Skip to content

Commit 7ffb065

Browse files
committed
Pushing the docs for revision for branch: master, commit c06822c756118b0afc4c21187134d65b2ead9b5d
1 parent 6214563 commit 7ffb065

File tree

101 files changed

+307
-272
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

101 files changed

+307
-272
lines changed
Binary file not shown.
Binary file not shown.

_modules/skopt/callbacks.html

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -382,9 +382,11 @@ <h1>Source code for skopt.callbacks</h1><div class="highlight"><pre>
382382
<span class="sd"> Examples</span>
383383
<span class="sd"> --------</span>
384384
<span class="sd"> &gt;&gt;&gt; import skopt</span>
385-
<span class="sd"> &gt;&gt;&gt;</span>
385+
<span class="sd"> &gt;&gt;&gt; def obj_fun(x):</span>
386+
<span class="sd"> ... return x[0]**2</span>
386387
<span class="sd"> &gt;&gt;&gt; checkpoint_callback = skopt.callbacks.CheckpointSaver(&quot;./result.pkl&quot;)</span>
387-
<span class="sd"> &gt;&gt;&gt; skopt.gp_minimize(obj_fun, dims, callback=[checkpoint_callback])</span>
388+
<span class="sd"> &gt;&gt;&gt; skopt.gp_minimize(obj_fun, [(-2, 2)], n_calls=10,</span>
389+
<span class="sd"> ... callback=[checkpoint_callback]) # doctest: +SKIP</span>
388390

389391
<span class="sd"> Parameters</span>
390392
<span class="sd"> ----------</span>

_modules/skopt/plots.html

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -627,6 +627,9 @@ <h1>Source code for skopt.plots</h1><div class="highlight"><pre>
627627
<span class="c1"># calculating dependence. (Unless partial</span>
628628
<span class="c1"># dependence is to be used instead).</span>
629629
<span class="n">space</span> <span class="o">=</span> <span class="n">result</span><span class="o">.</span><span class="n">space</span>
630+
<span class="k">if</span> <span class="n">space</span><span class="o">.</span><span class="n">n_dims</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
631+
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;plot_objective needs at least two&quot;</span>
632+
<span class="s2">&quot;variables. Found only one.&quot;</span><span class="p">)</span>
630633
<span class="n">x_vals</span> <span class="o">=</span> <span class="n">_evaluate_min_params</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">minimum</span><span class="p">,</span> <span class="n">n_minimum_search</span><span class="p">)</span>
631634
<span class="k">if</span> <span class="n">sample_source</span> <span class="o">==</span> <span class="s2">&quot;random&quot;</span><span class="p">:</span>
632635
<span class="n">x_eval</span> <span class="o">=</span> <span class="kc">None</span>

_modules/skopt/utils.html

Lines changed: 18 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
130130
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingRegressor</span>
131131
<span class="kn">from</span> <span class="nn">joblib</span> <span class="kn">import</span> <span class="n">dump</span> <span class="k">as</span> <span class="n">dump_</span>
132132
<span class="kn">from</span> <span class="nn">joblib</span> <span class="kn">import</span> <span class="n">load</span> <span class="k">as</span> <span class="n">load_</span>
133-
133+
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">OrderedDict</span>
134134
<span class="kn">from</span> <span class="nn">.learning</span> <span class="kn">import</span> <span class="n">ExtraTreesRegressor</span>
135135
<span class="kn">from</span> <span class="nn">.learning</span> <span class="kn">import</span> <span class="n">GaussianProcessRegressor</span>
136136
<span class="kn">from</span> <span class="nn">.learning</span> <span class="kn">import</span> <span class="n">GradientBoostingQuantileRegressor</span>
@@ -141,6 +141,7 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
141141

142142
<span class="kn">from</span> <span class="nn">.space</span> <span class="kn">import</span> <span class="n">Space</span><span class="p">,</span> <span class="n">Categorical</span><span class="p">,</span> <span class="n">Integer</span><span class="p">,</span> <span class="n">Real</span><span class="p">,</span> <span class="n">Dimension</span>
143143

