|
67 | 67 | import co.elastic.clients.elasticsearch.core.IndexResponse;
|
68 | 68 | import co.elastic.clients.elasticsearch.core.InfoRequest;
|
69 | 69 | import co.elastic.clients.elasticsearch.core.InfoResponse;
|
70 |
| -import co.elastic.clients.elasticsearch.core.KnnSearchRequest; |
71 |
| -import co.elastic.clients.elasticsearch.core.KnnSearchResponse; |
72 | 70 | import co.elastic.clients.elasticsearch.core.MgetRequest;
|
73 | 71 | import co.elastic.clients.elasticsearch.core.MgetResponse;
|
74 | 72 | import co.elastic.clients.elasticsearch.core.MsearchRequest;
|
@@ -3284,207 +3282,6 @@ public CompletableFuture<InfoResponse> info() {
|
3284 | 3282 | return this.transport.performRequestAsync(InfoRequest._INSTANCE, InfoRequest._ENDPOINT, this.transportOptions);
|
3285 | 3283 | }
|
3286 | 3284 |
|
3287 |
| - // ----- Endpoint: knn_search |
3288 |
| - |
3289 |
| - /** |
3290 |
| - * Run a knn search. |
3291 |
| - * <p> |
3292 |
| - * NOTE: The kNN search API has been replaced by the <code>knn</code> option in |
3293 |
| - * the search API. |
3294 |
| - * <p> |
3295 |
| - * Perform a k-nearest neighbor (kNN) search on a dense_vector field and return |
3296 |
| - * the matching documents. Given a query vector, the API finds the k closest |
3297 |
| - * vectors and returns those documents as search hits. |
3298 |
| - * <p> |
3299 |
| - * Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like |
3300 |
| - * most kNN algorithms, HNSW is an approximate method that sacrifices result |
3301 |
| - * accuracy for improved search speed. This means the results returned are not |
3302 |
| - * always the true k closest neighbors. |
3303 |
| - * <p> |
3304 |
| - * The kNN search API supports restricting the search using a filter. The search |
3305 |
| - * will return the top k documents that also match the filter query. |
3306 |
| - * <p> |
3307 |
| - * A kNN search response has the exact same structure as a search API response. |
3308 |
| - * However, certain sections have a meaning specific to kNN search: |
3309 |
| - * <ul> |
3310 |
| - * <li>The document <code>_score</code> is determined by the similarity between |
3311 |
| - * the query and document vector.</li> |
3312 |
| - * <li>The <code>hits.total</code> object contains the total number of nearest |
3313 |
| - * neighbor candidates considered, which is |
3314 |
| - * <code>num_candidates * num_shards</code>. The |
3315 |
| - * <code>hits.total.relation</code> will always be <code>eq</code>, indicating |
3316 |
| - * an exact value.</li> |
3317 |
| - * </ul> |
3318 |
| - * |
3319 |
| - * @see <a href= |
3320 |
| - * "https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-knn-search">Documentation |
3321 |
| - * on elastic.co</a> |
3322 |
| - */ |
3323 |
| - |
3324 |
| - public <TDocument> CompletableFuture<KnnSearchResponse<TDocument>> knnSearch(KnnSearchRequest request, |
3325 |
| - Class<TDocument> tDocumentClass) { |
3326 |
| - @SuppressWarnings("unchecked") |
3327 |
| - JsonEndpoint<KnnSearchRequest, KnnSearchResponse<TDocument>, ErrorResponse> endpoint = (JsonEndpoint<KnnSearchRequest, KnnSearchResponse<TDocument>, ErrorResponse>) KnnSearchRequest._ENDPOINT; |
3328 |
| - endpoint = new EndpointWithResponseMapperAttr<>(endpoint, |
3329 |
| - "co.elastic.clients:Deserializer:_global.knn_search.Response.TDocument", |
3330 |
| - getDeserializer(tDocumentClass)); |
3331 |
| - |
3332 |
| - return this.transport.performRequestAsync(request, endpoint, this.transportOptions); |
3333 |
| - } |
3334 |
| - |
3335 |
| - /** |
3336 |
| - * Run a knn search. |
3337 |
| - * <p> |
3338 |
| - * NOTE: The kNN search API has been replaced by the <code>knn</code> option in |
3339 |
| - * the search API. |
3340 |
| - * <p> |
3341 |
| - * Perform a k-nearest neighbor (kNN) search on a dense_vector field and return |
3342 |
| - * the matching documents. Given a query vector, the API finds the k closest |
3343 |
| - * vectors and returns those documents as search hits. |
3344 |
| - * <p> |
3345 |
| - * Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like |
