* geo_ops.c
* 2D geometric operations
*
+ * This module implements the geometric functions and operators. The
+ * geometric types are (from simple to more complicated):
+ *
+ * - point
+ * - line
+ * - line segment
+ * - box
+ * - circle
+ * - polygon
+ *
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
#include "utils/fmgrprotos.h"
#include "utils/geo_decls.h"
+/*
+ * * Type constructors have this form:
+ * void type_construct(Type *result, ...);
+ *
+ * * Operators commonly have signatures such as
+ * void type1_operator_type2(Type *result, Type1 *obj1, Type2 *obj2);
+ *
+ * Common operators are:
+ * * Intersection point:
+ * bool type1_interpt_type2(Point *result, Type1 *obj1, Type2 *obj2);
+ * Return whether the two objects intersect. If *result is not NULL,
+ * it is set to the intersection point.
+ *
+ * * Containment:
+ * bool type1_contain_type2(Type1 *obj1, Type2 *obj2);
+ * Return whether obj1 contains obj2.
+ * bool type1_contain_type2(Type1 *contains_obj, Type1 *contained_obj);
+ * Return whether obj1 contains obj2 (used when types are the same)
+ *
+ * * Distance of closest point in or on obj1 to obj2:
+ * float8 type1_closept_type2(Point *result, Type1 *obj1, Type2 *obj2);
+ * Returns the shortest distance between two objects. If *result is not
+ * NULL, it is set to the closest point in or on obj1 to obj2.
+ *
+ * These functions may be used to implement multiple SQL-level operators. For
+ * example, determining whether two lines are parallel is done by checking
+ * whether they don't intersect.
+ */
/*
* Internal routines
static bool lseg_contain_point(LSEG *lseg, Point *point);
static float8 lseg_closept_point(Point *result, LSEG *lseg, Point *pt);
static float8 lseg_closept_line(Point *result, LSEG *lseg, LINE *line);
-static float8 lseg_closept_lseg(Point *result, LSEG *l1, LSEG *l2);
+static float8 lseg_closept_lseg(Point *result, LSEG *on_lseg, LSEG *to_lseg);
/* Routines for boxes */
static inline void box_construct(BOX *result, Point *pt1, Point *pt2);
static float8 box_ht(BOX *box);
static float8 box_wd(BOX *box);
static bool box_contain_point(BOX *box, Point *point);
-static bool box_contain_box(BOX *box1, BOX *box2);
+static bool box_contain_box(BOX *contains_box, BOX *contained_box);
static bool box_contain_lseg(BOX *box, LSEG *lseg);
static bool box_interpt_lseg(Point *result, BOX *box, LSEG *lseg);
static float8 box_closept_point(Point *result, BOX *box, Point *point);
static void make_bound_box(POLYGON *poly);
static void poly_to_circle(CIRCLE *result, POLYGON *poly);
static bool lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start);
-static bool poly_contain_poly(POLYGON *polya, POLYGON *polyb);
+static bool poly_contain_poly(POLYGON *contains_poly, POLYGON *contained_poly);
static bool plist_same(int npts, Point *p1, Point *p2);
static float8 dist_ppoly_internal(Point *pt, POLYGON *poly);
}
/*
- * Check whether the box is in the box or on its border
+ * Check whether the second box is in the first box or on its border
*/
static bool
-box_contain_box(BOX *box1, BOX *box2)
+box_contain_box(BOX *contains_box, BOX *contained_box)
{
- return FPge(box1->high.x, box2->high.x) &&
- FPle(box1->low.x, box2->low.x) &&
- FPge(box1->high.y, box2->high.y) &&
- FPle(box1->low.y, box2->low.y);
+ return FPge(contains_box->high.x, contained_box->high.x) &&
+ FPle(contains_box->low.x, contained_box->low.x) &&
+ FPge(contains_box->high.y, contained_box->high.y) &&
+ FPle(contains_box->low.y, contained_box->low.y);
}
/*
* Internal version of line_interpt
*
- * This returns true if two lines intersect (they do, if they are not
- * parallel), false if they do not. This also sets the intersection point
- * to *result, if it is not NULL.
+ * Return whether two lines intersect. If *result is not NULL, it is set to
+ * the intersection point.
*
* NOTE: If the lines are identical then we will find they are parallel
* and report "no intersection". This is a little weird, but since
/*
- * Find the intersection point of two segments (if any).
+ * Return whether the two segments intersect. If *result is not NULL,
+ * it is set to the intersection point.
*
- * This returns true if two line segments intersect, false if they do not.
- * This also sets the intersection point to *result, if it is not NULL.
* This function is almost perfectly symmetric, even though it doesn't look
* like it. See lseg_interpt_line() for the other half of it.
*/
*-------------------------------------------------------------------*/
/*
- * Check if the line segment intersects with the line
- *
- * This returns true if line segment intersects with line, false if they
- * do not. This also sets the intersection point to *result, if it is not
- * NULL.
+ * Return whether the line segment intersect with the line. If *result is not
+ * NULL, it is set to the intersection point.
*/
static bool
lseg_interpt_line(Point *result, LSEG *lseg, LINE *line)
*/
if (!lseg_contain_point(lseg, &interpt))
return false;
-
- if (result == NULL)
- return true;
-
- /*
- * If there is an intersection, then check explicitly for matching
- * endpoints since there may be rounding effects with annoying LSB
- * residue.
- */
- if (point_eq_point(&lseg->p[0], &interpt))
- *result = lseg->p[0];
- else if (point_eq_point(&lseg->p[1], &interpt))
- *result = lseg->p[1];
- else
- *result = interpt;
+ if (result != NULL)
+ {
+ /*
+ * If there is an intersection, then check explicitly for matching
+ * endpoints since there may be rounding effects with annoying LSB
+ * residue.
