-- GROUP BY clause in various forms, cardinal, alias and constant expression
explain (verbose, costs off)
select count(c2) w, c2 x, 5 y, 7.0 z from ft1 group by 2, y, 9.0::int order by 2;
- QUERY PLAN
----------------------------------------------------------------------------------------
- Sort
+ QUERY PLAN
+------------------------------------------------------------------------------------------------------------
+ Foreign Scan
Output: (count(c2)), c2, 5, 7.0, 9
- Sort Key: ft1.c2
- -> Foreign Scan
- Output: (count(c2)), c2, 5, 7.0, 9
- Relations: Aggregate on (public.ft1)
- Remote SQL: SELECT count(c2), c2, 5, 7.0, 9 FROM "S 1"."T 1" GROUP BY 2, 3, 5
-(7 rows)
+ Relations: Aggregate on (public.ft1)
+ Remote SQL: SELECT count(c2), c2, 5, 7.0, 9 FROM "S 1"."T 1" GROUP BY 2, 3, 5 ORDER BY c2 ASC NULLS LAST
+(4 rows)
select count(c2) w, c2 x, 5 y, 7.0 z from ft1 group by 2, y, 9.0::int order by 2;
w | x | y | z
</listitem>
</varlistentry>
+ <varlistentry id="guc-enable-groupby-reordering" xreflabel="enable_group_by_reordering">
+ <term><varname>enable_group_by_reordering</varname> (<type>boolean</type>)
+ <indexterm>
+ <primary><varname>enable_group_by_reordering</varname> configuration parameter</primary>
+ </indexterm>
+ </term>
+ <listitem>
+ <para>
+ Enables or disables reodering of keys in <literal>GROUP BY</literal>
+ clause. The default is <literal>on</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
<varlistentry id="guc-enable-hashagg" xreflabel="enable_hashagg">
<term><varname>enable_hashagg</varname> (<type>boolean</type>)
<indexterm>
rterm->pathtarget->width);
}
+/*
+ * is_fake_var
+ * Workaround for generate_append_tlist() which generates fake Vars with
+ * varno == 0, that will cause a fail of estimate_num_group() call
+ *
+ * XXX Ummm, why would estimate_num_group fail with this?
+ */
+static bool
+is_fake_var(Expr *expr)
+{
+ if (IsA(expr, RelabelType))
+ expr = (Expr *) ((RelabelType *) expr)->arg;
+
+ return (IsA(expr, Var) && ((Var *) expr)->varno == 0);
+}
+
+/*
+ * get_width_cost_multiplier
+ * Returns relative complexity of comparing two values based on its width.
+ * The idea behind is that the comparison becomes more expensive the longer the
+ * value is. Return value is in cpu_operator_cost units.
+ */
+static double
+get_width_cost_multiplier(PlannerInfo *root, Expr *expr)
+{
+ double width = -1.0; /* fake value */
+
+ if (IsA(expr, RelabelType))
+ expr = (Expr *) ((RelabelType *) expr)->arg;
+
+ /* Try to find actual stat in corresponding relation */
+ if (IsA(expr, Var))
+ {
+ Var *var = (Var *) expr;
+
+ if (var->varno > 0 && var->varno < root->simple_rel_array_size)
+ {
+ RelOptInfo *rel = root->simple_rel_array[var->varno];
+
+ if (rel != NULL &&
+ var->varattno >= rel->min_attr &&
+ var->varattno <= rel->max_attr)
+ {
+ int ndx = var->varattno - rel->min_attr;
+
+ if (rel->attr_widths[ndx] > 0)
+ width = rel->attr_widths[ndx];
+ }
+ }
+ }
+
+ /* Didn't find any actual stats, try using type width instead. */
+ if (width < 0.0)
+ {
+ Node *node = (Node*) expr;
+
+ width = get_typavgwidth(exprType(node), exprTypmod(node));
+ }
+
+ /*
+ * Values are passed as Datum type, so comparisons can't be cheaper than
+ * comparing a Datum value.
+ *
+ * FIXME I find this reasoning questionable. We may pass int2, and comparing
+ * it is probably a bit cheaper than comparing a bigint.
+ */
+ if (width <= sizeof(Datum))
+ return 1.0;
+
+ /*
+ * We consider the cost of a comparison not to be directly proportional to
+ * width of the argument, because widths of the arguments could be slightly
+ * different (we only know the average width for the whole column). So we
+ * use log16(width) as an estimate.
+ */
+ return 1.0 + 0.125 * LOG2(width / sizeof(Datum));
+}
+
+/*
+ * compute_cpu_sort_cost
+ * compute CPU cost of sort (i.e. in-memory)
+ *
+ * The main thing we need to calculate to estimate sort CPU costs is the number
+ * of calls to the comparator functions. The difficulty is that for multi-column
+ * sorts there may be different data types involved (for some of which the calls
+ * may be much more expensive). Furthermore, columns may have a very different
+ * number of distinct values - the higher the number, the fewer comparisons will
+ * be needed for the following columns.
+ *
+ * The algorithm is incremental - we add pathkeys one by one, and at each step we
+ * estimate the number of necessary comparisons (based on the number of distinct
+ * groups in the current pathkey prefix and the new pathkey), and the comparison
+ * costs (which is data type specific).
+ *
+ * Estimation of the number of comparisons is based on ideas from:
+ *
+ * "Quicksort Is Optimal", Robert Sedgewick, Jon Bentley, 2002
+ * [https://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf]
+ *
+ * In term of that paper, let N - number of tuples, Xi - number of identical
+ * tuples with value Ki, then the estimate of number of comparisons is:
+ *
+ * log(N! / (X1! * X2! * ..)) ~ sum(Xi * log(N/Xi))
+ *
+ * We assume all Xi the same because now we don't have any estimation of
+ * group sizes, we have only know the estimate of number of groups (distinct
+ * values). In that case, formula becomes:
+ *
+ * N * log(NumberOfGroups)
+ *
+ * For multi-column sorts we need to estimate the number of comparisons for
+ * each individual column - for example with columns (c1, c2, ..., ck) we
+ * can estimate that number of comparisons on ck is roughly
+ *
+ * ncomparisons(c1, c2, ..., ck) / ncomparisons(c1, c2, ..., c(k-1))
+ *
+ * Let k be a column number, Gk - number of groups defined by k columns, and Fk
+ * the cost of the comparison is
+ *
+ * N * sum( Fk * log(Gk) )
+ *
+ * Note: We also consider column width, not just the comparator cost.
+ *
+ * NOTE: some callers currently pass NIL for pathkeys because they
+ * can't conveniently supply the sort keys. In this case, it will fallback to
+ * simple comparison cost estimate.
+ */
+static Cost
+compute_cpu_sort_cost(PlannerInfo *root, List *pathkeys, int nPresortedKeys,
+ Cost comparison_cost, double tuples, double output_tuples,
+ bool heapSort)
+{
+ Cost per_tuple_cost = 0.0;
+ ListCell *lc;
+ List *pathkeyExprs = NIL;
+ double tuplesPerPrevGroup = tuples;
+ double totalFuncCost = 1.0;
+ bool has_fake_var = false;
+ int i = 0;
+ Oid prev_datatype = InvalidOid;
+ List *cache_varinfos = NIL;
+
+ /* fallback if pathkeys is unknown */
+ if (list_length(pathkeys) == 0)
+ {
+ /*
+ * If we'll use a bounded heap-sort keeping just K tuples in memory, for
+ * a total number of tuple comparisons of N log2 K; but the constant
+ * factor is a bit higher than for quicksort. Tweak it so that the cost
+ * curve is continuous at the crossover point.
+ */
+ output_tuples = (heapSort) ? 2.0 * output_tuples : tuples;
+ per_tuple_cost += 2.0 * cpu_operator_cost * LOG2(output_tuples);
+
+ /* add cost provided by caller */
+ per_tuple_cost += comparison_cost;
+
+ return per_tuple_cost * tuples;
+ }
+
+ /*
+ * Computing total cost of sorting takes into account:
+ * - per column comparison function cost
+ * - we try to compute needed number of comparison per column
+ */
+ foreach(lc, pathkeys)
+ {
+ PathKey *pathkey = (PathKey*) lfirst(lc);
+ EquivalenceMember *em;
+ double nGroups,
+ correctedNGroups;
+ Cost funcCost = 1.0;
+
+ /*
+ * We believe that equivalence members aren't very different, so, to
+ * estimate cost we consider just the first member.
+ */
+ em = (EquivalenceMember *) linitial(pathkey->pk_eclass->ec_members);
+
+ if (em->em_datatype != InvalidOid)
+ {
+ /* do not lookup funcCost if the data type is the same */
+ if (prev_datatype != em->em_datatype)
+ {
+ Oid sortop;
+ QualCost cost;
+
+ sortop = get_opfamily_member(pathkey->pk_opfamily,
+ em->em_datatype, em->em_datatype,
+ pathkey->pk_strategy);
+
+ cost.startup = 0;
+ cost.per_tuple = 0;
+ add_function_cost(root, get_opcode(sortop), NULL, &cost);
+
+ /*
+ * add_function_cost returns the product of cpu_operator_cost
+ * and procost, but we need just procost, co undo that.
+ */
+ funcCost = cost.per_tuple / cpu_operator_cost;
+
+ prev_datatype = em->em_datatype;
+ }
+ }
+
+ /* factor in the width of the values in this column */
+ funcCost *= get_width_cost_multiplier(root, em->em_expr);
+
+ /* now we have per-key cost, so add to the running total */
+ totalFuncCost += funcCost;
+
+ /* remember if we have found a fake Var in pathkeys */
+ has_fake_var |= is_fake_var(em->em_expr);
+ pathkeyExprs = lappend(pathkeyExprs, em->em_expr);
+
+ /*
+ * We need to calculate the number of comparisons for this column, which
+ * requires knowing the group size. So we estimate the number of groups
+ * by calling estimate_num_groups_incremental(), which estimates the
+ * group size for "new" pathkeys.
