|
| 1 | +""" |
| 2 | +Project Euler Problem 68: https://projecteuler.net/problem=68 |
| 3 | +
|
| 4 | +Magic 5-gon ring |
| 5 | +
|
| 6 | +Problem Statement: |
| 7 | +Consider the following "magic" 3-gon ring, |
| 8 | +filled with the numbers 1 to 6, and each line adding to nine. |
| 9 | +
|
| 10 | + 4 |
| 11 | + \ |
| 12 | + 3 |
| 13 | + / \ |
| 14 | + 1 - 2 - 6 |
| 15 | + / |
| 16 | + 5 |
| 17 | +
|
| 18 | +Working clockwise, and starting from the group of three |
| 19 | +with the numerically lowest external node (4,3,2 in this example), |
| 20 | +each solution can be described uniquely. |
| 21 | +For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3. |
| 22 | +
|
| 23 | +It is possible to complete the ring with four different totals: 9, 10, 11, and 12. |
| 24 | +There are eight solutions in total. |
| 25 | +Total Solution Set |
| 26 | +9 4,2,3; 5,3,1; 6,1,2 |
| 27 | +9 4,3,2; 6,2,1; 5,1,3 |
| 28 | +10 2,3,5; 4,5,1; 6,1,3 |
| 29 | +10 2,5,3; 6,3,1; 4,1,5 |
| 30 | +11 1,4,6; 3,6,2; 5,2,4 |
| 31 | +11 1,6,4; 5,4,2; 3,2,6 |
| 32 | +12 1,5,6; 2,6,4; 3,4,5 |
| 33 | +12 1,6,5; 3,5,4; 2,4,6 |
| 34 | +
|
| 35 | +By concatenating each group it is possible to form 9-digit strings; |
| 36 | +the maximum string for a 3-gon ring is 432621513. |
| 37 | +
|
| 38 | +Using the numbers 1 to 10, and depending on arrangements, |
| 39 | +it is possible to form 16- and 17-digit strings. |
| 40 | +What is the maximum 16-digit string for a "magic" 5-gon ring? |
| 41 | +""" |
| 42 | + |
| 43 | +from itertools import permutations |
| 44 | + |
| 45 | + |
| 46 | +def solution(gon_side: int = 5) -> int: |
| 47 | + """ |
| 48 | + Find the maximum number for a "magic" gon_side-gon ring |
| 49 | +
|
| 50 | + The gon_side parameter should be in the range [3, 5], |
| 51 | + other side numbers aren't tested |
| 52 | +
|
| 53 | + >>> solution(3) |
| 54 | + 432621513 |
| 55 | + >>> solution(4) |
| 56 | + 426561813732 |
| 57 | + >>> solution() |
| 58 | + 6531031914842725 |
| 59 | + >>> solution(6) |
| 60 | + Traceback (most recent call last): |
| 61 | + ValueError: gon_side must be in the range [3, 5] |
| 62 | + """ |
| 63 | + if gon_side < 3 or gon_side > 5: |
| 64 | + raise ValueError("gon_side must be in the range [3, 5]") |
| 65 | + |
| 66 | + # Since it's 16, we know 10 is on the outer ring |
| 67 | + # Put the big numbers at the end so that they are never the first number |
| 68 | + small_numbers = list(range(gon_side + 1, 0, -1)) |
| 69 | + big_numbers = list(range(gon_side + 2, gon_side * 2 + 1)) |
| 70 | + |
| 71 | + for perm in permutations(small_numbers + big_numbers): |
| 72 | + numbers = generate_gon_ring(gon_side, list(perm)) |
| 73 | + if is_magic_gon(numbers): |
| 74 | + return int("".join(str(n) for n in numbers)) |
| 75 | + |
| 76 | + raise ValueError(f"Magic {gon_side}-gon ring is impossible") |
| 77 | + |
| 78 | + |
| 79 | +def generate_gon_ring(gon_side: int, perm: list[int]) -> list[int]: |
| 80 | + """ |
| 81 | + Generate a gon_side-gon ring from a permutation state |
| 82 | + The permutation state is the ring, but every duplicate is removed |
| 83 | +
|
| 84 | + >>> generate_gon_ring(3, [4, 2, 3, 5, 1, 6]) |
| 85 | + [4, 2, 3, 5, 3, 1, 6, 1, 2] |
| 86 | + >>> generate_gon_ring(5, [6, 5, 4, 3, 2, 1, 7, 8, 9, 10]) |
| 87 | + [6, 5, 4, 3, 4, 2, 1, 2, 7, 8, 7, 9, 10, 9, 5] |
| 88 | + """ |
| 89 | + result = [0] * (gon_side * 3) |
| 90 | + result[0:3] = perm[0:3] |
| 91 | + perm.append(perm[1]) |
| 92 | + |
| 93 | + magic_number = 1 if gon_side < 5 else 2 |
| 94 | + |
| 95 | + for i in range(1, len(perm) // 3 + magic_number): |
| 96 | + result[3 * i] = perm[2 * i + 1] |
| 97 | + result[3 * i + 1] = result[3 * i - 1] |
| 98 | + result[3 * i + 2] = perm[2 * i + 2] |
| 99 | + |
| 100 | + return result |
| 101 | + |
| 102 | + |
| 103 | +def is_magic_gon(numbers: list[int]) -> bool: |
| 104 | + """ |
| 105 | + Check if the solution set is a magic n-gon ring |
| 106 | + Check that the first number is the smallest number on the outer ring |
| 107 | + Take a list, and check if the sum of each 3 numbers chunk is equal to the same total |
| 108 | +
|
| 109 | + >>> is_magic_gon([4, 2, 3, 5, 3, 1, 6, 1, 2]) |
| 110 | + True |
| 111 | + >>> is_magic_gon([4, 3, 2, 6, 2, 1, 5, 1, 3]) |
| 112 | + True |
| 113 | + >>> is_magic_gon([2, 3, 5, 4, 5, 1, 6, 1, 3]) |
| 114 | + True |
| 115 | + >>> is_magic_gon([1, 2, 3, 4, 5, 6, 7, 8, 9]) |
| 116 | + False |
| 117 | + >>> is_magic_gon([1]) |
| 118 | + Traceback (most recent call last): |
| 119 | + ValueError: a gon ring should have a length that is a multiple of 3 |
| 120 | + """ |
| 121 | + if len(numbers) % 3 != 0: |
| 122 | + raise ValueError("a gon ring should have a length that is a multiple of 3") |
| 123 | + |
| 124 | + if min(numbers[::3]) != numbers[0]: |
| 125 | + return False |
| 126 | + |
| 127 | + total = sum(numbers[:3]) |
| 128 | + |
| 129 | + return all(sum(numbers[i : i + 3]) == total for i in range(3, len(numbers), 3)) |
| 130 | + |
| 131 | + |
| 132 | +if __name__ == "__main__": |
| 133 | + print(solution()) |
0 commit comments