Skip to content

Commit 1ca0890

Browse files
committed
fix call to pivot function with pandas 2.0
1 parent 7c92e0e commit 1ca0890

7 files changed

+28
-24961
lines changed

examples/plot_benchmark_associative.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@
6767
obs.append(t2)
6868

6969
df = DataFrame(obs)
70-
piv = df.pivot("size", "formula", "average")
70+
piv = df.pivot(index="size", columns="formula", values="average")
7171
piv
7272

7373
###########################################

examples/plot_benchmark_dot.py

+4-2
Original file line numberDiff line numberDiff line change
@@ -89,9 +89,11 @@
8989
cc['N'] = cc['x_name']
9090

9191
fig, ax = plt.subplots(1, 2, figsize=(10, 4))
92-
cc[cc.N <= 1100].pivot('N', 'fct', 'average').plot(
92+
cc[cc.N <= 1100].pivot(
93+
index='N', columns='fct', values='average').plot(
9394
logy=True, logx=True, ax=ax[0])
94-
cc[cc.fct != 'pydot'].pivot('N', 'fct', 'average').plot(
95+
cc[cc.fct != 'pydot'].pivot(
96+
index='N', columns='fct', values='average').plot(
9597
logy=True, logx=True, ax=ax[1])
9698
ax[0].set_title("Comparison of dot implementations")
9799
ax[1].set_title("Comparison of dot implementations\nwithout python")

examples/plot_benchmark_dot_cython.py

+8-5
Original file line numberDiff line numberDiff line change
@@ -94,11 +94,14 @@ def get_vectors(fct, n, h=100, dtype=numpy.float64):
9494
cc['N'] = cc['x_name']
9595

9696
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
97-
cc[cc.N <= 1100].pivot('N', 'fct', 'average').plot(
97+
cc[cc.N <= 1100].pivot(
98+
index='N', columns='fct', values='average').plot(
9899
logy=True, logx=True, ax=ax[0, 0])
99-
cc[cc.fct != 'dot_product'].pivot('N', 'fct', 'average').plot(
100+
cc[cc.fct != 'dot_product'].pivot(
101+
index='N', columns='fct', values='average').plot(
100102
logy=True, ax=ax[0, 1])
101-
cc[cc.fct != 'dot_product'].pivot('N', 'fct', 'average').plot(
103+
cc[cc.fct != 'dot_product'].pivot(
104+
index='N', columns='fct', values='average').plot(
102105
logy=True, logx=True, ax=ax[1, 1])
103106
ax[0, 0].set_title("Comparison of cython ddot implementations")
104107
ax[0, 1].set_title("Comparison of cython ddot implementations"
@@ -130,9 +133,9 @@ def get_vectors(fct, n, h=100, dtype=numpy.float64):
130133
cc['N'] = cc['x_name']
131134

132135
fig, ax = plt.subplots(1, 2, figsize=(10, 4))
133-
cc.pivot('N', 'fct', 'average').plot(
136+
cc.pivot(index='N', columns='fct', values='average').plot(
134137
logy=True, ax=ax[0])
135-
cc.pivot('N', 'fct', 'average').plot(
138+
cc.pivot(index='N', columns='fct', values='average').plot(
136139
logy=True, logx=True, ax=ax[1])
137140
ax[0].set_title("Comparison of cython sdot implementations")
138141
ax[1].set_title("Comparison of cython sdot implementations")

examples/plot_benchmark_dot_cython_omp.py

+5-4
Original file line numberDiff line numberDiff line change
@@ -118,14 +118,15 @@ def ddot_omp_cpp_16(va, vb):
118118
cc['N'] = cc['x_name']
119119

120120
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
121-
cc[cc.N <= 1000].pivot('N', 'fct', 'average').plot(
121+
cc[cc.N <= 1000].pivot(index='N', columns='fct', values='average').plot(
122122
logy=True, ax=ax[0, 0])
123-
cc.pivot('N', 'fct', 'average').plot(
123+
cc.pivot(index='N', columns='fct', values='average').plot(
124124
logy=True, ax=ax[0, 1])
125-
cc.pivot('N', 'fct', 'average').plot(
125+
cc.pivot(index='N', columns='fct', values='average').plot(
126126
logy=True, logx=True, ax=ax[1, 1])
127127
cc[((cc.fct.str.contains('omp') | (cc.fct == 'ddot_array')) &
128-
~cc.fct.str.contains('dyn'))].pivot('N', 'fct', 'average').plot(
128+
~cc.fct.str.contains('dyn'))].pivot(
129+
index='N', columns='fct', values='average').plot(
129130
logy=True, ax=ax[1, 0])
130131
ax[0, 0].set_title("Comparison of cython ddot implementations")
131132
ax[0, 1].set_title("Comparison of cython ddot implementations"

examples/plot_benchmark_dot_mul.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -149,9 +149,9 @@
149149
'N', 'fct', 'average').plot(logy=True, logx=True, ax=ax[1, 0])
150150
cc[ccnp | (~cct & ~cca0)].pivot(
151151
'N', 'fct', 'average').plot(logy=True, logx=True, ax=ax[1, 1])
152-
cc[ccnp | cca0].pivot('N', 'fct', 'average').plot(
152+
cc[ccnp | cca0].pivot(index='N', columns='fct', values='average').plot(
153153
logy=True, logx=True, ax=ax[2, 0])
154-
cc[ccnp | ~cca0].pivot('N', 'fct', 'average').plot(
154+
cc[ccnp | ~cca0].pivot(index='N', columns='fct', values='average').plot(
155155
logy=True, logx=True, ax=ax[2, 1])
156156
fig.suptitle("Comparison of matrix multiplication implementations")
157157

examples/plot_benchmark_filter.py

+8-4
Original file line numberDiff line numberDiff line change
@@ -91,14 +91,18 @@ def numpy_filter(va, mx):
9191
cc['N'] = cc['x_name']
9292

9393
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
94-
cc[cc.N <= 1100].pivot('N', 'fct', 'average').plot(
94+
cc[cc.N <= 1100].pivot(
95+
index='N', columns='fct', values='average').plot(
9596
logy=True, ax=ax[0, 0])
96-
cc[cc.fct != 'pyfilter_dmax'].pivot('N', 'fct', 'average').plot(
97+
cc[cc.fct != 'pyfilter_dmax'].pivot(
98+
index='N', columns='fct', values='average').plot(
9799
logy=True, ax=ax[0, 1])
98-
cc[cc.fct != 'pyfilter_dmax'].pivot('N', 'fct', 'average').plot(
100+
cc[cc.fct != 'pyfilter_dmax'].pivot(
101+
index='N', columns='fct', values='average').plot(
99102
logy=True, logx=True, ax=ax[1, 1])
100103
cc[(cc.fct.str.contains('cfilter') |
101-
cc.fct.str.contains('numpy'))].pivot('N', 'fct', 'average').plot(
104+
cc.fct.str.contains('numpy'))].pivot(
105+
index='N', columns='fct', values='average').plot(
102106
logy=True, ax=ax[1, 0])
103107
ax[0, 0].set_title("Comparison of filter implementations")
104108
ax[0, 1].set_title("Comparison of filter implementations\n"

0 commit comments

Comments
 (0)