+ *
+ * Note: estimate_num_groups_incremntal does not handle fake Vars, so use
+ * a default estimate otherwise.
+ */
+ if (!has_fake_var)
+ nGroups = estimate_num_groups_incremental(root, pathkeyExprs,
+ tuplesPerPrevGroup, NULL, NULL,
+ &cache_varinfos,
+ list_length(pathkeyExprs) - 1);
+ else if (tuples > 4.0)
+ /*
+ * Use geometric mean as estimation if there are no stats.
+ *
+ * We don't use DEFAULT_NUM_DISTINCT here, because that’s used for
+ * a single column, but here we’re dealing with multiple columns.
+ */
+ nGroups = ceil(2.0 + sqrt(tuples) * (i + 1) / list_length(pathkeys));
+ else
+ nGroups = tuples;
+
+ /*
+ * Presorted keys are not considered in the cost above, but we still do
+ * have to compare them in the qsort comparator. So make sure to factor
+ * in the cost in that case.
+ */
+ if (i >= nPresortedKeys)
+ {
+ if (heapSort)
+ {
+ /* have to keep at least one group, and a multiple of group size */
+ correctedNGroups = ceil(output_tuples / tuplesPerPrevGroup);
+ }
+ else
+ /* all groups in the input */
+ correctedNGroups = nGroups;
+
+ correctedNGroups = Max(1.0, ceil(correctedNGroups));
+
+ per_tuple_cost += totalFuncCost * LOG2(correctedNGroups);
+ }
+
+ i++;
+
+ /*
+ * Uniform distributions with all groups being of the same size are the
+ * best case, with nice smooth behavior. Real-world distributions tend
+ * not to be uniform, though, and we don’t have any reliable easy-to-use
+ * information. As a basic defense against skewed distributions, we use
+ * a 1.5 factor to make the expected group a bit larger, but we need to
+ * be careful not to make the group larger than in the preceding step.
+ */
+ tuplesPerPrevGroup = Min(tuplesPerPrevGroup,
+ ceil(1.5 * tuplesPerPrevGroup / nGroups));
+
+ /*
+ * Once we get single-row group, it means tuples in the group are unique
+ * and we can skip all remaining columns.
+ */
+ if (tuplesPerPrevGroup <= 1.0)
+ break;
+ }
+
+ list_free(pathkeyExprs);
+
+ /* per_tuple_cost is in cpu_operator_cost units */
+ per_tuple_cost *= cpu_operator_cost;
+
+ /*
+ * Accordingly to "Introduction to algorithms", Thomas H. Cormen, Charles E.
+ * Leiserson, Ronald L. Rivest, ISBN 0-07-013143-0, quicksort estimation
+ * formula has additional term proportional to number of tuples (See Chapter
+ * 8.2 and Theorem 4.1). That affects cases with a low number of tuples,
+ * approximately less than 1e4. We could implement it as an additional
+ * multiplier under the logarithm, but we use a bit more complex formula
+ * which takes into account the number of unique tuples and it’s not clear
+ * how to combine the multiplier with the number of groups. Estimate it as
+ * 10 in cpu_operator_cost unit.
+ */
+ per_tuple_cost += 10 * cpu_operator_cost;
+
+ per_tuple_cost += comparison_cost;
+
+ return tuples * per_tuple_cost;
+}
+
+/*
+ * simple wrapper just to estimate best sort path
+ */
+Cost
+cost_sort_estimate(PlannerInfo *root, List *pathkeys, int nPresortedKeys,
+ double tuples)
+{
+ return compute_cpu_sort_cost(root, pathkeys, nPresortedKeys,
+ 0, tuples, tuples, false);
+}
+
/*
* cost_tuplesort
* Determines and returns the cost of sorting a relation using tuplesort,
* number of initial runs formed and M is the merge order used by tuplesort.c.
* Since the average initial run should be about sort_mem, we have
* disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
- * cpu = comparison_cost * t * log2(t)
+ * and cpu cost (computed by compute_cpu_sort_cost()).
*
* If the sort is bounded (i.e., only the first k result tuples are needed)
* and k tuples can fit into sort_mem, we use a heap method that keeps only
* 'comparison_cost' is the extra cost per comparison, if any
* 'sort_mem' is the number of kilobytes of work memory allowed for the sort
* 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
+ * 'startup_cost' is expected to be 0 at input. If there is "input cost" it should
+ * be added by caller later
*/
static void
-cost_tuplesort(Cost *startup_cost, Cost *run_cost,
+cost_tuplesort(PlannerInfo *root, List *pathkeys, Cost *startup_cost, Cost *run_cost,
double tuples, int width,
Cost comparison_cost, int sort_mem,
double limit_tuples)
if (tuples < 2.0)
tuples = 2.0;
- /* Include the default cost-per-comparison */
- comparison_cost += 2.0 * cpu_operator_cost;
-
/* Do we have a useful LIMIT? */
if (limit_tuples > 0 && limit_tuples < tuples)
{
double log_runs;
double npageaccesses;
- /*
- * CPU costs
- *
- * Assume about N log2 N comparisons
- */
- *startup_cost = comparison_cost * tuples * LOG2(tuples);
+ /* CPU costs */
+ *startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+ comparison_cost, tuples,
+ tuples, false);
/* Disk costs */
}
else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
{
- /*
- * We'll use a bounded heap-sort keeping just K tuples in memory, for
- * a total number of tuple comparisons of N log2 K; but the constant
- * factor is a bit higher than for quicksort. Tweak it so that the
- * cost curve is continuous at the crossover point.
- */
- *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
+ /* We'll use a bounded heap-sort keeping just K tuples in memory. */
+ *startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+ comparison_cost, tuples,
+ output_tuples, true);
}
else
{
/* We'll use plain quicksort on all the input tuples */
- *startup_cost = comparison_cost * tuples * LOG2(tuples);
+ *startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+ comparison_cost, tuples,
+ tuples, false);
}
/*
double input_tuples, int width, Cost comparison_cost, int sort_mem,
double limit_tuples)
{
- Cost startup_cost = 0,
- run_cost = 0,
+ Cost startup_cost,
+ run_cost,
input_run_cost = input_total_cost - input_startup_cost;
double group_tuples,
input_groups;
* pessimistic about incremental sort performance and increase its average
* group size by half.
*/
- cost_tuplesort(&group_startup_cost, &group_run_cost,
+ cost_tuplesort(root, pathkeys, &group_startup_cost, &group_run_cost,
1.5 * group_tuples, width, comparison_cost, sort_mem,
limit_tuples);
* Startup cost of incremental sort is the startup cost of its first group
* plus the cost of its input.
*/
- startup_cost += group_startup_cost
+ startup_cost = group_startup_cost
+ input_startup_cost + group_input_run_cost;
/*
* group, plus the total cost to process the remaining groups, plus the
* remaining cost of input.
*/
- run_cost += group_run_cost
+ run_cost = group_run_cost
+ (group_run_cost + group_startup_cost) * (input_groups - 1)
+ group_input_run_cost * (input_groups - 1);
Cost startup_cost;
Cost run_cost;
- cost_tuplesort(&startup_cost, &run_cost,
+ cost_tuplesort(root, pathkeys, &startup_cost, &run_cost,
tuples, width,
comparison_cost, sort_mem,
limit_tuples);
* Determines and returns the cost of an Append node.
*/
void
-cost_append(AppendPath *apath)
+cost_append(AppendPath *apath, PlannerInfo *root)
{
ListCell *l;
* any child.
*/
cost_sort(&sort_path,
- NULL, /* doesn't currently need root */
+ root,
pathkeys,
subpath->total_cost,
subpath->rows,
if (opcintype == cur_em->em_datatype &&
equal(expr, cur_em->em_expr))
- return cur_ec; /* Match! */
+ {
+ /*
+ * Match!
+ *
+ * Copy the sortref if it wasn't set yet. That may happen if the
+ * ec was constructed from WHERE clause, i.e. it doesn't have a
+ * target reference at all.
+ */
+ if (cur_ec->ec_sortref == 0 && sortref > 0)
+ cur_ec->ec_sortref = sortref;
+ return cur_ec;
+ }
}
}
*/
#include "postgres.h"
+#include "miscadmin.h"
#include "access/stratnum.h"
#include "catalog/pg_opfamily.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/plannodes.h"
+#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "partitioning/partbounds.h"
#include "utils/lsyscache.h"
+#include "utils/selfuncs.h"
+/* Consider reordering of GROUP BY keys? */
+bool enable_group_by_reordering = true;
static bool pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys);
static bool matches_boolean_partition_clause(RestrictInfo *rinfo,
return false;
}
+/*
+ * group_keys_reorder_by_pathkeys
+ * Reorder GROUP BY keys to match pathkeys of input path.
+ *
+ * Function returns new lists (pathkeys and clauses), original GROUP BY lists
+ * stay untouched.
+ *
+ * Returns the number of GROUP BY keys with a matching pathkey.
+ */
+int
+group_keys_reorder_by_pathkeys(List *pathkeys, List **group_pathkeys,
+ List **group_clauses)
+{
+ List *new_group_pathkeys= NIL,
+ *new_group_clauses = NIL;
+ ListCell *lc;
+ int n;
+
+ if (pathkeys == NIL || *group_pathkeys == NIL)
+ return 0;
+
+ /*
+ * Walk the pathkeys (determining ordering of the input path) and see if
+ * there's a matching GROUP BY key. If we find one, we append it to the
+ * list, and do the same for the clauses.
