque() @@ -114,9 +119,9 @@ def remove_first(self): True """ if self.is_empty(): - raise IndexError('remove_first from empty list') + raise IndexError("remove_first from empty list") return self._delete(self._header._next) - + def remove_last(self): """ removal in the end >>> d = LinkedDeque() @@ -134,5 +139,5 @@ def remove_last(self): True """ if self.is_empty(): - raise IndexError('remove_first from empty list') + raise IndexError("remove_first from empty list") return self._delete(self._trailer._prev) diff --git a/searches/hill_climbing.py b/searches/hill_climbing.py index 7c4ba3fb84ab..8cabbd602bd1 100644 --- a/searches/hill_climbing.py +++ b/searches/hill_climbing.py @@ -23,7 +23,7 @@ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): def score(self) -> int: """ - Returns the output for the function called with current x and y coordinates. + Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 @@ -91,7 +91,7 @@ def hill_climbing( have any neighbors which can improve the solution. Args: search_prob: The search state at the start. - find_max: If True, the algorithm should find the minimum else the minimum. + find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. diff --git a/sorts/recursive_bubble_sort.py b/sorts/recursive_bubble_sort.py index 88c13cbb95b5..616044778a4a 100644 --- a/sorts/recursive_bubble_sort.py +++ b/sorts/recursive_bubble_sort.py @@ -24,17 +24,18 @@ def bubble_sort(list1): """ - for i, num in enumerate(list1): - try: - if list1[i+1] < num: - list1[i] = list1[i+1] - list1[i+1] = num - bubble_sort(list1) - except IndexError: + for i, num in enumerate(list1): + try: + if list1[i + 1] < num: + list1[i] = list1[i + 1] + list1[i + 1] = num + bubble_sort(list1) + except IndexError: pass - return list1 + return list1 -if __name__ == "__main__": - list1 = [33,99,22,11,66] - bubble_sort(list1) + +if __name__ == "__main__": + list1 = [33, 99, 22, 11, 66] + bubble_sort(list1) print(list1) From e849578e59a733561537ef785852a1634e68faf2 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 8 Jan 2020 14:15:41 +0100 Subject: [PATCH 507/594] Update and rename lca.py to lowest_common_ancestor.py (#1664) * Update and rename lca.py to lowest_common_ancestor.py * fixup! Format Python code with psf/black push --- .../binary_tree/{lca.py => lowest_common_ancestor.py} | 3 +++ 1 file changed, 3 insertions(+) rename data_structures/binary_tree/{lca.py => lowest_common_ancestor.py} (95%) diff --git a/data_structures/binary_tree/lca.py b/data_structures/binary_tree/lowest_common_ancestor.py similarity index 95% rename from data_structures/binary_tree/lca.py rename to data_structures/binary_tree/lowest_common_ancestor.py index c18f1e944bab..2109500a2581 100644 --- a/data_structures/binary_tree/lca.py +++ b/data_structures/binary_tree/lowest_common_ancestor.py @@ -1,3 +1,6 @@ +# https://en.wikipedia.org/wiki/Lowest_common_ancestor +# https://en.wikipedia.org/wiki/Breadth-first_search + import queue From a26ae00b2462490b9deb11f699efc3c886738e51 Mon Sep 17 00:00:00 2001 From: Cole Mollica <30614241+coleman2246@users.noreply.github.com> Date: Wed, 8 Jan 2020 08:18:17 -0500 Subject: [PATCH 508/594] Added to maths and strings (#1642) * Added to maths and strings * added changes suggest by cclauss --- maths/combinations.py | 19 ++++++++++++++ maths/gamma.py | 60 +++++++++++++++++++++++++++++++++++++++++++ maths/radians.py | 29 +++++++++++++++++++++ strings/lower.py | 29 +++++++++++++++++++++ strings/split.py | 33 ++++++++++++++++++++++++ strings/upper.py | 26 +++++++++++++++++++ 6 files changed, 196 insertions(+) create mode 100644 maths/combinations.py create mode 100644 maths/gamma.py create mode 100644 maths/radians.py create mode 100644 strings/lower.py create mode 100644 strings/split.py create mode 100644 strings/upper.py diff --git a/maths/combinations.py b/maths/combinations.py new file mode 100644 index 000000000000..fd98992e6c16 --- /dev/null +++ b/maths/combinations.py @@ -0,0 +1,19 @@ +from math import factorial + + +def combinations(n, k): + """ + >>> combinations(10,5) + 252 + >>> combinations(6,3) + 20 + >>> combinations(20,5) + 15504 + """ + return int(factorial(n) / ((factorial(k)) * (factorial(n - k)))) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() diff --git a/maths/gamma.py b/maths/gamma.py new file mode 100644 index 000000000000..ef5e7dae6187 --- /dev/null +++ b/maths/gamma.py @@ -0,0 +1,60 @@ +import math +from scipy.integrate import quad +from numpy import inf + + +def gamma(num: float) -> float: + """ + https://en.wikipedia.org/wiki/Gamma_function + In mathematics, the gamma function is one commonly + used extension of the factorial function to complex numbers. + The gamma function is defined for all complex numbers except the non-positive integers + + + >>> gamma(-1) + Traceback (most recent call last): + ... + ValueError: math domain error + + + + >>> gamma(0) + Traceback (most recent call last): + ... + ValueError: math domain error + + + >>> gamma(9) + 40320.0 + + >>> from math import gamma as math_gamma + >>> all(gamma(i)/math_gamma(i) <= 1.000000001 and abs(gamma(i)/math_gamma(i)) > .99999999 for i in range(1, 50)) + True + + + >>> from math import gamma as math_gamma + >>> gamma(-1)/math_gamma(-1) <= 1.000000001 + Traceback (most recent call last): + ... + ValueError: math domain error + + + >>> from math import gamma as math_gamma + >>> gamma(3.3) - math_gamma(3.3) <= 0.00000001 + True + """ + + if num <= 0: + raise ValueError("math domain error") + + return quad(integrand, 0, inf, args=(num))[0] + + +def integrand(x: float, z: float) -> float: + return math.pow(x, z - 1) * math.exp(-x) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() diff --git a/maths/radians.py b/maths/radians.py new file mode 100644 index 000000000000..3788b3e8a3a0 --- /dev/null +++ b/maths/radians.py @@ -0,0 +1,29 @@ +from math import pi + + +def radians(degree: float) -> float: + """ + Coverts the given angle from degrees to radians + https://en.wikipedia.org/wiki/Radian + + >>> radians(180) + 3.141592653589793 + >>> radians(92) + 1.6057029118347832 + >>> radians(274) + 4.782202150464463 + >>> radians(109.82) + 1.9167205845401725 + + >>> from math import radians as math_radians + >>> all(abs(radians(i)-math_radians(i)) <= 0.00000001 for i in range(-2, 361)) + True + """ + + return degree / (180 / pi) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() diff --git a/strings/lower.py b/strings/lower.py new file mode 100644 index 000000000000..c3a6e598b9ea --- /dev/null +++ b/strings/lower.py @@ -0,0 +1,29 @@ +def lower(word: str) -> str: + + """ + Will convert the entire string to lowecase letters + + >>> lower("wow") + 'wow' + >>> lower("HellZo") + 'hellzo' + >>> lower("WHAT") + 'what' + + >>> lower("wh[]32") + 'wh[]32' + >>> lower("whAT") + 'what' + """ + + # converting to ascii value int value and checking to see if char is a capital letter + # if it is a capital letter it is getting shift by 32 which makes it a lower case letter + return "".join( + chr(ord(char) + 32) if 65 <= ord(char) <= 90 else char for char in word + ) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() diff --git a/strings/split.py b/strings/split.py new file mode 100644 index 000000000000..727250fe6e9f --- /dev/null +++ b/strings/split.py @@ -0,0 +1,33 @@ +def split(string: str, seperator: str = " ") -> list: + """ + Will split the string up into all the values seperated by the seperator (defaults to spaces) + + >>> split("apple#banana#cherry#orange",seperator='#') + ['apple', 'banana', 'cherry', 'orange'] + + >>> split("Hello there") + ['Hello', 'there'] + + >>> split("11/22/63",seperator = '/') + ['11', '22', '63'] + + >>> split("12:43:39",seperator = ":") + ['12', '43', '39'] + """ + + split_words = [] + + last_index = 0 + for index, char in enumerate(string): + if char == seperator: + split_words.append(string[last_index:index]) + last_index = index + 1 + elif index + 1 == len(string): + split_words.append(string[last_index : index + 1]) + return split_words + + +if __name__ == "__main__": + from doctest import testmod + + testmod() diff --git a/strings/upper.py b/strings/upper.py new file mode 100644 index 000000000000..59b16096af0b --- /dev/null +++ b/strings/upper.py @@ -0,0 +1,26 @@ +def upper(word: str) -> str: + """ + Will convert the entire string to uppercase letters + + >>> upper("wow") + 'WOW' + >>> upper("Hello") + 'HELLO' + >>> upper("WHAT") + 'WHAT' + + >>> upper("wh[]32") + 'WH[]32' + """ + + # converting to ascii value int value and checking to see if char is a lower letter + # if it is a capital letter it is getting shift by 32 which makes it a capital case letter + return "".join( + chr(ord(char) - 32) if 97 <= ord(char) <= 122 else char for char in word + ) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() From f9e1a16a98817b3076bdb31635a56732816cd18e Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 10 Jan 2020 02:08:49 +0100 Subject: [PATCH 509/594] git add DIRECTORY.md (#1674) * git add DIRECTORY.md * updating DIRECTORY.md --- .github/workflows/directory_writer.yml | 1 + DIRECTORY.md | 575 +++++++++++++++++++++++++ 2 files changed, 576 insertions(+) create mode 100644 DIRECTORY.md diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index 4a8ed6c9e509..f910ab33e00b 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -16,5 +16,6 @@ jobs: git config --global user.name github-actions git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY + git add DIRECTORY.md git commit -am "updating DIRECTORY.md" || true git push --force origin HEAD:$GITHUB_REF || true diff --git a/DIRECTORY.md b/DIRECTORY.md new file mode 100644 index 000000000000..73ecbc36fdc4 --- /dev/null +++ b/DIRECTORY.md @@ -0,0 +1,575 @@ + +## Arithmetic Analysis + * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) + * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) + * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) + * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) + * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) + * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) + * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) + * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) + * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) + +## Backtracking + * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) + * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) + * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) + * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) + * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) + * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) + * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) + +## Blockchain + * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) + * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) + * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) + +## Boolean Algebra + * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) + +## Ciphers + * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) + * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) + * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) + * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) + * [Base64 Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_cipher.py) + * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) + * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) + * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) + * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) + * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) + * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) + * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) + * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) + * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) + * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) + * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) + * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) + * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) + * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) + * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) + * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) + * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) + * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) + * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) + * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) + * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) + * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) + * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) + * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) + * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) + * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) + +## Compression + * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) + * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) + * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) + +## Conversions + * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) + * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) + * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) + * [Roman To Integer](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_to_integer.py) + +## Data Structures + * Binary Tree + * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) + * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) + * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) + * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) + * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) + * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) + * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) + * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) + * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) + * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) + * Data Structures + * Heap + * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/data_structures/heap/heap_generic.py) + * Disjoint Set + * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) + * Hashing + * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) + * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) + * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) + * Number Theory + * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) + * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) + * Heap + * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) + * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) + * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) + * Linked List + * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) + * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) + * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) + * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) + * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) + * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) + * Queue + * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) + * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) + * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) + * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) + * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) + * Stacks + * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) + * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) + * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) + * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) + * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) + * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) + * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) + * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) + * Trie + * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + +## Digital Image Processing + * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) + * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) + * Edge Detection + * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) + * Filters + * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) + * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) + * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) + * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) + * Histogram Equalization + * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) + * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) + * Rotation + * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) + * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) + +## Divide And Conquer + * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) + * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) + * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) + * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) + * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) + +## Dynamic Programming + * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) + * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) + * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) + * [Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/coin_change.py) + * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) + * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) + * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) + * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) + * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) + * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) + * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) + * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) + * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) + * [K Means Clustering Tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) + * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) + * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) + * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) + * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) + * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) + * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) + * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) + * [Max Sum Contigous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contigous_subsequence.py) + * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) + * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) + * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) + * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) + +## File Transfer + * [Recieve File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) + * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) + +## Fuzzy Logic + * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) + +## Graphs + * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) + * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) + * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) + * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) + * [Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs.py) + * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) + * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) + * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) + * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) + * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) + * [Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/dfs.py) + * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) + * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) + * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) + * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) + * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) + * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) + * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) + * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) + * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) + * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) + * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) + * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) + * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) + * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) + * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) + * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) + * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) + * [Multi Hueristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) + * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) + * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) + * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) + * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) + +## Hashes + * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) + * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) + * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) + * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) + * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) + +## Linear Algebra + * Src + * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) + * [Polynom-For-Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) + * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) + +## Machine Learning + * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) + * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) + * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) + * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) + * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) + * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) + * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) + * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) + * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) + * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) + * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) + * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) + * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) + +## Maths + * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) + * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) + * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) + * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) + * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) + * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) + * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) + * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) + * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) + * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) + * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) + * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) + * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) + * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) + * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) + * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) + * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) + * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) + * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) + * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) + * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) + * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) + * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) + * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) + * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) + * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) + * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) + * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) + * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) + * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) + * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) + * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) + * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) + * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) + * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) + * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) + * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) + * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) + * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) + * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) + * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) + * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) + * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) + * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) + * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) + * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) + * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) + * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) + * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) + * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) + * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) + * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) + * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) + * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) + * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) + * Series + * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) + * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) + * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) + * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) + * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) + * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) + * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) + * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) + * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) + * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) + * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) + +## Matrix + * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) + * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) + * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) + * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) + * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) + * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) + * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) + * Tests + * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) + +## Networking Flow + * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) + * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) + +## Neural Network + * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) + * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) + * [Gan](https://github.com/TheAlgorithms/Python/blob/master/neural_network/gan.py) + * [Input Data](https://github.com/TheAlgorithms/Python/blob/master/neural_network/input_data.py) + * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) + +## Other + * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) + * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) + * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/other/autocomplete_using_trie.py) + * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) + * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) + * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) + * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) + * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) + * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) + * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) + * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) + * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) + * [Integeration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/other/integeration_by_simpson_approx.py) + * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) + * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) + * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) + * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) + * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) + * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) + * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) + * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) + * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) + * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) + * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) + * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) + * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) + +## Project Euler + * Problem 01 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol4.py) + * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol5.py) + * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol6.py) + * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol7.py) + * Problem 02 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol4.py) + * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_02/sol5.py) + * Problem 03 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_03/sol3.py) + * Problem 04 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_04/sol2.py) + * Problem 05 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_05/sol2.py) + * Problem 06 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_06/sol4.py) + * Problem 07 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_07/sol3.py) + * Problem 08 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_08/sol3.py) + * Problem 09 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_09/sol3.py) + * Problem 10 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_10/sol3.py) + * Problem 11 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_11/sol2.py) + * Problem 12 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_12/sol2.py) + * Problem 13 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_13/sol1.py) + * Problem 14 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_14/sol2.py) + * Problem 15 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_15/sol1.py) + * Problem 16 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_16/sol2.py) + * Problem 17 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_17/sol1.py) + * Problem 18 + * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_18/solution.py) + * Problem 19 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_19/sol1.py) + * Problem 20 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol3.py) + * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_20/sol4.py) + * Problem 21 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_21/sol1.py) + * Problem 22 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_22/sol2.py) + * Problem 23 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_23/sol1.py) + * Problem 234 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) + * Problem 24 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_24/sol1.py) + * Problem 25 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol1.py) + * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol2.py) + * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_25/sol3.py) + * Problem 27 + * [Problem 27 Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_27/problem_27_sol1.py) + * Problem 28 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) + * Problem 29 + * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) + * Problem 31 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) + * Problem 32 + * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_32/sol32.py) + * Problem 33 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_33/sol1.py) + * Problem 36 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_36/sol1.py) + * Problem 40 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_40/sol1.py) + * Problem 42 + * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_42/solution42.py) + * Problem 48 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_48/sol1.py) + * Problem 52 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_52/sol1.py) + * Problem 53 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_53/sol1.py) + * Problem 551 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) + * Problem 56 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_56/sol1.py) + * Problem 67 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_67/sol1.py) + * Problem 76 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_76/sol1.py) + * Problem 99 + * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_99/sol1.py) + +## Searches + * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) + * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) + * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) + * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) + * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) + * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) + * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) + * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) + * [Simple-Binary-Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple-binary-search.py) + * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) + * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) + +## Sorts + * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) + * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) + * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) + * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) + * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) + * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) + * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) + * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) + * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) + * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) + * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) + * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) + * [I Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/i_sort.py) + * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) + * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) + * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) + * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) + * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) + * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) + * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) + * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) + * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) + * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) + * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) + * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) + * [Recursive-Quick-Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive-quick-sort.py) + * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) + * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) + * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) + * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) + * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) + * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) + * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) + * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) + * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) + +## Strings + * [Aho-Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho-corasick.py) + * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) + * [Check Panagram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_panagram.py) + * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) + * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) + * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) + * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) + * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) + * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) + * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) + * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) + * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) + * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) + * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) + * [Word Occurence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurence.py) + +## Traversals + * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) + +## Web Programming + * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) + * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) + * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) + * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) + * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) + * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) + * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) From 98733618e25db3d640093605a24be4faf9c69222 Mon Sep 17 00:00:00 2001 From: AlexLeka98 <32596824+AlexLeka98@users.noreply.github.com> Date: Sun, 12 Jan 2020 06:04:10 +0200 Subject: [PATCH 510/594] Added Strassen divide and conquer algorithm to multiply matrices. (#1648) * Added Strassen divide and conquer algorithm to multiply matrices * Divide and conquer algorith to calculate pow(a,b) or a raised to the power of b * Putting docstring inside the function. * Added doctests --- divide_and_conquer/power.py | 33 ++++ .../strassen_matrix_multiplication.py | 161 ++++++++++++++++++ 2 files changed, 194 insertions(+) create mode 100644 divide_and_conquer/power.py create mode 100644 divide_and_conquer/strassen_matrix_multiplication.py diff --git a/divide_and_conquer/power.py b/divide_and_conquer/power.py new file mode 100644 index 000000000000..f2e023afd536 --- /dev/null +++ b/divide_and_conquer/power.py @@ -0,0 +1,33 @@ +def actual_power(a: int, b: int): + """ + Function using divide and conquer to calculate a^b. + It only works for integer a,b. + """ + if b == 0: + return 1 + if (b % 2) == 0: + return actual_power(a, int(b / 2)) * actual_power(a, int(b / 2)) + else: + return a * actual_power(a, int(b / 2)) * actual_power(a, int(b / 2)) + + +def power(a: int, b: int) -> float: + """ + >>> power(4,6) + 4096 + >>> power(2,3) + 8 + >>> power(-2,3) + -8 + >>> power(2,-3) + 0.125 + >>> power(-2,-3) + -0.125 + """ + if b < 0: + return 1 / actual_power(a, b) + return actual_power(a, b) + + +if __name__ == "__main__": + print(power(-2, -3)) diff --git a/divide_and_conquer/strassen_matrix_multiplication.py b/divide_and_conquer/strassen_matrix_multiplication.py new file mode 100644 index 000000000000..c0725b1c951f --- /dev/null +++ b/divide_and_conquer/strassen_matrix_multiplication.py @@ -0,0 +1,161 @@ +import math +from typing import List, Tuple + + +def default_matrix_multiplication(a: List, b: List) -> List: + """ + Multiplication only for 2x2 matrices + """ + if len(a) != 2 or len(a[0]) != 2 or len(b) != 2 or len(b[0]) != 2: + raise Exception("Matrices are not 2x2") + new_matrix = [ + [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], + [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], + ] + return new_matrix + + +def matrix_addition(matrix_a: List, matrix_b: List): + return [ + [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] + for row in range(len(matrix_a)) + ] + + +def matrix_subtraction(matrix_a: List, matrix_b: List): + return [ + [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] + for row in range(len(matrix_a)) + ] + + +def split_matrix(a: List,) -> Tuple[List, List, List, List]: + """ + Given an even length matrix, returns the top_left, top_right, bot_left, bot_right quadrant. + + >>> split_matrix([[4,3,2,4],[2,3,1,1],[6,5,4,3],[8,4,1,6]]) + ([[4, 3], [2, 3]], [[2, 4], [1, 1]], [[6, 5], [8, 4]], [[4, 3], [1, 6]]) + >>> split_matrix([[4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6],[4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6]]) + ([[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]]) + """ + if len(a) % 2 != 0 or len(a[0]) % 2 != 0: + raise Exception("Odd matrices are not supported!") + + matrix_length = len(a) + mid = matrix_length // 2 + + top_right = [[a[i][j] for j in range(mid, matrix_length)] for i in range(mid)] + bot_right = [ + [a[i][j] for j in range(mid, matrix_length)] for i in range(mid, matrix_length) + ] + + top_left = [[a[i][j] for j in range(mid)] for i in range(mid)] + bot_left = [[a[i][j] for j in range(mid)] for i in range(mid, matrix_length)] + + return top_left, top_right, bot_left, bot_right + + +def matrix_dimensions(matrix: List) -> Tuple[int, int]: + return len(matrix), len(matrix[0]) + + +def print_matrix(matrix: List) -> None: + for i in range(len(matrix)): + print(matrix[i]) + + +def actual_strassen(matrix_a: List, matrix_b: List) -> List: + """ + Recursive function to calculate the product of two matrices, using the Strassen Algorithm. + It only supports even length matrices. + """ + if matrix_dimensions(matrix_a) == (2, 2): + return default_matrix_multiplication(matrix_a, matrix_b) + + a, b, c, d = split_matrix(matrix_a) + e, f, g, h = split_matrix(matrix_b) + + t1 = actual_strassen(a, matrix_subtraction(f, h)) + t2 = actual_strassen(matrix_addition(a, b), h) + t3 = actual_strassen(matrix_addition(c, d), e) + t4 = actual_strassen(d, matrix_subtraction(g, e)) + t5 = actual_strassen(matrix_addition(a, d), matrix_addition(e, h)) + t6 = actual_strassen(matrix_subtraction(b, d), matrix_addition(g, h)) + t7 = actual_strassen(matrix_subtraction(a, c), matrix_addition(e, f)) + + top_left = matrix_addition(matrix_subtraction(matrix_addition(t5, t4), t2), t6) + top_right = matrix_addition(t1, t2) + bot_left = matrix_addition(t3, t4) + bot_right = matrix_subtraction(matrix_subtraction(matrix_addition(t1, t5), t3), t7) + + # construct the new matrix from our 4 quadrants + new_matrix = [] + for i in range(len(top_right)): + new_matrix.append(top_left[i] + top_right[i]) + for i in range(len(bot_right)): + new_matrix.append(bot_left[i] + bot_right[i]) + return new_matrix + + +def strassen(matrix1: List, matrix2: List) -> List: + """ + >>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]]) + [[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]] + >>> strassen([[3,7,5,6,9],[1,5,3,7,8],[1,4,4,5,7]], [[2,4],[5,2],[1,7],[5,5],[7,8]]) + [[139, 163], [121, 134], [100, 121]] + """ + if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]: + raise Exception( + f"Unable to multiply these matrices, please check the dimensions. \nMatrix A:{matrix1} \nMatrix B:{matrix2}" + ) + dimension1 = matrix_dimensions(matrix1) + dimension2 = matrix_dimensions(matrix2) + + if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]: + return matrix1, matrix2 + + maximum = max(max(dimension1), max(dimension2)) + maxim = int(math.pow(2, math.ceil(math.log2(maximum)))) + new_matrix1 = matrix1 + new_matrix2 = matrix2 + + # Adding zeros to the matrices so that the arrays dimensions are the same and also power of 2 + for i in range(0, maxim): + if i < dimension1[0]: + for j in range(dimension1[1], maxim): + new_matrix1[i].append(0) + else: + new_matrix1.append([0] * maxim) + if i < dimension2[0]: + for j in range(dimension2[1], maxim): + new_matrix2[i].append(0) + else: + new_matrix2.append([0] * maxim) + + final_matrix = actual_strassen(new_matrix1, new_matrix2) + + # Removing the additional zeros + for i in range(0, maxim): + if i < dimension1[0]: + for j in range(dimension2[1], maxim): + final_matrix[i].pop() + else: + final_matrix.pop() + return final_matrix + + +if __name__ == "__main__": + matrix1= [ + [2, 3, 4, 5], + [6, 4, 3, 1], + [2, 3, 6, 7], + [3, 1, 2, 4], + [2, 3, 4, 5], + [6, 4, 3, 1], + [2, 3, 6, 7], + [3, 1, 2, 4], + [2, 3, 4, 5], + [6, 2, 3, 1], + ] + matrix2 = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] + print(strassen(matrix1, matrix2)) From 2cb6a6523e9cd716ece2559540019bdba2cc1295 Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Sun, 12 Jan 2020 14:58:47 +0530 Subject: [PATCH 511/594] Corrects failing check in master (#1676) --- divide_and_conquer/strassen_matrix_multiplication.