Skip to content

Latest commit

 

History

History
289 lines (255 loc) · 7.37 KB

index.md

File metadata and controls

289 lines (255 loc) · 7.37 KB

(home)=

Welcome to the ExecuTorch Documentation

ExecuTorch is PyTorch's solution to training and inference on the Edge.

Key Value Propositions

  • Portability: Compatibility with a wide variety of computing platforms, from high-end mobile phones to highly constrained embedded systems and microcontrollers.
  • Productivity: Enabling developers to use the same toolchains and Developer Tools from PyTorch model authoring and conversion, to debugging and deployment to a wide variety of platforms.
  • Performance: Providing end users with a seamless and high-performance experience due to a lightweight runtime and utilizing full hardware capabilities such as CPUs, NPUs, and DSPs.

ExecuTorch provides support for:

  • Strong Model Support LLMs (Large Language Models), CV (Computer Vision), ASR (Automatic Speech Recognition), TTS (Text To Speech)
  • All Major Platforms Android, Mac, Linux, Windows
  • Rich Acceleration Support Apple, Arm, Cadence, MediaTek, Qualcomm, Vulkan, XNNPACK

Documentation Navigation

Introduction

Usage

Examples

Backends

Developer Tools

Runtime

Portable C++ Programming

API Reference

Quantization

Kernel Library

Working with LLMs

Backend Development

IR Specification

Compiler Entry Points

Contributing

:glob:
:maxdepth: 1
:caption: Introduction
:hidden:

intro-overview
intro-how-it-works
getting-started-architecture
concepts
:glob:
:maxdepth: 1
:caption: Usage
:hidden:

getting-started
using-executorch-export
using-executorch-android
using-executorch-ios
using-executorch-cpp
using-executorch-runtime-integration
using-executorch-troubleshooting
using-executorch-building-from-source
using-executorch-faqs
:glob:
:maxdepth: 1
:caption: Examples
:hidden:

Building an ExecuTorch Android Demo App <https://github.com/pytorch-labs/executorch-examples/tree/main/dl3/android/DeepLabV3Demo#executorch-android-demo-app>
Building an ExecuTorch iOS Demo App <https://github.com/pytorch-labs/executorch-examples/tree/main/mv3/apple/ExecuTorchDemo>
tutorial-arm-ethos-u.md
:glob:
:maxdepth: 1
:caption: Backends
:hidden:

backends-overview
backends-xnnpack
backends-coreml
backends-mps
backends-vulkan
backends-arm-ethos-u
backends-qualcomm
backends-mediatek
backends-cadence
:glob:
:maxdepth: 1
:caption: Developer Tools
:hidden:

devtools-overview
bundled-io
etrecord
etdump
runtime-profiling
model-debugging
model-inspector
memory-planning-inspection
delegate-debugging
devtools-tutorial
:glob:
:maxdepth: 1
:caption: Runtime
:hidden:

runtime-overview
extension-module
extension-tensor
running-a-model-cpp-tutorial
runtime-backend-delegate-implementation-and-linking
runtime-platform-abstraction-layer
portable-cpp-programming
pte-file-format
:glob:
:maxdepth: 1
:caption: API Reference
:hidden:

export-to-executorch-api-reference
executorch-runtime-api-reference
runtime-python-api-reference
api-life-cycle
Javadoc <https://pytorch.org/executorch/main/javadoc/>
:glob:
:maxdepth: 1
:caption: Quantization
:hidden:

quantization-overview
:glob:
:maxdepth: 1
:caption: Kernel Library
:hidden:

kernel-library-overview
kernel-library-custom-aten-kernel
kernel-library-selective-build
:glob:
:maxdepth: 2
:caption: Working with LLMs
:hidden:

Llama <llm/llama>
Llama on Android <llm/llama-demo-android>
Llama on iOS <llm/llama-demo-ios>
Llama on Android via Qualcomm backend <llm/build-run-llama3-qualcomm-ai-engine-direct-backend>
Intro to LLMs in Executorch <llm/getting-started>
:glob:
:maxdepth: 1
:caption: Backend Development
:hidden:

backend-delegates-integration
backend-delegates-xnnpack-reference
backend-delegates-dependencies
compiler-delegate-and-partitioner
debug-backend-delegate
:glob:
:maxdepth: 1
:caption: IR Specification
:hidden:

ir-exir
ir-ops-set-definition
:glob:
:maxdepth: 1
:caption: Compiler Entry Points
:hidden:

compiler-backend-dialect
compiler-custom-compiler-passes
compiler-memory-planning
:glob:
:maxdepth: 1
:caption: Contributing
:hidden:

contributing