Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more

Reply
ngocanhnguyen23
Frequent Visitor

Need advice on How to recreate Rshiny applications in Power BI

Hi Power BI experts,

I am new to Power BI but have been using Power Query for years. Recently, my company wanted to move our Rshiny applications to Power BI. I am the only person who design, develop and maintain those Rshiny applications within the team at present so I understand them very well but I have minimal knowledge of Power BI. Therefore, I hope to get some guidance from this community how I should do it in Power BI or whether it is doable in Power BI.

  1. Company data: Our company data is huge and very complex with multiple databases belonging to different departments. The main data warehouse is updated daily overnight while other lab databases are updated in real time when an order coming in.
  2. Rshiny application users: Sales people (about 60), each has a portfolio of about 200 customers, each customer has  400 products on average that they manage. The customers sometimes request the sales people to send them the latest report of their products. So, the whole dataset for Rshiny would be around 5mil rows for all products, all customers of all managers. Of course the report has lots of visualisations, calculations, etc. plus the full detailed table of products for that customer.
  3. The Rshiny applications are designed in a way that when a sales person enter 1 customer ID, the app will get data from our databases via SQL queries for that specific customer. So, report is real time (or only one day old if it is from the main data warehouse) and do not have a static input of 5mil rows but only about 400 rows for the customer selected via SQL queries.
  4. My question is: can Power BI does the same?: get a customer ID from dashboard user’s input => load data from multiple databases via SQL queries => do all calculations and transformations to show the final report within a few seconds or less than 1 minute at least? I have researched the following options but they are not working for me:
  • I have looked at parameters and DirectQuery in Power BI. However, once the data is loaded via DirectQuery, many DAX functions are not supported so the transformations afterwards hitting a dead end at the moment for me. Also I got many errors like DirectQuery cannot be done with text and datetime parameters, etc.
  • If I do all the calculations and transformations for all customers and sales person every day for 1 report so that data is ready to use in Power BI, that is not efficient because I will have a dataset of ~5mil rows for each report and our company has hundreds of reports running at this product level of details. Also, not all customers need their data every day. They are mainly on-request reports but ready to use by every sales person.

Can you please give some guidance and advice here?

1 REPLY 1
lbendlin
Super User
Super User

There's a term for this.  "Fighting the API".  You are asking if you can make Power BI behave like Rshiny.  You can  not.  Instead, ask yourself what your business reporting goals are, and then see if you can implement these with Power BI, based on Power BI's native capabilities.

 

Read about Direct Query, Import Mode, and Incremental Refresh. Read about RLS (Row Level Security).  Read about sharing content via apps in a Premium/Fabric capacity.  Read about Query folding.  That can alleviate some of your concerns. Pushing transforms upstream is an acceptable approach in Power BI.

 

If your company permits it, create a Fabric Trial Capacity and do a proof of concept.

Helpful resources

Announcements
March PBI video - carousel

Power BI Monthly Update - March 2025

Check out the March 2025 Power BI update to learn about new features.

March2025 Carousel

Fabric Community Update - March 2025

Find out what's new and trending in the Fabric community.