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/divide_and_conquer/strassen_matrix_multiplication.py b/divide_and_conquer/strassen_matrix_multiplication.py index c0725b1c951f..bfced547d493 100644 --- a/divide_and_conquer/strassen_matrix_multiplication.py +++ b/divide_and_conquer/strassen_matrix_multiplication.py @@ -145,7 +145,7 @@ def strassen(matrix1: List, matrix2: List) -> List: if __name__ == "__main__": - matrix1= [ + matrix1 = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], From 4607cd48b6e3ded8be0c2d1915c9388367d79147 Mon Sep 17 00:00:00 2001 From: Leon Morten Richter <31622033+M0r13n@users.noreply.github.com> Date: Sun, 12 Jan 2020 10:30:40 +0100 Subject: [PATCH 512/594] Add a program to evaluate a string in prefix notation (Polish Notation) (#1675) * Create infix_evaluation.py * fix doctests * Rename infix_evaluation.py to prefix_evaluation.py * Add prefix_evaluation.py to directory --- DIRECTORY.md | 1 + data_structures/stacks/prefix_evaluation.py | 60 +++++++++++++++++++++ 2 files changed, 61 insertions(+) create mode 100644 data_structures/stacks/prefix_evaluation.py diff --git a/DIRECTORY.md b/DIRECTORY.md index 73ecbc36fdc4..1116e8539536 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -127,6 +127,7 @@ * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) + * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/prefix_evaluation.py) ## Digital Image Processing * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) diff --git a/data_structures/stacks/prefix_evaluation.py b/data_structures/stacks/prefix_evaluation.py new file mode 100644 index 000000000000..00df2c1e63b0 --- /dev/null +++ b/data_structures/stacks/prefix_evaluation.py @@ -0,0 +1,60 @@ +""" +Python3 program to evaluate a prefix expression. +""" + +calc = { + "+": lambda x, y: x + y, + "-": lambda x, y: x - y, + "*": lambda x, y: x * y, + "/": lambda x, y: x / y, +} + + +def is_operand(c): + """ + Return True if the given char c is an operand, e.g. it is a number + + >>> is_operand("1") + True + >>> is_operand("+") + False + """ + return c.isdigit() + + +def evaluate(expression): + """ + Evaluate a given expression in prefix notation. + Asserts that the given expression is valid. + + >>> evaluate("+ 9 * 2 6") + 21 + >>> evaluate("/ * 10 2 + 4 1 ") + 4.0 + """ + stack = [] + + # iterate over the string in reverse order + for c in expression.split()[::-1]: + + # push operand to stack + if is_operand(c): + stack.append(int(c)) + + else: + # pop values from stack can calculate the result + # push the result onto the stack again + o1 = stack.pop() + o2 = stack.pop() + stack.append(calc[c](o1, o2)) + + return stack.pop() + + +# Driver code +if __name__ == "__main__": + test_expression = "+ 9 * 2 6" + print(evaluate(test_expression)) + + test_expression = "/ * 10 2 + 4 1 " + print(evaluate(test_expression)) From 75523f9c1a9cc8e6aaa0b07ea652a693c7846f13 Mon Sep 17 00:00:00 2001 From: shrabian <58838321+shrabian@users.noreply.github.com> Date: Tue, 14 Jan 2020 03:22:18 +1100 Subject: [PATCH 513/594] A recursive insertion sort (#1683) * A recursive insertion sort * added doctests and typehints --- sorts/recursive_insertion_sort.py | 72 +++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 sorts/recursive_insertion_sort.py diff --git a/sorts/recursive_insertion_sort.py b/sorts/recursive_insertion_sort.py new file mode 100644 index 000000000000..a8bd2b9114ad --- /dev/null +++ b/sorts/recursive_insertion_sort.py @@ -0,0 +1,72 @@ +""" +A recursive implementation of the insertion sort algorithm +""" + +from typing import List + +def rec_insertion_sort(collection: List, n: int): + """ + Given a collection of numbers and its length, sorts the collections + in ascending order + + :param collection: A mutable collection of comparable elements + :param n: The length of collections + + >>> col = [1, 2, 1] + >>> rec_insertion_sort(col, len(col)) + >>> print(col) + [1, 1, 2] + + >>> col = [2, 1, 0, -1, -2] + >>> rec_insertion_sort(col, len(col)) + >>> print(col) + [-2, -1, 0, 1, 2] + + >>> col = [1] + >>> rec_insertion_sort(col, len(col)) + >>> print(col) + [1] + """ + #Checks if the entire collection has been sorted + if len(collection) <= 1 or n <= 1: + return + + + insert_next(collection, n-1) + rec_insertion_sort(collection, n-1) + +def insert_next(collection: List, index: int): + """ + Inserts the '(index-1)th' element into place + + >>> col = [3, 2, 4, 2] + >>> insert_next(col, 1) + >>> print(col) + [2, 3, 4, 2] + + >>> col = [3, 2, 3] + >>> insert_next(col, 2) + >>> print(col) + [3, 2, 3] + + >>> col = [] + >>> insert_next(col, 1) + >>> print(col) + [] + """ + #Checks order between adjacent elements + if index >= len(collection) or collection[index - 1] <= collection[index]: + return + + #Swaps adjacent elements since they are not in ascending order + collection[index - 1], collection[index] = ( + collection[index], collection[index - 1] + ) + + insert_next(collection, index + 1) + +if __name__ == "__main__": + numbers = input("Enter integers seperated by spaces: ") + numbers = [int(num) for num in numbers.split()] + rec_insertion_sort(numbers, len(numbers)) + print(numbers) From b492e6441708fc82e85d44cc87353178afd85342 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 13 Jan 2020 19:56:06 +0100 Subject: [PATCH 514/594] Create pull_request_template.md (#1684) * Create pull_request_template.md * fixup! Format Python code with psf/black push * Update pull_request_template.md * updating DIRECTORY.md * Update pull_request_template.md * Update pull_request_template.md * Update pull_request_template.md * Update pull_request_template.md * Update pull_request_template.md * Typos and formatting Co-authored-by: John Law --- .github/pull_request_template.md | 19 +++++++++++++++++++ DIRECTORY.md | 5 ++++- sorts/recursive_insertion_sort.py | 15 +++++++++------ 3 files changed, 32 insertions(+), 7 deletions(-) create mode 100644 .github/pull_request_template.md diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md new file mode 100644 index 000000000000..2f130896ebe3 --- /dev/null +++ b/.github/pull_request_template.md @@ -0,0 +1,19 @@ +### **Describe your change:** + + + +* [ ] Add an algorithm? +* [ ] Fix a bug or typo in an existing algorithm? +* [ ] Documentation change? + +### **Checklist:** +* [ ] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). +* [ ] This pull request is all my own work -- I have not plagiarized. +* [ ] I know that pull requests will not be merged if they fail the automated tests. +* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. +* [ ] All new Python files are placed inside an existing directory. +* [ ] All filenames are in all lowercase characters with no spaces or dashes. +* [ ] All functions and variable names follow Python naming conventions. +* [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). +* [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. +* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. diff --git a/DIRECTORY.md b/DIRECTORY.md index 1116e8539536..75dea10d34dd 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -122,12 +122,12 @@ * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) + * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) - * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/prefix_evaluation.py) ## Digital Image Processing * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) @@ -152,6 +152,8 @@ * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) + * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) + * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) @@ -537,6 +539,7 @@ * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive-Quick-Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive-quick-sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) + * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) diff --git a/sorts/recursive_insertion_sort.py b/sorts/recursive_insertion_sort.py index a8bd2b9114ad..39a903dd1bcb 100644 --- a/sorts/recursive_insertion_sort.py +++ b/sorts/recursive_insertion_sort.py @@ -4,6 +4,7 @@ from typing import List + def rec_insertion_sort(collection: List, n: int): """ Given a collection of numbers and its length, sorts the collections @@ -27,13 +28,13 @@ def rec_insertion_sort(collection: List, n: int): >>> print(col) [1] """ - #Checks if the entire collection has been sorted + # Checks if the entire collection has been sorted if len(collection) <= 1 or n <= 1: return + insert_next(collection, n - 1) + rec_insertion_sort(collection, n - 1) - insert_next(collection, n-1) - rec_insertion_sort(collection, n-1) def insert_next(collection: List, index: int): """ @@ -54,17 +55,19 @@ def insert_next(collection: List, index: int): >>> print(col) [] """ - #Checks order between adjacent elements + # Checks order between adjacent elements if index >= len(collection) or collection[index - 1] <= collection[index]: return - #Swaps adjacent elements since they are not in ascending order + # Swaps adjacent elements since they are not in ascending order collection[index - 1], collection[index] = ( - collection[index], collection[index - 1] + collection[index], + collection[index - 1], ) insert_next(collection, index + 1) + if __name__ == "__main__": numbers = input("Enter integers seperated by spaces: ") numbers = [int(num) for num in numbers.split()] From 56e7ae01d2ae04fa46f32937dd8077134193a792 Mon Sep 17 00:00:00 2001 From: lanzhiwang Date: Tue, 14 Jan 2020 17:02:15 +0800 Subject: [PATCH 515/594] enhance swapping code in link (#1660) * enhance swapping code in link * heapify do not recursive * fix * fix identifier and add test * typing.Any and LinkedList instead of Linkedlist * typing.Any and LinkedList instead of Linkedlist --- data_structures/linked_list/swap_nodes.py | 69 +++++++++-------------- 1 file changed, 26 insertions(+), 43 deletions(-) diff --git a/data_structures/linked_list/swap_nodes.py b/data_structures/linked_list/swap_nodes.py index a6a50091e3e0..bb177f419c30 100644 --- a/data_structures/linked_list/swap_nodes.py +++ b/data_structures/linked_list/swap_nodes.py @@ -1,72 +1,55 @@ +from typing import Any + + class Node: - def __init__(self, data): + def __init__(self, data: Any): self.data = data self.next = None -class Linkedlist: +class LinkedList: def __init__(self): self.head = None def print_list(self): temp = self.head while temp is not None: - print(temp.data) + print(temp.data, end=' ') temp = temp.next + print() # adding nodes - def push(self, new_data): + def push(self, new_data: Any): new_node = Node(new_data) new_node.next = self.head self.head = new_node # swapping nodes - def swapNodes(self, d1, d2): - prevD1 = None - prevD2 = None - if d1 == d2: + def swap_nodes(self, node_data_1, node_data_2): + if node_data_1 == node_data_2: return else: - # find d1 - D1 = self.head - while D1 is not None and D1.data != d1: - prevD1 = D1 - D1 = D1.next - # find d2 - D2 = self.head - while D2 is not None and D2.data != d2: - prevD2 = D2 - D2 = D2.next - if D1 is None and D2 is None: - return - # if D1 is head - if prevD1 is not None: - prevD1.next = D2 - else: - self.head = D2 - # if D2 is head - if prevD2 is not None: - prevD2.next = D1 - else: - self.head = D1 - temp = D1.next - D1.next = D2.next - D2.next = temp + node_1 = self.head + while node_1 is not None and node_1.data != node_data_1: + node_1 = node_1.next + node_2 = self.head + while node_2 is not None and node_2.data != node_data_2: + node_2 = node_2.next + + if node_1 is None or node_2 is None: + return -# swapping code ends here + node_1.data, node_2.data = node_2.data, node_1.data if __name__ == "__main__": - list = Linkedlist() - list.push(5) - list.push(4) - list.push(3) - list.push(2) - list.push(1) + ll = LinkedList() + for i in range(5, 0, -1): + ll.push(i) - list.print_list() + ll.print_list() - list.swapNodes(1, 4) + ll.swap_nodes(1, 4) print("After swapping") - list.print_list() + ll.print_list() From d09a805804641aabce64cf0fe97a5edc623b3380 Mon Sep 17 00:00:00 2001 From: Logan Lieou Date: Tue, 14 Jan 2020 03:21:02 -0600 Subject: [PATCH 516/594] Typo? (#1653) * Typo? newNod -> newNode * newNode -> new_node Co-authored-by: Christian Clauss --- data_structures/linked_list/singly_linked_list.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index 8730a6d2a9e8..fb04ce10398e 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -21,10 +21,10 @@ def insert_tail(self, data) -> None: temp.next = Node(data) # create node & link to tail def insert_head(self, data) -> None: - newNod = Node(data) # create a new node + new_node = Node(data) # create a new node if self.head: - newNod.next = self.head # link newNode to head - self.head = newNod # make NewNode as head + new_node.next = self.head # link new_node to head + self.head = new_node # make NewNode as head def print_list(self) -> None: # print every node data temp = self.head From fc4c0f5bfda4fe90246d99767902dbf0a200c0d5 Mon Sep 17 00:00:00 2001 From: lanzhiwang Date: Tue, 14 Jan 2020 19:16:11 +0800 Subject: [PATCH 517/594] implement max heap and more pythonic (#1685) * implement max heap and more pythonic * add doctests for heap --- data_structures/heap/heap.py | 182 ++++++++++++++++++++++------------- 1 file changed, 115 insertions(+), 67 deletions(-) diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py index b020ab067cc8..e4fe8f81154b 100644 --- a/data_structures/heap/heap.py +++ b/data_structures/heap/heap.py @@ -1,86 +1,134 @@ -#!/usr/bin/python +#!/usr/bin/python3 -# This heap class start from here. -class Heap: - def __init__(self): # Default constructor of heap class. + +class Heap(object): + """ + >>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5] + >>> h = Heap() + >>> h.build_heap(unsorted) + >>> h.display() + [209, 201, 25, 103, 107, 15, 1, 9, 7, 11, 5] + >>> + >>> h.get_max() + 209 + >>> h.display() + [201, 107, 25, 103, 11, 15, 1, 9, 7, 5] + >>> + >>> h.insert(100) + >>> h.display() + [201, 107, 25, 103, 100, 15, 1, 9, 7, 5, 11] + >>> + >>> h.heap_sort() + >>> h.display() + [1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201] + >>> + """ + def __init__(self): self.h = [] - self.currsize = 0 + self.curr_size = 0 - def leftChild(self, i): - if 2 * i + 1 < self.currsize: - return 2 * i + 1 + def get_left_child_index(self, i): + left_child_index = 2 * i + 1 + if left_child_index < self.curr_size: + return left_child_index return None - def rightChild(self, i): - if 2 * i + 2 < self.currsize: - return 2 * i + 2 + def get_right_child(self, i): + right_child_index = 2 * i + 2 + if right_child_index < self.curr_size: + return right_child_index return None - def maxHeapify(self, node): - if node < self.currsize: - m = node - lc = self.leftChild(node) - rc = self.rightChild(node) - if lc is not None and self.h[lc] > self.h[m]: - m = lc - if rc is not None and self.h[rc] > self.h[m]: - m = rc - if m != node: - temp = self.h[node] - self.h[node] = self.h[m] - self.h[m] = temp - self.maxHeapify(m) - - def buildHeap( - self, a - ): # This function is used to build the heap from the data container 'a'. - self.currsize = len(a) - self.h = list(a) - for i in range(self.currsize // 2, -1, -1): - self.maxHeapify(i) - - def getMax(self): # This function is used to get maximum value from the heap. - if self.currsize >= 1: + def max_heapify(self, index): + if index < self.curr_size: + largest = index + lc = self.get_left_child_index(index) + rc = self.get_right_child(index) + if lc is not None and self.h[lc] > self.h[largest]: + largest = lc + if rc is not None and self.h[rc] > self.h[largest]: + largest = rc + if largest != index: + self.h[largest], self.h[index] = self.h[index], self.h[largest] + self.max_heapify(largest) + + def build_heap(self, collection): + self.curr_size = len(collection) + self.h = list(collection) + if self.curr_size <= 1: + return + for i in range(self.curr_size // 2 - 1, -1, -1): + self.max_heapify(i) + + def get_max(self): + if self.curr_size >= 2: me = self.h[0] - temp = self.h[0] - self.h[0] = self.h[self.currsize - 1] - self.h[self.currsize - 1] = temp - self.currsize -= 1 - self.maxHeapify(0) + self.h[0] = self.h.pop(-1) + self.curr_size -= 1 + self.max_heapify(0) return me + elif self.curr_size == 1: + self.curr_size -= 1 + return self.h.pop(-1) return None - def heapSort(self): # This function is used to sort the heap. - size = self.currsize - while self.currsize - 1 >= 0: - temp = self.h[0] - self.h[0] = self.h[self.currsize - 1] - self.h[self.currsize - 1] = temp - self.currsize -= 1 - self.maxHeapify(0) - self.currsize = size - - def insert(self, data): # This function is used to insert data in the heap. + def heap_sort(self): + size = self.curr_size + for j in range(size - 1, 0, -1): + self.h[0], self.h[j] = self.h[j], self.h[0] + self.curr_size -= 1 + self.max_heapify(0) + self.curr_size = size + + def insert(self, data): self.h.append(data) - curr = self.currsize - self.currsize += 1 - while self.h[curr] > self.h[curr / 2]: - temp = self.h[curr / 2] - self.h[curr / 2] = self.h[curr] - self.h[curr] = temp - curr = curr / 2 - - def display(self): # This function is used to print the heap. + curr = (self.curr_size - 1) // 2 + self.curr_size += 1 + while curr >= 0: + self.max_heapify(curr) + curr = (curr - 1) // 2 + + def display(self): print(self.h) def main(): - l = list(map(int, input().split())) - h = Heap() - h.buildHeap(l) - h.heapSort() - h.display() + for unsorted in [ + [], + [0], + [2], + [3, 5], + [5, 3], + [5, 5], + [0, 0, 0, 0], + [1, 1, 1, 1], + [2, 2, 3, 5], + [0, 2, 2, 3, 5], + [2, 5, 3, 0, 2, 3, 0, 3], + [6, 1, 2, 7, 9, 3, 4, 5, 10, 8], + [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5], + [-45, -2, -5] + ]: + print('source unsorted list: %s' % unsorted) + + h = Heap() + h.build_heap(unsorted) + print('after build heap: ', end=' ') + h.display() + + print('max value: %s' % h.get_max()) + print('delete max value: ', end=' ') + h.display() + + h.insert(100) + print('after insert new value 100: ', end=' ') + h.display() + + h.heap_sort() + print('heap sort: ', end=' ') + h.display() + print() -if __name__ == "__main__": +if __name__ == '__main__': main() From 38bad6b1e85e033d1367ce25b5c2000e7f790e7a Mon Sep 17 00:00:00 2001 From: Cole Mollica <30614241+coleman2246@users.noreply.github.com> Date: Wed, 15 Jan 2020 16:21:26 -0500 Subject: [PATCH 518/594] Implemented Square Root Algorithm (#1687) * Added to maths and strings * added changes suggest by cclauss * added square root function * Fixed type hinting * fixed type error * Fixed another type error --- maths/square_root.py | 63 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) create mode 100644 maths/square_root.py diff --git a/maths/square_root.py b/maths/square_root.py new file mode 100644 index 000000000000..46e791ab5662 --- /dev/null +++ b/maths/square_root.py @@ -0,0 +1,63 @@ +import math + + +def fx(x: float, a: float) -> float: + return math.pow(x, 2) - a + + +def fx_derivative(x: float) -> float: + return 2 * x + + +def get_initial_point(a: float) -> float: + start = 2.0 + + while start <= a: + start = math.pow(start, 2) + + return start + + +def square_root_iterative( + a: float, max_iter: int = 9999, tolerance: float = 0.00000000000001 +) -> float: + """ + Sqaure root is aproximated using Newtons method. + https://en.wikipedia.org/wiki/Newton%27s_method + + >>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001 for i in range(0, 500)) + True + + >>> square_root_iterative(-1) + Traceback (most recent call last): + ... + ValueError: math domain error + + >>> square_root_iterative(4) + 2.0 + + >>> square_root_iterative(3.2) + 1.788854381999832 + + >>> square_root_iterative(140) + 11.832159566199232 + """ + + if a < 0: + raise ValueError("math domain error") + + value = get_initial_point(a) + + for i in range(max_iter): + prev_value = value + value = value - fx(value, a) / fx_derivative(value) + if abs(prev_value - value) < tolerance: + return value + + return value + + +if __name__ == "__main__": + from doctest import testmod + + testmod() From c5b376d52db78edf6cdaef05c84a991daece80ff Mon Sep 17 00:00:00 2001 From: Sombit Bose Date: Thu, 16 Jan 2020 19:49:02 +0530 Subject: [PATCH 519/594] Solution for problem 30 of Euler Project (#1690) * Create soln.py Solution for problem 30 of Euler Project * Update soln.py * update soln.py modified the changes * if __name__ == "__main__": Co-authored-by: Christian Clauss --- project_euler/problem_30/soln.py | 34 ++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 project_euler/problem_30/soln.py diff --git a/project_euler/problem_30/soln.py b/project_euler/problem_30/soln.py new file mode 100644 index 000000000000..0f4df66ae16a --- /dev/null +++ b/project_euler/problem_30/soln.py @@ -0,0 +1,34 @@ +""" Problem Statement (Digit Fifth Power ): https://projecteuler.net/problem=30 + +Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: + +1634 = 1^4 + 6^4 + 3^4 + 4^4 +8208 = 8^4 + 2^4 + 0^4 + 8^4 +9474 = 9^4 + 4^4 + 7^4 + 4^4 +As 1 = 1^4 is not a sum it is not included. + +The sum of these numbers is 1634 + 8208 + 9474 = 19316. + +Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. + +(9^5)=59,049‬ +59049*7=4,13,343 (which is only 6 digit number ) +So, number greater than 9,99,999 are rejected +and also 59049*3=1,77,147 (which exceeds the criteria of number being 3 digit) +So, n>999 +and hence a bound between (1000,1000000) +""" + + +def digitsum(s: str) -> int: + """ + >>> all(digitsum(str(i)) == (1 if i == 1 else 0) for i in range(100)) + True + """ + i = sum(pow(int(c), 5) for c in s) + return i if i == int(s) else 0 + + +if __name__ == "__main__": + count = sum(digitsum(str(i)) for i in range(1000,1000000)) + print(count) # --> 443839 From c01d1787985d99e274029d024c27b7aff91683d8 Mon Sep 17 00:00:00 2001 From: Faraz Ahmed Khan <31242842+fk03983@users.noreply.github.com> Date: Fri, 17 Jan 2020 16:32:06 -0600 Subject: [PATCH 520/594] Added implementation for simulated annealing (#1679) * added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Update and rename optimization/hill_climbing.py to searches/hill_climbing.py * added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Rebased * added simulated annealing.py * added final comments and test * black formatted * restricted search domain Co-authored-by: Christian Clauss --- searches/simulated_annealing.py | 134 ++++++++++++++++++++++++++++++++ 1 file changed, 134 insertions(+) create mode 100644 searches/simulated_annealing.py diff --git a/searches/simulated_annealing.py b/searches/simulated_annealing.py new file mode 100644 index 000000000000..5fec87bed321 --- /dev/null +++ b/searches/simulated_annealing.py @@ -0,0 +1,134 @@ +# https://en.wikipedia.org/wiki/Simulated_annealing +import math, random +from hill_climbing import SearchProblem + + +def simulated_annealing( + search_prob, + find_max: bool = True, + max_x: float = math.inf, + min_x: float = -math.inf, + max_y: float = math.inf, + min_y: float = -math.inf, + visualization: bool = False, + start_temperate: float = 100, + rate_of_decrease: float = 0.01, + threshold_temp: float = 1, +) -> SearchProblem: + """ + implementation of the simulated annealing algorithm. We start with a given state, find + all its neighbors. Pick a random neighbor, if that neighbor improves the solution, we move + in that direction, if that neighbor does not improve the solution, we generate a random + real number between 0 and 1, if the number is within a certain range (calculated using + temperature) we move in that direction, else we pick another neighbor randomly and repeat the process. + Args: + search_prob: The search state at the start. + find_max: If True, the algorithm should find the minimum else the minimum. + max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. + visualization: If True, a matplotlib graph is displayed. + start_temperate: the initial temperate of the system when the program starts. + rate_of_decrease: the rate at which the temperate decreases in each iteration. + threshold_temp: the threshold temperature below which we end the search + Returns a search state having the maximum (or minimum) score. + """ + search_end = False + current_state = search_prob + current_temp = start_temperate + scores = [] + iterations = 0 + best_state = None + + while not search_end: + current_score = current_state.score() + if best_state is None or current_score > best_state.score(): + best_state = current_state + scores.append(current_score) + iterations += 1 + next_state = None + neighbors = current_state.get_neighbors() + while ( + next_state is None and neighbors + ): # till we do not find a neighbor that we can move to + index = random.randint(0, len(neighbors) - 1) # picking a random neighbor + picked_neighbor = neighbors.pop(index) + change = picked_neighbor.score() - current_score + + if ( + picked_neighbor.x > max_x + or picked_neighbor.x < min_x + or picked_neighbor.y > max_y + or picked_neighbor.y < min_y + ): + continue # neighbor outside our bounds + + if not find_max: + change = change * -1 # incase we are finding minimum + if change > 0: # improves the solution + next_state = picked_neighbor + else: + probabililty = (math.e) ** ( + change / current_temp + ) # probability generation function + if random.random() < probabililty: # random number within probability + next_state = picked_neighbor + current_temp = current_temp - (current_temp * rate_of_decrease) + + if ( + current_temp < threshold_temp or next_state is None + ): # temperature below threshold, or + # couldnt find a suitaable neighbor + search_end = True + else: + current_state = next_state + + if visualization: + import matplotlib.pyplot as plt + + plt.plot(range(iterations), scores) + plt.xlabel("Iterations") + plt.ylabel("Function values") + plt.show() + return best_state + + +if __name__ == "__main__": + + def test_f1(x, y): + return (x ** 2) + (y ** 2) + + # starting the problem with initial coordinates (12, 47) + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) + local_min = simulated_annealing( + prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True + ) + print( + "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" + ) + + # starting the problem with initial coordinates (12, 47) + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) + local_min = simulated_annealing( + prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True + ) + print( + "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" + ) + + def test_f2(x, y): + return (3 * x ** 2) - (6 * y) + + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) + local_min = simulated_annealing(prob, find_max=False, visualization=True) + print( + "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " + f"{local_min.score()}" + ) + + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) + local_min = simulated_annealing(prob, find_max=True, visualization=True) + print( + "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " + f"{local_min.score()}" + ) From bfcb95b297a2b28669203642ec63b2ef6fbd8146 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 18 Jan 2020 13:24:33 +0100 Subject: [PATCH 521/594] Create codespell.yml (#1698) * fixup! Format Python code with psf/black push * Create codespell.yml * fixup! Format Python code with psf/black push --- .github/workflows/codespell.yml | 14 ++++++++ DIRECTORY.md | 12 ++++--- .../{2D_problems.JPG => 2D_problems.jpg} | Bin .../{2D_problems_1.JPG => 2D_problems_1.jpg} | Bin backtracking/n_queens.py | 8 ++--- ciphers/hill_cipher.py | 6 ++-- ciphers/rsa_cipher.py | 2 +- ciphers/rsa_key_generator.py | 8 ++--- compression/burrows_wheeler.py | 4 +-- compression/huffman.py | 2 +- compression/peak_signal_to_noise_ratio.py | 2 +- conversions/decimal_to_octal.py | 2 +- .../binary_tree/binary_search_tree.py | 2 +- .../binary_tree/lowest_common_ancestor.py | 2 +- .../number_of_possible_binary_trees.py | 2 +- data_structures/binary_tree/red_black_tree.py | 6 ++-- data_structures/binary_tree/treap.py | 4 +-- data_structures/heap/binomial_heap.py | 2 +- data_structures/heap/heap.py | 17 +++++----- data_structures/linked_list/deque_doubly.py | 2 +- .../linked_list/doubly_linked_list.py | 2 +- .../linked_list/singly_linked_list.py | 2 +- data_structures/linked_list/swap_nodes.py | 2 +- data_structures/stacks/postfix_evaluation.py | 2 +- data_structures/stacks/stock_span_problem.py | 2 +- digital_image_processing/index_calculation.py | 6 ++-- .../test_digital_image_processing.py | 2 +- dynamic_programming/bitmask.py | 2 +- dynamic_programming/knapsack.py | 4 +-- dynamic_programming/longest_sub_array.py | 2 +- ...e.py => max_sum_contiguous_subsequence.py} | 0 dynamic_programming/subset_generation.py | 23 ++++++------- .../{recieve_file.py => receive_file.py} | 0 graphs/a_star.py | 2 +- graphs/basic_graphs.py | 2 +- graphs/breadth_first_search.py | 8 ++--- graphs/depth_first_search.py | 6 ++-- graphs/dijkstra.py | 4 +-- graphs/dijkstra_algorithm.py | 6 ++-- ...irected_and_undirected_(weighted)_graph.py | 18 +++++----- ...stic_astar.py => multi_heuristic_astar.py} | 0 hashes/sha1.py | 4 +-- linear_algebra/README.md | 2 +- machine_learning/k_nearest_neighbours.py | 2 +- machine_learning/scoring_functions.py | 2 +- .../sequential_minimum_optimization.py | 31 ++++++++++-------- machine_learning/support_vector_machines.py | 2 +- maths/matrix_exponentiation.py | 4 +-- maths/mobius_function.py | 2 +- maths/prime_sieve_eratosthenes.py | 10 +++--- maths/simpson_rule.py | 2 +- maths/square_root.py | 2 +- maths/trapezoidal_rule.py | 2 +- maths/zellers_congruence.py | 16 ++++----- matrix/matrix_class.py | 2 +- matrix/spiral_print.py | 2 +- networking_flow/minimum_cut.py | 2 +- neural_network/convolution_neural_network.py | 24 +++++++------- neural_network/perceptron.py | 4 +-- other/linear_congruential_generator.py | 2 +- other/primelib.py | 6 ++-- project_euler/problem_04/sol1.py | 2 +- project_euler/problem_30/soln.py | 2 +- project_euler/problem_551/sol1.py | 4 +-- searches/hill_climbing.py | 2 +- searches/interpolation_search.py | 4 +-- searches/jump_search.py | 8 ++--- searches/simulated_annealing.py | 8 ++--- searches/tabu_search.py | 2 +- sorts/bitonic_sort.py | 2 +- sorts/double_sort.py | 6 ++-- sorts/pigeonhole_sort.py | 2 +- sorts/recursive_insertion_sort.py | 2 +- strings/aho-corasick.py | 2 +- strings/boyer_moore_search.py | 6 ++-- strings/manacher.py | 9 ++--- strings/split.py | 12 +++---- .../{word_occurence.py => word_occurrence.py} | 6 ++-- 78 files changed, 206 insertions(+), 188 deletions(-) create mode 100644 .github/workflows/codespell.yml rename arithmetic_analysis/image_data/{2D_problems.JPG => 2D_problems.jpg} (100%) rename arithmetic_analysis/image_data/{2D_problems_1.JPG => 2D_problems_1.jpg} (100%) rename dynamic_programming/{max_sum_contigous_subsequence.py => max_sum_contiguous_subsequence.py} (100%) rename file_transfer/{recieve_file.py => receive_file.py} (100%) rename graphs/{multi_hueristic_astar.py => multi_heuristic_astar.py} (100%) rename strings/{word_occurence.py => word_occurrence.py} (87%) diff --git a/.github/workflows/codespell.yml b/.github/workflows/codespell.yml new file mode 100644 index 000000000000..1e9b052cafe8 --- /dev/null +++ b/.github/workflows/codespell.yml @@ -0,0 +1,14 @@ +# GitHub Action to automate the identification of common misspellings in text files +# https://github.com/codespell-project/codespell +name: codespell +on: [push, pull_request] +jobs: + codespell: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - uses: actions/setup-python@v1 + - run: pip install codespell flake8 + - run: | + SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt,*.bak,*.gif,*.jpeg,*.jpg,*.json,*.png,*.pyc" + codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP diff --git a/DIRECTORY.md b/DIRECTORY.md index 75dea10d34dd..eb17b3a7e78e 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -177,14 +177,14 @@ * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) - * [Max Sum Contigous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contigous_subsequence.py) + * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## File Transfer - * [Recieve File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/recieve_file.py) + * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) ## Fuzzy Logic @@ -219,7 +219,7 @@ * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) - * [Multi Hueristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_hueristic_astar.py) + * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) @@ -319,6 +319,7 @@ * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) + * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) @@ -469,6 +470,8 @@ * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_28/sol1.py) * Problem 29 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_29/solution.py) + * Problem 30 + * [Soln](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_30/soln.py) * Problem 31 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_31/sol1.py) * Problem 32 @@ -508,6 +511,7 @@ * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple-Binary-Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple-binary-search.py) + * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) @@ -564,7 +568,7 @@ * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) - * [Word Occurence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurence.py) + * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) diff --git a/arithmetic_analysis/image_data/2D_problems.JPG b/arithmetic_analysis/image_data/2D_problems.jpg similarity index 100% rename from arithmetic_analysis/image_data/2D_problems.JPG rename to arithmetic_analysis/image_data/2D_problems.jpg diff --git a/arithmetic_analysis/image_data/2D_problems_1.JPG b/arithmetic_analysis/image_data/2D_problems_1.jpg similarity index 100% rename from arithmetic_analysis/image_data/2D_problems_1.JPG rename to arithmetic_analysis/image_data/2D_problems_1.jpg diff --git a/backtracking/n_queens.py b/backtracking/n_queens.py index f95357c82e21..c0db41496aee 100644 --- a/backtracking/n_queens.py +++ b/backtracking/n_queens.py @@ -40,8 +40,8 @@ def isSafe(board, row, column): def solve(board, row): """ - It creates a state space tree and calls the safe function untill it receives a - False Boolean and terminates that brach and backtracks to the next + It creates a state space tree and calls the safe function until it receives a + False Boolean and terminates that branch and backtracks to the next poosible solution branch. """ if row >= len(board): @@ -58,7 +58,7 @@ def solve(board, row): """ For every row it iterates through each column to check if it is feesible to place a queen there. - If all the combinations for that particaular branch are successfull the board is + If all the combinations for that particular branch are successful the board is reinitialized for the next possible combination. """ if isSafe(board, row, i): @@ -70,7 +70,7 @@ def solve(board, row): def printboard(board): """ - Prints the boards that have a successfull combination. + Prints the boards that have a successful combination. """ for i in range(len(board)): for j in range(len(board)): diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py index 05f716f8595e..ffc1d9793bf2 100644 --- a/ciphers/hill_cipher.py +++ b/ciphers/hill_cipher.py @@ -3,15 +3,15 @@ Hill Cipher: The below defined class 'HillCipher' implements the Hill Cipher algorithm. The Hill Cipher is an algorithm that implements modern linear algebra techniques -In this algortihm, you have an encryption key matrix. This is what will be used +In this algorithm, you have an encryption key matrix. This is what will be used in encoding and decoding your text. -Algortihm: +Algorithm: Let the order of the encryption key be N (as it is a square matrix). Your text is divided into batches of length N and converted to numerical vectors by a simple mapping starting with A=0 and so on. -The key is then mulitplied with the newly created batch vector to obtain the +The key is then multiplied with the newly created batch vector to obtain the encoded vector. After each multiplication modular 36 calculations are performed on the vectors so as to bring the numbers between 0 and 36 and then mapped with their corresponding alphanumerics. diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py index da3778ae96f0..3b9f5c143c85 100644 --- a/ciphers/rsa_cipher.py +++ b/ciphers/rsa_cipher.py @@ -6,7 +6,7 @@ def main(): filename = "encrypted_file.txt" - response = input(r"Encrypte\Decrypt [e\d]: ") + response = input(r"Encrypt\Decrypt [e\d]: ") if response.lower().startswith("e"): mode = "encrypt" diff --git a/ciphers/rsa_key_generator.py b/ciphers/rsa_key_generator.py index 729d31c08a02..0df31f0413c6 100644 --- a/ciphers/rsa_key_generator.py +++ b/ciphers/rsa_key_generator.py @@ -42,12 +42,12 @@ def makeKeyFiles(name, keySize): publicKey, privateKey = generateKey(keySize) print("\nWriting public key to file %s_pubkey.txt..." % name) - with open("%s_pubkey.txt" % name, "w") as fo: - fo.write("{},{},{}".format(keySize, publicKey[0], publicKey[1])) + with open("%s_pubkey.txt" % name, "w") as out_file: + out_file.write("{},{},{}".format(keySize, publicKey[0], publicKey[1])) print("Writing private key to file %s_privkey.txt..." % name) - with open("%s_privkey.txt" % name, "w") as fo: - fo.write("{},{},{}".format(keySize, privateKey[0], privateKey[1])) + with open("%s_privkey.txt" % name, "w") as out_file: + out_file.write("{},{},{}".format(keySize, privateKey[0], privateKey[1])) if __name__ == "__main__": diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py index 1c7939b39038..2a08c6092cda 100644 --- a/compression/burrows_wheeler.py +++ b/compression/burrows_wheeler.py @@ -157,11 +157,11 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: entry_msg = "Provide a string that I will generate its BWT transform: " s = input(entry_msg).strip() result = bwt_transform(s) - bwt_output_msg = "Burrows Wheeler tranform for string '{}' results in '{}'" + bwt_output_msg = "Burrows Wheeler transform for string '{}' results in '{}'" print(bwt_output_msg.format(s, result["bwt_string"])) original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"]) fmt = ( - "Reversing Burrows Wheeler tranform for entry '{}' we get original" + "Reversing Burrows Wheeler transform for entry '{}' we get original" " string '{}'" ) print(fmt.format(result["bwt_string"], original_string)) diff --git a/compression/huffman.py b/compression/huffman.py index 73c084351c85..3a3cbfa4b0c6 100644 --- a/compression/huffman.py +++ b/compression/huffman.py @@ -21,7 +21,7 @@ def __init__(self, freq, left, right): def parse_file(file_path): """ Read the file and build a dict of all letters and their - frequences, then convert the dict into a list of Letters. + frequencies, then convert the dict into a list of Letters. """ chars = {} with open(file_path) as f: diff --git a/compression/peak_signal_to_noise_ratio.py b/compression/peak_signal_to_noise_ratio.py index 5853aace8f96..f4a1ca41e14d 100644 --- a/compression/peak_signal_to_noise_ratio.py +++ b/compression/peak_signal_to_noise_ratio.py @@ -1,6 +1,6 @@ """ Peak signal-to-noise ratio - PSNR - https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio - Soruce: https://tutorials.techonical.com/how-to-calculate-psnr-value-of-two-images-using-python/ + Source: https://tutorials.techonical.com/how-to-calculate-psnr-value-of-two-images-using-python/ """ import math diff --git a/conversions/decimal_to_octal.py b/conversions/decimal_to_octal.py index b1829f1a3973..a89a2be982b8 100644 --- a/conversions/decimal_to_octal.py +++ b/conversions/decimal_to_octal.py @@ -24,7 +24,7 @@ def decimal_to_octal(num: int) -> str: def main(): - """Print octal equivelents of decimal numbers.""" + """Print octal equivalents of decimal numbers.""" print("\n2 in octal is:") print(decimal_to_octal(2)) # = 2 print("\n8 in octal is:") diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index c3c97bb02003..fe163132cdf3 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -15,7 +15,7 @@ def __repr__(self): if self.left is None and self.right is None: return str(self.value) - return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1,) + return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1) class BinarySearchTree: diff --git a/data_structures/binary_tree/lowest_common_ancestor.py b/data_structures/binary_tree/lowest_common_ancestor.py index 2109500a2581..f560eaa5ef29 100644 --- a/data_structures/binary_tree/lowest_common_ancestor.py +++ b/data_structures/binary_tree/lowest_common_ancestor.py @@ -11,7 +11,7 @@ def swap(a, b): return a, b -# creating sparse table which saves each nodes 2^ith parent +# creating sparse table which saves each nodes 2^i-th parent def creatSparse(max_node, parent): j = 1 while (1 << j) < max_node: diff --git a/data_structures/binary_tree/number_of_possible_binary_trees.py b/data_structures/binary_tree/number_of_possible_binary_trees.py index 71670d9691ac..d053ba31171f 100644 --- a/data_structures/binary_tree/number_of_possible_binary_trees.py +++ b/data_structures/binary_tree/number_of_possible_binary_trees.py @@ -41,7 +41,7 @@ def binomial_coefficient(n: int, k: int) -> int: def catalan_number(node_count: int) -> int: """ - We can find Catalan number many ways but here we use Binomial Coefficent because it + We can find Catalan number many ways but here we use Binomial Coefficient because it does the job in O(n) return the Catalan number of n using 2nCn/(n+1). diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py index 0884766504de..f038b587616d 100644 --- a/data_structures/binary_tree/red_black_tree.py +++ b/data_structures/binary_tree/red_black_tree.py @@ -12,7 +12,7 @@ class RedBlackTree: less strict, so it will perform faster for writing/deleting nodes and slower for reading in the average case, though, because they're both balanced binary search trees, both will get the same asymptotic - perfomance. + performance. To read more about them, https://en.wikipedia.org/wiki/Red–black_tree Unless otherwise specified, all asymptotic runtimes are specified in terms of the size of the tree. @@ -37,7 +37,7 @@ def __init__(self, label=None, color=0, parent=None, left=None, right=None): def rotate_left(self): """Rotate the subtree rooted at this node to the left and returns the new root to this subtree. - Perfoming one rotation can be done in O(1). + Performing one rotation can be done in O(1). """ parent = self.parent right = self.right @@ -656,7 +656,7 @@ def test_tree_traversal(): def test_tree_chaining(): - """Tests the three different tree chaning functions.""" + """Tests the three different tree chaining functions.""" tree = RedBlackTree(0) tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index d2e3fb88e8f7..26f021445ca4 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -21,7 +21,7 @@ def __repr__(self): return f"'{self.value}: {self.prior:.5}'" else: return pformat( - {f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1, + {f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1 ) def __str__(self): @@ -161,7 +161,7 @@ def main(): """After each command, program prints treap""" root = None print( - "enter numbers to creat a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. " + "enter numbers to create a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. " ) args = input() diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py index 7f570f1c755b..ac244023082a 100644 --- a/data_structures/heap/binomial_heap.py +++ b/data_structures/heap/binomial_heap.py @@ -49,7 +49,7 @@ class BinomialHeap: r""" Min-oriented priority queue implemented with the Binomial Heap data structure implemented with the BinomialHeap class. It supports: - - Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1 + - Insert element in a heap with n elements: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - Delete Min: O(logn) - Peek (return min without deleting it): O(1) diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py index e4fe8f81154b..b901c54a4284 100644 --- a/data_structures/heap/heap.py +++ b/data_structures/heap/heap.py @@ -23,6 +23,7 @@ class Heap(object): [1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201] >>> """ + def __init__(self): self.h = [] self.curr_size = 0 @@ -107,28 +108,28 @@ def main(): [2, 5, 3, 0, 2, 3, 0, 3], [6, 1, 2, 7, 9, 3, 4, 5, 10, 8], [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5], - [-45, -2, -5] + [-45, -2, -5], ]: - print('source unsorted list: %s' % unsorted) + print("source unsorted list: %s" % unsorted) h = Heap() h.build_heap(unsorted) - print('after build heap: ', end=' ') + print("after build heap: ", end=" ") h.display() - print('max value: %s' % h.get_max()) - print('delete max value: ', end=' ') + print("max value: %s" % h.get_max()) + print("delete max value: ", end=" ") h.display() h.insert(100) - print('after insert new value 100: ', end=' ') + print("after insert new value 100: ", end=" ") h.display() h.heap_sort() - print('heap sort: ', end=' ') + print("heap sort: ", end=" ") h.display() print() -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/data_structures/linked_list/deque_doubly.py b/data_structures/linked_list/deque_doubly.py index abc7bc1f769f..0898db679802 100644 --- a/data_structures/linked_list/deque_doubly.py +++ b/data_structures/linked_list/deque_doubly.py @@ -3,7 +3,7 @@ Operations: 1. insertion in the front -> O(1) 2. insertion in the end -> O(1) - 3. remove fron the front -> O(1) + 3. remove from the front -> O(1) 4. remove from the end -> O(1) """ diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 2864356c1d19..27b04ed39ad2 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -3,7 +3,7 @@ - This is an example of a double ended, doubly linked list. - Each link references the next link and the previous one. - A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together with next pointer and data which are there in singly linked list. - - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficent""" + - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficient""" class LinkedList: # making main class named linked list diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py index fb04ce10398e..c90cfb6e59a9 100644 --- a/data_structures/linked_list/singly_linked_list.py +++ b/data_structures/linked_list/singly_linked_list.py @@ -79,7 +79,7 @@ def __repr__(self): # String representation/visualization of a Linked Lists # END represents end of the LinkedList return string_repr + "END" - # Indexing Support. Used to get a node at particaular position + # Indexing Support. Used to get a node at particular position def __getitem__(self, index): current = self.head diff --git a/data_structures/linked_list/swap_nodes.py b/data_structures/linked_list/swap_nodes.py index bb177f419c30..3f825756b3d2 100644 --- a/data_structures/linked_list/swap_nodes.py +++ b/data_structures/linked_list/swap_nodes.py @@ -14,7 +14,7 @@ def __init__(self): def print_list(self): temp = self.head while temp is not None: - print(temp.data, end=' ') + print(temp.data, end=" ") temp = temp.next print() diff --git a/data_structures/stacks/postfix_evaluation.py b/data_structures/stacks/postfix_evaluation.py index 22836cdcfcb1..4cee0ba380b0 100644 --- a/data_structures/stacks/postfix_evaluation.py +++ b/data_structures/stacks/postfix_evaluation.py @@ -54,7 +54,7 @@ def Solve(Postfix): Stack.append( str(Opr[x](int(A), int(B))) - ) # evaluate the 2 values poped from stack & push result to stack + ) # evaluate the 2 values popped from stack & push result to stack print( x.rjust(8), ("push(" + A + x + B + ")").ljust(12), diff --git a/data_structures/stacks/stock_span_problem.py b/data_structures/stacks/stock_span_problem.py index 45cd6bae1282..cc2adfdd6c21 100644 --- a/data_structures/stacks/stock_span_problem.py +++ b/data_structures/stacks/stock_span_problem.py @@ -21,7 +21,7 @@ def calculateSpan(price, S): # Calculate span values for rest of the elements for i in range(1, n): - # Pop elements from stack whlie stack is not + # Pop elements from stack while stack is not # empty and top of stack is smaller than price[i] while len(st) > 0 and price[st[0]] <= price[i]: st.pop() diff --git a/digital_image_processing/index_calculation.py b/digital_image_processing/index_calculation.py index 0786314e1223..a34e51e56310 100644 --- a/digital_image_processing/index_calculation.py +++ b/digital_image_processing/index_calculation.py @@ -541,7 +541,7 @@ def NDRE(self): # instantiating the class with the values #cl = indexCalculation(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) -# how set the values after instantiate the class cl, (for update the data or when dont +# how set the values after instantiate the class cl, (for update the data or when don't # instantiating the class with the values) cl.