+ *
+ * Once we find the first pathkey without a matching GROUP BY key, the rest
+ * of the pathkeys are useless and can't be used to evaluate the grouping,
+ * so we abort the loop and ignore the remaining pathkeys.
+ *
+ * XXX Pathkeys are built in a way to allow simply comparing pointers.
+ */
+ foreach(lc, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(lc);
+ SortGroupClause *sgc;
+
+ /* abort on first mismatch */
+ if (!list_member_ptr(*group_pathkeys, pathkey))
+ break;
+
+ new_group_pathkeys = lappend(new_group_pathkeys, pathkey);
+
+ sgc = get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
+ *group_clauses);
+
+ new_group_clauses = lappend(new_group_clauses, sgc);
+ }
+
+ /* remember the number of pathkeys with a matching GROUP BY key */
+ n = list_length(new_group_pathkeys);
+
+ /* append the remaining group pathkeys (will be treated as not sorted) */
+ *group_pathkeys = list_concat_unique_ptr(new_group_pathkeys,
+ *group_pathkeys);
+ *group_clauses = list_concat_unique_ptr(new_group_clauses,
+ *group_clauses);
+
+ return n;
+}
+
+/*
+ * Used to generate all permutations of a pathkey list.
+ */
+typedef struct PathkeyMutatorState {
+ List *elemsList;
+ ListCell **elemCells;
+ void **elems;
+ int *positions;
+ int mutatorNColumns;
+ int count;
+} PathkeyMutatorState;
+
+
+/*
+ * PathkeyMutatorInit
+ * Initialize state of the permutation generator.
+ *
+ * We want to generate permutations of elements in the "elems" list. We may want
+ * to skip some number of elements at the beginning (when treating as presorted)
+ * or at the end (we only permute a limited number of group keys).
+ *
+ * The list is decomposed into elements, and we also keep pointers to individual
+ * cells. This allows us to build the permuted list quickly and cheaply, without
+ * creating any copies.
+ */
+static void
+PathkeyMutatorInit(PathkeyMutatorState *state, List *elems, int start, int end)
+{
+ int i;
+ int n = end - start;
+ ListCell *lc;
+
+ memset(state, 0, sizeof(*state));
+
+ state->mutatorNColumns = n;
+
+ state->elemsList = list_copy(elems);
+
+ state->elems = palloc(sizeof(void*) * n);
+ state->elemCells = palloc(sizeof(ListCell*) * n);
+ state->positions = palloc(sizeof(int) * n);
+
+ i = 0;
+ for_each_cell(lc, state->elemsList, list_nth_cell(state->elemsList, start))
+ {
+ state->elemCells[i] = lc;
+ state->elems[i] = lfirst(lc);
+ state->positions[i] = i + 1;
+ i++;
+
+ if (i >= n)
+ break;
+ }
+}
+
+/* Swap two elements of an array. */
+static void
+PathkeyMutatorSwap(int *a, int i, int j)
+{
+ int s = a[i];
+
+ a[i] = a[j];
+ a[j] = s;
+}
+
+/*
+ * Generate the next permutation of elements.
+ */
+static bool
+PathkeyMutatorNextSet(int *a, int n)
+{
+ int j, k, l, r;
+
+ j = n - 2;
+
+ while (j >= 0 && a[j] >= a[j + 1])
+ j--;
+
+ if (j < 0)
+ return false;
+
+ k = n - 1;
+
+ while (k >= 0 && a[j] >= a[k])
+ k--;
+
+ PathkeyMutatorSwap(a, j, k);
+
+ l = j + 1;
+ r = n - 1;
+
+ while (l < r)
+ PathkeyMutatorSwap(a, l++, r--);
+
+ return true;
+}
+
+/*
+ * PathkeyMutatorNext
+ * Generate the next permutation of list of elements.
+ *
+ * Returns the next permutation (as a list of elements) or NIL if there are no
+ * more permutations.
+ */
+static List *
+PathkeyMutatorNext(PathkeyMutatorState *state)
+{
+ int i;
+
+ state->count++;
+
+ /* first permutation is original list */
+ if (state->count == 1)
+ return state->elemsList;
+
+ /* when there are no more permutations, return NIL */
+ if (!PathkeyMutatorNextSet(state->positions, state->mutatorNColumns))
+ {
+ pfree(state->elems);
+ pfree(state->elemCells);
+ pfree(state->positions);
+
+ list_free(state->elemsList);
+
+ return NIL;
+ }
+
+ /* update the list cells to point to the right elements */
+ for(i = 0; i < state->mutatorNColumns; i++)
+ lfirst(state->elemCells[i]) =
+ (void *) state->elems[ state->positions[i] - 1 ];
+
+ return state->elemsList;
+}
+
+/*
+ * Cost of comparing pathkeys.
+ */
+typedef struct PathkeySortCost
+{
+ Cost cost;
+ PathKey *pathkey;
+} PathkeySortCost;
+
+static int
+pathkey_sort_cost_comparator(const void *_a, const void *_b)
+{
+ const PathkeySortCost *a = (PathkeySortCost *) _a;
+ const PathkeySortCost *b = (PathkeySortCost *) _b;
+
+ if (a->cost < b->cost)
+ return -1;
+ else if (a->cost == b->cost)
+ return 0;
+ return 1;
+}
+
+/*
+ * get_cheapest_group_keys_order
+ * Reorders the group pathkeys/clauses to minimize the comparison cost.
+ *
+ * Given a list of pathkeys, we try to reorder them in a way that minimizes
+ * the CPU cost of sorting. This depends mainly on the cost of comparator
+ * function (the pathkeys may use different data types) and the number of
+ * distinct values in each column (which affects the number of comparator
+ * calls for the following pathkeys).
+ *
+ * In case the input is partially sorted, only the remaining pathkeys are
+ * considered.
+ *
+ * Returns true if the keys/clauses have been reordered (or might have been),
+ * and a new list is returned through an argument. The list is a new copy
+ * and may be freed using list_free.
+ *
+ * Returns false if no reordering was possible.
+ */
+static bool
+get_cheapest_group_keys_order(PlannerInfo *root, double nrows,
+ List **group_pathkeys, List **group_clauses,
+ int n_preordered)
+{
+ List *new_group_pathkeys = NIL,
+ *new_group_clauses = NIL,
+ *var_group_pathkeys;
+
+ ListCell *cell;
+ PathkeyMutatorState mstate;
+ double cheapest_sort_cost = -1.0;
+
+ int nFreeKeys;
+ int nToPermute;
+
+ /* If there are less than 2 unsorted pathkeys, we're done. */
+ if (list_length(*group_pathkeys) - n_preordered < 2)
+ return false;
+
+ /*
+ * We could exhaustively cost all possible orderings of the pathkeys, but for
+ * a large number of pathkeys it might be prohibitively expensive. So we try
+ * to apply simple cheap heuristics first - we sort the pathkeys by sort cost
+ * (as if the pathkey was sorted independently) and then check only the four
+ * cheapest pathkeys. The remaining pathkeys are kept ordered by cost.
+ *
+ * XXX This is a very simple heuristics, but likely to work fine for most
+ * cases (because the number of GROUP BY clauses tends to be lower than 4).
+ * But it ignores how the number of distinct values in each pathkey affects
+ * the following steps. It might be better to use "more expensive" pathkey
+ * first if it has many distinct values, because it then limits the number
+ * of comparisons for the remaining pathkeys. But evaluating that is likely
+ * quite the expensive.
+ */
+ nFreeKeys = list_length(*group_pathkeys) - n_preordered;
+ nToPermute = 4;
+ if (nFreeKeys > nToPermute)
+ {
+ int i;
+ PathkeySortCost *costs = palloc(sizeof(PathkeySortCost) * nFreeKeys);
+
+ /* skip the pre-ordered pathkeys */
+ cell = list_nth_cell(*group_pathkeys, n_preordered);
+
+ /* estimate cost for sorting individual pathkeys */
+ for (i = 0; cell != NULL; i++, (cell = lnext(*group_pathkeys, cell)))
+ {
+ List *to_cost = list_make1(lfirst(cell));
+
+ Assert(i < nFreeKeys);
+
+ costs[i].pathkey = lfirst(cell);
+ costs[i].cost = cost_sort_estimate(root, to_cost, 0, nrows);
+
+ pfree(to_cost);
+ }
+
+ /* sort the pathkeys by sort cost in ascending order */
+ qsort(costs, nFreeKeys, sizeof(*costs), pathkey_sort_cost_comparator);
+
+ /*
+ * Rebuild the list of pathkeys - first the preordered ones, then the
+ * rest ordered by cost.
+ */
+ new_group_pathkeys = list_truncate(list_copy(*group_pathkeys), n_preordered);
+
+ for (i = 0; i < nFreeKeys; i++)
+ new_group_pathkeys = lappend(new_group_pathkeys, costs[i].pathkey);
+
+ pfree(costs);
+ }
+ else
+ {
+ /* Copy the list, so that we can free the new list by list_free. */
+ new_group_pathkeys = list_copy(*group_pathkeys);
+ nToPermute = nFreeKeys;
+ }
+
+ Assert(list_length(new_group_pathkeys) == list_length(*group_pathkeys));
+
+ /*
+ * Generate pathkey lists with permutations of the first nToPermute pathkeys.
+ *
+ * XXX We simply calculate sort cost for each individual pathkey list, but
+ * there's room for two dynamic programming optimizations here. Firstly, we
+ * may pass the current "best" cost to cost_sort_estimate so that it can
+ * "abort" if the estimated pathkeys list exceeds it. Secondly, it could pass
+ * the return information about the position when it exceeded the cost, and
+ * we could skip all permutations with the same prefix.
