|
| 1 | +""" |
| 2 | +Build the quantum fourier transform (qft) for a desire |
| 3 | +number of quantum bits using Qiskit framework. This |
| 4 | +experiment run in IBM Q simulator with 10000 shots. |
| 5 | +This circuit can be use as a building block to design |
| 6 | +the Shor's algorithm in quantum computing. As well as, |
| 7 | +quantum phase estimation among others. |
| 8 | +. |
| 9 | +References: |
| 10 | +https://en.wikipedia.org/wiki/Quantum_Fourier_transform |
| 11 | +https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html |
| 12 | +""" |
| 13 | + |
| 14 | +import math |
| 15 | + |
| 16 | +import numpy as np |
| 17 | +import qiskit |
| 18 | +from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute |
| 19 | + |
| 20 | + |
| 21 | +def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts: |
| 22 | + """ |
| 23 | + # >>> quantum_fourier_transform(2) |
| 24 | + # {'00': 2500, '01': 2500, '11': 2500, '10': 2500} |
| 25 | + # quantum circuit for number_of_qubits = 3: |
| 26 | + ┌───┐ |
| 27 | + qr_0: ──────■──────────────────────■───────┤ H ├─X─ |
| 28 | + │ ┌───┐ │P(π/2) └───┘ │ |
| 29 | + qr_1: ──────┼────────■───────┤ H ├─■─────────────┼─ |
| 30 | + ┌───┐ │P(π/4) │P(π/2) └───┘ │ |
| 31 | + qr_2: ┤ H ├─■────────■───────────────────────────X─ |
| 32 | + └───┘ |
| 33 | + cr: 3/═════════════════════════════════════════════ |
| 34 | + Args: |
| 35 | + n : number of qubits |
| 36 | + Returns: |
| 37 | + qiskit.result.counts.Counts: distribute counts. |
| 38 | +
|
| 39 | + >>> quantum_fourier_transform(2) |
| 40 | + {'00': 2500, '01': 2500, '10': 2500, '11': 2500} |
| 41 | + >>> quantum_fourier_transform(-1) |
| 42 | + Traceback (most recent call last): |
| 43 | + ... |
| 44 | + ValueError: number of qubits must be > 0. |
| 45 | + >>> quantum_fourier_transform('a') |
| 46 | + Traceback (most recent call last): |
| 47 | + ... |
| 48 | + TypeError: number of qubits must be a integer. |
| 49 | + >>> quantum_fourier_transform(100) |
| 50 | + Traceback (most recent call last): |
| 51 | + ... |
| 52 | + ValueError: number of qubits too large to simulate(>10). |
| 53 | + >>> quantum_fourier_transform(0.5) |
| 54 | + Traceback (most recent call last): |
| 55 | + ... |
| 56 | + ValueError: number of qubits must be exact integer. |
| 57 | + """ |
| 58 | + if type(number_of_qubits) == str: |
| 59 | + raise TypeError("number of qubits must be a integer.") |
| 60 | + if not number_of_qubits > 0: |
| 61 | + raise ValueError("number of qubits must be > 0.") |
| 62 | + if math.floor(number_of_qubits) != number_of_qubits: |
| 63 | + raise ValueError("number of qubits must be exact integer.") |
| 64 | + if number_of_qubits > 10: |
| 65 | + raise ValueError("number of qubits too large to simulate(>10).") |
| 66 | + |
| 67 | + qr = QuantumRegister(number_of_qubits, "qr") |
| 68 | + cr = ClassicalRegister(number_of_qubits, "cr") |
| 69 | + |
| 70 | + quantum_circuit = QuantumCircuit(qr, cr) |
| 71 | + |
| 72 | + counter = number_of_qubits |
| 73 | + |
| 74 | + for i in range(counter): |
| 75 | + |
| 76 | + quantum_circuit.h(number_of_qubits - i - 1) |
| 77 | + counter -= 1 |
| 78 | + for j in range(counter): |
| 79 | + quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter) |
| 80 | + |
| 81 | + for k in range(number_of_qubits // 2): |
| 82 | + quantum_circuit.swap(k, number_of_qubits - k - 1) |
| 83 | + |
| 84 | + # measure all the qubits |
| 85 | + quantum_circuit.measure(qr, cr) |
| 86 | + # simulate with 10000 shots |
| 87 | + backend = Aer.get_backend("qasm_simulator") |
| 88 | + job = execute(quantum_circuit, backend, shots=10000) |
| 89 | + |
| 90 | + return job.result().get_counts(quantum_circuit) |
| 91 | + |
| 92 | + |
| 93 | +if __name__ == "__main__": |
| 94 | + print( |
| 95 | + f"Total count for quantum fourier transform state is: \ |
| 96 | + {quantum_fourier_transform(3)}" |
| 97 | + ) |
0 commit comments