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) @@ -551,8 +551,8 @@ def NDRE(self): redEdge=redEdge, nir=nir).astype(np.float64) indexValue_form2 = cl.CCCI() -# calculating the index with the values directly -- you can set just the values preferred -- -# note: the *calculation* fuction performs the function *setMatrices* +# calculating the index with the values directly -- you can set just the values +# preferred note: the *calculation* function performs the function *setMatrices* indexValue_form3 = cl.calculation("CCCI", red=red, green=green, blue=blue, redEdge=redEdge, nir=nir).astype(np.float64) diff --git a/digital_image_processing/test_digital_image_processing.py b/digital_image_processing/test_digital_image_processing.py index 1a730b39101b..b9a7211109a8 100644 --- a/digital_image_processing/test_digital_image_processing.py +++ b/digital_image_processing/test_digital_image_processing.py @@ -42,7 +42,7 @@ def test_gen_gaussian_kernel(): # canny.py def test_canny(): canny_img = imread("digital_image_processing/image_data/lena_small.jpg", 0) - # assert ambiguos array for all == True + # assert ambiguous array for all == True assert canny_img.all() canny_array = canny.canny(canny_img) # assert canny array for at least one True diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py index 5c1ed36cb42a..1841f1747557 100644 --- a/dynamic_programming/bitmask.py +++ b/dynamic_programming/bitmask.py @@ -42,7 +42,7 @@ def CountWaysUtil(self, mask, taskno): if self.dp[mask][taskno] != -1: return self.dp[mask][taskno] - # Number of ways when we dont this task in the arrangement + # Number of ways when we don't this task in the arrangement total_ways_util = self.CountWaysUtil(mask, taskno + 1) # now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks. diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py index aefaa6bade96..1987dc35fd03 100644 --- a/dynamic_programming/knapsack.py +++ b/dynamic_programming/knapsack.py @@ -49,9 +49,9 @@ def knapsack_with_example_solution(W: int, wt: list, val: list): W: int, the total maximum weight for the given knapsack problem. wt: list, the vector of weights for all items where wt[i] is the weight - of the ith item. + of the i-th item. val: list, the vector of values for all items where val[i] is the value - of te ith item + of the i-th item Returns ------- diff --git a/dynamic_programming/longest_sub_array.py b/dynamic_programming/longest_sub_array.py index 65ce151c33d6..f3b5705b7de2 100644 --- a/dynamic_programming/longest_sub_array.py +++ b/dynamic_programming/longest_sub_array.py @@ -1,5 +1,5 @@ """ -Auther : Yvonne +Author : Yvonne This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem. diff --git a/dynamic_programming/max_sum_contigous_subsequence.py b/dynamic_programming/max_sum_contiguous_subsequence.py similarity index 100% rename from dynamic_programming/max_sum_contigous_subsequence.py rename to dynamic_programming/max_sum_contiguous_subsequence.py diff --git a/dynamic_programming/subset_generation.py b/dynamic_programming/subset_generation.py index 2cca97fc3cbc..196b81c22045 100644 --- a/dynamic_programming/subset_generation.py +++ b/dynamic_programming/subset_generation.py @@ -1,10 +1,10 @@ -# python program to print all subset combination of n element in given set of r element . +# Python program to print all subset combinations of n element in given set of r element. # arr[] ---> Input Array # data[] ---> Temporary array to store current combination # start & end ---> Staring and Ending indexes in arr[] # index ---> Current index in data[] # r ---> Size of a combination to be printed -def combinationUtil(arr, n, r, index, data, i): +def combination_util(arr, n, r, index, data, i): # Current combination is ready to be printed, # print it if index == r: @@ -15,29 +15,26 @@ def combinationUtil(arr, n, r, index, data, i): # When no more elements are there to put in data[] if i >= n: return - # current is included, put next at next - # location + # current is included, put next at next location data[index] = arr[i] - combinationUtil(arr, n, r, index + 1, data, i + 1) + combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) - combinationUtil(arr, n, r, index, data, i + 1) + combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() -def printcombination(arr, n, r): - # A temporary array to store all combination - # one by one +def print_combination(arr, n, r): + # A temporary array to store all combination one by one data = [0] * r - # Print all combination using temprary - # array 'data[]' - combinationUtil(arr, n, r, 0, data, 0) + # Print all combination using temporary array 'data[]' + combination_util(arr, n, r, 0, data, 0) # Driver function to check for above function arr = [10, 20, 30, 40, 50] -printcombination(arr, len(arr), 3) +print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu diff --git a/file_transfer/recieve_file.py b/file_transfer/receive_file.py similarity index 100% rename from file_transfer/recieve_file.py rename to file_transfer/receive_file.py diff --git a/graphs/a_star.py b/graphs/a_star.py index e1d17fc55434..93ec26e7c496 100644 --- a/graphs/a_star.py +++ b/graphs/a_star.py @@ -35,7 +35,7 @@ def search(grid, init, goal, cost, heuristic): closed = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) - ] # the referrence grid + ] # the reference grid closed[init[0]][init[1]] = 1 action = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py index 070af5f55f01..8cdde6abc819 100644 --- a/graphs/basic_graphs.py +++ b/graphs/basic_graphs.py @@ -69,7 +69,7 @@ def dfs(G, s): Args : G - Dictionary of edges s - Starting Node Vars : vis - Set of visited nodes - Q - Traveral Stack + Q - Traversal Stack -------------------------------------------------------------------------------- """ from collections import deque diff --git a/graphs/breadth_first_search.py b/graphs/breadth_first_search.py index faa166150c76..bfb3c4e2c376 100644 --- a/graphs/breadth_first_search.py +++ b/graphs/breadth_first_search.py @@ -7,12 +7,12 @@ class Graph: def __init__(self): self.vertex = {} - # for printing the Graph vertexes + # for printing the Graph vertices def printGraph(self): for i in self.vertex.keys(): print(i, " -> ", " -> ".join([str(j) for j in self.vertex[i]])) - # for adding the edge beween two vertexes + # for adding the edge between two vertices def addEdge(self, fromVertex, toVertex): # check if vertex is already present, if fromVertex in self.vertex.keys(): @@ -22,10 +22,10 @@ def addEdge(self, fromVertex, toVertex): self.vertex[fromVertex] = [toVertex] def BFS(self, startVertex): - # Take a list for stoting already visited vertexes + # Take a list for stoting already visited vertices visited = [False] * len(self.vertex) - # create a list to store all the vertexes for BFS + # create a list to store all the vertices for BFS queue = [] # mark the source node as visited and enqueue it diff --git a/graphs/depth_first_search.py b/graphs/depth_first_search.py index 2fe9dd157d2d..0593e120b1da 100644 --- a/graphs/depth_first_search.py +++ b/graphs/depth_first_search.py @@ -7,13 +7,13 @@ class Graph: def __init__(self): self.vertex = {} - # for printing the Graph vertexes + # for printing the Graph vertices def printGraph(self): print(self.vertex) for i in self.vertex.keys(): print(i, " -> ", " -> ".join([str(j) for j in self.vertex[i]])) - # for adding the edge beween two vertexes + # for adding the edge between two vertices def addEdge(self, fromVertex, toVertex): # check if vertex is already present, if fromVertex in self.vertex.keys(): @@ -37,7 +37,7 @@ def DFSRec(self, startVertex, visited): print(startVertex, end=" ") - # Recur for all the vertexes that are adjacent to this node + # Recur for all the vertices that are adjacent to this node for i in self.vertex.keys(): if visited[i] == False: self.DFSRec(i, visited) diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py index 195f4e02d409..f156602beb6e 100644 --- a/graphs/dijkstra.py +++ b/graphs/dijkstra.py @@ -22,7 +22,7 @@ 13 - add (total_cost,V) to H You can think at cost as a distance where Dijkstra finds the shortest distance -between vertexes s and v in a graph G. The use of a min heap as H guarantees +between vertices s and v in a graph G. The use of a min heap as H guarantees that if a vertex has already been explored there will be no other path with shortest distance, that happens because heapq.heappop will always return the next vertex with the shortest distance, considering that the heap stores not @@ -35,7 +35,7 @@ def dijkstra(graph, start, end): - """Return the cost of the shortest path between vertexes start and end. + """Return the cost of the shortest path between vertices start and end. >>> dijkstra(G, "E", "C") 6 diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py index 7dfb5fb9df48..6b64834acd81 100644 --- a/graphs/dijkstra_algorithm.py +++ b/graphs/dijkstra_algorithm.py @@ -5,7 +5,7 @@ import math import sys -# For storing the vertex set to retreive node with the lowest distance +# For storing the vertex set to retrieve node with the lowest distance class PriorityQueue: @@ -103,9 +103,7 @@ def add_edge(self, u, v, w): def show_graph(self): # u -> v(w) for u in self.adjList: - print( - u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]), - ) + print(u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u])) def dijkstra(self, src): # Flush old junk values in par[] diff --git a/graphs/directed_and_undirected_(weighted)_graph.py b/graphs/directed_and_undirected_(weighted)_graph.py index 883a8a00c6b1..15e2ce663594 100644 --- a/graphs/directed_and_undirected_(weighted)_graph.py +++ b/graphs/directed_and_undirected_(weighted)_graph.py @@ -3,7 +3,7 @@ import math as math import time -# the dfault weight is 1 if not assigend but all the implementation is weighted +# the dfault weight is 1 if not assigned but all the implementation is weighted class DirectedGraph: @@ -12,7 +12,7 @@ def __init__(self): # adding vertices and edges # adding the weight is optional - # handels repetition + # handles repetition def add_pair(self, u, v, w=1): if self.graph.get(u): if self.graph[u].count([w, v]) == 0: @@ -25,14 +25,14 @@ def add_pair(self, u, v, w=1): def all_nodes(self): return list(self.graph) - # handels if the input does not exist + # handles if the input does not exist def remove_pair(self, u, v): if self.graph.get(u): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_) - # if no destination is meant the defaut value is -1 + # if no destination is meant the default value is -1 def dfs(self, s=-2, d=-1): if s == d: return [] @@ -71,7 +71,7 @@ def dfs(self, s=-2, d=-1): if len(stack) == 0: return visited - # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # c is the count of nodes you want and if you leave it or pass -1 to the function the count # will be random from 10 to 10000 def fill_graph_randomly(self, c=-1): if c == -1: @@ -271,7 +271,7 @@ def __init__(self): # adding vertices and edges # adding the weight is optional - # handels repetition + # handles repetition def add_pair(self, u, v, w=1): # check if the u exists if self.graph.get(u): @@ -290,7 +290,7 @@ def add_pair(self, u, v, w=1): # if u does not exist self.graph[v] = [[w, u]] - # handels if the input does not exist + # handles if the input does not exist def remove_pair(self, u, v): if self.graph.get(u): for _ in self.graph[u]: @@ -302,7 +302,7 @@ def remove_pair(self, u, v): if _[1] == u: self.graph[v].remove(_) - # if no destination is meant the defaut value is -1 + # if no destination is meant the default value is -1 def dfs(self, s=-2, d=-1): if s == d: return [] @@ -341,7 +341,7 @@ def dfs(self, s=-2, d=-1): if len(stack) == 0: return visited - # c is the count of nodes you want and if you leave it or pass -1 to the funtion the count + # c is the count of nodes you want and if you leave it or pass -1 to the function the count # will be random from 10 to 10000 def fill_graph_randomly(self, c=-1): if c == -1: diff --git a/graphs/multi_hueristic_astar.py b/graphs/multi_heuristic_astar.py similarity index 100% rename from graphs/multi_hueristic_astar.py rename to graphs/multi_heuristic_astar.py diff --git a/hashes/sha1.py b/hashes/sha1.py index 3bf27af27582..c74ec0c853de 100644 --- a/hashes/sha1.py +++ b/hashes/sha1.py @@ -8,7 +8,7 @@ returned by the hashlib library SHA1 hash or SHA1 sum of a string is a crytpographic function which means it is easy -to calculate forwards but extemely difficult to calculate backwards. What this means +to calculate forwards but extremely difficult to calculate backwards. What this means is, you can easily calculate the hash of a string, but it is extremely difficult to know the original string if you have its hash. This property is useful to communicate securely, send encrypted messages and is very useful in payment systems, blockchain @@ -139,7 +139,7 @@ def testMatchHashes(self): def main(): """ Provides option 'string' or 'file' to take input and prints the calculated SHA1 hash. - unittest.main() has been commented because we probably dont want to run + unittest.main() has been commented because we probably don't want to run the test each time. """ # unittest.main() diff --git a/linear_algebra/README.md b/linear_algebra/README.md index 540920744948..9f8d150a72fa 100644 --- a/linear_algebra/README.md +++ b/linear_algebra/README.md @@ -8,7 +8,7 @@ This module contains classes and functions for doing linear algebra. ### class Vector - - - This class represents a vector of arbitray size and related operations. + - This class represents a vector of arbitrary size and related operations. **Overview about the methods:** diff --git a/machine_learning/k_nearest_neighbours.py b/machine_learning/k_nearest_neighbours.py index a60b744bc65e..481a8e1dbcd0 100644 --- a/machine_learning/k_nearest_neighbours.py +++ b/machine_learning/k_nearest_neighbours.py @@ -47,7 +47,7 @@ def classifier(train_data, train_target, classes, point, k=5): distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. votes = [i[1] for i in sorted(distances)[:k]] - # Most commonly occuring class among them + # Most commonly occurring class among them # is the class into which the point is classified result = Counter(votes).most_common(1)[0][0] return classes[result] diff --git a/machine_learning/scoring_functions.py b/machine_learning/scoring_functions.py index 5c84f7026e74..2b891d4eb9d5 100755 --- a/machine_learning/scoring_functions.py +++ b/machine_learning/scoring_functions.py @@ -10,7 +10,7 @@ even log is used. Using log and roots can be perceived as tools for penalizing big - erors. However, using appropriate metrics depends on the situations, + errors. However, using appropriate metrics depends on the situations, and types of data """ diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py index 0612392c8dc2..a0b99a788cbd 100644 --- a/machine_learning/sequential_minimum_optimization.py +++ b/machine_learning/sequential_minimum_optimization.py @@ -1,8 +1,10 @@ """ - Implementation of sequential minimal optimization(SMO) for support vector machines(SVM). + Implementation of sequential minimal optimization (SMO) for support vector machines + (SVM). - Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem - that arises during the training of support vector machines. + Sequential minimal optimization (SMO) is an algorithm for solving the quadratic + programming (QP) problem that arises during the training of support vector + machines. It was invented by John Platt in 1998. Input: @@ -18,7 +20,8 @@ kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5) init_alphas = np.zeros(train.shape[0]) - SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4, b=0.0, tolerance=0.001) + SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4, + b=0.0, tolerance=0.001) SVM.fit() predict = SVM.predict(test_samples) @@ -72,7 +75,7 @@ def __init__( self.choose_alpha = self._choose_alphas() - # Calculate alphas using SMO algorithsm + # Calculate alphas using SMO algorithm def fit(self): K = self._k state = None @@ -227,7 +230,7 @@ def _choose_alphas(self): def _choose_a1(self): """ Choose first alpha ;steps: - 1:Fisrt loop over all sample + 1:First loop over all sample 2:Second loop over all non-bound samples till all non-bound samples does not voilate kkt condition. 3:Repeat this two process endlessly,till all samples does not voilate kkt condition samples after first loop. """ @@ -261,9 +264,11 @@ def _choose_a1(self): def _choose_a2(self, i1): """ Choose the second alpha by using heuristic algorithm ;steps: - 1:Choosed alpha2 which get the maximum step size (|E1 - E2|). - 2:Start in a random point,loop over all non-bound samples till alpha1 and alpha2 are optimized. - 3:Start in a random point,loop over all samples till alpha1 and alpha2 are optimized. + 1: Choose alpha2 which gets the maximum step size (|E1 - E2|). + 2: Start in a random point,loop over all non-bound samples till alpha1 and + alpha2 are optimized. + 3: Start in a random point,loop over all samples till alpha1 and alpha2 are + optimized. """ self._unbound = [i for i in self._all_samples if self._is_unbound(i)] @@ -316,7 +321,7 @@ def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2): # select the new alpha2 which could get the minimal objectives if eta > 0.0: a2_new_unc = a2 + (y2 * (e1 - e2)) / eta - # a2_new has a boundry + # a2_new has a boundary if a2_new_unc >= H: a2_new = H elif a2_new_unc <= L: @@ -357,7 +362,7 @@ def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2): else: a2_new = a2 - # a1_new has a boundry too + # a1_new has a boundary too a1_new = a1 + s * (a2 - a2_new) if a1_new < 0: a2_new += s * a1_new @@ -471,7 +476,7 @@ def test_cancel_data(): data = data.replace({"M": np.float64(1), "B": np.float64(-1)}) samples = np.array(data)[:, :] - # 2: deviding data into train_data data and test_data data + # 2: dividing data into train_data data and test_data data train_data, test_data = samples[:328, :], samples[328:, :] test_tags, test_samples = test_data[:, 0], test_data[:, 1:] @@ -568,7 +573,7 @@ def plot_partition_boundary( ): """ We can not get the optimum w of our kernel svm model which is different from linear svm. - For this reason, we generate randomly destributed points with high desity and prediced values of these points are + For this reason, we generate randomly distributed points with high desity and prediced values of these points are calculated by using our tained model. Then we could use this prediced values to draw contour map. And this contour map can represent svm's partition boundary. diff --git a/machine_learning/support_vector_machines.py b/machine_learning/support_vector_machines.py index 92fa814c998f..d72e599eace4 100644 --- a/machine_learning/support_vector_machines.py +++ b/machine_learning/support_vector_machines.py @@ -18,7 +18,7 @@ def Linearsvc(train_x, train_y): def SVC(train_x, train_y): # svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None) - # various parameters like "kernal","gamma","C" can effectively tuned for a given machine learning model. + # various parameters like "kernel","gamma","C" can effectively tuned for a given machine learning model. SVC = svm.SVC(gamma="auto") SVC.fit(train_x, train_y) return SVC diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py index a8f11480378a..56d03b56fc1f 100644 --- a/maths/matrix_exponentiation.py +++ b/maths/matrix_exponentiation.py @@ -12,7 +12,7 @@ class Matrix: def __init__(self, arg): - if isinstance(arg, list): # Initialzes a matrix identical to the one provided. + if isinstance(arg, list): # Initializes a matrix identical to the one provided. self.t = arg self.n = len(arg) else: # Initializes a square matrix of the given size and set the values to zero. @@ -50,7 +50,7 @@ def fibonacci_with_matrix_exponentiation(n, f1, f2): def simple_fibonacci(n, f1, f2): - # Trival Cases + # Trivial Cases if n == 1: return f1 elif n == 2: diff --git a/maths/mobius_function.py b/maths/mobius_function.py index 15fb3d4380f4..df0f66177501 100644 --- a/maths/mobius_function.py +++ b/maths/mobius_function.py @@ -1,5 +1,5 @@ """ -Refrences: https://en.wikipedia.org/wiki/M%C3%B6bius_function +References: https://en.wikipedia.org/wiki/M%C3%B6bius_function References: wikipedia:square free number python/black : True flake8 : True diff --git a/maths/prime_sieve_eratosthenes.py b/maths/prime_sieve_eratosthenes.py index 4fa19d6db220..05363cf62953 100644 --- a/maths/prime_sieve_eratosthenes.py +++ b/maths/prime_sieve_eratosthenes.py @@ -4,18 +4,18 @@ Input : n =10 Output : 2 3 5 7 -Input : n = 20 +Input : n = 20 Output: 2 3 5 7 11 13 17 19 -you can read in detail about this at +you can read in detail about this at https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes """ def prime_sieve_eratosthenes(num): """ - print the prime numbers upto n - + print the prime numbers up to n + >>> prime_sieve_eratosthenes(10) 2 3 5 7 >>> prime_sieve_eratosthenes(20) @@ -26,7 +26,7 @@ def prime_sieve_eratosthenes(num): p = 2 while p * p <= num: - if primes[p] == True: + if primes[p]: for i in range(p * p, num + 1, p): primes[i] = False p += 1 diff --git a/maths/simpson_rule.py b/maths/simpson_rule.py index 91098804395d..d66dc39a7171 100644 --- a/maths/simpson_rule.py +++ b/maths/simpson_rule.py @@ -1,7 +1,7 @@ """ Numerical integration or quadrature for a smooth function f with known values at x_i -This method is the classical approch of suming 'Equally Spaced Abscissas' +This method is the classical approach of suming 'Equally Spaced Abscissas' method 2: "Simpson Rule" diff --git a/maths/square_root.py b/maths/square_root.py index 46e791ab5662..d4c5e311b0b7 100644 --- a/maths/square_root.py +++ b/maths/square_root.py @@ -22,7 +22,7 @@ def square_root_iterative( a: float, max_iter: int = 9999, tolerance: float = 0.00000000000001 ) -> float: """ - Sqaure root is aproximated using Newtons method. + Square root is aproximated using Newtons method. https://en.wikipedia.org/wiki/Newton%27s_method >>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001 for i in range(0, 500)) diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index 0f7dea6bf888..9a4ddc8af66b 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -1,7 +1,7 @@ """ Numerical integration or quadrature for a smooth function f with known values at x_i -This method is the classical approch of suming 'Equally Spaced Abscissas' +This method is the classical approach of suming 'Equally Spaced Abscissas' method 1: "extended trapezoidal rule" diff --git a/maths/zellers_congruence.py b/maths/zellers_congruence.py index 277ecfaf0da9..954a4643a9bb 100644 --- a/maths/zellers_congruence.py +++ b/maths/zellers_congruence.py @@ -31,17 +31,17 @@ def zeller(date_input: str) -> str: ... ValueError: invalid literal for int() with base 10: '.4' - Validate second seperator: + Validate second separator: >>> zeller('01-31*2010') Traceback (most recent call last): ... - ValueError: Date seperator must be '-' or '/' + ValueError: Date separator must be '-' or '/' - Validate first seperator: + Validate first separator: >>> zeller('01^31-2010') Traceback (most recent call last): ... - ValueError: Date seperator must be '-' or '/' + ValueError: Date separator must be '-' or '/' Validate out of range year: >>> zeller('01-31-8999') @@ -55,7 +55,7 @@ def zeller(date_input: str) -> str: ... TypeError: zeller() missing 1 required positional argument: 'date_input' - Test length fo date_input: + Test length of date_input: >>> zeller('') Traceback (most recent call last): ... @@ -92,7 +92,7 @@ def zeller(date_input: str) -> str: sep_1: str = date_input[2] # Validate if sep_1 not in ["-", "/"]: - raise ValueError("Date seperator must be '-' or '/'") + raise ValueError("Date separator must be '-' or '/'") # Get day d: int = int(date_input[3] + date_input[4]) @@ -100,11 +100,11 @@ def zeller(date_input: str) -> str: if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") - # Get second seperator + # Get second separator sep_2: str = date_input[5] # Validate if sep_2 not in ["-", "/"]: - raise ValueError("Date seperator must be '-' or '/'") + raise ValueError("Date separator must be '-' or '/'") # Get year y: int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) diff --git a/matrix/matrix_class.py b/matrix/matrix_class.py index a8066e319559..2a1977b5dbfe 100644 --- a/matrix/matrix_class.py +++ b/matrix/matrix_class.py @@ -1,4 +1,4 @@ -# An OOP aproach to representing and manipulating matrices +# An OOP approach to representing and manipulating matrices class Matrix: diff --git a/matrix/spiral_print.py b/matrix/spiral_print.py index 31d9fff84bfd..21dab76156e9 100644 --- a/matrix/spiral_print.py +++ b/matrix/spiral_print.py @@ -1,5 +1,5 @@ """ -This program print the matix in spiral form. +This program print the matrix in spiral form. This problem has been solved through recursive way. Matrix must satisfy below conditions diff --git a/networking_flow/minimum_cut.py b/networking_flow/minimum_cut.py index 7773df72f8f0..0f6781fbb88c 100644 --- a/networking_flow/minimum_cut.py +++ b/networking_flow/minimum_cut.py @@ -35,7 +35,7 @@ def mincut(graph, source, sink): parent = [-1] * (len(graph)) max_flow = 0 res = [] - temp = [i[:] for i in graph] # Record orignial cut, copy. + temp = [i[:] for i in graph] # Record original cut, copy. while BFS(graph, source, sink, parent): path_flow = float("Inf") s = sink diff --git a/neural_network/convolution_neural_network.py b/neural_network/convolution_neural_network.py index ecc8e3392b7f..ac0eddeb5cb6 100644 --- a/neural_network/convolution_neural_network.py +++ b/neural_network/convolution_neural_network.py @@ -1,12 +1,12 @@ """ - - - - - -- - - - - - - - - - - - - - - - - - - - - - - Name - - CNN - Convolution Neural Network For Photo Recognizing - Goal - - Recognize Handing Writting Word Photo + Goal - - Recognize Handing Writing Word Photo Detail:Total 5 layers neural network * Convolution layer * Pooling layer * Input layer layer of BP - * Hiden layer of BP + * Hidden layer of BP * Output layer of BP Author: Stephen Lee Github: 245885195@qq.com @@ -116,7 +116,7 @@ def convolute(self, data, convs, w_convs, thre_convs, conv_step): i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(focus) - # caculate the feature map of every single kernel, and saved as list of matrix + # calculate the feature map of every single kernel, and saved as list of matrix data_featuremap = [] Size_FeatureMap = int((size_data - size_conv) / conv_step + 1) for i_map in range(num_conv): @@ -163,12 +163,12 @@ def pooling(self, featuremaps, size_pooling, type="average_pool"): featuremap_pooled.append(map_pooled) return featuremap_pooled - def _expand(self, datas): + def _expand(self, data): # expanding three dimension data to one dimension list data_expanded = [] - for i in range(len(datas)): - shapes = np.shape(datas[i]) - data_listed = datas[i].reshape(1, shapes[0] * shapes[1]) + for i in range(len(data)): + shapes = np.shape(data[i]) + data_listed = data[i].reshape(1, shapes[0] * shapes[1]) data_listed = data_listed.getA().tolist()[0] data_expanded.extend(data_listed) data_expanded = np.asarray(data_expanded) @@ -185,7 +185,7 @@ def _calculate_gradient_from_pool( self, out_map, pd_pool, num_map, size_map, size_pooling ): """ - calcluate the gradient from the data slice of pool layer + calculate the gradient from the data slice of pool layer pd_pool: list of matrix out_map: the shape of data slice(size_map*size_map) return: pd_all: list of matrix, [num, size_map, size_map] @@ -217,7 +217,7 @@ def train( all_mse = [] mse = 10000 while rp < n_repeat and mse >= error_accuracy: - alle = 0 + error_count = 0 print("-------------Learning Time %d--------------" % rp) for p in range(len(datas_train)): # print('------------Learning Image: %d--------------'%p) @@ -246,7 +246,7 @@ def train( bp_out3 = self.sig(bp_net_k) # --------------Model Leaning ------------------------ - # calcluate error and gradient--------------- + # calculate error and gradient--------------- pd_k_all = np.multiply( (data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)) ) @@ -285,11 +285,11 @@ def train( self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre # calculate the sum error of all single image errors = np.sum(abs(data_teach - bp_out3)) - alle = alle + errors + error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) rp = rp + 1 - mse = alle / patterns + mse = error_count / patterns all_mse.append(mse) def draw_error(): diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 3610dd2ab227..2a1c46b359e6 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -76,11 +76,11 @@ def training(self) -> None: has_misclassified = True # print('Epoch: \n',epoch_count) epoch_count = epoch_count + 1 - # if you want controle the epoch or just by erro + # if you want control the epoch or just by error if not has_misclassified: print(("\nEpoch:\n", epoch_count)) print("------------------------\n") - # if epoch_count > self.epoch_number or not erro: + # if epoch_count > self.epoch_number or not error: break def sort(self, sample) -> None: diff --git a/other/linear_congruential_generator.py b/other/linear_congruential_generator.py index ea0adc7d027f..058f270d0584 100644 --- a/other/linear_congruential_generator.py +++ b/other/linear_congruential_generator.py @@ -13,7 +13,7 @@ def __init__(self, multiplier, increment, modulo, seed=int(time())): These parameters are saved and used when nextNumber() is called. modulo is the largest number that can be generated (exclusive). The most - efficent values are powers of 2. 2^32 is a common value. + efficient values are powers of 2. 2^32 is a common value. """ self.multiplier = multiplier self.increment = increment diff --git a/other/primelib.py b/other/primelib.py index ff438755ae6f..1b99819ce62a 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -88,7 +88,7 @@ def sieveEr(N): # precondition assert isinstance(N, int) and (N > 2), "'N' must been an int and > 2" - # beginList: conatins all natural numbers from 2 upt to N + # beginList: contains all natural numbers from 2 up to N beginList = [x for x in range(2, N + 1)] ans = [] # this list will be returns. @@ -480,8 +480,8 @@ def getPrimesBetween(pNumber1, pNumber2): """ input: prime numbers 'pNumber1' and 'pNumber2' pNumber1 < pNumber2 - returns a list of all prime numbers between 'pNumber1' (exclusiv) - and 'pNumber2' (exclusiv) + returns a list of all prime numbers between 'pNumber1' (exclusive) + and 'pNumber2' (exclusive) """ # precondition diff --git a/project_euler/problem_04/sol1.py b/project_euler/problem_04/sol1.py index 53fff8bed4d4..599345b5ab79 100644 --- a/project_euler/problem_04/sol1.py +++ b/project_euler/problem_04/sol1.py @@ -19,7 +19,7 @@ def solution(n): >>> solution(40000) 39893 """ - # fetchs the next number + # fetches the next number for number in range(n - 1, 10000, -1): # converts number into string. diff --git a/project_euler/problem_30/soln.py b/project_euler/problem_30/soln.py index 0f4df66ae16a..9d45739845a3 100644 --- a/project_euler/problem_30/soln.py +++ b/project_euler/problem_30/soln.py @@ -30,5 +30,5 @@ def digitsum(s: str) -> int: if __name__ == "__main__": - count = sum(digitsum(str(i)) for i in range(1000,1000000)) + count = sum(digitsum(str(i)) for i in range(1000, 1000000)) print(count) # --> 443839 diff --git a/project_euler/problem_551/sol1.py b/project_euler/problem_551/sol1.py index 307d644fbfc9..4775800693bc 100644 --- a/project_euler/problem_551/sol1.py +++ b/project_euler/problem_551/sol1.py @@ -2,7 +2,7 @@ Sum of digits sequence Problem 551 -Let a(0), a(1),... be an interger sequence defined by: +Let a(0), a(1),... be an integer sequence defined by: a(0) = 1 for n >= 1, a(n) is the sum of the digits of all preceding terms @@ -33,7 +33,7 @@ def next_term(a_i, k, i, n): k -- k when terms are written in the from a(i) = b*10^k + c. Term are calulcated until c > 10^k or the n-th term is reached. i -- position along the sequence - n -- term to caluclate up to if k is large enough + n -- term to calculate up to if k is large enough Return: a tuple of difference between ending term and starting term, and the number of terms calculated. ex. if starting term is a_0=1, and diff --git a/searches/hill_climbing.py b/searches/hill_climbing.py index 8cabbd602bd1..c1129514c04f 100644 --- a/searches/hill_climbing.py +++ b/searches/hill_climbing.py @@ -87,7 +87,7 @@ def hill_climbing( """ implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or - minimum) change. We keep doing this untill we are at a state where we do not + minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index fd26ae0c64ce..419ec52c0f4e 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -15,7 +15,7 @@ def interpolation_search(sorted_collection, item): right = len(sorted_collection) - 1 while left <= right: - # avoid devided by 0 during interpolation + # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left @@ -59,7 +59,7 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right): :return: index of found item or None if item is not found """ - # avoid devided by 0 during interpolation + # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left diff --git a/searches/jump_search.py b/searches/jump_search.py index e191cf2d4b27..5ba80e9d35be 100644 --- a/searches/jump_search.py +++ b/searches/jump_search.py @@ -20,7 +20,7 @@ def jump_search(arr, x): return -1 -arr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] -x = 55 -index = jump_search(arr, x) -print("\nNumber " + str(x) + " is at index " + str(index)) +if __name__ == "__main__": + arr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] + x = 55 + print(f"Number {x} is at index {jump_search(arr, x)}") diff --git a/searches/simulated_annealing.py b/searches/simulated_annealing.py index 5fec87bed321..d3542b00af45 100644 --- a/searches/simulated_annealing.py +++ b/searches/simulated_annealing.py @@ -62,7 +62,7 @@ def simulated_annealing( continue # neighbor outside our bounds if not find_max: - change = change * -1 # incase we are finding minimum + change = change * -1 # in case we are finding minimum if change > 0: # improves the solution next_state = picked_neighbor else: @@ -73,10 +73,8 @@ def simulated_annealing( next_state = picked_neighbor current_temp = current_temp - (current_temp * rate_of_decrease) - if ( - current_temp < threshold_temp or next_state is None - ): # temperature below threshold, or - # couldnt find a suitaable neighbor + if current_temp < threshold_temp or next_state is None: + # temperature below threshold, or could not find a suitaable neighbor search_end = True else: current_state = next_state diff --git a/searches/tabu_search.py b/searches/tabu_search.py index 52086f1235ab..04a0e5076912 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -188,7 +188,7 @@ def tabu_search( and the cost (distance) for each neighbor. :param iters: The number of iterations that Tabu search will execute. :param size: The size of Tabu List. - :return best_solution_ever: The solution with the lowest distance that occured during the execution of Tabu search. + :return best_solution_ever: The solution with the lowest distance that occurred during the execution of Tabu search. :return best_cost: The total distance that Travelling Salesman will travel, if he follows the path in best_solution ever. diff --git a/sorts/bitonic_sort.py b/sorts/bitonic_sort.py index 8780bb3259c5..131f97291fbb 100644 --- a/sorts/bitonic_sort.py +++ b/sorts/bitonic_sort.py @@ -22,7 +22,7 @@ def bitonicMerge(a, low, cnt, dire): bitonicMerge(a, low, k, dire) bitonicMerge(a, low + k, k, dire) - # This funcion first produces a bitonic sequence by recursively + # This function first produces a bitonic sequence by recursively # sorting its two halves in opposite sorting orders, and then diff --git a/sorts/double_sort.py b/sorts/double_sort.py index aca4b97ca775..04e18682017c 100644 --- a/sorts/double_sort.py +++ b/sorts/double_sort.py @@ -1,6 +1,6 @@ def double_sort(lst): - """this sorting algorithm sorts an array using the principle of bubble sort , - but does it both from left to right and right to left , + """this sorting algorithm sorts an array using the principle of bubble sort, + but does it both from left to right and right to left, hence i decided to call it "double sort" :param collection: mutable ordered sequence of elements :return: the same collection in ascending order @@ -17,7 +17,7 @@ def double_sort(lst): no_of_elements = len(lst) for i in range( 0, int(((no_of_elements - 1) / 2) + 1) - ): # we dont need to traverse to end of list as + ): # we don't need to traverse to end of list as for j in range(0, no_of_elements - 1): if ( lst[j + 1] < lst[j] diff --git a/sorts/pigeonhole_sort.py b/sorts/pigeonhole_sort.py index a91e1d054442..bfa9bb11b8a6 100644 --- a/sorts/pigeonhole_sort.py +++ b/sorts/pigeonhole_sort.py @@ -7,7 +7,7 @@ def pigeonhole_sort(a): """ >>> a = [8, 3, 2, 7, 4, 6, 8] >>> b = sorted(a) # a nondestructive sort - >>> pigeonhole_sort(a) # a distructive sort + >>> pigeonhole_sort(a) # a destructive sort >>> a == b True """ diff --git a/sorts/recursive_insertion_sort.py b/sorts/recursive_insertion_sort.py index 39a903dd1bcb..5b14c2a6c139 100644 --- a/sorts/recursive_insertion_sort.py +++ b/sorts/recursive_insertion_sort.py @@ -69,7 +69,7 @@ def insert_next(collection: List, index: int): if __name__ == "__main__": - numbers = input("Enter integers seperated by spaces: ") + numbers = input("Enter integers separated by spaces: ") numbers = [int(num) for num in numbers.split()] rec_insertion_sort(numbers, len(numbers)) print(numbers) diff --git a/strings/aho-corasick.py b/strings/aho-corasick.py index d63dc94a03fc..315f7793325e 100644 --- a/strings/aho-corasick.py +++ b/strings/aho-corasick.py @@ -67,7 +67,7 @@ def search_in(self, string): >>> A.search_in("whatever, err ... , wherever") {'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]} """ - result = dict() # returns a dict with keywords and list of its occurences + result = dict() # returns a dict with keywords and list of its occurrences current_state = 0 for i in range(len(string)): while ( diff --git a/strings/boyer_moore_search.py b/strings/boyer_moore_search.py index 59ee76b860d3..bd777c7c7e05 100644 --- a/strings/boyer_moore_search.py +++ b/strings/boyer_moore_search.py @@ -27,7 +27,7 @@ def __init__(self, text, pattern): def match_in_pattern(self, char): """ finds the index of char in pattern in reverse order - Paremeters : + Parameters : char (chr): character to be searched Returns : @@ -43,12 +43,12 @@ def match_in_pattern(self, char): def mismatch_in_text(self, currentPos): """ finds the index of mis-matched character in text when compared with pattern from last - Paremeters : + Parameters : currentPos (int): current index position of text Returns : i (int): index of mismatched char from last in text - -1 (int): if there is no mis-match between pattern and text block + -1 (int): if there is no mismatch between pattern and text block """ for i in range(self.patLen - 1, -1, -1): diff --git a/strings/manacher.py b/strings/manacher.py index ef8a724d027d..4193def2f71b 100644 --- a/strings/manacher.py +++ b/strings/manacher.py @@ -13,12 +13,13 @@ def palindromic_string(input_string): """ Manacher’s algorithm which finds Longest Palindromic Substring in linear time. - 1. first this conver input_string("xyx") into new_string("x|y|x") where odd positions are actual input - characters. + 1. first this convert input_string("xyx") into new_string("x|y|x") where odd + positions are actual input characters. 2. for each character in new_string it find corresponding length and store, a. max_length b. max_length's center - 3. return output_string from center - max_length to center + max_length and remove all "|" + 3. return output_string from center - max_length to center + max_length and remove + all "|" """ max_length = 0 @@ -35,7 +36,7 @@ def palindromic_string(input_string): # for each character in new_string find corresponding palindromic string for i in range(len(new_input_string)): - # get palindromic length from ith position + # get palindromic length from i-th position length = palindromic_length(i, 1, new_input_string) # update max_length and start position diff --git a/strings/split.py b/strings/split.py index 727250fe6e9f..d5bff316429f 100644 --- a/strings/split.py +++ b/strings/split.py @@ -1,17 +1,17 @@ -def split(string: str, seperator: str = " ") -> list: +def split(string: str, separator: str = " ") -> list: """ - Will split the string up into all the values seperated by the seperator (defaults to spaces) + Will split the string up into all the values separated by the separator (defaults to spaces) - >>> split("apple#banana#cherry#orange",seperator='#') + >>> split("apple#banana#cherry#orange",separator='#') ['apple', 'banana', 'cherry', 'orange'] >>> split("Hello there") ['Hello', 'there'] - >>> split("11/22/63",seperator = '/') + >>> split("11/22/63",separator = '/') ['11', '22', '63'] - >>> split("12:43:39",seperator = ":") + >>> split("12:43:39",separator = ":") ['12', '43', '39'] """ @@ -19,7 +19,7 @@ def split(string: str, seperator: str = " ") -> list: last_index = 0 for index, char in enumerate(string): - if char == seperator: + if char == separator: split_words.append(string[last_index:index]) last_index = index + 1 elif index + 1 == len(string): diff --git a/strings/word_occurence.py b/strings/word_occurrence.py similarity index 87% rename from strings/word_occurence.py rename to strings/word_occurrence.py index c4eb923d6bc8..7b8f9bee8146 100644 --- a/strings/word_occurence.py +++ b/strings/word_occurrence.py @@ -11,11 +11,11 @@ def word_occurence(sentence: str) -> dict: ... in Counter(SENTENCE.split()).items()) True """ - occurence = defaultdict(int) + occurrence = defaultdict(int) # Creating a dictionary containing count of each word for word in sentence.split(" "): - occurence[word] += 1 - return occurence + occurrence[word] += 1 + return occurrence if __name__ == "__main__": From 99ebd1a01820cefb7bdf169168131289d71158fc Mon Sep 17 00:00:00 2001 From: Pooja Date: Sat, 18 Jan 2020 18:36:48 +0530 Subject: [PATCH 522/594] Create factorial_iterative.py (#1693) * Create factorial_iterative.py * Update factorial_iterative.py * Update factorial_iterative.py * Update factorial_iterative.py * print(f"factorial{n} is {factorial(n)}") * Update factorial_recursive.py Co-authored-by: Christian Clauss --- maths/factorial_iterative.py | 30 ++++++++++++++++++++++++++++++ maths/factorial_recursive.py | 24 +++++++++++------------- 2 files changed, 41 insertions(+), 13 deletions(-) create mode 100644 maths/factorial_iterative.py diff --git a/maths/factorial_iterative.py b/maths/factorial_iterative.py new file mode 100644 index 000000000000..249408cb5b4e --- /dev/null +++ b/maths/factorial_iterative.py @@ -0,0 +1,30 @@ +# factorial of a positive integer -- https://en.wikipedia.org/wiki/Factorial + + +def factorial(n: int) -> int: + """ + >>> import math + >>> all(factorial(i) == math.factorial(i) for i in range(20)) + True + >>> factorial(0.1) + Traceback (most recent call last): + ... + ValueError: factorial() only accepts integral values + >>> factorial(-1) + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values + """ + if n != int(n): + raise ValueError("factorial() only accepts integral values") + if n < 0: + raise ValueError("factorial() not defined for negative values") + value = 1 + for i in range(1, n + 1): + value *= i + return value + + +if __name__ == "__main__": + n = int(input("Enter a positivve integer: ").strip() or 0) + print(f"factorial{n} is {factorial(n)}") diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py index 4f7074d16587..137112738905 100644 --- a/maths/factorial_recursive.py +++ b/maths/factorial_recursive.py @@ -1,26 +1,24 @@ def factorial(n: int) -> int: """ - Calculate the factorial of specified number + Calculate the factorial of a positive integer + https://en.wikipedia.org/wiki/Factorial - >>> factorial(1) - 1 - >>> factorial(6) - 720 - >>> factorial(0) - 1 - >>> factorial(-1) - Traceback (most recent call last): - ... - ValueError: factorial() not defined for negative values + >>> import math + >>> all(factorial(i) == math.factorial(i) for i in range(20)) + True >>> factorial(0.1) Traceback (most recent call last): ... ValueError: factorial() only accepts integral values + >>> factorial(-1) + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values """ - if n < 0: - raise ValueError("factorial() not defined for negative values") if not isinstance(n, int): raise ValueError("factorial() only accepts integral values") + if n < 0: + raise ValueError("factorial() not defined for negative values") return 1 if n == 0 or n == 1 else n * factorial(n - 1) From e25d4248a31fc6346fdc2644e0f3ce86e1c9d412 Mon Sep 17 00:00:00 2001 From: Sharan Krishnan <58838321+shrabian@users.noreply.github.com> Date: Sun, 19 Jan 2020 04:25:27 +1100 Subject: [PATCH 523/594] Added an algorithm that approximates line lengths (#1692) * A recursive insertion sort * added doctests and typehints * Added arc length and numerical integration calculators * fixed doc test * Fixed some conversion errors * Fixed some commenting * Deleted numerical integration to allow 1 file per push * Changed string formatting method --- maths/line_length.py | 61 ++++++++++++++++++++++++++++++++ maths/numerical_integration.py | 63 ++++++++++++++++++++++++++++++++++ 2 files changed, 124 insertions(+) create mode 100644 maths/line_length.py create mode 100644 maths/numerical_integration.py diff --git a/maths/line_length.py b/maths/line_length.py new file mode 100644 index 000000000000..8737a863b902 --- /dev/null +++ b/maths/line_length.py @@ -0,0 +1,61 @@ +from typing import Callable, Union +import math as m + +def line_length(fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100) -> float: + + """ + Approximates the arc length of a line segment by treating the curve as a + sequence of linear lines and summing their lengths + :param fnc: a function which defines a curve + :param x_start: left end point to indicate the start of line segment + :param x_end: right end point to indicate end of line segment + :param steps: an accuracy gauge; more steps increases accuracy + :return: a float representing the length of the curve + + >>> def f(x): + ... return x + >>> f"{line_length(f, 0, 1, 10):.6f}" + '1.414214' + + >>> def f(x): + ... return 1 + >>> f"{line_length(f, -5.5, 4.5):.6f}" + '10.000000' + + >>> def f(x): + ... return m.sin(5 * x) + m.cos(10 * x) + x * x/10 + >>> f"{line_length(f, 0.0, 10.0, 10000):.6f}" + '69.534930' + """ + + x1 = x_start + fx1 = fnc(x_start) + length = 0.0 + + for i in range(steps): + + # Approximates curve as a sequence of linear lines and sums their length + x2 = (x_end - x_start) / steps + x1 + fx2 = fnc(x2) + length += m.hypot(x2 - x1, fx2 - fx1) + + # Increment step + x1 = x2 + fx1 = fx2 + + return length + +if __name__ == "__main__": + + def f(x): + return m.sin(10*x) + + print("f(x) = sin(10 * x)") + print("The length of the curve from x = -10 to x = 10 is:") + i = 10 + while i <= 100000: + print(f"With {i} steps: {line_length(f, -10, 10, i)}") + i *= 10 diff --git a/maths/numerical_integration.py b/maths/numerical_integration.py new file mode 100644 index 000000000000..55026f0d627f --- /dev/null +++ b/maths/numerical_integration.py @@ -0,0 +1,63 @@ +""" +Approximates the area under the curve using the trapezoidal rule +""" + +from typing import Callable, Union + +def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100) -> float: + + """ + Treats curve as a collection of linear lines and sums the area of the + trapezium shape they form + :param fnc: a function which defines a curve + :param x_start: left end point to indicate the start of line segment + :param x_end: right end point to indicate end of line segment + :param steps: an accuracy gauge; more steps increases the accuracy + :return: a float representing the length of the curve + + >>> def f(x): + ... return 5 + >>> '%.3f' % trapezoidal_area(f, 12.0, 14.0, 1000) + '10.000' + + >>> def f(x): + ... return 9*x**2 + >>> '%.4f' % trapezoidal_area(f, -4.0, 0, 10000) + '192.0000' + + >>> '%.4f' % trapezoidal_area(f, -4.0, 4.0, 10000) + '384.0000' + """ + x1 = x_start + fx1 = fnc(x_start) + area = 0.0 + + for i in range(steps): + + # Approximates small segments of curve as linear and solve + # for trapezoidal area + x2 = (x_end - x_start)/steps + x1 + fx2 = fnc(x2) + area += abs(fx2 + fx1) * (x2 - x1)/2 + + # Increment step + x1 = x2 + fx1 = fx2 + return area + + +if __name__ == "__main__": + + def f(x): + return x**3 + + print("f(x) = x^3") + print("The area between the curve, x = -10, x = 10 and the x axis is:") + i = 10 + while i <= 100000: + area = trapezoidal_area(f, -5, 5, i) + print("with {} steps: {}".format(i, area)) + i*=10 From 3042702d04eebfc9a1a545a076b2e6c764e17480 Mon Sep 17 00:00:00 2001 From: Sharan Krishnan <58838321+shrabian@users.noreply.github.com> Date: Sun, 19 Jan 2020 15:21:12 +1100 Subject: [PATCH 524/594] Area Under a Curve Algorithm (#1701) * A recursive insertion sort * added doctests and typehints * Added arc length and numerical integration calculators * fixed doc test * Fixed some conversion errors * Fixed some commenting * Deleted numerical integration to allow 1 file per push * Changed string formatting method * Added program to calculate trapezoidal area under curve * Deleted files ensure 1 pull request per file * file name changed * Update area_under_curve.py Co-authored-by: Christian Clauss --- maths/area_under_curve.py | 55 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 maths/area_under_curve.py diff --git a/maths/area_under_curve.py b/maths/area_under_curve.py new file mode 100644 index 000000000000..d05e9e4ae201 --- /dev/null +++ b/maths/area_under_curve.py @@ -0,0 +1,55 @@ +""" +Approximates the area under the curve using the trapezoidal rule +""" + +from typing import Callable, Union + +def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100) -> float: + """ + Treats curve as a collection of linear lines and sums the area of the + trapezium shape they form + :param fnc: a function which defines a curve + :param x_start: left end point to indicate the start of line segment + :param x_end: right end point to indicate end of line segment + :param steps: an accuracy gauge; more steps increases the accuracy + :return: a float representing the length of the curve + + >>> def f(x): + ... return 5 + >>> f"{trapezoidal_area(f, 12.0, 14.0, 1000):.3f}" + '10.000' + >>> def f(x): + ... return 9*x**2 + >>> f"{trapezoidal_area(f, -4.0, 0, 10000):.4f}" + '192.0000' + >>> f"{trapezoidal_area(f, -4.0, 4.0, 10000):.4f}" + '384.0000' + """ + x1 = x_start + fx1 = fnc(x_start) + area = 0.0 + for i in range(steps): + # Approximates small segments of curve as linear and solve + # for trapezoidal area + x2 = (x_end - x_start)/steps + x1 + fx2 = fnc(x2) + area += abs(fx2 + fx1) * (x2 - x1)/2 + # Increment step + x1 = x2 + fx1 = fx2 + return area + + +if __name__ == "__main__": + def f(x): + return x**3 + x**2 + + print("f(x) = x^3 + x^2") + print("The area between the curve, x = -5, x = 5 and the x axis is:") + i = 10 + while i <= 100000: + print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") + i*=10 From 724b7d2198895b2cb88e9b506be25a8cd53ef87e Mon Sep 17 00:00:00 2001 From: Kyle <40903431+kylepw@users.noreply.github.com> Date: Wed, 22 Jan 2020 03:46:03 +0900 Subject: [PATCH 525/594] Add Prim's algorithm with min heap (#1704) --- graphs/prim.py | 65 +++++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 57 insertions(+), 8 deletions(-) diff --git a/graphs/prim.py b/graphs/prim.py index 16cfaee089cb..a1d46a5a12a4 100644 --- a/graphs/prim.py +++ b/graphs/prim.py @@ -1,10 +1,13 @@ -""" -Prim's Algorithm. +"""Prim's Algorithm. + + Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm. -Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm + Details: https://en.wikipedia.org/wiki/Prim%27s_algorithm """ +import heapq as hq import math +from typing import Iterator class Vertex: @@ -50,11 +53,17 @@ def connect(graph, a, b, edge): graph[b - 1].add_edge(graph[a - 1], edge) -def prim(graph, root): - """ - Prim's Algorithm. - Return a list with the edges of a Minimum Spanning Tree - prim(graph, graph[0]) +def prim(graph: list, root: Vertex) -> list: + """Prim's Algorithm. + + Runtime: + O(mn) with `m` edges and `n` vertices + + Return: + List with the edges of a Minimum Spanning Tree + + Usage: + prim(graph, graph[0]) """ a = [] for u in graph: @@ -74,6 +83,38 @@ def prim(graph, root): return a +def prim_heap(graph: list, root: Vertex) -> Iterator[tuple]: + """Prim's Algorithm with min heap. + + Runtime: + O((m + n)log n) with `m` edges and `n` vertices + + Yield: + Edges of a Minimum Spanning Tree + + Usage: + prim(graph, graph[0]) + """ + for u in graph: + u.key = math.inf + u.pi = None + root.key = 0 + + h = [v for v in graph] + hq.heapify(h) + + while h: + u = hq.heappop(h) + for v in u.neighbors: + if (v in h) and (u.edges[v.id] < v.key): + v.pi = u + v.key = u.edges[v.id] + hq.heapify(h) + + for i in range(1, len(graph)): + yield (int(graph[i].id) + 1, int(graph[i].pi.id) + 1) + + def test_vector() -> None: """ # Creates a list to store x vertices. @@ -87,13 +128,21 @@ def test_vector() -> None: >>> connect(G, 3, 2, 6) >>> connect(G, 3, 4, 6) >>> connect(G, 0, 0, 0) # Generate the minimum spanning tree: + >>> G_heap = G[:] >>> MST = prim(G, G[0]) + >>> MST_heap = prim_heap(G, G[0]) >>> for i in MST: ... print(i) (2, 3) (3, 1) (4, 3) (5, 2) + >>> for i in MST_heap: + ... print(i) + (2, 3) + (3, 1) + (4, 3) + (5, 2) """ From 9a8e7de2dfb62110a92710c9be975c67510accb0 Mon Sep 17 00:00:00 2001 From: kostogls <38495639+kostogls@users.noreply.github.com> Date: Wed, 22 Jan 2020 17:35:30 +0200 Subject: [PATCH 526/594] Adding Armstrong number (#1708) * Adding Armstrong number * Update armstrong_numbers * Update armstrong_numbers.py * Update armstrong_numbers.py * Update armstrong_numbers.py Co-authored-by: Christian Clauss --- maths/armstrong_numbers.py | 55 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 maths/armstrong_numbers.py diff --git a/maths/armstrong_numbers.py b/maths/armstrong_numbers.py new file mode 100644 index 000000000000..94acb35c33f6 --- /dev/null +++ b/maths/armstrong_numbers.py @@ -0,0 +1,55 @@ +""" +An Armstrong number is a number that is equal to the sum of the cubes of its digits. +For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. +An Armstrong number is often called Narcissistic number. +""" + + +def armstrong_number(n: int) -> bool: + """ + This function checks if a number is Armstrong or not. + + >>> armstrong_number(153) + True + >>> armstrong_number(200) + False + >>> armstrong_number(1634) + True + >>> armstrong_number(0) + False + >>> armstrong_number(-1) + False + >>> armstrong_number(1.2) + False + """ + if not isinstance(n, int) or n < 1: + return False + + # Initialization of sum and number of digits. + sum = 0 + number_of_digits = 0 + temp = n + # Calculation of digits of the number + while temp > 0: + number_of_digits += 1 + temp //= 10 + # Dividing number into separate digits and find Armstrong number + temp = n + while temp > 0: + rem = temp % 10 + sum += (rem ** number_of_digits) + temp //= 10 + return n == sum + + +# In main function user inputs a number to find out if it's an Armstrong or not. Th function armstrong_number is called. +def main(): + num = int(input("Enter an integer number to check if it is Armstrong or not: ").strip()) + print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") + + +if __name__ == '__main__': + import doctest + + doctest.testmod() + main() From 2cf7e8f99403f9823f4cbf6e9a85938a2e126473 Mon Sep 17 00:00:00 2001 From: kostogls <38495639+kostogls@users.noreply.github.com> Date: Wed, 22 Jan 2020 18:00:48 +0200 Subject: [PATCH 527/594] fix comment (#1710) * fix comment * Update armstrong_numbers.py Co-authored-by: Christian Clauss --- maths/armstrong_numbers.