-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy paths-aridou.adb
678 lines (529 loc) · 21.1 KB
/
s-aridou.adb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . A R I T H _ D O U B L E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Conversion;
package body System.Arith_Double is
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
function To_Uns is new Ada.Unchecked_Conversion (Double_Int, Double_Uns);
function To_Int is new Ada.Unchecked_Conversion (Double_Uns, Double_Int);
Double_Size : constant Natural := Double_Int'Size;
Single_Size : constant Natural := Double_Int'Size / 2;
-----------------------
-- Local Subprograms --
-----------------------
function "+" (A, B : Single_Uns) return Double_Uns is
(Double_Uns (A) + Double_Uns (B));
function "+" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A + Double_Uns (B));
-- Length doubling additions
function "*" (A, B : Single_Uns) return Double_Uns is
(Double_Uns (A) * Double_Uns (B));
-- Length doubling multiplication
function "/" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A / Double_Uns (B));
-- Length doubling division
function "&" (Hi, Lo : Single_Uns) return Double_Uns is
(Shift_Left (Double_Uns (Hi), Single_Size) or Double_Uns (Lo));
-- Concatenate hi, lo values to form double result
function "abs" (X : Double_Int) return Double_Uns is
(if X = Double_Int'First
then 2 ** (Double_Size - 1)
else Double_Uns (Double_Int'(abs X)));
-- Convert absolute value of X to unsigned. Note that we can't just use
-- the expression of the Else since it overflows for X = Double_Int'First.
function "rem" (A : Double_Uns; B : Single_Uns) return Double_Uns is
(A rem Double_Uns (B));
-- Length doubling remainder
function Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) return Boolean;
-- Determines if (3 * Single_Size)-bit value X1&X2&X3 <= Y1&Y2&Y3
function Lo (A : Double_Uns) return Single_Uns is
(Single_Uns (A and (2 ** Single_Size - 1)));
-- Low order half of double value
function Hi (A : Double_Uns) return Single_Uns is
(Single_Uns (Shift_Right (A, Single_Size)));
-- High order half of double value
procedure Sub3 (X1, X2, X3 : in out Single_Uns; Y1, Y2, Y3 : Single_Uns);
-- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 mod 2 ** (3 * Single_Size)
function To_Neg_Int (A : Double_Uns) return Double_Int;
-- Convert to negative integer equivalent. If the input is in the range
-- 0 .. 2 ** (Double_Size - 1), then the corresponding nonpositive signed
-- integer (obtained by negating the given value) is returned, otherwise
-- constraint error is raised.
function To_Pos_Int (A : Double_Uns) return Double_Int;
-- Convert to positive integer equivalent. If the input is in the range
-- 0 .. 2 ** (Double_Size - 1) - 1, then the corresponding non-negative
-- signed integer is returned, otherwise constraint error is raised.
procedure Raise_Error;
pragma No_Return (Raise_Error);
-- Raise constraint error with appropriate message
--------------------------
-- Add_With_Ovflo_Check --
--------------------------
function Add_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
R : constant Double_Int := To_Int (To_Uns (X) + To_Uns (Y));
begin
if X >= 0 then
if Y < 0 or else R >= 0 then
return R;
end if;
else -- X < 0
if Y > 0 or else R < 0 then
return R;
end if;
end if;
Raise_Error;
end Add_With_Ovflo_Check;
-------------------
-- Double_Divide --
-------------------
procedure Double_Divide
(X, Y, Z : Double_Int;
Q, R : out Double_Int;
Round : Boolean)
is
Xu : constant Double_Uns := abs X;
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
Zu : constant Double_Uns := abs Z;
Zhi : constant Single_Uns := Hi (Zu);
Zlo : constant Single_Uns := Lo (Zu);
T1, T2 : Double_Uns;
Du, Qu, Ru : Double_Uns;
Den_Pos : Boolean;
begin
if Yu = 0 or else Zu = 0 then
Raise_Error;
end if;
-- Set final signs (RM 4.5.5(27-30))
Den_Pos := (Y < 0) = (Z < 0);
-- Compute Y * Z. Note that if the result overflows Double_Uns, then
-- the rounded result is zero, except for the very special case where
-- X = -2 ** (Double_Size - 1) and abs(Y*Z) = 2 ** Double_Size, when
-- Round is True.