144+
144145
<span class="n">__all__</span> <span class="o">=</span> <span class="p">(</span>
145146
<span class="s2">&quot;load&quot;</span><span class="p">,</span>
146147
<span class="s2">&quot;dump&quot;</span><span class="p">,</span>
@@ -549,8 +550,13 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
549550
<span class="sd"> &gt;&gt;&gt; from skopt.utils import dimensions_aslist</span>
550551
<span class="sd"> &gt;&gt;&gt; search_space = {&#39;name1&#39;: Real(0,1),</span>
551552
<span class="sd"> ... &#39;name2&#39;: Integer(2,4), &#39;name3&#39;: Real(-1,1)}</span>
552-
<span class="sd"> &gt;&gt;&gt; dimensions_aslist(search_space)</span>
553-
<span class="sd"> [Real(0,1), Integer(2,4), Real(-1,1)]</span>
553+
<span class="sd"> &gt;&gt;&gt; dimensions_aslist(search_space)[0]</span>
554+
<span class="sd"> Real(low=0, high=1, prior=&#39;uniform&#39;, transform=&#39;identity&#39;)</span>
555+
<span class="sd"> &gt;&gt;&gt; dimensions_aslist(search_space)[1]</span>
556+
<span class="sd"> Integer(low=2, high=4, prior=&#39;uniform&#39;, transform=&#39;identity&#39;)</span>
557+
<span class="sd"> &gt;&gt;&gt; dimensions_aslist(search_space)[2]</span>
558+
<span class="sd"> Real(low=-1, high=1, prior=&#39;uniform&#39;, transform=&#39;identity&#39;)</span>
559+
554560
<span class="sd"> &quot;&quot;&quot;</span>
555561
<span class="n">params_space_list</span> <span class="o">=</span> <span class="p">[</span>
556562
<span class="n">search_space</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">sorted</span><span class="p">(</span><span class="n">search_space</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
@@ -578,7 +584,7 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
578584

579585
<span class="sd"> Returns</span>
580586
<span class="sd"> -------</span>
581-
<span class="sd"> params_dict : dict</span>
587+
<span class="sd"> params_dict : OrderedDict</span>
582588
<span class="sd"> dictionary with parameter names as keys to which</span>
583589
<span class="sd"> corresponding parameter values are assigned.</span>
584590

@@ -590,11 +596,11 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
590596
<span class="sd"> ... &#39;name2&#39;: Integer(2,4), &#39;name3&#39;: Real(-1,1)}</span>
591597
<span class="sd"> &gt;&gt;&gt; point_as_list = [0.66, 3, -0.15]</span>
592598
<span class="sd"> &gt;&gt;&gt; point_asdict(search_space, point_as_list)</span>
593-
<span class="sd"> {&#39;name1&#39;: 0.66, &#39;name2&#39;: 3, &#39;name3&#39;: -0.15}</span>
599+
<span class="sd"> OrderedDict([(&#39;name1&#39;, 0.66), (&#39;name2&#39;, 3), (&#39;name3&#39;, -0.15)])</span>
594600
<span class="sd"> &quot;&quot;&quot;</span>
595-
<span class="n">params_dict</span> <span class="o">=</span> <span class="p">{</span>
596-
<span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="nb">sorted</span><span class="p">(</span><span class="n">search_space</span><span class="o">.</span><span class="n">keys</span><span class="p">()),</span> <span class="n">point_as_list</span><span class="p">)</span>
597-
<span class="p">}</span>
601+
<span class="n">params_dict</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
602+
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="nb">sorted</span><span class="p">(</span><span class="n">search_space</span><span class="o">.</span><span class="n">keys</span><span class="p">()),</span> <span class="n">point_as_list</span><span class="p">):</span>
603+
<span class="n">params_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
598604
<span class="k">return</span> <span class="n">params_dict</span></div>
599605

600606

@@ -786,8 +792,8 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
786792
<span class="sd"> &gt;&gt;&gt; # and use this function-decorator to specify the</span>
787793
<span class="sd"> &gt;&gt;&gt; # search-space dimensions.</span>
788794
<span class="sd"> &gt;&gt;&gt; @use_named_args(dimensions=dimensions)</span>
789-
<span class="sd"> &gt;&gt;&gt; def my_objective_function(foo, bar, baz):</span>
790-
<span class="sd"> &gt;&gt;&gt; return foo ** 2 + bar ** 4 + baz ** 8</span>
795+
<span class="sd"> ... def my_objective_function(foo, bar, baz):</span>
796+
<span class="sd"> ... return foo ** 2 + bar ** 4 + baz ** 8</span>
791797
<span class="sd"> &gt;&gt;&gt;</span>
792798
<span class="sd"> &gt;&gt;&gt; # Not the function is callable from the outside as</span>
793799
<span class="sd"> &gt;&gt;&gt; # `my_objective_function(x)` where `x` is a list of unnamed arguments,</span>
@@ -806,7 +812,9 @@ <h1>Source code for skopt.utils</h1><div class="highlight"><pre>
806812
<span class="sd"> &gt;&gt;&gt;</span>
807813
<span class="sd"> &gt;&gt;&gt; # Print the best-found results.</span>
808814
<span class="sd"> &gt;&gt;&gt; print(&quot;Best fitness:&quot;, result.fun)</span>
815+
<span class="sd"> Best fitness: 0.1948080835239698</span>
809816
<span class="sd"> &gt;&gt;&gt; print(&quot;Best parameters:&quot;, result.x)</span>
817+
<span class="sd"> Best parameters: [0.44134853091052617, 0.06570954323368307, 0.17586123323419825]</span>
810818

