-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdirected.jl
241 lines (213 loc) · 8.92 KB
/
directed.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
all_layers_d = [layer for layer in all_layers if is_directed(layer)]
all_interlayers_d = [
interlayer for interlayer in all_interlayers if is_directed(interlayer)
]
multilayerdigraph = MultilayerDiGraph(all_layers_d, all_interlayers_d)
layers_to_be_emptied = deepcopy([
layer for layer in all_layers_d if
!(layer.graph isa SimpleWeightedGraphs.AbstractSimpleWeightedGraph)
])
layers_names_to_be_emptied = name.(layers_to_be_emptied)
interlayers_to_be_emptied = deepcopy([
interlayer for interlayer in all_interlayers_d if
all(in.(interlayer.layers_names, Ref(layers_names_to_be_emptied))) &&
!(interlayer.graph isa SimpleWeightedGraphs.AbstractSimpleWeightedGraph)
])
for layer in layers_to_be_emptied
for edge in edges(layer)
rem_edge!(layer, edge)
end
end
for interlayer in interlayers_to_be_emptied
for edge in edges(interlayer)
rem_edge!(interlayer, edge)
end
end
@test all(ne.(layers_to_be_emptied) .== 0)
@test all(ne.(interlayers_to_be_emptied) .== 0)
# Instantiate configuration-model multilayerdigraph
configuration_multilayerDigraph = MultilayerDiGraph(
layers_to_be_emptied,
interlayers_to_be_emptied,
truncated(Normal(10), 0.0, 20.0),
truncated(Normal(11), 0.0, 22.0),
);
# Test get_interlayer
for (layer_1, layer_2) in
Iterators.product(multilayerdigraph.layers_names, multilayerdigraph.layers_names)
if layer_1 != layer_2
interlayer = get_interlayer(multilayerdigraph, layer_1, layer_2)
@test nv(interlayer) >= 0
end
end
# Test add_layer! and rem_layer!
const n_vertices_missing = rand(min_vertices:max_vertices)
const n_edges_missing_d = rand(
n_vertices_missing:((n_vertices_missing * (n_vertices_missing - 1)) ÷ 2)
)
missing_layer_d = Layer(
:missing_layer_d,
sample(mvs_metadata, n_vertices_missing; replace=false),
n_edges_missing_d,
MultilayerGraphs.ValDiGraph(
SimpleDiGraph{vertextype}();
edgeval_types=(Float64, String),
edgeval_init=(s, d) -> (s + d, "missing vertex $(s+d)"),
vertexval_types=(String,),
vertexval_init=v -> ("$(v^2)",),
),
_weighttype;
default_edge_metadata=(src, dst) -> (rand(), "missing edge from_$(src)_to_$(dst)"),
) # SimpleGraph{vertextype}()
@test !has_layer(multilayerdigraph, missing_layer_d.name)
@test add_layer!(multilayerdigraph, missing_layer_d)
@test has_layer(multilayerdigraph, missing_layer_d.name)
@test rem_layer!(multilayerdigraph, missing_layer_d.name)
@test !has_layer(multilayerdigraph, missing_layer_d.name)
# Test nodes
@inferred(nodes(multilayerdigraph))
@inferred(nn(multilayerdigraph))
for node in nodes(multilayerdigraph)
@test has_node(multilayerdigraph, node)
end
# Test MultilayerGraphs.add_node! and MultilayerGraphs.rem_node!
new_node = Node("new_node")
nv_prev = nv(multilayerdigraph)
ne_prev = ne(multilayerdigraph)
@test !has_node(multilayerdigraph, new_node)
@test MultilayerGraphs.add_node!(multilayerdigraph, new_node)
@test has_node(multilayerdigraph, new_node)
@test MultilayerGraphs.rem_node!(multilayerdigraph, new_node)
@test !has_node(multilayerdigraph, new_node)
# Test that nothing changed
@test nv_prev == nv(multilayerdigraph)
@test ne_prev == ne(multilayerdigraph)
# Test vertices
@test eltype(multilayerdigraph) == Int64
nv(multilayerdigraph)
@test length(multilayerdigraph.fadjlist) == length(vertices(multilayerdigraph)) # nv_withmissing(multilayerdigraph)
# Test that all multilayer vertices are present
for mv in vcat(mv_vertices.(all_layers_d)...)
@test has_vertex(multilayerdigraph, mv)
end
for mv in mv_vertices(multilayerdigraph)
mv_inneighbors(multilayerdigraph, mv)
mv_outneighbors(multilayerdigraph, mv)
end
# Test add_vertex! and rem_vertex!
# Test edges
ne(multilayerdigraph)
## Test that all edges are present
for edge in vcat(collect.(edges.(all_layers_d))..., collect.(edges.(all_interlayers_d))...)