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/maths/armstrong_numbers.py b/maths/armstrong_numbers.py index 94acb35c33f6..8ce184b0cf44 100644 --- a/maths/armstrong_numbers.py +++ b/maths/armstrong_numbers.py @@ -1,5 +1,5 @@ """ -An Armstrong number is a number that is equal to the sum of the cubes of its digits. +An Armstrong number is equal to the sum of the cubes of its digits. For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. An Armstrong number is often called Narcissistic number. """ @@ -7,7 +7,7 @@ def armstrong_number(n: int) -> bool: """ - This function checks if a number is Armstrong or not. + Return True if n is an Armstrong number or False if it is not. >>> armstrong_number(153) True @@ -42,9 +42,11 @@ def armstrong_number(n: int) -> bool: return n == sum -# In main function user inputs a number to find out if it's an Armstrong or not. Th function armstrong_number is called. def main(): - num = int(input("Enter an integer number to check if it is Armstrong or not: ").strip()) + """ + Request that user input an integer and tell them if it is Armstrong number. + """ + num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") From 46ac50a28e88037d965a7eea0b588493298b83eb Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 23 Jan 2020 17:21:51 +0100 Subject: [PATCH 528/594] codespell --quiet-level=2 (#1711) * codespell --quiet-level=2 Suppress the BINARY FILE warnings * fixup! Format Python code with psf/black push --- .github/workflows/codespell.yml | 4 ++-- maths/area_under_curve.py | 20 ++++++++++++-------- maths/armstrong_numbers.py | 6 +++--- maths/line_length.py | 14 +++++++++----- maths/numerical_integration.py | 19 +++++++++++-------- 5 files changed, 37 insertions(+), 26 deletions(-) diff --git a/.github/workflows/codespell.yml b/.github/workflows/codespell.yml index 1e9b052cafe8..188538775a2f 100644 --- a/.github/workflows/codespell.yml +++ b/.github/workflows/codespell.yml @@ -10,5 +10,5 @@ jobs: - uses: actions/setup-python@v1 - run: pip install codespell flake8 - run: | - SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt,*.bak,*.gif,*.jpeg,*.jpg,*.json,*.png,*.pyc" - codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP + SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt" + codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP --quiet-level=2 diff --git a/maths/area_under_curve.py b/maths/area_under_curve.py index d05e9e4ae201..2d01e414b63b 100644 --- a/maths/area_under_curve.py +++ b/maths/area_under_curve.py @@ -4,10 +4,13 @@ from typing import Callable, Union -def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], - x_start: Union[int, float], - x_end: Union[int, float], - steps: int = 100) -> float: + +def trapezoidal_area( + fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100, +) -> float: """ Treats curve as a collection of linear lines and sums the area of the trapezium shape they form @@ -34,9 +37,9 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], for i in range(steps): # Approximates small segments of curve as linear and solve # for trapezoidal area - x2 = (x_end - x_start)/steps + x1 + x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) - area += abs(fx2 + fx1) * (x2 - x1)/2 + area += abs(fx2 + fx1) * (x2 - x1) / 2 # Increment step x1 = x2 fx1 = fx2 @@ -44,12 +47,13 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], if __name__ == "__main__": + def f(x): - return x**3 + x**2 + return x ** 3 + x ** 2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") i = 10 while i <= 100000: print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") - i*=10 + i *= 10 diff --git a/maths/armstrong_numbers.py b/maths/armstrong_numbers.py index 8ce184b0cf44..4ed23dd1d1d7 100644 --- a/maths/armstrong_numbers.py +++ b/maths/armstrong_numbers.py @@ -24,7 +24,7 @@ def armstrong_number(n: int) -> bool: """ if not isinstance(n, int) or n < 1: return False - + # Initialization of sum and number of digits. sum = 0 number_of_digits = 0 @@ -37,7 +37,7 @@ def armstrong_number(n: int) -> bool: temp = n while temp > 0: rem = temp % 10 - sum += (rem ** number_of_digits) + sum += rem ** number_of_digits temp //= 10 return n == sum @@ -50,7 +50,7 @@ def main(): print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") -if __name__ == '__main__': +if __name__ == "__main__": import doctest doctest.testmod() diff --git a/maths/line_length.py b/maths/line_length.py index 8737a863b902..0b1ddb5b7866 100644 --- a/maths/line_length.py +++ b/maths/line_length.py @@ -1,10 +1,13 @@ from typing import Callable, Union import math as m -def line_length(fnc: Callable[[Union[int, float]], Union[int, float]], - x_start: Union[int, float], - x_end: Union[int, float], - steps: int = 100) -> float: + +def line_length( + fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100, +) -> float: """ Approximates the arc length of a line segment by treating the curve as a @@ -48,10 +51,11 @@ def line_length(fnc: Callable[[Union[int, float]], Union[int, float]], return length + if __name__ == "__main__": def f(x): - return m.sin(10*x) + return m.sin(10 * x) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") diff --git a/maths/numerical_integration.py b/maths/numerical_integration.py index 55026f0d627f..67fbc0ddbf30 100644 --- a/maths/numerical_integration.py +++ b/maths/numerical_integration.py @@ -4,10 +4,13 @@ from typing import Callable, Union -def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], - x_start: Union[int, float], - x_end: Union[int, float], - steps: int = 100) -> float: + +def trapezoidal_area( + fnc: Callable[[Union[int, float]], Union[int, float]], + x_start: Union[int, float], + x_end: Union[int, float], + steps: int = 100, +) -> float: """ Treats curve as a collection of linear lines and sums the area of the @@ -39,9 +42,9 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], # Approximates small segments of curve as linear and solve # for trapezoidal area - x2 = (x_end - x_start)/steps + x1 + x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) - area += abs(fx2 + fx1) * (x2 - x1)/2 + area += abs(fx2 + fx1) * (x2 - x1) / 2 # Increment step x1 = x2 @@ -52,7 +55,7 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]], if __name__ == "__main__": def f(x): - return x**3 + return x ** 3 print("f(x) = x^3") print("The area between the curve, x = -10, x = 10 and the x axis is:") @@ -60,4 +63,4 @@ def f(x): while i <= 100000: area = trapezoidal_area(f, -5, 5, i) print("with {} steps: {}".format(i, area)) - i*=10 + i *= 10 From 63a1c4171a5a14f47b359d5439c279c03cef5c5f Mon Sep 17 00:00:00 2001 From: Faraz Ahmed Khan <31242842+fk03983@users.noreply.github.com> Date: Sat, 25 Jan 2020 00:18:43 -0600 Subject: [PATCH 529/594] Added implementation for Bezier Curve, under a new graphics directory. (#1713) * Added bezier curve * black formatted * corrected spell check * edited scipy import * updated documentation for readablitity * Update bezier_curve.py * Update bezier_curve.py Co-authored-by: Christian Clauss --- graphics/bezier_curve.py | 114 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 114 insertions(+) create mode 100644 graphics/bezier_curve.py diff --git a/graphics/bezier_curve.py b/graphics/bezier_curve.py new file mode 100644 index 000000000000..512efadf86ee --- /dev/null +++ b/graphics/bezier_curve.py @@ -0,0 +1,114 @@ +# https://en.wikipedia.org/wiki/B%C3%A9zier_curve +# https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm + +from typing import List, Tuple +from scipy.special import comb + + +class BezierCurve: + """ + Bezier curve is a weighted sum of a set of control points. + Generate Bezier curves from a given set of control points. + This implementation works only for 2d coordinates in the xy plane. + """ + + def __init__(self, list_of_points: List[Tuple[float, float]]): + """ + list_of_points: Control points in the xy plane on which to interpolate. These + points control the behavior (shape) of the Bezier curve. + """ + self.list_of_points = list_of_points + # Degree determines the flexibility of the curve. + # Degree = 1 will produce a straight line. + self.degree = len(list_of_points) - 1 + + def basis_function(self, t: float) -> List[float]: + """ + The basis function determines the weight of each control point at time t. + t: time value between 0 and 1 inclusive at which to evaluate the basis of + the curve. + returns the x, y values of basis function at time t + + >>> curve = BezierCurve([(1,1), (1,2)]) + >>> curve.basis_function(0) + [1.0, 0.0] + >>> curve.basis_function(1) + [0.0, 1.0] + """ + assert 0 <= t <= 1, "Time t must be between 0 and 1." + output_values: List[float] = [] + for i in range(len(self.list_of_points)): + # basis function for each i + output_values.append( + comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t ** i) + ) + # the basis must sum up to 1 for it to produce a valid Bezier curve. + assert round(sum(output_values), 5) == 1 + return output_values + + def bezier_curve_function(self, t: float) -> Tuple[float, float]: + """ + The function to produce the values of the Bezier curve at time t. + t: the value of time t at which to evaluate the Bezier function + Returns the x, y coordinates of the Bezier curve at time t. + The first point in the curve is when t = 0. + The last point in the curve is when t = 1. + + >>> curve = BezierCurve([(1,1), (1,2)]) + >>> curve.bezier_curve_function(0) + (1.0, 1.0) + >>> curve.bezier_curve_function(1) + (1.0, 2.0) + """ + + assert 0 <= t <= 1, "Time t must be between 0 and 1." + + basis_function = self.basis_function(t) + x = 0.0 + y = 0.0 + for i in range(len(self.list_of_points)): + # For all points, sum up the product of i-th basis function and i-th point. + x += basis_function[i] * self.list_of_points[i][0] + y += basis_function[i] * self.list_of_points[i][1] + return (x, y) + + def plot_curve(self, step_size: float = 0.01): + """ + Plots the Bezier curve using matplotlib plotting capabilities. + step_size: defines the step(s) at which to evaluate the Bezier curve. + The smaller the step size, the finer the curve produced. + """ + import matplotlib.pyplot as plt + + to_plot_x: List[float] = [] # x coordinates of points to plot + to_plot_y: List[float] = [] # y coordinates of points to plot + + t = 0.0 + while t <= 1: + value = self.bezier_curve_function(t) + to_plot_x.append(value[0]) + to_plot_y.append(value[1]) + t += step_size + + x = [i[0] for i in self.list_of_points] + y = [i[1] for i in self.list_of_points] + + plt.plot( + to_plot_x, + to_plot_y, + color="blue", + label="Curve of Degree " + str(self.degree), + ) + plt.scatter(x, y, color="red", label="Control Points") + plt.legend() + plt.show() + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + + BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 + BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 + BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3 From 5c7d7782b0fd386b3fe205d34d73c24c241b3553 Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Tue, 28 Jan 2020 02:24:57 +0530 Subject: [PATCH 530/594] Mandates referencing issue in PR (#1717) * Mandates referencing issue in PR * Update CONTRIBUTING.md * Update pull_request_template.md * Update pull_request_template.md * Update pull_request_template.md * Update CONTRIBUTING.md Co-authored-by: John Law Co-authored-by: Christian Clauss --- .github/pull_request_template.md | 1 + CONTRIBUTING.md | 2 ++ 2 files changed, 3 insertions(+) diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 2f130896ebe3..3b7d70fed373 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -17,3 +17,4 @@ * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. +* [ ] If this issues resolves an open issue then the commit message contains `Fixes: #{$ISSUE_NO}` for auto cleanup. diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ce2f03886e01..11b956d73193 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -25,6 +25,8 @@ We appreciate any contribution, from fixing a grammar mistake in a comment to im Your contribution will be tested by our [automated testing on Travis CI](https://travis-ci.org/TheAlgorithms/Python/pull_requests) to save time and mental energy. After you have submitted your pull request, you should see the Travis tests start to run at the bottom of your submission page. If those tests fail, then click on the ___details___ button try to read through the Travis output to understand the failure. If you do not understand, please leave a comment on your submission page and a community member will try to help. +Please help us keep our issue list small by adding fixes: #{$ISSUE_NO} to the commit message of pull requests that resolve open issues. GitHub will use this tag to auto close the issue when the PR is merged. + #### Coding Style We want your work to be readable by others; therefore, we encourage you to note the following: From bef74d0ecc8132ffd629c1a066d5dad446775d64 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 27 Jan 2020 22:09:47 +0100 Subject: [PATCH 531/594] Fix typo (#1718) * Fix typo * updating DIRECTORY.md --- .github/pull_request_template.md | 2 +- DIRECTORY.md | 8 ++++++++ 2 files changed, 9 insertions(+), 1 deletion(-) diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 3b7d70fed373..103ecf7c288a 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -17,4 +17,4 @@ * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. -* [ ] If this issues resolves an open issue then the commit message contains `Fixes: #{$ISSUE_NO}` for auto cleanup. +* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`. diff --git a/DIRECTORY.md b/DIRECTORY.md index eb17b3a7e78e..ff98c21894c5 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -190,6 +190,9 @@ ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) +## Graphics + * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) + ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) @@ -258,6 +261,8 @@ * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) + * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) @@ -271,6 +276,7 @@ * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) + * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) @@ -292,6 +298,7 @@ * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) + * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) @@ -299,6 +306,7 @@ * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) + * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) From 81f077adfc685ef5dc40031d042a8e30735f8426 Mon Sep 17 00:00:00 2001 From: cschuerc <57899042+cschuerc@users.noreply.github.com> Date: Tue, 28 Jan 2020 18:03:59 +0100 Subject: [PATCH 532/594] Augment binary search algorithms (#1719) --- searches/binary_search.py | 164 +++++++++++++++++++++++++++++++++++++- 1 file changed, 163 insertions(+), 1 deletion(-) diff --git a/searches/binary_search.py b/searches/binary_search.py index ff959c6cf2e3..fe22e423a7d4 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of binary search algorithm +This is pure python implementation of binary search algorithms For doctests run following command: python -m doctest -v binary_search.py @@ -12,6 +12,168 @@ import bisect +def bisect_left(sorted_collection, item, lo=0, hi=None): + """ + Locates the first element in a sorted array that is larger or equal to a given value. + + It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_left . + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item to bisect + :param lo: lowest index to consider (as in sorted_collection[lo:hi]) + :param hi: past the highest index to consider (as in sorted_collection[lo:hi]) + :return: index i such that all values in sorted_collection[lo:i] are < item and all values in sorted_collection[i:hi] are >= item. + + Examples: + >>> bisect_left([0, 5, 7, 10, 15], 0) + 0 + + >>> bisect_left([0, 5, 7, 10, 15], 6) + 2 + + >>> bisect_left([0, 5, 7, 10, 15], 20) + 5 + + >>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3) + 3 + + >>> bisect_left([0, 5, 7, 10, 15], 6, 2) + 2 + """ + if hi is None: + hi = len(sorted_collection) + + while lo < hi: + mid = (lo + hi) // 2 + if sorted_collection[mid] < item: + lo = mid + 1 + else: + hi = mid + + return lo + + +def bisect_right(sorted_collection, item, lo=0, hi=None): + """ + Locates the first element in a sorted array that is larger than a given value. + + It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_right . + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item to bisect + :param lo: lowest index to consider (as in sorted_collection[lo:hi]) + :param hi: past the highest index to consider (as in sorted_collection[lo:hi]) + :return: index i such that all values in sorted_collection[lo:i] are <= item and all values in sorted_collection[i:hi] are > item. + + Examples: + >>> bisect_right([0, 5, 7, 10, 15], 0) + 1 + + >>> bisect_right([0, 5, 7, 10, 15], 15) + 5 + + >>> bisect_right([0, 5, 7, 10, 15], 6) + 2 + + >>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3) + 3 + + >>> bisect_right([0, 5, 7, 10, 15], 6, 2) + 2 + """ + if hi is None: + hi = len(sorted_collection) + + while lo < hi: + mid = (lo + hi) // 2 + if sorted_collection[mid] <= item: + lo = mid + 1 + else: + hi = mid + + return lo + + +def insort_left(sorted_collection, item, lo=0, hi=None): + """ + Inserts a given value into a sorted array before other values with the same value. + + It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_left . + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item to insert + :param lo: lowest index to consider (as in sorted_collection[lo:hi]) + :param hi: past the highest index to consider (as in sorted_collection[lo:hi]) + + Examples: + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_left(sorted_collection, 6) + >>> sorted_collection + [0, 5, 6, 7, 10, 15] + + >>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)] + >>> item = (5, 5) + >>> insort_left(sorted_collection, item) + >>> sorted_collection + [(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)] + >>> item is sorted_collection[1] + True + >>> item is sorted_collection[2] + False + + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_left(sorted_collection, 20) + >>> sorted_collection + [0, 5, 7, 10, 15, 20] + + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_left(sorted_collection, 15, 1, 3) + >>> sorted_collection + [0, 5, 7, 15, 10, 15] + """ + sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item) + + +def insort_right(sorted_collection, item, lo=0, hi=None): + """ + Inserts a given value into a sorted array after other values with the same value. + + It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_right . + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item to insert + :param lo: lowest index to consider (as in sorted_collection[lo:hi]) + :param hi: past the highest index to consider (as in sorted_collection[lo:hi]) + + Examples: + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_right(sorted_collection, 6) + >>> sorted_collection + [0, 5, 6, 7, 10, 15] + + >>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)] + >>> item = (5, 5) + >>> insort_right(sorted_collection, item) + >>> sorted_collection + [(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)] + >>> item is sorted_collection[1] + False + >>> item is sorted_collection[2] + True + + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_right(sorted_collection, 20) + >>> sorted_collection + [0, 5, 7, 10, 15, 20] + + >>> sorted_collection = [0, 5, 7, 10, 15] + >>> insort_right(sorted_collection, 15, 1, 3) + >>> sorted_collection + [0, 5, 7, 15, 10, 15] + """ + sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item) + + def binary_search(sorted_collection, item): """Pure implementation of binary search algorithm in Python From 74a7b5f799d7377f9bb536919d415c84eb906787 Mon Sep 17 00:00:00 2001 From: tania-cmyk <58653046+tania-cmyk@users.noreply.github.com> Date: Mon, 3 Feb 2020 14:30:58 +0530 Subject: [PATCH 533/594] relevant documentation added (#1725) --- ciphers/transposition_cipher.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/ciphers/transposition_cipher.py b/ciphers/transposition_cipher.py index b6c9195b5dee..3b69d6b99f67 100644 --- a/ciphers/transposition_cipher.py +++ b/ciphers/transposition_cipher.py @@ -1,6 +1,11 @@ import math - +''' +In cryptography, the TRANSPOSITION cipher is a method of encryption where the +positions of plaintext are shifted a certain number(determined by the key) that +follows a regular system that results in the permuted text, known as the encrypted +text. The type of transposition cipher demonstrated under is the ROUTE cipher. +''' def main(): message = input("Enter message: ") key = int(input("Enter key [2-%s]: " % (len(message) - 1))) From dacf1d0375dcfd4f8b294220c03df833a6d8ecac Mon Sep 17 00:00:00 2001 From: faizan2700 <46817346+faizan2700@users.noreply.github.com> Date: Wed, 5 Feb 2020 16:57:43 +0530 Subject: [PATCH 534/594] Implement Manacher's algorithm (#1721) * manacher's algorithm updated --- strings/manacher.py | 94 +++++++++++++++++++++++++++++++++------------ 1 file changed, 70 insertions(+), 24 deletions(-) diff --git a/strings/manacher.py b/strings/manacher.py index 4193def2f71b..95aba1fbe65d 100644 --- a/strings/manacher.py +++ b/strings/manacher.py @@ -1,25 +1,18 @@ -# calculate palindromic length from center with incrementing difference -def palindromic_length(center, diff, string): - if ( - center - diff == -1 - or center + diff == len(string) - or string[center - diff] != string[center + diff] - ): - return 0 - return 1 + palindromic_length(center, diff + 1, string) - - def palindromic_string(input_string): """ - Manacher’s algorithm which finds Longest Palindromic Substring in linear time. + >>> palindromic_string('abbbaba') + 'abbba' + >>> palindromic_string('ababa') + 'ababa' + + Manacher’s algorithm which finds Longest palindromic Substring in linear time. 1. first this convert input_string("xyx") into new_string("x|y|x") where odd positions are actual input characters. - 2. for each character in new_string it find corresponding length and store, - a. max_length - b. max_length's center - 3. return output_string from center - max_length to center + max_length and remove - all "|" + 2. for each character in new_string it find corresponding length and store the length + and l,r to store previously calculated info.(please look the explanation for details) + + 3. return corresponding output_string by removing all "|" """ max_length = 0 @@ -33,19 +26,38 @@ def palindromic_string(input_string): # append last character new_input_string += input_string[-1] + # we will store the starting and ending of previous furthest ending palindromic substring + l, r = 0, 0 + + # length[i] shows the length of palindromic substring with center i + length = [1 for i in range(len(new_input_string))] + # for each character in new_string find corresponding palindromic string for i in range(len(new_input_string)): + k = 1 if i > r else min(length[l + r - i] // 2, r - i + 1) + while ( + i - k >= 0 + and i + k < len(new_input_string) + and new_input_string[k + i] == new_input_string[i - k] + ): + k += 1 + + length[i] = 2 * k - 1 - # get palindromic length from i-th position - length = palindromic_length(i, 1, new_input_string) + # does this string is ending after the previously explored end (that is r) ? + # if yes the update the new r to the last index of this + if i + k - 1 > r: + l = i - k + 1 + r = i + k - 1 # update max_length and start position - if max_length < length: - max_length = length + if max_length < length[i]: + max_length = length[i] start = i # create that string - for i in new_input_string[start - max_length : start + max_length + 1]: + s = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] + for i in s: if i != "|": output_string += i @@ -53,5 +65,39 @@ def palindromic_string(input_string): if __name__ == "__main__": - n = input() - print(palindromic_string(n)) + import doctest + + doctest.testmod() + +""" +...a0...a1...a2.....a3......a4...a5...a6.... + +consider the string for which we are calculating the longest palindromic substring is shown above where ... +are some characters in between and right now we are calculating the length of palindromic substring with +center at a5 with following conditions : +i) we have stored the length of palindromic substring which has center at a3 (starts at l ends at r) and it + is the furthest ending till now, and it has ending after a6 +ii) a2 and a4 are equally distant from a3 so char(a2) == char(a4) +iii) a0 and a6 are equally distant from a3 so char(a0) == char(a6) +iv) a1 is corresponding equal character of a5 in palindrome with center a3 (remember that in below derivation of a4==a6) + +now for a5 we will calculate the length of palindromic substring with center as a5 but can we use previously +calculated information in some way? +Yes, look the above string we know that a5 is inside the palindrome with center a3 and previously we have +have calculated that +a0==a2 (palindrome of center a1) +a2==a4 (palindrome of center a3) +a0==a6 (palindrome of center a3) +so a4==a6 + +so we can say that palindrome at center a5 is at least as long as palindrome at center a1 +but this only holds if a0 and a6 are inside the limits of palindrome centered at a3 so finally .. + +len_of_palindrome__at(a5) = min(len_of_palindrome_at(a1), r-a5) +where a3 lies from l to r and we have to keep updating that + +and if the a5 lies outside of l,r boundary we calculate length of palindrome with bruteforce and update +l,r. + +it gives the linear time complexity just like z-function +""" From e7041a8ecafd6df97e00b2c801457b508654c290 Mon Sep 17 00:00:00 2001 From: Ale3androsS <37119970+Ale3androsS@users.noreply.github.com> Date: Thu, 6 Feb 2020 21:48:58 +0200 Subject: [PATCH 535/594] Added first come first served scheduling (#1722) * Added FCFS * Fixed spelling error * Rename fcfs.py to first_come_first_served.py * Fixed FCFS and added tests. * Made changes requested * Use enumerate() instead of range(len()) Co-authored-by: Christian Clauss --- scheduling/first_come_first_served.py | 104 ++++++++++++++++++++++++++ 1 file changed, 104 insertions(+) create mode 100644 scheduling/first_come_first_served.py diff --git a/scheduling/first_come_first_served.py b/scheduling/first_come_first_served.py new file mode 100644 index 000000000000..d339273fe741 --- /dev/null +++ b/scheduling/first_come_first_served.py @@ -0,0 +1,104 @@ +# Implementation of First Come First Served scheduling algorithm +# In this Algorithm we just care about the order that the processes arrived +# without carring about their duration time +# https://en.wikipedia.org/wiki/Scheduling_(computing)#First_come,_first_served +from typing import List + + +def calculate_waiting_times(duration_times: List[int]) -> List[int]: + """ + This function calculates the waiting time of some processes that have a + specified duration time. + Return: The waiting time for each process. + >>> calculate_waiting_times([5, 10, 15]) + [0, 5, 15] + >>> calculate_waiting_times([1, 2, 3, 4, 5]) + [0, 1, 3, 6, 10] + >>> calculate_waiting_times([10, 3]) + [0, 10] + """ + waiting_times = [0] * len(duration_times) + for i in range(1, len(duration_times)): + waiting_times[i] = duration_times[i - 1] + waiting_times[i - 1] + return waiting_times + + +def calculate_turnaround_times( + duration_times: List[int], waiting_times: List[int] +) -> List[int]: + """ + This function calculates the turnaround time of some processes. + Return: The time difference between the completion time and the + arrival time. + Practically waiting_time + duration_time + >>> calculate_turnaround_times([5, 10, 15], [0, 5, 15]) + [5, 15, 30] + >>> calculate_turnaround_times([1, 2, 3, 4, 5], [0, 1, 3, 6, 10]) + [1, 3, 6, 10, 15] + >>> calculate_turnaround_times([10, 3], [0, 10]) + [10, 13] + """ + return [duration_time + waiting_times[i] for i, duration_time in enumerate(duration_times)] + + +def calculate_average_turnaround_time(turnaround_times: List[int]) -> float: + """ + This function calculates the average of the turnaround times + Return: The average of the turnaround times. + >>> calculate_average_turnaround_time([0, 5, 16]) + 7.0 + >>> calculate_average_turnaround_time([1, 5, 8, 12]) + 6.5 + >>> calculate_average_turnaround_time([10, 24]) + 17.0 + """ + return sum(turnaround_times) / len(turnaround_times) + + +def calculate_average_waiting_time(waiting_times: List[int]) -> float: + """ + This function calculates the average of the waiting times + Return: The average of the waiting times. + >>> calculate_average_waiting_time([0, 5, 16]) + 7.0 + >>> calculate_average_waiting_time([1, 5, 8, 12]) + 6.5 + >>> calculate_average_waiting_time([10, 24]) + 17.0 + """ + return sum(waiting_times) / len(waiting_times) + + +if __name__ == "__main__": + # process id's + processes = [1, 2, 3] + + # ensure that we actually have processes + if len(processes) == 0: + print("Zero amount of processes") + exit() + + # duration time of all processes + duration_times = [19, 8, 9] + + # ensure we can match each id to a duration time + if len(duration_times) != len(processes): + print("Unable to match all id's with their duration time") + exit() + + # get the waiting times and the turnaround times + waiting_times = calculate_waiting_times(duration_times) + turnaround_times = calculate_turnaround_times(duration_times, waiting_times) + + # get the average times + average_waiting_time = calculate_average_waiting_time(waiting_times) + average_turnaround_time = calculate_average_turnaround_time(turnaround_times) + + # print all the results + print("Process ID\tDuration Time\tWaiting Time\tTurnaround Time") + for i, process in enumerate(processes): + print( + f"{process}\t\t{duration_times[i]}\t\t{waiting_times[i]}\t\t{turnaround_times[i]}" + ) + print(f"Average waiting time = {average_waiting_time}") + print(f"Average turn around time = {average_turnaround_time}") From 1608d75351be2b11b0e1ce891e2f71296f0be24b Mon Sep 17 00:00:00 2001 From: TheSuperNoob Date: Thu, 6 Feb 2020 22:00:08 +0100 Subject: [PATCH 536/594] Improve collatz_sequence algorithm (#1726) - Add more doctests and type checking to make sure only natural numbers are used - Simplified the algorithm slightly This new verison is also between 10-15% faster for really long sequences --- maths/collatz_sequence.py | 34 ++++++++++++++++++++++++---------- 1 file changed, 24 insertions(+), 10 deletions(-) diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py index a5f044a62b18..d3eb6e756dcd 100644 --- a/maths/collatz_sequence.py +++ b/maths/collatz_sequence.py @@ -1,19 +1,33 @@ -def collatz_sequence(n): +from typing import List + + +def collatz_sequence(n: int) -> List[int]: """ - Collatz conjecture: start with any positive integer n.Next term is obtained from the previous term as follows: - if the previous term is even, the next term is one half of the previous term. - If the previous term is odd, the next term is 3 times the previous term plus 1. - The conjecture states the sequence will always reach 1 regaardless of starting value n. + Collatz conjecture: start with any positive integer n. The next term is + obtained as follows: + If n term is even, the next term is: n / 2 . + If n is odd, the next term is: 3 * n + 1. + + The conjecture states the sequence will always reach 1 for any starting value n. Example: + >>> collatz_sequence(2.1) + Traceback (most recent call last): + ... + Exception: Sequence only defined for natural numbers + >>> collatz_sequence(0) + Traceback (most recent call last): + ... + Exception: Sequence only defined for natural numbers >>> collatz_sequence(43) [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] """ + + if not isinstance(n, int) or n < 1: + raise Exception("Sequence only defined for natural numbers") + sequence = [n] while n != 1: - if n % 2 == 0: # even number condition - n //= 2 - else: - n = 3 * n + 1 + n = 3 * n + 1 if n & 1 else n // 2 sequence.append(n) return sequence @@ -22,7 +36,7 @@ def main(): n = 43 sequence = collatz_sequence(n) print(sequence) - print("collatz sequence from %d took %d steps." % (n, len(sequence))) + print(f"collatz sequence from {n} took {len(sequence)} steps.") if __name__ == "__main__": From f52b97f2c56aadfd30a7384cff62d8354157b9cb Mon Sep 17 00:00:00 2001 From: Miggelito Date: Fri, 7 Feb 2020 19:37:14 +0100 Subject: [PATCH 537/594] Added Random Forest Regressor and tested with flake8 (#1733) * Added Random Forest Regressor * Updated file to standard --- machine_learning/random_forest_regressor.py | 42 +++++++++++++++++++++ 1 file changed, 42 insertions(+) create mode 100644 machine_learning/random_forest_regressor.py diff --git a/machine_learning/random_forest_regressor.py b/machine_learning/random_forest_regressor.py new file mode 100644 index 000000000000..f6c470f0975a --- /dev/null +++ b/machine_learning/random_forest_regressor.py @@ -0,0 +1,42 @@ +# Random Forest Regressor Example + +from sklearn.datasets import load_boston +from sklearn.model_selection import train_test_split +from sklearn.ensemble import RandomForestRegressor +from sklearn.metrics import mean_absolute_error +from sklearn.metrics import mean_squared_error + + +def main(): + + """ + Random Tree Regressor Example using sklearn function. + Boston house price dataset is used to demonstrate algorithm. + """ + + # Load Boston house price dataset + boston = load_boston() + print(boston.keys()) + + # Split dataset into train and test data + X = boston["data"] # features + Y = boston["target"] + x_train, x_test, y_train, y_test = train_test_split( + X, Y, test_size=0.3, random_state=1 + ) + + # Random Forest Regressor + rand_for = RandomForestRegressor(random_state=42, n_estimators=300) + rand_for.fit(x_train, y_train) + + # Predict target for test data + predictions = rand_for.predict(x_test) + predictions = predictions.reshape(len(predictions), 1) + + # Error printing + print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}") + print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}") + + +if __name__ == "__main__": + main() From 670f952aa680f5c141e4ad6efc42cd8d75fdc628 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 7 Feb 2020 22:02:08 +0200 Subject: [PATCH 538/594] =?UTF-8?q?Travis=20CI:=20Don=E2=80=99t=20allow=20?= =?UTF-8?q?bare=20exceptions=20(#1734)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Travis CI: Don’t allow bare exceptions * fixup! Format Python code with psf/black push * except IOError: * except IOError: * Update hamming_code.py * IndexError * Get rid of the nonsense logic Co-authored-by: John Law --- .travis.yml | 2 +- ciphers/transposition_cipher.py | 6 ++++-- ciphers/xor_cipher.py | 4 ++-- hashes/hamming_code.py | 4 ++-- linear_algebra/src/test_linear_algebra.py | 6 +----- 5 files changed, 10 insertions(+), 12 deletions(-) diff --git a/.travis.yml b/.travis.yml index 80ea1302990d..bd2dfbbe4496 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,7 +5,7 @@ before_install: pip install --upgrade pip setuptools install: pip install -r requirements.txt before_script: - black --check . || true - - flake8 . --count --select=E101,E9,F4,F63,F7,F82,W191 --show-source --statistics + - flake8 . --count --select=E101,E722,E9,F4,F63,F7,F82,W191 --show-source --statistics - flake8 . --count --exit-zero --max-line-length=127 --statistics script: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory diff --git a/ciphers/transposition_cipher.py b/ciphers/transposition_cipher.py index 3b69d6b99f67..4bba88955433 100644 --- a/ciphers/transposition_cipher.py +++ b/ciphers/transposition_cipher.py @@ -1,11 +1,13 @@ import math -''' +""" In cryptography, the TRANSPOSITION cipher is a method of encryption where the positions of plaintext are shifted a certain number(determined by the key) that follows a regular system that results in the permuted text, known as the encrypted text. The type of transposition cipher demonstrated under is the ROUTE cipher. -''' +""" + + def main(): message = input("Enter message: ") key = int(input("Enter key [2-%s]: " % (len(message) - 1))) diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py index 58b5352672ef..0fcfbb0b9ae2 100644 --- a/ciphers/xor_cipher.py +++ b/ciphers/xor_cipher.py @@ -148,7 +148,7 @@ def encrypt_file(self, file, key=0): for line in fin: fout.write(self.encrypt_string(line, key)) - except: + except IOError: return False return True @@ -173,7 +173,7 @@ def decrypt_file(self, file, key): for line in fin: fout.write(self.decrypt_string(line, key)) - except: + except IOError: return False return True diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py index 3e0424490781..1246e1817c76 100644 --- a/hashes/hamming_code.py +++ b/hashes/hamming_code.py @@ -125,7 +125,7 @@ def emitterConverter(sizePar, data): if x != None: try: aux = (binPos[contLoop])[-1 * (bp)] - except: + except IndexError: aux = "0" if aux == "1": if x == "1": @@ -229,7 +229,7 @@ def receptorConverter(sizePar, data): if x != None: try: aux = (binPos[contLoop])[-1 * (bp)] - except: + except IndexError: aux = "0" if aux == "1": if x == "1": diff --git a/linear_algebra/src/test_linear_algebra.py b/linear_algebra/src/test_linear_algebra.py index 5e28910af86a..8d2170e46da4 100644 --- a/linear_algebra/src/test_linear_algebra.py +++ b/linear_algebra/src/test_linear_algebra.py @@ -19,11 +19,7 @@ def test_component(self): x = Vector([1, 2, 3]) self.assertEqual(x.component(0), 1) self.assertEqual(x.component(2), 3) - try: - y = Vector() - self.assertTrue(False) - except: - self.assertTrue(True) + y = Vector() def test_str(self): """ From 32ceec550f085439404fe1bbdc8d6e952a269595 Mon Sep 17 00:00:00 2001 From: MatteoRaso <33975162+MatteoRaso@users.noreply.github.com> Date: Sat, 8 Feb 2020 15:47:11 -0500 Subject: [PATCH 539/594] Added a Monte Carlo simulation (#1723) * Added montecarlo.py This algorithm uses a Monte Carlo simulation to estimate the value of pi. * Rename montecarlo.py to maths/montecarlo.py * Add files via upload * Delete montecarlo.py * Rename montecarlo.py to maths/montecarlo.py * Update montecarlo.py --- maths/montecarlo.py | 43 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 maths/montecarlo.py diff --git a/maths/montecarlo.py b/maths/montecarlo.py new file mode 100644 index 000000000000..903012429c06 --- /dev/null +++ b/maths/montecarlo.py @@ -0,0 +1,43 @@ +""" +@author: MatteoRaso +""" +from numpy import pi, sqrt +from random import uniform + +def pi_estimator(iterations: int): + """An implementation of the Monte Carlo method used to find pi. + 1. Draw a 2x2 square centred at (0,0). + 2. Inscribe a circle within the square. + 3. For each iteration, place a dot anywhere in the square. + 3.1 Record the number of dots within the circle. + 4. After all the dots are placed, divide the dots in the circle by the total. + 5. Multiply this value by 4 to get your estimate of pi. + 6. Print the estimated and numpy value of pi + """ + + + circle_dots = 0 + + # A local function to see if a dot lands in the circle. + def circle(x: float, y: float): + distance_from_centre = sqrt((x ** 2) + (y ** 2)) + # Our circle has a radius of 1, so a distance greater than 1 would land outside the circle. + return distance_from_centre <= 1 + + circle_dots = sum( + int(circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for i in range(iterations) + ) + + # The proportion of guesses that landed within the circle + proportion = circle_dots / iterations + # The ratio of the area for circle to square is pi/4. + pi_estimate = proportion * 4 + print("The estimated value of pi is ", pi_estimate) + print("The numpy value of pi is ", pi) + print("The total error is ", abs(pi - pi_estimate)) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 80718bd8802e9afd19c986b4cae18beb38d8058c Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Mon, 10 Feb 2020 16:13:57 +0530 Subject: [PATCH 540/594] Fixes black failures (#1742) --- maths/montecarlo.py | 2 +- scheduling/first_come_first_served.py | 5 ++++- 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/maths/montecarlo.py b/maths/montecarlo.py index 903012429c06..ce8f69f64a15 100644 --- a/maths/montecarlo.py +++ b/maths/montecarlo.py @@ -4,6 +4,7 @@ from numpy import pi, sqrt from random import uniform + def pi_estimator(iterations: int): """An implementation of the Monte Carlo method used to find pi. 1. Draw a 2x2 square centred at (0,0). @@ -15,7 +16,6 @@ def pi_estimator(iterations: int): 6. Print the estimated and numpy value of pi """ - circle_dots = 0 # A local function to see if a dot lands in the circle. diff --git a/scheduling/first_come_first_served.py b/scheduling/first_come_first_served.py index d339273fe741..f52c4243dec3 100644 --- a/scheduling/first_come_first_served.py +++ b/scheduling/first_come_first_served.py @@ -38,7 +38,10 @@ def calculate_turnaround_times( >>> calculate_turnaround_times([10, 3], [0, 10]) [10, 13] """ - return [duration_time + waiting_times[i] for i, duration_time in enumerate(duration_times)] + return [ + duration_time + waiting_times[i] + for i, duration_time in enumerate(duration_times) + ] def calculate_average_turnaround_time(turnaround_times: List[int]) -> float: From 6fdd53c6768b6b87b9bf7bc2203d0f5e7af9129c Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Tue, 11 Feb 2020 02:53:19 +0530 Subject: [PATCH 541/594] Fixes LGTM issues (#1745) * Fixes redefinition of a variable * Fixes implementing __eq__ * Updates docstring --- .../max_sum_contiguous_subsequence.py | 2 +- searches/hill_climbing.py | 30 ++++++++++++------- 2 files changed, 21 insertions(+), 11 deletions(-) diff --git a/dynamic_programming/max_sum_contiguous_subsequence.py b/dynamic_programming/max_sum_contiguous_subsequence.py index 2cbdb97a1759..bac592370c5d 100644 --- a/dynamic_programming/max_sum_contiguous_subsequence.py +++ b/dynamic_programming/max_sum_contiguous_subsequence.py @@ -6,7 +6,7 @@ def max_subarray_sum(nums: list) -> int: if not nums: return 0 n = len(nums) - s = [0] * n + res, s, s_pre = nums[0], nums[0], nums[0] for i in range(1, n): s = max(nums[i], s_pre + nums[i]) diff --git a/searches/hill_climbing.py b/searches/hill_climbing.py index c1129514c04f..324097ef5a24 100644 --- a/searches/hill_climbing.py +++ b/searches/hill_climbing.py @@ -4,17 +4,18 @@ class SearchProblem: """ - A interface to define search problems. The interface will be illustrated using - the example of mathematical function. + An interface to define search problems. + The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. - x: the x coordinate of the current search state. - y: the y coordinate of the current search state. - step_size: size of the step to take when looking for neighbors. - function_to_optimize: a function to optimize having the signature f(x, y). + + x: the x coordinate of the current search state. + y: the y coordinate of the current search state. + step_size: size of the step to take when looking for neighbors. + function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y @@ -63,6 +64,14 @@ def __hash__(self): """ return hash(str(self)) + def __eq__(self, obj): + """ + Check if the 2 objects are equal. + """ + if isinstance(obj, SearchProblem): + return hash(str(self)) == hash(str(obj)) + return False + def __str__(self): """ string representation of the current search state. @@ -85,10 +94,11 @@ def hill_climbing( max_iter: int = 10000, ) -> SearchProblem: """ - implementation of the hill climbling algorithm. We start with a given state, find - all its neighbors, move towards the neighbor which provides the maximum (or - minimum) change. We keep doing this until we are at a state where we do not - have any neighbors which can improve the solution. + Implementation of the hill climbling algorithm. + We start with a given state, find all its neighbors, + move towards the neighbor which provides the maximum (or minimum) change. + We keep doing this until we are at a state where we do not have any + neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. From abd320052f97262f44e3942ee061dea54ead4660 Mon Sep 17 00:00:00 2001 From: ayoub-edh <60881229+ayoub-edh@users.noreply.github.com> Date: Mon, 10 Feb 2020 22:26:59 +0100 Subject: [PATCH 542/594] Add gitpod config (#1744) * Add gitpod config * Add Gitpod to icon bar --- .gitpod.yml | 2 ++ README.md | 12 +++--------- 2 files changed, 5 insertions(+), 9 deletions(-) create mode 100644 .gitpod.yml diff --git a/.gitpod.yml b/.gitpod.yml new file mode 100644 index 000000000000..a5bc5751a3f6 --- /dev/null +++ b/.gitpod.yml @@ -0,0 +1,2 @@ +tasks: + - init: pip install -r ./requirements.txt diff --git a/README.md b/README.md index 51b2cf8c854c..7fc4f0f0b397 100644 --- a/README.md +++ b/README.md @@ -1,10 +1,10 @@ # The Algorithms - Python - -[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg?logo=paypal&style=flat-square)](https://www.paypal.me/TheAlgorithms/100)  +[![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) +[![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)  [![Build Status](https://img.shields.io/travis/TheAlgorithms/Python.svg?label=Travis%20CI&logo=travis&style=flat-square)](https://travis-ci.com/TheAlgorithms/Python)  [![LGTM](https://img.shields.io/lgtm/alerts/github/TheAlgorithms/Python.svg?label=LGTM&logo=LGTM&style=flat-square)](https://lgtm.com/projects/g/TheAlgorithms/Python/alerts)  -[![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)  [![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md)  +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg?logo=paypal&style=flat-square)](https://www.paypal.me/TheAlgorithms/100)  ![](https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square)  @@ -23,9 +23,3 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us. ## List of Algorithms See our [directory](DIRECTORY.md). - - - - - -[![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg?style=flat-square)](https://gitpod.io/#https://github.com/TheAlgorithms/Python) From 1096aa2336dae1350b75fcf395a38495a1d9b1e0 Mon Sep 17 00:00:00 2001 From: Jimmy Y Date: Mon, 10 Feb 2020 20:53:26 -0800 Subject: [PATCH 543/594] Added DP Solution for Optimal BST Problem (#1740) * Added code to dynamic_programming directory * Added doctest * Elaborated BST * Small tweaks * Update optimal_bst.py * Some touchups * Fixed doctest * Update optimal_bst.py * Update optimal_bst.py * Update optimal_bst.py * Rename optimal_bst.py to optimal_binary_search_tree.py Co-authored-by: Christian Clauss --- .../optimal_binary_search_tree.py | 144 ++++++++++++++++++ 1 file changed, 144 insertions(+) create mode 100644 dynamic_programming/optimal_binary_search_tree.py diff --git a/dynamic_programming/optimal_binary_search_tree.py b/dynamic_programming/optimal_binary_search_tree.py new file mode 100644 index 000000000000..b0f248acf35c --- /dev/null +++ b/dynamic_programming/optimal_binary_search_tree.py @@ -0,0 +1,144 @@ +#!