Skip to content

Commit 60f379f

Browse files
committed
Pushing the docs for revision for branch: master, commit 09c9a16a35514ead9d6449bc9ad44c406fcc20aa
1 parent f6c22b4 commit 60f379f

File tree

105 files changed

+282
-234
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

105 files changed

+282
-234
lines changed
Binary file not shown.
Binary file not shown.

_images/sphx_glr_ask-and-tell_001.png

0 Bytes
Loading

_images/sphx_glr_ask-and-tell_002.png

0 Bytes
Loading

_images/sphx_glr_ask-and-tell_003.png

0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading
0 Bytes
Loading

_modules/skopt/learning/forest.html

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -309,7 +309,8 @@ <h1>Source code for skopt.learning.forest</h1><div class="highlight"><pre>
309309
<div class="viewcode-block" id="RandomForestRegressor.__init__"><a class="viewcode-back" href="../../../modules/generated/skopt.learning.RandomForestRegressor.html#skopt.learning.RandomForestRegressor.__init__">[docs]</a> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">criterion</span><span class="o">=</span><span class="s1">&#39;mse&#39;</span><span class="p">,</span> <span class="n">max_depth</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
310310
<span class="n">min_samples_split</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">min_samples_leaf</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
311311
<span class="n">min_weight_fraction_leaf</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">max_features</span><span class="o">=</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span>
312-
<span class="n">max_leaf_nodes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bootstrap</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
312+
<span class="n">max_leaf_nodes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">min_impurity_decrease</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span>
313+
<span class="n">bootstrap</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
313314
<span class="n">n_jobs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">warm_start</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
314315
<span class="n">min_variance</span><span class="o">=</span><span class="mf">0.0</span><span class="p">):</span>
315316
<span class="bp">self</span><span class="o">.</span><span class="n">min_variance</span> <span class="o">=</span> <span class="n">min_variance</span>
@@ -320,6 +321,7 @@ <h1>Source code for skopt.learning.forest</h1><div class="highlight"><pre>
320321
<span class="n">min_samples_leaf</span><span class="o">=</span><span class="n">min_samples_leaf</span><span class="p">,</span>
321322
<span class="n">min_weight_fraction_leaf</span><span class="o">=</span><span class="n">min_weight_fraction_leaf</span><span class="p">,</span>
322323
<span class="n">max_features</span><span class="o">=</span><span class="n">max_features</span><span class="p">,</span> <span class="n">max_leaf_nodes</span><span class="o">=</span><span class="n">max_leaf_nodes</span><span class="p">,</span>
324+
<span class="n">min_impurity_decrease</span><span class="o">=</span><span class="n">min_impurity_decrease</span><span class="p">,</span>
323325
<span class="n">bootstrap</span><span class="o">=</span><span class="n">bootstrap</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="n">oob_score</span><span class="p">,</span>
324326
<span class="n">n_jobs</span><span class="o">=</span><span class="n">n_jobs</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="n">random_state</span><span class="p">,</span>
325327
<span class="n">verbose</span><span class="o">=</span><span class="n">verbose</span><span class="p">,</span> <span class="n">warm_start</span><span class="o">=</span><span class="n">warm_start</span><span class="p">)</span></div>
@@ -493,7 +495,8 @@ <h1>Source code for skopt.learning.forest</h1><div class="highlight"><pre>
493495
<div class="viewcode-block" id="ExtraTreesRegressor.__init__"><a class="viewcode-back" href="../../../modules/generated/skopt.learning.ExtraTreesRegressor.html#skopt.learning.ExtraTreesRegressor.__init__">[docs]</a> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">criterion</span><span class="o">=</span><span class="s1">&#39;mse&#39;</span><span class="p">,</span> <span class="n">max_depth</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
494496
<span class="n">min_samples_split</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">min_samples_leaf</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
495497
<span class="n">min_weight_fraction_leaf</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">max_features</span><span class="o">=</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span>
496-
<span class="n">max_leaf_nodes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bootstrap</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
498+
<span class="n">max_leaf_nodes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">min_impurity_decrease</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span>
499+
<span class="n">bootstrap</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
497500
<span class="n">n_jobs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">warm_start</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
498501
<span class="n">min_variance</span><span class="o">=</span><span class="mf">0.0</span><span class="p">):</span>
499502
<span class="bp">self</span><span class="o">.</span><span class="n">min_variance</span> <span class="o">=</span> <span class="n">min_variance</span>
@@ -504,6 +507,7 @@ <h1>Source code for skopt.learning.forest</h1><div class="highlight"><pre>
504507
<span class="n">min_samples_leaf</span><span class="o">=</span><span class="n">min_samples_leaf</span><span class="p">,</span>
505508
<span class="n">min_weight_fraction_leaf</span><span class="o">=</span><span class="n">min_weight_fraction_leaf</span><span class="p">,</span>
506509
<span class="n">max_features</span><span class="o">=</span><span class="n">max_features</span><span class="p">,</span> <span class="n">max_leaf_nodes</span><span class="o">=</span><span class="n">max_leaf_nodes</span><span class="p">,</span>
510+
<span class="n">min_impurity_decrease</span><span class="o">=</span><span class="n">min_impurity_decrease</span><span class="p">,</span>
507511
<span class="n">bootstrap</span><span class="o">=</span><span class="n">bootstrap</span><span class="p">,</span> <span class="n">oob_score</span><span class="o">=</span><span class="n">oob_score</span><span class="p">,</span>
508512
<span class="n">n_jobs</span><span class="o">=</span><span class="n">n_jobs</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="n">random_state</span><span class="p">,</span>
509513
<span class="n">verbose</span><span class="o">=</span><span class="n">verbose</span><span class="p">,</span> <span class="n">warm_start</span><span class="o">=</span><span class="n">warm_start</span><span class="p">)</span></div>