+ *
+ * Imagine we've already found ordering with cost C1, and we're evaluating
+ * another ordering - cost_sort_estimate() calculates cost by adding the
+ * pathkeys one by one (more or less), and the cost only grows. If at any
+ * point it exceeds C1, it can't possibly be "better" so we can discard it.
+ * But we also know that we can discard all ordering with the same prefix,
+ * because if we're estimating (a,b,c,d) and we exceed C1 at (a,b) then the
+ * same thing will happen for any ordering with this prefix.
+ */
+ PathkeyMutatorInit(&mstate, new_group_pathkeys, n_preordered, n_preordered + nToPermute);
+
+ while((var_group_pathkeys = PathkeyMutatorNext(&mstate)) != NIL)
+ {
+ Cost cost;
+
+ cost = cost_sort_estimate(root, var_group_pathkeys, n_preordered, nrows);
+
+ if (cost < cheapest_sort_cost || cheapest_sort_cost < 0)
+ {
+ list_free(new_group_pathkeys);
+ new_group_pathkeys = list_copy(var_group_pathkeys);
+ cheapest_sort_cost = cost;
+ }
+ }
+
+ /* Reorder the group clauses according to the reordered pathkeys. */
+ foreach(cell, new_group_pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(cell);
+
+ new_group_clauses = lappend(new_group_clauses,
+ get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
+ *group_clauses));
+ }
+
+ /* Just append the rest GROUP BY clauses */
+ new_group_clauses = list_concat_unique_ptr(new_group_clauses,
+ *group_clauses);
+
+ *group_pathkeys = new_group_pathkeys;
+ *group_clauses = new_group_clauses;
+
+ return true;
+}
+
+/*
+ * get_useful_group_keys_orderings
+ * Determine which orderings of GROUP BY keys are potentially interesting.
+ *
+ * Returns list of PathKeyInfo items, each representing an interesting ordering
+ * of GROUP BY keys. Each item stores pathkeys and clauses in matching order.
+ *
+ * The function considers (and keeps) multiple group by orderings:
+ *
+ * - the original ordering, as specified by the GROUP BY clause
+ *
+ * - GROUP BY keys reordered to minimize the sort cost
+ *
+ * - GROUP BY keys reordered to match path ordering (as much as possible), with
+ * the tail reordered to minimize the sort cost
+ *
+ * - GROUP BY keys to match target ORDER BY clause (as much as possible), with
+ * the tail reordered to minimize the sort cost
+ *
+ * There are other potentially interesting orderings (e.g. it might be best to
+ * match the first ORDER BY key, order the remaining keys differently and then
+ * rely on the incremental sort to fix this), but we ignore those for now. To
+ * make this work we'd have to pretty much generate all possible permutations.
+ */
+List *
+get_useful_group_keys_orderings(PlannerInfo *root, double nrows,
+ List *path_pathkeys,
+ List *group_pathkeys, List *group_clauses)
+{
+ Query *parse = root->parse;
+ List *infos = NIL;
+ PathKeyInfo *info;
+ int n_preordered = 0;
+
+ List *pathkeys = group_pathkeys;
+ List *clauses = group_clauses;
+
+ /* always return at least the original pathkeys/clauses */
+ info = makeNode(PathKeyInfo);
+ info->pathkeys = pathkeys;
+ info->clauses = clauses;
+
+ infos = lappend(infos, info);
+
+ /*
+ * Should we try generating alternative orderings of the group keys? If not,
+ * we produce only the order specified in the query, i.e. the optimization
+ * is effectively disabled.
+ */
+ if (!enable_group_by_reordering)
+ return infos;
+
+ /* for grouping sets we can't do any reordering */
+ if (parse->groupingSets)
+ return infos;
+
+ /*
+ * Try reordering pathkeys to minimize the sort cost, ignoring both the
+ * target ordering (ORDER BY) and ordering of the input path.
+ */
+ if (get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+ n_preordered))
+ {
+ info = makeNode(PathKeyInfo);
+ info->pathkeys = pathkeys;
+ info->clauses = clauses;
+
+ infos = lappend(infos, info);
+ }
+
+ /*
+ * If the path is sorted in some way, try reordering the group keys to match
+ * as much of the ordering as possible - we get this sort for free (mostly).
+ *
+ * We must not do this when there are no grouping sets, because those use
+ * more complex logic to decide the ordering.
+ *
+ * XXX Isn't this somewhat redundant with presorted_keys? Actually, it's
+ * more a complement, because it allows benefiting from incremental sort
+ * as much as possible.
+ *
+ * XXX This does nothing if (n_preordered == 0). We shouldn't create the
+ * info in this case.
+ */
+ if (path_pathkeys)
+ {
+ n_preordered = group_keys_reorder_by_pathkeys(path_pathkeys,
+ &pathkeys,
+ &clauses);
+
+ /* reorder the tail to minimize sort cost */
+ get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+ n_preordered);
+
+ /*
+ * reorder the tail to minimize sort cost
+ *
+ * XXX Ignore the return value - there may be nothing to reorder, in
+ * which case get_cheapest_group_keys_order returns false. But we
+ * still want to keep the keys reordered to path_pathkeys.
+ */
+ info = makeNode(PathKeyInfo);
+ info->pathkeys = pathkeys;
+ info->clauses = clauses;
+
+ infos = lappend(infos, info);
+ }
+
+ /*
+ * Try reordering pathkeys to minimize the sort cost (this time consider
+ * the ORDER BY clause, but only if set debug_group_by_match_order_by).
+ */
+ if (root->sort_pathkeys)
+ {
+ n_preordered = group_keys_reorder_by_pathkeys(root->sort_pathkeys,
+ &pathkeys,
+ &clauses);
+
+ /*
+ * reorder the tail to minimize sort cost
+ *
+ * XXX Ignore the return value - there may be nothing to reorder, in
+ * which case get_cheapest_group_keys_order returns false. But we
+ * still want to keep the keys reordered to sort_pathkeys.
+ */
+ get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+ n_preordered);
+
+ /* keep the group keys reordered to match ordering of input path */
+ info = makeNode(PathKeyInfo);
+ info->pathkeys = pathkeys;
+ info->clauses = clauses;
+
+ infos = lappend(infos, info);
+ }
+
+ return infos;
+}
+
/*
* pathkeys_count_contained_in
* Same as pathkeys_contained_in, but also sets length of longest
return n_common_pathkeys;
}
+/*
+ * pathkeys_useful_for_grouping
+ * Count the number of pathkeys that are useful for grouping (instead of
+ * explicit sort)
+ *
+ * Group pathkeys could be reordered to benefit from the odering. The ordering
+ * may not be "complete" and may require incremental sort, but that's fine. So
+ * we simply count prefix pathkeys with a matching group key, and stop once we
+ * find the first pathkey without a match.
+ *
+ * So e.g. with pathkeys (a,b,c) and group keys (a,b,e) this determines (a,b)
+ * pathkeys are useful for grouping, and we might do incremental sort to get
+ * path ordered by (a,b,e).
+ *
+ * This logic is necessary to retain paths with ordeding not matching grouping
+ * keys directly, without the reordering.
+ *
+ * Returns the length of pathkey prefix with matching group keys.
+ */
+static int
+pathkeys_useful_for_grouping(PlannerInfo *root, List *pathkeys)
+{
+ ListCell *key;
+ int n = 0;
+
+ /* no special ordering requested for grouping */
+ if (root->group_pathkeys == NIL)
+ return 0;
+
+ /* unordered path */
+ if (pathkeys == NIL)
+ return 0;
+
+ /* walk the pathkeys and search for matching group key */
+ foreach(key, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(key);
+
+ /* no matching group key, we're done */
+ if (!list_member_ptr(root->group_pathkeys, pathkey))
+ break;
+
+ n++;
+ }
+
+ return n;
+}
+
/*
* truncate_useless_pathkeys
* Shorten the given pathkey list to just the useful pathkeys.
nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
+ if (nuseful2 > nuseful)
+ nuseful = nuseful2;
+ nuseful2 = pathkeys_useful_for_grouping(root, pathkeys);
if (nuseful2 > nuseful)
nuseful = nuseful2;
{
if (rel->joininfo != NIL || rel->has_eclass_joins)
return true; /* might be able to use pathkeys for merging */
+ if (root->group_pathkeys != NIL)
+ return true; /* might be able to use pathkeys for grouping */
if (root->query_pathkeys != NIL)
return true; /* might be able to use them for ordering */
return false; /* definitely useless */
*/
foreach(lc, input_rel->pathlist)
{
+ ListCell *lc2;
Path *path = (Path *) lfirst(lc);
Path *path_original = path;
- bool is_sorted;
- int presorted_keys;
- is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
- path->pathkeys,
- &presorted_keys);
+ List *pathkey_orderings = NIL;
+
+ List *group_pathkeys = root->group_pathkeys;
+ List *group_clauses = parse->groupClause;
+
+ /* generate alternative group orderings that might be useful */
+ pathkey_orderings = get_useful_group_keys_orderings(root,
+ path->rows,
+ path->pathkeys,
+ group_pathkeys,
+ group_clauses);
- if (path == cheapest_path || is_sorted)
+ Assert(list_length(pathkey_orderings) > 0);
+
+ /* process all potentially interesting grouping reorderings */
+ foreach (lc2, pathkey_orderings)
{
- /* Sort the cheapest-total path if it isn't already sorted */
- if (!is_sorted)
- path = (Path *) create_sort_path(root,
- grouped_rel,
- path,
- root->group_pathkeys,
- -1.0);
+ bool is_sorted;
+ int presorted_keys = 0;
+ PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
+
+ /* restore the path (we replace it in the loop) */
+ path = path_original;
+
+ is_sorted = pathkeys_count_contained_in(info->pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (path == cheapest_path || is_sorted)
+ {
+ /* Sort the cheapest-total path if it isn't already sorted */
+ if (!is_sorted)
+ path = (Path *) create_sort_path(root,
+ grouped_rel,
+ path,
+ info->pathkeys,
+ -1.0);
+
+ /* Now decide what to stick atop it */
+ if (parse->groupingSets)
+ {
+ consider_groupingsets_paths(root, grouped_rel,
+ path, true, can_hash,
+ gd, agg_costs, dNumGroups);
+ }
+ else if (parse->hasAggs)
+ {
+ /*
+ * We have aggregation, possibly with plain GROUP BY. Make
+ * an AggPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_SIMPLE,
+ info->clauses,
+ havingQual,
+ agg_costs,
+ dNumGroups));
+ }
+ else if (group_clauses)
+ {
+ /*
+ * We have GROUP BY without aggregation or grouping sets.