/usr/bin/env python3 + +# This Python program implements an optimal binary search tree (abbreviated BST) +# building dynamic programming algorithm that delivers O(n^2) performance. +# +# The goal of the optimal BST problem is to build a low-cost BST for a +# given set of nodes, each with its own key and frequency. The frequency +# of the node is defined as how many time the node is being searched. +# The search cost of binary search tree is given by this formula: +# +# cost(1, n) = sum{i = 1 to n}((depth(node_i) + 1) * node_i_freq) +# +# where n is number of nodes in the BST. The characteristic of low-cost +# BSTs is having a faster overall search time than other implementations. +# The reason for their fast search time is that the nodes with high +# frequencies will be placed near the root of the tree while the nodes +# with low frequencies will be placed near the leaves of the tree thus +# reducing search time in the most frequent instances. + +import sys + +from random import randint + + +class Node: + """Binary Search Tree Node""" + def __init__(self, key, freq): + self.key = key + self.freq = freq + + def __str__(self): + """ + >>> str(Node(1, 2)) + 'Node(key=1, freq=2)' + """ + return f"Node(key={self.key}, freq={self.freq})" + + +def print_binary_search_tree(root, key, i, j, parent, is_left): + """ + Recursive function to print a BST from a root table. + + >>> key = [3, 8, 9, 10, 17, 21] + >>> root = [[0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 3], [0, 0, 2, 3, 3, 3], \ + [0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 4, 5], [0, 0, 0, 0, 0, 5]] + >>> print_binary_search_tree(root, key, 0, 5, -1, False) + 8 is the root of the binary search tree. + 3 is the left child of key 8. + 10 is the right child of key 8. + 9 is the left child of key 10. + 21 is the right child of key 10. + 17 is the left child of key 21. + """ + if i > j or i < 0 or j > len(root) - 1: + return + + node = root[i][j] + if parent == -1: # root does not have a parent + print(f"{key[node]} is the root of the binary search tree.") + elif is_left: + print(f"{key[node]} is the left child of key {parent}.") + else: + print(f"{key[node]} is the right child of key {parent}.") + + print_binary_search_tree(root, key, i, node - 1, key[node], True) + print_binary_search_tree(root, key, node + 1, j, key[node], False) + + +def find_optimal_binary_search_tree(nodes): + """ + This function calculates and prints the optimal binary search tree. + The dynamic programming algorithm below runs in O(n^2) time. + Implemented from CLRS (Introduction to Algorithms) book. + https://en.wikipedia.org/wiki/Introduction_to_Algorithms + + >>> find_optimal_binary_search_tree([Node(12, 8), Node(10, 34), Node(20, 50), \ + Node(42, 3), Node(25, 40), Node(37, 30)]) + Binary search tree nodes: + Node(key=10, freq=34) + Node(key=12, freq=8) + Node(key=20, freq=50) + Node(key=25, freq=40) + Node(key=37, freq=30) + Node(key=42, freq=3) + + The cost of optimal BST for given tree nodes is 324. + 20 is the root of the binary search tree. + 10 is the left child of key 20. + 12 is the right child of key 10. + 25 is the right child of key 20. + 37 is the right child of key 25. + 42 is the right child of key 37. + """ + # Tree nodes must be sorted first, the code below sorts the keys in + # increasing order and rearrange its frequencies accordingly. + nodes.sort(key=lambda node: node.key) + + n = len(nodes) + + keys = [nodes[i].key for i in range(n)] + freqs = [nodes[i].freq for i in range(n)] + + # This 2D array stores the overall tree cost (which's as minimized as possible); + # for a single key, cost is equal to frequency of the key. + dp = [[freqs[i] if i == j else 0 for j in range(n)] for i in range(n)] + # sum[i][j] stores the sum of key frequencies between i and j inclusive in nodes array + sum = [[freqs[i] if i == j else 0 for j in range(n)] for i in range(n)] + # stores tree roots that will be used later for constructing binary search tree + root = [[i if i == j else 0 for j in range(n)] for i in range(n)] + + for l in range(2, n + 1): # l is an interval length + for i in range(n - l + 1): + j = i + l - 1 + + dp[i][j] = sys.maxsize # set the value to "infinity" + sum[i][j] = sum[i][j - 1] + freqs[j] + + # Apply Knuth's optimization + # Loop without optimization: for r in range(i, j + 1): + for r in range(root[i][j - 1], root[i + 1][j] + 1): # r is a temporal root + left = dp[i][r - 1] if r != i else 0 # optimal cost for left subtree + right = dp[r + 1][j] if r != j else 0 # optimal cost for right subtree + cost = left + sum[i][j] + right + + if dp[i][j] > cost: + dp[i][j] = cost + root[i][j] = r + + print("Binary search tree nodes:") + for node in nodes: + print(node) + + print(f"\nThe cost of optimal BST for given tree nodes is {dp[0][n - 1]}.") + print_binary_search_tree(root, keys, 0, n - 1, -1, False) + + +def main(): + # A sample binary search tree + nodes = [Node(i, randint(1, 50)) for i in range(10, 0, -1)] + find_optimal_binary_search_tree(nodes) + + +if __name__ == "__main__": + main() From fde31c93a3f7fc16547c217ae5cfbacef503c46d Mon Sep 17 00:00:00 2001 From: billpaps <37051006+billpaps@users.noreply.github.com> Date: Tue, 11 Feb 2020 10:20:24 +0200 Subject: [PATCH 544/594] Added Bisection algorithm (#1739) * Create Bisection.py Find root of * Update Bisection.py * Update Bisection.py i changed the given function with one that i could make the doctests. * Rename Bisection.py to bisection.py * Update bisection.py * Update bisection.py * Update bisection.py * Update bisection.py * Update bisection.py Made the changes that were requested * Update bisection.py * Update bisection.py * Add wiki url Co-authored-by: Christian Clauss --- maths/bisection.py | 61 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 maths/bisection.py diff --git a/maths/bisection.py b/maths/bisection.py new file mode 100644 index 000000000000..a9df15b775b3 --- /dev/null +++ b/maths/bisection.py @@ -0,0 +1,61 @@ +""" +Given a function on floating number f(x) and two floating numbers ‘a’ and ‘b’ such that +f(a) * f(b) < 0 and f(x) is continuous in [a, b]. +Here f(x) represents algebraic or transcendental equation. +Find root of function in interval [a, b] (Or find a value of x such that f(x) is 0) + +https://en.wikipedia.org/wiki/Bisection_method +""" +def equation(x: float) -> float: + """ + >>> equation(5) + -15 + >>> equation(0) + 10 + >>> equation(-5) + -15 + >>> equation(0.1) + 9.99 + >>> equation(-0.1) + 9.99 + """ + return 10 - x * x + + +def bisection(a: float, b: float) -> float: + """ + >>> bisection(-2, 5) + 3.1611328125 + >>> bisection(0, 6) + 3.158203125 + >>> bisection(2, 3) + Traceback (most recent call last): + ... + ValueError: Wrong space! + """ + # Bolzano theory in order to find if there is a root between a and b + if equation(a) * equation(b) >= 0: + raise ValueError("Wrong space!") + + c = a + while (b - a) >= 0.01: + # Find middle point + c = (a + b) / 2 + # Check if middle point is root + if equation(c) == 0.0: + break + # Decide the side to repeat the steps + if equation(c) * equation(a) < 0: + b = c + else: + a = c + return c + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + + print(bisection(-2, 5)) + print(bisection(0, 6)) From 7b7c1a0135580251990c7866aed39202f9928b1f Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Tue, 11 Feb 2020 13:59:09 +0530 Subject: [PATCH 545/594] Fixes unused variable errors in LGTM (#1746) * Fixes unsed variable errors in LGTM * Fixes integer check * Fixes failing tests --- ciphers/mixed_keyword_cypher.py | 3 --- .../binary_tree/binary_search_tree.py | 27 +++++++++---------- graphs/a_star.py | 2 -- hashes/hamming_code.py | 24 ++++++++--------- linear_algebra/src/polynom-for-points.py | 1 - matrix/matrix_operation.py | 7 ++--- 6 files changed, 25 insertions(+), 39 deletions(-) diff --git a/ciphers/mixed_keyword_cypher.py b/ciphers/mixed_keyword_cypher.py index c8d3ad6a535f..a546e4c781e6 100644 --- a/ciphers/mixed_keyword_cypher.py +++ b/ciphers/mixed_keyword_cypher.py @@ -29,9 +29,6 @@ def mixed_keyword(key="college", pt="UNIVERSITY"): # print(temp) alpha = [] modalpha = [] - # modalpha.append(temp) - dic = dict() - c = 0 for i in range(65, 91): t = chr(i) alpha.append(t) diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index fe163132cdf3..46c5ccca032c 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -76,7 +76,7 @@ def insert(self, *values): def search(self, value): if self.empty(): - raise IndexError("Warning: Tree is empty! please use another. ") + raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error @@ -112,7 +112,6 @@ def remove(self, value): if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) - node = None elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children @@ -154,7 +153,7 @@ def postorder(curr_node): def binary_search_tree(): - r""" + """ Example 8 / \ @@ -164,15 +163,15 @@ def binary_search_tree(): / \ / 4 7 13 - >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) - >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) - 8 3 1 6 4 7 10 14 13 - >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) - 1 4 7 6 3 13 14 10 8 - >>> BinarySearchTree().search(6) - Traceback (most recent call last): - ... - IndexError: Warning: Tree is empty! please use another. + >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) + >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) + 8 3 1 6 4 7 10 14 13 + >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) + 1 4 7 6 3 13 14 10 8 + >>> BinarySearchTree().search(6) + Traceback (most recent call last): + ... + IndexError: Warning: Tree is empty! please use another. """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() @@ -201,10 +200,8 @@ def binary_search_tree(): print(t) -二叉搜索树 = binary_search_tree - if __name__ == "__main__": import doctest doctest.testmod() - binary_search_tree() + # binary_search_tree() diff --git a/graphs/a_star.py b/graphs/a_star.py index 93ec26e7c496..a5d59626b0bc 100644 --- a/graphs/a_star.py +++ b/graphs/a_star.py @@ -52,7 +52,6 @@ def search(grid, init, goal, cost, heuristic): while not found and not resign: if len(cell) == 0: - resign = True return "FAIL" else: cell.sort() # to choose the least costliest action so as to move closer to the goal @@ -61,7 +60,6 @@ def search(grid, init, goal, cost, heuristic): x = next[2] y = next[3] g = next[1] - f = next[0] if x == goal[0] and y == goal[1]: found = True diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py index 1246e1817c76..aae39ed9a06f 100644 --- a/hashes/hamming_code.py +++ b/hashes/hamming_code.py @@ -5,13 +5,13 @@ """ * This code implement the Hamming code: - https://en.wikipedia.org/wiki/Hamming_code - In telecommunication, + https://en.wikipedia.org/wiki/Hamming_code - In telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming - codes can detect up to two-bit errors or correct one-bit errors - without detection of uncorrected errors. By contrast, the simple - parity code cannot correct errors, and can detect only an odd number - of bits in error. Hamming codes are perfect codes, that is, they - achieve the highest possible rate for codes with their block length + codes can detect up to two-bit errors or correct one-bit errors + without detection of uncorrected errors. By contrast, the simple + parity code cannot correct errors, and can detect only an odd number + of bits in error. Hamming codes are perfect codes, that is, they + achieve the highest possible rate for codes with their block length and minimum distance of three. * the implemented code consists of: @@ -19,15 +19,15 @@ * return the encoded message * a function responsible for decoding the message (receptorConverter) * return the decoded message and a ack of data integrity - + * how to use: - to be used you must declare how many parity bits (sizePari) + to be used you must declare how many parity bits (sizePari) you want to include in the message. it is desired (for test purposes) to select a bit to be set as an error. This serves to check whether the code is working correctly. - Lastly, the variable of the message/word that must be desired to be + Lastly, the variable of the message/word that must be desired to be encoded (text). - + * how this work: declaration of variables (sizePari, be, text) @@ -71,7 +71,7 @@ def emitterConverter(sizePar, data): """ :param sizePar: how many parity bits the message must have :param data: information bits - :return: message to be transmitted by unreliable medium + :return: message to be transmitted by unreliable medium - bits of information merged with parity bits >>> emitterConverter(4, "101010111111") @@ -84,7 +84,6 @@ def emitterConverter(sizePar, data): dataOut = [] parity = [] binPos = [bin(x)[2:] for x in range(1, sizePar + len(data) + 1)] - pos = [x for x in range(1, sizePar + len(data) + 1)] # sorted information data for the size of the output data dataOrd = [] @@ -188,7 +187,6 @@ def receptorConverter(sizePar, data): dataOut = [] parity = [] binPos = [bin(x)[2:] for x in range(1, sizePar + len(dataOutput) + 1)] - pos = [x for x in range(1, sizePar + len(dataOutput) + 1)] # sorted information data for the size of the output data dataOrd = [] diff --git a/linear_algebra/src/polynom-for-points.py b/linear_algebra/src/polynom-for-points.py index c884416b6dad..dc0c3d95102e 100644 --- a/linear_algebra/src/polynom-for-points.py +++ b/linear_algebra/src/polynom-for-points.py @@ -68,7 +68,6 @@ def points_to_polynomial(coordinates): # put the y values into a vector vector = [] while count_of_line < x: - count_in_line = 0 vector.append(coordinates[count_of_line][1]) count_of_line += 1 diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py index 26e21aafcbca..307e8b6ba32e 100644 --- a/matrix/matrix_operation.py +++ b/matrix/matrix_operation.py @@ -111,12 +111,9 @@ def inverse(matrix): def _check_not_integer(matrix): - try: - rows = len(matrix) - cols = len(matrix[0]) + if not isinstance(matrix, int) and not isinstance(matrix[0], int): return True - except TypeError: - raise TypeError("Cannot input an integer value, it must be a matrix") + raise TypeError("Expected a matrix, got int/list instead") def _shape(matrix): From f0dfc4f46d47102bf34c09a3920138caf9cd9ae5 Mon Sep 17 00:00:00 2001 From: TheSuperNoob Date: Wed, 12 Feb 2020 15:04:59 +0100 Subject: [PATCH 546/594] Add Chudnovskys algorithm for calculating many digits of pi (#1752) * Add Chudnovskys algorithm for calculating many digits of pi * Update return value type hint * Initialize partial sum to be of type Decimal * Update chudnovsky_algorithm.py Co-authored-by: Christian Clauss --- maths/chudnovsky_algorithm.py | 61 +++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 maths/chudnovsky_algorithm.py diff --git a/maths/chudnovsky_algorithm.py b/maths/chudnovsky_algorithm.py new file mode 100644 index 000000000000..fb188cd6a3d8 --- /dev/null +++ b/maths/chudnovsky_algorithm.py @@ -0,0 +1,61 @@ +from decimal import Decimal, getcontext +from math import ceil, factorial + + +def pi(precision: int) -> str: + """ + The Chudnovsky algorithm is a fast method for calculating the digits of PI, + based on Ramanujan’s PI formulae. + + https://en.wikipedia.org/wiki/Chudnovsky_algorithm + + PI = constant_term / ((multinomial_term * linear_term) / exponential_term) + where constant_term = 426880 * sqrt(10005) + + The linear_term and the exponential_term can be defined iteratively as follows: + L_k+1 = L_k + 545140134 where L_0 = 13591409 + X_k+1 = X_k * -262537412640768000 where X_0 = 1 + + The multinomial_term is defined as follows: + 6k! / ((3k)! * (k!) ^ 3) + where k is the k_th iteration. + + This algorithm correctly calculates around 14 digits of PI per iteration + + >>> pi(10) + '3.14159265' + >>> pi(100) + '3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706' + >>> pi('hello') + Traceback (most recent call last): + ... + TypeError: Undefined for non-integers + >>> pi(-1) + Traceback (most recent call last): + ... + ValueError: Undefined for non-natural numbers + """ + + if not isinstance(precision, int): + raise TypeError("Undefined for non-integers") + elif precision < 1: + raise ValueError("Undefined for non-natural numbers") + + getcontext().prec = precision + num_iterations = ceil(precision / 14) + constant_term = 426880 * Decimal(10005).sqrt() + multinomial_term = 1 + exponential_term = 1 + linear_term = 13591409 + partial_sum = Decimal(linear_term) + for k in range(1, num_iterations): + multinomial_term = factorial(6 * k) // (factorial(3 * k) * factorial(k) ** 3) + linear_term += 545140134 + exponential_term *= -262537412640768000 + partial_sum += Decimal(multinomial_term * linear_term) / exponential_term + return str(constant_term / partial_sum)[:-1] + + +if __name__ == "__main__": + n = 50 + print(f"The first {n} digits of pi is: {pi(n)}") From 4866b1330bc7c77c0ed0e050e6b99efdeb026448 Mon Sep 17 00:00:00 2001 From: onlinejudge95 <44158581+onlinejudge95@users.noreply.github.com> Date: Thu, 13 Feb 2020 02:19:41 +0530 Subject: [PATCH 547/594] Fixes black failures from Previous PR (#1751) * Fixes black failures from Previous PR * Fixes equality testing alert * Fixes call to main() alert * Fixes unused import --- data_structures/binary_tree/binary_search_tree.py | 4 ++-- dynamic_programming/optimal_binary_search_tree.py | 1 + hashes/hamming_code.py | 4 ++-- maths/bisection.py | 2 ++ searches/tabu_search.py | 3 +-- strings/aho-corasick.py | 2 +- 6 files changed, 9 insertions(+), 7 deletions(-) diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 46c5ccca032c..86dcd6489bd5 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -56,13 +56,13 @@ def __insert(self, value): parent_node = self.root # from root while True: # While we don't get to a leaf if value < parent_node.value: # We go left - if parent_node.left == None: + if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left else: - if parent_node.right == None: + if parent_node.right is None: parent_node.right = new_node break else: diff --git a/dynamic_programming/optimal_binary_search_tree.py b/dynamic_programming/optimal_binary_search_tree.py index b0f248acf35c..f33ca01bd933 100644 --- a/dynamic_programming/optimal_binary_search_tree.py +++ b/dynamic_programming/optimal_binary_search_tree.py @@ -24,6 +24,7 @@ class Node: """Binary Search Tree Node""" + def __init__(self, key, freq): self.key = key self.freq = freq diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py index aae39ed9a06f..756ba7c6670f 100644 --- a/hashes/hamming_code.py +++ b/hashes/hamming_code.py @@ -140,7 +140,7 @@ def emitterConverter(sizePar, data): # Mount the message ContBP = 0 # parity bit counter for x in range(0, sizePar + len(data)): - if dataOrd[x] == None: + if dataOrd[x] is None: dataOut.append(str(parity[ContBP])) ContBP += 1 else: @@ -243,7 +243,7 @@ def receptorConverter(sizePar, data): # Mount the message ContBP = 0 # Parity bit counter for x in range(0, sizePar + len(dataOutput)): - if dataOrd[x] == None: + if dataOrd[x] is None: dataOut.append(str(parity[ContBP])) ContBP += 1 else: diff --git a/maths/bisection.py b/maths/bisection.py index a9df15b775b3..93cc2247b64e 100644 --- a/maths/bisection.py +++ b/maths/bisection.py @@ -6,6 +6,8 @@ https://en.wikipedia.org/wiki/Bisection_method """ + + def equation(x: float) -> float: """ >>> equation(5) diff --git a/searches/tabu_search.py b/searches/tabu_search.py index 04a0e5076912..2847dca7acd7 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -25,7 +25,6 @@ import copy import argparse -import sys def generate_neighbours(path): @@ -278,4 +277,4 @@ def main(args=None): ) # Pass the arguments to main method - sys.exit(main(parser.parse_args())) + main(parser.parse_args()) diff --git a/strings/aho-corasick.py b/strings/aho-corasick.py index 315f7793325e..bb6955bdd423 100644 --- a/strings/aho-corasick.py +++ b/strings/aho-corasick.py @@ -47,7 +47,7 @@ def set_fail_transitions(self): q.append(child) state = self.adlist[r]["fail_state"] while ( - self.find_next_state(state, self.adlist[child]["value"]) == None + self.find_next_state(state, self.adlist[child]["value"]) is None and state != 0 ): state = self.adlist[state]["fail_state"] From 53042f0f45c7962d8601168f40c65c8f3e29dffe Mon Sep 17 00:00:00 2001 From: QuantumNovice <43876848+QuantumNovice@users.noreply.github.com> Date: Fri, 14 Feb 2020 16:56:56 +0500 Subject: [PATCH 548/594] Create RayleighQuotient.py (#1749) * Create RayleighQuotient.py https://en.wikipedia.org/wiki/Rayleigh_quotient * Update RayleighQuotient.py * Update and rename RayleighQuotient.py to rayleigh_quotient.py * Update rayleigh_quotient.py * Update rayleigh_quotient.py python/black * Update rayleigh_quotient.py --- linear_algebra/src/rayleigh_quotient.py | 65 +++++++++++++++++++++++++ 1 file changed, 65 insertions(+) create mode 100644 linear_algebra/src/rayleigh_quotient.py diff --git a/linear_algebra/src/rayleigh_quotient.py b/linear_algebra/src/rayleigh_quotient.py new file mode 100644 index 000000000000..46551749febd --- /dev/null +++ b/linear_algebra/src/rayleigh_quotient.py @@ -0,0 +1,65 @@ +""" +https://en.wikipedia.org/wiki/Rayleigh_quotient +""" +import numpy as np + + +def is_hermitian(matrix:np.matrix) -> bool: + """ + Checks if a matrix is Hermitian. + + >>> import numpy as np + >>> A = np.matrix([ + ... [2, 2+1j, 4], + ... [2-1j, 3, 1j], + ... [4, -1j, 1]]) + >>> is_hermitian(A) + True + >>> A = np.matrix([ + ... [2, 2+1j, 4+1j], + ... [2-1j, 3, 1j], + ... [4, -1j, 1]]) + >>> is_hermitian(A) + False + """ + return np.array_equal(matrix, matrix.H) + + +def rayleigh_quotient(A:np.matrix, v:np.matrix) -> float: + """ + Returns the Rayleigh quotient of a Hermitian matrix A and + vector v. + >>> import numpy as np + >>> A = np.matrix([ + ... [1, 2, 4], + ... [2, 3, -1], + ... [4, -1, 1] + ... ]) + >>> v = np.matrix([ + ... [1], + ... [2], + ... [3] + ... ]) + >>> rayleigh_quotient(A, v) + matrix([[3.]]) + """ + v_star = v.H + return (v_star * A * v) / (v_star * v) + + +def tests() -> None: + A = np.matrix([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]]) + v = np.matrix([[1], [2], [3]]) + assert is_hermitian(A), f"{A} is not hermitian." + print(rayleigh_quotient(A, v)) + + A = np.matrix([[1, 2, 4], [2, 3, -1], [4, -1, 1]]) + assert is_hermitian(A), f"{A} is not hermitian." + assert rayleigh_quotient(A, v) == float(3) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + tests() From 2e405f397bbcefccc470f215c7ff024875ef16c5 Mon Sep 17 00:00:00 2001 From: eightysixth <25541207+eightysixth@users.noreply.github.com> Date: Sun, 16 Feb 2020 02:55:27 -0700 Subject: [PATCH 549/594] Created geodesy section with one algorithm (#1757) * implemented haversine * updated docstring Only calculate distance * added type hints * added type hints * improved docstring and math usage * f"{haversine_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters" Co-authored-by: Christian Clauss --- geodesy/haversine_distance.py | 56 +++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 geodesy/haversine_distance.py diff --git a/geodesy/haversine_distance.py b/geodesy/haversine_distance.py new file mode 100644 index 000000000000..de8ac7f88302 --- /dev/null +++ b/geodesy/haversine_distance.py @@ -0,0 +1,56 @@ +from math import asin, atan, cos, radians, sin, sqrt, tan + + +def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float: + """ + Calculate great circle distance between two points in a sphere, + given longitudes and latitudes https://en.wikipedia.org/wiki/Haversine_formula + + We know that the globe is "sort of" spherical, so a path between two points + isn't exactly a straight line. We need to account for the Earth's curvature + when calculating distance from point A to B. This effect is negligible for + small distances but adds up as distance increases. The Haversine method treats + the earth as a sphere which allows us to "project" the two points A and B + onto the surface of that sphere and approximate the spherical distance between + them. Since the Earth is not a perfect sphere, other methods which model the + Earth's ellipsoidal nature are more accurate but a quick and modifiable + computation like Haversine can be handy for shorter range distances. + + Args: + lat1, lon1: latitude and longitude of coordinate 1 + lat2, lon2: latitude and longitude of coordinate 2 + Returns: + geographical distance between two points in metres + >>> from collections import namedtuple + >>> point_2d = namedtuple("point_2d", "lat lon") + >>> SAN_FRANCISCO = point_2d(37.774856, -122.424227) + >>> YOSEMITE = point_2d(37.864742, -119.537521) + >>> f"{haversine_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters" + '254,352 meters' + """ + # CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System + # Distance in metres(m) + AXIS_A = 6378137.0 + AXIS_B = 6356752.314245 + RADIUS = 6378137 + # Equation parameters + # Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation + flattening = (AXIS_A - AXIS_B) / AXIS_A + phi_1 = atan((1 - flattening) * tan(radians(lat1))) + phi_2 = atan((1 - flattening) * tan(radians(lat2))) + lambda_1 = radians(lon1) + lambda_2 = radians(lon2) + # Equation + sin_sq_phi = sin((phi_2 - phi_1) / 2) + sin_sq_lambda = sin((lambda_2 - lambda_1) / 2) + # Square both values + sin_sq_phi *= sin_sq_phi + sin_sq_lambda *= sin_sq_lambda + h_value = sqrt(sin_sq_phi + (cos(phi_1) * cos(phi_2) * sin_sq_lambda)) + return 2 * RADIUS * asin(h_value) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 748702b461c01e659d8f892cc127dab8fb279177 Mon Sep 17 00:00:00 2001 From: Naveen M V <30305957+naviji@users.noreply.github.com> Date: Mon, 17 Feb 2020 15:25:04 +0530 Subject: [PATCH 550/594] Add Monte Carlo dice simulation algorithm (#1759) * Implement basic dice simulation * Add tests to throw_dice * Fix comment * Add type hints * Add additional comments * Update monte_carlo_dice.py Co-authored-by: Christian Clauss --- maths/monte_carlo_dice.py | 45 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 maths/monte_carlo_dice.py diff --git a/maths/monte_carlo_dice.py b/maths/monte_carlo_dice.py new file mode 100644 index 000000000000..c045cc829213 --- /dev/null +++ b/maths/monte_carlo_dice.py @@ -0,0 +1,45 @@ +import random +from typing import List + +class Dice: + NUM_SIDES = 6 + + def __init__(self): + """ Initialize a six sided dice """ + self.sides = list(range(1, Dice.NUM_SIDES + 1)) + + def roll(self): + return random.choice(self.sides) + + def _str_(self): + return "Fair Dice" + + +def throw_dice(num_throws: int, num_dice: int=2) -> List[float]: + """ + Return probability list of all possible sums when throwing dice. + + >>> random.seed(0) + >>> throw_dice(10, 1) + [10.0, 0.0, 30.0, 50.0, 10.0, 0.0] + >>> throw_dice(100, 1) + [19.0, 17.0, 17.0, 11.0, 23.0, 13.0] + >>> throw_dice(1000, 1) + [18.8, 15.5, 16.3, 17.6, 14.2, 17.6] + >>> throw_dice(10000, 1) + [16.35, 16.89, 16.93, 16.6, 16.52, 16.71] + >>> throw_dice(10000, 2) + [2.74, 5.6, 7.99, 11.26, 13.92, 16.7, 14.44, 10.63, 8.05, 5.92, 2.75] + """ + dices = [Dice() for i in range(num_dice)] + count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1) + for i in range(num_throws): + count_of_sum[sum([dice.roll() for dice in dices])] += 1 + probability = [round((count * 100) / num_throws, 2) for count in count_of_sum] + return probability[num_dice:] # remove probability of sums that never appear + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From d2f7982a4ee105ca980b2446ed8fc2e32139dd7d Mon Sep 17 00:00:00 2001 From: TheSuperNoob Date: Wed, 19 Feb 2020 19:45:55 +0100 Subject: [PATCH 551/594] Update quadratic equations solver (#1764) Use pythons complex number module cmath for the calculation of the roots --- maths/quadratic_equations_complex_numbers.py | 44 ++++++++++---------- 1 file changed, 21 insertions(+), 23 deletions(-) diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index 8f97508609bf..7c47bdef2297 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,38 +1,36 @@ -from math import sqrt +from cmath import sqrt from typing import Tuple -def QuadraticEquation(a: int, b: int, c: int) -> Tuple[str, str]: +def quadratic_roots(a: int, b: int, c: int) -> Tuple[complex, complex]: """ Given the numerical coefficients a, b and c, - prints the solutions for a quadratic equation, for a*x*x + b*x + c. + calculates the roots for any quadratic equation of the form ax^2 + bx + c - >>> QuadraticEquation(a=1, b=3, c=-4) - ('1.0', '-4.0') - >>> QuadraticEquation(5, 6, 1) - ('-0.2', '-1.0') + >>> quadratic_roots(a=1, b=3, c=-4) + (1.0, -4.0) + >>> quadratic_roots(5, 6, 1) + (-0.2, -1.0) + >>> quadratic_roots(1, -6, 25) + ((3+4j), (3-4j)) """ + if a == 0: - raise ValueError("Coefficient 'a' must not be zero for quadratic equations.") + raise ValueError("Coefficient 'a' must not be zero.") delta = b * b - 4 * a * c - if delta >= 0: - return str((-b + sqrt(delta)) / (2 * a)), str((-b - sqrt(delta)) / (2 * a)) - """ - Treats cases of Complexes Solutions(i = imaginary unit) - Ex.: a = 5, b = 2, c = 1 - Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 - """ - snd = sqrt(-delta) - if b == 0: - return f"({snd} * i) / 2", f"({snd} * i) / {2 * a}" - b = -abs(b) - return f"({b}+{snd} * i) / 2", f"({b}+{snd} * i) / {2 * a}" + + root_1 = (-b + sqrt(delta)) / (2 * a) + root_2 = (-b - sqrt(delta)) / (2 * a) + + return ( + root_1.real if not root_1.imag else root_1, + root_2.real if not root_2.imag else root_2, + ) def main(): - solutions = QuadraticEquation(a=5, b=6, c=1) - print("The equation solutions are: {} and {}".format(*solutions)) - # The equation solutions are: -0.2 and -1.0 + solutions = quadratic_roots(a=5, b=6, c=1) + print("The solutions are: {} and {}".format(*solutions)) if __name__ == "__main__": From 6b3bbc70a8388e6c03b62ef5843f79a493686fe3 Mon Sep 17 00:00:00 2001 From: Iqrar Agalosi Nureyza Date: Thu, 20 Feb 2020 18:29:01 +0700 Subject: [PATCH 552/594] Added doctests in modular_exponential.py (#1775) * added doctests in modular_exponential.py * added doctests in modular_exponential.py * added URL link --- maths/modular_exponential.py | 23 ++++++++++++++++++++--- 1 file changed, 20 insertions(+), 3 deletions(-) diff --git a/maths/modular_exponential.py b/maths/modular_exponential.py index 8715e17147ff..91fa0e462a49 100644 --- a/maths/modular_exponential.py +++ b/maths/modular_exponential.py @@ -1,8 +1,20 @@ -"""Modular Exponential.""" +""" + Modular Exponential. + Modular exponentiation is a type of exponentiation performed over a modulus. + For more explanation, please check https://en.wikipedia.org/wiki/Modular_exponentiation +""" +"""Calculate Modular Exponential.""" +def modular_exponential(base : int, power : int, mod : int): + """ + >>> modular_exponential(5, 0, 10) + 1 + >>> modular_exponential(2, 8, 7) + 4 + >>> modular_exponential(3, -2, 9) + -1 + """ -def modular_exponential(base, power, mod): - """Calculate Modular Exponential.""" if power < 0: return -1 base %= mod @@ -13,6 +25,7 @@ def modular_exponential(base, power, mod): result = (result * base) % mod power = power >> 1 base = (base * base) % mod + return result @@ -22,4 +35,8 @@ def main(): if __name__ == "__main__": + import doctest + + doctest.testmod() + main() From cb4795616cedb5cdd2340cf47f8c5fb3101dddb5 Mon Sep 17 00:00:00 2001 From: eightysixth <25541207+eightysixth@users.noreply.github.com> Date: Thu, 20 Feb 2020 06:34:43 -0700 Subject: [PATCH 553/594] Implemented geodesy - Lambert's ellipsoidal distance (#1763) * Implemented Lambert's long line * Update lamberts_ellipsoidal_distance.py Co-authored-by: John Law --- geodesy/lamberts_ellipsoidal_distance.py | 83 ++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 geodesy/lamberts_ellipsoidal_distance.py diff --git a/geodesy/lamberts_ellipsoidal_distance.py b/geodesy/lamberts_ellipsoidal_distance.py new file mode 100644 index 000000000000..224b9404a5b7 --- /dev/null +++ b/geodesy/lamberts_ellipsoidal_distance.py @@ -0,0 +1,83 @@ +from math import atan, cos, radians, sin, tan +from haversine_distance import haversine_distance + + +def lamberts_ellipsoidal_distance( + lat1: float, lon1: float, lat2: float, lon2: float +) -> float: + + """ + Calculate the shortest distance along the surface of an ellipsoid between + two points on the surface of earth given longitudes and latitudes + https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines + + NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle, sigma + + Representing the earth as an ellipsoid allows us to approximate distances between points + on the surface much better than a sphere. Ellipsoidal formulas treat the Earth as an + oblate ellipsoid which means accounting for the flattening that happens at the North + and South poles. Lambert's formulae provide accuracy on the order of 10 meteres over + thousands of kilometeres. Other methods can provide millimeter-level accuracy but this + is a simpler method to calculate long range distances without increasing computational + intensity. + + Args: + lat1, lon1: latitude and longitude of coordinate 1 + lat2, lon2: latitude and longitude of coordinate 2 + Returns: + geographical distance between two points in metres + + >>> from collections import namedtuple + >>> point_2d = namedtuple("point_2d", "lat lon") + >>> SAN_FRANCISCO = point_2d(37.774856, -122.424227) + >>> YOSEMITE = point_2d(37.864742, -119.537521) + >>> NEW_YORK = point_2d(40.713019, -74.012647) + >>> VENICE = point_2d(45.443012, 12.313071) + >>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters" + '254,351 meters' + >>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *NEW_YORK):0,.0f} meters" + '4,138,992 meters' + >>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *VENICE):0,.0f} meters" + '9,737,326 meters' + """ + + # CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System + # Distance in metres(m) + AXIS_A = 6378137.0 + AXIS_B = 6356752.314245 + EQUATORIAL_RADIUS = 6378137 + + # Equation Parameters + # https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines + flattening = (AXIS_A - AXIS_B) / AXIS_A + # Parametric latitudes https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude + b_lat1 = atan((1 - flattening) * tan(radians(lat1))) + b_lat2 = atan((1 - flattening) * tan(radians(lat2))) + + # Compute central angle between two points + # using haversine theta. sigma = haversine_distance / equatorial radius + sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS + + # Intermediate P and Q values + P_value = (b_lat1 + b_lat2) / 2 + Q_value = (b_lat2 - b_lat1) / 2 + + # Intermediate X value + # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) + X_numerator = (sin(P_value) ** 2) * (cos(Q_value) ** 2) + X_demonimator = cos(sigma / 2) ** 2 + X_value = (sigma - sin(sigma)) * (X_numerator / X_demonimator) + + # Intermediate Y value + # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) + Y_numerator = (cos(P_value) ** 2) * (sin(Q_value) ** 2) + Y_denominator = sin(sigma / 2) ** 2 + Y_value = (sigma + sin(sigma)) * (Y_numerator / Y_denominator) + + return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (X_value + Y_value))) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() From 59bf115aa1b6203c51cc1a813d555e0a7c9d99e3 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 21 Feb 2020 11:02:35 +0100 Subject: [PATCH 554/594] uses: actions/checkout@v2 (#1779) * uses: actions/checkout@v2 * fixup! Format Python code with psf/black push --- .github/workflows/autoblack.yml | 2 +- linear_algebra/src/rayleigh_quotient.py | 4 ++-- maths/modular_exponential.py | 4 +++- maths/monte_carlo_dice.py | 3 ++- 4 files changed, 8 insertions(+), 5 deletions(-) diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index cf578a14da95..95d2d3d64233 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -9,7 +9,7 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v1 + - uses: actions/checkout@v2 - uses: actions/setup-python@v1 - run: pip install black - run: black --check . diff --git a/linear_algebra/src/rayleigh_quotient.py b/linear_algebra/src/rayleigh_quotient.py index 46551749febd..d0d5d6396d28 100644 --- a/linear_algebra/src/rayleigh_quotient.py +++ b/linear_algebra/src/rayleigh_quotient.py @@ -4,7 +4,7 @@ import numpy as np -def is_hermitian(matrix:np.matrix) -> bool: +def is_hermitian(matrix: np.matrix) -> bool: """ Checks if a matrix is Hermitian. @@ -25,7 +25,7 @@ def is_hermitian(matrix:np.matrix) -> bool: return np.array_equal(matrix, matrix.H) -def rayleigh_quotient(A:np.matrix, v:np.matrix) -> float: +def rayleigh_quotient(A: np.matrix, v: np.matrix) -> float: """ Returns the Rayleigh quotient of a Hermitian matrix A and vector v. diff --git a/maths/modular_exponential.py b/maths/modular_exponential.py index 91fa0e462a49..8b7b17575a33 100644 --- a/maths/modular_exponential.py +++ b/maths/modular_exponential.py @@ -5,7 +5,9 @@ """ """Calculate Modular Exponential.""" -def modular_exponential(base : int, power : int, mod : int): + + +def modular_exponential(base: int, power: int, mod: int): """ >>> modular_exponential(5, 0, 10) 1 diff --git a/maths/monte_carlo_dice.py b/maths/monte_carlo_dice.py index c045cc829213..c36c3e83e00b 100644 --- a/maths/monte_carlo_dice.py +++ b/maths/monte_carlo_dice.py @@ -1,6 +1,7 @@ import random from typing import List + class Dice: NUM_SIDES = 6 @@ -15,7 +16,7 @@ def _str_(self): return "Fair Dice" -def throw_dice(num_throws: int, num_dice: int=2) -> List[float]: +def throw_dice(num_throws: int, num_dice: int = 2) -> List[float]: """ Return probability list of all possible sums when throwing dice. From 6d7cbdacb192ccfbdd00c389ee4d6a17e2530d0f Mon Sep 17 00:00:00 2001 From: singlav <41392278+singlav@users.noreply.github.com> Date: Sat, 22 Feb 2020 23:36:47 +0530 Subject: [PATCH 555/594] add example to estimate area under line using montecarlo (#1782) * add example to estimate area under line using montecarlo * separate estimate func and print statements * use mean from stats package * avoid creating extra variable * min_value: float=0.0, max_value: float=1.0 * Update montecarlo.py * Update montecarlo.py * Rename montecarlo.py to monte_carlo.py * Update monte_carlo.py Co-authored-by: Christian Clauss --- maths/monte_carlo.py | 74 ++++++++++++++++++++++++++++++++++++++++++++ maths/montecarlo.py | 43 ------------------------- 2 files changed, 74 insertions(+), 43 deletions(-) create mode 100644 maths/monte_carlo.py delete mode 100644 maths/montecarlo.py diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py new file mode 100644 index 000000000000..4980c5c55c8c --- /dev/null +++ b/maths/monte_carlo.py @@ -0,0 +1,74 @@ +""" +@author: MatteoRaso +""" +from numpy import pi, sqrt +from random import uniform +from statistics import mean + + +def pi_estimator(iterations: int): + """ + An implementation of the Monte Carlo method used to find pi. + 1. Draw a 2x2 square centred at (0,0). + 2. Inscribe a circle within the square. + 3. For each iteration, place a dot anywhere in the square. + a. Record the number of dots within the circle. + 4. After all the dots are placed, divide the dots in the circle by the total. + 5. Multiply this value by 4 to get your estimate of pi. + 6. Print the estimated and numpy value of pi + """ + # A local function to see if a dot lands in the circle. + def in_circle(x: float, y: float) -> bool: + distance_from_centre = sqrt((x ** 2) + (y ** 2)) + # Our circle has a radius of 1, so a distance + # greater than 1 would land outside the circle. + return distance_from_centre <= 1 + + # The proportion of guesses that landed in the circle + proportion = mean( + int(in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(iterations) + ) + # The ratio of the area for circle to square is pi/4. + pi_estimate = proportion * 4 + print("The estimated value of pi is ", pi_estimate) + print("The numpy value of pi is ", pi) + print("The total error is ", abs(pi - pi_estimate)) + + +def area_under_line_estimator(iterations: int, + min_value: float=0.0, + max_value: float=1.0) -> float: + """ + An implementation of the Monte Carlo method to find area under + y = x where x lies between min_value to max_value + 1. Let x be a uniformly distributed random variable between min_value to max_value + 2. Expected value of x = integration of x from min_value to max_value + 3. Finding expected value of x: + a. Repeatedly draw x from uniform distribution + b. Expected value = average of those values + 4. Actual value = 1/2 + 5. Returns estimated value + """ + return mean(uniform(min_value, max_value) for _ in range(iterations)) + + +def area_under_line_estimator_check(iterations: int) -> None: + """ + Checks estimation error for area_under_line_estimator func + 1. Calls "area_under_line_estimator" function + 2. Compares with the expected value + 3. Prints estimated, expected and error value + """ + estimate = area_under_line_estimator(iterations) + print("******************") + print("Estimating area under y=x where x varies from 0 to 1") + print("Expected value is ", 0.5) + print("Estimated value is ", estimate) + print("Total error is ", abs(estimate - 0.5)) + print("******************") + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/maths/montecarlo.py b/maths/montecarlo.py deleted file mode 100644 index ce8f69f64a15..000000000000 --- a/maths/montecarlo.py +++ /dev/null @@ -1,43 +0,0 @@ -""" -@author: MatteoRaso -""" -from numpy import pi, sqrt -from random import uniform - - -def pi_estimator(iterations: int): - """An implementation of the Monte Carlo method used to find pi. - 1. Draw a 2x2 square centred at (0,0). - 2. Inscribe a circle within the square. - 3. For each iteration, place a dot anywhere in the square. - 3.1 Record the number of dots within the circle. - 4. After all the dots are placed, divide the dots in the circle by the total. - 5. Multiply this value by 4 to get your estimate of pi. - 6. Print the estimated and numpy value of pi - """ - - circle_dots = 0 - - # A local function to see if a dot lands in the circle. - def circle(x: float, y: float): - distance_from_centre = sqrt((x ** 2) + (y ** 2)) - # Our circle has a radius of 1, so a distance greater than 1 would land outside the circle. - return distance_from_centre <= 1 - - circle_dots = sum( - int(circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for i in range(iterations) - ) - - # The proportion of guesses that landed within the circle - proportion = circle_dots / iterations - # The ratio of the area for circle to square is pi/4. - pi_estimate = proportion * 4 - print("The estimated value of pi is ", pi_estimate) - print("The numpy value of pi is ", pi) - print("The total error is ", abs(pi - pi_estimate)) - - -if __name__ == "__main__": - import doctest - - doctest.testmod() From b36e46b9b205eedef6e112db476cbc40fdafcdb6 Mon Sep 17 00:00:00 2001 From: singlav <41392278+singlav@users.noreply.github.com> Date: Sun, 23 Feb 2020 04:03:12 +0530 Subject: [PATCH 556/594] extend estimation of area under curve of y=x using monte carlo simulation to any given lower and upper bound (#1784) * extend estimation of area under curve of y=x using monte carlo simulation to any given lower and upper bound * remove doctest --- maths/monte_carlo.py | 23 ++++++++++++++--------- 1 file changed, 14 insertions(+), 9 deletions(-) diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py index 4980c5c55c8c..6a407e98badd 100644 --- a/maths/monte_carlo.py +++ b/maths/monte_carlo.py @@ -42,29 +42,34 @@ def area_under_line_estimator(iterations: int, An implementation of the Monte Carlo method to find area under y = x where x lies between min_value to max_value 1. Let x be a uniformly distributed random variable between min_value to max_value - 2. Expected value of x = integration of x from min_value to max_value + 2. Expected value of x = (integration of x from min_value to max_value) / (max_value - min_value) 3. Finding expected value of x: a. Repeatedly draw x from uniform distribution b. Expected value = average of those values - 4. Actual value = 1/2 + 4. Actual value = (max_value^2 - min_value^2) / 2 5. Returns estimated value """ - return mean(uniform(min_value, max_value) for _ in range(iterations)) + return mean(uniform(min_value, max_value) for _ in range(iterations)) * (max_value - min_value) -def area_under_line_estimator_check(iterations: int) -> None: +def area_under_line_estimator_check(iterations: int, + min_value: float=0.0, + max_value: float=1.0) -> None: """ Checks estimation error for area_under_line_estimator func 1. Calls "area_under_line_estimator" function 2. Compares with the expected value 3. Prints estimated, expected and error value """ - estimate = area_under_line_estimator(iterations) + + estimated_value = area_under_line_estimator(iterations, min_value, max_value) + expected_value = (max_value*max_value - min_value*min_value) / 2 + print("******************") - print("Estimating area under y=x where x varies from 0 to 1") - print("Expected value is ", 0.5) - print("Estimated value is ", estimate) - print("Total error is ", abs(estimate - 0.5)) + print("Estimating area under y=x where x varies from ",min_value, " to ",max_value) + print("Estimated value is ", estimated_value) + print("Expected value is ", expected_value) + print("Total error is ", abs(estimated_value - expected_value)) print("******************") From 652b891a75d49cb82a76d39a5f74daf36727b116 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 23 Feb 2020 04:23:00 +0100 Subject: [PATCH 557/594] Travis CI: Upgrade to Python 3.8 (#1783) * Travis CI: Upgrade to Python 3.8 * updating DIRECTORY.md * Tensorflow is not yet compatible with Python 3.8 * Disable k_means_clustering_tensorflow.py * updating DIRECTORY.md * Disable gan.py * updating DIRECTORY.md * Disable input_data.py * updating DIRECTORY.md * pip install a current version of six --- .travis.yml | 4 ++-- DIRECTORY.md | 17 ++++++++++++++--- ...w.py => k_means_clustering_tensorflow.py_tf} | 0 neural_network/{gan.py => gan.py_tf} | 0 .../{input_data.py => input_data.py_tf} | 0 requirements.txt | 2 +- 6 files changed, 17 insertions(+), 6 deletions(-) rename dynamic_programming/{k_means_clustering_tensorflow.py => k_means_clustering_tensorflow.py_tf} (100%) rename neural_network/{gan.py => gan.py_tf} (100%) rename neural_network/{input_data.py => input_data.py_tf} (100%) diff --git a/.travis.yml b/.travis.yml index bd2dfbbe4496..aec411c52507 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,7 +1,7 @@ language: python -python: 3.7 +python: 3.8 cache: pip -before_install: pip install --upgrade pip setuptools +before_install: pip install --upgrade pip setuptools six install: pip install -r requirements.txt before_script: - black --check . || true diff --git a/DIRECTORY.md b/DIRECTORY.md index ff98c21894c5..91a5ab7f6a99 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -169,7 +169,6 @@ * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) - * [K Means Clustering Tensorflow](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/k_means_clustering_tensorflow.