Skip to content

Commit fb3a228

Browse files
nikalosagithub-actionscclauss
authored
Strongly connected components (TheAlgorithms#2114)
* Implement strongly connected components for graph algorithms * fixup! Format Python code with psf/black push * Delete trailing whitespace * updating DIRECTORY.md * Add doctests and typehints * Remove unnecessary comments, change variable names * fixup! Format Python code with psf/black push * Change undefined variable's name * Apply suggestions from code review Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
1 parent 2bbdc3b commit fb3a228

File tree

2 files changed

+106
-0
lines changed

2 files changed

+106
-0
lines changed

DIRECTORY.md

+1
Original file line numberDiff line numberDiff line change
@@ -261,6 +261,7 @@
261261
* [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py)
262262
* [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py)
263263
* [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py)
264+
* [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py)
264265
* [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py)
265266

266267
## Greedy Method
+105
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
"""
2+
https://en.wikipedia.org/wiki/Strongly_connected_component
3+
4+
Finding strongly connected components in directed graph
5+
6+
"""
7+
8+
test_graph_1 = {
9+
0: [2, 3],
10+
1: [0],
11+
2: [1],
12+
3: [4],
13+
4: [],
14+
}
15+
16+
test_graph_2 = {
17+
0: [1, 2, 3],
18+
1: [2],
19+
2: [0],
20+
3: [4],
21+
4: [5],
22+
5: [3],
23+
}
24+
25+
26+
def topology_sort(graph: dict, vert: int, visited: list) -> list:
27+
"""
28+
Use depth first search to sort graph
29+
At this time graph is the same as input
30+
>>> topology_sort(test_graph_1, 0, 5 * [False])
31+
[1, 2, 4, 3, 0]
32+
>>> topology_sort(test_graph_2, 0, 6 * [False])
33+
[2, 1, 5, 4, 3, 0]
34+
"""
35+
36+
visited[vert] = True
37+
order = []
38+
39+
for neighbour in graph[vert]:
40+
if not visited[neighbour]:
41+
order += topology_sort(graph, neighbour, visited)
42+
43+
order.append(vert)
44+
45+
return order
46+
47+
48+
def find_components(reversed_graph: dict, vert: int, visited: list) -> list:
49+
"""
50+
Use depth first search to find strongliy connected
51+
vertices. Now graph is reversed
52+
>>> find_components({0: [1], 1: [2], 2: [0]}, 0, 5 * [False])
53+
[0, 1, 2]
54+
>>> find_components({0: [2], 1: [0], 2: [0, 1]}, 0, 6 * [False])
55+
[0, 2, 1]
56+
"""
57+
58+
visited[vert] = True
59+
component = [vert]
60+
61+
for neighbour in reversed_graph[vert]:
62+
if not visited[neighbour]:
63+
component += find_components(reversed_graph, neighbour, visited)
64+
65+
return component
66+
67+
68+
def strongly_connected_components(graph: dict) -> list:
69+
"""
70+
This function takes graph as a parameter
71+
and then returns the list of strongly connected components
72+
>>> strongly_connected_components(test_graph_1)
73+
[[0, 1, 2], [3], [4]]
74+
>>> strongly_connected_components(test_graph_2)
75+
[[0, 2, 1], [3, 5, 4]]
76+
"""
77+
78+
visited = len(graph) * [False]
79+
reversed_graph = {vert: [] for vert in range(len(graph))}
80+
81+
for vert, neighbours in graph.items():
82+
for neighbour in neighbours:
83+
reversed_graph[neighbour].append(vert)
84+
85+
order = []
86+
for i, was_visited in enumerate(visited):
87+
if not was_visited:
88+
order += topology_sort(graph, i, visited)
89+
90+
components_list = []
91+
visited = len(graph) * [False]
92+
93+
for i in range(len(graph)):
94+
vert = order[len(graph) - i - 1]
95+
if not visited[vert]:
96+
component = find_components(reversed_graph, vert, visited)
97+
components_list.append(component)
98+
99+
return components_list
100+
101+
102+
if __name__ == "__main__":
103+
import doctest
104+
105+
doctest.testmod()

0 commit comments

Comments
 (0)