_sources/auto_examples/ask-and-tell.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ and report the value back to the optimizer:
175175
fun: -0.032758350111535384
176176
func_vals: array([-0.03275835])
177177
models: []
178-
random_state: RandomState(MT19937) at 0x7F763660E940
178+
random_state: RandomState(MT19937) at 0x7F9F02BFF940
179179
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='identity')])
180180
specs: None
181181
x: [-1.7121321838148869]
@@ -312,7 +312,7 @@ meantime:
312312
313313
.. rst-class:: sphx-glr-timing
314314

315-
**Total running time of the script:** ( 0 minutes 2.868 seconds)
315+
**Total running time of the script:** ( 0 minutes 3.377 seconds)
316316

317317

318318
.. _sphx_glr_download_auto_examples_ask-and-tell.py:

_sources/auto_examples/bayesian-optimization.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -267,13 +267,13 @@ provide the following information:
267267
n_restarts_optimizer=2, noise=0.010000000000000002,
268268
normalize_y=True, optimizer='fmin_l_bfgs_b',
269269
random_state=843828734)]
270-
random_state: RandomState(MT19937) at 0x7F7692E0CD40
270+
random_state: RandomState(MT19937) at 0x7F9F4628D840
271271
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
272-
specs: {'args': {'func': <function f at 0x7f76866c7b80>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
272+
specs: {'args': {'func': <function f at 0x7f9f52e639d0>, 'dimensions': Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
273273
kernel=1**2 * Matern(length_scale=1, nu=2.5),
274274
n_restarts_optimizer=2, noise=0.010000000000000002,
275275
normalize_y=True, optimizer='fmin_l_bfgs_b',
276-
random_state=843828734), 'n_calls': 15, 'n_random_starts': 5, 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7F7692E0CD40, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
276+
random_state=843828734), 'n_calls': 15, 'n_random_starts': 5, 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state': RandomState(MT19937) at 0x7F9F4628D840, 'verbose': False, 'callback': None, 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
277277
x: [-0.2861162952526968]
278278
x_iters: [[0.8518212820929092], [-0.2861162952526968], [0.7635394201074472], [0.8766012406190926], [-0.03552426626961047], [-0.34247541478780397], [-0.26155519596964205], [-0.4646415758058908], [-0.31387649972906195], [1.38961533306915], [-1.9998214636995275], [-1.218993447030592], [2.0], [0.37684326379289823], [-1.6363051829417985]]
279279
@@ -305,7 +305,7 @@ the last iteration:
305305
.. code-block:: none
306306
307307
308-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f7602363d90>
308+
<matplotlib.axes._subplots.AxesSubplot object at 0x7f9ecd2b8ac0>
309309
310310
311311

