|
| 1 | +# https://www.chilimath.com/lessons/advanced-algebra/cramers-rule-with-two-variables |
| 2 | +# https://en.wikipedia.org/wiki/Cramer%27s_rule |
| 3 | + |
| 4 | + |
| 5 | +def cramers_rule_2x2(equation1: list[int], equation2: list[int]) -> str: |
| 6 | + """ |
| 7 | + Solves the system of linear equation in 2 variables. |
| 8 | + :param: equation1: list of 3 numbers |
| 9 | + :param: equation2: list of 3 numbers |
| 10 | + :return: String of result |
| 11 | + input format : [a1, b1, d1], [a2, b2, d2] |
| 12 | + determinant = [[a1, b1], [a2, b2]] |
| 13 | + determinant_x = [[d1, b1], [d2, b2]] |
| 14 | + determinant_y = [[a1, d1], [a2, d2]] |
| 15 | +
|
| 16 | + >>> cramers_rule_2x2([2, 3, 0], [5, 1, 0]) |
| 17 | + 'Trivial solution. (Consistent system) x = 0 and y = 0' |
| 18 | + >>> cramers_rule_2x2([0, 4, 50], [2, 0, 26]) |
| 19 | + 'Non-Trivial Solution (Consistent system) x = 13.0, y = 12.5' |
| 20 | + >>> cramers_rule_2x2([11, 2, 30], [1, 0, 4]) |
| 21 | + 'Non-Trivial Solution (Consistent system) x = 4.0, y = -7.0' |
| 22 | + >>> cramers_rule_2x2([4, 7, 1], [1, 2, 0]) |
| 23 | + 'Non-Trivial Solution (Consistent system) x = 2.0, y = -1.0' |
| 24 | +
|
| 25 | + >>> cramers_rule_2x2([1, 2, 3], [2, 4, 6]) |
| 26 | + Traceback (most recent call last): |
| 27 | + ... |
| 28 | + ValueError: Infinite solutions. (Consistent system) |
| 29 | + >>> cramers_rule_2x2([1, 2, 3], [2, 4, 7]) |
| 30 | + Traceback (most recent call last): |
| 31 | + ... |
| 32 | + ValueError: No solution. (Inconsistent system) |
| 33 | + >>> cramers_rule_2x2([1, 2, 3], [11, 22]) |
| 34 | + Traceback (most recent call last): |
| 35 | + ... |
| 36 | + ValueError: Please enter a valid equation. |
| 37 | + >>> cramers_rule_2x2([0, 1, 6], [0, 0, 3]) |
| 38 | + Traceback (most recent call last): |
| 39 | + ... |
| 40 | + ValueError: No solution. (Inconsistent system) |
| 41 | + >>> cramers_rule_2x2([0, 0, 6], [0, 0, 3]) |
| 42 | + Traceback (most recent call last): |
| 43 | + ... |
| 44 | + ValueError: Both a & b of two equations can't be zero. |
| 45 | + >>> cramers_rule_2x2([1, 2, 3], [1, 2, 3]) |
| 46 | + Traceback (most recent call last): |
| 47 | + ... |
| 48 | + ValueError: Infinite solutions. (Consistent system) |
| 49 | + >>> cramers_rule_2x2([0, 4, 50], [0, 3, 99]) |
| 50 | + Traceback (most recent call last): |
| 51 | + ... |
| 52 | + ValueError: No solution. (Inconsistent system) |
| 53 | + """ |
| 54 | + |
| 55 | + # Check if the input is valid |
| 56 | + if not len(equation1) == len(equation2) == 3: |
| 57 | + raise ValueError("Please enter a valid equation.") |
| 58 | + if equation1[0] == equation1[1] == equation2[0] == equation2[1] == 0: |
| 59 | + raise ValueError("Both a & b of two equations can't be zero.") |
| 60 | + |
| 61 | + # Extract the coefficients |
| 62 | + a1, b1, c1 = equation1 |
| 63 | + a2, b2, c2 = equation2 |
| 64 | + |
| 65 | + # Calculate the determinants of the matrices |
| 66 | + determinant = a1 * b2 - a2 * b1 |
| 67 | + determinant_x = c1 * b2 - c2 * b1 |
| 68 | + determinant_y = a1 * c2 - a2 * c1 |
| 69 | + |
| 70 | + # Check if the system of linear equations has a solution (using Cramer's rule) |
| 71 | + if determinant == 0: |
| 72 | + if determinant_x == determinant_y == 0: |
| 73 | + raise ValueError("Infinite solutions. (Consistent system)") |
| 74 | + else: |
| 75 | + raise ValueError("No solution. (Inconsistent system)") |
| 76 | + else: |
| 77 | + if determinant_x == determinant_y == 0: |
| 78 | + return "Trivial solution. (Consistent system) x = 0 and y = 0" |
| 79 | + else: |
| 80 | + x = determinant_x / determinant |
| 81 | + y = determinant_y / determinant |
| 82 | + return f"Non-Trivial Solution (Consistent system) x = {x}, y = {y}" |
0 commit comments