Skip to content

Commit df36b30

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 30a2c9a664a6a93a0ae6bd2c22129cf3b51bf232
1 parent b035cc0 commit df36b30

File tree

124 files changed

+379
-337
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

124 files changed

+379
-337
lines changed

dev/_downloads/2f6e22007265fe3158cce44853e94a58/strategy-comparison.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,8 @@ def plot_branin():
5555

5656
cm = ax.pcolormesh(x_ax, y_ax, fx,
5757
norm=LogNorm(vmin=fx.min(),
58-
vmax=fx.max()))
58+
vmax=fx.max()),
59+
cmap='viridis_r')
5960

6061
minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
6162
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,
Binary file not shown.

dev/_downloads/6e32b232b2fb7887cfe8ea013442a759/visualizing-results.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@
6262
},
6363
"outputs": [],
6464
"source": [
65-
"from matplotlib.colors import LogNorm\n\n\ndef plot_branin():\n fig, ax = plt.subplots()\n\n x1_values = np.linspace(-5, 10, 100)\n x2_values = np.linspace(0, 15, 100)\n x_ax, y_ax = np.meshgrid(x1_values, x2_values)\n vals = np.c_[x_ax.ravel(), y_ax.ravel()]\n fx = np.reshape([branin(val) for val in vals], (100, 100))\n\n cm = ax.pcolormesh(x_ax, y_ax, fx,\n norm=LogNorm(vmin=fx.min(),\n vmax=fx.max()))\n\n minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])\n ax.plot(minima[:, 0], minima[:, 1], \"r.\", markersize=14,\n lw=0, label=\"Minima\")\n\n cb = fig.colorbar(cm)\n cb.set_label(\"f(x)\")\n\n ax.legend(loc=\"best\", numpoints=1)\n\n ax.set_xlabel(\"$X_0$\")\n ax.set_xlim([-5, 10])\n ax.set_ylabel(\"$X_1$\")\n ax.set_ylim([0, 15])\n\n\nplot_branin()"
65+
"from matplotlib.colors import LogNorm\n\n\ndef plot_branin():\n fig, ax = plt.subplots()\n\n x1_values = np.linspace(-5, 10, 100)\n x2_values = np.linspace(0, 15, 100)\n x_ax, y_ax = np.meshgrid(x1_values, x2_values)\n vals = np.c_[x_ax.ravel(), y_ax.ravel()]\n fx = np.reshape([branin(val) for val in vals], (100, 100))\n\n cm = ax.pcolormesh(x_ax, y_ax, fx,\n norm=LogNorm(vmin=fx.min(),\n vmax=fx.max()),\n cmap='viridis_r')\n\n minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])\n ax.plot(minima[:, 0], minima[:, 1], \"r.\", markersize=14,\n lw=0, label=\"Minima\")\n\n cb = fig.colorbar(cm)\n cb.set_label(\"f(x)\")\n\n ax.legend(loc=\"best\", numpoints=1)\n\n ax.set_xlabel(\"$X_0$\")\n ax.set_xlim([-5, 10])\n ax.set_ylabel(\"$X_1$\")\n ax.set_ylim([0, 15])\n\n\nplot_branin()"
6666
]
6767
},
6868
{

dev/_downloads/70b506c92a51b155038b4a3fa37b1f32/visualizing-results.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,8 @@ def plot_branin():
8181

8282
cm = ax.pcolormesh(x_ax, y_ax, fx,
8383
norm=LogNorm(vmin=fx.min(),
84-
vmax=fx.max()))
84+
vmax=fx.max()),
85+
cmap='viridis_r')
8586

8687
minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
8788
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,