if Yhi /= 0 then
if Zhi /= 0 then
-- Handle the special case when Round is True
if Yhi = 1
and then Zhi = 1
and then Ylo = 0
and then Zlo = 0
and then X = Double_Int'First
and then Round
then
Q := (if Den_Pos then -1 else 1);
else
Q := 0;
end if;
R := X;
return;
else
T2 := Yhi * Zlo;
end if;
else
T2 := Ylo * Zhi;
end if;
T1 := Ylo * Zlo;
T2 := T2 + Hi (T1);
if Hi (T2) /= 0 then
-- Handle the special case when Round is True
if Hi (T2) = 1
and then Lo (T2) = 0
and then Lo (T1) = 0
and then X = Double_Int'First
and then Round
then
Q := (if Den_Pos then -1 else 1);
else
Q := 0;
end if;
R := X;
return;
end if;
Du := Lo (T2) & Lo (T1);
-- Check overflow case of largest negative number divided by -1
if X = Double_Int'First and then Du = 1 and then not Den_Pos then
Raise_Error;
end if;
-- Perform the actual division
pragma Assert (Du /= 0);
-- Multiplication of 2-limb arguments Yu and Zu leads to 4-limb result
-- (where each limb is a single value). Cases where 4 limbs are needed
-- require Yhi/=0 and Zhi/=0 and lead to early exit. Remaining cases
-- where 3 limbs are needed correspond to Hi(T2)/=0 and lead to early
-- exit. Thus, at this point, the result fits in 2 limbs which are
-- exactly Lo(T2) and Lo(T1), which corresponds to the value of Du.
-- As the case where one of Yu or Zu is null also led to early exit,
-- we have Du/=0 here.
Qu := Xu / Du;
Ru := Xu rem Du;
-- Deal with rounding case
if Round and then Ru > (Du - Double_Uns'(1)) / Double_Uns'(2) then
Qu := Qu + Double_Uns'(1);
end if;
-- Case of dividend (X) sign positive
if X >= 0 then
R := To_Int (Ru);
Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));
-- Case of dividend (X) sign negative
-- We perform the unary minus operation on the unsigned value
-- before conversion to signed, to avoid a possible overflow
-- for value -2 ** (Double_Size - 1), both for computing R and Q.
else
R := To_Int (-Ru);
Q := (if Den_Pos then To_Int (-Qu) else To_Int (Qu));
end if;
end Double_Divide;
---------
-- Le3 --
---------
function Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) return Boolean is
begin
if X1 < Y1 then
return True;
elsif X1 > Y1 then
return False;
elsif X2 < Y2 then
return True;
elsif X2 > Y2 then
return False;
else
return X3 <= Y3;
end if;
end Le3;
-------------------------------
-- Multiply_With_Ovflo_Check --
-------------------------------
function Multiply_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
Xu : constant Double_Uns := abs X;
Xhi : constant Single_Uns := Hi (Xu);
Xlo : constant Single_Uns := Lo (Xu);
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
T1, T2 : Double_Uns;
begin
if Xhi /= 0 then
if Yhi /= 0 then
Raise_Error;
else
T2 := Xhi * Ylo;
end if;
elsif Yhi /= 0 then
T2 := Xlo * Yhi;
else -- Yhi = Xhi = 0
T2 := 0;
end if;
-- Here we have T2 set to the contribution to the upper half of the
-- result from the upper halves of the input values.
