|
| 1 | +### 题目描述 |
| 2 | + |
| 3 | +这是 LeetCode 上的 **[934. 最短的桥](https://leetcode.cn/problems/shortest-bridge/solution/by-ac_oier-56ly/)** ,难度为 **中等**。 |
| 4 | + |
| 5 | +Tag : 「并查集」、「双向 BFS」 |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | +给你一个大小为 `n x n` 的二元矩阵 `grid`,其中 `1` 表示陆地,`0` 表示水域。 |
| 10 | + |
| 11 | +岛 是由四面相连的 `1` 形成的一个最大组,即不会与非组内的任何其他 `1` 相连。`grid` 中 恰好存在两座岛 。 |
| 12 | + |
| 13 | +你可以将任意数量的 `0` 变为 `1` ,以使两座岛连接起来,变成 一座岛 。 |
| 14 | + |
| 15 | +返回必须翻转的 `0` 的最小数目。 |
| 16 | + |
| 17 | +示例 1: |
| 18 | +``` |
| 19 | +输入:grid = [[0,1],[1,0]] |
| 20 | +
|
| 21 | +输出:1 |
| 22 | +``` |
| 23 | +示例 2: |
| 24 | +``` |
| 25 | +输入:grid = [[0,1,0],[0,0,0],[0,0,1]] |
| 26 | +
|
| 27 | +输出:2 |
| 28 | +``` |
| 29 | +示例 3: |
| 30 | +``` |
| 31 | +输入:grid = [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]] |
| 32 | +
|
| 33 | +输出:1 |
| 34 | +``` |
| 35 | + |
| 36 | +提示: |
| 37 | +* $n = grid.length = grid[i].length$ |
| 38 | +* $2 <= n <= 100$ |
| 39 | +* `grid[i][j]` 为 `0` 或 `1` |
| 40 | +* `grid` 中恰有两个岛 |
| 41 | + |
| 42 | +--- |
| 43 | + |
| 44 | +### 并查集 + 双向 BFS |
| 45 | + |
| 46 | +**使用「并查集」将两个岛标记出来,然后将两个岛的点分别入队,再运用「双向 BFS」来找最短通路。** |
| 47 | + |
| 48 | +为了方便,我们将 `grid` 记为 `g`。 |
| 49 | + |
| 50 | +对于所有满足 $g[i][j] = 1$ 的节点与其四联通的方向,值同为 $1$ 的节点进行并查集连通性维护。 |
| 51 | + |
| 52 | +随后建立两个队列 `d1` 和 `d2` 分别存储两个岛的节点(以二元组 $(x, y)$ 的方式出入队),并使用两个哈希表 `m1` 和 `m2` 来记录从两岛屿出发到达该节点所消耗的步数(以节点的一维编号为 `key`,以消耗步数为 `value`)。 |
| 53 | + |
| 54 | +最后是使用「双向 BFS」来求解使两岛屿联通的最小通路:每次从队列中较少的进行拓展,只有尚未被处理过的节点(没有被当前哈希表所记录)才进行入队并更新消耗步数,当拓展节点在另外一个队列对应的哈希表表中出现过,说明找到了最短通路。 |
| 55 | + |
| 56 | +Java 代码: |
| 57 | +```Java |
| 58 | +class Solution { |
| 59 | + static int N = 10010; |
| 60 | + static int[] p = new int[N]; |
| 61 | + static int[][] dirs = new int[][]{{1,0},{-1,0},{0,1},{0,-1}}; |
| 62 | + int n; |
| 63 | + int getIdx(int x, int y) { |
| 64 | + return x * n + y; |
| 65 | + } |
| 66 | + int find(int x) { |
| 67 | + if (p[x] != x) p[x] = find(p[x]); |
| 68 | + return p[x]; |
| 69 | + } |
| 70 | + void union(int x, int y) { |
| 71 | + p[find(x)] = p[find(y)]; |
| 72 | + } |
| 73 | + public int shortestBridge(int[][] g) { |
| 74 | + n = g.length; |
| 75 | + for (int i = 0; i <= n * n; i++) p[i] = i; |
| 76 | + for (int i = 0; i < n; i++) { |
| 77 | + for (int j = 0; j < n; j++) { |
| 78 | + if (g[i][j] == 0) continue; |
| 79 | + for (int[] di : dirs) { |
| 80 | + int x = i + di[0], y = j + di[1]; |
| 81 | + if (x < 0 || x >= n || y < 0 || y >= n) continue; |
| 82 | + if (g[x][y] == 0) continue; |
| 83 | + union(getIdx(i, j), getIdx(x, y)); |
| 84 | + } |
| 85 | + } |
| 86 | + } |
| 87 | + int a = -1, b = -1; |
| 88 | + Deque<int[]> d1 = new ArrayDeque<>(), d2 = new ArrayDeque<>(); |
| 89 | + Map<Integer, Integer> m1 = new HashMap<>(), m2 = new HashMap<>(); |
| 90 | + for (int i = 0; i < n; i++) { |
| 91 | + for (int j = 0; j < n; j++) { |
| 92 | + if (g[i][j] == 0) continue; |
| 93 | + int idx = getIdx(i, j), root = find(idx); |
| 94 | + if (a == -1) a = root; |
| 95 | + else if (a != root && b == -1) b = root; |
| 96 | + if (root == a) { |
| 97 | + d1.addLast(new int[]{i, j}); |
| 98 | + m1.put(idx, 0); |
| 99 | + } else if (root == b) { |
| 100 | + d2.addLast(new int[]{i, j}); |
| 101 | + m2.put(idx, 0); |
| 102 | + } |
| 103 | + } |
