|
| 1 | +import numpy as np |
| 2 | +import os |
| 3 | +import datetime |
| 4 | + |
| 5 | + |
| 6 | +def add_days(start_day, delta_days): |
| 7 | + date_1 = datetime.datetime.strptime(start_day, '%B %d, %Y') |
| 8 | + end_date = date_1 + datetime.timedelta(days=delta_days) |
| 9 | + out = end_date.strftime('%B %d, %Y') |
| 10 | + |
| 11 | + return out |
| 12 | + |
| 13 | + |
| 14 | +def generate_numerical(raw_folder, save_path, mode="test", obs_length=15): |
| 15 | + raw_data = np.load(os.path.join(raw_folder, "ecl_raw_" + mode + ".npy")) |
| 16 | + data_x = [] |
| 17 | + data_y = [] |
| 18 | + for i in range(len(raw_data)): |
| 19 | + data = raw_data[i] |
| 20 | + number_of_instance = len(data) - obs_length |
| 21 | + for j in range(number_of_instance): |
| 22 | + y = data[obs_length + j] |
| 23 | + x = data[j: obs_length + j] |
| 24 | + data_x.append(x) |
| 25 | + data_y.append(y) |
| 26 | + |
| 27 | + data_x = np.reshape(data_x, [-1, obs_length]) |
| 28 | + np.save(os.path.join(save_path, mode + "_" + str(obs_length) + "_x.npy"), data_x) |
| 29 | + data_y = np.reshape(data_y, [-1, 1]) |
| 30 | + np.save(os.path.join(save_path, mode + "_" + str(obs_length) + "_y.npy"), data_y) |
| 31 | + |
| 32 | + |
| 33 | +def output_sentence(target_usage): |
| 34 | + out = f"This client will consume {target_usage} kWh of electricity." |
| 35 | + |
| 36 | + return out |
| 37 | + |
| 38 | + |
| 39 | +def input_sentence(usage, client_id, start_date, obs_length): |
| 40 | + end_day = add_days(start_date, delta_days=obs_length - 1) |
| 41 | + prediction_day = add_days(start_date, delta_days=obs_length) |
| 42 | + start_week_day = datetime.datetime.strptime(start_date, '%B %d, %Y').strftime('%A') |
| 43 | + end_week_day = datetime.datetime.strptime(end_day, '%B %d, %Y').strftime('%A') |
| 44 | + prediction_week_day = datetime.datetime.strptime(prediction_day, '%B %d, %Y').strftime('%A') |
| 45 | + num_visits_string = ', '.join(map(str, usage)) |
| 46 | + out = f"From {start_date}, {start_week_day} to {end_day}, {end_week_day}, client {client_id} consumed {num_visits_string} kWh of electricity on each day. What is the consumption going to be on {prediction_day}, {prediction_week_day}?" |
| 47 | + |
| 48 | + return out |
| 49 | + |
| 50 | + |
| 51 | +def generate_prompt(raw_folder, save_path, mode="train", obs_length=15, first_day="January 1, 2012"): |
| 52 | + raw_data = np.load(os.path.join(raw_folder, "ecl_raw_" + mode + ".npy")) |
| 53 | + data_x_prompt = [] |
| 54 | + data_y_prompt = [] |
| 55 | + for i in range(len(raw_data)): |
| 56 | + data = raw_data[i] |
| 57 | + number_of_instance = len(data) - obs_length |
| 58 | + for j in range(number_of_instance): |
| 59 | + start_day = add_days(first_day, j) |
| 60 | + y = data[obs_length + j] |
| 61 | + x = data[j: obs_length + j] |
| 62 | + data_y_prompt.append(output_sentence(y)) |
| 63 | + data_x_prompt.append(input_sentence(x, i+1, start_day, obs_length)) |
| 64 | + |
| 65 | + with open(os.path.join(save_path, mode + "_15_x_prompt.txt"), "w") as f: |
| 66 | + for i in data_x_prompt: |
| 67 | + f.write(i + "\n") |
| 68 | + f.close() |
| 69 | + |
| 70 | + with open(os.path.join(save_path, mode + "_y_prompt.txt"), "w") as f: |
| 71 | + for i in data_y_prompt: |
| 72 | + f.write(i + "\n") |
| 73 | + f.close() |
0 commit comments