Skip to content

Latest commit

 

History

History

search_graph

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Search Graph Example

This example shows how to implement a search graph for web content retrieval and analysis using Scrapegraph-ai.

Features

  • Web search integration
  • Content relevance scoring
  • Result filtering
  • Data aggregation

Setup

  1. Install required dependencies
  2. Copy .env.example to .env
  3. Configure your API keys in the .env file

Usage

from scrapegraphai.graphs import SearchGraph

graph = SearchGraph()
results = graph.search("your search query")

Environment Variables

Required environment variables:

  • OPENAI_API_KEY: Your OpenAI API key
  • SERP_API_KEY: Your SERP API key (optional)