T1 := Xlo * Ylo;
T2 := T2 + Hi (T1);
if Hi (T2) /= 0 then
Raise_Error;
end if;
T2 := Lo (T2) & Lo (T1);
if X >= 0 then
if Y >= 0 then
return To_Pos_Int (T2);
pragma Annotate (CodePeer, Intentional, "precondition",
"Intentional Unsigned->Signed conversion");
else
return To_Neg_Int (T2);
end if;
else -- X < 0
if Y < 0 then
return To_Pos_Int (T2);
pragma Annotate (CodePeer, Intentional, "precondition",
"Intentional Unsigned->Signed conversion");
else
return To_Neg_Int (T2);
end if;
end if;
end Multiply_With_Ovflo_Check;
-----------------
-- Raise_Error --
-----------------
procedure Raise_Error is
begin
raise Constraint_Error with "Double arithmetic overflow";
end Raise_Error;
-------------------
-- Scaled_Divide --
-------------------
procedure Scaled_Divide
(X, Y, Z : Double_Int;
Q, R : out Double_Int;
Round : Boolean)
is
Xu : constant Double_Uns := abs X;
Xhi : constant Single_Uns := Hi (Xu);
Xlo : constant Single_Uns := Lo (Xu);
Yu : constant Double_Uns := abs Y;
Yhi : constant Single_Uns := Hi (Yu);
Ylo : constant Single_Uns := Lo (Yu);
Zu : Double_Uns := abs Z;
Zhi : Single_Uns := Hi (Zu);
Zlo : Single_Uns := Lo (Zu);
D : array (1 .. 4) of Single_Uns;
-- The dividend, four digits (D(1) is high order)
Qd : array (1 .. 2) of Single_Uns;
-- The quotient digits, two digits (Qd(1) is high order)
S1, S2, S3 : Single_Uns;
-- Value to subtract, three digits (S1 is high order)
Qu : Double_Uns;
Ru : Double_Uns;
-- Unsigned quotient and remainder
Mask : Single_Uns;
-- Mask of bits used to compute the scaling factor below
Scale : Natural;
-- Scaling factor used for multiple-precision divide. Dividend and
-- Divisor are multiplied by 2 ** Scale, and the final remainder is
-- divided by the scaling factor. The reason for this scaling is to
-- allow more accurate estimation of quotient digits.
Shift : Natural;
-- Shift factor used to compute the scaling factor above
T1, T2, T3 : Double_Uns;
-- Temporary values
begin
-- First do the multiplication, giving the four digit dividend
T1 := Xlo * Ylo;
D (4) := Lo (T1);
D (3) := Hi (T1);
if Yhi /= 0 then
T1 := Xlo * Yhi;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
T3 := D (2) + Hi (T1);
T3 := T3 + Hi (T2);
D (2) := Lo (T3);
D (1) := Hi (T3);
T1 := (D (1) & D (2)) + Double_Uns'(Xhi * Yhi);
D (1) := Hi (T1);
D (2) := Lo (T1);
else
D (1) := 0;
end if;
else
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
else
D (2) := 0;
end if;
D (1) := 0;
end if;
-- Now it is time for the dreaded multiple precision division. First an
-- easy case, check for the simple case of a one digit divisor.
if Zhi = 0 then
if D (1) /= 0 or else D (2) >= Zlo then
Raise_Error;
-- Here we are dividing at most three digits by one digit
else
T1 := D (2) & D (3);
T2 := Lo (T1 rem Zlo) & D (4);
Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
Ru := T2 rem Zlo;
end if;
-- If divisor is double digit and dividend is too large, raise error
elsif (D (1) & D (2)) >= Zu then
Raise_Error;
-- This is the complex case where we definitely have a double digit
-- divisor and a dividend of at least three digits. We use the classical
-- multiple-precision division algorithm (see section (4.3.1) of Knuth's
-- "The Art of Computer Programming", Vol. 2 for a description
-- (algorithm D).
else
-- First normalize the divisor so that it has the leading bit on.
-- We do this by finding the appropriate left shift amount.
Shift := Single_Size / 2;
Mask := Shift_Left (2 ** (Single_Size / 2) - 1, Shift);
Scale := 0;
while Shift /= 0 loop
if (Hi (Zu) and Mask) = 0 then
Scale := Scale + Shift;
Zu := Shift_Left (Zu, Shift);
end if;
Shift := Shift / 2;
Mask := Shift_Left (Mask, Shift);
end loop;
Zhi := Hi (Zu);
Zlo := Lo (Zu);
pragma Assert (Zhi /= 0);
-- We have Hi(Zu)/=0 before normalization. The sequence of Shift_Left
-- operations results in the leading bit of Zu being 1 by moving the
-- leftmost 1-bit in Zu to leading position, thus Zhi=Hi(Zu)/=0 here.
-- Note that when we scale up the dividend, it still fits in four
-- digits, since we already tested for overflow, and scaling does
-- not change the invariant that (D (1) & D (2)) < Zu.