dev/_downloads/b4f910a92676697b8c1c26c50df6d7af/strategy-comparison.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@
5555
},
5656
"outputs": [],
5757
"source": [
58-
"from matplotlib.colors import LogNorm\n\n\ndef plot_branin():\n fig, ax = plt.subplots()\n\n x1_values = np.linspace(-5, 10, 100)\n x2_values = np.linspace(0, 15, 100)\n x_ax, y_ax = np.meshgrid(x1_values, x2_values)\n vals = np.c_[x_ax.ravel(), y_ax.ravel()]\n fx = np.reshape([branin(val) for val in vals], (100, 100))\n\n cm = ax.pcolormesh(x_ax, y_ax, fx,\n norm=LogNorm(vmin=fx.min(),\n vmax=fx.max()))\n\n minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])\n ax.plot(minima[:, 0], minima[:, 1], \"r.\", markersize=14,\n lw=0, label=\"Minima\")\n\n cb = fig.colorbar(cm)\n cb.set_label(\"f(x)\")\n\n ax.legend(loc=\"best\", numpoints=1)\n\n ax.set_xlabel(\"X1\")\n ax.set_xlim([-5, 10])\n ax.set_ylabel(\"X2\")\n ax.set_ylim([0, 15])\n\n\nplot_branin()"
58+
"from matplotlib.colors import LogNorm\n\n\ndef plot_branin():\n fig, ax = plt.subplots()\n\n x1_values = np.linspace(-5, 10, 100)\n x2_values = np.linspace(0, 15, 100)\n x_ax, y_ax = np.meshgrid(x1_values, x2_values)\n vals = np.c_[x_ax.ravel(), y_ax.ravel()]\n fx = np.reshape([branin(val) for val in vals], (100, 100))\n\n cm = ax.pcolormesh(x_ax, y_ax, fx,\n norm=LogNorm(vmin=fx.min(),\n vmax=fx.max()),\n cmap='viridis_r')\n\n minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])\n ax.plot(minima[:, 0], minima[:, 1], \"r.\", markersize=14,\n lw=0, label=\"Minima\")\n\n cb = fig.colorbar(cm)\n cb.set_label(\"f(x)\")\n\n ax.legend(loc=\"best\", numpoints=1)\n\n ax.set_xlabel(\"X1\")\n ax.set_xlim([-5, 10])\n ax.set_ylabel(\"X2\")\n ax.set_ylim([0, 15])\n\n\nplot_branin()"
5959
]
6060
},
6161
{
Binary file not shown.
305 Bytes
Binary file not shown.
-1.5 KB
Loading
Loading
-1.48 KB
Loading
Loading

dev/_sources/auto_examples/ask-and-tell.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ and report the value back to the optimizer:
175175
fun: -0.032758350111535384
176176
func_vals: array([-0.03275835])
177177
models: []
178-
random_state: RandomState(MT19937) at 0x7F345C8D6D40
178+
random_state: RandomState(MT19937) at 0x7FAB4D60ED40
179179
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='identity')])
180180
specs: None
181181
x: [-1.7121321838148869]
@@ -312,7 +312,7 @@ meantime:
312312
313313
.. rst-class:: sphx-glr-timing
314314

315-
**Total running time of the script:** ( 0 minutes 6.641 seconds)
315+
**Total running time of the script:** ( 0 minutes 4.849 seconds)
316316

317317
**Estimated memory usage:** 8 MB
318318

dev/_sources/auto_examples/bayesian-optimization.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -267,13 +267,13 @@ provide the following information:
267267
n_restarts_optimizer=2, noise=0.010000000000000002,
268268
normalize_y=True, optimizer='fmin_l_bfgs_b',
269269
random_state=822569775)]
270-
random_state: RandomState(MT19937) at 0x7F345EE89D40
270+
random_state: RandomState(MT19937) at 0x7FAB30019640
271271
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
272-
specs: {'args': {'func': <function f at 0x7f3434336e50>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
272+
specs: {'args': {'func': <function f at 0x7fab2b90c310>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
273273
kernel=1**2 * Matern(length_scale=1, nu=2.5),
274274
n_restarts_optimizer=2, noise=0.010000000000000002,
275275
normalize_y=True, optimizer='fmin_l_bfgs_b',
276-
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7F345EE89D40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
276+
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7FAB30019640, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
277277
x: [-0.35076964188527904]
278278
x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836], [1.0854396754496047], [1.4426790855107496], [0.9698921802985794], [-0.4464493263345517], [-0.6474638284799423], [-0.35076964188527904], [-0.28714767658880325], [-0.2968537755362253], [-2.0], [2.0], [-1.3149517825054502], [-0.32181607448732485]]
279279
@@ -305,7 +305,7 @@ the last iteration:
305305
.. code-block:: none
306306
307307
308-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f3434408730>
308+
<matplotlib.axes._subplots.AxesSubplot object at 0x7fab29040640>
309309
310310
311311
@@ -476,7 +476,7 @@ because the GP does not gain anything more by further exploration:
476476

477477
.. rst-class:: sphx-glr-timing
478478

479-
**Total running time of the script:** ( 0 minutes 5.451 seconds)
479+
**Total running time of the script:** ( 0 minutes 3.721 seconds)
480480

481481
**Estimated memory usage:** 8 MB
482482

dev/_sources/auto_examples/exploration-vs-exploitation.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -562,7 +562,7 @@ recalculated.
562562

563563
.. rst-class:: sphx-glr-timing
564564

565-
**Total running time of the script:** ( 0 minutes 38.333 seconds)
565+
**Total running time of the script:** ( 0 minutes 34.142 seconds)
566566

