-
-
Notifications
You must be signed in to change notification settings - Fork 189
/
Copy pathBootstrapAggregator.php
271 lines (232 loc) · 6.81 KB
/
BootstrapAggregator.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
<?php
namespace Rubix\ML;
use Rubix\ML\Helpers\Stats;
use Rubix\ML\Helpers\Params;
use Rubix\ML\Backends\Serial;
use Rubix\ML\Datasets\Dataset;
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Traits\Multiprocessing;
use Rubix\ML\Backends\Tasks\Predict;
use Rubix\ML\Traits\AutotrackRevisions;
use Rubix\ML\Backends\Tasks\TrainLearner;
use Rubix\ML\Specifications\DatasetIsLabeled;
use Rubix\ML\Specifications\DatasetIsNotEmpty;
use Rubix\ML\Specifications\SpecificationChain;
use Rubix\ML\Specifications\LabelsAreCompatibleWithLearner;
use Rubix\ML\Specifications\SamplesAreCompatibleWithEstimator;
use Rubix\ML\Exceptions\InvalidArgumentException;
use Rubix\ML\Exceptions\RuntimeException;
use function in_array;
use function array_count_values;
/**
* Bootstrap Aggregator
*
* Bootstrap Aggregating (or *bagging* for short) is a model averaging technique designed
* to improve the stability and performance of a user-specified base estimator by training
* a number of them on a unique *bootstrapped* training set sampled at random with
* replacement.
*
* References:
* [1] L. Breiman. (1996). Bagging Predictors.
*
* @category Machine Learning
* @package Rubix/ML
* @author Andrew DalPino
*/
class BootstrapAggregator implements Estimator, Learner, Parallel, Persistable
{
use AutotrackRevisions, Multiprocessing;
/**
* The estimator type codes that the ensemble is compatible with.
*
* @var list<int>
*/
protected const COMPATIBLE_ESTIMATOR_TYPES = [
EstimatorType::CLASSIFIER,
EstimatorType::REGRESSOR,
EstimatorType::ANOMALY_DETECTOR,
];
/**
* The minimum size of each training subset.
*
* @var int
*/
protected const MIN_SUBSAMPLE = 1;
/**
* The base learner.
*
* @var Learner
*/
protected Learner $base;
/**
* The number of base learners to train in the ensemble.
*
* @var int
*/
protected int $estimators;
/**
* The ratio of samples from the training set to randomly subsample to train each base learner.
*
* @var float
*/
protected float $ratio;
/**
* The ensemble of estimators.
*
* @var list<Learner>
*/
protected array $ensemble = [
//
];
/**
* @param Learner $base
* @param int $estimators
* @param float $ratio
* @throws InvalidArgumentException
*/
public function __construct(Learner $base, int $estimators = 10, float $ratio = 0.5)
{
if (!in_array($base->type()->code(), self::COMPATIBLE_ESTIMATOR_TYPES)) {
throw new InvalidArgumentException('This meta estimator'
. ' only supports classifiers, regressors, and'
. " anomaly detectors, {$base->type()} given.");
}
if ($estimators < 1) {
throw new InvalidArgumentException('Number of estimators'
. " must be greater than 0, $estimators given.");
}
if ($ratio <= 0.0 or $ratio > 1.5) {
throw new InvalidArgumentException('Ratio must be between'
. " 0 and 1.5, $ratio given.");
}
$this->base = $base;
$this->estimators = $estimators;
$this->ratio = $ratio;
$this->backend = new Serial();
}
/**
* Return the estimator type.
*
* @internal
*
* @return EstimatorType
*/
public function type() : EstimatorType
{
return $this->base->type();
}
/**
* Return the data types that the estimator is compatible with.
*
* @internal
*
* @return list<DataType>
*/
public function compatibility() : array
{
return $this->base->compatibility();
}
/**
* Return the settings of the hyper-parameters in an associative array.
*
* @internal
*
* @return mixed[]
*/
public function params() : array
{
return [
'base' => $this->base,
'estimators' => $this->estimators,
'ratio' => $this->ratio,
];
}
/**
* Has the learner been trained?
*
* @return bool
*/
public function trained() : bool
{
return !empty($this->ensemble);
}
/**
* Instantiate and train each base estimator in the ensemble on a bootstrap
* training set.
*
* @param Dataset $dataset
* @throws InvalidArgumentException
*/
public function train(Dataset $dataset) : void
{
$specifications = [
new DatasetIsNotEmpty($dataset),
new SamplesAreCompatibleWithEstimator($dataset, $this),
];
if ($this->type()->isSupervised()) {
$specifications[] = new DatasetIsLabeled($dataset);
if ($dataset instanceof Labeled) {
$specifications[] = new LabelsAreCompatibleWithLearner($dataset, $this);
}
}
SpecificationChain::with($specifications)->check();
$p = max(self::MIN_SUBSAMPLE, (int) round($this->ratio * $dataset->numSamples()));
$this->backend->flush();
for ($i = 0; $i < $this->estimators; ++$i) {
$estimator = clone $this->base;
$subset = $dataset->randomSubsetWithReplacement($p);
$task = new TrainLearner($estimator, $subset);
$this->backend->enqueue($task);
}
$this->ensemble = $this->backend->process();
}
/**
* Make predictions from a dataset.
*
* @param Dataset $dataset
* @throws RuntimeException
* @return mixed[]
*/
public function predict(Dataset $dataset) : array
{
if (empty($this->ensemble)) {
throw new RuntimeException('Estimator has not been trained.');
}
$this->backend->flush();
foreach ($this->ensemble as $estimator) {
$task = new Predict($estimator, $dataset);
$this->backend->enqueue($task);
}
$aggregate = array_transpose($this->backend->process());
switch ($this->type()) {
case EstimatorType::classifier():
case EstimatorType::anomalyDetector():
return array_map([$this, 'decideDiscrete'], $aggregate);
default:
return array_map([Stats::class, 'mean'], $aggregate);
}
}
/**
* Decide on a discrete-valued outcome.
*
* @param string[] $votes
* @return string
*/
protected function decideDiscrete(array $votes) : string
{
/** @var array<string,int> $counts */
$counts = array_count_values($votes);
return argmax($counts);
}
/**
* Return the string representation of the object.
*
* @internal
*
* @return string
*/
public function __toString() : string
{
return 'Bootstrap Aggregator (' . Params::stringify($this->params()) . ')';
}
}