|
| 1 | +""" |
| 2 | +Python implementation of the MSD radix sort algorithm. |
| 3 | +It used the binary representation of the integers to sort |
| 4 | +them. |
| 5 | +https://en.wikipedia.org/wiki/Radix_sort |
| 6 | +""" |
| 7 | +from typing import List |
| 8 | + |
| 9 | + |
| 10 | +def msd_radix_sort(list_of_ints: List[int]) -> List[int]: |
| 11 | + """ |
| 12 | + Implementation of the MSD radix sort algorithm. Only works |
| 13 | + with positive integers |
| 14 | + :param list_of_ints: A list of integers |
| 15 | + :return: Returns the sorted list |
| 16 | + >>> msd_radix_sort([40, 12, 1, 100, 4]) |
| 17 | + [1, 4, 12, 40, 100] |
| 18 | + >>> msd_radix_sort([]) |
| 19 | + [] |
| 20 | + >>> msd_radix_sort([123, 345, 123, 80]) |
| 21 | + [80, 123, 123, 345] |
| 22 | + >>> msd_radix_sort([1209, 834598, 1, 540402, 45]) |
| 23 | + [1, 45, 1209, 540402, 834598] |
| 24 | + >>> msd_radix_sort([-1, 34, 45]) |
| 25 | + Traceback (most recent call last): |
| 26 | + ... |
| 27 | + ValueError: All numbers must be positive |
| 28 | + """ |
| 29 | + if not list_of_ints: |
| 30 | + return [] |
| 31 | + |
| 32 | + if min(list_of_ints) < 0: |
| 33 | + raise ValueError("All numbers must be positive") |
| 34 | + |
| 35 | + most_bits = max(len(bin(x)[2:]) for x in list_of_ints) |
| 36 | + return _msd_radix_sort(list_of_ints, most_bits) |
| 37 | + |
| 38 | + |
| 39 | +def _msd_radix_sort(list_of_ints: List[int], bit_position: int) -> List[int]: |
| 40 | + """ |
| 41 | + Sort the given list based on the bit at bit_position. Numbers with a |
| 42 | + 0 at that position will be at the start of the list, numbers with a |
| 43 | + 1 at the end. |
| 44 | + :param list_of_ints: A list of integers |
| 45 | + :param bit_position: the position of the bit that gets compared |
| 46 | + :return: Returns a partially sorted list |
| 47 | + >>> _msd_radix_sort([45, 2, 32], 1) |
| 48 | + [2, 32, 45] |
| 49 | + >>> _msd_radix_sort([10, 4, 12], 2) |
| 50 | + [4, 12, 10] |
| 51 | + """ |
| 52 | + if bit_position == 0 or len(list_of_ints) in [0, 1]: |
| 53 | + return list_of_ints |
| 54 | + |
| 55 | + zeros = list() |
| 56 | + ones = list() |
| 57 | + # Split numbers based on bit at bit_position from the right |
| 58 | + for number in list_of_ints: |
| 59 | + if (number >> (bit_position - 1)) & 1: |
| 60 | + # number has a one at bit bit_position |
| 61 | + ones.append(number) |
| 62 | + else: |
| 63 | + # number has a zero at bit bit_position |
| 64 | + zeros.append(number) |
| 65 | + |
| 66 | + # recursively split both lists further |
| 67 | + zeros = _msd_radix_sort(zeros, bit_position - 1) |
| 68 | + ones = _msd_radix_sort(ones, bit_position - 1) |
| 69 | + |
| 70 | + # recombine lists |
| 71 | + res = zeros |
| 72 | + res.extend(ones) |
| 73 | + |
| 74 | + return res |
| 75 | + |
| 76 | + |
| 77 | +if __name__ == "__main__": |
| 78 | + import doctest |
| 79 | + |
| 80 | + doctest.testmod() |
0 commit comments