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) @@ -179,6 +178,7 @@ * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) + * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) @@ -190,6 +190,10 @@ ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) +## Geodesy + * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) + * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) + ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) @@ -239,6 +243,7 @@ * Src * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom-For-Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom-for-points.py) + * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) ## Machine Learning @@ -252,6 +257,7 @@ * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) + * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) @@ -270,7 +276,9 @@ * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) + * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) + * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) @@ -305,6 +313,8 @@ * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) + * [Montecarlo](https://github.com/TheAlgorithms/Python/blob/master/maths/montecarlo.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) @@ -352,8 +362,6 @@ ## Neural Network * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) - * [Gan](https://github.com/TheAlgorithms/Python/blob/master/neural_network/gan.py) - * [Input Data](https://github.com/TheAlgorithms/Python/blob/master/neural_network/input_data.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other @@ -509,6 +517,9 @@ * Problem 99 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_99/sol1.py) +## Scheduling + * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) + ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) diff --git a/dynamic_programming/k_means_clustering_tensorflow.py b/dynamic_programming/k_means_clustering_tensorflow.py_tf similarity index 100% rename from dynamic_programming/k_means_clustering_tensorflow.py rename to dynamic_programming/k_means_clustering_tensorflow.py_tf diff --git a/neural_network/gan.py b/neural_network/gan.py_tf similarity index 100% rename from neural_network/gan.py rename to neural_network/gan.py_tf diff --git a/neural_network/input_data.py b/neural_network/input_data.py_tf similarity index 100% rename from neural_network/input_data.py rename to neural_network/input_data.py_tf diff --git a/requirements.txt b/requirements.txt index 2c4ac59d3e09..df5bcbafb2b6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -14,4 +14,4 @@ requests scikit-fuzzy sklearn sympy -tensorflow +tensorflow; python_version < '3.8' From 5543d14b3f84eb4985f59c9f874f367e8980133f Mon Sep 17 00:00:00 2001 From: singlav <41392278+singlav@users.noreply.github.com> Date: Sun, 23 Feb 2020 12:40:51 +0530 Subject: [PATCH 558/594] estimate area under a curve defined by non-negative real-valued continuous function within a continuous interval using monte-carlo (#1785) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * estimate area under a curve defined by non-negative real-valued continuous function within a continuous interval using monte-carlo * run black; update comments * Use f”strings” and drop unnecessary returns Co-authored-by: Christian Clauss --- maths/monte_carlo.py | 108 +++++++++++++++++++++++++++++++------------ 1 file changed, 79 insertions(+), 29 deletions(-) diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py index 6a407e98badd..dedca9f6cdf5 100644 --- a/maths/monte_carlo.py +++ b/maths/monte_carlo.py @@ -1,9 +1,10 @@ """ @author: MatteoRaso """ -from numpy import pi, sqrt +from math import pi, sqrt from random import uniform from statistics import mean +from typing import Callable def pi_estimator(iterations: int): @@ -18,7 +19,7 @@ def pi_estimator(iterations: int): 6. Print the estimated and numpy value of pi """ # A local function to see if a dot lands in the circle. - def in_circle(x: float, y: float) -> bool: + def is_in_circle(x: float, y: float) -> bool: distance_from_centre = sqrt((x ** 2) + (y ** 2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. @@ -26,50 +27,99 @@ def in_circle(x: float, y: float) -> bool: # The proportion of guesses that landed in the circle proportion = mean( - int(in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(iterations) + int(is_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) + for _ in range(iterations) ) # The ratio of the area for circle to square is pi/4. pi_estimate = proportion * 4 - print("The estimated value of pi is ", pi_estimate) - print("The numpy value of pi is ", pi) - print("The total error is ", abs(pi - pi_estimate)) + print(f"The estimated value of pi is {pi_estimate}") + print(f"The numpy value of pi is {pi}") + print(f"The total error is {abs(pi - pi_estimate)}") -def area_under_line_estimator(iterations: int, - min_value: float=0.0, - max_value: float=1.0) -> float: +def area_under_curve_estimator( + iterations: int, + function_to_integrate: Callable[[float], float], + min_value: float = 0.0, + max_value: float = 1.0, +) -> float: """ An implementation of the Monte Carlo method to find area under - y = x where x lies between min_value to max_value - 1. Let x be a uniformly distributed random variable between min_value to max_value - 2. Expected value of x = (integration of x from min_value to max_value) / (max_value - min_value) - 3. Finding expected value of x: + a single variable non-negative real-valued continuous function, + say f(x), where x lies within a continuous bounded interval, + say [min_value, max_value], where min_value and max_value are + finite numbers + 1. Let x be a uniformly distributed random variable between min_value to + max_value + 2. Expected value of f(x) = + (integrate f(x) from min_value to max_value)/(max_value - min_value) + 3. Finding expected value of f(x): a. Repeatedly draw x from uniform distribution - b. Expected value = average of those values - 4. Actual value = (max_value^2 - min_value^2) / 2 + b. Evaluate f(x) at each of the drawn x values + c. Expected value = average of the function evaluations + 4. Estimated value of integral = Expected value * (max_value - min_value) 5. Returns estimated value """ - return mean(uniform(min_value, max_value) for _ in range(iterations)) * (max_value - min_value) + return mean( + function_to_integrate(uniform(min_value, max_value)) for _ in range(iterations) + ) * (max_value - min_value) -def area_under_line_estimator_check(iterations: int, - min_value: float=0.0, - max_value: float=1.0) -> None: + +def area_under_line_estimator_check( + iterations: int, min_value: float = 0.0, max_value: float = 1.0 +) -> None: """ - Checks estimation error for area_under_line_estimator func - 1. Calls "area_under_line_estimator" function + Checks estimation error for area_under_curve_estimator function + for f(x) = x where x lies within min_value to max_value + 1. Calls "area_under_curve_estimator" function 2. Compares with the expected value 3. Prints estimated, expected and error value """ - - estimated_value = area_under_line_estimator(iterations, min_value, max_value) - expected_value = (max_value*max_value - min_value*min_value) / 2 - + + def identity_function(x: float) -> float: + """ + Represents identity function + >>> [function_to_integrate(x) for x in [-2.0, -1.0, 0.0, 1.0, 2.0]] + [-2.0, -1.0, 0.0, 1.0, 2.0] + """ + return x + + estimated_value = area_under_curve_estimator( + iterations, identity_function, min_value, max_value + ) + expected_value = (max_value * max_value - min_value * min_value) / 2 + + print("******************") + print(f"Estimating area under y=x where x varies from {min_value} to {max_value}") + print(f"Estimated value is {estimated_value}") + print(f"Expected value is {expected_value}") + print(f"Total error is {abs(estimated_value - expected_value)}") + print("******************") + + +def pi_estimator_using_area_under_curve(iterations: int) -> None: + """ + Area under curve y = sqrt(4 - x^2) where x lies in 0 to 2 is equal to pi + """ + + def function_to_integrate(x: float) -> float: + """ + Represents semi-circle with radius 2 + >>> [function_to_integrate(x) for x in [-2.0, 0.0, 2.0]] + [0.0, 2.0, 0.0] + """ + return sqrt(4.0 - x * x) + + estimated_value = area_under_curve_estimator( + iterations, function_to_integrate, 0.0, 2.0 + ) + print("******************") - print("Estimating area under y=x where x varies from ",min_value, " to ",max_value) - print("Estimated value is ", estimated_value) - print("Expected value is ", expected_value) - print("Total error is ", abs(estimated_value - expected_value)) + print("Estimating pi using area_under_curve_estimator") + print(f"Estimated value is {estimated_value}") + print(f"Expected value is {pi}") + print(f"Total error is {abs(estimated_value - pi)}") print("******************") From c1a4cc96c8028d786af151f4177e2ef54250186e Mon Sep 17 00:00:00 2001 From: praveennadiminti Date: Wed, 26 Feb 2020 15:56:45 +0530 Subject: [PATCH 559/594] Add bilateral filter (#1786) * Added Bilateral filter * Added Bilateral filter * changed types of varS and varI * formatted with black * added type hints * changed variable names * Update bilateral_filter.py * Drop transitory variables, add parse_args() Co-authored-by: vinayak Co-authored-by: Christian Clauss --- .../filters/bilateral_filter.py | 88 +++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 digital_image_processing/filters/bilateral_filter.py diff --git a/digital_image_processing/filters/bilateral_filter.py b/digital_image_processing/filters/bilateral_filter.py new file mode 100644 index 000000000000..753d6ddb7a3f --- /dev/null +++ b/digital_image_processing/filters/bilateral_filter.py @@ -0,0 +1,88 @@ +""" +Implementation of Bilateral filter + +Inputs: + img: A 2d image with values in between 0 and 1 + varS: variance in space dimension. + varI: variance in Intensity. + N: Kernel size(Must be an odd number) +Output: + img:A 2d zero padded image with values in between 0 and 1 +""" + +import cv2 +import numpy as np +import math +import sys + + +def vec_gaussian(img: np.ndarray, variance: float) -> np.ndarray: + # For applying gaussian function for each element in matrix. + sigma = math.sqrt(variance) + cons = 1 / (sigma * math.sqrt(2 * math.pi)) + return cons * np.exp(-((img / sigma) ** 2) * 0.5) + + +def get_slice(img: np.ndarray, x: int, y: int, kernel_size: int) -> np.ndarray: + half = kernel_size // 2 + return img[x - half : x + half + 1, y - half : y + half + 1] + + +def get_gauss_kernel(kernel_size: int, spatial_variance: float) -> np.ndarray: + # Creates a gaussian kernel of given dimension. + arr = np.zeros((kernel_size, kernel_size)) + for i in range(0, kernel_size): + for j in range(0, kernel_size): + arr[i, j] = math.sqrt( + abs(i - kernel_size // 2) ** 2 + abs(j - kernel_size // 2) ** 2 + ) + return vec_gaussian(arr, spatial_variance) + + +def bilateral_filter( + img: np.ndarray, + spatial_variance: float, + intensity_variance: float, + kernel_size: int, +) -> np.ndarray: + img2 = np.zeros(img.shape) + gaussKer = get_gauss_kernel(kernel_size, spatial_variance) + sizeX, sizeY = img.shape + for i in range(kernel_size // 2, sizeX - kernel_size // 2): + for j in range(kernel_size // 2, sizeY - kernel_size // 2): + + imgS = get_slice(img, i, j, kernel_size) + imgI = imgS - imgS[kernel_size // 2, kernel_size // 2] + imgIG = vec_gaussian(imgI, intensity_variance) + weights = np.multiply(gaussKer, imgIG) + vals = np.multiply(imgS, weights) + val = np.sum(vals) / np.sum(weights) + img2[i, j] = val + return img2 + + +def parse_args(args: list) -> tuple: + filename = args[1] if args[1:] else "../image_data/lena.jpg" + spatial_variance = float(args[2]) if args[2:] else 1.0 + intensity_variance = float(args[3]) if args[3:] else 1.0 + if args[4:]: + kernel_size = int(args[4]) + kernel_size = kernel_size + abs(kernel_size % 2 - 1) + else: + kernel_size = 5 + return filename, spatial_variance, intensity_variance, kernel_size + + +if __name__ == "__main__": + filename, spatial_variance, intensity_variance, kernel_size = parse_args(sys.argv) + img = cv2.imread(filename, 0) + cv2.imshow("input image", img) + + out = img / 255 + out = out.astype("float32") + out = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) + out = out * 255 + out = np.uint8(out) + cv2.imshow("output image", out) + cv2.waitKey(0) + cv2.destroyAllWindows() From 2b19e8476732dab42354ba5a565d32ed4bd667ba Mon Sep 17 00:00:00 2001 From: Muhammad Umer Farooq Date: Wed, 26 Feb 2020 05:41:56 -0500 Subject: [PATCH 560/594] Create emails_from_url.py (#1756) * Create emails_from_url.py * Update emails_from_url.py * Update emails_from_url.py * 0 emails found: * Update emails_from_url.py * Use Python set() to remove duplicates * Update emails_from_url.py * Add type hints and doctests Co-authored-by: vinayak Co-authored-by: Christian Clauss --- web_programming/emails_from_url.py | 105 +++++++++++++++++++++++++++++ 1 file changed, 105 insertions(+) create mode 100644 web_programming/emails_from_url.py diff --git a/web_programming/emails_from_url.py b/web_programming/emails_from_url.py new file mode 100644 index 000000000000..fba9f769bace --- /dev/null +++ b/web_programming/emails_from_url.py @@ -0,0 +1,105 @@ +"""Get the site emails from URL.""" +__author__ = "Muhammad Umer Farooq" +__license__ = "MIT" +__version__ = "1.0.0" +__maintainer__ = "Muhammad Umer Farooq" +__email__ = "contact@muhammadumerfarooq.me" +__status__ = "Alpha" + +import re +from html.parser import HTMLParser +from urllib import parse + +import requests + + +class Parser(HTMLParser): + def __init__(self, domain: str): + HTMLParser.__init__(self) + self.data = [] + self.domain = domain + + def handle_starttag(self, tag: str, attrs: str) -> None: + """ + This function parse html to take takes url from tags + """ + # Only parse the 'anchor' tag. + if tag == "a": + # Check the list of defined attributes. + for name, value in attrs: + # If href is defined, and not empty nor # print it. + if name == "href" and value != "#" and value != "": + # If not already in data. + if value not in self.data: + url = parse.urljoin(self.domain, value) + self.data.append(url) + + +# Get main domain name (example.com) +def get_domain_name(url: str) -> str: + """ + This function get the main domain name + + >>> get_domain_name("https://a.b.c.d/e/f?g=h,i=j#k") + 'c.d' + >>> get_domain_name("Not a URL!") + '' + """ + return ".".join(get_sub_domain_name(url).split(".")[-2:]) + + +# Get sub domain name (sub.example.com) +def get_sub_domain_name(url: str) -> str: + """ + This function get sub domin name + + >>> get_sub_domain_name("https://a.b.c.d/e/f?g=h,i=j#k") + 'a.b.c.d' + >>> get_sub_domain_name("Not a URL!") + '' + """ + return parse.urlparse(url).netloc + + +def emails_from_url(url: str = "https://github.com") -> list: + """ + This function takes url and return all valid urls + """ + # Get the base domain from the url + domain = get_domain_name(url) + + # Initialize the parser + parser = Parser(domain) + + try: + # Open URL + r = requests.get(url) + + # pass the raw HTML to the parser to get links + parser.feed(r.text) + + # Get links and loop through + valid_emails = set() + for link in parser.data: + # open URL. + # read = requests.get(link) + try: + read = requests.get(link) + # Get the valid email. + emails = re.findall("[a-zA-Z0-9]+@" + domain, read.text) + # If not in list then append it. + for email in emails: + valid_emails.add(email) + except ValueError: + pass + except ValueError: + exit(-1) + + # Finally return a sorted list of email addresses with no duplicates. + return sorted(valid_emails) + + +if __name__ == "__main__": + emails = emails_from_url("https://github.com") + print(f"{len(emails)} emails found:") + print("\n".join(sorted(emails))) From 7f04e5cd3499c07f07ae94437b706254edb7ba39 Mon Sep 17 00:00:00 2001 From: matkosoric Date: Wed, 4 Mar 2020 13:40:28 +0100 Subject: [PATCH 561/594] contribution guidelines checks (#1787) * spelling corrections * review * improved documentation, removed redundant variables, added testing * added type hint * camel case to snake case * spelling fix * review * python --> Python # it is a brand name, not a snake * explicit cast to int * spaces in int list * "!= None" to "is not None" * Update comb_sort.py * various spelling corrections in documentation & several variables naming conventions fix * + char in file name * import dependency - bug fix Co-authored-by: John Law --- .gitignore | 2 +- DIRECTORY.md | 2 +- backtracking/n_queens.py | 4 +- ciphers/hill_cipher.py | 14 +++--- ciphers/onepad_cipher.py | 4 +- .../binary_tree/binary_search_tree.py | 36 +++++++------- .../number_of_possible_binary_trees.py | 2 +- data_structures/linked_list/deque_doubly.py | 2 +- .../linked_list/doubly_linked_list.py | 2 +- data_structures/queue/queue_on_list.py | 2 +- digital_image_processing/change_contrast.py | 2 +- divide_and_conquer/convex_hull.py | 12 ++--- dynamic_programming/bitmask.py | 28 +++++------ dynamic_programming/fibonacci.py | 2 +- fuzzy_logic/fuzzy_operations.py | 2 +- graphs/bellman_ford.py | 2 +- ...irected_and_undirected_(weighted)_graph.py | 2 +- graphs/minimum_spanning_tree_prims.py | 32 ++++++------- graphs/multi_heuristic_astar.py | 36 +++++--------- hashes/hamming_code.py | 4 +- machine_learning/linear_regression.py | 10 ++-- maths/{3n+1.py => 3n_plus_1.py} | 2 +- maths/average_mode.py | 2 +- maths/basic_maths.py | 2 +- maths/explicit_euler.py | 8 ++-- maths/factorial_iterative.py | 2 +- other/anagrams.py | 4 +- other/autocomplete_using_trie.py | 6 +-- other/fischer_yates_shuffle.py | 12 ++--- other/magicdiamondpattern.py | 2 +- other/primelib.py | 2 +- project_euler/problem_04/sol2.py | 2 +- project_euler/problem_07/sol1.py | 6 +-- project_euler/problem_551/sol1.py | 4 +- scripts/build_directory_md.py | 10 ++-- scripts/validate_filenames.py | 6 +-- searches/binary_search.py | 2 +- searches/interpolation_search.py | 2 +- searches/linear_search.py | 2 +- searches/sentinel_linear_search.py | 2 +- searches/simulated_annealing.py | 6 +-- searches/tabu_search.py | 2 +- sorts/bitonic_sort.py | 22 ++++----- sorts/bogo_sort.py | 11 +++-- sorts/comb_sort.py | 47 +++++++++++-------- sorts/counting_sort.py | 2 +- sorts/heap_sort.py | 2 +- sorts/insertion_sort.py | 2 +- sorts/merge_sort.py | 2 +- sorts/odd_even_transposition_parallel.py | 6 +-- sorts/pancake_sort.py | 2 +- sorts/quick_sort.py | 2 +- sorts/selection_sort.py | 2 +- sorts/shell_sort.py | 2 +- sorts/unknown_sort.py | 2 +- traversals/binary_tree_traversals.py | 2 +- web_programming/emails_from_url.py | 2 - 57 files changed, 198 insertions(+), 198 deletions(-) rename maths/{3n+1.py => 3n_plus_1.py} (97%) diff --git a/.gitignore b/.gitignore index b840d4ed0490..574cdf312836 100644 --- a/.gitignore +++ b/.gitignore @@ -26,7 +26,7 @@ wheels/ MANIFEST # PyInstaller -# Usually these files are written by a python script from a template +# Usually these files are written by a Python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec diff --git a/DIRECTORY.md b/DIRECTORY.md index 91a5ab7f6a99..48c1dde9ab67 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -263,7 +263,7 @@ * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) ## Maths - * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py) + * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) diff --git a/backtracking/n_queens.py b/backtracking/n_queens.py index c0db41496aee..58d9c4279a35 100644 --- a/backtracking/n_queens.py +++ b/backtracking/n_queens.py @@ -42,7 +42,7 @@ def solve(board, row): """ It creates a state space tree and calls the safe function until it receives a False Boolean and terminates that branch and backtracks to the next - poosible solution branch. + possible solution branch. """ if row >= len(board): """ @@ -56,7 +56,7 @@ def solve(board, row): return for i in range(len(board)): """ - For every row it iterates through each column to check if it is feesible to place a + For every row it iterates through each column to check if it is feasible to place a queen there. If all the combinations for that particular branch are successful the board is reinitialized for the next possible combination. diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py index ffc1d9793bf2..47910e4ebdaa 100644 --- a/ciphers/hill_cipher.py +++ b/ciphers/hill_cipher.py @@ -65,11 +65,11 @@ def __init__(self, encrypt_key): encrypt_key is an NxN numpy matrix """ self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key - self.checkDeterminant() # validate the determinant of the encryption key + self.check_determinant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] - def checkDeterminant(self): + def check_determinant(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: @@ -83,7 +83,7 @@ def checkDeterminant(self): ) ) - def processText(self, text): + def process_text(self, text): text = list(text.upper()) text = [char for char in text if char in self.key_string] @@ -94,7 +94,7 @@ def processText(self, text): return "".join(text) def encrypt(self, text): - text = self.processText(text.upper()) + text = self.process_text(text.upper()) encrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): @@ -109,7 +109,7 @@ def encrypt(self, text): return encrypted - def makeDecryptKey(self): + def make_decrypt_key(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: @@ -129,8 +129,8 @@ def makeDecryptKey(self): return self.toInt(self.modulus(inv_key)) def decrypt(self, text): - self.decrypt_key = self.makeDecryptKey() - text = self.processText(text.upper()) + self.decrypt_key = self.make_decrypt_key() + text = self.process_text(text.upper()) decrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): diff --git a/ciphers/onepad_cipher.py b/ciphers/onepad_cipher.py index 5a410bfa638a..fe07908afff5 100644 --- a/ciphers/onepad_cipher.py +++ b/ciphers/onepad_cipher.py @@ -3,7 +3,7 @@ class Onepad: def encrypt(self, text): - """Function to encrypt text using psedo-random numbers""" + """Function to encrypt text using pseudo-random numbers""" plain = [ord(i) for i in text] key = [] cipher = [] @@ -15,7 +15,7 @@ def encrypt(self, text): return cipher, key def decrypt(self, cipher, key): - """Function to decrypt text using psedo-random numbers.""" + """Function to decrypt text using pseudo-random numbers.""" plain = [] for i in range(len(key)): p = int((cipher[i] - (key[i]) ** 2) / key[i]) diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 86dcd6489bd5..40546875216b 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -28,16 +28,16 @@ def __str__(self): """ return str(self.root) - def __reassign_nodes(self, node, newChildren): - if newChildren is not None: # reset its kids - newChildren.parent = node.parent + def __reassign_nodes(self, node, new_children): + if new_children is not None: # reset its kids + new_children.parent = node.parent if node.parent is not None: # reset its parent if self.is_right(node): # If it is the right children - node.parent.right = newChildren + node.parent.right = new_children else: - node.parent.left = newChildren + node.parent.left = new_children else: - self.root = newChildren + self.root = new_children def is_right(self, node): return node == node.parent.right @@ -117,39 +117,39 @@ def remove(self, value): elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: - tmpNode = self.get_max( + tmp_node = self.get_max( node.left - ) # Gets the max value of the left branch - self.remove(tmpNode.value) + ) # Gets the max value of the left branch + self.remove(tmp_node.value) node.value = ( - tmpNode.value - ) # Assigns the value to the node to delete and keesp tree structure + tmp_node.value + ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node): if node is not None: - yield node # Preorder Traversal + yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) - def traversal_tree(self, traversalFunction=None): + def traversal_tree(self, traversal_function=None): """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ - if traversalFunction is None: + if traversal_function is None: return self.preorder_traverse(self.root) else: - return traversalFunction(self.root) + return traversal_function(self.root) def postorder(curr_node): """ postOrder (left, right, self) """ - nodeList = list() + node_list = list() if curr_node is not None: - nodeList = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] - return nodeList + node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] + return node_list def binary_search_tree(): diff --git a/data_structures/binary_tree/number_of_possible_binary_trees.py b/data_structures/binary_tree/number_of_possible_binary_trees.py index d053ba31171f..1ad8f2ed4287 100644 --- a/data_structures/binary_tree/number_of_possible_binary_trees.py +++ b/data_structures/binary_tree/number_of_possible_binary_trees.py @@ -82,7 +82,7 @@ def binary_tree_count(node_count: int) -> int: """ Return the number of possible of binary trees. :param n: number of nodes - :return: Number of possilble binary trees + :return: Number of possible binary trees >>> binary_tree_count(5) 5040 diff --git a/data_structures/linked_list/deque_doubly.py b/data_structures/linked_list/deque_doubly.py index 0898db679802..b2e73a8f789b 100644 --- a/data_structures/linked_list/deque_doubly.py +++ b/data_structures/linked_list/deque_doubly.py @@ -21,7 +21,7 @@ def __init__(self, link_p, element, link_n): def has_next_and_prev(self): return " Prev -> {0}, Next -> {1}".format( - self._prev != None, self._next != None + self._prev is not None, self._next is not None ) def __init__(self): diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py index 27b04ed39ad2..f8f652be6d32 100644 --- a/data_structures/linked_list/doubly_linked_list.py +++ b/data_structures/linked_list/doubly_linked_list.py @@ -62,7 +62,7 @@ def isEmpty(self): # Will return True if the list is empty def display(self): # Prints contents of the list current = self.head - while current != None: + while current is not None: current.displayLink() current = current.next print() diff --git a/data_structures/queue/queue_on_list.py b/data_structures/queue/queue_on_list.py index bb44e08ad6c5..4d69461af66a 100644 --- a/data_structures/queue/queue_on_list.py +++ b/data_structures/queue/queue_on_list.py @@ -1,4 +1,4 @@ -"""Queue represented by a python list""" +"""Queue represented by a Python list""" class Queue: diff --git a/digital_image_processing/change_contrast.py b/digital_image_processing/change_contrast.py index 76f1a3e1fcd8..c7da52298ae2 100644 --- a/digital_image_processing/change_contrast.py +++ b/digital_image_processing/change_contrast.py @@ -2,7 +2,7 @@ Changing contrast with PIL This algorithm is used in -https://noivce.pythonanywhere.com/ python web app. +https://noivce.pythonanywhere.com/ Python web app. python/black: True flake8 : True diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index 76184524e266..11b16975c8b4 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -344,19 +344,19 @@ def convex_hull_recursive(points): right_most_point = points[n - 1] convex_set = {left_most_point, right_most_point} - upperhull = [] - lowerhull = [] + upper_hull = [] + lower_hull = [] for i in range(1, n - 1): det = _det(left_most_point, right_most_point, points[i]) if det > 0: - upperhull.append(points[i]) + upper_hull.append(points[i]) elif det < 0: - lowerhull.append(points[i]) + lower_hull.append(points[i]) - _construct_hull(upperhull, left_most_point, right_most_point, convex_set) - _construct_hull(lowerhull, right_most_point, left_most_point, convex_set) + _construct_hull(upper_hull, left_most_point, right_most_point, convex_set) + _construct_hull(lower_hull, right_most_point, left_most_point, convex_set) return sorted(convex_set) diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py index 1841f1747557..625a0809c4b9 100644 --- a/dynamic_programming/bitmask.py +++ b/dynamic_programming/bitmask.py @@ -1,6 +1,6 @@ """ -This is a python implementation for questions involving task assignments between people. +This is a Python implementation for questions involving task assignments between people. Here Bitmasking and DP are used for solving this. Question :- @@ -25,41 +25,41 @@ def __init__(self, task_performed, total): self.task = defaultdict(list) # stores the list of persons for each task - # finalmask is used to check if all persons are included by setting all bits to 1 - self.finalmask = (1 << len(task_performed)) - 1 + # final_mask is used to check if all persons are included by setting all bits to 1 + self.final_mask = (1 << len(task_performed)) - 1 - def CountWaysUtil(self, mask, taskno): + def CountWaysUtil(self, mask, task_no): # if mask == self.finalmask all persons are distributed tasks, return 1 - if mask == self.finalmask: + if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 - if taskno > self.total_tasks: + if task_no > self.total_tasks: return 0 # if case already considered - if self.dp[mask][taskno] != -1: - return self.dp[mask][taskno] + if self.dp[mask][task_no] != -1: + return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement - total_ways_util = self.CountWaysUtil(mask, taskno + 1) + total_ways_util = self.CountWaysUtil(mask, task_no + 1) # now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks. - if taskno in self.task: - for p in self.task[taskno]: + if task_no in self.task: + for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively assign tasks with the new mask value. - total_ways_util += self.CountWaysUtil(mask | (1 << p), taskno + 1) + total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1) # save the value. - self.dp[mask][taskno] = total_ways_util + self.dp[mask][task_no] = total_ways_util - return self.dp[mask][taskno] + return self.dp[mask][task_no] def countNoOfWays(self, task_performed): diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py index 923560b54d30..45319269f5d4 100644 --- a/dynamic_programming/fibonacci.py +++ b/dynamic_programming/fibonacci.py @@ -28,7 +28,7 @@ def get(self, sequence_no=None): [0, 1, 1, 2, 3, 5] [] """ - if sequence_no != None: + if sequence_no is not None: if sequence_no < len(self.fib_array): return print(self.fib_array[: sequence_no + 1]) else: diff --git a/fuzzy_logic/fuzzy_operations.py b/fuzzy_logic/fuzzy_operations.py index cb870e8d9e3b..34dd9c029be7 100644 --- a/fuzzy_logic/fuzzy_operations.py +++ b/fuzzy_logic/fuzzy_operations.py @@ -11,7 +11,7 @@ if __name__ == "__main__": - # Create universe of discourse in python using linspace () + # Create universe of discourse in Python using linspace () X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index 6b5e8b735c43..807e0b0fcdb9 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -8,7 +8,7 @@ def printDist(dist, V): def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int: - r""" + """ Returns shortest paths from a vertex src to all other vertices. """ diff --git a/graphs/directed_and_undirected_(weighted)_graph.py b/graphs/directed_and_undirected_(weighted)_graph.py index 15e2ce663594..26c87cd8f4b2 100644 --- a/graphs/directed_and_undirected_(weighted)_graph.py +++ b/graphs/directed_and_undirected_(weighted)_graph.py @@ -3,7 +3,7 @@ import math as math import time -# the dfault weight is 1 if not assigned but all the implementation is weighted +# the default weight is 1 if not assigned but all the implementation is weighted class DirectedGraph: diff --git a/graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py index 216d6a3f56de..6255b6af64ad 100644 --- a/graphs/minimum_spanning_tree_prims.py +++ b/graphs/minimum_spanning_tree_prims.py @@ -6,13 +6,13 @@ def PrimsAlgorithm(l): nodePosition = [] - def getPosition(vertex): + def get_position(vertex): return nodePosition[vertex] - def setPosition(vertex, pos): + def set_position(vertex, pos): nodePosition[vertex] = pos - def topToBottom(heap, start, size, positions): + def top_to_bottom(heap, start, size, positions): if start > size // 2 - 1: return else: @@ -28,14 +28,14 @@ def topToBottom(heap, start, size, positions): heap[m], positions[m] = heap[start], positions[start] heap[start], positions[start] = temp, temp1 - temp = getPosition(positions[m]) - setPosition(positions[m], getPosition(positions[start])) - setPosition(positions[start], temp) + temp = get_position(positions[m]) + set_position(positions[m], get_position(positions[start])) + set_position(positions[start], temp) - topToBottom(heap, m, size, positions) + top_to_bottom(heap, m, size, positions) # Update function if value of any node in min-heap decreases - def bottomToTop(val, index, heap, position): + def bottom_to_top(val, index, heap, position): temp = position[index] while index != 0: @@ -47,27 +47,27 @@ def bottomToTop(val, index, heap, position): if val < heap[parent]: heap[index] = heap[parent] position[index] = position[parent] - setPosition(position[parent], index) + set_position(position[parent], index) else: heap[index] = val position[index] = temp - setPosition(temp, index) + set_position(temp, index) break index = parent else: heap[0] = val position[0] = temp - setPosition(temp, 0) + set_position(temp, 0) def heapify(heap, positions): start = len(heap) // 2 - 1 for i in range(start, -1, -1): - topToBottom(heap, i, len(heap), positions) + top_to_bottom(heap, i, len(heap), positions) def deleteMinimum(heap, positions): temp = positions[0] heap[0] = sys.maxsize - topToBottom(heap, 0, len(heap), positions) + top_to_bottom(heap, 0, len(heap), positions) return temp visited = [0 for i in range(len(l))] @@ -96,9 +96,9 @@ def deleteMinimum(heap, positions): TreeEdges.append((Nbr_TV[vertex], vertex)) visited[vertex] = 1 for v in l[vertex]: - if visited[v[0]] == 0 and v[1] < Distance_TV[getPosition(v[0])]: - Distance_TV[getPosition(v[0])] = v[1] - bottomToTop(v[1], getPosition(v[0]), Distance_TV, Positions) + if visited[v[0]] == 0 and v[1] < Distance_TV[get_position(v[0])]: + Distance_TV[get_position(v[0])] = v[1] + bottom_to_top(v[1], get_position(v[0]), Distance_TV, Positions) Nbr_TV[v[0]] = vertex return TreeEdges diff --git a/graphs/multi_heuristic_astar.py b/graphs/multi_heuristic_astar.py index 56cfc727d338..386aab695bb0 100644 --- a/graphs/multi_heuristic_astar.py +++ b/graphs/multi_heuristic_astar.py @@ -52,25 +52,25 @@ def get(self): return (priority, item) -def consistent_hueristic(P, goal): +def consistent_heuristic(P, goal): # euclidean distance a = np.array(P) b = np.array(goal) return np.linalg.norm(a - b) -def hueristic_2(P, goal): +def heuristic_2(P, goal): # integer division by time variable - return consistent_hueristic(P, goal) // t + return consistent_heuristic(P, goal) // t -def hueristic_1(P, goal): +def heuristic_1(P, goal): # manhattan distance return abs(P[0] - goal[0]) + abs(P[1] - goal[1]) def key(start, i, goal, g_function): - ans = g_function[start] + W1 * hueristics[i](start, goal) + ans = g_function[start] + W1 * heuristics[i](start, goal) return ans @@ -134,7 +134,7 @@ def expand_state( open_list, back_pointer, ): - for itera in range(n_hueristic): + for itera in range(n_heuristic): open_list[itera].remove_element(s) # print("s", s) # print("j", j) @@ -158,30 +158,24 @@ def expand_state( if neighbours not in close_list_anchor: open_list[0].put(neighbours, key(neighbours, 0, goal, g_function)) if neighbours not in close_list_inad: - for var in range(1, n_hueristic): + for var in range(1, n_heuristic): if key(neighbours, var, goal, g_function) <= W2 * key( neighbours, 0, goal, g_function ): - # print("why not plssssssssss") open_list[j].put( neighbours, key(neighbours, var, goal, g_function) ) - # print - def make_common_ground(): some_list = [] - # block 1 for x in range(1, 5): for y in range(1, 6): some_list.append((x, y)) - # line for x in range(15, 20): some_list.append((x, 17)) - # block 2 big for x in range(10, 19): for y in range(1, 15): some_list.append((x, y)) @@ -196,7 +190,7 @@ def make_common_ground(): return some_list -hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2} +heuristics = {0: consistent_heuristic, 1: heuristic_1, 2: heuristic_2} blocks_blk = [ (0, 1), @@ -229,7 +223,7 @@ def make_common_ground(): W1 = 1 W2 = 1 n = 20 -n_hueristic = 3 # one consistent and two other inconsistent +n_heuristic = 3 # one consistent and two other inconsistent # start and end destination start = (0, 0) @@ -238,26 +232,24 @@ def make_common_ground(): t = 1 -def multi_a_star(start, goal, n_hueristic): +def multi_a_star(start, goal, n_heuristic): g_function = {start: 0, goal: float("inf")} back_pointer = {start: -1, goal: -1} open_list = [] visited = set() - for i in range(n_hueristic): + for i in range(n_heuristic): open_list.append(PriorityQueue()) open_list[i].put(start, key(start, i, goal, g_function)) close_list_anchor = [] close_list_inad = [] while open_list[0].minkey() < float("inf"): - for i in range(1, n_hueristic): - # print("i", i) + for i in range(1, n_heuristic): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= W2 * open_list[0].minkey(): global t t += 1 - # print("less prio") if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf"): do_something(back_pointer, goal, start) @@ -276,12 +268,10 @@ def multi_a_star(start, goal, n_hueristic): ) close_list_inad.append(get_s) else: - # print("more prio") if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf"): do_something(back_pointer, goal, start) else: - # print("hoolla") get_s = open_list[0].top_show() visited.add(get_s) expand_state( @@ -319,4 +309,4 @@ def multi_a_star(start, goal, n_hueristic): if __name__ == "__main__": - multi_a_star(start, goal, n_hueristic) + multi_a_star(start, goal, n_heuristic) diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py index 756ba7c6670f..c1ed7fe1d727 100644 --- a/hashes/hamming_code.py +++ b/hashes/hamming_code.py @@ -121,7 +121,7 @@ def emitterConverter(sizePar, data): # counter to control the loop reading contLoop = 0 for x in dataOrd: - if x != None: + if x is not None: try: aux = (binPos[contLoop])[-1 * (bp)] except IndexError: @@ -224,7 +224,7 @@ def receptorConverter(sizePar, data): # Counter to control loop reading contLoop = 0 for x in dataOrd: - if x != None: + if x is not None: try: aux = (binPos[contLoop])[-1 * (bp)] except IndexError: diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py index b666feddccc7..29bb7c48589e 100644 --- a/machine_learning/linear_regression.py +++ b/machine_learning/linear_regression.py @@ -1,10 +1,10 @@ """ Linear regression is the most basic type of regression commonly used for -predictive analysis. The idea is pretty simple, we have a dataset and we have -a feature's associated with it. The Features should be choose very cautiously -as they determine, how much our model will be able to make future predictions. -We try to set these Feature weights, over many iterations, so that they best -fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs +predictive analysis. The idea is pretty simple: we have a dataset and we have +features associated with it. Features should be chosen very cautiously +as they determine how much our model will be able to make future predictions. +We try to set the weight of these features, over many iterations, so that they best +fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs Rating). We try to best fit a line through dataset and estimate the parameters. """ import requests diff --git a/maths/3n+1.py b/maths/3n_plus_1.py similarity index 97% rename from maths/3n+1.py rename to maths/3n_plus_1.py index 64ff34fd2039..d3684561827f 100644 --- a/maths/3n+1.py +++ b/maths/3n_plus_1.py @@ -3,7 +3,7 @@ def n31(a: int) -> Tuple[List[int], int]: """ - Returns the Collatz sequence and its length of any postiver integer. + Returns the Collatz sequence and its length of any positive integer. >>> n31(4) ([4, 2, 1], 3) """ diff --git a/maths/average_mode.py b/maths/average_mode.py index c1a4b3521448..d472dc04d4bf 100644 --- a/maths/average_mode.py +++ b/maths/average_mode.py @@ -14,7 +14,7 @@ def mode(input_list): # Defining function "mode." >>> mode(input_list) == statistics.mode(input_list) True """ - # Copying inputlist to check with the index number later. + # Copying input_list to check with the index number later. check_list = input_list.copy() result = list() # Empty list to store the counts of elements in input_list for x in input_list: diff --git a/maths/basic_maths.py b/maths/basic_maths.py index 5dbfd250d308..07ee3b3df296 100644 --- a/maths/basic_maths.py +++ b/maths/basic_maths.py @@ -63,7 +63,7 @@ def sum_of_divisors(n: int) -> int: def euler_phi(n: int) -> int: - """Calculte Euler's Phi Function. + """Calculate Euler's Phi Function. >>> euler_phi(100) 40 """ diff --git a/maths/explicit_euler.py b/maths/explicit_euler.py index 8a43d71fb432..7c780198602b 100644 --- a/maths/explicit_euler.py +++ b/maths/explicit_euler.py @@ -1,7 +1,7 @@ import numpy as np -def explicit_euler(ode_func, y0, x0, stepsize, x_end): +def explicit_euler(ode_func, y0, x0, step_size, x_end): """ Calculate numeric solution at each step to an ODE using Euler's Method @@ -22,14 +22,14 @@ def explicit_euler(ode_func, y0, x0, stepsize, x_end): >>> y[-1] 144.77277243257308 """ - N = int(np.ceil((x_end - x0) / stepsize)) + N = int(np.ceil((x_end - x0) / step_size)) y = np.zeros((N + 1,)) y[0] = y0 x = x0 for k in range(N): - y[k + 1] = y[k] + stepsize * ode_func(x, y[k]) - x += stepsize + y[k + 1] = y[k] + step_size * ode_func(x, y[k]) + x += step_size return y diff --git a/maths/factorial_iterative.py b/maths/factorial_iterative.py index 249408cb5b4e..64314790c11c 100644 --- a/maths/factorial_iterative.py +++ b/maths/factorial_iterative.py @@ -26,5 +26,5 @@ def factorial(n: int) -> int: if __name__ == "__main__": - n = int(input("Enter a positivve integer: ").strip() or 0) + n = int(input("Enter a positive integer: ").strip() or 0) print(f"factorial{n} is {factorial(n)}") diff --git a/other/anagrams.py b/other/anagrams.py index 6e6806e92a0f..471413194498 100644 --- a/other/anagrams.py +++ b/other/anagrams.py @@ -16,8 +16,8 @@ def signature(word): word_bysig[signature(word)].append(word) -def anagram(myword): - return word_bysig[signature(myword)] +def anagram(my_word): + return word_bysig[signature(my_word)] print("finding anagrams...") diff --git a/other/autocomplete_using_trie.py b/other/autocomplete_using_trie.py index eb906f8efa9a..8aa0dc223680 100644 --- a/other/autocomplete_using_trie.py +++ b/other/autocomplete_using_trie.py @@ -26,10 +26,10 @@ def _elements(self, d): result = [] for c, v in d.items(): if c == END: - subresult = [" "] + sub_result = [" "] else: - subresult = [c + s for s in self._elements(v)] - result.extend(subresult) + sub_result = [c + s for s in self._elements(v)] + result.extend(sub_result) return tuple(result) diff --git a/other/fischer_yates_shuffle.py b/other/fischer_yates_shuffle.py index 4217cb0bef67..99121ba632c7 100644 --- a/other/fischer_yates_shuffle.py +++ b/other/fischer_yates_shuffle.py @@ -7,12 +7,12 @@ import random -def FYshuffle(LIST): - for i in range(len(LIST)): - a = random.randint(0, len(LIST) - 1) - b = random.randint(0, len(LIST) - 1) - LIST[a], LIST[b] = LIST[b], LIST[a] - return LIST +def FYshuffle(list): + for i in range(len(list)): + a = random.randint(0, len(list) - 1) + b = random.randint(0, len(list) - 1) + list[a], list[b] = list[b], list[a] + return list if __name__ == "__main__": diff --git a/other/magicdiamondpattern.py b/other/magicdiamondpattern.py index 6de5046c9f18..4ca698d80c28 100644 --- a/other/magicdiamondpattern.py +++ b/other/magicdiamondpattern.py @@ -1,4 +1,4 @@ -# Python program for generating diamond pattern in python 3.7+ +# Python program for generating diamond pattern in Python 3.7+ # Function to print upper half of diamond (pyramid) def floyd(n): diff --git a/other/primelib.py b/other/primelib.py index 1b99819ce62a..a6d1d7dfb324 100644 --- a/other/primelib.py +++ b/other/primelib.py @@ -3,7 +3,7 @@ @author: Christian Bender -This python library contains some useful functions to deal with +This Python library contains some useful functions to deal with prime numbers and whole numbers. Overview: diff --git a/project_euler/problem_04/sol2.py b/project_euler/problem_04/sol2.py index ecc503912c34..0f185f1216ab 100644 --- a/project_euler/problem_04/sol2.py +++ b/project_euler/problem_04/sol2.py @@ -20,7 +20,7 @@ def solution(n): 39893 """ answer = 0 - for i in range(999, 99, -1): # 3 digit nimbers range from 999 down to 100 + for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100 for j in range(999, 99, -1): t = str(i * j) if t == t[::-1] and i * j < n: diff --git a/project_euler/problem_07/sol1.py b/project_euler/problem_07/sol1.py index f6b2584d9cdc..373915f886e1 100644 --- a/project_euler/problem_07/sol1.py +++ b/project_euler/problem_07/sol1.py @@ -8,7 +8,7 @@ from math import sqrt -def isprime(n): +def is_prime(n): if n == 2: return True elif n % 2 == 0: @@ -41,11 +41,11 @@ def solution(n): j = 1 while i != n and j < 3: j += 1 - if isprime(j): + if is_prime(j): i += 1 while i != n: j += 2 - if isprime(j): + if is_prime(j): i += 1 return j diff --git a/project_euler/problem_551/sol1.py b/project_euler/problem_551/sol1.py index 4775800693bc..873e520cc9b4 100644 --- a/project_euler/problem_551/sol1.py +++ b/project_euler/problem_551/sol1.py @@ -52,10 +52,10 @@ def next_term(a_i, k, i, n): sub_memo = memo.get(ds_b) - if sub_memo != None: + if sub_memo is not None: jumps = sub_memo.get(c) - if jumps != None and len(jumps) > 0: + if jumps is not None and len(jumps) > 0: # find and make the largest jump without going over max_jump = -1 for _k in range(len(jumps) - 1, -1, -1): diff --git a/scripts/build_directory_md.py b/scripts/build_directory_md.py index 1043e6ccb696..9e26ee81a323 100755 --- a/scripts/build_directory_md.py +++ b/scripts/build_directory_md.py @@ -6,14 +6,14 @@ URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" -def good_filepaths(top_dir: str = ".") -> Iterator[str]: - for dirpath, dirnames, filenames in os.walk(top_dir): - dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"] +def good_file_paths(top_dir: str = ".") -> Iterator[str]: + for dir_path, dir_names, filenames in os.walk(top_dir): + dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): - yield os.path.join(dirpath, filename).lstrip("./") + yield os.path.join(dir_path, filename).lstrip("./") def md_prefix(i): @@ -31,7 +31,7 @@ def print_path(old_path: str, new_path: str) -> str: def print_directory_md(top_dir: str = ".") -> None: old_path = "" - for filepath in sorted(good_filepaths()): + for filepath in sorted(good_file_paths()): filepath, filename = os.path.split(filepath) if filepath != old_path: old_path = print_path(old_path, filepath) diff --git a/scripts/validate_filenames.py b/scripts/validate_filenames.py index 51dd6a40cb41..f22fda4149f3 100755 --- a/scripts/validate_filenames.py +++ b/scripts/validate_filenames.py @@ -1,10 +1,10 @@ #!