T1 := Shift_Left (D (1) & D (2), Scale);
D (1) := Hi (T1);
T2 := Shift_Left (0 & D (3), Scale);
D (2) := Lo (T1) or Hi (T2);
T3 := Shift_Left (0 & D (4), Scale);
D (3) := Lo (T2) or Hi (T3);
D (4) := Lo (T3);
-- Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)
for J in 0 .. 1 loop
-- Compute next quotient digit. We have to divide three digits by
-- two digits. We estimate the quotient by dividing the leading
-- two digits by the leading digit. Given the scaling we did above
-- which ensured the first bit of the divisor is set, this gives
-- an estimate of the quotient that is at most two too high.
Qd (J + 1) := (if D (J + 1) = Zhi
then 2 ** Single_Size - 1
else Lo ((D (J + 1) & D (J + 2)) / Zhi));
-- Compute amount to subtract
T1 := Qd (J + 1) * Zlo;
T2 := Qd (J + 1) * Zhi;
S3 := Lo (T1);
T1 := Hi (T1) + Lo (T2);
S2 := Lo (T1);
S1 := Hi (T1) + Hi (T2);
-- Adjust quotient digit if it was too high
-- We use the version of the algorithm in the 2nd Edition of
-- "The Art of Computer Programming". This had a bug not
-- discovered till 1995, see Vol 2 errata:
-- http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz.
-- Under rare circumstances the expression in the test could
-- overflow. This version was further corrected in 2005, see
-- Vol 2 errata:
-- http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
-- This implementation is not impacted by these bugs, due to the
-- use of a word-size comparison done in function Le3 instead of
-- a comparison on two-word integer quantities in the original
-- algorithm.
loop
exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
Qd (J + 1) := Qd (J + 1) - 1;
Sub3 (S1, S2, S3, 0, Zhi, Zlo);
end loop;
-- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
end loop;
-- The two quotient digits are now set, and the remainder of the
-- scaled division is in D3&D4. To get the remainder for the
-- original unscaled division, we rescale this dividend.
-- We rescale the divisor as well, to make the proper comparison
-- for rounding below.
Qu := Qd (1) & Qd (2);
Ru := Shift_Right (D (3) & D (4), Scale);
Zu := Shift_Right (Zu, Scale);
end if;
-- Deal with rounding case
if Round and then Ru > (Zu - Double_Uns'(1)) / Double_Uns'(2) then
-- Protect against wrapping around when rounding, by signaling
-- an overflow when the quotient is too large.
if Qu = Double_Uns'Last then
Raise_Error;
end if;
Qu := Qu + Double_Uns'(1);
end if;
-- Set final signs (RM 4.5.5(27-30))
-- Case of dividend (X * Y) sign positive
if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
R := To_Pos_Int (Ru);
Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
-- Case of dividend (X * Y) sign negative
else
R := To_Neg_Int (Ru);
Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
end if;
end Scaled_Divide;
----------
-- Sub3 --
----------
procedure Sub3 (X1, X2, X3 : in out Single_Uns; Y1, Y2, Y3 : Single_Uns) is
begin
if Y3 > X3 then
if X2 = 0 then
X1 := X1 - 1;
end if;
X2 := X2 - 1;
end if;
X3 := X3 - Y3;
if Y2 > X2 then
X1 := X1 - 1;
end if;
X2 := X2 - Y2;
X1 := X1 - Y1;
end Sub3;
-------------------------------
-- Subtract_With_Ovflo_Check --
-------------------------------
function Subtract_With_Ovflo_Check (X, Y : Double_Int) return Double_Int is
R : constant Double_Int := To_Int (To_Uns (X) - To_Uns (Y));
begin
if X >= 0 then
if Y > 0 or else R >= 0 then
return R;
end if;
else -- X < 0
if Y <= 0 or else R < 0 then
return R;
end if;
end if;
Raise_Error;
end Subtract_With_Ovflo_Check;
----------------
-- To_Neg_Int --
----------------
function To_Neg_Int (A : Double_Uns) return Double_Int is
R : constant Double_Int :=
(if A = 2 ** (Double_Size - 1) then Double_Int'First else -To_Int (A));
-- Note that we can't just use the expression of the Else, because it
-- overflows for A = 2 ** (Double_Size - 1).
begin
if R <= 0 then
return R;
else
Raise_Error;
end if;
end To_Neg_Int;
----------------
-- To_Pos_Int --
----------------
function To_Pos_Int (A : Double_Uns) return Double_Int is
R : constant Double_Int := To_Int (A);
begin
if R >= 0 then
return R;
else
Raise_Error;
end if;
end To_Pos_Int;
end System.Arith_Double;