3346 |
| - * most kNN algorithms, HNSW is an approximate method that sacrifices result |
3347 |
| - * accuracy for improved search speed. This means the results returned are not |
3348 |
| - * always the true k closest neighbors. |
3349 |
| - * <p> |
3350 |
| - * The kNN search API supports restricting the search using a filter. The search |
3351 |
| - * will return the top k documents that also match the filter query. |
3352 |
| - * <p> |
3353 |
| - * A kNN search response has the exact same structure as a search API response. |
3354 |
| - * However, certain sections have a meaning specific to kNN search: |
3355 |
| - * <ul> |
3356 |
| - * <li>The document <code>_score</code> is determined by the similarity between |
3357 |
| - * the query and document vector.</li> |
3358 |
| - * <li>The <code>hits.total</code> object contains the total number of nearest |
3359 |
| - * neighbor candidates considered, which is |
3360 |
| - * <code>num_candidates * num_shards</code>. The |
3361 |
| - * <code>hits.total.relation</code> will always be <code>eq</code>, indicating |
3362 |
| - * an exact value.</li> |
3363 |
| - * </ul> |
3364 |
| - * |
3365 |
| - * @param fn |
3366 |
| - * a function that initializes a builder to create the |
3367 |
| - * {@link KnnSearchRequest} |
3368 |
| - * @see <a href= |
3369 |
| - * "https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-knn-search">Documentation |
3370 |
| - * on elastic.co</a> |
3371 |
| - */ |
3372 |
| - |
3373 |
| - public final <TDocument> CompletableFuture<KnnSearchResponse<TDocument>> knnSearch( |
3374 |
| - Function<KnnSearchRequest.Builder, ObjectBuilder<KnnSearchRequest>> fn, Class<TDocument> tDocumentClass) { |
3375 |
| - return knnSearch(fn.apply(new KnnSearchRequest.Builder()).build(), tDocumentClass); |
3376 |
| - } |
3377 |
| - |
3378 |
| - /** |
3379 |
| - * Overload of {@link #knnSearch(KnnSearchRequest, Class)}, where Class is |
3380 |
| - * defined as Void, meaning the documents will not be deserialized. |
3381 |
| - */ |
3382 |
| - |
3383 |
| - public CompletableFuture<KnnSearchResponse<Void>> knnSearch(KnnSearchRequest request) { |
3384 |
| - @SuppressWarnings("unchecked") |
3385 |
| - JsonEndpoint<KnnSearchRequest, KnnSearchResponse<Void>, ErrorResponse> endpoint = (JsonEndpoint<KnnSearchRequest, KnnSearchResponse<Void>, ErrorResponse>) KnnSearchRequest._ENDPOINT; |
3386 |
| - return this.transport.performRequestAsync(request, endpoint, this.transportOptions); |
3387 |
| - } |
3388 |
| - |
3389 |
| - /** |
3390 |
| - * Overload of {@link #knnSearch(Function, Class)}, where Class is defined as |
3391 |
| - * Void, meaning the documents will not be deserialized. |
3392 |
| - */ |
3393 |
| - |
3394 |
| - public final CompletableFuture<KnnSearchResponse<Void>> knnSearch( |
3395 |
| - Function<KnnSearchRequest.Builder, ObjectBuilder<KnnSearchRequest>> fn) { |
3396 |
| - return knnSearch(fn.apply(new KnnSearchRequest.Builder()).build(), Void.class); |
3397 |
| - } |
3398 |
| - |
3399 |
| - /** |
3400 |
| - * Run a knn search. |
3401 |
| - * <p> |
3402 |
| - * NOTE: The kNN search API has been replaced by the <code>knn</code> option in |
3403 |
| - * the search API. |
3404 |
| - * <p> |
3405 |
| - * Perform a k-nearest neighbor (kNN) search on a dense_vector field and return |
3406 |
| - * the matching documents. Given a query vector, the API finds the k closest |
3407 |
| - * vectors and returns those documents as search hits. |
3408 |
| - * <p> |
3409 |
| - * Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like |
3410 |
| - * most kNN algorithms, HNSW is an approximate method that sacrifices result |
3411 |
| - * accuracy for improved search speed. This means the results returned are not |
3412 |
| - * always the true k closest neighbors. |
3413 |
| - * <p> |
3414 |
| - * The kNN search API supports restricting the search using a filter. The search |
3415 |
| - * will return the top k documents that also match the filter query. |
3416 |
| - * <p> |
3417 |