/usr/bin/env python3 import os -from build_directory_md import good_filepaths +from build_directory_md import good_file_paths -filepaths = list(good_filepaths()) -assert filepaths, "good_filepaths() failed!" +filepaths = list(good_file_paths()) +assert filepaths, "good_file_paths() failed!" upper_files = [file for file in filepaths if file != file.lower()] diff --git a/searches/binary_search.py b/searches/binary_search.py index fe22e423a7d4..8edf63136f9a 100644 --- a/searches/binary_search.py +++ b/searches/binary_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of binary search algorithms +This is pure Python implementation of binary search algorithms For doctests run following command: python -m doctest -v binary_search.py diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index 419ec52c0f4e..f4fa8e1203df 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of interpolation search algorithm +This is pure Python implementation of interpolation search algorithm """ diff --git a/searches/linear_search.py b/searches/linear_search.py index b6f52ca4857f..76683dc6a6a8 100644 --- a/searches/linear_search.py +++ b/searches/linear_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of linear search algorithm +This is pure Python implementation of linear search algorithm For doctests run following command: python -m doctest -v linear_search.py diff --git a/searches/sentinel_linear_search.py b/searches/sentinel_linear_search.py index 5650151b1d2f..69c1cf9f351a 100644 --- a/searches/sentinel_linear_search.py +++ b/searches/sentinel_linear_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of sentinel linear search algorithm +This is pure Python implementation of sentinel linear search algorithm For doctests run following command: python -m doctest -v sentinel_linear_search.py diff --git a/searches/simulated_annealing.py b/searches/simulated_annealing.py index d3542b00af45..c24adc1ddb41 100644 --- a/searches/simulated_annealing.py +++ b/searches/simulated_annealing.py @@ -66,15 +66,15 @@ def simulated_annealing( if change > 0: # improves the solution next_state = picked_neighbor else: - probabililty = (math.e) ** ( + probability = (math.e) ** ( change / current_temp ) # probability generation function - if random.random() < probabililty: # random number within probability + if random.random() < probability: # random number within probability next_state = picked_neighbor current_temp = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: - # temperature below threshold, or could not find a suitaable neighbor + # temperature below threshold, or could not find a suitable neighbor search_end = True else: current_state = next_state diff --git a/searches/tabu_search.py b/searches/tabu_search.py index 2847dca7acd7..9ddc5e8dee7f 100644 --- a/searches/tabu_search.py +++ b/searches/tabu_search.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances +This is pure Python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a'). The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is represented by the weight of the ark between the nodes. diff --git a/sorts/bitonic_sort.py b/sorts/bitonic_sort.py index 131f97291fbb..ce80c6028729 100644 --- a/sorts/bitonic_sort.py +++ b/sorts/bitonic_sort.py @@ -14,36 +14,36 @@ def compAndSwap(a, i, j, dire): # if dir = 1, and in descending order otherwise (means dir=0). # The sequence to be sorted starts at index position low, # the parameter cnt is the number of elements to be sorted. -def bitonicMerge(a, low, cnt, dire): +def bitonic_merge(a, low, cnt, dire): if cnt > 1: k = int(cnt / 2) for i in range(low, low + k): compAndSwap(a, i, i + k, dire) - bitonicMerge(a, low, k, dire) - bitonicMerge(a, low + k, k, dire) + bitonic_merge(a, low, k, dire) + bitonic_merge(a, low + k, k, dire) # This function first produces a bitonic sequence by recursively # sorting its two halves in opposite sorting orders, and then -# calls bitonicMerge to make them in the same order -def bitonicSort(a, low, cnt, dire): +# calls bitonic_merge to make them in the same order +def bitonic_sort(a, low, cnt, dire): if cnt > 1: k = int(cnt / 2) - bitonicSort(a, low, k, 1) - bitonicSort(a, low + k, k, 0) - bitonicMerge(a, low, cnt, dire) + bitonic_sort(a, low, k, 1) + bitonic_sort(a, low + k, k, 0) + bitonic_merge(a, low, cnt, dire) - # Caller of bitonicSort for sorting the entire array of length N + # Caller of bitonic_sort for sorting the entire array of length N # in ASCENDING order def sort(a, N, up): - bitonicSort(a, 0, N, up) + bitonic_sort(a, 0, N, up) if __name__ == "__main__": - # Driver code to test above + a = [] n = int(input().strip()) diff --git a/sorts/bogo_sort.py b/sorts/bogo_sort.py index 0afa444e5b8e..b72f2089f3d2 100644 --- a/sorts/bogo_sort.py +++ b/sorts/bogo_sort.py @@ -1,5 +1,10 @@ """ -This is a pure python implementation of the bogosort algorithm +This is a pure Python implementation of the bogosort algorithm, +also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort. +Bogosort generates random permutations until it guesses the correct one. + +More info on: https://en.wikipedia.org/wiki/Bogosort + For doctests run following command: python -m doctest -v bogo_sort.py or @@ -25,7 +30,7 @@ def bogo_sort(collection): [-45, -5, -2] """ - def isSorted(collection): + def is_sorted(collection): if len(collection) < 2: return True for i in range(len(collection) - 1): @@ -33,7 +38,7 @@ def isSorted(collection): return False return True - while not isSorted(collection): + while not is_sorted(collection): random.shuffle(collection) return collection diff --git a/sorts/comb_sort.py b/sorts/comb_sort.py index 3c4c57483e3f..c36bb8e63748 100644 --- a/sorts/comb_sort.py +++ b/sorts/comb_sort.py @@ -1,8 +1,13 @@ """ +This is pure Python implementation of comb sort algorithm. Comb sort is a relatively simple sorting algorithm originally designed by Wlodzimierz Dobosiewicz in 1980. -Later it was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort. +It was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort algorithm. +In bubble sort, distance (or gap) between two compared elements is always one. +Comb sort improvement is that gap can be much more than 1, in order to prevent slowing down by small values +at the end of a list. + +More info on: https://en.wikipedia.org/wiki/Comb_sort -This is pure python implementation of comb sort algorithm For doctests run following command: python -m doctest -v comb_sort.py or @@ -13,42 +18,44 @@ """ -def comb_sort(data): +def comb_sort(data: list) -> list: """Pure implementation of comb sort algorithm in Python - :param collection: some mutable ordered collection with heterogeneous - comparable items inside - :return: the same collection ordered by ascending + :param data: mutable collection with comparable items + :return: the same collection in ascending order Examples: >>> comb_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> comb_sort([]) [] - >>> comb_sort([-2, -5, -45]) - [-45, -5, -2] + >>> comb_sort([99, 45, -7, 8, 2, 0, -15, 3]) + [-15, -7, 0, 2, 3, 8, 45, 99] """ shrink_factor = 1.3 gap = len(data) - swapped = True - i = 0 + completed = False - while gap > 1 or swapped: - # Update the gap value for a next comb - gap = int(float(gap) / shrink_factor) + while not completed: - swapped = False - i = 0 + # Update the gap value for a next comb + gap = int(gap / shrink_factor) + if gap <= 1: + completed = True - while gap + i < len(data): - if data[i] > data[i + gap]: + index = 0 + while index + gap < len(data): + if data[index] > data[index + gap]: # Swap values - data[i], data[i + gap] = data[i + gap], data[i] - swapped = True - i += 1 + data[index], data[index + gap] = data[index + gap], data[index] + completed = False + index += 1 return data if __name__ == "__main__": + import doctest + doctest.testmod() + user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(comb_sort(unsorted)) diff --git a/sorts/counting_sort.py b/sorts/counting_sort.py index b672d4af47cb..892ec5d5f344 100644 --- a/sorts/counting_sort.py +++ b/sorts/counting_sort.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of counting sort algorithm +This is pure Python implementation of counting sort algorithm For doctests run following command: python -m doctest -v counting_sort.py or diff --git a/sorts/heap_sort.py b/sorts/heap_sort.py index a39ae2b88da2..4dca879bd89c 100644 --- a/sorts/heap_sort.py +++ b/sorts/heap_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the heap sort algorithm. +This is a pure Python implementation of the heap sort algorithm. For doctests run following command: python -m doctest -v heap_sort.py diff --git a/sorts/insertion_sort.py b/sorts/insertion_sort.py index b767018c3d57..ca678381b431 100644 --- a/sorts/insertion_sort.py +++ b/sorts/insertion_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the insertion sort algorithm +This is a pure Python implementation of the insertion sort algorithm For doctests run following command: python -m doctest -v insertion_sort.py diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py index 13f1144d4ad3..e8031a1cb97c 100644 --- a/sorts/merge_sort.py +++ b/sorts/merge_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the merge sort algorithm +This is a pure Python implementation of the merge sort algorithm For doctests run following command: python -m doctest -v merge_sort.py diff --git a/sorts/odd_even_transposition_parallel.py b/sorts/odd_even_transposition_parallel.py index 080c86af5a8c..5de7a016c628 100644 --- a/sorts/odd_even_transposition_parallel.py +++ b/sorts/odd_even_transposition_parallel.py @@ -18,7 +18,7 @@ """ The function run by the processes that sorts the list -position = the position in the list the prcoess represents, used to know which +position = the position in the list the process represents, used to know which neighbor we pass our value to value = the initial value at list[position] LSend, RSend = the pipes we use to send to our left and right neighbors @@ -35,7 +35,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10): - if (i + position) % 2 == 0 and RSend != None: + if (i + position) % 2 == 0 and RSend is not None: # send your value to your right neighbor processLock.acquire() RSend[1].send(value) @@ -48,7 +48,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe): # take the lower value since you are on the left value = min(value, temp) - elif (i + position) % 2 != 0 and LSend != None: + elif (i + position) % 2 != 0 and LSend is not None: # send your value to your left neighbor processLock.acquire() LSend[1].send(value) diff --git a/sorts/pancake_sort.py b/sorts/pancake_sort.py index ee54e57f9e0f..e5d600738435 100644 --- a/sorts/pancake_sort.py +++ b/sorts/pancake_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the pancake sort algorithm +This is a pure Python implementation of the pancake sort algorithm For doctests run following command: python3 -m doctest -v pancake_sort.py or diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py index 29e10206f720..f2a55c58b437 100644 --- a/sorts/quick_sort.py +++ b/sorts/quick_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the quick sort algorithm +This is a pure Python implementation of the quick sort algorithm For doctests run following command: python -m doctest -v quick_sort.py diff --git a/sorts/selection_sort.py b/sorts/selection_sort.py index 6a9c063d3364..f3beb31b7070 100644 --- a/sorts/selection_sort.py +++ b/sorts/selection_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the selection sort algorithm +This is a pure Python implementation of the selection sort algorithm For doctests run following command: python -m doctest -v selection_sort.py diff --git a/sorts/shell_sort.py b/sorts/shell_sort.py index ff9c2785b218..80d95870f95b 100644 --- a/sorts/shell_sort.py +++ b/sorts/shell_sort.py @@ -1,5 +1,5 @@ """ -This is a pure python implementation of the shell sort algorithm +This is a pure Python implementation of the shell sort algorithm For doctests run following command: python -m doctest -v shell_sort.py diff --git a/sorts/unknown_sort.py b/sorts/unknown_sort.py index 087533b4a575..5ecc55e9cf69 100644 --- a/sorts/unknown_sort.py +++ b/sorts/unknown_sort.py @@ -1,7 +1,7 @@ """ Python implementation of a sort algorithm. Best Case Scenario : O(n) -Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n) +Worst Case Scenario : O(n^2) because native Python functions:min, max and remove are already O(n) """ diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 31a73ae0c6a4..c522ecebc0ff 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -1,5 +1,5 @@ """ -This is pure python implementation of tree traversal algorithms +This is pure Python implementation of tree traversal algorithms """ import queue from typing import List diff --git a/web_programming/emails_from_url.py b/web_programming/emails_from_url.py index fba9f769bace..01dee274f015 100644 --- a/web_programming/emails_from_url.py +++ b/web_programming/emails_from_url.py @@ -51,8 +51,6 @@ def get_domain_name(url: str) -> str: # Get sub domain name (sub.example.com) def get_sub_domain_name(url: str) -> str: """ - This function get sub domin name - >>> get_sub_domain_name("https://a.b.c.d/e/f?g=h,i=j#k") 'a.b.c.d' >>> get_sub_domain_name("Not a URL!") From a9f73e318cddf43769083614a3e1f9dab1ec50fc Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Thu, 5 Mar 2020 17:57:43 +0100 Subject: [PATCH 562/594] Added SkipList (#1781) * Added SkipList * Add missing type hints and doctests * Add missing doctest * Tighten up doctest Co-authored-by: Christian Clauss --- data_structures/linked_list/skip_list.py | 443 +++++++++++++++++++++++ 1 file changed, 443 insertions(+) create mode 100644 data_structures/linked_list/skip_list.py diff --git a/data_structures/linked_list/skip_list.py b/data_structures/linked_list/skip_list.py new file mode 100644 index 000000000000..195d7ffc6b91 --- /dev/null +++ b/data_structures/linked_list/skip_list.py @@ -0,0 +1,443 @@ +""" +Based on "Skip Lists: A Probabilistic Alternative to Balanced Trees" by William Pugh +https://epaperpress.com/sortsearch/download/skiplist.pdf +""" + +from random import random +from typing import Generic, List, Optional, Tuple, TypeVar + +KT = TypeVar("KT") +VT = TypeVar("VT") + + +class Node(Generic[KT, VT]): + def __init__(self, key: KT, value: VT): + self.key = key + self.value = value + self.forward: List[Node[KT, VT]] = [] + + def __repr__(self) -> str: + """ + :return: Visual representation of Node + + >>> node = Node("Key", 2) + >>> repr(node) + 'Node(Key: 2)' + """ + + return f"Node({self.key}: {self.value})" + + @property + def level(self) -> int: + """ + :return: Number of forward references + + >>> node = Node("Key", 2) + >>> node.level + 0 + >>> node.forward.append(Node("Key2", 4)) + >>> node.level + 1 + >>> node.forward.append(Node("Key3", 6)) + >>> node.level + 2 + """ + + return len(self.forward) + + +class SkipList(Generic[KT, VT]): + def __init__(self, p: float = 0.5, max_level: int = 16): + self.head = Node("root", None) + self.level = 0 + self.p = p + self.max_level = max_level + + def __str__(self) -> str: + """ + :return: Visual representation of SkipList + + >>> skip_list = SkipList() + >>> print(skip_list) + SkipList(level=0) + >>> skip_list.insert("Key1", "Value") + >>> print(skip_list) # doctest: +ELLIPSIS + SkipList(level=... + [root]--... + [Key1]--Key1... + None *... + >>> skip_list.insert("Key2", "OtherValue") + >>> print(skip_list) # doctest: +ELLIPSIS + SkipList(level=... + [root]--... + [Key1]--Key1... + [Key2]--Key2... + None *... + """ + + items = list(self) + + if len(items) == 0: + return f"SkipList(level={self.level})" + + label_size = max((len(str(item)) for item in items), default=4) + label_size = max(label_size, 4) + 4 + + node = self.head + lines = [] + + forwards = node.forward.copy() + lines.append(f"[{node.key}]".ljust(label_size, "-") + "* " * len(forwards)) + lines.append(" " * label_size + "| " * len(forwards)) + + while len(node.forward) != 0: + node = node.forward[0] + + lines.append( + f"[{node.key}]".ljust(label_size, "-") + + " ".join(str(n.key) if n.key == node.key else "|" for n in forwards) + ) + lines.append(" " * label_size + "| " * len(forwards)) + forwards[: node.level] = node.forward + + lines.append("None".ljust(label_size) + "* " * len(forwards)) + return f"SkipList(level={self.level})\n" + "\n".join(lines) + + def __iter__(self): + node = self.head + + while len(node.forward) != 0: + yield node.forward[0].key + node = node.forward[0] + + def random_level(self) -> int: + """ + :return: Random level from [1, self.max_level] interval. + Higher values are less likely. + """ + + level = 1 + while random() < self.p and level < self.max_level: + level += 1 + + return level + + def _locate_node(self, key) -> Tuple[Optional[Node[KT, VT]], List[Node[KT, VT]]]: + """ + :param key: Searched key, + :return: Tuple with searched node (or None if given key is not present) + and list of nodes that refer (if key is present) of should refer to given node. + """ + + # Nodes with refer or should refer to output node + update_vector = [] + + node = self.head + + for i in reversed(range(self.level)): + # i < node.level - When node level is lesser than `i` decrement `i`. + # node.forward[i].key < key - Jumping to node with key value higher + # or equal to searched key would result + # in skipping searched key. + while i < node.level and node.forward[i].key < key: + node = node.forward[i] + # Each leftmost node (relative to searched node) will potentially have to be updated. + update_vector.append(node) + + update_vector.reverse() # Note that we were inserting values in reverse order. + + # len(node.forward) != 0 - If current node doesn't contain any further + # references then searched key is not present. + # node.forward[0].key == key - Next node key should be equal to search key + # if key is present. + if len(node.forward) != 0 and node.forward[0].key == key: + return node.forward[0], update_vector + else: + return None, update_vector + + def delete(self, key: KT): + """ + :param key: Key to remove from list. + + >>> skip_list = SkipList() + >>> skip_list.insert(2, "Two") + >>> skip_list.insert(1, "One") + >>> skip_list.insert(3, "Three") + >>> list(skip_list) + [1, 2, 3] + >>> skip_list.delete(2) + >>> list(skip_list) + [1, 3] + """ + + node, update_vector = self._locate_node(key) + + if node is not None: + for i, update_node in enumerate(update_vector): + # Remove or replace all references to removed node. + if update_node.level > i and update_node.forward[i].key == key: + if node.level > i: + update_node.forward[i] = node.forward[i] + else: + update_node.forward = update_node.forward[:i] + + def insert(self, key: KT, value: VT): + """ + :param key: Key to insert. + :param value: Value associated with given key. + + >>> skip_list = SkipList() + >>> skip_list.insert(2, "Two") + >>> skip_list.find(2) + 'Two' + >>> list(skip_list) + [2] + """ + + node, update_vector = self._locate_node(key) + if node is not None: + node.value = value + else: + level = self.random_level() + + if level > self.level: + # After level increase we have to add additional nodes to head. + for i in range(self.level - 1, level): + update_vector.append(self.head) + self.level = level + + new_node = Node(key, value) + + for i, update_node in enumerate(update_vector[:level]): + # Change references to pass through new node. + if update_node.level > i: + new_node.forward.append(update_node.forward[i]) + + if update_node.level < i + 1: + update_node.forward.append(new_node) + else: + update_node.forward[i] = new_node + + def find(self, key: VT) -> Optional[VT]: + """ + :param key: Search key. + :return: Value associated with given key or None if given key is not present. + + >>> skip_list = SkipList() + >>> skip_list.find(2) + >>> skip_list.insert(2, "Two") + >>> skip_list.find(2) + 'Two' + >>> skip_list.insert(2, "Three") + >>> skip_list.find(2) + 'Three' + """ + + node, _ = self._locate_node(key) + + if node is not None: + return node.value + + return None + + +def test_insert(): + skip_list = SkipList() + skip_list.insert("Key1", 3) + skip_list.insert("Key2", 12) + skip_list.insert("Key3", 41) + skip_list.insert("Key4", -19) + + node = skip_list.head + all_values = {} + while node.level != 0: + node = node.forward[0] + all_values[node.key] = node.value + + assert len(all_values) == 4 + assert all_values["Key1"] == 3 + assert all_values["Key2"] == 12 + assert all_values["Key3"] == 41 + assert all_values["Key4"] == -19 + + +def test_insert_overrides_existing_value(): + skip_list = SkipList() + skip_list.insert("Key1", 10) + skip_list.insert("Key1", 12) + + skip_list.insert("Key5", 7) + skip_list.insert("Key7", 10) + skip_list.insert("Key10", 5) + + skip_list.insert("Key7", 7) + skip_list.insert("Key5", 5) + skip_list.insert("Key10", 10) + + node = skip_list.head + all_values = {} + while node.level != 0: + node = node.forward[0] + all_values[node.key] = node.value + + if len(all_values) != 4: + print() + assert len(all_values) == 4 + assert all_values["Key1"] == 12 + assert all_values["Key7"] == 7 + assert all_values["Key5"] == 5 + assert all_values["Key10"] == 10 + + +def test_searching_empty_list_returns_none(): + skip_list = SkipList() + assert skip_list.find("Some key") is None + + +def test_search(): + skip_list = SkipList() + + skip_list.insert("Key2", 20) + assert skip_list.find("Key2") == 20 + + skip_list.insert("Some Key", 10) + skip_list.insert("Key2", 8) + skip_list.insert("V", 13) + + assert skip_list.find("Y") is None + assert skip_list.find("Key2") == 8 + assert skip_list.find("Some Key") == 10 + assert skip_list.find("V") == 13 + + +def test_deleting_item_from_empty_list_do_nothing(): + skip_list = SkipList() + skip_list.delete("Some key") + + assert len(skip_list.head.forward) == 0 + + +def test_deleted_items_are_not_founded_by_find_method(): + skip_list = SkipList() + + skip_list.insert("Key1", 12) + skip_list.insert("V", 13) + skip_list.insert("X", 14) + skip_list.insert("Key2", 15) + + skip_list.delete("V") + skip_list.delete("Key2") + + assert skip_list.find("V") is None + assert skip_list.find("Key2") is None + + +def test_delete_removes_only_given_key(): + skip_list = SkipList() + + skip_list.insert("Key1", 12) + skip_list.insert("V", 13) + skip_list.insert("X", 14) + skip_list.insert("Key2", 15) + + skip_list.delete("V") + assert skip_list.find("V") is None + assert skip_list.find("X") == 14 + assert skip_list.find("Key1") == 12 + assert skip_list.find("Key2") == 15 + + skip_list.delete("X") + assert skip_list.find("V") is None + assert skip_list.find("X") is None + assert skip_list.find("Key1") == 12 + assert skip_list.find("Key2") == 15 + + skip_list.delete("Key1") + assert skip_list.find("V") is None + assert skip_list.find("X") is None + assert skip_list.find("Key1") is None + assert skip_list.find("Key2") == 15 + + skip_list.delete("Key2") + assert skip_list.find("V") is None + assert skip_list.find("X") is None + assert skip_list.find("Key1") is None + assert skip_list.find("Key2") is None + + +def test_delete_doesnt_leave_dead_nodes(): + skip_list = SkipList() + + skip_list.insert("Key1", 12) + skip_list.insert("V", 13) + skip_list.insert("X", 142) + skip_list.insert("Key2", 15) + + skip_list.delete("X") + + def traverse_keys(node): + yield node.key + for forward_node in node.forward: + yield from traverse_keys(forward_node) + + assert len(set(traverse_keys(skip_list.head))) == 4 + + +def test_iter_always_yields_sorted_values(): + def is_sorted(lst): + for item, next_item in zip(lst, lst[1:]): + if next_item < item: + return False + return True + + skip_list = SkipList() + for i in range(10): + skip_list.insert(i, i) + assert is_sorted(list(skip_list)) + skip_list.delete(5) + skip_list.delete(8) + skip_list.delete(2) + assert is_sorted(list(skip_list)) + skip_list.insert(-12, -12) + skip_list.insert(77, 77) + assert is_sorted(list(skip_list)) + + +def pytests(): + for i in range(100): + # Repeat test 100 times due to the probabilistic nature of skip list + # random values == random bugs + test_insert() + test_insert_overrides_existing_value() + + test_searching_empty_list_returns_none() + test_search() + + test_deleting_item_from_empty_list_do_nothing() + test_deleted_items_are_not_founded_by_find_method() + test_delete_removes_only_given_key() + test_delete_doesnt_leave_dead_nodes() + + test_iter_always_yields_sorted_values() + + +def main(): + """ + >>> pytests() + """ + + skip_list = SkipList() + skip_list.insert(2, "2") + skip_list.insert(4, "4") + skip_list.insert(6, "4") + skip_list.insert(4, "5") + skip_list.insert(8, "4") + skip_list.insert(9, "4") + + skip_list.delete(4) + + print(skip_list) + + +if __name__ == "__main__": + main() From 182e3042f83b083d68ac4bf08c11bddd12851282 Mon Sep 17 00:00:00 2001 From: Aakash Dinkar <35952953+aakashdinkar@users.noreply.github.com> Date: Sun, 8 Mar 2020 11:34:21 +0530 Subject: [PATCH 563/594] update rot13.py (#1790) * update rot13.py * Update rot13.py * Type hints, doctests, URL to Wikipedia Co-authored-by: Christian Clauss --- ciphers/rot13.py | 24 ++++++++++++++++++------ 1 file changed, 18 insertions(+), 6 deletions(-) diff --git a/ciphers/rot13.py b/ciphers/rot13.py index a7b546511967..7a5954f89dd3 100644 --- a/ciphers/rot13.py +++ b/ciphers/rot13.py @@ -1,9 +1,19 @@ -def dencrypt(s, n): +def dencrypt(s: str, n: int=13): + """ + https://en.wikipedia.org/wiki/ROT13 + + >>> msg = "My secret bank account number is 173-52946 so don't tell anyone!!" + >>> s = dencrypt(msg) + >>> s + "Zl frperg onax nppbhag ahzore vf 173-52946 fb qba'g gryy nalbar!!" + >>> dencrypt(s) == msg + True + """ out = "" for c in s: - if c >= "A" and c <= "Z": + if "A" <= c <= "Z": out += chr(ord("A") + (ord(c) - ord("A") + n) % 26) - elif c >= "a" and c <= "z": + elif "a" <= c <= "z": out += chr(ord("a") + (ord(c) - ord("a") + n) % 26) else: out += c @@ -11,14 +21,16 @@ def dencrypt(s, n): def main(): - s0 = "HELLO" + s0 = input("Enter message: ") s1 = dencrypt(s0, 13) - print(s1) # URYYB + print("Encryption:", s1) s2 = dencrypt(s1, 13) - print(s2) # HELLO + print("Decryption: ", s2) if __name__ == "__main__": + import doctest + doctest.testmod() main() From 5e3eb12a7b78092cd6bc31892b76e5ef976ad462 Mon Sep 17 00:00:00 2001 From: yoshitaka-i <8393063+inoue0426@users.noreply.github.com> Date: Fri, 13 Mar 2020 16:33:36 +0900 Subject: [PATCH 564/594] add relu function (#1795) --- maths/relu.py | 39 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 maths/relu.py diff --git a/maths/relu.py b/maths/relu.py new file mode 100644 index 000000000000..2c41d2e9dad9 --- /dev/null +++ b/maths/relu.py @@ -0,0 +1,39 @@ +""" +This script demonstrates the implementation of the ReLU function. + +It's a kind of activation function defined as the positive part of its argument in the context of neural network. +The function takes a vector of K real numbers as input and then argmax(x, 0). +After through ReLU, the element of the vector always 0 or real number. + +Script inspired from its corresponding Wikipedia article +https://en.wikipedia.org/wiki/Rectifier_(neural_networks) +""" + +import numpy as np +from typing import List + + +def relu(vector: List[float]): + """ + Implements the relu function + + Parameters: + vector (np.array,list,tuple): A numpy array of shape (1,n) + consisting of real values or a similar list,tuple + + + Returns: + relu_vec (np.array): The input numpy array, after applying + relu. + + >>> vec = np.array([-1, 0, 5]) + >>> relu(vec) + array([0, 0, 5]) + """ + + # compare two arrays and then return element-wise maxima. + return np.maximum(0, vector) + + +if __name__ == "__main__": + print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5] From 10fc90c7bd7d2350179cf7754f99a8a58d543664 Mon Sep 17 00:00:00 2001 From: Miggelito Date: Fri, 13 Mar 2020 09:13:43 +0100 Subject: [PATCH 565/594] Added Random Forest Classifier (#1738) * Added Random Forest Regressor * Updated file to standard * Added Random Forest Classifier (Iris dataset) and a Confusion Matrix for result visualization --- machine_learning/random_forest_classifier.py | 45 ++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 machine_learning/random_forest_classifier.py diff --git a/machine_learning/random_forest_classifier.py b/machine_learning/random_forest_classifier.py new file mode 100644 index 000000000000..07bd33b340c5 --- /dev/null +++ b/machine_learning/random_forest_classifier.py @@ -0,0 +1,45 @@ +# Random Forest Classifier Example + +from sklearn.datasets import load_iris +from sklearn.model_selection import train_test_split +from sklearn.ensemble import RandomForestClassifier +from sklearn.metrics import plot_confusion_matrix +import matplotlib.pyplot as plt + + +def main(): + + """ + Random Tree Classifier Example using sklearn function. + Iris type dataset is used to demonstrate algorithm. + """ + + # Load Iris house price dataset + iris = load_iris() + + # Split dataset into train and test data + X = iris["data"] # features + Y = iris["target"] + x_train, x_test, y_train, y_test = train_test_split( + X, Y, test_size=0.3, random_state=1 + ) + + # Random Forest Classifier + rand_for = RandomForestClassifier(random_state=42, n_estimators=100) + rand_for.fit(x_train, y_train) + + # Display Confusion Matrix of Classifier + plot_confusion_matrix( + rand_for, + x_test, + y_test, + display_labels=iris["target_names"], + cmap="Blues", + normalize="true", + ) + plt.title("Normalized Confusion Matrix - IRIS Dataset") + plt.show() + + +if __name__ == "__main__": + main() From b1377f0e57a736df92d422720890ef16f6d12d5a Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 13 Mar 2020 09:23:38 +0100 Subject: [PATCH 566/594] autoblack: actions/checkout@v1 # Use v1, NOT v2 (#1796) * autoblack: actions/checkout@v1 # Use v1, NOT v2 * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- .github/workflows/autoblack.yml | 2 +- ciphers/rot13.py | 7 ++++--- sorts/comb_sort.py | 1 + 3 files changed, 6 insertions(+), 4 deletions(-) diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index 95d2d3d64233..99243f3ec7fc 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -9,7 +9,7 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v1 # Use v1, NOT v2 - uses: actions/setup-python@v1 - run: pip install black - run: black --check . diff --git a/ciphers/rot13.py b/ciphers/rot13.py index 7a5954f89dd3..6bcb471d6e05 100644 --- a/ciphers/rot13.py +++ b/ciphers/rot13.py @@ -1,4 +1,4 @@ -def dencrypt(s: str, n: int=13): +def dencrypt(s: str, n: int = 13): """ https://en.wikipedia.org/wiki/ROT13 @@ -24,13 +24,14 @@ def main(): s0 = input("Enter message: ") s1 = dencrypt(s0, 13) - print("Encryption:", s1) + print("Encryption:", s1) s2 = dencrypt(s1, 13) - print("Decryption: ", s2) + print("Decryption: ", s2) if __name__ == "__main__": import doctest + doctest.testmod() main() diff --git a/sorts/comb_sort.py b/sorts/comb_sort.py index c36bb8e63748..416fd4552697 100644 --- a/sorts/comb_sort.py +++ b/sorts/comb_sort.py @@ -54,6 +54,7 @@ def comb_sort(data: list) -> list: if __name__ == "__main__": import doctest + doctest.testmod() user_input = input("Enter numbers separated by a comma:\n").strip() From cb5f8c6e4e77fdfefb1c7c9c7507e36fa058def9 Mon Sep 17 00:00:00 2001 From: KDH Date: Fri, 13 Mar 2020 21:46:52 +0900 Subject: [PATCH 567/594] Fix typo (#1797) colision => collision --- data_structures/hashing/hash_table.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/data_structures/hashing/hash_table.py b/data_structures/hashing/hash_table.py index 69eaa65d8e57..988f2ba0dfbf 100644 --- a/data_structures/hashing/hash_table.py +++ b/data_structures/hashing/hash_table.py @@ -44,7 +44,7 @@ def _set_value(self, key, data): self.values[key] = data self._keys[key] = data - def _colision_resolution(self, key, data=None): + def _collision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None and self.values[new_key] != key: @@ -74,9 +74,9 @@ def insert_data(self, data): pass else: - colision_resolution = self._colision_resolution(key, data) - if colision_resolution is not None: - self._set_value(colision_resolution, data) + collision_resolution = self._collision_resolution(key, data) + if collision_resolution is not None: + self._set_value(collision_resolution, data) else: self.rehashing() self.insert_data(data) From 2da98db4a7c46e260b972556a39e20420fe4c0ec Mon Sep 17 00:00:00 2001 From: John Law Date: Sat, 14 Mar 2020 06:37:44 +0100 Subject: [PATCH 568/594] Effective directory writer (#1800) * updating DIRECTORY.md * Update directory_writer.yml Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- .github/workflows/directory_writer.yml | 15 ++++++++------- DIRECTORY.md | 9 +++++++-- 2 files changed, 15 insertions(+), 9 deletions(-) diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index f910ab33e00b..0b9793b5edfc 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -6,16 +6,17 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v1 - uses: actions/setup-python@v1 with: python-version: 3.x - - name: Update DIRECTORY.md + - name: Write DIRECTORY.md run: | scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md - git config --global user.name github-actions - git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' - git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY - git add DIRECTORY.md + git config --global user.name "GitHub Actions" + git config --global user.email "actions@github.com" git commit -am "updating DIRECTORY.md" || true - git push --force origin HEAD:$GITHUB_REF || true + - name: Push DIRECTORY.md + if: github.ref == 'refs/heads/master' + run: | + git push "https://${GITHUB_ACTOR}:${{secrets.GITHUB_TOKEN}}@github.com/$GITHUB_REPOSITORY.git" ${master} --force diff --git a/DIRECTORY.md b/DIRECTORY.md index 48c1dde9ab67..8dd9fa929255 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -108,6 +108,7 @@ * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) + * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) @@ -135,6 +136,7 @@ * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters + * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) @@ -257,13 +259,14 @@ * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) + * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) ## Maths - * [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) + * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) @@ -313,8 +316,8 @@ * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) + * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) - * [Montecarlo](https://github.com/TheAlgorithms/Python/blob/master/maths/montecarlo.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) @@ -328,6 +331,7 @@ * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) + * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series @@ -595,6 +599,7 @@ ## Web Programming * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) + * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) From d547d0347bec175a1b9886d4b00674363e6ae2db Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 14 Mar 2020 07:33:14 +0100 Subject: [PATCH 569/594] directory_writer: actions/checkout@v1 # Use v1, NOT v2 (#1799) * directory_writer: actions/checkout@v1 # Use v1, NOT v2 (#1796 * updating DIRECTORY.md --- .github/workflows/directory_writer.yml | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/.github/workflows/directory_writer.yml b/.github/workflows/directory_writer.yml index 0b9793b5edfc..77b0e1a262e1 100644 --- a/.github/workflows/directory_writer.yml +++ b/.github/workflows/directory_writer.yml @@ -6,17 +6,18 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v1 + - uses: actions/checkout@v1 # v1, NOT v2 - uses: actions/setup-python@v1 with: python-version: 3.x - name: Write DIRECTORY.md run: | scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md - git config --global user.name "GitHub Actions" - git config --global user.email "actions@github.com" - git commit -am "updating DIRECTORY.md" || true - - name: Push DIRECTORY.md - if: github.ref == 'refs/heads/master' + git config --global user.name github-actions + git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' + git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY + - name: Update DIRECTORY.md run: | - git push "https://${GITHUB_ACTOR}:${{secrets.GITHUB_TOKEN}}@github.com/$GITHUB_REPOSITORY.git" ${master} --force + git add DIRECTORY.md + git commit -am "updating DIRECTORY.md" || true + git push --force origin HEAD:$GITHUB_REF || true \ No newline at end of file From 1bc84e1fa0b3bbd75c73b0b1b25f573c241e1c9b Mon Sep 17 00:00:00 2001 From: cschuerc <57899042+cschuerc@users.noreply.github.com> Date: Sat, 14 Mar 2020 07:51:30 +0100 Subject: [PATCH 570/594] Add Monte Carlo estimation of PI (#1712) * Add Monte Carlo estimation of PI * Add type annotations for Monte Carlo estimation of PI * Compare the PI estimate to PI from the math lib * accuracy -> error * Update pi_monte_carlo_estimation.py Co-authored-by: John Law --- maths/pi_monte_carlo_estimation.py | 61 ++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 maths/pi_monte_carlo_estimation.py diff --git a/maths/pi_monte_carlo_estimation.py b/maths/pi_monte_carlo_estimation.py new file mode 100644 index 000000000000..7f341ade94a4 --- /dev/null +++ b/maths/pi_monte_carlo_estimation.py @@ -0,0 +1,61 @@ +import random + + +class Point: + def __init__(self, x: float, y: float) -> None: + self.x = x + self.y = y + + def is_in_unit_circle(self) -> bool: + """ + True, if the point lies in the unit circle + False, otherwise + """ + return (self.x ** 2 + self.y ** 2) <= 1 + + @classmethod + def random_unit_square(cls): + """ + Generates a point randomly drawn from the unit square [0, 1) x [0, 1). + """ + return cls(x = random.random(), y = random.random()) + +def estimate_pi(number_of_simulations: int) -> float: + """ + Generates an estimate of the mathematical constant PI (see https://en.wikipedia.org/wiki/Monte_Carlo_method#Overview). + + The estimate is generated by Monte Carlo simulations. Let U be uniformly drawn from the unit square [0, 1) x [0, 1). The probability that U lies in the unit circle is: + + P[U in unit circle] = 1/4 PI + + and therefore + + PI = 4 * P[U in unit circle] + + We can get an estimate of the probability P[U in unit circle] (see https://en.wikipedia.org/wiki/Empirical_probability) by: + + 1. Draw a point uniformly from the unit square. + 2. Repeat the first step n times and count the number of points in the unit circle, which is called m. + 3. An estimate of P[U in unit circle] is m/n + """ + if number_of_simulations < 1: + raise ValueError("At least one simulation is necessary to estimate PI.") + + number_in_unit_circle = 0 + for simulation_index in range(number_of_simulations): + random_point = Point.random_unit_square() + + if random_point.is_in_unit_circle(): + number_in_unit_circle += 1 + + return 4 * number_in_unit_circle / number_of_simulations + + +if __name__ == "__main__": + # import doctest + + # doctest.testmod() + from math import pi + prompt = "Please enter the desired number of Monte Carlo simulations: " + my_pi = estimate_pi(int(input(prompt).strip())) + print(f"An estimate of PI is {my_pi} with an error of {abs(my_pi - pi)}") From ab3400bfad35f91756ef88e1b53f8865afc09a75 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 14 Mar 2020 23:55:13 +0100 Subject: [PATCH 571/594] Travis CI: Fix Travis linter errors (#1802) * Travis CI: Fix Travis linter errors * fixup! Format Python code with psf/black push * Update .travis.yml * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- .travis.yml | 2 ++ DIRECTORY.md | 1 + maths/pi_monte_carlo_estimation.py | 4 +++- 3 files changed, 6 insertions(+), 1 deletion(-) diff --git a/.travis.yml b/.travis.yml index aec411c52507..b9c47c179dee 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,3 +1,5 @@ +os: linux +dist: bionic language: python python: 3.8 cache: pip diff --git a/DIRECTORY.md b/DIRECTORY.md index 8dd9fa929255..121b4df17c85 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -321,6 +321,7 @@ * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) + * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) diff --git a/maths/pi_monte_carlo_estimation.py b/maths/pi_monte_carlo_estimation.py index 7f341ade94a4..d91c034cce12 100644 --- a/maths/pi_monte_carlo_estimation.py +++ b/maths/pi_monte_carlo_estimation.py @@ -18,7 +18,8 @@ def random_unit_square(cls): """ Generates a point randomly drawn from the unit square [0, 1) x [0, 1). """ - return cls(x = random.random(), y = random.random()) + return cls(x=random.random(), y=random.random()) + def estimate_pi(number_of_simulations: int) -> float: """ @@ -56,6 +57,7 @@ def estimate_pi(number_of_simulations: int) -> float: # doctest.testmod() from math import pi + prompt = "Please enter the desired number of Monte Carlo simulations: " my_pi = estimate_pi(int(input(prompt).strip())) print(f"An estimate of PI is {my_pi} with an error of {abs(my_pi - pi)}") From 45524dd6d3b9002d1488cf562e96b9179e86591b Mon Sep 17 00:00:00 2001 From: KDH Date: Mon, 16 Mar 2020 19:19:13 +0900 Subject: [PATCH 572/594] Fix rehashing function will not call insert_data function (#1803) * Fix rehashing function will not call insert_data function * Fix typo * Update loop syntax instead of allocating a list Co-Authored-By: Christian Clauss Co-authored-by: Christian Clauss --- data_structures/hashing/double_hash.py | 2 +- data_structures/hashing/hash_table.py | 3 ++- data_structures/hashing/hash_table_with_linked_list.py | 4 ++-- data_structures/hashing/quadratic_probing.py | 2 +- 4 files changed, 6 insertions(+), 5 deletions(-) diff --git a/data_structures/hashing/double_hash.py b/data_structures/hashing/double_hash.py index 6c3699cc9950..ce4454db0bef 100644 --- a/data_structures/hashing/double_hash.py +++ b/data_structures/hashing/double_hash.py @@ -24,7 +24,7 @@ def __hash_function_2(self, value, data): def __hash_double_function(self, key, data, increment): return (increment * self.