| 104 | + } |
| 105 | + while (!d1.isEmpty() && !d2.isEmpty()) { |
| 106 | + int t = -1; |
| 107 | + if (d1.size() < d2.size()) t = update(d1, m1, m2); |
| 108 | + else t = update(d2, m2, m1); |
| 109 | + if (t != -1) return t - 1; |
| 110 | + } |
| 111 | + return -1; // never |
| 112 | + } |
| 113 | + int update(Deque<int[]> d, Map<Integer, Integer> m1, Map<Integer, Integer> m2) { |
| 114 | + int sz = d.size(); |
| 115 | + while (sz-- > 0) { |
| 116 | + int[] info = d.pollFirst(); |
| 117 | + int x = info[0], y = info[1], idx = getIdx(x, y), step = m1.get(idx); |
| 118 | + for (int[] di : dirs) { |
| 119 | + int nx = x + di[0], ny = y + di[1], nidx = getIdx(nx, ny); |
| 120 | + if (nx < 0 || nx >= n || ny < 0 || ny >= n) continue; |
| 121 | + if (m1.containsKey(nidx)) continue; |
| 122 | + if (m2.containsKey(nidx)) return step + 1 + m2.get(nidx); |
| 123 | + d.addLast(new int[]{nx, ny}); |
| 124 | + m1.put(nidx, step + 1); |
| 125 | + } |
| 126 | + } |
| 127 | + return -1; |
| 128 | + } |
| 129 | +} |
| 130 | +``` |
| 131 | +TypeScript 代码: |
| 132 | +```TypeScript |
| 133 | +let n: number |
| 134 | +const p = new Array<number>(10010).fill(0) |
| 135 | +const dirs = [[0,1],[0,-1],[1,0],[-1,0]] |
| 136 | +function shortestBridge(g: number[][]): number { |
| 137 | + function getIdx(x: number, y: number): number { |
| 138 | + return x * n + y |
| 139 | + } |
| 140 | + function find(x: number): number { |
| 141 | + if (p[x] != x) p[x] = find(p[x]) |
| 142 | + return p[x] |
| 143 | + } |
| 144 | + function union(x: number, y: number): void { |
| 145 | + p[find(x)] = p[find(y)] |
| 146 | + } |
| 147 | + function update(d: Array<Array<number>>, m1: Map<number, number>, m2: Map<number, number>): number { |
| 148 | + let sz = d.length |
| 149 | + while (sz-- > 0) { |
| 150 | + const info = d.shift() |
| 151 | + const x = info[0], y = info[1], idx = getIdx(x, y), step = m1.get(idx) |
| 152 | + for (const di of dirs) { |
| 153 | + const nx = x + di[0], ny = y + di[1], nidx = getIdx(nx, ny) |
| 154 | + if (nx < 0 || nx >= n || ny < 0 || ny >= n) continue |
| 155 | + if (m1.has(nidx)) continue |
| 156 | + if (m2.has(nidx)) return step + 1 + m2.get(nidx) |
| 157 | + d.push([nx, ny]) |
| 158 | + m1.set(nidx, step + 1) |
| 159 | + } |
| 160 | + } |
| 161 | + return -1 |
| 162 | + } |
| 163 | + n = g.length |
| 164 | + for (let i = 0; i < n * n; i++) p[i] = i |
| 165 | + for (let i = 0; i < n; i++) { |
| 166 | + for (let j = 0; j < n; j++) { |
| 167 | + if (g[i][j] == 0) continue |
| 168 | + for (const di of dirs) { |
| 169 | + const x = i + di[0], y = j + di[1] |
| 170 | + if (x < 0 || x >= n || y < 0 || y >= n) continue |
| 171 | + if (g[x][y] == 0) continue |
| 172 | + union(getIdx(i, j), getIdx(x, y)) |
| 173 | + } |
| 174 | + } |
| 175 | + } |
| 176 | + let a = -1, b = -1 |
| 177 | + const d1 = new Array<number[]>(), d2 = new Array<number[]>() |
| 178 | + const m1 = new Map<number, number>(), m2 = new Map<number, number>() |
| 179 | + for (let i = 0; i < n; i++) { |
| 180 | + for (let j = 0; j < n; j++) { |
| 181 | + if (g[i][j] == 0) continue |
| 182 | + const idx = getIdx(i, j), root = find(idx) |
| 183 | + if (a == -1) a = root |
| 184 | + else if (a != root && b == -1) b = root |
| 185 | + if (a == root) { |
| 186 | + d1.push([i, j]) |