"); $(".slidesjs-pagination" ).prependTo(".pagination_sec"); $(".slidesjs-pagination" ).append("
"); $(".slidesjs-play.slidesjs-navigation").appendTo(".playpause_sec"); $(".slidesjs-stop.slidesjs-navigation").appendTo(".playpause_sec"); $(".slidesjs-pagination" ).append(""); $(".slidesjs-pagination" ).append(""); } catch(e){ } /* End: This code is added by iTalent as part of iTrack COMPL-455 */ $(".slidesjs-previous.slidesjs-navigation").attr('tabindex', '0'); $(".slidesjs-next.slidesjs-navigation").attr('tabindex', '0'); /* start: This code is added by iTalent as part of iTrack 1859082 */ $('.slidesjs-play.slidesjs-navigation').attr('id','playtitle'); $('.slidesjs-stop.slidesjs-navigation').attr('id','stoptitle'); $('.slidesjs-play.slidesjs-navigation').attr('role','tab'); $('.slidesjs-stop.slidesjs-navigation').attr('role','tab'); $('.slidesjs-play.slidesjs-navigation').attr('aria-describedby','tip1'); $('.slidesjs-stop.slidesjs-navigation').attr('aria-describedby','tip2'); /* End: This code is added by iTalent as part of iTrack 1859082 */ }); $(document).ready(function() { if($("#slides .item").length < 2 ) { /* Fixing Single Slide click issue (commented following code)*/ // $(".item").css("left","0px"); $(".item.slidesjs-slide").attr('style', 'left:0px !important'); $(".slidesjs-stop.slidesjs-navigation").trigger('click'); $(".slidesjs-previous").css("display", "none"); $(".slidesjs-next").css("display", "none"); } var items_length = $(".item.slidesjs-slide").length; $(".slidesjs-pagination-item > button").attr("aria-setsize",items_length); $(".slidesjs-next, .slidesjs-pagination-item button").attr("tabindex","-1"); $(".slidesjs-pagination-item button").attr("role", "tab"); $(".slidesjs-previous").attr("tabindex","-1"); $(".slidesjs-next").attr("aria-hidden","true"); $(".slidesjs-previous").attr("aria-hidden","true"); $(".slidesjs-next").attr("aria-label","Next"); $(".slidesjs-previous").attr("aria-label","Previous"); //$(".slidesjs-stop.slidesjs-navigation").attr("role","button"); //$(".slidesjs-play.slidesjs-navigation").attr("role","button"); $(".slidesjs-pagination").attr("role","tablist").attr("aria-busy","true"); $("li.slidesjs-pagination-item").attr("role","list"); $(".item.slidesjs-slide").attr("tabindex","-1"); $(".item.slidesjs-slide").attr("aria-label","item"); /*$(".slidesjs-stop.slidesjs-navigation").on('click', function() { var itemNumber = parseInt($('.slidesjs-pagination-item > a.active').attr('data-slidesjs-item')); $($('.item.slidesjs-slide')[itemNumber]).find('.c-call-to-action').attr('tabindex', '0'); });*/ $(".slidesjs-stop.slidesjs-navigation, .slidesjs-pagination-item > button").on('click keydown', function() { $.each($('.item.slidesjs-slide'),function(i,el){ $(el).find('.c-call-to-action').attr('tabindex', '-1'); }); var itemNumber = parseInt($('.slidesjs-pagination-item > button.active').attr('data-slidesjs-item')); $($('.item.slidesjs-slide')[itemNumber]).find('.c-call-to-action').attr('tabindex', '0'); }); $(".slidesjs-play.slidesjs-navigation").on('click', function() { $.each($('.item.slidesjs-slide'),function(i,el){ $(el).find('.c-call-to-action').attr('tabindex', '-1'); }); }); $(".slidesjs-pagination-item button").keyup(function(e){ var keyCode = e.keyCode || e.which; if (keyCode == 9) { e.preventDefault(); $(".slidesjs-stop.slidesjs-navigation").trigger('click').blur(); $("button.active").focus(); } }); $(".slidesjs-play").on("click",function (event) { if (event.handleObj.type === "click") { $(".slidesjs-stop").focus(); } else if(event.handleObj.type === "keydown"){ if (event.which === 13 && $(event.target).hasClass("slidesjs-play")) { $(".slidesjs-stop").focus(); } } }); $(".slidesjs-stop").on("click",function (event) { if (event.handleObj.type === "click") { $(".slidesjs-play").focus(); } else if(event.handleObj.type === "keydown"){ if (event.which === 13 && $(event.target).hasClass("slidesjs-stop")) { $(".slidesjs-play").focus(); } } }); $(".slidesjs-pagination-item").keydown(function(e){ switch (e.which){ case 37: //left arrow key $(".slidesjs-previous.slidesjs-navigation").trigger('click'); e.preventDefault(); break; case 39: //right arrow key $(".slidesjs-next.slidesjs-navigation").trigger('click'); e.preventDefault(); break; default: return; } $(".slidesjs-pagination-item button.active").focus(); }); }); // Start This code is added by iTalent as part of iTrack 1859082 $(document).ready(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); $("#tip2").attr("aria-hidden","true").addClass("hidden"); $(".slidesjs-stop.slidesjs-navigation, .slidesjs-play.slidesjs-navigation").attr('title', ''); $("a#playtitle").focus(function(){ $("#tip1").attr("aria-hidden","false").removeClass("hidden"); }); $("a#playtitle").mouseover(function(){ $("#tip1").attr("aria-hidden","false").removeClass("hidden"); }); $("a#playtitle").blur(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); }); $("a#playtitle").mouseleave(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); }); $("a#play").keydown(function(ev){ if (ev.which ==27) { $("#tip1").attr("aria-hidden","true").addClass("hidden"); ev.preventDefault(); return false; } }); $("a#stoptitle").focus(function(){ $("#tip2").attr("aria-hidden","false").removeClass("hidden"); }); $("a#stoptitle").mouseover(function(){ $("#tip2").attr("aria-hidden","false").removeClass("hidden"); }); $("a#stoptitle").blur(function(){ $("#tip2").attr("aria-hidden","true").addClass("hidden"); }); $("a#stoptitle").mouseleave(function(){ $("#tip2").attr("aria-hidden","true").addClass("hidden"); }); $("a#stoptitle").keydown(function(ev){ if (ev.which ==27) { $("#tip2").attr("aria-hidden","true").addClass("hidden"); ev.preventDefault(); return false; } }); }); // End This code is added by iTalent as part of iTrack 1859082
Top Solution Authors