+ * Make a GroupPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ info->clauses,
+ havingQual,
+ dNumGroups));
+ }
+ else
+ {
+ /* Other cases should have been handled above */
+ Assert(false);
+ }
+ }
+
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental sort
+ * is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
+
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
+
+ /* no shared prefix, no point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1 because
+ * then presorted_keys > 0 would imply is_sorted was true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ grouped_rel,
+ path,
+ info->pathkeys,
+ presorted_keys,
+ -1.0);
/* Now decide what to stick atop it */
if (parse->groupingSets)
else if (parse->hasAggs)
{
/*
- * We have aggregation, possibly with plain GROUP BY. Make
- * an AggPath.
+ * We have aggregation, possibly with plain GROUP BY. Make an
+ * AggPath.
*/
add_path(grouped_rel, (Path *)
create_agg_path(root,
grouped_rel,
path,
grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
AGGSPLIT_SIMPLE,
- parse->groupClause,
+ info->clauses,
havingQual,
agg_costs,
dNumGroups));
else if (parse->groupClause)
{
/*
- * We have GROUP BY without aggregation or grouping sets.
- * Make a GroupPath.
+ * We have GROUP BY without aggregation or grouping sets. Make
+ * a GroupPath.
*/
add_path(grouped_rel, (Path *)
create_group_path(root,
grouped_rel,
path,
- parse->groupClause,
+ info->clauses,
havingQual,
dNumGroups));
}
Assert(false);
}
}
-
- /*
- * Now we may consider incremental sort on this path, but only
- * when the path is not already sorted and when incremental sort
- * is enabled.
- */
- if (is_sorted || !enable_incremental_sort)
- continue;
-
- /* Restore the input path (we might have added Sort on top). */
- path = path_original;
-
- /* no shared prefix, no point in building incremental sort */
- if (presorted_keys == 0)
- continue;
-
- /*
- * We should have already excluded pathkeys of length 1 because
- * then presorted_keys > 0 would imply is_sorted was true.
- */
- Assert(list_length(root->group_pathkeys) != 1);
-
- path = (Path *) create_incremental_sort_path(root,
- grouped_rel,
- path,
- root->group_pathkeys,
- presorted_keys,
- -1.0);
-
- /* Now decide what to stick atop it */
- if (parse->groupingSets)
- {
- consider_groupingsets_paths(root, grouped_rel,
- path, true, can_hash,
- gd, agg_costs, dNumGroups);
- }
- else if (parse->hasAggs)
- {
- /*
- * We have aggregation, possibly with plain GROUP BY. Make an
- * AggPath.
- */
- add_path(grouped_rel, (Path *)
- create_agg_path(root,
- grouped_rel,
- path,
- grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
- AGGSPLIT_SIMPLE,
- parse->groupClause,
- havingQual,
- agg_costs,
- dNumGroups));
- }
- else if (parse->groupClause)
- {
- /*
- * We have GROUP BY without aggregation or grouping sets. Make
- * a GroupPath.
- */
- add_path(grouped_rel, (Path *)
- create_group_path(root,
- grouped_rel,
- path,
- parse->groupClause,
- havingQual,
- dNumGroups));
- }
- else
- {
- /* Other cases should have been handled above */
- Assert(false);
- }
}
/*
{
foreach(lc, partially_grouped_rel->pathlist)
{
+ ListCell *lc2;
Path *path = (Path *) lfirst(lc);
Path *path_original = path;
- bool is_sorted;
- int presorted_keys;
- is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
- path->pathkeys,
- &presorted_keys);
+ List *pathkey_orderings = NIL;
- /*
- * Insert a Sort node, if required. But there's no point in
- * sorting anything but the cheapest path.
- */
- if (!is_sorted)
+ List *group_pathkeys = root->group_pathkeys;
+ List *group_clauses = parse->groupClause;
+
+ /* generate alternative group orderings that might be useful */
+ pathkey_orderings = get_useful_group_keys_orderings(root,
+ path->rows,
+ path->pathkeys,
+ group_pathkeys,
+ group_clauses);
+
+ Assert(list_length(pathkey_orderings) > 0);
+
+ /* process all potentially interesting grouping reorderings */
+ foreach (lc2, pathkey_orderings)
{
- if (path != partially_grouped_rel->cheapest_total_path)
- continue;
- path = (Path *) create_sort_path(root,
- grouped_rel,
- path,
- root->group_pathkeys,
- -1.0);
- }
+ bool is_sorted;
+ int presorted_keys = 0;
+ PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
- if (parse->hasAggs)
- add_path(grouped_rel, (Path *)
- create_agg_path(root,
- grouped_rel,
- path,
- grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
- AGGSPLIT_FINAL_DESERIAL,
- parse->groupClause,
- havingQual,
- agg_final_costs,
- dNumGroups));
- else
- add_path(grouped_rel, (Path *)
- create_group_path(root,
- grouped_rel,
- path,
- parse->groupClause,
- havingQual,
- dNumGroups));
+ /* restore the path (we replace it in the loop) */
+ path = path_original;
- /*
- * Now we may consider incremental sort on this path, but only
- * when the path is not already sorted and when incremental
- * sort is enabled.
- */
- if (is_sorted || !enable_incremental_sort)
- continue;
+ is_sorted = pathkeys_count_contained_in(info->pathkeys,
+ path->pathkeys,
+ &presorted_keys);
- /* Restore the input path (we might have added Sort on top). */
- path = path_original;
+ /*
+ * Insert a Sort node, if required. But there's no point in
+ * sorting anything but the cheapest path.
+ */
+ if (!is_sorted)
+ {
+ if (path != partially_grouped_rel->cheapest_total_path)
+ continue;
+ path = (Path *) create_sort_path(root,
+ grouped_rel,
+ path,
+ info->pathkeys,
+ -1.0);
+ }
- /* no shared prefix, not point in building incremental sort */
- if (presorted_keys == 0)
- continue;
+ if (parse->hasAggs)
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_FINAL_DESERIAL,
+ info->clauses,
+ havingQual,
+ agg_final_costs,
+ dNumGroups));
+ else
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ info->clauses,
+ havingQual,
+ dNumGroups));
- /*
- * We should have already excluded pathkeys of length 1
- * because then presorted_keys > 0 would imply is_sorted was
- * true.
- */
- Assert(list_length(root->group_pathkeys) != 1);
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental
+ * sort is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
- path = (Path *) create_incremental_sort_path(root,
- grouped_rel,
- path,
- root->group_pathkeys,
- presorted_keys,
- -1.0);
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
- if (parse->hasAggs)
- add_path(grouped_rel, (Path *)
- create_agg_path(root,
- grouped_rel,
- path,
- grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
- AGGSPLIT_FINAL_DESERIAL,
- parse->groupClause,
- havingQual,
- agg_final_costs,
- dNumGroups));
- else
- add_path(grouped_rel, (Path *)
- create_group_path(root,
- grouped_rel,
- path,
- parse->groupClause,
- havingQual,
- dNumGroups));
+ /* no shared prefix, not point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1
+ * because then presorted_keys > 0 would imply is_sorted was
+ * true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ grouped_rel,
+ path,
+ info->pathkeys,
+ presorted_keys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_FINAL_DESERIAL,
+ info->clauses,
+ havingQual,
+ agg_final_costs,
+ dNumGroups));
+ else
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ info->clauses,
+ havingQual,
+ dNumGroups));
+ }
}
}
}
*/
foreach(lc, input_rel->pathlist)
{
+ ListCell *lc2;
Path *path = (Path *) lfirst(lc);
- bool is_sorted;
+ Path *path_save = path;
- is_sorted = pathkeys_contained_in(root->group_pathkeys,
- path->pathkeys);
- if (path == cheapest_total_path || is_sorted)
+ List *pathkey_orderings = NIL;
+
+ List *group_pathkeys = root->group_pathkeys;
+ List *group_clauses = parse->groupClause;
+
+ /* generate alternative group orderings that might be useful */
+ pathkey_orderings = get_useful_group_keys_orderings(root,
+ path->rows,
+ path->pathkeys,
+ group_pathkeys,
+ group_clauses);
+
+ Assert(list_length(pathkey_orderings) > 0);
+
+ /* process all potentially interesting grouping reorderings */
+ foreach (lc2, pathkey_orderings)
{
- /* Sort the cheapest partial path, if it isn't already */
- if (!is_sorted)
- path = (Path *) create_sort_path(root,
- partially_grouped_rel,
- path,
- root->group_pathkeys,
- -1.0);
+ bool is_sorted;
+ int presorted_keys = 0;
+ PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
- if (parse->hasAggs)
- add_path(partially_grouped_rel, (Path *)
- create_agg_path(root,
- partially_grouped_rel,
- path,
- partially_grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
- AGGSPLIT_INITIAL_SERIAL,
- parse->groupClause,
- NIL,
- agg_partial_costs,
- dNumPartialGroups));
- else
- add_path(partially_grouped_rel, (Path *)
- create_group_path(root,
- partially_grouped_rel,
- path,
- parse->groupClause,
- NIL,
- dNumPartialGroups));
+ /* restore the path (we replace it in the loop) */
+ path = path_save;
+
+ is_sorted = pathkeys_count_contained_in(info->pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (path == cheapest_total_path || is_sorted)
+ {
+ /* Sort the cheapest partial path, if it isn't already */
+ if (!is_sorted)
+ {
+ path = (Path *) create_sort_path(root,
+ partially_grouped_rel,
+ path,
+ info->pathkeys,
+ -1.0);
+ }
+
+ if (parse->hasAggs)
+ add_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ info->clauses,
+ NIL,
+ agg_partial_costs,
+ dNumPartialGroups));
+ else
+ add_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ info->clauses,
+ NIL,
+ dNumPartialGroups));
+ }
}
}
* We can also skip the entire loop when we only have a single-item
* group_pathkeys because then we can't possibly have a presorted
* prefix of the list without having the list be fully sorted.