567567
**Estimated memory usage:** 8 MB
568568

dev/_sources/auto_examples/hyperparameter-optimization.rst.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -207,16 +207,16 @@ Convergence plot
207207
.. code-block:: none
208208
209209
210-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f34441e5550>
210+
<matplotlib.axes._subplots.AxesSubplot object at 0x7fab3001bdc0>
211211
212212
213213
214214
215215
.. rst-class:: sphx-glr-timing
216216

217-
**Total running time of the script:** ( 0 minutes 28.214 seconds)
217+
**Total running time of the script:** ( 0 minutes 30.931 seconds)
218218

219-
**Estimated memory usage:** 33 MB
219+
**Estimated memory usage:** 35 MB
220220

221221

222222
.. _sphx_glr_download_auto_examples_hyperparameter-optimization.py:

dev/_sources/auto_examples/interruptible-optimization.rst.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -163,13 +163,13 @@ and pass it to the minimizer:
163163
n_restarts_optimizer=2, noise='gaussian',
164164
normalize_y=True, optimizer='fmin_l_bfgs_b',
165165
random_state=655685735)]
166-
random_state: RandomState(MT19937) at 0x7F345EE89D40
166+
random_state: RandomState(MT19937) at 0x7FAB4FBC0D40
167167
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
168-
specs: {'args': {'func': <function obj_fun at 0x7f344401a700>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
168+
specs: {'args': {'func': <function obj_fun at 0x7fab2b8d9700>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
169169
kernel=1**2 * Matern(length_scale=1, nu=2.5),
170170
n_restarts_optimizer=2, noise='gaussian',
171171
normalize_y=True, optimizer='fmin_l_bfgs_b',
172-
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F345EE89D40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f343427e3d0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
172+
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7FAB4FBC0D40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7fab291903a0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
173173
x: [20.0]
174174
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]]
175175
@@ -321,14 +321,14 @@ The previous results can then be used to continue the optimization process:
321321
n_restarts_optimizer=2, noise='gaussian',
322322
normalize_y=True, optimizer='fmin_l_bfgs_b',
323323
random_state=655685735)]
324-
random_state: RandomState(MT19937) at 0x7F345EE89D40
324+
random_state: RandomState(MT19937) at 0x7FAB4FBC0D40
325325
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
326-
specs: {'args': {'func': <function obj_fun at 0x7f344401a700>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
326+
specs: {'args': {'func': <function obj_fun at 0x7fab2b8d9700>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
327327
kernel=1**2 * Matern(length_scale=1, nu=2.5),
328328
n_restarts_optimizer=2, noise='gaussian',
329329
normalize_y=True, optimizer='fmin_l_bfgs_b',
330330
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'n_initial_points': 10, 'initial_point_generator': 'random', 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
331-
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F345EE89D40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f343427e3d0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
331+
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7FAB4FBC0D40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7fab291903a0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
332332
x: [20.0]
333333
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0]]
334334
@@ -350,7 +350,7 @@ for more information on how the results get saved and possible caveats
350350

351351
.. rst-class:: sphx-glr-timing
352352

353-
**Total running time of the script:** ( 0 minutes 4.309 seconds)
353+
**Total running time of the script:** ( 0 minutes 3.453 seconds)
354354

355355
**Estimated memory usage:** 8 MB
356356

dev/_sources/auto_examples/optimizer-with-different-base-estimator.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -292,9 +292,9 @@ Test different kernels
292292

293293
.. rst-class:: sphx-glr-timing
294294

295-
**Total running time of the script:** ( 0 minutes 11.471 seconds)
295+
**Total running time of the script:** ( 0 minutes 9.445 seconds)
296296

297-
**Estimated memory usage:** 14 MB
297+
**Estimated memory usage:** 13 MB
298298

299299

300300
.. _sphx_glr_download_auto_examples_optimizer-with-different-base-estimator.py:

dev/_sources/auto_examples/parallel-optimization.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -119,9 +119,9 @@ scikit-optimize.
119119
120120
.. rst-class:: sphx-glr-timing
121121

122-
**Total running time of the script:** ( 0 minutes 26.307 seconds)
122+
**Total running time of the script:** ( 0 minutes 28.610 seconds)
123123

124-
**Estimated memory usage:** 32 MB
124+
**Estimated memory usage:** 30 MB
125125

126126

127127
.. _sphx_glr_download_auto_examples_parallel-optimization.py:

dev/_sources/auto_examples/plots/partial-dependence-plot-with-categorical.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -190,9 +190,9 @@ parsing a list as the pars argument:
190190