+ */
+ if (point_eq_point(&lseg->p[0], &interpt))
+ *result = lseg->p[0];
+ else if (point_eq_point(&lseg->p[1], &interpt))
+ *result = lseg->p[1];
+ else
+ *result = interpt;
+ }
return true;
}
*-------------------------------------------------------------------*/
/*
- * The intersection point of a perpendicular of the line
- * through the point.
- *
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
+ * If *result is not NULL, it is set to the intersection point of a
+ * perpendicular of the line through the point. Returns the distance
+ * of those two points.
*/
static float8
line_closept_point(Point *result, LINE *line, Point *point)
/*
* Closest point on line segment to specified point.
*
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
+ * If *result is not NULL, set it to the closest point on the line segment
+ * to the point. Returns the distance of the two points.
*/
static float8
lseg_closept_point(Point *result, LSEG *lseg, Point *pt)
/*
* Closest point on line segment to line segment
- *
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
*/
static float8
-lseg_closept_lseg(Point *result, LSEG *l1, LSEG *l2)
+lseg_closept_lseg(Point *result, LSEG *on_lseg, LSEG *to_lseg)
{
Point point;
float8 dist,
d;
/* First, we handle the case when the line segments are intersecting. */
- if (lseg_interpt_lseg(result, l1, l2))
+ if (lseg_interpt_lseg(result, on_lseg, to_lseg))
return 0.0;
/*
* Then, we find the closest points from the endpoints of the second
* line segment, and keep the closest one.
*/
- dist = lseg_closept_point(result, l1, &l2->p[0]);
- d = lseg_closept_point(&point, l1, &l2->p[1]);
+ dist = lseg_closept_point(result, on_lseg, &to_lseg->p[0]);
+ d = lseg_closept_point(&point, on_lseg, &to_lseg->p[1]);
if (float8_lt(d, dist))
{
dist = d;
}
/* The closest point can still be one of the endpoints, so we test them. */
- d = lseg_closept_point(NULL, l2, &l1->p[0]);
+ d = lseg_closept_point(NULL, to_lseg, &on_lseg->p[0]);
if (float8_lt(d, dist))
{
dist = d;
if (result != NULL)
- *result = l1->p[0];
+ *result = on_lseg->p[0];
}
- d = lseg_closept_point(NULL, l2, &l1->p[1]);
+ d = lseg_closept_point(NULL, to_lseg, &on_lseg->p[1]);
if (float8_lt(d, dist))
{
dist = d;
if (result != NULL)
- *result = l1->p[1];
+ *result = on_lseg->p[1];
}
return dist;
/*
* Closest point on or in box to specified point.
*
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
+ * If *result is not NULL, set it to the closest point on the box to the
+ * given point, and return the distance of the two points.
*/
static float8
box_closept_point(Point *result, BOX *box, Point *pt)
/*
* Closest point on line segment to line.
*
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
+ * Return the distance between the line and the closest point of the line
+ * segment to the line. If *result is not NULL, set it to that point.
*
* NOTE: When the lines are parallel, endpoints of one of the line segment
- * are FPeq(), in presence of NaN or Infinitive coordinates, or perhaps =
+ * are FPeq(), in presence of NaN or Infinite coordinates, or perhaps =
* even because of simple roundoff issues, there may not be a single closest
* point. We are likely to set the result to the second endpoint in these
* cases.
/*
* Closest point on or in box to line segment.
*
- * This sets the closest point to the *result if it is not NULL and returns
- * the distance to the closest point.
+ * Returns the distance between the closest point on or in the box to
+ * the line segment. If *result is not NULL, it is set to that point.
*/
static float8
box_closept_lseg(Point *result, BOX *box, LSEG *lseg)
/*
* Returns true if segment (a,b) is in polygon, option
* start is used for optimization - function checks
- * polygon's edges started from start
+ * polygon's edges starting from start
*/
static bool
lseg_inside_poly(Point *a, Point *b, POLYGON *poly, int start)
return res;
}
-/*-----------------------------------------------------------------
- * Determine if polygon A contains polygon B.
- *-----------------------------------------------------------------*/
+/*
+ * Check whether the first polygon contains the second
+ */
static bool
-poly_contain_poly(POLYGON *polya, POLYGON *polyb)
+poly_contain_poly(POLYGON *contains_poly, POLYGON *contained_poly)
{
int i;
LSEG s;
- Assert(polya->npts > 0 && polyb->npts > 0);
+ Assert(contains_poly->npts > 0 && contained_poly->npts > 0);
/*
- * Quick check to see if bounding box is contained.
+ * Quick check to see if contained's bounding box is contained in
+ * contains' bb.
*/
- if (!box_contain_box(&polya->boundbox, &polyb->boundbox))
+ if (!box_contain_box(&contains_poly->boundbox, &contained_poly->boundbox))
return false;
- s.p[0] = polyb->p[polyb->npts - 1];
+ s.p[0] = contained_poly->p[contained_poly->npts - 1];
- for (i = 0; i < polyb->npts; i++)
+ for (i = 0; i < contained_poly->npts; i++)
{
- s.p[1] = polyb->p[i];
- if (!lseg_inside_poly(s.p, s.p + 1, polya, 0))
+ s.p[1] = contained_poly->p[i];
+ if (!lseg_inside_poly(s.p, s.p + 1, contains_poly, 0))
return false;
s.p[0] = s.p[1];
}