-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathabstract_graph_test.py
235 lines (214 loc) · 8.53 KB
/
abstract_graph_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import pytest
from langchain_aws import ChatBedrock
from langchain_ollama import ChatOllama
from langchain_openai import AzureChatOpenAI, ChatOpenAI
from scrapegraphai.graphs import AbstractGraph, BaseGraph
from scrapegraphai.models import DeepSeek, OneApi
from scrapegraphai.nodes import FetchNode, ParseNode
from unittest.mock import Mock, patch
"""
Tests for the AbstractGraph.
"""
class TestGraph(AbstractGraph):
def __init__(self, prompt: str, config: dict):
super().__init__(prompt, config)
def _create_graph(self) -> BaseGraph:
fetch_node = FetchNode(
input="url| local_dir",
output=["doc"],
node_config={
"llm_model": self.llm_model,
"force": self.config.get("force", False),
"cut": self.config.get("cut", True),
"loader_kwargs": self.config.get("loader_kwargs", {}),
"browser_base": self.config.get("browser_base"),
},
)
parse_node = ParseNode(
input="doc",
output=["parsed_doc"],
node_config={"llm_model": self.llm_model, "chunk_size": self.model_token},
)
return BaseGraph(
nodes=[fetch_node, parse_node],
edges=[
(fetch_node, parse_node),
],
entry_point=fetch_node,
graph_name=self.__class__.__name__,
)
def run(self) -> str:
inputs = {"user_prompt": self.prompt, self.input_key: self.source}
self.final_state, self.execution_info = self.graph.execute(inputs)
return self.final_state.get("answer", "No answer found.")
class TestAbstractGraph:
@pytest.mark.parametrize(
"llm_config, expected_model",
[
(
{"model": "openai/gpt-3.5-turbo", "openai_api_key": "sk-randomtest001"},
ChatOpenAI,
),
(
{
"model": "azure_openai/gpt-3.5-turbo",
"api_key": "random-api-key",
"api_version": "no version",
"azure_endpoint": "https://www.example.com/",
},
AzureChatOpenAI,
),
({"model": "ollama/llama2"}, ChatOllama),
({"model": "oneapi/qwen-turbo", "api_key": "oneapi-api-key"}, OneApi),
(
{"model": "deepseek/deepseek-coder", "api_key": "deepseek-api-key"},
DeepSeek,
),
(
{
"model": "bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"region_name": "IDK",
},
ChatBedrock,
),
],
)
def test_create_llm(self, llm_config, expected_model):
graph = TestGraph("Test prompt", {"llm": llm_config})
assert isinstance(graph.llm_model, expected_model)
def test_create_llm_unknown_provider(self):
with pytest.raises(ValueError):
TestGraph("Test prompt", {"llm": {"model": "unknown_provider/model"}})
@pytest.mark.parametrize(
"llm_config, expected_model",
[
(
{
"model": "openai/gpt-3.5-turbo",
"openai_api_key": "sk-randomtest001",
"rate_limit": {"requests_per_second": 1},
},
ChatOpenAI,
),
(
{
"model": "azure_openai/gpt-3.5-turbo",
"api_key": "random-api-key",
"api_version": "no version",
"azure_endpoint": "https://www.example.com/",
"rate_limit": {"requests_per_second": 1},
},
AzureChatOpenAI,
),
(
{"model": "ollama/llama2", "rate_limit": {"requests_per_second": 1}},
ChatOllama,
),
(
{
"model": "oneapi/qwen-turbo",
"api_key": "oneapi-api-key",
"rate_limit": {"requests_per_second": 1},
},
OneApi,
),
(
{
"model": "deepseek/deepseek-coder",
"api_key": "deepseek-api-key",
"rate_limit": {"requests_per_second": 1},
},
DeepSeek,
),
(
{
"model": "bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"region_name": "IDK",
"rate_limit": {"requests_per_second": 1},
},
ChatBedrock,
),
],
)
def test_create_llm_with_rate_limit(self, llm_config, expected_model):
graph = TestGraph("Test prompt", {"llm": llm_config})
assert isinstance(graph.llm_model, expected_model)
@pytest.mark.asyncio
async def test_run_safe_async(self):
graph = TestGraph(
"Test prompt",
{
"llm": {
"model": "openai/gpt-3.5-turbo",
"openai_api_key": "sk-randomtest001",
}
},
)
with patch.object(graph, "run", return_value="Async result") as mock_run:
result = await graph.run_safe_async()
assert result == "Async result"
mock_run.assert_called_once()
def test_create_llm_with_custom_model_instance(self):
"""
Test that the _create_llm method correctly uses a custom model instance
when provided in the configuration.
"""
mock_model = Mock()
mock_model.model_name = "custom-model"
config = {
"llm": {
"model_instance": mock_model,
"model_tokens": 1000,
"model": "custom/model"
}
}
graph = TestGraph("Test prompt", config)
assert graph.llm_model == mock_model
assert graph.model_token == 1000
def test_set_common_params(self):
"""
Test that the set_common_params method correctly updates the configuration
of all nodes in the graph.
"""
# Create a mock graph with mock nodes
mock_graph = Mock()
mock_node1 = Mock()
mock_node2 = Mock()
mock_graph.nodes = [mock_node1, mock_node2]
# Create a TestGraph instance with the mock graph
with patch('scrapegraphai.graphs.abstract_graph.AbstractGraph._create_graph', return_value=mock_graph):
graph = TestGraph("Test prompt", {"llm": {"model": "openai/gpt-3.5-turbo", "openai_api_key": "sk-test"}})
# Call set_common_params with test parameters
test_params = {"param1": "value1", "param2": "value2"}
graph.set_common_params(test_params)
# Assert that update_config was called on each node with the correct parameters
def test_get_state(self):
"""Test that get_state returns the correct final state with or without a provided key, and raises KeyError for missing keys."""
graph = TestGraph("dummy", {"llm": {"model": "openai/gpt-3.5-turbo", "openai_api_key": "sk-test"}})
# Set a dummy final state
graph.final_state = {"answer": "42", "other": "value"}
# Test without a key returns the entire final_state
state = graph.get_state()
assert state == {"answer": "42", "other": "value"}
# Test with a valid key returns the specific value
answer = graph.get_state("answer")
assert answer == "42"
# Test that a missing key raises a KeyError
with pytest.raises(KeyError):
_ = graph.get_state("nonexistent")
def test_append_node(self):
"""Test that append_node correctly delegates to the graph's append_node method."""
graph = TestGraph("dummy", {"llm": {"model": "openai/gpt-3.5-turbo", "openai_api_key": "sk-test"}})
# Replace the graph object with a mock that has append_node
mock_graph = Mock()
graph.graph = mock_graph
dummy_node = Mock()
graph.append_node(dummy_node)
mock_graph.append_node.assert_called_once_with(dummy_node)
def test_get_execution_info(self):
"""Test that get_execution_info returns the execution info stored in the graph."""
graph = TestGraph("dummy", {"llm": {"model": "openai/gpt-3.5-turbo", "openai_api_key": "sk-test"}})
dummy_info = {"execution": "info", "status": "ok"}
graph.execution_info = dummy_info
info = graph.get_execution_info()
assert info == dummy_info