Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more

Reply
pmscorca
Post Partisan
Post Partisan

Optimal data format to manage for an eventstream

Hi,

for a critical real-time intelligence scenario I need to use an evenstream having an Azure Event Hubs as a source and an eventhouse (KQL database) as a destination.

Obtaining very very good performance is a goal to achieve absolutely!

So, which is the optimal data format about the events to manage?

This data format has to be the same for the events in inputs to the Azure Event hubs, the events returned from the Event Hubs, the events in input to the eventstream and the ones returned from the eventstream to the KQL database, isn't it?

It is crucial to take care of each step to obtain optimal performances.

Any helps to me, please? Many thanks

1 ACCEPTED SOLUTION
v-tangjie-msft
Community Support
Community Support

Hi @pmscorca ,

 

Optimal Data Format:

JSON is often recommended for real-time data streaming scenarios due to its flexibility and ease of use. It is widely supported and can be efficiently parsed and processed by both Azure Event Hubs and KQL databases.

 

Consistency Across Steps:

Yes, maintaining a consistent data format across all stages—from input to Azure Event Hubs, through the event stream, and finally to the KQL database—is essential for optimal performance. This consistency helps in reducing the overhead of data transformation and ensures smooth data flow.

 

For more details, please refer:

Get data from Azure Event Hubs - Microsoft Fabric | Microsoft Learn

 

Best Regards,

Neeko Tang

If this post  helps, then please consider Accept it as the solution  to help the other members find it more quickly. 

View solution in original post

3 REPLIES 3
v-tangjie-msft
Community Support
Community Support

Hi @pmscorca ,

 

Optimal Data Format:

JSON is often recommended for real-time data streaming scenarios due to its flexibility and ease of use. It is widely supported and can be efficiently parsed and processed by both Azure Event Hubs and KQL databases.

 

Consistency Across Steps:

Yes, maintaining a consistent data format across all stages—from input to Azure Event Hubs, through the event stream, and finally to the KQL database—is essential for optimal performance. This consistency helps in reducing the overhead of data transformation and ensures smooth data flow.

 

For more details, please refer:

Get data from Azure Event Hubs - Microsoft Fabric | Microsoft Learn

 

Best Regards,

Neeko Tang

If this post  helps, then please consider Accept it as the solution  to help the other members find it more quickly. 

Hi, many thanks for your interesting reply.

In order to have events in JSON or Avro format as input for Azure Event Hubs, do I need to specify a Schema Group in Schema Registry, or can I manage the input events in a no-code manner?

Thanks

Hi @pmscorca ,

 

If you prefer a no-code approach, you can manage the input events without explicitly defining a schema in the Schema Registry. However, this means you won't have the benefits of schema validation and enforcement provided by the Schema Registry. You can still send and receive events in JSON or Avro format directly to and from Azure Event Hubs.

By using the Schema Registry, you can ensure that your events adhere to a defined structure, which can help in maintaining data quality and simplifying data processing.

 

Please refer:

Create an Azure Event Hubs schema registry - Azure Event Hubs | Microsoft Learn

Azure Schema Registry Concepts - Azure Event Hubs | Microsoft Learn

 

Best Regards,

Neeko Tang

If this post  helps, then please consider Accept it as the solution  to help the other members find it more quickly. 

Helpful resources

Announcements
MarchFBCvideo - carousel

Fabric Monthly Update - March 2025

Check out the March 2025 Fabric update to learn about new features.

Notebook Gallery Carousel1

NEW! Community Notebooks Gallery

Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.

April2025 Carousel

Fabric Community Update - April 2025

Find out what's new and trending in the Fabric community.

