-
-
Notifications
You must be signed in to change notification settings - Fork 189
/
Copy pathGaussianMLETest.php
193 lines (158 loc) · 4.43 KB
/
GaussianMLETest.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
<?php
namespace Rubix\ML\Tests\AnomalyDetectors;
use Rubix\ML\Online;
use Rubix\ML\Learner;
use Rubix\ML\DataType;
use Rubix\ML\Estimator;
use Rubix\ML\Persistable;
use Rubix\ML\EstimatorType;
use Rubix\ML\Datasets\Unlabeled;
use Rubix\ML\AnomalyDetectors\Scoring;
use Rubix\ML\Datasets\Generators\Blob;
use Rubix\ML\Datasets\Generators\Circle;
use Rubix\ML\AnomalyDetectors\GaussianMLE;
use Rubix\ML\CrossValidation\Metrics\FBeta;
use Rubix\ML\Datasets\Generators\Agglomerate;
use Rubix\ML\Exceptions\InvalidArgumentException;
use Rubix\ML\Exceptions\RuntimeException;
use PHPUnit\Framework\TestCase;
/**
* @group AnomalyDetectors
* @covers \Rubix\ML\AnomalyDetectors\GaussianMLE
*/
class GaussianMLETest extends TestCase
{
/**
* The number of samples in the training set.
*
* @var int
*/
protected const TRAIN_SIZE = 512;
/**
* The number of samples in the validation set.
*
* @var int
*/
protected const TEST_SIZE = 256;
/**
* The minimum validation score required to pass the test.
*
* @var float
*/
protected const MIN_SCORE = 0.9;
/**
* Constant used to see the random number generator.
*
* @var int
*/
protected const RANDOM_SEED = 0;
/**
* @var Agglomerate
*/
protected $generator;
/**
* @var GaussianMLE
*/
protected $estimator;
/**
* @var FBeta
*/
protected $metric;
/**
* @before
*/
protected function setUp() : void
{
$this->generator = new Agglomerate([
0 => new Blob([0.0, 0.0], 2.0),
1 => new Circle(0.0, 0.0, 8.0, 1.0),
], [0.9, 0.1]);
$this->estimator = new GaussianMLE(0.1, 1e-8);
$this->metric = new FBeta();
srand(self::RANDOM_SEED);
}
protected function assertPreConditions() : void
{
$this->assertFalse($this->estimator->trained());
}
/**
* @test
*/
public function build() : void
{
$this->assertInstanceOf(GaussianMLE::class, $this->estimator);
$this->assertInstanceOf(Learner::class, $this->estimator);
$this->assertInstanceOf(Online::class, $this->estimator);
$this->assertInstanceOf(Scoring::class, $this->estimator);
$this->assertInstanceOf(Persistable::class, $this->estimator);
$this->assertInstanceOf(Estimator::class, $this->estimator);
}
/**
* @test
*/
public function type() : void
{
$this->assertEquals(EstimatorType::anomalyDetector(), $this->estimator->type());
}
/**
* @test
*/
public function compatibility() : void
{
$expected = [
DataType::continuous(),
];
$this->assertEquals($expected, $this->estimator->compatibility());
}
/**
* @test
*/
public function params() : void
{
$expected = [
'contamination' => 0.1,
'smoothing' => 1e-8,
];
$this->assertEquals($expected, $this->estimator->params());
}
/**
* @test
*/
public function trainPartialPredict() : void
{
$training = $this->generator->generate(self::TRAIN_SIZE);
$testing = $this->generator->generate(self::TEST_SIZE);
$folds = $training->stratifiedFold(3);
$this->estimator->train($folds[0]);
$this->estimator->partial($folds[1]);
$this->estimator->partial($folds[2]);
$this->assertTrue($this->estimator->trained());
$means = $this->estimator->means();
$this->assertIsArray($means);
$this->assertCount(2, $means);
$this->assertContainsOnly('float', $means);
$variances = $this->estimator->variances();
$this->assertIsArray($variances);
$this->assertCount(2, $variances);
$this->assertContainsOnly('float', $variances);
$predictions = $this->estimator->predict($testing);
$score = $this->metric->score($predictions, $testing->labels());
$this->assertGreaterThanOrEqual(self::MIN_SCORE, $score);
}
/**
* @test
*/
public function trainIncompatible() : void
{
$this->expectException(InvalidArgumentException::class);
$this->estimator->train(Unlabeled::quick([['bad']]));
}
/**
* @test
*/
public function predictUntrained() : void
{
$this->expectException(RuntimeException::class);
$this->estimator->predict(Unlabeled::quick());
}
}