| - * A kNN search response has the exact same structure as a search API response. |
3418 |
| - * However, certain sections have a meaning specific to kNN search: |
3419 |
| - * <ul> |
3420 |
| - * <li>The document <code>_score</code> is determined by the similarity between |
3421 |
| - * the query and document vector.</li> |
3422 |
| - * <li>The <code>hits.total</code> object contains the total number of nearest |
3423 |
| - * neighbor candidates considered, which is |
3424 |
| - * <code>num_candidates * num_shards</code>. The |
3425 |
| - * <code>hits.total.relation</code> will always be <code>eq</code>, indicating |
3426 |
| - * an exact value.</li> |
3427 |
| - * </ul> |
3428 |
| - * |
3429 |
| - * @see <a href= |
3430 |
| - * "https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-knn-search">Documentation |
3431 |
| - * on elastic.co</a> |
3432 |
| - */ |
3433 |
| - |
3434 |
| - public <TDocument> CompletableFuture<KnnSearchResponse<TDocument>> knnSearch(KnnSearchRequest request, |
3435 |
| - Type tDocumentType) { |
3436 |
| - @SuppressWarnings("unchecked") |
3437 |
| - JsonEndpoint<KnnSearchRequest, KnnSearchResponse<TDocument>, ErrorResponse> endpoint = (JsonEndpoint<KnnSearchRequest, KnnSearchResponse<TDocument>, ErrorResponse>) KnnSearchRequest._ENDPOINT; |
3438 |
| - endpoint = new EndpointWithResponseMapperAttr<>(endpoint, |
3439 |
| - "co.elastic.clients:Deserializer:_global.knn_search.Response.TDocument", |
3440 |
| - getDeserializer(tDocumentType)); |
3441 |
| - |
3442 |
| - return this.transport.performRequestAsync(request, endpoint, this.transportOptions); |
3443 |
| - } |
3444 |
| - |
3445 |
| - /** |
3446 |
| - * Run a knn search. |
3447 |
| - * <p> |
3448 |
| - * NOTE: The kNN search API has been replaced by the <code>knn</code> option in |
3449 |
| - * the search API. |
3450 |
| - * <p> |
3451 |
| - * Perform a k-nearest neighbor (kNN) search on a dense_vector field and return |
3452 |
| - * the matching documents. Given a query vector, the API finds the k closest |
3453 |
| - * vectors and returns those documents as search hits. |
3454 |
| - * <p> |
3455 |
| - * Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like |
3456 |
| - * most kNN algorithms, HNSW is an approximate method that sacrifices result |
3457 |
| - * accuracy for improved search speed. This means the results returned are not |
3458 |
| - * always the true k closest neighbors. |
3459 |
| - * <p> |
3460 |
| - * The kNN search API supports restricting the search using a filter. The search |
3461 |
| - * will return the top k documents that also match the filter query. |
3462 |
| - * <p> |
3463 |
| - * A kNN search response has the exact same structure as a search API response. |
3464 |
| - * However, certain sections have a meaning specific to kNN search: |
3465 |
| - * <ul> |
3466 |
| - * <li>The document <code>_score</code> is determined by the similarity between |
3467 |
| - * the query and document vector.</li> |
3468 |
| - * <li>The <code>hits.total</code> object contains the total number of nearest |
3469 |
| - * neighbor candidates considered, which is |
3470 |
| - * <code>num_candidates * num_shards</code>. The |
3471 |
| - * <code>hits.total.relation</code> will always be <code>eq</code>, indicating |
3472 |
| - * an exact value.</li> |
3473 |
| - * </ul> |
3474 |
| - * |
3475 |
| - * @param fn |
3476 |
| - * a function that initializes a builder to create the |
3477 |
| - * {@link KnnSearchRequest} |
3478 |
| - * @see <a href= |
3479 |
| - * "https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-knn-search">Documentation |
3480 |
| - * on elastic.co</a> |
3481 |
| - */ |
3482 |
| - |
3483 |
| - public final <TDocument> CompletableFuture<KnnSearchResponse<TDocument>> knnSearch( |
3484 |
| - Function<KnnSearchRequest.Builder, ObjectBuilder<KnnSearchRequest>> fn, Type tDocumentType) { |
3485 |
| - return knnSearch(fn.apply(new KnnSearchRequest.Builder()).build(), tDocumentType); |
3486 |
| - } |
3487 |
| - |
3488 | 3285 | // ----- Endpoint: mget
|
3489 | 3286 |
|
3490 | 3287 | /**
|
|
0 commit comments