+ *
+ * XXX Shouldn't this also consider the group-key-reordering?
*/
if (enable_incremental_sort && list_length(root->group_pathkeys) > 1)
{
/* Similar to above logic, but for partial paths. */
foreach(lc, input_rel->partial_pathlist)
{
+ ListCell *lc2;
Path *path = (Path *) lfirst(lc);
Path *path_original = path;
- bool is_sorted;
- int presorted_keys;
- is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
- path->pathkeys,
- &presorted_keys);
+ List *pathkey_orderings = NIL;
+
+ List *group_pathkeys = root->group_pathkeys;
+ List *group_clauses = parse->groupClause;
- if (path == cheapest_partial_path || is_sorted)
+ /* generate alternative group orderings that might be useful */
+ pathkey_orderings = get_useful_group_keys_orderings(root,
+ path->rows,
+ path->pathkeys,
+ group_pathkeys,
+ group_clauses);
+
+ Assert(list_length(pathkey_orderings) > 0);
+
+ /* process all potentially interesting grouping reorderings */
+ foreach (lc2, pathkey_orderings)
{
- /* Sort the cheapest partial path, if it isn't already */
- if (!is_sorted)
- path = (Path *) create_sort_path(root,
- partially_grouped_rel,
- path,
- root->group_pathkeys,
- -1.0);
+ bool is_sorted;
+ int presorted_keys = 0;
+ PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
+
+ /* restore the path (we replace it in the loop) */
+ path = path_original;
+
+ is_sorted = pathkeys_count_contained_in(info->pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (path == cheapest_partial_path || is_sorted)
+ {
+
+ /* Sort the cheapest partial path, if it isn't already */
+ if (!is_sorted)
+ {
+ path = (Path *) create_sort_path(root,
+ partially_grouped_rel,
+ path,
+ info->pathkeys,
+ -1.0);
+ }
+
+ if (parse->hasAggs)
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ info->clauses,
+ NIL,
+ agg_partial_costs,
+ dNumPartialPartialGroups));
+ else
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ info->clauses,
+ NIL,
+ dNumPartialPartialGroups));
+ }
+
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental sort
+ * is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
+
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
+
+ /* no shared prefix, not point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1 because
+ * then presorted_keys > 0 would imply is_sorted was true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ partially_grouped_rel,
+ path,
+ info->pathkeys,
+ presorted_keys,
+ -1.0);
if (parse->hasAggs)
add_partial_path(partially_grouped_rel, (Path *)
partially_grouped_rel,
path,
partially_grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ info->clauses ? AGG_SORTED : AGG_PLAIN,
AGGSPLIT_INITIAL_SERIAL,
- parse->groupClause,
+ info->clauses,
NIL,
agg_partial_costs,
dNumPartialPartialGroups));
create_group_path(root,
partially_grouped_rel,
path,
- parse->groupClause,
+ info->clauses,
NIL,
dNumPartialPartialGroups));
}
-
- /*
- * Now we may consider incremental sort on this path, but only
- * when the path is not already sorted and when incremental sort
- * is enabled.
- */
- if (is_sorted || !enable_incremental_sort)
- continue;
-
- /* Restore the input path (we might have added Sort on top). */
- path = path_original;
-
- /* no shared prefix, not point in building incremental sort */
- if (presorted_keys == 0)
- continue;
-
- /*
- * We should have already excluded pathkeys of length 1 because
- * then presorted_keys > 0 would imply is_sorted was true.
- */
- Assert(list_length(root->group_pathkeys) != 1);
-
- path = (Path *) create_incremental_sort_path(root,
- partially_grouped_rel,
- path,
- root->group_pathkeys,
- presorted_keys,
- -1.0);
-
- if (parse->hasAggs)
- add_partial_path(partially_grouped_rel, (Path *)
- create_agg_path(root,
- partially_grouped_rel,
- path,
- partially_grouped_rel->reltarget,
- parse->groupClause ? AGG_SORTED : AGG_PLAIN,
- AGGSPLIT_INITIAL_SERIAL,
- parse->groupClause,
- NIL,
- agg_partial_costs,
- dNumPartialPartialGroups));
- else
- add_partial_path(partially_grouped_rel, (Path *)
- create_group_path(root,
- partially_grouped_rel,
- path,
- parse->groupClause,
- NIL,
- dNumPartialPartialGroups));
}
}
pathnode->path.pathkeys = child->pathkeys;
}
else
- cost_append(pathnode);
+ cost_append(pathnode, root);
/* If the caller provided a row estimate, override the computed value. */
if (rows >= 0)
estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
List **pgset, EstimationInfo *estinfo)
{
- List *varinfos = NIL;
+ return estimate_num_groups_incremental(root, groupExprs,
+ input_rows, pgset, estinfo,
+ NULL, 0);
+}
+
+/*
+ * estimate_num_groups_incremental
+ * An estimate_num_groups variant, optimized for cases that are adding the
+ * expressions incrementally (e.g. one by one).
+ */
+double
+estimate_num_groups_incremental(PlannerInfo *root, List *groupExprs,
+ double input_rows,
+ List **pgset, EstimationInfo *estinfo,
+ List **cache_varinfos, int prevNExprs)
+{
+ List *varinfos = (cache_varinfos) ? *cache_varinfos : NIL;
double srf_multiplier = 1.0;
double numdistinct;
ListCell *l;
- int i;
+ int i,
+ j;
/* Zero the estinfo output parameter, if non-NULL */
if (estinfo != NULL)
*/
numdistinct = 1.0;
- i = 0;
+ i = j = 0;
foreach(l, groupExprs)
{
Node *groupexpr = (Node *) lfirst(l);
List *varshere;
ListCell *l2;
+ /* was done on previous call */
+ if (cache_varinfos && j++ < prevNExprs)
+ {
+ if (pgset)
+ i++; /* to keep in sync with lines below */
+ continue;
+ }
+
/* is expression in this grouping set? */
if (pgset && !list_member_int(*pgset, i++))
continue;
if (varshere == NIL)
{
if (contain_volatile_functions(groupexpr))
+ {
+ if (cache_varinfos)
+ *cache_varinfos = varinfos;
return input_rows;
+ }
continue;
}
}
}
+ if (cache_varinfos)
+ *cache_varinfos = varinfos;
+
/*
* If now no Vars, we must have an all-constant or all-boolean GROUP BY
* list.
true,
NULL, NULL, NULL
},
+ {
+ {"enable_group_by_reordering", PGC_USERSET, QUERY_TUNING_METHOD,
+ gettext_noop("enable reordering of GROUP BY key"),
+ NULL,
+ GUC_EXPLAIN
+ },
+ &enable_group_by_reordering,
+ true,
+ NULL, NULL, NULL
+ },
{
{"geqo", PGC_USERSET, QUERY_TUNING_GEQO,
gettext_noop("Enables genetic query optimization."),
#enable_seqscan = on
#enable_sort = on
#enable_tidscan = on
+#enable_group_by_reordering = on
# - Planner Cost Constants -
T_EquivalenceClass,
T_EquivalenceMember,
T_PathKey,
+ T_PathKeyInfo,
T_PathTarget,
T_RestrictInfo,
T_IndexClause,
bool pk_nulls_first; /* do NULLs come before normal values? */
} PathKey;
+/*
+ * Combines information about pathkeys and the associated clauses.