811819
<span class="sd"> Parameters</span>
812820
<span class="sd"> ----------</span>

_sources/auto_examples/ask-and-tell.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ and report the value back to the optimizer:
175175
fun: -0.032758350111535384
176176
func_vals: array([-0.03275835])
177177
models: []
178-
random_state: RandomState(MT19937) at 0x7FF586BE2A40
178+
random_state: RandomState(MT19937) at 0x7F0518481A40
179179
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='identity')])
180180
specs: None
181181
x: [-1.7121321838148869]
@@ -312,7 +312,7 @@ meantime:
312312
313313
.. rst-class:: sphx-glr-timing
314314

315-
**Total running time of the script:** ( 0 minutes 2.872 seconds)
315+
**Total running time of the script:** ( 0 minutes 2.757 seconds)
316316

317317

318318
.. _sphx_glr_download_auto_examples_ask-and-tell.py:

_sources/auto_examples/bayesian-optimization.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -267,13 +267,13 @@ provide the following information:
267267
n_restarts_optimizer=2, noise=0.010000000000000002,
268268
normalize_y=True, optimizer='fmin_l_bfgs_b',
269269
random_state=822569775)]
270-
random_state: RandomState(MT19937) at 0x7FF5D4326A40
270+
random_state: RandomState(MT19937) at 0x7F0565DCFA40
271271
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
272-
specs: {'args': {'func': <function f at 0x7ff5d6b458b0>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
272+
specs: {'args': {'func': <function f at 0x7f05683ecca0>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
273273
kernel=1**2 * Matern(length_scale=1, nu=2.5),
274274
n_restarts_optimizer=2, noise=0.010000000000000002,
275275
normalize_y=True, optimizer='fmin_l_bfgs_b',
276-
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7FF5D4326A40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
276+
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5, 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7F0565DCFA40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
277277
x: [-0.35076964213550554]
278278
x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836], [1.0854396754496047], [1.4426790855107496], [0.9698921802985794], [-0.4464493263345515], [-0.6474638307563569], [-0.35076964213550554], [-0.28714768066245777], [-0.2968537677230516], [-2.0], [2.0], [-1.3149517821938494], [-0.3218160845454081]]
279279
@@ -305,7 +305,7 @@ the last iteration:
305305
.. code-block:: none
306306
307307
308-
<matplotlib.axes._subplots.AxesSubplot object at 0x7ff5521050a0>
308+
<matplotlib.axes._subplots.AxesSubplot object at 0x7f05684473a0>
309309
310310
311311
@@ -476,7 +476,7 @@ because the GP does not gain anything more by further exploration:
476476

477477
.. rst-class:: sphx-glr-timing
478478

479-
**Total running time of the script:** ( 0 minutes 3.089 seconds)
479+
**Total running time of the script:** ( 0 minutes 2.991 seconds)
480480

481481

482482
.. _sphx_glr_download_auto_examples_bayesian-optimization.py:

_sources/auto_examples/exploration-vs-exploitation.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -562,7 +562,7 @@ recalculated.
562562

563563
.. rst-class:: sphx-glr-timing
564564

565-
**Total running time of the script:** ( 1 minutes 4.196 seconds)
565+
**Total running time of the script:** ( 0 minutes 52.811 seconds)
566566

567567

568568
.. _sphx_glr_download_auto_examples_exploration-vs-exploitation.py:

_sources/auto_examples/hyperparameter-optimization.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -207,14 +207,14 @@ Convergence plot
207207
.. code-block:: none
208208
209209
210-
<matplotlib.axes._subplots.AxesSubplot object at 0x7ff5d6b6f3d0>
210+
<matplotlib.axes._subplots.AxesSubplot object at 0x7f05686a7f10>
211211
212212
213213
214214
215215
.. rst-class:: sphx-glr-timing
216216