__hash_function_2(key, data)) % self.size_table - def _colision_resolution(self, key, data=None): + def _collision_resolution(self, key, data=None): i = 1 new_key = self.hash_function(data) diff --git a/data_structures/hashing/hash_table.py b/data_structures/hashing/hash_table.py index 988f2ba0dfbf..3b39742f9d09 100644 --- a/data_structures/hashing/hash_table.py +++ b/data_structures/hashing/hash_table.py @@ -62,7 +62,8 @@ def rehashing(self): self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ - map(self.insert_data, survivor_values) + for value in survivor_values: + self.insert_data(value) def insert_data(self, data): key = self.hash_function(data) diff --git a/data_structures/hashing/hash_table_with_linked_list.py b/data_structures/hashing/hash_table_with_linked_list.py index 236985b69ac6..48d93bbc5cff 100644 --- a/data_structures/hashing/hash_table_with_linked_list.py +++ b/data_structures/hashing/hash_table_with_linked_list.py @@ -18,9 +18,9 @@ def balanced_factor(self): * self.charge_factor ) - def _colision_resolution(self, key, data=None): + def _collision_resolution(self, key, data=None): if not ( len(self.values[key]) == self.charge_factor and self.values.count(None) == 0 ): return key - return super()._colision_resolution(key, data) + return super()._collision_resolution(key, data) diff --git a/data_structures/hashing/quadratic_probing.py b/data_structures/hashing/quadratic_probing.py index ac966e1cd67e..0dd84a5d987c 100644 --- a/data_structures/hashing/quadratic_probing.py +++ b/data_structures/hashing/quadratic_probing.py @@ -11,7 +11,7 @@ class QuadraticProbing(HashTable): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - def _colision_resolution(self, key, data=None): + def _collision_resolution(self, key, data=None): i = 1 new_key = self.hash_function(key + i * i) From ac664df6a05c064670af9aa85aaf8de3fafea90a Mon Sep 17 00:00:00 2001 From: wind-Lv <61381242+wind-Lv@users.noreply.github.com> Date: Fri, 20 Mar 2020 22:24:05 +0800 Subject: [PATCH 573/594] 'allocation_content_length' (#1808) * 'allocation_content_length' * 'allocation_number' * Delete allocation_content_length.py * Update allocation_number.py * Update allocation_number.py * number_of_bytes and partitions * Update allocation_number.py Co-authored-by: Christian Clauss --- maths/allocation_number.py | 56 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 maths/allocation_number.py diff --git a/maths/allocation_number.py b/maths/allocation_number.py new file mode 100644 index 000000000000..04a8f1dac1f4 --- /dev/null +++ b/maths/allocation_number.py @@ -0,0 +1,56 @@ +from typing import List + + +def allocation_num(number_of_bytes: int, partitions: int) -> List[str]: + """ + Divide a number of bytes into x partitions. + + In a multi-threaded download, this algorithm could be used to provide + each worker thread with a block of non-overlapping bytes to download. + For example: + for i in allocation_list: + requests.get(url,headers={'Range':f'bytes={i}'}) + + parameter + ------------ + : param number_of_bytes + : param partitions + + return + ------------ + : return: list of bytes to be assigned to each worker thread + + Examples: + ------------ + >>> allocation_num(16647, 4) + ['0-4161', '4162-8322', '8323-12483', '12484-16647'] + >>> allocation_num(888, 888) + Traceback (most recent call last): + ... + ValueError: partitions can not >= number_of_bytes! + >>> allocation_num(888, 999) + Traceback (most recent call last): + ... + ValueError: partitions can not >= number_of_bytes! + >>> allocation_num(888, -4) + Traceback (most recent call last): + ... + ValueError: partitions must be a positive number! + """ + if partitions <= 0: + raise ValueError('partitions must be a positive number!') + if partitions >= number_of_bytes: + raise ValueError('partitions can not >= number_of_bytes!') + bytes_per_partition = number_of_bytes // partitions + allocation_list = [f'0-{bytes_per_partition}'] + for i in range(1, partitions - 1): + length = f'{bytes_per_partition * i + 1}-{bytes_per_partition * (i + 1)}' + allocation_list.append(length) + allocation_list.append(f'{(bytes_per_partition * (partitions - 1)) + 1}-' + f'{number_of_bytes}') + return allocation_list + + +if __name__ == '__main__': + import doctest + doctest.testmod() From 96df906e7a99fc6bcf20da97702a9642dde1d37c Mon Sep 17 00:00:00 2001 From: Vaibhav Singh <45447817+itsvaibhav01@users.noreply.github.com> Date: Fri, 27 Mar 2020 12:46:07 +0530 Subject: [PATCH 574/594] All suggeted changes within additional time limit tests (#1815) * With all suggested changes :white_check_mark: possibly covered all the recommended guidelines * Updated with both slow and faster algorithms possibally covered all the recomendations * removed the time comparision part! * Update data_structures/stacks/next_greater_element.py Co-Authored-By: Christian Clauss * Update data_structures/stacks/next_greater_element.py Co-Authored-By: Christian Clauss * Update data_structures/stacks/next_greater_element.py Co-Authored-By: Christian Clauss * Update data_structures/stacks/next_greater_element.py Co-Authored-By: Christian Clauss * Add benchmark using timeit https://docs.python.org/3/library/timeit.html The performance delta between these two implementation is quite small... ``` next_greatest_element_slow(): 1.843442126 next_greatest_element(): 1.828941414 ``` * Optimize slow() to create fast() - Three algorithms in the race Three algorithms in the race * Use a bigger test array with floats, negatives, zero * Setup import next_greatest_element_fast Co-authored-by: Christian Clauss --- .../stacks/next_greater_element.py | 88 ++++++++++++++++--- 1 file changed, 75 insertions(+), 13 deletions(-) diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py index 29a039b9698b..4b400334e75e 100644 --- a/data_structures/stacks/next_greater_element.py +++ b/data_structures/stacks/next_greater_element.py @@ -1,24 +1,86 @@ -def printNGE(arr): +arr = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] + +def next_greatest_element_slow(arr): """ - Function to print element and Next Greatest Element (NGE) pair for all elements of list - NGE - Maximum element present afterwards the current one which is also greater than current one - >>> printNGE([11,13,21,3]) - 11 -- 13 - 13 -- 21 - 21 -- -1 - 3 -- -1 + Function to get Next Greatest Element (NGE) pair for all elements of list + Maximum element present afterwards the current one which is also greater than current one + >>> next_greatest_element_slow(arr) + [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] """ + result = [] for i in range(0, len(arr), 1): - next = -1 for j in range(i + 1, len(arr), 1): if arr[i] < arr[j]: next = arr[j] break + result.append(next) + return result + + +def next_greatest_element_fast(arr): + """ + Like next_greatest_element_slow() but changes the loops to use + enumerate() instead of range(len()) for the outer loop and + for in a slice of arr for the inner loop. + >>> next_greatest_element_fast(arr) + [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] + """ + result = [] + for i, outer in enumerate(arr): + next = -1 + for inner in arr[i + 1:]: + if outer < inner: + next = inner + break + result.append(next) + return result + + +def next_greatest_element(arr): + """ + Function to get Next Greatest Element (NGE) pair for all elements of list + Maximum element present afterwards the current one which is also greater than current one + + Naive way to solve this is to take two loops and check for the next bigger number but that will make the + time complexity as O(n^2). The better way to solve this would be to use a stack to keep track of maximum + number givig a linear time complex solution. + + >>> next_greatest_element(arr) + [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] + """ + stack = [] + result = [-1]*len(arr) + + for index in reversed(range(len(arr))): + if len(stack): + while stack[-1] <= arr[index]: + stack.pop() + if len(stack) == 0: + break + + if len(stack) != 0: + result[index] = stack[-1] + + stack.append(arr[index]) + + return result + - print(str(arr[i]) + " -- " + str(next)) +if __name__ == "__main__": + from doctest import testmod + from timeit import timeit + testmod() + print(next_greatest_element_slow(arr)) + print(next_greatest_element_fast(arr)) + print(next_greatest_element(arr)) -# Driver program to test above function -arr = [11, 13, 21, 3] -printNGE(arr) + setup = ("from __main__ import arr, next_greatest_element_slow, " + "next_greatest_element_fast, next_greatest_element") + print("next_greatest_element_slow():", + timeit("next_greatest_element_slow(arr)", setup=setup)) + print("next_greatest_element_fast():", + timeit("next_greatest_element_fast(arr)", setup=setup)) + print(" next_greatest_element():", + timeit("next_greatest_element(arr)", setup=setup)) From f17e9822b08a0b1d811d1a638f3de1ac26c511d8 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 28 Mar 2020 07:24:59 +0100 Subject: [PATCH 575/594] psf/black changes to next_greater_element.py (#1817) * psf/black changes to next_greater_element.py * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- .../stacks/next_greater_element.py | 72 +++++++++++-------- maths/allocation_number.py | 16 +++-- 2 files changed, 51 insertions(+), 37 deletions(-) diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py index 4b400334e75e..d8c7ed17317b 100644 --- a/data_structures/stacks/next_greater_element.py +++ b/data_structures/stacks/next_greater_element.py @@ -1,11 +1,14 @@ arr = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] +expect = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] -def next_greatest_element_slow(arr): + +def next_greatest_element_slow(arr: list) -> list: """ - Function to get Next Greatest Element (NGE) pair for all elements of list - Maximum element present afterwards the current one which is also greater than current one - >>> next_greatest_element_slow(arr) - [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] + Get the Next Greatest Element (NGE) for all elements in a list. + Maximum element present after the current one which is also greater than the + current one. + >>> next_greatest_element_slow(arr) == expect + True """ result = [] for i in range(0, len(arr), 1): @@ -18,18 +21,18 @@ def next_greatest_element_slow(arr): return result -def next_greatest_element_fast(arr): +def next_greatest_element_fast(arr: list) -> list: """ Like next_greatest_element_slow() but changes the loops to use enumerate() instead of range(len()) for the outer loop and for in a slice of arr for the inner loop. - >>> next_greatest_element_fast(arr) - [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] + >>> next_greatest_element_fast(arr) == expect + True """ result = [] for i, outer in enumerate(arr): next = -1 - for inner in arr[i + 1:]: + for inner in arr[i + 1 :]: if outer < inner: next = inner break @@ -37,20 +40,21 @@ def next_greatest_element_fast(arr): return result -def next_greatest_element(arr): +def next_greatest_element(arr: list) -> list: """ - Function to get Next Greatest Element (NGE) pair for all elements of list - Maximum element present afterwards the current one which is also greater than current one - - Naive way to solve this is to take two loops and check for the next bigger number but that will make the - time complexity as O(n^2). The better way to solve this would be to use a stack to keep track of maximum - number givig a linear time complex solution. - - >>> next_greatest_element(arr) - [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] + Get the Next Greatest Element (NGE) for all elements in a list. + Maximum element present after the current one which is also greater than the + current one. + + A naive way to solve this is to take two loops and check for the next bigger + number but that will make the time complexity as O(n^2). The better way to solve + this would be to use a stack to keep track of maximum number giving a linear time + solution. + >>> next_greatest_element(arr) == expect + True """ - stack = [] - result = [-1]*len(arr) + stack = [] + result = [-1] * len(arr) for index in reversed(range(len(arr))): if len(stack): @@ -63,7 +67,7 @@ def next_greatest_element(arr): result[index] = stack[-1] stack.append(arr[index]) - + return result @@ -76,11 +80,19 @@ def next_greatest_element(arr): print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) - setup = ("from __main__ import arr, next_greatest_element_slow, " - "next_greatest_element_fast, next_greatest_element") - print("next_greatest_element_slow():", - timeit("next_greatest_element_slow(arr)", setup=setup)) - print("next_greatest_element_fast():", - timeit("next_greatest_element_fast(arr)", setup=setup)) - print(" next_greatest_element():", - timeit("next_greatest_element(arr)", setup=setup)) + setup = ( + "from __main__ import arr, next_greatest_element_slow, " + "next_greatest_element_fast, next_greatest_element" + ) + print( + "next_greatest_element_slow():", + timeit("next_greatest_element_slow(arr)", setup=setup), + ) + print( + "next_greatest_element_fast():", + timeit("next_greatest_element_fast(arr)", setup=setup), + ) + print( + " next_greatest_element():", + timeit("next_greatest_element(arr)", setup=setup), + ) diff --git a/maths/allocation_number.py b/maths/allocation_number.py index 04a8f1dac1f4..fd002b0c4361 100644 --- a/maths/allocation_number.py +++ b/maths/allocation_number.py @@ -38,19 +38,21 @@ def allocation_num(number_of_bytes: int, partitions: int) -> List[str]: ValueError: partitions must be a positive number! """ if partitions <= 0: - raise ValueError('partitions must be a positive number!') + raise ValueError("partitions must be a positive number!") if partitions >= number_of_bytes: - raise ValueError('partitions can not >= number_of_bytes!') + raise ValueError("partitions can not >= number_of_bytes!") bytes_per_partition = number_of_bytes // partitions - allocation_list = [f'0-{bytes_per_partition}'] + allocation_list = [f"0-{bytes_per_partition}"] for i in range(1, partitions - 1): - length = f'{bytes_per_partition * i + 1}-{bytes_per_partition * (i + 1)}' + length = f"{bytes_per_partition * i + 1}-{bytes_per_partition * (i + 1)}" allocation_list.append(length) - allocation_list.append(f'{(bytes_per_partition * (partitions - 1)) + 1}-' - f'{number_of_bytes}') + allocation_list.append( + f"{(bytes_per_partition * (partitions - 1)) + 1}-" f"{number_of_bytes}" + ) return allocation_list -if __name__ == '__main__': +if __name__ == "__main__": import doctest + doctest.testmod() From 9b376a5bfb17fb2244a24d6041fc24fc5d4bd422 Mon Sep 17 00:00:00 2001 From: Nolan Emirot Date: Sun, 29 Mar 2020 01:19:19 -0700 Subject: [PATCH 576/594] Typo in comment rabin_karp.py (#1820) * Update rabin_karp.py fix: typo * Update rabin_karp.py Co-authored-by: Christian Clauss --- strings/rabin_karp.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/strings/rabin_karp.py b/strings/rabin_karp.py index 1fb145ec97fa..22da0de80f4c 100644 --- a/strings/rabin_karp.py +++ b/strings/rabin_karp.py @@ -40,7 +40,7 @@ def rabin_karp(pattern, text): return True if i == t_len - p_len: continue - # Calculating the ruling hash + # Calculate the https://en.wikipedia.org/wiki/Rolling_hash text_hash = ( (text_hash - ord(text[i]) * modulus_power) * alphabet_size + ord(text[i + p_len]) From 20c2db0de4bb4f73db3053b13280bed8dee30cf4 Mon Sep 17 00:00:00 2001 From: farnswj1 <54967482+farnswj1@users.noreply.github.com> Date: Sat, 4 Apr 2020 01:01:37 -0400 Subject: [PATCH 577/594] Update reverse_words.py (#1825) The following update results in less lines of code and faster performance while preserving functionality. --- strings/reverse_words.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/strings/reverse_words.py b/strings/reverse_words.py index 123b074406c3..547dda93d8d1 100644 --- a/strings/reverse_words.py +++ b/strings/reverse_words.py @@ -1,4 +1,5 @@ # Created by sarathkaul on 18/11/19 +# Edited by farnswj1 on 4/4/20 def reverse_words(input_str: str) -> str: @@ -13,10 +14,7 @@ def reverse_words(input_str: str) -> str: input_str = input_str.split(" ") new_str = list() - for a_word in input_str: - new_str.insert(0, a_word) - - return " ".join(new_str) + return ' '.join(reversed(input_str)) if __name__ == "__main__": From 6043a44ffbbbdd185e54177fd3a4f80fd46a0be0 Mon Sep 17 00:00:00 2001 From: Prince Gangurde <50592495+Prince326@users.noreply.github.com> Date: Tue, 7 Apr 2020 04:29:32 +0530 Subject: [PATCH 578/594] Update basic_binary_tree.py (#1833) fixed some grammar mistakes --- data_structures/binary_tree/basic_binary_tree.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/data_structures/binary_tree/basic_binary_tree.py b/data_structures/binary_tree/basic_binary_tree.py index 4257a8e3c5b3..3ed34fc6c68e 100644 --- a/data_structures/binary_tree/basic_binary_tree.py +++ b/data_structures/binary_tree/basic_binary_tree.py @@ -1,4 +1,4 @@ -class Node: # This is the Class Node with constructor that contains data variable to type data and left,right pointers. +class Node: # This is the Class Node with a constructor that contains data variable to type data and left, right pointers. def __init__(self, data): self.data = data self.left = None @@ -37,7 +37,7 @@ def depth_of_tree( def is_full_binary_tree( tree, -): # This functions returns that is it full binary tree or not? +): # This function returns that is it full binary tree or not? if tree is None: return True if (tree.left is None) and (tree.right is None): @@ -48,7 +48,7 @@ def is_full_binary_tree( return False -def main(): # Main func for testing. +def main(): # Main function for testing. tree = Node(1) tree.left = Node(2) tree.right = Node(3) From f35484baf69dd306afb19f56c51a367129d52758 Mon Sep 17 00:00:00 2001 From: Prince Gangurde <50592495+Prince326@users.noreply.github.com> Date: Tue, 7 Apr 2020 04:30:10 +0530 Subject: [PATCH 579/594] Update greedy.py (#1832) --- other/greedy.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/other/greedy.py b/other/greedy.py index d1bc156304b0..4b78bf1c0415 100644 --- a/other/greedy.py +++ b/other/greedy.py @@ -1,8 +1,8 @@ class things: - def __init__(self, n, v, w): - self.name = n - self.value = v - self.weight = w + def __init__(self, name, value, weight): + self.name = name + self.value = value + self.weight = weight def __repr__(self): return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" From 3d129a4964b335fe7977e6376935fc916b6df3c9 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 7 Apr 2020 11:58:23 +0200 Subject: [PATCH 580/594] Create Python/quantum/README.md (#1834) * Create Python/quantum/README.md Started at #1831 * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- quantum/README.md | 8 ++++++++ strings/reverse_words.py | 2 +- 2 files changed, 9 insertions(+), 1 deletion(-) create mode 100644 quantum/README.md diff --git a/quantum/README.md b/quantum/README.md new file mode 100644 index 000000000000..8dfc76826787 --- /dev/null +++ b/quantum/README.md @@ -0,0 +1,8 @@ +# Welcome to Quatum Algorithms + +Started at https://github.com/TheAlgorithms/Python/issues/1831 + +* D-Wave: https://www.dwavesys.com and https://github.com/dwavesystems +* Google: https://research.google/teams/applied-science/quantum +* IBM: https://qiskit.org and https://github.com/Qiskit +* Rigetti: https://rigetti.com and https://github.com/rigetti diff --git a/strings/reverse_words.py b/strings/reverse_words.py index 547dda93d8d1..6b5cc6b04039 100644 --- a/strings/reverse_words.py +++ b/strings/reverse_words.py @@ -14,7 +14,7 @@ def reverse_words(input_str: str) -> str: input_str = input_str.split(" ") new_str = list() - return ' '.join(reversed(input_str)) + return " ".join(reversed(input_str)) if __name__ == "__main__": From e5f7fbcc9ec6f02c59f8e4ac2d7b7936c60afab0 Mon Sep 17 00:00:00 2001 From: Brian Larsen Date: Tue, 7 Apr 2020 05:20:08 -0500 Subject: [PATCH 581/594] Change gitpod configuration for python3. (#1827) --- .gitpod.yml | 2 +- CONTRIBUTING.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.gitpod.yml b/.gitpod.yml index a5bc5751a3f6..5975b8b8e983 100644 --- a/.gitpod.yml +++ b/.gitpod.yml @@ -1,2 +1,2 @@ tasks: - - init: pip install -r ./requirements.txt + - init: pip3 install -r ./requirements.txt diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 11b956d73193..d939108a471e 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -139,7 +139,7 @@ We want your work to be readable by others; therefore, we encourage you to note #### Other Standard While Submitting Your Work -- File extension for code should be `.py`. Jupiter notebook files are acceptable in machine learning algorithms. +- File extension for code should be `.py`. Jupyter notebook files are acceptable in machine learning algorithms. - Strictly use snake_case (underscore_separated) in your file_name, as it will be easy to parse in future using scripts. - Please avoid creating new directories if at all possible. Try to fit your work into the existing directory structure. - If possible, follow the standard *within* the folder you are submitting to. From c1a57e0353cd1612860915a93be5f8f7357c6376 Mon Sep 17 00:00:00 2001 From: Joaquin Cabezas Date: Tue, 7 Apr 2020 14:08:11 +0200 Subject: [PATCH 582/594] Fix typo "panagram" -> "pangram" (#1836) --- strings/{check_panagram.py => check_pangram.py} | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) rename strings/{check_panagram.py => check_pangram.py} (57%) diff --git a/strings/check_panagram.py b/strings/check_pangram.py similarity index 57% rename from strings/check_panagram.py rename to strings/check_pangram.py index 6f1991da2aa9..410afd8cc609 100644 --- a/strings/check_panagram.py +++ b/strings/check_pangram.py @@ -1,16 +1,16 @@ # Created by sarathkaul on 12/11/19 -def check_panagram( +def check_pangram( input_str: str = "The quick brown fox jumps over the lazy dog", ) -> bool: """ - A Panagram String contains all the alphabets at least once. - >>> check_panagram("The quick brown fox jumps over the lazy dog") + A Pangram String contains all the alphabets at least once. + >>> check_pangram("The quick brown fox jumps over the lazy dog") True - >>> check_panagram("My name is Unknown") + >>> check_pangram("My name is Unknown") False - >>> check_panagram("The quick brown fox jumps over the la_y dog") + >>> check_pangram("The quick brown fox jumps over the la_y dog") False """ frequency = set() @@ -26,5 +26,5 @@ def check_panagram( if __name__ == "main": check_str = "INPUT STRING" - status = check_panagram(check_str) - print(f"{check_str} is {'not ' if status else ''}a panagram string") + status = check_pangram(check_str) + print(f"{check_str} is {'not ' if status else ''}a pangram string") From a38e143cf8d546bc492116ae26000656797263ae Mon Sep 17 00:00:00 2001 From: Joan Martin Miralles Date: Tue, 7 Apr 2020 18:09:05 +0200 Subject: [PATCH 583/594] Binary search tree using recursion (#1839) * Binary search tree using recursion * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- DIRECTORY.md | 4 +- .../binary_search_tree_recursive.py | 613 ++++++++++++++++++ 2 files changed, 616 insertions(+), 1 deletion(-) create mode 100644 data_structures/binary_tree/binary_search_tree_recursive.py diff --git a/DIRECTORY.md b/DIRECTORY.md index 121b4df17c85..484c5e8fc153 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -76,6 +76,7 @@ * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) + * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) @@ -270,6 +271,7 @@ * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) @@ -580,7 +582,7 @@ ## Strings * [Aho-Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho-corasick.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) - * [Check Panagram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_panagram.py) + * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) diff --git a/data_structures/binary_tree/binary_search_tree_recursive.py b/data_structures/binary_tree/binary_search_tree_recursive.py new file mode 100644 index 000000000000..f1e46e33cd24 --- /dev/null +++ b/data_structures/binary_tree/binary_search_tree_recursive.py @@ -0,0 +1,613 @@ +""" +This is a python3 implementation of binary search tree using recursion + +To run tests: +python -m unittest binary_search_tree_recursive.py + +To run an example: +python binary_search_tree_recursive.py +""" +import unittest + + +class Node: + def __init__(self, label: int, parent): + self.label = label + self.parent = parent + self.left = None + self.right = None + + +class BinarySearchTree: + def __init__(self): + self.root = None + + def empty(self): + """ + Empties the tree + + >>> t = BinarySearchTree() + >>> assert t.root is None + >>> t.put(8) + >>> assert t.root is not None + """ + self.root = None + + def is_empty(self) -> bool: + """ + Checks if the tree is empty + + >>> t = BinarySearchTree() + >>> t.is_empty() + True + >>> t.put(8) + >>> t.is_empty() + False + """ + return self.root is None + + def put(self, label: int): + """ + Put a new node in the tree + + >>> t = BinarySearchTree() + >>> t.put(8) + >>> assert t.root.parent is None + >>> assert t.root.label == 8 + + >>> t.put(10) + >>> assert t.root.right.parent == t.root + >>> assert t.root.right.label == 10 + + >>> t.put(3) + >>> assert t.root.left.parent == t.root + >>> assert t.root.left.label == 3 + """ + self.root = self._put(self.root, label) + + def _put(self, node: Node, label: int, parent: Node = None) -> Node: + if node is None: + node = Node(label, parent) + else: + if label < node.label: + node.left = self._put(node.left, label, node) + elif label > node.label: + node.right = self._put(node.right, label, node) + else: + raise Exception(f"Node with label {label} already exists") + + return node + + def search(self, label: int) -> Node: + """ + Searches a node in the tree + + >>> t = BinarySearchTree() + >>> t.put(8) + >>> t.put(10) + >>> node = t.search(8) + >>> assert node.label == 8 + + >>> node = t.search(3) + Traceback (most recent call last): + ... + Exception: Node with label 3 does not exist + """ + return self._search(self.root, label) + + def _search(self, node: Node, label: int) -> Node: + if node is None: + raise Exception(f"Node with label {label} does not exist") + else: + if label < node.label: + node = self._search(node.left, label) + elif label > node.label: + node = self._search(node.right, label) + + return node + + def remove(self, label: int): + """ + Removes a node in the tree + + >>> t = BinarySearchTree() + >>> t.put(8) + >>> t.put(10) + >>> t.remove(8) + >>> assert t.root.label == 10 + + >>> t.remove(3) + Traceback (most recent call last): + ... + Exception: Node with label 3 does not exist + """ + node = self.search(label) + if not node.right and not node.left: + self._reassign_nodes(node, None) + elif not node.right and node.left: + self._reassign_nodes(node, node.left) + elif node.right and not node.left: + self._reassign_nodes(node, node.right) + else: + lowest_node = self._get_lowest_node(node.right) + lowest_node.left = node.left + lowest_node.right = node.right + node.left.parent = lowest_node + if node.right: + node.right.parent = lowest_node + self._reassign_nodes(node, lowest_node) + + def _reassign_nodes(self, node: Node, new_children: Node): + if new_children: + new_children.parent = node.parent + + if node.parent: + if node.parent.right == node: + node.parent.right = new_children + else: + node.parent.left = new_children + else: + self.root = new_children + + def _get_lowest_node(self, node: Node) -> Node: + if node.left: + lowest_node = self._get_lowest_node(node.left) + else: + lowest_node = node + self._reassign_nodes(node, node.right) + + return lowest_node + + def exists(self, label: int) -> bool: + """ + Checks if a node exists in the tree + + >>> t = BinarySearchTree() + >>> t.put(8) + >>> t.put(10) + >>> t.exists(8) + True + + >>> t.exists(3) + False + """ + try: + self.search(label) + return True + except Exception: + return False + + def get_max_label(self) -> int: + """ + Gets the max label inserted in the tree + + >>> t = BinarySearchTree() + >>> t.get_max_label() + Traceback (most recent call last): + ... + Exception: Binary search tree is empty + + >>> t.put(8) + >>> t.put(10) + >>> t.get_max_label() + 10 + """ + if self.is_empty(): + raise Exception("Binary search tree is empty") + + node = self.root + while node.right is not None: + node = node.right + + return node.label + + def get_min_label(self) -> int: + """ + Gets the min label inserted in the tree + + >>> t = BinarySearchTree() + >>> t.get_min_label() + Traceback (most recent call last): + ... + Exception: Binary search tree is empty + + >>> t.put(8) + >>> t.put(10) + >>> t.get_min_label() + 8 + """ + if self.is_empty(): + raise Exception("Binary search tree is empty") + + node = self.root + while node.left is not None: + node = node.left + + return node.label + + def inorder_traversal(self) -> list: + """ + Return the inorder traversal of the tree + + >>> t = BinarySearchTree() + >>> [i.label for i in t.inorder_traversal()] + [] + + >>> t.put(8) + >>> t.put(10) + >>> t.put(9) + >>> [i.label for i in t.inorder_traversal()] + [8, 9, 10] + """ + return self._inorder_traversal(self.root) + + def _inorder_traversal(self, node: Node) -> list: + if node is not None: + yield from self._inorder_traversal(node.left) + yield node + yield from self._inorder_traversal(node.right) + + def preorder_traversal(self) -> list: + """ + Return the preorder traversal of the tree + + >>> t = BinarySearchTree() + >>> [i.label for i in t.preorder_traversal()] + [] + + >>> t.put(8) + >>> t.put(10) + >>> t.put(9) + >>> [i.label for i in t.preorder_traversal()] + [8, 10, 9] + """ + return self._preorder_traversal(self.root) + + def _preorder_traversal(self, node: Node) -> list: + if node is not None: + yield node + yield from self._preorder_traversal(node.left) + yield from self._preorder_traversal(node.right) + + +class BinarySearchTreeTest(unittest.TestCase): + @staticmethod + def _get_binary_search_tree(): + r""" + 8 + / \ + 3 10 + / \ \ + 1 6 14 + / \ / + 4 7 13 + \ + 5 + """ + t = BinarySearchTree() + t.put(8) + t.put(3) + t.put(6) + t.put(1) + t.put(10) + t.put(14) + t.put(13) + t.put(4) + t.put(7) + t.put(5) + + return t + + def test_put(self): + t = BinarySearchTree() + assert t.is_empty() + + t.put(8) + r""" + 8 + """ + assert t.root.parent is None + assert t.root.label == 8 + + t.put(10) + r""" + 8 + \ + 10 + """ + assert t.root.right.parent == t.root + assert t.root.right.label == 10 + + t.put(3) + r""" + 8 + / \ + 3 10 + """ + assert t.root.left.parent == t.root + assert t.root.left.label == 3 + + t.put(6) + r""" + 8 + / \ + 3 10 + \ + 6 + """ + assert t.root.left.right.parent == t.root.left + assert t.root.left.right.label == 6 + + t.put(1) + r""" + 8 + / \ + 3 10 + / \ + 1 6 + """ + assert t.root.left.left.parent == t.root.left + assert t.root.left.left.label == 1 + + with self.assertRaises(Exception): + t.put(1) + + def test_search(self): + t = self._get_binary_search_tree() + + node = t.search(6) + assert node.label == 6 + + node = t.search(13) + assert node.label == 13 + + with self.assertRaises(Exception): + t.search(2) + + def test_remove(self): + t = self._get_binary_search_tree() + + t.remove(13) + r""" + 8 + / \ + 3 10 + / \ \ + 1 6 14 + / \ + 4 7 + \ + 5 + """ + assert t.root.right.right.right is None + assert t.root.right.right.left is None + + t.remove(7) + r""" + 8 + / \ + 3 10 + / \ \ + 1 6 14 + / + 4 + \ + 5 + """ + assert t.root.left.right.right is None + assert t.root.left.right.left.label == 4 + + t.remove(6) + r""" + 8 + / \ + 3 10 + / \ \ + 1 4 14 + \ + 5 + """ + assert t.root.left.left.label == 1 + assert t.root.left.right.label == 4 + assert t.root.left.right.right.label == 5 + assert t.root.left.right.left is None + assert t.root.left.left.parent == t.root.left + assert t.root.left.right.parent == t.root.left + + t.remove(3) + r""" + 8 + / \ + 4 10 + / \ \ + 1 5 14 + """ + assert t.root.left.label == 4 + assert t.root.left.right.label == 5 + assert t.root.left.left.label == 1 + assert t.root.left.parent == t.root + assert t.root.left.left.parent == t.root.left + assert t.root.left.right.parent == t.root.left + + t.remove(4) + r""" + 8 + / \ + 5 10 + / \ + 1 14 + """ + assert t.root.left.label == 5 + assert t.root.left.right is None + assert t.root.left.left.label == 1 + assert t.root.left.parent == t.root + assert t.root.left.left.parent == t.root.left + + def test_remove_2(self): + t = self._get_binary_search_tree() + + t.remove(3) + r""" + 8 + / \ + 4 10 + / \ \ + 1 6 14 + / \ / + 5 7 13 + """ + assert t.root.left.label == 4 + assert t.root.left.right.label == 6 + assert t.root.left.left.label == 1 + assert t.root.left.right.right.label == 7 + assert t.root.left.right.left.label == 5 + assert t.root.left.parent == t.root + assert t.root.left.right.parent == t.root.left + assert t.root.left.left.parent == t.root.left + assert t.root.left.right.left.parent == t.root.left.right + + def test_empty(self): + t = self._get_binary_search_tree() + t.empty() + assert t.root is None + + def test_is_empty(self): + t = self._get_binary_search_tree() + assert not t.is_empty() + + t.empty() + assert t.is_empty() + + def test_exists(self): + t = self._get_binary_search_tree() + + assert t.exists(6) + assert not t.exists(-1) + + def test_get_max_label(self): + t = self._get_binary_search_tree() + + assert t.get_max_label() == 14 + + t.empty() + with self.assertRaises(Exception): + t.get_max_label() + + def test_get_min_label(self): + t = self._get_binary_search_tree() + + assert t.get_min_label() == 1 + + t.empty() + with self.assertRaises(Exception): + t.get_min_label() + + def test_inorder_traversal(self): + t = self._get_binary_search_tree() + + inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] + assert inorder_traversal_nodes == [1, 3, 4, 5, 6, 7, 8, 10, 13, 14] + + def test_preorder_traversal(self): + t = self._get_binary_search_tree() + + preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] + assert preorder_traversal_nodes == [8, 3, 1, 6, 4, 5, 7, 10, 14, 13] + + +def binary_search_tree_example(): + r""" + Example + 8 + / \ + 3 10 + / \ \ + 1 6 14 + / \ / + 4 7 13 + \ + 5 + + Example After Deletion + 4 + / \ + 1 7 + \ + 5 + + """ + + t = BinarySearchTree() + t.put(8) + t.put(3) + t.put(6) + t.put(1) + t.put(10) + t.put(14) + t.put(13) + t.put(4) + t.put(7) + t.put(5) + + print( + """ + 8 + / \\ + 3 10 + / \\ \\ + 1 6 14 + / \\ / + 4 7 13 + \\ + 5 + """ + ) + + print("Label 6 exists:", t.exists(6)) + print("Label 13 exists:", t.exists(13)) + print("Label -1 exists:", t.exists(-1)) + print("Label 12 exists:", t.exists(12)) + + # Prints all the elements of the list in inorder traversal + inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] + print("Inorder traversal:", inorder_traversal_nodes) + + # Prints all the elements of the list in preorder traversal + preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] + print("Preorder traversal:", preorder_traversal_nodes) + + print("Max. label:", t.get_max_label()) + print("Min. label:", t.get_min_label()) + + # Delete elements + print("\nDeleting elements 13, 10, 8, 3, 6, 14") + print( + """ + 4 + / \\ + 1 7 + \\ + 5 + """ + ) + t.remove(13) + t.remove(10) + t.remove(8) + t.remove(3) + t.remove(6) + t.remove(14) + + # Prints all the elements of the list in inorder traversal after delete + inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] + print("Inorder traversal after delete:", inorder_traversal_nodes) + + # Prints all the elements of the list in preorder traversal after delete + preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] + print("Preorder traversal after delete:", preorder_traversal_nodes) + + print("Max. label:", t.get_max_label()) + print("Min. label:", t.get_min_label()) + + +if __name__ == "__main__": + binary_search_tree_example() From 1b65309dca96fc0a64a3acc813565fb8ec9a3967 Mon Sep 17 00:00:00 2001 From: hackercyclops12 <63036550+hackercyclops12@users.noreply.github.com> Date: Wed, 8 Apr 2020 09:56:21 +1200 Subject: [PATCH 584/594] Update README.md (#1842) --- quantum/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/quantum/README.md b/quantum/README.md index 8dfc76826787..be5bd0843f4f 100644 --- a/quantum/README.md +++ b/quantum/README.md @@ -1,4 +1,4 @@ -# Welcome to Quatum Algorithms +# Welcome to Quantum Algorithms Started at https://github.com/TheAlgorithms/Python/issues/1831 From 8f2c9932e09948a046f8d11b18f7c634ee4161fe Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Wed, 8 Apr 2020 12:27:11 +0200 Subject: [PATCH 585/594] CONTRIBUTING.md: Fix comments about the black formatter (#1841) * CONTRIBUTING.md: Fix comments about the black formatter Fixes #1840 * Update CONTRIBUTING.md * Update CONTRIBUTING.md --- CONTRIBUTING.md | 39 +++++++++++---------------------------- 1 file changed, 11 insertions(+), 28 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index d939108a471e..2aa4be9e5324 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -37,13 +37,9 @@ We want your work to be readable by others; therefore, we encourage you to note - Expand acronyms because __gcd()__ is hard to understand but __greatest_common_divisor()__ is not. - Please follow the [Python Naming Conventions](https://pep8.org/#prescriptive-naming-conventions) so variable_names and function_names should be lower_case, CONSTANTS in UPPERCASE, ClassNames should be CamelCase, etc. - - - We encourage the use of Python [f-strings](https://realpython.com/python-f-strings/#f-strings-a-new-and-improved-way-to-format-strings-in-python) where the make the code easier to read. - - -- Please consider running [__psf/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not yet a requirement but it does make your code more readable and automatically aligns it with much of [PEP 8](https://www.python.org/dev/peps/pep-0008/). There are other code formatters (autopep8, yapf) but the __black__ style is now the recommendation of the Python Core Team. To use it, +- Please consider running [__psf/black__](https://github.com/python/black) on your Python file(s) before submitting your pull request. This is not yet a requirement but it does make your code more readable and automatically aligns it with much of [PEP 8](https://www.python.org/dev/peps/pep-0008/). There are other code formatters (autopep8, yapf) but the __black__ formatter is now hosted by the Python Software Foundation. To use it, ```bash pip3 install black # only required the first time @@ -57,13 +53,11 @@ We want your work to be readable by others; therefore, we encourage you to note flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics ``` - - - Original code submission require docstrings or comments to describe your work. - More on docstrings and comments: - If you are using a Wikipedia article or some other source material to create your algorithm, please add the URL in a docstring or comment to help your reader. + If you used a Wikipedia article or some other source material to create your algorithm, please add the URL in a docstring or comment to help your reader. The following are considered to be bad and may be requested to be improved: @@ -73,13 +67,12 @@ We want your work to be readable by others; therefore, we encourage you to note This is too trivial. Comments are expected to be explanatory. For comments, you can write them above, on or below a line of code, as long as you are consistent within the same piece of code. - We encourage you to put docstrings inside your functions but please pay attention to indentation of docstrings. The following is acceptable in this case: + We encourage you to put docstrings inside your functions but please pay attention to indentation of docstrings. The following is a good example: ```python - def sumab(a, b): + def sum_ab(a, b): """ - This function returns the sum of two integers a and b - Return: a + b + Return the sum of two integers a and b. """ return a + b ``` @@ -87,15 +80,14 @@ We want your work to be readable by others; therefore, we encourage you to note - Write tests (especially [__doctests__](https://docs.python.org/3/library/doctest.html)) to illustrate and verify your work. We highly encourage the use of _doctests on all functions_. ```python - def sumab(a, b): + def sum_ab(a, b): """ - This function returns the sum of two integers a and b - Return: a + b - >>> sumab(2, 2) + Returns the sum of two integers a and b + >>> sum_ab(2, 2) 4 - >>> sumab(-2, 3) + >>> sum_ab(-2, 3) 1 - >>> sumab(4.9, 5.1) + >>> sum_ab(4.9, 5.1) 10.0 """ return a + b @@ -125,15 +117,11 @@ We want your work to be readable by others; therefore, we encourage you to note ```python def sumab(a: int, b: int) --> int: - pass + pass ``` - - - [__List comprehensions and generators__](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions) are preferred over the use of `lambda`, `map`, `filter`, `reduce` but the important thing is to demonstrate the power of Python in code that is easy to read and maintain. - - - Avoid importing external libraries for basic algorithms. Only use those libraries for complicated algorithms. - If you need a third party module that is not in the file __requirements.txt__, please add it to that file as part of your submission. @@ -143,17 +131,12 @@ We want your work to be readable by others; therefore, we encourage you to note - Strictly use snake_case (underscore_separated) in your file_name, as it will be easy to parse in future using scripts. - Please avoid creating new directories if at all possible. Try to fit your work into the existing directory structure. - If possible, follow the standard *within* the folder you are submitting to. - - - - If you have modified/added code work, make sure the code compiles before submitting. - If you have modified/added documentation work, ensure your language is concise and contains no grammar errors. - Do not update the README.md or DIRECTORY.md file which will be periodically autogenerated by our Travis CI processes. - Add a corresponding explanation to [Algorithms-Explanation](https://github.com/TheAlgorithms/Algorithms-Explanation) (Optional but recommended). - All submissions will be tested with [__mypy__](http://www.mypy-lang.org) so we encourage to add [__Python type hints__](https://docs.python.org/3/library/typing.html) where it makes sense to do so. - - - Most importantly, - **Be consistent in the use of these guidelines when submitting.** - **Join** [Gitter](https://gitter.im/TheAlgorithms) **now!** From 4103c9fde4e5e6003624cff1a7f85119c082ad62 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Fri, 10 Apr 2020 11:25:58 +0200 Subject: [PATCH 586/594] Update FUNDING.yml (#1829) * Update FUNDING.yml * fixup! Format Python code with psf/black push * Update FUNDING.yml * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Anup Kumar Panwar <1anuppanwar@gmail.com> --- .github/FUNDING.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml index 514c9327e231..9a63272be441 100644 --- a/.github/FUNDING.yml +++ b/.github/FUNDING.yml @@ -1,7 +1,7 @@ # These are supported funding model platforms -github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2] -patreon: # Replace with a single Patreon username +github: [cclauss, anupkumarpanwar] +patreon: cclauss open_collective: # Replace with a single Open Collective username ko_fi: # Replace with a single Ko-fi username tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel From 728deeae82ce9f1b253d3964e179e78ac249be42 Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Fri, 10 Apr 2020 14:58:03 +0530 Subject: [PATCH 587/594] Update FUNDING.yml --- .github/FUNDING.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml index 9a63272be441..209536812f75 100644 --- a/.github/FUNDING.yml +++ b/.github/FUNDING.yml @@ -1,6 +1,6 @@ # These are supported funding model platforms -github: [cclauss, anupkumarpanwar] +github: [cclauss] patreon: cclauss open_collective: # Replace with a single Open Collective username ko_fi: # Replace with a single Ko-fi username From c775baf55fda6d50c7e4fe743d3d68b8a4dce125 Mon Sep 17 00:00:00 2001 From: Sajied Shah Yousuf <40203390+meSajied@users.noreply.github.com> Date: Sun, 12 Apr 2020 20:45:07 +0600 Subject: [PATCH 588/594] Added new Algorithm to find middle element of Linked List (#1822) * Added new Algorithm to find middle element of Linked List * Rename MiddleElementOfLinkedList.py to middle_element_of_linked_list.py * changed "middle_element_of_linked_list.py" algorithm for taking input * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Update middle_element_of_linked_list.py * Whack the trailing whitespace Co-authored-by: Christian Clauss --- .../middle_element_of_linked_list.py | 64 +++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 data_structures/linked_list/middle_element_of_linked_list.py diff --git a/data_structures/linked_list/middle_element_of_linked_list.py b/data_structures/linked_list/middle_element_of_linked_list.py new file mode 100644 index 000000000000..2903fe604dfa --- /dev/null +++ b/data_structures/linked_list/middle_element_of_linked_list.py @@ -0,0 +1,64 @@ +class Node: + def __init__(self, data: int) -> int: + self.data = data + self.next = None + + +class LinkedList: + def __init__(self): + self.head = None + + def push(self, new_data:int) -> int: + new_node = Node(new_data) + new_node.next = self.head + self.head = new_node + return self.head.data + + def middle_element(self) -> int: + ''' + >>> link = LinkedList() + >>> link.middle_element() + No element found. + >>> link.push(5) + 5 + >>> link.push(6) + 6 + >>> link.push(8) + 8 + >>> link.push(8) + 8 + >>> link.push(10) + 10 + >>> link.push(12) + 12 + >>> link.push(17) + 17 + >>> link.push(7) + 7 + >>> link.push(3) + 3 + >>> link.push(20) + 20 + >>> link.push(-20) + -20 + >>> link.middle_element() + 12 + >>> + ''' + slow_pointer = self.head + fast_pointer = self.head + if self.head: + while fast_pointer and fast_pointer.next: + fast_pointer = fast_pointer.next.next + slow_pointer = slow_pointer.next + return slow_pointer.data + else: + print("No element found.") + + +if __name__ == "__main__": + link = LinkedList() + for i in range(int(input().strip())): + data = int(input().strip()) + link.push(data) + print(link.middle_element()) From 8bf380ce7d010723d96a8658adc67eae8abc786c Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sun, 12 Apr 2020 17:18:30 +0200 Subject: [PATCH 589/594] README.md: sumab() --> sum_ab() for consistancy (#1855) * README.md: sumab() --> sum_ab() for consistancy consistency * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- CONTRIBUTING.md | 6 +++--- .../linked_list/middle_element_of_linked_list.py | 14 +++++++------- 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 2aa4be9e5324..39d67c240e85 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -82,7 +82,7 @@ We want your work to be readable by others; therefore, we encourage you to note ```python def sum_ab(a, b): """ - Returns the sum of two integers a and b + Return the sum of two integers a and b >>> sum_ab(2, 2) 4 >>> sum_ab(-2, 3) @@ -116,8 +116,8 @@ We want your work to be readable by others; therefore, we encourage you to note The use of [Python type hints](https://docs.python.org/3/library/typing.html) is encouraged for function parameters and return values. Our automated testing will run [mypy](http://mypy-lang.org) so run that locally before making your submission. ```python - def sumab(a: int, b: int) --> int: - pass + def sum_ab(a: int, b: int) --> int: + return a + b ``` - [__List comprehensions and generators__](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions) are preferred over the use of `lambda`, `map`, `filter`, `reduce` but the important thing is to demonstrate the power of Python in code that is easy to read and maintain. diff --git a/data_structures/linked_list/middle_element_of_linked_list.py b/data_structures/linked_list/middle_element_of_linked_list.py index 2903fe604dfa..b845d2f19c20 100644 --- a/data_structures/linked_list/middle_element_of_linked_list.py +++ b/data_structures/linked_list/middle_element_of_linked_list.py @@ -8,14 +8,14 @@ class LinkedList: def __init__(self): self.head = None - def push(self, new_data:int) -> int: - new_node = Node(new_data) - new_node.next = self.head + def push(self, new_data: int) -> int: + new_node = Node(new_data) + new_node.next = self.head self.head = new_node return self.head.data def middle_element(self) -> int: - ''' + """ >>> link = LinkedList() >>> link.middle_element() No element found. @@ -44,11 +44,11 @@ def middle_element(self) -> int: >>> link.middle_element() 12 >>> - ''' + """ slow_pointer = self.head fast_pointer = self.head - if self.head: - while fast_pointer and fast_pointer.next: + if self.head: + while fast_pointer and fast_pointer.next: fast_pointer = fast_pointer.next.next slow_pointer = slow_pointer.next return slow_pointer.data From 3735e742967b63add1ce6878c77a35b084579d08 Mon Sep 17 00:00:00 2001 From: Shrutika Bansal Date: Sun, 12 Apr 2020 23:23:28 +0530 Subject: [PATCH 590/594] added add algorithm (#1856) * added add algorithm * Update and rename check/add.py to math/add.py Co-authored-by: Christian Clauss --- math/add.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) create mode 100644 math/add.py diff --git a/math/add.py b/math/add.py new file mode 100644 index 000000000000..3b8b404658c0 --- /dev/null +++ b/math/add.py @@ -0,0 +1,17 @@ +""" +Just to check +""" +def add(a, b): + """ + >>> add(2, 2) + 4 + >>> add(2, -2) + 0 + """ + return a + b + + +if __name__ == "__main__": + a = 5 + b = 6 + print(f"The sum of {a} + {b} is {sum(a, b)}") From 7ebe2b9593725dd1ca431bab98e7f4307d976768 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 13 Apr 2020 02:10:21 +0200 Subject: [PATCH 591/594] Test the exception conditions (#1853) * Text exception conditions These are ValueErrors, not AttributeErrors. * fixup! Format Python code with psf/black push * Update perceptron.py * Update perceptron.py * Update perceptron.py * Revert the test Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- neural_network/perceptron.py | 23 +++++++++++++++++------ 1 file changed, 17 insertions(+), 6 deletions(-) diff --git a/neural_network/perceptron.py b/neural_network/perceptron.py index 2a1c46b359e6..23b409b227c4 100644 --- a/neural_network/perceptron.py +++ b/neural_network/perceptron.py @@ -19,17 +19,28 @@ def __init__(self, sample, target, learning_rate=0.01, epoch_number=1000, bias=- :param learning_rate: learning rate used in optimizing. :param epoch_number: number of epochs to train network on. :param bias: bias value for the network. + + >>> p = Perceptron([], (0, 1, 2)) + Traceback (most recent call last): + ... + ValueError: Sample data can not be empty + >>> p = Perceptron(([0], 1, 2), []) + Traceback (most recent call last): + ... + ValueError: Target data can not be empty + >>> p = Perceptron(([0], 1, 2), (0, 1)) + Traceback (most recent call last): + ... + ValueError: Sample data and Target data do not have matching lengths """ self.sample = sample if len(self.sample) == 0: - raise AttributeError("Sample data can not be empty") + raise ValueError("Sample data can not be empty") self.target = target if len(self.target) == 0: - raise AttributeError("Target data can not be empty") + raise ValueError("Target data can not be empty") if len(self.sample) != len(self.target): - raise AttributeError( - "Sample data and Target data do not have matching lengths" - ) + raise ValueError("Sample data and Target data do not have matching lengths") self.learning_rate = learning_rate self.epoch_number = epoch_number self.bias = bias @@ -98,7 +109,7 @@ def sort(self, sample) -> None: classification: P... """ if len(self.sample) == 0: - raise AttributeError("Sample data can not be empty") + raise ValueError("Sample data can not be empty") sample.insert(0, self.bias) u = 0 for i in range(self.col_sample + 1): From 7ffdef2636e8368d72f50815fe8ced98294b1053 Mon Sep 17 00:00:00 2001 From: Prince Gangurde <50592495+Prince326@users.noreply.github.com> Date: Mon, 13 Apr 2020 05:45:48 +0530 Subject: [PATCH 592/594] Fix some typos in random forest classifier (#1858) --- machine_learning/random_forest_classifier.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/machine_learning/random_forest_classifier.py b/machine_learning/random_forest_classifier.py index 07bd33b340c5..e7acd91346a1 100644 --- a/machine_learning/random_forest_classifier.py +++ b/machine_learning/random_forest_classifier.py @@ -10,11 +10,11 @@ def main(): """ - Random Tree Classifier Example using sklearn function. + Random Forest Classifier Example using sklearn function. Iris type dataset is used to demonstrate algorithm. """ - # Load Iris house price dataset + # Load Iris dataset iris = load_iris() # Split dataset into train and test data From 2fc3f2e4a0c258c4da8ebd16d04d97d71190dda5 Mon Sep 17 00:00:00 2001 From: markaster <61535772+markaster@users.noreply.github.com> Date: Mon, 13 Apr 2020 08:17:29 +0800 Subject: [PATCH 593/594] Update year in LICENSE.md (#1848) --- LICENSE.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/LICENSE.md b/LICENSE.md index a20869d96300..3b7951527ab3 100644 --- a/LICENSE.md +++ b/LICENSE.md @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2019 The Algorithms +Copyright (c) 2020 The Algorithms Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal From f6ee518ee1262d4680e468cc8f1ea8fae5e72d68 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 13 Apr 2020 07:50:46 +0200 Subject: [PATCH 594/594] Rename math/add.py to maths/add.py (#1857) * Rename math/add.py to maths/add.py * fixup! Format Python code with psf/black push * Fix sum to add * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: John Law --- DIRECTORY.md | 2 ++ {math => maths}/add.py | 4 +++- 2 files changed, 5 insertions(+), 1 deletion(-) rename {math => maths}/add.py (76%) diff --git a/DIRECTORY.md b/DIRECTORY.md index 484c5e8fc153..0f7363d7e9ab 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -107,6 +107,7 @@ * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) + * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) @@ -271,6 +272,7 @@ * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) + * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) diff --git a/math/add.py b/maths/add.py similarity index 76% rename from math/add.py rename to maths/add.py index 3b8b404658c0..0bc7da9697d3 100644 --- a/math/add.py +++ b/maths/add.py @@ -1,6 +1,8 @@ """ Just to check """ + + def add(a, b): """ >>> add(2, 2) @@ -14,4 +16,4 @@ def add(a, b): if __name__ == "__main__": a = 5 b = 6 - print(f"The sum of {a} + {b} is {sum(a, b)}") + print(f"The sum of {a} + {b} is {add(a, b)}")