"); $(".slidesjs-pagination" ).prependTo(".pagination_sec"); $(".slidesjs-pagination" ).append("
"); $(".slidesjs-play.slidesjs-navigation").appendTo(".playpause_sec"); $(".slidesjs-stop.slidesjs-navigation").appendTo(".playpause_sec"); $(".slidesjs-pagination" ).append(""); $(".slidesjs-pagination" ).append(""); } catch(e){ } /* End: This code is added by iTalent as part of iTrack COMPL-455 */ $(".slidesjs-previous.slidesjs-navigation").attr('tabindex', '0'); $(".slidesjs-next.slidesjs-navigation").attr('tabindex', '0'); /* start: This code is added by iTalent as part of iTrack 1859082 */ $('.slidesjs-play.slidesjs-navigation').attr('id','playtitle'); $('.slidesjs-stop.slidesjs-navigation').attr('id','stoptitle'); $('.slidesjs-play.slidesjs-navigation').attr('role','tab'); $('.slidesjs-stop.slidesjs-navigation').attr('role','tab'); $('.slidesjs-play.slidesjs-navigation').attr('aria-describedby','tip1'); $('.slidesjs-stop.slidesjs-navigation').attr('aria-describedby','tip2'); /* End: This code is added by iTalent as part of iTrack 1859082 */ }); $(document).ready(function() { if($("#slides .item").length < 2 ) { /* Fixing Single Slide click issue (commented following code)*/ // $(".item").css("left","0px"); $(".item.slidesjs-slide").attr('style', 'left:0px !important'); $(".slidesjs-stop.slidesjs-navigation").trigger('click'); $(".slidesjs-previous").css("display", "none"); $(".slidesjs-next").css("display", "none"); } var items_length = $(".item.slidesjs-slide").length; $(".slidesjs-pagination-item > button").attr("aria-setsize",items_length); $(".slidesjs-next, .slidesjs-pagination-item button").attr("tabindex","-1"); $(".slidesjs-pagination-item button").attr("role", "tab"); $(".slidesjs-previous").attr("tabindex","-1"); $(".slidesjs-next").attr("aria-hidden","true"); $(".slidesjs-previous").attr("aria-hidden","true"); $(".slidesjs-next").attr("aria-label","Next"); $(".slidesjs-previous").attr("aria-label","Previous"); //$(".slidesjs-stop.slidesjs-navigation").attr("role","button"); //$(".slidesjs-play.slidesjs-navigation").attr("role","button"); $(".slidesjs-pagination").attr("role","tablist").attr("aria-busy","true"); $("li.slidesjs-pagination-item").attr("role","list"); $(".item.slidesjs-slide").attr("tabindex","-1"); $(".item.slidesjs-slide").attr("aria-label","item"); /*$(".slidesjs-stop.slidesjs-navigation").on('click', function() { var itemNumber = parseInt($('.slidesjs-pagination-item > a.active').attr('data-slidesjs-item')); $($('.item.slidesjs-slide')[itemNumber]).find('.c-call-to-action').attr('tabindex', '0'); });*/ $(".slidesjs-stop.slidesjs-navigation, .slidesjs-pagination-item > button").on('click keydown', function() { $.each($('.item.slidesjs-slide'),function(i,el){ $(el).find('.c-call-to-action').attr('tabindex', '-1'); }); var itemNumber = parseInt($('.slidesjs-pagination-item > button.active').attr('data-slidesjs-item')); $($('.item.slidesjs-slide')[itemNumber]).find('.c-call-to-action').attr('tabindex', '0'); }); $(".slidesjs-play.slidesjs-navigation").on('click', function() { $.each($('.item.slidesjs-slide'),function(i,el){ $(el).find('.c-call-to-action').attr('tabindex', '-1'); }); }); $(".slidesjs-pagination-item button").keyup(function(e){ var keyCode = e.keyCode || e.which; if (keyCode == 9) { e.preventDefault(); $(".slidesjs-stop.slidesjs-navigation").trigger('click').blur(); $("button.active").focus(); } }); $(".slidesjs-play").on("click",function (event) { if (event.handleObj.type === "click") { $(".slidesjs-stop").focus(); } else if(event.handleObj.type === "keydown"){ if (event.which === 13 && $(event.target).hasClass("slidesjs-play")) { $(".slidesjs-stop").focus(); } } }); $(".slidesjs-stop").on("click",function (event) { if (event.handleObj.type === "click") { $(".slidesjs-play").focus(); } else if(event.handleObj.type === "keydown"){ if (event.which === 13 && $(event.target).hasClass("slidesjs-stop")) { $(".slidesjs-play").focus(); } } }); $(".slidesjs-pagination-item").keydown(function(e){ switch (e.which){ case 37: //left arrow key $(".slidesjs-previous.slidesjs-navigation").trigger('click'); e.preventDefault(); break; case 39: //right arrow key $(".slidesjs-next.slidesjs-navigation").trigger('click'); e.preventDefault(); break; default: return; } $(".slidesjs-pagination-item button.active").focus(); }); }); // Start This code is added by iTalent as part of iTrack 1859082 $(document).ready(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); $("#tip2").attr("aria-hidden","true").addClass("hidden"); $(".slidesjs-stop.slidesjs-navigation, .slidesjs-play.slidesjs-navigation").attr('title', ''); $("a#playtitle").focus(function(){ $("#tip1").attr("aria-hidden","false").removeClass("hidden"); }); $("a#playtitle").mouseover(function(){ $("#tip1").attr("aria-hidden","false").removeClass("hidden"); }); $("a#playtitle").blur(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); }); $("a#playtitle").mouseleave(function(){ $("#tip1").attr("aria-hidden","true").addClass("hidden"); }); $("a#play").keydown(function(ev){ if (ev.which ==27) { $("#tip1").attr("aria-hidden","true").addClass("hidden"); ev.preventDefault(); return false; } }); $("a#stoptitle").focus(function(){ $("#tip2").attr("aria-hidden","false").removeClass("hidden"); }); $("a#stoptitle").mouseover(function(){ $("#tip2").attr("aria-hidden","false").removeClass("hidden"); }); $("a#stoptitle").blur(function(){ $("#tip2").attr("aria-hidden","true").addClass("hidden"); }); $("a#stoptitle").mouseleave(function(){ $("#tip2").attr("aria-hidden","true").addClass("hidden"); }); $("a#stoptitle").keydown(function(ev){ if (ev.which ==27) { $("#tip2").attr("aria-hidden","true").addClass("hidden"); ev.preventDefault(); return false; } }); }); // End This code is added by iTalent as part of iTrack 1859082
Top Solution Authors