Skip to content

Commit 7a1f5c5

Browse files
committed
Merge main into multi-project
2 parents bdbd6eb + 1ba5d25 commit 7a1f5c5

File tree

414 files changed

+6694
-3017
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

414 files changed

+6694
-3017
lines changed

distribution/tools/server-cli/src/main/java/org/elasticsearch/server/cli/SystemJvmOptions.java

+2-2
Original file line numberDiff line numberDiff line change
@@ -171,8 +171,8 @@ private static Stream<String> maybeAttachEntitlementAgent(boolean useEntitlement
171171
throw new IllegalStateException("Failed to list entitlement jars in: " + dir, e);
172172
}
173173
// We instrument classes in these modules to call the bridge. Because the bridge gets patched
174-
// into java.base, we must export the bridge from java.base to these modules.
175-
String modulesContainingEntitlementInstrumentation = "java.logging";
174+
// into java.base, we must export the bridge from java.base to these modules, as a comma-separated list
175+
String modulesContainingEntitlementInstrumentation = "java.logging,java.net.http,java.naming";
176176
return Stream.of(
177177
"-Des.entitlements.enabled=true",
178178
"-XX:+EnableDynamicAgentLoading",

docs/changelog/119536.yaml

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
pr: 119536
2+
summary: Fix ROUND() with unsigned longs throwing in some edge cases
3+
area: ES|QL
4+
type: bug
5+
issues: []

docs/changelog/120192.yaml

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
pr: 120192
2+
summary: Extend `TranslationAware` to all pushable expressions
3+
area: ES|QL
4+
type: enhancement
5+
issues: []

docs/changelog/120271.yaml

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
pr: 120271
2+
summary: Optimize indexing points with index and doc values set to true
3+
area: Geo
4+
type: enhancement
5+
issues: []

docs/reference/esql/functions/kibana/definition/round.json

+90
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

docs/reference/esql/functions/types/round.asciidoc

+5
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

docs/reference/mapping/types/dense-vector.asciidoc

+3-1
Original file line numberDiff line numberDiff line change
@@ -121,11 +121,13 @@ The three following quantization strategies are supported:
121121
* `bbq` - experimental:[] Better binary quantization which reduces each dimension to a single bit precision. This reduces the memory footprint by 96% (or 32x) at a larger cost of accuracy. Generally, oversampling during query time and reranking can help mitigate the accuracy loss.
122122

123123

124-
When using a quantized format, you may want to oversample and rescore the results to improve accuracy. See <<dense-vector-knn-search-reranking, oversampling and rescoring>> for more information.
124+
When using a quantized format, you may want to oversample and rescore the results to improve accuracy. See <<dense-vector-knn-search-rescoring, oversampling and rescoring>> for more information.
125125

126126
To use a quantized index, you can set your index type to `int8_hnsw`, `int4_hnsw`, or `bbq_hnsw`. When indexing `float` vectors, the current default
127127
index type is `int8_hnsw`.
128128

129+
Quantized vectors can use <<dense-vector-knn-search-rescoring,oversampling and rescoring>> to improve accuracy on approximate kNN search results.
130+
129131
NOTE: Quantization will continue to keep the raw float vector values on disk for reranking, reindexing, and quantization improvements over the lifetime of the data.
130132
This means disk usage will increase by ~25% for `int8`, ~12.5% for `int4`, and ~3.1% for `bbq` due to the overhead of storing the quantized and raw vectors.
131133

docs/reference/query-dsl/knn-query.asciidoc

+3
Original file line numberDiff line numberDiff line change
@@ -137,6 +137,9 @@ documents are then scored according to <<dense-vector-similarity, `similarity`>>
137137
and the provided `boost` is applied.
138138
--
139139

140+
include::{es-ref-dir}/rest-api/common-parms.asciidoc[tag=knn-rescore-vector]
141+
142+
140143
`boost`::
141144
+
142145
--

docs/reference/rest-api/common-parms.asciidoc

+24
Original file line numberDiff line numberDiff line change
@@ -1356,3 +1356,27 @@ tag::rrf-filter[]
13561356
Applies the specified <<query-dsl-bool-query, boolean query filter>> to all of the specified sub-retrievers,
13571357
according to each retriever's specifications.
13581358
end::rrf-filter[]
1359+
1360+
tag::knn-rescore-vector[]
1361+
1362+
`rescore_vector`::
1363+
+
1364+
--
1365+
(Optional, object) Functionality in preview:[]. Apply oversampling and rescoring to quantized vectors.
1366+
1367+
NOTE: Rescoring only makes sense for quantized vectors; when <<dense-vector-quantization,quantization>> is not used, the original vectors are used for scoring.
1368+
Rescore option will be ignored for non-quantized `dense_vector` fields.
1369+
1370+
`oversample`::
1371+
(Required, float)
1372+
+
1373+
Applies the specified oversample factor to `k` on the approximate kNN search.
1374+
The approximate kNN search will:
1375+
1376+
* Retrieve `num_candidates` candidates per shard.
1377+
* From these candidates, the top `k * oversample` candidates per shard will be rescored using the original vectors.
1378+
* The top `k` rescored candidates will be returned.
1379+
1380+
See <<dense-vector-knn-search-rescoring,oversampling and rescoring quantized vectors>> for details.
1381+
--
1382+
end::knn-rescore-vector[]

docs/reference/search/retriever.asciidoc

+5-3
Original file line numberDiff line numberDiff line change
@@ -233,6 +233,8 @@ include::{es-ref-dir}/rest-api/common-parms.asciidoc[tag=knn-filter]
233233
+
234234
include::{es-ref-dir}/rest-api/common-parms.asciidoc[tag=knn-similarity]
235235

236+
include::{es-ref-dir}/rest-api/common-parms.asciidoc[tag=knn-rescore-vector]
237+
236238
===== Restrictions
237239

238240
The parameters `query_vector` and `query_vector_builder` cannot be used together.
@@ -576,15 +578,15 @@ This example demonstrates how to deploy the {ml-docs}/ml-nlp-rerank.html[Elastic
576578

577579
Follow these steps:
578580

579-
. Create an inference endpoint for the `rerank` task using the <<put-inference-api, Create {infer} API>>.
581+
. Create an inference endpoint for the `rerank` task using the <<put-inference-api, Create {infer} API>>.
580582
+
581583
[source,console]
582584
----
583585
PUT _inference/rerank/my-elastic-rerank
584586
{
585587
"service": "elasticsearch",
586588
"service_settings": {
587-
"model_id": ".rerank-v1",
589+
"model_id": ".rerank-v1",
588590
"num_threads": 1,
589591
"adaptive_allocations": { <1>
590592
"enabled": true,
@@ -595,7 +597,7 @@ PUT _inference/rerank/my-elastic-rerank
595597
}
596598
----
597599
// TEST[skip:uses ML]
598-
<1> {ml-docs}/ml-nlp-auto-scale.html#nlp-model-adaptive-allocations[Adaptive allocations] will be enabled with the minimum of 1 and the maximum of 10 allocations.
600+
<1> {ml-docs}/ml-nlp-auto-scale.html#nlp-model-adaptive-allocations[Adaptive allocations] will be enabled with the minimum of 1 and the maximum of 10 allocations.
599601
+
600602
. Define a `text_similarity_rerank` retriever:
601603
+

0 commit comments

Comments
 (0)