Skip to content

Commit 5d46a4d

Browse files
maxwell-aladagocclauss
authored andcommitted
ENH: Added a functionality to make it possible to reconstruct an optimal subset for the dynamic programming problem (TheAlgorithms#1139)
* function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * function for the knapsack problem which returns one of the optimal subsets * some pep8 cleanup too
1 parent 05c9a05 commit 5d46a4d

File tree

1 file changed

+116
-15
lines changed

1 file changed

+116
-15
lines changed

dynamic_programming/knapsack.py

+116-15
Original file line numberDiff line numberDiff line change
@@ -1,42 +1,143 @@
11
"""
2-
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.
2+
Given weights and values of n items, put these items in a knapsack of
3+
capacity W to get the maximum total value in the knapsack.
4+
5+
Note that only the integer weights 0-1 knapsack problem is solvable
6+
using dynamic programming.
37
"""
4-
def MF_knapsack(i,wt,val,j):
8+
9+
10+
def MF_knapsack(i, wt, val, j):
511
'''
612
This code involves the concept of memory functions. Here we solve the subproblems which are needed
713
unlike the below example
814
F is a 2D array with -1s filled up
915
'''
1016
global F # a global dp table for knapsack
1117
if F[i][j] < 0:
12-
if j < wt[i - 1]:
13-
val = MF_knapsack(i - 1,wt,val,j)
18+
if j < wt[i-1]:
19+
val = MF_knapsack(i-1, wt, val, j)
1420
else:
15-
val = max(MF_knapsack(i - 1,wt,val,j),MF_knapsack(i - 1,wt,val,j - wt[i - 1]) + val[i - 1])
21+
val = max(MF_knapsack(i-1, wt, val, j),
22+
MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1])
1623
F[i][j] = val
1724
return F[i][j]
1825

26+
1927
def knapsack(W, wt, val, n):
2028
dp = [[0 for i in range(W+1)]for j in range(n+1)]
2129

2230
for i in range(1,n+1):
23-
for w in range(1,W+1):
24-
if(wt[i-1]<=w):
25-
dp[i][w] = max(val[i-1]+dp[i-1][w-wt[i-1]],dp[i-1][w])
31+
for w in range(1, W+1):
32+
if wt[i-1] <= w:
33+
dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w])
2634
else:
2735
dp[i][w] = dp[i-1][w]
2836

29-
return dp[n][w]
37+
return dp[n][W], dp
38+
39+
40+
def knapsack_with_example_solution(W: int, wt: list, val:list):
41+
"""
42+
Solves the integer weights knapsack problem returns one of
43+
the several possible optimal subsets.
44+
45+
Parameters
46+
---------
47+
48+
W: int, the total maximum weight for the given knapsack problem.
49+
wt: list, the vector of weights for all items where wt[i] is the weight
50+
of the ith item.
51+
val: list, the vector of values for all items where val[i] is the value
52+
of te ith item
53+
54+
Returns
55+
-------
56+
optimal_val: float, the optimal value for the given knapsack problem
57+
example_optional_set: set, the indices of one of the optimal subsets
58+
which gave rise to the optimal value.
59+
60+
Examples
61+
-------
62+
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
63+
(142, {2, 3, 4})
64+
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
65+
(8, {3, 4})
66+
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])
67+
Traceback (most recent call last):
68+
...
69+
ValueError: The number of weights must be the same as the number of values.
70+
But got 4 weights and 3 values
71+
"""
72+
if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):
73+
raise ValueError("Both the weights and values vectors must be either lists or tuples")
74+
75+
num_items = len(wt)
76+
if num_items != len(val):
77+
raise ValueError("The number of weights must be the "
78+
"same as the number of values.\nBut "
79+
"got {} weights and {} values".format(num_items, len(val)))
80+
for i in range(num_items):
81+
if not isinstance(wt[i], int):
82+
raise TypeError("All weights must be integers but "
83+
"got weight of type {} at index {}".format(type(wt[i]), i))
84+
85+
optimal_val, dp_table = knapsack(W, wt, val, num_items)
86+
example_optional_set = set()
87+
_construct_solution(dp_table, wt, num_items, W, example_optional_set)
88+
89+
return optimal_val, example_optional_set
90+
91+
92+
def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set):
93+
"""
94+
Recursively reconstructs one of the optimal subsets given
95+
a filled DP table and the vector of weights
96+
97+
Parameters
98+
---------
99+
100+
dp: list of list, the table of a solved integer weight dynamic programming problem
101+
102+
wt: list or tuple, the vector of weights of the items
103+
i: int, the index of the item under consideration
104+
j: int, the current possible maximum weight
105+
optimal_set: set, the optimal subset so far. This gets modified by the function.
106+
107+
Returns
108+
-------
109+
None
110+
111+
"""
112+
# for the current item i at a maximum weight j to be part of an optimal subset,
113+
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
114+
# where i - 1 means considering only the previous items at the given maximum weight
115+
if i > 0 and j > 0:
116+
if dp[i - 1][j] == dp[i][j]:
117+
_construct_solution(dp, wt, i - 1, j, optimal_set)
118+
else:
119+
optimal_set.add(i)
120+
_construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set)
121+
30122

31123
if __name__ == '__main__':
32124
'''
33125
Adding test case for knapsack
34126
'''
35-
val = [3,2,4,4]
36-
wt = [4,3,2,3]
127+
val = [3, 2, 4, 4]
128+
wt = [4, 3, 2, 3]
37129
n = 4
38130
w = 6
39-
F = [[0]*(w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
40-
print(knapsack(w,wt,val,n))
41-
print(MF_knapsack(n,wt,val,w)) # switched the n and w
42-
131+
F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
132+
optimal_solution, _ = knapsack(w,wt,val, n)
133+
print(optimal_solution)
134+
print(MF_knapsack(n,wt,val,w)) # switched the n and w
135+
136+
# testing the dynamic programming problem with example
137+
# the optimal subset for the above example are items 3 and 4
138+
optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)
139+
assert optimal_solution == 8
140+
assert optimal_subset == {3, 4}
141+
print("optimal_value = ", optimal_solution)
142+
print("An optimal subset corresponding to the optimal value", optimal_subset)
143+

0 commit comments

Comments
 (0)