| 187 | + m1.set(idx, 0) |
| 188 | + } else if (b == root) { |
| 189 | + d2.push([i, j]) |
| 190 | + m2.set(idx, 0) |
| 191 | + } |
| 192 | + } |
| 193 | + } |
| 194 | + while (d1.length != 0 && d2.length != 0) { |
| 195 | + let t = -1 |
| 196 | + if (d1.length < d2.length) t = update(d1, m1, m2) |
| 197 | + else t = update(d2, m2, m1) |
| 198 | + if (t != -1) return t - 1 |
| 199 | + } |
| 200 | + return -1 |
| 201 | +} |
| 202 | +``` |
| 203 | +Python 代码: |
| 204 | +```Python |
| 205 | +import queue |
| 206 | + |
| 207 | +class Solution: |
| 208 | + def shortestBridge(self, g: List[List[int]]) -> int: |
| 209 | + def getIdx(x, y): |
| 210 | + return x * n + y |
| 211 | + |
| 212 | + def find(x): |
| 213 | + if p[x] != x: |
| 214 | + p[x] = find(p[x]) |
| 215 | + return p[x] |
| 216 | + |
| 217 | + def union(x, y): |
| 218 | + p[find(x)] = p[find(y)] |
| 219 | + |
| 220 | + def update(d, cur, other): |
| 221 | + sz = d.qsize() |
| 222 | + while sz != 0: |
| 223 | + x, y = d.get() |
| 224 | + idx, step = getIdx(x, y), cur.get(getIdx(x, y)) |
| 225 | + for di in dirs: |
| 226 | + nx, ny = x + di[0], y + di[1] |
| 227 | + nidx = getIdx(nx, ny) |
| 228 | + if nx < 0 or nx >= n or ny < 0 or ny >= n: |
| 229 | + continue |
| 230 | + if nidx in cur: |
| 231 | + continue |
| 232 | + if nidx in other: |
| 233 | + return step + 1 + other.get(nidx) |
| 234 | + d.put([nx, ny]) |
| 235 | + cur[nidx] = step + 1 |
| 236 | + sz -= 1 |
| 237 | + return -1 |
| 238 | + |
| 239 | + n = len(g) |
| 240 | + p = [i for i in range(n * n + 10)] |
| 241 | + dirs = [[1, 0], [-1, 0], [0, 1], [0, -1]] |
| 242 | + for i in range(n): |
| 243 | + for j in range(n): |
| 244 | + if g[i][j] == 0: |
| 245 | + continue |
| 246 | + for di in dirs: |
| 247 | + x, y = i + di[0], j + di[1] |
| 248 | + if x < 0 or x >= n or y < 0 or y >= n: |
| 249 | + continue |
| 250 | + if g[x][y] == 0: |
| 251 | + continue |
| 252 | + union(getIdx(i, j), getIdx(x, y)) |
| 253 | + a, b = -1, -1 |
| 254 | + d1, d2 = queue.Queue(), queue.Queue() |
| 255 | + m1, m2 = {}, {} |
| 256 | + for i in range(n): |
| 257 | + for j in range(n): |
| 258 | + if g[i][j] == 0: |
| 259 | + continue |
| 260 | + idx, root = getIdx(i, j), find(getIdx(i, j)) |
| 261 | + if a == -1: |
| 262 | + a = root |
| 263 | + elif a != root and b == -1: |
| 264 | + b = root |
| 265 | + if a == root: |
| 266 | + d1.put([i, j]) |
| 267 | + m1[idx] = 0 |
| 268 | + elif b == root: |
| 269 | + d2.put([i, j]) |
| 270 | + m2[idx] = 0 |
| 271 | + while not d1.empty() and not d2.empty(): |
| 272 | + t = -1 |
| 273 | + if d1.qsize() < d2.qsize(): |
| 274 | + t = update(d1, m1, m2) |
| 275 | + else: |
| 276 | + t = update(d2, m2, m1) |
| 277 | + if t != -1: |
| 278 | + return t - 1 |
| 279 | + return -1 |
| 280 | +``` |
| 281 | +* 时间复杂度:$O(n^2)$ |
| 282 | +* 空间复杂度:$O(n^2)$ |
| 283 | + |
| 284 | +--- |
| 285 | + |
| 286 | +### 最后 |
| 287 | + |
| 288 | +这是我们「刷穿 LeetCode」系列文章的第 `No.934` 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。 |
| 289 | + |
| 290 | +在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。 |
| 291 | + |
| 292 | +为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。 |
| 293 | + |
| 294 | +在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。 |
| 295 | + |
0 commit comments