+ */
+typedef struct PathKeyInfo
+{
+ NodeTag type;
+ List *pathkeys;
+ List *clauses;
+} PathKeyInfo;
+
/*
* VolatileFunctionStatus -- allows nodes to cache their
* contain_volatile_functions properties. VOLATILITY_UNKNOWN means not yet
Cost input_startup_cost, Cost input_total_cost,
double input_tuples, int width, Cost comparison_cost, int sort_mem,
double limit_tuples);
-extern void cost_append(AppendPath *path);
+extern Cost cost_sort_estimate(PlannerInfo *root, List *pathkeys,
+ int nPresortedKeys, double tuples);
+extern void cost_append(AppendPath *path, PlannerInfo *root);
extern void cost_merge_append(Path *path, PlannerInfo *root,
List *pathkeys, int n_streams,
Cost input_startup_cost, Cost input_total_cost,
extern PGDLLIMPORT int geqo_threshold;
extern PGDLLIMPORT int min_parallel_table_scan_size;
extern PGDLLIMPORT int min_parallel_index_scan_size;
+extern PGDLLIMPORT bool enable_group_by_reordering;
/* Hook for plugins to get control in set_rel_pathlist() */
typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
extern PathKeysComparison compare_pathkeys(List *keys1, List *keys2);
extern bool pathkeys_contained_in(List *keys1, List *keys2);
extern bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common);
+extern int group_keys_reorder_by_pathkeys(List *pathkeys,
+ List **group_pathkeys,
+ List **group_clauses);
+extern List *get_useful_group_keys_orderings(PlannerInfo *root, double nrows,
+ List *path_pathkeys,
+ List *pathkeys, List *clauses);
extern Path *get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
Relids required_outer,
CostSelector cost_criterion,
double input_rows, List **pgset,
EstimationInfo *estinfo);
+extern double estimate_num_groups_incremental(PlannerInfo *root, List *groupExprs,
+ double input_rows, List **pgset,
+ EstimationInfo *estinfo,
+ List **cache_varinfos, int prevNExprs);
+
extern void estimate_hash_bucket_stats(PlannerInfo *root,
Node *hashkey, double nbuckets,
Selectivity *mcv_freq,
select distinct min(f1), max(f1) from minmaxtest;
QUERY PLAN
---------------------------------------------------------------------------------------------
- Unique
+ HashAggregate
+ Group Key: $0, $1
InitPlan 1 (returns $0)
-> Limit
-> Merge Append
-> Index Only Scan using minmaxtest2i on minmaxtest2 minmaxtest_8
Index Cond: (f1 IS NOT NULL)
-> Index Only Scan Backward using minmaxtest3i on minmaxtest3 minmaxtest_9
- -> Sort
- Sort Key: ($0), ($1)
- -> Result
-(26 rows)
+ -> Result
+(25 rows)
select distinct min(f1), max(f1) from minmaxtest;
min | max
(1 row)
ROLLBACK;
+-- GROUP BY optimization by reorder columns
+SELECT
+ i AS id,
+ i/2 AS p,
+ format('%60s', i%2) AS v,
+ i/4 AS c,
+ i/8 AS d,
+ (random() * (10000/8))::int as e --the same as d but no correlation with p
+ INTO btg
+FROM
+ generate_series(1, 10000) i;
+VACUUM btg;
+ANALYZE btg;
+-- GROUP BY optimization by reorder columns by frequency
+SET enable_hashagg=off;
+SET max_parallel_workers= 0;
+SET max_parallel_workers_per_gather = 0;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Sort
+ Sort Key: p, v
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Sort
+ Sort Key: p, v
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, c, v
+ -> Sort
+ Sort Key: p, c, v
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY v, p, c;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: v, p, c
+ -> Sort
+ Sort Key: v, p, c
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c;
+ QUERY PLAN
+------------------------------
+ GroupAggregate
+ Group Key: p, d, c, v
+ -> Sort
+ Sort Key: p, d, c, v
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY v, p, d ,c;
+ QUERY PLAN
+------------------------------
+ GroupAggregate
+ Group Key: v, p, d, c
+ -> Sort
+ Sort Key: v, p, d, c
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY p, v, d ,c;
+ QUERY PLAN
+------------------------------
+ GroupAggregate
+ Group Key: p, v, d, c
+ -> Sort
+ Sort Key: p, v, d, c
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, d, e
+ -> Sort
+ Sort Key: p, d, e
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, e, d
+ -> Sort
+ Sort Key: p, e, d
+ -> Seq Scan on btg
+(5 rows)
+
+CREATE STATISTICS btg_dep ON d, e, p FROM btg;
+ANALYZE btg;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, d, e
+ -> Sort
+ Sort Key: p, d, e
+ -> Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+ QUERY PLAN
+-----------------------------
+ GroupAggregate
+ Group Key: p, e, d
+ -> Sort
+ Sort Key: p, e, d
+ -> Seq Scan on btg
+(5 rows)
+
+-- GROUP BY optimization by reorder columns by index scan
+CREATE INDEX ON btg(p, v);
+SET enable_seqscan=off;
+SET enable_bitmapscan=off;
+VACUUM btg;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+ QUERY PLAN
+------------------------------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v ORDER BY p, v;
+ QUERY PLAN
+------------------------------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+ QUERY PLAN
+------------------------------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p ORDER BY p, v;
+ QUERY PLAN
+------------------------------------------------
+ GroupAggregate
+ Group Key: p, v
+ -> Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+ QUERY PLAN
+-------------------------------------------------
+ GroupAggregate
+ Group Key: p, c, v
+ -> Incremental Sort
+ Sort Key: p, c, v
+ Presorted Key: p
+ -> Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY p, v;
+ QUERY PLAN
+-------------------------------------------------
+ GroupAggregate
+ Group Key: p, v, c
+ -> Incremental Sort
+ Sort Key: p, v, c
+ Presorted Key: p, v
+ -> Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d;
+ QUERY PLAN
+-------------------------------------------------
+ GroupAggregate
+ Group Key: p, c, d, v
+ -> Incremental Sort
+ Sort Key: p, c, d, v
+ Presorted Key: p
+ -> Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d ORDER BY p, v;
+ QUERY PLAN
+-------------------------------------------------
+ GroupAggregate
+ Group Key: p, v, c, d
+ -> Incremental Sort
+ Sort Key: p, v, c, d
+ Presorted Key: p, v
+ -> Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+DROP TABLE btg;
+RESET enable_hashagg;
+RESET max_parallel_workers;
+RESET max_parallel_workers_per_gather;
+RESET enable_seqscan;
+RESET enable_bitmapscan;
-- Secondly test the case of a parallel aggregate combiner function
-- returning NULL. For that use normal transition function, but a
-- combiner function returning NULL.
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
create table t (a int, b int, c int);
-insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
+insert into t select mod(i,10),mod(i,10),i from generate_series(1,60000) s(i);
create index on t (a);
analyze t;
set enable_incremental_sort = off;
------+----+----
bb | 12 | 13
cc | 22 | 23
- dd | | 33
ee | 42 |
+ dd | | 33
(4 rows)
-- Cases with non-nullable expressions in subquery results;
------+------+------+------+------
bb | 12 | 2 | 13 | 3
cc | 22 | 2 | 23 | 3
- dd | | | 33 | 3
ee | 42 | 2 | |
+ dd | | | 33 | 3
(4 rows)
SELECT * FROM
explain (costs off)
select d.* from d left join (select distinct * from b) s
on d.a = s.id;
- QUERY PLAN
---------------------------------------
- Merge Right Join
- Merge Cond: (b.id = d.a)
- -> Unique
- -> Sort
- Sort Key: b.id, b.c_id
- -> Seq Scan on b
+ QUERY PLAN
+---------------------------------------------
+ Merge Left Join
+ Merge Cond: (d.a = s.id)
-> Sort
Sort Key: d.a
-> Seq Scan on d
-(9 rows)
+ -> Sort
+ Sort Key: s.id
+ -> Subquery Scan on s
+ -> HashAggregate
+ Group Key: b.id, b.c_id
+ -> Seq Scan on b
+(11 rows)
-- check join removal works when uniqueness of the join condition is enforced
-- by a UNION
explain (verbose, costs off)
select * from j1
inner join (select distinct id from j3) j3 on j1.id = j3.id;
- QUERY PLAN
------------------------------------------
+ QUERY PLAN
+-----------------------------------
Nested Loop
Output: j1.id, j3.id
Inner Unique: true
Join Filter: (j1.id = j3.id)
- -> Unique
+ -> HashAggregate
Output: j3.id
- -> Sort
+ Group Key: j3.id
+ -> Seq Scan on public.j3
Output: j3.id
- Sort Key: j3.id
- -> Seq Scan on public.j3
- Output: j3.id
-> Seq Scan on public.j1
Output: j1.id
-(13 rows)
+(11 rows)
-- ensure group by clause allows the inner to become unique
explain (verbose, costs off)
select * from j1
inner join (select id from j3 group by id) j3 on j1.id = j3.id;
- QUERY PLAN
------------------------------------------
+ QUERY PLAN
+-----------------------------------
Nested Loop
Output: j1.id, j3.id
Inner Unique: true
Join Filter: (j1.id = j3.id)
- -> Group
+ -> HashAggregate
Output: j3.id
Group Key: j3.id
- -> Sort
+ -> Seq Scan on public.j3
Output: j3.id
- Sort Key: j3.id
- -> Seq Scan on public.j3
- Output: j3.id
-> Seq Scan on public.j1
Output: j1.id
-(14 rows)
+(11 rows)
drop table j1;
drop table j2;
--------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
- -> Gather
- Workers Planned: 2
- -> Parallel Append
- -> GroupAggregate
- Group Key: pagg_tab_ml.a
- Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml.a
- -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
- -> GroupAggregate
- Group Key: pagg_tab_ml_5.a
- Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_5.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
- -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
- -> GroupAggregate
- Group Key: pagg_tab_ml_2.a
- Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_2.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
- -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(27 rows)
+ -> Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(25 rows)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
a | sum | array_agg | count
-- Without ORDER BY clause, to test Gather at top-most path
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
- QUERY PLAN
----------------------------------------------------------------------------
- Gather
- Workers Planned: 2
- -> Parallel Append
- -> GroupAggregate
- Group Key: pagg_tab_ml.a
- Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml.a
- -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
- -> GroupAggregate
- Group Key: pagg_tab_ml_5.a
- Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_5.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
- -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
- -> GroupAggregate
- Group Key: pagg_tab_ml_2.a
- Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_2.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
- -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(25 rows)
+ QUERY PLAN
+---------------------------------------------------------------------
+ Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(23 rows)
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+-------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
- -> Finalize GroupAggregate
+ -> Finalize HashAggregate
Group Key: pagg_tab_para.y
Filter: (avg(pagg_tab_para.x) < '12'::numeric)
- -> Gather Merge
+ -> Gather
Workers Planned: 2
- -> Sort
- Sort Key: pagg_tab_para.y
- -> Parallel Append
- -> Partial HashAggregate
- Group Key: pagg_tab_para.y
- -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
- -> Partial HashAggregate
- Group Key: pagg_tab_para_1.y
- -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
- -> Partial HashAggregate
- Group Key: pagg_tab_para_2.y
- -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
-(19 rows)
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.y
+ -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_1.y
+ -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_2.y
+ -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(17 rows)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
y | sum | avg | count
SELECT a, b FROM prt1 FULL JOIN prt2 p2(b,a,c) USING(a,b)
WHERE a BETWEEN 490 AND 510
GROUP BY 1, 2 ORDER BY 1, 2;
- QUERY PLAN
------------------------------------------------------------------------------------------------------------------
+ QUERY PLAN
+-----------------------------------------------------------------------------------------------------------
Group
Group Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
- -> Merge Append
+ -> Sort
Sort Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
- -> Group
- Group Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
- -> Sort
- Sort Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
- -> Merge Full Join
- Merge Cond: ((prt1.a = p2.a) AND (prt1.b = p2.b))
- Filter: ((COALESCE(prt1.a, p2.a) >= 490) AND (COALESCE(prt1.a, p2.a) <= 510))
- -> Sort
- Sort Key: prt1.a, prt1.b
- -> Seq Scan on prt1_p1 prt1
- -> Sort
- Sort Key: p2.a, p2.b
- -> Seq Scan on prt2_p1 p2
- -> Group
- Group Key: (COALESCE(prt1_1.a, p2_1.a)), (COALESCE(prt1_1.b, p2_1.b))
- -> Sort
- Sort Key: (COALESCE(prt1_1.a, p2_1.a)), (COALESCE(prt1_1.b, p2_1.b))
- -> Merge Full Join
- Merge Cond: ((prt1_1.a = p2_1.a) AND (prt1_1.b = p2_1.b))
- Filter: ((COALESCE(prt1_1.a, p2_1.a) >= 490) AND (COALESCE(prt1_1.a, p2_1.a) <= 510))
- -> Sort
- Sort Key: prt1_1.a, prt1_1.b
- -> Seq Scan on prt1_p2 prt1_1
- -> Sort
- Sort Key: p2_1.a, p2_1.b
- -> Seq Scan on prt2_p2 p2_1
- -> Group
- Group Key: (COALESCE(prt1_2.a, p2_2.a)), (COALESCE(prt1_2.b, p2_2.b))
- -> Sort
- Sort Key: (COALESCE(prt1_2.a, p2_2.a)), (COALESCE(prt1_2.b, p2_2.b))
- -> Merge Full Join
- Merge Cond: ((prt1_2.a = p2_2.a) AND (prt1_2.b = p2_2.b))
- Filter: ((COALESCE(prt1_2.a, p2_2.a) >= 490) AND (COALESCE(prt1_2.a, p2_2.a) <= 510))
- -> Sort
- Sort Key: prt1_2.a, prt1_2.b
- -> Seq Scan on prt1_p3 prt1_2
- -> Sort
- Sort Key: p2_2.a, p2_2.b
- -> Seq Scan on prt2_p3 p2_2
-(43 rows)
+ -> Append
+ -> Merge Full Join
+ Merge Cond: ((prt1_1.a = p2_1.a) AND (prt1_1.b = p2_1.b))
+ Filter: ((COALESCE(prt1_1.a, p2_1.a) >= 490) AND (COALESCE(prt1_1.a, p2_1.a) <= 510))
+ -> Sort
+ Sort Key: prt1_1.a, prt1_1.b
+ -> Seq Scan on prt1_p1 prt1_1
+ -> Sort
+ Sort Key: p2_1.a, p2_1.b
+ -> Seq Scan on prt2_p1 p2_1
+ -> Merge Full Join
+ Merge Cond: ((prt1_2.a = p2_2.a) AND (prt1_2.b = p2_2.b))
+ Filter: ((COALESCE(prt1_2.a, p2_2.a) >= 490) AND (COALESCE(prt1_2.a, p2_2.a) <= 510))
+ -> Sort
+ Sort Key: prt1_2.a, prt1_2.b
+ -> Seq Scan on prt1_p2 prt1_2
+ -> Sort
+ Sort Key: p2_2.a, p2_2.b
+ -> Seq Scan on prt2_p2 p2_2
+ -> Merge Full Join
+ Merge Cond: ((prt1_3.b = p2_3.b) AND (prt1_3.a = p2_3.a))
+ Filter: ((COALESCE(prt1_3.a, p2_3.a) >= 490) AND (COALESCE(prt1_3.a, p2_3.a) <= 510))
+ -> Sort
+ Sort Key: prt1_3.b, prt1_3.a
+ -> Seq Scan on prt1_p3 prt1_3
+ -> Sort
+ Sort Key: p2_3.b, p2_3.a
+ -> Seq Scan on prt2_p3 p2_3
+(32 rows)
SELECT a, b FROM prt1 FULL JOIN prt2 p2(b,a,c) USING(a,b)
WHERE a BETWEEN 490 AND 510
enable_async_append | on
enable_bitmapscan | on
enable_gathermerge | on
+ enable_group_by_reordering | on
enable_hashagg | on
enable_hashjoin | on
enable_incremental_sort | on
enable_seqscan | on
enable_sort | on
enable_tidscan | on
-(20 rows)
+(21 rows)
-- Test that the pg_timezone_names and pg_timezone_abbrevs views are
-- more-or-less working. We can't test their contents in any great detail
union all
select distinct * from int8_tbl i82) ss
where q2 = q2;
- QUERY PLAN
-----------------------------------------------------------
- Unique
- -> Merge Append
- Sort Key: "*SELECT* 1".q1
+ QUERY PLAN
+----------------------------------------------------
+ HashAggregate
+ Group Key: "*SELECT* 1".q1
+ -> Append
-> Subquery Scan on "*SELECT* 1"
- -> Unique
- -> Sort
- Sort Key: i81.q1, i81.q2
- -> Seq Scan on int8_tbl i81
- Filter: (q2 IS NOT NULL)
+ -> HashAggregate
+ Group Key: i81.q1, i81.q2
+ -> Seq Scan on int8_tbl i81
+ Filter: (q2 IS NOT NULL)
-> Subquery Scan on "*SELECT* 2"
- -> Unique
- -> Sort
- Sort Key: i82.q1, i82.q2
- -> Seq Scan on int8_tbl i82
- Filter: (q2 IS NOT NULL)
-(15 rows)
+ -> HashAggregate
+ Group Key: i82.q1, i82.q2
+ -> Seq Scan on int8_tbl i82
+ Filter: (q2 IS NOT NULL)
+(13 rows)
select distinct q1 from
(select distinct * from int8_tbl i81
union all
select distinct * from int8_tbl i82) ss
where -q1 = q2;
- QUERY PLAN
---------------------------------------------------------
- Unique
- -> Merge Append
- Sort Key: "*SELECT* 1".q1
+ QUERY PLAN
+--------------------------------------------------
+ HashAggregate
+ Group Key: "*SELECT* 1".q1
+ -> Append
-> Subquery Scan on "*SELECT* 1"
- -> Unique
- -> Sort
- Sort Key: i81.q1, i81.q2
- -> Seq Scan on int8_tbl i81
- Filter: ((- q1) = q2)
+ -> HashAggregate
+ Group Key: i81.q1, i81.q2
+ -> Seq Scan on int8_tbl i81
+ Filter: ((- q1) = q2)
-> Subquery Scan on "*SELECT* 2"
- -> Unique
- -> Sort
- Sort Key: i82.q1, i82.q2
- -> Seq Scan on int8_tbl i82
- Filter: ((- q1) = q2)
-(15 rows)
+ -> HashAggregate
+ Group Key: i82.q1, i82.q2
+ -> Seq Scan on int8_tbl i82
+ Filter: ((- q1) = q2)
+(13 rows)
select distinct q1 from
(select distinct * from int8_tbl i81
ROLLBACK;
+-- GROUP BY optimization by reorder columns
+
+SELECT
+ i AS id,
+ i/2 AS p,
+ format('%60s', i%2) AS v,
+ i/4 AS c,
+ i/8 AS d,
+ (random() * (10000/8))::int as e --the same as d but no correlation with p
+ INTO btg
+FROM
+ generate_series(1, 10000) i;
+
+VACUUM btg;
+ANALYZE btg;
+
+-- GROUP BY optimization by reorder columns by frequency
+
+SET enable_hashagg=off;
+SET max_parallel_workers= 0;
+SET max_parallel_workers_per_gather = 0;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY v, p, d ,c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY p, v, d ,c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+
+CREATE STATISTICS btg_dep ON d, e, p FROM btg;
+ANALYZE btg;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+
+
+-- GROUP BY optimization by reorder columns by index scan
+
+CREATE INDEX ON btg(p, v);
+SET enable_seqscan=off;
+SET enable_bitmapscan=off;
+VACUUM btg;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d ORDER BY p, v;
+
+DROP TABLE btg;
+
+RESET enable_hashagg;
+RESET max_parallel_workers;
+RESET max_parallel_workers_per_gather;
+RESET enable_seqscan;
+RESET enable_bitmapscan;
+
+
-- Secondly test the case of a parallel aggregate combiner function
-- returning NULL. For that use normal transition function, but a
-- combiner function returning NULL.
set max_parallel_workers_per_gather = 2;
create table t (a int, b int, c int);
-insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
+insert into t select mod(i,10),mod(i,10),i from generate_series(1,60000) s(i);
create index on t (a);
analyze t;