191191
.. rst-class:: sphx-glr-timing
192192

193-
**Total running time of the script:** ( 0 minutes 32.518 seconds)
193+
**Total running time of the script:** ( 0 minutes 25.542 seconds)
194194

195-
**Estimated memory usage:** 35 MB
195+
**Estimated memory usage:** 34 MB
196196

197197

198198
.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot-with-categorical.py:

dev/_sources/auto_examples/plots/partial-dependence-plot.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,7 @@ as the minimum argument:
259259

260260
.. rst-class:: sphx-glr-timing
261261

262-
**Total running time of the script:** ( 4 minutes 21.797 seconds)
262+
**Total running time of the script:** ( 3 minutes 47.176 seconds)
263263

264264
**Estimated memory usage:** 9 MB
265265

dev/_sources/auto_examples/plots/sg_execution_times.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**12:49.286** total execution time for **auto_examples_plots** files:
8+
**11:29.246** total execution time for **auto_examples_plots** files:
99

1010
+-----------------------------------------------------------------------------------------------------------------------------------+-----------+---------+
11-
| :ref:`sphx_glr_auto_examples_plots_visualizing-results.py` (``visualizing-results.py``) | 07:54.972 | 88.2 MB |
11+
| :ref:`sphx_glr_auto_examples_plots_visualizing-results.py` (``visualizing-results.py``) | 07:16.527 | 87.3 MB |
1212
+-----------------------------------------------------------------------------------------------------------------------------------+-----------+---------+
13-
| :ref:`sphx_glr_auto_examples_plots_partial-dependence-plot.py` (``partial-dependence-plot.py``) | 04:21.797 | 9.0 MB |
13+
| :ref:`sphx_glr_auto_examples_plots_partial-dependence-plot.py` (``partial-dependence-plot.py``) | 03:47.176 | 8.7 MB |
1414
+-----------------------------------------------------------------------------------------------------------------------------------+-----------+---------+
15-
| :ref:`sphx_glr_auto_examples_plots_partial-dependence-plot-with-categorical.py` (``partial-dependence-plot-with-categorical.py``) | 00:32.518 | 34.6 MB |
15+
| :ref:`sphx_glr_auto_examples_plots_partial-dependence-plot-with-categorical.py` (``partial-dependence-plot-with-categorical.py``) | 00:25.542 | 34.4 MB |
1616
+-----------------------------------------------------------------------------------------------------------------------------------+-----------+---------+

dev/_sources/auto_examples/plots/visualizing-results.rst.txt

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,8 @@ function which can be visualised in two dimensions.
112112
113113
cm = ax.pcolormesh(x_ax, y_ax, fx,
114114
norm=LogNorm(vmin=fx.min(),
115-
vmax=fx.max()))
115+
vmax=fx.max()),
116+
cmap='viridis_r')
116117
117118
minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
118119
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,
@@ -359,9 +360,9 @@ in both the placement of samples and the partial dependence plots.
359360

360361
.. rst-class:: sphx-glr-timing
361362

362-
**Total running time of the script:** ( 7 minutes 54.972 seconds)
363+
**Total running time of the script:** ( 7 minutes 16.527 seconds)
363364

364-
**Estimated memory usage:** 88 MB
365+
**Estimated memory usage:** 87 MB
365366

366367

367368
.. _sphx_glr_download_auto_examples_plots_visualizing-results.py:

dev/_sources/auto_examples/sampler/initial-sampling-method-integer.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -429,7 +429,7 @@ It can be seen that random has the worst performance
429429

430430
.. rst-class:: sphx-glr-timing
431431

432-
**Total running time of the script:** ( 0 minutes 10.581 seconds)
432+
**Total running time of the script:** ( 0 minutes 8.027 seconds)
433433

434434
**Estimated memory usage:** 8 MB
435435

dev/_sources/auto_examples/sampler/initial-sampling-method.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ It can be seen that random has the worst performance
340340

341341
.. rst-class:: sphx-glr-timing
342342

343-
**Total running time of the script:** ( 0 minutes 9.865 seconds)
343+
**Total running time of the script:** ( 0 minutes 7.839 seconds)
344344

345345
**Estimated memory usage:** 8 MB
346346

dev/_sources/auto_examples/sampler/sampling_comparison.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,7 @@ n_random_starts = 10 produces the best results
283283

284284
.. rst-class:: sphx-glr-timing
285285

286-
**Total running time of the script:** ( 2 minutes 48.909 seconds)
286+
**Total running time of the script:** ( 2 minutes 45.118 seconds)
287287

288288
**Estimated memory usage:** 8 MB
289289

0 commit comments

Comments
 (0)