_sources/auto_examples/hyperparameter-optimization.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -207,14 +207,14 @@ Convergence plot
207207
.. code-block:: none
208208
209209
210-
<matplotlib.axes._subplots.AxesSubplot object at 0x7f768660f160>
210+
<matplotlib.axes._subplots.AxesSubplot object at 0x7f9f52e68610>
211211
212212
213213
214214
215215
.. rst-class:: sphx-glr-timing
216216

217-
**Total running time of the script:** ( 1 minutes 31.156 seconds)
217+
**Total running time of the script:** ( 1 minutes 13.964 seconds)
218218

219219

220220
.. _sphx_glr_download_auto_examples_hyperparameter-optimization.py:

_sources/auto_examples/interruptible-optimization.rst.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -163,13 +163,13 @@ and pass it to the minimizer:
163163
n_restarts_optimizer=2, noise='gaussian',
164164
normalize_y=True, optimizer='fmin_l_bfgs_b',
165165
random_state=655685735)]
166-
random_state: RandomState(MT19937) at 0x7F7683F2C740
166+
random_state: RandomState(MT19937) at 0x7F9F4628D840
167167
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
168-
specs: {'args': {'func': <function obj_fun at 0x7f7686709d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
168+
specs: {'args': {'func': <function obj_fun at 0x7f9f52c4f310>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
169169
kernel=1**2 * Matern(length_scale=1, nu=2.5),
170170
n_restarts_optimizer=2, noise='gaussian',
171171
normalize_y=True, optimizer='fmin_l_bfgs_b',
172-
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F7683F2C740, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f7601bee460>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
172+
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F9F4628D840, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f9ece08f4c0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
173173
x: [20.0]
174174
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]]
175175
@@ -321,14 +321,14 @@ The previous results can then be used to continue the optimization process:
321321
n_restarts_optimizer=2, noise='gaussian',
322322
normalize_y=True, optimizer='fmin_l_bfgs_b',
323323
random_state=655685735)]
324-
random_state: RandomState(MT19937) at 0x7F7683F2C740
324+
random_state: RandomState(MT19937) at 0x7F9F4628D840
325325
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
326-
specs: {'args': {'func': <function obj_fun at 0x7f7686709d30>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
326+
specs: {'args': {'func': <function obj_fun at 0x7f9f52c4f310>, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
327327
kernel=1**2 * Matern(length_scale=1, nu=2.5),
328328
n_restarts_optimizer=2, noise='gaussian',
329329
normalize_y=True, optimizer='fmin_l_bfgs_b',
330330
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
331-
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F7683F2C740, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f7601bee460>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
331+
0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F9F4628D840, 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f9ece08f4c0>], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
332332
x: [20.0]
333333
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0]]
334334
@@ -350,7 +350,7 @@ for more information on how the results get saved and possible caveats
350350

351351
.. rst-class:: sphx-glr-timing
352352

353-
**Total running time of the script:** ( 0 minutes 4.044 seconds)
353+
**Total running time of the script:** ( 0 minutes 4.289 seconds)
354354

355355

356356
.. _sphx_glr_download_auto_examples_interruptible-optimization.py:

_sources/auto_examples/parallel-optimization.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ scikit-optimize.
119119
120120
.. rst-class:: sphx-glr-timing
121121

122-
**Total running time of the script:** ( 1 minutes 17.690 seconds)
122+
**Total running time of the script:** ( 0 minutes 54.489 seconds)
123123

124124

125125
.. _sphx_glr_download_auto_examples_parallel-optimization.py:

0 commit comments

Comments
 (0)