217-
**Total running time of the script:** ( 1 minutes 47.417 seconds)
217+
**Total running time of the script:** ( 1 minutes 26.638 seconds)
218218

219219

220220
.. _sphx_glr_download_auto_examples_hyperparameter-optimization.py:

_sources/auto_examples/interruptible-optimization.rst.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -163,13 +163,13 @@ and pass it to the minimizer:
163163
n_restarts_optimizer=2, noise='gaussian',
164164
normalize_y=True, optimizer='fmin_l_bfgs_b',
165165
random_state=655685735)]
166-
random_state: RandomState(MT19937) at 0x7FF5D4326A40
166+
random_state: RandomState(MT19937) at 0x7F0565DCFA40
167167
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
168-
specs: {'args': {'func': <function obj_fun at 0x7ff5d6cf1ca0>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
168+
specs: {'args': {'func': <function obj_fun at 0x7f05683e6d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
169169
kernel=1**2 * Matern(length_scale=1, nu=2.5),
170170
n_restarts_optimizer=2, noise='gaussian',
171171
normalize_y=True, optimizer='fmin_l_bfgs_b',
172-
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7FF5D4326A40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7ff551ff8100>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
172+
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F0565DCFA40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f04e39bceb0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
173173
x: [20.0]
174174
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]]
175175
@@ -321,14 +321,14 @@ The previous results can then be used to continue the optimization process:
321321
n_restarts_optimizer=2, noise='gaussian',
322322
normalize_y=True, optimizer='fmin_l_bfgs_b',
323323
random_state=655685735)]
324-
random_state: RandomState(MT19937) at 0x7FF5D4326A40
324+
random_state: RandomState(MT19937) at 0x7F0565DCFA40
325325
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
326-
specs: {'args': {'func': <function obj_fun at 0x7ff5d6cf1ca0>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
326+
specs: {'args': {'func': <function obj_fun at 0x7f05683e6d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
327327
kernel=1**2 * Matern(length_scale=1, nu=2.5),
328328
n_restarts_optimizer=2, noise='gaussian',
329329
normalize_y=True, optimizer='fmin_l_bfgs_b',
330330
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
331-
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7FF5D4326A40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7ff551ff8100>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
331+
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F0565DCFA40, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f04e39bceb0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
332332
x: [20.0]
333333
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0]]
334334
@@ -350,7 +350,7 @@ for more information on how the results get saved and possible caveats
350350

351351
.. rst-class:: sphx-glr-timing
352352

353-
**Total running time of the script:** ( 0 minutes 4.054 seconds)
353+
**Total running time of the script:** ( 0 minutes 3.989 seconds)
354354

355355

356356
.. _sphx_glr_download_auto_examples_interruptible-optimization.py:

_sources/auto_examples/optimizer-with-different-base-estimator.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -292,7 +292,7 @@ Test different kernels
292292

293293
.. rst-class:: sphx-glr-timing
294294

295-
**Total running time of the script:** ( 0 minutes 12.924 seconds)
295+
**Total running time of the script:** ( 0 minutes 11.542 seconds)
296296

297297

298298
.. _sphx_glr_download_auto_examples_optimizer-with-different-base-estimator.py:

_sources/auto_examples/parallel-optimization.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ scikit-optimize.
119119
120120
.. rst-class:: sphx-glr-timing
121121

122-
**Total running time of the script:** ( 1 minutes 37.025 seconds)
122+
**Total running time of the script:** ( 1 minutes 23.928 seconds)
123123

124124

125125
.. _sphx_glr_download_auto_examples_parallel-optimization.py:

_sources/auto_examples/plots/partial-dependence-plot-with-categorical.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ parsing a list as the pars argument:
190190

191191
.. rst-class:: sphx-glr-timing
192192

193-
**Total running time of the script:** ( 0 minutes 26.428 seconds)
193+
**Total running time of the script:** ( 0 minutes 25.249 seconds)
194194

195195

196196
.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot-with-categorical.py:

_sources/auto_examples/plots/partial-dependence-plot.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,7 @@ as the minimum argument:
259259

260260
.. rst-class:: sphx-glr-timing
261261

262-
**Total running time of the script:** ( 4 minutes 1.322 seconds)
262+
**Total running time of the script:** ( 3 minutes 42.608 seconds)
263263

264264

265265
.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot.py:

0 commit comments

Comments
 (0)