@test has_edge(multilayerdigraph, edge)
end
@test MultilayerGraphs.weighttype(multilayerdigraph) == Float64
@test edgetype(multilayerdigraph) == MultilayerEdge{Float64}
## Test set_weight!
_, rand_mv_1_weight, rand_mv_2_weight = _get_srcmv_dstmv_layer(layer_swdg)
_weight = 3.14
@test !has_edge(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight)
@test add_edge!(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight, weight=_weight)
@test has_edge(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight)
wgt = weight_tensor(multilayerdigraph)
@test wgt[rand_mv_1_weight, rand_mv_2_weight] ==
get_weight(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight) ==
_weight
@test set_weight!(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight, _weight + 1)
wgt = weight_tensor(multilayerdigraph)
@test wgt[rand_mv_1_weight, rand_mv_2_weight] ==
get_weight(multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight) ==
_weight + 1
## Test set_metadata!
_, rand_mv_1_meta, rand_mv_2_meta = _get_srcmv_dstmv_layer(layer_mdg)
### On vertices
@test set_metadata!(multilayerdigraph, rand_mv_1_meta, (meta="new_metadata",))
@test get_metadata(multilayerdigraph, rand_mv_1_meta).meta == "new_metadata"
## On edges
@test !has_edge(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta)
@test add_edge!(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta, metadata=(meta="hello",))
@test has_edge(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta)
mt = metadata_tensor(multilayerdigraph)
@test mt[rand_mv_1_meta, rand_mv_2_meta].meta ==
get_metadata(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta).meta ==
"hello"
_metadata = (meta="bye",)
@test set_metadata!(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta, _metadata)
mt = metadata_tensor(multilayerdigraph)
@test mt[rand_mv_1_meta, rand_mv_2_meta].meta ==
get_metadata(multilayerdigraph, rand_mv_1_meta, rand_mv_2_meta).meta ==
"bye"
# Test Graphs.jl extra overrides
@test all(
indegree(multilayerdigraph) .+ outdegree(multilayerdigraph) .==
degree(multilayerdigraph),
)
mean_degree(multilayerdigraph)
degree_second_moment(multilayerdigraph)
degree_variance(multilayerdigraph)
# Test multilayer-specific methods
@test all(
MultilayerGraphs.get_supra_weight_matrix_from_weight_tensor(
weight_tensor(multilayerdigraph).array
) .== supra_weight_matrix(multilayerdigraph).array,
)
@test all(
MultilayerGraphs.get_weight_tensor_from_supra_weight_matrix(
multilayerdigraph, supra_weight_matrix(multilayerdigraph).array
) .== weight_tensor(multilayerdigraph).array,
)
@test_broken multilayer_global_clustering_coefficient(multilayerdigraph) .==
global_clustering_coefficient(multilayerdigraph)
overlaygraph = MultilayerGraphs.get_overlay_monoplex_graph(multilayerdigraph)
@test_broken global_clustering_coefficient(overlaygraph) .==
overlay_clustering_coefficient(multilayerdigraph)
@test multilayer_weighted_global_clustering_coefficient(
multilayerdigraph, [1 / 3, 1 / 3, 1 / 3]
) .≈ multilayer_global_clustering_coefficient(multilayerdigraph)
eig_centr_u, errs_u = eigenvector_centrality(multilayerdigraph; norm="n", tol=1e-3)
modularity(
multilayerdigraph,
rand([1, 2, 3, 4], length(nodes(multilayerdigraph)), length(multilayerdigraph.layers)),
)
wgt = weight_tensor(multilayerdigraph)
sam = supra_weight_matrix(multilayerdigraph)
for edge in collect(edges(multilayerdigraph.layer_swdg))
@test wgt[src(edge), dst(edge)] == MultilayerGraphs.weight(edge)
@test sam[src(edge), dst(edge)] == MultilayerGraphs.weight(edge)
end
# Test that, given a 1-dimensional multilayerdigraph, we obtain the same metrics as we would by using Graphs.jl utilities on the one and only layer
## unweighted and weighted case
for layer in all_layers_d
if !(layer.graph isa SimpleValueGraphs.AbstractValGraph)
monolayergraph = MultilayerDiGraph([layer])
@test length(edges(monolayergraph)) == length(edges(layer.graph))
@test eltype(monolayergraph) == eltype(layer.graph)
@test ne(monolayergraph) == ne(layer.graph)
@test length(nodes(monolayergraph)) == nv(layer.graph)
@test nv(monolayergraph) .== nv(layer.graph)
@test all(
inneighbors.(Ref(monolayergraph), vertices(monolayergraph)) .==
inneighbors.(Ref(layer.graph), vertices(layer.graph)),
)
@test all(indegree(monolayergraph) .== indegree(layer.graph))
@test all(outdegree(monolayergraph) .== outdegree(layer.graph))
@test all(degree(monolayergraph) .== degree(layer.graph))
@test_broken vec(eigenvector_centrality(monolayergraph; norm="n", tol=1e-3)[1]) ==
eigenvector_centrality(layer.graph)
tests = Bool[]
for i in 1:5
clustering = rand(
[1, 2, 3], length(nodes(monolayergraph)), length(monolayergraph.layers)
)
push!(
tests,
modularity(monolayergraph, clustering) ==
modularity(layer.graph, vec(clustering)),
)
end
@test_broken all(tests)
for edge in edges(layer)
@test has_edge(monolayergraph, edge)
end
end
end