-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathscreenshot_scraper_graph.py
82 lines (64 loc) · 2.49 KB
/
screenshot_scraper_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
ScreenshotScraperGraph Module
"""
from typing import Optional, Type
from pydantic import BaseModel
from ..nodes import FetchScreenNode, GenerateAnswerFromImageNode
from .abstract_graph import AbstractGraph
from .base_graph import BaseGraph
class ScreenshotScraperGraph(AbstractGraph):
"""
A graph instance representing the web scraping workflow for images.
Attributes:
prompt (str): The input text to be scraped.
config (dict): Configuration parameters for the graph.
source (str): The source URL or image link to scrape from.
Methods:
__init__(prompt: str, source: str, config: dict, schema: Optional[Type[BaseModel]] = None)
Initializes the ScreenshotScraperGraph instance with the given prompt,
source, and configuration parameters.
_create_graph()
Creates a graph of nodes representing the web scraping workflow for images.
run()
Executes the scraping process and returns the answer to the prompt.
"""
def __init__(
self,
prompt: str,
source: str,
config: dict,
schema: Optional[Type[BaseModel]] = None,
):
super().__init__(prompt, config, source, schema)
def _create_graph(self) -> BaseGraph:
"""
Creates the graph of nodes representing the workflow for web scraping with images.
Returns:
BaseGraph: A graph instance representing the web scraping workflow for images.
"""
fetch_screen_node = FetchScreenNode(
input="url", output=["screenshots"], node_config={"link": self.source}
)
generate_answer_from_image_node = GenerateAnswerFromImageNode(
input="screenshots", output=["answer"], node_config={"config": self.config}
)
return BaseGraph(
nodes=[
fetch_screen_node,
generate_answer_from_image_node,
],
edges=[
(fetch_screen_node, generate_answer_from_image_node),
],
entry_point=fetch_screen_node,
graph_name=self.__class__.__name__,
)
def run(self) -> str:
"""
Executes the scraping process and returns the answer to the prompt.
Returns:
str: The answer to the prompt.
"""
inputs = {"user_prompt": self.prompt}
self.final_state, self.execution_info = self.graph.execute(inputs)
return self.final_state.get("answer", "No answer found.")